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Chapter 1
Introduction

Emmanuel Lazega and Tom A.B. Snijders

Theoretical developments and the emergence of new epistemological insights are
based on interactions between old problems and new methodologies (Courgeau
2003). At least two methodologies have helped social scientists of the past two
generations in overcoming the traditional divide between individualistic and holistic
approaches in the social sciences: multilevel analysis and social network analysis.
The purpose of this book is to provide an exploration of the diverse ways in
which these two methodologies can be brought together in statistical approaches
to multilevel network analysis, specifically their combination in the development
of three areas: theory, techniques, and empirical applications in the social sciences.
The combination of approaches opens up new avenues of research and improves
the necessary management of so-called ‘ecological fallacies’ (Robinson 1950;
Courgeau 1999, 2002, 2004, 2007) in complex systems of inequalities: for example,
when looking at problems as different as school performance of pupils or career
development in labor markets.

With respect to theory, this book describes the development of multilevel network
reasoning by showing how it can explain behavior by insisting on two different ways
of contextualizing it. The first method consists of identifying levels of influence on
behavior and identifying in sophisticated ways different aggregations of actors and
behaviors as well as complex interactions between levels and therefore between
context and behavior. The levels in multilevel analysis refer to the different units of

E. Lazega (I<)
Institut d’Etudes Politiques de Paris, SPC, CSO-CNRS, 19 rue Amélie, 75007 Paris, France
e-mail: emmanuel.lazega@sciencespo.fr

T.A.B. Snijders
Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen,
The Netherlands

Nuffield College, University of Oxford, Oxford, UK
e-mail: tom.snijders @nuffield.ox.ac.uk

© Springer International Publishing Switzerland 2016 1
E. Lazega, T.A.B. Snijders (eds.), Multilevel Network Analysis for the Social
Sciences, Methodos Series 12, DOI 10.1007/978-3-319-24520-1_1


mailto:emmanuel.lazega@sciencespo.fr
mailto:tom.snijders@nuffield.ox.ac.uk

2 E. Lazega and T.A.B. Snijders

analysis. Each level of analysis corresponds to a population, so multilevel studies
will refer to several populations (Bryk and Raudenbush 1992; Goldstein 1995;
Bressoux et al. 1997; Snijders and Bosker 2012). For example, Kenny and LaVoie
(1985) developed a Social Relations Model for dyadic dependent variables in which
groups, individuals, and dyads are the relevant units of analysis. They propose a
model in which level 1 is the individual, level 2 the dyad, and level 3 the group.
Similarly, for the p, models which were proposed for binary dyadic dependent
variables, “the multilevel p, model can be regarded as a three-level random effects
model where Level 1 is formed by the tie observations, cross-nested in the actors
(Level 2), who are nested in the networks (Level 3)” (Zijlstra et al. 2006, p. 3).
In the same spirit, but with a dynamic perspective, Snijders and Baerveldt (2003)
developed a multilevel model for friendship networks between pupils in several
classes within the same school in order to understand the respective influence of
each level on deviant behavior. In these network data structures the traditional
approach of multilevel analysis based on hierarchical nesting cannot be followed
exactly, because the levels of dyads and actors are not nested; but non-nested
structures are also accommodated in multilevel analysis more generally (Courgeau
2003; Snijders and Bosker 2012).

A second, more recent method of contextualization, consists of identifying
different systems of collective agency as distinct levels of analysis, differentiating
for example among levels of collective action with different goals; specific resource
interdependencies between members; and specific social processes that help mem-
bers manage dilemmas of collective action at each level. Individuals today are mem-
bers of an organizational society (Coleman 1990; Perrow 1991) because they act in
organized, if not highly regulated and bureaucratized, social and economic contexts
(companies, associations, families, etc.) that influence their behavior and that they
in turn can try to shape. Individuals interact with each other, but are also embedded
in (or construct) groups and organizations that interact with each other. Such
superposed levels of agency can be examined separately as well as jointly, since they
are linked by the affiliation of members of one level to collective actors at the higher
level. Affiliations can be considered as indicators of deeper processes characterizing
the “duality” of individuals and groups (Breiger 1974; Brass et al. 2004; Rousseau
1985), and thus the co-constitution of these levels as the expression of their vertical
interdependencies and complexity. Their superposition is not static (Courgeau and
Baccaini 1997; Lazega 2012): through actors’ efforts to endogenize context at each
level, they influence each other’s evolution. This raises issues of synchronization in
these complex dynamics, and brings up the question of how the hidden social costs
of this synchronization are shared, spread, or dumped (Lazega, this volume).

Another purpose of this book is to offer new case studies and datasets that
explore new avenues of theorizing and modeling, as well as new applications of
this methodology. As also shown in Rozenblat and Melangon (2013), an increasing
number of datasets is being made available to test the value of theoretical ideas and
the efficiency of methods. Although heterogeneous with respect to units of analysis
and methods, models of multilevel network analysis presented in this volume
tend to take into account a variety of structural dependencies, both within and
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between levels. The conclusion extends theoretical, methodological and empirical
results of this new epistemology by speculating on the insights provided for our
knowledge of societies that have become “organizational” societies, i.e. rationalized,
managerialized, and marketized.

This book thus identifies a plurality of levels, assumes that actors operate across
more than one of them, and provides a bouquet of models for multilevel network
datasets to account for vertical and horizontal interdependencies in social life. It
shows how concepts applied to analyze single-level networks can be extended to
a multilevel perspective, and in turn be extended by it. In this way, it opens and
explores new avenues of research for the emerging stream of multilevel network
analyses. The volume ends with a general conclusion outlining the importance,
limits and perspectives of these current methodologies.

The following outline summarizes the content of the book in terms of theory,
methods and applications by suggesting the way in which each chapter contributes
to the exploration of structure in multilevel network analysis, from descriptive
and inductive techniques to stochastic models (from network autocorrelation
models to p, models to ERGMs), accounting for both horizontal and vertical
interdependencies.

Theory

Part I of the book provides the theoretical foundation for this combined approach.
In Chap. 2, Tom Snijders describes the complementarity between these approaches
from a methodological perspective. By providing a sketch of multilevel models,
statistical models for social network analysis, multilevel network models, and
models for multilevel networks, this chapter offers a background to the methods
of analysis used in this book. Multilevel analysis, in which individuals’ actions,
beliefs and performances within groups are analyzed taking into account their nested
collective memberships (Snijders and Bosker 2012; Multilevel Network Modeling
Group 2012) does not take into account the dyadic interdependencies between
individuals based on their relationships or links between groups. It is not plausible
that such groups lack an internal structure, nor that they lack links among each
other. Network analyses help in introducing more realistic approximations of the
internal structure of these groups and of their interdependencies into the modeling
of human and social action. This chapter summarizes the ‘multilevel’ perspective in
network analysis. The basis for this is the presence in networks of units of various
different, interconnected kinds: individuals, ties, subgroup structures, groups, and
perhaps more. These kinds of units represent populations, which can be modeled as
having random variability. The fundamental idea of multilevel analysis, to explain
dependent variables by models containing multiple sources of random variation
and including explanatory variables defined as aggregates over higher-order units,
is fruitfully applied here to network models. This approach opens room for the
simultaneous study of the contributions of several levels of social phenomena
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through the ‘multilevel analysis of networks’. The second method of contextu-
alization mentioned above is expressed by the ‘analysis of multilevel networks’,
which considers several interconnected system of agency. Following Wasserman
and Iacobucci (1991), for cross-sectional data this can be expressed by the multilevel
exponential random graph modeling (ERGM) approach of Wang et al. (2013). Each
‘level’ here is a set of actors, or agents, and the levels are interdependent with
respect to the conditions for action and/or outcomes. A hierarchical nesting relation
between the levels, which is the traditional basis of statistical multilevel analysis, is
not required for the data structure of multilevel networks.

Multilevel network analysis means analyzing separately, then jointly, several
levels of collective agency. In Chap. 3, Emmanuel Lazega argues that finding
structure in society is a complex task if one is to take the meso-level of society
seriously. His chapter explores the sociological meaning of introducing dynamics
into the study of different and superposed systems of interdependencies and
collective agency. In particular, he looks at the issue of “synchronization costs”
between the temporalities that characterize the different levels. These specific social
costs are related to carrying out collective action in the organizational society, i.e.,
a society in which multilevel structures, defined as superposed levels of collective
agency, make cross-level social processes increasingly visible. These processes are
modeled using network analysis. Synchronization costs are associated with building
and maintaining specific social forms, in particular, social status and social niches,
as intermediary relational infrastructure that helps individuals and groups manage
their complex multilevel interdependencies and the dilemmas of their multilevel
collective action. This helps them create new corporate entities that they can try to
use as “tools with a life of their own” (Selznick 1949). It is suggested that the energy
for creating and managing this relational infrastructure comes from catching-up
dynamics between levels, where collective actors operate in different temporalities
while under pressure to coordinate and stabilize this synchronization. Catching-up
dynamics are associated with organized mobility of actors and relational turnover
(OMRT) in their respective networks, a perspective combining White’s (1970),
Snijders’ (1996), and Snijders et al. (2013) approaches. In this context, specific
dimensions of social inequalities also become visible since actors who manage these
social forms are in a position to benefit from their investments in synchronization
costs as they become productive —in particular in terms of reshaping their meso-
level opportunity structure — whereas others are likely to see their own investments
in synchronization be lost, providing no return.

Methods

This new domain of interest brings together very different innovative methods, new
theorizing, and applications to a wide diversity of problems. Part II of the book
presents a series of different statistical frameworks and methods articulating social
network analysis and multilevel analysis.
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In Chap. 4 Filip Agneessens and Johan Koskinen use multilevel network analysis
to look at the impact of network position and team structure on individual outcomes.
They model individual outcomes using what they call a Multilevel Social Influence
(MSI) model. This model explains individual differences in behavior and attitudes
by considering the (individual level) network position, while simultaneously looking
at the influence of the (group level) nerwork structure. Such an approach requires
a multilevel method, where both levels are explicitly modeled. However, while
the network nature of the data offers the possibility of simultaneous investigation
of the impact of the network level and the individual level position, the complex
network interdependence within a single network make classical multilevel model-
ing unsuitable. The complex interdependence of social networks makes the models
more complicated, as there is a need to control for both levels as well as for social
contagion and autocorrelation. Their application considers an organizational setting
focusing on the importance of trust relations for employee job satisfaction. They
simultaneously consider how individual differences in being trusted by colleagues
(within a team) impact a person’s satisfaction, while at the same time also examining
how the structure of the group (density and centralization) might impact the job
satisfaction of all members of the group. The multilevel network nature of the data
offers the possibility of simultaneous investigation of graph-level, positional and
dyadic explanations. This introduces non-standard dependencies as the networks
among level 1 units imply both contextual effects different from standard multilevel
effects (such as team-level means) as well as direct network dependencies, the latter
called level 1v.

In Chap. 5 Mark Tranmer and Emmanuel Lazega consider models for multilevel
network dependencies, where one or more attributes of the level 1 network nodes
varies across the levels of the multilevel network in which they are embedded.
They apply Tranmer’s multilevel model called Multiple Membership Multiple
Classification (MMMC) model and explains how it can be used to estimate the
relative share of variation in the different components of a multilevel network. They
outline the ways in which this modeling approach differs from other models that are
currently used for network dependencies. They also explain how the MMMC model
can be used with statistical software. The approach is illustrated with an analysis
of Lazega et al. (2008)’s multilevel network data on French cancer researchers,
focusing on variations in research impact scores for the workers as the motivating
and illustrative example. This approach can also be applied in the context of more
traditional groups such as schools (Tranmer et al. 2014).

In Chap. 6, Peng Wang, Garry Robins and Petr Matous provide a summary
presentation of Multilevel Network Analysis using ERGMs and their extensions.
Through the integration of vertical dependencies, exponential random graph models
(ERGMs) represent network structure as endogenous based on the assumption that
network ties are conditionally dependent, that is, that the existence of a network tie
depends on the existence of other network ties conditioning the rest of the network
(Frank and Strauss 1986; Lusher et al. 2013; Snijders et al. 2006; Robins et al.
2007). In multilevel network contexts, ERGMs offer a statistical framework that
captures complicated multilevel structure through some simple structural signatures
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or network configurations based on these tie dependence assumptions. But for
multilevel network models, network ties are interdependent not only within levels
but also across levels. The interpretation of ERGM parameters makes hypothesis
testing about multilevel network structure possible.

Wang et al. (2013) pioneered ERGM specifications for multilevel networks,
and demonstrated the features of multilevel ERGMs with simulation studies and
modeling examples. Combining multilevel network structure and nodal attributes,
Wang et al. (2015) proposed Social Selection Models (SSMs) where the existence
of multilevel network ties are conditionally dependent on not only the existence
of other network ties but also on nodal attributes. They demonstrated that nodal
attributes may affect network structures both within and across levels. After review-
ing the multilevel network data structure, multilevel ERGM and SSM specifications
as proposed in Wang et al. (2013, 2015), the authors apply these models to a
dataset collected among 265 farmers and their communication network in a rural
community in Ethiopia. The resulting model provides an informative description
of this farming community. There are similarities as well as clear distinctions
between the entrepreneurial farmers and the rest. Without considering the meso-
and cross-level effects, we might argue that the two types of farmers have similar
network behavior, i.e., both are active within their religion and region; both have
flat degree distribution, and both tend to form network closures. The meso- and
cross-level effects, however, show that the network is segmented by the farmer
types, where popular meso-level nodes tend not to communicate within levels,
but popular within-level nodes tend to communicate across levels through the
meso-level network. The example highlights the features of these models and their
theoretical importance, i.e. within-level network structures are interdependent with
network structures of other levels; and within level nodal attributes can affect
multilevel network structures.

In Chap. 7, Mengxiao Zhu, Valentina Kuskova, Stanley Wasserman, and Noshir
Contractor propose a correspondence analysis of multilevel networks. The past
decade has seen considerable progress in the development of p* (also known as
exponential random graph) models. Ideally, social science theory should guide the
identification of parameters that map on to specific hypotheses. However, in the
preponderance of cases, extant theories are not sufficiently nuanced to narrow down
the selection of specific parameters. Hence there is a need for some exploratory
techniques to help guide the specification of theoretically sound hypotheses. They
take the example of individuals being members of work teams. Modern technologies
enable individuals to self-assemble and participate in more than one team. Teams
often share one or more members with other teams and hence, are not independent
of each other. In addition, the assemblage of these teams is embedded in prior
communication and collaboration networks. The case becomes more complicated
when considering relations at both the individual level and at a combination of
individual and team levels.

In order to address these issues, they propose the use of correspondence analysis,
incorporating multiple relations and attributes at both individual and team levels.
The descriptive analysis preempts concerns about independence assumptions. Cor-
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respondence analysis can be used as an exploratory tool to examine the features
of the dataset and the relationships among variables of interest, and the results
can be presented visually using a graph that shows those relationships as well as
observed raw data. They present the theory for this approach, and illustrate with an
example focusing on combat teams from a fantasy-based online game. The results
offer important multilevel insights and show how this approach serves as a stepping
stone for more focused analysis using techniques such as multilevel p*/ERGMs.

In Chap. 8, Ale§ Ziberna and Emmanuel Lazega present an application of
Ziberna’s (2014) method of blockmodeling multilevel network data and an appli-
cation of this method. The chapter presents a blockmodeling analysis of multilevel
(inter-individual and inter-organizational) networks. Several approaches are pre-
sented, and used to blockmodel such networks. Each blockmodel represents a
system of roles (White et al. 1976) and therefore a form of division of work that is
likely to change over time in fields of organized collective action. Using a case study,
they show that while the systems of roles are quite similar at both levels (structures
divided into core and periphery with bridging cores interpreted in terms of division
of work between actors’ and organizations’ specialties, location, status, etc.), the
roles are performed at different levels by units with different characteristics. The
added value of this true multilevel analysis is to show how groups at different
levels are connected. In the empirical case analyzed in the chapter, the division of
work at the level of individuals and the division of work at the level of laboratories
can complement and strengthen each other in the case of some segments of the
population, while this reinforcement does not occur for other segments. For the
same roles, the mix of specialties at one level is different from the mix of specialties
at the other level, notably because the two levels do not manage the same resources.
Thus, this analysis tracks the meeting of top down and bottom up pressures towards
structural alignment between levels.

Applications

Although the differentiation between the ‘methods’ and ‘applications’ sections
is not clear-cut, the following chapters contain examples of applications of the
different methods described in the previous part. Several social areas are covered
in these rich and original analyses: multilevel networks are analyzed in scientific
fields and in various industries, markets and organizations. While several authors
use traditional multilevel models applied to social networks, others use the neo-
structural framework with separate levels of agency expressed by analysis of
multilevel networks, depending on the kind of data that are available to them.

In Chap. 9, Bellotti et al. use a multilevel approach to compare scientific fields.
They model the multilevel structure of scientific work, looking at social networks
of collaborations between scientists, and how these networks are embedded in
disciplinary and organizational levels. The dependent variable is the success of
individual scholars in Italian academia. They adopt the structural approach of
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Lazega et al. (2008) and analyze the local system of public funding to academic
disciplines in Italy using bipartite networks. They observe the variability of struc-
tural effects across disciplinary areas that they expect to be organized in different
but comparable ways. They find an overarching importance of academic rank and of
brokerage roles in obtaining research funding, together with some other interesting
results, like the less impactful but still significant importance of working with an
established group of long-term colleagues, and differences between sub-disciplines.
The importance of adopting a multilevel perspective is indicated by the relevance of
the meso-categories, which combine individual network data with organizational
properties. Despite the lack of impact of macro categories (university and sub-
disciplinary affiliations), results show the necessity of controlling for these various
nested levels, which the analysis of individual characteristics would not be able to
account for. They show that in order to be successfully funded what counts more
than being a big fish (a scientist with a lot of connections) working in a big pond
(a large university) is being in a brokerage position interacting over the years with
different research groups.

In Chap. 10, Julien Brailly, Guillaume Favre, Josiane Chatellet and Emmanuel
Lazega revisit the notion of embeddedness by looking at networks of contracts as
inter-organizational networks modelled jointly with social, interpersonal networks.
Economic sociology has established the interdependencies between economic and
social structures using the notion of the embeddedness of the economic in the social.
Since Granovetter’s (1985) and White’s (1981, 1988) work about the interactions
between economics and social relations, economic sociologists have shown that
it is important to know the social structure of a specific milieu to understand
its economic structure. For example, globalized markets require long distance
partnerships between companies, “global pipelines” as Bathelt and Schuldt (2008)
call them. But what kind of relationships do these partnerships represent? Behind
each partnership between firms there are always inter-individual ties (Gulati 1995),
with their own particular history. The authors use a multilevel framework to jointly
analyze the economic networks between firms and the informal networks between
their members in order to reframe the embeddedness hypothesis. Based on a network
study of a trade fair for television programs in Eastern Europe they show that
while each level has its own specific processes they are also partly nested. Beyond
this result, they observe that these levels of agency emerge in different contexts
and that they are diachronically related. They show that in order to understand
performance in a market one needs to look at this dual positioning of individuals
and organizations.

In order to explore the complex interactions between these embedded spheres,
they provide a multilevel (individual and organizational) reading of an economic
market by modeling its underlying social ‘meta-system’. To illustrate, they recon-
struct a multilevel network in the given market. They consider two levels of
action: the first approximated by an advice network between individual actors; the
second measured by the contract network between the organizations to which the
individuals belong. The issue is to model the global structure generated by these
two levels of agency that are in part nested. To investigate this meta-system, the
formalization used is that of Wang et al. (2013) developed for multilevel ERGM:s.
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The multilevel ERGM represents the feedback between the inter-individual social
relations and the inter-organizational economic relations (structural vertical depen-
dence hypothesis between the levels). A traditional ERGM at each level shows
differences in structuration and temporality between the levels. To manage these
different temporalities, organizations develop specific mechanisms of learning and
knowledge transmission (represented here by affiliation links). At the same time,
recent contracts and current inter-organizational negotiations constitute a specific
context for the inter-individual relations (inter-organizational links). The authors
show that the cross-level effects and especially the multilevel tetradic substructure
(Lazega et al. 2013; Brailly and Lazega 2012) are helpful in investigating the
articulation of this meta-system.

In Chap. 11, Julia Brennecke and Olaf Rank examine the relationship between
organizations’ embeddedness in networks of research and development (R&D) col-
laborations, and their managers’ and researchers’ interpersonal knowledge networks
in the context of high-tech clusters. Complex cross-level processes are assumed
to characterize the networking activities of individuals at the micro-level and their
organizations at the macro-level, leading to systematic interdependencies between
knowledge networks at the two levels. They apply exponential random graph
models (ERGMs) for multilevel networks to data collected in two German high-
tech clusters and find that micro- and macro-level knowledge networks are highly
interdependent. Specifically, organizations’ tendency to maintain formal R&D
collaborations interacts positively with their managers’ popularity as providers of
knowledge but negatively with their activity of seeking knowledge from colleagues.
Moreover, managers and researchers exchange knowledge at the micro level if
their organizations formally collaborate and vice versa. Their findings contribute
to research on the determinants of formal and informal knowledge sharing in the
context of institutionalized high-tech clusters.

In Chap. 12, Guillaume Favre, Julien Brailly, Josiane Chatellet and Emmanuel
Lazega look at the same process of multilevel embeddedness as that in the chapter
by Brailly et al. While a social exchange may involve two persons in the two firms, a
transaction involves the two companies as entities at a different level. They therefore
propose to use a multilevel framework to look at these networks at different levels of
agency. In particular, they study the influence of inter-organizational relationships
on the formation of inter-individual relationships in a context of a trade fair.
Through a multilevel analysis of a trade fair for TV programs distribution in sub-
Saharan Africa they study the influence of a deal network between companies on
informal information exchanges among their members. While the inter-individual
relationships which exist prior to the event are strongly influenced by the orga-
nizational structure, the relationships which are created during the event do not
follow that logic. A process of synchronization is observed between levels, but
not in the direct context of the trade fair. They argue that trade fairs could be
conceived as temporary intermediary organizations in which individuals can break
free from the influence of the organization to which they are affiliated and create ties
without taking into account the organizational structure. Exponential random graph
models are used at each level to measure and model this mutual influence between
levels.
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In Chap. 13 James Hollway and Johan Koskinen provide an application to
international relations. They look at why and when some states establish multilateral
treaties instead of bilateral treaties. This is a consequential question for vital issues
such as international fisheries management. While multilateral treaties tend to
represent attempts at establishing collective fisheries management and conservation
policies, bilateral treaties tend to be more geared towards gaining access to coastal
fisheries resources. The nature of the ties differs, which is in line with the concept
of multilevel networks, and the authors argue that there are essential dependencies
between the several networks. The first, meso-level network consists of a cross-
level affiliation network of state ratifications to multilateral fisheries treaties. The
second, micro-level network consists of states’ dyadic bilateral treaty commitments
with each other. Finally, these treaties succeed each other and deal with partially
overlapping issues and regions, and such treaty references express additional higher-
level dependencies and give a third one-mode, macro-level network. To adequately
interrogate the resulting complex, interdependent multilevel system, they argue
that it is necessary to address the multiple active levels simultaneously. For this,
they draw on the conceptual tool of multilevel networks (Lazega et al., 2008; see
also Breiger 1974). They apply recent advances in analyzing multilevel networks
using exponential random graph models (Wang et al. 2013; see also Chap. 6 by
Wang et al. in this volume). They find that a relatively parsimonious model that
takes the multilevel dependencies into account explains the overall structure better
than one that ignores these dependencies, combining parameters estimated for each
network independently. Furthermore, the structural dependencies best describing
‘big fish’ (high bilateral or multilateral degree states) differ from those for the
‘small fish’ in both ‘big ponds’ (multilateral treaties) and ‘small ponds’ (bilateral
treaties). While there is a geography effect, small fish sharing a bilateral treaty
has little effect on whether they also share multilateral treaties. This shows that
the interaction between bilateralism and multilateralism can be fruitfully analyzed
using the multilevel network paradigm. Finally, they seek to explain what drives
state choice of multilateral and bilateral treaties by incorporating and modeling the
relational dynamics around several nodal attributes.

In Chap. 14, Paola Zappa and Alessandro Lomi provide an application of
multilevel network analysis to the process of knowledge sharing in organizations.
Their research question is about the effect of mandated hierarchical relations
between organizational subunits on the presence of informal network ties connecting
organizational members across those subunits. They argue that the failure of prior
studies to address this multilevel question leaves uncertainty about the actual role
that social networks play in organizations, and, more specifically, that informal
network ties connecting organizational members across the formal boundaries of
organizational subunits may not be independent from the relationship of hierarchical
coordination linking the subunits. They focus on boundary-crossing ties because
extant research has demonstrated their direct association with a wide variety of
desirable organizational outcomes. They adopt the multilevel exponential random
graph models of Wang et al. (2013) to examine how formal relations among
organizational subunits affect the presence of interpersonal communication and
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exchange of advice among members of the top management team in a multiunit
organization. They show that informal interpersonal ties are sustained and shaped
by the hierarchical relations linking subunits in which organizational participants
are located. In particular, ties across subunits are more likely to be observed
between managers working in units that are themselves connected by mandated
hierarchical relations. They also show that the dependence of interpersonal relations
on formal hierarchical relations is partly moderated by the tendency of interpersonal
interaction to weaken or reverse the direction of hierarchical relations. Finally, they
suggest that the effect of formal structure is contingent on the specific relationship
that under consideration.
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Chapter 2
The Multiple Flavours of Multilevel
Issues for Networks

Tom A.B. Snijders

Away from Atomistic Approaches

It is strange that the assumption that data obtained from human respondents
represent independent replications has been so pervasive in statistical models used
in sociological research. Sociology, after all, is about the interdependence among
individuals, and about the ways in which individuals make up larger wholes such as
families, tribes, organizations, and societies. Of course we know some of the reasons
for this: statistical models founded on independence assumptions are convenient
and have properties that can be mathematically ascertained; surveys are a major
means of getting social information and ideally are obtained from probability
samples containing a lot of independent operations in obtaining respondents; and,
indeed, independence assumptions may yield good first-order approximations for
statistical modeling. However, as early as 1959 Coleman (1959, p. 36) made an
eloquent plea for taking social structure into account in methods of data collection
and analysis. Coleman writes: “Survey methods have often led to the neglect of
social structure and of the relations among individuals. (...) But (...) one fact
remained, a very disturbing one to the student of social organization. The individual
remained the unit of analysis. (...) Now, very recently, this focus on the individual
has shown signs of changing, with a shift to groups as the units of analysis, or
to networks of relations among individuals”. He goes on to discuss methods for
survey data collection and for data analysis that reflect this change in perspective,
away from the focus on atomistic individuals. The analysis methods he discusses
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include contextual analysis, the precursor of present-day multilevel analysis, and
the study of subgroups and cliques, still now of crucial importance in social network
analysis. He concludes by saying that these methods “will probably represent only
the initial halting steps in the development of a kind of structural research which will
represent a truly sociological methodology”, and mentions the promise of electronic
computers.

In the past half century, since Coleman wrote these words, great advances
have been made in methodologies for analyzing groups, or collectives, along with
individuals; or, more generally, for simultaneously analyzing variables defined
on different domains. The name ‘multilevel analysis’ has replaced' ‘contextual
analysis’. Great strides also have been taken in the study of relations among
individuals, known now as social network analysis. Network analysis likewise treats
variables defined in various different domains, such as sets of nodes and sets of
node pairs, and it is concerned with groups, but by and large multilevel analysis
and social network analysis have developed separately, meeting each other only
incidentally. Recently, however, developments in social network analysis have led
to combinations of these two strands of methodology. We are still in an early phase
of the junction of multilevel analysis and social network analysis, and we may
echo Coleman in saying that this book presents some ‘initial halting steps’ of this
junction. This chapter gives an overview of some concepts and techniques that now
can be seen as playing important roles in the combination of multilevel and network
analysis.

Multilevel Analysis

To be able to discuss multilevel network analysis, we need to present a sketch about
‘regular’ multilevel analysis.

Origins

Multilevel analysis, as a collection of methods, was born from the confluence of two
streams. On the one hand, sociological methodologists had been developing quite
some conceptual precision for inference relating individuals to collectives, for which
variables need to be combined that are defined in several different domains. On the
other hand, statisticians had already extended analysis of variance and regression
analysis, the general linear model, to linear models combining fixed with randomly
varying coefficients.

Let me first sketch some highlights on the sociological methodology side.
Lazarsfeld and Menzel (1961), in their paper On the relation between individual

! Albeit with a shift of meaning.
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and collective properties—written in 1956, reprinted as Lazarsfeld and Menzel
(1993)—distinguish variables according to the set of units to which scientific
propositions are meant to apply. For propositions about individual and collective
properties, they state that there need to be sets of units both at the individual
and at the collective level. Here ‘individual’ may refer to individual humans, but
also, e.g., individual organizations or other groupings; ‘collective’ refers to sets
of ‘individuals’. Lazarsfeld and Menzel go on to define three types of properties
defined for collectives. Analytical properties are obtained by a mathematical
operation performed on each member, for example the mean of an individual
variable, or the correlation between two variables. Structural properties are obtained
by a mathematical operation performed on the relations of each member to some
or all of the other members, for example the ‘cliquishness’ of a network. Global
properties, finally, are properties of collectives that cannot be directly deduced from
properties of individual members, e.g., the type of government of a city.

As for properties of individuals, Lazarsfeld and Menzel discuss that the cor-
relation between individual variables may be considered as a correlation between
the individuals but also between the collectives, pointing to the ecological fallacy
presented in Robinson (1950): the mistake of regarding associations between
variables at one level of aggregation as evidence for associations at a different
aggregation level; an extensive review was given by Alker (1969). Researchers
became aware of the importance of the different levels, or sets of units, in which
variables are defined, and as suggested here the focus was on nested levels,
representing individuals and collectives.

During the 1970s, methods for contextual analysis were developed taking into
account these levels of analysis, and trying to avoid ecological fallacies. This was
called ‘contextual analysis’ mainly by sociologists (Blalock 1984), and ‘multilevel
analysis’ by educational researchers (Burstein 1980).

Statisticians had a few decades earlier developed models that waited to be
discovered by these social scientists. In the analysis of variance, precursor and
paradigmatic example of the general linear model, models had been developed
where coefficients could themselves be random variables, allowing for the investi-
gation of multiple sources of random variation in, e.g., agricultural and industrial
production. Models with only fixed, fixed as well as random, or only random
coefficients were called fixed, mixed, and random models, respectively (Wilk and
Kempthorne 1955; Scheffé 1959).

In the early 1980s contextual analysis and linear mixed (or generalized linear
mixed) models were brought together by several statisticians and methodologists:
Mason et al. (1983), Goldstein (1986), Aitkin and Longford (1986), and Raudenbush
and Bryk (1986). These researchers also developed estimation algorithms and
implemented them in multilevel software packages, making use of the nested
structure of the random coefficients to achieve efficiency in the numerical algo-
rithms. The scientific gains from the combination of contextual analysis and random
coefficient models are also discussed by Courgeau (2003). A more extensive history
of these developments is given in Kreft and de Leeuw (1998).
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Hierarchical Linear Model

The prototypical statistical model used in multilevel analysis is the Hierarchical
Linear Model, which is a mixed effects linear model for nested designs (Raudenbush
and Bryk 2002; Goldstein 2011; Snijders and Bosker 2012). This generalizes
the well-known linear regression model. It is meant for data structures that are
hierarchically nested, such as individuals in collectives, where each individual
belongs to exactly one collective. The most detailed level (individuals) is called
the lowest level, or level one. The Hierarchical Linear Model is for the analysis
of dependent variables at the lowest level. The basic idea is that studying the
simultaneous effects of variables defined at the individual level, as well as of
other variables defined at the level of collectives, on an individual-level dependent
variable requires the use of regression-type models that include error terms for each
of those levels separately; the Hierarchical Linear Model is a linear mixed model
that has this property.

In the two-level situation—Ilet us say, individuals in groups—it can be expressed
as follows. Highlighting the distinction with regular regression models, the termi-
nology speaks of units rather than cases, and there are specific types of unit at each
level. We denote the level-1 units, individuals, by i and the level-2 units, groups, by
j. Level-1 units are nested in level-2 units (each individual is a member of exactly
one group) and the data structure is allowed to be unbalanced, such that j runs from
1 to N while i runs, for a given j, from 1 to n;. The basic two-level hierarchical linear
model can be expressed as

r p
Yy = Bo + Z,Bh-xhij + Uy + ZUhthij + Ry . (2.1)
h=1 h=1

Here Yj; is the dependent variable, defined for level-1 unit 7 within level-2 unit j;
the variables xp; and z;; are the explanatory variables. Some or all of them may
be defined at the group level, rendering superfluous the index i for such variables.
Variables R;; are residual terms, or error terms, at level 1, while Uy; forh = 0,...,p
are residual terms, or error terms, at level 2. In the case p = 0 this is called a random
intercept model, for p > 1 itis called a random slope model. The usual assumption is
that all R;; and all vectors U; = (Uy, . .., Uy) are independent, R;; having a normal
A (0,0?) and U; having a multivariate normal .44 (0, T) distribution. Parameters
B are regression coefficients (fixed effects), while the Uj,; are random effects. The
presence of both of these makes (2.1) into a linear mixed model. Similar models
can be defined for nesting structures with more than two levels, e.g., employees in
departments in firms.

In most practical cases, the variables with random effects are a subset of the
variables with fixed effects (x; = zz; for h < p; p < r). The Hierarchical Linear
Model can then be expressed in the appealing form

p r
Yy = (Bo+ Uy) + Z(.Bh + Unj) xpij + Z Brxnj + Rij (2.2a)
h=1 h=p+1
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which shows that it can be regarded as a regression model defined for the groups
separately, with group-specific intercept

(Bo + Uyj) (2.2b)

and group-specific regression coefficients

(Br + Ur) (2.2¢)

forh = 1,...,p; variables Xj, for p + 1 < h < r have regression coefficients that
are constant across groups. This pictures the Hierarchical Linear Model as a linear
regression model defined by the same model for all groups, but with regression
coefficients that differ randomly between groups.

Going back to the teachings of Lazarsfeld and Menzel, it can be concluded
that multilevel analysis elaborates the inference about individual and collective
properties as a system of nested samples drawn from nested populations: a
population of individuals nested in a population of groups (or collectives). The fact
that, in practice, groups will be finite, whereas the populations are mathematically
considered as if they were infinite, is usually glossed over in research aiming to
generalize to social mechanisms or processes (as distinct from descriptive survey
research about concrete groups, without the aim of generalization to other groups)
(see Cox 1990; Sterba 2009).

Non-nested Data Structures

It soon transpired that the relevant data structures are not always nested, because
social structures often are not. A basic example in studies of school effectiveness
is that neighborhoods may also be an important factor for student achievement,
but schools will have students coming from diverse neighborhoods while neighbor-
hoods will have students attending different schools. This leads to a data set where
students are nested in schools and also nested in neighborhoods, but schools and
neighborhoods are not nested in each other; the term used for non-nested category
systems is ‘crossed’, so that this would be called a cross-nested data structure.
To present an extension of model (2.1) for such a cross-nested data structure,
consider again a data structure with individuals i nested in groups j but now also
nested in aggregates k of a different kind (in the example of the previous sentence,
neighbourhoods). Denote by k(i, j) the aggregate k to which individual i in group
j belongs. In the simplest extension there is only a random intercept V; associated
with k, leading to the equation

r p
Yy = Bo + Z,thhij + Uy + ZUhthzj + Viay + Ry - (2.3)
h=1 h=1
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The default assumption for the Vj is that again they are independent and normally
distributed with mean O and constant variance, and independent of the U and R
variables. A further extension is to mixed-membership models (Browne et al. 2001),
in which individuals may be partial members of more than one group.

Frequentist and Bayesian Estimation

Multilevel models such as (2.2), in which parameters vary randomly between
groups, provide a natural bridge between the frequentist paradigm in statistics,
which treats parameters as fixed quantities which are unknown, ‘out there’, and
the Bayesian paradigm, which treats parameters as random variables; in both
paradigms, of course, the observations are the material that helps us get a grip on the
values of the parameters. In the multilevel case, the random variation of parameters
can be linked to a frequency distribution of parameters in the population of groups,
which may be estimated from empirical data. Accordingly, this bridging ground is
often called empirical Bayes (see, e.g., Raudenbush and Bryk 2002, and Chapter 5
of Gelman et al. 2014). Bayesian estimators’ for the parameters such as (2.2a)
and (2.2b), using the sample of groups to get information about the corresponding
population, are called empirical Bayes estimators. For the parameters 8, 0%, and T
in (2.1), frequentist as well as Bayesian estimators have been developed.

Especially for non-nested data structures, Bayesian estimators may have algorith-
mic advantages, and Bayesian Markov chain Monte Carlo (‘MCMC”) algorithms are
often employed (Draper 2008; Rasbash and Browne 2008) for such more complex
models. These are algorithms which use computer simulations, very flexible but also
much more time-consuming than traditional algorithms. Today, Bayesian methods
for multilevel analysis are often proposed and used without much attention paid to
the distinct philosophical underpinnings. This lack of attention does not, however,
take away the differences. The Bayesian approach can be a useful way to account
for prior knowledge; this is discussed for the special case of multilevel analysis
by Greenland (2000), and elaborated more practically in Chapter 5 of Gelman
et al. (2014). Using this approach requires, however, that one pays attention to the
sensitivity of the results to the choice of the prior distribution. In addition there
are interpretational differences, but these may be less important because of the
convergence between frequentist and Bayesian approaches discussed in Gelman
et al. (2014, Chapter 4).

’In frequentist terminology these are not called estimators but predictors, because they refer to
statistics that have the purpose to approximate random variables.
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What Is a Level?

The various extensions of the basic multilevel model have made even more pressing
the question ‘What is a level?” which has harrowed quite a few researchers even
in the case of the more basic nested models. The mathematical answer is that, for
applications of linear mixed or generalized linear mixed models, a level is a system
of categories for which it is reasonable to assume random effects. More elaborately,
this means that we assume that the categories j on which the variables U; are defined
(which are latent variables in model (2.1)) may be regarded has having been sampled
randomly from some universe or population ¢, making the U; into independent
and identically distributed random variables, and our aim is to say something about
the properties of the population ¢ rather than about the individual values U; of
the units in our sample. In the case that the U; are one-dimensional quantities,
the property of interest concerning population ¢ could be, e.g., the variance of
U;. In practical statistical modeling, the assumption that the units in the data were
randomly sampled from the population is usually taken with a grain of salt (again
cf. Cox 1990; Sterba 2009). The essential assumption is residual exchangeability,
which can be described as follows. The random effects, R;; and U; in (2.1) and also
Vi in (2.3), are residuals given that the explanatory variables x;; are accounted for;
these residuals are assumed to be exchangeable across i and j (or k) in the sense
that they are random and as far as we know we have no a priori information to
distinguish them for different units in the data. Any R;; could be high or low just as
well as any Ry; in the same group j or any Ry in a different group j'; any Uy; could
be high or low just as well as any other Uy ; etc.

In this sense, multilevel analysis is a methodology for research questions and
data structures that involve several sources of unexplained variation, contrasting
with regression analysis which considers only one source of unexplained variation.
Employing the Hierarchical Linear Model, as in (2.1) or its variants with additional
levels, gives the possibility of studying contextual effects on the individual units.
But also in more complex structures where nesting is incomplete, random effects
will reflect multiple sources of unexplained variation. In social science applications
this can be fruitfully applied to research questions in which different types of actor
and context are involved; e.g., patients, doctors, hospitals, and insurance companies
in health-related research; or students, teachers, schools, and neighborhoods in
educational research. The word ‘level’ then is used for a type of unit, or a category
system, for which a random effect is assumed. The basic phenomenon we are
studying will be at the most detailed level (patients or students, respectively), and
the other levels may contribute to the variation in this phenomenon, e.g., as contexts
or other actors.

Lazarsfeld and Menzel (1961, first page) mentioned that, to be specific about
the intended meaning of variables, we should ‘examine (them) in the context of the
propositions in which they are used’. This focus on propositions also sheds light on
the question about what can be meaningfully considered as a ‘level’ in multilevel
analysis. We have to distinguish between the individual level, which is the level of
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the phenomena we wish to explain, the population of units for which the dependent
variable is defined; and higher, collective levels, which do not need to be mutually
nested, but in which the individuals are nested. To be a level requires, in the first
place, that the category system is a population—a meaningfully delimited set of
units with a basic similarity and for which several properties may be considered,
such as a well-defined set of schools, of companies, of meetings. A category system
then is a meaningful higher level if it is a population that we wish to use to explain®
some of the variability in our phenomenon and also, potentially or actually, we
may be interested in finding out which properties of the categories/units explain
the variability associated with this category system.

To illustrate this, suppose we are interested in the phenomenon of juvenile
delinquency as our dependent variable, and we consider neighborhoods as collec-
tives. The individual level is, e.g., a set of adolescents living in a certain area at
a certain time point; the dependent variable is their delinquency as measured by
some instrument. We may observe that neighborhoods differ in average juvenile
delinquency, and we then may wonder about the properties of neighborhoods—
perhaps neighborhood disorder, of which a measurement may be available—that
are relevant in this respect. This step, entertaining the possibility that there might
be specific properties of neighborhoods associated with their influence on juvenile
delinquency, and analyzing this statistically, is the step that makes the neighborhood
ameaningful ‘level’ in the sense of multilevel analysis. In the paradigm of multilevel
analysis we will then further assume that in addition to the effect of disorder there
may be other neighborhood effects, but conditional on the extent of disorder and
perhaps other neighborhood properties that we take into account, the neighborhoods
are exchangeable (as far as we know) in their further, residual, effects.

The fact that we are interested in statistically analyzing the effect of the categories
on the dependent variable also implies that for a level to be meaningful in a practical
investigation, the total number of its units in the data set should be sufficiently large:
a statistical analysis based on a sample of, say, less than 10 units usually makes no
sense.

Dependent Variables at Any Level

The Hierarchical Linear Model is considered a model for dependent variables at the
lowest level of the nesting hierarchy. However, it is so amazingly flexible that it
can just as well be used for complex configurations of multiple dependent variables
defined for several different levels. This was proposed, quite casually, already by

3“Explaining’ is meant here in the simple statistical sense, without considering deeper questions of
causality.



2 The Multiple Flavours of Multilevel Issues for Networks 23

Goldstein (1989a,b). It is also explained in Goldstein (2011, Section 5.3). The
basic idea can be made clear by showing, for a two-level structure, the model for
interdependent dependent variables Y at level 1 and Y® at level 2. Denoting by
x;, and z;, any explanatory variables and by w;, explanatory variables at level 2, the
model reads

r p
Y,;l) =By + Z,thhij + U()j + ZUhj Znij + R,:,' (2.4a)
h=1 h=1
q
v =y + > Suwy + V. (2.4b)
h=1
where (Uy;, ..., Uy, V) is a (p 4 2)-dimensional random residual at level 2, with

a multivariate normal distribution. By using products with dummy variables this
can be written as a single Hierarchical Linear Model, see Goldstein (2011, p. 150).
Not all multilevel modeling software will allow for this complexity, but Goldstein’s
program MLwiN (Rasbash et al. 2014) handles such models straightforwardly.

This model for a two-level nested hierarchy allows studying a dependent variable
Y@ at the higher level, and the idea can be extended to other multilevel structures,
not necessarily nested.

An equivalent model was proposed independently by Croon and van Veldhoven
(2007) and further elaborated by Liidtke et al. (2008). These authors proposed
models where the regression of level-1 variables is on latent level-2 variables, thus
allowing analysis methods that correct for unreliability of measurement of level-
2 variables. They developed and investigated estimators using structural equation
modeling. Recently, similar models were elaborated for latent classes, i.e., discrete
rather than normally distributed latent variables (Bennink et al. 2013).

Models for Social Networks

This section gives an overview of some statistical models for explaining social
networks, as represented by directed graphs; we will focus on models and issues
that are related to the treatment of multilevel networks in the next section. A wider
overview of statistical models for networks is given in Snijders (2011).

The nodes 1, ..., n of the digraph refer to social actors, and ties are represented
by tie variables Y;; with the value 1 if a tie i — j exists, and O otherwise. The
digraph then can be represented by its adjacency matrix (Yi')[l <ij<n]’ Y denotes the
random digraph and y one outcome, or realization of it; henceforth we shall usually
denote outcomes, or deterministic variables, by small letters and random variables
by capitals.
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The Basic Multilevel Nature of Social Network Analysis

Social network analysis (Wasserman and Faust 1994; Carrington et al. 2005) is
fundamentally a multilevel affair with a focus on relations rather than attributes,
thereby combining the actor level and the dyadic level. A basic issue for social
network analysis is the study of how relations—the dyadic level—and individual
characteristics—the monadic level—impinge on one another. This has led to models
studying how a given, fixed network influences individual actor attributes, with a
variety of network autocorrelation models (e.g. Doreian 1980; Leenders 2002) and
models for social influence (Friedkin 1998). Network autocorrelation models use
correlation structures to represent dependencies between the values of linked actors.
In this volume, they are used in the contributions by Agneessens and Koskinen
(2015) and Bellotti et al. (2015). Another way to model this was proposed by
Tranmer et al. (2014), who used the multiple membership models of Browne et al.
(2001) to represent network effects on individual outcomes. This has the limitation
that the network effects are represented only by additive random effects of the
affiliations of the individual, and the advantages of flexibility in choosing these
affiliations (which can include, e.g., clique or other subgroup memberships) and
the possibility to combine this with other random effects, representing other types
of context. This method is used in this volume in Tranmer and Lazega (2015).

In the literature about social support and social capital, multilevel models have
been used for studying characteristics of ties in egocentric networks, taking into
account the hierarchical structure of ties nested in egocentric networks (van Duijn
et al. 1999). In this field, Wellman and Frank (2001) specifically paid attention to
the importance of including in the model not only attributes calculated for the actor
and the dyadic level, but also for the network level more generally.

This chapter focuses, however, on models for networks where the collection
of ties itself is the dependent variable. While in traditional models for social
networks the focus was on the relations, and individual attributes were considered
quite circumspectly or as an afterthought, modern statistical methods representing
network data are in the realm of generalized linear models and incorporate dyadic
as well as actor attributes in a very straightforward way; we see this, e.g., in
MRQAP modeling (Dekker et al. 2007), the p, model (van Duijn et al. 2004),
latent space models (Hoff et al. 2002), exponential random graph models (Lusher
et al. 2013), and stochastic actor-oriented models (Snijders 2001). The presence of
variables defined at different levels does not by itself bring these models close to the
Hierarchical Linear Model, however—the exception being the p, model.

As discussed in Snijders (2011), there are several quite different approaches for
representing network dependencies in probability models that can be used as a basis
for statistical inference. Leaving aside conditionally uniform models (which cannot
incorporate general attributes) and MRQAP (which controls for network structure
but does not represent it), we can distinguish latent variable models, of which the
p2 model, latent space models, and stochastic block models (Nowicki and Snijders
2001) are major representatives; exponential random graph models; and stochastic
actor-oriented models as the main approaches.



2 The Multiple Flavours of Multilevel Issues for Networks 25
P2 Model

Let us begin with the p, model. For a network represented by a digraph on n
nodes, it postulates the existence of random sender effects U = (Uy, ..., U,) and
random receiver effects V. = (Vi,...,V,). As proposed in van Duijn et al. (2004),
conditionally on (U, V) and given dyadic covariates x, = (xhij)[l <ij<n] (some or all
if which may depend only on i or only on j, making them actor covariates), in the p;
model the probability distribution for each dyad (Y}, Yj;) is given by

P V) = (@.b) | U, VY = exp (a () Buwg + Ui+ V;)
h
+b (3 B+ U+ Vi) + abp)  (25)
h

where a, b € {0, 1} and ¢;; is a norming constant independent of (a, b). One of the
covariates will be constant, representing the intercept. p is a reciprocity parameter.
Variables U; and V; are, respectively, the latent sender and receiver effects at the
actor level, and can be correlated for the same actor i, but are independent across
different i. Conditional on (U, V), the dyads (Y};, Y;;) are assumed to be independent
but there is dependence between Y;; and Yj; with a strength depending on parameter
p. In this way, random effects are used to represent those dependencies between
network ties that follow from actor differences, while the model also represents
tendencies toward reciprocity. In the bestiary of statistical models, this qualifies as
a generalized linear mixed model, and therefore is akin to the Hierarchical Linear
Model.

It should be noted that the p, model is a close relative of the so-called Social
Relations Model (Kenny and La Voie 1985; Kenny et al. 2006), a random effects
model with a similar structure for continuous relational variables Y;; assumed to
have normal distributions. The relation between the Social Relations Model and the
Hierarchical Linear Model was discussed in Snijders and Kenny (1999).

Latent Space Models

Another latent variable model for networks is the latent metric space model,
proposed by Hoff et al. (2002). Here the nodes in the network are assumed to have
locations in a metric space, and the probability of a tie depends on the distance
between the nodes. Denoting the location of node i by «;, and the distance between
a; and ; by d(a;, o), the probability of a tie in this model is given by

logit(P{Y; = 1 | a}) = —d(i, o)) + Z,thhii (2.6)
7
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where again xp;; are values of covariates with logistic regression coefficient 8. This
expresses that actors who are closer to each other, controlling for covariates, have
a larger probability of being tied. Although the model was formulated for arbitrary
metric spaces, it is being applied mainly for 2- or 3-dimensional Euclidean spaces.

This model was extended by Handcock et al. (2007) to a random effects model for
the locations according to a mixture model, with the purpose to represent clusters of
actors. Krivitsky et al. (2009) further extended this to a model where also the actors
have main effects for activity U; and popularity V;,

logit(P{Y; = 1| a.U.V}) = —d(ei.aj) + > Puxwg + Ui + Vi (27
h

where the U; and V; are (unfortunately!) assumed to be independent.

One of the attractive features of the latent Euclidean space models is their visual
interpretation: an estimated 2-dimensional model corresponds directly to a graphical
layout of the network, where ties will correspond to relatively short distances.

Exponential Random Graph Models

The Exponential Random Graph Model, fondly abbreviated to ERGM, is a general-
ized linear model for graphs and digraphs, representing the dependence between the
ties in a direct way. It was proposed by Frank (1991) and Wasserman and Pattison
(1996), and is treated in the extensive recent textbook by Lusher et al. (2013).

This model is defined by the probability function

Po{y =y} = exp(Y_ Ohun(y) — ¥(0)) . (2.8)
h

where y is the digraph, the u;,(y) (h = 1,...,p) are statistics of the graph, and 6
is a p-dimensional parameter. The function /() takes care of the normalization
requirement that the probabilities sum to 1. There may be covariates defined on the
nodes, and on the dyads, on which the u;(y) may depend. This is still an extremely
general model, and Snijders et al. (2006) discussed how to specify it in practically
feasible and fruitful ways, avoiding the so-called ‘near-degeneracy’. Lusher et al.
(2013, Chapter 6) contains an extensive presentation of statistics uy(y) that may be
included in the specification of an ERGM.

The dependence on actor and dyadic covariates can be implemented by defining
some of the u;,(y) as sums of ties weighted by covariates, such as

() = Y viyy
ij
for the sender effect of an actor covariate V, or

un(y) = Y vyyy

ij
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Fig. 2.1 Examples of e— e o« e
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for a dyadic covariate V. Dependence between tie variables, such as reciprocity and
transitivity, is expressed by defining some of the u;(y) to be counts of subgraphs
like those in Fig. 2.1. The literature mentioned explains this more fully, e.g., Lusher
et al. (2013, Chapter 7).

Stochastic Actor-Oriented Models

Longitudinal network data potentially give much more information about the
antecedents as well as consequences of network configurations than cross-sectional
data. They also require more effort to collect, but there already are a large number
of longitudinal network data sets, and their number is growing.

The Stochastic Actor-oriented Model (‘SAOM’; Snijders 2001) is a statistical
model for network dynamics that has been developed for the interdependent
dynamics of networks and(monadic) actor variables (Steglich et al. 2010) and
various other network structures. We sketch it here for the case of interdependent
networks and actor variables, calling the latter ‘behavior’ just as a general term, and
denoting the ‘behavior’ of actor i by Z;. The network is Y, the vector of behaviors
for all actors is Z = (Zy,...,Z,). The method assumes that data are available for
a number of discrete observation moments, the panel waves, and that the process
of change in network and behavior runs on in between the observation moments.
The probabilities of changes in network ties depend on the network configurations
in which the actor is involved who sends the ties; this can be formulated in a model
where the changes in network and in behavior result from choices by the actors. The
interpretation is that actors control their outgoing ties and their behavior, subject
to constraints determined by network context, attributes, and path dependence
(inertia).

In the basic model, the network is a directed graph and the behavior is a discrete
variable with a finite number (say, 2—10) of ordered categories, integer coded (1, 2,
etc). The time parameter is continuous, meaning that at any moment between the
observations, a change in tie or behavior is possible. The model is a Markov
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chain, which means that the probabilities of change at any moment depend only
on the current state (y, z) of the network and behavior, together with the available
covariates. The dynamic process is defined as follows. At random moments, the
frequency of which is determined by ‘rate functions’, a randomly selected actor i
gets the opportunity to change either one outgoing network tie Yj; or the behavior
Z;. The behavior can change only by unit steps, +1 or —1. The actor can also let
the network and behavior stay as it is. The network tie to be changed, or the change
in the behavior, is determined probabilistically by the so-called evaluation functions
and the current state of the network and behavior (y, z). There are separate evaluation
functions for the network and the behavior, and the probability of a particular change
is greater when it would lead to a higher change in the evaluation function.

Specifically, the model has two components, a waiting model for timing of
changes and a choice model for outcome of changes. The timing component is
relatively simple. It must satisfy the consequence of the Markov assumption that
waiting times between changes have an exponential distribution; to this are added
considerations of interdependence between actors, and interdependence between
networks and behavior. The assumption is that each actor has a rate function A lY ,2)
for the network and a rate function )Liz (v, z) for the behavior. The waiting time for the
next opportunity for a change in an outgoing tie of actor i is exponentially distributed
with parameter A!(y, z), and for the next opportunity for a change in behavior of
actor i it is exponentially distributed with parameter A#(y, z). At any given moment,
the briefest of these waiting times across all actors is selected, the choice model is
activated, which usually will lead to a change in state, and then the model starts
again with the new state.

To define the choice model, suppose that the current state of the network and
behavior combination is (y*’, z), and actor i gets the opportunity for a network
change. Then the set € of possible networks that could result from this change
opportunity is composed of all networks y" for which in comparison with network
v exactly one outgoing tie i — j, for some j # i, is either added or dropped; and,
in addition, the network y© itself, representing no change. Denote the evaluation*
function for the network for actor i by fiY(y, 7), defined for all possible network-
behavior configurations (y,z). The probability that the resulting network is y’ is
given by

exp (£ (. 2)
Ysew exp (f (v.2))

For behavior changes the set of possible changes has only 3 elements: up, stay,
down; and the evaluation function for behavior is used. For the rest, all is analogous.
The dynamic process then consists of a repetition of these steps, where the result of
the previous step is always he starting point of the next.

P{nextY =y} = Oy e?). (2.9)

4We restrict the discussion to specifications with only an evaluation function; see Ripley et al.
(2015) for more general models.
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The heart of the model is the specification of the evaluation functions. These are
defined as linear combinations of theoretically argued and/or empirically necessary
characteristics of the network and the behavior,

ffo.0 = Z Bisk(y.2)and ff(y.2) = Y Brsi(v.2).  (2.10)
h

These characteristics s}, (y, z) and 5% (y, z) are called ‘effects.” On the network side,
these can be dependent on the network position of actor i. For example, tendencies
toward reciprocity and transitivity, respectively, can be represented by positive
parameters for the reciprocity and transitive triplets effects,

SHO) =) v SKO) = Y vy yinyin
J Jh

as in Fig. 2.1; but, contrasting with ERG modeling, the role of actor i is now special,
as it is used to denote the focal actor of whom the evaluation function is being
considered.

The network and behavior dynamics become interdependent when some of the
effects for network change of actor i, s (, z), depend on behavior z, not only on the
behavior of the actor i but also of the other actors. E.g., the cross-product ‘ego x
alter behavior’ interaction term

S,i()’, 7) = Zyzj Zi %
J

will reflect (if it has a positive coefficient) that actors who have themselves a higher
value of z; will have a larger probability to create and maintain ties with other actors
Jj accordingly as these in their turn have a higher z; value. On the other side, some of
the effects for behavior change of actor i, si(y, z), can depend on the network y. An
example is the ‘average behavior alter’ effect

2 D Y%
ijij '

defining 0/0 = 0. If its coefficient is positive, this effect will imply that actors whose
connections have on average a higher z; value, will themselves tend to increase more,
or decrease less, in their own z; value. In models including such effects, the changes
in the network lead to changes in the change probabilities for behavior and vice
versa: the actors are each others’ changing environment.

These dynamic models can be studied by computer simulation which is also how
parameters are estimated: see the mentioned literature. Further information is at
http://www.stats.ox.ac.uk/~snijders/siena/.

z
sau(,2) =


http://www.stats.ox.ac.uk/~snijders/siena/

30 T.A.B. Snijders
Choice of Model

The range of statistical network models is starting to be bewildering and it may
be helpful to point out some differences in their properties. All these models can
incorporate fixed effects of quite arbitrary covariates, so the difference is only in
how they represent structural network features.

The p, model represents only three aspects of networks: differences between
actors in popularity (indegrees) and activity (outdegrees), and reciprocity. Further
structural features such as transitivity are not modeled.

The latent Euclidean space models represent networks by embedding the actors,
as nodes, in a 2- or 3-dimensional Euclidean space. (More dimensions are possible
but unusual.) This is visually very attractive. Network dependencies such as
reciprocity, transitivity, and higher-order dependencies are represented only as
consequences of this embedding. On the one hand the model is inflexible in the
representation of network dependencies, as there are no free parameters for this
purpose: the tendencies towards reciprocity and transitivity follow jointly from the
spatial arrangement of the nodes, and cannot further be tuned. On the other hand the
model is very flexible in choosing the locations of the nodes. This has a downside:
the likelihood surface for the location of the nodes is often quite multimodal, a
problem that is not really resolved by giving the locations a probability distribution
as in a random effects model. I think it is doubtful that the intricacies of social space
can be well represented by Euclidean space.

The Exponential Random Graph Model represents network dependence directly
by using subgraph count statistics as statistics u,(y) in (2.8), as discussed in
Lusher et al. (2013, Chapters 6, 7). A large number of triadic and higher-order
structures can be considered, and are indeed used in practical network research,
as is illustrated by the same book. The Stochastic Actor-oriented Model represents
network dependencies, somewhat similarly, by the effects s¢(y) in (2.10), and here
also a large array of structural effects can be considered (Ripley et al. 2015).

An illuminating difference between ERGM and SAOM models on the one
hand, and latent variable models (spatial or otherwise) on the other hand, is the
consequence of restriction to a smaller set of nodes and the importance of network
delineation. The former models do not allow restriction to a random subset of nodes;
for the ERGM this was elaborated in Snijders (2010). The reason is that ERGMs
and SAOMs represent dependencies, and cutting off arbitrary nodes would be an
amputation. For the latent variable models, on the other hand, it is conceptually
unproblematic to consider only a subset of nodes: if a random subset of nodes with
their incoming and outgoing ties is dropped, the information available in the data is
reduced but the model formulation of the rest remains intact. In practice, however,
it appears that working with a somewhat restricted node set in ERGMs and SAOMs
usually does not strongly change results except for the fact that the data set is less
informative, so this difference may be more important theoretically than practically.
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This issue may be regarded as a practical advantage of latent variable models, but
it also highlights that these represent networks in a descriptive way but not in their
essential dependence structure.

In some research the focus is on the structural dependencies directly, and then the
ERGM and SAOM will be preferable. In other research the estimates of the random
effect variances (sources of variability) and the posterior predictions of the random
effects and spatial locations may be important, leading to preference for a latent
variable model.

Whether the latent variable approach or the directly structural approach of the
ERGM and the SAOM yield a better representation of empirical social networks is
still an open question. In a sense this question is ill-posed because both models have
flexible opportunities for model specification, so a poor fit may always be remedied
by a more appropriate specification. Other open questions include: how important
a good fit for such models is in practice; and how robust conclusions can be for a
model that fits poorly on characteristics that has a poor fit on characteristics that are
secondary to the main research questions.

Multilevel Network Analysis

The combination of the terms ‘multilevel’ and ‘social networks’ leads to a multi-
plicity of directions. Above it was mentioned that social networks combine different
types of units—social actors and social ties—and variables can and will be defined
on both of these sets. Varieties of the ERGM (Daraganova and Robins 2013) and
of the SAOM (Steglich et al. 2010) combine dependent network variables with
dependent actor variables. But this volume is about other combinations. The current
section is about multilevel network analysis: the combined network analysis for
several independent groups. Section “Analysis of Multilevel Networks” is about
analysis of multilevel networks: the analysis of structures with nodes of several
types, connected by ties of several types.

Why Combine Several ‘Parallel’ Networks?

Multilevel network analysis, where the term ‘multilevel’ is used in the sense of
hierarchical nesting, is a combined network analysis for several groups, applying
the same model to each group. We then have several networks, with different actor
sets and assumed to be mutually independent, that may be combined in a single
analysis with a common model but allowing parameter values to be different. Why
should we do this?
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In general, multilevel analysis may have several main purposes. I formulate them
for the case where individuals are the lower-level units and groups the higher-level
units. These purposes are entwined, and the salience of each of them will differ
depending on the application considered.

= Obtain results from the combination of data sets about multiple groups, taking
into account the ‘random’ variability between individuals within groups as
well as the ‘random’ variation between groups, with standard errors (or other
measures of uncertainty of the results) that account for these two sources of
variation.

= Increase the amount of information (sample size) compared to analyzing a
single group.

= Generalize to the population of groups.

= Test effects of group-level variables.

= Analyze the groups jointly in a way that allows more detail and precision
than would be possible when analyzing the groups separately. This sometimes is
formulated by saying that the analysis of each group ‘borrows strength’ (Morris
1983) from the other groups, which is possible because of the assumption that
this group is a member of the same population as the other groups. This is related
to the idea of ‘empirical Bayes’ estimates mentioned in section “Frequentist and
Bayesian Estimation”.

All except the last purpose are also, potentially, goals of meta-analysis (e.g.,
Hedges and Olkin 1985). The main difference between multilevel analysis and
meta-analysis is that, usually, meta-analysis is a two-step procedure, using finished
analyses of the single groups and combining these in overall conclusions, whereas
multilevel analysis usually unites these two parts of the analysis. Meta-analysis
also can be more liberal with respect to the model assumptions concerning the
group level. The correspondence between meta-analysis and multilevel analysis is
discussed in Raudenbush and Bryk (2002), Chapter 7, and Snijders and Bosker
(2012), Section 3.7. A two-step approach can also be used in multilevel analysis
provided that the groups individually are large enough, cf. Achen (2005).

While we assume that the same model applies to all groups, they will have
different parameter values. In addition, groups will usually have different sizes and
different distributions of explanatory variables; in consequence, the standard errors
resulting from analyses per single group will also differ across groups. To be used
in a valid way, meta-analytic and two-step approaches should take these differences
into account—which is automatic in multilevel analysis via the Hierarchical Linear
Model.

For multilevel network analysis, any or all of these purposes may apply. One
major purpose is to generalize to a population of networks. It was noted by Snijders
and Baerveldt (2003) and Entwisle et al. (2007) that traditional social network
analysis focused on the analysis of single networks, while nevertheless usually
implying that the mechanisms and processes uncovered have a larger validity than
only for the particular group under study. But these authors also noted that more
and more studies are being done where data is collected for multiple networks
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considered to be similar. On the level of networks, traditional social network
research mostly was based on N = 1 studies. To have a statistical basis for
generalizing to a wider population, however, one needs to analyze data for several
networks that may be regarded, in some sense, as replications of each other. The
target population then will be a population of networks, and almost always will be
somewhat vaguely described and perhaps have a somewhat hypothetical nature. This
is often the case for the populations at higher levels in multilevel analysis. Above,
Cox (1990) and Sterba (2009) were already mentioned as references about this topic;
some further philosophical considerations about the use of probability models for
multilevel and network data are presented in Sections 1.1.1 and 14.1.1 of Snijders
and Bosker (2012) and on pages 135—137 of Snijders (2011). The practical question
is whether a particular collection of networks is homogeneous enough with respect
to the social processes taking place to justify pursuing a common conclusion by
using all of them together; as well as to justify applying a common statistical model,
with parameters that are allowed to vary from group to group according to a joint
probability distribution in the population of groups.

The ‘replications’ may be network studies in several similar schools, several
similar companies, etc. The Adolescent Society study of Coleman (1961) was based
on detailed investigations of friendship networks in 10 schools, juxtaposed as 10
interconnected case studies. More recent examples such as the PROSPER study
(Moody et al. 2011), the ASSIST study (Campbell et al. 2008; Steglich et al. 2012),
and the School Social Environments study (Light et al. 2013) have provided network
data to be analyzed by multilevel or meta-analytic means.

Two-Step Meta-for-Multilevel Network Analysis

In the following model for two-step meta-analysis, the population at the higher level
is made explicit. It is assumed that independent groups—in the meta-analysis case
these may be individual studies or publications—are combined, being regarded as
a sample from a population of groups. The focus often is on one parameter at a
time, so that the parameter is one-dimensional and denoted by 6. The dependent
variable at the group level is the parameter estimate from group k, denoted by ék. The
assumption of the random effects model for meta-analysis (cf. p. 210 in Raudenbush
and Bryk 2002; Snijders and Bosker 2012, p. 37) is

~

O =6 + R = up + Ex + R (2.11)

Here 6y is the true parameter in group k; Ry is the estimation error within this study;
W is the mean of parameter 0 in the population of groups; and E; is the deviation
of this group from the population mean. Ry reflects within-group variability and Ej
reflects between-group variability. From the point of view of estimating 6, Ry is
regarded as error variation and Ej as true variation.
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These are independent residuals both with expected value 0. The secret of this
analysis method is that the within-group analysis provides us with an estimate of
the standard error o, = s.e.(ék) which is the standard deviation of Ry, and we act
(almost always) as if we know this standard error exactly. Armed with this extra
information we can estimate not only py but also var(E;) = var(6) without the
‘hat’ on top of 6, the ‘true between-group variance’ of 6y; as opposed to

Var(ék) = var(Ry) + var(Ey) ,

which is the ‘observed between-group variance’.

If the number of groups is large enough, such a study also permits the assessment
of effects of variables X, at the group level, by entering them in the model as
predictor variables:

O = o + > Buxy + Ex + Ri. (2.12)
h

where x;; is the value of Xj, for group k. In most practical cases the number of
networks in a data set for a multilevel network analysis will be not very large, so the
number of variables X}, of which the effect can be studied will be low.

For model (2.11) an explicit estimator in a network context was suggested by
Snijders and Baerveldt (2003), using a method derived by Cochran (1954). The
maximum likelihood (ML) or restricted maximum likelihood (REML) estimators
under the assumption that R; and E} have normal distributions will usually be more
efficient. This can be calculated by multilevel software such as HLM (Raudenbush
et al. 2011) and MLwiN (Rasbash et al. 2014), and by R packages such as metafor
(Viechtbauer 2010). This two-step approach was used for multilevel network
analysis, e.g., by Lubbers (2003) and Schaefer et al. (2011) who combined ERGM
analyses for several groups; and by Mercken et al. (2012) and Huitsing et al. (2014)
who combined Stochastic Actor-oriented Models for several groups.

Integrated Multilevel Network Analysis

The other possibility is to integrate the within-network and between-network models
in one joint model and analyze this in one simultaneous analysis. The generic
way to do this is by postulating a between-network probability model, where the
parameters of the within-network model are supposed to be drawn independently
from a common across-network distribution: in other words, a random effects
model. This is more complicated than the two-step approach, and for every type
of within-network model a multilevel model has to be specifically elaborated. The
integrated approach is sketched in Sweet et al. (2013, Section 2), who call this the
Hierarchical Network Model.

The great potential advantage to this is the possibility of ‘borrowing strength’
as was mentioned above. In many settings where network data are collected, the
groups are rather small—e.g., school classes with sizes between 20 and 40—and
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for each group separately an analysis might be possible only with a quite meagre
model specification. The consequence then is that various effects of focal interest
may have to be left out because the data for each individual group does not support
parameter estimation for a truly interesting model, or the possibilities of controling
for additional or competing mechanisms are reduced. In such a case, a random
effects multilevel model can be very helpful; sometimes the analysis may even be
impossible without it. In addition, an integrated random effects multilevel model
will often be more efficient, and an integrated analysis may be in itself more
attractive than a two-step analysis.

The first multilevel network analysis model of this kind was presented by Zijlstra
et al. (2006), a multilevel version of the p, model. To define this extension, indicate
the groups by k and the tie variable from actor 7 to actor j in group k by Y3;;. The
simplest multilevel version of the p, model (2.5), containing random intercepts W
for the groups, then is given by

P{(Ykij, iji) = (a,b) I U, V, W}

= Cyij €Xp (d (Z,Bh-xhzj + Wi + U; + V,)
h
+ b (3 B + Wi+ Uy + Vi) + abp) | (2.13)
h

again for a,b € {0, 1}, where ¢;; does not depend on a or b. This means that (on
the logistic scale) there is a random main effect for the groups, but further they are
similar. More elaborate models can be obtained by adding random slopes for some
of the Xj, and the reciprocity coefficient p may also get a random effect.

Several applications of this model were published, e.g., by Vermeij et al. (2009)
and Rivellini et al. (2012).

There is a lot of recent and current activity in extending other network models
to multilevel versions. Sweet et al. (2013) elaborated their ‘Hierarchical Network
Model’ for the case of the latent Euclidean space model, and presented an applica-
tion with a random intercept and an (unfortunately, uncorrelated) random slope.
In another publication (Sweet et al. 2014) these authors elaborated a multilevel
version of the hierarchical mixed membership latent block model of Airoldi et al.
(2008). Koskinen and Snijders (2016) are working on a multilevel extension of
the Stochastic Actor-oriented Model, and a brief documentation of this is given in
Ripley et al. (2015).

Hierarchical Structures

Much like the situation of multilevel analysis with the Hierarchical Linear Model
and its variants, multilevel network analysis is also a hierarchical type of model
for a hierarchical data structure. Estimation for this hierarchical data structure again
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may be regarded as empirical Bayes estimation, where the group-level parameters 6y
have a frequency distribution about which we get information thanks to the observed
sample of groups. The analysis of each group borrows strength from the data of the
other groups. Therefore, multilevel network analysis is particularly appropriate for
combining the data of many small networks, each of which would be too small to
permit analysis by a suitably specified ERGM or SAOM.

For single-level as well as multilevel network analysis, frequentist as well as
Bayesian estimation methods have been proposed. Bayesian methods are potentially
more compatible with the hierarchical nature of multilevel network analysis, and
may be helpful for incorporating prior knowledge in cases where the number of
groups is rather small. More research is needed to make meaningful comparisons
between estimation methods, be they Bayesian or frequentist, for these complicated
models.

Analysis of Multilevel Networks

Brass et al. (2004) proposed that for network studies in organizational research,
it is important to consider both intra-organization and inter-organization networks.
Lazega et al. (2008) pioneered a study with a linked intra- and inter-organizational
design. Models and methods for the complex network structures that are necessary
for the analysis of such designs are now in an early stage of development, and this
volume aims to contribute to this domain.

A multilevel network (Wang et al. 2013) can be defined as a network with nodes
of several types, where a distinction is made between types of ties according to the
types of nodes that they connect. Thus, if types of nodes are A, B, C, etc., there is a
distinction between A — A, B — B, C — C ties, etc., and also between A — B, A — C,
etc., ties. The first are intra-type, the second inter-type ties. Some of the networks
may be the networks of interest, others may be fixed constraints, still others
may be non-existent or otherwise outside of consideration. The intra- and inter-
organization network of Brass et al. (2004) and Lazega et al. (2008) is composed
of organizations (type A) and their members (type B), where A — A ties can be
organizational cooperation, competition, etc., while B — B ties can be interpersonal
collaboration, acquaintance, etc. The primary two-mode A x B network then will
be the membership or affiliation network, where the simplest situation is one of
complete nesting, and each individual is a member of exactly one organization; the
B x A network may be superfluous, and then could be defined formally as an empty
network. The design will be especially interesting if B — B ties between members
of different organizations are also recorded, so that interpersonal ties within as well
as between organizations can be included in the analysis. Another example is the
co-evolution of a one-mode and a two-mode network as studied by Snijders et al.
(2013), where A is a set of individual students, B a set of companies, the A x A
network represents friendship or advice ties, while the two-mode A x B network
represents that the student is potentially interested to work for this company; B x B
and B x A networks were not used.
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Fig. 2.2 Adjacency matrix A B

for combined node set
A ( one-mode AxA two-mode AxB
B \ two-mode BxA one-mode BxB

This kind of multilevel network can potentially be studied by extensions of
the models mentioned above. This is sketched in the following sections for the
Exponential Random Graph Model and the Stochastic Actor-oriented Model.

A representation that is quite generally useful for handling multilevel relational
structures was proposed by Wasserman and Iacobucci (1991). This defines a
combined node set as the union or disjoint union of the A, B, etc., node sets. The
combined node set allows treating the various one-mode and two-mode networks as
subgraphs of an overall graph, with its associated adjacency matrix as in Fig. 2.2.

If some of the within-type or between-type networks are undefined, meaningless,
or not studied for other reasons, the corresponding sub-matrices can be defined as
structurally null blocks, i.e., having all entries equal to 0.

Exponential Random Graph Models for Multilevel Networks

Mathematically, model (2.8) can be used straightforwardly for multilevel networks,
because it defines a general exponential family of graphs (directed or non-directed),
and the node set can be taken as the union or disjoint union of the A, B, etc.,
node sets, as mentioned above. The outcome space of graphs can be restricted so
that certain blocks in the adjacency matrix are fixed; e.g., a two-mode network of
affiliations of individuals to organizations might be considered an exogenously fixed
datum of the analysis.

Of course, turning the general ERG model into a model for multilevel networks
in this way is not as easy as it might seem from the previous sentences. The model
must be specified in a way that corresponds to the differences between the node
sets; and the existing algorithms must be tuned for the estimation of parameters in
the model. This was accomplished by Wang et al. (2013). The following is a very
brief sketch.

To express the ERGM for a multilevel network with two node sets A and B, let us
refer to the one-mode A x A and B x B networks by A and B (a manageable misuse of
notation) and to the two-mode A x B cross-level network by X. Then the multilevel
network can be denoted by (ya, v, yx), and the vector of statistics s(y) in (2.8) can
be split into parts depending on each of y4, yp, and yx separately, and each of their
combinations; leading to the formulation of the multilevel ERGM as

Po{(Ya. Y5, Yx) = (ya.y5.yx)} = exp (04 5a(ya) + 6Ops5(ys)

+ Oxsx(yx) + Oax sax(a,yx)
+ Opx sex(v8. yx) + Oasx sasx(a. yg.yx) — ¥ (0)) . (2.14)
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where 0 = (64, g, Ox, OaB, Oax, O8x, Oax)- The 6 and s symbols all denote vectors.
This decomposes the model in parts with the following statistics:

sa(va) internal dependence of the one-mode network A, specified as in Lusher
et al. (2013, Chapter 6).

sg(yp) internal dependence of the one-mode network B, analogous.

sx(yx) internal dependence of the two-mode network X, specified as in Lusher
et al. (2013, Section 10.2).

sax(va,yx) Dbivariate interdependence between the A and X networks; interdepen-
dence between a one-mode and a two-mode network is not treated specifically
in the ERGM literature (as far as I know), but since two-mode networks have
less structural features than one-mode networks, the directions for specifying
bivariate networks given in Lusher et al. (2013, Section 10.1) can be followed.

sgx(yp,yx) Dbivariate interdependence between the B and X networks, analogous.

sapx(ya,yB,yx) three-way interdependence between the A, B, and X networks, to
which Wang et al. (2013) is specifically devoted. For example, a basic three-
way effect expressing the multilevel structure is the effect that ties between
individuals will tend to go together with ties between the organizations they are
members of. This is the C4AXB effect discussed in their Section 6.5.

In practice, all cross-level dependencies will be crucial in giving a meaningful
representation of the multilevel network, and the three-way interdependence rep-
resented by sapx(ya, ys, yx) Will often be the main point of scientific interest. The
other parameters are also interesting in their own right. Wang et al. (2013) find that
including three-way and other between-level dependencies may simplify the intra-
network models compared to modeling the A, B, and X networks independently,
which reflects the theoretical notion that internal structure will be shaped depending
on external or contextual demands, pressures, and possibilities, and ‘controlling
for’ the between-level dependencies gives a purified view of the intra-network
mechanisms.

As is mentioned in the discussion of Wang et al. (2013), the determination of
the levels in a multilevel network can be done in several ways, depending on the
aims of the research. One possibility is to define node sets based on their different
nature and way of connecting to other nodes, such as individuals and organizations.
Another possibility is to distinguish nodes of the same basic kind by attributes, thus
permitting a model with arbitrary differences between the ways in which the nodes
relate to other nodes, depending on these attributes. The discussion above focuses
on the first method, but the multilevel ERG model can be applied also to the other
way of determining node sets.

