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CHAPTER 1. INTRODUCTION. 

1. Scope of the book. 

The principal aim of this essay is to refine the description of the links between the 

optimal production, finance and investment policy of the firm by introducing activity 

analysis into the dyna~ic theory of the firm. Up to now, production in dynamic models, 

dealing with the production policy of the firm, was described by means of a continuous 

production function, implying an infinite number of production possibilities. Activity 

analysis however, assumes, as distinct from a continuous production function, that the 

firm can choose among only a limited number of production possibilities. This more 

realistic assumption will be shown to improve the role of depth investments in the 

firm's life cycle. Thus, it will be concluded that substituting activity analysis for 

a continuous production function implies the change from a firm that continuously 

adapts its way of production to a firm for which depth investments are intermediate 

stages in its life cycle, succeeded by growth stages or other stationary stages. 

Further, by introducing activity analysis we can analyse influences on the production 

policy of the firm more preCisely, and in concordance with managerial behaviour. For' 

this reason, this work provides some grounds for bridging the gap between the theory 

of the firm and its practical implications for decision making. 

A second purpose of the book is to extend the description of governmental influences 

on the firm's policy by introducing investment grants beside corporation profit tax. 

Whereas corporation profit tax will always slow down c.orporate growth, investment 

grants, intending to stimulate employment, will increase corporate activity,- but may 

lead to decreases in employment. 

The third purpose of the book is to expand the analysis of the dynamic theory of the 

firm by comparing the findings with well known results of the static models, and by 

deriving three general laws of motion (the so-called: optimal decision rules) under­

lying all the resulting expansion patterns of the firm and, finally,· by doing compara­

tive dynamic analysis (or: sensitivity analysis) tracing the influence of government, 

financial states and wage demands on the firm's policy. 

The perspective of this book is imbedded in the realm of optimal control models 

dealing with the dynamic theory of the firm. To provide the reader with past and tra­

ditional research in this field, we discuss the approaches that other authors have 

used in structuring and explaining the firm's agents such as: employees, shareholders 

and government. 
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A more technical contribution of this work is our design of an iterative procedure 

to construct optimal solutions of optimal control models containing state and control 

constraints. This result is more general than current procedures. 

2. Outline of the book. 

The remaining sections of this chapter will be devoted to some observations about 

dynamic and analytical aspects of the theory of the firm. 

In chapter 2 we shall demonstrate how several authors have modelled different aspects 

of the dynamics of the firm. These aspects are organized on the bssis of different 

sets of agents that are connected to the firm, such as shareholders, employees, compe­

titors and government. In this way, the reader may get an overview of the main themes 

studied in dynamic theories of the firm ss well as of the ingenuity by which the rele­

vant authors have succeeded in formulating different relationships inside the firm and 

between the firm and its environment and make it manageable in a dynamic analysis. 

After some familiarization with the quantitative formulations in chapter 2, we study 

optimal solutions in chapter 3. This is done on the basis of four dynamic models of 

the firm that are presented in great detail (together with the relevant optimal solu­

tions). We selected those models, as they can be conceived as predecessors of the main 

model of the thesis, presented in chapter 4. Further, each of these models contains 

some new features that are important in understanding the analysis in the following 

chapters. 

In order to facilitate the reading of chapter 3, we hsve presented the mathematical 

derivations in appendices 1 and 2. In appendix I, the reader is introduced into the 

realm of the Maximum Principle. This Principle yields conditions for optimal solutions 

of dynamic models. Much attention is paid to a careful description of the effects of 

control and state constraints. These constraints are inevitable in dynamic models of 

the firm, as they deal with the pervasive problems of scarcity. They complicate the 

optimality conditions and the search for an optimal solution, however. For this kind 

of models, the formulation of the Maximum Principle as presented by Russak, 1970, is 

suitable. On the basis of this formulation we have designed an iterative solution 

procedure in appendix 2. Up to now, such a procedure has not been published elsewhere. 

This procedure has been applied to the relevant models of chapter 3 in order to pro­

duce the optimal solutions dealt with in that chapter. 

After this more mathematical excursion, the reader returns to chapter 4, in which we 

present an extended dynamic model of the firm. In this model we have incorporated 

financing, production, investment and the firm's dividend policy. The production pro­

cess is described by means of activity analysis which, although well known, is newly 
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incorporated in a dynamic model of the firm. Activity analysis is closely related to 

the way in which management often solves production planning problems in reality. A 

second advantage of this formulation over, say, a continuous production function, will 

be outlined in our study of depth investments in chapter 5. Another new and important 

feature of our study is the twofold influence of government on the firm's policy. Both 

corporation profit taxes and investment grants are incorporated. Since our model con­

tains production as well as financing. we can also study how the direct impact of 

investment grants on the financial position of the firm will indirectly influence the 

employment policy of that firm. This is of course essential to investigate the way in 

which investment grants may raise employment. Links between well known financial re­

cords and the model presented are also discussed. 

In appendix 3, we describe how the optimal solution of the above model can be found 

with the help of the new procedure as p'resented in appendix 2. 

Chapters 5 and 6 contain a description and further analysis of this optimal solution. 

By properly handling constraints on the parameters, we get four different sets of 

optimal solutions (chapter 5). Each of them. can be represented by a "master trajecto­

ry' of the firm that holds under given constraints on the parameters. Moreover, the 

sequence in the presentation is such that each new master trajectory contains new 

features, compared with the previous master trajectories. We will discuss features 

such as: stationary and growth stages, initial conditions on the state of the firm, 

depth investments and consolidation. The links with traditional static theory of the 

firm are pointed out as well. 

Finally, in chapter 6, we discuss in more detail the sensitivity of the optimal solu­

tion to the parameters of the model. For that purpose, three optimal policy rules are 

derived, concerning production, finance and investment. For each policy rule, the 

impact of the relevant para~eters is studied. Further, six different ways of influen­

cing the optimal solution are derived, for example dealing with the rate of growth and 

with several threshold values of output. For each such way we will also discuss the 

impact of the relevant parameters. Finally, we will study the global influence of 

three distinct sets of parameters (governmental, financial and social) on the master 

trajectories. A sensitivity analysis as presented in chapter 6, is not commonly used 

in the literature and clearly shows its importance for a better understanding of the 

model and its solution and therefore for the understanding of the firm. 

3. Relevance of dynamic theories of the firm. 

The dynamic theory of the firm is motivated by three issues: the need for policies, 

the contribution of deductive analysis and the need to incorporate time. The need to 

study policies of firms hardly needs any explanation, because firms are an important 
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group of economic agents having much influence on society. 

We can distinguish between two ways of studying the firm: inductive studies, deriving 

laws from inquiries and statisticsl data, and deductive studies, deriving laws from a 

set of assumptions (mostly through constructing models and analysing solutions). This 

book follows the latter method in trying to build "sounder methodological bridges" 

(Vickers, 1968) from micro economics to business economics. This kind of bridges is an 

indispensable instrument to improve management's understanding of favorable policies, 

to enable government to assess the impact of its policy on the firm and to provide 

academic teachers with an instrument to outline the essentials of the firm (Lesourne & 
Leban, 1981). 

Finally, the effects of time and the interrelatedness of economic states are useful in 

the theory of the firm. Wildsmith, for example, while quoting a statement of Hicks, 

argued: 

In mechanics, statics is concerned with rest, dynamics with motion, but no 

economic system is ever at rest in anything like the mechanical sense (Wild­

smith, 1973, 31). 

Furthermore, Tapiero stated: 

Managers typically reach decisions in a perspective of time and in the light 

of temporal criteria (Tapiero, 1978). 

So, time is obviously essential to the policy of the firm and introduction of time 

increases our understanding of the firm. Further it can lead to insights that may not 

be obtained through other methods such as static analysis. 

4. Origins of dynamic theories of the firm. 

In the last two decades, new insights regarding the theory of the firm have been 

gsined, due to new instruments, including the Maximum Principle (Pontryagin e.a., 

1962) and Dynamic Programming (Bellman, 1957). Prior to these innovations, the theory 

of the firm dealt with time by means of comparative statics and so-called equilibrium 

growth models (Baumol, 1962) or steady state growth models (Marris, 1963). These theo­

ries may be styled as theories of mechanical growth processes (Albach, 1976). 

The new mathematical instruments, mentioned above, enabled economists to describe the 

growth of a firm in a more satisfactory way, as a stimulus originating from a deci­

sionmaking process within the firm (Ludwig, 1978, 14). This stimulus is constrained by 

the structure of the firm (for example: its production frontiers) and by the environ-
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ment in which the firm operates (for example: goverll1llental regulations and capital 

rationing) • 

Recent surveys and text books, such as: Tapiero, 1977, Sethi & Thompson, 1981, and Ka­

mien & Schwartz, 1981, show the great progress of dynamic analysis in the theory of 

the firm during the past two decades. 

5. Nature of the theory of the firm and of this book. 

In the dynamic theory of the firm, the emphasis lays on general laws of motion on an 

aggregate level which, in spite of their general nature, leave room for differences 

between single firms. These differences are told to stem from the different circum­

stances with which each firm has to cope, apart from general principles that hold for 

all of them. The same underlying process may thus lead to different types of growth. 

As a consequence of this ·preference for general laws, the economists are required to 

keep models as simple as possible so that analytical solutions can be derived. This 

raises the question of which aspects should be incorporated in the model and which 

not. Publications in the dynamic theory of the firm are usually dealing with a few 

aspects of the firm's policy. For example, there is some research in financing (e.g.: 

Ludwig, 1978, Sethi, 1978, Verheyen, 1981, Van Loon, 1981), advertising (Sethi, 1977, 

Tapiero, 1978), employment policy (Leban, 1982), research and development (Feichtin­

ger, 1982), inflation (Lesourne & Leban, 1977) and interaction between competitors 

(Levine & Th~pot, 1982). We will discuss these themes in greater detail in the next 

chapter. Based on the solution procedure discussed in appendix 2, we can deal with 

more complex models, so we are able to increase the number of aspects of the firm's 

policy put into a single model. Beside this extension of the "span of control" of the 

theory of the firm, we will lower the level of aggregation as far as production is 

concerned by introducing activity analysis. In this way, we take a step forward on 

Vicker's bridge from the theory of the firm towards business economics. 

We will finish this section by presenting some ways of describing growth and the poli­

cy of the firm in reality, so that the reader will have a fair idea of the complexity 

of dynamics of the firm in reality. For, in the theory of the firm, which we will 

enter in the next chapter, the growth process will be described in only one or two 

dimensions. In reality, growth and the dynamic policy of the firm are much more com­

plex phenomena. Ludwig, for example, mentioned the following alternative ways of de­

scribing growth (and contraction) processes (Ludwig, 1978, 23): 

Strategy 

Market structure 

expansion, diversification, contraction. 

market penetration, market development, product deve­

lopment, reduction of the range of products. 



Direction of growth 

Kind of growth 

Instruments 
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horizontal, vertical. 

internal, external. 

own initiatives, cartels, licences, buying, merging. 

Further, the complexity of the dynamic policy of the firm in the range of financial 

growth patterns has been described by Huret, who uses annual reports of 5ZZ French 

firms (Huret, 1975): 

Industrial expansion considerable expansion of fixed assets financed by long 

term debt. 

Commercial expansion: decreasing portion of fixed assets, compensated by 

increasing liquid assets, considerable expansion of 

short-term creditors. 

External expansion 

Equilibrium growth 

Defensive strategy 

Decline 

growth of interests in associated companies equals 

growth of fixed assets. 

conserving an invariable structure of the balance. 

increase of current liabilities without a corresponding 

change of the structure of assets. 

stagnating level of liabilities and a decreasing level 

of fixed assets. 

The last example shows a classification of growth processes based on strategic poli­

cies (Kieser, e.a., 1977): 

Market penetration 

Market expansion 

Vertical diversification 

Horizontal diversification 

price policy and sales stimulating activities 

under constant demand. 

unlocking new markets through variations of the 

product mix or regional expansion. 

extending the product range through products 

(and/ or services) upward or downward situated 

in the production column. 

extending the product range through products 

allied to the present range. 

Concentr1cal diversification: extending the product range through products 

Conglomerate or 

portfolio diversification 

that are only weakly related to the present 

range in a technical or commercial sense. 

extending the product range through products 

which are not related to the present range, 

neither in a technical nor in a commercial 

sense. 
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As contrasted with these less aggregated descriptions, in the dynamic theory of the 

firm, growth is mostly measured in terms of an increase (or decrease) of money capi­

tal, assets and/or employment. 

6. S ... mary. 

This chapter is meant as an introduction to dynamic analysis in general and to growth 

in particular. Apart from the intentions of the author and an outline of the book, the 

contribution has been discussed of a dynamic, analytical and theoretical treatment of 

the policy of the firm. Optimal control theory appears to enable research in this way 

but, like every instrument for economic analysis, it has its limitations, mainly in 

the area of the complexity of the models considered. After dealing with the nature of 

the theory of the firm, this chapter ends with the presentation of some descriptive 

studies in order to give an idea of the complexity of growth processes of the firm in 

reality. 



CRAl'TER 2. A SURVEY OF DYNAMIC THEORIES OF THE FIRM. 

1. Introduction. 

In section 5 of the introduction chapter we have pointed out several aspects of the 

dynamics of the firm that have been studied. Each aspect has its own merits and it 

seems useful to consider the whole area briefly, before concentrating on the subject­

matter of this research: the relation between investment, financing and production 

policies. 

We owe much to earlier surveys such as: Ludwig, 1978, Nickell, 1978, J,srgensen, 1980, 

Lesourne & Leban, 1982 and: Ekman, 1978. Our viewpoint, however, is different from all 

of them: we will present the subjects covered by research in the field of dynamics of 

the firm mainly in the light of the parties concerned. The interactions between these 

interest groups are the origin of the dynamics of the firm. The behaviour of each such 

group can be put into a dynamiC model of the firm in different ways: in the goal func­

tion, or as a constraint put upon the firm's policy or as a (dynamic) relationship 

between some entities that are important to the firm's position. Below we present the 

subjects that we will discuss with the section numbers to match: 

suppliers of 

assets 

(2.8) 

macro eco-

nomic data 

(2.10) 

labour­

market 

share­

holders 

FIRM: management 

(2.2) 

employees 

(2.3) 

output 

market 

(2.5) 

lenders of 

debt money 

(2.7) 

Figure 2.1. Scheme used for surveying research into the dynamics of the firm. 

The following is no attempt to cover all material published, because we only intend to 

show examples of dealing with the different aspects of the theory of the firm. 
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2. Shareholders. 

In the part of the theory of the firm concerned with financial problems of the firm, 

shareholders often act as dominant goal setters. In this case the firm is supposed to 

act as if it maximizes its value as conceived by its shareholders. The firm's value is 

mostly defined as the capital value of the dividend flow (Lesourne, 1976) or the capi­

tal value of the cash flow (Jorgenson, 1973) over an infinite period of time. When a 

finite planning horizon is introduced, the discounted value of the firm at the end of 

the planning horizon stands for all future returns to equity. This salvage value may 

be a function of the value of final equity (Krouse & Lee, 1973, Sethi, 1978), or, more 

specific, the discounted value of final equity (Ludwig, 1978): 

z -iT -iz 
maximize: V(O) = foe D(T) dT + e X(z) 

in which: D(T): dividend 

V(O) value of the firm (for the shareholders) 

X(T) equity 

T time, 0 ~ T ~ z 

i time preference rate of the shareholders 

z planning horizon 

Furthermore there are publications concerning changes in the group of shareholders. In 

these publications, the objective of the firm is defined as: maximizing the value of 

the firm as conceived by the present shareholders. Issuing new shares may be free of 

charge (Elton"& Gruber,"1977) or subject to floatation costs (Senchack, 1975). In the 

latter case, the value of the firm is formulated as follows: 

.. -iT 
maximize: V(O) - fo e {D(t) - (l-n)M(T)! dT 

in which: V( 0) value of the firm for shareholders present 

at T = 0 

M(T) new equity issued 

n floatation costs per unit new equity 

Note that the value is maximized over an infinite time period. 

3. Management. 

Managers are generally supposed to pursue power, prestige, income etc. If they are the 

dominant party within the firm, and supposed that they are not the owners, the firm 

will try to maximize growth, mostly in terms of discounted sales. This objective, 

however, mostly appears in combination with a restriction on the minimal amount of 

dividends to be paid out, or on the minimal profit level per unit equity to be main-
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tained (Leland, 1972): 

r;, -i'T maximize V( 0) = 0 e R( T) dT 

subject to: R(T) - wL(T) - PminK(T) ~ 0 

in which: L(T) labour 

K(T) stock of capital goods 

R(T) return on sales 

i' time preference rate of management 

Pmin minimum. revenue per unit capital invested 

w wage rate 

The reason for this is, that managers must safeguard the flow of profits to finance 

further growth. Moreover, maintaining a certain market value is important to avoid 

take-overs, possibly ending the realm of the present management in the firm. 

Another way of formulating the tension between management and shareholders is the 

introduction of a utility function which contains (discounted) sales and flow of pro­

fits as arguments (Ekman, 1982). 

Also in studies of profit maximizing firms we may find a role played by the manage­

ment. In this case it concerns the limited capacity of the staff to plan and execute 

expansion investments. This limited span of control may be formulated in several ways, 

for example, as an upperbound level of the growth of assets (Krouse & Lee, 1973): 

~ ~ "" in which: K:: ~~ and III is constant. 

Note that III is independent of the level of assets, which is in conformity with 

Gibrat's law of proportionate effect. Another formulation has been given in: Silder­

str6m, 1977, in terms of the division of labour in the firm (conceived as a "produc­

tion team") between production and team formation. The task of the "team formation 

department" is to supply sufficient new labour forces, in order to catch the decrease 

of labour and labour productivity: 

Q(T) m Q(L(T) 



in which: L(T) 

Lf(T) 

Q(T) 

11 

stock of labour 

labour assigned to the "team formation department" 

level of production 

production intensity of the team formation department 

productivity decay and quit rate. 

Jorgenson gives a similar formulation in terms of the division of capital good servi­

ces between production of output and installation of investment goods (Jorgenson, 

1973) • 

Finally, the restricted management capacity has been formulated as a decrease of pro­

duction capacity through internal adjustment costs (Treadway, 1970): 

Q(T) - Q(K,L,K) with: !Q < 0 

aK 
in which: Q(T): production capacity 

The idea behind this formulation is that growth demands planning capacity, which is 

drawn from the production planning capacity of the staff. 

Note that the above production functions are no longer production functions in the 

sense of the technical relationship between output and input of production factors. At 

the firm's level, production capacity appears to be determined not only by technical 

relations but also by the organisation structure that enables production. So, the 

production function of a firm is a behavioural relationship (Jones, 1973, 183). 

4. Employees. 

Employees are staged in two different roles in the relevant literature: as one of the 

input factors and/or as the dominant participating party in the firm's decisions. When 

labour is represented as a separate input factor (most publications suppose output, or 

revenue, to be a function of assets only) the production technology of the firm is 

described by a neo classical production function (Wong, 1975) or by activity analysis 

(Van Loon, 1982). In both cases, labour is perfectly adaptable while changes in the 

amount of capital goods are restricted for technical (depreciation) and financial 

reasons. Lesourne & Leban introduced labour as an input factor of the quasi-fixed 

type, due to a restriction on the firing rate (Lesourne & Leban, 1978): 

L ~ - nL, in which: n = maximal quit rate, based for example on an 

agreement with the unions. 

Many authors have studied the other way of including labour: as the ruling party in so 

called "labour managed" firms. In this type of firms, "labour receives the residual 



12 

revenue after the other input factors, including capital, have received their prede­

termined renumeration" (Ekman, 1980). In this kind of models, the firm maximizes inco­

me per employee (J6rgensen, 1982): 

J.. -i"T [seT) - aK(T)] 
maximize: V(O) = 0 e L(T) dT 

in which: V(O) value of the firm for employees 

i" time preference rate of employees 

a fixed renumeration of capital 

If one allows for changes in the group of employees, working in the firm during the 

period under consideration, the same problems arise as in the case of the sharehol­

ders-managed firm. 

5. Labour market. 

Most publications postulate a perfect labour market, which implies a constant wage 

rate and perfect adaptability: 

_ !.9. 
w - PaL' where w wage rate (constant) 

p selling price 

Q(L) output (= sales volume) 

Imperfections in labour markets were mostly explored by French scholars. Beside imper­

fections due to a restriction on a firing policy, mentioned in the previous section, 

Leban has studied, for instance, the employment policy of the firm in the tradition of 

Salop (Salop, 1973). There, the supply of labour and the natural quit rate of 

employees out of the firm are suppqsed to depend on the wage rate. This wage rate may 

be exogeneously given or it may be a policy variable of the firm (Leban, 1982): 

L = {Z(T) - E(T) - N(W)}L(T) 

Z(T) ~ U(W) 

in which: E(T) firing rate 

N(W) natural quit aN 
rate, with a W < 

U(W) applying rate of labour, 

with!£ > 
aw 

0 and a 2u < 
a w2 = 

0 

W(T) wage rate 

Z(T) recruiting rate 

0 
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In this II1Odel, Leban further supposes a linear firing cost function and a linear 

hiring cost function. 

6. Output market. 

The descriptions of the output market can be divided into two categories. To the first 

category belong publications describing the output market as behaving in accordance 

with a fixed supply-price function. The firm offers a certain amount of ·output and 

receives a price that comes about through the price setting mechanism. The market may 

be a perfect one, i.e. the price does not change when the amount of output of the firm 

varies (Takayama, 1974, 685) or an imperfect one, having a decreasing price-sales 

function (Nickeil, 1974). 

Publications in the second category focus on the influence of the marketing instru­

ments of the firm on the demand for the firm's output. In marketing as well as in 

economiCS, there is a long tradition of studies concerning such subjects as adverti­

sing, pricing, product policy, distribution, sales force etc. (see Barsky & Sen, 

1980). Optimal Control models of the firm's marketing policy mostly unite these in­

struments by introducing the notion of advertising expenses, "including sales promo­

tion, product improvement, product quality, or, in general, most of the firm's inter­

nal expenses that shift the demand curve of the firm" (Ekman, 1980). We shall briefly 

instance advertising models. In the class of so called sales-response, or diffusion, 

models, these advertising expenses work in a direct way on the volume of sales (given 

a constant selling price). The first publication in this tradition is Vidale & Wolfe, 

1957: 

5 - a A(T) (1 - SeT) I - a SeT) 
1 d 2 

in which: A(T): advertising expenses 

SeT): sales (volume) 

a 1 response parameter 

a2 decay parameter 

d total demand of the market 

The above formulation implies a saturation effect: when the firm approaches a market 

share of 100% (so SeT) approaches d), the effectiveness of advertising expenses falls 

down. The decay parameter a2 reflects the decreasing effectiveness of an advertising 

expenditure in course of time. Luptacik and Feicht1nger solved a sales response model 

1n which the firm has two marketing instruments: advertising expenses and selling 

price (related to the average price on the market): Luptacik, 1980, and: Feichtinger, 

1980. 
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The second way of describing the influence of advertising expenses on demsnd uses a 

carry over effect through the incresse of goodwill. These models are called: adverti­

sing capital models. The first model in this tradition is: Nerlove & Arrow, 1962: 

in which: B(T) 

a3 

goodwill of the firm 

decay parameter of goodwill 

In this model, the firm also has two instruments to influence demsnd: advertising 

expenses and selling price. Advertising expenses raise goodwill and so, ceteris pari­

bus, sales. But through a3 an opposite effect is built in, based on forgetting by 

consumers. Tapiero has introduced probabilistic aspects of advertising and forgetting 

into the Nerlove & Arrow model (Tapiero, 1977). The attitude of the firm towards risk 

becomes a new element in determining the optimal policies of the firm. 

A third group of publications to be mentioned here deal with (uncertainty in) the 

changing demand expectations due to business fluctuations. They study its impact on 

the policies of the firm concerning investments (Nickell, 1978, Thepot, 1980) and em­

ployment (Leban & Lesourne, 1980). It is worth while to consider one of the conclu­

sions of the last study mentioned, in which optimal anticipation policies are descri­

bed to realize the importance of dynamical analysis: "an (optimal) snticipation of a 

recession may be sufficient to generate a recession", indeed, a striking conclusion. 

7. Competitors. 

In this section we will deal with models that describe competitors, reacting through 

their own marketing policies and instruments. We do not consider competitive behaviour 

through price-supply functions, which we have already discussed in the first part of 

the previous section. In optimal control models of the firm, more detailed descrip­

tions of competitor's behaviour are introduced by extending marketing models. The idea 

behind this is, that the effectiveness of the advertising and pricing policy of the 

firm is affected by the advertising and pricing policy of its competitors. Although, 

for example, Tapiero, 1979, dealt with a multi-firm situation, most models still deal 

with a duopoly situation: two firms operate on the Same market. The eldest formulation 

stems from Kimball and is in the tradition of the sales response models (Kimball, 

1957) : 

S a.A (T).S (T) - a .A (T).S (T) 
111 2 221 
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in which: Aj(T) advertising expenses of firm j 

Sj(T) sales of firm j 

a j interaction parameters, a j > 0 

d maximum sales potential 

The first term of the dynamic sales equations explains that sales will increase when 

advertising expenses sre increased and that the effectiveness is greater according as 

the market share of the opponent is greater. The second term states that it is hard to 

keep up sales level if one has already attained a high market share (decay component) 

and if the competitor is advertising in an intensive way (competitive pressure). The 

third equation deals with the limit of total market demand and so introduces dimini­

shing returns to advertising. 