In this volume, this model is applied in several varieties. Two chapters in
this volume provide examples of the nested case. Both are about managers in
companies. The study by Brennecke and Rank (2015) is concerned with the
interdependence of the knowledge sharing network between managers (B) and the
R&D collaboration network between the companies (A). Zappa and Lomi (2015)
study advice and communication relations between managers (B) in subsidiaries
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(A) of an international multi-unit industrial group. The cross-level relation (X) is
membership affiliation, the within-A relation is the hierarchical reporting relation
between the subsidiaries.

Hollway and Koskinen (2015) apply the multilevel ERGM to a study about
multilateral fisheries treaties, where the node sets are the countries (A) and the
multilateral treaties (B). This is a crossed rather than nested design because countries
can be members of several treaties. The chapter by Brailly et al. (2015) considers
one node set of buyers and another of sellers, where moreover the buyers as well
as the sellers are nested in their respective organizations. This is analyzed as two
separate bipartite buyer x seller networks, one for the organizations and one for
the individuals, where some of the variables of the other level of aggregation
(individuals and organizations, respectively) are obtained by projection (aggregation
or disaggregation).

The second way of determining the levels is represented by Wang et al. (2015),
who present an application of the multilevel ERG model where the two node
sets are entrepreneurial and non-entrepreneurial farmers, who differ so strongly
in their network structures that a multilevel ERGM is able to give a much better
representation than a regular one-mode network analysis. An exploratory method
for derivation and specification of hypotheses in multilevel ERG models is proposed
by Zhu et al. (2015).

Stochastic Actor-Oriented Models for Multilevel Networks

For the Stochastic Actor-oriented Model likewise, the basic mathematical model
explained in section “Stochastic Actor-Oriented Models” can be used,’ if it is
specified in accordance with the multilevel structure. The actor-oriented nature of
this model requires specifying something about agency: which sets of actors will
be specified as those making the choices? In the standard actor-oriented model for
two-mode networks (Koskinen and Edling 2012; Snijders et al. 2013) with node sets
A and B, there is agency in only one node set, so ties are regarded as being directed
from A to B and determined by the actors of type A.

Again, we consider a multilevel network with two node sets, A and B. In this
discussion we leave out the dependent behavioral variable, but it could be added in
a rather direct way. In the general situation there could possibly be ties from A to B
as well as ties from B to A; for the current exposition the second kind of tie will be
ignored, so that again we consider two one-mode networks internal, respectively, to
the actor sets A and B; and one two-mode network X supposed to be directed from
A to B, with agency in the A nodes.

The specification of the model for the RSiena package (Ripley et al. 2015) is
possible by employing the representation with a combined node set A U B as above

31 thank James Hollway for pointing out this possibility.
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A B A B
A internal A 0 0 two-mode Ax B
B 0 internal B [two-mode Bx A] 0
networks A4,B network X

Fig. 2.3 Two dependent networks for combined node set

but now with two dependent networks, as displayed in the block structure for the
adjacency matrices shown in Fig.2.3. The reason why the data must be separated
and treated as two dependent networks instead of one as in the ERGM (Fig. 2.2) will
be explained further below.

To avoid confusion, in the rest of this section we shall refer to the original
networks as the one-mode and two-mode networks, and to the two constructed
networks used for the analysis in RSiena as the multi-networks. Both multi-
networks have node set A U B. The multilevel network is specified as a multivariate
network of two multi-networks, consisting of

(1) a one-mode multi-network containing the two one-mode networks as diagonal
blocks, and off-diagonal blocks that are structurally 0;

(2) another one-mode multi-network containing the A x B network as an off-
diagonal block; all the rest are structurally zero blocks. If the data structure
would also include a B x A two-mode network with agency in the B nodes, this
could be included as the B x A off-diagonal block in the second multi-network.
If the A x B network would be a fixed context and not a dependent variable
(e.g., if it denotes an externally given membership structure), then the second
multi-network would be replaced by a dyadic covariate.

The rate functions and evaluation functions have to be differentiated according to
the node sets. For the evaluation functions, this differentiation leads to the following
structure, where fiA (va; yB, yx) is the evaluation function for actors in A for their ties
with other A actors, relevant for Y4 as the dependent variable; fiB (vB; ya,yx) the
evaluation function for actors in B for their ties with other B actors, for dependent
variable Yp; and fiX (vx:ya, yg) the evaluation function for actors in A for their ties to
B actors, relevant for dependent variable Yx:

fiA(}’A;)’BJ’X) = QASA(YA) + QAXSAX()’A;)’X) + QABXSABX()’A;)’BaYX)
FEOsiya,yx) = 08sp(vs) + 0% spx(yeiyx) + 05 % spax(ve; va, yx)
X Oxiyaye) = Xsx(vx) + 0 sxa(yx:ya)

+ 0 sxs(vx:y8) + 0 Psxas(vx: ya. vp) - (2.15)

The functional dependence of these evaluation functions on the other one-or
two-mode networks reflects inter-network dependence. The arguments before the
semicolon have the role of dependent variable, those after the semicolon are the
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explanatory variables. Because of the endogeneity according to the Markov model,
the state of the Markov process being (ya,ys,yx), the dependent variables also
are used as explanations for their own further changes. This model contains more
terms compared to the decomposition (2.14) of the ERG model for multilevel net-
works, because the multivariate associations between two networks are represented
in the SAOM—with its ‘co-evolution’ aspect—as two interdependent one-sided
influences.

The separation into two multi-networks (or more, for structures with more than
two actor sets) is necessary to separate the choice models. In the SAOM for one
network the changes in all the outgoing ties of an actor are considered together,
as options in one choice process. Putting the ties of A actors to other A actors in
a different network than their ties to B actors means that the ties are chosen in
separate, interdependent choice processes; if these ties were put into one multi-
network the choices of ties to A would be weighed against ties to B and vice versa,
and this would be less natural, given that node sets A and B are of a different nature
and A — A ties are conceptually different from A — B ties. The construction of two
multi-networks represents that for the A actors there are two distinct but interrelated
choice processes, corresponding to the two dependent variables Y4 and Yy in (2.15),
for both of which the agency is with the A actors.

This implies that the multilevel SAOM, contrasting with the multilevel ERGM,
is aimed firstly at representing network structures where the several node sets, and
especially the ties between several different node sets, are of a different nature. It is
less suitable for representing node sets of the same basic kind, differentiated only
by an attribute. The different kinds of ties in the multilevel SAOM are distinguished
also by having their own timing models, which play no role in the multilevel ERGM.
The notion that compensation between different outgoing ties of one actor (e.g., a
collaboration tie from i to j; may serve the same purpose for i as a collaboration tie
from i to j,) is meaningful for ties of the same kind, but less so between the different
sets of ties A — A versus A — B, is built into the choice model and also in the model
specification for the SAOM—the choice of the effects in (2.15)—, whereas for the
ERGM it is only built into the choice of the effects (2.14).

A Forward Look

Multilevel analysis of networks (section “Multilevel Network Analysis”) is a natural
and important development as more and more data sets are collected that contain
similar ‘parallel’ networks in multiple groups—disconnected groups, or at least, sets
of groups for which the inter-group connections are being ignored in the analysis.
One of its great advantages is that it allows the study of contextual effects at the
network level, i.e., the effects of network-level variables. The analysis of multilevel
networks (section “Analysis of Multilevel Networks™), on the other hand, is a dif-
ferent and greater conceptual step. It permits studying in one model the structure of
ties between several different node sets, which has some similarity to developments
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in multilevel analysis that permit studying dependent variables at any level, as
discussed in section “Dependent Variables at Any Level”. Thereby it enables the
representation of social systems with multiple agency and of the structural effects
of combined agency patterns. Applications of multilevel ERGMs have started to
appear and are contained in this volume; applications of multilevel SAOMs will be
coming. These new techniques may well have interesting repercussions on theory
development.

The research program heralded by Coleman (1959) has flourished in the past half
century with the development of multilevel analysis and social network analysis.
Their combination is a young branch on this tree, or rather two branches, one being
multilevel analysis of networks and the other the analysis of multilevel networks.
This book reflects some of its recent developments and hopefully contributes to
further blossoming.
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Chapter 3

Synchronization Costs in the Organizational
Society: Intermediary Relational Infrastructures
in the Dynamics of Multilevel Networks

Emmanuel Lazega

The Meso Level in Organizational Societies, Relational
Infrastructure and Synchronization Costs

Sociologically, the organizational society is a class society in which the distribution
of resources has to be specified at the meso level, where individual destinies
depend in part on their capacities to use organizations as “tools with a life of
their own” (Selznick 1949). This specification is necessary because, especially after
two centuries of bureaucratization, i.e. “rationalization” of social and economic
life associated with modernity, variations in (and coevolution of) individual and
collective behavior cannot be understood exclusively in macro terms. They also
depend on the distribution of control, efficiency, opportunities and constraints that
are organizationally and institutionally shaped, with large variations in such shapes.
For social scientists, finding position and structure in society is therefore still a
complex task if it has to be carried out in a meaningful way, i.e. in a way that makes
conflicts more intelligible.

Over two centuries, Weberian bureaucratization has begun to construct societies
that Charles Perrow (1991) calls “organizational” and Ronald Breiger (1974) “dual”.
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Duality points to at least two levels of collective agency that co-constitute each
other: an inter-individual level and an inter-organizational level (between collective
entities of all kinds including families, companies, non-profit organizations, or
public administrations). In this context, the rationalization of agency in terms of
control and efficiency imposes strong multilevel interdependencies and simultane-
ously requires unprecedented amounts of coordination among actors, within and
between levels. Actors think in multilevel terms (“this person is a big fish in a big
pond”) and are required to manage these exceptionally complex interdependencies
(functional, epistemic, normative, emotional, etc.) in increasingly sophisticated
ways at different levels simultaneously, thus facing multiple dilemmas of collective
action. Identifying some of the social realities at stake in multilevel networks leads
to the notions of overlap and complementarity between levels (Lazega et al. 2008,
2013) and shows that they co-constitute each other through vertical differentiations
between members and relational strategies that are important for their achievements.
Without this multilevel coordination, both between individuals, between organiza-
tions, and cross-level between individuals and organizations, neither individuals nor
organizations can access or mobilize on their own all the resources that are needed
to produce, compete and survive (Brailly et al. Chap. 10, in this volume; Brennecke
and Rank 2015, Chap. 11, in this volume; Favre et al. 2015, Chap. 12, in this volume;
Hollway and Koskinen 2015, Chap. 13, in this volume).

Here the term multilevel refers to the fact that in a stratified society, there
are many superimposed levels of agency, each of them characterized by hori-
zontal interdependencies that sociologists can examine as sets of ‘local’ social
systems. Individuals acting on their own behalf in a highly personalized inter-
individual system of interdependencies constitute a specific level of agency, with
its own resources, commitments and rules. Interpersonal interdependencies consist
of individuals tied together within or across organizations through cowork, advice,
and friendship relationships (among others), as well as the rules that organize
their social exchanges. The content of these relationships varies. This level of
agency is different from that of the organizations to which these same individuals
are affiliated. Interorganizational interdependencies are created most often by
contractual agreements between organizations specifying the contributions, rights,
and responsibilities of each organization in the pursuit of a particular objective;
but they also depend on the existence of institutions that guarantee the credibility
of these contractual agreements. Organizations, in which hierarchy reflects wider
societal stratification,' are represented by their managers, who interact with other

'The term ‘organizational society’ has several dimensions. As Perrow (1991) puts it, it means that
large-scale public or private organizations “absorb” societal functions that were/could be fulfilled
by communities. It also means that a system of interdependent organizations, that are interlinked at
the meso-level in a multi-level network, shapes the opportunity structure of citizens by coordinating
various forms of “opportunity hoarding” (Tilly 1998). Finally it is also a metaphor to express that
all individuals today play at both — individual and organizational — levels simultaneously and that
domination in the Weberian sense is linked to the control of organizations as “tools with a life of
their own”.
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managers from different organizations at this inter-organizational level of agency. At
that level, interdependencies are much less personalized. Resources, commitments
and rules are different in nature from those characterizing the inter-individual level
of agency. This approach to the multilevel dimension of society is called the ‘linked
design’ (Lazega et al. 2008), where the link between distinct but interdependent
levels of collective agency is created by affiliation of members of one level in
members of another level (typically individuals in organizations).

The boundaries of interorganizational and interpersonal networks are defined by
the relevance of each kind of relationship in facilitating access to resources and
coordinate collective action in the pursuit of particular objectives; but also by the
social space in which the specific social processes driven by these relationships
take place in a meaningful way (Lazega and Pattison 1999, 2001). Generic social
processes (solidarities and discriminations, collective learning and socializations,
social controls and conflict resolution, regulation and institutionalization, etc.) are,
in part, the product of the regularities and relational infrastructures constructed in
the management of interdependencies between actors in conflict or in cooperation.
These processes facilitate the management of the dilemmas of collective action at
each level of agency (Lazega 2001).

Multilevel Networks of Collective Action and Intermediary-Level
Relational Infrastructure

It is useful to further elaborate the connection between the management of dilemmas
of collective action and its multi-level dimension. At each level of collective agency
(inter-individual or inter-organizational), individual or organizational actors have
both convergent and divergent interests. Within organizations, interests are divergent
between stakeholders, whether employees, owners or representatives of the owners
(managers). The extent to which individuals sharing a common organizational
interest nevertheless find it in their interest to free ride instead of bearing their share
of the organizational effort, is a crucial issue for the success of collective action
(Olson 1965). All try to promote their respective interests by using the organization
as a “tool with a life of its own” (Selznick 1949). Divergent interests between
stakeholders mean that collective action requires interest alignments to take place in
negotiation. As political and strategic actors trying to promote their special interests
and define priorities for the collective (Merton 1957; Crozier 1963; Krackhardt,
1990), members identify other members with common interests, build ties with
each other (sharing resources and commitments in a reference group), and select
representatives to promote their interests in negotiations. Alignment of interests
between stakeholders in this negotiation can be relatively temporary and frequently
renegotiated.

At each level of collective agency, relative success requires both social and
political organization for each kind of stakeholder. With hierarchy derived from
property rights, expertise, and control of resources in “the environment” (including
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outside networks), owners and management usually have disproportionately more
means than employees to coordinate their efforts and to shape collective action.
With asymmetrical power distribution coming from “exogenous,” higher-level
sources in the social stratification, they can force their subordinates to bear
relatively higher costs of organizing with less gains per capita from successful
collective action. Competition and collaboration take place both within and between
organizations. Within and between levels of collective action, work for powerful
stakeholders/principals is what triggers the negotiations for control of an actor’s own
sphere of work and protection of his or her own interests in individual/organizational
competition. This is where the construction and/or maintenance of “social forms”,
i.e. relational infrastructure, becomes a step towards coordination within and
between levels.

The same is true at the interorganizational level, where organizations as agents
face similar dilemmas. Willingness and capacity to coordinate and align are crucial
at that level too (Granovetter 1994; Lazega 1996). As theorized by Lazega and
Mounier (2002) and shown by Brailly et al. (Chap. 10, in this volume), Comet
(2007), Delarre (2005), Eloire (2010), Favre et al. (2015, Chap. 12, in this volume),
Montes (2014), Oubenal (2013), Penalva (2010), Pina-Stranger and Lazega (2011),
Varanda (2005), social processes also facilitate the management of the dilemmas of
collective action at the inter-organizational level, especially by lowering the costs of
coordination and cooperation among competitors in industries and markets (Lazega
2009).

Since control of “the environment” is crucial in the use of the organization
as a “tool with a life of its own” to serve a stakeholder’s view of collective
interests, any kind of alignment of interests has both an intra-level dimension and
a cross-level dimension. Controlling outcomes at one level increases the capacity
to control outcomes at another level, usually downwards. From this perspective, a
social phenomenon must be observed at several different levels of collective action,
separately and jointly. Superposed levels of agency are diachronically related,
although they do not often evolve in sync. For example, in a global market,
inter-organizational ties can be arms-length long-distance relationships and deals
between two companies dependent on (or are embedded in) inter-individual social
relationships (Brailly et al. Chap. 10, in this volume; Favre et al. 2015, Chap. 12, in
this volume).

Dynamics of such multilevel systems of collective agency assume, as also
suggested by Berends et al. (2011) or Grossetti (2011), that the evolution of
networks at one level of collective action is influenced by that of another level
of collective action, and the other way around in recursive ways. Such dynamics
can be considered to be the outcome of a meta-process bringing together both
individuals and organizations, in which the evolution of one level explains in part
(in causal terms) the evolution of the other. Level 1 relationships can emerge
as a result of the emergence of level 2 relationships. Actors of level 1 may be
able under certain circumstances to change the structure of level 2, especially by
bringing an intermediary level into the picture, a substructure such as workgroups
between which individuals move. Such substructures include individuals and are
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capable of collective action. They are included in the organization, and therefore
in the inter-orgnizational level of collective action. This kind of intermediary level
substructure — including social forms such as status and niches — represent a lever
and the locus of co-constitution between levels.

To take into account this vertical complexity of the social world, it is nec-
essary to differentiate and articulate these levels, and their respective dynamics,
in measurements and models. This not only makes the analysis of individual
goals, relations and conflicts inseparable, but distinct, from that of organizational
goals, relations and conflicts. It also adds a problem that we will call a problem
of “synchronization” between levels (Lazega and Penalva 2011). Synchronization
is a task of scheduling and coordinating individual and collective efforts over
time. Social sciences are currently struggling to combine multilevel and dynamic
approaches to social phenomena at the meso-level. A first step in the study of the
systems dynamics of multi-layered interdependencies was to propose a structural
form for articulating these levels that examines separately the oppositions and
interdependences at each level; and that articulates them based on the systematic
information on the affiliation of each individual at the first level (inter-individual) to
one of the organizations of the second level (inter-organizational).

Synchronization of Temporalities Within and Across Different
Levels of Collective Agency

From the perspective of a theory of collective action that takes time into account
in a systematic way, synchronization takes place when individuals who perform
their tasks need to reorganize their activities in order to coordinate and keep in pace
with each other, while at the same time coordinating across levels with the ongoing
demands of the various organizations in which they are respectively affiliated.
Synchronization refers to coordination of different temporalities (short term and
long term for example) and rhythms characterizing collective activities at each
level separately and at both levels jointly.” It is carried out through investments
in resources (of all kinds, including time and energy, for example) in activities,
relationships and affiliations when trying to stabilize these rhythms.

These investments are made by actors who try to keep or reshape their opportu-
nity structure. Indeed synchronization as stabilization or as inducement of change
at one’s own level or across levels, below or above, depends on the capacity of
individuals to maintain/build a relational infrastructure made of social forms at an
intermediary level. Relational infrastructure refers to regularities in relationships
that make sense from the perspective of both the individual and from the perspective

2Each level in multilevel systems of collective agency has its own temporalities: rhythms of self-
maintenance and rhythms of actions. In fact one could argue that a level of collective agency exists
because it has its own temporality. I thank David Chavalarias for this insight.
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of the group: it includes in particular vertical and horizontal social differentiations
such as social status and social niches. Relationships are defined as both channels
in which resources flow between exchange partners (economic dimension), and
commitments between these exchange partners (moral and symbolic dimension).
Relational definition of social status refers, for example, to kinds of centrality in
the networks of these actors. Relational definition of social niches refers to close
relationships with actors similar in terms of relational profiles, i.e. (approximately)
structurally equivalent actors. A social niche makes sense in a system of niches
reflecting a role system, i.e. a form of division of work at the collective level (White
et al. 1976) in which individuals think that they know their place. As defined here,
such social forms represent the intermediary level between collective agency at the
inter-individual level and collective agency at the inter-organizational level.

Saying that synchronization depends on a relational infrastructure at an interme-
diary level is equivalent to saying that actors coordinate across levels by creating
and maintaining a structure that helps them filter and transform opportunities into
locally available and appropriate resources. The presence and use of the right
horizontal differentiations (a system of social niches) and vertical differentiations
(heterogeneous forms of status) improves actors’ chances of stabilizing this syn-
chronization between levels and thus diminish its costs, for individuals and for
collectives. Their absence increases the costs of synchronization at both levels.
Members of niches share resources that are needed to keep pace and manage the
intensity of change. Status helps in defining the rhythm at both levels. Social forms
are attempts to structure the context in one’s interactions, gaining power, shaping
structure, organizing serendipity in a Mertonian sense. Relational infrastructure is
made, among other ingredients, of relationships and can be identified using network
analyses.

Multilevel forms of agency thus depend on synchronizations at the meso level,
and stabilization of synchronization is made easier when actors invest in relation-
ships as resources and commitments needed to build or maintain this relational
infrastructure of social forms. The latter can help combine different temporalities,
such as long term and short term. Many unsuccessful investments in relationships
are “sunk” costs of synchronization. For others they are boosting or lifting in the
sense that they help create or use these relational infrastructures; the latter become
intermediary level entities providing leverage: they can later become full-fledged
formal organizations combining short and long term decisions so as to harness the
benefits of both opportunism and staying capacity for actors who control them as
tools. Dynamics of multilevel networks help track these efforts and their outcomes.
For example in trade fairs such as that examined by Brailly et al. (Chap. 10, in this
volume) or by Favre et al. (2015, Chap. 12, in this volume), sales representatives
in a trade fair need to create social ties to each other in order to transform the
opportunities that come attached into contracts that will be signed by their respective
companies. The temporalities of creation or maintenance of steady social ties with
sales representatives from other companies and that of signing contracts between
companies are not the same. Synchronizing the temporalities of creation of new
personal professional contacts (short term in the trade fair, long term over many
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trade fairs the same year) with the temporality of signature and enforcement of
contracts (longer term depending on organizational procedures that are triggered in
trade fairs but become independent of them) is an issue of synchronization between
levels of collective agency. Status and niches are key relational infrastructures
helping competing sales representatives selecting each other for cooperation in
finding exchange partners and sign contracts (Brailly et al. 2015). Over time,
interpersonal relations in such niches can become stronger and more durable than
affiliations, leading for example to mobility of members from one firm to another
(Lazega 1996).

When society depends on short-sighted markets that are built and dominated by
gigantic and well-coordinated organizations (private and public), social ties that
are needed to stabilize synchronization (and reduce transaction costs) can only
be built by individuals already strongly endowed with relational capital that is
well managed in such relational infrastructures; while individuals without much
relational capital and infrastructure are kept out of contracting until/unless they
make successful efforts to integrate socially in the organized system supporting
the market. Either way, companies usually have the power to dump these social
costs of stabilizing synchronization on their individual members and on society at
large — that is expected to take care of the victims of the system. From the individual
perspective, incurring the social costs of stabilizing synchronization (without a
strong relational infrastructure providing leverage) is equivalent to making huge
efforts that will end up being sunk costs. Thus abandoning social organization
to short-sighted markets raises the issue of inequalities in the face of dumping
such costs of synchronization on individuals. This constitutes an important and not
so visible societal problem that can only be further understood by designing and
mobilizing methods able to account for the dynamics of multilevel networks and to
measure hidden social costs of stabilization of synchronization between stratified
levels of collective agency. This chapter is a very initial and exploratory framing
of the study of these dynamics of co-evolving levels and synchronization with
intermediary level relational infrastructures.’

There are many levels in actors’ contexts, beyond the organizational one.
However for the purpose of this chapter it is sufficient to consider two plus the
intermediary level of relational infrastructures. The intermediary level is created
by actors who establish new relationships and social forms, new groups and new
hierarchies within or beyond the boundaries of an organization in which they are
affiliated, thus trying to reshape and expand their opportunity structure beyond the
limitation imposed upon them by pre-existing structures of collective action. In an
illustration below, half of the observed population of highly competitive scientists
deploy “independentist” strategies, i.e. all their new personal ties are beyond
the constraining perimeter predefined by their organization’s inter-organizational
network, with no overlap between the two levels. If/when successful, the kind of

3There is some analogy here with the vision outlined by Courgeau (2003, 2004) on the joint
importance of dynamics (in his case, represented by event history) and multilevel approaches.
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new organization that they might create by transforming their social niche into a new
laboratory (thus restructuring the inter-organizational level) would not establish easy
inter-organizational ties with their previous laboratory. In addition, observations
suggest that this “independence” takes them, over time, close to nowhere in terms
of further achievements.

In this chapter, I first look at basic characteristics of superposed levels of
collective action as approached by the linked design in network analysis. I then
argue that efforts to synchronize the temporalities of these levels create the
energy for intra- and inter-organizational mobility as possible emancipation from
constraints imposed by one’s prior affiliations. This mobility in turn produces
relational turnover for these members and this turnover is managed by the creation
of the new relational infrastructure, i.e. a specific form of social status. Indeed,
actors can experience organizational mobility and relational turnover (OMRT) as
constraints and opportunities; to some extent they attempt to use OMRT to reshape
this structure using such social forms and relational infrastructure. Using the energy
created by multilevel structures requires attempts to use these social forms and
relational infrastructure to challenge and change existing organizational structures.
This chapter assumes that some uses of social forms such as niches and status are
both instruments of restructuration attempts across levels and building blocks for
cross-level synchronization. In the example of the construction or emergence of
status as a social form in the dynamics of an intra-organizational advice network,
provided in a case study, producing status for selected actors also allows the latter
to reshape a system of places in this organization via the creation of new social
“positions.” Thus movement is shown to lead to a reshuffling of members of the
organization across a new set of places and to a new kind of stability.

Finally OMRT created by multilevel structures and the synchronization of their
different temporalities is construed as context for social processes helping members
manage the dilemmas of collective action that characterizes the organizational
society. It is important to mention that as costs of creation and maintenance of social
forms (niches and status as relational infrastructure), synchronization costs will thus
include human and social resources invested in adapting the social processes of one
level to those at levels above and below. In particular examples will be provided of
social processes such as collective learning or regulation using the metaphor of the
‘multilevel spinning top’ applied to institutional change and emergence. In addition,
as already mentioned, incurring synchronization costs will be rewarding (in terms of
managing constraints, learning and regulation) for some players; for others, they will
be sunk costs. Such differences are only slightly visible in current studies of social
inequalities. A dynamic and multilevel network approach to social life changes
the measurements of these socio-economic costs and inequalities precisely by
introducing systematic positioning, mobility, and relational turnover into the picture.
Combining the work of Harrison White (1970) and Tom Snijders (1996, 2005) helps
make these synchronization costs measurable and more generally redefine the social
costs of living in an organizational and market society.
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Multilevel Structures: Superposed Levels of Collective Agency

The multi-level dimension of social phenomena can be approached as the super-
position of two systems of interdependencies, one inter-organizational, the other
inter-individual. Attempts at solving this problem of joint examination include
Breiger’s “dual” approach (1974) of bipartite or two-mode networks. When a
fixed set of actors belongs to a fixed set of organizations, it is possible to derive
multiple memberships from inter-individual networks (assuming that a connection
exists between two individuals because they belong to the same organization), and
from inter-organizational networks (assuming that a connection exists between two
organizations because they share common members). The typical example is that of
“interlocking” directorates, i.e. connections created between two companies when
one or multiple individuals simultaneously belong to the boards of both companies.
The networks, derived at two different levels, can also be reconstituted in a multi-
level structure. However, this structure provides relatively poor insights into social
phenomena because relationships are assumed and are symmetrical by construction.

A second important contribution in multilevel network analysis is that of
Fararo and Doreian (1980). They generalize Breiger’s (1974) and Wilson’s (1982)
formalisms in order to craft a “formal theory of interpenetration” of distinct
entities such as individuals and groups. Seen from the perspective of their tripartite
structural analysis our approach uses a network (call it P) of relations among
persons, a network (call it G) of relation among groups, and a network (call it A) of
affiliations of persons to groups. Unlike in Breiger’s (1974) approach, only A is an
affiliation network; P and G are networks of social relations and interdependencies
(such as getting advice from a colleague, or agreements among organizations to
share equipment, respectively). Fararo and Doreian’s article points out many kinds
of relations among levels (consider, for example, AGAT, the network of ties between
people whose organizations have agreements to share equipment). Similar ideas are
extended and used below, in particular to identify “overlaps” between the two kinds
of networks (P and G via A) and reconstitute individual strategies of management
of resources originating from both levels. Articulation of distinct levels of action
can thus be partly accounted for, beyond bipartite structures, using a method called
structural linked design (Lazega et al. 2008) that brings together networks of
different levels using individuals’ (mono or multiple) affiliation ties. Statistical
analysis of such datasets pioneered by Wasserman and Iacobucci (1991) has reached
a high level of sophistication (Wang et al. 2013), with multiple examples provided
in this volume.

An Empirical Case of Co-constitution Without Conflation

In this approach, each complete network is examined separately, and then combined
with that of the other level thanks to information about the membership of each indi-
vidual in the first network (inter-individual) to one of the organizations in the second
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Fig. 3.1 Real-life multilevel network (Lazega et al. 2008) based on a linked-design approach
studying an inter-individual network (bottom of the figure), an inter-organizational network (fop
of the figure) and vertical affiliation ties for the individuals in the organizations

network (inter-organizational). Work undertaken until now within this framework
shows that dual/multiple positioning in superimposed systems of interdependencies
makes it possible to formulate precise hypotheses about the relationship between
members’ complex positions in the structure and their achievements (measured at
the individual level). It is especially the case when this positioning is articulated
with the strategies of the actors. In this structural contextualization of action, the
two levels of collective agency (one inter-individual and one inter-organizational)
are in co-constitution of each other, but without being conflated (Archer 1982).

This approach can be illustrated using a case study in the sociology of science. In
this case, the “elite” of French cancer researchers in 1999 was examined at both the
inter-individual and the inter-organizational levels (Lazega et al. 2004, 2008, 2013;
Barbillon et al. 2015). Figure 3.1 provides a graphical illustration of the structural
linked design method.

In this context, we identified the systems of superimposed interdependencies,
of the strategies of the actors who manage these interdependencies, and of their
achievements measured at the individual level. No deterministic order is pre-
supposed between position, strategy, and achievements, only an analytic one. This
approach is particularly sensitive to the existence of inequalities between competing
actors because these inequalities can render a given strategy more or less effective
or “rewarding,” depending on dual positioning as measurement of opportunity
structure. This principle of dual-positioning individual actors (in the network of
their inter-individual relationships and in the network of relationships between the
organizations to which they belong) has two advantages.
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Alffiliations, Overlaps and Fish/Pond Relative Status

Firstly, dual positioning helps to construct new typologies of positions in the system,
allowing for the characterization of individuals and the organizations in which they
work in the same “dual entity.” Dual positioning can correspond, for example, to a
form of relative status, or double structural characteristics of the individual. It can
be constructed, for example, by measuring both the centrality of the individual (in
the inter-individual networks) and the centrality of the organization (in the inter-
organizational networks) to which he or she belongs. Here the status of an actor is
measured by his/her indegree centrality in the advice network of these researchers.

In metaphorical terms, members are identified, thanks to centrality scores, as
big or little “fish”; organizations are identified likewise as big or small “ponds.”
This produces an endogenous partition of the population into four classes that are
baptized, for a more intuitive understanding of this dual positioning, big fish in
a big pond, big fish in a small pond, little fish in a big pond and little fish in a
small pond (BFBP, BFESP, LFBP and LFSP). Belonging to one of the four categories
locates actors in a meso-social space of opportunity structures, simultaneously
inter-individual and inter-organizational. Measuring relative status of members and
organizations in those terms provides a uniform basis for the interpretation of
our results in the reconstitution of strategies of mobilization and articulation of
heterogeneous resources at different levels.

Relational Strategies in Cross-Level Interdependencies

Secondly, this localization identifies strategies that individuals use to appropriate,
to accumulate, and to manage both their own resources and the resources of their
organizations. Actors vary in their capacity to use organizations as “tools with a
life of their own”. Some use a great deal of the resources of their organization,
others much less. In particular, systems of interdependencies at different levels
are controlled by actors of different hierarchical levels. Likewise, we can measure
the overlap of relationships between individuals by those of their organizations.
Information about in-degrees and out-degrees can also be used because incoming
and outgoing ties are important in measurement of overlap between the relationships
of the individual and that of organizations. It then becomes possible to articulate
these relational strategies to the achievements of actors. It is in this respect that
the contribution of a structural linked design is most original. As information about
the relative status and relational strategies of individuals are used concurrently, we
can eventually examine the achievement of individuals with explanatory variables
different from those used in classic ecological analysis — which, to our knowledge,
rarely measures the position of an actor in superposed systems of interdependencies
and derived dual systems.
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Fig. 3.2 Ten types of situations of overlap between ties of researchers and ties of their respective
laboratories

In our case in point, all the researchers in this elite population are high performers
in terms of the number of published articles. However when looking at their ways
of managing their resource interdependencies at two different levels, especially by
actors in categories other than the BFBP (i.e. the BFSP and all the Little Fish) we
identify different relational strategies. The connection existing between membership
in a class and strategies can be read in the level of overlap between the researcher’s
relationships and those of his/her laboratory, for outgoing as well as incoming ties.
Figure 3.2 illustrates ten types of situations of overlap between ties of researchers
and ties of their respective laboratories. Members’ relational strategies are identified
by types of overlap between interpersonal and inter-organizational networks.

A researcher may be cited (in these advice networks) by colleagues belonging
to a laboratory that may or may not have inter-organizational ties with his/her own
laboratory. The comparison of differences between these two types of relationships
provides indications about the level of overlap between the two kinds of networks
and about the behavior of actors in their organizations, thus offering insight
into their strategies. In this case, we interpret incoming choices as indicators,
for the laboratories, of their importance from a functional point of view, and,
for researchers, of their prestige in terms of professional authority. We interpret
outgoing ties as indicators of access. In the case of the laboratories, outgoing ties
can be read as measures of access to exterior resources; for the researchers, they
measure access to sources of learning and of personal support.
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Overlaps, Relational Infrastructures, Entrapment
or Emancipation

Using this typology, we can establish a correspondence between fish/pond category
(BFBP, etc.), level of overlap understood as strategy, and achievement. Results
show, firstly, that there are combinations that articulate little (or no) common
prestige and little (or no) joint access to the same organizational resources. One
could call these combinations “independent” strategies. It is not difficult to imagine
concrete examples of behavior that reflects independent strategies. For example, a
researcher representing an entire discipline in a scientific council might negotiate,
in the name of the collective interest that he/she represents, to obtain resources for
his/her own individual projects. Second, there are combinations that articulate little
(or no) shared prestige but many of the common resources. One could call these
combinations “individualist” strategies (benefiting from common resources but not
sharing their prestige). Third, there are combinations that articulate a great deal of
shared prestige but little (or no) common organizational resources. One could call
these combinations “collectivist” strategies (constructing common prestige by using
resources different from those of one’s colleagues). Finally, there are combinations
that articulate a great deal of shared prestige and common organizational resources.
One could call these combinations “fusionist” strategies. The reconstitution of this
typology of strategies yields insights into the relationship between position, strategy,
and achievement.

Our analyses show that collectivist strategies are used by the big fish more
often than by the little fish. In other words, the bigger the fish, the greater the
overlap between the relationships of researchers and the relationships of their
respective laboratories. Big fish know how, and are able, to use patronage to
accumulate resources in their laboratory. Among the LFBP, the majority have
strongly individualist strategies. The LFSP have no fusionist strategies and a
very high proportion of independent strategies. Among this group, one finds a
nearly complete separation between the relationships of researchers and those of
laboratories, whether for outgoing or incoming ties. Their laboratories may also
offer resources to which they do not have direct access or that they do not use.
The LFSP often find themselves, relationally speaking, “trapped outside” their own
organization, unable to build new relational infrastructures using this organization’s
resources. Following an independent strategy does not seem to benefit anyone,
especially not the junior researchers who use it quite often.

Big fish do not seem more prone to use individualist strategies than the little
fish. The only marked difference is the more frequent use of collectivist strategies,
but also of fusionist strategies (although in very small numbers). The difference in
the use of independent strategies is between the little and the big fish. Little fish —
perhaps because of lower access to laboratory/organizational resources — follow an
independent strategy much more often than big fish (66 % compared to 34 %). Also
it is not the BFBP that most often use collectivist and fusionist strategies, but the
BFSP; the latter are more often directors who can easily “sacrifice” their resources
for the collective or, on the contrary, use the resources of the laboratory for their
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own interest, sometimes, for example, taking credit for other members’ work. But
due to the scarcity of resources of their smaller organization (sometimes combined
with their own seniority), they find themselves “trapped inside” and also unable to
build new relational infrastructures outside (if this is a goal of theirs at all).

Finally, one can measure the way in which actors’ strategies are associated with
achievement levels for researchers who are not BFBP, i.e. who are endowed with less
social resources. Among researchers with increasing impact factor scores who were
LF, the individualist strategy is by far the most efficient, especially for those in a big
pond, in order to have a chance to catch up. One may explain this catching up by
the fact that some LF, whether in big or small ponds, have learned, over time, to use
the resources of their organization more efficiently to start building new relational
infrastructures. This means that the LF benefit from building an individual network
outside of the domain established by the network of their boss or laboratory. The
same individualist strategy is counterproductive for the BFSP. The latter can attain
very high levels of achievement (measured at the individual level) if he/she is the
only one in the little pond to be able to appropriate the necessary resources and enter
competition with the BFBP.

Dual Opportunity Structures, Asynchronies and “Emergence”

This specific result deserves to be highlighted. In this particular population,
many junior members try to create ties outside the relational “territory” of their
organization (and outside the network of their boss) in order to gain autonomy
in their work. Here individualist strategies are rewarding in terms of achievement
for actors who are not BFBP. They help them manage organizational constraints to
try to reshape their opportunity structure. Of course actors do not always have an
interest in leaving to create new collectives because support from their own current
organizational environment can enrich them considerably with all sorts of resources.
This is the case for example for members who benefit from a “network lift from dual
alters” (as defined in Lazega et al. 2013).

If synchronization is necessary for the organization to benefit from the individual
actions of its members, especially from individual actions that take place outside
the organization, creating asynchronies is sometimes what helps individuals break
free from patronage. Thus collective action at two vertically interdependent levels
of agency can also be a story of “emancipation” from the influence of the other
level, whether by catching up with this other level as it stands, or by creating
a new emergent relational infrastructure (or sometimes more modestly, a new
relational sub-structure) by investing in social forms, whether niches or status. The
lag between the two can be considered the main source of change at both levels:
structuration at one level drives structuration at the other in mostly conflicting,
chaotic, and unequal ways. Time to adjust and adapt is not always available;
enormous waste and disorganization may characterize the multilevel structuration
process. When agents with status or entire niches “emancipate” and create their own
organizations at the inter-organizational level, they try to take advantage of spatial
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and temporal gaps between agency at different levels. In the culture of our empirical
case, structure and agency work together because some (young) members try to
challenge the vested interests of their seniors or colleagues. In the example of ‘field-
configuring events’ such as trade fairs (Favre et al. 2015, Chap. 12, in this volume),
firms try to create or maintain themselves in socio-economic niches in their industry.
Inter-organizational networks strongly influence inter-individual networks but not
equally across all kinds of ties: long-term ties between individual members are
influenced by the inter-organizational structure, while short-term ties much less so.

Emergent Corporate Entities: The Energy for/from Organized
Mobility and Relational Turnover

Multilevel networks with collective agency at each level measure the meso-social
order and the behavioral consequences and performance outcomes of actors (in
the previous case, individual actors) in such superimposed systems of interde-
pendencies. They show how, and the extent to which, new collective actors can
be brought together (as a social construction, as opposed to just “emerging”) out
of previously existing ones, via relational and entrepreneurial emancipation from
patronage beyond the boundaries of preexisting organizations.

Building and maintaining social forms as relational infrastructures is not an
investment that takes place in a vacuum. Therefore synchronization costs must
also include efforts that are spent to position oneself in the social space so as
to be able to build or maintain these social forms. This positioning can be very
complex. For example, creating ties to others beyond or outside the domain of one’s
organization can be a preparation for mobility (Lazega 2000). Indeed movements
following paths that Harrison White (1970) calls “vacancy chains” can be seen as
forms of rotation across systems of places that are often socially organized circuits,
themselves constitutive of mobility. White calls such movements “mobility in loops”
(1970:380). From his structural perspective, loops or systems of places are not all
necessarily visible to actors involved, or even to managers of organizations who
track, measure and sometimes steer other people’s careers.

Internal or external labor markets were the first contexts identified by White for
such circuits. The latter are also the focus of attention of citizens and professional
observers daily: revolving doors for high status actors circulating from government
to business, or the other way around, for example from investment banks to the
Treasury; workers subjected to employment “flexibility” struggling to make such
moves a reality step by step, and to keep limbos between jobs as short as possible;
managers rotating their employees and themselves from one service to the other
in the company, as in the case of associates assigned to different partners and
clients of the firm in successive and heterogeneous task forces; directors moving
from one corporate board to the other in a closed chain, or managers from one firm
to the other (Checkley and Steglich 2007); sales representatives participating each
year in dozens of similar and recurrent trade fairs of their industry (Brailly et al.,
forthcoming, 2015; Chap. 10; Favre et al., Chap 12, in this volume), or artists and
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gallery owners in the global art fairs circuit (Yogev and Grund 2012); or maids in
the international labor markets (Gatmaytan 1997).

Around and beyond labor markets, there are also many such circuits: migrants in
richer countries attract people from the same place of origin and sometimes return
back to these places once they have acquired some status or once they have been
overused sweeping floors and digging holes; students can spend semesters as part
of their curriculum in universities of different countries before they come back to
their alma mater; wider residential forms of mobility of individuals and their entire
communities can be looked at, by geographers and sociologists, in the long run,
as “mobility in loops” of neighborhoods, not to mention life cycle-related mobility
when young adults move together into new places, then to bigger places when they
have children, then to smaller ones when the children leave.*

The sociological and network literature has also looked, independently, at
turnover in personal relational networks. An increasingly rich body of litera-
ture describes and models relational turnover using statistical tools designed for
understanding network dynamics (Snijders 1996, 2005). Relational turnover is
defined here as the set of changes observed in an actor’s relationships between
two moments in time (addition of new relationships, disappearance of previous
relationships, maintenance of relationships, etc.). Dynamic models of co-evolution
of behaviour and networks are based on analyses of this relational turnover in
members’ profiles and in the composition and structure of the collective. When we
close our eyes and ignore conflicts of interests, is it because we became friends
with people who tend to do the same thing and influence us in that direction, or is it
because we chose, to begin with, friends among people who, like us, close their eyes
when confronted with such a situation? It is often both, but each effect has a relative
weight that can only be measured by observing and analysing behavioural changes
and relational turnover over time. Without such analyses of relational turnover,
explanations of concerted ignorance as social process remain untested.” Changing
structural forms trigger changes in social processes downstream. All the main
social phenomena — such as solidarity and exclusions, social control and conflict
resolution, learning and socialization, regulation and institutionalization — have a
dynamic relational dimension, depend on relational infrastructures, established or
emergent, and reshape opportunity structures.

4The term “place” is used here in a general sense to refer to a location that can be occupied by a
single person in any formally organized circuit that can be geographical and/or organizational. It is
to be distinguished from the term “position” (White et al. 1977), i.e. a set of structurally equivalent
actors that we call a social niche (Lazega 2001) when the ties between actors in the position are
dense. A position makes sense in a system of positions (or niches when the positions are dense)
that differs from the system of places while always combined and coevolving with it (Lazega
forthcoming). Space (contiguity) and network (connectivity), for example, are both different and
related.

3Snijders’” work in many ways inaugurates a new epistemology in the social sciences, whereby
research measures, formalizes, and models the co-evolution between behaviour and interdepen-
dencies, between interdependencies and conflicts between actors, individual and collective, an
approach in which one confronts models with reality and its measurements, i.e. where models,
measurements and problematics truly co-evolve.
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Thinking of actors as mobile suggests again that building social forms in (spite
of) relational turnover increases the costs of synchronization for some actors more
than for others. Once the social forms have been created, actors are in a better
position to reshape their opportunity structure and reduce the costs of mobility
across a new set of places. This is easier to see at the intra-organizational level,
as exemplified below in a situation where centrality is synonymous of stability as
in the eye of a storm. Synchronization costs must therefore be defined as efforts to
build or maintain social forms, but measurements of such efforts must contextualize
them, and keep track of and weigh the differential effect of socio-economic positions
and mobilities on the outcomes of very different efforts invested by heterogeneous
and unequal actors.

Often overlooked in the literature is the systematic, recursive, and transformative
link between the two realities (mobility across systems of places and relational
turnover) and its implications for social life. There are connections between these
movements, as actors switch places in these circuits, and change, at least in part,
in their respective sets of relationships, that can be called their respective relational
capital. There is also an effect of the latter change on the evolution of the system of
places itself, an evolution that is only visible if places are not considered as purely
contextual and exogenous, but as endogenized by members and thus as endogenous
to the mechanisms under examination. The connection between movement and
relational capital is often explored in part and in depth in specific areas of social life.
Migration networks are, for example, prototypical: because separations of movers
and stayers in migrations across continents are often devastating for individuals and
social communities, the focus in such studies is rightly on coping with costs of
leaving families behind, marginality, loneliness, creation and management of new
relationships by individuals striving for social mobility and assimilation, their own
or that of their children. Synchronization costs are then measured at the individual
level. But the mechanics of this link and the effects of such movements on the
system of places itself, its structure and governance, i.e. on the stability and change
of the system and the opportunity structure that it represents for its members, also
deserve to be explored, along with their social costs. Hence the measurement of
synchronization costs at the level of emergent relational infrastructures.

“OMRT structuration” or transformation is a possible label for the complex
dynamics that drive actors — individual and organizational — to change part of
their relational and social capital as they switch places in such relatively closed,
partly overlapping loops, whether formally institutionalized or still emergent, thus
triggering social processes that may, under specific circumstances, reshape the initial
opportunity structure of some, but not all, members of the setting. Each domain of
social and economic life, and every corresponding field of research in the social
sciences, has its OMRT structuration processes. We define OMRT structuration as
the dynamic link between places and positions. We use the label “organized” to
qualify mobility because both social actors and the social system create paths and
rules for movements that are not allowed to be random.

Whether physical or social or both, these articulated movements and changes
represent an important basis of social structure, order and inequalities in the



64 E. Lazega

organizational society. They are created by the social organization of these milieux
and end up, under conditions that remain to be spelled out, restructuring these
milieux, taking some members Somewhere and others Nowhere. This is not simply
a recursive movement between two separate poles influencing each other because
they compete in doing the same thing. OMRT dynamics involve more complex
evolutions because they impact fundamental social processes (such as socialization,
particularistic solidarity and discrimination, social control and conflict resolution,
regulation and institutionalization, etc.). Indeed these processes all have a relational
dimension and all depend on structural forms that facilitate their deployment
(Lazega 2001, 2003, 2012).

As seen in the previous section, the energy for OMRT comes from multilevel
structures to begin with. If organizations are open systems, then they are part of
inter-organizational systems of interdependencies (observed as networks) and as
such have dynamics with a certain level of closure. Movement makes sense from
below and from above: from the perspective of individual actors who orient their
actions to multiple levels when trying to reshape their opportunity structure, but also
as driven by the fact that meso-social agency takes place in superimposed systems
of interdependencies and collective agency. In such systems, the temporalities of
each level are different. Actors try to take advantage of spatial and temporal gaps
between agency at different levels. Each level must adjust and adapt to the evolution
of the other level. Synchronization efforts, however, are more costly for one level
than for the other, i.e. for actors without relational infrastructures than for actors
who managed to build them. The level that is dominated will be forced to pay for
the costs of synchronization. This can take the form of extra expenses of resources
in catching up efforts.

In the organizational society, much energy is indeed spent catching up in status
competitions imposed from above and/or self-imposed from below. Catching up
with what? The answer is as much with catching up with the Joneses next door,
as with keeping pace and adjusting to constraints coming from above to keep
one’s status. The power differentials generated by the multilevel structure of the
organizational society are used as a source of energy through the promise of sharing
of power and status. Each step of these catching up actions is what produces the
energy for OMRT structuration.

From Place to Position to a New System of Places: A Spinning
Top Model of Synchronization Benefits in Collective Learning

A second empirical illustration® can be useful to understand the necessity of looking
at the dynamics of the network at each level in order to explore synchronization
costs via relational infrastructure in an organizational context. This is a case study

For a detailed presentation of the qualitative and quantitative study of this institution and its
results, see Lazega et al. (2006, 2011, 2012; Lazega and Mounier 2009).
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used to explore an intra-organizational relational turnover created by mobility. It
is based on an organizational and longitudinal network study of advice-seeking
among judges at a courthouse in a jurisdiction dealing with commercial litigation
and bankruptcies in the French economy. These judges are elected with 14-
years term limits. The court is composed of 20 (then 21 right after the second
measurement of the network) specialized and generalist Chambers dealing with very
heterogeneous forms of commercial litigation (company law, European community
law, international law, unfair competition, multimedia and new technologies, etc.)
and bankruptcies. Judges follow a work schedule that rotates them, on a yearly basis,
from one Chamber to another. The rotation policy of judges across Chambers is
meant to prevent corruption or conflicts of interests.

Tasks are complex and judges have discretion in many areas of business law.
Disagreements abound about solutions for many legal problems. Commercial
litigation is very diverse and conflict resolution often depends on knowledge of the
specific industry and business in which the conflict takes place. These judges thus
use each other for advice intensively in order to manage these uncertainties intra-
organizationally, by tapping into the expertise and experience of their diverse set of
colleagues.

In this study, 240 judges (all lay, voluntary and elected judges coming from the
local business community) were interviewed altogether about their advice-seeking
relationships within the court. Three measurements of this complete network were
obtained over 5 years. Longitudinal analyses of the advice network among these
lay judges, using Snijders’ (1996, 2005) models, tease out a cyclical process
of centralization, decentralization and recentralization of the network over time.
Analyses and ethnography show that movements in this organizational system of
places create forms of status that are used by specific members to change the
system of places itself. It is useful to represent the dynamics of advice networks and
of collective learning with the image of a spinning top. The metaphor represents
cyclical dynamics through which individuals attain epistemic status over time
to displace incumbent status holders at the top of the hierarchy and reproduce
the persistent hierarchical organizational structure, while modifying the system of
places.

In many organizations examined by researchers,” advice-seeking converges
towards senior and recognized members and reflects a process of epistemic align-
ment on such members who gained the “authority to know,” who provide social
approval for specific decisions, and who contribute to the integration of the
organization because they link the individual, group and organizational levels.
This alignment is a key ingredient of intra-organizational collective learning. A
status hierarchy provides a social incentive for actors to share their knowledge
and experience with others, thus helping to explain the social organization of the
learning process. Because advice networks are shaped by such status issues, they are

7For a review of the literature on advice seeking as social exchange, see Lazega (2014a).
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usually highly centralized. They exhibit a pecking order that often closely follows
the hierarchical structure of the organization. Members of formal organizations
rarely declare that they seek advice from “people below” in this pecking order.

A spinning top model accounts for the dynamics of advice networks in orga-
nizations by providing a guiding metaphor for understanding intra-organizational
collective learning: this process depends on the capacity of the organization to
generate the pecking order that manages to remain stable while advice ties among
other members of the organization are subject to rapid turnover — for example
because of the rotation policy, because of career movement, because of the need
to find new knowledge that old advisors cannot provide (Ortega 2001; Argote et al.
2005).

This spinning top heuristic brings together at least three components: a rotating
body, a rotation axis, and a fragile equilibrium that depends, in parts, on charac-
teristics of the previous components.® Time is taken into account through rotation
movement and speed. We think of the rotating body as the learning organization.
The rotation axis can represent the pecking order, i.e. the emergent hierarchy of
members with epistemic status. These members have the “authority to know” in
the organization. Rotation rules across intra-organizational boundaries and through
status differences summarize formal structure. The fragile equilibrium created by
the rotation movement represents the structural condition for learning collectively
in the organization. This equilibrium itself depends on the stability of the rotation
axis and the shape of the organization.

The endogenous evolution of advice networks is characterized by three inter-
related moments (Lazega et al. 2006, 2011). Firstly, the centrality of members
with high epistemic status varies over time. At first, it tends to be reinforced.
Central members become increasingly central, in a Mertonian Matthew effect
close to “preferential attachment”: those who are sought out become increasingly
sought out because they have built a reputation. Members who seek advice are
increasingly under the impression that selecting these sources of advice is safe
and legitimizes their knowledge claims, and that this choice signals an increase in
relative status. Concentration of epistemic authority increases with the centralization
of advice networks: learning becomes increasingly dependent on a smaller and
smaller number of sources of authorized knowledge.

Secondly, however, in real life organizations, this centralization creates an
overload for members with high epistemic status. They therefore tend to manage
this overload by sharing a part of their epistemic status — through recommendations,

8We define these terms metaphorically and loosely: the rotating body represents the population of
judges switching places once a year in a circular system of places as in a carrousel or in White’s
(1970) “mobility in loops.” The rotation axis represents metaphorically a pecking order, i.e. a
vertical differentiation between the judges and a form of epistemic status reached by the most
central “epistemic leaders”. This rotation axis can be pictured as the shaft of the spinning top
providing the angular momentum thanks to which the spinning top stays up and represents vertical
differentiation helping learning take place in a system where stability comes from movement.
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i.e. by redirecting advice seekers to other sources. When advice provided by the
very few super-central advisors becomes inaccessible or very rare, members turn
to these other advisers, creating new epistemic stars. Sharing epistemic status, a
form of delegation, increases the number of central advisers and decreases the
centralization of the network. Thirdly, however, the increase in the number of
central members with high epistemic status in the organization creates a problem
of epistemic conflicts, consensus and coordination among epistemic authorities.
If their co-orientation is easy, equilibrium is established. If not, conflicts between
epistemic authorities trigger a reverse process of re-centralization. When the danger
for collective action is that there are “too many chefs,” i.e. epistemic leaders, some
withdraw or retire, others are sidelined by one form or another of disqualification.
As their numbers decrease, it becomes easier at the top to recreate consensus around
a common definition of the situation, to provide coherent social benchmarks for
homogeneous judgments of appropriateness and coordination.

These dynamics of centralization and decentralization in advice networks may
not be purely endogenous (in the sense that overload through centralization leads
to the super-central advisors creating new epistemic stars by redirecting advice
requests to surrogates): indeed the patterning of advice relations can be influenced
by the content of what one is seeking advice about, and by external events that
may make one potential advisor a better source of advice than another. However
the existence of this endogenous dimension of the process provides at least one
mechanism explaining (see below) how a category of super-central elites is able to
stabilize its position and stay at the top of the structure thanks to strong competition
for epistemic authority and status.

This picture is heuristic for several reasons. First, it shows that time is important
in allowing organizations to select members with epistemic status. Epistemic status
builds up by reputation for expertise, by the capacity to provide quality control
without raising too many controversies or conflicts of definition, by the trained
capacity to speak legitimately on behalf of the collective. Acquiring this status
takes effort and time. The authority to know is produced by long-term individual
and collective investments that can be ruined if members with epistemic status
leave or behave too opportunistically. The equilibrium reached by the spinning top
thus suggests that members with status and epistemic authority in the organization
have a strong incentive to keep their status and authority over time, even at
some extra expense, to avoid the loss of the advantages attached to their relative
standing.’

Second, this heuristic also suggests that the stability reached by the spinning
top is fragile. The number of members with epistemic status varies over time. As
already mentioned, we can think of several reasons why this number increases and
decreases. One reason is that members tend to choose advisors that they perceive to

9 About the costs of acquiring and maintaining status in organizations, see Frank (1985).
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be the most popular (i.e. already chosen by a large number of colleagues). Members
sought out by many other members tend to build a reputation; selecting them is
perceived to be safe and legitimate. As emphasized by a micropolitical perspective,
everyone seeks status and believes that they will reach a higher status; access to
advisors higher up in the ladder becomes in itself a sign of relative status. This
triggers the Matthew effect in which a member highly sought out in time t1 becomes
even more intensively sought out in time t2.

Another reason is that this behavior creates an overload of requests for advice
from a small number of highly central advisors with high epistemic status. Highly
sought out advisors often manage this overload by delegating, i.e. referring the
advice seeker to other advisors. This management of overload threatens the stability
of the pecking order in the sense that it brings in new central advisors and requires
coordination among the elites in order to avoid destructive status competition and
definition conflicts between too many chefs. In turn, this strategy triggers either
formal efforts of coordination among the elites or a new reduction in the number
of advisors with high epistemic status through withdrawal of central advisors
who become unavailable (due to retirement or delegitimization). This oscillation
threatens the stability of the pecking order, with both positive and negative effects
on intra-organizational learning.

Centralization of the advice network increases then decreases over time, as
members with epistemic status try to avoid overload at the risk of accepting
conflicts with other elite advisors. The existence of this oscillation was established
using dynamic analyses of the evolution of this network. Figure 3.3 visualizes the
evolution of this network using comparative statics.

An important outcome of these dynamics becomes apparent in this Figure.
Highly central judges belonging to the core managed to use their relational
infrastructure to create a new chamber for themselves in the chamber carrousel
of this court, and to modify the division of work between chambers. Using both
their formal and informal position and status, they manage to stay on top of the
cyclical movement and to create a new formal place. This process suggests that
when turnover is organized systematically in an organization, actors in a position
to increase their status (thanks to an increase in stability paradoxically due to
the movement itself) may also change the architecture of the whole organisation,
i.e. create new places and new collective actors. OMRT processes have thus
led some of these actors to reshape their setting as well as everyone else’s
opportunity structure in it. This reshaping may not be spectacular, but it is real and
related to the fact that positions are not places and that the system of places can
evolve.

Finally, the reasoning applied to examine a process of collective learning can also
be applied to a process of regulation and to provide a new approach to the emergence
of new institutions, for example a multilevel spinning top model of institutional
emergence.
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It is indeed useful to frame a complex social phenomenon such as the emergence
or the social construction of a new institution by taking into account that it takes
place at several levels simultaneously. For example, the emergence of a judicial
institution, the Unified Patent Court in Europe (Lazega 2012b), is an application
of this multilevel spinning top model. It helps explain how a small network of
institutional entrepreneurs with multiple and inconsistent forms of status uses, in
its lobbying activity, multilevel networks and their dynamics to acquire the staying
capacity and subsequent influence that is needed to frame, build and entrench
a transnational institution. The image of a spinning top represents this process
heuristically.

Multilevel
networks of
transnational
institutionaliza-
tion

Time

This image of a multilevel spinning top combines dynamic and multilevel
perspectives on social phenomena such as the definition and institutionalization of
new norms. It is possible to find in this metaphor mobility over time in a system of
places and more or less supervised circulations between places at this intermediary
level (as in many labor markets in which competition is made increasingly open as
one goes down the social stratification); but also changing relationships between
these intermediary levels as themselves driven by relational turnover created by
mobilities (Lazega et al. 2006). This set of processes brings together networks of
different levels in which individuals’ affiliations are thus dependent of mobilities
in loops. Evolution in a multilevel social space means that, from this perspective,
dynamics are related to the third, intermediary level. To understand the dynamics
of coevolution between collective action at two levels, it is necessary to bring in an
intermediary — but nevertheless, in our view, generic third level.

In the case of this judicial institution, the main idea of this mechanism is
that when such individual, oligarchic and dynamic positions of institutional
entrepreneurs are stabilized by a supportive inter-organizational network (hence the
crucial dynamics of the multilevel dimension of the process), these entrepreneurs
are able to maintain their centrality and interactions long enough to surf on — if
not to avoid altogether — the unpredictable and conflictual politics of an electoral
process. This mechanism thus helps them succeed in their institutionalization efforts
in spite of being a small collegial oligarchy — a process that may characterize the
contemporary European ‘democratic deficit’: the multilevel structure helps actors
keep their initial advantage of institutional entrepreneurs in selecting rules that will
become priority rules for this institution. Here dynamics of multilevel networks



3 Synchronization Costs in the Organizational Society: Intermediary. . . 71

represent a mechanism that mobilizes superposed levels of collective agency,
interpersonal and inter-organizational at least, i.e. two meso levels that are added to
the traditional national and international levels of agency and complexity.

Using these insights it is now possible to come back to the meaning of dynamics
of multilevel networks and synchronization costs at the macro level.

Dynamics of Multilevel Networks, Synchronization Costs
and Social Inequalities

Cross-level interaction between individuals and organizations is vital in the orga-
nizational society. This chapter first looked at basic characteristics of superposed
levels of collective action as approached by linked design network analysis.
Synchronization refers here to social coordination between the dynamics of each
level in which actors are positioned. The issue of synchronization in the dynamics
of such multilevel structures arises permanently, for example when individual and/or
collective actors attempt to restructure the contexts of their interactions and manage
the constraints that these contexts impose upon them through new efforts to redesign
their opportunity structures at both levels simultaneously.

In a multilevel context where each level has its own temporality, synchronization
costs are efforts — made by individuals and by organizations, in very asymmetrical
ways — to keep in pace with each other by reshaping a structure of opportunity
and constraints. To specify the nature of these costs, the Simmelian notion of
‘social form’ is a good approximation, i.e. a sedimented vertical or horizontal
differentiation of the social world at the intermediary level. Such forms create a
relational infrastructure that helps individual members or categories of stakeholders
with coordination of their actions, with identification of their common interests, with
selection of strategies and representatives. Social forms also help collectives with
driving social processes that facilitate the management of dilemmas of collective
action. In a Mertonian perspective (1957), social status and social niches can be
identified as the main social forms that filter individual actions into social processes
making collective action possible.

From a bottom-up perspective, social forms built or maintained at the lower level
are also intermediary structures that can help actors create new organizations at
the next, upper level in the hope to manage the constraints that this upper level
imposes upon them. Thus intermediary levels between generic levels of collective
agency are also generic, but as levers. Synchronization costs that are not part of
such leverage efforts are usually sunk. Creating and maintaining such forms can
transform these synchronization costs — as incurred by individuals and collectives
in the organizational society — into rewarding investments. Status and organization
provide a presence and staying capacity, if not necessarily a “seat at the table,” at
the higher level of collective agency: a chance to format collective action and benefit
from investments in the political process.
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Structuration at one level drives structuration at the other, often in conflicting
and unequal ways. Time to adjust and adapt is available to some, but not to
others; waste and disorganization may characterize the multilevel structuration
process.'? In organizational societies, management practices based on time pres-
sure can marginalize or exclude, make or break careers, open or lose markets,
determine the distribution of power and status, influence the social processes that
create innovations, strengthen or weaken inequalities, introduce or prevent change.
Synchronization between levels by building and maintaining social forms to reshape
one’s opportunity structure is much more costly for some than for others, especially
for actors who are forced to be mobile — unless they can use this mobility to create
new advantageous social forms. Stabilizing synchronization costs is rewarding for
actors with a strong relational infrastructure when these costs are either shared or
dumped on others.

The organizational society is characterized by complex multilevel governance
systems and rapid forms of collective action at the meso-social level that “absorb
society” and externalize social costs (Perrow 1991). Supposing that multiple levels
of collective action are nested does not imply that they evolve symmetrically and
in stable sync. High costs of synchronization (building social forms to create new
corporate entities) can be transferred to the other level when one level has the power
to do so, which is the most frequent situation. The co-evolution of two levels is
complex, partly disconnected and asynchronous, raising the issue of who will incur
these costs of synchronization. Measuring such costs hidden in these dynamics will
help monitor opportunity hoarding (Tilly 1998) in the organizational society and
perhaps explain the robustness and resilience of such multilevel structures.

Reasoning in terms of OMRT dynamics is important at this stage because it
helps understand how both stability and change in the system are created precisely
by the movement that it organizes, directly or indirectly. Our purpose is not to
argue that there is more such mobility now than in the past, but to argue that
much of the effect of such mobility on the structuring of collectives has not been
measured, particularly in terms of social inequality. The new attention to these
OMRT dynamics is needed because these processes take new forms in contemporary
society (Archer 2013, 2014; Lazega 2014b) and involve hidden costs. Intensity and
speed of change matter more in everything; members are exposed to increasingly

10Since this creates dynamics of multilevel networks with different levels of agency, a new family
of models is needed to account for such dynamics. This family of models can be a multilevel
extension of Snijders (1996) model of dynamics of networks, using characteristics of level 2
network as set of exogenous factors in the evolution of level 1 network, and the other way
around. Intermediary level relational infrastructures can be modelled as niches and status, but
also using affiliation two-mode data, based on exogenously defined groups. The co-evolution of
both level networks is added to the co-evolution of behavior and relational choices. In terms of
model specification, new ‘independent’ variables from inter-organizational networks operate at the
inter-individual level, and vice-versa. It is also worth proposing a multilevel version of Snijders’
model of dynamics of networks, for example by introducing dual alters or induced potentials, i.e.
extended opportunity structures (Lazega et al. 2013), into this formalism.
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open competition as they go down the social hierarchy; forms of social control
become increasingly intrusive.

OMRT transformation can in turn further change the social processes that help
members use other levels of agency to manage the dilemmas of collective action at
their own level. Synchronization has costs of adaptation to the other level and the
costs of adjustments in dual and asynchronous opportunity structures can be shifted
or dumped “downwards”, on the weakest parts of the system (Lazega 2013). The
metaphor of the spinning top used above to combine organized mobility, relational
turnover and the emergence of status, is heuristic because it expresses the fact that
some actors’ movements and mobility often contribute to (re)create the stability
and wealth of other actors, including the latters’ capacity to acquire and capitalize
resources (including accumulating status). When various forms of mobility slow
down or accelerate, new people are left behind and distanced from multiple
perspectives, reproducing or creating new social inequalities and hierarchies. Those
in better positions in these hierarchies, who know how to use organizations as tools
with lives of their own, do better than others because they can use social forms to
navigate or even reshape the prior system of places to their advantage.

Relational capital of individuals and social capital of organizations have always
been important determinants of inequalities (Breiger 1990), but they become even
stronger determinants when the capacity of societies to adapt to changes and
environments that they themselves have created depends on their OMRT dynamics.
In this context, the dynamics produced by multilevel structures lead to new forms
of stability and inequalities at the meso-level of society. Some are able to benefit
from OMRT and obtain returns on their investments in synchronization, while
others face forms of individual or collective insecurity that is increased by their
relative weakness in controlling the multilevel dynamics of collective action, and
are thus led to invest in synchronization costs without returns. Measuring hidden
and relative costs of synchronization in these dynamics is equivalent to monitoring
opportunity hoarding in the organizational society and providing an organizational
view of inequality-generating mechanisms (Tilly 1998). Understanding how OMRT
dynamics accomplish the recursivity of the structural transformations that they
create at several levels requires understanding how social forms (status sets and
systems of niches) are used strategically to transform investments in synchronization
into benefits — or are not used in this way, leading to further costs. In short,
measuring synchronization costs will help redefine the social costs of living in an
organizational and market society, especially in relational, structural and political
terms.

Looking at the changes in a system of places itself as driven by OMRT, and as
an inequality-generating mechanism, means that places are no longer considered
exogenous in the social sciences.!! Changes in social processes that help members
manage the dilemmas of collective action also take place in contexts, for example

1 Although institutional locations may seem more important than geographical ones, the social
sciences may only be able to endogenize systems of places, i.e. these forms of division of work,
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of governance, increasingly defined by OMRT dynamics and (de)structuration
that can be driven by residential, educational, professional forms of mobility.
These dynamics can transform collective learning and regulation, as seen in the
examples above, into secondary socialization (Brailly 2014; Favre 2014; Montes
2014) that helps members of society deal with these dilemmas (Lazega 2003, 2012).
Contemporary public statistical datasets are ill-suited for the measurement of OMRT
dynamics, relational infrastructure and synchronization costs in interaction with
social stratification in the organizational society. Without a better knowledge of
the meso-social level, individual meso-level profiles and meso-level inequalities and
mechanisms, sociology is at risk of becoming socially irrelevant, unable to deal with
the complexity of institutional changes triggered by many contemporary challenges.
In this respect, much remains to be done.
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Chapter 4

Modeling Individual QOutcomes Using

a Multilevel Social Influence (MSI) Model:
Individual Versus Team Effects of Trust on Job
Satisfaction in an Organisational Context

Filip Agneessens and Johan Koskinen

Introduction and General Context

Over the last decades, social network analysis has become increasing popular
(Borgatti and Halgin 2011: Figure 1). Part of this popularity can be attributed to
the successful attempts to explain the attitudes and behavior of individuals by their
social environment, i.e. the notion that individuals are influenced by the people they
are connected to. Diverse theoretical arguments have been developed to explain
these so-called social influence' mechanisms (e.g., Snijders et al. 2010). However,
one general theoretical argument has been captured by the social capital concept (see
for example: Adler and Kwon 2002; Nahapiet and Ghoshal 1998; Flap et al. 1998;
Portes 1998; Lin 1999; Inkpen and Tsang 2005; Burt 1992), i.e. the idea that: “[ ... ]
Social structure is a kind of capital that can create for certain individuals or groups a
competitive advantage in pursuing their ends. Better connected people enjoy higher
returns” (Burt 2001: 32). Social influence and social capital research has tended
to focus on either the individual position or the network-level structure (Gabbay
and Leenders 1999). Empirical research trying to explain individual attitudes and

"We will use social influence to describe any social process where connections impact individual
outcomes, and we reserve the concept social contagion to represent the adjustment of one’s own
behaviour to those of others (Friedkin 2001; Erickson 1988). Social influence can be contrasted to
the other main type of social network studies, where the focus lies on social selection processes
(de Klepper et al. 2010; Borgatti and Kidwell 2011, Agneessens and Wittek 2012). In the latter
case, the main focus is on the question how ties emerge in between specific units or actors.
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behavior has primarily been looking at the influence of the position that the person
has within the network, while research that focuses on the global properties of
the network as a whole in order to explain these individual differences has been
somewhat less prominent. Although extensive research has been done at both the
individual and the group level, little progress has been made in bringing together
the effects of the individual’s position and the global network properties into one
approach.

In this chapter we will focus on conceptualizing Multilevel Social Influence
(MSI) models that are able to explain individual differences in behavior and attitudes
by considering the (individual level) network position, while simultaneously looking
at the influence of the (group level) network structure. Such an approach requires a
multilevel method, where both levels are explicitly modeled. However, while the
network nature of the data offers the possibility of simultaneously investigating
the impact of the network level and the individual level position, the complex
network interdependence within a single network makes classic multilevel modeling
unsuitable (Snijders and Bosker 2012). Unlike classic multilevel models, the
interdependence of social networks makes the models more complex, as we need to
control for both levels as well as for social contagion and network autocorrelation.

We therefore employ and extend the multilevel model, addressing these depen-
dence issues formally by including team-level fixed and random effects and an
autocorrelation component to account for dependencies between cases. This allows
us to consider both individual-level and group-level effects jointly with individual-
level and group-level effects derived from the network. As the networks are nested in
teams and individuals are embedded in but not nested in the networks, we consider
the network formally an intermediate level, a level Y2. We set up the model as a
Bayesian hierarchical model that lends itself to straightforward estimation using
Markov chain Monte Carlo.

In the next section, we first discuss the general theoretical argument for con-
sidering both the group structure and the individual position from a social capital
perspective, and the types of measures that can be considered. We subsequently dis-
cuss the statistical multilevel model and illustrate it by considering an organizational
setting focusing on the importance of trust relations for employee job satisfaction.
We consider how individual differences in patterns of being trusted by colleagues
(within a team) might impact a person’s satisfaction, while we, at the same time,
also consider how the trust structure of the group (density and centralization) might
impact the job satisfaction of all members of the group. We end the chapter with a
discussion of potential further extensions of the model.

The Multilevel Social Influence (MSI) Arguments: Individual
Network Position and Network Structure

Because of the vast amount of research that focuses on social influence and uses
social capital theory, a comprehensive summary of the field would be outside the
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scope of this chapter. We refer the interested reader to review articles (see for
example: Adler and Kwon 2002; Nahapiet and Ghoshal 1998; Flap et al. 1998;
Portes 1998; Lin 1999; Inkpen and Tsang 2005) and instead will in the next section
concentrate on some core ideas at both the individual and group level in order to
explain the benefits of a Multilevel Social Influence (MSI) approach.

Individual Network Position

As discussed before, being in a specific position in a network might influence
individual-level outcomes (often formulated as bringing benefits to individuals).
Structural measures that have been used to capture network position and their
impact on attitudes and behavior include: degree centrality, closeness centrality and
brokerage (or structural holes). Other aspects that have been considered include a
focus on the resources of the alters, the diversity of alters, and the level of homophily
or similarity between ego and alter.

Centrality

Centrality measures, such as degree and closeness, are often used to capture the
extent to which a person has direct (or indirect) access to the resources from others
in the group, but can also indicate how much a person is being influenced by or is
influencing others (e.g. Brass and Burkhardt 1992; Brass 1984). In an organizational
context for example, centrality is often used to explain differences in performance
(e.g. Sparrowe et al. 2001; Lazega 2001; Cross and Cummings 2004).

Structural Holes/Brokerage

Burt’s structural holes argument (Burt 1992) has focused on the bargaining position
that results from being the connection between two actors who are themselves not
connected. As a result the actor is in a beneficial position when having to bargain
about the exchange of information, which can ultimately be reflected in a higher
position of power and influence. Moreover, in line with Granovetter’s “Strength of
Weak Ties” theory (1973), it has also been argued that such open structures are
(more) likely to provide unique information.

Resourcefulness of Ego’s Connections

Some studies have incorporated the resourcefulness of the alters explicitly by
measuring the extent to which alters around an actor possess more or less useful



84 F. Agneessens and J. Koskinen

characteristics (e.g., Lin et al. 1981; Hurlbert 1991). For example, Hurlbert (1991)
investigated whether having direct access to highly educated persons makes people
more satisfied with their life, than being linked to lower educated alters.

Heterogeneity Among Ego’s Connections

Another approach has been to capture the diversity or heterogeneity of the alters
in ego’s surrounding (Marsden 1987; Burt 1983). As different categories of people
are more likely to belong to different social circles (cf. Granovetter 1973), being
connected to others with different (rather than the same) characteristics is likely
to capture access to more diverse or unique sets of information or other resources
(Burt 1983; Marsden 1987; Reagans and McEvily 2003). Some studies have for
example looked at diversity in education, race, or age (Marsden 1987; Campbell
et al. 1986). Heterogeneity has often been captured by Blau’s Index of Qualitative
Variation (UCINET, Borgatti et al. 2002; Blau 1977).

Homophily/Heterophily on an Independent Characteristic

This measure incorporates the level of homophily-heterophily, i.e. similarity or
dissimilarity in characteristics between ego and his or her connections (cf. Reagans
and McEvily 2003; McPherson et al. 2001). Dissimilarity between ego and alter on
some characteristic can indicate access to more unique resources and qualities, not
(yet) possessed by ego (cf. Cross and Cummings 2004; Bantel and Jackson 1989;
Pelled et al. 1999). However, at the same time similarity on crucial characteristics
(e.g. Kandel 1978; Marsden 1988; Ibarra 1992; Bacharach et al. 2005) can be
beneficial to people because it enables easier understanding of each other’s behavior.
Because of the ability to place oneself in the position of a similar alter, similarity on
some major characteristics has also been shown to reduce relational conflict (Pelled
1996). A widely used measure in this respect is the External-Internal (EI)-index
(Krackhardt and Stern 1988).

Network Level Structure

While much of the social capital literature has focused on the social influence of
individual position, studies that have looked at the network level have primarily
focused on: the level of cohesion (density); the level of centralization; and the level
of subgroup formation (fragmentation).
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Cohesion

Cohesive groups are often argued to benefit from the sharing of resources among
its members. Groups that are highly cohesive — i.e. have a high density — are likely
to exchange information, leading to shared visions about the aims and the way in
which such aims should be obtained (Sparrowe et al. 2001; Molm 1994; Hansen
et al. 2005; Podolny and Baron 1997).

Cohesion also enables individuals to combine forces, provide collective sanctions
ensuring that obligations and promises are kept and norms are adhered to (Coleman
1988: S107). By ensuring that norms are enforced and free-riding is prevented, high
density is likely to generate trust (Coleman 1988, 1990) and reduces the need for
costly monitoring and transaction costs (cf. Oh et al. 2004: 863; Adler and Kwon
2002). However, cohesion can also have disadvantages, as highly dense networks
have been shown to prevent ties with others outside the team, thereby reducing the
inflow of new information (Oh et al. 2004).

Centralization

Groups with a centralized communication network have often been claimed to be
more productive especially when performing simple tasks because in centralized
networks information can follow a shorter path length and coordination is clearer
(Leavitt 1951; in Cummings and Cross 2003: 198). However, for more complex
tasks, decentralized communication networks seem to work better (Shaw 1964; see:
Cummings and Cross 2003; Katz and Martin 1997: 319-321), because non-routine
and complex tasks require a higher degree of coordination (cf. Van de Ven et al.
1976; Hansen 1999). Moreover, decentralized networks are more efficient in dealing
with crises, especially if the network consists of strong ties (cf. Cummings and Cross
2003).

Fragmentation

The degree to which a group is divided into clear subgroups has often been consid-
ered to have negative effects. Fragmentation disables the spread of information and
might even indicate conflict between different groups and a strong subgroup identity
(Krackhardt 1999).

Why Use Multilevel Social Influence?

In section “Individual network position” we provided general reasons for the
relevance of individual position in order to explain individual behavior and attitudes,
while in section ‘“Network level structure” we focused on the network level struc-
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ture. In this section we explain the core rationale for integrating both perspectives
(individual social capital and group social capital) into a single Multilevel Social
Influence (MSI) model. We propose three main arguments why such models are
needed (see also Chap. 1).