A formulation of the above problem in the tradition of advertising capital models may 

be found in Th~pot, 1981. 

Besides differences in describing the influence of advertising expenses on sales, we 

should mention differences in reacting to the activities of competitors. We can di­

stinguish between open- and closed-loop reaction patterns and between cooperative and 

non-cooperative situations. 

In an open-loop situation, both firms are completely informed about each other. The 

question is to find the optimal policy, given the policy of the competitor over the 

whole period, for instance: 

* in which: Aj optimal advertising policy of firm j 

There are publications that deal with open-loop solutions of non-cooperative situa­

tions (Sethi, 1975) and of cooperative situations (Leitmann, 1974). 
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In a closed-loop situation, competitors know each others present position and have to 

make their decisions based on this partial information: 

One can imagine ,that this description does not fit cooperative situations, in which 

exchange of information is supposed. An example of a solution of the non-cooperative, 

closed-loop type is given by Case (Case, 1979, 198). 

Levine & Th€pot studied open-loop as well as closed-loop solutions in a jOint invest­

ment policy and price setting model (Levine & ThiOpot, 1982). Finally. Tapiero has 

presented an example of uncertainty introduced in a competitive advertising model 

(Tapiero, 1979). 

All the above publications deal with firms competing on the output market. Jprgensen 

deals with a situation where two firms compete in the labour market by offering diffe­

rent ways of paying for labour: a profit maximizing firm offers a fixed reward to 

labour while a labour managed firm offers a reward based on profit per unit labour 

after payment of a fixed price to capital services (Jprgensen, 1982). 

So far, we have dealt with equilibrium patterns or movements towards an equilibrium, 

that rarely imply the exit of one of both firms. Feichtinger has dealt with a kill or 

cure situation in which both competitors are developing the same new product (Feich­

tinger, 1982). The firm that enters the market first, will carry off the loot. Which 

firm will be successful, depends on its intensity of research efforts, in relation to 

the competitor's intensity. 

8. Lenders of debt money. 

Lenders of debt money do not participate actively in the management of the firm. They 

plead their interests by making conditions on loans in such a way as to minimize risk 

or by claiming rewards proportional to their risk bearing. These two formulations turn 

up in publications where borrowing is treated as a means of financing the activities 

of the firm. 

The former formulation mostly yields a fixed interest charge and an upperbound to the 

amount of debt money available to the firm. This upperbound may be on new debt as a 

function of the cash flow (Lesourne, 1973, 222) or of the investment expenditures 

(Ludwig, 1978. 92). or it may be formulated as an upperbound to the total amount of 

debt as a (linear) function of equity, implying a maximum leverage (Lesourne. 1973. 

206). 
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In the models mentioned above, the firm is not allowed to exceed this upperbound and 

so to pass into another risk class (that is: a subset of firms having the same risk as 

judged by investors with its related (higher) interest rate). In the second formula­

tion, the firm is allowed to invest in such a way that its risk profile changes. Au­

thors dealing with this assumption formulste the demsnded interest rate as a function 

of the leverage (Senchak, 1975) or as a function of the total amount of debt (HOchman 

e.a., 1973). 

9. Suppliers of assets. 

In this section we will restrict ourselves to the market of fixed assets. Most authors 

suppose a perfect msrket of capital goods, where the firm can buy its assets at fixed 

prices. To facilitate the analysis the value of a capital good is fixed on one unit of 

money. If one further supposes absence of inflation and of technical progress and if 

one equalizes technical deterioration rate and depreciation rate, then the vslue of 

the amount of capital goods in the firm equals the number of capital goods. This sim­

plifies the joining of investments and production capacity (Treadway, 1970). 

Several authors have studied the case of an imperfect market of capital goods in the 

framework of so called adjustment cost models. Each firm is supposed to have an opti­

mal Size, but a firm does not immediately adopt that size because of costs inherent to 

the adjustment process. These costs are divided into external adjustment costs (in­

vestment expenditures) and internal adjustment costs (seize on available productive 

inputs) (Sijderstr~, 1976): 

W(T) - p.Q(K(T),L(T),I(T» - w.L(T) - C(I(T» 

I(T) = K - a.K(T) 

with: t¥ < 0 (internal adjustment costs) 

ac> 0 
ar 

a2c> ---2 < 0 (external adjustment costs) 
al 

in which: W(T): cash flow 

I(T): gross investments (capital goods) 

C(T): cost of investment 

a depreciation rate 

If C .. (= a 2e/a 12) equals zero, we are on a perfect market of capital goods. A positi­

ve e" (the case of so-called "convex adjustment costs") applies to a monopsonistic 

market of capital goods: if the firm wants to increase its rate of growth it will be 

confronted with increasing prices on the market because of its increased demand of 
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capital goods (Intriligator, 1971, 202). A negative ~. may represent the case of a low 

investment level. Then, "economies of growth" (Penrose, 1959, 99) may appear when 

buying more (or bigger) capital goods. 

Another important aspect of the supply of capital goods is technical progress. In 

economics ,s distinction is made between embodied and disembodied technical progress. 

Disembodied progress "applies equally and alike to all resources of men and machines 

in current use" (Allen, 1968, 236). Embodied technical progress "applies ••• only to 

certain tranches of capital equipment, usually machines produced and installed cur­

rently, together with the associated labour crews" (Ibidem). 

In the theory of the firm embodied technical progress has mostly been introduced in 

the framework of maintenance models, concerning optimal maintenance and scrapping of 

capital goods (Bensoussan e.a., 1974, 107). In Nickell, 1978, 127, output is related 

to investment and maintenance policy under embodied technical progress. Variable (more 

specifically: increasing) labour productivity is dealt with by Virmany who left main­

tenance costs out of consideration but combined embodied and disembodied technical 

progress in the following way (Virmany, 1976): 

.. -iT } V(O) = JOe {pQ(T) - wL(T) - cI(T) dT 

Q = H«I(T),Z(T),T) - (x.a 1 - a4)Q(T) 

in which: H(I,Z,T) 

Z(T) 

x 

plant-choice function 

recruitment of labour 

degree of homogeneity of H 

depreciation rate - rate of technical decay 

disembodied technical progress 

price of a capital good 

The plant-choice function represents the range of techniques and sizes of plants from 

which the firm can choose at a given point of time. Through the argument T, embodied 

technical progress is incorporated in the production function. Once the techniques 

have been chosen and incorporated into a plant of the firm, they remain fixed for the 

life of the plant (a so-called putty-c1ay model (Nickell, 1978, 247». Disembodied 

technical progress is assumed to manifest itself as an increase of output over time at 

a constant exponential rate a4, so: 

a -a -a 
Q/T) - e 5. H{I(J)e 6,Z(J)e 6,J} 
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in which: as = "'4 ('1'-J) 

a 6 = a 1(T-J) 

from which the above Q-formula may be derived. Note that the use of a certain vintage 

decreases over time due to the obsolescence of machines (a1) and labour productivity 

increases due to the disembodied technical progress (a4), which may contain a lear­

ning-effect. 

10. Government. 

The influence of government on the policy of the firm is mostly studied through analy­

sing the influence of corporation profit taxes. Emphasis is frequently laid on the 

"neutrality' of the tax systems: is there a change in the (supposed efficient) alloca­

tion of factor inputs if the government introduces a certain corporation tax system. 

Or, within the context of dynamic models of the firm: does a certain corporation tax 

system influence the capital accumulation process and the relative inputs of labour 

and capital? 

The relevant features of tax systems are: the level of the corporation tax rate, tax 

treatment of depreciation and interest payments, and investment incentives (including 

investment allowances as well as initial allowances as a special kind of accelerated 

depreciation). Boadway has studied them for the input factor capital in the optimum 

equilibrium state of the firm (Boadway, 1980). Muzondo also studied the influence on 

the policy of the firm towards that equilibrium and on the input of labour (Muzondo, 

1979). In his model, adjustment costs are introduced, thus reflecting the quasi-fixed­

ness of capital goods in the short run: 

maximize: V(O) = f~ e-iTW(T) dT 

with: Wet) • (1-f) {pQ(T)-wL(T) }-c{ I(T) - fa'K' (T)} + frY(T) 

I(T) = K' (T) + a'K' (T) = K(T) + aK(T) 

Q(T) - Q(K(T),L(T),K) 

in which: I(T) 

K(T) 

K'(T) 

Wet) 

a 

investments (capital goods) 

economic level of capital stock (capital goods) 

accounting level of capital stock (capital goods) 

cash flow after tax 

economic depreciation rate 



a' 

f 

P. w, c 
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depreciation rate permitted by the tax law 

(accounting depreciation rate) 

corpor<,tion tax rate 

given functions of T 

In stead of taxing the profit of a firm, the government may tax the cash flow of a 

firm. This tax system "has been widely recommended as <' form of taxing corporate inco­

me which is neutrsl with respect to investment decisions" (S<,ndmo, 1979). This author 

points out that this is the case only if the tax rate is constant over time. 

Finally, we should mention of research regarding the influence of personal tax systems 

on the value of the firm as conceived by the shareholders. The relevant value, neglec­

ting differences in corporation tax rates on retained earnings and on distributed 

profits, may be formulated as follows (YlK-Liendenpohja, 1978): 

(1+a1)(1-a2) r» -i'T 
V(O) = I-a JO e D(T) dT 

k 

in which: 

3 

rate of credit for shareholders under the imputation system 

marginal income tax rate 

a3 effective tax rate for capital gains on an accrual basis 

a4 marginal tax rate of personal wealth 

i' discount rate of the "shareholders""'lllanaged" firm 

i shareholders discount rate (after taxes) 

Under the imputation system, shareholders are taxed for the amount (1+a1 )D(T). But 

the amount a1D(T) is considered to have been paid by the firm, thus the shareholders 

pay a tax of a 2(1-a1)D(T) - a 1D(T), so dividends, net of tax, amount to 

(1+a1 ) (1-a2)D(T) • 

The conclusions that can be drawn from the above formula's are, that parameters which 

determine the degree of double taxation of dividends (a1 and a 2) do not influence the 

optimal policy of the firm and, that if the firm takes into account the personal taxes 

imposed on its shareholders, it will raise its discount rate. 
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11. Macro-economic data. 

Two kinds of macro-economic data have been discussed in previous sections. In section 

2.5 we have mentioned the influence of business fluctuations in the framework of stu­

dies on the output market of the firm. In section 2.9 we have reviewed research on tal< 

systems. 

In addition we can mention sensitivity analysis on parameters such as the discount 

rate (Oniki, 1973). 

The influence of inflation has been studied by several authors. Inflation brings up 

the problem of the valuation of stocks and the depreciation policy. Lesourne & Leban 

have incorporated inflation in the next way (Lesourne & Leban, 1977): 

x = (I-f) (P(T) Q(K'(T» - aK(T) - rY(T) + a 1S(T») - D(T) 

with: P(T) e a 1T • p 

S(T) ea 1T • p (a 2K' (T» 

K+ ak(T) (K' + aK' )ea 1 T 

K(O) p C(O) 

in which: K(T) accounting value of capital 

K' (T) 

S(T) 

capital stock (units of capital good) 

value of stocks 

inflation rate 

assumed fixed proportion between production capacity and 

stocks. 

The authors assume depreciation allowances to be based upon historical costs and full 

taxation of inflationary gains on stocks. So, the tax collector's office does not 

support the ideas of replacement value theory. Boadway further studied the impact of 

replacement cost depreciation and features of neutral tax systems in the case of in­

flation (Boadway, 1980). 

Finally, we mention Lesourne's publication, dealing with a growing environment (Le­

Bourne, 1976). His assumptions were: decreasing returns to investment in a stagnant 

economy and the appearance of new investment possibilities with the growth of the 

economy: 
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WeT) = W'(I').I(T), with: :~ < 0 

in which: W'(I') 

I(T) 

I' (T) 

average cash flow per unit net investment 

investments of the firm 

relative investments of the firm (relative to the macro­

economic growth rate) 

a1 macro-economic growth rate of investments 

So, in the csse of a constant I, thus decreasing I' due to the fact that the firm's 

investments fall behind the macro growth rate aI' marginal cash flow increases over 

time. 

12. Summary. 

In this chapter we surveyed aspects of firm's policy that have been studied within the 

field of the dynamic theory of the firm. The angle of incidence was: the behaviour of 

the parties that have an interest in the firm. Inside the firm we discussed the mana­

gement and the employees. Outside the firm we dwelled upon the suppliers of assets, 

labour, equity, debt and public services, upon colleagues of the firm and upon buyers 

of the firm's output. Finally, we have touched upon macro-economic data that influence 

the policy of the firm. The descriptions of the behaviour of the relevant parties are 

expressed through the formulation of the maximand as well as of the restrictions and 

technical relations of the models concerned. 



CHAPTER 3. SOME PREDECESSORS. 

1. Introduction. 

In this chapter we will deal in greater detail with some models that have be conside­

red by others authors and that will expanded in the next chapters. This may familiari­

ze the reader with alternative ways of modelling the salient features of the firm and 

with their impact on the optimal trajectories. 

We shall first outline the classical model of Jorgenson, 1967, and then we will pre­

sent a model of Leland, 1972; who included first aspects of production as well as of 

financing. Furthermore we will present the models of Ludwig, 1978, and Lesourne & 

Leban, 1978, as examples of the more sophisticated models, published recently. 

Emphasis in this chapter is put on modelling and on the model's impact on optimal 

solutions, and not on a detailed' economic analysis' of the optimal solution. This ap­

proach is common to most publications within the relevant field of research. We will 

leave that tradition when we deal with our own model. 

We suggest for the reader unfamiliar with Optimal Control Theory, to read first appen­

dix 1. In this appendix, conditions for the type of problems with which we will deal 

in the rest of this book, are described in a narrative way. In appendix 2, the reader 

can find in greater detail how the follOWing models can be solved by means of an ite­

rative procedure that we have designed, based on the Maximum Principle. We have sepa­

rated this part from the main text in order to bother as little as possible those 

readers who are not interested in the mathematical foundations of the economic theo­

ries presented here. 

2. Investments and depreciation (Jorgenson). 

In fact, investment policies can only be described realistically in a dynamic way. It 

is the process of sacrifying purchasing power now to revenues later on ("breeding ef­

fect"). Jorgenson (in: Jorgenson, 1963, and 1967) was among the first economists to 

present this problem in a dynamic framework. He describes a firm, maximizing its reve­

nue over an infinite period of time. To compare revenue flows of different intervals 

within the planning period, they are discounted at a rate i, representing the time 

preference rate of the owners of the firm. 

The firm produces one kind of product and sells it on a perfect market, so the selling 

price is constant. Further, the firm uses two kinds of inputs: labour and capital 

goods. Both are obtained on perfect markets, so the wage rate and price of capital 

goods are fixed, too. This results in the next formulation (we drop obvious argu-



mants) : 

maximize 
I, L 

in which 
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fe-iT R(K,I,L) dT 
o 

RO p Q(K,L) - wL(T) - cl(T) 

Q() output = sales volume 

I(T) : (gross) investments 

K(T): stock of capital goods 

L(T) : employment level 

T time 

c price of capital good 

revenue flow 

discount rate of the shareholders 

p selling price of output 

w wage rate 

(1) 

The impact of investments on the production structure is described by the, now gene­

rally used, formulation of net investments: 

K=I-aK (2) 

in which a depreciation rate. 

The assumption that current depreciation requirements depend only on the current level 

of the stock of capital goods in a proportional way holds, for example, if the stock 

of capital goods is depreciating at an exponential rate and the stock of capital goods 

is constant or increases at a constant rate (Jorgenson, 1967). Although most dynamic 

models of the firm yield non-constant growth rates of the capital stock, formula (2) 

is still used because of its simplicity. But we will see, that the Jorgenson model 

results in a stationary level of the capital stock, so the conditions for (2) are 

fulfilled, assuming that the firm depreciates its capital goods at an exponential 

rate. 

Jorgenson further aSSumes that the production is an increasing, concave function, 

which implies decreasing returns to scale: 

!9. > 0 
aK 

(3) 
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See, for example, Chian&, 1974, page 351. 

The last assumption to be stated here, is not mentioned explicity by Jorgenson. It is 

quite obvious to assume that it must be profitable at least to start production, so 

marginal revenue must exceed marginal costs of both inputs used to produce the first 

unit of output: 

p ~) c(i + a) and p ~~ ) w when Q ~ K = L = 0 (4) 

The formulation of Jorgenson is now presented in (I) through (4). The problem with 

this formulation is, that the resulting optimal solution dictates an instantaneous 

adjustment of the stock of capital goods to the level with maximum revenue (see appen­

dix 2): 

K 

o ....... ---------z--"'~ T 

Figure 3.1. Optimal trajectory of the capital stock in the model of Jorgenson, 

If the selling price is constant, this level is fixed by: 

aQ * p a K = c( i + a) when K = K (5) 

From (5) can be concluded that the marginal revenue per capital good just balances the 

financial obligations and the depreciation of a capital good. 

The amount of labour appears to adapt itself perfectly all the time, because it holds 

continuously that: 

(6) 

which can be interpreted (after multiplying both sides of (6) by the selling price p) 

in the same way as (5): marginal revenue to labour equals marginal costs of labour. 
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After the initial investment (or divestment) to reach the optimal level fixed by (5), 

the firm will keep the capital stock constant. Due to depreciation, it thus has to 

replenish continuously and so, investments remain on the replacement level: 

.. .. 
K-K+K-O+I=aK (7) 

In order to get rid of the irrealistic immediate adjustment at T - 0, two ways in 

particular have been proposed to amend the above model. The first wsy is the introduc­

tion of adjustment costs, representing the scarcity of inputs and/or the costs of 

productive capacity caused by the adjustment process. We have discussed this already 

in sections 3 and 9 of chapter 2. There, we quoted Jones (1973), who stated that the 

introduction of adjustment costs implies the transformation of the production function 

from a technical relationship into a behavioural relationship, containing technical 

constraints as well as organizational and other constraints. This mixing together is a 

disadvantage if one aims at describing the dynamics of the firm at the lowest level of 

aggregation in order to link micro economics to business economics. 

The second way of getting a smoothed adjustment pattern is the introduction of finan­

cing as another aspect governing the dynamics of the firm. In fact, the revenue flow 

in the model of Jorgenson only serves as a performance index. And so, for example, a .. 
beginning entrepreneur having no equity may at once acquire an amount of K of capital 

goods without any financing problems: although the revenue flow at T = 0 may have a 

very large negative value due to the adjustment investments, it does not harm the 

total performance, because this loss only holds for a neglectable small period of 

time. 

In the static micro economic theory of the firm, Vickers, 1968, was the first to 

couple the real aspects of production with the financial aspects of the policy of the 

firm. As far as we know, Leland, 1972, was the first author to couple production and 

finance in a real dynamic model of the firm. 

3. Production and finance I (Leland). 

Leland assumes a managerial firm, maximizing total discounted sales over a finite 

planning horizon plus the final amount of equity. As equity is supposed to be the 

value of the stock of capital goods reduced by the amount of debt money, Leland formu­

lates the following goal function: 

maximize 
L, B 

Z -i'T -i'z J e p Q(K,L) dT + e S(K(z) - Y(Z» 
o 

(8) 
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in which Y = B(T) (9) 

BCT) inflow of debt 

yeT) total amount of debt 

Q() production function 

SC) weighting function of net terminal assets 

l' time preference rate of the managers. 

From (8) and (9) can be derived that in Leland's model, the management runs the firm 

on the basis of an employment and borrowing policy. The investment policy consists of 

two parts. In the first place, Leland assumes that the firm retains a fixed portion of 

the cash flow ("profit" in his terms) for reinvestments. In the second place, debt 

yields, at a decreasing efficiency, new capital goods: 

K = m G + C(B) (10) 

in which G = Q - wL - rY : cash flow 

C(B) : relation between the borrowing inflow and the investments in 

capital goods 

m fixed portion of ·retained cash flow. 

In this way, a behavioural relation is introduced, reflecting imperfections of the 

debt market. In order to satisfy the shareholders, the management is assumed to keep 

return (i.e.: cash flow) on net invested capital on or above the time preference rate 

of the share holders (i): 

Q - wL - rY 
K _ Y ) i (ll) 

Initial state conditions are omitted and finally the assumption is introduced that: 

r = i (12) 

This is based on Leland's assumption that stockholders may be in a position to lend to 

the firm, too. In that case they would not accept a return on their equity (i), less 

than the borrowing rate (r). But, the weak point of the assumption is, that it is not 

a sufficient reason to imply that the discount rate (i) exactly equals the borrowing 

rate. There fore the concept of a perfect capital market bas to be introduced. And 

that concept Is contrary to the decreasing efficiency of debt, compared with constant 

efficiency of retained earnings, in (10). 

Another imperfection of the model is that it inevitably results in an ever increasing 

K, due to the fixed retaining rate and the ever positive cash flow, resulting from the 
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constant selling price together with (11) and (12): 

Q - wL - rY) i(K - Y) (13) 

In spite of these remarks we discussed Leland's model, because it was the first dyna­

mic model that dealt with production and finance simultaneously. 

A year after Leland's publication, J. Lesourne published a comprehensive treatise on 

dynamic models of the firm, solved by means of the Calculus of Variations (Lesourne, 

1973). This book contains, among others, distinct models that deal with financial 

constraints in situations of self-financing with and without issuing new shares, com­

bined with situations with and without borrowing. Several relations in the relevant 

models stem from financial records as used in practice and this means a real step 

forward in describing financial constraints on the policy of the firm. 

In the same year, Krouse and Lee also published a purely financial dynamic model of 

the firm (Krouse & Lee, 1973) that, in spite of (or: due to) its shortcomings (see: 

Sethi, 1978) stimulated many authors to explore the field of dynamic theories of fi­

nance. From that flow of publications, we chose Ludwig's dissertation (1978, in German 

language). Ludwig improved and extended the often quoted, but incorrect dynamic finan­

Cing model presented in chapter 4 in: Bensoussan et al., 1974, and his description of 

the solution procedure inspired the design of the solution procedure in appendix 2 of 

this book. 

4. Finance and the value of the firm (Ludwig). 

Ludwig deals with a shareholders owned firm, and assumes a finite planning horizon. 

This results in the next goal function as discussed in section (2.1): 

maximize 
B, I 

z 
fe-iT O(T) dT + e-iz x(z) 
a 

Furthermore, he uses the same state equation of capital goods as Jorgenson did: 

K = I - aK 

(14) 

(15) 

and amends Leland's state equation of debt by introducing a fixed redemption rate b: 

Y = B - bY (16) 



29 

Assuming that the only assets of the firm are capital goods, we get the balance equa­

tion: 

K=X+Y (17) 

which implies: 

K = X + y (18) 

Now, Ludwig assumes without any motivation, that: 

a = b (19) 

which results, together with (15), (16) and (18) into the state equation of eqUity: 

X=I-aX-B (20) 

Earnings are used to issue dividend or to increase the value of equity through retai­

ned earnings, so: 

E = X + D = R(K) - aK - rY (21) 

in which E( T) earnings 

R(K) return on sales 

Note that corporate tax is not considered in (21). Subsequently Ludwig introduces the 

assumption that at least a certain portion of the earnings will be issued to the 

shareholders and, moreover, that the firm will only accept situations in which ear­

nings are positive: 

D> (1-m) E > 0 (22) 

in which m maximum retaining rate 

Together with (20) and (21) this results in: 

I(mE+aX+B (23) 

So, as contrasted with Leland's findings, investments now appear to be limited, due to 

the introduction of the financial aspects of the firm's policy. 
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Ludwig does not allow for divestments so. investments are "irreversible": 

I> 0 (24) 

From (15) can be concluded that still s decrease of the capital good stock K is possi­

ble. Finally. the inflow of debt is limited by the total amount of new investments: 

o ~ B ~ hI (25) 

in which: h maximum borrowing rate. 0 < h < 1 

On page 58 of his book. Ludwig represents an interesting summary of alternative ways 

to formulate the limits of borrowing. as presented in literature. The above formula­

tion is defined in terms of flows. Another formulation. that will be used in the next 

section and in our model is in terms of stocks: 

Y ~ leX (26) 

in which: k maximum debt-equity rate 

Before describing the optimal solution, we will summarize the model of Ludwig: 

maximize 
B, I 

subject to 

z 
fe-iT (R(K) - (a+r)Y - I + B)dT + e -iz x( z) 
o 

X-I-aX-B 

Y = B - aY 

o ~ I ~ m(R(K) - aK - rY) + aX + B 

o ~ B ~ hI (.. I > 0) 

X(T) > 0, yeT) > 0,0< T< z 

X(O) • xo ' yeO) = YO 

o < m < 1, 0 < h < 1 

(27) 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

Ludwig derives two distinct optimal trajectories of the firm from the optimality con­

ditions (see appendix 2). Both patterns consist of several paths, representing dis-
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tinct stages of the development of the firm. The main features of those paths are put 

into the next table: 

path. . . 
nr. I B D X Y K 

" " stationary state when i > r 1 aK max .±. :;: K 
Y Y 

" " consolidation 2 a~y max min + - ~y 

3 max max min + + K> 0 maximum growth 

" " 4 ~ 0 + - ~ stationary state when i < r 
. 