Find Persistent Results Over Groups

One basic reason for studying multiple networks simultaneously is that one is
generally not interested in describing the social processes that go on in a specific
case (such as the specific processes happening in a single school class or one team in
an organization). Rather, when performing fundamental research, one is interested
in general processes, i.e., the aim is to find out whether and to what extent general
patterns exist in groups of a specific kind. In order to be able to generalize to groups
or networks of a specific kind, one needs to ensure that social processes are similarly
prevalent in these different, multiple networks. For example, in the case of school
children, we might want to know if, in general, friendship relations in classrooms
impact student’s happiness, or increases their chances of being successful.”?

Wrongly Assume that it is Individual Effect When it is a Group Effect

Second, since both the individual position and the network structure of the network
as a whole might impact one’s attitudes and behavior, it is important to avoid
making an ecological fallacy (cf. Snijders and Bosker 2012). Using a multilevel
model provides the possibility to incorporate group-level characteristics and hence
disentangle the relative importance of “individual social capital” from “collectively-
owned social capital.”

Figure 4.1 illustrates the situation where the individual position is indeed
important for job satisfaction, while there is no effect at the group level.

However, considering Fig. 4.2, using only the individual level network position,
we might wrongly assume that people who are very central in a network are more
satisfied with their work, whereas in reality all people in a high density network
are more satisfied. In this case the group-level (density) effect is relevant, while the
individual degree centrality is in reality not important, as the cohesion is impacting
all its members to the same extent. However, not including the group-level effect
(density) will make us incorrectly conclude that central people are more satisfied.

2 An additional reason for combining these results emerges when one deals with networks of small
sizes and need to ensure that the model has enough power. Note that since we focus on social
influence with an individual characteristic as the dependent variable, the model has N observations
only (the number of individuals), and not (N*(N—1)).
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Fig. 4.1 Multilevel model with important individual level effect (Note: Weight of the border of
the node reflects job satisfaction)

However, as mentioned before, unlike classic multilevel models, the complex
interdependence between the employees in the network require us to adjust the
multilevel models for this interdependence.

Effects are Different in Different Situations — Cross-Level Interactions

A third major reason for studying multiple networks is that we might be interested
in understanding when specific processes might differ under specific conditions
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Fig. 4.2 Multilevel model with important group level effect

(Lazega et al. 2008). A cross-level effect, i.e., a combination of individual position
and network-level characteristics, might generate more interesting insights. In those
cases, the impact of an individual’s position in the group might depend on the
network structure of the group as a whole. As Brass noted: “For example, a
researcher might ask, to what extent does an actor’s centrality within a highly central
clique in a decentralized network affects that actor’s power?”” (Brass 2003: 291).

Figure 4.3 shows an example in which being more central in a low density
network has a large positive effect on satisfaction, while in the denser network
centrality has an opposite effect.
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To illustrate the details of the Multilevel Social Influence (MSI) model we will
discuss the practical aspects of the model with an example about job satisfaction

and trust among 27 teams.

Trust Networks on Employee Job Satisfaction: An Example

We now turn to an empirical example that focuses on the impact of trust networks
on job satisfaction among employees. Job satisfaction is a particularly well-suited
example for illustrating the interplay of individual, network, and structure. While an
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individual’s job satisfaction is essentially a personal characteristic, it can be partly
influenced by the group context (in this case, the network structure of the group).
Moreover the level of satisfaction might be impacted by the social contacts within
the group (social influence at the individual level) and therefore requires a relational
perspective, where both levels are explicitly modeled.

Theoretical Arguments

Existing research has identified a variety of factors that impact job satisfaction
(Spector 1997). In this chapter we will solely focus on the influence that social
networks have on job satisfaction. We will provide a selective reading of the
literature and only focus on some theoretical arguments that are relevant for the
social influence model discussed below.

Social network studies have provided considerable evidence for the impact of
instrumental relations (communication), as well as affective relations (friendship
and social support) on job satisfaction (e.g., Roberts and O’Reilly 1979; Baldwin
et al. 1997; Flap and Volker 2001; Hurlbert 1991; Umberson et al. 1996; Requena
2003; Venkataramani et al. 2013).

Trust and Job Satisfaction

Trust relations can be expected to be particularly vital for job satisfaction because
they are essential for the exchange of information and other resources (see Hurlbert
1991; Umberson et al. 1996; Requena 2003; Agneessens and Wittek 2008; Kramer
1999; Tsai and Ghoshal 1998).

One argument that explains the effect of trust on job satisfaction relies on the
mediating role of emotional support. Since “intimacy, reassurance and sharing
confidences” are central components for emotional support (Harlow and Cantor
1995: 329), trust might be an essential condition for the occurrence of social support.
Emotional support in turn has been shown to provide a buffer against stressful
situations (e.g., Thoits 1982; House 1981), and therefore is likely to prevent a
potential decrease in job satisfaction. Taking these different components together,
it seems that trust is an essential component that needs to be present between
people in order for it to generate the emotional support needed to ensure high job
satisfaction.

Close relations have been claimed to provide sources of social support
(Agneessens et al. 2006), but trust also enables access to crucial information at work
(Hurlbert 1991; Umberson et al. 1996; Requena 2003). In many cases the transfer
of fine-grained, long-lasting and costly information would not be thinkable without
trust (Uzzi 1996: 681). Moreover, trust ensures that one will not be taken advantage
of (i.e. that favors will be returned) and that the advice will not be misused. Trust
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is the basis for being more willing to share advice and forgo self-interest (Podolny
and Baron 1997). Such a situation is likely to encourage more critical reflection and
open exchange of ideas without ending up in a conflict situation (Jehn and Shah
1997).

Hence, being considered trustworthy by others will enable the employee to get
access to more resources and more open discussion, and this makes an employee
feel more integrated in the organization, and is likely to increase his performance
and satisfaction.

Individual and Group Level Effects

Following the arguments in this section and in sections “Individual network
position” and “Network level structure” at an individual level we can expect people
with a high level of incoming trust relationships (i.e., being trusted by a lot of others)
to be more likely to have a higher job satisfaction. We will test this by incorporating
the in-degree centrality in the trust network.

An alternative argument might focus on the idea that trust relationships in a
team benefits all its team members simultaneously. Hence, being integrated in a
group where a lot of trust relationships exist might benefit the team as a whole.
A cohesive (dense) group might lead to less time being spent on monitoring
each other (Langfred 2004; Dirks 1999), and therefore a higher level of job
satisfaction among all the members of the group. We will simultaneously test
this group level and individual level effect by incorporating both in the multilevel
model.

Finally we also decided to incorporate the variation in in-degree centrality as
a second group-level characteristic. Given a specific level of trust in a group, a
high level of in-degree centralization in the trust network might be an indication
of agreement about who can be trusted and who is not to be trusted.

Data and Measurement

Data was collected in two knowledge-intensive organizations. In total 31 teams
were surveyed, including 235 employees. The unit non-response rate was 9.8 %.
If we excluded the teams with less than 4 members responding, we ended up with
27 teams with 201 employees (Figs. 4.4). Descriptive statistics can be found in
Table 4.1.

The survey consisted of a face-to-face interview of about half an hour. It included
measures on gender, age, networks, job satisfaction and performance. The trust
relation was measured using the following question: “Consider your relation with
each of your colleagues, and consider the opposite nouns “distrust-trust”. To what
extent do you associate your relation with your colleague with distrust or trust?”
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Fig. 4.4 Graphical representation of 27 teams (Note: Trust ties, with size of nodes representing
level of job satisfaction and the symbol of the nodes representing gender)

The answer was on a 7-point scale with endpoints “distrust” (—3) and “trust” (43),
with the number 0 in the middle (de Lange et al., 2004; Agneessens, 2006). We
dichotomized the network, and considered a trust relation when a value +1 or higher
was selected.
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Table 4.1 Descriptive
statistics for the members of
the 27 teams

Mean | Sd Min | Max
Job satisfaction | N =201 [49.93 |1849 | 6 100

Gender 0.62 |- 0 1
Age 42.59 | 9.29 |21 65
Hierarchy 0.12 |- 0 1
Indegree trust 63.24 |25.11 | O 100
Size team M =27 746 | 329 | 4 15
Density 63.24 | 1535 |46 100
Var indegree 1817 | 794 | O 33.9

Model for the Analysis of Job Satisfaction and Trust in Teams

We now turn to the Multilevel Social Influence (MSI) model. We elaborate our
conceptualization of the network as an intermediate level between the level of
the individuals and the level of the team. In a standard nested multilevel model,
dependencies between individuals within a level are straightforward to capture
through random effects (see e.g. Goldstein 1995; Snijders and Bosker 2012). Thus,
we have idiosyncrasies at the individual level captured by an error term, and we
have, again, idiosyncrasies at the team level captured by another error term. While
we could classify individuals by their membership to network ties and thus induce
variance terms as in a standard multilevel model (Koskinen and Stenberg 2012), this
would treat the network mostly as a nuisance and would typically make unrealistic
assumptions about how these errors relate to each other.

There is a long, and theoretically informed, tradition of modeling network-
dependencies between outcomes explicitly, through network effects and network
autocorrelation models (Erbring and Young 1979; Doreian 1982; Duke 1993). An
excellent review of the network autocorrelation model and the network effects
model, how they are defined and what distinguishes them is given in Marsden
and Friedkin (1993). We propose to incorporate these models into the multilevel
framework through conceptualizing the network as an intermediate level. In the
same way that individual-level covariates may be derived from level two variables,
and level two covariates may be derived from level one variables, network measures
may be construed either as individual-level predictors or group-level predictors.
The explicit dependencies implied by the network autocorrelation and the network
effects models then account for the lack of independence ‘within’ the network level.
While in the standard multilevel framework it is straightforward (most of the time)
to partition variance so that variation may be attributed to different levels, this is
less straightforward with the network level. We explore here the interplay of the
group-level effects and the network-level effects.

Combining the team networks furthermore permits us to investigate network-
level effects for small networks. Recall that the sizes of the teams range from 4 to
15 and the densities range from 0.46 to 1.00. Additionally, combining the networks
in one joint model, we need to consider the potential for heterogeneity in network-
level effects.
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A Bayesian inference framework provides a convenient and principled approach
for dealing with the complex interdependencies between our different levels. Zhang
et al. (2013), for example, leverage the Bayesian framework when developing a
network effects model for binary outcomes with multiple feedback parameters.

Model Formulation

Let y be the vector of job satisfaction scores for the N individuals i € V =
{I,...,N}, and X be an N x p matrix of individual-level covariates. The standard
linear regression across all teams is given by y = Xf + ¢. The standard assumption
of i.i.d. errors ¢ ~ Ny (O, ole) is unrealistic as individuals are grouped into teams
(level 2) and embedded in networks of trust (level ¥2), the latter level which is itself
nested in level 2. We design a set of fixed and random effects for both of these levels.

Denote the set of groups G = G(V) = {1,...,M} and let the N x M design
matrix D have element D;, = 1 if G(i) = g and zero otherwise, with the group

N
sizes ng = Z lDig. Within each group the trust network is represented by its
=

ng X n, binary adjacency matrix Al!! and the row-normalised adjacency matrix
;
possible, see Leenders 2002; we adopt the notational convention that indices of Ald]
are unambiguous given the indices in V, rather than using a different index set for
individuals in groups). The weights may be collected in a global block-diagonal
weight matrix W, with W1, . WIM! on the diagonal. We shall use the operator @
for the construction of block-diagonal matrices, so that W = EBQ’LI wlsl,

Wisl (we normalise by dividing A:¥' by max (I,Al[ﬂ) but other normalisations are

Level 2 Fixed Effects and Random Effects

On the group-level we include the team-size as a fixed effect predictor n = (”8)211 ,
with the associated parameter y. Average team job satisfaction is modelled using
the group-level random effect u ~ Ng (O, UZIG).

Level 1 Fixed and Random Effects

The individual level covariates X; are

X;1: intercept
X gender
Xi3: age

Xi4: hierarchy

The associated vector of coefficients is denoted 8. The level one random errors
as usual & ~ Ny (0, 0°Ly).
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Level 12 Fixed and Random Effects

We construct three ‘fixed’ effects for the network-level V;

Vit = A[f_]i / (ng — 1): the normalised trust in-degree of i, G(i) = g
Vip = A[f_]+/ [ng (ng — 1)]: the density of the trust network G(i) = g

Vis = Zi:G(i)=g(th Vi2)~: centralisation in network g

Note that while V;; enter as an individual-level covariate in the model, the global
network properties enter as team-level covariates. The associated 3 x 1 parameter
vector is denoted 7.

To capture network dependence, we consider two interactions with levels 1 and
2. This first is to allow for correlated errors of individuals that have a trust tie by
adding the effect:

E=pWE+e¢

for a network correlation parameter p € pos(W). The range space pos(W) =
Ngpos (W), where pos(Ws)) is defined as p € (—1,1) such that

a conditional model y|B,y.u,n,p,0?> ~N(XB + yDn+ Du+ Vn, %), where
Y = CoIyCT, with C = (Iy — pW) .

The second network dependence effect we consider is the network effects
parameter . This is the familiar network autocorrelation through the outcome
variable, defining the model:

y=oaW+XB+yDn+Du+Vn+e

Similar to the network autocorrelation model, this defines a conditional model
yIB.y.u,n,a,0% ~ N(C(XB + yDn + Du+ V), %), where C = (Iy —aW) ™',

and ¥ = Co?IyC". To guarantee that the variance covariance matrix is positive
definite, & € pos(W).

It may be a strong assumption assuming that the values of the network-level
effects are the same across the different groups. We may allow both parameters to
vary at the group level by assuming a hierarchical prior. For the first parameter the
random effects autocorrelation is assumed to be

[g]

P~ Npos(W[g]) (’u“/” TP) ’
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which is a normal distribution truncated to the interval pos(W!¢)). In the conditional
model this means that C = @gﬁl (Iy — pl! W[g])_l. For the second parameter we let

aldl ~ Npos(wis)) (Ma> Ta) -

Prior Distributions and Estimation

We chose conjugate priors for the regressors (8, y, ) ‘02 ~N (,uﬂ, ‘;—slp), o2 ~

InvGamma (q0/2, qocrg), and here pug =0, ko= 100, go =2, og = 2. For v? ~
InvGamma (ro /2, rovg), here with ro =4, og = 4. For the correlation parameters

P~ Nposany (B 7o), with 12, = 0 and % = Lot ~ Nposiwy (R 7 ), with
ﬁa = 0 and 7, = 1. For the random effects correlation parameters we set
1 ‘rp ~ Nyosiwy (0,72/2), and 72 ~ TnvGamma (2.5/2,2.5¢%) . 2%, = 0.1 and

Mo |ra ~ Npos(w) (0, tg/Z), and r‘f ~ InvGamma (2.5/2, 2.51730) , 150 =0.1.

Estimation is carried out using a Metropolis-Hastings MCMC scheme with
100,000 iterations (50,000 for the models of Table 3) where 10 % of values are
discarded for thinning and 20 % removed as burn-in. To get an assessment of the
fit across such different model specifications, we use Gelman et al.’s (2004, p. 175)
omnibus test statistic y? = o X,'z, where

V()

and y! is a replicate observation for i € V drawn from the posterior predictive
distribution.

Results

The main hypothesis of the paper relate to the effects of the level Y2 fixed effects
n, how the network position and composition affects job satisfaction. In models
1 through 9 reported in Table 4.2, we test these effects controlling for different
combinations of level %2 and level 2 dependencies. These effects are robust in the
sense that with high posterior probability across all models (a) the coefficient for
trust indegree (1) is negative; (b) the coefficient for trust density (7,) is positive;
(c) the coefficient for trust centralisation (13) is positive.
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Models 1 and 5 both account for the dependence within teams, but the former
captures this purely through network autocorrelation and the latter through the
team-level random intercept. The fit of M5 is not better than that of M1 and
an autocorrelation of p=0.17 is considerable compared to the level 2 variance
(posterior probability that p > 0 is 0.95). The network correlation through the
outcome variable, o, does not seem to account for much given that it is near to
zero with high posterior probability across all models it is included in (M3 and M7).
This suggest that there is no ‘contagion effect” above what is captured by the level
1 fixed effects .

Allowing p and « to vary across teams (M2, M4, M8, and M9) weakens any
evidence for a common network effect, p, or u,. While, for example, there are
teams with a discernible positive correlation effect pl&!, in a predictive sense (see
Fig. 4.5), the higher level parameter u, is close to zero. The posterior probability
that 1, > 0 is 0.81, given data, for M2. Twenty-one out of the 27 teams have a
predicted mean for pl¢ greater than zero. That random variation for p!® picks up
some of the heterogeneity across groups is not manifested (as one would expect) in
a radical change in v? but rather in improved fit (the best fitting model is M2).

In Fig. 4.5 (panel b) we examine the extent to which p!#! accounts for the variation
between groups by plotting the predictive distributions of p!¢! from M2 ordered by
E(u'¢! | W,y,x,n) from MS5. The u-shape reveals that the groups that ‘deviate’ from

T TR P e R
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Fig. 4.5 Posterior analysis of variance: (a) posterior predictive distributions of pl&! (M2) ordered
according to network mean; (b) posterior predictive distributions of p/8! (M2) order according to
expected value of random intercept according to M5; (¢) comparing the posterior distribution of p
for M1 (solid) and M6 (dashed); (d) bivariate posterior distribution of 7,7 and v? (from M8)
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the grand mean are indeed the ones where the network autocorrelation is greatest.
Considering the modest variation on level two (2.44 in M5) and the fact that p
is not affected if both p and u'®! are included, as in M6, the variation on level ¥4
appears to be more important (Fig. 4.5 panel c). The association between v? and rg
is negligible as illustrated in Fig. 4.5 panel d. We may (tentatively) conclude that
there is some heterogeneity of network level effects across teams but there is not
enough information in data to fully quantify this.

While models M1 through M9 demonstrate the robustness of the fixed network-
level effects and how these and the team-level random effect account for the
network autocorrelation p, these models do not demonstrate how the effects relate
to influence. Clearly, there is no network effect o given that the derived measures
are taken into account (M3) but is there an influence or contagion effect that they
explain away? To this end we shall parse out the effects of M7 into sub-models
MT7:A through M7:D. The results are provided in Table 4.3.

Model M7:A is a model where the only effect of the network-level is the
autocorrelation through the outcome variable. The point estimate of the parameter
a is 0.16 and it is greater than zero with a posterior probability of 0.995, indicating
strong evidence for within-team influence. This conclusion is virtually unchanged
once the team-level random intercept is included in M7:B, suggesting that the
strength of the influence effect is un-confounded by between-team differences.
However, introducing the network-level measure in-degree (V;;), eliminates the
influence effect o in the sense that the magnitude is reduced and the posterior
uncertainty is increased. The support for a positive o drops to 0.9 for M7:C (the
posterior is provided in Fig. 4.6a). The feedback loop modelled by « is thus

Table 4.3 Multilevel network regressions of job satisfaction for 27 teams. Interdependence of
network level fixed effects and the contagion parameter

M7:A M7:B M7:C M7:D
Mean | Sd Mean | Sd Mean | Sd Mean | Sd

Intercept B 4777 | 9.05 | 4827 | 9.10 | 59.15 |10.07 | 35.11 |12.03
Gender B2 —5.04 | 275 | =5.11 | 2.86 | —5.68 | 2.72 | =5.21 | 2.78
Age B3 0.12 | 0.14 | 0.1 | 0.14 | 009 | 0.14 | 006 | 0.14
Hierarchy B 8.94 | 370 | 9.05 | 3.75 | 887 | 3.63 | 951 | 3.73
Indegree n —0.08 | 0.05

Density 2 1734 |10.71
Centralization |13 1648 | 6.92
Network eff. |« 0.16 | 0.07 | 0.16 | 007 | 0.10 | 0.08 | 0.10 | 0.07
Group size y —1.11 | 039 | —1.12 | 040 | —1.36 | 0.44 | —1.30 | 0.45
Level 2var | v? 1.82 | 2.11 | 2.88 | 489 | 2.03 | 2.77
Level I var | o? 294.92 |29.52 |296.62 |29.34 |292.35 |32.95 |290.04 | 30.27
GOF stat 722 (%?) [192.40 | 7.85 | 186.82 | 7.40 |187.54 | 6.93 |184.51 | 7.07
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Fig. 4.6 Posterior analysis of network fixed and feedback effects: (a) posterior distributions of «
for M7:A (solid), M7:C (dotted), and M7:D (dashed); (b) bivariate posterior distribution of o and
n; for M7:C

confounded by including a derived measure of the conduits of this feedback. The
parameters « and 7, are however virtually independent a posteriori as seen in Fig.
4.6b. Comparing the estimate 1, for M7:C and M7 reveals that the indegree-effect
on its own does not supplant the influence evidenced by o in M7:A and M7:B, as
the 95 % posterior credibility interval for n; is (—0.19, 0.009) in M7:C. Similarly,
in M7:D, when only the derived network-level measures for the team-level, network
density and network centralisation, are included, this attenuates the network effect
() but also diminishes the effect of the fixed, global network measure density; there
is little evidence for an effect of network density on job satisfaction in M7:D.

Interpreting M7 and models M7:A through M7:D jointly, there is evidence for
network autocorrelation (¢) but this is explained away by the individual in-degree
and the global network measures. There is however only an effect of individual
in-degree and the global network measures on job satisfaction when they are
included together (as in M7). Thus the exact nature of the network influence on
job satisfaction is that the density of the trust network contributes positively to job
satisfaction but people that are trusted more than others in their team tend to have
lower job-satisfaction.
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Discussion and Conclusions

We have argued for the need for a more integrated approach to study the effects
of individual network position and global network structure on individuals, their
attitudes and opinions. Focusing on 201 employees in 27 groups as a specific
empirical example, we have demonstrated how individual attributes, the group
structure (density and centralization), and the position of the person in the trust
network (in-degree centrality) combined can explain job satisfaction. By carrying
out the Multilevel Social Influence (MSI) analysis across different groups, we were
able to identify the contribution of individual network position relative to the
contribution of the network structure at the team level. Together these elements
explained the network dependencies within teams.

The model proposed here is generic, in the sense that other types of individual
network position measures (such as heterogeneity or brokerage) as well as group-
level network properties (such as fragmentation) can in principle also be modeled.
The challenge with these more complex properties is, however, that one needs to
ensure that the proper control variables are included at both the individual and group
level.

Given the recent possibilities for collecting large-scale data and the trend in
collecting data from multiple sets of actors, it is becoming increasingly feasible (and
necessary) to look at both individual position and the structure of the set of actors
at the same time, enabling the possibility to disentangle the relative importance
of “individual social capital” from “collectively owned social capital”. As more
multiple network analysis studies and large-scale data becomes available more
interesting and generalizable results become possible, where micro and meso can
be combined, rather than focusing on a case study based on a single network. The
nature of the empirical example investigated here (few, rather small groups) did
not allow us to fully explore the possibilities of assessing heterogeneity in network
processes across different contexts. This should be a target of future research.
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Chapter 5
Multilevel Models for Multilevel Network
Dependencies

Mark Tranmer and Emmanuel Lazega

Introduction

Multilevel networks occur when a network of lowest level nodes, such as people
and their personal ties, is embedded in a network of higher level nodes, such as
organizations and their organizational ties. Given this multilevel network structure,
it may be of substantive interest to investigate the way in which a level 1 nodal
attribute, which can be regarded as a dependent variable, varies across the various
components of a multilevel network. For example, how much does a performance
score for a person vary by his or her network connections, and the connections of
the organisations to which he or she is affiliated?

We explain how a type of multilevel model, called a Multiple Membership
Multiple Classification (MMMC) model, can be used with such multilevel network
data to estimate the relative share of variation in a lowest level nodal dependent
variable across the various components of a multilevel network in which it is
embedded. We illustrate the approach with an analysis of real multilevel network
data for French cancer elites.

This chapter is organized as follows. We begin by briefly reviewing Network
Autocorrelation Models (NAMs), as these are well-established models for network
dependencies in single-level networks and thus provide a good starting point for
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discussing node-level variable dependencies in single-level networks. This then
provides the basis to introduce more recent alternative models for network depen-
dencies, which enable different substantive questions about network dependencies
from those that are usually the focus in a NAM analysis to be answered. We then
introduce the Multiple Membership (MM) model, and explain how it can be used
to model single-level network dependencies; in particular to investigate network
variations in the dependent variable. Next, we explain how the MM model can be
extended to a Multiple Membership Multiple Classification (MMMC) model for
multilevel network dependencies, where the multiple classifications arise because
there is more than one network, as well as the affiliations of level 1 units to level
2 units. Following this, we fit an MMMC model to our case study dataset on
French cancer elites, and interpret the results. Finally, we draw conclusions about
the research value of the MMMC model for multilevel networks and briefly discuss
further extensions to the model.

Network Autocorrelation Models for Single Level Networks

A single-level network comprises a set of nodes and their connections, or ties. Often,
a set of attributes of the nodes is available for such a network. We might regard
one of these as a node-level (nodal) dependent variable, and others as node-level
explanatory variables. We may wish to regress the nodal dependent variable on the
nodal explanatory variables. If we fit an Ordinary Least Squares (OLS) regression
model to such data, we ignore the fact that the nodes are connected; the underlying
assumption of independence of units in an OLS regression analysis is not valid
for connected nodes. We must take the network connections into account in our
analysis: either because these are regarded as a nuisance, or because the network
dependencies are of direct substantive interest.

Well-established models for network dependencies in single level networks are
Network Autocorrelation Models (NAMs). These evolved from Spatial Autocor-
relation Models (SAMs) — see, for example, Ord (1975) and Doreian (1980). The
theoretical specification of NAMs and SAMs is the same, only the data input differs.
In the SAMs, a spatial proximity or contiguity matrix is included for the areas in
the analysis, where the areas are the units of analysis. For NAMs a social network
matrix is used in place of the geographical information and the network nodes are
the units of analysis. There are two types of NAMs: the network effects model and
the network disturbances model. These are both defined below.

The network effects model is defined, for a single-level network, by:

y=pWy+XB +¢€
€ ~ N(0,07) (5.1)



5 Multilevel Models for Multilevel Network Dependencies 109

The network disturbances model is defined by:

y=XB+¢
€ = pWe +v
v ~ N(0, 0> (5.2)

In both Egs. 5.1 and 5.2, the data include: a nodal dependent variable y, which
is an attribute of the network nodes; explanatory variables X, also attributes of the
network nodes; and a weight matrix, W, derived from the network adjacency matrix.
The weight matrix, W, is usually standardized so that the rows sum to 1, and the
diagonal elements of the weight matrix are structurally set to zero. Estimation of
Models 5.1 and 5.2 requires inversion of the weight matrix W. Leenders (2002)
reviews NAMs and gives a detailed discussion about how the weight matrices may
be defined in different ways from the same original network matrix for such models.
Model 5.1 and 5.2 will sometimes yield similar goodness of fit. The choice of
whether to model the network dependence as a direct fixed effect, as in Model 5.2,
or via a random effect through the error terms, as in Model 5.1, will depend on
the research questions of the substantive study (Leenders 2002). Model 5.2 might
be used to take into account network dependencies when they are regarded as a
nuisance, whereas Model 5.1 allows for the direct association of values of the
dependent variables for connected nodes (e.g. alters in an ego net), when estimating
the value for the focal node (e.g. the ego in an ego net). In that sense, Model 5.1
can be seen as a type of peer-effect model. In Models 5.1 and 5.2, average network
correlations between the focal and connected values of y (for Model 5.1) or the error
term (for Model 5.2) are given by the correlation coefficient, p. NAMS can be fitted
in R (R Core Team 2013) using the sna package (Butts 2010).

Multilevel and Multiple Membership Models

An alternative way of modeling network dependencies for a single-level network,
particularly valuable for investigating network variations in a nodal dependent
variable, is via a Multiple Membership (MM) model. An MM model is a type
of multilevel model. Because multilevel models have only recently been used
in the context of network dependence for nodal dependent variables, we begin
with a general discussion of multilevel and multiple membership models before
explaining, in section “Multiple Membership Models for Single-Level Network
Dependencies”, how these models may be used with social networks.

Since the 1980s, multilevel models have been used extensively in statistical
analysis, including applications in the social sciences and health. For example,
multilevel models have been applied to the analysis of school effectiveness to
investigate variations in examination performance for pupils (level 1), in schools
(level 2). Here, the dependent variable is the examination performance of the pupil, a
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level 1 variable, which may be related to attributes of the pupils (level 1 variables), as
well as attributes of the schools (level 2 variables). These may be measured directly
at the school level, such as whether the school was built in the last 30 years; or level
1 variables may be aggregated to the school level to be included as level 2 variables,
such as the percentage of pupils taking free meals in the school. Furthermore, we can
include cross-level interactions between pupil level and school level variables in this
model framework; for example, to determine whether the percentage of pupils on
free school meals in the school has a different association with examination scores
for pupils who are allocated free school meals, as compared with pupils who are not.

When we have a multilevel population structure, such as pupils in schools,
multilevel models are useful to take that structure into account in the analysis.
Such models can be used when we regard the multilevel structure as a nuisance,
for example as a model-based approach to take into account clustering in a multi-
stage sampling design when estimating an overall population regression equation
for individuals. However, more often multilevel models are extremely useful when
the multilevel structure is of substantive interest. For example, based on our
example above, using a multilevel model we could determine how much variation in
examination score is estimated to be at the school level, and how much is estimated
at the pupil level, and hence whether there is any evidence of similar (correlated)
examination scores in the same school: that is, clustering. If so, we can then see
how much of this clustering can be explained by characteristics of the pupils or
the schools. Moreover, having allowed for the multilevel population of pupils in
schools, we can identify particular schools from the model outputs for inference by
examining the school-level residual terms from the multilevel model. For example,
we can identify schools that are doing especially well in terms of estimated average
examination performance, having controlled for pupil characteristics.

Multilevel models avoid the problems of the atomistic or ecological fallacy that
would be likely to occur if we modeled data from a multilevel population at a single
level. The atomistic fallacy would occur in our example if we carried out a single
level analysis of pupil data and did not take into account the fact that each pupil
attends a particular school and may therefore share a common experience with other
pupils in that school, such as being subject to the same teaching policy within that
school, or having the shared experience of studying within a modern building. The
ecological fallacy would occur if we aggregated all the pupil information to the
school level (level 2) and carried out a single-level analysis of school-level data,
such as school means. In this case, through aggregation, we would lose information
about variation in pupil’s examination scores within the schools.

In theory, dummy variables can be created for the schools that pupils attend
and added to a single-level regression model, but this is problematic in practice
when there are a large number of schools in data to be analyzed, because there
would then be a large number of coefficients for these dummy variables to be
estimated in the model. In the multilevel approach, the school level appears in the
random part of the model and variance (and often also covariance) components
are estimated for these school-level random effects. For variance components, or
“random intercepts”, models there is one school-level variance component to be
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estimated for the school-level random effects for the constant term, rather than
a large number of coefficients, as would be the case for dummy variables in the
fixed part of a single-level regression model. The school-level variance component,
alongside the pupil-level variance component, allows us to estimate the variation
in examination scores between and within schools. Within the multilevel model
framework, it is also possible to allow the explanatory variables to have random
coefficients — for example we could investigate whether the school-level variation
in examination performance is different for boys and girls; in other words, whether
the association of examination score with gender is different in different schools.

We have described an example above for a two-level population of pupils (level
1) in schools (level 2). Further hierarchical levels could be added to the model —
either between the school and pupil levels, such as classes within the school, or
above the school level, such as the Local Education Authority, if these could be
identified in the available data, and if there were sufficient numbers of units at each
level. Usually, 10 or more units are needed for each level. Fewer than 10 units can
often be treated as fixed effects in the model.

Hierarchical multilevel modeling as described above, where each lower-level unit
is a member of only one unit above it, has become a standard statistical analysis
technique in recent years, and such models can be fitted in multilevel software such
as MLwiN (Rasbash et al. 2012) or HLM (Raudenbush 2004), as well as statistical
software such as stata (Rabe-Hesketh and Skrondal 2008) and R (R Core Team
2013; Finch et al. 2014). Basic hierarchical models can also be fitted in more recent
releases of SPSS (Heck et al. 2013). For a general overview of Multilevel Analysis,
including more discussion of software, see Snijders and Bosker (2011).

More recent developments in multilevel analysis have been in realistically
complex models for population structures that are non-hierarchical, such as cross-
classified models. For example, two pupils who live in the same local area might
each attend a different school, whereas two pupils from the same school might each
live in a different local area. Here, areas and schools are non-hierarchical groups.
However, we may have a substantive hypothesis regarding the way in which the local
area in which the pupil lives and the school the pupil attends are each associated
with their educational performance. In this situation we can use a multilevel model
in which the areas and schools are cross-classified (Goldstein 1994).

Another realistically complex multilevel model is the Multiple Membership
Model. Here, individuals can be members of multiple groups. For example, an
individual might work and live in two separate areas, perhaps spending 30 % of
a typical week in the work area and the remainder of their time at home. If we wish
to associate that individual’s health in the context of the air quality of their local
area, we could choose the area where they live as the group in a simple two-level
multilevel model, but we would then not recognize that the individual spends a fair
proportion of the week in the area of their workplace, which may have different
air quality to their area of residence. To allow multiple areas to be included in a
model for individuals, as in this example, a multiple membership model can be
used, where in our example the individual is a member of two groups: the place in
which they live and the place in which they work. Membership weights, which we
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assume sum to one for each individual, reflect the time spent in the area in which
they live and the area in which they work. For the example above these would be
0.7 (home) and 0.3 (work). This model still applies for people who live and work in
the same area. In that case the individual would be a member of a single area with
a weight of 1. Multiple membership models were first described in the literature
by Hill and Goldstein (1998). Browne et al. (2001) extended these to multiple
membership multiple classification (MMMC) models, explaining that several group
memberships could apply to the same population of individuals. Although MMMC
models are sometimes described as multilevel models, the word classification is
preferred over level, because these classifications are not assumed to have any
hierarchy, as is usually implied by level.

Multiple Membership Models for Single-Level Network
Dependencies

Multiple membership models can be used to investigate network variations in a
nodal dependent variable. For a binary-valued undirected adjacency matrix, row i of
the matrix is ego i’s alters. If we regard egos as groups and alters as the individuals
in that group, and consider the first row of this matrix as an ego, any of the other n—1
nodes can potentially be alters in node 1’s ego net (NB: Throughout this discussion,
“ego net” is equivalent to “ego neighbourhood”). Often the network will comprise
overlapping ego nets, where the same alter will appear in different ego nets and thus
be a member of more than one of these groups. Node 1 may also be an alter in some
of the other n — 1 ego nets in the network. Using this approach we break down an
n x n adjacency matrix in n groups: the ego nets. Define y; as a dependent variable
for each node in the network (i = 1, ..., n). We may then be interested in the extent
to which this dependent variable varies between and within ego nets. The multiple
membership model allows us to investigate this, given ego net overlap. We can fit
MM models before and after the inclusion of nodal explanatory variables.

Each row of the adjacency matrix represents a node in the network, which can be
an alter in the other n — 1 ego nets in the network. We assign membership weights
for this which are usually assumed to sum to 1 across the row. For example, if the
first node of the network was an alter in three ego nets: say for nodes 3,7, and 11,
then weights for membership of each of these ego nets are 1, and all other weights
in that row of the weight matrix- including the diagonal — are set to zero.

We can then write down a multiple membership model for this situation as:

Vi=XB+ Y Wi+ e
jemi
i=1,...,n

uj ~ N(0,02) e; ~N(0,02) Cov(uj,e;)) =0 (5.3)
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Here, y; is an interval-scale dependent variable for each node in the network,
where i = 1,...,n, and n is the total number of nodes in the network. X§,3 is
a set of nodal explanatory variables and their coefficients, in the fixed part of
the model. } ¢, Wmijitj is @ weighted sum of n random effects u;, j = 1,...n.
Non-zero weights w,,;; are assigned when 7 is a member of j’s ego net. ¢; is an
individual- (node-) level error term. The ego net random effects, u; have zero mean
and variance ouz. The individual node-level random effects, e; have zero mean and
variance o72. The ego net and individual node-level random effects are assumed to
be uncorrelated.

In the discussion so far, we have described a situation where there is one set of
network groups in a single-level network: the ego nets within that network. We could
also define other network subgroups such as cliques of a particular minimum size
e.g. cliques of 3 or more individuals. It is possible to put more than one network
subgroup in the multiple membership model framework. For example, we could
include components in the model for cliques of varying sizes: 3 or more, 4 or more,
and so on, to assess where the variations in the node-level dependent variable are
with respect to these clique thresholds. As is the case for NAMs, we could also fit
these models for directed adjacency matrices, where the rows would represent the
outgoing ties for each node in the network and the columns represent their incoming
ties. In this situation, we could define both outgoing and incoming tie weights, and
include both an outgoing and an incoming component in the same model. We could
also use valued adjacency matrices and make weights inversely proportional to the
sum of the tie values in each ego net. Here, the value of the tie for each alter would
be the numerator, resulting in larger tie values having larger ego net membership
weights. Weighting schemes other than the inverse of the sum of ego net ties could
also be used: for example, the weights could be made inversely proportional to the
square root of the sum of the ties in each ego net.

In a standard nested hierarchical multilevel model, each lowest level unit is a
member of one higher level unit with a weight of one. For example, each pupil goes
to one school at a particular time point. When we fit a null model for this case we can
calculate the variance partition coefficient from the estimated variance components
at the individual and group level; for example, the estimated level 1 variance
component for pupils and the estimated level 2 variance component for schools,
when modeling variations in examination performance for the two-level hierarchy of
pupils in schools. For a multiple membership model, lower level units are potentially
members of multiple groups, with associated membership weights. Each individual
has a (potentially) different group membership as determined by their membership
weights. This means the variance partition coefficient cannot be calculated directly
from the model estimates. One practical approach for estimating the proportion of
variation between groups and individuals in the multiple membership model is to
first scale the estimated group-level variance component by the average non-zero
group membership weight, and then to calculate the variance partition coefficient
on the basis of this scaled measure.

Explanatory variables can be added directly to the fixed part of the MM model;
at the individual level, the group level, or both. In addition, if we hypothesized
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that some kind of overspill might occur in the explanatory variables, where the
alter’s values of these explanatory variables might be associated with the dependent
variable of the ego, “peer effect” explanatory variables could also be created by
multiplying the nodal values of explanatory connected to the focal node by their
outgoing or incoming weights as appropriate, as indicated in Eq.5.4. These peer
effect explanatory variables could be added to the fixed part of the model.

X = Z Wini jXi (5.4

JjEmM(i)

Tranmer et al. (2014) fitted a multiple membership model to a single-level social
network of friendship based on adolescent health data from the US (Harris et al.
2009), where the individual nodal dependent variable was a pupil’s examination
score. Amongst the models they fitted was a multiple membership model, as
described theoretically above, for the ego nets in the friendship networks. Having
fitted this model, they found that some of the variation in examination score was
estimated to be between ego nets. In other words, two pupils from the same ego net
were more likely to have similar examination scores than two pupils from different
ego nets. They also fitted models with network cliques in place of ego nets as the
network groups, and again found evidence of between clique variation (and thus
within clique similarity) of examination score. They also extended model 5.3 to
include additional classifications for the schools the pupils attended, and the areas
in which the pupils lived. This allowed an assessment of network, school, and area
variations in the examination performance of pupils. When they compared a model
that included only an individual level and school classifications with another model
that included an individual level with both school and network classifications, they
found that the latter had better statistical goodness-of-fit, and that the estimated
school-level variance component decreased a little when a network component
was included in the model. They concluded that some of the estimated school-
level variation in the examination performance of pupils in the former model was
attributable to the friendship networks of pupils, once this information was included
in the latter model. By extending the model in this way, the MM model becomes
a multiple membership multiple classification (MMMC) model, because there are
now several sets of classifications included: for the networks, the schools, and areas
of the population.

Tranmer et al. (2014) also fitted a series of NAMs to the adolescent health data to
compare, empirically, the goodness of fit of these models with the MMMC models.
For the NAMS they created dummy variables for the schools in the population.
They found that the models had similar statistical goodness of fit to the MMMC
models, but concluded these two types of models have different substantive uses.
For example, NAMs can be used to control for network effects in estimating school
differences in exam scores via the estimated coefficients of the school dummy
variables in the model, whereas the MMMC model allows school and network
variance components to be estimated when investigating variations in examination
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score, and, like the hierarchical models discussed above, also allows explanatory
variables in the model to have random coefficients. The MMMC model can also be
used with categorical response variables, such as a binary attribute, as the dependent
variable, which is not straightforward in the NAM framework. Although both MMs
and NAMs use the same information from the data, they treat it in very different
ways. For example, estimation of the NAM parameters the inversion of the (row
standardized) adjacency matrix of friendship connections, whereas the MMMC
model uses this weight information directly without the need for matrix inversion.

Multiple Membership Multiple Classification (MMMC)
Models for Multilevel Networks

A multilevel network with two levels can be defined as a set of n; level 1 nodes,
and their connections (the level 1 network), and a set of n, level 2 nodes and their
connections (the level 2 network). At each network level, the connections could
be directed or undirected, binary or valued. The values of n; and n, are often not
closely related. When level 1 nodes represent people and level 2 nodes represent
organizations, the available data may have fewer level 2 nodes than level 1 nodes,
and the affiliation of level 1 nodes to level 2 nodes might be known.

For example, Lazega et al. (2008) collected multilevel network data for French
elite cancer researchers and the research laboratories to which they were affiliated,
in the fle de France area. There are individual and collective forms of agency at
these two levels. At the researcher level (level 1), the network describes advice-
seeking, and there are n; = 97 nodes. At the laboratory level, the network describes
collaborations among the laboratories, and there are n, = 82 nodes at this level.
Information was also collected on researchers’ affiliations with laboratories, where
each researcher is affiliated with exactly one laboratory. This information therefore
indicates which level 1 nodes are contained in which level 2 nodes. Lazega et al.
(2008) were interested in how the performance scores of individual researchers, a
level 1 network nodal variable, are associated with attributes of those researchers
such as age, speciality, and fish/pond status, as well the laboratories in which
they worked, given the multilevel network structure in which they are embedded.
However they did not use a multilevel modeling approach to investigate this.

In Eq.5.5, we define the MMMC model for a multilevel network with two levels
in which the affiliations of level 1 nodes to level 2 nodes is known. As discussed
earlier, in section “Multilevel and Multiple Membership Models”, we will assume
that the networks are grouped by ego nets. In the two-level network, there are two
sets of ego nets: ego nets of researchers for the level 1 network, and ego nets
of laboratories for the level 2 network. There is also another population grouping
here: the affiliation of researchers to laboratories. The MMMC model for two sets
of network connections and affiliations of level 1 nodes to level 2 nodes, may be
defined as:
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yie =X.p+ Z Wi jUtj + Z Wpe kVk + e + e
jem(i) kep(L)

= 1,...,}11, { = 1,...,112
Where n, is the number of level 1 nodes, and n, is the number of level 2 nodes;

uj ~N(.0;) vi~N(0,07) ne~N(©0.07) e ~N(0.0.)
Cov(u;, eir) = Cov(u,, eir) = Cov(ng, ex) = Cov(uj, vi) = Cov(u;, 1¢)
= Cov(vg, n¢) = 0. (5.5)

In the formulation of Model 5.5, the dependent variable, y;¢, is an interval-scale
dependent variable for each level 1 node i, affiliated to level 2 node £, which may be
related to a set of explanatory variables with coefficients, B, via the term x’g in the
fixed part of the model. Attributes of the level 1 and/or level 2 nodes, and cross-level
interactions between these variables, could be used as explanatory variables in the
model.

The ego nets at the two levels of the multilevel network are represented in the
model by two weighted sums of random effects, e, Wmiju; for the level 1
network, and for the level 2 network, 3 ;) WpekVk. When the network groups
are defined as ego nets, each row of the adjacency matrix for the level 1 network
is the ego net of that particular node, so that the number of random effects for the
level 1 network is n;; similarly, for the level 2 network, there are n, random effects.
To include the random effects of the alters of each ego in the model estimation
process, a system of weights is used. If the ego net of the first researcher in the level
1 network has a total of nj; alters, then each alter in that ego’s network is given a
weight of %, so that the weights sum to 1 across the row, and these weights are thus
row-standardized. A similar system is used for the level 2 network weights, based on
the ego net membership at that level. In addition, a random effect, 1, is included for
the affiliations of researchers to laboratories. As is typical in multilevel modeling,
the random effects are assumed to be normally distributed and uncorrelated with one
another, allowing variance components for the different networks, and for the indi-
vidual researcher level, to be defined and estimated. Because the random effects are
assumed to be uncorrelated, it is possible to estimate the relative share of variation
in the dependent variable for the individual level 1 nodes, the level 1 network ego
nets, the level 2 network ego nets, and the affiliation of researchers to laboratories.

Empirical Case Study

To illustrate our approach, we use the well-known and well-researched French
Cancer researchers dataset of Lazega et al. (2008). Full details of the data collection
and variables can be found in Lazega et al. (2008) in their “big fish, small pond”
analysis. More recently, this multilevel dataset has been analyzed by Wang et al.
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(2013). These authors used a Multilevel Exponential Graph Model (MERGM) to
investigate the multilevel network structure of the ties in these data. Here, we explain
how to investigate multilevel network dependencies in a dependent variable that is
an attribute of the level 1 nodes; the research performance of the individual cancer
researchers.

Data

Lazega et al. (2008) collected and analyzed multilevel network data, where the
first-level directed network nodes are individual cancer researchers and the second-
level directed network nodes are laboratories. Attributes of the researchers (level 1
nodes) include research performance scores. The value of this score at the first time
point in the study is the dependent variable, y;, we investigate in our case study.
Other attributes of the level 1 nodes include the researcher’s age in years, speciality
of the researcher, and whether s/he is a director of research or not. In addition,
we know whether the researchers can be classified into four categories based on
their level 1 network centrality (‘fish’) and the level 2 network centrality of the
laboratory (‘pond’) in which they work. Four classifications are given: Big Fish,
Small Pond; Little Fish, Small Pond; Big Fish, Big Pond; Little Fish, Big Pond.
These explanatory variables were used the analysis that follows. The data we used
for the analysis are based on 97 researchers in 82 laboratories.

Research Questions

Based on these data, we ask the following research questions:

1. Is any of the variation in performance score associated with the network
connections of researchers, or the connections of laboratories to which the
researchers are affiliated?

2. If so, what is the relative share of that variation? Is it mainly associated
with networks of researchers, networks of laboratories, or the way in which
researchers are affiliated to laboratories?

3. Is the network variation in performance score mainly associated with outgoing
or incoming ties?

4. Is the variation in performance score all explained by the explanatory variables
once these are added to the fixed part of the model?

5. If not, how is the relative share of the remaining variation associated with
networks of researchers, laboratories, and the affiliations of researchers to
laboratories?
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6. Would we have come to the same conclusions about the way in which the
covariates are associated with research performance score, if we had simply fitted
a single-level model?

7. What do we learn, substantively, from the more complex MMMC models that
would have not been possible with simpler models?

Data Preparation

The data comprise a vector of n; = 97 values for the dependent variable for the
researchers; for the n, explanatory variables, a 97 x n, matrix; and two directed
binary adjacency matrices: one for the researchers, of dimension 97 x 97, and one
for the n, = 82 laboratories, of dimension 82 x 82. Data manipulation for the weight
matrices was carried out using R. To expand the laboratory (level 2 network) weight
matrix and give it n; rows instead of n,, those rows of weights for laboratories with
more than one researcher were repeated in the dataset resulting in a 97 x 82 weight
matrix for the laboratories, where the laboratory weight information was repeated
for those rows of researchers in the data that were affiliated to the same laboratory.
This is a standard way of preparing hierarchical multilevel data and an advantage
of the multilevel approach is that it is quite straightforward to achieve. Dummy
variables were created for the categorical explanatory variables. For example, the
four-category Fish/Pond variable was added to the fixed part of the model as three
dummy variables. All interval explanatory variables were standardized to have mean
zero and standard deviation of 1.

Model Fitting Strategy and Software Details

We fitted Model 5.5 to the Lazega data, both as null models, and later with all
explanatory variables added to the fixed part of the model. We fitted these models
for both the outgoing tie networks of researchers and laboratories and the incoming
tie networks. Thus, the fully specified model included, in the random part, a level 1
ego net classification, a level 2 ego net classification, laboratory level to which the
researchers were affiliated, and an individual researcher level. We also fitted reduced
versions of model 5.5 in which, for example, only one network level was specified.
As we were using an Monte Carlo Markov Chain (MCMC) approach, we evaluated
model goodness of fit with the DIC measure: the smaller the value of DIC, the
better the model fit, having taken into account the number of effective parameters
in the model (i.e. the model complexity). This measure allowed us to compare the
statistical fit of the fully specified models with reduced models and with a baseline
single-level model.

The MMMC models were fitted in R (R Core Team 2013) making use of the
R2MLwiN package (Zhang et al. 2016), which invokes the MLwiN (Rasbash et al.
2012) software for multilevel modeling to obtain the results before returning them



5 Multilevel Models for Multilevel Network Dependencies 119

to the R environment. The model results presented here were all estimated via an
MCMC algorithm (Browne 2009), using default flat priors for the fixed effects and
a chain of 20,000 samples. In all models, standard diffuse (gamma) priors were
assumed for the variance parameters.

Results

We now discuss the results of the MMMC models. We begin with null models for
the outgoing tie networks.

Outgoing Tie Networks

The results in Table 5.1 suggest that the majority of the variation in research
performance is between individual researchers. M1 is the baseline single-level
model, which estimates the mean as zero and the variance at the individual as
1, as we would expect with a standardized dependent variable. M2 is a simple
hierarchy of researchers in laboratories. The DIC suggests better goodness of fit
than M1. For M1, with a single individual-level variance component, 100 % of the
estimated variation in research performance is at the individual researcher level.
Once we have more than one variance component estimated, we can compare the
share of variation for each estimated component. For M2 there is 55 % variation at
the individual researcher level and 45 % variation between laboratories. Even though
most laboratories contain exactly one researcher in the data, a few laboratories
contain more than one researcher, and hence it is possible to estimate a laboratory-
level variance component. In M3 we include a variance component for ego nets of
laboratories. The variance component for this, (;3 net.lab., is estimated as 0.307.
However, we must first scale this component to make it comparable with the other
estimated variance components. We do this by multiplying the estimate by the
average (mean) non-zero ego net alter membership weight. Having done this, we
see that 8 % of the variation in research performance is at the laboratory ego net
level and 92 % at the individual level, and that, in terms of goodness of fit, this
model is little better than the single-level model, M1. We now include the ego nets
for single-level network of researchers in M4. Having scaled the estimated variance
component for the ego nets of researchers by the average ego net membership
weight, we see we can associate around 43 % of the variation in performance
score with it and the remaining 57 % of variation at the individual level. The
DIC for this model is lower than all previous models. This suggests that ego nets
of researchers are associated with variation in performance score; thus, there is
clustering of researcher performance scores within ego nets of researchers. Model
5 (M5) includes all components, and the DIC is the smallest for all models fitted
in Table 5.1. This is a multilevel network model with components for laboratory
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Table. 5.1. Null models: M1 M2 M3 M4
outgoing tie networks
Constant 0.000 —0.045 —0.046 | —0.174
(s.e.) (0.103) (0.107) 0.116) | (0.154)
o2 net.lab. 0.307
var. share % 8
c;uz net.res. 2.046
var. share % 43
(;3 lab. 0.417
var. share % 43
01,2 res. 1.022 0.551 0.917 0.440
var. share % | 100 55 92 57
DIC 278.26 250.09 275.33 | 229.35
M5 M6 M7
Constant —0.180 —0.186 —0.159
(0.155) (0.163) (0.153)
o2netlab. | 0.066 0.061
var. share %| 2 2
02 net.res. 1.806 1.981 1.807
var. share %| 38 42 38
02 lab. 0.053 0.073
var. share %| 7 9
02 res. 0.410 0.435 0413
var. share % | 53 56 53
DIC 226.94 229.58 227.12

ego nets, researcher ego nets and the affiliations of researchers to laboratories. We
see in the results for M5 that most of the variation remains at the individual level
(53 %), then the ego nets of researchers (38 %), then, to a lesser extent, affiliations
of researchers of laboratories (7 %) then laboratory networks (2 %). In M6 and
M7 we tried removing some of the multilevel network components from M5 to
empirically compare these reduced models. We found, in M6, that by removing the
laboratory affiliation information, the model fit is slightly worse compared with M5,
and that there is a subsequent increase in the share of variation at the individual level
(56 %) and networks of researcher levels (42 %). In M7 we removed the networks
of laboratories component, and we see that the share of variation that had been
associated with that level is now added to the laboratory affiliation component (9 %),
and that the goodness of fit is almost as good as the fully specified model (M5).

Incoming Tie Networks

We now consider similar analyses based on the incoming tie networks of researchers
and laboratories. The results are shown in Table 5.2. The first thing we notice is that
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Table .5.2 .Null models: M8 MO M10 M1l
incoming tie networks
Constant —0.143 | —0.022 | —0.104 | —0.045
(s.e.) (0.164) | (0.114) | (0.146) | (0.113)
02 net.lab. 0.723 0.309
var. share % 18 8
02 net.res. 0.149 | 0092 | 0.084
var. share % 3 2 1
o2 lab. 0324 | 0.409
var. share 34 42
(;62 res. 0.822 0.996 0.547 0.547
var. share 82 97 56 56
DIC 269.26 278.75 250.48 250.81

incoming ego nets for laboratories have a greater share of variation than incoming
tie networks of researchers. We also notice that the goodness of fit measures of the
incoming tie models in Table 5.2 are not as good as those involving outgoing tie
networks of researchers in Table 5.1. Also, the relative share of variation is different.
For example, in M9, we see that although most variation in performance is between
individual researchers, 56 %, it is now the laboratories that have the next largest
share 34 %, then, to a much lesser extent, the ego nets of laboratories based on their
incoming ties 8 %, then the ego nets of researchers based on their incoming ties 2 %.

Allowing for Explanatory Variables

We next added covariates to the fixed part of the model. These are characteristics
of the researchers, including speciality, age, fish/pond, and whether the researcher
is a ‘research director.” The results are given in Table 5.3. M12 is a single-level
regression of the results for comparison with the multilevel network models for
outgoing ties (M13) and incoming ties (M14). For M12 we see that various speciali-
ties are significantly associated with increases in performance score, compared with
the baseline category (Diagnostics). Age and research director are not significantly
associated with performance score in any of the three models. Some categories of
fish/pond are significantly associated with different average performance scores in
all models. The baseline category is big fish, big pond, and we see that in comparison
little fish in small ponds have, on average, significantly lower performance scores
compared with researchers who are big fish in big ponds. We also see in M13 and
M14 that, having allowed for these explanatory variables, the variation above the
individual level is reduced. Only the outgoing tie ego net variation for researchers in
M13 retains any appreciable share of the variation in the performance score of the
researchers. The total variation explained by the explanatory variables in the three
models is around 20 % for the single level model (M12) with a total variance in the
dependent variable conditional on the explanatory variables in the model estimated
at 0.803, around 35 % for the outgoing ties model (M13), with a total variance in the
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Table 5.3 MMMC models with selected covariates

Mi12 M13 Ml14
Constant —0.213 | (0.266) —0.205 | (0.267) —0.294 | (0.278)
Surgery/Radiology —0.352 | (0.410) —0.658 | (0.409) —0.435 | (0.419)
Haematology 0.887 |(0.312)** 0.724 | (0.308)* 0.810 |(0.328)*
Tumour, Chemotherapy 0.078 | (0.309) —0.052 |(0.297) 0.044 | (0.317)
Pharmacology —0.168 |(0.363) | —0.101 | (0.371) | —0.086 |(0.379)
Molecular/Cellular 0.799 |(0.297)** 0.423 |(0.333) 0.606 | (0.316).
Molecular/Genetics 0.906 |(0.378)* 0.644 | (0.358) 0.897 |(0.389)*
Big fish, small pond —0.143 | (0.271) —0.171 | (0.247) —0.141 | (0.274)
Little fish, big pond —0.123 |(0.263) | —0.164 | (0.230) | —0.106 |(0.246)
Little fish, small pond | —0.611 | (0.265)* | —0.584 | (0.251)* | —0.519 | (0.276).
Age (standardised) 0.097 | (0.096) 0.068 | (0.083) 0.118 | (0.089)
Research Director 0.073 | (0.186) 0.183 |(0.174) 0.194 | (0.185)
02 net.lab 0.079 0.053
var. share 3 2
02 net.res 1.145 0.055
var. share 29 1
a2 lab. 0.115 0.288
var. share 17 37
02 res. 0.803 0.337 0.479
var share. 100 51 61
DIC 240.20 210.11 240.77

Signif. codes: “**’ 0.01; “** 0.05; . 0.1

dependent variable conditional on the explanatory variables in the model estimated
at 0.641, and around 21 % for the incoming ties Model (M14), with a total variance
in the dependent variable conditional on the explanatory variables in the model
estimated at 0.785. These results are consistent with DIC values; M13 gives the
best goodness of fit of the two models, with M12 and M14 being essentially the
same, higher, value of DIC.

Conclusions and Further Extensions to the MMMC Model

We have defined a Multiple Membership Multiple Classification (MMMC) model
for estimating the relative share of variation for a level 1 nodal dependent variable
embedded in a multilevel network, before and after controlling for explanatory
variables. We have explained that MMMC models can be fitted in statistical software
through the use of R and MLwiN. We have fitted this model to real multilevel
network data for French cancer research elites.
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Some of the variation of the performance scores of the researchers, an attribute of
the level 1 nodes of this multilevel network, is particularly associated with the way
in which researchers nominated other researchers in their ego net (their outgoing
ties): around 40 % of the variation before allowing for explanatory variables. Having
added characteristics of researchers as explanatory variables, this reduces the overall
magnitude of the residual variation, but there is still a suggestion that some of this
residual variation is associated with outgoing tie networks of researchers: around
29 % of the residual variation. We also find that if we had only fitted a single-level
model we would have found more significant mean differences in the performance
scores of researchers from different specialities. In particular, we would have
found expertise in molecular topics to be associated with significantly higher mean
performance scores than some of the other specialities. These differences do not
persist when multilevel components are added to the models; we would reach
a different conclusion regarding the variables in the fixed part of the model if
we only fitted the single-level model and did not include the multilevel network
components. Moreover, the MMMC models have enabled us to see that, having
allowed for the full multilevel structure in the model, there is some evidence
that incoming ego nets of researchers are associated with variations in research
performance. Such a finding would not have been possible with simpler, single-level
models.

Extensions to the MMMC models are possible, and further information can be
obtained from them. Extensions include the possibility of random coefficients: to
investigate, for example, whether the explanatory variables for researchers have
stronger (or weaker) associations with the dependent variable in some ego nets,
compared with others. Peer-effect explanatory variables could be added in this
model framework. Other groupings could be included in the model framework such
as a geographical dimension — different regions of France, for example, or a time
dimension if the network information and attributes were available at different time
points. Other network subgroups could be used in the models, such as cliques. More
than one network subgroup definition could be used in the same model to investigate
the association of networks of dependence and structure. The extent to which we
can expect the corresponding model parameters to be identified will depend on
the quality of the available data. The identification of model parameters will also
depend on the extent to which the network matrices are different from one another,
and their density. Further information that can be obtained from MMMC models
include the residuals for the various ego net levels, and other levels specified in the
models. These would allow the identification of “unusual” ego nets of researchers
or laboratories, by ranking the residuals in a similar manner as has been done for
schools in studies of school effectiveness, or hospitals in health studies.
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Chapter 6
Multilevel Network Analysis Using ERGM
and Its Extension

Peng Wang, Garry Robins, and Petr Matous

Introduction

Exponential random graph models (ERGMs) posit network structure as endogenous
based on the assumption that network ties are conditionally dependent, in other
words, the existence of a network tie depends on the existence of other network
ties conditioning on the rest of the network (Frank and Strauss 1986; Lusher
et al. 2013; Snijders et al. 2006; Robins et al. 2007). ERGM specifications have
evolved from the baseline Erdds-Rényi or Bernoulli random graphs (Erdos and
Rényi 1960) to the most recent Edge-triangle models (Pattison and Snijders 2013)
using various tie dependence assumptions. Pattison and Snijders (2013) summarized
these assumptions in a growing hierarchical structure that provides guidelines for
future ERGM specification developments.

In multilevel network contexts, ERGMs offer a statistical framework that
captures complicated multilevel structure through some simple structural signatures
or network configurations based on these tie dependence assumptions. But for
multilevel network models, network ties are interdependent not only within levels
but also across levels. The interpretations of ERGM parameters make hypothesis
testing about multilevel network structure possible. Wang et al. (2013b) proposed
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ERGM specifications for multilevel networks, and demonstrated the features of
multilevel ERGMs with simulation studies and modeling examples. Combining
multilevel network structure and nodal attributes, Wang et al. (2015) proposed
Social Selection Models (SSMs) where the existence of multilevel network ties are
conditionally dependent on not only the existence of other network ties but also
on nodal attributes. They demonstrated that nodal attributes may affect network
structures both within and across levels.

In this chapter, we will first review the multilevel network data structure,
multilevel ERGM and SSM specifications as proposed in Wang et al. (2013b, 2015).
Then we will apply these models to a dataset collected among 265 farmers and their
communication network in a rural community in Ethiopia. The modeling example
highlights the features of these models and their theoretical importance, that is,
within-level network structures are interdependent with network structures of other
levels; and within level nodal attributes can affect multilevel network structures.

Multilevel Network Data Representation

Social network data consists of a given set of nodes, ties or relationships defined on
the nodes, and various attributes of the nodes. A one mode network with n nodes
can be represented by an n by n adjacency matrix X = {XU} which is a collection
of network tie variables such that X;; = 1 if there is a tie between nodes i and j,
otherwise X;; = 0. For two-mode or bipartite networks with # nodes in one set
and m nodes in the other, X becomes an n by m rectangular matrix. In ERGMs, X
can be treated as a network random variable with its realization denoted by x, i.e.
X = x. Multilevel social network data can have several sets of nodes where each
set defines a level; ties are then defined within or between levels. In the simplest
form as shown in Fig. 6.1, a two-level network can be seen as a combination of
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Fig. 6.1 A two-level network representation
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two within-level one-mode networks (labeled here as A and B), and a bipartite
meso-level network (X). Such network structure is not unusual in social networks.
Examples include researcher advice ties and collaboration among their affiliated
laboratories (Lazega et al. 2008; Wang et al. 2013b); interaction among employees
and cooperation among their organizational units in a government institution (Zappa
and Robins 2015); alliances among tribal clans and environmental dependencies
among the forests they manage (Bodin and Teng6 2012).

The terminology of “levels” arises through such social science applications
where the empirical context naturally suggests constructs at different but intercon-
nected levels of analysis. The multilevel ERGM, however, does not require such
a context. Rather it is applicable to more general data structures: at a minimum,
two types of nodes with distinct types of tie within and between the different
node sets (Wasserman and lacobucci 1991). In our modeling example, the two
“levels” are formed by classifying the 265 Ethiopian farmers into two groups of
87 entrepreneurial (level A) and 178 non-entrepreneurial (level B) farmers based
on their activities. These can indeed be thought of as two levels in the sense that
the entrepreneurial farmers provide the means whereby the social system accesses
the wider agricultural economy in Ethiopia. Although all within- and between-
level networks in our example are notionally communication ties, the content of
communication may differ depending on whether it concerns entrepreneurial or
non-entrepreneurial activities. The multilevel ERGMs described in the next section
enable us to examine whether these communication structures differ within and
between the two different types of farmers.

Multilevel ERGMs

Wang et al. (2013b) proposed ERGMs for multilevel networks by applying the
hierarchy of dependence assumptions (Pattison and Snijders 2013). The resulting
model combines the features of one-mode and bipartite ERGMs (Frank and Strauss
1986; Wasserman and Pattison 1996; Snijders et al. 2006; Skvoretz and Faust
1999; Agneessens and Roose 2008; Wang et al. 2009, 2013a), and highlights the
interdependent nature of micro-, macro- and meso-level network ties. Using the
notation introduced in the previous section, a multilevel ERGM can be expressed as

PrA=a,X=x,B=0b) =
QQZQ(a) + QQZQ (x) + QQZQ(b)'F
LexpY {
(4]

QQZQ (a,x) + QQZQ (b,x) + QQZQ (a,x,b)
where

* (Q defines a network configuration where the tie variables within a configuration
are assumed to be conditionally dependent.
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Alternating-triangles (AT) Alternating-two-paths (A2P)

Fig. 6.2 ERGM specification for one-mode within-level (A or B) networks (z¢ (a) or zg (b))

* 7o is a network statistic, or the count of the configuration of type Q. Using
twork X le, it takes th 1 f = X
network X as an example, it takes the general form zy(x) le_[x,-jeg i

* 0 is the parameter associated with z¢
* k() is anormalizing constant defined based on the graph space of networks of a
given size and the actual model specification.

For a two-level network (A, X, B), zp (a) and zp (b) are within-level network
statistics which may be defined based on ERGM specifications for one-mode
networks such as those used by Snijders et al. (2006). Figure 6.2 lists some within-
level graph configurations we use in our modeling example.

The number of Edges controls the density of a network distribution; the Isolate
effect is helpful to model degree distributions in networks with isolated nodes; an
alternating-star (AS) effect models the network degree distribution more generally,
with a positive effect indicating degree centralization; the alternating-triangle
(AT) effect models tendencies to network closure; and the alternating-two-path
(A2P) parameter models the tendency for nodes to share multiple partners. The
“Alternating” mechanism was introduced in Snijders et al. (2006) to alleviate ERGM
degeneracy issues (Handcock 2003; Rinaldo et al. 2009), and hence improve model
convergence.

For our empirical example, the AS, AT and A2P parameters in the A network
(the entrepreneurial farmers) test whether some of the entrepreneurs are particularly
popular or active among their peers (AS); whether there is network closure among
the entrepreneurs (AT); and whether entrepreneurs tend to share entrepreneurial
partners (A2P).

Zg (x) are meso-level statistics which may follow ERGM specifications for
bipartite networks such as those proposed by Wang et al. (2013a). Figure 6.3
provides the bipartite configurations we use in our modeling example where type
A nodes are depicted as squares, and type B nodes are circles.

Similar to one-mode networks, the meso edge parameter controls the density
of the meso-level network; alternating-stars A and B (ASA, ASB) are meso-level
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Fig. 6.3 Meso ERGM specifications

degree centralization effects; and alternating-four-cycles-B (ACB) is similar to the
one-mode A2P, representing type A nodes’ tendency to share multiple partners
of type B. The ACB can also be interpreted as a bipartite closure effect; as
in bipartite networks, the smallest closure that is not a tie is a four-cycle. The
alternating-edge-cycle-A (AECA) represents interaction between bipartite closure
and degree centralization: a brokerage effect where the central A-node in the AECA
configuration can be seen as a broker between the closed meso-structure and the rest
of the meso-network (Wang et al. 2013a).

For the farmers, the meso-network is composed of the ties between
entrepreneurial and non-entrepreneurial farmers. The ASA parameter tests whether
some entrepreneurial farmers are particularly active or popular among non-
entrepreneurial farmers (and vice versa for ASB); the ACB parameter investigates
whether entrepreneurs tend to share non-entrepreneurial partners; and the AECA
parameter examines whether entrepreneurs who share non-entrepreneurial commu-
nication partners are also likely to have other non-entrepreneurial communication
partners. For AECA, a negative parameter suggests that communications between
entrepreneurs and non-entrepreneurs tend to pass within closed structures of shared
partners, and that entrepreneurs operating within these cycles do not communicate
with external non-entrepreneurs.

Zp (ax) and zg (b,x) are network statistics involving one of the within-level
networks and the meso-level network. zp (a,x,b) are cross-level statistics involving
tie variables from all three networks. Wang et al. (2013b) proposed statistics for
non-directed networks such as those in Fig. 6.4. Wang et al. (2013b) also included
directed multilevel networks, which we will not consider here. Here we extend the
Wang et al. (2013b) non-directed statistic by introducing the Alternating-Star-A-X-
Alternating-Star-B (ASAXASB) and the Alternating-four-cycle-AXB (AC4AXB)
configurations that are particularly helpful in modeling the empirical data.
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Fig. 6.4 Two-level ERGM specification for non-directed networks

Star2AX and Star2BX are effects testing whether active nodes in the one-
mode network (A or B, respectively) are also active in the meso network. For
instance, are entrepreneurs who are popular among entrepreneurs also popular
among non-entrepreneurs? StarAXAA and StarAXAB are the “Alternating” ver-
sions of Star2AX and Star2BX, following Snijders et al. (2006) to enhance model
convergence and limit degeneracy issues.
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Triangle-XAX (TXAX) and Triangle-XBX (TXBX) represent the tendency for
meso ties to be closed by within-level ties, i.e. the tendency for nodes with common
affiliations to form ties. ATXAX and ATXBX are their “Alternating” versions. For
instance, if two non-entrepreneurs share an entrepreneurial partner, are they also
likely to communicate with each other?

L3XAX and L3XBX are three-paths that test whether nodes that are active or
popular in the meso network are tied within levels. For instance, do entrepreneurs
with many non-entrepreneurial partners tend to communicate with each other? The
L3AXB effect tests whether there is a tendency for active or popular nodes in
within-level networks to be affiliated in the meso network. For instance, do popular
entrepreneurs tend to be partners of popular non-entrepreneurs? We call these effects
cross-level assortativity effects as they represent degree correlations established by
a tie of a different type. The ASAXASB effect is the “Alternating” version of the
L3AXB effect, which helps model convergence in our modeling example.

The C4AXB effect represents a cross-level alignment structure where nodes
with connected affiliations are also connected. This effect is of particular interest
in two-level network models, as it tests whether having a connection in one level
enhances the likelihood of forming a tie in the other level. If there is a tie between
two entrepreneurs, is there also likely to be a tie between their non-entrepreneurial
partners?

The AC4AXB configuration is the “Alternating” version of C4AXB, which can
also be interpreted as cross-level structural equivalence, as it has two nodes of differ-
ent types sharing the same partners (regardless of node type). Structurally equivalent
nodes may share other properties such as various attributes or performance measures
(Lorrain and White 1971; Burt 1976). The effect tests whether there is a tendency
for entrepreneurial and non-entrepreneurial farmers to share the same patterns of ties
within and across levels: in short, whether they occupy similar network positions.

Multilevel Social Selection Models

Social Selection Models (SSMs) incorporate nodal attributes as exogenous covari-
ates to test the hypothesis whether network structures are affected by nodal
attributes. Robins et al. (2001) proposed SSMs for one-mode networks; and
Agneessens and Roose (2008) and Wang (2013c) described bipartite SSMs. Wang
et al. (2015) proposed specifications for multilevel SSMs and demonstrated that
multilevel network structures may be affected by attributes of nodes within the same
level as well as of nodes from a different level. In this section, we review the general
form of multilevel SSMs and some specifications used in our modeling example.
Nodal attributes can be binary, continuous, or categorical. Binary attributes
use “1” to indicate a node “has” or “belongs to” a certain group, e.g., gender,
organizational membership, “0” otherwise. Continuous attributes assign values
to nodes based on various measurements, such as age, experience, and various
performance measures. Categorical attributes divide the set of nodes into groups or
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categories that allow us to test the tendency of nodes with matching or mismatching
categories to form ties. Let ¥4 = y4 and Y® = y® denote the random variables
representing attribute values for nodes from level A and B respectively. Each
attribute random variable is a collection of attribute variables for individual nodes,
ie. YA = {Y} and Y® = {YP}. As extensions to multilevel ERGMs, the multilevel
SSMs can be expressed as

PrA=aX=xB=0b|Y"=y"Yl=)F) =

& epo {0020 (a.x,b) + Opzp (a.x,b,y" ")}
0A

where

* Zgp (a.x,b) represents graph statistics involving only network tie variables as in
multilevel ERGMs.

e za(a,x, b,yA,yB) are statistics involving interactions among tie variables and
attribute values. Here A represents configurations derived from dependence
assumptions between network tie and nodal attribute variables (Robins et al.
2001). Using network A as an example, SSM statistics can be expressed in the

general form of zA Z l_[A, foten Ay ,AYA
* 0p and 0, are the associated parameters for their corresponding graph statistics.

Note that not all of {a, x, b, yA, yB } are required to be present in SSMs, depending
on the design of the study or availability of the relevant data.

The attribute variables are treated as fixed covariates in SSMs to test how attribute
values may affect the formation of network ties. More interestingly, in the multilevel
network context, we may test how attributes of nodes at one level may affect tie
formation at the other level, as well as in the meso network.

Figure 6.5 lists some example SSM specifications for within-level one-mode
networks as proposed by Robins et al. (2001).

The Activity effects for binary and continuous attributes test whether nodes of a
particular type or higher attribute values tend to be more active in the network. The
Binary interaction effect tests the tendency for nodes of the same type to form ties.

Activity Activity Matching
Interaction Difference Mismatching
Binary Continuous Categorical

Fig. 6.5 SSM specification for one-mode networks
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Fig. 6.7 Two-level SSM specifications

The “Difference” effect for continuous attributes can be interpreted as a homophily
effect where a negative parameter estimate indicates nodes with similar attribute
values tend to form a tie. The categorical “Matching” and “Mismatch” configuration
tests whether nodes from the same or different categories tend to form more ties.

Figure 6.6 lists some bipartite SSM configurations used in our modeling example
for the meso network (See also Wang 2013c). Interpretations of these configurations
are very similar to their one-mode counterparts except that the two nodes involved
in the dyad are from different levels.

Although they are not used in our examples, Fig. 6.7 lists some possible
multilevel SSM specifications that involve attribute measures from one level (A).
A more comprehensive list of configurations with attributes from both levels and
their possible interpretations can be found in Wang et al. (2015). The two-star
configurations represent the tendency for nodes of a particular type or nodes with a
higher attribute to be popular or active in both within- and meso-level networks.
The interpretations for the triangle, three-path and four-cycle effects are similar
to the interpretations of their corresponding configurations in multilevel ERGMs,
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except they also focus on whether the nodes involved in the dyad both have the
same attributes, or have similar attribute values, or belong to the same or different
categories.

Estimation and Goodness of Fit

The normalizing constant «(0) for ERGMs or SSMs becomes intractable for even
small networks, because the number of possible networks increases drastically as
the number of nodes increases. Hence ERGM/SSM parameter estimation relies on
network samples generated from Monte Carlo simulations. The model presented
in this chapter is based on the output from MPNet software as an extension to
PNet (Wang et al. 2009) which implements the Markov Chain Mote Carlo (MCMC)
simulation and maximum likelihood estimation algorithms as described in Snijders
(2002). The estimation algorithm calculates t-ratios at the end of estimations where
models with t-ratios for all estimated parameters smaller than 0.1 in absolute values
are considered as converged models. The t-ratios also serve as test statistics for the
model’s goodness of fit where a comparison between the observed graph statistics
and the distribution of graphs simulated from converged models are made, and t-
ratios smaller than 2.0 in absolute values indicate adequate fit to underlying graph
statistics that are not explicitly included in the model.

A statistically significantly positive parameter estimate suggests the correspond-
ing observed statistics are greater than expected from an ERGM graph distribution
where the parameter value is set at 0. The significance of parameter size is
determined by the ratio of the parameter value to its estimated standard error. We
regard such ratios with an absolute value greater than 2.0 as significant parameter
estimates.

Modeling Example: Networks of Entrepreneurial
and Non-entrepreneurial Farmers in Ethiopia

We apply multilevel ERGMs to a dataset of 265 Ethiopian farmers from a rural
community and their agricultural information-sharing network. Ethiopia, with about
80 % of its population directly employed in agriculture, is one of the poorest and
most agrarian countries in the world (Central Statistical Agency 2004). The sector
is dominated by small-scale subsistence farmers with plots characterized by low
inputs and low outputs (Deressa 2007). Such farming families cultivate 95 % of
Ethiopian cropland and account for 90 % of the national production (Deressa 2007).
Farmers with no alternative sources of subsistence are the most vulnerable to the
volatile climate and after unproductive harvests may become dependent on food-aid
(Bewket 2007; Deressa 2007; Mojo et al. 2010). However, some farmers acquire
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additional sources of income outside their own farm, which can be used as a buffer
in times of need. These activities may also open opportunities and expose them to
people and information beyond the limited horizon of their village.

For the purpose of illustrating the multilevel ERGMs in this chapter, we use data
collected in 2011 in an Ethiopian village. The farmers in this region used to have
only a limited access to information outside of their local networks and as a result
some quintessential farming practices, such as composting, have been unknown in
the area until recently (Matous et al. 2013a, b, 2014). The farmers’ information-
sharing networks were elicited by a free list name generator with a prompt: “Please
list all people that you can recall from outside of this household that you seek out
for advice, you can learn from, or who can generally provide useful information
regarding farming practices.” The data and the context have been described in
Matous and Todo (2015). In the surveyed village of 265 households, 87 households
had some source of income outside their farm. These sources of income ranged from
small-scale entrepreneurial activities such as opening a shop or producing alcohol
and running a bar to occasional salaried work in the nearest city. In contrast, 187
farms had no external source of income and their subsistence was dependent on the
crop from their farms. We call the former group entrepreneurs and the latter group
non-entrepreneurs in this chapter and explore the differences and interdependencies
between the networks of these two types of farming households in rural Ethiopia.

These two groups form the basis of the two-level structure of the undirected
network model presented in this chapter. Level A is composed of the entrepreneurs
and level B is composed of the non-entrepreneurs. The communication between the
entrepreneurs and the non-entrepreneurs form the meso-level network X. Figure 6.8
depicts this multilevel network where entrepreneurs and non-entrepreneurs are
represented by squares and circles respectively.