5 max 0 min + - K> 0 self-financed growth 

. 
6 0 0 + - K < 0 contraction 

Table 3.1. Characteristics of the feasible paths. 

in which " 3R K = Ky 1£ aK - a = (i-h)i + hr (35) 

K - ~y if :~ - a = r (36) 

K _ K" if 3 R _ a _ i 
-x 3K (37) 

So, the stationary K* -values are all characterized by a fixed value of the marginal 

net revenue, given on the left hand side of the expressions. The relevant values are 

the financing costs in the case of (from the top downward) debt financing at a rate h, 

pure debt financing and: pure self-financing. 

Which of both trajectories is feasible, depends on whether the discount rate i exceeds 

or is smaller than the interest rate on debt money, r. The simplest pattern holds in 

the case of cheap debt money (see figure 3.2). 

In combining table 3.1 and figure 3.2 we can get insight into this pattern. In figure 

3.2, the optimal patterns for three different sets of initial states are drawn: 

(a) K(O) > K* 
y 

(b) K(O) - K; 

(c) K(O) < K* 
y 
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K 

t 
path 6 

~ 
~ path 

t 
Th 3 

T 
0 z 

Figure 3.2. Optimal trajectories of the capital stock when i > r. 

* Each pattern has path 1 as final path. So K = Ky appears to be the state of bliss. 

This is quite natural, because in that case marginal net revenue equals the marginal 

cost of the cheapest way to finance capital goods, i.e. of debt financing at a rate h. 

So, the profit flow is then at its maximum and it enables the firm to reach the higb­

est attainable value of the firm. 

Furthermore we can derive that, if the firm's capital stock is below the desired Ie-

* vel Ky, it borrows as much as possible and issues a minimum dividend in order to grow 

at the highest speed. Ludwig also has derived a value for the initial leverage below 

which the viability of the firm is guaranteed (see appendix 2): 

yeo) br + ha 
X(O) < aO-h) (38) 

The maximum debt-equity rate, h, will be attained only some time after entering the 

stationary state of path 1. 

* In the capital stock is above the desired level Ky in figure 3.2, the firm cuts down 

this stock at the maximum rate that is allowed for, i.e. at the depreciation rate a, 

for, due to the non negativity constraints on investments, the firm cannot divest. All 

profits are paid out to the shareholders. 



33 

Finally, the reader can imagine that a firm, having an initial stock just on the opt i-,. 
mal level RY' will keep to thst level during the whole planning period by investing at 

such a level as necessary only to replace obsoleted capital goods. The remaining pro­

fit is issued to the shareholders. 

In the case of expensive debt money, so i < r, we get next optimal trajectories of the 

capital stock: 

K 

+ 
path 6 

~ 
~ path 4 • path 5 

• ~ Pfth 2 

path 3 
~ T D z 

Figure 3.3. Optimal K-trajectories when i < r. 

* The optimal level of the capital stock now equals rsr. Due to the cheapness of equity 

compared to debt, pure self-financing is the cheapest way of financing the capital 

* stock. On the level rsr these financing costs equal marginal net revenue on capital' 

goods and so the relevant level yields the maximum profit flow. 

Apart from the distinct financial structure, the trajectories starting on or above 
* rsr i~ figure 3.3 have the :ame meaning as in Ugure 3.2. The trajectories starting 

at RYx or betwe~n RYx and rsr can be conceived as subtrajectories of the trajectory 

starting below RYx ' differing only as far as the initial state constraints.are con­

cerned. So, we may restrict the discussion to the pattern, starting below RYx in fi­

gure 3.3, having the initial state constraint: 

* K(D) < RYx 

for which Ludwig concluded that the viability of the firm is at least ensured if 
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(39) 

In order to get a better idea of the relevant pattern, we take this pattern from figu­

re 3.3 and add the trajectory of the other state variable, debt capital (Y): 

?z 
K(O) 
Y(O) 

K 

K 

Y 

L---------~~~====~--~+T o z 

* Figure 3.4. Optimal K- and Y trajectory when i < rand K(O) < RYx' 

One can derive from table 3.1 and figure 3.4 that it appears to be profitable to start 

growing with maximum debt financing. This is because it enables the firm "to benefit 

more by existing growth changes", as Ludwig stated quite vaguely (page 115 o.c.). We 

will describe this more precisely in section 4 of chapter 5 with the help of our own 

model. 

* As soon as the capital stock reaches the level RYx' on which marginal net revenue 

equals the interest rate on debt money, it is no longer profitable to extend the 

amount of debt and the firm wants to get rid of it. But, due to the large amount of 

debt, it still needs more new debt to realise the plan of redemption: 

m(R - aK - rY) < aY (40) 

which can be derived from the optimality conditions holding on path 2. 
* The firm now keeps its capital stock on tl)e level ~x' its dividend pay-out on the 

lower bound and spends all means to diminish the amount of debt up to the level on 

which no more new debt is needed, so the maximum redemption rate is attained: 

Y = -aY (41) 

This holds on path 5. On this path. the firm needs less and less money to pay back 

debt capital at the maximum allowable rate a. It still pays out only the minimum 

amount of dividend, thus maximizing the rate of growth towards the state of bliss, 

* KX' Having reached that state, the firm continues to pay back debt at the maximum rate 

and pays out all earnings that remain after replacement investments to the share hol-
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dere. 

Ludwig also analyses the case in which i = r: In that case, the results concerning the 

stationary state are indifferent to the financial structure, as one may expect. 

We will add one more remark to. the way debt is dealt with in Ludwig's model. By (16) 

the firm is forced to keep a certain amount of debt all the time, due to fixed redemp­

tion rate. To Ludwig, the continuous presence of debt money in the firm is a realistic 

aspect of his model. But we wonder, whether the origin of it, i.e. the infinite pay 

off period, is such as realistic feature. 

5. Production and finance II (Lesourne & Leban). 

The last model that we wish to present here describes changes in the financial struc­

ture as well as in the production structure of the firm. The relevant model, Lesourne 

& Leban, 1978, has been published in French. The solution was based on the Calculus of 

Variations. In appendix 2 we have solved the model by means of the Maximum Principle. 

This results in different initial conditions to the optimal trajectories than publis­

hed by Lesourne & Leban. Lesourne & Leban define these conditions in terms of diffe­

rent (exogeneous) values of the interest rate for a given initial value of the capital 

good stock. We will formulate them in the tradition of the former models as different 

values of the initial capital good stock. 

In the first place, Lesourne & Leban introduce the balance equation as it was presen­

ted already in the model of Ludwig: 

x + Y = K. (42) 

The state equation of capital goods, too, fits well into this tradition: 

K = I - aK. (43) 

The extension is in the definition of earnings (see (21». Lesourne & Leban introduce 

corporation profit tax and the input of labour next to the input of capital goods: 

E = X + D = (l-f)(R(Q) - wL - aK - rY) (44) 

in which f corporation profit tax rate. 

In the second place, Lesourne & Leban introduce a fixed output level, Q, above which 

capital and labour are substitutes and below which the inputs are complementary in the 

optimal solution. Therefore they assume a special type of production function and 
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introduce some assumptions concerning R. TIle production function must belong to a 

specific dass of Cobb-Douglss type functions: 

Q - f' Ll ..... , a < 1 (45) 

The relevant function is linearly homogeneous. This means that, if both inputs change 

at a rate g, the resulting output will change at that rate too: 

Q(gK,gL) _ (gK)a (gL)l ..... _ gf' Ll ..... - gQ(K,L) (46) 

Furthermore the exponent of each input variable can be interpreted as the partial 

elasticity of output with respect to that input. For example, the partial elasticity 

of output with respect to capital goods is: 

(47) 

As far as the return function R(Q) is concerned, they introduce the usual assumptions 

of strict concavity, twice differentiability, a strict increasing function with de­

creasing marginal returns to scale. Above that, they assume that the function Q ~~ has 

a unique maximlDll for 0 < Q < ". Together with (45) and the optimality conditions, 

these assumptions on R will result in the above mentioned critical value Q (see appen­

dix 2). 

The firm is of the owner-managed type, maximizing its dividend stream over an infinite 

planning period. The control variables are: dividend pay-out D, gross investments I 

and the level of employment L: 

maximize fe-iT D(T) dT (49) 
D,I,L 0 

Dividends and debt are assumed to be non negative. Above that, the total amount of 

debt available is restricted by the amount of equity: 

D> 0 (50) 

O<Y<kX (51) 

The above model results in nearly the same type of control trajectories for capital 

goods K, equity X and debt Y as the model of Ludwig. Assumed that 
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i'" (l-f)r, (52) 

two eases are to be distinguished: the ease of eheap debt eapital and the ease of 

eheap equity. 

In the ease of eheap debt eapital, i.e. i > (l-f)r, the firm will expand at the maxi­

mum rate (D - 0) with maximum debt finaneing (Y = kX), till the stationary state is 

reaehed, defined by: 

'" K=Kyif (53) 

In order to be able to compare (53) with definition (35) of the model of Ludwig, we 

must replaee the maximum debt to equity rate k in (53) by the maximum debt to capital 

rate h. Because of 

k 
l+k - h, 

equation (53) ehanges into: 

!!-
3K a - (l-h) _i_ + hr 

I-f 

(54) 

(55) 

The comparison between (55) and (35) reveals the inerease of the eost of equity due to 

corporation profit tax if the net marginal return on equity remains i. 

In the case of cheap equity, the firm starts growing with maximum debt financing till 

the eonsolidation level is reached, defined by: 

a - r (56) 

which is the same definition as given in (36) of Ludwig's model. But now, the firm 

passes off all its debt and starts the second growth stage with only equity financing 

till the stationary state is reached, defined by: 

'" K = Kx if 
i 

a =--I-f (57) 

which is the same definition as in (37) of Ludwig's model, with the exception of the 

influence of the tax rate. 

So, the main difference with the model of Ludwig, as far as the financial structure is 

concerned, is the absence of debt money in the second stage of growth when equity is 
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cheap. 

The initial conditions of the distinct patterns can be formulated 1n the same way as 

presented in the model of Ludwig by distinguishing cases in which the value of the 

initial capital good stock is less than. equal to or bigger then the relevant critical 

values are defined in (55) through (57). 

Furthermore. Lesourne & Leban extend Ludwig's results by introducing labour as a se­

cond input into the production process and by analysing the changes of employment in 

the firm in the course of time. Whether employment is strictly increasing or will 

start decreasing after a certain point of time. depends on the value of Q. compared 

with the relevant Q'"-values. For example. if i > (l-f)r. we may get the following 

patterns of L, 

L L 

L 

L~ 

T ~------------~T o z o z 

Figure 3.5. The optimal employment trajectories if i > (l-f)r and 
- * - * Q > Oy (left) or Q < Oy (right). 

in which L employment level when Q = Q 

'" '" Ly employment level when Q = Qy' 

Although Lesourne & Leban did some sensitivity analysis in their article. they didn't 

explain whst economic reasons could persuade the firm to start depth investments and 

when such reasons do apply. They only state sufficient (mathematical) conditions to 

the appearance of such a case of depth investments. In the presentation of our own 

model we will say more about the economic aspects of depth investments. 

6. Summary. 

Some trend setters towards our own model have been reviewed in the above sections. 

With the help of Jorgenson's model we dealt with the dynamic nature of investments and 

the necessity to incorporate more aspects of the limits of growth into the m~del in 

order to avoid immediate adjustment of the firm to the state of bliss. Leland's model 

has been presented as a first attempt to incorporate financial aspects as limiting 
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forces. Ludwig concentrates fully on the financing problem of growth. His model re­

sults in two distinct optimal trajectories, one on which the firm always borrows at 

the maximum rate and the other one on which the firm may start borrowing, but, having 

reached a certain size (measured by its output level), it starts paying off debt. 

Finally, the model of Lesourne & Leban combines the aspects of allocating labour and 

capital with that of financing the growth of the firm. l'bey find conditions under 

which a decrease in the employment level of a growing firm may occur. 



CHAPTER 4. A DYNAMIC MODEL OF THE FIRM. 

1. Introduction. 

The model to be presented in this chapter analyses the dynamic relations between the 

firm's production, financing and investment policy and studies the influence of chan­

ges in some important parameters, reflecting governmental influence, social policy and 

the impact of financial institutions on these dynamic relationships. 

The model differs from the tradition of Jorgenson - Lesourne & Leban, presented in the 

previous chapter. First, the allocation of capital goo~s and labour is formulated in a 

different way so as to derive meaningful economic notions from the distinct stages in 

the optimal trajectories of the firm. We will achieve this by describing the produc­

tion process by means of activity analysis. 

Compared with our predecessors, we have. further rendered explicity the effects of 

governmental influence on corporate policy. Beside corporation profit tax, we will 

introduce investment grants. This is an instrument by which the government intends to 

influence the investment policy of the firm. The aim is to raise the national employ­

ment level indirectly by stimulating investments. Furthermore, in the Dotch case, the 

government gives additional grants for specific investments, for example in less fa­

vourable regions. 

In this chapter we will present the relevant model and we will show the links with 

several areas of economic theory and practice. There after, we will present the main 

features of the optimal solution. The solution procedure itself is described in appen­

dix 3. 

2. Production 

We asslEe that the firm produces a homogeneous output by means of two homogeneous 

inputs: labour and capital goods. Most publications dealing with the allocation of 

labour and capital in a dynamic theory of the firm, assllDe a continuous production 

function. This implies the assumption that the firm can choose at each moment in time 

between an infinite number of production possibilities. This does not seem a realistic 

concept, because, in a realistic situation the management of the firm always choose 

between a limited nunber of production possibilities. So, although the continuous 

production function may be a useful relation on an aggregated level, one may doubt its 

suitability for the case of a single firm. 

We therefore introduce activity analysis as a way to describe the link between the 

inputs of labour and capital and the output of the firm (see for example: Henderson & 
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Quandt, 1971, 335). We assume that the firm can choose at each moment in time between 

only a limited number of (linear) production activities. Each of such production-acti­

vities represents a process by which the output is produced by the application of 

labour and capital goods in a fixed proportion. Moreover, we will restrict ourselves 

to only two available production activities: a capital-intensive and a labour-inten­

sive production activity: 

K 

activity 2 

L 

Figure 4.1. The available production possibilities. 

This restriction will not affect the quality of the model nor the tenor of the solu­

tion, because adding more production activities appears not to imply adding new featu­

res to tbe optimal allocation of labour and capital. If we further assume constant 

returns to scale and a fixed technology during the planning period, we can write: 

(1) 

(2) 

(3) 

in which K amount of capital goods available to the firm 

Kj amount of capital goods assigned to activity j 

L employment level of the fin. 
Q output level of the firm 

T time, 0 < T < z 

tj labour to capital ratio of activity j 

qj productivity of capital goods assigned to activity j 

z planning horizon 
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We have chosen the above formulation with Kj as explanatory variables to the output Q 

and employment L, because these variables will belong to the set of variables control­

led by the firm such as to realise an optimal policy. Equation (3) states that there 

is no idle capacity within the firm. Both activities are asswned to be efficient, 

which means that none of them is inferior to the other. If we further conceive activi­

ty 1 as the capital-intensive one, then it follows that: 

(4) 

3. Sales and operating income. 

AB far as the output market is concerned, output and sales are ass1.IDed to equal each 

other, so the stock level of final products is constant and independent of the output 

level. We further ass1.lDe that the firm is operating under decreasing returns to scale. 

This decrease may be caused by an imperfect output market or, if we introduce other 

kinds of costs apart from production costs, by increasing marginal costs of organizing 

the production due to the increasing scale of the firm: 

S 

Q 
o 

Figure 4.2. The sales-output function. 

This leads to some well known concavity properties of the sales function: 

seq) - P(Q).Q 

seq) > 0 when Q > 0 (5) 

in which S sales (value) 

P (net) selling price 
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To facilitate analysis later on, we introduce the notion of operatitlg income O. For 

this we need three more assumptions concerning labour costs and capital costs. Wages 

are assumed to be proportional to the amount of labour input L, depreciation is assu­

med to be proportional to capital goods K (see formula (3.2». Finally we assume that 

the price of a capital good equals one unit of money value: 

in which 0 operating income 

K amount and book value of capital goods 

a depreciation rate 

w wage rate 

4. Financing and government. 

(6) 

First we will present three relations that are based on well known financial records 

of the firm: the balance sheet, the income statement and the cash account. As far as 

the balance sheet is concerned, we assume that the firm has only one type of assets: 

capital goods, and two types of money capital: equity and debt, so: 

BALANCE SHEET 

assets K(T) 

From the balance sheet we derive that: 

K(T) - X(T) + Y(T) 

X(T) equity 

Y(T) debt 

(7) 

Together with (3) this enables us to construct a first link between the mode of pro­

duction and the financial structure of the firm: 

(8) 

Second we assume that the firm can raise its equity not only by retained earnitlgs but 

also by acquiring investment grants. This is a new feature in the dynamic theory of 

the firm. We further assume investment grants are proportional to the amount of gross 

investments: 

x - E + gI(T) (9) 



in which I gross investment 

E retained earnings 

X increase of equity 

g investment grant rate 
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The amount of retained earnings can be derived from the income statement. In order to 

construct this statement we introduce the following assumptions: 

- corporation profit tax is proportional to profit, 

- no transaction costs are incurred when borrowing or paying off debt capital, 

- taxes are paid at once, grants are received immediately. 

These assumptions result in the next income statement: 

INCOME STATEMENT 

sales seq) wL(T) wages 

aK(T) depreciation 

rY(T) interest on debt 

F(K1,K2,Y) corporation profit tax 

D(T) dividend pay-out 

E retained earnings 

in which F = f(S - wL - aK - rY) 

f corporation profit tax rate 

Together with (6) and (9) the income statement results in the following state equation 

of equity: 

x = (l-f)(o-rY) - D + gI (10) 

The third financial record to be presented here is the cash account. For this we need 

no further assumptions: 

CASH ACCOUNT 

sales S( Q) wL(T) wages 

investment grant gI(T) rY(T) interest on debt 

increase of debt Y I(T) gross investment 

F(K1,K2,y) corporation profit tax 

D(T) dividend pay-out 
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From (8) we derive that: 

K=X+Y (11) 

Together with (6) and the cash account, this results in the dynamic equation of capi­

tal stock as discussed already in section 3.2.: 

K=I-aK (12) 

Finally, we introduce, in the tradition of Lesourne & Leban, an upperbound on debt in 

terms of a maximum debt to equity rate: 

Y< kX (13) 

in which k maximum debt to equity rate 

We have already discussed this constraint in section 2.7. Together with the interest 

rate r, (13) is a way to deal with uncertainty within the framework of a deterministic 

model. Because the level of r is an indication of the risk-class to which the firm 

belongs, (13) may be conceived as a condition on the financial structure of the firm 

that must be fulfilled in order to stay in the relevant risk-class (see: Ludwig, 1978, 

51) • 

5. Policy of the firm. 

We further assume that the firm maximizes the shareholder's value of the firm: 

z 
maximize fe-iT D dT + e-iZ{ X(z) - gK(z)} 

o 
(14) 

This hypothesis is not supposed to imply that the firm is really able to and wants to 

maximize this value, but it results, in our opinion, in a useful abstract representa­

tion of the regularities of the firm's policy (Jones, 1973, 2). Note that the final 

value of the firm equals the value of equity minus investment grants to be paid back 

due to stopping corporate activity. 

As far as its dividend policy is concerned, we assume that the firm is allowed to pay 

no dividend, so: 
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D) 0 (IS) 

As we shall discuss in section 2 of chapter 5 this condition may be replaced by a more 

restrictive one, requiring a certain positive dividend flow during the whole planning 

period, without affecting the tenor of the conclusions that result from the optimal 

solution. 

6. The model. 

We have now discussed all the features of the model. In this section we will present 

the model in its finsl form. 

maximize 
D,I,K1 ,K2,Y 

subject to 

z £ e-iT D dT+ e-iz{x(z) - gK(z)j 

x - (1-f)(O - rY) - D + gI 

O<Y<kX 

dS d2S 
- > 0, - < 0, S := P(Q).Q, S> 0 when Q > 0 
dQ dQ2 

f, g, i, r constant and between 0 and 1 

k, t j , qj' w, z constant and non-negative 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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Note that the non-negativeness of X is ensured by (20) and (21) and the fact that 

K) 0 due to (19) and (22). 

The state variables, as defined in appendix I, are the amount of equity X, and the 

capital good stock K. The values of these variables thus represent the state of the 

firm at each moment of time. The firm will try to realize its goal, as defined in 

(16), through the available control variables: the amount of capital goods assigned to 

each of the production activities Kl and K2, the size of debt Y, the investment acti­

vities I and its dividend policy D. The trajectories of these variables during the 

planning period represent the firm's policy. The restrictions on this policy and the 

effects of this policy on the state of the firm and on its performance level are de­

scribed in the relations (16) through (22). 

Here ends the description of the main features of the model. Before introducing the 

reader to the properties of the optimal solution, we will discuss briefly the assump­

tions on which the solution is based. 

7. Further assumptions. 

As we shall see later on, we will have to distinguish between different cases, depen­

ding on the mode of production and the prevailing financial structure. In each case, 

the unit cost of a product, including its part of the cost of capital, can be calcula­

ted. Let us denote the relevant unit cost by: 

c jN ' j = I, 2, 21; N = X, Y, YX 

in which : j : activity performed by the firm (j 

performed) , 

N index of financial structure: 

N = X self-financing case 

N = Y maximum debt financing case 

21 means that both activities are 

N = YX intermediate debt financing case. 

Due to later assumptions, j = 21 and N = YX cannot occur at the same time. Moreover 

c21X will appear to equal c21Y and therefore we will write briefly: c21" So there 

remain seven unit cost levels to be distinguished. Their formulation in terms of the 

parameters of the model will be presented in the next chapter. 

Our first assumption states that the marginal revenue of the first product to be sold 

exceeds each of these unit costs: 
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(Al) :~ > maximum {C jN) , j - 1, 2, 21; N - X, Y, YX, ~, (j = 21 - N = ~) 
Q-O j, N 

The idea behind this asstmlption is, that the firm will consider only those alterna­

tives that are profitsble from the start. On the basis of this assumpt10n we guarantee 

that the firm will start investing snd producing. On the basis of the following as­

sumption, we will restrict ourselves to cases in which the firm will not continue 

expanding far beyond profitable limits: 

The next asstmlption concerns the cost of equity and debt. Beside the problem of the 

financial structure, we have introduced the problem of the assignment of money-capital 

to production activities. Therefore, we have to distinguish between the market of 

equity and the market of debt, for, investors in equity or debt no longer differ only 

in their risk bearing preferences, but also in their attitude towards management. 

Investors of equity want to influence management directly (or are the managers them­

selves) while investors in debt money are only interested in influencing the policy of 

the firm as far as they will try to reduce their risks. The two types of investors 

have really different intentions and so, the markets of debt and equity are separated. 

It will therefore be a cotncidence when the prices of equity and debt (after corporate 

tax) to be paid by the same firm, equal each other: 

(A3) i '" (i-f)r 

The above introduction of the assignment aspect of money capital also implies the 

acceptance of the possibility that equity is cheaper than debt money for a single 

firm. For, now we have a real multicriteria situation in 'which an investor of equity 

may accept less financial reward for his risk-bearing (compared with the reward of an 

investor in debt money) due to the attaimnent of other goals such as being the (a) 

boss of the firm. 

Through the next assunption we will exclude all kinds of degenerated cases in which 

the firm could choose from an infinite ntmlber of equal alternatives: 

(A4) c 1N '" c2N ' N - X, Y, YX 

We assume further that the firm has a certain initial amount of own capital: 

(AS) XeD) ) D 
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Finally we assume that the capital stock cannot be financed by debt money and invest­

ment grants only, but that at least a certain amount of equity is necessary: 

(M) 1~k + g < 1 + g(1+k) < 1 

In (6) we have assumed that the price of a capital good equals one unit of money 

value, and in (13) we have introduced the maximum debt to equity rate k. So, k/(1+k) 

in (A6) is the maximum amount of debt per capitsl good. Because g is the investment 

grant rate, the left hand side of the first expression of (A6) represents the maximum 

amounts of debt and investment grants that can be attracted per capital good. 'l1te 

right hand side represents the total amount of money capital needed to buy one capital 

good. 

8. Optimal solution. 

In the sections 1 through 3 of appendix 3 the reader will find how we derived the 

optimality conditions of the model (16)-(28), based on the Maximum Principle as de­

scribed in appendix 1. Just as in the preceding models of chapter 3, the optimal tra­

jectories of the firm can be divided in several stages (called: paths). Each path can 

be characterized by the boundaries that are active or inactive during the relevant 

period. In the sections 4 and 5 of appendix 3, the reader will find how we have deri­

ved the feasible paths and their relevant properties from the optimality conditions 

and from the above assumptions. 'l1te optimal evolution patterns of our model are built 

from 12 different paths, presented in table 4.1 on the next page. 

'l1te first column of table 4.1 gives a number to each path: this numbe~ will be used in 

the rest of our treatise. 

'l1te second column of table 4.1 indicates whether the firm is producing in a capital­

intensive way (activity 1) or a labour-intensive way (activity 2) on the relevant 

path. On paths 3 and 10, the firm is switching from labour-intensive to capital-inten­

sive production. 

'l1te third column states the financial structure in which the firm is operating: self­

financing (indicated by "X"), maximum debt financing (indicated by "Y") or switching 

from maximum debt financing to self-financing by paying back debt money (indicated by 

"YX"). 

'l1te next column marks paths on which the production level is constant. These stationa­

ry values are fixed by the equality of marginal return and the relevant marginal unit 

cost on that production (= sales) level: 
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path financial production . . 
nr activity structure level X K necessary conditions 

1 2 Y + + 
2 2 Y 

.. 
Q2Y 0 0 i > (l-f)r c1Y > c2Y 

.. 
3 21 Y Q21 + + c1YX < c2YX 

4 1 Y + + c1YX < c2YX .. 
5 1 Y Q1Y 0 0 i > (l-f)r c1Y < c2Y 

.. 
6 2 YX Q2yx + 0 c1yx > c2yx 

7 2 X + + c1yx > c2yx .. 
8 2 X Q2X 0 0 i < (l-f)r c lX > c2X 

.. 
9 1 yx Q1yx + 0 c1YX < c2yx 

.. 
10 21 X Q21 + + c1YX > c2YX 
11 1 X + + .. 
12 1 X QlX 0 0 i < (l-f)r c1X < c2X 

Table 4.1. Characteristics of the feasible paths. 

.. dS 
Q = QjN - dQ = c jN ' j - 1, 2, 21; N = X, Y, YX, (J, (j = 21 - N = (J) (29) 

The firm expands its output level on the four paths where the production level is not 

constant. 

The fifth column describes the trajectories of equity X and of the capital good stock 

K on the relevant paths. The reader can check that in spite of a stationary value of 

output Q, equity and/or the capital good stock may still be increasing on some paths. 

On paths 3 and 10 the increase of equity and capital goods is caused by the depth 

investment process by which more capital goods are needed for the same output level. 

On paths 6 and 9 equity is increasing while the output level and the capital stock are 

constant due to the redemption policy of the firm on those paths. Finally paths 2, 5, 

8 and 12 remain which represent real stationary states. They will appear to be the 

final stages of the four different sets of optimal trajectories of the firm. 

In the last column necessary conditions for several paths are described, resulting 



51 

from the optimality conditions and the assumptions made in the above sections of this 

chapter. The four final paths appear to have mutually excluding necessary conditions, 

re .. ulting in the above mentioned four distinct sets of optimal trajectories of the 

firm. On the remaining paths, the relation between c1YX and c2yx restricts the feasi­

bility. This relation will appesr to determine the sequence over time of the different 

stages of the optimal trajectories. 

In the sections 6 through 8 of appendix 3, the reader will find how to construet the 

optimal trajectories of the firm. Based on different necessary conditions of the four 

resulting final paths, these trajectories can be classified in four different sets. 

Within each set each optimal trajectory appears to be part of the "master trajectory" 

of the relevant set. For example, if clY < c 2Y and i > (l-f)r we get the following 

optimal strings: 

trajectory 1 path 5 

trajectory 2 path 4+ path 5 

trajectory 3 path 3+ path 4+ path 5 

trajectory 4 path 1 + path 3+ path 4+ path 5 (- master-trajectory) 

The master trajectory 4 contains all stages of the strings 1 through 3. Which of the 

above strings is the optimal trajectory depends upon the initial values of equity snd 

of the capital good stock. In general: the lower these initial values, the more stages 

have to be gone through before the finsl stage is reached. The relevant conditions on 

the initial values of the state variables are presented, together with all possible 

strings, in section 8 of appendix 3. In the next chapter we will describe only the 

master trajectories, because they are the unions of all the other strings in the rele­

vant sets. 

There is one exception. In the set of strings ending with path 12, there appear to be 

two master patterns, having the same start and finish: 

path 

/path 6 + path 7 + path 

1 

~path 3 + path 4 + path 

10"'-,. 

/path 

9 

11 + path 12 

However, both patterns are very close to each other, also in the central part, so that 

we will present one of them as a variant of the other and not on its own. 

9. Summary. 

In this chaper we have presented a dynamic model of the firm. The firm operates on an 

imperfect capital market. It finances its expansion by debt and/or retained earnings 

but it does not issue new shares. The availability of debt money depends on the amount 
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of equity. Marginal returns to scale are decreasing. Production is described by means 

of activity analysis. The financial relations in the model are based upon well known 

financial records. The government influences the policy of the firm through the corpo­

ration profit tax rate and through investment grants. 

After a brief discussion of six more assumptions, the main characteristics of the 

twelve distinct stages, consituting the optimal trajectories of the f1rm, have been 

presented and the presentation of the four master trajectories in chapter 5 has been 

introduced. 



CHAPTER 5. OPTIMAL TRAJECTORIES OF THE FIRM. 

1. Introduction. 

This chapter is devoted to a description of the four different trajectories of the 

firm, resulting from the optimal solution of the model of chapter 4. The sequence is 

such that the presentation of each trajectory contains new elements as far as the 

firm's policy is concerned. 

The first trajectory gives information about growth- and stationary stages and forces 

us at once to analyse the stationary state condition for the most complex case. We 

will further discuss the mesning of conditions on the initisl vslues of equity and 

capital goods. The second trajectory deals with depth investments: the switch from 

labour-intensive to capital-intensive production. The third trajectory describes the 

process of a firm starting with maximum debt financing and ending as a self-financing 

producer. The necessary conditions for the last trajectory are such that depth invest­

ments as well as consolidation occur in the course of the firm's optimal trajectory. 

We will also demonstrate several aspects of the solution procedure that are worthwile 

from an economic point of view. 

2. Basic trajectory. 

We get the simplest master trajectory when debt money is cheap (i > (l-f)r) and the 

unit cost of the lsbour-intensive activity is smaller than the unit cost of the capi­

tal-intensive activity. The firm will always prefer activity 2 and it will finance its 

investment by means of as much debt money as is allowed for. See figure 5.1, in which: 

* * k * K( z) ~ K2y' L( z) = t 2~Y and Y( z) . - l+k K2y' 

Figure 5.1 shows that the relevant master trajectory consists of two paths: the growth 

path 1 and the stationary state path 2. On T = t 1,2 the firm stops gr~ing and enters 

the stationary stage. This moment is fixed by the level of output Q2Y that is then 

attained. Below that level it is worthwhile to expand the output capacity because 

marginsl revenue exceeds marginal cost, for, due to diminishing returns to scale and 

(4.29) it holds on path 1 that: 

in which 
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Fisure 5.1. Master trajectory if i > (l-f)r and c1y > c2y• 

We will now discuss in more detail the above formulation of c2y • The part in the main 

brackets is the cost per capital good assigned to activity 2. It is divided by the 

output per capital good, Q2' in order to get the unit cost of activity 2. The cost per 

capital good consists of four parts: 

wages 

depreciation 

interest on debt: 

cos t of equity 

w9. 2 

(l - l:f) a 
k 

l+k r 
1 i 

(l+k - g) H 

Wages are simply the wage rate time the amount of labour assigned to each capital good 

(see: (4.2». Depreciation appears net from investment grants. These subsidies may be 

considered as diminishing the price of capital goods at a rate g, resulting in a de­

crease of depreciation of a.g in the case of absence of corporation profit tax. When 

corporation profit tax is introduced, we have to reckon with the fact that investment 

grants are free from corporation profit tax, so the relevant decrease of a.g is then 

after tax payments and this equals a decrease of depreciation before taxes of ~ a. 
I-f 
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Interest on debt per unit of capital good consists of the rate of debt money k/(l+k), 

times the interest rate r. The cost of equity consists of two parts. First, the time 

preference rate of the shareholders has been transformed into a desired marginal rate 

of return to equity before tax payments of il (l-f). Second, this marginal rate has 

been corrected for the leverage effect (due to debt financing, the amount of equity 

needed to buy a capital good is decreased by kl C1+k» and for the investment grant 

effect (each new capital good may be considered as financed at a rate g by the govern­

ment). 

In this way, the unit cost formula of (1) includes the effect of profit tax and of 

investment grants as well. 

The fact that the marginal revenue exceeds marginal cost implies that marginal return 

to equity exceeds the minimum level i. With the help of the definition of operating 

income in (4.6), we can transform (1) into: 

* Q < Q2Y" 
aD k 

---;k'--- {O-f) (ii"i{" - l+k r) + gal > i 
-1+k- g 2 

(2) 

c a b 

We can distinguish three terms in the expression of marginal return to equity of (2): 

(a) : "regular" marginal return to equity after corporation profit tax (apart from 

investment grants). Note that we have implicitly assumed that the price of a 

capital good equals one unit of money value, so marginal return to equity equals 

marginal return per capital good in this case. 

(b) cost reduction per capital good due to investment grants. The lower net purchase 

price (after investment grants) results in a lower amount of depreciation. 

(c) : purchasing-power multiplier. This consists of the above described effects of 

investments grants and the leverage factor, raising the purchase power (in terms 

of capital goods) of equity. 

So, from (2) results, that on path 1 marginal return to equity exceeds the time prefe­

rence rate of the shareholders. Therefore, the shareholders will give up dividends and 

they will order the management to reinvest all earnings because elsewhere they would 

only get a rate of return of i to their investment. Due to the decreasing marginal 

* return to scale as defined in (4.5) this process stops at Q ~ QZY. At this level pro-

fit is maximal. The relevant master trajectory is presented in figure 5.2 on the next 

page, in which: 

C total costs 
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Figure 5.2. Master trajectory of S(Q) if i > (l-f)r and c 1Y > c 2Y ' 

A further increase of the capital good stock should yield less than i, so the firm 

will now put down investments to the replacement level (see: (4.18)): 

* * Q = Q2Y + K = 0 + I = aK2Y (3) 

and pays out the remaining earnings to the shareholders. From (4.17, 20) and (3) we 

get: 

K = 0 and Y = kX + X = 0 + D * * (1-f)(0(K2y) - rY) + gaK2y (4) 

Because earnings are growing on path 1, the rate of growth is increasing in this stage 

of the trajectory. Later on, when dealing with trajectories consisting of several 

growth stages, this will appear to be a property of all growth stages in the model. 

This is in accordance, for example, with results of Singh and Whittington, who found a 

positive correlation between the sizes of firms and their rates of growth (Singh & 

Whittington, 1975). 

There is another interesting feature in the above basic trajectory. In fact, the 

firm's policy is based on different, (sub)goals during the two stages. The first stage 

is governed by maximizing the growth rate: alle earnings are used for expansion in­

vestments, so, no dividend is paid out. In this way, the "state of bliss" (Das, 1974) 
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will be attained as quickly as possible. In the final stage, profit is maximal and by 

retaining earnings only to keep the capital stock at its optimal level, dividend pay­

out is maximized. If we should replace the non-negativity constraint on dividend 

(4.15) by a more restrictive one, requiring a positive dividend outflow during the 

whole planning period, then the growth to the final stage will be retarded, because 

part of the financial means can no longer be assigned to the growth of the firm. How­

ever, such a constraint will not alter the arrangements of paths of the master trajec­

tories to be discussed in this chapter. So, we have introduced the simple non-negati­

vity constraint in order to avoid needless intricacies. 

Due to the properties of the model, the switch from the growth stage to the stationary 

stage is rather abrupt. But in essence it corresponds with findings such as those of 

Grabowski & MUller, that mature firms have low yields on retained earnings and that 

shareholders of mature firms prefer dividend pay-out to retained earnings, while 

shareholders of younger firms prefer the opposite (Grawbowski & ~dller, 1975). From a 

macro economic inductive pOint of view we get support from Albin and Alcaly, who con­

clude to two disjunct equilibrium zones in an economy: one containing major firms 

marked by low growth rates and maximizing their profits, and the other containing 

relatively fast growing firms shOWing managerial behaviour such as striving to high 

growth rates (Albin & Alcaly, 1976). 

As we have mentioned in chapter 4, the trajectory described in figure 1 is the "master 

trajectory" of the relevant set of optimal trajectories. This means that the initial 

conditions are such that all paths which are feasible in the relevant case are part of 

the trajectory: 

1 * 
X(O) < q (l+k) Q2Y 

2 

K( 0) = (l+k)X( 0) 

(5) 

(6) 

The initial amount of equity must be less than its stationary value and the firm must 

start with maximum debt financing. If initial condition (6) is not fulfilled, the firm 

will attract the miSSing amount of debt immediately at the start of the pattern and it 

will invest this amount in capital goods at once. After that, it starts its trajectory 

on path 1 (supposing condition (5) is still not binding). If the initial condition (5) 

is violated, the firm will sell the superfluous stock of capital goods (i.e. the stock 

* above the level of Q2y!q2) and will payout the resulting revenue to the shareholders 

at the start of the trajectory too. In this way, the firm is in its optimal stationary 

state right at the beginning of the optimal trajectory and the optimal trajectory will 

consist of path 2 only. 
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Due to these instantaneous adjustments at the start of a trajectory, the firm seems to 

pass through only (parts of) the master trajectories. One may introduce time lasting 

adjustment trajectories from non-optimal initial states to the relevant master trajec­

tories by incorporating such retarding features as adjustment costs or lower- and 

upperbounds on dividend and investments (or divestments)'. Because we want to emphasize 

features of the master trajectories themselves in this study, we have not incorporated 

them for the sake of simplicity and we will further assume that the firm is in such an 

initial state as to fulfill the initial conditions of the relevant master trajectory. 

We will finish this section by a cavaet concerning the interpretation of figure 5.1 

(and the figures of master trajectories to be presented later on). Only the variables 

D, K and Yare measured in the same dimension (money), Q is measured in units of out­

put and L in units of labour. So, the ranking of Q and L in this figure is arbitrary. 

The correct information to be drawn from figure 5.1 is that part of the capital stock 

is financed by debt money and that the relevant variables exhibit the same propor­

t ional growth. 

3. Depth investments. 

Our firm needs two kinds of input, labour and capital goods, in order to produce its 

output. It can produce this output in two different ways, one using relatively more 

capital goods, the other using more labour. Labour is a variable input in this model: 

the employment level of the firm can be perfectly adapted to the needs of the firm. 

But capital goods are not freely obtainable, especially not at the start of a trajec­

tory, due to the fact that the firm needs money capital to buy capital goods and money 

capital is scarce because the firm can get new equity only from retained earnings and 

because debt capital is rationed. In this situation it may be profitable to start with 

the labour-intensive activity, even if it results in a higher unit cost than the capi­

tal-intensive activity. The reason is, that the firm can attain a higher output level 

with a given capital good stock by means of the labour-intensive activity than by 

means of the capital-intensive activity. This higher output brings about a higher 

sales level, which may compensate for the higher unit cost. 

But, due to decreasing returns to scale, this advantage does no longer holds from a 

certain size on and the firm will then switch to the cheaper capital-intensive activi­

ty. This awitch is called: depth-investment or intensive investment. 

In order to introduce this phenomenon, we have to leave the assumption of section 2, 

that the labour-intensive activity is the cheapest one. We now assume that clY < c2Y 
an then get the following master trajectory: 
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Figure 5.3. The master trajectory if i ) (l-f)r and c1y < c2y• 

Compared with the former section, the growth to the final stationary stage is now 

interrupted by another stationary stage, as far as the output (and thus: sales) volume 

* is concerned, starting at Q = Q21' 

Thus the firm passes through different stages during its optimal trajectory. Models 

describing the growth of the firm in this way are called: metamorphosis models (see: 

Kieser e.a., 1977; Albach, 1976). 

* The depth-investment stage starts when the output level Q21 is attained. Below this 

level, the marginal revenue of a capital good assigned to labour-intensivity activity 

2, exceeds the marginal revenue of a capital good assigned to capital-intensive acti­

vity 1: 

(7) 

By means of the definition of output in equation (4.1) and of operating income in 

(4.6), this results in: 1) 

1) From (4.1), (4.6) and (7) we get: 

a pap 
ql Kl a ~ + q2P - wR. 2 + q2K2 a ~ -

(please turn over) 

a)qP+qK ~-wR. +qK ~-a-
1 llaKl 1 22aKl 



60 

(8) 

* , * So criterion (7) and the critical Q21""'Value are linked through the definition of Q21 : 

(9) 

In order to explain this link, we rewrite the third inequality of footnote 1: 

(10) 

In (10), inequality (7) is translated into a sales advantage of activity 2 based on 

its larger capital productivity (q2 > ql) and into a cost advantage of activity 1 due 

to its lower labour intensity (.I, 1 <.I, 2)' Due to the decreasing marginal return dS/dQ 

and the growth of Q, there will be a moment at which the sign turns into its opposite: 

the larger output of activity 2 no longer results in a surplus of marginal sales such 

as to counterbalance the cost disadvantage. Therefore the firm will then switch to the 

capital-intensive activity 1. 

A second remark on formula (10) concerns the absence of depreciation and the cost of 

capital. From (1) we know that they amount to: 

g k 1 i 
(! - I=I) a + l+k r + (l+k - g) 1-f (ll) 

per capital good. So they are independent of the activity to which the relevant (mar­

ginal) capital good will be assigned. Therefore they do not influence the level of 

* Q21 • 

Compared with the model in: Lesourne & Leban, 1978, described in chapter 3, we now 

have more information about the depth-investment process. We have designed a model 

yielding conditions to the appearance of depth-investments which have an economic 

meaning. Moreover, after a period of depth-investment, the firm starts growing again 

instead of sticking in a stationary state. In this way, depth-investments are descri­

bed as a mean of reorganizing the production-process in order to enable further 

(footnote I, continued) 

Q~+qp-;D, -~-;D, 
a KIll a K2 2 

dPQ dPQ w(t 2 - 11, 1 ) 
W!/, 2 > ql CIQ - W!/, 1 - aq> -nq2--=-"""'q;;-1-

(Note that PQ := S) 
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growth. 'l'his fits in with the theory of critical thresholds in the life cycle of a 

firm, as presented for example in: Clifford, 1976, and: Albach, 1976, in the area of 

business finance and management. 

Our last remark on the article of Lesourne and Leban concerns their definition of the 

depth-investment process as a substitution between labour and capital. As described 

in: Pasinetti, 1977, substitution is defined as the process caused by changes in the 

relative prices of the inputs. In our model, as well as in that of Lesourne & Leban, 

the change from labour-intensive to cspital-intensive production is caused by the 

diminishing returns to scale. So, we prefer to speak about "reallocation" of labour 

and capital in this context. 

As shown in figure 3, the reallocation process takes some time. 'l'his is because the .. 
firm needs more capital goods to produce an output Q21 by means of capital-intensive 

activity 1. 'l'his growth of the capital stock must be financed by means of retained 

earnings and additional debt money, restricted by the present amount of equity. So, 

the financial means to buy more capital goods are restricted and this results in the 

gradual course of the reallocation process. 

In figure 5.4, the depth-investment process is shown in the same way as in figure 5.1. 

During the switch from activity 2 to activity I, the output is kept constant, so the 

line a1a 2 is a so called isoquant. In order to find the slope of this line, we derive 

from (1)-(3) :2) 

(12) 

2) Conceive Kl and Kz as variables, of which the solution values are to be found from 

(1) and (2) for fixed values of Q and L, and apply Cramer's rule to solve the linear 

equation system (see for example: Chiang, 1974, 116): 

Q q2 ql Q 
D = = t 2Q - q2L D2 = =qlL - t l Q 1 L t2 tl L 

"\ 

D3 = 
ql q2 

= qlt 2 - qrl tl t2 

which results in the above formula (see also: Schouten, 1957, for the same results in 

a slightly different notation). 
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K 

activity I 

." activity 2 

o 

Figure 5.4. The depth investment process 

in dynamic activity analysis. 

Based on the fact that the isoquant is defined by: 

dQ = 0 

we easily derive from (12) that its slope is: 

L 

(l3) 

(14) 

So, the expansion of the capital good stock during the reallocation period is attended ,. 
with a decrease of labour in the relevant model. We may further derive Q12 from (12) 

in an alternative way. It makes sense to switch to the capital-intensive activity as 

soon as the marginal contribution to the profit stream of labour becomes negative: 

(I5) 

The introduction of more (efficient) production activities in this two-inputs case 

will not yield new information. We then get a larger number of switches during the 

optimal trajectory towards still more capital-intensive activities, but the rules 

governing the reallocation process will not be different. Every time only two adjacent 

activities are compared in the same way as described in this section for the activi­

ties 1 and 2. Suppose, for example, that a third activity is introduced, which Is more 

capital-intensive than activity 2, so: 
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(16) 

then the second reallocation process starts as soon as the firm has attained the out­

* put level QZ3' fixed by: 

(17) 

* * (assuming that Q23 < QZY' of course). 

4. Consolidation. 

Both previous master trajectories dealt with the case of cheap debt money (i > (l-f)r) 

implying an optimal financial structure with maximum borrowing during the whole tra­

jectory. In this section we will turn to the case of cheap equity (i < (l-f)r), yiel­

ding the possibility of a change in the optimal financial structure of the firm during 

its growth process. We further assume, that labour-intensive activity 2 has a smaller 

unit cost (c 1X > cZX) which implies, just like in section 2, that the firm will assign 

all its capital goods to that activity during the whole planning period. In this way 

we can concentrate on the consolidation process only. 

If the firm starts with a sufficiently small amount of equity (see our discussion 

about initial conditions in section 2), we get the optimal pattern as presented in 

figure 5.5 on the next page. 

Figure 5.5 shows that the firm starts with maximum borrowing in spite of the fact that 

debt is the expensive way of financing. The reason is that marginal revenue exceeds 

the cost of debt-financing and so each additional capital good, bought by means of 

debt money, yields a positive income and so increases the rate of growth: 

(18) 

In (18), c Zyx is the unit cost of activity Z if the relevant capital good is financed 

by debt money only (see the explanation of (1». Formula (18) can be rewritten as: 

* 1 a 0 
Q < QZYX * !:g {(1-f) aK + gal > (1-f)r 

2 

(19) 

If we compare (19) with (2), we can easily derive that the left hand side of (19) is 

the marginal revenue of a capital good assigned to activity Z, apart from financing 

costs. The right hand side is the financing cost net of corporation profit tax if the 



D,K,L,Q,Y 

qZ(l+k)X(O) 
(l+k)X(O) 

1Z (l+k)X(O) 

kX(O) -----....-.-.... ........... 
'-

_ ... .-.---,.", 

" 

------Q 
_-----K 

./ ....... 
._._._._.-.L 

• •••••••••••••••• D 

~-----r-------~~-----~~---------r-.T o t l ,6 t 6,7 t 7,8 z 
growth consoli- growth stationary 

(I) dation (Z) state 

Figure 5.5. The master trajectory if i < (l-f)r and c lX > CZX• 

relevant capital good is financed by debt money only. 

So, the firm will invest all its equity in capital goods and will furthermore attract 

as much debt money as is possible to invest in order to maximize the flow of earnings. 

Due to the fact that equity is cheaper than debt money (i < (l-f)r), shareholders will 

waive dividend pay-outs, because retained earnings, invested in the firm again, will 

yield a revenue larger than (I-f)r and so larger than i, which is the "cut-aft" cri­

terion for the growth process to the shareholders, as we have already pointed out in 

section 2. 

The link with the classical leverage formula may be obvious if we define: 

1 ao 
-1-g {(I-f) ii'iC + gal = R marginal return to total capital 

2 

(l-f)r ~ CY: (marginal) cost of debt capital 

~: marginal return to equity 

We then get the next leverage formula: 

L = R + (R - C ) .! 
-"E Y X 

(20) 

From (20) we can conclude that increasing the leverage factor Y/X results in a higher 

return to equity if 
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R> Cy (21) 

which is the same condition as for (19), resulting in the range of Q on which (maxi­

mum) debt financing is profitable. 

0\-
As soon as the output level Q2yx is attained, the marginal revenue as defined in (19) 

equals the marginal cost of borrowing. Shsreholders can now choose from three diffe­

rent ways of spending the earnings: 

1. Accept them as dividend paY""out, resulting in a rate of return of i, 

when invested elsewhere. 

2. Use them for further expansion investments, yielding a rate of return 

less than (l-f)r, due to the decreasing return to scale. 

3. Use them to pay back debt money, saving an amount of (l-f)r rent paY"" 

ments. 

Because the last possibility is the most attractive one, for: i < (l-f)r, the firm 

will now start to pay back debt money by means of retained earnings. Because rent 

payments are falling down during this consolidation process, a growing stream of ear­

nings becomes available for redemption and the decrease of debt money accelerates till 

at T • t 6,7 in figure 5.5 all debt is paid back. 

We can present this change of the financial structure in another way by means of a 

diagram of the state variables: 

K 

I 

K = (\+k)X 
I 

II 

/ 

K· X 

III 

~;-------+----r--------'X 
o a b c 

Figure 5.6. The consolidation process. 

I % 
b • q2 Q2YX 

c = ...!... Q% 
q2 2X 
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In figure 5.6, only area II is a feasible region. In area I debt amounts to more than 

the allowed maximum rate k, in area III there should be equity not invested in capital 

goods, which is excluded by equation (4.20). The relevant critical X-values can easily 

been derived from figure 5.5. 

After this consolidation phase, the cost of capital has been decreased to such a 

degree that it is profitable for the firm to start growing again: 

in which :c2X = t {wt 2 + (1 - ~)a + (1-g) # 
2 

(22) 

In (22), c2X is the unit cost of activity 2 if the relevant capital good is financed 

by equity only. This results in: 

* 1 ao 
Q < Q2X - 1-g {(1-f) aK + gal > i 

2 

Here, i is the cost of capital because of the situation of self-financing. 

(23) 

As soon as the firm has paid back its loans, it starts growing at a higher rate on 

path 7 than it has ended with on path 1. 3) The firm will continue this expansion till 

* the output level Q2X is attained on T = t7,8 in figure 5.5. Then it will stop expan-

ding in order to avoid that the marginal return falls below the critical i-level. The 

* firm will keep investments on the replacement level aK2X and will payout the remai-

ning dividend to the shareholders. 