Dividing the farmers into two levels allows us to test whether the difference in
the farmers’ activities may result in different communication structures. We may
hypothesize that the entrepreneurs have a higher exposure to the markets, broader
social contacts, and more diverse information, whereas non-entrepreneurs are tied to
their land. As the entrepreneurial farmers can be sources of external information and
advice, they may operate as brokers between groups of non-entrepreneurial farmers
to whom they provide advice. The multilevel ERGM presented below demonstrates
how we may test such hypotheses. It should be noted that we were unable to
obtain a converged single level one-mode ERGM to the entire network using current
specifications (i.e. Snijders et al. 20006). It appears that using homogeneous network
structural effects across both groups of framers is too strict a criterion. The two-
level model does not require the possibly unrealistic assumption that the networking
activities of the entrepreneurs and the non-entrepreneurs have to be similar.

There are several nodal attributes likely to affect the network structure that we
included in the model:

* Education: A continuous attribute representing the number of years of education
received by the household representatives. Highly educated farmers may be the
source of advice.
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Fig. 6.8 Communication network among 265 Ethiopian farmers (Note that for network X, 61
isolated A nodes and 15 isolated B nodes are removed from the visualization)

* Land size: The area cultivated by each household indicates the socio-economic
status of the household. Wealthy farmers may possibly be central in the village
agricultural communication network.

e Religion: In this community, most farmers are either Christian or Muslim.
Communication may more likely occur among members of the same religion
who regularly meet in the village church or the village mosque for regular
religious services.

* Region: There are three distinct areas or regions within this community separated
by a small river and a road. We take geographical location into account by using
a categorical variable, as farmers may be more likely to communicate with one
another simply because they live closer to one another.

The inclusion of these attributes in our model allows us to take into account
exogenous factors while modeling the endogenous social processes in this network.
In order to achieve model convergence, the network density was fixed throughout
the model estimation; hence the density of the multilevel network is not modeled and
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we do not use the various edge parameters mentioned (for sake of completeness) in
the previous figures. Table 6.1 lists parameter estimates of a converged multilevel
ERGM with significant parameters shown in bold font. The model specification is
selected based on goodness of fit (GOF) tests where a model is considered better if it
provides adequate fit to more auxiliary graph statistics that are not part of the model.
In the GOF tests, 131 relevant graph statistics were tested, including various ERGM
configurations proposed to date (i.e. Snijders et al. 2006; Wang et al. 2013a, b), SSM
configurations as in Robins et al. (2001), and Wang (2013c, 2015), and the global
clustering coefficients, standard deviations and skewness of the degree distributions
of within and meso networks. The final model provides an adequate fit to 128 of
them, and the three poorly fitted statistics are listed in Table 6.2. We interpret the
model parameters first, and then discuss what the GOF test results may further
suggest about the network structure.

We begin our interpretation of the model with the networks A and B, the within-
level parameter estimates for the entrepreneurs and non-entrepreneurs, respectively.
The negative Alternating-star estimates for both networks indicate low degree
centralization, so that high degree communication hubs do not emerge and the
information sharing is relatively decentralized in this village. However, the positive
Isolate parameter suggests that non-entrepreneurial farmers have a relatively high
chance of being disconnected from each other (although they might still have
connections with the entrepreneurs in the meso-level network X).

The positive Alternating-Triangle (AT) parameter estimates for both types of
farmers suggests communication closure at both levels. The negative Alternating-2-
path (A2P) parameter for non-entrepreneurs suggests that non-entrepreneurs are less
likely to communicate with each other unless they have communication partners in
common. In contrast, the A2P parameter is positive for the entrepreneurial farmers
and near the border of statistical significance (with a ratio of the size of the estimate
to its standard error of 1.87), which suggests that entrepreneurs tend to share
communication partners whether they have a direct communication tie or not.

Moving on to the attributes effects within networks A and B, the positive
Education activity parameter for the non-entrepreneurs suggests that the more
educated individuals have more communication links. Formal education among
non-entrepreneurs may increase their popularity as information providers or, alter-
natively, it may stimulate their information-seeking activity. There is no such effect
for entrepreneurial farmers.! However, there is a significant homophily effect for
the education levels for the entrepreneurs (negative Education difference parameter,
i.e. entrepreneurs with similar levels of education tend to communicate with one
another). This effect is not significant for the non-entrepreneurs, suggesting that
their communication is more hierarchical in terms of education.

ISince the model adequately fitted the statistics of education activity for entrepreneurial farmers,
we can consider such effect is not significantly different from 0.
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Table 6.1 Multilevel ERGM estimates for the Ethiopian farmers

Networks
Entrepreneurs (A)

Non-entrepreneurs (B)

Meso-level advice between
non-entrepreneurs and entrepreneurs (X)

Effects

AS

AT

A2P

Education difference
Region matching
Religion matching
Isolates

AS

AT

A2P

Education activity
Education difference
Land size activity
Region matching
Religion matching
ASA

ASB

ACB

AECA

Education difference
Land size activity A
Land size activity B
Land difference
Region matching
Religion matching

Entrepreneurs and meso-level networks StarAXAA
(A and X) ATXAX
L3XAX
Non-entrepreneurs farmer and StarAXAB
meso-level networks (B and X) L3XBX
Cross-level (A, B and X) ASAXASB
AC4AXB
Table 6.2 Poorly fitted Statistics Observed

graph statistics

TriangleXBX | 254
ATXBX 218.56
ClusteringX 0.25

P. Wang et al.

Parameter Std. err.
—1.718 0.327
0.638 0.135
0.069 0.037
—0.069 0.033
2.436 0.425
0.868 0.413
3.973 1.024
—2.632 0.393
1.147 0.080
—0.113 0.017
0.023 0.008
—0.017 0.013
—0.012 0.023
2.281 0.269
0.378 0.086
0.065 0.207
0.813 0.302
—0.716 0.171
—0.024 0.014
—0.013 0.022
0.111 0.052
—0.112 0.066
—0.073 0.072
3.708 0.538
0.620 0.208
1.265 0.344
1.746 0.194
—0.058 0.008
1.320 0.383
—0.046 0.013
0.117 0.018
—0.276 0.031
Mean | Std. dev. | t-ratio
108.13 | 26.10 5.59
92.76 |19.67 6.40
0.16 | 0.04 2.04
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Both religion- and region-matching parameters for both within-level networks
are strongly positive suggesting that information exchange is more likely to occur
within the same part of the village and within the same religion.

The parameter estimates for the meso-level communication reveal some inter-
esting differences between the entrepreneurs and the non-entrepreneurs. Firstly,
the centralization effect is significant for the non-entrepreneurs but not for the
entrepreneurs, which suggests centralization in the non-entrepreneurs’ meso-level
degree distribution and hence a disparity among the non-entrepreneurs’ access
to the entrepreneurs. Some non-entrepreneurs are particularly active in commu-
nicating with entrepreneurs. Secondly, the land size effects show that wealthier
entrepreneurs with larger land have more connections with the non-entrepreneurs
(indicated by positive Land size activity A), whereas the opposite may be true
for the non-entrepreneurs. Wealthier entrepreneurs tend to be favored by non-
entrepreneurs; whereas wealthy non-entrepreneurs may be less likely to commu-
nicate with entrepreneurs.

There are no meso-level homophily effects associated with education levels
or land size in communication between the two types of farmers. Religion and
region again play an important role in tie formation, i.e., entrepreneurs and non-
entrepreneurs are more likely to be partners if they are from the same part of the
village or belong to the same religious affiliation.

The negative Alternating-4-Cycle B (ACB) effect suggests that entrepreneurs
tend not to share their non-entrepreneurial partners. It seems that the meso-level
network is segmented by popular entrepreneurs. A possible interpretation is that the
farmers engaged in trading with external markets have some level of “monopoly”
over their own group of client farmers who are less likely to connect with other
entrepreneurs. In contrast, however, as we will see below with the ATXAX effect,
non-entrepreneurs may indeed be connected to two or more entrepreneurs when
those entrepreneurs communicate with each other.

The Alternating-Edge-Cycle B (AECB) parameter is negative but not significant.
Inclusion of AECB in the model provides good improvement on model GOF.

The interaction effects between the one-mode and bipartite networks are similar
for both entrepreneurs and non-entrepreneurs with positive star association effects
(StarAXAA and StarAXAB) and negative three-path effects (L3XAX and L3XBX).
The positive star association effects suggest farmers popular amongst their peers
are also popular with the other type of farmers. In contrast, the negative three-path
effects suggest that popular farmers in the meso network are less likely to be linked
to one another within-level. It seems that hubs in the meso network are also likely
to be hubs in the within-level networks, but are less likely to communicate with one
another. So, for instance, popular entrepreneurs (popular with both entrepreneurs
and non-entrepreneurs) tend to communicate less with each other.

As noted above, the positive Alternating-Triangle-XAX (ATXAX) suggests that
entrepreneurs who communicate with each other are also likely to communicate
with the same non-entrepreneurs.

From the cross-level effects, the positive ASAXASB effect suggests that within-
level popular actors are likely to be partners across levels. The alternating cross-
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level four-cycle (AC4AXB), which represents cross-level structural equivalence,
is negative, suggesting that the entrepreneurs and non-entrepreneurs tend to be
structurally different in this multilevel network, i.e. connecting to different groups
of individuals. This is likely to be due to the difference in their activities with non-
entrepreneurial farmers dedicated to the crop on their plots, whereas entrepreneurs
are also engaged in trading and other activities. This result is not unexpected but
emphasizes the desirability of modeling these two types of farmer at separate levels.

Although not suggested by the model parameters, the model GOF test shows the
current model underfits the triangle structures (Triangle-XBX and ATXBX with t-
ratios 5.59 and 6.40).2 A model that includes one or both of these effects would be
ideal; however, their inclusion in the model specification did not yield a converged
model. This GOF result suggests that two linked non-entrepreneurs are also more
likely than the model has predicted to communicate with one or more common
entrepreneurs. Considering the negative three-path effects (L3XAX and L3XBX)
in the model with the positive ATXAX effect and the underfitting of ATXBX, the
results suggest that popular farmers in the meso-level network are less likely to
communicate within levels unless they share partners in the meso level network.

In summary, this multilevel ERGM presents us with an interesting picture of
how the communication network is segmented by farmer types, their popularity
or activity, and their attributes. Controlling for religion, region, and education,
non-entrepreneurs who are popular among their non-entrepreneurial peers tend
to communicate across levels with popular entrepreneurs. Cross-level network
closure is present: connected non-entrepreneurs are likely to share the same
entrepreneurial partners; and connected entrepreneurs are likely to share the same
non-entrepreneurial partners. There is also meso-level segmentation suggesting that
entrepreneurs have sets of non-entrepreneurial “clients.” Finally, the network has a
tendency against cross-level structural equivalence or alignments: entrepreneurs and
non-entrepreneurs do not occupy similar network positions. So, overall, although
this a relatively small village that is influenced by classical demographic factors
such as geospatial, religious and wealth segmentation, there are nevertheless
additional self-organizing network processes that affect the flow of agricultural
information. These include segmentation into relatively closed advice structures that
restrict the flow of information between cliques of entrepreneurial and client non-
entrepreneurial farmers. Without multilevel ERGMs, it would be difficult to uncover
the structure of these social processes.

?Besides under-fitting the interaction triangle effects (TriangleXBX and ATXBX), the model also
under-fitted the bipartite clustering coefficient as the ratio between the number of four-cycles and
three-paths (Robins and Alexander 2004), as suggested by the t-ratio of 2.04.
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Conclusion and Discussion

Based on conditional dependence assumptions among network ties, ERGMs for
multilevel networks allow us to test the interdependent nature of network ties within
and across levels. ERGM can thus reveal detailed multilevel social processes that
are otherwise difficult to investigate with other methods.

In this chapter, we reviewed the generalized network structure for multilevel
networks, the multilevel ERGM and SSM specifications as proposed in Wang et al.
(2013a, 2015). We extend the model specifications with two new configurations that
are the “Alternating” forms of cross-level three-paths and four-cycles and discussed
their possible interpretations.

We apply the extended model specifications to a communication network among
Ethiopian farmers. The resulting model provides an informative description of this
farming community. There are similarities as well as clear distinctions between the
entrepreneurial farmers and the rest. Without considering the meso- and across-
level effects, we might argue that the two types of farmers have similar network
behavior, i.e., both are active within their religion and region; both have flat degree
distribution, and both tend to form network closures. The meso- and cross-level
effects, however, show that the network is segmented by the farmer types, where
popular meso-level nodes tend not to communicate within levels, but popular
within-level nodes tend to communicate across levels through the meso-level
network. The negative cross-level structural equivalence parameter further reflects
such fine distinctions.

Similar to ERGMs, multilevel ERGMs have their limitations. Not all empirical
networks will result in converged models. Issues of model degeneracy, lack of com-
putational efficiency, and a possibility of inadequate representation of the modeled
social processes may still be present. These issues call for further development of
ERGM and its extensions. We see the current development of multilevel ERGMs
as early steps towards a full elaboration of a branch of methodology for analyzing
multilevel social network data.
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Chapter 7
Correspondence Analysis of Multirelational
Multilevel Networks

Mengxiao Zhu, Valentina Kuskova, Stanley Wasserman, and
Noshir Contractor

Introduction

Social network analysis is concerned not only with social relations (Wellman 1988),
but also more generally with attributes across pairs of social actors, which are
referred to as dyadic attributes (Borgatti and Everett 1987, p. 243). These dyadic
attributes range from shared affiliations to distances between cities to similarities
in respondents’ answers to items on a questionnaire. While most network studies
have investigated one-mode networks (Borgatti and Everett 1987), social network
approaches are easily extended to two-mode data, such as the relationship between
employees and work teams with which they are affiliated (Wasserman and Faust
1994). In two-mode networks, different types of nodes (e.g., employees and
teams) are represented as different modes. Unlike typical affiliation networks (for
a primer on affiliation networks, please refer to Wasserman and Faust 1994;
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Borgatti et al. 2013; Newman 2010), where a second mode is just a subset of the
first, we focus on the data with emergent properties of the second mode (e.g., teams
are more than just subsets, because they perform additional emergent functions that
go beyond uniting individual employees together). The relations in this network are
the links between nodes of different modes. Over the years, a variety of tools and
techniques have been developed for displaying, analyzing, and interpreting such
data (e.g., Borgatti and Everett 1987; Doreian et al. 2004; Latapy et al. 2008; Roberts
2000).

However, most current two-mode network analysis techniques focus exclusively
on the links between different modes, without considering dyadic attributes such
as attribute similarity or nodes nested in networks at different levels. Despite
recent advancements in network analysis methods, including extensions of multiple
correspondence analysis (e.g., D’Esposito et al. 2014), there is clearly a need to
further extend many of these approaches to multiple levels. The multilevel approach,
recently popularized in fields such as management, combines the unit of observation
with higher levels in which the focal unit is embedded (individuals in teams, teams
in units, units in organizations; e.g., Phelps et al. 2012). This multiple level approach
has been considered, for example, in studies on innovation (Berends et al. 2011) and
knowledge management (Zhao and Anand 2013). Methods such as canonical corre-
lation analysis have been used to evaluate two sets of variables simultaneously with
the contingency table as input. For example Parkhe (1993) utilized this approach to
study the relationships between a set of performance variables and a set of payoffs
(e.g., Parkhe 1993). While it is a very useful technique and can be applied to multi-
way contingency tables (Gilula and Haberman 1988), canonical correlation analysis
is not designed for the study of network structure and composition variables, and
this limitation is often acknowledged in studies using this technique (e.g., Berends
et al. 2011; Payne et al. 2011; Zhao and Anand 2013). As these researchers noted,
some research questions can neither be asked nor answered, because of the lack of
methodology for analyzing relational data at multiple levels.

Consider, for example, individual actors nested within teams. Due to existing
organizational structures or other a priori arrangements, actors are often nested
within multiple teams that share one or more members, thus giving rise to affiliation
data (Wageman et al. 2012). In such an arrangement, the actors are the lower level,
the teams are the upper level, and the actors can be in more than one team. These
types of data are multilevel and can be complex if the actor-nesting is not mutually
exclusive. In many teams, especially self-assembled teams, individuals participate
in more than one team (e.g., Denton 1997; Kauffeld 2006). In the meantime,
individuals are socially connected to each other through previous collaborations
or communications with each other. The dependencies among overlapping teams
create an additional level of complexity in the analysis, with the presence of
the aggregate effects of team members’ interactions with one another (Klein and
Kozlowski 2000). Further, there are theoretical reasons for understanding the effects
of multiple team membership on productivity and learning at the individual and team
level (O’Leary et al. 2011).



7 Correspondence Analysis of Multirelational Multilevel Networks 147

The need for a robust method for visualizing and modeling multilevel relational
data becomes even more challenging as data sets become richer and larger. Consider,
for example, big data, and the need to have exploratory and data reduction tools to
deal with it. According to McAffee and Brynjolfsson (2012), about 2.5 exabytes of
data are created every day, and this number doubles approximately every 40 months
(an exabyte is 1000 times a petabyte, which is equivalent to about 20 million
cabinets’ worth of text. Walmart alone generates approximately 2.5 petabytes of
data an hour from customer transactions). While insights gathered from analyzing
big data can allow companies to substantially outperform the competition (McAfee
and Brynjolfsson 2012), these insights can only be unleashed when we have a better
understanding of how to use analytics and methodological tools for data reduction
(LaValle et al. 2011). In addition to the size, the most notable thing about big data
is the embedded relationality: patterns of connections between individuals, groups
of people, relationships between them, or just the structure of information, such
as presence of latent factors within the set (Boyd and Crawford 2011). Network
approaches are a logical choice to discern these insights, and in this regard, multiple
correspondence analysis can prove to become a useful tool, especially when multi-
level relationships are embedded within the data. In this regard, the approach we
propose can be used as a preliminary data analysis tool, allowing us to look at the
structure of the data for the purpose of determining more advanced models that
could fit that structure.

To address some of the issues outlined above, this study provides two examples,
which model teams of individuals using network methodology. The most straight-
forward way to represent team membership is to use one-mode networks, where
nodes represent individuals, and links among individuals indicate joint participation
in one or more teams. This one-mode representation captures the overlapping
team membership, but unfortunately, fails to preserve the team structures. For
instance, links in a one-mode network between A, B and C fail to convey
information about whether A, B, and C were together on one team or if A and
B were on one team, C on another team, and B and C on yet another team.
Instead, we use affiliation networks to represent teams and individuals, with links
representing team membership. There are many representations of an affiliation
network, including as an affiliation network matrix, bipartite graph, hypergraph,
or simplicial complex (Borgatti and Halgin 2011; Faust 2005; Skvoretz and Faust
1999). Each of these representations contains exactly the same information, and any
one representation can be derived from the other. This study uses bipartite networks,
in which the two types of nodes represent teams and individuals. The social
relations between individuals can then be easily represented using one-mode net-
works with nodes representing individuals and links representing relations between
individuals.

Understanding the associations between and among variables in complex social
systems, which exist, for example, in multiple nested groups, can be difficult, and
there is a paucity of theoretical models that yield precise hypotheses. Hence we
argue for the use of exploratory network analysis techniques as a useful theoretical
preamble (and/or data reduction strategy) to more confirmatory approaches such
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as specifying p*/ERGM models (Holland and Leinhardt 1981; Wasserman and
Robins 2005). This exploration is especially useful in narrowing the potentially
unwieldy combinatorial space for model specification. Hence we propose a method
for exploration of multilevel relational data that distills the number of possible
hypotheses and generative mechanisms that can be subsequently tested using
confirmatory methods such as p*/ERGM.

We use correspondence analysis (Wasserman and Faust 1994) and its extension,
multiple correspondence analysis (Greenacre 2010), which enable us to analyze
multiple relations and attributes at both individual and team levels. Correspondence
analysis incorporates the interactions among observations and can be extended to
more than two sets of variables; here, we show how it can be used on a much larger
number. The results from correspondence analysis can also be presented graphically,
using a plot rather than numbers alone. Relations among various variables as well
as observed raw data can be shown in the same plot, essentially providing a much
richer graphical output. Because of these advantages, correspondence analysis can
be used as an important exploratory tool to examine the features of the dataset and
the relations among variables of interest.

In this article, we present a brief history of this exploratory network analysis
approach, provide theory for extending correspondence analysis to multiple levels,
and then provide two illustrative examples from individuals playing in teams in
massively multiplayer online games (MMOG). The first example is of combat teams
made up of individuals from United States playing the MMOG EverQuest II. We
explore the impact of among various individual-level and team-level attributes on
team performance, while considering team affiliations and social relations among
individuals. We use this example to show how multiple correspondence analysis
can be used for hypotheses generation, and later for confirmatory testing with
more advanced methods. The second example considers another MMOG, Dragon
Nest, with individuals, this time in China, playing in multiple combat teams. We
use the example to demonstrate the utility of our methodology to discern cultural
differences in team assembly and performance, showing how comparative analysis
of large datasets could unearth cultural differences.

Methodology

Existing Methods for Analyzing Affiliation Network Data

Bipartite networks are one way to represent affiliation networks as including
two types of nodes as well as relationships between those two types of nodes
(Wasserman and Faust 1994). Figure 7.1 illustrates a bipartite network of six
children and the three parties they attend. The affiliations between individuals
and teams are in-between links. For example, a link between Allison and Party
1 indicates that Allison went to Party 1. This relationship system can have other
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Fig. 7.1 Bipartite graph as
example representation for
multilevel networks (From
Wasserman and Faust 1994,
with modifications)

Party 1, ~ = #F.’-:':lrty-é :‘_\ Party 3

-
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relations as well as attributes, such as one-mode relational ties: If we label two levels
as A and B, we can have AA and BB ties, in addition to AB ties. Also, there could
be more than two levels. In the example shown, we can add a third level, alliances
(e.g., multiple parties sharing the same theme) and include relational ties within and
between all levels (it is not shown on the graph, but can be easily inferred as one
more level for alliances between parties). For such structures, there are two types
of variables: Q composition (or attribute) and R structure (or relational) variables.
Such a dichotomy of composition and structure variables is rather common in data
analysis, where one or more response variables are predicted as a function of a
collection of explanatory variables. In the example in Fig. 7.1, g = 6 and refers to the
number of children; i = 3 refers to the number of parties. We consider the variables
measured on each of the g(g — 1)/2 dyads in case of a one-mode network, or the g *
h dyads (in the case of a two-mode network with two levels). The number of dyads
changes corresponding to the number of modes and levels, and we consider N pairs
of possible inter-actor relationships (where N is, for example, equal to g(g — 1)/2 or
g * h) as the rows of a matrix and consider the variables that are measured on the
N rows. As a result, these dyadic pattern matrices have N rows and the number of
columns equal to the levels of composition variables taken together.

Ideally, representation of multilevel data should facilitate the visualization of all
three kinds of patterning described above: the AB structure, the A level structure,
and the B level structure. While simplicial complexes and hypergraphs (for details,
please see Wasserman and Faust 1994) provide representations, a common approach
is to convert the two-mode network into two one-mode networks: one shows how
actors are linked to each other in terms of events, and the other, how events are
linked together in terms of actors. However, neither provides an overall picture of
the total A, B, and AB structures. Bipartite graphs display the AB structure but they
do not provide a clear image of the associations among A actors or B actors.

This limitation is resolved with Galois lattices (Wasserman and Faust 1994),
which meet all three requirements in a clear visual model (Fig. 7.2 presents the
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Eliot: {Party 2, Party 3}
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Fig. 7.2 Galois lattice as example representation for multilevel networks (From Wasserman and
Faust 1994)

previous example as a Galois lattice). The nodes in Galois lattices are points in a
multidimensional space, each representing a subset of actors and events. Reading
from the bottom up, there is a line or sequence of lines ascending from a child to a
party if he or she attended that party. If two children’s ascending lines reach the same
party node, then they both attended that party. On the other hand, if two children’s
ascending lines can only reach the top (null) node, then it means that they did not
attend any party together, (e.g., Keith and Drew in the example in Fig. 7.2). In a
similar way, the relations between the parties can be read through the descending
lines that reach children.

Despite the obvious clarity, focus on subsets, and ability to display complemen-
tary relationships between the A’s and the B’s, the Gallois lattice method has a
number of disadvantages. First, the usual display becomes complex as the number
of actors and events increases. Second, there is no unique best visual. The vertical
dimension represents degrees of subset inclusion relationships among points, but
the horizontal dimension is arbitrary. As a result, constructing good measures is
problematic. Third, unlike graph theory, properties and analyses of Galois lattices
are not well developed.

Correspondence Analysis and Multiple Correspondence
Analysis

Correspondence analysis and its extension, multiple correspondence analysis, were
originally developed as a multivariate statistical technique for analysis of categorical
data (Greenacre 2010; Wasserman et al. 1990). In the 1980s, researchers started to
apply this method to analyze the one-mode and two-mode social network structures.
For a detailed review and comparison with other statistical methods, such as
canonical analysis, refer to, e.g., Borgatti and Everett 1987; Faust 1997; Wasserman
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and Faust 1994; Wasserman et al. 1990. Many applications of correspondence
analysis and multiple correspondence analysis have focused on visualizing and
displaying structures in networks (e.g., D’Esposito et al. 2014; Roberts 2000).
Recently (D’Esposito et al. 2014), extensions of correspondence analysis have
allowed studies to take into account the nature of the relational data (e.g., structural
(dis)similarity of actors or events) and nodes’ attributes. In this study, we apply cor-
respondence analysis and especially multiple correspondence analysis to multiple
and multilevel networks by focusing on the relations between attribute variables at
both the same and different levels, while considering and controlling for the network
relations between nodes from different modes.

For a two-mode network with A actors as one mode and B actors as another
mode, correspondence analysis is a method for visually representing both the rows
and the columns of a two-mode matrix in a map, where points representing the A
actors are placed together if they are tied to the same B actors; points representing
the B actors are placed close together if they are tied to the same A actors; and
A points and B points are placed together if those A’s are tied to those B’s.
Correspondence analysis includes an adjustment for marginal effects. As a result,
A’s are placed closed to B’s to the extent that these B’s were tied to few other A’s,
and these A’s are tied to few other B’s. One of the advantages of this method is
that it allows studying correlations between the scores in rows and columns. Using
reciprocal averaging, a score for a given row is the weighted average of the scores
for the columns, and the weights are the relative frequencies of the cells (Wasserman
and Faust 1994).

Mathematically, a bipartite network B with g nodes on the first mode and / nodes
on the second mode can be represented using a g X h matrix .#, where m;; = 1 if
node i from the first mode is affiliated with node j from the second mode and m;; = 0
otherwise. For example, in Table 7.1, the bipartite network is represented as follows.

Correspondence analysis takes the affiliation matrix as an input and represents
the relations between nodes in both modes as well as the relations in a low-
dimensional map. Results then identify multiple factors, which help to cluster nodes
from both modes based on the affiliation relations. Nodes from each mode are
assigned a set of scores, which can be used to cluster these nodes. For a bipartite
network of individuals and teams, the results of the correspondence analysis
summarize relations among individuals and teams in a dimension much lower than
the dimension of the network itself.

Given a g x h matrix .# as input to the correspondence analysis, a set of W =
min (g — 1,1 — 1) scores are generated for each row and column, with a set of W

Table 7.1 An example of
affiliation matrix for bipartite
network

Team | | Team 2 | Team 3
Persona |1 1 0
Personb |1 0 1
Personc |1 0 1
Persond |0 1 0
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numbers measuring the correlation between the rows and columns (Wasserman and
Faust 1994). The scores satisfy the following relations:

Mtk = Zi=1 o U (7.1)
8 mij

MV = ) ——Uj (7.2)
J Z,:l ms;

where, u;; is the row score for row i on dimension k; vj is the column score for
column j on dimension k. n% is called the principal inertia, and the u and v scores
are called the principal coordinates.

Standard coordinates ii and v (Greenacre 1984) can then be calculated by
rescaling the principal coordinates:

Uig = U/ Mk (7.3)

Uik = Vj/ Mk (7.4)

These scores are called standardized scores because the weighted mean is equal to
0 and the weighted variance is equal to 1.

The results from the correspondence analysis are often presented by plotting
the coordinates using just the first two dimensions (Nenadic and Greenacre 2007;
Wasserman and Faust 1989). Each mode is represented in this two dimensional
space, with points for each level of both modes. Let us label the first mode as
actors and the second mode as feams. Actors are placed close to each other in this
space if they are similar. Teams are placed close to each other in this space if the
teams are similar. Specific actors and teams are placed close to each other if those
actors involved are closely related to those teams. As an example, Fig. 7.3 shows
the plotted correspondence analysis for the bipartite person-team network data as
shown in Table 7.1. It can be observed from this plot that Person b and Person c are
close to each other, and the data show that both of them are members of both Team
1 and Team 3.

In addition to demonstrating the structural features of the system of teams and
individuals, correspondence analysis can also be used to study the relations of
attributes of teams and individuals. This requires an extension of the standard cor-
respondence analysis, to what is called multiple correspondence analysis (Nenadic
and Greenacre 2007; Wasserman et al. 1990). To include attribute variables from
many modes, the nonzero relations in the original g x h matrix .# are represented
as dyads and rows in the new matrix. All attribute variables need to be transformed
to categorical variables and be represented by indicator vectors as columns in the
new matrix. This new matrix is called the multiple indicator matrix (Wasserman
et al. 1990). Multiple indicator matrices can be developed in a similar way when the
relations studied in the models are one-mode networks.
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Fig. 7.3 Correspondence analysis for the bipartite network data
Table 7.2 Example of multiple indicator matrix
Team
Person gender | Person Team performance Team
Dyads | female gender male | performance high | medium performance low
(a, 1) |0 1 1 0 0
(b, 1) | 1 0 1 0 0
(c, 1) |0 1 1 0 0
(a2) |0 1 0 1 0
d,2) |0 1 0 1 0
(b,3) | 1 0 0 0 1
(c,3) |0 1 0 0 1

Consider the multiple indicator matrix created based on the network where
individuals belong to different teams (Table 7.2). In this example, Person a,
Person ¢, and Person d are males, and Person b is female. Performance of Team
1 is the highest, performance of Team 2 is midlevel, and performance of Team 3 is
the lowest.

The correspondence analysis on this newly constructed, multiple indicator matrix
is called multiple correspondence analysis. The results can be interpreted similarly
as for simple correspondence analysis.



154 M. Zhu et al.

Ilustrative Examples

Example 1: EverQuest 11
Data and Sample

Data for this example were obtained from the Massively Multiplayer Online Game
(MMOG) EverQuest II (EQ?2). It is a fantasy-based game, centered on performance
of combat teams, with multiple players nested within teams. The choice of the data
is important for several reasons. First, EverQuest is a large dataset, which highlights
the relevance of our proposed method in light of the discussion of “big data” above;
indeed, large datasets can be analyzed using multilevel correspondence analysis.
Second, the nesting feature is important because it indicates that there is more than
one level in this example. Server records for the game include player attributes,
activities, and relations. Data were collected in two stages: We used relational data
among players using the US-based game server between September 5-11, 2006. We
collected attribute data such as gender and affiliation with an in-game organization
called a guild for the same set of individuals at around 6 p.m. on September 4,
2006. Data from the EQ2 game world data is extremely large and hence analytically
intractable. However, the game world is partitioned into smaller island/continent
zones. The zones are relatively independent of each other, and, over a short time
period, there are no significant player transfers between them. To make the analysis
more feasible, teams were identified and sampled by zone. Figure 7.4 shows Zone
Everfrost in the EverQuest II game world. The dataset used in this study contains
192 players in 189 teams.

Figure 7.5 contains the bipartite graph of teams and individuals, from the Zone
Everfrost, with spring embedding layout (Borgatti et al. 2002). The illustration
demonstrates that the individuals and teams in the Zone Everfrost form one big
connected subset and several smaller ones.

Fig. 7.4 Zone Everfrost in
EverQuest II
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® Person
A Team

Fig. 7.5 Affiliation network of individuals and teams in Zone Everfrost with spring embedding
layout

Variables

There are several types of variables collected in this sample: performance variables,
individual- and team-level attributes, and relational variables.

Individual-level attributes include gender (avatar gender, not necessarily the
user gender; male/female), age (user age), level (measure of general ability in the
game), guild affiliation (whether or not a player belongs to one of the in-game
organizations), and expertise. In EverQuest II, there are four prototype classes:
Fighter, Priest, Mage, and Scout. They each have special expertise and serve
different roles in a team.

Team-level attributes include team size (number of players in a team, with a
minimum of two and maximum of six); team level (system-calculated level for
the team, representing the general ability of the team); team life span (the length
of time the team has been active). There are also expertise diversity, age diversity
(coefficient of variation), gender diversity, and guild diversity. In most analyses used
as examples in this study, we reported results on guild diversity.

This measure is calculated using the Blau’s index (Blau 1977) for each team,

L)
D=1- P
where n is the total number of guilds and p; represents the percentage of team
members who are in the ith guild.
Team performance variables are derived from the original six built-in metrics
in the game: number of monsters killed, number of encounters, earned experience
points, total level gain, number of quests completed, and the number of deaths
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(a negative measure of performance). F/ is the short-term performance; it captures
the number of monsters killed, number of encounters, earned experience points, and
total level gain. F2 is the long-term performance variable; it captures the number of
quests completed by the team. F3 is the negative performance variable; it captures
the number of deaths of team members. Performance variables are categorized into
three levels: high, mid, and low indexed as 3, 2, and 1 respectively and used as
a suffix to the type of performance metric. Thus, for example, in the indicator
matrix, F13 indicates high short-term performance, F21 indicates low-level long-
term performance, and F31 indicates low-level negative performance.

Other relational independent variables. There are two other player-to-player
relations available in the dataset. One is the communication relation constructed
by using the one-on-one message exchange activities (AA1). Another is previous
collaboration relations, constructed using data from the previous month’s log record
on who played with whom on the same team (AA?2).

We present three example analyses in this study. The first two are simple,
but illustrative, models to predict performance from team-level attributes (specif-
ically guild diversity) and individual-level attributes (specifically guild affiliation)
respectively. Greater variation in attribute variables implies greater ability to
“explain” performance. The third example explores the association between indi-
vidual attributes (specifically guild affiliation) and social relations (specifically prior
communication and collaboration).

Analytic Method

Correspondence analysis was done using R package ca (Nenadic and Greenacre
2007) for the bipartite network of Zone Everfrost. Standardized scores from the first
two dimensions in Fig. 7.6 above were plotted using R package ggplot2 (Wickham
2012). The results show several clusters: one big cluster and several smaller
ones. This is consistent with the observation of the bipartite network depicted in
Fig. 7.5. The correlations and distances among these clusters are measured more
mathematically in the correspondence analysis. Among the 12 variables, results
from two variables and the performance factors are shown here as examples.

Results

To demonstrate interpretation of results from correspondence analysis, we present
three examples using this dataset. The first two examples uses team performance
as dependent variable and explanatory variables related to the in-game organization
guilds. Two measures, one at the team level and one at the individual level, are
analyzed with three measures of performance. The first case is demonstrated with
two plots, one with and one without the observed raw relational data, to illustrate
how the relational data can be included in the plots. All other plots in this chapter
will not include such data. The third example uses multiple network relations
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Fig. 7.6 Correspondence analysis for the bipartite network from Zone Everfrost

(i.e., previous collaboration and chat) and an individual-level variable indicating if
a player is affiliated with a guild or not. The data are analyzed to discover potential
relationships between guild affiliation and social interactions. Results from three
analysis models are reported: one model for each network (e.g., collaboration and
chat) and one that includes both networks. The results are demonstrated in plots
without inclusion of the raw original data.

Team Performance and Team Guild Diversity: Fig. 7.7 shows the plot of the
first two dimensions from the results of the multiple correspondence analysis with
the original data. Figure 7.8 shows the same results without the original individual-
level data, where the relations among the variables are easier to see. Later in the
chapter, we show figures similar to Fig. 7.8, but for each of them, a figure similar
to Fig. 7.7 can be created. The circles are the raw data of team affiliations, triangles
are attribute variables, and the squares are the performance variables.

Table 7.3 shows the numerical breakdown of the analysis. The first two dimen-
sions explained 45.9 % of the total observed variance. The locations of the data
points and the locations of the variables show the relations among them. When data
points or variables are near to each other, it indicates closer relations.
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Fig. 7.7 Multiple correspondence analysis of guild diversity and performance with ties data

From the plot, most data points are clustered around the midlevel guild diversity
and all three performance factors are at midlevel (F12, F22, and F32). Some teams
have low long-term performance, shown by the small cluster near F21, or high long-
term performance, shown by the cluster near F23.

Low guild diversity is closer to high and medium short-term performance (F13
and F12), rather than low short-term performance (F11). Low guild diversity is also
closer to medium-level long-term performance (F22), rather than low long-term
performance (F21). High guild diversity is also close to medium short-term per-
formance (F12). Taken together these results suggest that, when the dependencies
among observations are considered, teams with members from diverse guilds have
higher short-term performance but lower long-term performance. These exploratory
insights should stimulate theoretical explorations leading to hypotheses generation
as well as offer opportunities for data reduction.

Team Performance and Individual Guild Affiliation: Next we explored the
association of an individual level attribute, specifically guild affiliation, and team
performance. Each dyad in the multiple correspondence matrix includes one node
from each mode. Attributes at the individual level can be included in the same way



7 Correspondence Analysis of Multirelational Multilevel Networks 159

A
F31
4- @ attribute
A performance
F21
A
L 2-
S
o
[$]
[0
é Guild_Diversity_Low
S - e F22,
% A A
c 0- F32
S PR Guild_Diversity®Mid
o} F12
3 4
Guild_Diversity_High
2 A
F33 A
4- s
| | | | |
-8 -6 -4 -2 0

First Eigenvector
Fig. 7.8 Multiple correspondence analysis of guild diversity and performance

Table 7.3 Multiple correspondence analysis of guild diversity and performance; principal inertias
(eigenvalues)

Percent variance | Cumulative percent

Dimension | Value | explained variance explained | Screen plot

1 0.13 23.70 23.70 seoksksk ok sk kR ok sk ok kR ok sk kR Rk ok ok ok
2 0.12 22.10 45.90 sestestestestesteototolololololololololokslokskolok

3 0.08 14.70 60.60 kR EREREREREE

4 0.07 13.00 73.60 EREREREREREE

5 0.05 9.80 83.50 stk ok

6 0.04 7.60 91.00 wk kR k

7 0.03 5.30 96.30 *E

8 0.02 3.70 100.00

as the team-level variables were in the previous example. Figure 7.9 shows the plots
of the first two dimensions from the correspondence analysis; Table 7.4 shows the
numerical breakdown of the analysis. The first two dimensions explain 50.7 % of
the total variance.
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Fig. 7.9 Multiple correspondence analysis of guild affiliation and performance

Table 7.4 Multiple correspondence analysis of individual guild affiliation and performance;
principal inertias (eigenvalues)

Percent variance | Cumulative percent

Dimension | Value | explained variance explained | Screen plot

1 0.13 26.9 26.9 sk sk sk sk kR kR sk ok sk sk sk sk ok ok
2 0.11 23.8 50.7 sk sk sk sk sk ok sk sk ok sk ok ok sk ok ok

3 0.07 14.8 65.5 stttk ko ok

4 0.06 12.5 78.0 otttk

5 0.05 11.3 89.3 stttk ok

6 0.03 6.5 95.8 ok

7 0.02 4.2 100.0

As shown in both Fig. 7.9, belonging to a guild is associated with mid-level short-
term, long-term, and negative performance. Individuals not in a guild face more
uncertainty. They may have either very high or very low short-term performance
(about equal distance to F11 and F13) and they usually encounter more deaths
(closer to F33 than F31).
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Fig. 7.10 Multiple network analysis results. (a) Guild membership and chat relation; (b) Guild
membership and collaboration relation; (¢) Guild membership and both relations

Multiple Network Analysis: Our third example with this dataset demonstrates
the application of correspondence analysis to multiple networks. We use examples
with the two-mode network team affiliation network (AB), two one-mode network
relations (chat relation [AA1] and collaboration relation [AA2]), and two attribute
variables, an individual level attribute (guild membership) and a team level attribute
(team performance). We first explore the association of guild membership and the
two one-mode network relations taken individually and then together. As shown in
Fig. 7.10a, players in a guild tend to chat with other players in guilds; players not
in a guild are not likely to chat with each other. Circles denote Node i’s attributes in
the Node i and Node j dyad; triangles denote Node j’s attributes in Node i and Node
Jj dyad.

Similar results are observed with the collaboration relation, presented in
Fig. 7.10b. Players in guilds tend to collaborate with others in guilds. Players who
do not belong to a guild are not likely to collaborate with each other. When both
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Fig. 7.11 Multiple correspondence analysis of guild affiliation and performance controlling for
multiple network relations

relations are included together with guild membership, we found (see Fig. 7.10c)
that they point in the same direction as the effects for each relation (i.e., guild
members collaborate with and chat with others in guilds). In other words, the
effects of each of the two relations while controlling for the other are similar to the
effects of the other relation. Using the analogy of regression models, it means that
the interaction effects are in the same direction as the main effects. For all three
analyses, the first two dimensions explain 100 % of the total variance, because there
are only two levels for one of the variables, and additional dimensionality is not
possible. Hence, we omit the tables for principal inertias/eigenvalues.

Next, we conducted a multiple correspondence analysis with the team affiliation
network (AB), the chat relation (AA1), the collaboration relation (AA2) and the
two attribute variables, individual level guild affiliation and team level performance.
Figure 7.11 shows the plot of the first two dimensions; and Table 7.5 shows the
numerical breakdown of the analysis. The first two dimensions explain 66.3 % of
the total variance. It is instructive to compare the association of guild affiliation
and performance in Fig. 7.11 controlling for the two one-mode relations (chat and
collaboration) with the association of guild affiliation and performance, shown in
Fig. 7.9, that did not control for the two one-mode relations. The associations of
guild affiliation and performance observed in Fig. 7.9 disappear in Fig. 7.11, when
controlling for the two one-mode relations. This suggests that at least part of the
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Table 7.5 Multiple correspondence analysis of individual guild affiliation and performance
controlling for multiple network relations; principal inertias (eigenvalues)

Percent variance | Cumulative percent

Dimension | Value | explained variance explained | Screen plot

3 0.11 10.9 712 Rkl
4 0.07 6.6 83.8 Biouioui

5 0.06 5.7 89.5 Rkiokiokol

6 0.06 5.6 95.1 wHE

7 0.03 3.0 98.1

8 0.02 1.9 100

previously observed relation between guild affiliation and mid-level performance
are captured by the frequent chat and collaboration between individuals belonging
to guilds. Thus, if we control these relations, the previously observed relationship
disappears.

It is important to consider the stability of the results. One source of instability
is sampling variability. We have no reason to suspect this being a source of lack of
stability of the solution because it is highly unlikely, given the data, that any one
point contributes substantially greater to the solution. Further, we did not perform
hypothesis testing, so that source of the lack of stability can also be eliminated.
Sampling variability could also occur because, given the large size of the overall
dataset, we randomly sampled from a wider population (Greenacre 2010). However,
we repeated the analysis several times with different subsamples and obtained very
similar results. For parsimony, we are not reporting the results here, but we have
confirmed that the results are consistent. Yet another source of stability stems from
the potential inadequacy of using the two-dimension plot to capture the association
among the variables of interests. As suggested in Greenacre and Hastie (1987) and
Roberts (2000), the quality of these two-dimension plots are generally “pessimistic,”
especially for multiple correspondence analysis, despite the fact that sometimes, the
first two dimensions account for a seemingly not very high portion of the total inertia
(such as 50.7 %, as in Table 7.4).

Developing Hypotheses from Preliminary Results

Multiple correspondence analysis, as described above, is a useful tool for hypotheses
generation and subsequent testing with other more sophisticated confirmatory
methods, such as p*/ERGM models (Robins et al. 2007a; Wang et al. 2013;
Wasserman and Pattison 1996). Here its use is demonstrated on the example of the
results in Fig. 7.9, relating individual guild affiliation with team performance.

As shown in Fig. 7.9, guild affiliation is associated with mid-level short-
term and long-term performance (F12, F22), and also with mid-level negative
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performance (F32). When not in guilds, individuals can exhibit very high or very
low short-term performance, and they usually show higher negative performance
(face more deaths). In other words, belonging to a guild is associated with a mid-
level performance, without any extremes of excellent results or higher deaths.
Theoretically this might suggest that affiliating with an organization (in this case,
a guild) serves to moderate a freelancer’s performance. Affiliation buffers against
very poor performance by leveraging the benefits of coordinating with, and gaining
insights from, other guild members. But it might also stymie very high performance
because of the costs incurred in coordinating with others. Therefore, a hypothesis
deduced from this curvilinear reasoning would be as follows:

Hypothesis 1: Belonging to a guild reduces the chances of extreme high or low
performance.

To test this hypothesis, we fitted exponential random graph models (p* models,
Wasserman and Pattison 1996) using MPNet software package. The essence of p*
modeling is comparing the network under consideration with a series of random
networks generated on the same set of nodes, to evaluate which network statistics
are statistically more or less likely to result in a distribution of networks in which the
observed network is very likely to occur. Model coefficients are logit-coefficients,
with the dependent variable indicating the log odds of a tie between two existing
nodes. Positive coefficients indicate that an attribute is more likely to appear in the
observed network than could be expected by chance; negative coefficients indicate
the opposite (Robins et al. 2007b).

We fit three models separately for the interaction between the individual attribute,
guild affiliation, and the short-term team performance measure. Results are pre-
sented in Table 7.6, and we focus on interpreting results related to attribute
variables. It can be seen from the table that, across all three performance levels,
guild affiliation has positive effects, i.e., individuals with guild affiliation are more
likely to join teams than those without guild affiliation. This effect needs to be
controlled when considering the interaction effects of individual guild affiliation
and team performance. We also control the effects of team performance in all
three models using the three team performance effect terms. After controlling the
structure effects (XEdge and XStar2A, i.e., density of the affiliation network and
the stars in the affiliation network), the converged p* model results show that,
across all three performance levels, there are negative and significant relationships
(at p<.1 level) between guild affiliation and performance. A negative relationship,
as explained above, means that the tie is less likely in the observed network than in
a randomly generated network with the same nodes. Across the three performance
levels, we find, that the association of guild affiliation with high-level and low-
level performance are less likely to be observed than with mid-level performance
(with parameters of and for low- and high-level performance vs. for mid-level
performance). These results indicate that belonging to a guild reduces the chances
of extreme performance on either end, supporting, in effect, Hypothesis 1.

The relationships explored and confirmed may not always seem intuitive. In
fact, common sense indicates that guild affiliation — belonging to a group — may
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Table 7.6 p* model results: guild affiliation and performance

Effects Estimates Standard errors
Low-level performance

XEdge —3.41 0.25
XStar2A —0.20 0.05
Individual in-guild effect 0.18 0.20
Team low-level performance effect 0.61 0.37
In-guild low-level performance matching effect —0.57 0.35
Mid-level performance

XEdge —3.63 0.36
XStar2A —0.20 0.05
Individual in-guild effect 0.21 0.35
Team middle-level performance effect 0.31 0.30
In-guild middle-level performance matching effect —0.09 0.31
High-level performance

XEdge —3.39 0.27
XStar2A —-0.21 0.05
Individual in-guild effect 0.21 0.22
Team high-level performance effect 0.19 0.31
In-guild high-level performance matching effect —0.56 0.31

Note: t-statistics = (observation — sample mean)/standard error; SACF (sample autocorrelation)

increase one’s performance. In our example, this is clearly not the case. Multiple
correspondence analysis results, presented in Fig. 7.9, prompted us to test a more
nuanced claim about the nature of the relationship between guild affiliation and
performance. We then considered possible theoretical explanations and formulated
this reasoning into a hypothesis and tested it with a more sophisticated confirmatory
network analytic technique. This illustrates how the use of MCA as an exploratory
tool to assist hypothesis formulation, especially with large datasets or multiple
attributes, substantially simplifies the analysis process. While we conducted the
confirmatory test using the same data sample, a stronger claim could be made if
the results were tested on different samples and found to be consistent. On the
other hand differences across data sets might prompt a second level of theorizing
about explanations for potential differences. The second example reported below
illustrates exploration of those differences.

Example 2: Dragon Nest

The second example helps us explore the impact of cultural differences on how
teams form and perform. We begin by reviewing theoretical considerations of
cultural differences that can inform an exploratory analysis; next, we utilize the
analytical methods described above, to explore cultural differences by comparing
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the predominantly US-based EQ2 data with the predominantly Chinese data
collected from the MMOG Dragon’s Nest.

Hinds et al. (2011) lament that cultural differences are often ignored in the studies
of global collaboration and recommend a more explicit and nuanced inclusion of
cultural differences in studies of teams. They suggest that studies of collaboration in
teams could benefit from consideration of cultural differences. A cultural dimension
potentially influencing how teams form and perform is tightness-looseness (Gelfand
et al. 2011). This dimension distinguishes cultures on the basis of the degree to
which they have many social norms and low tolerance for deviant behavior (tight)
versus few social norms and higher tolerance for deviant behavior (loose). Forming
teams based on social norms are more likely to occur in tight cultures, such as China,
with many social norms and low tolerance for deviant behavior than among those in
loose cultures, like the US, where individuals might be more likely to form teams
driven by performance considerations.

Data and Sample

Data for this example were obtained from the MMOG Dragon’s Nest (DN), a fan-
tasy game where players form teams in order to advance their characters and travel
into dungeons. Unlike the EQ2 dataset, where players were predominantly from
US, players in DN were predominantly from China. This offered the opportunity to
uncover the influence of cultural differences on how teams form and perform.

This dataset has the same characteristics as EQ2 — a sample of “big data,” with a
nesting of levels reflecting players being members in multiple teams. The data were
collected during 1 week, January 24-30, 2011, from Zone 101 of the game, and the
dataset contained information on 304 persons from 217 teams. One distinguishing
feature of this dataset is that teams are smaller, 2—4 people, so selecting a partner is
perhaps more strategic than in EQ2.

Variables

Variable selection was very similar to the way it was carried out in the first
example. Variables of interest included guild diversity (categorical, three-level
variable), individual guild affiliation (binary — either in-guild or not-in-guild), team
performance (categorical, three levels, equivalent to the short-term performance in
the first example). The only network relation examined here was the person-team
two-mode network.

Analytic Method

Correspondence analysis was performed in the same manner as in the first example,
using R packages ca (Nenadic and Greenacre 2007), ggplot2 (Wickham 2012).
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Fig. 7.12 Multiple correspondence analysis of guild diversity and performance

Because the primary purpose of this example was to demonstrate the cultural
differences that could be discovered using multiple correspondence analysis, we
focus more on the comparison with the first example than with the explanation of
the analytic techniques already described previously.

Results

Team Performance and Guild Diversity: As in the first example, we plotted the
results of the first two dimensions obtained using multiple correspondence analysis,
presented below in Fig. 7.12. Triangles are attribute variables, and the squares are
the performance variables. The first two dimensions explained 66.4 % of the total
observed variance. Similar to the first example, the locations of the variables show
the relations among them; when variables are near to each other, it indicates closer
relations.

From the plot it is clear that unlike the EQ2 example, where most data points were
clustered around the mid-level guild diversity, and all three performance factors
were at mid-level, the data in this example is more evenly distributed between
different performance levels. In other words, something other than performance
alone keeps people affiliated with their respective guilds. This could serve as a
demonstration of the cultural context described above: people in tight cultures
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Table 7.7 Multiple correspondence analysis of guild diversity and performance; principal inertias
(eigenvalues)

Percent variance | Cumulative percent

Dimension | Value |explained variance explained Screen plot
1 0.37 36.30 36.30 sk kb ok skt sk ok ok ok ok kb sk ok
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Fig. 7.13 Multiple correspondence analysis of guild affiliation and performance

(as this is an example comprised mostly of Chinese players) tend to form teams
based on social norms, rather than expectations of performance typical for loose
cultures (as in the US-based EQ2 example).

Table 7.7 shows the numerical breakdown of the analysis. The first two dimen-
sions explained 66.4 % of the observed variance, and unlike the EQ2 example with
eight dimensions, there were only four dimensions in total, which, again, could
possibly account for cultural differences between tight and the loose cultures.

Team Performance and Individual Guild Affiliation: Similar to the EQ2
example, attributes at the individual level were included in the analysis in the
same way as the team-level variables. Figure 7.13 shows the plot of the first
two dimensions from the correspondence analysis; Table 7.8 shows the numerical
breakdown of the analysis.
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Table 7.8 Multiple correspondence analysis of guild affiliation and performance; principal iner-
tias (eigenvalues)

Percent variance | Cumulative percent

Dimension | Value | explained variance explained | Screen plot

1 0.44 54.50 54.60 st sl e ke el ek ke e s ok
2 0.25 31.20 85.70 stk ok

3 0.11 14.30 100.00

Again, as in the previous example, it is clear that there are pronounced differences
in the way that people form teams, and that this influences how they perform. Here,
the affiliation with the guild actually results in lower performance, with a mid-
level performance associated more closely with not being in a guild. As results in
Table 7.8 show, there are actually only three dimensions to the data, with the first
two dimensions explaining over 85 % of the variance. Here, again, it is apparent that
social norms dictate how people form into teams, which is quite different, culturally,
from the EQ2 example where performance dictated how people formed teams.

As a result, we were able to use multiple correspondence analysis as a prelimi-
nary data analysis tool to explore cultural differences between how teams form and
perform in the US and China. More specifically, using MCA, one can explore large
datasets before engaging in time-consuming tasks of testing more complex models
with control variables.

Conclusions

In this study, we illustrate the advantages of using correspondence analysis as an
exploratory method for analyzing relational data at multiple levels using examples
from two massively multi-player online games. Correspondence analysis incorpo-
rates relations among the observations and includes both the relational ties and
attributes at multiple levels. The results from correspondence analysis can also be
visually represented in easily accessible plots. Relations among various variables
as well as observed raw data can be shown in the same plot although in some
cases it might be useful to suppress visualizing the raw data. The plots display
more information than just means and standard errors as seen in regression model
results. With these advantages, correspondence analysis can be used as an important
exploratory tool to examine the features of multilevel network datasets and the
relations among variables of interest. The insights drawn from this exploratory
technique serve as a theoretical and data reduction preamble for further analysis
that can then be carried out using other more sophisticated confirmatory methods,
such as p*/ERGM models (Frank and Strauss 1986; Robins and Pattison 2005;
Wasserman and Pattison 1996). As we have demonstrated with our examples,
generating hypotheses from MCA results and testing them by fitting p* models is
much more streamlined with the use of MCA. Ideally, with the proliferation of big
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data, the confirmatory tests can be analyzed using separate but similar data sources.
The proliferation of big data also increases the opportunity of using MCA to explore
differences such as data gathered across different cultures.

This method also has some limitations. For instance, correspondence analysis
requires categorical (or frequency) data. Some information is unavoidably lost
during the transformation. The plots created using the scores from the first two
dimensions are a projection of the higher dimensional data, which can lead to
misinterpretation by the human eye. Furthermore, the magnitude of distances
between points in the display does not indicate connections in the relation network.
As with many exploratory approaches, the visualization of the results can be viewed
in different ways by different people. Given the preliminary nature of this study,
we recognize these limitations. Our goal is not to draw conclusions about the
relationships of the study variables, but to use correspondence analysis as a way
of developing hypotheses and models that can then be tested using subsequent
techniques, such as p*/ERGM.
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Chapter 8

Role Sets and Division of Work at Two Levels
of Collective Agency: The Case

of Blockmodeling a Multilevel (Inter-individual
and Inter-organizational) Network

Ale§ Ziberna and Emmanuel Lazega

Introduction

Explorations of the vertical, multi-level dimension of social phenomena following
a linked-design approach (Lazega et al. 2008) improve knowledge of multi-level
conflicts and interdependencies, and additionally of the manner in which actors
at each level manage these interdependencies. Superimposed systems of interde-
pendencies are in fact superimposed levels of collective agency, inter-individual
and inter-organizational, that co-constitute each other (Breiger 1974) but must not
be conflated. In this chapter, we use blockmodeling at both levels separately and
jointly to further explore the articulations between such superimposed systems of
interdependencies and collective agency, inter-individual and inter-organizational.
Specifically, we present an application of blockmodeling (Ziberna 2014) to a
multilevel network of elite cancer researchers in France, the data for which was
gathered by Lazega et al. (2008). This network is multilevel, as it includes two
levels of units and agency: individuals (here researchers as level-one units) and
organizations (here laboratories as level-two units) and affiliation ties between and
among them. Therefore this network is composed of a one-mode (advice-seeking)
network of researchers, a one-mode (collaboration) network of laboratories, and
a two-mode network tying the researchers to the laboratories in which they are
employed.
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While this multilevel network has already been analyzed with this method
(Ziberna 2014), the analysis presented in that study was done with the aim of
presenting the generality of the method and not with the aim of getting as much
insight as possible into the structure of this multilevel network. Here we present
a more applied and exploratory blockmodel analysis of this network, enhanced by
substantive insights. In addition, the analysis presented here uses some of recent
advances in blockmodeling relatively sparse networks (Ziberna 2013a).

Three approaches for adding insights into the global structure of this multilevel
network are used. The first is a separate analysis of each level and a comparison of
results, both in terms of similarity of structure and in terms of whether the partition
of the researcher network is similar to the partition of the laboratory network in
which these researchers are employed. The second approach tries to convert this
multilevel problem to a classical one-level blockmodeling problem by converting or
reshaping one of the one-mode networks (for one level, in this case the network of
laboratories) to the other level. The meaning of this “reshaped” network as indirect
ties among researchers is discussed, as are the methods for joint analysis of the
original researcher network and this indirect researcher network. The third approach
is what we call a true multilevel approach. With this approach we blockmodel the
whole multilevel network, that is, we jointly blockmodel the network of researchers,
the network of laboratories, and the two-mode network joining the researchers
and laboratories. The results of this analysis are relatively well-fitting blockmodels
for each level (researchers and laboratories) together with ties among groups of
individuals and groups of organizations.

Multilevel Networks

We define multilevel networks here as a networks where we have units from at least
two levels of collective agency, ties among units of the same levels and ties among
units of different levels. This corresponds to the fourth definition from the document
“What Are Multilevel Networks” prepared by the Multi-level Network Modeling
Group (MNMG) (2012) and to definition used in Lazega et al. (2008), Wang et al.
(2013) and Snijders (Chap. 2, this volume).

Therefore, we define multilevel networks here as networks composed of one-
mode networks for each level and two-mode networks that “join” units from
different levels. In this chapter we will limit ourselves to only two levels and only
one relation per level and one relation for ties among levels.! For such two-level
networks with N lower-level units and M higher-level units, the data could have the
following structure (the dimensions of the matrices are given in the square brackets):

» anetwork of individuals or first-level units represented by a matrix N1nxnj
» anetwork of institutions or second-level units represented by a matrix N2mxm)

!For a more general version of the described approaches see Ziberna (2014).
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* atwo-mode (affiliation) network tying individuals to institutions, or ties between
first- and second-level units represented by a matrix TMnxm;j

The discussion in this chapter is limited” to the case where two-mode networks
represent partitions of “lower” level units into “higher” level units, that is each
“lower” level unit is tied to exactly one “higher” level unit, while each “higher”
level unit is tied to at least one “lower” level unit. Such networks can of course
be also analyzed using other methods. Iacobucci and Wasserman (1990) were the
first to suggest the analysis of such networks (although not in a multilevel context)
and (Wasserman and Iacobucci 1991) also presented a method for the statistical
modeling of such networks, although they did not apply it to a real dataset. More
than a decade later the importance of a multilevel view was advocated by Brass
et al. (2004) and Lazega et al. (2004, 2006, 2008, 2013). Recently, Wang et al.
(2013) extended exponential random graph models to multilevel networks. The
same dataset is used for demonstration purposes in Wang et al. (2013) and Ziberna
(2014). This is of course the same dataset that is analyzed in this chapter.

Additional methods and applications (e.g. Bellotti 2012; Snijders et al. 2013)
can be found for combinations of only one-mode networks at one level and a two-
mode network connecting this level to another level. Such networks can be seen as a
special case of multilevel networks as defined here where no relations are collected
for one level.

Blockmodeling

Blockmodeling is used for partitioning network units into clusters and, at the same
time, partitioning the set of ties into blocks (White et al. 1976; Doreian et al.
2005a, p. 29). Blockmodeling can be also seen as a data reduction technique for
obtaining a simplified model for relations among units (Borgatti and Everett 1992),
and is also the foundation for building role structures (Boorman and White 1976;
White et al. 1976). Several approaches to blockmodeling exist, such as conventional
blockmodeling (e.g. Breiger et al. 1975; Burt 1976; see Doreian et al. 2005a, pp.
25-26 for definitions), generalized blockmodeling (Doreian et al. 1994, 2005a)
and stochastic blockmodeling (Holland et al. 1983; Anderson et al. 1992; Snijders
and Nowicki 1997). While generalized blockmodeling is used in this chapter,
separate analysis and conversion to one-level blockmodeling, at least, can be easily
implemented using other approaches.

In generalized blockmodeling the criterion function is optimized when searching
for the optimal partition given the selected equivalence and network (Batagelj
et al. 1992a, b; Doreian et al. 1994). How the criterion function is computed

2See Ziberna (2014) (including footnotes) for needed modifications in the case of other types of
two-mode networks.



176 A. Ziberna and E. Lazega

for single-relational networks is described in works where different approaches to
generalized blockmodeling are presented (e.g. Doreian et al. 2005a; Ziberna 2007,
2013a). Here we are using blockmodeling for sparse networks based on structural
equivalence with differential weighting of inconsistencies for null and non-null
blocks suggested by Ziberna (2013a). How these criterion functions are combined
is described in the next chapter and in more detail in Ziberna (2014, pp. 48-51).

Multilevel Blockmodeling®

The ultimate goal of multilevel blockmodeling is to find a blockmodel (groups and
the ties among them) for the whole multilevel network; that is, to partition the
units at all levels into groups by taking all available information into account and
determining the ties among these groups.

In this chapter, three general approaches are discussed:

(a) aseparate analysis of each mode and a comparison of the results;

(b) the conversion of the multilevel problem into a classical one-level blockmodel-
ing problem (hereafter “the conversion approach”); and

(c) atrue multilevel approach.

These are not really alternative approaches since at least the first one (separate
analysis) should be the first step in any blockmodeling analysis of multilevel net-
works. The separate analysis approach (a) represents a good exploratory technique
and can guide a more complex analysis and show whether more complex approaches
are even justified. The conversion approach (b) is appropriate when we want to focus
on a certain level while using information from the other level(s) to improve the
partition and/or when the other level(s) can be used as indirect relations for units of
the level in focus. In contrast, the multilevel approach (c) should be used when we
already have some knowledge about the network structure. It can provide us with
novel insights into the ties among clusters from different levels. It can also help us
search for such clusters at individual levels in such a way that the ties among them
are relatively “clean.” Use of the first and at least one of the other two approaches
is also in line with the idea of Lazega et al. (2013) that it “is important to examine
both levels separately and jointly.”

3This section is a slightly modified version of the section with the same title form Ziberna (2014,
pp- 48-51) Reprinted from Social Networks, Vol 39, Ales Ziberna, “Blockmodeling of Multilevel
Networks,” 46-61, Copyright (2014), with permission from Elsevier.
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A Separate Analysis of Each Mode and a Comparison
of the Results

The simplest way to analyze a multilevel network using blockmodeling is to
blockmodel each level separately and then compare the results. The comparison
can be done in several ways:

(a) forcing the partition obtained at one level onto the other level and analyzing the
fit; or
(b) obtaining the partitions on both levels and comparing them.

Both options are complementary and ideally both should be used. The first option
in (a) means that, after obtaining a partition on a given level, this partition is forced
onto another level. This can be done by either reshaping the partition to the level
onto which it is to be forced or reshaping the one-mode network of the level on
which the partition is to be forced to the level on which the partition was obtained.
Both reshapings are done through the use of the two-mode networks joining the two
levels.

The reshaping is most straightforward when the two-mode network essentially
represents a partition of units of the first level into classes defined by the second
level and we are reshaping the second-level partition to the first level. In such cases,
the second-level partition can be reshaped to the first level simply by assigning to
the units of the first level the class (cluster) of the units of the second level to which
these units belong.

Similarly, we can easily reshape the network of the second level to the first by
assigning the tie of the second-level units to pairs of first-level units that are asso-
ciated with these second-level units. This can be simply obtained by pre- and post-
multiplying the matrix representing the second-level network by the matrix repre-
senting the two-mode network (transposed when needed) as presented in Eq. (8.1).

N2* = TM x N2 x TM’ 8.1)

The reshaped network represented by matrix N2* actually represents indirect
ties between units of the first level through the ties among second-level units to
which these first-level units are associated. Such a transformation is also undertaken
by Lazega et al. (2013), where they call neighbors in the resulting network “dual
actors.”

The transformations are a little more complicated in the other direction or when
first-level units are tied to more than one second-level unit. In such cases, some
averaging, voting, or aggregation rules are required.

After a partition at one level is obtained and a suitable reshaping has been applied,
we can see how this partition fits the other level. That is, we can check whether the
pattern of ties of the second network is well explained by this partition and therefore
by the structure of the first-level network. We could say that we are performing a
kind of pre-specified blockmodeling (Batagelj et al. 1998) and checking the fit of
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the pre-specified partition (and possibly a blockmodel image) to a network. If the
fit is good (significantly better than random), we can say that the structures of both
networks are associated. In addition, we can check whether the blockmodel images
are similar at both levels. If they are, this indicates that not only are the groups on
one level associated with the groups on the other level, but so too is the pattern of
ties among groups.

The second option (b) is to compare partitions obtained at both levels. This is
done by reshaping one of the partitions for it to be compatible with the other and
using some classical indices for comparing partitions to compare them, such as the
Rand Index (Rand 1971) or Adjusted Rand Index (ARI) (Hubert and Arabie 1985).
Obviously, larger values of these indices indicate a stronger association among the
partitions and therefore among the global structures of the one-mode networks at
different levels. All values of ARI over 0 indicate that the association is greater than
would be expected by chance.

This approach is a good exploratory technique, since it is simple to perform
and allows an estimation of the association of group structures across levels, and
therefore it should always be the first step in the analysis. These comparisons
allow us to determine whether there is some similarity in the structure of the two
networks and whether the similarity is only in the partitions or also in the pattern
of ties among groups. Where no similarity is found, more complex analyses are
probably not justified. In case of only partition similarities, the single-relational
version (explained in the next subsection) of the conversion approach is most likely
unsuitable.

Of course, this approach also has limitations especially since all partitions are
only based on one level, and since the ties between groups of different levels
cannot be modeled, only observed. However, this does not limit its usefulness as
an exploratory technique.

Conversion of the Multilevel Problem to a Classical One-Level
Blockmodeling Problem

The first approach suggested here that takes information about both levels into
account is to convert this multilevel problem to a one-level problem. This approach
is appropriate in cases where we believe that the partitions at different levels are
practically the same (after reshaping) and we want to use as much information as
possible to find these partitions. In fact, when using this approach only a partition at
one level is obtained, which can then be reshaped if desired to obtain a partition at
another level. Therefore, we should only use it if we find in the separate analysis
stage that partitions for these two levels are similar, or if one partition at least
approximately fits both levels.

In this approach we reshape the network from one level to the other and then
partition both networks at this “other” level simultaneously. We can treat the
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reshaped network as an additional (indirect) relation in the “other” level network.*
We can then proceed in two ways. The first one is to somehow aggregate these
two relationships by using some function like maximum (other options include
minimum, average and sum) on the values from both relations for the same tie.
This option only makes sense if the two relations measure similar concepts or have
a similar structure in terms of both partitions and patterns of ties among groups; for
example, if we can consider one network person’s direct access to some resources
and the other network person’s indirect access through institutional exchange. In
some cases, it might be sensible to find a partition at one level using this approach,
but not on the other; for example, it might make sense to assume that employees
can access resources through their firm’s connections, but not vice versa.’ In this
case, when partitioning the employees it would be sensible to include their firms’
connections to better estimate their position in some network, but it would not make
sense to estimate the firms’ positions also using their employees’ connections.

The second option is to blockmodel the multi-relational network directly. This
simply means that we perform blockmodeling on both relations (single-relational
networks) simultaneously by constraining them to the same partition. Blockmod-
eling multirelational or multiple networks (jointly) was advocated in early works
on blockmodeling (Breiger et al. 1975; White et al. 1976; Arabie et al. 1978)
but neglected until recently in generalized blockmodeling literature (Doreian et al.
2005a). The technical details of this option are discussed by Ziberna (2014, sec. 3.1)
with slightly different notation.

The advantages of this approach are that is it still relatively simple to perform
and that it uses all available information (on both) levels to obtain a partition at the
selected level. However, as discussed above, this only makes sense in certain cases.
The approach also has several disadvantages, the first being that some information
is lost in the aggregation, especially if the single-relational approach (aggregating
relations prior to the blockmodeling analysis) is used. Second, the choice of suitable
weights can be problematic when a multi-relational version is used. Finally, the
approach only obtains one® partition that is then reshaped to different levels. This
means that the ties between groups at different levels are fixed and cannot be
observed or modeled.

“Since single-relational networks are represented by matrices, the multi-relational networks are
represented by multiway matrices as used by Borgatti and Everett (1992).

SWe do not imply that firms can (never) access resources through employees’ (personal) networks.

We could use different levels as a “base” level, that is the level to which other levels are reshaped.
The partitions obtained using different base levels might then slightly differ when reshaped to the
same level, especially if in the two-mode network units from both sets of nodes can have many ties
(to nodes of the other set).
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Fig. 8.1 Combining all N1
networks into a “joint”

network. The redundant part
is written in gray ™’ N2

The True Multilevel Approach

The purpose of this approach is to partition units of both levels simultaneously with
some restrictions on the two-mode network, that is, on ties between levels. The idea
is to join both one-mode and two-mode networks (for all levels) into one “joint”
network. The one-mode “within-level” networks are on the diagonal “blocks” of
this “joint” network and the two-mode network is on the off-diagonal “blocks”,
transposed where needed, as depicted in Fig. 8.1. It is sufficient to include the two-
mode network only below or only above the diagonal since these are duplicated
elements.

We can then specify suitable approaches and equivalences (allowed block
types and possibly their positions) for each of these one-mode and two-mode
networks separately. Then we can blockmodel this “joint” network based on these
specifications with the restriction that units from different levels cannot be in
the same cluster. The technical details of blockmodeling the “joint” network’ are
discussed in Ziberna (2014). Suitable specifications for one-mode networks can be
found in the relevant literature (e.g. Doreian et al. 2005a; Ziberna 2007); in this
chapter we only discuss them in the empirical section.

While generalized blockmodeling of two-mode networks has also been covered
(Doreian et al. 2004, 2005b), some suitable specifications for the two-mode network
are discussed here. When specifying equivalences for two mode networks we should
have in mind that we want to obtain clear connections among groups at both levels.
This means that it is preferable that most blocks in the two-mode network be null
(empty, without any ties), since this makes the connections between the groups
at different levels clearer. Preferably, such blocks would have no inconsistencies
(no ties). The goal of very few or even no inconsistencies in null blocks can be
achieved by heavily penalizing the inconsistencies in the null blocks or equivalently
penalizing less the inconsistencies in other blocks (Doreian et al. 2005b, pp. 260-
261; Ziberna 2013a).

This approach has several advantages: it takes all available information (all one-
mode and two-mode networks) into account; that no aggregation is necessary; and
that ties between levels can be modeled.

However, it also has several drawbacks. In conceptual terms, the main disadvan-
tages are that there are no clear guidelines concerning what are appropriate weights
for different parts of “joint” network, that is, for both one-mode networks and for the

7Which is usually treated as a multirelational network.
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two-mode network. In the event of equal weights, in principle the parts with larger
inconsistencies have a bigger influence on the results. As the inconsistencies are
dependent on the equivalences (or allowed block types and their positions), network
sizes, pattern of and number of clusters, all these factors influence the appropriate
weighting.

Additional disadvantages are tied to optimization problems, especially as a local
search with a single exchange and move as allowed “moves” is currently used for
optimization. First, finding an optimal partition using the direct approach is in most
cases an NP-hard problem (Batagelj et al. 2004, p. 461). The multilevel approach is
even more time-demanding as there are more units in a multilevel network than in
single-level networks.

Another problem lies in the fact that currently a local search with allowed
transformations being a single exchange and a single move is used (see e.g. Batagelj
et al. 1992a, p. 127 for details). This is problematic since in the multilevel approach
quite hard constraints are usually desired for a two-mode network, typically by
preferring null blocks and making ties in null blocks relatively costly. If the current
partition is such that ties between a certain higher level unit and some lower level
units are in a non-null block, moving just the higher level unit (since only one move
at a time is allowed) would most likely move several ties in the two-mode network
to the null block and would therefore be very costly, to a such an extent that the
move would most likely not be selected. In the current implementation, we attempt
to circumvent this problem by brute force, namely by using many random starting
partitions with a local search. The option would be not to use very strict or costly
restrictions on the two-mode network in the first stage in order not to make such
moves too costly. If this results in an under-structured two-mode network (too many
ties in the null block or too few null blocks), the resulting partition can be further
optimized with more stringent (and costly) constraints on the two-mode network.
Of course, it would be better to use an adapted tabu search (Brusco and Steinley
2011) or similar algorithm that would temporarily allow costly moves or probably
even better the direct multiobjective blockmodeling (Brusco et al. 2013).

Analysis of a Multilevel Network of Cancer Researchers
in France

We examine here the multilevel network of cancer researchers in France (Lazega
et al. 2008) using multilevel blockmodeling. The analyzed multilevel network is
composed of two levels, a level of researchers and a level of research laboratories.
The networks and other data used are described in more detail in the following
subsection. Generalized blockmodeling offers a wide range of possible analyses.
In this paper we choose a more exploratory approach. This means that we do not
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search for a certain group structure (i. e. cohesive groups,® hierarchy, core-periphery
structure, ...), but allow any “pattern” of ties among groups. As this network
is relatively sparse, we are using binary blockmodeling according to structural
equivalence with different weights for inconsistencies of null and complete blocks,
the approach proposed suggested by Ziberna (2013a) as the most appropriate for
blockmodeling sparse networks in cases where as clean as possible null blocks are
desired.

All of the analysis was performed using the development version of package
blockmodeling (Ziberna 2013b) for R statistical environment (R Core Team 2013).

Data Description

The multilevel network of the elite of cancer researchers in France was gathered
and analyzed by Lazega et al. (2004, 2006, 2008, 2013). Several networks of
researchers and several networks of laboratories were collected together with a two-
mode network of researchers’ membership in laboratories (laboratories). For this
chapter and analyses, the same kind of aggregation as performed by Lazega et al.
(2008) was used.

This gave us the following networks:

* A network of researchers aggregating five sub-networks: (1) Discussion network
for the global orientation of future lines of research; (2) Advice network for
finding the right contacts for institutional support for the project; (3) Advice
network for finding the right contacts for funding the project; (4) Advice network
for the recruitment of collaborators; (5) Network of colleagues to whom to send
manuscripts before submitting them to journals.

* A network of laboratories aggregating seven sub-networks: (1) A network of
laboratories with which one’s laboratory has set up common research programs;
(2) A network of laboratories with which one’s laboratory has written joint
responses to tender offers; (3) A network of laboratories from which one’s labo-
ratory has recruited postdocs and researchers; (4) A network of laboratories with
which one’s laboratory shares technical equipment; (5) A network of laboratories
with which one’s laboratory shares experimental materials (plasmides, etc.); (6)
A network of laboratories where one’s laboratory has recruited administrative
and technical personnel; and (7) A network of laboratories with which one’s
laboratory has exchanged invitations to conferences or seminars.

* A two-mode network of laboratories and researchers: A membership matrix of
laboratories x researchers.

8The same network was analyzed using a pre-specified approach assuming cohesive groups
structure within each level in the example section of the paper presenting blockmodeling of
multilevel networks (Ziberna 2014).
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Fig. 8.2 Matrix representation of the whole (multilevel) network — researchers are up/left,
laboratories are down/right (Ziberna 2014; Reprinted from Social Networks, Vol 39, Ales
Ziberna, “Blockmodeling of Multilevel Networks,” 46-61, Copyright (2014), with permission
from Elsevier)

In this application we are using data on 78 laboratories and 98 researchers,
namely all cases where we have data on pairs of researchers and laboratories (or
larger groups since there can be more than one researcher per lab). While some
laboratories and researchers have no outgoing ties, they were not excluded since
they were nominated by others.

First, both networks (and the ties between them) are presented graphically in
Fig. 8.2 using a matrix representation. Both levels are here presented in one matrix.
The blue lines separate sets of units from different levels and, at the same time,
also the networks from different levels. In the diagonal blocks, the two one-mode
networks are presented. The upper left section of the matrix contains the network of
researchers, while the lower right shows the network of laboratories. The units from
these two networks (researchers and laboratories), and therefore the two networks
themselves, are tied through a two-mode network showing which researchers work
in which laboratories. This network is positioned in the lower right part of the
matrix. The upper left part is left empty for clarity reasons, although it might be
as well populated with the transpose of the two-mode network from the lower right
part. This representation does not reveal much about the structure of both one-mode
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Table 8.1 Basic network

o .. Researcher | Laboratories
statistics (Ziberna 2014)

Size 98 78

Density 0.059 0.039
Average in-degree 5.745 3.013
Centralization — degree 0.139 0.220
Centralization — in-degree 0.117 0.118
Centralization — out-degree 0.190 0.381
Centralization — betweenness | 0.122 0.244
Clustering coefficient 0.266 0.184
Reciprocity 0.367 0.083

Reprinted from Social Networks, Vol 39, Ales Ziberna,
“Blockmodeling of Multilevel Networks,” 46-61, Copyright
(2014), with permission from Elsevier

networks (blockmodeling methods are used for this later in the chapter), however the
structure of the two-mode network is quite clear (also due to the fact that researchers
from the same laboratories are grouped together). Each laboratory is tied to one
or more researchers, while each researcher is tied to exactly one laboratory. As
mentioned previously, the two-mode network represents a partition of researchers
into laboratories.