Just as on the previous trajectories, we see an accelerating movement during each of 

the stages of the growth process. Further, the above described trajectory shows in a 

3) At the end of path 1 it holds that: 

X(t 1,6) = (1-f)(O - 1!k rK) + g( (1+k)X(t 1,6) - aK} 

At the beginning of path 7, it holds that: 

X(t6 ,7) = (1-f)O + g(X(t 6 ,7) - aK) 

From (23a) and (23b) it results that: 

1-f (0 _ ~ rK) 
- g(1+k) 1+k 

agK < 1-f 0 - agK-
1-g 

(23a) 

(23b) 

which is always true, due to assumption (A2) of chaper 4, the non-negativeness of X 
and because of (4.27, 28). 
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simple way the change in the financial structure as it. has been observed in seversl 

maturing firms (see: Albach, 1976, and: Clifford, 1976). 

5. Depth-investments and consolidation. 

We now have discussed the main features of our model: the growth- and stationary 

stages, the reallocation of labour and capital goods and the redemption of debt money. 

The last two master trajectories to be discussed here, contain all these features 

simultaneously. They only differ as far as the sequence of the reallocation and the 

consolidation process is concerned. Because all the relevant features have already 

been discussed in the previous sections, we only need to point out the differences 

between both trajectories. 

From the above mentioned trajectories we have learnt, that consolidation only occurs 

if equity is cheaper than debt and that there is a switch to the capital-intensive 

activity only if this activity yields lower unit costs. To get both changes of the 

policy of the firm in the same trajectory, we have to assume that: 

i < (l-f)r and: c1X < c 2X (24) 

Which of the relevant changes will occur first, appears to depend on the fact whether: 

(25) 

which can be rewritten into (see (18»: 

(26) 

On the left hand side, the part between brackets represents the difference in labour 

per unit output between both activities. So, the left hand side represents the margi­

nal saving of wage payments per unit output when switching from labour-intensive acti­

vity 2 to capital-intensive activity 1. The first part between brackets on the right 

hand side represents the difference in capital per unit output between both activi­

ties. The second part represents the financing cost per capital good in the case of 

full debt financing. So, the right hand side stands for the increase of the financing 

cost per unit output when SWitching from labour-intensive activity 2 to capital-inten­

sive activity 1. If the marginal saving of wage payments is larger than the increase 

of the financing cost, the firm will first decrease the labour-input by SWitching to 

capital-intensive activity 1 and after that it will worry about decreasing the cost of 

capital through the redemption of debt money: 
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Figure 5.7. The master trajectory if i < (l-f)r, c 1X < c2X and: 

c 1YX > c2yx• 

The master trajectory of figure 5.7 shows two stages, having a stationary output level 

before the final stationary stage is attained. The reader may notice that, although 

the trajectory is more complex, all the relevant features have already been discussed 

with the help of the previous master trajectories. The possibility that depth invest­

ments and the reallocation process coincide, is prohibited by assumption (A4) of the 

former chapter for the sake of simplicity. 

If the marginal saving on wage payments, as defined in (26), is less than the increase 

of the cost of capital, switching to capital-intensive activity 1 has no sense and the 

firm will first pay back its debt money and later on it will change to the capital­

intensive activity (see figure 5.8 on the next page). 

In the same way as in section 2, we can conceive the above trajectories as caused by 

different (sub)policies of the firm during the successive stages. Both patterns dis­

cussed in this section, contain three growth stages, on which managerial (sub)goals 

may be assumed to be dominating, and two "threshold" stages on which the firm mainly 

emphasize diminishing the (production or the financing) costs. Finally, in the statio­

nary stage, a policy of guaranteeing maximum dividend pay-out is established. 
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6. Summary. 

The master trajectories of the four different sets of trajectories, resulting from the 

optimal solution are presented here. Which of these sets is the optimal one, depends 

on whether equity or debt is the cheapest mode of money capital and on whether capi­

tal-intensive activity I or labour-intensive activity Z brings about the smallest unit 

cost. 

The initial values of the state variables, i.e. equity and the capital good stock, 

determine whether the whole relevant master trajectory is passed through or only a 

part of it. 

All master trajectories consist of a succession of growth and stationary stages, which 

agrees with descriptions of the life cycle of firms as described by other authors. The 

conditions under which depth-investments and/or redemption of debt money may occur are 

presented and their economic meaning has been analysed. 



CHAPTER 6. A FURTHER ANALYSIS 

1. Introduction. 

In chapter 5 we have described the optimal solution of our model in the same way as 

done in most publications on dynamics of the firm. Still, a lot of worthwhile economic 

analyses remain to be done. We will present two more ways of analysis in this chapter. 

The first way of analysis is a derivation of global decision rules, which together 

constitute the policy of the firm. The stepping stones in the four master trajectories 

of chapter 5 are the Q*-values, of which several are present in more than one trajec­

tory. In chapter 5 we have discussed the factors influencing the level of each Q*­

value. This chapter starts with another way of discussing these Q* -values, based on 

the three aspects of the policy of the firm in the relevant model concerning produc­

tion, finance and investment/dividend. 

There after, we will study the influence of enviromnental changes on six different 

features of the growth process of the firm. This is a sensitivity analysis concerning 

parameters thst are important in economic analysis: the interest rate r, the discount 

rate i, the wage rate w, the borrowing rate k, the corporation profit tax rate f and 

the investment grant rate g. 

2. Optimal decision rules. 

2.1. Production. 

In the model, two types of decisions concerning production can be distinguished: to 

which activity should the capital goods be assigned? and: to what level should the 

output be increased? In this first part of section 2, we will restrict ourselves to 

the former question, as the latter one is in fact within the area of investment and 

dividend policy. 

The firm can assign the available capital goods to capital-intensive activity 1 or to 

labour-intensive activity 2. In section 3 of chapter 5 we have already shown that the 

cost of capital is irrelevant in this assigmnent problem because this cost does not 

depend on the way in which a capital good will be used. This is in accordance with 

empirical findings of Gardner & Sheldon, 1975, who found no important financial in­

fluence on the capital/output rate of firms. Therefore, the decision rule is based on 

the marginal return to a capital good, defined as the difference between marginal 

sales and the marginal cost per capital good: 
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if :~~1-wt1 {~) ~~2 -wt-

So, financing cost and depreciation are out of consideration in this decision rule. 

The output level on which the growing firm will switch to the capital-intensive acti­

vity 1 appears to depend on the wage rate and some more technical parameters. Note 

that government has no direct influence on this output level, for, the profit tax rate 

f and the investment grant rate g are not present in (1). We will use this information 

for the sensitivity analysis in section 3 of this chapter. 

2.2. Financial structure. 

The financial structure is characterized by the relative amounts of the two kinds of 

money capital that are available to the firm: equity and debt. The amount of debt that 

the firm can attract is restricted by the size of equity. So, the financial structure 

has two extreme cases: the case that the assets as financed by equity only and the 

case that the firm is financing by means of the maximal amount of debt that is allowed 

for. Which of both cases is the optimal one, depends on the marginal return to equity. 

This return depends, among others, on the chosen activity (which fixes the marginal 

return to a capital good, as discussed in section (2.1» and the relevant financial 

structure (which fixes the cost of capital). In formula (2) of chapter 5, we have pre­

sented the marginal return to equity in the case of maximum debt financing and of a 

labour-intensive way of production (activity 2). From this formula we can derive the 

following formula of marginal return to equity in the case of maximum debt financing 

a 0 1 
--+k--{(l-f)(aK""- l+k r) + gal , 

-l+k- g j 

1, 2. (2) 

in which the suffix j stands for the actual production activity used by the firm. The 

expression has been explained in chapter 5 already. From (5.21) we can derive the 

marginal return to equity in the self-financing case (RjX) in the same way: 

R, : _1_ {(1-f) ~ + gal 
JX I-g aK j 

1, 2. (3) 

The firm will now try to realize such a financial structure as to maximize marginal 

return to equity, so: 
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{ self-financing } { } 
choose for maximum debt financing if: RjX ~ Rjy • 

(4) 

From (4) we can derive that the financing decision is influenced by all parameters to 

be discussed in the sensitivity analysis. Above that, also the choice of the produc­

tion activity has its impact on the decision through the technical parameters 

* .t j and qj. TIte above discussion is a way to explain QjYX' alternative to the discus-

sion in section 4 of chapter 5. 

2.3. Investment and dividend. 

The last decision rule to be studied in this section concerns the investment and divi­

dend policy of the firm. TIte firm can spend its earnings in two ways: to payout divi­

dend or to retain it in the firm in order to invest in capital goods and/or to pay 

back debt money. TIte last mentioned decision has implicitly been discussed in the 

previous part of this section: redemption of debt starts as soon as the firm attains 

* the QjYX-level on which self-financing becomes optimal instead of maximum debt finan-

cing. TIte second possibility, is preferable as long as marginal return to equity·e~ 

ceeds the discount rate of the shareholders i, for the discount rate represents the 

rate of return that the shareholders can obtain elsewhere. As soon as marginal return 

to equity falls below i, the firm will payout dividend instead of going on with e~ 

pansion investments, as we have discussed already in section 2 of chapter 5. In that 

case the firm will stUl invest but only on the replacement level so as to keep tt> 

capital good stock (and so: the output) on the optimal level. In this way, the follt 

wing decision rule can be designed: 

don't payout dividend and spend all earnings on investments 

make only replacement investments and payout all remaining earnings } if RjN {~ i 

decrease the capital good stock and payout all earnings 

j = 1.2 N = X. Y (5) 

TIte three decision rules as formulated in (I), (4) and (5). cover all the Q*-values of 

the master trajectories of chapter 5. TItese expressions reveal that there is in fact 

only one policy of the firm. consisting of three decisions rules. TIte variety of opti­

mal trajectories is caused by differences in the initial state of the firm and by 

different environmental conditions. represented by different sets of values of the 

parameters under which it has to operate. 
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3. Environmental influence on the trajectory of the firm. 

In the previous section, we have explained the way in which the relevant Q*-levels are 

fixed. Now, we will study how changes in the values of the parameters, enumerated in 

section I, influence these values (reallocation, final output and consolidation) and 

the growth of the firm towards those threshold values (expansion). Moreover we will 

study changes in the parameters that cause a switch to another master trajectory (sub­

stitution and financial substitution effect). In thi's way we will discuss the environ­

mental influence on the six different features that characterize the shape of the 

master trajectories. 

3.1. Reallocation. 

In chapter 5 we discussed the reallocation of labour and capital due to decreasing 

marginal returns. During the optimal trajectories of the firm, labour and capital are 

complementary inputs, due to the assumed linear production activities, except in the 

depth investment stage, in which: 

(6) 

Before going on, we remind that we are dealing with decreasing returns to scale, so 

changes in the values of the parameters that cause a rise (fall) of the value of the 

* right hand side imply a fall (rise) of the value of Q21' From (6) and (4.25) we now 

can derive that a rise of the wage rate will decrease the output level on which the 

firm starts the reallocation process. None of the other parameters, mentioned in the 

beginning of this chapter, appear to influence this level. 

3.2. Final output. 

In the final stage of the trajectory, the firm has attained the optimal level of out­

put and it yields maximal profit. The level of output (and of employment) depends on 

the values of the environmental parameters, for, from the previous section we know 

that this level is fixed by: 

i .. (7) 

dS 1 ..L i 
dQ = c jX = q:- {wi. j + (l - 1_f)a + (l-g) H) when i < (l-f)r 

J 

when i > (l-f)r (8) 
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From (8) we conclude that, in the case of i > (l-f}r, a rise of the profit tax rate f, 

of the discount rate i, of the interest rate r and/or of the wage rste w will decrease 

the final output level and hence the level of employment and the amount of issued 

dividend. On the other hand, an increase of the borrowing rate k and the investment 

grant rate g will raise the stationary value of Q. The explanation is quite obvious 

and will therefore be left to the reader. 

In the case of expensive debt money (i < (l-f}r), neither r nor k influences the final 

output level, because the firm does not borrow in its final stage. The remaining para­

meters f, g, i and w affect the final output level in the same way as in the ahove 

case. 

3.3. Consolidation. 

The third feature of the growth process of the firm to be studied here is the output 

level at which the firm starts its consolidation. From chapter 5 we know that this 

level is fixed by: 

Q. Q* - ~~.!...{wt + (I -...L}a + (I-g}r! 
JYX dQ qj j I-f 

(9) 

In the same way as in the analysis of the final output effect, we can derive directly 

from (9) that the firm will start paying back its debt at a lower level of output, 

when the wage rate w or the interest rate i is increasing. A rise of the corporation 

profit tax rate f and of the investment grant rate g will increase the relevant output 

level. 

3.4. Expansion. 

In this part we will discuss the environmental influence on the rate of growth of the 

firm. We can measure the firm size, and thus its rate of growth, by means of several 

standards such as sales, employment, assets and equity. Smyth e.a., 1975, and: Shalit 

& Sankar, 1977, have shown that in empirical research, these standards are not inter­

changeable without any more and that different conclusions can be drawn, depending on 

the measure chosen by the analyst. As in our model shareholders wealth is the crite­

rion function, we have chosen equity as a measure of the size of the firm, because 

this standard is the only one relevant for the shareholders. 

Because we have fixed the lower bound of dividend payout on zero value, the firm does 

not payout any dividend before attaining the final stationary stage. So, from (4.17) 

we derive that before entering the final stage, it holds that: 

x • (I-f) (0 - rY) + gI (IO) 
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(11) 

In this way, the model confirms that investment grants have a positive influence on 

the rate of growth of the firm. From (10) and (4.23) we can derive that: 

(12) 

which shows the negative influence of the wage rate on the rate of growth. The same 

holds for the corporation profit tax rate f, if we assume that: 

1 
(1 - l+k - g) i > ga (13) 

The left hand side of (13) is the minimum return to a capital good, necessary to sa­

tisfy the shareholders. The part between brackets is the reciprocal of the purchasing 

power multiplier in (5.2). It represents the amount of equity needed to buy a capital 

good when it is financed with as much debt and investment grants as possible. The 

right hand side is the decrease in depreciation caused by the investment grant. So, in 

(13) we assume that the return of the relevant capital good to the shareholders is not 

based only on the advantage of investment grants. This assumption is sufficient to 

derive from (10) that: I) 

(14) 

When the firm is borrowing, the interest rate also has a negative influence on the 

rate of growth, for, from (10) we can derive: 

1) From (10), Y < kX and: X + Y K results that: 

ax k IT = - (0 - rY) ( - 0 + l+k r K 

From the master trajectories of chapter we can derive that, when i > (l-f)r: 

* aD k k i....L 
Y> 0 + Q < Qjy + aK > l+k r + (1 - l+k - g) H - I-f a 

Due to the concavity of S, and so of 0, this yields: 

ao k k i g 
0) K aK + 0> K {l+k r + (1 - l+k - g) 1-f - 1-f a) 

which results, together with (13), in (14). In the case of i < (l-f)r (in which: 

Y > 0 + Q < Q* ) the same results can be derived. 
jYX 
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ax ar = - (I-f) Y < 0 when Y > 0 (15) 

Finally, when the firm is borrowing at the maximum rate, the value of the borrowing 

rate will influence the rate of growth: 

Y - kX" K = (l+k)X" X = 1 _ !(l+k) { (1-f)0 + {(1+k)a - k(l-f)r} x) (16) 

From (16) we derive that: 2) 

~> 0 ak ' 
(17) 

which implies that relaxing the borrowing constraint will accelerate the growth pro­

cess of the firm. 

3.5. Substitution. 

In this part we will discuss substitution between labour and capital in the final 

stage of a trajectory, i.e. the change in the relative amounts of both inputs due to a 

change in their relative prices, at a given level of output. This appears through a 

switch from one production activity to the other in the final stage. As the output 

level, and thus total and marginal returns are fixed, the firm will minimize its 

costs. This agrees with findings in the previous chapter, based on the shape of the 

master trajectories, that the final activity is 

2) Expression (16) results in: 

ax 1 }2 ao ak = {I _ g(1+k) {(1-f)gO + [a - (l-g)(I-f)r + (l - g(1+k» (1-f) nIx) 

due to the concavity of 0 and of the fact that K = (l+k)X, this implies: 

ax { 1 }2 ao j a k > 1 _ g( l+k) {(1-f) a K + a - (1-g) (1-f) r X 

* When i > (l-f)r, so Q < Qjy one can derive, like in footnote I, : 

ax { 1 }2 k a k > 1 _ g(1+k) {(l - l+k - g)(i - (1-f)r) + (l-g)a} > 0 

* When i < (l-f)r, so Q < QjYX' the above inequality results in: 

a X 1 2 
a k > {I _ g(1+k)} (1-g) a > 0 
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activity 1 } { } w { } 
activity 2 when clN ~ c2N ' N = X, Y - when cK ~ s12 (18) 

in which cK cost of capital in the final stage 

-L k k i = (1 - I-f) a + T+k r + (1 - 1+k - g) H when i > (l-f)r 

• (1 - -L) a + (1-g) _i_ 
1-f 1-f when i < (1-f)r 

s12: rate of technical substitution between activity 1 and activity 2 

This is in accordance with the well known analysis in static micro economics, which we 

will present with the help of the following figure: 

K 

activity 2 

f"'-----'--"-""'-''-''T---''t----_ L 
o 

Figure 6.1. Substitution of labour and capital. 

The line a 1a2 is the isoquant as defined in (5.13). In (5.14) we derived its slope, 

and so tang a : 
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(19) 

We assume this slope to be exogenously fixed. Now, consider the so called iso-budget 

line a3a4' defined by: 

total costs = cK K + w L = Y (: fixed budget) (20) 

This line represents all combinations of inputs of labour and capital if the budget of 

y is spent. The point where the iso-budget line touches the isoquant of the highest 

output level, represents the combination of inputs of labour and capital that results 

in the highest output level for a fixed budget y and for fixed prices of labour, w, 

and capital, cK• From figure 6.1 one can derive that this point is a 2 (so the firm 

prefers the capital-intensive activity) if: 

tang ~ > tang ex (21) 

so, from (I9) and (20), if: 

(22) 

This is in accordance with (I8). Now, the value of tang ~ may decrease due to a de­

crease of the cost of labour, w, and/or a rise of the cost of capital cK- Then the 

iso-budget line (we still keep the budget fixed on the level y) switches to a 5a 6 and 

a 1 will become the optimal combination of inputs. 

The improvement of (18) compared to the analysis of figure 6.1 is that, due to the 

more complex underlying model, we have derived more details of the composition of the 

cost of capital cK and so we are able to trace more precisely the influence of separa­

te parameters on the substitution process. 

From (18) can be derived that a rise of the wage rate w, the investment grant rate g 

and the borrowing rate k will stimulate the choice of the capital-intensive production 

activity 1 and so substitution in a capital-intensive direction. A rise of the inte­

rest rate r and of the discount rate 1 will stimulate substitution in a labour-inten­

sive direction. The same is true for a rise of the corporation profit tax rate f, due 

to assumption (I1) in this section. 
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3.6. Financial substitution. 

From the master trajectories, described in chapter 5, one can conclude that the opti­

mal final financial structure is: 

maximum debt financing 
self-financing when l:f {~I r (23) 

If we call i/(I-f) : the price of equity, and r : the price of debt, then we may use 

the term "financial substitution" to denote a change in the inputs of debt and equity 

in the final stage due to a change in their (relative) prices. This is analogous to 

the substitution process as defined in production theory (see the previous part of 

this section). Let us describe this with the help of the following figure: 

r 

I 

• c 

i 
H 

Figure 6.2. Changes that cause financial substitution effects. 

If the set of values of the relevant parameters belongs to area I of figure 6.2, the 

firm will finally finance its equipment only by means of equity. In area II the firm 

will borrow at the maximum rate in its final stage. 

A movement from a to b may be caused by a rise of the time preference rate and/or a 

rising corporation profit tax level. It provokes an increase of debt at the cost of 

equity. A movement from b to c may be caused by a riSing interest rate. In that case, 

debt is pushed out and replaced by equity. 

In the next table we have summarized the findings of this section: 
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:s: profit investm. time pref. borrawing interest wage 

tax rate grant r. rate rate rate rate 

f g i k r w 

impact on 

reallocation 
level 0 0 0 0 0 -
final output 
level - + - (+) (-) -
consolidation 
level + + 0 0 - -
expansion rate - + 0 + - -
----------- ------- ------ i----- ~.----1-------- ---
substitution + L + K + L (+ K) (+ L) 

financial 
substitution + y 0 + y 0 + X 0 

Table-6.1. Impact of the parameters on the main features of the master trajec­

tories. 

In which + 

0 

+ K 

+ L 

+ X 

+ y 

( ) 

rise of the feature value 

fall of the feature value 

no influence on the relevant feature 

substitution in a capital-intensive direction 

substitution in a labour-intensive direction 

substitution towards a self-financing structure 

substitution towards maximum borrowing 

the parameter only influences the feature if i > (1-f)r 

4. Influence of (sets of) environmental parameters. 

In the former section we have studied the main features of the master trajectories and 

how they are influenced by changes in the values of the environmental parameters. So, 

we have discussed the separate rows of table 6.1 there. In this section we will dis­

cuss the columns of table 6.1 by considering changes in the environmental parameters 

apart from each other. We will study the over-all influence of each such parameter on 

the trsjectory by putting together its influences on the different features. We will 

demonstrate this with the help of the first optimal trajectory of chspter 5, section 

5. The reader can easily do the same analysis for the other trajectories himself. In 

the remaining part of this chapter, substitution effects will be left out of consi-

deration because they imply a change to another trajectory. 



81 

We will present the figure of the relevant trajectory again before starting the dis­

cussion: 

D,K,L,Q,Y 

o 

Q 

K 

/._.- ._.- L 

•.••••••.•• D 

z 
T 

Figure 6.3. The master trajectory if i < (l-f)r, c 1X < c ZX and: c 1YX > cZYX' 

4.1. Corporation profit tax rate. 

From table 6.1 can be concluded that the corporation profit tax rate has different, 

sometimes opposite influences on the optimal trajectory of the firm. As far as the 

* three Q -values are concerned, table 6.1 indicates that a rise of the corporation 

* prof!t tax rate f will result in a decrease of Q1X;final output effect), a~ increase 

of QIYX (consolidation effect) and an unaltered QZ1-level. The fact that Q1yx rises, 

meaning that the firm will postpone the consolidation process, stems from decreasing 

net cost of borrowing when the tax rate rises, due to the tax deduction effect. On the 

other hand, the rise of the tax rate will decrease earnings after tax payments from 

which (expansion) investments have to be paid. In this way. the rate of growth falls 

down. This all may result in the altered shape of the trajectory of figure 6.3 as 

presented in figure 6.4 on the next page. 

The signs on the vertical axis of figure 6.4 indicate an increase (+) or a decrease 

(-) of the relevant Q*-value , compared to figure 6.3. The signs on the horizontal 

axis indicate an increase (+) or a decrease (-) of the relevant period, compared to 

figure 6.3. 
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D,K,L,Q,Y 

.-.-.-.-.- ...... --- -;~._._.4'-.-."",-.-.-.-.-
- -- :....:.:..'-.-.-- .. ,...- " .......... . 

\Y 

(+) (+) (+) (.:':) \ (.:':.l 

o 

Q 

K 

L 

D 

Figure 6.4. Change of the trajectory of figure 6.2 when f increases. 

T 

* The first two periods increased due to the lower rate of growth and the unaltered Q21 
value. The third period increased because of the lower rate of growth and because of 

* the rise of QIYX. The fourth period increased due to the lower rate of growth and due 

to the larger amount of debt to be paid back. On the other hand, the increased value 

* of Q1yx implies a greater profit volume which will (partly) counter-balance both time 

lasting effects. In the fifth period two opposite influences of a rise of f hold, too, 

the fall of the rate of growth due to increased taxes and the smaller distance between 

* * * * QIYX and QIX due to a rise of QIYX and a fall of QIX. 

We can conclude that a rise of the corporation profit tax rate f will favour employ­

ment in the firm till T = t 9 ,11' the depth-investment process is postponed and it will 

take place in a more moderate tempo. Above that the employment level in the fourth 

stage will be on a higher level. Further, due to a rise of the corporation profit tax 

rate, the firm will keep its debt for a longer time period, for, till T = t 4 ,9 all 

periods increase. But, after T = t 9 ,11' so when we are talking about mature firms, a 

rise in the corporation profit tax rate will provoke, beside a decreasing growth rate, 

also declining profits and also a declining employment level in the final stage. 

From the above discussion the enrichment may become clear of economic analysis due to 

the introduction of dynamics. In static theory only the influence of the corporation 
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profit tax rate in the final stage can be studied, while dynamic analysis reveals a 

more complex influence of the corporation profit tax rate, depending on the maturity 

of the firm. 

4.2. Investment grant rate. 

* A rise of the i:vestment grant rate will ~use, according to table 6.1, a rise of QIX 

as well as of Q1 YX' while the value of Q21 will be unaltered. As the rate of growth 

will also rise due to the additional financial means, we get the following figure: 

D,K,L,Q,Y 

Q~x (+) Q 

K 

Q~yX (+) 

Q~l (0) 

/'. . ____ -" . .,.,.............. _____ -'........ _._ . .....-._._._._.-L 
'. ---- .....-.-.~.-.-.-. --, "..- " ',.-.-' '\ 

(-) (-) (2:.) (2:.) \ 

•..•.•...••.•.• D 

(:':) 
~ __ ~ ____ .-____ -r ____ -+ ____ ~~ ______ ~+T 
o z 

Figure 6.5. Change of the trajectory of figure 6.2 when g increases. 