In Table 8.1 some basic statistics of both networks (network of researchers and
network of labs) are presented. Some important differences between the networks
can be observed. Density, reciprocity and to a lesser extent clustering coefficients are
larger in the network of researchers than in the network of laboratories. This might
indicate that the blockmodeling analysis might more appropriate for the network of
researchers as there is more “grouping” in this network. Out-degree centralization
and betweenness centralization are larger in the network of laboratories. The high
out-degree centralization is the result of two laboratories reporting many more
ties than other laboratories. Based on this, we cannot expect a similar structure in
both networks and especially not the same blockmodels and equivalences, yet we
cannot rule out some similarities in structure such as similar partitions, the same
equivalences with different blockmodels (image matrices), etc.

Lazega et al. (2008) reported on several variables measured on researchers and
laboratories, however in this chapter we only use age, whether the researcher is
located in the Paris region or not, laboratory size, whether the researcher is also a
laboratory director, and performance measures for two time points. We also use the
specialties of the researchers are also measured via a categorical variable with seven
categories assigned by an expert’ in which each researcher was assigned to only one
main, dominant category based the analysis of the content of his/her publications as
downloaded from PUBMED, and used in Lazega et al. (2013).

9We thank David Lazega for creating this variable.
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In addition, we also use the Fish/Pond status and multilevel relational strategies
determined by Lazega et al. (2008). While these were also derived based on the
multilevel network,'? they offer a different view than blockmodeling. Blockmod-
eling looks for groups of units with a similar position in the network; in other
words, that have ties to equivalent other units. The Fish/Pond status is somewhat
similar; however it measures the position in the network only based on centrality
scores (degrees for individuals, degrees and size for organizations). Multilevel
relational strategies, on the other hand, focus on the comparison of the researchers
and the laboratories networks from the perspective of the individual researchers.
These comparisons are used to measure the overlap between the network of the
organization and that of the individual. Different categories of overlaps are used
as indicators of strategies used by the individual to manage his/her relational
capital as differentiated — when appropriate — from the relational capital of his/her
organization.

To estimate the overlap of the network of researchers and the network of labora-
tories the network of laboratories was reshaped to fit the network of researchers.
This reshaped network of laboratories is actually a network among researchers
where a tie between two researchers means that their laboratories are tied. The
overall overlap measured as the percentage of researchers’ ties that have “support”
in the network of laboratories is 29.2 %. If we take the opposite direction and
reshape the network of researchers to laboratories by creating a tie between two
laboratories if at least some researchers from those laboratories are connected and
compute the overlap as the percentage of laboratories’ ties that have “support” in
the network of researchers, we obtain 18.1 %. However, here we are focusing on the
first case where we are mainly interested in the support for the researchers’ ties in
the network of laboratories. Another way to assess the tie similarity of the networks
is through the association coefficient Cramer’s V, which is 0.216 for the network of
researchers and the reshaped network of laboratories. The small overall overlap and
small association coefficient indicate that the networks are quite different. While it
is possible that some common structure is present in both networks, it is not very
likely. In particular, the image matrices are expected to be very different.

Separate Analysis

The first and simplest way to analyze multilevel networks is to analyze each level
separately and then compare the results. While this is the simplest analysis, it can
provide relatively rich results especially in terms of similarity of structures and
should always be the first step of the analysis.

10The Fish/Pond status also takes into account the size of the laboratories (in addition to the
multilevel network).
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Fig. 8.3 Errors for blockmodeling of the network of researchers by different numbers of clusters

Network of Researchers

As mentioned, binary blockmodeling according to structural equivalence with
different weights for inconsistencies of null and complete blocks is used. In
compliance with suggestions given in Ziberna (2013a), the weights for different
block types are set to 1 for null block and 1/(1 — d) for complete blocks, where d is
the density of the analyzed network (0.059).

As the appropriate number of clusters is not known, numbers of clusters from
two to eight were tested and the corresponding errors are presented in Fig. 8.3.
Networks/matrices partitioned according to solutions with 4 to 7 clusters are
presented in Fig. 8.4. We excluded partitions with less or more clusters based on
the desired level of complexity and the results in Fig. 8.3. Based on Figs. 8.3 and
8.4, the most appropriate number of clusters is 4, 5 or 6 clusters. We opted to
present the 4-cluster solution, as the least complex one. The same procedure for
determining the appropriate number of clusters was used in the analysis of the
networks of laboratories and in the conversion approach (presented in later in the
paper), although there the figures similar to Figs. 8.3 and 8.4 are omitted and only
the network partition according to the selected number of clusters is presented.

The image in Fig. 8.5 represents the densities of the resulting blocks. If we used
the descriptions used by the authors studying Slovenian co-authorship networks
(Kronegger et al. 2011; Mali et al. 2012),!! the four-cluster partition decomposes
the network into a bridging core, two cores and a semi-pheriphery.

In Table 8.2 we explore whether this partition can be associated with exogenous
variables, in Table 8.3 with Fish/Pond status, and in Table 8.4 with relational
strategy. We can see that the first cluster, the “bridging core,” has representatives
of all specialties except hematology. It has the largest percentage of laboratory
directors (73 % compared to 48 % in the whole network). These are fundamental
researchers combined with the “hot” specialty at the time (diagnostics, prevention

With perhaps less stringent demands in terms of densities. For related issues, see Lazega et al.
(2011).
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Fig. 8.4 Partitioned network of researchers

and epidemiology) and focusing on solid tumors. Most (9/11) of its members are
Big fish in Big ponds with mixed multilevel relational strategies.

The next core is the highest performance cluster. The majority of researchers
specialize in either hematology (43 %) or pharmacology (22 %). This core is
comprised mainly of researchers from the “provinces”. All benefit in terms of IF
scores from 20 years of success of French hematology (Lazega et al. 2004). They
are mainly big fish in big or small ponds with mixed relational strategies.

The last core is the largest cluster. It is composed of researchers mainly from
large laboratories in the Paris region beginning to study solid tumors with molecular
genetics, with the lowest performance results because this approach had not yet
succeeded in providing results at the time of the study (it would later on, a decade
after the network study). They are also mainly big fish in big or small ponds but
mixed with a higher proportion of little fish than the previous core positions. Their
multilevel relational strategies are mixed, mainly independent or collectivist, that
is, strategies that were previously shown not to be associated with high levels of
individual performance.
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Fig. 8.5 Image of the
4-cluster partition for the
network of researchers

* all values in cells were multiplied by 100

Table 8.2 Averages of exogenous variables by clusters obtained for by blockmodeling the
network of researchers

1 2 3 4 All
Frequency 11 23 34 30 98
Age 48.91 45.48 50.06 48.00 48.21
Paris (1) vs provinces 0.36 0.17 0.76 0.47 0.48
Laboratory size 26.91 22.65 31.33 32.07 29.00
Research director (status) 0.73 0.43 0.55 0.47 0.52
Performancel 26.11 31.78 26.10 28.54 28.20
Performance2 36.58 44.43 33.06 42.25 39.00
Diagnostics, prevention, epidemiology 0.27 0.13 0.24 0.13 0.19
Surgery, radiology 0.09 0.09 0.03 0.10 0.07
Hematology 0 0.43 0.03 0.17 0.16
Solid tumor, chemotherapy 0.18 0.04 0.24 0.17 0.16
Pharmacology 0.18 0.22 0.06 0.03 0.10
Molecular cellular 0.18 0 0.21 0.40 0.22
Molecular genetics 0.09 0.09 0.18 0 0.09

The (semi-)periphery is the last cluster. It is composed of the largest percentage
of researchers exploring solid tumors with molecular and cellular research in the
largest laboratories. They are mainly little fish both in big and small ponds. Their
multilevel relational strategies are mainly independent, with a few individualistic
ones. This category mixes little fish in big ponds who will later catch up with the
highest performers and little fish in smaller ponds who will tend not to catch up.
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Table 8.3 Fish-pond status by clusters obtained for by blockmodeling the network of researchers

Cluster
Fish-pond status 1 2 3 4 Sum
Big Fish in Big Ponds (BFBP) 9 8 11 3 31
Big Fish in Small Ponds (BFSP) 0 7 12 0 19
Little Fish in Big Ponds (LFBP) 1 5 12 25
Little Fish in Small Ponds (LFSP) 1 3 15 22
NA 0 0 1 0 1
Sum 11 23 34 30 98
Table 8.4 Multilevel Cluster
relational strategy of . Relational strategy |1 |2 |3 |4 |Sum
researchers (four categories)
by clusters obtained for by Independent 2| 5115 (22 |44
blockmodeling the network of Individualist 31715621
researchers Collectivist 416 |10 2|22
Fusional 20503 0]10
NA 0|0 01
Sum 11 |23 |34 |30 |98

Network of Laboratories

The same procedure applied to the network of researchers is also applied to the
network of laboratories. The weights for different block types are again set to 1 for
null blocks and 1/(1 — d) for complete blocks, where d is the density of the network
of laboratories (d = 0.039). Numbers of clusters from two to eight were tested and
the four-cluster solution was selected. The partitioned network and corresponding
image are presented in Fig. 8.6.

The four-cluster partition decomposes the network into a (semi-)periphery, a
bridging core and two cores. It has very similar structure as the researchers’
partition.

In Tables 8.5, 8.6, and 8.7 we explore whether this partition can be associated
with other variables. The first cluster is the bridging core. This is the smallest and the
highest-performing cluster where a large percentage of laboratories, mostly around
Paris, specialize in fundamental research (a particularly rewarding specialty for
impact factor scores) using molecular/cellular genetics research (80 %). Practically
all researchers from the laboratories of this cluster are big or little fish, but in big
ponds, and employ relational strategies that independent or (mainly) individualist,
the latter being associated most often with highest impact factor scores.

The next two clusters are cores. The first one among these (cluster 2) has no
researchers from pharmacology. As in the previous cluster, here most laboratories
(although fewer than before) are big ponds, and the researchers are big or little fish.
The second (cluster 3) is the least performing cluster in this system, where practi-
cally no researchers from these laboratories specialize in molecular research. This



190 A. Ziberna and E. Lazega
Partitioned matrix Image matrix
- 3] L] -
isibennaninintnd e snnnniiniinneiiiinnniiiti
o] = ELH
P ™ R
e |
-
T D
S .
: | :
= b, "
5 .
. -

* ol values i cels were muiphed by 100

Fig. 8.6 The network of laboratories partitioned into four clusters

Table 8.5 Averages of exogenous variables by clusters for the network of laboratories partitions

1 2 3 4 All
Freq 10 19 20 29 78
Age 50.40 47.39 48.36 48.67 48.50
Paris (1) vs provinces 0.80 0.58 0.30 0.47 0.49
Laboratory size 44.20 25.95 25.60 30.38 29.85
Research director (status) 0.55 0.62 0.57 0.53 0.57
Performancel 34.24 32.28 20.71 25.77 27.14
Performance2 55.07 44.90 29.45 33.64 38.06
Diagnostics, prevention, epidemiology 0.10 0.11 0.20 0.26 0.19
Surgery, radiology 0 0.05 0.17 0.03 0.07
Hematology 0 0.16 0.19 0.21 0.16
Solid tumor, chemotherapy 0.10 0.24 0.15 0.17 0.17
Pharmacology 0 0 0.27 0.09 0.10
Molecular cellular 0.40 0.29 0 0.24 0.21
Molecular genetics 0.40 0.16 0.02 0 0.10

Averages are computed as averages of average laboratory values among the interviewed researcher

is also the most “provincial” cluster. This cluster (3) is composed of laboratories
where one notices the highest proportion of researchers with a “fusional” multilevel
relational strategy, i.e. with perfect overlap between the inter-individual network of
the researcher and the inter-organizational network of the laboratory in which this
researcher is affiliated.

The last cluster is a periphery. No researchers from these laboratories specialize
in genetic/molecular research. Most researchers from laboratories in this cluster are
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Table 8.6 Fish-pond status by clusters (of researchers’ laboratories) for the network of laborato-
ries partition

Cluster
Fish-pond status 1 2 3 4 Sum
Big Fish in Big Ponds (BFBP) 6 13 11 1 31
Big Fish in Small Ponds (BFSP) 0 1 4 14 19
Little Fish in Big Ponds (LFBP) 4 6 9 6 25
Little Fish in Small Ponds (LFSP) 1 5 2 14 22
NA 0 0 0 1 1
Sum 11 25 26 36 98
Table 8.7 Multilevel Cluster

relational strategy of

researchers (four categories) Rel. strategy |1 2 |3 [4 |Sum

by cluster (of researchers’ Independent | 4 |11 |10 |19 |44
laboratories) for the network Individualist | 5 | 5| 6 | 5 |21
of laboratories partition Collectivist 1193|922
Fusional 1 07210
NA 0|0 0] 1 1
Sum 11 125 |26 |36 98

big or little fish but all in small ponds and all employ relational independent or
collectivist strategies. These are the laboratories with researchers who will not catch
up with the BFBP over time.

Comparison

Here the partitions obtained at both levels separately are compared. To facilitate
the comparison, the laboratories’ partition is first reshaped to researchers (each
researcher is “assigned” the cluster of their lab). The two to eight cluster labora-
tories’ partitions were compared to the two to eight cluster researchers’ partitions
using the Adjusted Rand Index (ARI) (Hubert and Arabie 1985). All ARIs were
close to 0, the highest being 0.11. Therefore, the association there among partitions
based on different levels is low. This does not give much hope with regard to more
complex analyses.

Both the networks nevertheless have a similar structure — they are both comprised
of one bridging core that connects all cores, two cores, and one (semi)periphery.

Another way to compare partitions among levels is to use a partition from one
level and apply it to another level. For example, we could force the laboratories’
partition onto the network of researchers and check the fit. For illustration the four-
cluster laboratories’ partition obtained in the previous sub-subsection is forced onto
the network of researchers. As before, when computing the ARI here also we must
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Fig. 8.7 The network of researchers partitioned according to the 4-cluster laboratories’ partition
and the corresponding image

first reshape the laboratories’ partition to the researchers. The network of researchers
partitioned according to this partition and the corresponding image are shown in
Fig. 8.7. No clear structure emerges, although it is clear, especially from the image
matrix, that the pattern of ties is not random. Especially if we focus on the diagonal
blocks (intra-cluster ties) we can see that the “bridging core” has the highest density
of intra-cluster ties, followed by the other two cores and the (semi)periphery has the
lowest density of intra-cluster ties, as we would expect based on the laboratories’
image matrix.

The error for this partition (using the same model as when blockmodeling
researchers network) is 464.7 which is relatively close to the “maximal” error of
556.9 or average error of a randomly generated partition (504.8) and much further
from the optimal result obtained in the sub-subsection 0, which is 271.3 for the
four-cluster partition. This indicates that, while there is some similarity among the
structure of both networks, it is very small as this error is closer to “maximal” and
even “random” error than to the optimal one.

A similar analysis could also be performed for other partitions. In the case
of applying a researchers’ partition to the network of laboratories, reshaping this
partition is a little more problematic although several approaches are reasonable.
Another option to circumvent this is to reshape the network of laboratories to the
researchers which is less complicated. Further discussion of this exceeds the scope
of this chapter.
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Conversion of the Multilevel Problem to a Classical One-Level
Blockmodeling Problem

In this subsection the multilevel problem was converted to a one-level problem,
namely to a single set of units. In particular, here the network of laboratories was
converted to researchers’ “space”!? by defining a new relation between researchers
based on ties between laboratories. In this new relation (let us call it “institutional’),
two researchers are tied if their laboratories are tied (or if they are members of
the same lab). Further analysis varies on how we combine this network with the
“original” network of researchers. The first option is to create a new single-relational
(“extended”) network where two researchers are tied if they are tied directly
(“original” network of researchers) or through their laboratories (“institutional”
network). Such networks are also discussed by Lazega et al. (2013) in terms of
extended opportunity structures. Another approach is to combine these two relations
into a multi-relational network (of researchers).

Single-Relational Network

The same pre-specified blockmodel as was applied to the network of researchers in
the previous section (“Separate analysis”) was applied to this “extended” network.
The weights for different block types are again set to 1 for null blocks and d/(1 —d)
for complete blocks, where d is now the density of the “extended” network of
researchers (d =0.090). In the lack of a clear “elbow” on the “error plot” (plot
of errors by number of clusters) a four-cluster solution was again selected mainly
based on the examination of partitioned networks at different numbers of clusters,
and based on selection of this number in the separate analysis. The “extended”
network of researchers and its “components” (the “original” network of researchers
plus the “institutional” network of researchers) and the corresponding images (block
densities) are presented in Fig. 8.8 (partitioned matrices on the left and image
matrices on the right). In Tables 8.8, 8.9, and 8.10 we can see that the obtained
clusters differ in researchers’ specialties, Fish-pond statuses, and, to a lesser extent,
researchers’ relational strategies.

Multi-relational Network

Another approach to jointly blockmodel the “original” network of researchers and
the “institutional” network of researchers is to combine these two relations into a
multi-relational network (of researchers). Within each relation the same approach as
before was used, that is, binary blockmodeling according to structural equivalence
with different weights for inconsistencies of null and complete blocks. The weights
for different block types are again set to 1 for null block and 1/(1 — d) for complete

12Conversion of the network of researchers to the laboratories’ “space” is also possible, although
more complex.
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Fig. 8.8 The “extended” network of researchers and its “components” (the “original” network of
researchers and the “institutional” network of researchers) — partitioned into 4 clusters and the
corresponding images
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Table 8.8 Averages of exogenous variables by clusters of the “extended” network of researchers

partition
1

Freq 10
Age 50.90
Paris (1) vs provinces 0.40
Laboratory size 31.70
Research director (status) 0.70
Performancel 33.44
Performance2 44.65
Diagnostics, prevention, epidemiology 0.10
Surgery, radiology 0
Hematology 0.20
Solid tumor, chemotherapy 0.20
Pharmacology 0.10
Molecular cellular 0.20
Molecular genetics 0.20

Table 8.9 Fish-pond status
by clusters of the “extended”
network of researchers
partition

Table 8.10 Multilevel
relational strategy of
researchers (four categories)
by clusters of the “extended”
network of researchers
partition

Fish-pond status

34 2

46.33 4
0.64

32.85 2
0.42

36.81 2

50.53 2
0.15

0.24
0.06

0.33
0.21

Big Fish in Big Ponds (BFBP)
Big Fish in Little Ponds (BFLP)
Little Fish in Big Ponds (LFBP)
Little Fish in Little Ponds (LFLP)

NA
Sum

Rel. strategy
Independent
Individualist
Collectivist
Fusional

NA

Sum

4
2 32
7.73 49.62
0.36 0.44
4.95 26.97
0.50 0.56
0.95 22.68
9.22 32.06
0.23 0.22
0.23 0.06
0.05 0.16
0.27 0.19
0.14 0.19
0.09 0.19
0 0
Cluster
1 |12 |3
9 |15 | 4
0| 78
1178
0| 4 2
0/ 1,0
10 |34 |22
Cluster
1 |12 |3
2 113 |13
4 16| 4
2 11 | 2
233
0
10 |34 |22

All
98
48.21
0.48
29.00
0.52
28.20
39.00
0.19
0.07
0.16
0.16
0.10
0.22
0.09

4 | Sum
3 31
4 119
9 |25
16 |22

32 |98

4 | Sum
16 |44

7 |21

7 122

2 110

32 |98

blocks, where d is the density of the appropriate relation (d = 0.059 for “original”
network and d = 0.045 for “institutional” network). In this case both relations were
equally weighted. Another option would be to weight relations proportional to their
“random” errors (average errors of blockmodels based on 1000 randomly generated
partitions). In this concrete case both options produce the same results at the selected

number of clusters.
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Fig. 8.9 Partitioned multi-relational network of researchers and the corresponding images

The four-cluster solution was selected for similar reasons as in the single-
relational approach. Both relations partitioned according to this solution and the
corresponding images are presented in Fig. 8.9 (partitioned matrices on the left and
image matrices on the right). While certain patterns of ties can be observed in both
relations, we could hardly say that the blockmodel is a good fit. Secondly we can
also observe that the pattern of ties among groups is not the same in both relations.
For example, cluster 3 is the least intra-connected cluster in the “original” network
and it has practically no incoming ties from cluster 2, while in the “institutional”
network it is more intra-connected and the block from cluster 2 to cluster 3 is the
densest block in the relation. In Tables 8.11, 8.12, and 8.13 we can see that the
groups differ quite significantly in “geography” (Paris vs. Provinces), researchers’
specialties (e.g. cluster 1 is very much centered around hematology and cluster 2
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Table 8.11 Averages of exogenous variables by clusters of the multi-relational network of
researchers partition

1 2 3 4 All
Freq 13 30 20 35 98
Age 47.25 47.43 46.45 50.20 48.21
Paris (1) vs provinces 0.33 0.80 0.30 0.37 0.48
Laboratory size 27.83 32.87 32.00 24.37 29.00
Research director (status) 0.50 0.57 0.40 0.54 0.52
Performancel 26.20 36.48 24.96 23.65 28.20
Performance2 43.76 48.04 35.13 31.82 39.00
Diagnostics, prevention, epidemiology 0.08 0.20 0.20 0.20 0.19
Surgery, radiology 0.08 0 0.20 0.06 0.07
Hematology 0.42 0.07 0.15 0.17 0.16
Solid tumor, chemotherapy 0.17 0.10 0.10 0.26 0.16
Pharmacology 0.17 0 0.05 0.20 0.10
Molecular cellular 0.08 0.37 0.25 0.11 0.22
Molecular genetics 0 0.27 0.05 0 0.09
Table 8.12 Fish-pond status Cluster
?Iz’uftlil-lj:jarliigrfla:?ietwork of Fish-pond status 1 12 |3 |4 |Sum
researchers partition Big Fish in Big Ponds (BFBP) 8 |15 5| 3 |31
Big Fish in Small Ponds (BFSP) 1,61 11 19
Little Fish in Big Ponds (LFBP) 3 10 | 6 |25
Little Fish in Small Ponds (LFSP) | O | 3 | 4 |15 |22
NA 1,000 1
Sum 13 130 (20 |35 |98
Tabl'e 8.13 Multilevel Cluster
relational strategy of . Rel strategy |1 |2 |3 |4 |Sum
researchers (four categories)
by clusters of the Independent | 1 |10 |15 |18 |44
multi-relational network of Individualist | 5 4 1 6 |21
researchers partition Collectivist | 2 [11 | 0 | 9 |22
Fusional 41311210
NA 1 0] 0|1
Sum 13 130 (20 |35 98

around fundamental molecular research) and Fish/Pond statuses (e.g. cluster 1 and
to a lesser extent cluster 2 are composed mainly of Big Fish in Big Ponds).
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A True Multilevel Approach

The true multi-relational approach is an approach where we partition the multilevel
network structured as presented in Fig. 8.2. As described in previously, the whole
multilevel network (matrix presented in Fig. 8.2) is partitioned simultaneously, with
the restriction that units from different levels cannot be in the same cluster. In terms
of Fig. 8.2 this means that clusters and blocks cannot “cross” the thick line parti-
tioning the matrix into four blocks. Again we used binary blockmodeling according
to structural equivalence with different weights for null and complete block, but
otherwise no pre-specification were used. The weights of null and complete blocks
were first determined for each relation/network separately, that is, for the network
of researchers, the network of laboratories, and the two-mode network joining them.
For all networks the initial weights were 1 for null block and 1/(1 — d) for complete
blocks, where d is the density of the appropriate relation/network (d = 0.059 for the
network of researchers, d = 0.039 for the network of laboratories, and d = 0.013 for
the two-mode network).

The role of the two-mode network is to “tie” the two levels together. In this
network we want as many completely or nearly completely null blocks as possible to
make the comparison of the researchers’” and laboratories’ clusters easier, although
we do not want to force the researchers’ and laboratories’ clusters to match perfectly
(e.g. by forcing all researchers from laboratories from a given cluster of laboratories
to be in the same cluster of researchers). Using the same model as for the other two
networks is also appropriate for this task.

For a true multilevel approach, we have to somehow allow for an appropriate
contribution of both levels and of the two-mode network. In the suggested approach,
this is achieved through appropriate weighting. Here we decided to weight the
relations (that is, both levels and the two-mode network) inversely proportional to
the “random” error, that is the average error obtained when forcing 1000 random
(non-optimized) partitions to selected network/relation. Therefore, the following
weights were initially used: 1 for the network of researchers, 2.520 for the network
of laboratories and 6.851 for the two-mode network. However, this weight of the
two-mode network was too strong, which was evident from obtaining only the
minimal number of non-null blocks (four) and no errors in the null blocks, so
we decided to halve the weight of this network to 3.426. With this weighting we
still obtained very few errors in the null blocks, however the fit is not so “perfect”
anymore and thus facilitates a better fit of the other two networks/relations.

Since when using this approach finding the global (and not local) optimum is
more problematic, at least 10,000 random starting points were used (instead of the
1000 used in the other examples).

Due to the time complexity of the algorithm, the size of the multilevel network
and space limitations of this chapter, we fixed the number of clusters to four at both
levels. These two numbers were selected based on the results of the separate analysis
stage. The partitioned multilevel network and corresponding image is presented in
Fig. 8.10. The upper left part of the matrices shows ties among researchers (the parts



8 Role Sets and Division of Work at Two Levels of Collective Agency: The. .. 199
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Fig. 8.10 Partitioned multilevel network and the corresponding image

are separated by (wider in case of the original matrix) lines), the lower right part
shows the ties among laboratories, and the lower left part the ties among laboratories
and researchers, that is, which laboratories employ which researchers.

Blockmodeling the whole multilevel network, i.e. both researchers and lab-
oratories networks jointly while taking into account the ties among researcher
and laboratories, gives us an interesting overview of the system. Although the
partitioning of the individual levels is not as clear as in the separate analyses,
the benefit of this approach is that we now have relatively clear “ties” among
researchers’ and laboratories’ clusters, which were however not fixed in advance. In
terms of the overall structure we can still observe the existence of a core-periphery
system with bridging cores, cores and (semi)peripheries. The bridging cores are
researchers’ cluster 1 and laboratories’ cluster 5. However as it is evident from the
partitioned two-mode network, these two clusters (1 and 5) are not connected (there
are no ties in the block from cluster 5 to cluster 1), meaning that no researchers
from the researchers’ bridging core (cluster 1) are employed in the laboratories
from laboratories’ main bridging core (cluster 5). Most of the researchers’ from
this cluster (1) are employed in laboratories from laboratories’ cluster 6 (an ordinary
core) while two are employed in laboratories from laboratories’ cluster 7 (periphery)
(there are only two “dots” in the block from cluster 7 to cluster 1). Similarly, most
laboratories from the clusters’ main bridging core (cluster 5) employ researchers
from researchers’ cluster 2 (also an ordinary core). The most expected tie is the one
from researchers’ cluster 3 (periphery) to laboratories’ cluster 8 (also periphery).
These and other ties within and between clusters are evident form Figs. 8.10
and 8.11.

The association among both the (researchers’ and laboratories’) partitions and
other variables is examined in Tables 8.14, 8.15, and 8.16. While both researchers’
and laboratories’ clusters differ in terms of these variables, for most clusters no
clear “profile” can be found. Perhaps the most “profiled” cluster is the researchers’
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Fig. 8.11 The multilevel image graph. Researchers’ clusters are yellow/white and the laboratories’
clusters are green/gray. The ties represent the densities of the blocs. The ties with values less than
0.025 were removed (values 2 or lower in image matrix on Fig. 8.10) for clarity

Table 8.14 Averages of exogenous variables by clusters for the multilevel network partition

Researchers Laboratories

1 2 3 4 All |5 6 7 8 All
Freq 13 28 34 23 98 12 25 14 27 78
Age 47.50 | 48.54 | 49.38 | 46.43 | 48.21 | 47.58 | 47.70 | 48.11 | 49.86 | 48.50
Paris (1) vs provinces 0.33| 0.82] 0.29| 0.43| 048 0.83| 0.36| 0.79| 0.31| 0.49
Laboratory size 28.5029.57 | 25.76 | 33.35{29.00 | 39.00 | 33.56 | 21.64 | 26.59 | 29.85
Research director 0.50 0.61| 0.50| 0.43| 0.52| 0.46/| 0.53| 0.71| 0.57| 0.57
(status)
Performancel 27.50|31.11|24.86|29.98 | 28.20 | 33.84 | 27.21 | 28.72 | 23.29 | 27.14
Performance2 41.90 | 45.54 1 31.3740.78 | 39.00 | 57.78 | 36.98 | 38.37 | 30.13 | 38.06
Diagnostics, 0.08| 0.32| 0.09| 0.22| 0.19| 0.17| 0.20| 0.36| 0.09| 0.19
prevention,
epidemiology
Surgery, radiology 0.08, 0 0.09, 0.13| 0.07, O 0.12) 0 0.09| 0.07
Hematology 0.42| 0.07| 0.21| 0.09| 0.16/ 0.08| 0.16| 0.21| 0.18| 0.16
Solid tumor, 0.17| 0.07| 0.29| 0.09| 0.16| 0.17| 0.12| 0.04| 0.30| 0.17
chemotherapy
Pharmacology 0.17, 0 021 0.04| 0.10/ O 0.12| 0 0.18| 0.10
Molecular cellular 0 029 0.12| 0.39| 0.22| 0.33| 0.20| 0.25| 0.15| 0.21
Molecular genetics 0.08 025 0 0.04| 0.09/ 0.25| 0.08| 0.14| 0.02| 0.10

Averages for the laboratories’ clusters are computed as averages of the average laboratory values
among the interviewed researchers
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Table 8.15 Fish-pond status by clusters of researchers and laboratories from the true multilevel
partition

Researchers Laboratories
Fish-pond status 1 |2 |3 |4 Sum (5 |6 |7 |8 |Sum
Big Fish in Big Ponds (BFBP) 9 |13 | 3| 6 |31 8 |15 5| 3 |31
Big Fish in Little Ponds (BFLP) 1| 710 119 11611 |19
Little Fish in Big Ponds (LFBP) 215 8 10 25 4 |10 | 3| 8 |25
Little Fish in Little Ponds (LFLP) 0| 3|13 | 6 |22 16| 213 |22
NA 1,000 1 0| 1,001
Sum 13 |28 |34 |23 |98 14 133 |16 |35 |98

Table 8.16 Multilevel relational strategy of researchers (four categories) by clusters of researchers
and laboratories from the true multilevel partition

Researchers Laboratories
Rel. strategy 1 2 3 4 Sum |5 6 7 8 Sum
Independent 1 6 20 17 44 3 16 5 20 44
Individualist 5 8 6 2 21 4 7 3 7 21
Collectivist 2 11 7 2 22 6 4 5 7 22
Fusional 4 3 1 2 10 1 5 3 1 10
NA 1 0 0 1 0 1 0 0 1
Sum 13 28 34 23 98 14 33 16 35 98

core cluster 2, in which over 50 % of researchers specializing in fundamental
research mainly work in laboratories located around Paris. As mentioned above,
this researchers’ cluster is tied to laboratories’ clusters 5 (bridging core) and 7
(periphery) that also exhibit (although to a lesser extent) specialization in the same
area and are also composed mainly of laboratories from around Paris.

In terms of Fish-pond status the clearest structure is in the bridging core clusters,
where for the researchers (cluster 1) most members are Big Fish in Big Ponds and
for the laboratories (cluster 5) most laboratories are Big Ponds. In terms of relational
strategies cluster memberships are in most cases again mixed, although it is quite
clear that the share of researchers employing an independent strategy is much larger
in clusters 3 and 4 than in clusters 1 and 2 and also in laboratories from clusters
6 and 8 (compared to those from laboratories in clusters 5 and 7). For researchers’
clusters the share of independents is larger for more peripheral clusters.

Comparison of the Results Using Different Approaches

In this section, several approaches were used on the two-level network of coop-
eration among researchers and laboratories. Although different approaches are not
designed to produce the same results, some results from different approaches are
compared in this section. Of course, not every possible comparison is presented
here.
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One of the results that is common to all approaches is that the result is a
core-periphery-like structure (similar to those found by Kronegger et al. (2011)
for Slovenian scientists) consisting of a bridging core, usually two simple cores,
and a periphery. However, while both levels have similar structure, the multilevel
approach in particular showed that the members of the researchers’ bridging cores
are not employed by laboratories from the laboratories’ bridging core.

The most similar pair of four-cluster partitions of researchers are the researchers’
partition from the true multilevel approach and the laboratories’ partition reshaped
to researchers from the same analysis. As these are both based on the same analysis
this is not really interesting. More interesting is that the next largest similarity is
among the researchers’ partition from the multirelational conversion approach and
the researchers’ partition from the true multilevel approach.

In Table 8.17 the similarities between all of these partitions (the four-cluster
partitions of researchers and the four-cluster partitions of laboratories) is measured
by the Adjusted Rand Index (ARI). We can observe that most of the separate
analysis partitions (especially for the researchers) are only slightly more similar to
the other partitions than expected by chance. The similarity among other partitions
(those that take both levels into account) is larger.'® This is expected as these in
some way already multilevel analyses take the same data (although with different
level of aggregation) into account. We can also see that the partitions from the
analysis that take both levels into account are more similar to the laboratories’
single-level analysis partition than to the researchers’ single-level analysis partition.
This is different from the results obtained by Ziberna (2014, sec. 5.5) where at least
the multilevel researchers’ partition was more similar to the researchers’ separate
analysis partitions. However, there the focus was on finding cohesive subgroups and
not on a general model of the network.

The characteristics of the obtained clusters in terms of the researchers’ specialties
(see Tables 8.2, 8.5, 8.8, 8.11, and 8.14) reveal that the cores (including bridging
cores) in results based (more) on the researchers’ networks seem to be more centered
around hematology or solid tumors (coupled with fundamental research), while
in the results based on the laboratories’ network especially the bridging cores
are characterized by a higher proportion of researchers working in fundamental
research. The added value of this true multilevel analysis is to show that the division
of work at the level of individuals and the division of work at the level of laboratories
can complement and strengthen each other in the case of a segment of the population
(hematologists and fundamental researchers), while this reinforcement does not
work for others. This interpretation is consistent with the analysis of variations in
performance levels (though measured by IF scores, always a questionable measure-
ment) in this population. This is consistent also with substantive results (Lazega
et al. 2004) explaining how this specialty -clinical hematology working on patients
with leukemia- combined with fundamental research, became the most successful

BEven these similarities would be deemed very low by Steinley (2004); however he used these
indices with a different purpose.



8 Role Sets and Division of Work at Two Levels of Collective Agency: The. ..

203

Table 8.17 Similarity of the four-cluster partitions of researchers obtained with different

approaches measured by ARI

Researchers:
researchers —
separate
analysis
Laboratories:
laboratories —
separate
analysis
Single
conversional:
single-
relational
conversional
approach
(extended
researchers
network)

Multi
conversional:
multi-relational
conversional
approach

Researchers —
ML:
researchers
partition from
the true
multilevel
analysis
Laboratories —
ML:
laboratories
partition from
the true
multilevel
analysis

Single
con-
ver-

Researchers | Laboratories | sional

1

0.058

0.081

0.094

0.071

0.025

0.058 0.081
1 0.175
0.175 1

0.213 0.406
0.118 0.245
0.165 0.168

Multi
con-
ver-
sional

0.094

0.213

0.406

0.534

0.330

Researchers
-ML

0.071

0.118

0.245

0.534

0.699

Laboratories
- ML

0.025

0.165

0.168

0.330

0.699

1

specialty in cancer research at the time, especially by imposing to hematologists,
immunologists, and their laboratories a massive process of collective learning and
alignment on the new methods of molecular biology. This alignment can also be
a measure either of top-down power of the hierarchy forcing the researchers to
comply, or a measure of bottom-up social discipline characterizing their milieu and
profession — both controlled for the specificities of leukemia as a type of cancer.
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This meeting of top-down and bottom-up pressures towards alignment, combined
with the complementary character of the division of work across levels, was not
present yet for the other specialties in their fight against different kinds of cancers
(especially solid tumors), which may be why this effect is not noticeable for them
in these multilevel analyses.

Discussion

Here we will try to shed some light on the mixing of “applied” and fundamental
specialties which has been shown to lead to new scientific breakthroughs and on
the relation between the two levels. As this mixing is best viewed when taking both
levels into account while acknowledging the differences between them, only the
results of the multirelational conversion approach and the true multilevel approach
are discussed here.

We start with the analysis of the true multilevel results, which is in a sense a
less restrictive model. In the researchers’ network we can see that the “applied”
researcher (mostly hematologist, but also researchers of solid tumors/chemotherapy
and pharmacology) (bridging core) cluster 1 is highly connected to fundamental
researchers’ cluster 2. The connections go in both directions, although it seems that
there is more activity'* from the “applied” researchers’ side (more ties go from
applied to fundamental researchers than vice versa).

In the laboratories’ networks the situation is actually quite similar, however the
more connected and the more active group here is the more fundamental research
(with some solid tumors and diagnostics, prevention, epidemiology) cluster (cluster
5). Here it is clear that the connections to the “applied” laboratories cluster (cluster
6) are mostly recognized'> by the “fundamental” cluster. We can therefore see that
the “active” group is not the same in both networks, which suggests a form of
complementarity between both networks. The researchers from “active” laboratories
perhaps do not need to be so active to get access to resources or vice versa.

The two fundamental clusters, one from the researchers’ network and one from
laboratories’ network, are also connected, meaning that about half of the researchers
who form the researchers’ fundamental cluster (2) are employed in laboratories
from the fundamental cluster (cluster 5) and the other half in another similar
fundamental cluster (cluster 7). The difference between these two fundamental
laboratory clusters are in the “applied” specialties with which they are associated,
as well as localization and institutional affiliation. In the more active, bridging core
of the fundamental laboratories cluster (cluster 5), fundamental research is mostly

“We use activity to refer to the outgoing ties, so the more active units are those having more
outgoing ties.

5We use “recognized” since the direction of ties on the laboratories level is more an indication of
who recognized the tie than of the pure direction of ties (“actions”).
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coupled with solid tumors (and diagnostics, prevention, epidemiology), while in
the less active laboratories’ fundamental cluster (cluster 7), fundamental research is
coupled more with hematology (and diagnostics, prevention, epidemiology). This
could be explained by the fact that the ties between solid tumors and fundamental
research were being developed precisely at that time (and perhaps more “action” was
observed therefore in that area) — although a breakthrough related to solid tumors
would have to wait for at least one more decade.

The same could be observed in the results of the multirelational conversion
approach. This model is in a sense similar to the true multilevel approach where
the researchers’ and the laboratories clusters’ are fixed to be the same (meaning
that the cluster of laboratories can be defined as cluster of laboratories that employ
researchers from a given cluster and vice versa). The clusters from this approach are
very similar to the researchers’ cluster from the true multilevel approach. Therefore,
the situation described above for researchers applies also here. In these analyses we
can however again see how the lower “activity” of the researchers’ fundamental
cluster (2) is compensated by (or perhaps not needed due to) the high activity of
their laboratories.

Conclusions

In this chapter we reviewed several approaches to blockmodeling multilevel
networks and used them to analyze the multilevel (inter-individual and inter-
organizational) network of French cancer researchers and laboratories. First we
analyzed both levels separately and compared the results. Then we converted the
laboratories’ network to the “institutional” network of researchers and analyzed
both networks simultaneously on the level of researchers. Finally, we used the true
multilevel approach to analyze both networks (of researchers and of laboratories)
together with ties between the levels, simultaneously.

In terms of pure blockmodeling analysis the main result is that the structures of
both researchers and laboratories networks follow a core-periphery like structure
(similar to those found by Kronegger et al. (2011) for Slovenian scientists)
consisting of a bridging core, usually two simple cores, and a periphery. However,
while both levels have similar structure, the separate analysis shows that the
partition of the researchers and that of the laboratories do not match. Using the
true multilevel approach it is possible to obtain a reasonable fit of the blockmodel
while maintaining clear connections among researchers and laboratories partitions.
This analysis showed that the members of the main researchers’ bridging core are
not affiliated to laboratories from the laboratories’ bridging core.

This perhaps at first surprising result becomes more understandable if we take
into account additional variables, especially researchers’ specialties, reflecting one
dimension of the division of work in this domain of research. We notice that
while bridging cores for individual networks are composed primarily of researchers
focusing on more “applied” research (clinical research and Diagnostics, Prevention,
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Epidemiology) with some support from the fundamental researchers, the bridging
cores for the laboratories’ network are composed primarily of laboratories where
most researchers focus on fundamental research. This could be explained by the
fact that the two levels do not manage the same resources. The researchers’ network
represents advice networks, exchange of knowledge, where typically the teams are
created by “applied” researchers (a mix of MDs and MDs-PhDs) working in a
certain specialty and gathering in more fundamental researchers (PhDs). On the
other hand the laboratories’ network is in large part a network of circulation of
more “material” resources, where the main “suppliers” are the laboratories focused
on fundamental research. Therefore, as the two networks are tied by different ties,
the partitions based on them differ.

To sum up, the suggested approaches enable a true multilevel blockmodeling
analysis of multilevel networks. This approach opens up new perspectives that could
be of interest for network analysts. For example, it could be useful to further explore
the meaning of the conversion and extension practiced above. Each blockmodel
represents a system of roles (White et al. 1976) and therefore a form of division
of work that is likely to change over time in fields of organized collective action
such as that examined here. As shown in Lazega et al. (2013), conversion is a
form of extension of the reach of individuals in terms of access to resources that
can be complementary to their own, thus strengthening the probability that this
form of relational capital increases the focal actors’ performances. Actors reason in
multilevel ways (Lazega and Mounier 2002) and they know when their organization
provides access to new resources that they did not have before. Therefore they
have an incentive to follow that extension route. However the creation of this
route drives changes in the network of the members and thus also changes in the
previous role set and division of work. The methods presented here are useful for
generating hypotheses about the direction taken by change in the division of work
characterizing the system. This extension is a minimal approach to the dynamics of
adjustments of one level to the other, with possible progress for our understanding of
the relatively unequal costs of such adjustments to the other level, and of the parties
who will incur such costs. The fact that researchers are relatively strongly connected
and play the same role in the system can coexist with the fact that the laboratories to
which they belong are sometimes strongly connected and play the same role in the
system, and sometimes not. This begs the question of the conditions under which
this multilevel “consistency” emerges. Because the combinatorial possibilities for
“multilevel roles” (combining one role from each level, for example) could be
very rich, more work is needed in conceptualizing such a “multilevel regular
equivalence.”

In addition, over time, this multilevel approach would make it possible to follow
the extent to which systems having a strong overlap between partitions make it more
difficult for researchers with specific strategies to leave their initial organization or
inter-organizational context in order to create their own organizational structure. In
this dynamic perspective, much remains to be done too.

In this chapter we have shed some light on this subject. We have shown that
while the systems of roles is similar at both levels (core-periphery-like structures),
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the roles are occupied by different units (the “bridging” researchers are not
employed by the “bridging” laboratories). Based on this outcome, we also speculate
that the systems are driven by different forces. For the researchers network, the
driving force could be “applied” researchers (mainly MDs in hematology and solid
tumor specialists) making significant discoveries with the help of other, mainly
fundamental, researchers (PhDs). On the other hand, the laboratory system is driven
by the activity of mostly fundamental laboratories from the Paris region, where
investments traditionally were more massive. However, the systems are by no means
independent. The complementary nature of the systems could be indicated by the
relatively lower “activity” (number of outgoing ties) of the researchers employed by
the laboratories from the most “active” cluster. Actually, the strategy of these more
active laboratories might be to build ties to resources so that their researchers do
not need to invest so much time in this task. If so, the strategy seems effective as
the researchers from these laboratories belong to the highest performing group of
researchers.

Acknowledgements Section “Multilevel Blockmodeling” and pars of section “Analysis of a
Multilevel Network of Cancer Researchers in France” are a modified version of parts from Ziberna
(2014, pp. 48-51). Reprinted from Social Networks, Vol 39, Ale§ Ziberna, “Blockmodeling of
Multilevel Networks,” 46-61, Copyright (2014), with permission from Elsevier.
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Chapter 9

Comparing Fields of Sciences: Multilevel
Networks of Research Collaborations in Italian
Academia

Elisa Bellotti, Luigi Guadalupi, and Guido Conaldi

Introduction

Much of the work done in the sociology of science observes scientific communities
from a micro perspective, focusing on interactions in laboratories. By doing this,
researchers try to uncover the impact of social and cultural norms in the everyday
production of scientific results. Other studies approach the topic from a macro
perspective, analyzing scientific organizations and the reciprocal influence they have
with wider society. Less attention has been paid to the meso-level of interactions
within and between scientists and the environments they work in. Methodologically,
the gap in the literature can be filled using the recent advancements in multilevel
analytical approaches, especially by the combination of multilevel analysis with
social network analysis. This combination allows us to model structural effects on
individual behaviors, where these effects are at work at different levels of social
interactions, between individuals, groups, and organizations.

Linking the effects of interactions between scientists to the structural constraints
that may emerge from working in large and complex institutional settings, and
measuring these effects on individual and institutional behaviors is extremely inter-
esting, as it offers an additional piece of the intellectual jigsaw that a simple look at
individuals, or at organizations, cannot provide. Several analytical approaches have
been developed for the analysis of data that describe social networks in multilevel
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structures, as detailed in Snijders’ chapter in this book. Generally speaking, these
approaches have in common the assumption that what matters are the concrete
interactions between individuals and/or organizations, that these interactions are
structured in social networks, and that networks of lower levels (i.e., individuals)
are nested within networks of higher levels (i.e.: organizations).

In this chapter we want to identify a suitable approach that can be applied to the
study of scientific collaborations. In other words, we are interested in modeling the
multilevel structure of scientific work, looking at social networks of collaborations
between scientists, and at how these networks are embedded in disciplinary and
organizational levels. Once the relational structure of scientific collaboration is
described, we want to see if it plays a role in scholars’ successes. We adopt the
structural approach of Lazega et al. (2008) and analyze the local system of public
funding to academic disciplines in Italy using bipartite networks. Such analysis has
been already done for two academic areas: physics (Bellotti 2012) and philosophy
(Bellotti 2014). Here we extend the analysis to all the areas of research in Italian
Academia, in order to compare the results across different scientific fields. By doing
this, we observe the variability of structural effects across disciplinary areas that we
expect to be organized in different but comparable ways. In particular, the previous
analyses of physicists and philosophers showed in both cases the overarching
importance of academic ranks and of brokerage roles in obtaining research funding.
There were also some other interesting effects, like the less impacting but still
significant importance of working with a long-term established group of colleagues,
and the advantages of working in specific sub-disciplines (Bellotti 2012, 2014).

Here we want to see if those results replicate across other disciplinary areas,
or if some interesting differences can be found. For this purposes, we analyze
10 years (2001-2010) of the Italian Ministry of University and Research funding
of Projects of National Interest (Prin) across all the disciplinary areas of academia.
The micro-level (collaborations between scientists), macro-level (collaborations
between institutions and between disciplines) and meso-level (the combination of
network measures at a micro and macro level) of interactions are first independently
analyzed, and the results are used to model the total amount of money researchers
have received over the decade against the variables that meaningfully describe the
network structures of collaborations to research projects. All the network measures
are calculated in Ucinet (Borgatti et al. 2002) while the regression models for the
14 disciplinary areas are calculated in R, using the Inam function (linear network
autocorrelation model) in the SNA package (Butts 2007).

The chapter is organized as follows. In the next section we describe some of the
approaches that are available to study multilevel and bipartite networks. We briefly
introduce multilevel analysis models, and specifically HLMs (Snijders and Bosker
2012), Mixed Membership Models (Browne et al. 2001; Erosheva and Fienberg
2011), and affiliation networks (Breiger 1974). While these modeling strategies
focus on hierarchical dependencies, the problem of horizontal dependencies is
dealt by a network disturbance model (White et al. 1981; Dow et al. 1983, 1984),
which is more suitable when data present a network structure. These models are
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the essential antecedents to multilevel analysis of networks (MAN) (Tranmer et al.
2014), and multilevel network analysis (MNA) that uses ERGM models (Wang et al.
2013), which can be considered the two main analytical strategies for the study of
multilevel networks. Most of these approaches have been extensively described in
Snijders (Chap. 2, this volume), and when appropriate we limit our discussion to the
reference to his chapter.

We then move on to describe the structure of the data we want to analyze, and
we explain why, in our case, the mainstream models of MAN and MNA are not
applicable, which points us towards the adoption of a network disturbance model.
Once the analytical strategy is in place, we move on to illustrating the results of
the univariate analysis of the elements that describe the micro-, macro- and meso-
levels of scientific collaborations. These elements are then modeled in a linear
regression where the dependent variable represents the total amount of money each
researcher has earned in the 10 years under analysis, and where the effects on the
standard errors stemming from the network autocorrelation are controlled by using
the network disturbance model (White et al. 1981; Dow et al. 1983, 1984), which in
our case is done by following the solution proposed by Leenders (2002). Results are
discussed by focusing on the similarities and differences among the 14 disciplinary
areas, and on the autocorrelations effects. We discuss the results in the discussion
section, reflecting upon the contribution of a multilevel analytical approach, and
we conclude the chapter indicating the limits of our approach, and possible future
developments.

Multilevel Approaches to the Study of Social Networks

Multilevel approaches to the study of social networks stem from two complementary
analytical perspectives: multilevel analysis and affiliation networks. As detailed in
Snijders (Chap. 2, this volume) multilevel analysis, and in particular the hierarchical
linear model (HLM), is a methodology that looks at variability in data where
the source of variability depends on the nested nature of data, for example,
pupils studying in different classrooms of the same school, or living in different
neighborhoods (see also Snijders and Bosker 2012). A level is defined as a “system
of categories for which it is reasonable to assume random effects” (Snijders, Chap. 2,
this book: 6), where residuals (measured for a sample), or random errors (measured
for a population) are expected to be correlated for people belonging to the same
group. As discussed by Snijders (Chap. 2, this volume) an interesting extension of
multilevel models are mixed membership models (Browne et al. 2001), which allow
for individuals (or any first-level object of analysis) to belong to multiple second
level groups.

Affiliation networks on the other hand, deal with the duality of people in groups
(Breiger 1974). These are types of networks with two different sets of nodes,
where one set can only interact with the other. They represent situations in which
nodes from one level are members of the nodes at a higher level, for example,
individuals who may be grouped in organizations, which in turn may have an
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influence on the probability that individuals interact. Such approach has been at
the center of attention for social network researchers since it was first advanced
by Breiger (1974), who describes the properties of two-mode networks. Fararo
and Doreian (1984) extend Breiger’s formalism to tripartite networks, where, for
example, people are embedded in groups and groups in organizations; they then
generalize the conceptual basis and the matrix formalisms of bipartite graphs to
tripartite networks, and produce a set of matrix equations and operations that can be
applied in the study of empirical networks. Both multilevel models and affiliation
networks thus look at group dependencies, or dependencies nested from one level
to another, although the former are statistical models, while the latter are graph
theoretical structures.

While multilevel approaches deal with hierarchical dependencies, traditional
social network analysis, or the cross-sectional analysis of one-mode networks, is
interested in horizontal dependencies within a single level, with only a single set
of nodes. Its scope is to study the structure of relationships between (for example)
individuals and look at the effects that these may have on their behavior (or, alterna-
tively, to look at how individual behavior may affect the position in a network). In
order to account for network dependencies, social network analysis has adopted
methods originally developed for spatial correlations (Cliff and Ord 1975; Ord
1975) that deal with the problem of autocorrelation, or Galton’s problem (Naroll
1961, 1965; Schaefer 1974). In spatial terms the problem of autocorrelation consists
in the non-independence of the residuals, which are more similar for proximal areas
than for distant areas, and therefore do not follow a Gaussian (normal) distribution
(Wang et al. 2014). Similarly, in a social network two individuals may exhibit
similar characteristics for the very fact of being related: they may have influenced
each other, or they might have established the relationship because of the pre-
existing similarity (Steglich et al. 2010).

Social network analysis has thus extended the models for spatial dependencies in
three main analytical strategies for the analysis of relational dependencies. The first
is the network disturbances model, which corresponds to the spatial disturbance
model in geography (Doreian 1992; Anselin and Hudak 1992). In this model the
structure of the network is not assumed to have any direct influence on the variables
that measure some aspects of individuals, but only to influence the error terms.

Y=XB+¢ (9.1a)

e=pWe+v (9.1b)

The Eq. (9.1a) is a classic OLS, but the error term (9.1b) contains the matrix W
representing the network structure (e.g., a N x N adjacency matrix), the parameter
p representing the strength of dependence among the error terms, and the vector v
representing the Gaussian distributed residuals.

The second model is the network effects model, also known in the geographical
literature as the spatial effects model (Doreian 1992). Here the network is assumed
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to have a direct effect on an individual-level outcome variable. In the Eq. (9.2) pW
is thus included among the explanatory variables rather than in the error term. Here
the random errors are normally distributed (& ~ IN (0,07%1)).

Y =pWY +XB +¢ 9.2)

The third model is proposed in Doreian (1992) and incorporates both the
network effect and the network autocorrelation of the disturbance term, which is
considerably more complex (for a complete discussion of this last model, and of the
estimation procedures, see Doreian 1992).

Given the longstanding tradition of multilevel analysis and bipartite and one-
mode networks analyses, it was just a matter of time before researchers started
combining them. This was intended to combine single-level horizontal network
dependencies (one-mode) with hierarchical group dependencies (multilevel and
two-mode). In other words, methods are now available for combining network data
with group affiliations, as well as network data stemming from relations at various
levels of analysis. Snijders extensively explains the various approaches available
for such analysis (p2, latent space models, ERGM, SAOM: see Snijders, Chap. 2.
this volume). He also reviews the specific models for multilevel network analysis,
which aim is to go beyond the analysis of a single network and to generalize
results for a population of networks (Snijders, Chap. 2, this volume: 18). One of
the most promising approaches is the family of Exponential Random Graph Models
for multilevel networks (MNA, Wang et al. 2013), which consider each network
tie as a random variable, and model how ties are patterned. These models deal
specifically with situations in which we have relations between nodes at one level
(e.g., individuals); relations between nodes at another level (e.g., organizations);
and affiliations that link one mode to the other (individuals to organizations),
where multiple affiliation is allowed (individuals can belong to more than one
organization at a time). Stemming from the same family of models, Autologistic
Actor Attribute models (ALAAM, see Daraganova and Robins 2013) are instead
specifically designed to predict some characteristics of nodes (represented by
an endogenous binary variable where 1 = presence and 0 = absence of such
characteristics) assuming the network structure as exogenous and fixed.

A different way of analyzing the effects of social networks on individual
characteristics, while also taking into account group dependencies, is the Multiple-
Membership Multiple Classification (MMMC) modeling approach proposed by
Browne et al. (2001) and discussed and applied in Tranmer et al. (2014), which
is a useful approach for the multilevel analysis of networks (MAN). The approach
combines mixed membership models (Browne et al. 2001), which allow individuals’
multiple affiliations, with social networks measured at one level only (in Tranmer
and colleagues’ example from 2014, relationships between individuals nested in
schools and geographical areas). The network structure and the groups’ affiliations
are used as exogenous factors that are expected to have effects on the individual-
level educational attainment. This approach is very similar to the autocorrelation
models (spatial and disturbance) presented above, but it has the advantage that is
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able to introduce group dependencies as random effects, while in the former they
could only be accounted for in the models as fixed effects via a set of indicator
(dummy) variables (Tranmer et al. 2014: 446).

Whether to use an autocorrelation model or a MMMC model depends, according
to the authors, on the type of substantive research questions. If it is believed that the
network of relations between actors, as well as the group dependencies, have a direct
effect on the individuals’ characteristics under measure (the dependent variable),
then MMMC are preferable. If instead the network represents a nuisance, as it has an
influence only on the correlation of the random errors, then the network disturbance
model is indicated (Tranmer et al. 2014: 446).

Borrowing the notation of Wang et al. (2013: 213) we can summarize the various
approaches presented so far in Table 9.1, where we label the macro-level network
(i.e., organizations, grey square nodes) as network A, the micro-level network (i.e.,
individuals, black circular nodes) as network B, and the meso-level bipartite network
(affiliations) as network X. Given the various possibilities, the next step is to identify
which modeling strategy to adopt for the analysis of scientific collaborations. The
choice depends on the theoretical justification of the approach, and the suitability

Table 9.1 Summary of multilevel data structures

Data structure
= A level
= X level

Model

=B level

Description Dependencies Dependent variable
HLM A cross-level Nodes in B are A variable
nested expected to show | describing nodes’
structure, with | correlated characteristic in B
. > ® all B nodes residuals if they
with degree have a node in A
one in X, and in common
A and B empty
Mixed A cross-level Nodes in B are A variable
member- nested expected to show | describing nodes’
ship structure, with | correlated characteristic in B
models . . . all B nodes residuals if they
with degree have one or more
>1in X, and nodes in A in
A and B empty | common
Affiliation A cross-level Nodes in B are A variable
network nested expected to describing nodes’
structure, with | increase the characteristic in
. . . all B nodes chances of either A and/or or
with degree interaction if they | B. A network
>1in X, and have one or more | configuration

A and B empty

nodes in A in
common

describing ties’
characteristic in X

(continued)
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Table 9.1 (continued)

Data structure
= A level
= X level

Model

=B level

Description
Network * » A single level
distur- structure, with
bance d * ® | B nodes with
and either 0 or >1
network inB
effect
models
MMMC A cross level
(MAN) structure, with
. . all B nodes
with degree
¢ - d >1in X, either
Oor>1inB,
and A empty
MNA o = D A cross level
structure, with
all B nodes
& » with degree
. - o |=1inX, allB
nodes with

either 0 or >1
in B, and all A
nodes with
either 0 or >1
in A

Dependencies

Nodes in B are
expected to show
correlated
residuals
(disturbance) or
correlated
attributes (effect)
if adjacent in B
Nodes in B are
expected to show
correlated
residuals if they
are if adjacent in
B, and/or have
one or more
nodes in A in
common

Nodes in B are
expected to show
correlated
residuals if they
are if adjacent in
B, and/or if they
have one or more
nodes in A in
common, and/or
if these nodes in
A are adjacent

219

Dependent variable

A variable
describing nodes’
characteristic in B.
A network
configuration
describing ties’
characteristic in B

A variable
describing nodes’
characteristic in
either A and/or B.
A network
configuration
describing ties’
characteristic in
either B and/or X

A categorical
variable describing
nodes’
characteristic in
either A and/or B
(ALAAM). A
network
configuration
describing ties’
characteristic in
either B and/or A
and/or X (ERGM)

of the data. In the next section we move on to the description of the structure of
our data and the substantive questions that guide our analysis, which justify our
analytical strategy.

The Database of PRIN Projects

The data analyzed in this chapter refer to the Italian academic funding line
for Research Projects of National Interest (PRIN). This is a yearly competition
organized by the Italian Ministry of Universities and Research (MIUR) that for
some disciplines, especially humanities, represents the main (although not the only)
source of research funding. PRIN projects are inter-organizational collaborations
between researchers based in different universities, where each project is led by
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a national coordinator, and involves various local units. These are normally based
in different institutions, although there can be exceptions in which coordinators of
local units of one project may belong to the same department.

The PRIN scheme is a form of co-funding between MIUR and universities: every
year, researchers obtain a budget from their universities to cover 30 % of a research
project’s cost, with the other 70 % provided by MIUR if the project is selected.
Projects must be submitted for a specific disciplinary area. These disciplinary areas
are:

Mathematical and Computer Science;

Physics;

Chemistry;

Environmental Sciences;

Biology;

Medicine;

Agriculture and Veterinary;

Architecture and Civil Engineering;

Industrial and Computer Engineering;

10. Ancient Studies, Literature and Philology, History and Art;
11. History, Philosophy, Pedagogy and Psychology Sciences;
12. Juridical Studies;

13. Economics and Statistics;

14. Political and Social Sciences.

NN LD

e

Each of them is internally subdivided into sub-disciplinary sectors that dis-
tinguish, for example, between theoretical and experimental physics, or between
ancient and modern philosophy. The topic of the project must be related to
the disciplinary area in which is proposed and eventually funded; however, unit
coordinators can be affiliated to various sub-disciplinary sectors, or even to different
disciplinary areas. Thus, for example, it is possible to have a project where historians
of ancient philosophy work with logicians or moral philosophers to analyze certain
philosophical constructs in specific historical periods, or where mathematicians
work with computer scientists to develop algorithms, and so forth.

Information on funded projects is available from the MIUR website (www.miur.
it). Every funded project for every year (since 1996, although our analysis starts
from 2001) is listed in a pdf file containing the name and university affiliation of
researchers together with their role (national coordinator, local unit coordinator), the
amount of funded money for each unit, and the title of the project. This is followed
by a general account of the aim of the research, a statement about innovations in the
topic of enquiry, a list of criteria for the verifiability of the project’s outcomes, and
finally a detailed description of each research team’s duties. Across all the areas,
19,453 researchers have been funded during the 10 years under analysis.

The rank of the scientists (full professor, associate professor and researcher) and
the sub-disciplinary affiliation (e.g., theoretical physics, material physics, etc. for the
physics macro-area) are obtainable from the same MIUR website. The rank refers
to the position occupied by every scientist in 2010. To take into account people’s
promotions, rank was also recorded in 2001, which is the earliest information
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available from MIUR’s website (which is also the reason why our analysis does
not go back beyond 2001); using this information we constructed a binary variable
indicating if people changed rank between 2001 and 2010.

We only recorded information for scientists funded during the period under
analysis and therefore included in the PRIN dataset. Scientists who have not been
funded in this period are not recorded in our dataset, because although we could
retrieve their attribute information from the MIUR website, the fact that they have
not been funded should not be considered as a sign of unsuccessful bidding. They
might not have entered a proposal for this line of funding or they might have been
funded elsewhere. They therefore cannot be used as a control group against which
to compare the successful scientists.

For this analysis, every scientist is given an identification number. We then
created an individual variable for the following attributes: university affiliation,
sub-discipline affiliation, rank, change in rank, role within the project (as national
or local coordinator), and the total amount of funding received between 2001 and
2010, where this last information represents our dependent variable. We did this for
all the disciplinary areas (14), thereby obtaining an attribute file for each of them.
The unique identification numbers of all researchers (with the title of the projects
in which they participated) were listed in a linked file and organized in a dataset
consisting of ten bipartite networks of ‘people by funded projects’, one for each
year from 2001 to 2010. Again, we did this for all the disciplinary areas, so for each
of them we have ten bipartite ‘people by project’ networks.

Every researcher, being national coordinator, local coordinator, or research group
member, can only work on one PRIN project at a time. The same limit applies to
PRIN bids: when a group submits a proposal, all the members are restricted to that
one bid; they cannot place their name on several projects in order to have more
chances to be funded. All projects are funded for 24 months. Each year’s network is
thus reduced to a number of disconnected stars (with ties between scientists and the
specific project they work on). Summing up the ten bipartite matrices, the resulting
network shows overlap among the stars, as researchers move from one project to the
next one (and in some cases, from one collaborative group to another) through the
years. We obtained 14 of these overall networks, one for each disciplinary area.

Although scientists may move from one university to another, this is not common
in Italy, where people tend to be appointed and spend their entire career in
the same university, often the place where they obtained their PhD (Beltrame
2008). Over the entire population of scientists funded by MIUR (19,442), only
1.5 % have changed university in the 10 years under analysis (302). Therefore,
although there are three distinct sets of nodes (people, projects, universities), the
data do not form a tripartite network. Relations are only defined by individual
collaborations on research projects, while institutional affiliation constitutes an
attribute of individuals. Likewise, researchers become affiliated to a sub-discipline
when they first get appointed in a permanent position in Italian Academia. Although
they could potentially change disciplinary affiliation when obtaining a promotion,
this very rarely happens (161 out of 19,442, or 0.8 %, in the 10 years under analysis),
thus multiple sub-disciplinary affiliation is not allowed in our data.
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While multiple affiliations are not allowed, it is still possible to apply matrix
algebra and extract the university-by-project matrix, moving from the individual to
the institutional level of collaboration. Similarly, we can extract the sub-discipline
by project matrix, which represent another interesting institutional macro-level.
This has been done by transforming the university affiliation attribute vector, and
the corresponding sub-discipline one, into two-mode binary university-by-people
and discipline-by-people matrices. These matrices are multiplied by the two-mode
binary people-by-project matrix, obtaining a two-mode valued university-by-project
matrix, and a two-mode valued discipline-by-project matrix. Transposing the
people-by-project, the university-by-project and the discipline-by-project matrices
yields a person-by-person valued network, a university-by-university valued net-
work, and a discipline-by-discipline valued network (where in all of them the cells
indicate the number of projects in common). We did this for all 14 macro areas, thus
obtaining three networks for each of them. All networks are undirected.

The Multilevel Structure of PRIN Data

The original structure of the dataset, as we mentioned above, consists of a series
of bipartite ‘people by project’ networks, one for every disciplinary area and for
every year under analysis. Summing up all the years, we obtain 14 networks of
overlapping stars, one for each discipline, in which black rounded nodes represent
scientists and light grey triangles represent projects (Fig. 9.1). In Fig. 9.1 each
scientist’s macro affiliation (as noted above, multiple affiliation is not allowed) are
also visualized. Dark grey square nodes represent universities and white downward

A3 nmes b time 2
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Fig. 9.1 Bipartite ‘people by project’ network with university and sub-discipline affiliation
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Fig. 9.2 One-mode ‘people by people’ network (projects in common) with university or discipline
affiliation

triangles represent sub-disciplines. The bipartite networks are then transformed into
one-mode ‘people by people’ networks, where the ties represent the number of
projects two scientists have in common. This constitutes the first level of analysis
(level B in Table 9.1), while universities and sub-disciplines constitute the second,
higher level of the analysis (level Al and A2 in Table 9.1), nesting individual
researchers into groups. The ties connecting individuals to universities and to
disciplines represent the X level (Fig. 9.2).

The data structure illustrated in Fig. 9.2 suggests two possible analytical
approaches. The first is MMMC, where group dependencies (universities and
sub-disciplines) are introduced as random variables; the second is the network
disturbance model, where group affiliations are operationalized as fixed effects via
dummy variables (belonging/not belonging to a group), while effects of the network
of collaborations of individuals is expected to influence the dependence among the
error terms as in Eq. (9.1b). As discussed, the choice of whether to use one or the
other depends on the research question and the feasibility of the data (Tranmer et al.
2014).

In our case, we want to see if the position of scientists in the network of research
collaborations, together with individual attributes, have an effect in increasing the
total amount of funding each researcher receives in the 10 years under analysis,
where the dependent variable (money) is continuous. If we only had individual
attributes (being a national coordinator, rank, changes in rank, disciplinary affili-
ation), without knowing anything about collaborations, we could fit a standard OLS
regression. We do know however that when researchers collaborate in a project,
they often distribute the total amount of funding in equal parts across the local
units. This is not always the case, as the money required for the tasks of the local
units may vary: some units may need more staff time allocation, or more expensive
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equipment. But when such differences are excluded, researchers collaborating on
the same project will end up with the same amount of funding. If people continue
collaborating together project after project, they will eventually accumulate a similar
amount of overall funding. If they change research groups, the similarity will not be
as high, but we will still expect it to be greater than between two scientists who
have never collaborated with each other. Therefore we expect that the network of
collaborations between scientists will impact the correlation between the individual
error terms, which can be controlled by using the network disturbance model.

We could also assume that if two scientists work in the same sub-discipline, or in
the same university, their overall amount of funding would be correlated. This would
certainly be possible, and the logic of the MMMC model would lead to including
random group (Al and A2) effects. In order to fit a full MMMC model we thus
would need first of all to include some ego network structures as random effects, for
example dyads and cliques as in Tranmer et al. (2014), the former likely to be nested
in the latter. Then we would need to introduce university affiliation and discipline
affiliation as random effects, and look at the potential autocorrelation of random
errors of individuals not only collaborating with each other, but also working in the
same discipline and/or in the same university.

While fitting a MMMC model could potentially be possible and even advisable,
here we decided for the network disturbance model. We wanted to analyze the
impact of individual attributes, ego network structural properties, ego network
homophily, and structural properties of the macro network of university and
disciplinary collaborations and the meso-level of “fish and ponds” all together. For
such a complicated model the network disturbance model seems a simpler, although
limited, option. Network disturbance models also assume a continuous dependent
variable, which is our case.

One of the limits of fitting a network disturbance model, as we said, is that it
normally accounts for group dependencies by adding these as fixed effects (i.e.,
dummy variables for affiliations to groups). This can be problematic when there are
many groups, which is our case given the number of universities in Italy (94), as well
as the number of sub-disciplines, which varies across disciplinary areas (medicine,
for example, includes 50 sub-disciplines, while mathematics and computer science
only have 10). Our proposed solution is to use some properties that summarize
the network structure of the respective one-mode networks, university-by-university
and sub-discipline-by-sub-discipline networks, where ties are the number of projects
in common. These networks, derived from the combination of the bipartite ‘people
by project networks’ and the affiliation vector people-by-university and people-by-
discipline (as described in the previous section), are visually represented in Fig. 9.3,
and constitute the multilevel structure of our data, where level Al are universities
and level A2 disciplines. Note that ties in B are valued, as they represent the number
of projects people have in common; ties in X are either O or 1 from B to Al and A2
(as every scientist can only be affiliated to one university and one sub-discipline),
but can be >1 from Al and A2 to B, as several scientists may work in the same
university and in the same sub-discipline; and ties in A1 and A2 are valued, as they
represent the number of projects universities or sub-disciplines have in common.
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Given the fact that we analyze the outcomes at the individual level, in terms of the
total amount of funding received over the years, a multilevel ERGM (MNA) is not
suitable, as it analyzes relational (dyadic) outcomes.

In our case, the characteristics of level A1 (universities) and level A2 (disciplines)
are on the explanatory side, not the dependent side. We do expect a structural
effect with universities encouraging their researchers to work with other successful
institutions, and researchers collaborating with central sub-disciplines (for example,
most projects in physics will need a theoretical physicist, thus that sub-discipline
will be more central in the sub-disciplinary network). Therefore we calculate some
descriptive network measures that summarize the properties of the networks at the
Al and A2 level.

All 14 university-by-university networks, one for each disciplinary area, present
a clear core-periphery structure, indicating that in each discipline there is a set of
successful institutions everybody wants to collaborate with, that tend to collaborate
more with each other (note that the institutions in the core vary across disciplines,
as universities may excel in different specific areas). We measure belonging to a
core institution for each scientist as a dummy variable, and we introduce it as fixed
effect in our network disturbance model, to account for group dependencies. For
sub-disciplines the networks are more scattered around clusters of sub-disciplinary
collaborations. We thus use the values of flow betweenness (Freeman et al.
1991), which indicates how much each sub-discipline contributes to connecting
the network of collaborations between sub-disciplines. We attribute the normalized
values of flow betweenness of each sub-discipline to each researcher affiliated to
it, and again we introduce it as fixed effect in our network disturbance model. To
reiterate, both the network measures that describe the characteristics of the A1 and
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A2 level are only included as fixed effects, without being accompanied by a random
error term, a limitation required by the network disturbance model.

Individual attributes and structural properties of ego networks of the B level
constitute what we call the micro-level; the core-periphery properties of the
institutional networks and the flow betweenness values or the disciplinary network
of the Al and A2 level represent the macro-level. Following Lazega et al. (2008),
we also model a meso-level that links the properties of B with the ones of Al and
A2 (level X). In their article, the authors categorize researchers and institutes as
fishes and ponds according to their corresponding degree centrality values. Similarly
here we consider as “big fish” scientists with a valued degree above the median of
their own disciplinary areas (as the distribution is always skewed). Valued degree
at the B level indicates the number of collaborations each scientist participated
in over the 10 years of our analysis (note that individuals can collaborate with
alters more than one time). As the network of universities is redundant with the
network of individuals, it does not make sense to use degree values to distinguish
between ponds. Therefore, the distinction is calculated on the number of scientists
belonging to the same discipline and working in the same institution, regardless
of being funded or not, the assumption being that an organization with a higher
number of scientists offers a larger potential pool of contacts. We consider big
ponds universities with a number of appointed scientists above the mean (as the
distribution is not skewed). Combining information about fishes and ponds, we
derive the same four categories of Lazega et al. (2008): big fishes in big ponds
(BFBP), little fishes in big ponds (LFBP), big fishes in little ponds (BFLP), and
little fishes in little ponds (LFLP). In this way we cluster together individuals and
institutions with similar nested characteristics.

Univariate Analysis of Micro, Macro and Meso Characteristics

Hunting for funding is a highly competitive task in a scientist’s life. It is necessary
because it is impossible to do research without financial support and because it
increases the chances of promotion and of appointing junior staff. In the end,
financial support means publication of results, and publications are the measure
of job performance in academia. The MIUR website does not provide detailed
information on unsuccessful bids, only on successful ones. It does however provide
such information at an aggregate level, indicating for each year (from 2001) the
number of successful bids over the total number of proposals (Fig. 9.4). Thus we
can see, for example, that mathematics and computer science (area 1) and chemistry
(area 3) were more successful in 2002 than in 2001 and even more successful in
2003 than in 2002. 2003 also saw an increase in the successful proposals in earth
sciences (area 4), agriculture and veterinary (area 7), juridical studies (area 12) and
economics and statistics (area 13). Chemistry was even more successful in 2004,
which also saw a large increase in political and social sciences, whose percentage of
successful bids rose up to 82 %. In 2005 we see a further increase in earth sciences,
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Table 9.2 Number of people funded in each disciplinary area

Area Number of funded people
Medicine 3411
Industrial and computer engineering 1994
Biology 1991
Agriculture and veterinary 1542
Ancient studies, literature and philology, history and art 1509
Civil engineering and architecture 1324
History, philosophy, psychology, pedagogy 1311
Juridical studies 1219
Chemistry 1198
Economics and statistics 1067
Physics 957
Political and social sciences 676
Mathematics and computer science 653
Earth sciences 590
Total 19,442

industrial and informatics engineering (area 9), history, philosophy, psychology,
pedagogy (area 11) and juridical studies. From 2006 funding has diminished in all
disciplines, never reaching the success level of the first half of the decade. Table 9.2
summarizes the number of people funded in each disciplinary area.

The Micro-level: Individual Attributes

The individual attributes of each scientist funded across the 10 years represent,
together with the structural properties of the level B network (the network of
collaborations between scientists), our micro-level of analysis. The first important
property to look at is the role within the project. Each project is organized around
various local units. The project file in the MIUR database only reports the name
of the local coordinator, while the names of the other people involved in the
group are not available. Within these groups, one unit must act as the national
coordinative unit, and its leader is in charge of the administrative aspects of the
project and is the reference person for MIUR. While being a coordinator is a sign
of prestige in a research group, being the national coordinator usually also means
receiving the largest part of the funding, as it requires a greater investment of
staff time for managing the grant. Figure 9.5 shows the percentage of researchers
who have been national coordinators at least once in each disciplinary area (out of
the total number of scientists who have been funded). A high number of national
coordinators (as for example in earth sciences, where 54 % of researchers have been
national coordinators at least once) indicates that a discipline revolves around many
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Fig. 9.6 Percentage of funded people in each rank for each discipline

group leaders; a low number (i.e. civil engineering and chemistry) suggests that the
disciplines has fewer leaders who control most of the projects. Note that people
could have been national coordinators as many as six times over the 10 years under
analysis.

Rank is also very important. As we can see from Fig. 9.6, all the disciplines
are dominated by full professors, who represent the largest percentage of funded
researchers. However, this percentage varies across the disciplines, with 74 % of
funded people being full professors in juridical studies, compared to only 43 % in
medicine. The higher the percentage of full professors, the lower the percentage of
researchers. The percentage of associate professors varies less across disciplines,
ranging from 18 % in physics to 35 % in earth sciences, and constituting the second
largest group of funded people in all disciplines but physics, where the percentage
of researchers is higher.

The rank itself does not tell us whether people got funded because of their high
rank, or if they were promoted to higher ranks because they got funded. We thus
compared the rank of people at the beginning and at the end of the period under
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analysis and recorded this information in a binary variable, with 1 indicating a
promotion and O otherwise. Overall there is notable variation across disciplines
(Fig. 9.7), with 27 % of people gaining a promotion in medicine (moving from
researcher to associate professor, from associate to full professor, or from researcher
to full professor), a percentage that drops to the minimum of 5 % in physics. We
still cannot disentangle the direction of causality, but the information suggests that
while in disciplines like physics the rank could explain the rate of success, in others
it might be the rate of success facilitating promotions.