The government of several countries have introduced investment grants mainly to in­

crease employment by stimulating investments. So, it is interesting to see whether 

employment will in fact increase when g rises. From figure 6.5 can be concluded that, 

due to the higher growth rate, employment rises more quickly in the first stage. But 

the reverse of the medal is that the same higher growth rate makes earlier the moment 

on which depth investments, and thus the decrease in employment, will start (note that 

* the output level Q21' on which this process starts, is not altered). After this pe-

riod of depth investments, investment grants will influence employment in a positive 

way because of the increase of the growth rate and of the threshold values of Q * 
IYX 

and Q* .. So, investment grants may have opPOSite influences. On the one hand, they 
IX 

lower the cost of capital, there by freeing financial means to stimulate growth and to 

attain higher output levels. On the other hand, the decrease of the cost of capital 
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stimulates firms to depth investments and push out labour, if there is an attractive 

way of capital-intensive production available. 

4.3. Abolishing investment grants. 

The rates we have discussed in the previous two parts of this section can be conceived 

as describing the influence of government on the policy of the firm. The main diffe­

rence between them is that the corporation profit tax is a global instrument, having a 

checking influence, while investment grants are awarded to stimulate separate firms. 

One might wonder what kind of influence should result from coupling both instruments 

by assuming, for example, that the government may decrease the investment grant rate 

and uses the financial means saved to decrease the corporation profit tax rate in 

order to decrease the specific character of its policy. Verhoeven, 1982, found some 

figures that enable us to link both instruments for the Dutch case. He calculated 

that, if the government should fully abolish investment grants, the corporation profit 

tax rate should be decreased from 48% to 22,5%. This is an extreme case of course, but 

is may clarify the combined effect of diminishing investment grants as well as corpo­

ration profit tax. 

Consider the investment grant rate g and the corporation profit tax rate f as varia­

bles. Then, we can derive from (10) that, before the stationary stage it holds that: 

AX = - (0 - rY) IJ.f + lAg (24) 

Abolishing investment grants and the above mentioned decrease of corporation profit 

tax imply: 

Ag = - g and: Af - 0,225 - 0,48 - 0,255 (25) 

From (24) and (25) we can derive that the above combination of governmental measures 

causes an acceleration of the growth of the firm if: 

AX > 0 + 0,255 (0 - rY) > gl (26) 

so, if investment grants received by the firm, gI, are less than 25t% of profit before 

tax, 0 - rY. 

We further know from the previous parts of this section that Q * is insensitive to 
* 21 

changes of f and g and that Q1 YX will decrease when f and/or g is falling. As far 

as Q* is concerned, we can derive from (3) that: 
IX 
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* ao i - g(a+i) 
Q = QIX· ar = I-f 

1 

* Abolishing investment grants, say at T - t a , will increase (decrease) QIX 

if : :~ 
1 

Because: T < ta + f = 0,48 and: T > ta + f - 0,225, g - 0; (28) implies: 

if i - g(1+a) >«) _i_+ if 
0,52 0,775 i >( <) o,rl-::g a 

(27) 

(28) 

(29) 

The effect thus depends on the time preference rate of the shareholders i, the invest­

ment grant rate g and the depreciation rate a. We can present the relationship by 

means of a table in which the critical i-values appear as a function of the lifetime 

of the investment project and the average investment grant rate of the relevant pro­

ject. In this table we have transformed the relevant rates of the continuous model 

into values of the discrete rates as used in practice: 3) 

I~ grant% 16% 12% 8% 4% 

lifetime 

3 years 38,2% 23,2% 13,0% 5,6% 

6 years 17,2% 10,4% 5,8% 2,5% 

9 years 11,1% 6,7% 3,8% 1,6% 

12 years 8,2% 5,0% 2,8% 1,2% 

15 years 6,7% 3,9% 2,2% 0,9% 

Table 6.2. Threshold values of i concerning the influence 

of investment grants on final employment. 

3) Say i' is the discount rate used by the shareholders in % per year, than: 

In(l+i')= i. Further: a - _ In(1 1) 
-~ 
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From table 6.2 can be concluded that abolishing investment grants will increase profit 

and employment in the final stage of the optimal trajectory of figure 6.2 for medium 

and long range investment projects (> 6 years) that do not consist of investments that 

are granted at the maximmn rate (g ( 0,12). AssUllle that we are dealing with such a 

project, then we can put all the above mentioned effects together in the following 

figure: 

D,K,L,Q,Y 

r-----Q 

r------K 

........ ·_·_·_·-·_·-L 
• - .. -."."...-.......... ~ .-'*" "' __ - ,-.~._._._._#.,..- ... ~ .... .......... D 

--..-:~-.-.- , -- - '\ 
(-) (-) (-) (-) \ (:) 

o z 

Figure 6.6. Change of the trajectory of figure 6.2 when g = 0 and f 

decreases. 

From figure 6.6 can be concluded that, if the government should abolish investment 

grants in the Dutch case and should lower the profit tax rate, then this should stimu­

late depth investment and consolidation in younger firms having s high marginal return 

to ssles, and should increase the profit and employment level in mature firms, having 

a more moderate marginal return to sales, supposed that equity and capital-intensive 

production are cheap. 

4.4. Financial parameters. 

If we want to study changes in the time preference rate i, the borrowing rate k and/or 

the interest rate r, we should be aware of the causality between changes of their 

values. A change of i and/or r may be caused by autonomous changes in the market, and 

they mayor may not influence the value of k. But, if we conceive the value of k as an 

indicator of the risk class to which the firm belongs (see chapter 2, section 7), then 
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a rise of k implies a switch to a class of firms with a higher degree of risk and we 

can assume that thus a rise of k will cause a rise of rand i. In this section we will 

study the relation last mentioned in more detail. 

From table 6.1 we can conclude that these simultaneous changes will not influence the 

* * reallocation level Q21 and will lower the consolidation level Q1YX in figure 6.3. 

The influence of the change mentioned above in the values of the three financial para­

meters on the expansion rate is not clear without anymore, because of the contrary 

sign of the influence of a rise of the borrowing rate k (+) and of the interest rate r 

(-). The relationship assumed above can be presented as: 

r 
dr 

r(k) with : dk > 0 and i i(k). so: (30) 

having the sign: {(-) " (+) x (+)j + {(-) x (+)j =- (31) 

From (31) results that a rise of k and hence of r (and i) will lower the expansion 

rate during the period that the firm is bo~rowing at the maximum rate. After the con­

solidation period. k nor r appear in the X-formula. so they do not longer influence 

the rate of growth. In fact. during the consolidation period the firm changes to a 

less risky class. which will decrease i and r. We skip this refinement here. but we 

refer to the work of Senchak. 1975. mentioned already in section 7 of chapter 2 who 

introduced the interest rate as a function of the leverage factor. As far as our tra­

jectory is concerned, we assume that the rise of k will only raise rand i during the 

first four periods. till the consolidation stage is finished. So the final output 

* level Q1X will not be influenced. Taking all in all. when k. rand i are rising we get 

a change of figure 6.3 as presented in figure 6.7. 

The firm starts in figure 6.7 at a higher output level. compared to figure 6.2, due to 

* the extended borrowing facility. Together with the unchanged reallocation level Q21 
this will shorten the first period. Opposite influence comes from the decreased expan­

sion rate. so the length of the first period is undetermined. Also in the third period 

contrary forces influence the length of the period: the decrease of the consolida-

* tion level Q1YX will shorten the period. while the decreased expansion rate will 

extend the length of the period. In the consolidation stage. the amount of debt to be 

paid back is positively influenced by the rise of the value k, while the fall of 

* the value of QIYX has the opposite effect. In the beginning of this stage. the in-

crease of X will be lower than in figure 6.3 due to the higher leverage level. 
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Figure 6.7. Change of the trajectory of figure 6.2 when k, i and r increase. 

Finally, in the fifth stage, the length of the period is determined by the greater 
'" ,. difference between the values of QIX and QIYX' 

Although we could very well trace the changes in the Q*-values due to a rise of k, i 

and r, it still remains difficult to give a picture of the change of the whole trajec­

tory because of the decreasing growth of equity. Anyhow, the firm starts at a higher 

output and employment level and will start its consolidation at a lower output level. 

Due to the fact that all debt has been paid back before the final stages are entered, 

and so the time preference rate has taken its value of figure 6.3 again, final profit 

and employment levels remain unchanged. lhe decreased growth of equity up to the 

fourth period (so: in younger firms) may be translated into a flatter change of em­

ployment and of output in those stages. 

4.5. Wage rate. 

From table 6.1. we can conclude that a rise of the wage rate will lower the output 

levels on which the firm starts its depth investments, its redemption of debt money 

and its final output stage. lhis need not to imply that the final stage will be attai­

ned earlier, for, the expansion rate will decrease as well. lhis implies that in the 

case of a rise (or fall) of the wage rate, the change of the length of any period is 
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undetermined, unless we have more specific information about the values of the parame­

ters of the model. Anyhow, a rise of the wage rate will decrease output and employment 

during the whole trajectory of the firm. 

5. Summary. 

An analytical solution of an optimal control model lends itself very well to all kinds 

of (marginal) analysis. In this chapter we studied the solution in more detail by 

means of three presentations. First, we derived decision rules the firm has to apply 

in order to realize its optimal policy. These decision rules relate to production, 

finance and investment, the building blocks of our model. After that, we concerned 

ourselves with the influence of several "environmental" parameters on six distinct 

characteristics of the master trajectories. This influence may cause changes in the 

shape of the relevant trajectory or it may cause the firm to change to another master 

trajectory. Finally we studied the environmental influence through changes in the 

values of three sets of parameters: the governmental parameters (corporation tax rate 

and investment grant rate), the financial parameters (borrowing rate, interest rate 

and time preference rate of the shareholders) and, at the end, a social parameter (the 

wage rate). 



CHAPTER 7. CONCLUSIONS. 

In this short concluding chapter, we will look back to the results of the previous 

three chapters. We have extended the tradition of the dynamic micro-economic theory of 

the firm by introducing activity analysis and investment grants. Further, we have 

enriched economic analysis by dealing more intensively with sensitivity analysis. 

The analysis is conclusive on the optimal production, investment, financing and divi­

dend policy of the firm. We will summarize the main results in the following twelve 

statements: 

1. If we assume that the sales-function and the properties of the production activi­

ties are exogenously fixed, then the following factors will determine the optimal 

trajectory of the firm during the planning period: 

a. the relationsh1p between the total costs per unit output of the two activities 

(c 1 ~ c 2), as far as the optimal production policy is concerned, 

b. the relationship between the prices of equity and debt (after corporation profit 

tax) as far as the optimal financial policy is concerned (i S (l-f)r), 

c. the size of the initial available amount of equity, X(O), and equipment, K(O), 

as far as the stage is concerned at which the firm starts on its trajectory. 

2. When the price of debt is less than the price of equity, the firm will always bor­

row at the maximum level on its optimal trajectory. 

3. When the total cost per unit output of the capital-intensive activity exceeds that 

of the labour-intensive one, the firm will never perform the capital-intensive 

activity. 

4. When the price of debt exceeds the price of equity, the firm may still be interes­

ted in borrowing. The output level must be so small that marginal return on invest­

ment exceeds the price of debt. 

5. When the total cost per unit output of the labour-intensive activity exceeds that 

of the capital-intensive one, it may still be profitable to the firm to perform the 

labour-intensive activity. The output level must be so small that the sales advan­

tage per unit of a capital good assigned to the labour-intensive activity, surpas­

ses the total cost disadvantage of the latter activity. 

6. The firm may perform both available production activities at the same time, but 

only during a transitory stage of depth investments on its optimal trajectory. 
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7. Although the firm in our model only maximizes its value in favour of the sharehol­

ders, it seems to act like it is pursuing different (sub) goals during the succes­

sive stages of its trajectory. So, it may start as a growth maximizer, switching 

to cost minimization and, after a second or even a third period of growth maximi­

zation, it may end as a profit maximizer. 

8. The optimal trajectories are based on three decision rules, concerning production 

(choice of production activities), finance (choice of the financial structure) and 

the distribution of the financial means between investments and dividend. 

9. The influence of changes of the parameter values (i.e.: rates of: corporate profit 

tax, investment grants, time preference rate of t~e shareholders, borrowing, inte­

rest and wage) on the shape of an optimal trajectory is complicated. This influen­

ce can be subdivided into impacts of these changes on: 

a. the reallocation level: the output level on which the firm switches from la­

bour-intensive to capital-intensive production, 

b. the final output level: the output level on which the firm stops expanding its 

output and starts paying out dividend, 

c. the consolidation level: the output level on which the firm s tarts switching 

from maximum debt financing to self-financing, 

d. the expansion rate: the speed at which the amount of equity increases, 

e. the substitution effect: the choice of the production activity in the final 

stage of a trajectory, 

f. the financial substitution effect: the choice of the financial structure in the 

final stage of a trajectory. 

10. Under certain circumstances, as described in chapter 6, abolishing investment 

grants combined with a decrease of the corporation profit tax rate, will stimulate 

depth investments and consolidation in younger firma and will raise profit and 

employment in mature firms. 

11. Under the same circumstances, as mentioned under 10, extension of the borrowing 

facilities, combined with an increase of the interest rate and of the discount 

rate, will lower the increase of equity and the output level on which the firm 

starts paying back debt, but will not affect the final profit and employment 

level. 

12. Under the circumstances, mentioned under 10., a decrease of the wage rate will 

increase output and employment during the whole trajectory of the firm. 
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Apart from these results, the study may be the basis for further extensions. It should 

be interesting, for example, to study the allocation of labour between firms operating 

on the same market, by introducing competitors in the framework of a dynamic game, as 

is done in the more limited advertising models by Levine & ~pot, 1982. Another e~ 

tension that merits consideration, is the introduction of a time dependend sales func­

tion, as published for example in: Lesourne & Leban, 1980, through which the impact of 

business cycles on the allocation of labour and capital can be studied. Further impro­

vement of modelling the production problem could be realized by introducing vintages 

of machines (Virmany, 1976) and switching costs. Next, one could replace the assump­

tion of an imperfect output market by the assumption of a perfect output market, which 

implies fixing the selling price. Then, the model becomes a linear optimal control 

model. This kind of model can be solved by means of linear programming (see: Krener, 

1982), which opens the opportunity to build more extensive, detailed models, having a 

greater value for practitioners. In this way, Vicker's bridge from micro-economics to 

business economics could be pushed on. Al~o the dynamic interaction between the firm's 

development and its investors seems a valuable extension. A further refinement of the 

description of the tax systems, especially the impact on the investor's income (see: 

YII-Liedenpohja, 1978) will then be necessary. Finally, the introduction of stochastic 

elements into such aspects as financing, technical progress and demand may enrich the 

value of the analysis, on the understanding that, in spite of the increased complexi­

ty, an analytical analysis remains possible in the way we have done in this thesis. 

Many more ideas can be raised here. They all will confirm that the underlying research 

is done in an area having many opportunities for further, interesting research and 

holding out projects of important results. 



APPENDIX 1. AN INTERPRETATION OF THE MAXIMUM PRINCIPLE. 

1. Introduction. 

This appendix is meant to be an informal introduction to the Maximum Principle, in the 

tradition of Dorfman, 1969, and Ludwig, I978, page 162.1) First, we will introduce 

some technical terms. After that the optimality conditions will be presented in three 

steps. We start with a description of the Maximum Principle in a more general form, 

together with a discussion of the so called "Hamiltonian (function)" and the "costate 

variables". Second we will study the impact of constraints on the control variables 

and introduce a "dynamic Lagrangian (function)". Finally, some ways will be presented 

in which constraints on the state variables can be dealt with. 

This appendix is called an informal introduction, because it concentrates on the main 

ideas leading to the optimality conditions, without bothering about technical issues 

such as: continuity, shape of the relevant functions and constraints etc. But after 

the presentation of the main points, we will state the optimality conditions in a more 

complete form. 

2. Technical terms. 

In this section we will use the Jorgenson model of chapter 3 to introduce some techni­

cal terms. The problem reads: 

maximize 
I, L 

subject to 

z 
J e-iT{p.Q(K(T), L(T» - w.L(T) - c.I(T)} dT 
o 

K = leT) - a.K(T) 

(1) 

(2) 

In order to get a proper description of the problem, we have to add the follOWing 

constraints: 

(3) 

1) We refer to the follOWing books for more mathematical, rigorous or more detailed 
introductions with an economic background: Intriligator, 1971, pp. 292-305 and pp. 
344-369: quite an easy introduction but without an explicit discussion of constraints 
on control and state variables; Takayama, 1974, pp. 600-719: more rigorous, not dea­
ling with constraints on state variables; Sethi & Thompson, 1981: a comprehensive tour 
through Optimal Control Land, paying much attention to published applications; Kamien 
& Schwartz, 1981, pp. 11-250; a handsome step by step introduction to the optimality 
conditions, dealing extensively with constraints on the state variables. 
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K(T) > 0 (4) 

K(O) = kO (5) 

A description of the above problem in the jargon of Optimal Control Theory can be 

given as follows (Sethi & Thompson, 1981, 2): 

The system to be controlled is the firm. The state of the system is measured by the 

state variable K. The value of this state variable is controlled (directly or indi­

rectly) by the control variables leT) and L(T). Given the value of the state variable 

K and the control variable l, the state equation (or: system equation) (2) determines 

the instantaneous rate of change of the state variable. So, based on the initial value 

K(O), fixed by the initial state condition (5), and the values of lover the whole 

planning period (control history), we can integrate (2) over time to get the ~ 

trajectory of the firm. The firm wants an investment and employment plan, maximizing 

the objective function (1). The designer of this plan has to reckon with the laws of 

motion of the firm as described in (2) and (5), with the state constraint (4) and with 

the control constraints (3). Any plan, fulfilling these constraints is called a 

feasible solution. 

We shall now turn to the optimality conditions of the Maximum Principle. To facilitate 

the more general presentation in this appendix, we will now switch to a notation, 

quite different from the notation in the rest of this work. 

3. The Maximum PrinCiple of Pontryagin. 

At any date t, the firm has a specific state inherited from its past performance, 

represented by the state vector x(t). This vector may consist, for example, of the 

amount of equity, the stock of capital goods, the employment level, the goodwill etc. 

Based on this state the firm make decisions represented by the control vector u(t), 

consisting, for example, of investments, dividend payout etc. These control variables 

have their impact on the performance level of the firm (profit, sales, employment). 

This performance level is measured in terms of a rate per unit of time, 

fO(x(t),u(t),t) and a valuation of the final state of the firm s(x(z),z). We assume 

that the firm maximizes this performance level over the planning period [O,zl, so: 

z 
maximize V(xO' u, 0) = J fO(x(t), u(t), t)dt + s(x(z), z) 

o 
u 

in which x(t) 

x(O) 

m dimensional vector of state variables. 

initial state (exogeneously given). 

(6) 



u(t) 

u 
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n dimensional vector of control variables. 

entire trajectory of control variables over the plan­

ning period. 

t time. 0 < t < z. 

s(x(z). z) (discounted) salvage value of the firm at the end of 

the planning period. 

Above that. the relevant controls influence the rate of change of the state. This rate 

also depends on the present state and date: 

Xi - fi(x(t). u(t). t) • i-i • •••• m (7) 

For the time being we assume that the present state does not restrict the decision 

possibilities of the firm. 

Now. the problem is to select a decision history '7, (i.e.: the policy of the firm 

during the planning period). that maximizes the result V. assumed that the firm ini­

tially is in the state xO' The complexity is caused by the twofold effect of a deci­

sion history: an immediate effect on the result through fO and a carry-over effect 

through its impact on the state of the firm and thus on future results. The Maximum 

Principle handles this problem by reducing the optimization over the whole planning 

period to the (sub) optimization over successive short time intervals. 

More specifically. to explain the Maximum Principle we must study the problem for an 

arbitrary short time interval within the planning period. say [to tit. tl. Within this 

interval. the firm cannot change its control history u(t). The performance level that 

can be reached by the firm from t onwards may then the described by: 

V(x.u.t) 
z 

fO(x(t).u(t).t) !J. + f fO(x(T).u(·r),r)d, + s(x(z).z) 
t+!J.t 

(8) 

The first part of the right hand side represents the immediate effect. the second part 

is the same function as in (6). but starting at tit.t. 

We are now going to study the decision problem of the firm in the interval [to tit.tl. 

assuming that the firm will act in an optimal way after that period. Therefore we 

introduce the symbol v*. representing the performance level if the firm carries out 

the best policy. Thus at date t we may write: 

* -V (x(t).t) = maximum V(x(t).u.t) (9) 

u 
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Assume that the firm realizes this best policy from tit> t on. The performance of (8), 

then turns into: 

* W(x(t),u(t),t) - fO(x(t),u(t),t). IJ. + V (x(ti6t), ti6t) 

The policy of the firm over the interval [t,ti6t] is thus optimal if: 

* W(x(t),u(t),t) - V (x(t),t) -

ti6t 
- maximum { f 

(10) 

(11) 

The reduction of the overall optimization problem to an incremental optimization is 

now presented in (8), (10) and (11). assuming that these equations hold for all 

t. 0' t, z. The relevant optimization problem has two aspects: the choice of the 

control u(t) and the (indirect) choice of the state x(t). 

In order to derive from (8), (10) and (11) the three optimality conditions of the 

Maximum Principle to be discussed in this section. we will first introduce the func­

tion "'i(t), to denote the marginal contribution of the state variable xi(t) to the 

performance level under the optimal policy. and the symbol ",(t) to denote the m dimen­

sional vector of values of "'i at date t, so: 

a * >jI(t) :-iiXV (x(t),t) (12) 

From (11) and (12) can be derived, that the optimal value of the control history u*. 

has to fulfill the so-called "lIamiltonian-Jacobi-Bellman equation": 

* m * ma~~ {fO(x (t),u(t),t) + l: "'i(t) fi(x (t).u(t),t) + 
.- i=1 
u 

a * * +a-tV (x (t),t») - 0 for each t, 0, t, z. (13) 

(see, for example, Bryson & Ho, 1969, 131-135, Sethi & Thompson, 1981, 27-29). Be­

cause a V * la t does not depend on u, the same optimal value of the control results from: 

* maximize H(x (t),u(t), ",(t),t) :- * m * fO(x (t),u(t),t) + l: "'i(t)fi(x (t),u(t),t) 
1-1 
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for each t, 0 < t < z (14) 

In order to ~nderstand the meaning of (14), we have to go back to (10) and see how the 

application of u(t) influences the value of the performance level, v*(x(t),t), in two 

ways. The first way of influencing concerns the instantaneous, direct influence of the 

application of u on V*. This contribution can be formulated as: 

* fO(x (t) ,u(t), t).t. (15) 

The second way in which V* will be influenced is an indirect one, and is caused by the 

change of the state variable at t+t.t, lox, due to the application of the control u(t). 

This contribution can be formulated as: 

a * * ax v (x(t+t.t),t+t.t)t.x, in which: lox = I. .x(t) = I. .fi(x (t),u(t),t) (16) 

Adding (15) and (16) results in the total influence on the performance level of the 

application of the control u(t) during a short interval [t,t+t.t]: 

* * * {fO(x (t),u(t),t) + t",(t)ifi(x (t),u(t),t)}.t.t - H(x (t),u(t),,,,(t),t).6 (17) 

From (17) and (13) we can derive that the value of the function H in (14) represents 

an approximation of the performance stream during a very small period of time. It is a 

function of the control vector u(t). The optimal adjustment of the state variables is 

implicitly considered through the vector", (t). The function H is called "Hamiltonian 

function" and derives its name from the Irish physicist and mathematician William R. 

Hamilton, 1806-1865. The "marginal values" of the state variables "'i(t), discussed 

before as "marginal contributions to the performance level", are called: "costate 

variables" • 

Related to condition (14), a second optimality condition ~an be derived from (13), by 

considering x( t) instead of u( t) as argtUDent to be fixed on its optimal value (see 

also: Bensoussan e.a., 1974, 17). Suppose small perturbations of the state variables 

around the optimal value x * (t) on a fixed point of time t. If we keep the control 

history on its optimal value u*, then for x - x*(t) the following first order condi­

tion has to hold in order to satisfy (13): 

a * * a * * ax {H(x (t), u (t), ",(t» + at v (x (t),t)} = 0 (18) 

This leads to the so called "Euler-Lagrange equation": 
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aR afO m afi 
- "'j ---=--+ t 

"'i ax-' j - I, ••• :t m aXj aXj i=1 j (19) 
i - I, ... , m 

(see: Sethi & Thompson, 1981, 29-31. Bryson & Ho, 1964, 138, derived (19) in a diffe­

rent way). This equation asserts that, in the case of the optimal policy of the firm, 

the marginal value of the state decreases at a rate proportional to its direct contri­

bution to the performsnce level plus its more lasting contribution through the in­

crease of (the value of) the state. In other words: the state loses value or depre­

ciates as time passes, at the rate at which its potential contribution to the perfor­

mance level becomes its past contribution (Dorfman, 1969, 821). The relevant contribu­

tion may have a negative value, such as, for example, the contribution of debt money 

in Ludwig's model of chapter 3. 

A third optimality condition to be dealt with in this section concerns a special case: 

the marginal contribution of the state at the end of the planning period: ",(z). 