The Micro-level: Individual Networks

Rank, promotions, and coordination roles represent the individual attributes of
scientists. We now move to analysis of the micro-level of collaborations on PRIN
projects (level B). Three measures are used to observe the position of scientists
in the structure of research collaborations. The first is the Yule’s Q, a measure of
homophily which accounts for projects’ interdisciplinarity. Scientists funded via
PRIN projects can collaborate with colleagues from the same sub-discipline, from
other sub-disciplines in the same disciplinary area, and from different disciplinary
areas. The number of people each scientist works with who belong to a different
sub-discipline represents the interdisciplinarity of his/her egonet, or the degree to
which the egonet of each scientist is heterogeneous. This is measured via the Yule’s
Q index, which scales the diversity of an egonet not only over the total number
of alters in it, but also over the total number of people affiliated to a category. In
other words, the egonet of collaborations of a scientist is more heterogeneous the
more the disciplines of her collaborators are different from her own; but also the
more s/he collaborates with people in disciplines which are underrepresented in the
whole network. The values range from —1 (all collaborators belonging to the same
sub-discipline as ego) to +1 (all collaborators belonging to a sub-discipline different
from ego).
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The second measure is the average degree of the egonet (ties are valued). The
higher the average degree, the more individuals tend to collaborate with others
over the years. This means creating more or less stable groups that either develop
long-term research plans and ask for funding for follow-up projects, or simply
decide where to invest their research efforts as a group over the years. Maintaining
collaborations can be a good strategy as it creates a successful track record that
may favor subsequent funding. However, it could also be the case that researchers
prefer to, or are forced to, change the composition of their research group over time:
in this way, they end up occupying a brokerage position between different groups
of people, increasing the number of personal contacts with people who would be
otherwise disconnected. We measure this tendency by counting the number of times
people find themselves in a brokerage position in their egonets and dividing by
the number of projects each researcher collaborates on (since the more projects
an individual works on, the more brokerage possibilities s’/he might have). Scaled
brokerage thus constitutes our third micro-level network measure.

Average degree and brokerage are not mutually exclusive mechanisms: scientists
might collaborate with one group 1 year, add new people to the original group
2 years later, and eventually move to collaborate with a third group after another
2 years. In this case, a scientist would find herself in the position of being
the only link between groups one and two and group three. These mechanisms
resemble those theorized by Burt (2005), who distinguishes between brokerage
and closure in organizational settings, where brokerage favors the development
of new ideas and closure the delivery of settled projects. In Burt’s theory, both
mechanisms are valuable: when combined, they maximize the advantage for actors
in terms of developing dense egonets, as this facilitates the development of trust and
behavioral control, while giving brokers different and exclusive perspectives from
less connected people.

We model the success of these mechanisms in the next section to test which of
the two is more successful for obtaining money. Here we assume a direction of cau-
sation from the structure to the level of funding (i.e. brokers attract more funding),
but it could also be that a high level of funding attracts new people, resulting in
a higher average degree of collaborations or a higher number of structural holes.
Disentangling the direction of causation can only be tested with temporal analysis,
where one can see if it is the position in the structure of collaboration that leads
to the amount of funding received or if it is the amount of funding that stimulates
further collaborations. However, this latter direction of causation would imply a
greater effect from closure than from brokerage, as we would expect that successful
collaborations favor the establishment of further projects with the same group of
people rather than a drastic change of research groups.

Table 9.3 summarizes the average values of Yule’s Q, brokerage and density
of all disciplinary areas. Regarding the first measure, it is evident that some
disciplines, like mathematics, tend to establish collaborations not only in the same
disciplinary area, but also in the same sub-discipline. Medicine, on the other hand,
is highly interdisciplinary. Along with medicine only chemistry and physics are
characterized by heterogeneous collaborations, while for all the others the tendency
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Table 9.3 Average values of Yule’s Q, brokerage scores and average degree in each disciplinary
area

Disciplinary area Yule’s Q | Scaled brokerage | Average degree
Mathematics and computer science —0.76 1.57 1.00
Physics 0.40 1.47 1.12
Chemistry 0.37 4.39 1.26
Earth sciences —0.68 1.38 1.18
Biology —0.10 1.13 1.18
Medicine 0.76 2.23 1.04
Agriculture and veterinary —0.47 2.15 1.06
Civil engineering and architecture —0.63 2.97 1.03
Industrial and computer engineering —0.56 1.58 1.04
Ancient studies, literature and philology, —0.58 1.59 1.21
history and art

History, philosophy, psychology, pedagogy —0.60 1.69 1.13
Juridical studies —0.64 2.33 1.04
Economics and statistics —0.53 1.66 1.01
Political and social sciences —0.34 2.03 1.08

is toward homophily (although values are close to equal balance between in-group
and out-group ties for biology). Looking at the average brokerage scores per
discipline, we notice that chemistry is the one where people tend to broker the
most, while biologists seem to prefer to work in groups with fewer structural
holes. Chemistry is also the discipline with most cohesive groups, confirming the
possibility that brokerage and closure can be complementary structural mechanisms,
while mathematics is the discipline were the average degree is lowest.

The Macro- and Meso-levels

As we explained before, the university-by-university and discipline-by-discipline
networks, with the number of projects in common, constitute the macro levels (level
Al for universities and level A2 for disciplines). All the university networks are
characterized by core/periphery structures calculated using the coreness routine
in Ucinet (suitable for valued data). Ucinet automatically sets a cut-off point to
distinguish between the core and the periphery. The percentage of people working
in core universities (Fig. 9.8) varies across disciplines, from 34 % in juridical
sciences to 77 % in agriculture and veterinary. A high percentage indicates the
tendency of scientists to collaborate with others who work in equally successful
universities, while a low one means that researchers collaborate with people working
in institutions more successful than theirs.

The level of sub-disciplinary collaboration is analyzed using normalized flow
betweenness, which measures the contribution of each node to all the possible
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maximum flows by taking into account the values of the ties, and dividing by the
total flow through all the pairs. We assigned to each researcher the corresponding
sub-disciplinary normalized flow betweenness value, thus aggregating them in the
macro-level of sub-disciplinary groups. Figure 9.9 shows the values of centralization
for the 14 macro areas, which indicates how much the network in each area is
centralized around one or few sub-disciplines (Freeman 1979). The higher the value
(which ranges from 0 = no centralization to 1 = maximum centralization), the more
the network resembles a star.

The categorization into fishes and ponds constitutes the meso-level of analysis,
or level X. Figure 9.10 illustrates the distribution of these four categories across the
various disciplines, indicating predominance in all of them of BFBP and LFLP. This
means that there are not many people working in little ponds, which is expected
given the fact that the size of the pond is determined by the number of people
appointed in a specific sub-discipline in every university.
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Modeling Funding Achievements

While in most of sociology of science studies academic success is measured in
terms of publications and impact factor, in this study it is represented by the total
amount of funding a researcher has received in the 10 years under analysis. So
far, we have analyzed the individual and network characteristics in terms of getting
connected with other researchers, without taking into account the amount of money
received for every projects scientists work on. While it is likely that participating
in a higher number of projects means obtaining more funding, this might not be
always the case, as a scientist can participate in fewer but better funded projects.
Therefore for each disciplinary area we model the amount of money obtained by
every researcher against the variables that emerged as important at the micro-,
macro-, and meso-level of analysis. We model each level hierarchically, in order to
measure its influence separately from the other levels. We correct for potential lack
of independence between cases using the network disturbances model (Leenders
2002), and we then compare the values of p across disciplines.

At the individual level, we expect national coordinators, full professors, and
individuals who gained promotions to be more successful in obtaining money for
research. Here the direction of causality must be taken with caution, as it could
be that previous success in obtaining funding increases individuals’ credibility
and helps them to convince other people to join their projects in subsequent
years; similarly, the capability of obtaining funding might contribute to career
advancement.

H1. National coordinators are likely to obtain a larger amount of money for research
than researchers who never lead a research group.

H2. Full professors are likely to obtain a larger amount of money for research than
other ranks.

H3. Scientists who gained promotions are likely to obtain a larger amount of money
than scientists who were not promoted.
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At the micro-level (level B) of collaborations on research projects we expect
projects with a lower level of interdisciplinarity to be more successful, therefore
with lower values of Yule’s Q indexes. This is because all disciplines but three
seem to prefer homogenous collaborations. Again, direction of causality cannot
be robustly tested, as it could be the case that people who received funding for
homogenous collaborations continue in the same direction. We also want to measure
the successful rate of researchers occupying a brokerage position or being involved
in dense egonets: following Burt (2005), we expect both brokerage scores and
egonet average degree to impact on the total amount of funding. If the direction of
causality were reversed, we would expect closure to be the most successful strategy.

H4. Scientists with lower Yule’s Q index values for sub-disciplines are likely to
obtain a larger amount of money for research than the ones with higher values.

HS. Scientists with higher ego brokerage scores and/or higher egonet average degree
are likely to obtain a larger amount of money for research than scientists with low
values in one or both measures.

At the macro-level, given the fact that core institutions are the ones establishing
more collaborations, we expect scientists working in them to be more successful
than the ones working in peripheral universities (level Al). Likewise, we expect
people working in central sub-disciplines to be more successful (level A2). Here the
direction of causality is more robust, as given the low level of mobility of Italian
researchers it is very unlikely that a scientist decides to move to a core institution
attracted by the higher level of funding. Similarly, sub-disciplinary changes are very
rare.

H6. Scientists working in core institutions are likely to obtain a larger amount of
money for research than researcher working in peripheral ones.

H7. Scientists affiliated to central sub-disciplines are likely to obtain a larger amount
of money for research than scientists affiliated to peripheral ones.

At the meso-level (level X), which combines the size of the egonets (degree)
with the size of departments scientists work for (number of appointed scientists in
the respective sub-discipline), we expect big fish in big ponds to be more successful
than other categories, given the fact that in order to be a big fish scientists must
have collaborated to more research projects than the median (therefore with a higher
possibility of obtaining more money), and that big ponds might be considered more
prestigious institutions, therefore attracting a higher level of funding. The direction
of causality could be partially affected by the previous amount of funding, as
successful projects can be part of the criteria of evaluation for proposals; however,
being appointed in a big pond due to the previous amount of received funding is
again very unlikely given the low mobility of Italian scientists.

HS. Big fish in big ponds (BFBP) are likely to obtain a larger amount of money for
research than little fish in big ponds (LFBP), big fish in little ponds (BFLP) and
little fish in little ponds (LFLP).
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In all models the dependent variable is the log of the total amount of money
awarded to each scientist during the observation period (as the distribution is
skewed). In the first model we introduce the dummy variable of being a national
coordinator. In the second model we introduce three variables related to rank as
dummies: associate professor, researcher, and having had a promotion. In the third
model we introduce the Yule’s Q values for sub-disciplines, brokerage scores and
egonet average degree (—1 scores for Yule’s Q and O values for brokerage and
closure being constant). In the fourth model we introduce a dummy for being
in the network core, and the sub-discipline flow betweenness values. In the fifth
model, the meso categories are introduced as three dummies: BFLP, LFBP, and
LFLP — with BFBF acting as our reference category. All explanatory variables
that were not coded as dummies were centered and rescaled by dividing by their
standard deviations to ensure comparability of the regression coefficients. In all
models the individual networks of collaborations (level B) are included to control
for their potential effect on the correlation of the error terms, although in line with
the network disturbance model the characteristics of the A1 and A2 level are only
included as fixed effects, without being accompanied by a random error term. All
the individual collaboration networks were rescaled to give to each relation a weight
proportional to the share of the total number of collaborations entertained by a
scientist that such relation represents. The disciplinary area of medicine could not
be modeled at all, while for biology we could only fit the first three models. For
industrial and computer engineering and ancient studies, literature and philology,
history and art the fifth model (which contains all the variables) could not be fitted.
We suspect that the problem lies in the large size of these networks, but further
investigation is required.

Results

In this section we discuss the main results of our analysis by comparing them across
the 14 disciplinary areas. The full set of results for each area, the descriptives,
the correlations and the models’ diagnostics are available from the corresponding
author. Here we concentrate on the similarities and differences in the variability
explained, in the significance of variables, and in the p values across the disciplinary
areas. Figure 9.11 summarizes the total amount of variance explained by the full
(5th) model in each area, where all the variables are estimated. This model explains
a minimum of 37 % variance for physics, but up to 51 % for chemistry. In Fig. 9.12
we can see how much variance is explained by each model in each disciplinary area.

The first model, which takes into account how many times scientists have been
in the role of national coordinators, explains between 14 % (in economics and
statistics) and 25 % (in industrial and information engineering) of the variance, and
the coefficients are always positive and significant. This is expected and confirms
Hypothesis 1: the national coordinator is in most of the cases the one who sets
up the project and obtains the largest part of the funding (Table 9.4). The second
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Fig. 9.12 R? variations for each model in each disciplinary area

model includes the scientists’ ranks and promotions. This increases the R? by
a minimum of 1 % in industrial and information engineering to a maximum of
21 % in political and social sciences. Being an associate professor or a researcher
significantly decreases the amount of money granted compared to full professors in
all the disciplinary areas but physics and biology where researchers significantly
gain more money, confirming Hypothesis 2. Also, in all the disciplinary areas
but mathematics and computer science, physics, and biology there is a significant
positive correlation between being funded and obtaining promotions, confirming
Hypothesis 3 (Table 9.4).
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Table 9.4 Coefficients’ values and significance for Model 1 and 2

Model 1 Model 2

Discipline Nat. coord | Associate Researcher | Jumprank
Mathematics and computer science 0.342%%*% | —(0.818%** 0.091 —0.370%%%*
Physics 0.408*** | —(.209%** 0.144%*% | —(0.167**
Chemistry 0.426%*#% | —(0.243%** | —(),348%** 0.611%***
Earth sciences 0.414%*% | —0.320%** | —(0.238%* 0.783%%**
Biology 0.316%** | —0.200%** 0.519%#% | —(,142%%*%*
Agriculture and veterinary 0.420%** | —0.037 —0.036 0.739%%
Civil engineering and architecture 0.480%** | —0.168*** | —(0.245%** 0.757%%%*
Industrial and computer engineering 0.395%#* | —(0.112%** | —(.182%** 0.559%#%%*
Ancient studies, literature and 0.478%:%:% —0.188*** | —(.,232%* 0.620%*:*
philology, history and art

History, philosophy, psychology, 0.461%*%* | —0.215%** | —0.344%** 0.653%%*
pedagogy

Juridical studies 0.463%*#% | —(.345%** | —(),647%** 0.762%**
Economics and statistics 0.491*** | —0.135%* | —0.170* 0.714%%**
Political and social sciences 0.575%#% | —(0.243%** | —(,355%** 0.8427%%*:*

*p < .05; %% p < .01; %% p < 001

The third model adds the egonet variables of the micro-level of collaborations,
and the R? increases by a minimum of 4 % (political and social sciences) to a
maximum of 15 % (earth sciences). Homophily of sub-disciplines in collaboration
networks is significant for mathematics and computer science, chemistry, industrial
and information engineering and ancient studies, which means that the more
scientists collaborate with others in the same sub-discipline, the better funded they
are. For these areas Hypothesis 4 is confirmed. On the contrary, for earth sciences
the more scientists collaborate interdisciplinary, the better funded they are. The real
difference, however, is made by brokerage roles: in all the disciplinary areas being
a broker is not only positively significant, but the coefficients indicating the amount
of money brokers obtain compared to non-brokers are all very high. Brokerage
scores are positively and significantly accompanied by closure in all disciplines
but physics, civil engineering and political and social sciences, while cohesion
is negatively significant for industrial and computer engineering (Table 9.5).
Hypothesis 5 is thus confirmed for the areas where cohesion is positively significant.

The fourth model introduces the macro variables of coreness of the University
and of betweenness of the sub-disciplines. Both values are positively significant
only for chemistry and industrial and computer engineering, while working in a
core institution is positively significant also for mathematics and computer science,
and negatively significant for physics and working in a central sub-discipline is
significant also for economics and statistics (Table 9.6). However, the model does
not add any more explanation of the variance in any disciplinary area. Generally
speaking, Hypothesis 6 is not confirmed.

The fifth and final model, or full model, introduces the variables of the meso-
level, which increase the variance’s explanation by a minimum of 1 % in economics
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Table 9.5 Coefficients’ values and significance for Model 3

Discipline

Mathematics and computer science
Physics

Chemistry

Earth sciences

Agriculture and veterinary

Civil engineering and architecture
Industrial and computer engineering
Ancient studies, literature and philology, history and art
History, philosophy, psychology, pedagogy
Juridical studies

Economics and statistics

Political and social sciences

*p < 05; %% p < 01; %% p < 001

Model 3
Yules’ Q
—0.094*
0.004
—0.065*
0.125%*
—0.028
—0.019
—0.046%**
—0.071%**
—0.046
—0.009
0.011
—0.027

Broker

3.104%**
2.387**%
2.799%**
1.967%#%%*
3.504%**
2.466%**
1.506%%*%*
2.408***
2.762%**
2.596%**
2.819%**
1.657%#%%*

239

Av. degree
0.621%%*
0.084
0.499%%*%*
0.668%**
0.399%%*

—0.096
0.505%*
0.629%%*%*
0.500*
0.549%%%*
0.162

Table 9.6 Coefficients’ values and significance for Model 4

Discipline

Mathematics and computer science
Physics

Chemistry

Earth sciences

Agriculture and veterinary

Civil engineering and architecture
Industrial and computer engineering
Ancient studies, literature and philology, history and art
History, philosophy, psychology, pedagogy
Juridical studies

Economics and statistics

Political and social sciences

*p < .05, %% p < .01; %% p < 001

Model 4
Core
0.159%#%
—0.308*
0.095%*
0.027
—0.002
0.053
0.074%#%%*
0.069
0.077
—0.004
0.062
0.109

Flow Btw
—0.033
—0.00
0.145%:
0.010
—0.051
—0.041
0.214%#%%
0.094
—0.087
—0.061
0.150%*
0.056

and statistics to a maximum of 11 % for juridical sciences. Overall, scientists work-
ing in little ponds (small departments) are significantly more successful than their
colleagues working in big ponds, apart from mathematics and computer science and
physics, where little fish earn less money than big fish in big ponds. Little fish in big
ponds are also less fortunate in agriculture and veterinary and in history, philosophy,
psychology, and pedagogy (Table 9.7). Hypothesis 8 is thus not confirmed.

Finally we looked at the values of the parameter p in each model and for
each disciplinary area, which represent the correlation strength of dependence in
the random errors. If the value is significant, it means that the similarity of the
amount of money received by each scientist to the amounts received by people s/he
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Table 9.7 Coefficients’ values and significance for Model 5

Model 5

Discipline BFLP LFBP LFLP
Mathematics and computer science —0.065 —0.511%%* —0.641%%%*
Physics 0.041 —0.413%%* —0.3497%#*
Chemistry 0.546%%* 0.049 0.620%**
Earth sciences 0.256 —0.108 0.366%**
Agriculture and veterinary 0.310%** —0.202%* 0.239%3#
Civil engineering and architecture 0.371 %% 0.035 0.344 %%
History, philosophy, psychology, pedagogy 0.531 %% —0.150* 0.440%**
Juridical studies 0.721%%* —0.034 0.767%%*
Economics and statistics 0.277%* —0.017 0.227%%*
Political and social sciences 0.5297%%* 0.092 0.553##*

*p < .05, %% p < .01; %% p < 001

Table 9.8 Values of the p parameter for each model in each disciplinary area

Discipline Model 1 Model 2 Model 3 Model 4 Model 5
Mathematics and computer —0.003 —0.003 —0.004 —0.004 —0.004
science

Physics —0.048 —0.058 —0.039 —0.041 —0.059
Chemistry —0.110 —0.080 —0.058 —0.062 —0.082
Earth sciences —0.046 —0.050 —0.086 —0.083 —0.081
Biology 0.618%*** | 0.612%**

Agriculture and veterinary —0.001 —0.001 —0.001 —0.001 —0.001
Civil engineering and —0.001 —0.001 —0.002 —0.002 —0.002
architecture

Industrial and computer 0.5327%%%* 0.546 0.709%#* 0.714%%%
engineering

Ancient studies, literature —0.001 —0.001 —0.002 —0.002

and philology, history and art

History, philosophy, —0.001 0.564*** | —0.001 —0.001 —0.002
psychology, pedagogy

Juridical studies —0.002 —0.002 —0.002 —0.002 —0.002
Economics and statistics —0.001 —0.001 —0.002 —0.002 —0.002
Political and social sciences | —0.004 —0.004 —0.004 —0.004 —0.004

*p<.05; % p<.01; ¥ p < 001

collaborates with explains part of the variance that does not depend from our other
independent variables. As we can see in Table 9.8, p values are all very minimal
and not significant, apart from biology (for which we could only fit up to the second
model) and industrial and computer engineering (for which we could not fit the full
model). The value is also significant for the second model for history, philosophy,
psychology, and pedagogy, although we suspect such values to be an anomaly which
requires further investigation.
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Discussion

The analysis of the influence of micro, macro, and meso factors on the rate of
success of research funding proposals indicates some interesting elements that sug-
gest possible underlying mechanisms which facilitate a successful funding rate. The
roles of national coordinators and of brokers are extremely important in obtaining
money in every disciplinary area. Along with ranks and promotions, which account
for a good portion of variance explanation, what makes a difference for Italian
scientists is their ability to establish research collaborations, either by attracting
people to work under them (as national coordinators) or by attracting people who
do not otherwise collaborate with each other (as brokers). However, disciplinary
differences seem to be explained either by individual attributes or by egonets
structures, and only rarely by both. The R? in disciplines like physics, history,
philosophy, psychology and pedagogy, mathematics and computer science and earth
sciences is relatively low in the second model (where ranks and promotions are
introduced), while it increases 10 % or more in the third model (where egonets
variables are introduced). This suggests that for these disciplines the micro structure
of collaboration, as in with whom people collaborate, is more important than the
position in the professional rankings. On the contrary, disciplines like political and
social sciences, economics and statistics, and agriculture and veterinary, and see a
higher impact of ranks and promotions compared to egonets properties, indicating
that individual attributes count more.

Interestingly, the macro-level of university and sub-disciplines collaborations,
represented by descriptive measures of the respective networks, does not explain
any of the variance in any disciplinary area. This means that the fact that a
department is successful in getting funding does not mean that its scientists will
obtain, on average, more money than the ones who work in institutions with fewer
collaborations. Likewise, working in sub-disciplines which are more requested for
collaborations (as they occupy a central position in the sub-discipline network)
do not overall increase the total amount of received funding. Results of the final
model, which introduces the meso-level categorizations, suggest that scientists
working in large departments may suffer from internal competition more than
people working in small departments, and this is especially important for chemistry
and juridical studies. Given the fact that the meso-level is measured, on our
case, by combining micro-level egonet properties (number of collaborations) with
macro-level institutional properties, we can conclude that it is important to take
a meso-level of nested characteristics into account, as without this last level of
analysis we would have missed the importance of macro-level properties.

Finally, the adoption of the network disturbance model has proven to be useful in
testing for the effects of network autocorrelation. In our case, the network effect does
not explain any further variance. This suggests that the similarities in the amount of
funding between adjacent people do not influence the rate of success. Biology and
industrial and computer engineering are worth further investigation, as we could not
explain why the autocorrelation effect is significant in these cases. As we already
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mentioned, the high value in the second model for history, philosophy, psychology,
and pedagogy is difficult to explain. We measured the impact of the individual
variables (Associate, Researcher, Jumprank) on the p, but it becomes significant
only when we input the three variables together. Despite these odd results, which
require a deeper analysis, the absence of significance of p in all other cases suggests
that our models are robust, and the error terms are not disturbed by the network
effect.

Conclusions

In this chapter we analyzed the mechanisms that lie beyond the structure of research
project collaborations in Italian academia. In line with previous results, we found
that individual attributes (being a national coordinator, a full professor, and having
being promoted) play a role in getting funded. It is however the position of being
a broker across otherwise unconnected research groups that makes a difference in
the total amount of funding received by a scientist over the years under analysis,
in some cases combined with egonet closure. These results confirm not only the
previous ones for physicists (Bellotti 2012) and philosophers (Bellotti 2014), but
also the importance of looking at individual network properties when analyzing
scientific collaborations. Leadership is a characteristic that seems to be related both
to career achievements (becoming a full professor) and to the capability of attracting
multiple research groups for scientific collaborations.

The importance of adopting a multilevel perspective is indicated by the relevance
of the meso categories, which nest individual network data with organizational
properties. Despite the lack of impact of macro categories (university and sub-
disciplinary affiliations), results -which the analysis of individual characteristics
would not be able to account for- show the necessity of controlling for these
various nested levels. Also, the similarities of significant properties in explaining
successful funding across the various disciplinary areas suggest common structural
mechanisms that dominate this specific line of funding in Italian academia.

Our analytical approach is not without limits and problems. In some cases,
specifically medicine, biology, ancient studies and industrial and computer engi-
neering, the full model could not be fitted. In the case of the former two disciplinary
areas not even the previous, simpler model could be computed. We suspect that
the reasons lie in the size of these networks, which obviously poses a problem and
a challenge for multilevel analysis. Furthermore, the lack of congruence between
nodes in each time observation means that dynamic network analysis (SAOM)
cannot be performed on our data. This is another serious limit, as the direction of
causality could not be untangled. We cannot therefore explain if it is the previous
success in being funded that attract more collaboration and facilitates promotions or
vice versa.

Another problem relates to the analysis of the macro-level of sub-disciplinary
collaborations, which is limited by the type of variable that describes it. We use
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flow betweenness because as far as we know it is the only measure of betweenness
centrality that deals with valued data. However, this measure is difficult to interpret
in the case of research collaborations. We wanted to grasp the characteristic of a
discipline that is in high demand among other sub-disciplines (for example, every
project in physics is likely to need a theoretical physicists), but flow betweenness, as
in the measure of the contribution of each node to all the possible maximum flows
between pairs of nodes, does not fully capture this property. Also, the properties of
the macro-level of collaborations, represented by coreness and flow betweenness,
are only introduced as fixed effects, in line with the requirements of the network
disturbance model. It would be interesting to include the effects of their respective
groups following the logic of multilevel analysis, but this is not, at this stage, easily
combined with our already complicated model.

Finally, both brokerage and closure may be strategically pursued by researchers,
but the network data alone do not allow us to observe whether the choices of these
structural positions are intentional or are the unintentional outcome of structural
possibilities and constraints. Scientists may decide to change the composition of
groups because of the unavailability of previous collaborators or because previous
collaborations were not satisfactory. They may also switch because they receive
more interesting offers or because they want to invest in new topics. In fact, there are
many possible reasons for switching, which would be better explored via qualitative
methods.

Despite these limits, we believe that our analytical approach successfully models
the total amount of funding scientists received for research collaboration in Italian
academia. We managed to explain a good amount of variance across all the
disciplinary areas, and we think that the strategy of manipulating network data to
obtain variables that describe the macro-levels of university and sub-disciplinary
affiliations is promising. By deriving the university-by-university and the sub-
discipline-by-sub-discipline networks, we were able to account for the nested
properties of individual collaborations without having to deal with the problem
of the high number of group affiliations. Other ways of measuring such structural
properties and more sophisticated analysis of nested dependencies developed could
be adopted. We leave these possibilities for future research.
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Chapter 10
Market as a Multilevel System

Julien Brailly, Guillaume Favre, Josiane Chatellet, and Emmanuel Lazega

Globalized markets require long distance partnerships between companies, “global
pipelines” as Bathelt and Schuldt (2008) call them. But what kind of relationships
do these partnerships represent? Behind each partnership between companies
there are always inter-individual ties (Gulati 1995). If a partnership between
two organizations necessitates inter-individual collaboration at the beginning of a
contracting process between companies, the more a partnership is repeated between
two companies, the more it breaks away from the inter-individual relationship
to become an inter-organizational tie that does not need specific acquaintances
between its members (Lorenz 1999). In order to understand how international ties
are created between companies one should study the coordination and the complex
interdependencies between these two kinds of actors and these two levels of actions:
individuals and organizations.

Granovetter’s (1985) article on embeddedness is famous for asserting at a high
level of generality that economic phenomena take place in social structures and
are shaped by social networks. Individuals do not act as atoms socially, their
behaviour is not entirely defined by macro-structures, and their actions depend on
a relational context. In the area of economic sociology, research has exposed the
importance of social networks in markets, indicating the relevance of relational
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structures for the emergence of economic activities (for syntheses of the state
of the art, see for example Granovetter and Swedberg 1992; Brass et al. 2004).
Many have also questioned the value of such a general notion of embeddedness of
economic activities in social structures (for example Burt 1992; Swedberg 1997;
Lazega 1996, 2001) in order to go beyond a mechanistic interaction between
these kinds of relationships. Depending on the level of analysis, two approaches
can be distinguished. One focuses on inter-organizational networks, showing, for
example, that companies are embedded in a web of commercial relationships
but also of alliances and business partnerships that affect their performances,
successes, or chances of survival (Powell 1996; Powell et al. 2005; Uzzi 1996,
1997). Another approach studies informal relationships such as friendship, advice,
information exchange or collaboration between entrepreneurs at the inter-individual
level (Krackhardt 1994; Ingram and Roberts 2000; Lazega and Mounier 2002). Such
approaches aim to reveal informal social structures in order to underline the role
of social resources and social capital in economic activities. In most handbooks in
economic sociology or social network analysis (for example, Smelser and Swedberg
2010; Knoke 2013; Scott and Carrington 2011), inter-organizational and inter-
individual networks are treated separately as if they were different topics. This
separation is due to the fact that much of existing research in this area focuses only
on one level of analysis at a time.

Both approaches start with the same question: how do markets and economic
activities work in practice? But by separating the two levels of analysis, particularly
in a context of globalized markets in which ties are long-distance relationships, they
miss the global process of emergence of economic activities and tie formation at
each level (deal-making, for example). From our perspective economic activities
and markets are influenced by both levels. A deal between two companies, which
is an inter-organizational tie, depends on inter-individual relationships and vice
versa. Economic relationships such as deals between two organizations and informal
relationships between their members are interdependent. To explore this dual
dimension, a multilevel social networks framework has been developed by Lazega
and his co-authors (2007, 2008). This approach is based on the study of multi-level
networks observing two superposed and partially nested, interdependent levels of
agency, an inter-organizational system of action and an inter-individual one.

Supposing that these levels are nested does not imply that they evolve symmet-
rically and in sync. As emphasized by Lazega (2012, 2013, 2014), the co-evolution
of the two levels is complex, dynamic, and can be partially disconnected if not
asynchronous —raising the issue of the costs of synchronization (Lazega and Penalva
2011). This is a problem of agency, both individual and collective. Different levels
may not evolve and change simultaneously. Structural organization of each level
as well as the attributes or context explaining tie formation at each level can
be different. We argue that this is why a multilevel approach is of interest: in
order to reframe the issue of embeddedness. The challenge is to understand how
social systems at both levels co-evolve and how actors at both levels coordinate to
generate the socio-economic structure of the market. What specific multilevel social
processes construct and explain the structure of an economic milieu?
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Building upon this framework we study network formation at each level of a
specific market. We show that inter-individual and inter-organizational networks
are partly interdependent but also that different processes emerge at each level.
Our empirical case is a trade fair for television programs in Eastern Europe. In
this trade fair sellers and buyers of TV programs (distributors and TV channels)
meet once a year to discuss contracts, make deals, keep informed about new
films, series, and game shows, and observe market evolution. We study the
informal exchange of information between trade-fair attendees and formal deal
ties between their companies by examining network formation at each level. We
find that these networks are heavily interdependent but that each level has its own
specific processes. We emphasize that the process of tie formation between two
organizations has a different contexts than that between two individuals in terms of
temporality. We conclude by showing that, in spite of different temporalities, the
two levels coevolve.

Reframing Embeddedness as a Multilevel Issue

From Embeddedness to Multilevel Hypotheses

Asserting that economic action is embedded in relational structure leads to an
explanation of how this embeddedness works. According to what can be labeled
a “contractualist” approach (Powell 1996; Powell et al. 2005; Uzzi 1996, 1997) it
is possible to reconstruct a deal network between a set of organizations to reveal
the economic social structure of an industry or a market. Ethnographies of social
interactions between market participants emphasize, for example, the need for
trust to sign a contract (Uzzi 1997). Such an approach only focuses on one kind
of relationship. But, embeddedness assumes the existence of at least two kinds
of relationships: economic and social. Following the work of Granovetter (1973,
1985) some researchers have developed multiplex models that include both kinds
of relationships (for example: Mizruchi and Stearns 2001). From this perspective,
only one kind of actor is examined, either individual or organizational, or in our
terminology one level of action. From our perspective, it can be helpful to consider
two categories of actors: individuals (with social relationships) and organizations
(with economic relationships).

In our proposed reframed embeddedness approach, the organizational level
is more than an organizational contextualization of inter-individual action, as in
traditional multilevel statistical approaches (Bryk and Raudenbush 1992; Goldstein
1995; Snijders and Bosker 1999) or in the social network multilevel analysis of
Snijders and Baeverldt (2003). It is populated by actors who act and create a context
for their actions and interactions at the individual level. This conceptual position
is helpful in exploring the emergence and functioning of a market. Indeed, an
organization should not be conceived as a unified and homogenous social object, but
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as a social system built collectively by a heterogeneous set of individuals (Crozier
and Friedberg 1977; Friedberg 1997). A deal between two companies can be looked
at as a set of relationships between individuals. Let us imagine two organizations
of significant size in a market, represented respectively by a sales manager and an
acquisition manager. These two individuals have the opportunity to meet and agree
on the object of a transaction, the main aspects of the contract, and possibly the
price. The contract will then be submitted to the higher-level management of their
respective companies for approval. The legal department will define the details of
the contract; the technical department will manage the dispatching of the product;
the finance department will bill and track the payment; and so on. It will obviously
be the same on the buyer’s side. In short, once an agreement is reached between
a buyer and a seller, organizational machinery is set in motion, and we are no
longer able to assign this relationship to the sales and acquisitions managers. The
personal relationship between the buyer and the seller does not disappear. These
individuals will keep in touch. They initiated the contract and it is often likely that,
if it were to be renewed, it would be at the initiative of one of them. However this
relationship moves on to a different level and becomes inter-organizational because
it involves other actors and their hierarchical organizations. In the meantime, this
inter-organizational relationship could become a context for other members of
both organizations to create inter-personal relationships — as described by concepts
such as extended relational capital and embedded brokerage (Lazega et al. 2013).
Therefore, it is necessary to examine this duality between inter-individual and inter-
organizational relationships in order to understand these transactions, to look at both
levels in the same socio-economic space, without conflating them.

An organizational network cannot be reduced to the basic concatenation of the
inter-individual network of its employees, especially when looking at international
corporations. Indeed, in such organizations, decision-making processes and infor-
mation circulation are very long and involve a multiplicity of persons. In addition,
it is often difficult to identify who represents the organization for a specific task.
One of the contributions of intra-organizational network analysis is precisely the
attempt to reveal the informal structure behind the formal organizational chart and
to specify the social processes characterizing this organization as a social milieu
(Lazega 2001). Such processes streamline individual action and show that the inter-
organizational milieu represents a specific level of collective action (Lazega 2009;
Lazega and Penalva 2011).

By taking into account together or separately different levels of analysis and
different kinds of relationships, we can define different levels of complexity of what
could be called the “embeddedness hypothesis,” that represent each level with its
elementary structural unit. Figure 10.1 summarizes these different hypotheses. In
this contribution, we will explore the higher levels of complexity of this “multilevel
network hypothesis” as previously defined. As a consequence, we consider the
market as a social meta-system constituted by two levels of agency. It is created by
the superimposition of at least two networks of different levels which are partially
nested. That implies two different hypotheses (Brailly and Lazega 2012). First, as in
traditional social network analysis, a horizontal structural dependency hypothesis
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Contractual Multiplex Multilevel Context Multilevel Network
Hypothesis Hypothesis Hypothesis Hypothesis
—— : Social exchange ‘ : Individual
: Economic exchange
........ - Affiliation : Organization

Fig. 10.1 Increasing complexity of the reframed embeddedness hypothesis

within both levels: actors at each level act in a social context and can meet. Second,
a vertical structural dependency hypothesis between the levels: the individual
network partly depends on the network of his/her company and vice versa. These
levels of actions are partially nested. Therefore, for each level, specific structural
processes emerge and explain the network morphology. But in the meantime, levels
are interdependent and influence each other. We can translate these ideas into the
following general and descriptive hypotheses to be tested empirically:

Hypothesis 1 Network morphologies are different at each level (Structural Mor-
phology).

Hypothesis 2 The structures of different levels influence each other (Multilevel
Embeddedness).

In order to test these first hypotheses, we use complete networks as defined by
Wasserman and Faust (1994). The horizontal complexity of a social space requires
considering that the social context is not only an exogenous factor influencing
actors’ behaviour, but an outcome emerging through social processes produced by
these actors (Pattison and Robins 2004). Rather than decompose the network into a
set of dyads, Exponential Random Graph Models (ERGM) contextualize these links
in their neighborhood, for example centrality, dyadic, or triadic effects (Wasserman
and Pattison 1996; Robins et al. 2005; Snijders et al. 2006; Lusher et al. 2013). For
the vertical complexity, we need to take into account a feedback between these two
levels, for which Breiger’s “dual” approach (1974) is usually considered to be the
starting point. Using two-mode networks, it is possible to construct two one-mode
networks by derivation from the affiliations links: groups are linked together if they
share at least one individual and individuals are linked if they belong together in at
least one group. Whereas the dual approach focuses on link between levels, Lazega
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et al. (2007, 2008) proposed a method that articulates both kinds of complexity.
This approach analyzes simultaneously two levels of agency synthesized in partly
nested complete networks articulated with affiliation links. This method helps to
preserve the vertical complexity of social systems. As a consequence, this work
aims to contribute to this Multilevel Network Analysis (MNA) research program
(Lazega and Mounier 2002), rather than to the Multilevel Analysis of Networks
(MAN).

This framework is useful for analyzing markets and economic activities. Fol-
lowing Lazega et al. (2013), it is possible to explore the impact of multilevel
relationships on the performance of actors. These multilevel relationships are an
opportunity to expand an individual’s personal network with the relations of his/her
company (it is easier for an individual to contact another who works in a different
company if their companies have a relationship). In markets, individuals can take
advantage of the reputation of their organization. Conversely, an organization can
take advantage of the popularity of its employees, which could help to explain hiring
and firing strategies. This “multilevel” reputation effect can maintain, exacerbate or
reduce status inequalities between actors at both levels. It also makes it possible to
reveal forms of hidden costs introduced by other levels. As emphasized by Archer
(2000) or Lazega (2013, 2014), the co-evolution of two levels is complex, dynamic,
and partially disconnected.

The Multilevel Embeddedness Hypotheses in the Context
of a Trade Fair

To formulate further hypotheses and illustrate this approach, we use the case of a
trade fair for the distribution of television programs in Eastern Europe. Fairs can
be considered as small market arenas in which sellers and buyers can meet through
face-to-face contact. These events are temporary organizations where knowledge
about the market emerges and circulates among attendees and enables a collective
learning process between firms (Bathelt and Schuldt 2008). These events also play a
crucial role in the construction of markets by fostering the emergence of a social
environment and the production of specific norms and values (Aspers and Darr
2011).

From “Same time next year”. ..

Many authors in geographic economics and management have studied these events
Bathelt et al. (2004); Bathelt and Schuldt (2008, 2010), (Schuldt and Bathelt 2011),
which help companies in the globalized economy to identify new partners, suppliers,
or clients from different parts of the world. The main argument is that these
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international ties — or global pipelines — do not require a permanent co-localisation,
but only a temporary and recurrent co-localisation that concerns only a few steps
in the deal-making process. According to these authors, these global pipelines are
created during international trade fairs that bring together in the same place, for
a few days, the microcosm of an industry. They emphasize that this is the only
way for them to have a global, quick and precise vision of the whole market, and
to compare themselves to their competitors. From the attendees’ point of view,
attending these events is relatively costly, but it is a good way to meet new and key
people (Seringhaus and Rosson 1998). Moreover, the more companies attend these
events, the more their upstream preparation costs (prospection, communication,
logistics . ..) will decrease (Power and Jansson 2008). If the main goals of the
companies during these trade fairs are to sell and buy or to create new partnerships,
these events are also symbolic places where reputation is constructed (Seringhaus
and Rosson 1998, 2001). Indeed, if a firm attends a trade fair regularly, it could be
considered as a signal that the firm is thriving. The goal can also be simply “to be
there” and to be seen (Power and Jansson 2008).

This literature considers that the main advantage of these events is that infor-
mation circulates and is built through this circulation within the global network,
which generates knowledge pools. It produces a global buzz' that provides learning
opportunities during and after the event, and thus supports the maintenance of
long-distance business relationship (Maskell et al. 2006; Power and Jansson 2008).
In parallel, these authors give a structural content to the global buzz concept:
“During a fair, information is constantly transmitted from one agent to another.
This process is repeatedly interpreted, evaluated and enriched with additional
relevant information and knowledge. The decisive point is that while acquiring
new knowledge, participants act simultaneously as both recipients and broadcasters
of global buzz. The potential advantages and benefits of applying this knowledge
become clearer as the trade fair evolves and interpretations are drawn from the
variety of meetings” (Bathelt and Schuldt 2010, p. 1962).

Above all, many authors agree that trade fairs are spaces for individual and
organizational network construction. During these events, attendees increase the
size of their personal network with new prospects and refresh, develop or simply
maintain existing contacts: “Relationships need to be built over time and nurtured
through repeated contact at different events and that they met the same people again
and again at the fairs” (Power and Jansson 2008, p. 432). This dyadic experience
implies personalization of the relationships between buyers and sellers — especially
because the actors already know one part of mutual expectations — and allows for
establishing trust ties between organizations (Power and Jansson 2008; Maskell

'Parallel to the local buzz of permanent clusters (Storper and Venables 2004), temporary clusters
generate global buzz if the event combines the following conditions: explicit co-participation
to maximize face-to-face interactions; possibilities for observation; existence of practice and
epistemic communities from different parts of the world; dense and multiplex socio-economic
relationships (Bathelt and Schuldt 2010).
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et al. 2006). The fact that this event exists is proof that a deal-making process that
requires long-distance coordination also requires occasional, but regular, face-to-
face meetings. As a result a high frequency of co-participation of two actors in the
same event increases their chances of creating social and economic relationships
(Maskell et al. 2006).

Because inter-organizational partnerships need trust, information, and mutual
knowledge, the recurrence of co-participation reduces risks and facilitates inter-
organizational links: Maskell et al. (2006) coin this recurrent event Same time next
year. This leads to the next multilevel hypothesis:

Hypothesis 3 The more actors co-participate in an event over a long time period,
the higher the probability of having a relationship (Same time next year co-
participation)

... To “Next time this year”

However, one could consider that the previous approaches decontextualize the event
and separate it from all the other trade fairs bringing together the members of the
same industry. Indeed, as underlined by Power and Jansson (2008) many trade fairs
are organized in the same industry during a single year, and often organizations and
individuals attend several such events. This repetition of events gives influence to
the work of individual actors. They have to prepare the logistics, communications,
and prospection; travel and invest several days in attending the fair; follow-up
with contacts after the event; and then prepare for the next trade fair (Power and
Jansson 2008). The different events are not isolated from each other; actors take
into account this diversity of events and prepare their work by anticipating each
of these international meetings. Moreover actors meet with each other and create
relationships at each event. But many of these meetings can overlap. As a result, all
the trade fairs of an industry are connected through the work of the actors but also
through their social and economic relationships. Trade fairs are part of an annual
global circuit and “are less temporary clusters than they are cyclical clusters; they
are complexes of overlapping spaces that are scheduled and arranged in such a
way that spaces can be reproduced, reenacted, and renewed over time” (Power and
Jansson 2008, p. 423). Social and economic relationships and reputation during the
cycle of the temporary clusters connect these events. Therefore, to the Same time
next year hypothesis, we must add a Next time this year hypothesis:

Hypothesis 4 The more actors co-participate in different events during a short
period of time, the higher the probability of having a relationship (Next time this
year co-participation)

One could detect a tension between Hypotheses 3 and 4. Power and Jansson
consider that the greater the instability of consumer tastes in an industry, the more
knowledge is contingent and specific to an event (because the fashion cycle is
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shorter). Therefore, because trust among actors and the construction of reputation
are long-term processes while the acquisition of relevant information is a short-
term process, there may be a tension between them. The current literature does not
separate explicitly the impact of co-participation at each level. This is why we aim to
answer the following questions: what temporality is more important in explaining
a deal between two companies or a relationship between two individuals? Same
time next year or Next time this year? Above all, with respect to our multilevel
embeddedness hypotheses, is it the same for both levels?

A Trade Fair for TV Programs in Eastern and Central Europe

Multilevel Network Data Collection During a Trade Fair . . .

The trade fair that we study focuses on the distribution of TV programs. Sellers
are the sales managers of TV program distributors and producers who come from
diverse parts of the world (especially from Western Europe, Asia, Northern and
Southern America). They attend the event to sell copyrights for broadcasting of
TV programs to acquisition or programming managers from regional and local
TV channels (Central and Eastern European). Concretely, the event is organized
once a year in a prestigious hotel in Budapest (Hungary). Sellers sit in booths with
television sets to present their catalogues of films, series and shows. The buyers’
goal is to select programs that will match their audience and perhaps bring new
viewers. They walk around the location to visit sellers and choose in which programs
to invest. Some companies are represented by several sellers or buyers who each
specialize in a particular type of programs (for example: animation, series, or
documentaries) and/or specialize in a specific geographic area (for example Balkan
countries, central Europe, central Asia). Such companies are international media
groups or the most important TV channels in specific countries. Generally only one
employee interacts with each commercial partner.

The work of these sales and acquisitions representatives is clearly relational.
Relationships between buyers and sellers are very personalized; they know and
meet with each other regularly (or at least try to). Once a contract is signed, the
relationship is often reactivated in order to renegotiate the rights, or prepare for a
new transaction. These partnerships are often repeated until a distributor becomes an
official supplier of a channel. Their job consists also in being aware of international
and local trends in audiovisual markets: which are the successful programs? What
are the latest deals? What is broadcast in which country? and so forth.

For sellers (but also for buyers), obtaining informal information is strategic
because it is a good way to target potential clients and to understand their needs,
their resources, their reliability, and their purchasing and bargaining power. For
buyers, trade fairs are an opportunity to obtain information about market trends,
new programs and new technologies. Generally, informal information is a good



254 J. Brailly et al.

way to identify new commercial opportunities. As a consequence, to explore the
construction of partnerships and deals between organizations it is necessary to
take into consideration relationships between individuals and especially informal
information exchanges.

The data that we present here were collected during the 2011 trade fair. Officially,
911 individuals were present — 451 buyers and 337 sellers — affiliated to 510
companies. Because it was impossible for us to collect the responses of 911
individuals with questionnaires during the 3 days of the trade fairs, we chose to focus
on the animation segment of this market (buyers and sellers of animated programs).
Animation is one of the three categories of audio-visual products (the other two are
fiction and documentaries) and can be defined as a sequence of pictures giving the
illusion of movement.

This choice follows both nominalist and realist strategies developed by Laumann
et al. (1989). A realist strategy is based on the actor’s perceptions of the boundaries
of their milieu. Concerning the audiovisual field, people are aware of these
boundaries. As emphasized by Havens (2003), buzz and information concerning
a specific segment in this field are not relevant for another (for example business
information in the adult program segment of the market is not relevant in the
children’s programming segment). The animation segment is a distinct action
system. Indeed, buying the famous format> Who wants to be a millionaire? is
different from buying products such as The Lion King or a Miyazaki film. For
example, one interviewee declared that “in animation, you must have a child’s soul”.
As a result, the definition of the boundaries based on this animation segment is
relevant for a realist strategy.

The nominalist strategy is based on a researcher’s theoretical choices. Firstly, we
want to study a stable segment in terms of volume of exchanges. As long as there are
children, there will be a demand for animation contents. In addition, this segment
is characterized by a strong heterogeneity of business models. Companies could
be commercial or public television stations, independent buyers, small producers,
distributors, or huge companies such as Disney.

To select individuals and organizations interested in this segment, before the trade
fair in 2011, we visited the websites of all the attendees. We selected all the sites
that had at least one animation program in their catalogue (if they are distributors)
or in their program schedule (if they are television channels). With these criteria
we selected a list of 261 individuals affiliated to 184 organizations and obtained
responses from 128 individuals (49 %) affiliated to 109 companies (60 %).> As we
can see in Tables 10.1 and 10.2, Central European buyers and English-speaking
media groups are underrepresented. Two reasons explain that: firstly, they had

2A TV program that is written on paper but has not yet been actually produced.

3A team of eight persons (four sociologists and four hostesses) collected for each individual their
information exchange network and the contract network of their organization through face-to-face
interviews (20 min on average) during the trade fair. In order to improve the response rate after the
event, we also tried to reach attendees by fax, phone, mail, email and internet.
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many meetings during the fair, so they were busy; secondly, some of them have
specific clauses in their employment contract prohibiting answering this kind of
questionnaire.

We designed a multilevel study of this event. In our perspective, the first level
of analysis is composed of individual buyers and sellers and the second level is the
companies. We asked the following sociometric questions and asked the respondents
to check, in the list of the studied population, with whom they had each kind of
relationship:

Question 1 Trade fairs such as MIPTV* or [studied event] are good ways to get
access to informal information concerning competitors, suppliers, clients, successful
programs or trends in the market. Among the persons in the following list, from
whom did you obtain this kind of advice or information during or before [studied
event]? (Could you please check their names in the “ADVICE” column)

Question 2 Among the people in the following list, with whom did you make a
deal since the last [studied event], 12 months ago? (Could you please check their
names in the “DEAL” column?)

Question 1 corresponds to the informal inter-individual network. The average
degree for the studied population is 5.55; the median is 5 for indegree and 4 for
outdegree. This network contains 85 mutual links (24 % reciprocity rate). Among
the 261 persons selected, the response rate of the 10 % most quoted individuals
is 60 %, and 55 % for the 25 % most quoted individuals. Compared to the global
response rate (49 %), we can say that the “élite” of the inter-individual network is
somewhat better represented in our dataset.

Question 2 corresponds to the inter-organizational network, which represents
the economic structure of the milieu. Because they are sales and acquisitions
representatives, these individuals are aware the deals closed by their company.
Although the answers are provided by individuals, this network of contracts can
be considered an inter-organizational network. Indeed, approximately 45 % of indi-
viduals quoted organization names and not individuals’ names. During interviews,
they justify this with several reasons: several individuals and divisions (accounting,
legal, sales) could be involved during the deal-making process; the deal could be
signed with other colleagues, previously in charge of this area, during negotiations
initiated years ago. As a consequence, we described this network by organizations.
It contains 347 deals (average degree = 6.34 and median = 5). Among the 184
organizations selected, the response rate of the 10 % most quoted is 95 %, and
83 % for the 25 % most quoted companies. Compared to the general response rate
(60 %), we can say that the “élite” of the inter-organizational network is better
represented.

4MIPTV is the most important TV program trade fair in the world. It will be described more
precisely in the next section.
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As Lazega et al. (2008) did, we articulate these levels with affiliation links
between individuals and organizations. The following (Fig. 10.2) represents the
“meta-system” of the three networks: information exchange between individuals;
deals between companies; and affiliations. We can easily observe two dimensions
of structural dependencies: horizontally, within each level, and vertically between
the two levels.

... Included in a Global Series of Similar Events

This trade fair is one of many taking place in the world. The TV programs distribu-
tion sector is characterized by the importance of fairs, festivals, and conferences that
bring stakeholders of the profession together in the same place during a few days
(Havens 2003, 2007). Especially for sellers, the TV programs market is globalized
and these events are organized frequently all around the world.

In order to study the impact of temporary co-localization at both levels, we
must take into consideration the plurality of these events. To begin with, festivals
and trade fairs can be distinguished. Festivals constitute cooperation and quality
evaluation settings, whereas trade fairs are more competitive and commercial places.
This distinction is theoretical. For example, the Cannes Festival organizes the film
market, and the most important trade fair, the Marché International des Programmes
de Télévision (International Market of TV Programs — MIPTV) reserves a market
space for coproduction. Two other dimensions must be introduced: the types of
products that are exchanged (films, animation, documentaries) and the geographical
origin of one side of the market (e.g.: buyers from Asia or sellers from France).

Because our study focuses on Central and Eastern Europe and the animation
segment, we can be more thorough for all the events related to these categories
globally. We selected 19 other events for which — when possible — we collected
the list of attendees at each level. Based on these data, we created three differ-
ent co-participation networks at both levels. First, we selected the MIPTV and
MIPCOM participation data, which are the world most important generalist and
non-specialized trade fairs in the TV program distribution market. They gather on
average 12,000 participants. We treat the co-participation to these events separately
(MIP variable). Second, we added up the participation data of 17 other events that
took place at the most 1 year before “our” trade fair at each level to test the Next
time same year hypothesis. Third, we added up co-participation data for the five
previous events of “our” trade fair at each level to test the Same time next year
hypothesis. In the next two sections we test our hypotheses at both levels separately
with an ERGM estimation.’ The question is how co-participation can shed light on
multilevel embeddedness. What multilevel social process is implied?

SERGM models presented here are estimated with PNet (Wang et al. 2006).
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Different Temporalities Between Levels

Inter-organizational Level: Same Time Next Year
in an Oligopoly with Fringes

We consider here the inter-organizational deals network composed of 109 compa-
nies (symmetric network). As previously mentioned, we suppose that specific social
mechanisms occur at each level (hypothesis 1). Concerning the inter-organizational
level, we follow Benhamou (2004) and her definition of the audiovisual field as an
oligopoly with fringes. This means that a limited number of very large companies
dominate the market: in network terminology, they are very “popular,” and this
explains the highly skewed degree distribution in this network. At the global scale,
this “hyper core” is made up of the major companies. This kind of oligopoly is
characterized by a high density within the core: popular actors exchange intensively
together.

In order to investigate this, we ran the core/periphery algorithm of Borgatti
and Everett (2000), available in UCINET, and obtained a core composed of 34
organizations. The mean centrality of the organizations in this core is 12.2 against
3.7 for the periphery. Moreover, the density within this core is 23.2 % as opposed
to 2.2 % within the periphery. Organizations in this core are quite heterogeneous in
terms of business models and geographical origins. Anglophile media groups and
commercial TV stations are overrepresented in the fair. Some small companies, such
as independent buyers or distribution specialists, are also in this core. We can thus
reformulate hypothesis H1 for the inter-organizational level:

H1.1: Structural Morphology The inter-organizational network represents an
oligopoly market

In order to test our hypotheses, we included in the estimation the following data
as dyadic covariates. At the inter-organizational level, multilevel embeddedness
(H2) can be captured by the effect of the shrunk advice network by organization
(equal to 1 if the affiliate individuals exchange advice during or before the event,
regardless of the orientation of the link). The Same time next year co-participation
hypothesis (H3) can be approached through the number of co-participations between
companies in the five previous events (max = 5). In a similar way, Next time
this year co-participation (H4) is approximated by the number of co-participations
between companies at the 17 other events as dyadic covariates (max = 5). We test
these hypotheses by controlling the effect of the economic category of the actors
(in the deal network, the majority of relationships are naturally between buyers and
sellers), of geography (because of the existence of quotas of national production,
deals between companies from the same geographical areas are more frequent), and
of co-participation in the two generalist events (MIP).

Table 10.1 represents dyadic and Markov high-order models for this symmetric
network. The first column reports the results of the baseline model, including only
exogenous control effects. Because it is a contract network, most of the links are
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Table 10.1 ERG model estimates of structural and actor-relation effects of inter-organizational
deal network

Model 1 Model 2 Model 3
Structural dependencies
Density —3.0979 (0.159)* —4.445 (0.206)* —7.542 (0.553)*
Alternating k-star - - 0.7309 (0.152)*
(lambda = 2)
Alternating k-two-paths - - 0.0597 (0.009)*
(lambda = 4)
Baseline effects
Economic category —1.6566 (0.25)* —1.1507 (0.268)* —1.189 (0.269)*
(Interaction)
Economic category 0.6481 (0.169)* 0.3557 (0.19) 0.583 (0.184)*
(Activity)
Geographical origin 0.6734 (0.166)* 0.3092 (0.19) 0.3494 (0.181)
(Matching)
Co-participation effects
MIP (Interaction) - 0.286 (0.074)* 0.1496 (0.059)*
17 other events in 2011 - 0.1759 (0.101) 0.0867 (0.101)
(Dyad Covar.)
5 previous events (Dyad - 0.2418 (0.037)* 0.1203 (0.031)*
Covar.)
Multilevel embeddedness effect
Advice link between - 2.0851 (0.116)* 1.9103 (0.116)*
affiliate individuals (Dyad
Covar)

Note: Effects with a star are significant with a t-ratio less than 0.05 (approached Wald test
(Koskinen and Daraganova 2013)). For structural effects visualization, see Appendix 1

between the two sides of the market: buyers and sellers. Organizations coming from
the same geographic area closed more deals together, but this effect disappears when
we introduce the structural dependencies (model M3).

The second column reports the results of the dyadic model with baseline effects
and the embeddedness and co-participation covariates (hypotheses 2, 3 and 4). This
model shows that regular co-participation in the same event over the long term
has a positive and significant effect on deal making (Same time next year). Co-
participation in the biggest world trade fairs has a significant impact in this dyadic
model. Above all, co-participation in 20 other events during the year before “our”
event does not have a significant impact. We can conclude that it is the historical
and long-term frequency of contacts that explains deals between companies, and
not short-term frequency regardless of the context: Same time next year rather
than Next time this year. The last dyadic covariate shows that the multilevel
embeddedness hypothesis is the strongest exogenous effect in this model. An
information exchange link between individuals facilitates deal making between their
respective companies.
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The last column reports the results of the general ERG model with structural
high-order effects and the effects corresponding to the previous hypotheses. We
notice that except for geographic homophily, which disappears, all of the previous
observations are validated. Concerning the endogenous effects, the alternating k-
star parameter shows a skewed degree distribution. Some organizations are very
active in this deal network. The fact that the triadic effect has a positive parameter
shows a concentration of ties in some specific parts of the graph (Pattison and
Robins 2004; Snijders et al. 2006). But here, triadic closure is rarer because this
is a deal network which implies few ties among sellers or among buyers. However
the concentration of the tetradic configurations indicates the existence of some
dense parts of the graph. Here, alternating k-two-path is significant and above
all sufficient (with the star parameter) to fit the other network statistic, especially
the triadic configuration (see goodness of fit for this model in Appendix 2). In
addition, the weighting coefficient for this effect shows a highly skewed two-path
distribution, and then a concentration of the links in a few sub regions of the graph,
which creates a core/periphery structure. We can say that some companies are very
active and have many deals with each other; in other words, the same popular
sellers close many deals with the same popular buyers. This is an oligopolistic
structure.

To sum up, the inter-organizational network corresponds to an oligopolistic
market that is embedded in the inter-individual relations and in which the deal is
explained by the previous co-localisations in the same context.

Inter-individual Level: Next Time This Year in a Coopetition
Milieu

We consider here the inter-individual information exchange network composed of
128 individuals (oriented network). As mentioned above, we suppose that each level
has a specific structural organization (hypothesis 1). Following Ingram and Roberts
(2000), we can observe collaboration within the sellers’ side. Because we study a
business-to-business market, we think the buyers’ side is more structured than in a
business-to-consumer market. Buyers can also exchange information. Even if two
actors are competitors, they can collaborate. This is why we think that the whole
system is characterized by coopetition (Brandenburger and Nalebuff 2011). This
neologism composed of competition and cooperation refers to the fact that actors
who could be considered to be competitors actually collaborate (Ingram and Roberts
2000; Lazega 2001; Eloire 2010). We can illustrate this phenomenon in our data
with the fact that among sellers the density of information exchange is 2.6 %, while
2.3 % among buyers. We can thus reformulate hypothesis H1 for the inter-individual
level:

H1.2: Structural Morphology The inter-individual network represents a coopeti-
tive social milieu
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If the structure is different, the impact of the exogenous effects can be also
different. In order to test hypotheses H1, H2, H3 and H4, we include the following
data as dyadic covariates in the estimation of the models. At the inter-individual
level, multilevel embeddedness (H2) can be captured by the expanded deals network
by individuals (equal to 1 if the affiliate organizations make a deal during or before
the event) or by official meeting between the two affiliate organizations during
the trade fair® (equal to 1 if they had at least one meeting scheduled). Same time
next year co-participation hypothesis (H3) can be tested by the number of co-
participations between each individual at the five previous events (max = 5). In
a similar way, Next time this year co-participation (H4) by the number of co-
participation between individuals at 12 other events as dyadic covariates (max =
4). We test these hypotheses by controlling the effect of the economic category
of the actors (seller or buyer) and the geographic homophily effect (as previously
defined).

Table 10.2 corresponds to dyadic and Markov high-order ERG models for this
network. The first column reports the results of the baseline model. At first, the
geographic homophily effect is positive: individuals who come from the same region
exchange information with each other. Second, the individual economic category on
the trade fair is certainly the strongest effect. As in the inter-organizational level, the
social structure of this market cuts across the boundary between sellers and buyers.
Information exchange is greater between individuals of different categories than
within categories (note that odds-ratios for this effect show that interaction between
sellers is higher than between buyers).

The second column reports the results of the dyadic model with baseline effects
and the embeddedness and co-participation covariates (hypotheses 2, 3, and 4).
Here, every covariate regarding co-participation is positive and significant. The
last two dyadic covariates underline an inter-organizational contextualization of
the inter-individual link. We could say here that a deal between the organizations
of two individuals constitutes a specific context for inter-individual interaction.
The covariate concerning the inter-organizational meeting during the event has
a positive influence (and significant) on the inter-individual link. Therefore,
a part of the social relationships are nested in economic relationships, and
more generally in inter-organizational relationships. These effects are very
strong and positive. Social relationships are indeed embedded in economic
relationships.

The last column reports the results of the general ERG model with structural
high-order effects. The parameter concerning the co-participation in five previous
events is now close to zero. In parallel we tried to introduce only the number
of participations to the last five events and the results are the same: neither are
significant and always close to zero. So when we add structural parameters, it is not
the historical and long-term frequency that best explains the relationship between

5The meeting network was extracted from the trade fair organizer’s meeting platform.



262 J. Brailly et al.

Table 10.2 ERG model estimates of structural and actor-relation effects on the presence of inter-
individual information exchange network ties

Model 4 Model 5 Model 6
Structural dependencies
Density —4.171 (0.1273)* —4.616 (0.150)* —8.518 (0.320)*
Reciprocity 2.0839 (0.1535)* 1.5613 (0.159)* 1.8240 (0.177)*
Alternating k-in-star (2) - - 0.9704 (0.110)*
Alternating k-out-star (2) | — - 1.1653 (0.106)*
Alternating transitive - - 0.6255 (0.150)*
k-triangles (2)
Alternating down and up | — - —0.439 (0.175)*
k-triangles (2)
Alternating transitive - - —0.077 (0.010)*
k-two-paths (2)
Alternating down and up | — - 0.1200 (0.027)*
k-two-paths (2)
Baseline effects
Economic category —2.0004 (0.1720) —1.755 (0.199)* —2.031 (0.223)*
(Interaction)
Economic category 0.9727 (0.1434) 0.8539 (0.164)* 1.2501 (0.163)*
(Sender)
Economic category 1.2916 (0.1435)* 1.1641 (0.161)* 1.2467 (0.163)*
(Receiver)
Geographical origin 0.7788 (0.1050)* 0.7818 (0.107)* 0.7149 (0.103)*
(Matching)
Co-participation
5 previous events (Dyad - 0.1043 (0.026)* 0.0343 (0.019)
Covar.)
12 other events in 2011 - 0.6971 (0.108)* 0.5573 (0.091)*
(Dyad Covar.)
MIP presence - 0.3842 (0.088)* 0.2081 (0.070)*

(Interaction)
Multilevel and contextual embeddedness

Interorganizational - 1.0232 (0.098)* 0.8429 (0.094)*
official meeting during

the event

Deal between affiliate - 1.0928 (0.088)* 0.9308 (0.088)*
organizations

Note: Effects with a star are significant with a t-ratio less than 0.05 (approached Wald test
(Koskinen and Daraganova 2013)). For structural effects visualization see Appendix 3

two individuals, but short-term frequency regardless of the context: Next time this
year rather than Same time next year.

In an ERGM the structural parameters represent the self-organized part of the
network. Regardless of the attributes parameter, the social milieu generates some
specific forces that explain the existence of a link between actors. Star parameters
show that some actors are very popular (Alternating k in-star positive) and some
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actors are very active on the network (Alternating k out-star positive). It could also
show a tendency towards hierarchy in the network. Beyond these degree effects,
we could say that three specific social mechanisms explain the structure: exchange,
collaboration and competition.

First, the tendency to reciprocity between actors is the strongest effect. The social
exchange is more mutual than in a “random” distribution and this tendency builds
up the network. We can think that both actors in a relationship are interested in
obtaining some information. For example, in a buyer/seller relationship, the seller
can obtain information about the local market trends and, on the other side, the
buyer can seek information about successful programs and what is broadcast in
other countries.

Second, the articulation of the alternating transitive k-triangle (positive) and the
alternating transitive k-two-paths (negative) could be interpreted as a collaboration
mechanism. Generally individuals have a shorter access to informants. We do not
have a broker effect: when individual A gives some information to B and B to C,
generally, C also has access to A. Social pressure closes the transitive two-paths.
We could say that this milieu is characterized by a social collaboration mechanism
between potential competitors.

Third, in the whole network there are more structurally equivalent actors than
expected: alternating two-paths down and up parameter is positive and significant.
But, when two individuals give or obtain information to or from the same actors
(they are structurally equivalent) they have a lower chance of exchanging infor-
mation with each other: alternating down and up triangle parameter is negative.
Thus this network is characterized by many structurally equivalent individuals who
do not exchange with each other. We may conclude that the third socio-economic
mechanism in this milieu is competition.

The articulation of the last four parameters (and thus the two last socio-economic
processes) shows a multi-core global structure in which the majority of the cores
are connected to each other by some in- or out-2-stars. This milieu seems to
cover economic and social processes and to be characterized by a coopetition
phenomenon.

To sum up, the inter-individual network represents a coopetition milieu, evolving
in other contexts during the short term, and embedded in economic.

Discussion and Conclusion

Different levels do not evolve simultaneously following the same path. How can we
interpret this?

Firstly, these differences indicate that multilevel temporalities should be con-
sidered in terms of embeddedness: how do actors at each level manage these
different temporalities? These show the complexity of economic performance in
such multilevel settings. In the market for TV programs, our ethnographic study
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suggests that tacit knowledge and private information are crucial for individuals
to identify commercial opportunities. The best way to access these is to attend
many events during a short time period. But in parallel, their organizations have
to be perceived as reliable by participating over a long time period in successive
events at the same place. If deals are initiated by specific employees in an inter-
organizational context, an organizational network is more than the basic sum or
concatenation of employee relationships. During interviews, several experienced
individuals explained to us that they are free to prepare the trade fair, but that they
have a lot to do afterwards: updating several databases, follow-up meetings, writing
reports, etc. This helps to understand (and complexify) our results. We can observe
different temporalities in the system: inter-individual relationships change faster
and inter-organizational relations change more slowly. Organizational relationships
have a different timeframe than interpersonal links. This is why some organizations
developed specific mechanisms to cope with these different temporalities. Our
results capture in part experience effects but in a dyadic way (when we add these
effects as actor effects the results are the same). Whereas the morphologies at
each level are different (because they are about different actors and relationships),
this underlines that the efficiency of the meta-unity individual/organization is a
complex articulation between these two sets of actors, forever on the razor’s
edge.

Secondly, a traditional ERGM at each level shows some differences between
the two levels. To further investigate this meta-system, it could be interesting
to use the formalization of Wang et al. (2013) concerning Multileve]l ERGMs.
Unlike previous work, our dataset is composed of oriented (level one) and non-
oriented (level two) networks. Furthermore, the embeddedness hypothesis aims to
study two kinds of actors, the two sides of the market: buyers and sellers. In this
sense, as in a multilevel network, we can distinguish three sub-networks: between
sellers, between buyers, and between buyers and sellers (Iacobucci and Wasserman
1990). This multi-sided specification is fundamental because relationships between
and within buyers and sellers are different, as relationships between and within
individuals and organizations. A basic specification of the coparticipation effects
by this proposition shows that the embeddedness hypothesis on a market is more
complex (see Table 10.3 in Appendix 4). This different temporality is above all the
result of the fact that the relation at each level is constructed in a specific context.
At the inter-individual level, a triadic closure is often permitted by an intra-milieu
relationship. This relationship is constructed most of the time in the Next time this
year, short-term framework. Yet this relation between competitors allows them to
obtain some strategic information, for example about prices (Ingram and Roberts
2000) or suppliers (White 2002; Eloire 2010).

These results show that embeddedness is not only a dyadic process or a tetradic
multilevel configuration but a six-order sub-structure including individuals and
organizations, and also buyers and sellers. To sum up, embeddedness can be
redefined as a multilevel problem in a multi-sided system.

Creating international ties in the context of a globalized market requires a
complex multilevel process that involves companies and their employees. In the case
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of television program distribution in Eastern Europe, the networks reveal different
structures and involve different mechanisms of tie formation. On the one hand,
network morphologies are clearly different. Our analyses show that structural and
co-participation effects are different between the two levels. We observe a Same
time next year process for deal-making between organizations, a Next time this year
process for information exchanges between individuals, and a multilevel structural
dependency. Some data characteristics can explain this result: the content of the
link, temporality, and the characteristics of the actors (buyers or sellers). While we
can easily observe triadic mechanisms of cooperation and information exchanges
between individuals, triadic mechanisms are less likely to occur in a competitive
deal network between companies.

But on the other hand the structures of different levels strongly influence each
other and are interdependent. The long-term deal network between companies
influences cooperation ties between individuals, which in return can bring new
business opportunities and constraints to their companies.

Thus reframing the embeddedness paradigm with a multilevel network anal-
ysis (MNA) perspective seems to be a fruitful approach to understand glob-
alization of markets. Trade fairs such as the event under study seem to be
arenas for creating long-distance relationships paving the way for long-term inter-
organizational partnerships. If we take into account that individual actors can
move from one company to another or that a company could be represented by
several employees, we have to study these two levels separately to understand
the complex dynamic process of the creation of international ties between com-
panies.

Appendixes

Appendix 1: Configuration Visualization for
the Interorganizational Network

PNet name Configuration visualisation
Arc
Alternating k-star

}KI

Alternating two-path
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Appendix 2: Goodness of Fit for the Interorganizational Level

PNet name Observed Mean Standard deviation t-ratio
Edge 347 348.91 34.89 —0.06
2-star 3307 3195.09 566.36 0.20
3-star 13,590 12,677.50 3892.20 0.23
4-star 48,435 48,923.55 29,084.34 —0.02
5-star 146,009 190,931.50 208,698.59 —0.22
triangles 118 118.08 30.11 0.00
4-clique 8 5.98 4.54 0.44
5-clique 0 0.06 0.27 —0.20
6-clique 0 0.00 0.01 —0.01
7-clique 0 0.00 0.00 NA
Isolates 10 9.11 3.34 0.27
Triangle2 291 249.56 118.68 0.35
Bow_tie 1151 1317.59 803.30 —0.21
3Path 30,582 28,220.36 7156.81 0.33
4Cycle 1202 794.43 255.31 1.60
AS(2.00) 1021.602 1028.65 126.43 —0.06
AS(2.00) 1021.602 1028.65 126.43 —0.06
AT(2.00) 252.262 259.55 53.80 —0.14
AT(2.00) 252.262 259.55 53.80 —0.14
A2P(4.00) 2808.958 2841.31 463.98 —0.07
AC(2.00) 8 5.96 4.49 0.46
AET(2.00) 688 690.82 179.33 —0.02
Std Dev degree 5.172 4.87 0.39 0.77
dist

Skew degree dist 1.243 1.22 0.49 0.05
Global Clustering | 0.107 0.11 0.01 —0.21
Mean Local 0.108 0.10 0.02 0.21
Clustering

Variance Local 0.02 0.02 0.01 0.17
Clustering
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Appendix 3: Configuration Visualization for the Interindividual

Network

PNet name Configuration visualisation

Edge
Reciprocity

Alternating k-in-star

Alternating k-out-star

Alternating transitive
k-triangles

Alternating transitive
k-two-paths

Alternating down and up
k-triangles

Alternating down and up
k-two-paths

Appendix 4

LSS

Table 10.3 ERGM model for the inter-individual network with coparticipation effects specified

by economic category

Structural dependencies

Density

Reciprocity

Alternating in-star (2)

Alternating out-star (2)

Alternating transitive k-triangles (2)
Alternating down and up k-triangles (2)

Model 7

—8.401 (0.360)*
1.8173 (0.192)*
0.9665 (0.112)*
1.1568 (0.112)*
0.6317 (0.152)*

—0.432 (0.170)*

(continued)
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Table 10.3 (continued)

Model 7
Alternating transitive k-two-paths (2) —0.075 (0.009)*
Alternating down and up k-two-paths (2) 0.1214 (0.027)*
Baseline effects
Economic category (Interaction) —1.642 (0.308)*
Economic category (Sender) 1.0553 (0.253)*
Economic category (Receiver) 1.0687 (0.242)*
Geographical origin (Matching) 0.7027 (0.115)*
Multilevel and contextual embeddedness
Interorganizational official meeting during the 0.8338 (0.099)*
event
Contract link between affiliate organizations 0.9208 (0.084)*
Co-participation
MIP presence (Interaction) 0.2040 (0.074)*
5 previous events SELLER (Dyad Covar.) —0.166 (0.050)*
5 previous events BUYER (Dyad Covar.) —0.061 (0.083)
5 previous events SB (Dyad Covar.) 0.1740 (0.041)*
5 previous events BS (Dyad Covar.) 0.0554 (0.024)*
12 other events in 2011 - SELLER (Dyad 0.4881 (0.188)*
Covar.)
12 other events in 2011 —- BUYER (Dyad 0.7970 (0.331)*
Covar.)
12 other events in 2011 — SB (Dyad Covar.) —0.273 (0.257)
12 other events in 2011 — BS (Dyad Covar.) 1.1178 (0.275)*

Note: Effects with a star are significant with a t-ratio less than 0.05 (approached Wald test
(Koskinen and Daraganova 2013)). For structural effects visualization, see Appendix 1
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Chapter 11

Knowledge Networks in High-Tech Clusters:
A Multilevel Perspective on Interpersonal
and Inter-organizational Collaboration

Julia Brennecke and Olaf N. Rank

Introduction

In today’s fast-changing and complex high-tech industries, neither individuals
nor organizations comprise all the material or immaterial resources relevant for
sustained competitive advantage. Collaboration among knowledge workers and
among the organizations they are nested in is of foremost importance for corporate
success (e.g., Alexiev et al. 2010; Baum et al. 2000). Knowledge networks are
created at the level of the individual knowledge worker or the level of their
organizations, enabling and constraining the efforts of individuals and organizations
to acquire, transfer, and create knowledge (Phelps et al. 2012). Existing research
has investigated knowledge networks created in high-tech contexts focusing either
on individuals and their engagement in interpersonal exchange (e.g., Bouty 2000;
Pina-Stranger and Lazega 2011) or on organizations’ embeddedness in networks
of mainly formal collaborations (e.g., Ahuja 2000; Owen-Smith and Powell 2004).
With some notable exceptions (Berends et al. 2011; Lazega et al. 2008) few studies
have jointly examined knowledge networks of managers or researchers and of
the organizations they are nested in. Consequently, we still lack an understanding
on how individual-level and organizational-level knowledge networks differ with
respect to their underlying structural logic (Rank et al. 2010) and, more importantly,
we know little about how network structure emerging at one level impacts structure
emerging at the other level. Our aim is to fill this void by investigating the processes
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driving knowledge sharing and cooperation among individuals and organizations
belonging to regional high-tech clusters from a multilevel network perspective.

Clusters are concentrations of organizations in a particular field and region.
They enable individuals and organizations in knowledge-intensive industries to get
in contact with each other and collaborate (e.g., Porter 2000). At the individual
level, firm managers and members of research institutes (subsequently referred
to as researchers) that are part of clusters exchange information and knowledge.
At the organizational level, cluster organizations formally collaborate, for instance
conducting joint research and development (R&D) projects. Since managers and
researchers exchanging knowledge at the micro-level are nested within organi-
zations collaborating at the macro-level complex multilevel networks emerge in
these regional clusters. Building on existing research on single-level knowledge
networks (for a review see Phelps et al. 2012) as well as on the few existing
studies on multilevel networks (Berends et al. 2011; Lazega et al. 2008), we seek to
find out which cross-level processes determine the creation of individual-level and
organizational-level ties in these clusters and draw conclusions on how structure at
one organizational level is related to structure at the other level. Specifically, we
examine whether managers and researchers attune their interpersonal knowledge
ties to the formal collaboration activities of organizations and vice versa. We
reason that bottom-up and top-down processes might mutually affect the structure
of multilevel networks (Berends et al. 2011; Rosenkopf and Schleicher 2008;
Shipilov 2012). On the one hand, informal interpersonal ties between managers and
researchers are supposed to impact the creation of formal R&D collaborations. On
the other hand, R&D collaborations might influence the interpersonal exchange of
knowledge. We hypothesize that different cross-level processes are likely to give
rise to distinct patterns of ties that characterize the overall structure of multilevel
knowledge networks. To examine which patterns characterize networks in regional
high-tech clusters, we apply exponential random graph models for multilevel
networks to relational data collected in two clusters in Germany. The results of
our model estimations enable us to draw conclusions about the structure-generating
processes determining multilevel knowledge exchange in the cluster context.

Our study contributes to research on knowledge networks in high-tech clusters
by adding a multilevel perspective. We show that while informal individual-level
and formal organizational-level knowledge networks created by nested actors partly
follow their own structural logic, they are at the same time logically intertwined.
Interpersonal knowledge ties influence the maintenance of formal R&D collabora-
tions and vice versa. To fully understand knowledge exchange in high-tech clusters
it is therefore necessary to take a multilevel network perspective.

Considering cross-level interdependencies between network levels we also add
to the understanding of the determinants of interpersonal exchange and formal
collaboration in the cluster context. We demonstrate how firms’ embeddedness
in formal knowledge networks influences the networking activities of managers
and researchers. Based on that, we are able to draw conclusions about whether
individuals acquire knowledge independent of the opportunity structures provided
by their organizations and thus fully exploit the possibilities provided by clusters.
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Concerning formal R&D collaborations our research highlights how managers’ and
researchers’ informal knowledge ties might help or hinder firms’ efforts to find
collaboration partners. Thus, our study highlights the extent to which informal
knowledge ties are beneficial for organizations beyond learning and knowledge
transfer (e.g., McDonald et al. 2008).

Theory and Hypotheses

We investigate multilevel knowledge networks in regional high-tech clusters, i.e.,
networks among individuals and organizations that compete in a particular field and
cooperate at the same time (Porter 2000). Due to their geographical co-location,
cluster organizations benefit from agglomeration economies such as knowledge
spillovers and an increased probability of getting in contact with each other
(Alcécer and Chung 2013; Owen-Smith and Powell 2004). In addition, aiming to
promote regional economic development (Maurer and Ebers 2006) policy-making
initiatives often foster the institutionalization of clusters in particular regions and
industries (Alecke et al. 2006; Zeller 2001). They support the foundation of formal
cluster administrators that further promote cooperation and knowledge exchange
by organizing events for member organizations. These factors make network
ties among co-located organizations and among their managers and researchers
especially likely.

Cross-level interdependencies among organizational-level and individual-level
knowledge networks exist when the presence or absence of ties at one organizational
level influences the existence of ties at the other level. In regards to knowledge
networks in high-tech clusters, we hypothesize that these interdependencies give rise
to local network patterns generated by tendencies towards cross-level assortativity
on the one hand. On the other hand, we assume cross-level closure to be a crucial
structuring principle of knowledge networks. Cross-level assortativity is assumed
to indicate interactions between the positions of managers and researchers in
the micro-level knowledge network and the positions of the organizations they
are nested in the macro-level collaboration network. In other words, managers
and researchers centrally embedded in the informal network might be nested in
organizations with many formal R&D collaborations. Cross-level closure is the
alignment of ties among dyads of individuals and the organizations they are nested
in and exists if ties are present at the individual as well as the organizational level.
We first discuss cross-level assortativity before turning to cross-level closure as
processes generating multilevel knowledge networks in high-tech clusters.

Cross-Level Assortativity in Multilevel Knowledge Networks

Assortativity describes the tendency for actors with a similar number of (incoming
or outgoing) ties to be connected (Newman 2002; Snijders et al. 2010). For
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the investigation of multilevel networks, assortativity can be extended from its
application to single-level networks to describe the networking behavior of nested
actors. In our study, it depicts the relationship between the number of interpersonal
knowledge ties that managers and researchers maintain and the number of R&D
projects that their organizations are involved in. With respect to interpersonal ties
we differentiate between whether managers and researchers provide knowledge to
others, or seek knowledge from them. In the following section, we first discuss
assortativity effects for managers and researchers providing knowledge to their
peers and subsequently focus on those seeking knowledge from others in connection
with the organizational-level maintenance of R&D projects.

From a bottom-up perspective, we argue that organizations may become sought-
after partners for joint R&D because managers or researchers who are pop-
ular sources for knowledge at the individual-level attract partners for formal
organizational-level collaborations. As individuals provide informal knowledge to
others they might signal competence, status, and a general openness towards knowl-
edge sharing (Spence 1974) which might lead to other organizations becoming
interested in working on joint R&D projects. In other words, the individuals’
reputation might spill over to the organizational level (Eisenhardt and Schoonhoven
1996) and allow their organizations to establish formal collaboration ties. The
cluster context might reinforce this effect. Individuals get in contact with each other
due to the regional agglomeration in general, or specifically at organized events.
Thus, the popularity of managers or researchers can directly be observed by other
cluster members and attention is drawn to their organizations.

Cross-level reputation spillovers may similarly occur top-down and lead to
managers and researchers becoming popular sources for knowledge because their
organizations engage in many R&D projects. High levels of organizational engage-
ment in R&D collaboration are likely to create the impression that the managers
of these active organizations have access to broad knowledge bases and innovation.
This impression, in turn, could lead to other managers and researchers asking them
for knowledge and information on an interpersonal level.

Hypothesis la: There is a positive relationship between individuals’ popularity as
providers of knowledge and their organizations’ tendency to maintain formal
R&D collaborations.

Cross-level assortativity in multilevel knowledge networks can equally apply to
the interaction between individuals seeking a lot of knowledge and information from
others and their organizations’ centrality in the formal collaboration network. From
a bottom-up point of view, it might simply be that managers’ centrality resulting
from their efforts to search for knowledge using interpersonal ties leads to a high
visibility within the cluster and attracts attention to their organizations. This, in
turn, might help these organizations to find collaboration partners. Alternatively,
informally seeking a lot of knowledge might be interpreted negatively within the
cluster context. Individuals could leave the impression of being unable to come
up with innovative ideas themselves or trying to cobble together as much external
knowledge as possible. Since knowledge is largely seen as the single most valuable
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resource of high tech firms and research institutes (e.g., DeCarolis and Deeds 1999),
which organizations typically try to protect (e.g., Oliver 2004), such behavior could
be evaluated negatively by other cluster members. Managers and researchers who
are central in the informal network because they seek a lot of knowledge might
hence create a negative image of themselves which could negatively affect their
firm’s ability to attract partners for R&D collaborations.

From a top-down perspective, individuals nested in central organizations might
become active seekers of knowledge in order to match their organizations’ involve-
ment in R&D collaborations. A high number of formal R&D collaborations might
lead to an increased need to gather external knowledge via interpersonal ties. In
addition, individuals might try to benefit from the opportunity structures provided
by their organization and use its visibility to improve their own position in
the interpersonal network. Again, a negative relationship between organizations’
centrality in the formal knowledge network and individuals’ knowledge-seeking
activities seems possible to the extent that individuals might try to compensate a
lack of formal collaborations by establishing interpersonal knowledge ties. Doing
so, they might also try to pave the way for future collaborations. In this case, the
absence of organizational-level ties would exert a positive top-down impact on the
individuals’ knowledge-seeking activities. As in this specific case our arguments
do not allow drawing an unambiguous conclusion concerning the direction of the
relationship (i.e., positive or negative), we leave it open to empirical investigation
and state in a general form:

Hypothesis 1b: There is a relationship between individuals’ knowledge-seeking
activities and their organizations’ tendency to maintain formal R&D collabo-
rations.

Cross-Level Closure in Multilevel Knowledge Networks

Network closure can generally be defined as a high level of interconnectedness
among actors in a network (Burt 2001). The tendency for closure in social networks
can be explained by balance theory (Heider 1958) arguing that actors strive towards
consistency in their social relations. Just like assortativity, closure is a concept
commonly applied to single-level networks and can be extended to a multilevel
setting. With respect to the multilevel knowledge networks we study, closure
occurs when a tie is present between two individuals at the micro level while
simultaneously a macro-level tie connects the organizations they are nested in.
From a bottom-up perspective, closure in multilevel networks can emerge as
an interpersonal tie might lead to the formalization of a joint R&D project at the
organizational level. The informal exchange of knowledge might enable managers
and researchers to discover the potential for their organizations to collaborate.
Moreover, interpersonal contacts allow managers and researchers to collect infor-
mation on the trustworthiness and reliability of a potential collaboration partner
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before formalizing a tie (e.g., Barden and Mitchell 2007; Berends et al. 2011;
Rosenkopf and Schleicher 2008). The latter point is of foremost importance with
respect to knowledge networks because R&D collaborations with external parties
include the risk of losing intellectual capital to a competitor (Norman 2002). In
this connection, the regional cluster provides a context allowing managers and
researchers to get to know each other and their organizations and thereby evaluate
whether a potential collaboration partner matches their organizations’ needs and
expectations. Providing empirical evidence for the impact of individual-level on
organizational-level ties in different contexts, studies have shown that director
interlocks (Gulati and Westphal 1999; Rosenkopf and Schleicher 2008), individuals’
joint memberships in technical committees (Rosenkopf et al. 2001; Rosenkopf and
Schleicher 2008), as well as interpersonal exchange (Berends et al. 2011) are related
to formal collaborations between dyads of firms.

From a top down point of view, formal R&D collaborations between two orga-
nizations might equally lead to an informal knowledge tie between their managers
and researchers. Berends and colleagues (2011) provide empirical evidence for this
direction of causality. Individuals might simply get to know each other through
the formal R&D collaboration and consequently start exchanging interpersonal
knowledge. They might even perceive the informal exchange of knowledge at
the micro-level and the formal collaboration at the macro-level as complementary
efforts having a joint impact on the success of the collaboration. Alternatively, they
might perceive informal and formal knowledge ties as substitutes and deliberately
try not to mirror their organizations’ ties to avoid accessing redundant knowledge.
Lazega and colleagues (2008) call this the “independent” strategy used by individ-
uals to manage resource flows. Despite the latter point, the sum of bottom-up and
top-down arguments suggests that informal and knowledge ties are likely to overlap.
Therefore we state:

Hypothesis 2: There is a positive relationship between two individuals being
connected by a knowledge tie and their organizations collaborating on an R&D
project.

Data, Measures, and Analyses

Research Sites and Respondents

Our empirical analysis is based on a comparative case study of managers and
researchers belonging to organizations in two high-tech clusters. The cases include
clusters in the metrology industry and the photonics industry located in different
regions of Germany. In the following, we will refer to them as “MetroNet” and
“PhotoNet.” Both clusters are organized by an institutional framework and include
an administration that fosters cooperation and knowledge exchange by organizing
events for its members. One of the major targets of both clusters is to provide an
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information and communications platform for participating organizations and their
managers and researchers. They explicitly aim to initiate and support collaboration
efforts by the co-located organizations. Membership in both clusters is voluntary
and requires a yearly fee. Member organizations include mostly small to medium-
sized high-tech firms and research institutes but also service intermediaries such as
consultants, venture capital providers, and regional associations. Since joint R&D
projects typically emerge among firms and research institutes, we limit our analysis
to these member organizations and their managers and researchers.

We conducted online surveys in each cluster, including all member organizations
as well as the firms” CEOs and members of research institutes in our sample. More-
over, we asked the CEOs and researchers as well as the administrative managers of
each cluster to identify additional persons within the member organizations who
participated actively in the activities of their cluster. In particularly small firms
comprising only a limited number of employees, the CEO was the single most active
network member. In many cases, however, additional managers and researchers
were identified and included in our sample. Our final sample includes information
on 26 organizations and 51 individuals in the MetroNet cluster and 54 organizations
and 71 individuals in the PhotoNet cluster.

Network Data and Actor-Level Attributes

The managers and researchers completed the questionnaire first, answering ques-
tions concerning their individual-level knowledge ties with the other identified
individuals within their cluster. Secondly, they provided information on their
organizations’ joint R&D projects with the other member organizations of their
cluster. To collect data on both networks we used rosters containing all the identified
managers and researchers of the respective organizations and all the member
organizations of the clusters in an alphabetical order. Respondents were asked to
mark as many of the individuals and organizations as relational partners as they
deemed appropriate.

To capture the individual-level knowledge network, we asked the respondents
to “Please mark all contacts you regularly turn to for work-related information
and knowledge” (for a similar approach see for instance Borgatti and Cross
2003; Rank et al. 2010). To collect data on R&D collaborations, we asked the
respondents, ‘“Please mark all organizations with whom your organization conducts
a joint project in research and development.” All network data were recorded
dichotomously thereby distinguishing only between the presence and absence of
ties. For each cluster, data were arranged in three matrices that together capture the
multilevel network. Two binary adjacency matrices capture the individual-level and
the organizational-level knowledge networks. To consider the nested structure of
mangers within their firms and research institutes we constructed affiliation matrices
for both clusters. The individual-level network includes information on knowledge
ties among managers and researchers belonging to the same organization as well as
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among managers and researchers belonging to different organizations. Both single-
level networks were included in the analysis as directed networks.

In addition to the relational data, we include different actor-level control variables
for individuals and organizations. For managers and researchers we collected
demographic information on their educational level, organizational tenure, profes-
sional background, and occupational status. Concerning the educational level we
differentiated between managers and researchers holding a doctoral degree (1) and
those without (0). We did so because holding a doctoral degree has important career
implications not only in academia but also in knowledge-intensive industries in
Germany. We included professional background and occupational status categorical
variables. Based on the job description of the respondents, we distinguished
between general management (1), manufacturing, research, and development (2),
marketing and sales (3), and others (e.g., procurement) (4). Occupational status is
defined a respondent’s position within the organization’s hierarchy distinguishing
between lower (1), middle (2), and upper (3) level positions. Finally, we accounted
for the fact that organizational tenure may influence interpersonal collaboration.
Organizational tenure was measured in decades. In addition to these demographic
variables, we account for individuals’ organizational background distinguishing
between managers (1) and researchers (0). Concerning organizations we control for
organizational type as a binary actor-attribute distinguishing between firms (1) and
research institutes (0). Doing this, we are able to tell whether profit-oriented and
scientific actors differ with respect to their knowledge-related tie-creation activities.
In addition, we control for organizational size measured by the number of employees
of firms and research institutes in hundreds. Because of its skewed distribution,
organizational size was log-transformed.

Exponential Random Graph Models for Multilevel Networks

We analyze our data applying exponential random graph models (ERGMs) for
multilevel networks (see Chap. 5 in this volume). In the models for each cluster, we
include single-level parameters capturing the structure of the micro- and the macro-
level knowledge networks. We select parameters commonly used in research on the
structuring principles of single-level networks (e.g., Lazega and Pattison 1999; Lomi
and Pattison 2006) and use them to compare the structuring principles of informal
individual-level and formal organizational-level knowledge networks. To identify
interdependencies between knowledge networks at the micro-level and the macro-
level we include different cross-level parameters proposed by Wang and colleagues
(2013). A first group of parameters, cross-level three-paths, captures tendencies
towards cross-level assortativity measuring interactions between the centrality of
organizations in the collaboration network and the centrality of their managers and
researchers in the informal knowledge network. Second, a cross-level four-cycle
parameter captures the relationship between formal collaboration ties connecting
two organizations and informal knowledge ties established between these two
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Table 11.1 Cross-level patterns characterizing multilevel networks

Parameter Visualization | Interpretation®

Cross-level assortativity (three-paths)
Assortativity based on popularity Tendency for popular organizations named as
project partners by many other organizations
also to have popular managers/researchers
from whom many others seek knowledge
Interaction between popularity at one level
and expansiveness at the other level:
expansive organizations have popular
managers/researchers

Tendency for outgoing organizations naming
many project partners to have outgoing
managers/researchers seeking a lot of
knowledge from others

Interaction between popularity at one level
and expansiveness at the other level: popular
organizations have outgoing
managers/researchers

Mixed assortativity A

Assortativity based on activity

Mixed assortativity B

Cross-level closure (four-cycle)

Cross-level entrainment Individuals seek knowledge from others
belonging to organizations which their

organization named as project partner

54 806 ad 68

Manager knowledge and affiliation network

Affiliation-based arc Managers/researchers from the same

organization seek knowledge from each other

Affiliation-based reciprocity Managers/researchers from the same
organization reciprocally exchange

knowledge

Do e

Notes.l:l = organization; O = manager/researcher
2The provided interpretations refer to the parameters as if they resulted in positive significant
effects

organizations’ managers. Finally, a third group of affiliation-based parameters
captures knowledge ties between managers belonging to the same organization and
we include them as control variables. All multilevel parameters included in the
models are summarized in Table 11.1.

By including single-level as well as cross-level structural parameters we are able
to estimate their relative contribution as drivers of local structural patterns while
conditioning their occurrence on the likelihood of observing the overall network
(Robins et al. 2007). To obtain model convergence, the graph density had to be
fixed for model estimation for the multilevel network emerging within the PhotoNet
cluster (for further information on this procedure see Snijders et al. 20006).
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Results

Figure 11.1 visualizes the individual-level, organizational-level, and affiliation
networks as components of the multilevel network for MetroNet and PhotoNet.
The visualizations of the individual-level and organizational-level networks show
that in each network some actors are more centrally embedded forming a core
of connected entities while other actors are more peripheral. In addition, in each
network there is a small number of isolated actors not having any knowledge ties to
other cluster members. The visualization of the affiliation networks highlights how
many individuals per organization were surveyed in each cluster.

Metro Net PhotoNet
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Fig. 11.1 Network visualizations. Notes. Circles = individuals; squares = organizations; light
grey = researchers/research institutes; dark grey = managers/firms; created with Visone 2.7
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Table 11.2 summarizes the descriptive statistics capturing the most important
features of the micro- and macro-level networks in each cluster. Table 11.3 presents
results of model estimations for the two clusters. The results in the table are arranged
in sections, with the first section representing parameters for the micro-level
knowledge networks and individual attributes, and the second section comprising
parameters for the macro-level R&D collaboration networks and organizational
attributes respectively. The third section displays all cross-level effects included
in our models. Testing the models for their goodness-of-fit by following the
recommendations of Robins and colleagues (2009) and Wang and colleagues
(2013), we find that they yield good fit suggesting that the observed networks can
be reproduced adequately based on the model.

Single-Level Network Structure

Focusing on the effects capturing the structure of the individual-level knowledge
networks, we find tendencies towards reciprocity and transitivity as well as tenden-
cies against cyclic closure in both clusters. Likewise, we find tendencies towards
centralization. In the MetroNet cluster, the Out2-star is positive indicating that some
individuals are more active seekers of knowledge than others. However, as indicated
by the insignificant alternating expansiveness parameter there is a ceiling effect to
this. The PhotoNet cluster is even more centralized. The positive In2-star and Out2-
star effects as well as the positive alternating expansiveness effect indicate that there
is high variation with respect to the individuals’ in- and out-degrees. Thus, some
managers and researchers are more active seekers and providers of knowledge than
others. The attribute-based effects highlight that in the MetroNet cluster, managers
of for-profit firms engage less in the informal exchange of knowledge than expected
in a random network. Moreover, they exhibit a tendency towards homophily based
on their organizational background and occupational status meaning that firm
managers tend to establish knowledge ties to other managers while researchers tend
to create ties to other researchers and individuals with the same status establish
ties to each other. In the MetroNet and PhotoNet clusters individuals with a higher
organizational tenure get asked for knowledge more often than expected by chance.
In addition, in the PhotoNet cluster, we find tendencies toward homophily based on
individuals’ tenure and their professional background.

The organizational-level networks are equally characterized by a strong tendency
towards reciprocity which — given the operationalization of the R&D collaboration
network — is not surprising. Reciprocity in this case simply indicates a high level
of agreement among managers and researchers concerning R&D collaborations
between their organizations. Both macro-level networks are characterized by a
tendency towards centralization, as some organizations are significantly more active
in establishing joint R&D projects with other members. We also find tendencies
for transitivity within the PhotoNet cluster. Interestingly, while in the MetroNet
cluster the most active member organizations are research institutes, in the PhotoNet
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Table 11.2 Descriptive statistics for the clusters

J. Brennecke and O.N. Rank

MetroNet PhotoNet
Firms and research institutes in cluster 31 82
Participating member organizations 26 54
(1) Firms 21 (80.8 %) 46 (85.2 %)
(0) Research institutes 5(19.2 %) 8 (14.8 %)
Density organizational-level network 14.9 % 10.3 %
Mean degree organizational-level network 3.73 5.44
Stddev(in-degree) organizational-level network 3.09 5.98
Stddev(out-degree) organizational-level network 342 6.31
Organizational size (no. of employees in hundreds)
Mean 3.03 5.80
Standard deviation 8.42 20.17
Minimum 0.02 0.01
Maximum 42.80 130.00
Participating individuals 51 70
(1) Managers 42 (82.4 %) 54 (77.1 %)
(0) Researchers 9(17.6 %) 16 (22.9 %)
Density individual-level network 10.5 % 7.9 %
Mean degree individual-level network 5.24 5.46
Stddev(in-degree) individual-level network 4.56 5.67
Stddev(out-degree) individual-level network 5.00 5.95
Level of education
(1) Individuals with doctoral degree 13 (35.5 %) 43 (61.4 %)
(0) Individuals without doctoral degree 38 (74.5 %) 27 (38.6 %)
Organizational tenure (in decades)
Mean 1.36 1.16
Standard deviation 0.86 0.84
Minimum 0.10 0.10
Maximum 3.60 4.00
Professional background
(1) General management 7 (13.7 %) 30 (42.9 %)
(2) Manufacturing, research and development 29 (56.9 %) 30 (42.9 %)
(3) Marketing and sales 12 (23.5 %) 7 (10.0 %)
(4) Others 3(5.9 %) 3 (4.3 %)
Occupational status
(1) Upper 13 (25.5 %) 39 (55.7 %)
(2) Middle 22 (43.1 %) 26 (37.1 %)
(3) Lower 16 (31.4 %) 5.1 %)
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Table 11.3 Results of the exponential random graph models

Network level

Individual-level
network

Organizational-level

network

Multilevel network

Parameter

Arc

Reciprocity

In2-Star

Alternating popularity

Out2-Star

Alternating expansiveness
Alternating transitivity
Alternating cyclic closure
Educational level sender
Educational level receiver
Educational level homophily
Organizational background sender
Organizational background receiver
Organizational background homophily
Organizational tenure sender
Organizational tenure receiver
Organizational tenure homophily
Professional background homophily
Occupational status homophily
Arc

Reciprocity

Alternating popularity

Out2-Star

Alternating expansiveness
Alternating transitivity
Alternating cyclic closure

Type of organization sender

Type of organization receiver
Type of organization homophily
Size sender

Size receiver

Size homophily

Assortativity based on popularity
Mixed assortativity A
Assortativity based on activity
Mixed assortativity B

Cross-level entrainment
Affiliation-based density
Affiliation-based reciprocity

MetroNet:
Estimate (S.E.)
—3.586* (0.462)
2.573% (0.320)
—0.176 (0.236)
0.034* (0.014)
—0.259 (0.245)
1.158% (0.155)
—0.248* (0.103)
0.072 (0.178)
—0.224 (0.208)
—0.143 (0.439)
—0.872* (0.334)
—0.690* (0.323)
1.075% (0.335)
—0.006 (0.030)
0.067* (0.030)
—0.037 (0.030)
0.172 (0.093)
0.231* (0.114)
—3.651*% (0.923)
1.769% (0.456)
0.178 (0.423)
0.925%* (0.373)
0.063 (0.225)
0.058 (0.156)
—1.321% (0.538)
—0.302 (0.527)
0.516 (0.571)
0.100 (0.100)
0.250%* (0.100)
—0.110 (0.100)
0.044* (0.018)
0.002 (0.023)
—0.002 (0.023)
—0.064* (0.019)
0.178%* (0.062)
4.670% (0.797)
—4.238% (0.926)

285

PhotoNet:
Estimate (S.E.)

2.762% (0.268)
0.044% (0.012)
0.301 (0.195)
0.065* (0.008)
0.471% (0.189)
0.617% (0.116)
—0.406* (0.066)
—0.025 (0.234)
—0.126 (0.245)
0.244 (0.294)
0.057 (0.198)
0.317 (0.216)
—0.050 (0.247)
0.005 (0.001)
0.016* (0.001)
—0.013* (0.001)
0.281% (0.087)
0.040 (0.079)
0.712% (0.304)
0.853* (0.260)
0.097* (0.013)
0.738% (0.240)
0.530* (0.183)
—0.003 (0.062)
0.713* (0.338)
—0.189 (0.396)
—0.875 (0.441)
0.030 (0.100)
0.060 (0.100)
—0.060* (0.010)
0.016* (0.008)
—0.003 (0.006)
—0.020* (0.007)
—0.023* (0.009)
0.584% (0.066)
3.199% (0.523)
—3.600% (0.943)

Notes. Unstandardized estimates are reported; *statistically significant effect at or beyond the 0.05

level; A =2
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cluster the most active organizations are for-profit firms, which can be seen from the
significant sender effects for “type of organization.” With respect to organizational
size, we find that while in MetroNet, larger organizations are named more often
as formal collaboration partners, in PhotoNet similar-sized organizations tend to
collaborate on joint R&D projects.

Multilevel Network Structure

To test our Hypothesis 1a, we focus on the “assortativity based on popularity”
and the “mixed assortativity A” parameters. While the “mixed assortativity A”
parameters are insignificant in each model, we find that both multilevel net-
works are characterized by a tendency towards cross-level assortativity based
on individuals’ and their organizations’ popularity. In other words, managers
and researchers asked for their knowledge by many other individuals belong to
organizations named as formal collaboration partners a lot. We take these findings
as partial support for our Hypothesis la. Concerning Hypothesis 1b, we find
that the ‘“assortativity based on activity” parameter is negative and significant
only within the PhotoNet cluster. The “mixed assortativity B” parameters are
negative in both clusters. These results indicate that there is a negative inter-
action between organizations’ centrality in the formal collaboration networks
at the macro-level and their managers’ and researchers’ expansiveness in both
clusters. Hence, the less organizations were nominated as formal collaboration
partners, the more their managers and researchers sought knowledge via informal
ties and vice versa. We take this finding as support for Hypothesis 1b, stat-
ing that there is a negative relationship between individuals’ knowledge-seeking
activities and their organizations’ tendency to maintain formal R&D collabora-
tions.

Focusing on the “cross-level entrainment” effects included in the models to test
our Hypothesis 2, we find a positive tendency towards cross-level cyclic closure
within both clusters. There is a higher than expected by chance tendency for
individuals to be connected by an informal knowledge tie if their organizations
formally collaborate. These findings clearly support our Hypotheses 2. Finally, the
affiliation-based arc and reciprocity effects included as controls in both models
show that, not surprisingly, managers and researchers belonging to the same
organization seek knowledge from each other more often than expected by chance.
However, the reciprocity effect for intra-organizational transfer of knowledge is
negative. Thus while in general the informal knowledge networks are characterized
by reciprocated exchange among individuals, controlling for context we see that
in our case this seems to apply to boundary-spanning ties only. Managers or
researchers belonging to the same organizations refrain from exchanging knowledge
reciprocally.
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Discussion

In this study, we investigated the processes driving knowledge sharing and coopera-
tion among individuals and among organizations in regional high-tech clusters. Our
findings suggest that knowledge networks in high-tech clusters are characterized
by complex structural patterns. Only to a certain degree do individuals’ informal
knowledge networks and their organizations’ formal R&D collaborations follow
their own structural logic. Taking a multilevel perspective it becomes evident that
individual-level and organizational-level networks in high-tech clusters are highly
intertwined. Bottom-up and top-down processes lead to specific forms of cross-level
assortativity and cross-level closure characterizing multilevel knowledge exchange.

Before turning to the cross-level processes determining network generation,
a brief comparison of the structural features of the micro- and the macro-level
networks sheds light on the processes driving the creation of informal as compared
to formal knowledge ties in high-tech clusters. We find that social preferences
towards reciprocity and transitivity drive the informal exchange of knowledge
among managers and researchers. In conjunction with the tendency against cyclic
closure, this tendency towards transitive exchange indicates that informal knowl-
edge seeking takes place in clusters which seem to be locally hierarchical. In
other words, not all individuals within the clusters are similarly involved in
seeking and providing knowledge; instead there are differences in status among
individuals. Moreover, tendencies towards homophily based on different individual-
level attributes characterize interpersonal exchange in both clusters. Taken together,
these findings highlight the important role that individuals’ social preferences play
in the structure of the micro-level knowledge network. While this is largely in
line with existing research (e.g., Agneessens and Wittek 2012; Rank et al. 2010)
it does not necessarily correspond to the purpose of regional clusters, which aim
to connect individuals based on their rational-economic needs for complementary
knowledge. In comparison, the structure of the organizational-level R&D networks
seems to be more consistent with the idea of forming connections based on rational-
economic considerations. Specifically, in the MetroNet cluster, we find that the
organizational-level collaboration network is neither driven by transitive nor by
cyclic clustering. A tendency towards heterophily based on the type of organization
represents another indicator for rational-economic motives driving formal R&D
collaborations at PhotoNet, whereas neither a tendency towards homophily nor
towards heterophily can be identified in the MetroNet cluster. We conclude that
efforts to find complementary partners have priority at the organizational level. In
sum, comparing and contrasting the structuring principles of the micro- and macro-
level knowledge networks highlights that distinct processes drive collaboration at
either level within knowledge-intensive clusters.

To further extend our understanding of knowledge sharing and cooperation in
high-tech clusters we focus on the cross-level processes determining the structure
of multilevel knowledge networks. First, we discuss bottom-up processes taking
place across network levels demonstrating that informal knowledge networks of
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individuals influence their organizations’ embeddedness in the formal R&D collab-
oration network. We find that managers and researchers who are popular sources
for informal knowledge and information are nested in the organizations which
are attractive partners for joint R&D projects. Thus, within multilevel knowledge
networks, individuals’ reputations as providers of knowledge spills over to the
organizational level. However, there is an “anti-degree” assortativity effect (Wang
et al. 2013) based on managers’ and researchers’ activity as knowledge seekers and
their organizations’ tendency to engage in R&D projects. In other words, the more
active their managers or researchers are seeking knowledge in the interpersonal
network the less their organizations formally collaborate and vice versa. In terms of
the bottom-up influence of individual-level on organizational-level knowledge ties,
this finding indicates that managers and researchers who seek a lot of knowledge —
in contrast to those who provide a lot of knowledge — diminish their organizations’
ability to find collaboration partners in the cluster context. They might create the
impression of trying to free ride by informally tapping the knowledge bases of
other individuals and their organizations. This behavior seems to be sanctioned at
the organizational level by fewer formal collaboration opportunities. Finally, our
cross-level closure finding highlights that interpersonal ties between two individuals
increase the probability of a R&D collaboration between their organizations.
Managers and researchers seem to use interpersonal exchange to find out about
collaboration opportunities and estimate the trustworthiness of potential partners.
Informal knowledge ties are thus important not only for gathering information and
learning (e.g., McDonald et al. 2008; Oliver and Liebeskind 1997), they seem to
function equally as instruments for entering formal knowledge collaborations.

As to the top-down influence of formal R&D collaborations on interpersonal
knowledge networks the results of our study are similarly revealing. First, cross-
level reputation spillovers lead to managers and researchers becoming popular
sources for knowledge because their organizations engage in many projects with
other firms. The organizations’ activity thus seems to impact the visibility of their
managers or researchers within the cluster context. Other managers and researchers
seek knowledge from individuals belonging to central organizations as they seem to
have access to broad knowledge resources and to be experienced and successful
as initiators of formal collaborations. Alternatively, others might perceive them
more generally as valuable network acquaintances to be associated with in order
to benefit from their reputation (Kilduff and Krackhardt 1994). Second, individuals’
activity as knowledge seekers is affected by their organizations’ R&D collabora-
tions. The negative interaction between managers’ and researchers’ activity in the
informal network and their organizations’ centrality in the formal collaboration
network indicates that managers and researchers try to compensate for the lack
of collaboration opportunities at the organizational level. In this sense, individuals
calibrate their interpersonal knowledge seeking activities according to the (lack
of) formal collaboration activities in their organizations. Finally, the cross-level
closure findings highlight that individuals establish knowledge ties to managers or
researchers belonging to formal collaboration partners more often than expected by
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chance. This practice might be perceived to create synergy effects as complementary
knowledge can be gained at the micro- and the macro-levels.

In addition to our research question, our results highlight that different social pro-
cesses seem to determine intra-organizational as compared to inter-organizational
knowledge seeking by managers and researchers. Taking into account joint orga-
nizational memberships it becomes clear that individuals belonging to different
organizations exchange knowledge reciprocally. This finding is in line with the-
oretical and empirical arguments provided by Pina-Stranger and Lazega (2010).
The authors show that managers of biotech firms in an inter-organizational context
share status with other managers as a relational strategy by taking the dual role of
seeker and provider of advice. In contrast, intra-organizational knowledge seeking
displays the characteristics of mentoring relationships where a junior manager
seeks knowledge from a senior but not the other way around. As an alternative
explanation, there might not be a need for direct reciprocation among individuals
belonging to the same organization as the risk of being exploited opportunistically
is lower within than between organizations. The finding further highlights how we
can gain a more detailed understanding of the processes leading to the generation
of structure by taking a multilevel perspective. As a delimiting factor, we have to
point out that the result needs to be interpreted with caution as we did not survey
all managers and researchers within the organizations under study. Hence, future
research is needed for confirmation.

Our study not only contributes to research on knowledge sharing and cooperation
in high-tech clusters, it adds generally to the emerging stream of multilevel
network research (e.g., Berends et al. 2011; Brass et al. 2004; Lazega et al.
2008; Moliterno and Mahony 2011; Wang et al. 2013). We highlight that concepts
used to analyze single-level networks, such as assortativity and closure, can be
extended by a multilevel perspective. In their extended form these concepts help to
understand relational processes spanning multiple organizational levels. In addition,
we demonstrate that multilevel knowledge networks might be a part of social reality
where bottom-up and top-down processes co-exist and give rise to the same cross-
level patterns characterizing the overall network. While — analyzing cross-sectional
data — we are not actually able to disentangle bottom-up and top-down processes,
this mutuality would be in line with findings from Berends and colleagues (2011)
and Rosenkopf and Schleicher (2008).

Our modeling approach enables us to leave the dyad level of stochastic estima-
tions and derive conclusions about the occurrence of single-level and cross-level
patterns while controlling for the overall structure of the multilevel network. In
contrast to existing qualitative findings (e.g., Berends et al. 2011) our approach
allows for the statement that cross-level interdependencies actually occur within our
multilevel networks more often than expected by chance. Finally, in contrast to work
by Gulati and Westphal (1999), Rosenkopf and colleagues (2001), and Rosenkopf
and Schleicher (2008) we do not conflate levels of analysis by aggregating ties
established by individuals to the organizational level and investigating tie multi-
plexity. Instead, we theoretically and empirically acknowledge the separate agency
of individuals and organizations by building on a nested multilevel arrangement.
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Our findings are practically meaningful as they help managers and researchers
to understand how their interpersonal networking activities interact with their
organizations’ formal knowledge cooperation. As formal R&D collaborations are
of foremost importance for high-tech firms to remain competitive (e.g., Powell
et al. 1996) a good knowledge of how to attract and repel formal collaboration
partners by informally providing and seeking knowledge is especially important
for firm managers. Our research also helps individuals become aware of how their
knowledge-seeking behavior is influenced by social preferences and contextual
factors. If managers and researchers seek knowledge from others based on inter-
personal similarity or because of an existing firm-level tie, this can lead to them not
contacting the most knowledgeable advisors on a topic. Assuming that they joined
the institutionalized cluster to get in contact with new people and organizations that
offer complementary knowledge within their region and industry they are hence not
capitalizing fully on the opportunities provided by the cluster.

There are some limitations that should be addressed by future research. In
our study we do not disentangle bottom-up and top-down processes. Building
on earlier findings that they mutually impact network emergence (e.g., Berends
et al. 2011; Rosenkopf and Schleicher 2008), we show that bottom-up and top-
down processes give rise to the same structural patterns characterizing multilevel
networks. Disentangling the bottom-up and top-down processes empirically would
require extensive longitudinal data to take into account different phases of network
development as well as different time horizons in which actors at the two levels
of agency establish and change their relations. Future research should take on the
challenge of investigating such complex processes in order to examine the question
of causality. In addition, it was not within the scope of our study to investigate
the impact of multilevel network patterns on any micro- or macro-level success
factors. It would be of highest interest to find out whether the alignment of formal
and informal ties actually leads to the acquisition of complementary knowledge at
both levels that positively impacts the success of collaborations. Likewise, future
research should try to unravel in how far individual-level knowledge ties benefit
organizational performance and the other way around.

Conclusion

In today’s corporate environment, the exchange of knowledge across organizational
boundaries is of critical importance, especially for high-tech firms wishing to
remain competitive. As a consequence, formal knowledge networks at the level of
organizations and informal individual-level knowledge networks among managers
and researchers characterize high-tech industries. Our study shows how these
organizational-level and individual-level knowledge networks are mutually influen-
tial. Focusing on knowledge networks emerging in the context of regional clusters,
we highlighthow R&D collaborations among organizations impact the interpersonal
exchange of knowledge among managers and researchers and vice versa. Taking a
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multilevel network perspective, we extend the existing understanding of knowledge
networks by demonstrating that individuals who are willing to share their knowledge
with colleagues belong to organizations involved in many R&D collaborations.
These managers and their organizations thus benefit from each others’ central posi-
tions in the networks by having access to extensive sources of external knowledge.
However, the opposite holds true when managers and researchers informally ask
for knowledge from many of their colleagues. Our results show that extensive
knowledge-seekers belong to organizations with fewer formal R&D collaborations.
This can either be a sign of them trying to compensate for the lack of organizational-
level collaborations or that they are harming their organizations’ chances to find
collaboration partners. Finally, if two organizations collaborate on a joint R&D
project there is a good chance that their managers and researchers also informally
exchange knowledge with each other. Formal and informal knowledge networks
thus overlap and open up the potential to realize synergies.
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Chapter 12

Inter-organizational Network Influence

on Long-Term and Short-Term Inter-individual
Relationships: The Case of a Trade Fair for TV
Programs Distribution in Sub-Saharan Africa

Guillaume Favre, Julien Brailly, Josiane Chatellet, and Emmanuel Lazega

In this chapter we study the influence of inter-organizational relationships on
the formation of inter-individual relationships in a context of a trade fair. From
a multilevel network analysis perspective (MNA), research has examined the
influence of the network at one level on the network at another level (for example
Lazega et al. 2007, 2008, 2013; Favre et al. 2012; Brailly et al. 2016 forthcoming;
Hollway and Koskinen 2015). This research often shows that inter-organizational
ties have a strong influence on inter-individual relationship formation and vice-
versa. This mutual influence can be seen as a process of adjustment between
levels of action that Lazega (2015, and forthcoming) calls “synchronization.” In
the organizational society, most of the time, the evolution of inter-organizational
networks is the force that drives the evolution of inter-individual networks. From
this perspective, individuals have to incur ‘costs of synchronization’ to adjust their
behavior over time to the organizational context and demands, especially when
they wish to reshape their opportunity structure. Our argument is that temporary
organizations in the global economy such as trade fairs are a way to break free,
or to some extent “emancipate” (Lazega 2015), from organizational structure by
providing new opportunities for individuals to create long distance ties.
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Through the study of a trade fair for TV program distribution in sub-Saharan
Africa, we study the influence of inter-organizational ties (deals and partnerships)
on short-term-inter-individual relationships created during the event and on long-
term relationships created outside the trade fair but reactivated during the event.
We try to understand how this event participates in the formation of a social milieu
around the distribution of TV programs in Africa.

Indeed, during this kind of event, company representatives have an important
relational activity. They try to create new ties with other companies in order to
find new commercial opportunities. But if actors can create new ties during this
kind of events, lots of relationships preexist and are only reactivated and renewed.
Representatives may know each other from other contexts: they may have met
during other events in which they both participated; they may have worked for
the same company; or their company may already have closed partnerships which
create the context for inter-individual tie formation. In order to study how this
event influences the emergence of a social milieu in an industry, it is necessary
to distinguish long-term relationships which preexist and the new relationships
created during the event that Bathelt and Schuldt (2008) call ‘global pipelines,’
namely transnational relationships that companies create in a global economy in
order to initiate international partnerships. The temporality of ties is now an impor-
tant question in social network analysis. Different network temporalities involve
different social mechanisms (Quintane 2012; Quintane et al. 2013). More precisely,
we argue that the multilevel influences are different for short-term and long-term
inter-individual ties. We assume that inter-organizational networks are more stable
than inter-individual networks, since individuals can easily create and destroy
ties. Through our case study, we show that while the inter-organizational contract
network influences the long-term inter-individual network, it has a weak influence
on the short-term relationships, which supports the idea that synchronization of
levels is an important social problem, and that trade fairs are a way either to escape
from the constraints that come attached in markets, or a way to manage it.

In order to explore the dual dimension of markets, we use a multilevel social
networks framework, developed by Lazega and his co-authors (2007, 2008). This
approach is based on the study of multilevel networks observing two superposed
and partially nested, interdependent levels of agency, an inter-organizational system
of action and an inter-individual one.

Relationship Creation During Trade Fairs

Despite of the development of communication technologies and the digital econ-
omy, actors in global markets still rely on physical meeting places such as
professional trade fairs, exhibitions or conventions. In many industries, these trade
fairs are important: during a few days they group the main actors of a profession
in a microcosm where participants can have a fast and accurate vision of market
structures.
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Trade Fairs, Long-Term and Short-Term Relationships

Trade fairs have drawn the attention of the researchers for a number of reasons.
Indeed, during the communication technologies age, it is surprising that trade
fairs still exist, given that companies can communicate and create long distance
relationships without face-to-face contacts. Research shows that trade fairs are more
than simple marketplaces to exchange goods: they are places to organize markets.
There are many kinds of professional events in a range of different sectors. Music or
film festivals, book or wine fairs, art biennials, etc. — countless events are organized
in many parts of the world and for many sectors and industries (Bathelt and Schuldt
2008; Lampel and Meyer 2008; Maskell et al. 2006; Moeran and Pedersen 2011).
Trade fairs are often studied by the management sciences to describe how companies
rely on these events to do business or to obtain information about the industry
and its evolution (see for example Hansen 2004; Sanchez-Maranon et al. 1996;
Seringhaus and Rosson 2001). From sociological and organizational studies point
of view, several studies have been conducted on trade fairs as places for organizing
industries. They create relationships between members from several companies and
influence the construction of a social milieu. These places play an important role for
emerging industries (Aspers and Darr 2011). Bringing together all the actors of an
industry in one place, they concretize the existence of this milieu and its boundaries.
They also participate in the definition of status hierarchies within industries. These
hierarchies can be observed through the various types of limited access in trade fairs
such as VIP access to different areas of television program trade fairs (Havens 2006)
or in fashion weeks (Entwistle and Rocamora 2006; Skov 2006), but also through
the booths, their sizes and their levels of sophistication.

These events help to build a collective identity in an industry and even forms
of collective action. Garcia-Parpet (2005) shows for example how the Loire wine
fair (Salon des vins de Loire) has participated in the construction of an identity for
these wines and has promoted the creation of common resources for international
exportation. In many industries, social norms and rules are shared and diffused
during fairs. As Smith (2011) shows through an analysis of auction rooms, social
norms may be simple, like dress codes, or less visible elements, such as appropriate
behaviors during auctions. This phenomenon is reinforced by the fact that fairs play
an important role in labor markets where members often move from one company
to another (Power and Jansson 2008). But from our social network perspective, the
important point is that trade fairs are intermediation devices between supply and
demand. They allow face-to-face meetings and embed the market with personal
relationships (in the sense of Granovetter 1985). Some authors underline the
learning opportunities of these events. Attendees can observe their competitors
(Skov 2006; White 1981); get information about products, pricing scripts (Velthuis
2003) or market trends in an industry (Bathelt et al. 2004). Trade fairs help
companies in the globalized economy to identify new partners, suppliers or clients
from different parts of the world. The main argument is that these international
ties — or ‘global pipelines’ (Bathelt and Schuldt 2008) — do not require permanent
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co-localization, but a temporary and recurrent co-localization that concerns only
a few steps in the deal-making process. According to these authors, these global
pipelines are created during international trade fairs.

Although all these studies underline the relational dimension of these events,
few study this dimension concretely using social network analysis. If we focus
more precisely on this dimension, we have to distinguish the relationships that
are exclusively created during one trade fair from relationships that preexist the
event. Indeed if trade fairs are an important place to create new inter-individual and
inter-organizational relationships we have to take into account that other contexts
of interactions can exist. On the first hand, as underlined by Power and Jansson
(2008) many trade fairs are organized in the same industry during a single year
and organizations and individuals often attend several events. On the other hand,
many relationships or partnerships already exist between companies and are simply
reactivated during a trade fair. As a result, in order to understand how a trade fair
concretely influences the creation of the social milieu of an industry, we have to
distinguish these two kinds of relationships: long-term and short-term.

The Influence of Trade Fairs and Inter-organizational
Partnerships on Inter-individual Relationships

The relationships which are created during this kind of event are inter-individual
relationships. Companies are officially participating to these events but they are
always represented by sales, commercial or acquisition representatives. Inter-
individual ties are created in order to initiate commercial partnerships — inter-
organizational ties — between organizations. Inter-organizational partnership net-
works are stable structures that evolve slower than inter-individual ties (Brailly
et al. 2016 forthcoming). Individuals can quickly create and destroy ties but
inter-organizational partnerships are fixed once they have been closed. When the
employees of a company attend a trade fair, the inter-organizational structure
already exists and they must take it into account while creating the basis of new
partnerships. The perception of this inter-organizational structure influences the
relational strategies of these individuals.

Inter-organizational networks are frequently studied by researchers. But while
generally inter-organizational network structures and inter-individual networks
are analyzed separately, we believe that inter-organizational structures strongly
influence the relationship creation process at the inter-individual level. Following
Brailly et al. (2015), we propose to study them jointly and to try to reframe our
perspective on how this embeddedness impacts social and economic ties. This
multilevel analysis of networks has been developed recently and we can start
to understand how multilevel positions influence individual performance (Bellotti
2012; Lazega et al. 2008). Other studies also show how individuals can use inter-
organizational ties to extend their relational capital (Lazega et al. 2013). But we have
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less knowledge of how inter-organizational structures influence inter-individual
relationships. In this volume, Lazega (2015) proposes a theoretical framework to
analyze the evolution of multilevel networks. Following Snijders’ perspective on
networks dynamics (Snijders 1996) and White’s analysis of chains of opportunities
(White 1970), Lazega argues that the evolution of the network of one level can
be seen as the energy which drives the evolution of networks of a second level:
what he calls ‘synchronization’ is the set of efforts invested by actors at both levels
to coordinate their evolutions In this perspective each level needs to adjust to the
other, and actors (individuals or their organizations) face ‘synchronization costs’
in adapting or aligning their behavior to adjust to the other level. As an example,
a researcher whose research center creates a relationship with another research
center could be forced to collaborate with other people, at the risk of giving up
other partnerships that have already been initiated. In Lazega’s perspective, these
costs are incurred in unequal and often invisible ways, by individuals who need to
adapt to such organizational movements, while other individuals are more successful
at managing the inter-organizational level by creating meso-level organizations
and using them as “tools with a life of their own” to mitigate the constraints of
synchronization.

From an economic sociology perspective, our argument is that in markets,
inter-organizational and inter-individual networks are also strongly related. The
dealings or partnerships structures between companies strongly influence their
employees’ behavior. But in our view trade fairs are a way to escape from these
inter-organizational constraints. Individuals can break free of organizational ties,
initiate new partnerships, and obtain new business and job opportunities. Beyond
that, trade fairs could be considered as the meso-level intermediary or temporary
organizations that Lazega describes, and controlling them is a way to control inter-
organizational structure and synchronization costs. Indeed, Bathelt and Schuldt
(2008) describe trade fairs as places where the market structure is produced
and reproduced. Attending trade fairs is a way to initiate long distance inter-
organizational relationships and influence inter-organizational structure.

We consider here two multilevel configurations that can influence inter-individual
tie creation: embeddedness and structural equivalence. What we call embeddedness
is a multilevel structural configuration in which a linkage is created between
two individuals when there is an inter-organizational tie between their companies
(see Fig. 12.1). If a partnership already exists between two organizations, it can
provide a context for the creation of a new relationship between two individuals.
This phenomenon has been shown by Lazega et al. (2013) with the concept
of ‘extended relational capital.” In the field of cancer research, they show that
researchers can extend their relationships by targeting individuals who are affiliated
to a research center with which their laboratory has a partnership. The inter-
organizational tie provides a context for inter-individual relationship creation. In
addition, this embeddedness configuration can also occur when the inter-individual
relationship is the basis of the inter-organizational relationship. Indeed, behind each
partnership between companies there are always inter-individual ties (Gulati and
Sytch 2008; Gulati 1995). If a partnership between two organizations necessitates
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Fig. 12.1 Two kind of influence of inter-organizational relationships on inter-individual relation-
ships

inter-individual collaboration at the beginning of a contracting process between
companies, the more a partnership is repeated between two companies, the more it
breaks away from the inter-individual relationship to become an inter-organizational
tie that does not need specific acquaintances between its members (Lorenz 1999).
The other multilevel configuration which can influence inter-individual config-
uration is structural equivalence at the organizational level (Fig. 12.1). We can
also call this configuration a multilevel closure: two individuals whose companies
have the same commercial partners have a tendency to create a relationship.
Structural equivalence in a commercial network could be interpreted as a situation of
competition between two companies. In a market two actors are competitors because
they depend on the same types of resources and the same sources of resources (Burt
and Carlton 1989; Burt and Talmud 1993; Burt 1988). For example, through the
analysis of transactions between audit firms and their clients, Han (1994) shows
that firms tend to influence each other within sub-markets corresponding to different
levels of quality which boundaries are drawn by sets of structurally equivalent com-
panies. Similarly, Burt (1988) deconstructs the American industries by identifying
structurally equivalent sub-markets and demonstrates that they cover very stable
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sectors of the US economy. When we study the influence of this configuration
of inter-organizational relationships on inter-individual ties, we observe the effect
of competition between companies on individual relational behavior. Indeed some
studies have shown that individuals tend to have informal relationships with their
direct competitors, including being friends (Ingram and Roberts 2000) or exchanges
social resources with them (Eloire 2010; Pina-Stranger and Lazega 2010). In our
case study, these informal relationships are a way to get access to information
about market trends, commercial opportunities or information about reliability of
potential clients or providers. Our hypothesis is that sellers and buyers perceive
these competitive dimensions at the inter-organizational level and turn to members
of companies with which they are in competition to access social resources and
useful information about the market.

We know that both of these multilevel configurations can influence relationship
formation at the inter-individual level. But as we said earlier, in a context of a
trade fair we can observe two kinds of relationships: short-term and long-term. We
propose to study how the stable inter-organizational partnership network structures
influence long-term and short-term relationships in the case of a trade fair. In our
view these inter-organizational configurations will influence in different ways the
relationships that are created during the trade fair and long-term relationships. If
trade fairs are, as we said previously, a way for individuals to break free from the
inter-organizational structure, these configurations will have less influence on the
short-term network than on the long-term.

A Study of a Trade Fair for TV Programs in Sub-Saharan
Africa

Our case study is a trade fair for TV program exchanges in sub-Saharan Africa.
Between the producers of programs and the final consumers there are many
intermediaries with different roles: producers, distributors, broadcasters, satellite
manufacturers, cable operators, channel packagers, etc. In simple terms, it is
possible to divide this value chain into three key stages: program production,
distribution and broadcasting. The trade fair under study is about the second stage:
distribution and acquisition of TV programs copyrights. This event groups sellers
of programs, i.e. all holders of TV program copyrights (audiovisual production
companies, media groups and distribution intermediaries), and purchasers of TV
programs (TV channels, video on demand platforms or intermediaries). When a
transaction takes place, the copyrights for a given geographic area are transmitted
to the buyer who can then broadcast the program. The TV program distribution
industry is characterized by the importance of fairs, festivals and conferences during
which industry actors can meet (Bielby 2008; Havens 2006). The specific event
under consideration is organized once a year in a convention center in Johannesburg.
Sellers sit in booths with television sets to present their catalogues of films, series
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and shows. The buyers’ goal is to select programs which will fit their audience
and perhaps bring new viewers. They walk around the place to visit sellers and
choose programs in which to invest. For sellers (but also for buyers), obtaining
informal information is strategic because it is a good way to target potential clients,
their needs, their resources, their reliability and their purchasing and bargaining
power. For buyers trade fairs are an opportunity to obtain information about market
trends, new programs and new technologies. Generally, informal information is a
good way to identify new commercial opportunities. As a consequence, to explore
the construction of partnerships between organizations, it is necessary to take into
consideration relationships between individuals and especially informal information
exchanges.

A Multilevel Social Network Study

We ran a survey during the 2012 edition of the trade fair. We first conducted
interviews with 62 attendees of the fair. These interviews were designed to study the
concrete tasks actors have to carry out to sell or buy programs; to identify different
forms of interdependencies between actors; and to understand the issues and debates
of this industry. This survey provided the basis for developing a questionnaire.
We designed a multilevel study of this event. In our perspective, the first level of
analysis is composed of individual buyers and sellers and the second level is their
companies. The questionnaire was designed to collect data about the companies and
the participants, and about their relationships. It included sociometric questions,
such as who at the fair had provided the attendees with useful information for their
work (the question listed five examples of information: about a competitor, about
market trends, about programs trends, about the reliability of partners and business
opportunities exchanges). Respondents were asked to check the names of people
with whom they had exchanged informal information before or during the show in
the list of attendees.

A second question was designed to further refine the previous one. Among the
participants from whom the respondent declared s/he had obtained information, s/he
had to check the name of the persons s/he had met outside the trade fair. This
question was designed to differentiate two kinds of relationships: the short-term
relationships created during the trade fair and long-term relationships renewed or
simply reactivated during the fair.

Another question asked about the companies with which their company had
closed a deal during the fair or during the previous year. This question corresponds
to the inter-organizational network, which represents the economic structure of
the milieu. Although the answers are provided by individuals, this network of
contracts can be considered an inter-organizational network. Indeed, approximately
45 % of individuals quoted organization names and not individuals’ names. During
interviews, they justify this with several reasons: several individuals and divisions
(accounting, legal, sales) could be involved during the deal-making process; the
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Table 12.1 Basic statistics Short-term Long-term Deal
of the three collected (individuals) | (individuals) | (companies)
networks Number of nodes | 118 118 109
Number of arcs 639 480 779
Density .046 .035 .066
Average degree 10.831 8.136 14.294
Reciprocity rate | .099 146 na
(dyad based)

deal could be signed with other colleagues, previously in charge of this area, during
negotiations initiated years ago. As a consequence, we analyzed this network by
organizations (Table 12.1).

The trade fair under study included 450 companies and 916 individuals. With
S0 many participants it seemed impossible to collect survey results from each
participant. We had to make boundary choices following a nominalist strategy
(Laumann et al. 1989). Since our objective was to study the formation of a
social milieu of the TV programs distribution in Africa, we limited our survey to
individuals whose company had participated at least twice in the previous editions
of the fair. Our assumption was that these people were already integrated in this
milieu and had established several relationships during the previous editions of the
fair. Our hypothesis was that individuals whose company had participated in the fair
were generally more central than others in the network.! By targeting these actors,
the goal was to address the dense regions of the global network. This boundary
definition leads us to select 338 individuals for the population of the study. Most of
the questionnaires were completed by respondents during face-to-face interviews.
After the event we called each participant who did not answer during the event
and asked them to complete an electronic version of the questionnaire. Finally, we
managed to collect 126 responses among 338 participants which represent 37 %
of responses for the inter-individual network and 59 % for the inter-organizational
network.

We are thus able to reconstruct three social networks: two individual networks,
one of informal information exchange relationships created during the trade fair and
one of informal information exchange relationships existing before the trade fair;
and, on the second level, a network of transactions between their companies. In this
chapter, we consider these inter-individual networks as dependent variables. We try
to understand the role of multilevel effects on the creation of long-term and short-
term inter-individual relationships.

I'This assumption was based on previous studies of this trade fair, which show a strong correlation
between centrality and experience in the trade fair.
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Independent Variables

We focus in this chapter on the influence of inter-organizational relationships
on inter-individual relationships. In this perspective, our independent variables
are based on the inter-organizational network. As we said earlier, we study two
multilevel configurations which can influence tie formation between individuals:
embeddedness and structural equivalence. We create three dyadic variables to
explain inter-individual relationship formation based on the inter-organizational
network.

The variable Deal between companies represents the embeddedness hypothesis.
It is a dyadic binary variable that indicates whether a deal has been closed between
to individuals’ companies.

A second set of variables are used to test the structural equivalence hypothesis.
The Same providers, and Same clients variables are dyadic continuous variables
which measure the number of two-paths between two individuals’ companies in the
deal network. It measures the number of clients or providers that these companies
have in common. The goal is to test the effect of competition, measured by structural
equivalence between companies, on inter-individual relationships. This measure is
divided in two variables: the number of common partners for selling companies is
indicated by the same clients variable, while the same providers variable is used for
buying companies.

Control Variables

We also use a set of control variables in order to control various effects or contexts
which can influence inter-individual relationship formation during or outside the
trade fair (Table 12.2).

We study a trade fair which is a market context for relationship formation. Sellers
try to meet buyers who are looking for the type of TV programs that they are selling
and vice versa. In order to control this effect on relationship formation, we create
a Matching supply and demand variable which measure the likeness between the
catalogue of a seller and the kind of programs a buyer is looking for. This variable is
based on data extracted from the trade fair database. When participants register for
the event, they have to declare the kind of programs they sell or look for during the
trade fair, selecting among 27 categories of programs (e.g. TV series, feature films,
sporting events, game shows, etc.). This variable is based on this dataset using a
Jaccard index to measure the level of matching. The more a seller’s programs match
what a buyer is looking for, the closer the index will be to one.

Participants may also exchange information because they met during other
industry trade fairs. As we said earlier, there are many trade fairs in this industry.
The most important are MipTV, MipCom, NATPE and Los Angeles Screenings
(Bielby 2008). We collected the list of attendees to 19 global events of TV program
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distribution since 2009 from the websites of these trade fairs. We constructed a
Co-participation variable based on these data. This is a dyadic continuous variable
which indicates the number of trade fairs in which two individuals participate in
common since 2009.

Finally, we construct three binary control variables. The Same region variable
control a homophily effect of the region of the company’s headquarters. (Six
regions: French-speaking Africa, English-speaking Africa, Europe, Northern Amer-
ica, Asia and Southern America). The Same category variable indicates if two
individuals have the same category during the trade fair (buyer or seller). The Same
company variable indicate if two individuals are employed by the same company.

Analysis of the Structures of Long-Term and Short-Term
Relationships

Method

In order to study inter-individual relationship creation, we used quadratic-
assignment procedure (QAP) for logistic regressions using network data. It begins
with a standard logistic regression across the corresponding cells of the dependent
and independent matrices. QAP procedure has a second step where additional
regressions (in our case 5000) are estimated by randomly permuting the rows and
columns of the dependent matrix. The significance of the coefficient of a variable is
determined by comparing its magnitude in the initial regression to the magnitudes of
the coefficients for that variable in the random regressions. If a positive coefficient
is of a magnitude that is greater than 95 % of the randomly generated coefficients,
it is considered to be significant.

Results

First, we ran QAP logit model on the short-term relationships, i.e. new relationships
created during the context of the trade fair (Table 12.3). As we can see in model
2, this network is mainly a commercial network. Matching between supply and
demand have a strong effect on network formation, meaning that sellers and buyers
are likely to exchange information if they sell and buy the same categories of
products. We can also see that the same category effect is negative and significant
which mean that relationships between buyers and sellers are more likely to occur
than relationships between buyers or between sellers. On the other side, being from
the same region does not have a strong effect (it is barely significant) on the ties
that are created during the trade fair, which indicates that the relationships that are
created during the trade fairs have a tendency to be transnational.
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Table 12.3 QAP Logit model for short term relationships

Model 1 Model 2 Exp(b)
Control variables | Intercept —3.286%** —3.180%%*%* .042
Matching supply and demand 1.493%* 4.450
Same category —1.068%** 344
Co-participation 126%* 1.134
Same company —12.115%** .000
Same region 284 . 1.328
Multilevel effects | Deal between companies 1.899%# 1.488*** | 4.429
Same providers .075 —.074 929
Same clients —.045 .016 1.016
Pseudo R? 51 51

Note: Data are based on 15,750 observations, QAP Logit model (Double Dekker semi-partialling
test, 5000 permutations), Pseudo R?= 51
P<.1; ¥ P<.05; ** P<.01; *** P<.001

We can also see that the control variable “being in the same company” has a
strong negative effect on the creation of short-term relationships (since members
already know each other) and that there is a positive effect of co-participation to
other events (confirming the dynamics brought to light by Brailly et al. 2015).

Concerning the effects of the inter-organizational network, we can see in the
model 1 that the hypothesis of embeddedness is confirmed. When companies have
already closed a deal, or when a deal was closed during the fair, the individuals
have a tendency to create inter-individual relationships. Because our dataset is
not dynamic it is difficult to interpret precisely this result. As we said earlier, the
inter-individual relationship can preexist and generate trust in order to create an
inter-organizational partnership. But the inter-organizational relationship can also
preexist, providing a context for the creation of inter-individual ties. However, there
is globally a weak effect of the inter-organizational network: there is not any effect
of multilevel closure (or structural equivalence). Two individuals whose companies
have deal ties to the same companies will not have a short-term tie. The ties created
during the trade fair are not influenced by the structural equivalence effect. This
result is confirmed by model 2, in which we control these multilevel effects using
the different control variables. However, the embeddedness effect is still significant
although it is less strong.

The results are quite different for the long-term network (Table 12.4). On the one
hand, as we can see in model 4, the network seems to be also guided by commercial
relationships. The same category parameter is still negative and significant which
means that relationships between sellers and buyers are more likely to occur
than relationships between sellers or between buyers. But on the other hand, the
matching supply and demand effect is not significant anymore which means that
these relationships do not only follow a commercial dimension. This long-term
network seems to be more a network of relationships between competitors than the
short-term version. The same region parameter is strong and significant. Individual
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Table 12.4 Model for long term relationships

Model 3 Model 4 Exp(b)
Control variables Intercept —4.125%%% | —4,502%%%* 011
Matching supply and demand .969 2.635
Same category —.362%* .696
Co-participation 247H%* 1.280
Same company 979 2.662
Same region 1.079%%*%* 2.940
Multilevel effects Deal between companies 2.533 %% 2.525%%*% 112491
Same providers .093 . .053 1.055
Same clients 155%%* A17%* 1.124
Pseudo R? 53 .53

Note: Data are based on 15,750 observations, QAP Logit model (Double Dekker semi-partialling
test, 5000 permutations), Pseudo R?2=.53
P<.1; ¥ P<.05; ** P<.01; *** P<.001

actors whose companies’ headquarters are in the same region are more likely to have
long-term relationships. Companies based in the same region are often in a situation
of competition because, if they are sellers, they sell the same kind of programs
(programs are in the same language, with the same standard of production and likely
cultural similarities) and, if they are buyers, they broadcast in the same region. We
can also observe a strong co-participation to other events effect. This parameter is
even stronger than in the model for the short-term relationships. Indeed the other
global events of the industry offer a context for creating relationships which can be
reactivated during the trade fair under study.

But the most important point is that the multilevel configurations have much
more influence than in the short-term network. First, in model 3, the embeddedness
hypothesis is confirmed. As in the short-term network, individual actors tend to
create long-term relationships when their companies have a partnership, but the
parameter is much stronger than in the short-term network, even in the model
in which we take into account the control variables. Deals between companies
are clearly embedded in inter-individual long-term relationships. Moreover, the
structural equivalence effect in the deal network is confirmed for sellers. We can
observe for sellers a tendency towards multilevel closure: sellers whose companies
have common clients have a tendency to create long-term relationships. This effect
shows that for long-term relationships individual sellers tend to cross competition
boundaries to get information from people working in other companies. This seller
that we interviewed during the trade fair explains this phenomenon.

« We always have to speak with the other persons, to know eventually who is doing what in
which country, or if a new client is contacting us, to see if we know people who has already
worked with them. To know if they are serious, if it is interesting to develop commercial
relationships with them. We always . . . investigate a little bit we could say . .. [inside your
company?] No no! It depends but we often speak with competitors with whom we have good
relationships, who are on the same offer. »

A seller at the trade fair
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Long term Short term
relationships | relationships

Matching supply and demand 4+
Same category - -

Co-participation + +

Same company
Same region ++
Deal between companies Ft+ 4t
Same providers

Same clients +

Fig. 12.2 Simplified results for long-term and short-term relationships models. Note: +: b>0;
++:b>1; +++:b>2

This seller explains that he obtained information during negotiations with buyers
from direct competitors, i.e. with sellers who had already closed a deal with the
same buyer. The information provided by this competitor is much more precise than
any other information: he knows the buyer directly and can evaluate the reliability
and the trustworthiness of the buyer. We then understand why these sellers prefer
to look for information with their direct competitors rather than other sellers: the
information they get is more useful. But in order to get such information, sellers
need to share long-term relationships. On the other hand, even if the structural
equivalence effect for buyers is lightly significant in model 3 it is not significant
anymore when we take into account the control variables in model 4. Only long-
term relationships between sellers are influenced by this multilevel closure.

Through these two multilevel mechanisms, the inter-organizational deal network
has more influence on long-term relationships between individuals than on short-
term relationships (Fig. 12.2).

Conclusion and Discussion

In this chapter we tried to contribute to the multilevel network analysis perspective
(MAN). We studied the influence of inter-organizational deal networks on inter-
individual information exchanges during a trade fair. The main contribution of this
chapter is to show that inter-organizational networks can strongly influence some
inter-individual relationships but not every type of relationship. We study two kinds
of multilevel configurations which can affect relationship creation at the inter-
individual level: embeddedness and inter-organizational structural equivalence.
While long-term ties in the industry, i.e. ties not created during the trade fair, are
strongly influenced by the inter-organizational network, short-term relationships
created during the trade fair are less influenced by this second level.
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We can read this result as what Lazega (Chap. 2 in this volume) describes as
one possible process of multilevel synchronization between superposed dynamics.
The long-term relationships are more adjusted to the stable inter-organizational
structure than the short-term relationships. This result also shows that during trade
fairs, individuals are able to break free from the inter-organizational structure and
create new relationships without taking into account their companies’ positions.
They can adopt a cosmopolitan behavior and construct global pipelines as described
by Bathelt and Schuldt (2008). From this perspective, trade fairs can be considered
as meso-level organizations that can be used or created by individuals in order to
control the organizational level.

But this result can be also read in another way and this is another contribution of
this chapter: through this multilevel framework we are able to redefine competition
as mainly an organizational phenomenon. Indeed, individual sellers and buyers can
move from a company to another. They can be employed in a company and move
to another during their career. As a result, they are able to share information with
their direct competitors (actors whose companies are structurally equivalent in a
deal network). Conversely, competition barriers seem to be obstacles during the
trade fair. Individuals are in a situation of competition during the event but not
outside.

Through the study of this trade fair for television program exchange, we have
tried to show how this type of event facilitates the emergence of a social milieu.
In the globalization of trade, these fairs give way to social processes among the
participants: observation between competitors, definition of a social milieu and its
borders, collective learning and integration into that milieu. Creating international
ties in the context of a globalized market requires a complex multilevel process
that involves companies and their employees. Using a social network analysis
of information exchanges among the attendees helps to understand how these
international ties are created, but one limitation of the study that we have presented
here is that it does not take into account simultaneously relationship formation at
each level. The future developments of multilevel ERGM (Wang et al. 2013) could
be a solution to take into account networks of different levels and with three kinds
of relationships.

Another limitation of this dataset is a problem of dynamics. We know that
this process of relationship creation necessitates dynamic data to study precisely
the influence of each level. Measuring long-term and short-term relationships was
a solution to identify the temporality of these social mechanisms, but using two
different cross-sectional network measurements, could be an avenue future research
to understand the complex interactions between organizations and individuals for
the emergence of this social milieu.
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Appendices

Appendix 1: Visualization of Long-Term Information Exchange
Network Between Individuals

Appendix 2: Visualization of Short-Term Information Exchange
Network Between Individuals
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Appendix 3: Visualization of Deal Network Between Companies
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Chapter 13

Multilevel Bilateralism and Multilateralism:
States’ Bilateral and Multilateral Fisheries
Treaties and Their Secretariats

James Hollway and Johan Koskinen

Introduction

Actors have many needs and face many challenges that require them to establish
relationships with other actors. Take for example the tragedy of the commons, in
which an optimal outcome can only be reached through collective management
among all users of a resource (see Barkin and DeSombre 2000, 344).

Such relationships can take different forms. Many such relationships are bilateral,
existing exclusively between a dyad. Other relationships are more diffuse, taking
place as part of multilateral groups. Both bilateralism and multilateralism are
regular features of many areas of international politics including security (Hafner-
Burton and Montgomery 2006), trade (Ingram et al. 2005), and the environment
(Ward 2006). Within these literatures, bilateralism and multilateralism are typ-
ically treated as analytically separate: bilateral alliances and collective security
arrangements (Snyder and Kick 1979); bilateral investment treaties (BITs) and the
WTO (Shaw 2003; Tobin and Rose-Ackerman 2010, 747); and, the environmental
example explored here, bilateral and multilateral fisheries agreements (see Kinne
2013, where only bilateral fisheries agreements are included). Yet, despite this
analytic division, the relationship between bilateralism and multilateralism has
rarely been explored empirically (for an exception in a security context see Cha
2010).
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This chapter asks “how different dimensions of cooperative arrangements are
linked to each other [and] whether changes across dimensions move in tandem or if
they are driven by different factors” (Volgy et al. 2009, 7). In other words, when do
actors establish bilateral relationships and when do they join multilateral groups?
This is a step towards addressing questions such as when cooperation between
individual actors results in new, collective actors.

In this chapter, we take as an example the global fisheries governance complex.
Shared fish stocks are important to many countries’ economies, but “rarely managed
well” (Barkin and DeSombre 2000, 342). Nonetheless, they represent a type of
resource that legally and practically cannot be managed unilaterally. Recognizing
this, states have long attempted to address issues surrounding shared fisheries by
international treaty (Daggett 1934), both bilateral and multilateral. It is thus an
excellent example of our case, but one that is focused enough to provide some degree
of comparability.

Of this data we ask two sets of questions. First, we are interested in when
states choose bilateral fisheries agreements (BFAs) and/or multilateral fisheries
agreements (MFAs). Here, as we will explain, we are particularly interested in
centralization within each network, and across the two networks. Second, we are
interested in what makes some multilateral fisheries agreements more popular
than others. In particular, we are interested in the contribution of the “managed”
status of some multilateral fisheries agreements—that is, that the agreement is
related to a secretariat with the purpose of managing the implementation of the
agreement. We also explore the role of similarities between these multilateral
fisheries agreements.

We argue here that the interaction between bilateralism and multilateralism can
be fruitfully analyzed using a multilevel network paradigm. Actors operate across
multiple levels, and some leverage on issues of how actors relate can be gained
through multilevel network research. More speculatively, a multilevel network
perspective on such issues also raises the potential for investigating the interaction
between individual and collective agency (Breiger 1974).

To pursue these issues, we employ recent multilevel exponential random graph
modeling techniques to explore the structural patterns of countries’ bilateralism
and multilateralism in global fisheries governance. We find that there is significant
centralization of this behavior, but that there is not necessarily a correspondence
in this centralized activity between bilateral and multilateral networks. Moreover,
it appears that both design (secretariat), a property of the MFAs, and content
(similarity), the relation of the MFAs, are important for the structure of the complex.
In particular MFAs with a greater potential for action tend to be more strongly tied to
other MFAs. This chapter argues that we need more theory and research exploring
and explaining when actors act bilaterally and when they act multilaterally, and
particularly research that takes into account how they interconnect in multilevel
ways.
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Bilateralism and Multilateralism

In this section, we argue that states choose treaties based on efficiency consider-
ations. Efficiency can manifest itself in many ways. First, we consider how states
choose either bilateral or multilateral treaties. Second, we consider how countries
make choices among multilateral treaties.

Bilateralism or Multilateralism

States pursue international relations through institutions because they cannot
achieve their goals unilaterally (Barkin and DeSombre 2000, 340). These
institutions can take the form of bilateral agreements or multilateral mechanisms
such as treaties and international organisations.! These two institutional forms differ
in important ways.

Bilateralism is structurally and conceptually the simpler of the two. A bilateral
relationship involves the establishment of a private agreement between two parties.
This privity compartmentalizes dyadic relationships, enabling the terms of each
relation to be differentiated “case-by-case [...] on a priori particularistic grounds
or situational exigencies” (Ruggie 1992, 571). Such specificity can be employed
to deal with matters concerning only the two parties exclusively, such as maritime
delimitation, or for establishing preferential terms, such as special access to fisheries
resources straddling maritime borders.

Multilateralism is quite different. Ruggie (1992, 571) defines multilateralism in
contradistinction to bilateralism as

an institutional form which coordinates relations among three or more states on the basis of
‘generalized’ principles of conduct—that is, principles which specify appropriate conduct
for a class of actions, without regard to the particularistic interests of the parties or the
strategic exigencies that may exist in any specific occurrence.

That at least three parties are implicated has important implications. First, multilat-
eralism can offer significant efficiency gains over bilateral agreements. Negotiating
with several parties at a time can increase transparency, information, and the cred-
ibility of commitments, and reduce transaction costs providing economies of scale
(Cha 2010, 163). Second, reaching multilateral agreement typically requires more
complex compromises than bilateral agreements. However, these compromises can
be mutually beneficial. In a tragedy of the commons-style situation, for instance,
actors recognize that restraint in exploiting a common-pool resource would be
beneficial to their own interests, as long as it is matched by others. Fortunately,
it is said that the social or normative pressure imposed by “multilateral structures
and rules constitute the most effective way to control a state’s power and dampen its

I'This is not a comprehensive list of the ways in which institutions have been defined, but it serves
our current purposes. (See Ruggie 1992)
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unilateralist inclinations” (Cha 2010, 160). Third, these complex compromises also
give rise to generalized organizing principles that “entail a[ socially constructed]
indivisibility among the members of a collectivity with respect to the range of
behavior in question” (Ruggie 1992, 571). This indivisibility is generated by the
“diffuse reciprocity” of members’ commitment to shared goals (Keohane 1986,
19-24). In this respect, multilateralism “refers to the constitutive rules that order
relations in given domains of international life—their architectural dimension, so to
speak” (Ruggie 1992, 572). In other words, multilateral agreements constitute an
issue area.

Multilateralism, though, “is a highly demanding institutional form” says Ruggie
(1992, 572), “and if its relative incidence at any time were to be high, that fact
would pose an interesting puzzle to be explained”. Yet Barkin and DeSombre
(2000, 340) state that, because of its evident advantages, “multilateral mechanisms
for international environmental management is thus the norm, both logically and
empirically”. In the case of global fisheries governance, both bilateralism and
multilateralism are employed. But do actors employ them in equal measure?

We argue here that bilateralism and multilateralism are distinct but intercon-
nected foreign policies and that actors typically choose to invest in one policy
or the other. To investigate this question, we leverage the network concept of
centralization. We would expect those states that have many bilateral agreements
to make more (see Fig. 13.1a, BILATERAL CENTRALISATION), and those states that
have many multilateral agreements to join more (Fig. 13.1b, MULTILATERAL CEN-
TRALISATION), but that these will not necessarily be the same states. Instead, states
may choose to invest further in whichever form of cooperation they have found
useful. This effect will result in a negative tendency for balanced behavior across
both forms of cooperation (Fig. 13.1c, i.e. negative ACTIVITY CORRESPONDENCE).
Where states engage in both bilateral and multilateral forms of cooperation, they
will nonetheless display a preference through asymmetric behavior (Fig.13.1d,
ASYMMETRIC CENTRALISATION).

Managed or Unmanaged Multilateralism

When states negotiate multilateral agreements, they face another decision: whether
to establish a treaty secretariat or not. Treaty secretariats “assist the parties in the

a b c d

NN Lo W

Fig. 13.1 Centralisation effects. (a) Bilateral centralisation (AS). (b) Multilateral centralisation
(ASA). (c) Activity correspondence (Star2AX). (d) Asymmetric centralisation (StarAX1A)
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management and implementation of the treaty” (Sandford 1994, 17). They are the
administrative hub, though perhaps not the decision-making authority, of formal
international organisations; “palpable entities with headquarters and letterheads,
voting procedures, and generous pension plans” (Ruggie 1992, 574). Sometimes
they are “large international bureaucracies as in the case of the UN Secretariat”, but
the secretariats of international environmental treaties tend to be small (Sandford
1994, 19)—just a few professionals and a handful of administrative staff in many
cases.

States establish secretariats to fulfill four “managerial” roles. First, they manage
informational processes relating to the resource governed and the parties’ behavior
towards that resource. This role as clearing house for information shared among
parties is perhaps secretariats’ most important role for, in so doing, they accrue
some agenda-setting power, particularly where scientific or behavioral uncertainty
is acute (Sandford 1994, 18). Second, they often play a role in monitoring
compliance, though this depends in part on the mandate given them by the
establishing treaty. Third, they contribute to conflict management by providing
formal or informal dispute settlement procedures (Sandford 1994, 28). Lastly,
they provide much needed continuity. Governments recognize that they may not
be in power in 10 years, and their policies—their legacy—might be undone by
their successors. Establishing secretariats can thus help to achieve international
objectives across long time horizons (Sandford 1994, 19). Note that none of the
above roles necessarily imply that the secretariat has any decision-making authority;
we use the term “managed” here to identify that a secretariat has been established
and mandated to “manage” the day-to-day practice and strategic continuity of
treaty business, not that it necessarily holds a mandate to manage its members
independently.