From (6), (9) and (12) we can derive that: 

",(z) = ;X v*(x(z),z) - ~x { 

",(z) - :x s(x(z),z) 

z 
f fO(x(t),u(t),t)dt + s(x(z),z)} + 
z 

(20) 

This condition is called "transversality condition". It states that the marginal con­

tribution only consists of the discounted marginal salvage value. For, at the final 

time point of the planning period, t = z, the state cannot generate a performsnce 

stream that still increases the performsnce level within the planning period. 

Taking the final value "'i(z) from (20) and integrating (19) results in another expres­

sion of "'i(t) : 

z aH a 
"'i(t) = f -a - dt + -a - s(x(z),z) , i 

t Xi Xi 
1, ••• , m (21) 

So, in the optimal solution, the marginal value of a state variable (capital good, 

equity, goodwill) equals its total future marginal contribution to the performsnce 

level, including its marginal salvage value. 

The transition from the overall approach of (6) to the incremental approach of (11) 

has changed the dynamic optimization problem into an infinite number of static optimi-

zation problems. coupled through (19) and (20). 
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These are the main results of the Maximum Principle to be discussed in this section. 

We will now summarize them, and add some mathematical details sbout sufficiency condi­

tions and uniqueness of the optimal solution without further discussion. 

Problem 1. 

maximize 

u 

z 
V(xo;;;,O) - f fO(x(T),u(T),T)ch + s(x(z),z) 

o 
(22) 

subject to xi - fi(x(t),u(t),t) (23) 

in which t 

, i = 1, ••• , m 

time, 0 < t < z 

planning horizon (fixed) 

(24) 

u(t) n dimensional vector of control variables, piecewise con:-

tinuous. So, a finite number of jumps in the control va­

riables is allowed for. 

Further we assume: 

u(t) E U, U a given set in Rn (25) 

u control history over the whole planning period 

x(t) n dimensional vector of state variables 

xiO exogenously fixed initial state of the firm 

fOO instantaneous performance stream, continuously differenti­

able in (x,u,t) 

fie) rate of change of state variable xi' continuously differen:­

tiable in (x,u,t) 

sO salvage value of the firm, continuously differentiable in 

(x(z),z). 

Theorem 1. (necessity) 

Define the Hamiltonian: 

m 
H(x,u,,,,,t) = fO(x,u,t) + t "'i.fi(x,u,t) 

i-1 
(26) 
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* then, for an optfmal history u (t) of the above problem 1 and the resulting state 

trajectory x* (t), it h necessary that there is a continuous, non zero vector fune­

tion Ht) - ('I (t), ••• , 'm(t» such that: 

Hoptfmal :- {H(x*(t),u*(t),.ct),t} 

- III8x1tnum {H(X*(t) ,u(t) ,.ct),t)} for each t, 0 < t < z (27) 
u(t) 

* and, except at points of discontinuity of u (t), that: 

~ i I::Ii 1, ••• , m (28) 

a * 'i(z) - aXi s(x (z),z) , 1 .. 1, ••• , m (29) 

The above conditions are necessary but not sufficient for an opt1tnal solution. The 

Norwegians Seierstad and Sydsaeter published several formulations of sufficiency con­

ditions for different opt1tnal control problems (Seierstad & Sydsaeter, 1977). For the 

above problem they presented the following slternative systems of sufficiency condi· 

tions (o.c., page 370): 

Theorem 2. (sufficiency) 

.. * Suppose (x (t), u (t» is a feasible solution of problem I, satisfying the conditions 

of theorem 1. Then this solution is opt1tnal to problem 1 

if H i I' as defined in (27), is concave in x, x ~ Rn, or: opt 1118 

if : the Hamiltonian, as defined in (24), is jointly concave in x and u, and U, as 

defined in (23), is convex, for all x and u {U x R'}. 

Finally, we borrow from Van Long & Vousden the following uniqueness theorem (Van Long 

& Vousden, 1977, 30): 

Theorem 3. (uniqueness) 

* * Let (x (t),u (t» be an opt1tnal solution to problem I, satisfying sufficiency theorem 

2. If Hoptfmal is strictly concave in x, than any other opt1tnal solution 

(x(t),u(t» ~ (x*(t),u*(t» must satisfy x(t) _ x*(t). 
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4. Mixed control constraints. 

In the former section we only dealt implicitly with a feasible region of the control 

variables uj(t). These controls must lie in some set U. being the entire n dimensional 

Euclidian space or a proper subset of it. In this section we will specify this region 

more precisely and we will study the consequences for the optimality conditions. In 

fact. we introduce the assumption that the decisions of the firm are limited in abso­

lute terms or by the actual state of the firm. For example: the production level is 

non-negative and may be restricted by the amount of available machinery. or: the 

amount of loans that can be attracted is limited by the size of equity: 

Q;> 0 and Q = Q(K(t) .L(t). t) (30) 

kX(t) - Y(t) ;> 0 

with state variables K (amount of machinery) and X (amount of equity). 

control variables: L (employment level). Y (amount of debt). 

k maximum borrOW'ing rate 

Q(): production function 

time. 

More generally: 

gk(x(t).u(t).t) ;> O. k = 1 ••••• r (31) 

in which the functions gk are assl.llled to be continuously differentiable in (x. u. t) 

space. Further we assume that each function gk contains at least one control varia­

ble uj as an argument. 

In order to study the impact of this kind of restrictions on the optimal policy of the 

firm. we return to the incremental decision problem as presented in (8) through (11) 

and (14). We have to change the definition in (9) of the performance level of the best 

* overall policy. V into: 

v*(x(t).t) = maximum V(x(t).7I.t) 

u 

for all 7. with values u(t) satisfying: gk(x.u.t) ;> O. k 1, •• " r (32) 
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The incremental description of the optimal policy in (14) now changes into: 

maximize 
u(t) 

.. 
H(x (t).u(t).1/I(t).t) for each t. 0 <; t <; z 

* subject to gk(x (t).u(t).t) > 0 (33) 

Note that x*(t) has a fixed value and 1/I(t) is a given vector valued function of u(t) 

if t is fixed. So. the available policies u(t) are limited by the actual state of the 

firm. The optimization problem is thus transformed into an infinite nlDDber of con­

strained optimization problems of the form: 

maximize 
u(t) 

subject to 

Z(u(t).t) for each t. 0< t< z 

Zk(u(t).t) > O. k = I ••••• r (34) 

The solutions to these problems. together constituting the optimal control history 

over the whole planning period. are derived through the well-known Method of Lagrange 

Multipliers (see for instance: Intri1igator. 1971. 28. Takayama. 1974, 373). For each 

restriction, we introduce a Lagrange multiplier Ak(t) • representing its "shadow 

price". That is the impact of a marginal relaxation of the restriction on the instan-.. .. 
taneous increase of the performance stream at date t. H(x (t). u (t), t). The shadow 

price will be zero if the relevant restriction is not binding in the optimal solution, 

because the relaxation of such a restriction will not yield a better performance: 

.. .. 
Ak(t).gk(x (t), u (t),t) o (35) 

Shadow prices can only be non negative because relaxation of restrictions cannot lead 

to a fall of the maximum performance level: 

In the optimal situation, the marginal contribution of the j-th control variable 

equals its marginal costs. Tbese costs are the units of capacity of the relevant re­

strictions. needed to realise a marginal rise of the control variable, weighed by the 

relevant shadow prices: 
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(37) 

The restrictions on the control variables also have an impact on the optimal state 

trajectories and so on the conditions, coupling the above subproblems (34). From (19) 

we know that in the optimal solution the depreciation rate of the state equals its 

contribution to the performance level. This contribution consisted of two parts, an 

instantaneous increase of the performance level and an increase of the state valued by 

the costate variables ~i(t), representing future performance streams. Now, we have to 

add a third term. For, changes in the state variables cause changes in the feasible 

control region, due to the assumption in (31) that boundaries depend on the actual 

state of the firm. In the optimal solution we may value these changes through the 

above introduced shadow prices Ak(t). So, (19) turns into: 

aH r agk 
- ~i(t) = -- + E Ak(t) -a- , i-I, ••• , m 

a Xi k-1 Xi 

* * in which : gk - gk(x (t),u (t),t) (38) 

As stated, (35) through (38) are based on the Method of Lagrange Multipliers used in 

constrained programming problems. We can simplify the notation of (37) and (38) by 

introducing the Lagrangian function (or: "extended Hamiltonian"): 

r 
L(x,u,~,A,t) - H(x(t),u(t),~(t),t) + E Ak(t).gk(x(t),u(t),t) 

k-1 

So (37) and (38) may be rewritten as: 

- '/Ii(t) = ~ , i-I, ••• , m aXi 

at 0 
aU j -

, j - 1, ••• , n 

(39) 

(40) 

(41) 

Integration of (40) backwards, starting from the obviously unchanged transversality 

condition (20), results in the new version of (21): 

/z aL a 
", (t) = - dt + - s(x(z) z) , i 
ita Xi aX i ' 

1, •• 0, m (42) 
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In the optimal solution, the marginal value of the state variable equals its total 

future marginal contribution to the performance level plus its valued contribution to 

relieve (or restrict) the decision possibilities of the firm. 

From (33) and (39) can be concluded that the value of the Lagrangian equals the value 

of the Hamiltonian. But, the difference comes up as soon as we start studying the 

influence of control and state variables through the relevant partial derivatives. 

Then the derivatives of the Lagrangian appear to contain the impact of changes in the 

boundaries of the control region on the instantaneous optimal performance H. 

To stDnmarize the discussion of this section, we present the following problem and 

theorems: 

Problem 2. 

maximize 

u 

z 
V(XO'';'"O) = J fO(x(T),u(~ ),~)dr + s(x(z),z) 

o 

subject to Xi = fi(x(t),u(t),t) , i 1, ••• , m 

gk(x(t),u(t),t) ~ 0 , k - 1, ••• , r 

(43) 

(44) 

(45) 

(46) 

in which all the above variables and functions have the same characteristics 

as in Problem 1 and further: gk() is continuously differentiable in (x,u). 

Theorem 4. (necessity) 

Let the Hamiltonian be: 

m 
H(x,u,,,,,t) • fO(x,u,t) + 1: "'i.fi(x,u,t) 

i-I 

and define the Lagrangian: 

r 
L(X,U,,,,,h,t) - H(x,u,,,,,t) + 1: hk(t).gk(x,u,t) 

k=1 

(47) 

(48) 
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* then. for an optimal control history u of the above problem 2 and the resulting state 

* trajectory x (t) to be optimal. it is necessary that there are functions 

1jI(t) = (1jIl(t) • •••• 1jIm(t» and A(t) = (A 1(t) • ••• i Ar(t» ) O. in which 1jI(t) is con-

tinuous and 1jI(t) and A(t) are piecewise continuous. such that: 

* * Hoptimal := H(x (t).u (t).1jI(t),t) 

* maximum H(x (t).u(t),1jI(t),t) for each t. 0 ~ t ( z 

u 

* and, except at points of discontinuity of u (t) and A(t). that: 

a * * - -a- L(x (t),u (t),1jI(t),x(t),t) • i = 1, ••• , m 
Xi 

a * * -, - L(x (t),u (t).1jI(t). A(t). t) 
aUj 

o 

, j 1, ••• , n 

• k 1, .•. , r 

(49) 

(50) 

(51) 

(52) 

(53) 

The above conditions are necessary for the optimal solution. The following theorems 

deal with sufficiency conditions (Seierstad & Sydsaeter. 1977, 374-377): 

Theorem 5. (sufficiency) 

* * Suppose (x (t).u (t» is a feasible solution of problem 2, satisfying the conditions 

of Theorem 4. Then this solution is optimal to problem 2 if H(x.u,1jI,t) as defined in 

(26) is concave 1n (x,u) and gk(x,u,t) 1s quasi concave 1n (x,u). 

In the second sufficiency theorem, to be presented here, the above mentioned concavity 

requirement on the Hamiltonian is relaxed and the quasi-concavity of gk is not assumed 

but the functions gk must satisfy a "constraint qualification", guaranteeing a well 

shaped feasible region without so called neusp pOints": 
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Constraint qualification. 

* * Let Z(t) = {z gz(x (t),u (t),t) = o} be the set of indices of active constraints. In 

this case the constraint qualification is satisfied if the number of indices of Z(t) 

equals the rank of the 

a * * I matrix { -a - (g (x (t),u (t),t) with u j z z E Z(t) and j=l, .•. ,n (54) 

This condition asserts that the number of active constraints is less than or equal to 

the number of control variables, although the total number of constraints may exceed 

the number of control variables. An extensive discussion of the constraint qualifica­

tion can be found in Takayama (1974), pag. 86-108. Further we have to define: 

A(t) := {x : g(x,u,t) > 0 for some u} (55) 

Theorem 6. (sufficiency) 

* * Suppose (x (t),u (t» is a feasible solution of problem 2, satisfying the conditions 

of theorem 4 and the constraint qualification (54). In this case, the solution is 

optimal to problem 2 if: 

A(t) is convex, and: 

Hoptimal' as defined in (49), is a concave function of x on A(t). 

The following uniqueness theorems stem from Van Long & Vousden, 1977, page 30 and 

Seierstad & Sydsaeter, 1975, page 376: 

Theorem 7. (uniqueness) 

* * Let (x (t),u (t» be an optimal solution of problem 2, satisfying sufficiency theorems 

5 and/or 6, then this solution is the only optimal one if L, as defined in (48), ful­

fills: 

a2L --- < 0 (Seierstad & Sydsaeter). 
a u2 

If Hoptimal is strictly concave in x, then any other optimal solution (~,;) ~ (x*,u*) 

must satisfy ~(t) = x*(t). (Van Long & Vousden). 
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5. State constraints. 

The interpretation of the Maximum Principle in section 3 can be found in several pu­

blications on applications of the Maximum Principle to economic theory. Amplifications 

when control constraints are introduced, are not explicitly dealt with. But often the 

reader is referred to the interpretation of Lsgrange multipliers in static constrained 

optimization problems, which implies omitting the interpretation of the real dynamic 

formula (38). In the case of state constraints, we found nowhere any attempt to give 

an interpretation. So we have to steer with the help of our own compass. 

Apparently there are three ways of defining the relevant optimality conditions. The 

definitions with the easiest interpretation will be presented first. It has disconti­

nuous costate variables, a fact that is difficult for solution procedures. The defini­

tion with the nicest technical characteristics will be presented last, because it has 

a less obvious interpretation of the Hamiltonian. This definition will be used to 

solve the relevant models in this book. The remaining method will be used as an inter­

mediate one, facilitating the interpretation of the last way of defining the optimali­

ty conditions. 

We drop the control constraints as discussed in the former section for a while and 

concentrate on dealing with state constraints only. So, consider the problem: 

maximize 
z 
f fO(x,u,t) dt + s(x(z),z) 
o 

subject to Xi = fi(x,u,t), i 1, ••• , m 

hR. (x, t) ) 0 , I. It ••• , s 

(56) 

(57) 

(58) 

(59) 

The first method deals with the constraints of (58) in the same way as with the con­

trol constraints (31) by introdUCing dynamic Lsgrangian parameters, say Jl (t), and 

defining the optimality conditions in the usual way (we drop obvious arguments) : 

Form the Hamiltonian of the above problem: 

H(x, u,$, t) (60) 

and the Lsgrangian: 
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Then, necessary conditions to an optimal solution are: 

at 0 
aUj -

as 
i>i(z) - -a -

xi 

1 - 1, ••• , m j = 1, ••• , n ; t 1, ••• J s. 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

The interpretation of the dynamic Lagrangian multipliers of the conditions (62) 

through (66) is the same as in the former section. So, the extension of the problem by 

introduction of state constraints seems to give no new difficulties. But, this is only 

true in the ease where the first total derivative of the state constraints, dh/ dx, 

contains one or more control variables. Then the system can be steered by means of the 

controls in such a way as to approach or to leave the boundaries in an arbitrarily 

smoothed way. If the first total derivative of any state constraint does not contain a 

control variable, which is the case in our models, then we get discontinuities in the 

costate variables. The less controllable motion of the system may cause bumps against 

the state constraint boundaries at certain points in time, say tp. The decreasing 

marginal value of the state, as described for an "non bumping" case in (19) and (38), 

will then depend on the instantaneous restricting state constraint(s) only. If we 

denote by BpI. (tp): the marginal harm to the instantaneous performance level due to 

the state constraint hI. on time tp' then the next conditions have to be added to the 

above conditions: 

(67) 
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(68) 

(69) 

o < tp < ... < tv" z : discontinuity points of "'1 (70) 

In which t- snd t + are the left- an right-hand side limit of t • Equation (62) now 
p p • p 

only holds at moments when"'i exists and (63) only applies when uj are continuous. 

Although the above formulation is easy to interpret, the discontinuity of '" i is a 

nasty characteristic when one is looking for solution procedures. In this book, we 

will use another formulation published in: Russak, 1970. In order to understand the 

main ideas, we will first present another formulation used, for example, by Arrow and 

Rurz to handle (non negativity) constraints on the state variables (Arrow & Rurz, 

1970, 41). In the relevant formulation, the state constraints (58) are replaced by: 

(71) 

(72) 

Transgressing boundaries is thus prevented by requiring a move along or away from the 

boundary when the system is on the relevant boundary. The state constraint is there­

fore replaced by a control contraint. If the first derivative to time has no control 

variable as an argument, then one has to take the derivative of the smallest degree 

that has a control variable as an argument. We suppose furthermore that the first 

derivative is a function of u. 

We can apply the optimality conditions of the former section to the problem (56), 

(57), (59), (71), (72): 

Let the Hamiltonian and the Langrangian be: 

i.(x.u.~.j;'.t) ~ H + E Pt (t)'t 
R. 

Then, necessary conditions to an optimal solution are: 

(73) 

(74) 
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~ = 
31. (75) - ax 

a1 0 (76) au-

i7" (t) .$" o when h" 0 (77) 

~(t) > 0 (78) 

i7(t) 0 (79) 

~(z) as (80) = ax 

The link between the auxiliary variables of the conditions (62)-(66) and of (73)-(80) 

is that: 

(81) 

.:. 
(82) 

The transformation of the state constraint into a control constraint yielded a dynamic 

Lagrangian parameter ~ from which we have additional information through (79). But 

still, ~ is discontinuous. This is solved in the third formulation to be discussed 

here by defining ~ in such a way that (Seierstad & Sydsaeter, 1975, 388): 

1, ...... , s p 1, .... , v .. (83) 

with the same conditions as stated in (67) through (70). Then~, as defined in (79), 

becomes continuous on all discontinuous points of ", .. Above that, according to Seier­

stad & Sydsaeter, it can be proved that the above formulation (73) - (80), (83), 

yields the same results as defining the Hamiltonian as: 

H(x,u,lj!,~ ,t) (84) 

This is the formulation presented in: Russak, 1970. Note that the Hamiltonian in (84) 

has not the same meaning as the preceding Hamiltonians. The latter are formulations of 
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the instantaneous performance flow only, while to the former some valuation of the 

boundaries of the state space has been added. 

In order to avoid overlap, we will now present the theorems concerning the general 

problem~ having control constraints as well as state constraints. 

Problem 3. 

z 
maximize 

U 
V(xO,u,O) = J fO(x(-r),u(,),T) de + s(x(z),z) 

o 

subject to xi = fi(x(t),u(t),t): state equations 

gk(x(t),u(t),t) ) 0 control constraints 

ht(x(t),t) ) 0 state constraints 

initial state constraints 

l=l, •.. ,m 1, ••• , n; k = 1, ••• , r .t 1, ••• , s 

continuous 

piecewise continuous 

all continuously differentiable in 

their own arguments. 

t time, 0' t ( z 

z planning horizon (fixed) 

u control history over the whole planning period 

xiO exogeneously fixed initial state of the firm 

(85) 

(86) 

(87) 

(88) 

(89) 

The following theorems are derived from Russak, 1974, Seierstad & Sydsaeter, 1977; 

and: Van Long & Vousden, 1977. The non negativity of the functions ~ and the concer­

ning transversality conditions are derived in: Peter Janssen, 1980, at that time wor­

king at the Technical University of Eindhoven with Prof. Hautus. In Russak. 1976, a 
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"reversed" characterization of J.I 1s derived. 

Theorem 8. (necessity) 

Let the Hamiltonian be: 

m s 
H(x.u.W.~.t) = fO + 1: Wi(t).f i + 1: ~t(t).$~ 

i-I ~=1 

and the Lagrangian be defined as: 

r 
L(x. U.W.~.A. t) = H + 1: Ak(t) .gk 

k=1 

in which: 

(90) 

(91) 

(92) 

and suppose each '1 contains*at least one control variable as an argument. Then, for 

an optimal control history u (t) of the above problem 3 and the resulting state tra-

* jectory x (t) to be optimal. it is necessary that the constraint qualification (54) 

holds and that there are functions W(t) = (w 1(t) • .... wm(t)). :>.(t) = (:>. l(t) • .... 

:>'r(t)) and ~(t) = (~r<t) • .... ~,<t») such that: 

* * Hoptimal := H(x (t).u (t).W(t).A(t).t) 

= maximum {H(x\t).u(t).W(t).A(t).t)! for each t, 0 ( t < z (93) 
u(t) 

* and, except at points of discontinuity of u (t) 

a * * - -,- L(x .u ,W,~ ,:>. ,t) 
aX i 

a * * -a-L(x ,u ,W,~,A,t) 
u j 

* * Ak(t).gk(x ,u ,t) = 0 

costate equations 

first order conditions 

complementary slackness conditions 

complementary slackness' conditions 

(94) 

(95) 

(96) 

(97) 
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Further it must hold that: 
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non negativity restrictions 

transversality conditions 

transversality conditions 

.(t) continuous with piecewise continuous derivatives 

.(t) and A(t) continuous on intervals of continuity of u(t) 

pet) continuous on intervals of continuity of u and when 

+(x,u,t) is discontinuous. 

More over, on points of discontinuity of u, say tp' it holds that 

Pp.t : non negative nUDlbers, p. 1, ••• , v ; R. - 1, .•• , s 

Theorem 9. (sufficiency) 

* * 

(98) 

(99) 

(100) 

(101) 

(102) 

(103) 

(104) 

Suppose (x (t), u (t» is a feasible solution of problem 3, satisfying the conditions 

of theorem 8. Then this solution is optimal to problem 3 if A(t), as defined in (55), 

is convex and Roptimal' as defined in (93), is a concave function of x on A(t). 

Theorem 10. (uniqueness) 

* * Let (x (t),u (t» be an optimal solution of problem 3, satisfying sufficiency theorem 

9, then this is the only optimal solution if L, as defined in (91), fulfills: 
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If Hoptimal is strictly concave in x on A(t), then any other optimal solution 

(i,u) # (x*,u*) must satisfy i(t) = x*(t). 

6. Summary. 

After the introduction of some technical terms, by which the main features of optimal 

control models are usually described, the optimality conditions of a non-constrsined 

optimal control problem are presented, based on an incremental approach. The meaning 

of the Hamiltonian and the costate variables is dealt with. At the end of this sec­

tion, sufficiency and uniqueness conditions are added.' In the next section, con­

straints on control variables are introduced. The Hamiltonian function is extended to 

a dynamic Lagrangian function and the meaning of dynamic Lagrangian multipliers is 

discussed. This section, too, ends with a statement of the relevant sufficiency and 

uniqueness conditions. Finally, the impact of constraints on the state variables are 

discussed. The reader is ushered into the optimality conditions as defined by Russak 

(1970). These optimality conditions have nice (continuity) properties which make them 

superior to other formulations. The optimality conditions of the general problem, 

containing control and state constraints, and the relevant sufficiency and uniqueness 

conditions conclude this appendix. 



APPENDIX 2. SOLUTIONS OF THE MODELS OF CHAPTER 3. 

1. Introduction. 

The MaximllIl1 Prble1ple, as presented in the preceding appendix, results in a set of 

conditions to be fulfilled by the optimal solution of an optimal control model, but 

not in the optimal solution itself. In order to find the optimal solution, we have to 

solve the system of optimality conditions. The usual procedure to solve is a tryal and 

error procedure. 

In this and the next appendix, we will use a systematic way of searching for optimal 

solutions. The procedure has been developed to reduce the heuristics of the solution 

stage as much as possible. Having developed this procedure, we could shorten solving 

time substantially and, more over, it enabled uS to solve more complex models such as 

that of chapter 4. 

This procedure may have a more general applicability. Therefore we will present its 

principles first, before applying it to the models of chapter 3. 

2. A general solution procedure. 

To facilitate the discussion, we will first dwell upon the nature of an optimal solu­

tion. The f.1rm, which is the system to be controlled in this book, mus t be guided in 

such a way as to maximize some perfo~nce level without violating fixed restrictions. 

The set of active restrictions may change over time, due to changes in the shapes of 

the restrictions snd due to changes in the optimal policy of the firm. Now, conceive 

the development of the firm over time as a succession of stages that can be distin­

guished from each other by differences in the set of active constraints. With this 

idea as baSiS, we will first derive which stages (called: paths) are feasible and what 

are the (distinguishing) features of each of them (see figure A2.1 on the next page). 

After that we will string them to complete patterns, and these strings are the very 

optimal solutions of the model. The systematic way in which to deal with stringing 

paths is the new feature of our solution procedure. 