Admittedly, “secretariats are but one small aspect of institutions” (Andresen
and Skjerseth 1999, 5). We are also not contending that secretariats are directly
influential on activity within their purview (Bauer 2006; Bauer et al. 2009).
However, the complex, uncertain, and consequential nature of global environmental
politics means that states find themselves increasingly establishing secretariats for
the multilateral agreements they negotiate. After all, “there is a long way to go
from initial agreement to actual implementation” (Andresen and Skjerseth 1999,
6). Whether or not international environmental treaty secretariats are “‘significant
actors”, as Sandford (1994, 17) says, they are part of the process of international
environmental treaty implementation and, we argue, also of treaty-making. It is
in this later role, as sites for the negotiation of further international environmental
treaties, that secretariats become the “organizational glue that holds the actors and
parts of a treaty system together” (Sandford 1994, 17).

We explore the impact of secretariats on the dependencies of the multilevel
global fisheries governance complex here. First, we investigate the popularity of
managed multilateral mechanisms (Fig. 13.2a, MANAGED POPULARITY) compared
to unmanaged alternatives (those not relating to any secretariat). Next we consider
whether states cluster together around multilateral agreements where at least one
is managed (Fig. 13.2b, SHARED MANAGEMENT CHOICES). The results tell us
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Fig. 13.2 Multilateral a b
Agreement Effects (Black
node means that binary
attribute is 1; white nodes
may have binary attribute
equal to 1 or 0). (a) Managed
popularity (XEdgeA). (b)
Shared managed choices
(X4CycleBl1). (¢) Choose
similar (Star2BX). (d)
Similar choices
(TriangleXBX). (e) Shared
similar choices (ATXBX)

whether managed multilaterals are associated with more multiple overlaps of
multilateral agreements. In a bipartite sense, a prevalence of such four-cycles imply
that secretariats want to have strong ties to other MFAs (Robins and Alexander
2004). Such a structure also raises questions about how they are generated. Koskinen
and Edling (2012) argue that such four-cycles can be the result of peer referral. Here
we can ask whether secretariats act as sites for the exercise of collective agency
in negotiating further multilateral agreements, or whether antecedent “unmanaged”
treaties blaze a path for later, “managed” versions?

Multilateral agreements do not only differ in how they are instituted (in other
words, their design: Koremenos et al. 2001), but also in what they institute.
Moreover, multilateral treaties do not exist in a vacuum. Their content is conceived
and negotiated in relation to other treaties, and countries select which multilateral
agreements to join with reasonable knowledge about how those documents relate
(see Jupille et al. 2013). Some multilateral agreements are more similar in content
than others. Like any complex document, multilateral treaties are linked in many
interesting ways, including their authors, location, and date. However, one of the
distinct features of multilateral treaties is that they are more often responsible for the
creation or codification of international customary law and its normative evolution
as compared to bilateral treaties (Carr and Scott 1999). The normative structures in
which such treaties are embedded are important, for it is through their normative
interlinkages that multiple agreements complement or come into conflict with one
another (see Zelli and van Asselt 2013). Since multilateral agreements constitute the
“architecture” of international life (Ruggie 1992, 572), it is important to note where
these agreements complement or come into conflict with one another.

To this end, we include two effects here. First, we consider the popularity of
multilateral agreements that are similar to other multilateral agreements (Fig. 13.2c,
CHOOSE SIMILAR). Such similarity could be defined in many ways. In the data

2Note that the colored node in Fig. 13.2¢ indicates that the MFA is a secretariat but the uncolored
node is unspecified; that is, it may be either a secretariat or not.
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section below, we propose the textual similarity between two treaty documents as
a useful general purpose measure of similarity. Since there is no necessary relation
to state preferences, we expect this to be non-significant, or possibly negative in
sign. Second, we take into account whether states join multilateral agreements
that are similar to other multilateral agreements that they have joined (Fig. 13.2d,
SIMILAR CHOICES). This is a matter of state preferences, but does not reference
the complementarity or conflict inherent in the larger architectural structure. States
may view similar choices as ‘free’ in the sense that they have already committed
themselves to similar provisions elsewhere, or they may see a treaty that is similar an
unnecessary cost unless it provides some further advantage. This further advantage
may come about through MFAs undergoing amendment, which would result in
similar treaties and attract the same parties. For this, we also take into account states’
clustering around similar multilateral agreements (Fig. 13.2e, SHARED SIMILAR
CHOICES). Here we would expect it to be positive.

Data

Following Wasserman and Iacobucci (1991), Lazega et al. (2008), and Wang et al.
(2013), we define a multilevel model for the totality of ties between two node sets.
We denote a set of countriesby A = {1, ..., n} and multilateral fisheries agreements
(MFAs) by B = {1,...,m}. We conceive of these node sets as representing different
levels in the global fisheries governance complex.

Countries are tied dyadically through bilateral treaties giving us an undirected
one-mode network represented by the adjacency matrix X4x4. MFAs are connected
pairwise amongst themselves by similarities in their text represented by the square,
symmetric adjacency matrix Xpxp. What connects the two levels are the ties created
when a country has an affiliation with an MFA. This is represented by a bipartite
network of states and MFAs with an affiliation matrix X4xp. In the following we
provide a description of how these ties were measured and what nodal attributes
are relevant to our model. The multilevel network on all nodes is represented by a
binary adjacency matrix X, that is blocked into the ties in AA, AB, and BB.

Bilateral Fisheries Agreements

The primary actors in global fisheries governance are states. While a statal perspec-
tive hardly tells the whole story about global order, the state and its relevance to
global governance are unlikely to disappear any time soon (Hurrell 2007, 6). We
thus take countries as our nodes A. We include all 195 sovereign states, including
landlocked states, because articles 124—125 of the United Nations Convention on
the Law of the Sea (UNCLOS) state that all countries have the sovereign right to
access and fish the high seas. Moreover, some landlocked states still join fisheries
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Country bilateral network

Fig. 13.3 Bilateral fisheries treaty: one-mode network of bilateral fisheries agreements between
countries. Node size represents degree and ties associated with black node has been treated as
exogenous in subsequent analysis

treaties with respect to inland lakes or rivers or to support multilateral norms, which
means that there is structural information where there is a lack of participation.

The ties in AA consist of states’ bilateral fisheries agreements (BFAs) and the
network is illustrated in Fig. 13.3. BFAs tend to represent one of two main themes.
For countries with abutting maritime borders, BFAs often clarify the nature and
extent of these borders, or determine the allocation of fish stocks that straddle these
maritime borders, such as between China and Vietnam (Xue 2005). For countries
without adjoining maritime borders, bilateral fisheries agreements tend to involve
rich, distant water fishing nations, such as Japan or the EU, trading aid for cheap
access to fisheries in less-developed coastal or island countries (Petersen 2003;
Witbooi 2008).

The data for this and all other networks was retrieved from the two most compre-
hensive sources for international environmental agreements, ECOLEX (2011) and
the IEA database of Mitchell (2013), and complemented by archival research.

We consider four covariates as potentially relevant to explaining the AA network.
First, we use the amount of fish landed by each country to indicate a country’s
involvement in the exploitation of global fish stocks. This FISHING data was drawn
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from the Food and Agriculture Organisation’s (FAO) data aggregated in the program
FishStat]J (FAO 2011). We expect that the more a state’s fishing fleet fishes, the more
engaged it will be in negotiating bilateral fisheries agreements.

Second, we include the number of THREATENED SPECIES a state has in its
marine area (data from the World Bank: Froese and Pauly 2008). We might expect
countries that have threatened species at home to want to protect these fish stocks
from further exploitation (and perhaps secure access to more robust fish stocks
elsewhere). In either case, we expect it to have a positive influence on treaty-making
behavior.

Third, we include GDP (logged thousands) to explore how states’ fiscal capacity
enables them to enter into and maintain many different bilateral relationships.
We also investigate whether there is any systematic homophily or heterophily in
capacity across dyads. After all, developed states often trade aid for access to
fisheries resources or other advantages. This data was recovered from the UN and
the World Bank.

Lastly, as countries are embedded in space, we also include a dyadic covariate to
control for distance between two countries. We follow the approach of Daraganova
etal. (2012) for incorporating distance into ERGMs, namely using logged Euclidean
distance as a dyadic covariate, a functional form that has also been used to mimic
gravity-dependence in networks of countries (Koskinen and Lomi 2013).

Multilateral Fisheries Agreements

The second nodeset, B, consists of a “web of [multilateral fishing] treaties covering
the preservation of the marine environment” (Shaw 2003, 554). We follow both
Mitchell (2013) and ECOLEX (2011) in including all (multilateral) agreements,
treaties, conventions, amendments, protocols and exchanges of letters, allowing for
structural importance to operate independently of agreement type (Shaw 2003, 88).°

Ties are considered present when a country, a has signed, ratified, acceded or
succeeded to, or been approved in a multilateral fisheries treaty, b (see Shaw 2003,
817-821). This study does not distinguish between signature and ratification nor
does it consider the longitudinal aspects of the data here. It also treats as exogenous
the major instruments of the law of the sea such as the United Nations Convention
on the Law of the Sea (UNCLOS) and what is informally known as the United
Nations Fish Stocks Agreement (UNFSA). These were included in the network, for
the structure matters, but since they are special cases they are fixed and not modeled.
The fixed ties are represented by grey lines in the network graph of Fig. 13.4.

3A subset of 200 out of 225 MFAs were finalized after we dropped those for which we had no
structural data — occasionally the case for very old or very new MFAs — or for which we could not
collect texts, since the treaties’ texts are important for the construction of the BB network.
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Multilateral Network

Fig. 13.4 Multilateral fisheries agreements: bipartite network of countries (round, grey) and MFAs
(squares). MFAs with secretariats in black, others white. Ties that have been treated as exogenous
in subsequent analysis in grey

As with AA, we include several salient covariates. On the state-side of the net-
work (A), we consider GDP as providing the capacity to enable states’ participation
in this network. We also investigate whether states’ experience of THREATENED
SPECIES in their exclusive economic zone motivates their participation in this
network.

We also include a covariate on the MFA-side (B). Some MFAs provide for the
establishment of a secretariat to assist states in the management and implementation
of the treaty. This data was also drawn from Mitchell (2013).
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Ties Between MFAs

While some recent work has investigated how multilateral environmental agree-
ments relate through citations (Kim 2013), treaty documents are related in varied
and subtle ways. Treaties may address similar or quite different subject matter
independently of whether it occurs in the same lineage of treaties or refers to the
same geographic area. To get at these more subtle similarities, we look at similarity
in treaty text.

To construct a network of similarities between treaties’ texts it was first necessary
to collect the documents of all MFAs. 98 % of all treaty texts in the original dataset
were found. These texts underwent some cleaning, and then the textcat package
in R was used to construct a matrix of Jensen-Shannon divergences between the n-
gram frequency distributions of each pair of MFA texts (see Hornik et al. 2013). A
tie was deemed to exist if the distance d(i,j) < 0.01; a threshold chosen to balance
density and detail. In this way, the BB network represents the degree to which two
treaties’ texts call similar vocabulary resources in the pursuit of their aims, thereby
arguably accumulating to content. The network is represented in Fig. 13.5.

Treaty text similarity network

. °
. .
.
.
o e °
. L4 ]
° b} . o °
o .
. ® . . .
e e
LI . . .
«  ° °
. . e
°* o . . °© °
. °
° .
. ° [ ° ° .
° .
o e
.
. .
. . . . . ° .
. °
. .
o . °©
. . * . °
°
. °
. .
° o °
. . L )
° .
. o °
e o . .
.
. . . . .
. * o e
° .
. . o
° ° Wi
R * o o
. . % o
. i . Iy
. e ©
. . . . .
. .
. °© . L . ¢ _ o
o . . .
.
. °
. ° °
. . L
° °
. .
= ° .
. . .
. o o R
°
. e .
° . .
o
° °
e o
° o
o ® o

Fig. 13.5 Multilateral fisheries agreements issues: one-mode network of MFAs tied by issue
overlap. MFAs with secretariats in black, others grey
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One Multilevel Network

Each of these three networks, AA, AB, and BB, is valid and interesting in its
own right: AA consists of countries’ establishing bilateral fisheries treaties with
one another; AB comprises countries signing or acceding to multilateral fisheries
treaties; and BB corresponds to content similarity between the texts of the multi-
lateral fisheries treaties in AB. Together these three networks are modeled here as
a single, multilevel network of three interdependent parts, X. The joint modeling
of all the ties using Multilevel ERGM (Wang et al. 2013) allows us to explore
the interdependencies specified in section “Bilateralism and Multilateralism”. In
particular it enables us to interpret the ties of one network by how they are embedded
in the others.

Results

To find evidence for the processes discussed in section “Bilateralism and Multilat-
eralism”, we specify a Multilevel Exponential Random Graph Model (MERGM)
for the multilevel network of countries and MFAs. We specify the model with a
focus on the main research questions expressed as effects in Figs. 13.1 and 13.2
above, but include a number of additional effects as controls. In choosing relevant
configurations we follow the procedures of Wang et al. (2013). These controls have
been motivated both substantially as well as to achieve a reasonable goodness-
of-fit. We include as control effects a set of configurations consisting of various
combinations of attributes and structure. Many structural controls take the form
of clustering effects, such as those cross-network clustering effects presented in
Fig. 13.6. Though these effects are interesting in their own right, here we only use
them as controls, and explore their meaning further elsewhere. There are also a
number of covariate-based controls, outlined in the data description above. Detailed
explanations of configurations may be found in Wang et al. (2014). Convergence
of the estimation process has been assessed by the standard criterion (Lusher et al.
2013).4

Fig. 13.6 Cross-network a b c
effects. (a) AA-AB closure
(TriangleXAX). (b) 3-Path
(L3XAX). (c) Multilevel
alignment (C4AXB)

“*Convergence statistics were less than 0.1 in absolute value and there were adequate sample
autocorrelations for the statistics.
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Table 13.1 Multilevel ERGM parameter estimates for a network on Countries and Multilateral
Fisheries Agreements. An asterisk (*) denotes a parameter that is twice the size of its standard
error. The model is estimated using MPNet (MPNet names in parenthesis when needed, see Wang
et al. 2014)

Effect Parameter (S.E.)
AA Edge 5.193 1.231*
Alternating star (AS) 0.368 0.139*
Alternating triangle (AT) 0.227 0.121
GDP (log) capacity (activity) 0.412 0.807
GDP (log) heterophily (difference) 2.722 1.193*
Threatened species sum (activity) 0.033 0.031
Threatened species product (product) —0.002 0.014
Fishing volume (activity) 0.175 0.027*
Fishing difference (difference) 0.055 0.038
Distance (log) —1.232 0.107*
AB Edge —2.008 0.950*
Alternating star (A-degree ASA) 2.608 0.322*
Alternating star (B-degree ASB) —3.346 0.457*
GW shared A-nodes (ACA) —0.448 0.036*
GDP (log) capacity (activity) —0.867 0.445
Threatened species sum (activity) 0.127 0.019*
Secretariat (XEdgeA) 0.817 0.129*
Shared Managed (Sec) Choices (X4CycleB1) 0.004 0.001*
BB Edge Fixed
2-star —0.130 0.098
Isolate —0.955 0.796
Alternating star (AS) 0.310 0.521
Alternating triangle (A = 4) (AT) 2.459 0.251*
Alternating independent 2-path (A2P) 0.111 0.114
Alternating edge-triangle (AET) —0.214 0.091*
X Activity correspondence (Star2AX) —0.943 0.304*
Asymmetric activity (StarAX1A) 0.464 0.152*
3-Path (L3XAX) 1.178 0.334*
Cross-level closure (TriangleXAX) 0.086 0.019*
Activity correspondence (Star2BX) 0.001 0.003
Cross-level closure (TriangleXBX) —0.210 0.091*
Alt. closure (ATXBX) 0.001 0.000*
Multilevel alignment (C4AXB) —0.004 0.014

Results are presented in Table 13.1. For effect names we have mostly adhered to
standard terminology as used in Lusher et al. (2013) and Wang et al. (2013), except
for those effects that we defined in section “Bilateralism and Multilateralism” above.

In terms of our main research question, we find that there is a centralization of
treaty-making around particular countries but that it does not necessarily correspond
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across networks. Within both the AA and AB networks, some states appear more
active than others. Indeed, the alternating form of the AA and AB star effects shows
that this centralization is quite strong. In the case of the AA network, the alternating
star parameter has a coefficient of 0.37; in the case of the AB network, it is 2.61.
Interestingly, we do not find that this centralization is driven by capacity (logged
GDP) in either network. We do see a pattern of rich countries engaging bilaterally
with poor countries however. Countries that fish a lot are drawn by this activity to
engage in BFAs, though the fishing activity of their partner appears irrelevant. The
status of domestic fish resources spurs countries’ involvement in MFAs. This means
that while a crisis of conservation does not necessarily motivate bilateral activity, it
does seem to motivate multilateral activity, perhaps because this arena has typically
attracted more normative goals.

But does bilateral and multilateral activity coincide? In principle, no: the
ACTIVITY CORRESPONDENCE (Star2AX: Fig. 13.1c) effect is negative. This means
that countries generally carry out a policy of employing either bilateral or multi-
lateral fisheries agreements. However, there are several important caveats to this
statement. There is some evidence that there is correspondence where the focal state
demonstrates that they have the resources to carry out treaty-making in both contexts
(ASYMMETRIC ACTIVITY: StarAX1A, Fig. 13.1d). Nonetheless, this effect does
suggest that the activity is asymmetric and states’ bilateral and multilateral activity
does not appear to be balanced. Countries are generally strategic about where they
deploy their resources.

In terms of our secondary research question, it appears that MFA secretariats do
affect the structure of this multilevel network. MFAs establishing secretariats are
more popular than those that do not (the coefficient of (a) in Fig. 13.2 is 0.82 with
standard error of 0.13). There is also evidence that countries appear to cluster around
“managed” MFAs, as can be seen with the positive SHARED MANAGED CHOICES
parameter (Fig.13.2b). The introduction of this effect does improve model fit,
particularly with respect to bipartite clustering, which suggests this is an important
effect worth investigating further.

There is a strong tendency against countries being multiply tied to MFAs (ACA).
Thus countries do not ‘cluster’ around MFAs. One exception to this is however
when the MFAs share content as evidenced by the alternating closure ATXBX
(Fig. 13.2e). Against this background, it is informative that the parameter for
SHARED MANAGED CHOICES is positive and statistically significant. This suggests
that states only cluster around MFAs with at least one established secretariat
(unless the MFAs share content). Possible explanations include that this effect
may be driven by secretariats operating as sites for collective agency, leading
to the generation of more multilateral agreements. Alternatives could be that the
secretariats encourage countries to engage in further MFAs, or that unmanaged
treaties pave the way for later secretariats.

Next, we find that countries do not necessarily sign or accede to MFAs because of
their similarity to other MFAs (TriangleXBX), and indeed tend to prefer agreements
that are dissimilar to MFAs they have already signed. Note that the ties between the
MFAs themselves are highly clustered (the alternating triangle statistic AT for BB is
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large). Together with the negative GW shared A-nodes parameter mentioned above,
it seems that the MFAs modeled here do not enjoy any popularity or clustering
from being similar to other treaties and indeed only have minimal overlap in
signatories, but MFAs that are similar and already share some signatories are more
likely to share further signatories (the positive alternating closure parameter). What
the combination of these two closure effects may mean is that there are some
particularly hot issues for countries that drive signatory overlap.’ Lastly, there is
no evidence that bilaterally connected countries prefer similar MFAs (C4AXB).
Coupled with the closure effect described in the last paragraph, it seems that
countries prefer the same MFAs instead. We found no significant tendency for
or against multilevel alignment, though future research will reveal whether this is
simply a feature of the content network chosen for the BB network.

This model captured most structural features of the multilevel network well,
and sufficiently for our purposes (Robins and Lusher 2013, 184-185). Only for
the bipartite network (AB) degree distributions and some higher-order clustering
(XACB) could the model fit be improved. These are nested and accounting for them
by including them in the model leads to marked model-instabilities and accounting
for all the other statistics seems remarkable considering the complexity of the data.

Discussion

This chapter has demonstrated the value of a multilevel network perspective for
studying actors’ bilateral and multilateral cooperation. In the example considered
here of the global fisheries governance complex, the one-mode bilateral network
consists of states’ bilateral fisheries agreements with one another and the two-
mode multilateral network consists of states’ membership in multilateral fisheries
agreements. Since the multilateral fisheries agreements are complex, normative
instruments, we also distinguish them on the basis of whether they are “managed”
or not (whether they relate to an established secretariat) and add a further one-mode
network representing their similarity in content.

Together this represents a new, genuinely multilevel relational dataset that
concentrates on two interlocking architectures of bilateral fisheries agreements
between countries (AA) and their overlapping membership in multilateral fisheries
agreements (AB) and a third connectionist network of content similarity between
multilateral fisheries treaty texts (BB).

A multilevel network perspective on this data considers the small and big ponds
of actors’ interactions jointly as interconnected subsystems, and indeed they do
appear to be connected in interesting and important ways. While all three networks
are valid and interesting in their own right, treating them as one multilevel network

SNote that we have fixed the most popular treaties here, so this interpretation references other
treaties than, say, UNCLOS or UNFSA.
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structure reveals additional interdependencies and suggests further mechanisms to
explore in future research. We have proposed three statements about this interaction:
states prefer to establish either bilateral or multilateral relations; states prefer similar
multilateral treaties to those they have already joined; and states prefer “managed”
multilateral treaties. All of these statements have been related to states’ concerns
about efficiency and all have been demonstrated to have some empirical justification.

First, we find that there is a tendency away from any general correspondence
of activity, which suggests that states do choose to invest in either bilateralism
or multilateralism, rather than balancing these two policies. These policies do not
appear to be exclusive, but even where they are mixed there is an asymmetry in their
employment.

Additionally, we also found a number of interesting attribute-based explanations.
We find that states bilateral treaty activity is driven by how much they fish, but
that experience of domestic marine species coming under threat motivates their
multilateral treaty activity. This suggests that our thesis that different mechanisms
drive the structure of bilateral and multilateral fisheries agreements is well founded.
Moreover, it seems that for bilateral agreements, countries prefer partners that are
proximate (probably for BFAs establishing maritime borders or regimes governing
straddling fish stocks) and more and less developed countries tend to partner
(probably for BFAs trading fisheries access for development aid).

Second, we find that states prefer what we call “managed” multilateralism. That
is, they prefer multilateral fisheries agreements that either establish or relate to
an established treaty secretariat. Such secretariats provide much needed continuity
and consistency for actors struggling with complex and consequential issue areas
such as that of global fisheries governance. The local dependencies of multilateral
fisheries agreements related to secretariats appear to differ from those unrelated
to secretariats. The secretariats are more embedded in the multilevel complex,
having more signatories and being more strongly connected to other MFAs through
multiple overlaps. We cannot tell merely from the binary multilevel network what
type of nodes drives what ties, but the contrast between the structural profiles of
MFAs endowed with more (secretariats) and less (non-secretariats) agency is telling.

Third, while there is a tendency away from signatory overlap in MFAs, even
where their content is related, once related MFAs share several signatories they are
likely to share further signatories. We suggest that this indicates that there are some
particularly ‘hot topics’ that proliferate similar multilateral agreements with similar
sets of members. In other words, there is a cumulative effect of co-signatories only
when they are identified with a specific issue. From the perspective of MFA’s content
overlap, fewer parties in common entail more content diversity whereas MFAs
with many shared signatories see greater content similarity. We cannot tell if either
type of tie has precedence from the cross-sectional model employed here, but the
systemic nature of the multilevel approach does open up an interesting perspective
on the structural features of ‘hot topics’.

These are important insights, and suggests plenty of ways to extend the model
further. One particularly promising suggestion from the results presented here is
to elaborate theories of multilevel structure and agency. Evidently, we need new,
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multilevel theories of governance complexity to adequately theorize the kinds of
multilevel interdependencies identified here for international relations, which is
replete with such examples, but also, through the generalization of the mechanisms
of bilateralism and multilateralism, to other social contexts.
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Chapter 14
Knowledge Sharing in Organizations:
A Multilevel Network Analysis

Paola Zappa and Alessandro Lomi

Introduction

Social networks and the multiple roles that they play in organizations have received
increasing attention over the last decades (Borgatti and Foster 2003; Brass et al.
2004). The general argument is that social networks represent both conduits
through which material and symbolic resources flow within organizations, as well
as signals of the underlying hard-to-observe qualities of organizational members
connected by social relations (Podolny 2001). The presence and absence of ties
between organizational members has been systematically associated to important
interpersonal differences in outcomes like productivity (Reagans and Zuckerman
2001), resources (Podolny and Baron 1997), reputation (Kilduff and Krackhardt
1994), status (Lomi and Torlé 2014), power (Brass and Burkhardt 1993), and
autonomy (Burt 1992).

The extensive literature on organizational social networks builds on the convic-
tion that organizations are meaningful settings for studying social relations. But
considering organizations as settings for studying social networks has far-reaching
implications that have not received sufficient attention until recently (McEvily
et al. 2014). Organizations are first and foremost hierarchical social systems with
multiple and partially nested levels of action (March and Simon 1958; Simon 1996).
Perhaps the most obvious implication of adopting organizations as settings for
studying social networks is that hierarchical elements shape the interaction among
organizational members within, but also across structural layers.

Organizations typically consist of individuals nested within a variety of social
aggregates such as, for example, teams, functions, departments or subsidiaries.
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Organizational members are connected to one another within and across the
boundaries of these aggregates by a variety of mandated (or “formal”) and emergent
(or “informal”) relations. Such relations are rarely independent of one another. For
this reason, it is important to assess the influence that the structure of relations at
one level exerts on the structure of relations at another level (Moliterno and Mahony
2011).

Obvious as this statement may be, virtually no study of intra-organizational
networks is available that takes into account the multilevel formal structures
providing the foci for the development of social relations in organizations (McEvily
et al. 2014). This is surprising because one of the main promises of network
approaches to organizations is to capture connections across multiple structural
levels.

As Contractor, Wasserman, and Faust aptly observe (2006: 684):

[Olne of the key advantages of a network perspective is the ability to collect, collate, and
study data at various levels of analysis (...). However, for the purposes of analyses most
network data are either transformed to a single level of analysis (...) which necessarily
loses some of the richness in the data, or are analyzed separately at different levels of
analysis thus precluding direct comparisons of theoretical influences at different levels.

The network perspective that Contractor et al. (2006) advocate involves direct
modeling of tie variables and explicit development of hypotheses about how such
variables may be affected by multilevel network dependences. Contractor et al.
(2006) suggest adoption of the Exponential Random Graph (ERGM) class of models
(a.k.a. p-star — or p* models) as a potential solution to the problem of modeling
multilevel networks. This modeling approach has since been developed into a
comprehensive analytical framework for the analysis of multilevel networks (Wang
et al. 2013). In this paper we show how recently derived ERGMs for multilevel
networks (Multilevel ERGMs or MERGMs) may be adopted for analyzing networks
in organizational settings. We think that the flexibility of this framework provides
the basis for the development of novel insights on social networks in organizations.

The objective of this paper is to illustrate some of the benefits of understanding
formal organizations as multilevel network systems by examining the interdepen-
dence between formal and social interaction in organizations. We show how such an
approach supports a more informative and contextually richer representation of the
interdependences between formal and informal relations in organizations.

We document the existence, complexity, and context-dependence of the rela-
tionships linking informal networks between lower-level actors (individuals in
the case that we will be presenting) to formal networks between higher-level
actors (subsidiary units in our case) in organizations. We argue that ignoring the
formal relations existing between higher-level units may lead to overestimating the
autonomy of social networks from the formal authority structure existing within
organizations. Because authority relations cross-cut organizational levels, this issue
cannot be fully addressed in studies of social networks within organizations
conducted at a single level.



14 Knowledge Sharing in Organizations: A Multilevel Network Analysis 335

We argue that the unique value of the most recent generation of MERGMs is to
turn this problem into empirically testable hypotheses. Hence, adopting this method-
ological approach allows us to learn more about how both social as well as structural
conditions affect the likelihood that network ties cross-cut formal organizational
boundaries. This is important because research on social networks conducted at a
single level is incapable of establishing the autonomy of network ties with respect
to formal organizational structure. This is a particularly notable weakness in current
organizational research on the role that boundary-spanning ties play in a variety
of important organizational outcomes such as, for example, knowledge transfer
(Hansen 2002), innovation (Hargadon and Sutton 1997), generation of new ideas
(Burt 2004), and organizational performance (Argote and Ingram 2000).

Using field data that we have collected on communication and advice relations
among the 47 members of a top management team within an international multiunit
industrial group we show how this weakness may be addressed. We reconstruct
the complete network of hierarchical reporting relations defined among managers
within and across the subsidiary companies of the corporate group. The resulting
structure defines a multilevel network in which the lower-level units (individual
managers) are linked by interpersonal communication and advice relationships, and
the higher-level units (subsidiary units) are linked by formal reporting relations.
The two levels are linked by a bipartite relationship that affiliates individual
managers to subsidiary units. We exploit the natural multilevel structure of social
networks within organizations to specify and estimate MERGMs for different intra-
organizational networks (advice and communication). We show that the effects of
the formal structure on social networks are contingent upon the specific kind of
network that is being considered.

After this general introduction, we organize the chapter as follows. In the
next section we discuss the general background of our work and introduce the
problem of knowledge transfer and sharing in organizations. We state the main
questions that our study addresses. In section “Models for Multilevel Networks” we
briefly summarize our analytical strategy based on MERGMs. Section “Empirical
Illustration” describes data and model specifications. Section “Results” contains the
empirical results. Section “Discussion and Conclusions” concludes the paper by
framing the results in the context of current research on organizational networks.

General Background and Questions

Organizations as Multilevel Network Systems

One of the main motivations for analyzing social networks has been to provide a
theoretical framework for examining relations at various structural levels of action
(White et al. 1976). Among the many substantive contexts for the analysis of social
networks, organizations provide perhaps the clearest illustration of the need to
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consider how action may — or may not — be connected across structural levels.
Because organizations are multilevel hierarchical objects (Simon 1962), questions
about how social networks link action across levels are central to our understanding
of how organizations actually work. In organizations, for example, network relations
may link individuals across departments, teams, functions or subsidiaries (Borgatti
and Foster 2003).

Building explicitly on Breiger’s classic insight (1974), Brass et al. (2004:
801) clearly recognize multilevel networks in organizations as an unavoidable
consequence of interpersonal relations cross-cutting the formal boundaries because:

Ties between people in different units [...] create ties between organizational units,
illustrating the “duality” of groups and individuals (Breiger 1974). When two individuals
interact, they not only represent an interpersonal tie, but they also represent the groups of
which they are members. Thus, interunit ties are often a function of interpersonal ties.

Less commonly recognized is that “interpersonal ties” may be just as easily
the consequence of interunit ties — thus inducing a multilevel network structure.
Interunit ties may be determined by technology through the workflow (Thompson
1967), or by formal relations that define the organizational hierarchy in terms of
dependence between individuals within and across subunits (Perrow 1970; Pfeffer
1981). Most available studies have analyzed networks observed at different levels
separately, typically ignoring the possible existence of dependences across levels.
The combination between the affiliation of organizational members (lower-level
actors) to departments, teams, functions or subsidiaries (higher-level actors), and the
existence of social relations among organizational members as well as of a formal
structure among aggregate units, implies that organizations are hierarchical systems
of nested relations — i.e., multilevel network systems — almost by construction.
This claim has far-reaching consequences because the autonomy of social networks
between organizational members cannot be established without accounting for the
powerful effects of ties between organizational subunits defined at a higher level
of analysis. Because in organizations lower-level actors are hierarchically nested
within higher-level actors, lower-level (interpersonal) ties may be embedded in
higher-level (interunit) ties. If this is the case, the structure of relations observed
at one level is likely to affect the structure of relations observed at another (typically
lower) level (Moliterno and Mahony 2011). In this perspective, interpersonal ties
derive from the exercise of “discretion with constraints” (Kleinbaum et al. 2013) —
i.e. they are affected by the multiple social foci that organizations offer to their
members (Lomi et al. 2014).

Organizational research has only recently started recognizing the multilevel
network nature of organizations that these considerations imply (Baum and Ingram
2002; Brass 2000; Brass et al. 2004; Oh et al. 2006). Interest in multilevel
networks arises from the promise of a more realistic representation of important
organizational outcomes, such as, for example, coordination, identity construction,
and learning (Kogut and Zander 1996). Accounting for dependences across levels
would provide a better assessment of the actual autonomy and differential value
of social networks in organizations. It would be possible, in particular, to detect
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whether and how interpersonal relations in organizations are shaped by (I) the joint
membership of participants in aggregate units, and (II) the presence of relations
between units.

Until relatively recent times, the implications of dependences across network
levels have not been explicitly articulated. This is partly due to the lack of
suitable methods for dealing with the complex multilevel network structures that
are involved. Most of the available empirical studies have treated organizational
structure as an attribute of individuals rather than as a distinct level of action. As
a consequence, fundamental questions about the relations between network ties
connecting units defined at different levels could not even be asked. As we discuss
in the next section, our relatively primitive understanding of these multilevel issues
severely limits our current understanding of how social networks in organizations
actually work. Equally important is the fact that our limited ability to represent
and analyze multilevel networks in organizations casts doubt on some of the most
influential results produced by decades of organizational research on knowledge-
sharing and knowledge-transfer processes.

Social Networks and Organizational Structure

Understanding multilevel network mechanisms is of direct relevance to the conspic-
uous and influential body of research on learning, knowledge sharing and knowledge
transfer within organizations accumulated during the last quarter of century (Argote
et al. 1990; Argote and Ingram 2000; Hansen 2002; Tortoriello et al. 2012).

This literature has argued — and repeatedly shown — that networks of informal
interaction represent the main conduits through which knowledge flows within
organizations (Krackhardt and Hanson 1993). Informal relations based on com-
munication and advice seeking can allow organizational members to sample the
experience of distant others, and bring new solutions, practices, and ideas to bear
on local problems. These knowledge transfer relations, embedded in informal social
networks that cross-cut formal organizational boundaries, promote organizational
learning — i.e., processes through which organizations create, disseminate and
exploit knowledge (Kogut and Zander 1996; March and Simon 1958; Simon 1991).

More specifically, informal relationships focused on advice and communication
allow organizational participants to access sets of distant others, and hence reach
heterogeneous knowledge resources that are not locally available (Reagan and
McEvily 2003) — and that may be otherwise difficult to mobilize, understand and
integrate across formal boundaries (Nonaka 1994).

The connection that social networks create between different knowledge pools
separated by formal subunits seems to be the main mechanism behind the recurrent
observation that diversity of information sources is systematically linked to organi-
zational innovation (Beckman et al. 2004; Burt 2004). To the best of our knowledge,
however, no study is available that has established the autonomy of emergent social
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ties of interpersonal knowledge exchange from the mandated hierarchical relations
defining a formal organizational structure.

For the reasons that we have identified in the prior section, the multilevel
nature of social networks in organizations suggests that the independence between
emergent social ties and formal structure would be more usefully framed as a
hypothesis to be tested, rather than as an assumption to be maintained. What is
at stake in such a test would be the value, interpretation, and ultimate meaning of
social networks in organizations as they have been studied so far. If informal social
relations connecting individuals across intra-organizational boundaries depend on
the presence of formally mandated relations existing between the subunits in
which individuals are contained, then the knowledge-transfer properties that current
research assigns to organizational networks could turn out to be spurious in
specific settings or contextual conditions. Once formal hierarchical relations among
organizational subunits are accounted for, the extent to which social networks
between individuals across subunits can still be observed becomes an open question
that begs empirical investigation.

Social relations among organizational members may be affected by formal
hierarchical relations existing among organizational subunits in at least two ways.
The first involves a generalization of the transactive memory argument (Ren et al.
20006). By virtue of being in subunits that are more central, prominent or critical,
organizational members may be both more visible, as well as more aware of the
overall distribution of knowledge resources in the organization (Ren and Argote
2011). More generally, members in subunits with differential standing may more
easily attract deference relations across boundaries (such as, for example, requests
for advice), and generate additional opportunities for establishing crosscutting
communication relations. The joint effect of visibility and awareness provided
by “being in the right place” (Brass 1984) is a higher level of “popularity”
and “activity” of organizational participants located in prominent subunits. These
multilevel network effects are likely to be a sort of “basking in the reflected glory”
effect determined by affiliation to prominent subunits or groups within organizations
(Cialdini et al. 1976).

The second way in which formal relations may affect social relations involves
an extensive interpretation of the social foci argument (Feld 1981). Social relations
between individuals are likely to be affected by the presence of formal hierarchical
relations between organizational subunits to the extent that hierarchical relations
provide a social focus for the development of interpersonal network ties where:
“A social focus is defined as a social, psychological, legal or physical entity
around which joint activities are organized” (Feld 1981: 1016). Formal hierarchical
relations existing between subunits possess all the defining features of a social focus
present in Feld’s definition. Because “individuals whose activities are organized
around the same focus will tend to become interpersonally tied and form a cluster”
(Feld 1981: 1016), relations of hierarchical subordination existing among subunits
will tend to generate connection between participants across subunits (Lomi et al.
2014). As in the first case discussed, relations between subunits affect relations
between participants across subunits via clearly identifiable multilevel network
mechanisms.
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The argument we have developed so far may be summarized in terms of a
basic multilevel question: How, exactly, does the presence of mandated hierarchical
relations between organizational subunits affect the presence of network ties
connecting organizational members across subunits? To the extent that hierarchical
relations among subunits provide the focus for the development of social relations
among individuals, then a default expectation would be that informal interaction
among individuals aligns to prescribed hierarchical relations among organizational
subunits. If this is the case, we should expect to see cross-cutting network ties
connecting organizational members who belong to subunits that are themselves
connected by relations of hierarchical subordination. Does this expectation hold
independently of the kind of network relation that connects individuals across
subunits? This question is important because the effect of the formal structure
may be contingent on the kind of relation that organizational members develop.
This would suggest that the autonomy of informal social relations from mandated
hierarchical relations varies across network settings.

Motivated by these basic questions, in the next section we outline Multilevel
Exponential Random Graph Models as one possible analytical strategy that may
assist in addressing these questions.

Models for Multilevel Networks

The specific forms of interdependences between levels that we have discussed may
be assessed by directly specifying Multilevel Exponential Random Graph Models
(Wang et al. 2013, 2015) (MERGMs henceforth). MERGMs are a new class of
ERGMs specifically designed for modeling multilevel network data. MERGMs are
currently the only method that allows for explicit assessments of specific forms of
network interdependences across levels.

Let M = [A,X,B] denote the network variable for a two-level network, and m
= [a,x,b] the corresponding realizations. M includes a network A = [Ay;] of size

u representing a relation among a set U of higher-level actors h=1, ..., [,...u
nodes in U; a network B = [B;;] which represents a relation among a set V of lower
level actors withi=1, ..., j,...v nodes in V; and a two-mode network X = [X,]

representing the affiliation of i to h. Let, finally, ¥ = [ Y4, Y2] denote the set of
attributes for actors of levels A and B, and y = [y*, y?] their realizations.
MERGMs are specified as follows:

1
Pr(M=mlY=y)= ;epoQ {aQZZz(m) + QQZE (m,y)} (12.1)

* M is the set of all possible multilevel networks of size (u x v) and m is the
observed network.

* Yisaset of vectors of individual- and subunit-specific characteristics and y is the
observed set.
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e Q represents a potential network configuration. The summation ¥ is over all
different configurations included in the model.

o Zo(m) = Zml_[MijeQmij are structural network statistics corresponding to

configuration Q. These statistics involve network tie variables only and count,
for each actor in the network, the number of configurations or effects of each
type in which the actor is involved.

* ag is the vector of parameters corresponding to the structural effects Zy(m,).

o Zp(m,y) = Zml_[M,-,-GQm’jyi is the vector of attribute configurations or effects —

i.e., statistics which account for the interaction between network tie variables and
nodal attribute covariates.

* 0y is the vector of parameters corresponding to the attribute effects Zp(m,y).

* K is a normalizing constant included to ensure that (12.1) is a proper probability
distribution.

Equation (12.1) describes a general probability distribution of networks and
assumes that the probability of observing the empirical multilevel network structure
depends on a small set of configurations. MERGMs parameterize a number of
configurations. A first class involves the standard ERGM effects that model each
network separately (Robins et al. 2009; Snijders et al. 2006). A second class consists
of the effects that account for the interdependence between two or three networks
(Wang et al. 2013, 2015). We introduce these classes of configurations below,
situating them within our empirical exercise.

Empirical Illustration

Data

The data used in the empirical part of the paper contain information on knowledge-
sharing relations among members of the top management team in an international
multiunit industrial group active in the design, manufacturing and sale of leisure
motor yachts (Lomi et al. 2014). The group consists of five subsidiary units and a
small team of consultants. For the sake of clarity, in the remainder of the paper we
refer to subsidiary units and to the team of consultants as “subunits.” The subunits
act as quasi-independent companies. Each subunit has its own product line, target
market segment, customer base, dealer network, management, and organizational
and brand identities. Hence, each occupies an almost completely distinct market
niche. This context makes subunits unlikely to compete with one another and
promotes collaboration and communication among them. In particular, coordination
within the group and collaboration across the boundaries of subsidiaries are crucial.
Boundary-spanning interaction allows organizational members to share information
on technical solutions, and on potential customers or competitors collected through
the global dealers’ network. Likewise, innovative technological and management
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solutions developed in one subunit may have implications for others. For these
reasons, organizational members — especially those working in the same functional
areas, but in different subsidiaries — are highly encouraged to cooperate and
coordinate their actions.

We examined interaction in the context of communication and advice relations
among the 47 members of the group’s top management team as identified by the
group CEO. We also included in the list a team of five consultants, because of their
direct and personal relations with the president-founder of the group and because
of their crucial role in boat design. Each member was unambiguously and uniquely
assigned to one subunit.

We administered a questionnaire individually and personally to each member
of the top-management team. The questionnaire was used to collect relational
information as well as individual characteristics of the organizational members. A
member of the research team was always present to offer assistance and to ensure
that the data collected were as accurate and complete as possible. This allowed us
to obtain a 100 % response rate.

We examined relations of task advice and work-related communication because
these contents are directly relevant for intra-organizational knowledge transfer. The
advice relation captures problem-driven interaction. We selected advice relations
because extensive evidence indicates that they support meaningful knowledge
sharing within organizations (Cross et al. 2001; Lazega 2001). Professional and
work-related communication relations better represent routine interaction among the
managers. We included communication relations because we also wanted to capture
channels for intra-organizational knowledge flow that are activated less episodically.

Interpersonal interaction was reconstructed by presenting each manager with
the list containing the names of the other 46 managers in the team. To convert
answers into a multilevel network structure, we assumed for both relationships that
the generic cell b; = 1 if manager i nominates j as a partner respectively for advice
seeking (network B;) and communication (network B;) on work related matters. B;
and B; are both lower-level networks and are sized (47 x 47). Table 14.1 reports the
main descriptive statistics for the two interpersonal networks.

Hierarchical relations between subsidiaries were reconstructed by using infor-
mation on the formal reporting relations among members of the top management

Table 14.1 Network descriptive for interpersonal networks

Variable Advice network Communication network
Density 0.229 0.076
Average degree 10.553 3.489
Degree standard deviation 7.015 (in); 8.395 (out) 1.852 (in); 2.653 (out)
Degree skewness 1.113 (in); 1.736 (out) —0.195 (in); 0.689 (out)
Reciprocity 0.341 0.505
GCC transitive closure 0.469 0.494

GCC cyclic closure 0.357 0.420
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team. We interviewed the corporate CEO and asked him to indicate “who reports
to whom.” We provided him with the names of the 47 participants arranged in the
rows and in the columns of a square matrix. We asked him to indicate whenever the
column person reported to the row person. For example, we assumed that the generic
cell a;; = 1 if the “Chief engineer” (column) j in subsidiary k reported to the “Chief
Corporate Engineer” (row) i in subsidiary [. In this case i would be hierarchically
superior to i (ij). We used the information on systematic reporting relations between
managers to generate matrix A — the matrix of formal relations between the
subsidiaries. The higher-level (reporting) network between the subsidiaries will be
network A, sized (6 x 6): the generic cell ay =1 if subsidiary [ is hierarchically
superior to subsidiary k, i.e., if there is at least one manager j in k reporting to a
manager i in /.

Finally, an affiliation network represents top-managers’ affiliation to companies.
The generic cell x; =1 if manager i belongs to subsidiary /. According to the
notation that we have introduced this is network X, sized (47 x 6). Figure 14.1
displays symbolically the complete multilevel network structure.

We also collected actor-specific attributes and used them to construct the
control variables incorporated in our empirical model specifications. These variables
account for interpersonal differences that may affect the likelihood of observ-
ing network ties. We collected socio-demographic (nationality) and work-related
(organizational function and job grade) attributes for managers and organizational
characteristics (size) for subunits.

Figure 14.2 displays the empirical multilevel network for communication rela-
tions. The figure clearly points to the coexistence of communication ties between
managers who are affiliated to the same subunits and ties between managers who

Fig. 14.1 Multilevel network. Circles are managers and squares are subunits. Dashed black links
are (hierarchical) subordination ties between pairs of subunits (network A). Grey links are affiliation
ties of managers to subunits (network X). Dotted black links are advice ties (network B;) and black
links are communication ties (network B,) between managers
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Fig. 14.2 Multilevel network for communication relations. Circles are managers and squares
are subunits. Dashed black links are (hierarchical) subordination ties between pairs of subunits
(network A). Grey links are affiliation ties of managers to subunits (network X). Black links are
communication ties (network B,) between managers

are members in different subunits. The average manager degree is 3.02 for within
subunit ties, and 0.47 for between unit ties for the communication relation, and 4.87
and 5.68 for the advice relationships.

In the analysis that follows, we compare the effects of hierarchical relations
between subunits on advice seeking and on communication relations between
managers separately.

Model Specification and Estimation

In formal organizations, neither the affiliations nor the organizational structure
depend on individual or subunit choices, at least in the short-term. Change in
organization structure is likely to occur at a much slower rate than change in
informal interpersonal ties. Consequently, we considered the networks defined by
formal relations (A and X) as exogenous and kept them fixed during the estimation
process. Our analysis focuses on interpersonal network ties.

To make the two multilevel networks (and the interpersonal relations) com-
parable, we specified the same set of effects for them both. We modeled the
multilevel networks as a combination of two kinds of configurations: (1) ERGM
effects which account for interpersonal interaction (B); (2) MERGM effects which
account for the affiliation of individuals to a subunit (interaction between B and X)
and for interdependences between the interpersonal and interunit networks through
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Table 14.2 ERGM:s lower-level configurations

Effect Configuration Qualitative interpretation

Density Oo—0 Tendency of managers to build ties with colleagues

Reciprocity =0 Tendency of managers to build ties with
reciprocating colleagues

Activity spread O O Tendency of managers to be active —i.e., to send

Popularity spread

!

Q\
4

4

ties to many colleagues

Tendency of managers to be popular —i.e., to
receive ties from many colleagues

1
d

2-paths Basic tendency of managers to send ties to and to

receive ties from colleagues
Transitive closure Tendency of managers to build ties with colleagues
of colleagues

Cyclic closure Tendency of managers to build ties with colleagues

in small groups without any expectation of being

reciprocated
Multiple Tendency of managers against interaction within
two-paths small groups of colleagues

Ivvv&

Covariate match Tendency of managers to build ties with colleagues

with same covariate value

Circles are managers and black links are informal (communication or advice) ties between pairs of
individuals. Black is a manager with a relevant attribute

affiliation (interaction among A, B and X). We distinguished between structural and
attribute effects for both kinds of configurations.

We start our discussion commenting on the ERGM effects used to model the
interpersonal network (Table 14.2). We included Density to account for the baseline
tendency of managers toward interacting with others. Since maintaining several
ties is costly, the Density parameter usually carries a negative sign. We specified
Reciprocity to verify the likelihood that interpersonal ties are reciprocated. With
Popularity and Activity spread we modeled the degree distributions and captured
the tendency toward the existence of “hubs”.

Closure configurations verify the propensity toward network clustering. In the
context of intra-organizational relations of knowledge transfer, closure also captures
embeddedness and redundancy of information. We tested closure specifying two
effects, Transitive closure and Cyclic closure, the most common closure configura-
tions. The former models the likelihood that managers interact with one another
if they share several partners. The latter accounts for generalized exchange of
knowledge — i.e., for knowledge exchange without bounds of reciprocity (Breiger
and Ennis 1997; Lazega and Pattison 1999). As a control, we added Multiple two-
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paths configuration, accounting for the correlation between in- and out-degree and
suggesting whether the same people are senders and receivers of ties. Multiple two-
paths captures also tendency against closure.

Finally, the Covariate match effect accounts for the likelihood that managers
interact informally with similar others. We controlled for homophily in respect to
nationality, job grade, and organizational function.

The second class of effects consists of MERGM configurations modeling inter-
dependencies between the lower- and higher-level network structures linked through
affiliation (Wang et al. 2013, 2015) (see Table 14.3). These configurations account
for progressively more complex effects of the formal organizational structure on
interpersonal interaction. Affiliation based closure arc tests homophily based on a
shared affiliation (Contractor et al. 2006; Monge and Contractor 2001). Showing
that managers are more likely to interact with colleagues who are members of
the same subunit, this effect indicates that knowledge transfer tends to occur
more within subunit boundaries. Also, Affiliation based closure arc suggests that
interaction is shaped by a local hierarchical ordering, with interpersonal ties in one
direction only.

Cross-level in-degree and out-degree assortativity effects test the association
between centrality across levels. These effects represent the tendency for popu-
lar/active people to be affiliated to popular/active subunits and can be interpreted
as the MERGM formalization of the structural linked design (Lazega et al. 2008). A
positive parameter of these effects would suggest that the centrality of managers
in interpersonal interaction is mainly due to the position of their subunit in the
hierarchical interunit structure. Hence, these effects would point to a “sidestepped”
role of the individual.

Cross-level alignment effects account for cross-level mirroring or overlap such
that members of connected groups are themselves connected. In the context of
knowledge sharing, a positive parameter of these effects would indicate that
interpersonal knowledge transfer is sustained by interunit formal ties. We specified
three effects that account for a different kind of dependence of interpersonal ties
on interunit ties. Cross-level alignment entrainment assumes that interunit and
interpersonal ties have the same direction. The qualitative interpretation of such
an effect is that interpersonal interaction is shaped by a hierarchical ordering due
to interunit ties — i.e., managers are likely to seek information from colleagues who
are members in hierarchically subordinate subunits. Cross-level alignment exchange
accounts for the opposite effect. It assumes that interpersonal and interunit ties have
opposite directionality, so that managers seek information from colleagues who
are members in hierarchically superior subunits. Cross-level alignment exchange
reciprocal B, finally, indicates that managers are likely to build reciprocal ties
with colleagues who are members in other subsidiaries, connected to theirs by
hierarchical dependence. Interpersonal interaction, then, enables a reduction in the
hierarchical distance between managers due to the formal interunit structure.

Finally, we included the association between interunit and interpersonal ties
due to control subunit and manager covariates. Similar to the baseline Covariate
match effect specified for the interpersonal network, Cross-level alignment Covari-
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Table 14.3 MERGMs higher-level configurations

Effect

Affiliation based
closure

Cross-level
in-degree
assortativity
Cross-level
out-degree
assortativity

Cross-level
alignment
entrainment

Cross-level
alignment
Exchange

Cross-level
alignment
exchange
reciprocal B
Cross-level a.entr.
unit covariate
match

Cross-level a.
exch. unit
covariate match

Cross-level a.entr.
individual
covariate match
Cross-level a.
exch. individual
covariate match
Cross-level a.
exch. reciprocal B
individual
covariate match

Configuration

ISP PSP EREIE

Ll

Qualitative interpretation

Tendency of managers to build ties with colleagues
based on common membership in subunits

Tendency of popular managers in interpersonal
network to be affiliated to popular (i.e., hierarchically
subordinate) subunits in interunit network

Tendency of active managers in the interpersonal
network to be members in active (i.e., hierarchically
superordinate) subunits in interunit network

Tendency of managers to build ties with colleagues
members in subunits hierarchically subordinate to their
subunit

Tendency of managers to build ties with colleagues
members in subunits hierarchically superordinate to
their subunit

Tendency of managers to build ties with reciprocating
colleagues members in hierarchically linked subunits

Tendency of managers members in subunits with a
given covariate value to build ties with colleagues
members in hierarchically sub-ordinate subunits with
same covariate value

Tendency of managers members in subunits with a
given covariate value to build ties with colleagues
members in hierarchically super-ordinate subunits with
same covariate value

Tendency of managers with a given covariate value to
build ties with colleagues with the same covariate value
and members in hierarchically subordinate subunits
Tendency of managers with a given covariate value to
build ties with colleagues with same covariate value
and members in hierarchically superordinate subunits
Tendency of managers with a covariate value to build
ties with reciprocating colleagues with same covariate
value and members in hierarchically linked subunits

Squares are subunits. Dashed black links are (hierarchical) subordination relationship ties
between pairs of subunits. Grey links are affiliation ties of managers to subunits. Black are
managers/subunits with a relevant attribute

ate match tests whether managers’ propensity toward seeking information from
colleagues affiliated to connected subunits increases when managers or subunits
have similar characteristics. Specifying Cross-level alignment entrainment and
exchange Covariate match for subunit size, we assessed manager propensity toward
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building ties with colleagues affiliated to hierarchically dependent subunits, when
the subunits employ around the same number of managers — a fairly obvious effect.
Cross-level alignment entrainment, exchange and exchange reciprocal B Covari-
ate match for managers’ job grades and organizational functions verify whether the
same tendency is higher when managers have similar work-related characteristics.

Results

We organize the discussion of our results around Table 14.4, which reports the
estimates of a MERGM for the interdependence between interpersonal (advice,
communication), and interunit relations. The comparison of the configuration
parameters between the two multilevel networks reveals similar tendencies. The Arc
parameter carries a negative sign, as it is typically the case in empirical networks,
thus outlining the existence of a ceiling effect to establishing interpersonal ties.
Also, the tendencies toward reciprocating ties (significantly positive Reciprocity
effect) and interacting in small hierarchical groups — as indicated by the combination
of a positive Transitive and a negative Cyclic closure — are the main relational
behaviors that characterize both advice and communication networks. The tendency
toward closure is enforced by the negative Multiple two-paths, suggesting that
triangles are unlikely to remain open. Also, both networks are shaped by a
propensity toward seeking information from managers with the same nationality
(significantly positive Nationality match). By contrast, the degree-related effects
indicate the convergence of ties toward few managers in the advice network only. In
particular, the significantly positive Activity spread (the tendency of the out-degree
distribution to be skewed) points to the presence of a few managers who rely on
many colleagues as sources of advice, thus diversifying their range of available
knowledge.

The parameters of several higher-level configurations are significant, suggesting
an association between information sharing among managers and the formal inter-
unit structure. The Affiliation based closure arc is significantly positive for both
relations, showing that they are affected by a positive tendency toward interacting
with colleagues within the same subunit. This result captures the well-known
tendency of organizational subunits to retain both ties and information within their
boundaries (Reagans and McEvily 2003).

Cross-level in-degree assortativity is significantly positive for the communication
network only. This configuration captures the first class of theoretical mechanisms —
i.e., association between subunit and manager centrality in their own network. The
positive parameter value indicates that managers who are more popular and sought
after by colleagues in day-to-day communications are members of subunits which
are more popular and, have to report to many others in the formal network — i.e.,
hierarchically subordinate subunits. The qualitative implication of this effect is that
information is likely to flow from members of subordinate to members of superior
subunits.
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Table 14.4 MERGM estimations for interdependences between interpersonal and interunit net-

works

Interpersonal communication

Arc

Reciprocity

Popularity spread

Activity spread

Transitive closure

Cyclic closure

Multiple two-paths

Grade match

Function match

Nationality match

Cross-level interdependences

Affiliation based closure

Cross-level in-degree assortativity
Cross-level out-degree assortativity
Cross-level alignment, entrainment
Cross-level alignment, exchange

Cross-level alignment, reciprocal B
Cross-level alignment, entrainment subunit size
match

Cross-level alignment, exchange subunit size
match

Cross-level alignment, entrainment manager
grade match

Cross-level alignment, exchange manager
grade match

Cross-level alignment, reciprocal B manager
grade match

Cross-level alignment, entrainment manager
function match

Cross-level alignment, exchange manager
function match

Cross-level alignment, reciprocal B manager
function match

Advice Network
estimate (st.err.)

—7.14 (0.64)*
0.90 (0.28)*
0.02 (0.09)
0.40 (0.09)*
1.38 (0.19)*

—0.26 (0.06)*

—0.08 (0.02)*
0.04 (0.17)*

—0.25 (0.22)
0.58 (0.12)*

1.90 (0.28)*
—0.07 (0.13)
—0.14 (0.05)*
—0.68 (0.48)
—0.59 (0.32)

0.08 (0.20)

0.08 (0.04)*

0.06 (0.03)*
—0.89 (0.47)
0.98 (0.30)*
0.37 (0.59)
—0.08 (0.53)
0.49 (0.40)

1.45 (0.61)*

Communication
Network estimate
(st.err.)

—7.08 (1.12)%
2.59 (0.46)*
—0.49 (0.36)
0.35 (0.18)
0.87 (0.21)*
—0.36 (0.16)*
—0.09 (0.06)*
—0.01 (0.21)
0.30 (0.22)
0.85 (0.30)*

2.80 (0.65)*
1.08 (0.38)*
0.15 (0.14)
—0.08 (0.78)
—1.00 (0.95)
2.02 (0.84)*
—0.04 (0.06)

0.07 (0.07)

—1.14 (1.15)
1.10 (1.23)
0.28 (1.92)
221 (0.86)*
2.05 (1.30)

—4.30 (1.92)*

*indicates that the ratio of statistic to standard error is greater than 2 (standard errors in parentheses)

The Cross-level alignment effects refer to the second class of theoretical
mechanisms — i.e., association between interunit and interpersonal ties. The positive
Cross-level alignment reciprocal B for the communication network indicates that
interunit ties are likely to be matched by reciprocal interpersonal ties between
managers affiliated to the connected subunits. That is to say, managers are likely
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to establish mutual communication relationships with colleagues who are members
of subunits with which a hierarchical link already exists. Cross-level alignment
reciprocal B emphasizes that interpersonal ties cross-cutting subunit boundaries are
more likely when they are sustained by formal interunit ties. They provide managers
with opportunity to meet and share information (Kleinbaum et al. 2013). Cross-level
alignment reciprocal B, finally, underlines the importance of reciprocity as driver of
boundary spanning.

By contrast, the not significant Cross-level alignment effects for the advice
network suggest that the tendency for advice ties between managers to span subunit
boundaries is not affected by the presence of hierarchical formal ties between the
subunits in which managers are members.

The qualitative implication of the different parameter values of most Cross-
level configurations (i.e., both degree assortativity and alignment) between the two
networks is that the association of interunit and interpersonal ties — and, therefore,
boundary spanning — takes place in different ways for advice and communication
relationships. Advice relationships develop almost independently from the formal
organizational structure, while communication relations align (weakly) with it.

More precisely, in the case of advice relationships the formal organizational
structure seems to operate mostly through a matching process which involves
subunit and manager covariates. In detail, the significantly positive Cross-level
alignment entrainment and exchange subunit size match suggest that managers are
likely to seek advice from colleagues affiliated to connected subunits (thus, crossing
subunit boundaries) which have a size — and, therefore possibly a relevance within
the formal organizational structure — similar to theirs. Managers are likely to build
ties that both maintain (Cross-level alignment entrainment subunit size match) and
reverse (Cross-level alignment exchange subunit size match) the direction of inter-
unit formal ties, seeking advice from colleagues who are members respectively in
hierarchically subordinate or superior subunits.

The significantly positive Cross-level alignment exchange manager job grade
match for advice relations suggests that managers in the same job grade are more
likely to build boundary-spanning ties with colleagues affiliated to superior subunits,
thus reversing the ordering induced by the formal structure. The significantly
positive Cross-level alignment reciprocal B manager function match points to the
likelihood that managers in the same organizational function build mutual boundary-
spanning ties with colleagues affiliated to connected subunits. In doing so, mutual
ties reduce the formal hierarchical ordering.

The communication network is shaped by the opposite tendency. The combi-
nation between the significantly positive Cross-level alignment entrainment and
the significantly negative Cross-level alignment reciprocal B manager function
match indicates that managers in the same organizational function are more likely
to build cross-cutting communication ties that preserve the formal hierarchical
ordering. The (weak) alignment between communication ties and formal inter-unit
ties, suggested by the positive Cross-level alignment reciprocal B is reversed by
managers’ homophily in the organizational function.
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Discussion and Conclusions

Interest in multilevel theories is not new in the analysis of social networks. The
recent call for multilevel network models, however, has the merit of stimulating
convergence between recent theoretical and methodological developments in the
analysis of multilevel networks. In organizational studies, a multilevel under-
standing of social networks seems to be long overdue, because organizations
are multilevel network systems almost by construction. Organizations are formal
hierarchical systems, where individual action is embedded in aggregate entities
whose interconnections are likely to affect the structure of interpersonal networks
within and across the formal boundaries that are drawn around organizational
subunits. To the best of our knowledge, no empirical study has yet derived the
full consequence of this multilevel view on organizational networks. Surprisingly,
most of the available research on networks within organizations has ignored their
multilevel structure. We have argued that this is precisely what makes organizations
interesting and instructive contexts for studying social networks.

We have offered an integrated analytical framework for assessing multilevel
network dependences explicitly, suggesting that organizations would be better
conceived as a two-level system, consisting in the combination of informal ties
between individuals, formal ties between subunits, and affiliation ties between
individuals and subunits. We have brought new Multilevel Exponential Random
Graph Models (MERGMs) to bear on the problem of understanding cross-cutting
ties within organizations. The empirical value of the analytic strategy proposed
has been documented in the context of intra-organizational knowledge-sharing and
knowledge-transfer networks, examining how knowledge-sharing relations among
individuals may cross formal boundaries defined around organizational subunits.
In particular, the paper has focused on the extent to which boundary spanning is
affected by the presence of interunit ties. Using data that we have collected on
different knowledge-sharing relationships within a multiunit organization where
subunits are linked to each other by hierarchical ties, we have drawn attention to
various multilevel mechanisms that could indicate different types of subordination
of informal interpersonal ties to formal interunit ties.

The main finding concerns the influence of the interunit formal structure
on interpersonal interaction. We have replicated the well-established result that
subunits are generally likely to retain interpersonal ties within their boundaries. In
our sample, information sharing is more likely to take place between participants
who are members of the same subunit. Boundary spanning is a relatively infrequent
event. When it does take place, boundary spanning is likely to be affected by
hierarchical interunit ties, consistent with our assumptions. We have tested and
verified two different ways in which the formal organizational structure can affect
presence and direction of interpersonal boundary spanning ties.

First, in line with transactive memory arguments, managers affiliated to more
central subunits — i.e., subunits which have to report to many others in the formal
network — are more likely to be selected as partners for interpersonal relations. In our
sample, we have found this is a significant tendency for communication relations.
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Second, in line with social foci arguments, formal hierarchical ties are likely
to sustain boundary-spanning ties. Hence, managers working in subunits that are
themselves already connected by mandated hierarchical relations display a higher
propensity toward seeking information from each other. Our results indicate that,
within the patterns of interaction offered by interunit ties, managers are also likely to
exert some autonomy. The dependence of interpersonal communication relations on
mandated hierarchical relations is partly weakened by the capability of interpersonal
interaction to reduce the hierarchical ordering.

As an additional finding, boundary spanning between members of connected
subunits can be activated also by homophily between subunits or individuals. In
our sample, we have observed this tendency for advice relations.

Finally, differences in communication and advice-seeking ties highlight the
context-dependent influence of the interunit formal structure on interpersonal
interaction. The effect of formal interunit ties is contingent on the specific rela-
tionship examined — a conclusion that will need to be carefully scrutinized in future
research.

Our general conclusion is that no social network in organizations should be
studied in isolation from the formal structure that shapes social relations between
individuals. The unique contribution of the multilevel perspective that we have
articulated in this paper is a rich contextual assessment of the incremental value
of social networks for our understanding of how formal organizations actually
work. In this sense, this paper may be interpreted as a preliminary step toward the
development of a more general multilevel network theory of organizations.
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Chapter 15
General Conclusion

Emmanuel Lazega and Tom A.B. Snijders

Multilevel statistical models that combine both individual and contextual effects in
order to calculate the probability of an individual to adopt a certain behavior or to
achieve a given level of performance have been developed, with multilevel analysis,
over the past two generations (Raudenbush and Bryk 1992, 2002; Goldstein 1987,
2011; Snijders and Bosker 1999, 2012; Courgeau 2003, 2007). These models
provide a statistical approach in which — once the effects of the most obvious
determining factors are recognized — the remaining factors that reveal less obvious
properties of behavior and performance at the individual level, are represented by
random effects specified for the individual level but also for one or more contextual
levels; some of these are interactions between individual characteristics and contex-
tual levels. However, these models have shown their limits, particularly when the
behavior and achievements of individuals within groups take into account group
membership without taking into account links between groups or links between
members within groups. For “standard” (although useful) multilevel approaches,
horizontal interdependencies among members derive only from common group
membership.

The fundamental question of the influence of social structure on the behavior
and achievements of actors has been reexamined in recent decades thanks to the
development of structural sociology and the analysis of social networks. Structural
approaches, which examine elements of social structure in order to contextualize

E. Lazega (I<)
Institut d’Etudes Politiques de Paris, SPC, CSO-CNRS, 19 rue Amélie, 75007 Paris, France
e-mail: emmanuel.lazega@sciencespo.fr

T.A.B. Snijders
Department of Sociology, University of Groningen, Grote Rozenstraat 31, 9712 TG Groningen,
The Netherlands

Nuffield College, University of Oxford, Oxford, UK
e-mail: tom.snijders @nuffield.ox.ac.uk

© Springer International Publishing Switzerland 2016 355
E. Lazega, T.A.B. Snijders (eds.), Multilevel Network Analysis for the Social
Sciences, Methodos Series 12, DOI 10.1007/978-3-319-24520-1_15


mailto:emmanuel.lazega@sciencespo.fr
mailto:tom.snijders@nuffield.ox.ac.uk

356 E. Lazega and T.A.B. Snijders

human action, help with detailed readings of systems of interdependencies between
actors. Structural models, inspired by those proposed by White et al. (1976), remain
close to actors, to their interdependent relationships, to their positions, and to the
interdependent relationships between these positions. Adding a network dimension
to this modeling helps to account for horizontal dependencies by assuming that these
groups have an internal structure as well as links to each other, thus providing a more
realistic contextualization of behavior and achievements. As shown in this volume,
this provides a basis for systematic meso-sociological analysis and for enrichment
of standard multilevel analyses, and there is a large range of fruitful work currently
being done along these lines.

Individual actors’ relational work is often part of complex relational settings.
Actors’ personal and collective networks include both individuals and groups or
organizations. Breiger (1974) pioneered basic ways to express these dependencies
by two-mode networks. In this book, we presented a bouquet of approaches to
this issue of multilevel network analysis. This book is among a series of first
steps in the contemporary elaboration of a general multilevel network analytical
framework using a variety of multilevel network analytical approaches. In his
chapter, Tom Snijders summarizes what is essential for a ‘multilevel” point of view
in network analysis: units of different natures; that have their own type of influence
on variables; with random/unexplained variability associated with each ‘level.” The
first principles of this are present already in traditional network analysis, as is shown
by the joint presence of relational and actor-bound variables in models for network
analysis, e.g., in network autocorrelation models (Multilevel Network Modeling
Group 2012; see Chap. 4 by Agneessens and Koskinen and Chap. 9 by Bellotti,
Guadalupi, and Conaldi). Multiple membership models for actor-level data (as in
Chap. 5 by Tranmer and Lazega) are another way to represent the effects of networks
and subgroups on actor-level dependent variables.

Most of the research presented in this book, however, focuses on the explanation
of network structure more than on the use of network structure to explain actor-level
variables. Recent modeling developments have led to three important extensions
of existing models representing social structure, with networks as the dependent
variable, enabling these models to incorporate more complex structures in which
networks themselves are embedded. The first is by embedding statistical models
for social networks as a random effects model in a contextual model. The model
is for data structures of multiple networks, postulating that the networks are
not connected mutually, each having the same within-network model, and with
parameters that differ between networks according to a probability distribution such
as a multivariate normal or a discrete latent class model. This general approach is
called a hierarchical network model by Sweet et al. (2013), who give an elaboration
for latent space models. An earlier example is the multilevel p, model (Zijlstra
et al. 2006). The Bayesian multi-group stochastic actor-oriented model proposed
by Koskinen and Snijders (2016) is an example in preparation.

The second extension is the multilevel exponential random graph model pio-
neered by Wang et al. (2013). Data structures here are multilevel networks, defined
as networks with multiple actor sets and multiple types of ties, generalizing two-
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mode networks. This model represents connections between the contexts, and
more generally enables the joint representation of the interdependent structures of
networks defined at diverse levels. This volume contains examples of multilevel
exponential random graph models in many chapters — those by Wang, Robins, and
Matous (Chap. 6); by Zappa and Lomi (Chap. 14); by Hollway and Koskinen (Chap.
13); and the study by Brennecke and Rank (Chap. 11). For longitudinal data this
can be modeled by actor-oriented models as in Snijders et al. (2013), and Chap. 2
by Snijders gives a sketch of further multilevel extensions.

The third extension is the multilevel blockmodel of Ziberna (2014). This
approach represents the superposed interdependent structures of networks defined
at diverse levels by blockmodels that partition the units at each level separately
according to a suitable joint criterion function. The chapter by Ziberna and Lazega
(Chap. 8) in this volume gives an introduction and an elaborate example.

Why is it important for the social sciences to further develop and apply such
methods of multilevel network analysis? A double trend of individualization
(created by introducing increasingly open competition as one goes down the
socio-economic stratification) and Weberian rationalization (stemming from the
search for control and efficiency through the rise of bureaucracy) has constructed
a society that Charles Perrow (1991) calls “organizational” and Ronald Breiger
(1974) “dual.” Rationalization in turn imposes strong interdependencies and simul-
taneously requires unprecedented amounts of coordination among actors. Actors
try to manage exceptionally complex interdependencies (functional, epistemic,
normative, emotional, etc.) in increasingly sophisticated ways at different levels
simultaneously (Brailly and Lazega 2012). In this organizational society, these
management practices can marginalize or exclude, make or break careers, determine
in part the distribution of power and status, influence the social processes that lead
to change.

Thus, a social fact must be observed at analytically different levels of collective
action, which makes the analysis of individual relations inseparable from that of the
organizational relations. To take into account this vertical complexity of a social
world contained in the cohabitation of several levels, it is necessary to articulate
these levels and their dynamics. There are many theories on the importance of social
relations for the action capabilities of individuals in this context. From a perspective
focused exclusively on the individual, relational capital is defined as a set of
resources to which individuals have access based on their relationships or position in
arelational structure. There are fewer theories on the importance of socio-economic
relations (that is, relatively stable relational structures made up of social relations)
for the joint action capabilities of both individuals and groups/organizations. This
multilevel approach explores a complex meso-social reality of accumulation, of
appropriation, and of the sharing of multiple resources mobilized at different levels
of collective agency. This reality, still poorly known, is difficult to observe without
a network approach.

If it is true that contemporary society is an “organizational society” (Coleman
1982; Perrow 1991), in the sense that action and performance measured at the
individual level strongly depend on the capacity of the actor to construct and to use
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organizations as “tools with a life of their own” (Selznick 1949), and thus to manage
his/her interdependencies at different levels in a strategic manner, then the study of
interdependencies jointly at the inter-individual and the inter-organizational level is
important for numerous types of problems. We should not overlook the potential
applications of this approach in many domains of the social sciences; for example,
for the study of relationships between organizations, careers, social stratification,
inequalities, and political action. The organizational society is a class society in
which control of organizations as such “tools with a life of their own” has become
increasingly important for any kind of collective action (Tilly 1998).

Empirically, developing contemporary knowledge of the meso-social level is
based on a research program focused on the co-evolution of interdependent systems
of individuals and organizations at the different “floors” of social reality. This co-
evolution is not well known: what are the effects of evolution of one level on the
evolution of another? What constraints of synchronization of these evolutions exist
in economic and social reality? If different forms of synchronization exist, how are
they selected, and who pays the cost? Synchronization of evolutions at different
levels of social reality takes place, for example, in relational adjustments required
by mobility in professional careers. We can hypothesize that this synchronization
takes place in part in contemporary flexible labor markets, the many costs of which
(financial, relational, health, etc.) are easily dumped on the weakest. These adapta-
tions and their invisible costs, almost always considered to be the responsibility of
individuals and rarely that of the organization, are still not measured.

With an increasing number of scholars (from Breiger 1974 to Brass et al. 2004, to
the contributors of this volume), social scientists believe that these methodological
strategies will help in exploring this meso-level of society. The term meso-social
refers to all the organizational forms of collective self-assertion at the “intermediate”
level between the state and individuals in civil society, from business corporations
to citizen and professional associations and the other collective interests (including
kinship) constitutive of the real social world. Indeed the analysis of multilevel
networks is appropriate for questions related to the difference between individual
relational capital (Burt 1992) and organizational (or corporate) social capital, a
general topic of research in previous decades (Coleman 1990; Leenders and Gabbay
1999). In a work environment, individual relational capital is a set of resources
that actors as individuals bring to the performance of their tasks through their own
personal contacts. Organizational social capital can be defined as resources that
actors receive from the organization to which they belong, and that helps them with
their work, but also as social processes that help the organization to manage the
dilemmas of its collective action. Organizational resources can be capitalized by this
collective entity, sometimes over several generations, so as to make these processes
work for cooperation instead of against it (Lazega 2001).

This difference between these two forms of capital raises in new ways the
question of their combination, of multi-level interdependencies, and of the man-
ner in which actors manage these interdependencies. It adds an underestimated
importance for multilevel network reasoning in the social sciences, on the issues
of relationship between positions in multilevel relational structures, individual
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and collective action, and achievements (measured at both the individual and
collective levels). For example, using this knowledge for dual positioning in systems
of superposed interdependencies allows us, especially when this positioning is
articulated to actors’ relational strategies, to fine-tune hypotheses about these issues.

This approach will reach its full potential when longitudinal observations at
multiple levels of analyses are available. The articulation of both multilevel and
dynamic structural analyses remains to be explored, as in the directions pioneered
by Snijders and Baerveldt (2003) and Snijders et al. (2013). Collective action in an
organizational society requires synchronization of temporalities between the inter-
individual level and the inter-organizational one. The relational infrastructure of
each level has to be taken into account by and at the other level, and the mutual
timing of these interdependencies seems to be of crucial importance. This approach
will open up research on institutional change and the evolution and redesign of inter-
organizational systems. Looking at collective action from a multilevel perspective
explores the cumulative effect of inequalities that take place at two levels of agency
without imprisoning the individual in a monadic iron cage that precludes room to
maneuver. There is no absolute determinism between position and action precisely
because each level has its own temporality and actors can sometimes reshape their
opportunity structure by using asynchronies and by creating social forms based on
relational infrastructures that illustrate or reveal inequalities, but that are also actors’
responses to these inequalities.

This makes cooperation at each level of agency contingent on what happens at
the other levels of collective agency, not only at the micro- or macro-levels. For an
actor at any level, dealing with what happens at the other levels by contextualizing
their choices and behavior is a precondition for building relational social forms and
intermediary infrastructures so as to be able to use organizations as tools with a life
of their own and benefit from their social processes, such as solidarity, collective
learning (see Brailly et al., Chap. 10; Favre et al., Chap. 12) and regulation.
It is often the case that actors are aware of this, especially when they see that
inequalities among players prevent their own investments from being productive:
synchronization costs incurred by actors are lost for some, productive for others;
stabilized and predictable for some, unstable and unpredictable for others.

Organizations are structured by their environment, but also structure their
environment. They participate in a permanent construction or reproduction of a
macro-level of society. They affect the distribution of resources, the hierarchy
of their members’ allegiances, and the constitution of dispositions and attitudes.
Organizations both participate in and reflect these changes: public institutions,
companies, communities, and non-profit associations affect and change the wider
institutional context. Attention focused on the role of organizations in the construc-
tion of the macro-level is not only theoretically interesting; it is especially important
today in a period of significant economic restructuring as well as institutional
changes in which giant private actors of governance wield as much power as States.

Large public and private organizations are the key institutions of contemporary
organizational society. Academic social sciences must not leave to businesses,
police, and the military the responsibility for providing sketchy knowledge of
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interdependencies, social processes, and social capital in this organizational society
(Lazega 2015). The only way to rise up to this responsibility is to take on the task
of using complex methods such as that presented in this book to systematically
study the meso-social level. Improving the public intelligibility of the organizational
society is a way to use sophisticated knowledge of economic and social interdepen-
dencies among individual and/or organizational actors in the definition of general
interest — a definition that is, as always, a conflictual construction.

This program for multilevel network research on the organizational society
raises many challenges. Such methods identify different levels of agency, but
also intermediary levels and social forms (such as systems of social niches and
systems of heterogeneous dimensions of status), and relational infrastructures that
help members in constructing new organizations at higher levels of agency and
in managing intertwined dilemmas of collective action. Specific challenges are
taken up by these methodological contributions: among the most difficult, we
find combining network dynamics and multilevel analysis by providing statistical
approaches to how changes at each level of collective agency drive the evolution of
changes at other levels of collective agency. In all these domains, much remains to
be done.
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