We go back to appendix 1 in order to point out how to distinguish between paths. Be­

cause we are looking for optimal control patterns, we are mainly interested in stu­

dying changes in the set of active constraints. From the complementary slackness con­

ditions (96) and (98) in appendix 1 we can derive a way of describing distinct paths 

through their sets of zero-valued and positive valued lagrangian parameters Ak , and of 

zero-valued or negstive derivatives of the auxiliary variables ~t. Positive respecti­

vely negative values indicate that the concerning restrictions are active. The first 

stage of the solution procedure, i.e. finding feasible paths and their characteris-
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combinations of zero 

select, say, path j and 
no remove it from Hfinal paths", 

consider path j as a new set, 
set g = 1. 

name the last mentioned set: 
"g-staged strings of final path j". 

select those strings that fulfill 
the initial state constraints 
and the sufficiency conditions, 
present them as: "optimal solutions". 

form all combinations of a g-staged 
string of final path j and a feasible 
preceding path. 

Figure A2.1. Scheme of the solution procedure. 

tics, consists of enumerating al} combinations of zero and non-zero-valued lagrangian 

parameters and derivatives of the auxiliary variables, and deriving characteristics 

for each combination as such. Some combinations can be left out without much study 

(for example: a control variable cannot be on an upper boundary and at the same time 

on a lower boundary 1f these boundaries have different values, so the relevant lagran­

gian parameters cannot be positive at the same time. Thus, all combinations in which 

both parameters are positive can be left out). Other combinations appear to be infea-
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sible only after the derivation of its characteristics. This analysis thus yields a 

set of feasible paths and information about the characteristics of the distinct paths. 

The second stage of the solution procedure is the coupli~ of paths to strings, cove­

ring the optimal policy of the firm over the whole planning period. This is done by 

starting at the time horizon z, and going backwards in time. Based on the transversa­

lity conditions (100) and (101) of appendix 1 we can select those paths that may be 

final paths, i.e. paths feasible at T • z. For each such final path we will then 

select feasible preceding paths. Therefore we test for each path whether coupling with 

the relevant final path will or will not violate the (necessary) continuity properties 

of the state variables and the auxiliary variables", i' Ak and \It as prescribed by 

Theorem 8 of appendix 1. In this testing procedure we will often use characteristics 

as derived in the former stage of the solution procedure. 

If the set of feasible preceding paths appears to be empty, then the relevant final 

paths are descriptions of the optimal policy of the firm for the whole planning pe­

riod, supposing they fulfill the initial state constraints (88) and the sufficiency 

conditions of Theorem 9 in appendix 1. 

If the set of feasible preceding paths is not empty, we apply the testing procedure 

for feasible preceding paths again to each of them. 

Depending on when the set of feasible preceding paths becomes empty, we may have to 

apply the testing procedure again, in this way finding a still longer string of paths, 

constituting an optimal policy pattern. 

The procedure is summarized in figure A2.1. 

3. The model of Jorgenson. 

Jorgenson solved his model by means of the Calculus of Variations, a technique closely 

related to the Maximum Principle. The main advantage of the Maximum Principle over the 

Calculus of Variations is that it is more suitable to handle constraints on control 

and state variables. 

To get a solution of the model by means of the Maximum Principle, we introduce (arti­

ficial) boundaries on the variables I: Imin < 0 and Imax > O. We assume Imin to be 

very small and Imax to be very large, so as to describe a nearly instantaneous adjust­

ment of Kin: 

K - I - aK when I Imin or 1= Imax. (1) 
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Furthermore we :Improve the model by introducing a non negativity constraint and an 

initial constraint on K. So we get: 

maximize 
I, L 

j e- iT {p.Q(K(T) ,L(T» - w.L(T) - c.I(T)} dT 
o 

subject to K = I(T) - a.K(T) 

Imin < I( T) < Imax 

K(T) > 0 

K(O) = kO 

(2) 

(3) 

(4) 

(5) 

(6) 

In the above problem, constraints (4) are control constraints and (5) is a state con­

straint, so Theorems 8 through 10 of appendix 1 apply to this problem. An exception 

must be made for the transversality condition, because Jorgenson supposes an infinite 

time horizon, whereas we deal with finite time horizons in the preceding appendix. As 

the costate variable represents the marginal contribution of the state to the perfor­

mance function, one can imagine that the transversality condition (100) of appendix 1 

changes into: 

11m ljI(T) = 0 (7) 
T + ~ 

For a more detailed discussion of the infinite horizon problem we refer to Sethi & 

Thompson, 1981, page 85 and Seierstad & Sydsaeter, 1976, page 383. Dropping obvious 

arguments, we can write: 

Let the Hamiltonian be: 

H = e -iT {pQ - wL - cl} + (ljI + ~ )( I - aK) (8) 

and the Lagrangian: 

(9) 

then it must hold that: 

(10) 
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o (11) 

o (12) 

(13) 

(14) 

~ < 0 (15) 

~.K 0 (16) 

(17) 

lim $(T) = 0 (18) 
T -> = 

lim ~(T).k(T) = 0 (19) 
T -> = 

The continuity properties of $, A, and ~ are described in (102) - (104) of appendix 1. 

We will concentrate on situations in which it is profitable at least to start up pro­

duction. This is described by the assumption that marginal revenue exceeds the margi­

nal costs of both inputs for the first piece of output to be produced: 

p : i > wand p ~ > c( i + a) for Q = K = L = 0 (20) 

In this case, K will always be positive, so ~ = O. Now, from (9), (13) and (14) we can 

derive that three paths have to be studied (see Table A2.1). The fourth combination, 

with both lagrangian parameters having a positive value, is not feasible due to the 

fact that from (13) and (14) it holds: 

path. nr. Al A2 I 

1 0 0 Imin < I ( I max 
2 + 0 I = l min 
3 0 + I = I max 

Table A2.1. Paths of the model of Jorgenson. 
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A1 > 0, A 2 > 0 + linin - I - lmax (21) 

which is contrary to the assumption that linin < 0 < lmax' 

Finally we can derive from (12) that: 

(22) 

This fixed optimal labour productivity implies, due to the concavity of Q(K,L) that Q 
may be conceived as a concave function of K. So, to each marginal productivity belongs 

only one value of K: 

Q 

Q(K) 

L-________________ ~ K 

o k 

tg" = ~ aK 

Figure A2.2. Production as a function of K for optimal values of L. 

We will now discuss the characteristics of the distinct paths. 

From Al - A2 = 0 and (10) and (11) we can derive: 

-iT 
'" + \l = e C 

Differentiating the last equation to time results in: 

(23) 

(24) 
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-iT -ie c 

Combining (23) through (25) yields: 

From (15) and (26) we may conclude: 

p ~< (a + i) c 

Assumption (20) together with (22) and (27) imply that: 

Q>O+K)O+11 o 

Inserting (28) in (26) delivers: 

p ~ = (a + i) c aK 

(25) 

(26) 

(27) 

(28) 

(29) 

From (22) and (29) the conclusion can be drawn that output and both inputs have a 

* * * stationary value, say Q ,K and L , on path 1. Furthermore we can conclude from (24) 

that path 1 fulfills the transversality conditions (18) and (19), because from (24): 

'" + 11 = 0 when T + ~, which enables: (30) 

o when T + ~ and K > 0 (31) 

There is one interesting feature of path 2 to be presented in this stage of the solu­

tion procedure: it cannot be a final path. From (5) and (13) we can derive: 

I = l min + K < 0 + K ) 0 (32) 

And furthermore (11) yields: 

0+ '" + 11 (33) 

which implies: 
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for T +.. : 1JI + JI - - "1 < 0 (34) 

while from the transversality conditions (18), (19) and from (32) it must hold that: 

for T + .. and K > 0 1JI = JI - 0 (35) 

which is contrary to (34), so path 2 cannot fulfill the transversality conditions and 

therefore it cannot be a final path. 

In the same way one can derive that path 3 cannot be a final path. From (14): 

">0+1-1 +K>O+K>O 
2 max 

Thus (18) and (19) imply: 

for T + CD ", =:I 11 • 0 

which is contrary to condition (11) that states: 

-iT 
"2>0+1JI+IJ=e c+"2>0 

so path 3, too, cannot be a final path. 

(36) 

(37) 

(38) 

According to the above findings the coupling procedure is quite simple: only path 1 

can be a final path and the other two paths can only precede path 1. So, the only "one 

staged string" as defined in figure A2.1, is: path 1. The question we must check is: 

can path 1 be an initial path as well? If so, it should obey the initial state condi­

tion (6). In combination with the findings of (29) we can conclude that there is a 

necessary condition for path 1 to be an initial path as well and thus to be a complete 

string: 

* K(O) = K (39) 

So, only for one initial value of K, namely the stationary value, path 1 is the opti­

mal initial path. In that case, the firm starts on path 1 at T - 0 and remains on it 

during the whole planning period. 

This solution satisfies the sufficiency conditions of theorem (AI.9) as well as the 

uniqueness condition of theorem (AI.IO). So it is the unique optimal solution for 

* K(O) - K • 
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We now have to check for two staged strings. That is: can paths 2 and 3 precede psth 1 

and on which conditions? 

Path 2 + psth 1. 

Because K is positive on path 2 as well as on path I, p has a fixed value (see: (16». 

Together with the continuity of 1jI and the fact that A2 = 0, we may thus conclude from 

(11) that Al is continuous. Therefore, A 1 has to become zero at the end of path 2. 

This is possible, only if 

Al < 0 when A 1 - 0 on path 2 (40) 

hom (10) and (11), together with A2 = 0 and p ~ 0 we derive: 

(41) 

-iT{ an I = e p ~ - (a + i) c + a Al (42) 

So, from (40) and (42) follows the necessary condition: 

p ~ < (a + i) c on the coupling time point. (43) 

Because of the decrease of K on path 2, the concavity of Q and the fixed labour pro­

ductivity (see: (22», (43) results in: 

'" '" K) K on path 2 + K(O) > K (44) 

In this way, we have derived from the continuity properties of 1jI and A 1 a necessary 

initial state constraint for the relevant string. We leave it to the reader to check 

the sufficiency and uniqueness conditions. 

Path 3 + path 1. 

In the same way as in the case of path 2 + path I, we can derive the continuity of 

A2 on the coupling time point, so it must hold that: 

A 2 < 0 when A 2 = 0 on path 3 (45) 
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and this results in the necessary condition: 

(46) 

NOw we must check whether there are feasible strings of the third generation, contai­

ning three paths each. There are four possible combinations: 

(1) path 1 + psth 2+ path 1 

(2) path 3+ path 2+ path 1 

(3) path 1 + path 3+ path 1 

(4) path 2+ path 3+ path 

They all are infeasible. The first combination, for example, requires 

AI) 0 when Al = 0 on path 2 (47) 

due to the continuity of Al on the first coupling point and due to the fact that 

Al - 0 on path 1 and AI> 0 on path 2. In the same way as derived in (40) - (44), this 

results in 

* K < K on path 2 (48) 

And this is contrary to condition (44) 

The second combination is infeasible because the succession of path 3 by path 2 de­

mands a necessary condition that is contrary to condition (44), which is necessary, in 

its turn, for the succession of path 2 by path 1. From (11) we derive: 

(49) 

Furthermore we have seen: 

continuous 

A 2 > 0 on path 3 and), 2 - 0 on path 2 (50) 

Al = 0 on path 3 and AI> 0 on path 2. 

Thus the continuity of (w +p) can only be guaranteed if 

(51) 
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point in time on which path j succeeds path i 

left hand side limit of Ak on T = ti,j 

right hand side limit of Ak on T = ti,j 

It is necessary for meeting (51) that 

A 1 ) D when A 1 = D on path 2, 

resulting in: 

* K < K on path 2. 

Because of the decrease of K on path 2, this implies: 

* K<K 

* 

(52) 

(53) 

Knowing that K = K on path 1, this should imply a jump in K on t 2,1 which is infea-

sible. So, (51) seems to prevent the coupling on t 2,1 and thus the second combination 

is infeasible. 

The infeasibility of the two remaining combinations can be shown along the same lines 

as presented above. In summary, we found three optimal solutions: 

* if K(D) > K 

* if K(D) = K 

* if K(O) < K 

path 2.. path 1 

path 1 

path 3.. path 1 

With the knowledge that K falls as quickly as possible on path 2 (I = 1min) and rises 

as quickly as possible on path 3 (I = I ), we can state that the optimal policy of 
max * * * 

the firm is: to jump to the stationary state (Q ,K ,L ) at start of the planning 

period and to remain there till the end. 

4. The model of Ludwig. 

After having discussed to a great extend the main features of the solution procedure 

with the help of Jorgenson's model, we will outline the solutions of the other models 

in this appendix, occasionally illustrated by some details. The interested reader can 

find more in the relevant publications themselves. 
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Assume yeo) > 0 and X(O) > 0, then from (3.28), (3.29) and (3.31) follows that: 

X(T) > 0 and yet) > 0, 0 ( T ( z (54) 

Furthermore lJIdwig assumes a positive concave net return (defined as: sales after 

depreciation) function: 

aR a 2R 
R(K) - aK > 0, aK > a and --2 < 0 

aK 
(55) 

Note that, due to K - X + Y, it holds that: 

(56) 

Finally, he introduces an imperfect capital market through: 

i * r (57) 

Now, the Hamiltonian becomes: 

B= e-iT{R(X+Y) - (a + r).Y - 1+ B} +"'1(1 - ax - B) +"'2(B - aY~ (58) 

and the Lagrangian: 

L = H+ A1(hI - B) + A2{m(R(X+Y) - ax - (a + r).Y) + ax + B - II + A3B (59) 

In order to present a uniform treatise of the optimality conditions of all models in 

this book, we did not introduce 'discounted lagrangian parameters in the above lagran­

gian function, as distinct from lJIdwig. As the model contains only control con­

straints, theorems 4 through 7 of appendix 1 apply. The necessary conditions are 

(60) 

(61) 

(62) 



127 

(63) 

(64) 

A 2( (R - (a+r)Y - aX)m + ax + B - I} = 0 (65) 

(66) 

(67) 

(68) 

Again, in order to get a consistent definition for all models, we do not follow Lud­

wig's definition, but alter it slightly. From (64) through (66) we can form the follo­

wing paths: 

path nr. Al A2 A3 path nr. Al A2 A3 

1 + 0 0 5 0 + + 

2 0 + 0 6 + 0 + 
3 + + 0 7 + + + 

4 0 0 + 8 0 0 0 

!able A2.2. Paths of the model of Ludwig. 

Path 7 is infeasible, because from (64) through (66) it results that 

(R - aK - rY)m + ax - 0 

while (3.21) snd (3.22) imply: 

(R - aK - rY)m) 0 

and (54): 

ax> 0 

Path 8 is infeasible because we can derive from (60) through (63) that 

\ = A2 = A3 = 0 implies: 

(69) 

(70) 

(71) 
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dR di{=a+i==a+r+ i=r 

which is contrary to assumption (57). 

We will now turn to the characteristics of the remaining paths. 

1:!!!!....!.. 

First we derive a stationary value of K on path 1: 

~ 1 > 0 

),2=),3- 0 

(60) - (63) 

(75), (76)" 

(76), (77) .. 

"'1 = a '" - e -iT dR 
1 dK 

(I-h»), 1 - "'2 

1 -iT' "'2 
li(-ie -"'1) =T-h 

(73), (74), (76) _ (78) .. dR_ 
dK 

a = (I-h) i + hr.. K = 0 

* 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 

Let us indicate this stationary value of K with: Ky' The assumed values of the lagran-

gian parameters result in the following conditions: 

B = hI (80) 

I ~ (R - (a+r)Y - aX)m + ax + B (81) 

(64) - (66) B) 0 (82) 

These expressions lead to the following characteristics: 

(80), (3.28), (3.29) K - X = Y = I - a(X + Y) 0 
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(83) 

(84) 

Furthermore we can derive a dynamic equation of the only positive lagrangian parame­

ter, >'1: 

(74), (77), (79) + >'1 = a >'1 - (i - r)e-iT (85) 

Condition (81) can be reformulated as: 

* * (81), (83), (84) : (rm + a)Y .. mR(XY) - (m - h)axy (86) 

Finally, we can use the above optimal values of I and B to specify more prec1sely the 

state equations of path 1: 

* (3.28), (83), (84): X = (l-h)axy - ax 

(3.29), (84): 

Taking all in all, we have found the following characteristics of path 1: 

(79) * : K • xy, as defined in (79) 

(83) * 1= axy 

(84) * B = ahKY 

(87) . * X • (l-h)axy- ax 

(88) * y. haxy- aY 

(85) : >'1 = &1 -
-iT (1 - r)e 

(68) : >'1 > 0 

(76) -iT 
: "'1 = e - h "1 

(77) : "'2 = (l-h)A 1 

(69) :"2="3=0 

* * (86) : (a + m) Y" mR(XY) - (m - h)axy 

(87) 

(88) 
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In the same way, we can derive the characteristics of the other 5 paths. In order to 

avoid confusing details, we will present only those characteristics that are needed to 

demonstrate the coupling procedure and to support the description of the optimal tra­

jectories in the main text of chapter 3. 

Path 2 : A 1 = A 3 = 0, A 2 > 0 

* K = ~x (89) 

Y = -m(R - aK - rY) < 0 (90) 

* * * m(R(Kyx) - a~X - rY) + h~X < aY (91) 

$ 1 = e -iT + A 2 (92) 

$2 = 0 (93) 

Path 3 A 1 > 0, A 2 > 0, A 3 = 0 

x = m(R - aK - rY) (94) 

• h 
Y = 1-h {m(R - aK - rY) + aX) - aY (95) 

; = --E- {e -iT( (l-h)i + hr + a - a R) + A 2m(hr - dRdK + a») 
2 1-h aK (96) 

(97) 

$2 (98) 

Path 4 A 1 = A 2 = 0, A 3 > 0 

* K = ~ , Y = -aY (99) 

$1 = e 
-iT 

(l00) 

(l01) 

Path 5 A 1 = 0, A 2 > 0, A 3 > 0 

Y = -aY (102) 

D = (l-m)(R - aK - rY) (103) 

(104) 

(lOS) 
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Path 6 Al > 0, "2 = 0, A3 > 0 

A3 ~ a),3 + e-iT t (: -a - (l-h)i - hr) (l06) 

"'1 -
-iT 

- hAl (107) e 

"'2 = (l-h)"1-"3 (108) 

The next step in the solution procedure is to select feasible final paths. We will 

restrict ourselves here to checking path I, because we intend to present the procedure 

only for a subset of optimal strings. With the help of that presentation, the interes­

ted reader will be able to construct the remaining optimal strings. 

The transversality condition (67), together with equation (76) imply: 

-iz 
"'1(z) - e + A1(z) - 0 when T+ z (109) 

This expression implies: 

A 1 ( 0 when), 1 - 0 on a final path. (110) 

From (85) we derive: 

i)r+i>r (111) 

due to assumption (57). So, path 1 can only be a feasible final path if the discount 

rate exceeds the interest rate on debt capital. 

In order to find criteria to select feasible preceding paths, we derive from (85), 

(109) and (111): 

(112) 

and from (76) and (77): 

(113) 

(114) 

in which : tjl: point in time on which path 1 succeeds path j. 
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We are now able to select feasible preceding paths: 

path 2 : not feasible, because "'2(t;1) - 0, so there should be a jump in "'2' while 

"'2 is continuous. 

dR dK - a > (1-h)i + hr 

* so K ( Ky on path 3 (llS) 

* Furthermore K must increase on path 3 in order to reach Ky' In the Jorgenson 
model we handled a similar problem by supposing a sufficiently large marginsl 

revenue when K - O. Ludwig deals with this problem in a different way by 

deriving a sufficiently large initial value of X in the follOWing way: 

• • • 1 h 
K = X + Y + K = X + Y - 1=h m (It - ax - rY) + 1=h ax - aY 

Due to the concavity of It it holds that: 

dR * dR It(K) > K dK and, while K < Ky, so : dK > a + r 

It(K) > (r + a)K 

So K is certainly positive if 

l_lh m (rK - rY) + l_hh aX - aY > 0 - ! < ~ X (l-h)a 

path 4 infeasible because "'2(t~1) ( 0 

path S infeasible because "'2(t;1) ( 0 

dR 
dK - a ( (1-h)i + hr 

* so K > Ky on path 6. 

(116) 

(117) 

(118) 

(119) 

In the same way, one can find that there are no feasible predecessors of the paths 3 

and 6. So we have found both strings, ending with path 1: 
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* Y~O) mr + ha if i > rand K(O) < Ky and X 0) < (l-h)a 

* if i > rand K(O) > Ky 

path 3 + path 1 

: path 6 + path 1 

In the same way, the other patterns presented in chapter 3 can be derived. 

5. The model of Lesourne and Leban. 

To get a closed control region, we add artificial boundaries on D and I. Furthermore 

we remove Y by substituting (K-X) for it and so we get: 

msximize 
D,I,L 

subject to X = (1-f)(R - wL - (r+a)K - rX) - D 

X, K' (1+k)X 

R - R(K,L) , strictly increasing and concave 

(120) 

(121) 

(122) 

(123) 

(124) 

(125) 

(126) 

This model contains state constraints (123) as well as control constraints (124) and 

(125), so theorems 8 up to 10 of appendix 1 hold in this case. The Hamiltonian is: 

(126) 

and the Lagrangian: 

(127) 

From the Jorgenson model we know that paths, during which the controls are on an arti­

ficial boundary, describe adjustments of the initial state of the firm in such a way 
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as to become a point on an optimal string.!) Because of their lack of economic mea­

ning, we drop them here, assuming: 

We now get the following optimality conditions: 

(WI - PI + (1+k)p Z) (1-f) (;~ - w) 

AID = 0 

P 1 ~ 0, P 2 ~ 0 

P 1 (K - X) = 0, P 2 ( (1 +k) X - K) = 0 

lim wI(T) = 0, lim WZ(T) 
T + co T + CJO 

o 

o 

lim PI(T).(K - X) = 0, lim )JZ(T).«l+k)X - K) 
T+CJO T+oo 

From (131) and (133) the result is that: 

aR at" = W" R = R(K) in the optimal solution 

From (134) and (136) we derive six possible paths: 

o 

(128) 

(129) 

(130) 

(131) 

(132) 

(133) 

(134) 

(135) 

(136) 

(137) 

(138) 

(139) 

(140) 

1) Arrow and Kurz have proved, more in general, that jumps in the state variables can 
occur only at the beginning of a planning period if the Hamiltonian in the optimal 
solution is strictly concave in the state variables (Arrow & Kurz (1970), page 56). 
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. . 
path nr. Al ~1 ~2 path nr. Al ~1 ~2 

1 0 - 0 4 + - 0 

2 0 0 - 5 + 0 -
3 0 0 0 6 + 0 0 

Table A2.3. Paths ot the model of Lesourne & Leban. 

On the paths through 3 it holds that Al = O. Due to (131) and (132) this results in: 

• • -iT 
"'1 +"'2 + ie = -k~2 (141) 

(142) 

and by inserting (129) and (130): 

(143) 

-iT a G 1 i) k' 
e (1-f) {aK - a - TIkCkr + I-f) = l+k ~1 (144) 

~. 

(136) : ~ 1 < 0, ~2 - 0 + Y = 0 and X = K < (1+k)X (145) 

(144) : ~1 < 0+ :~ - a < l~k(kr + l=f) (146) 

(143) • 0 + ill. - a = _i __ K = K" 
. ~ 2 = a K I-f X (147) 

(146), iIi 
(147) : I-f < Ti:kCkr + I-f) + i < (1-f)r (148) 

So, this path can appear only if equity is cheaper than debt capital. 
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~. 

(136) : III = 0, 112 < 0'" X < K = (1+k)X 

( 144) • Il = 0'" aR a = _l_(kr + _i_) - K = 1C,o 
• 1 a K - l+k 1-f --y 

(143) : 112 < 0 ... ~~ - a < l:f 

(150) , 
(151) : i > (l-f)r is necessary to enable path 2 

Path 3. 

(136) : III = 112 0 ... X < K < (1+k)X 

(149) 

(150) 

(151) 

(152) 

(153) 

In the same way as described above, this yields : i = (1-f)r, which is excluded by 

assumption (3.52). So, two paths remain: the pure equity financing case and the maxi­

mum debt financing case. On both paths, the capital stock has a stationary value and 

so, due to the fixed financial structure: 

K=O+X=O (154) 

which yields an expression for D and I: 

(1-f)! R(r<) * (121), (154), Y = 0 : D = - wL - aKxl (155) 

,. 
1= a~ (156) 

(121), (158), Y = kX (1-f)! R(K,o) k 
K) D = - wL - (a + l+k r) y (157) 

* aK.z (158) 

From (131), (132), (138) and (139) one can conclude that paths 1 and 2 can fulfill the 

transversa1ity conditions if all auxiliary variables vanish when T approaches~. 

In the same way as for paths 1 through 3, we can derive from (131) and (132) for paths 

4 through 6: 

-iT 
Al = i'1 + i'2 + k 112 + ie (159) 

(160) 
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These expressions will be used for the coupling procedure later on. 

Furthermore, (130) through (132) result in: 

"'2=~2-~1 
-iT a R 

(e + A 1) (l-f)(a - (r+a.» 

~. 

(136) : ~ 1 < 0, ~ 2 = 0 .. x = K < (l+k) x 

(161), aR * 
(162) : a K - a ~ r - K > ~y 

Path 5. 

(136) : ~1 0, ~2 (0" X (K< (l+k) X 

(161), aR * 
(164) : a K - a) r - K ~ ~y 

(161) 

(162) 

(163) 

(164) 

(165) 

From (140), (163) and the strict increasing property of R, we can conclude that: 

R - wL - (r+a) K > 0 .. X > 0 

~. 

(136) :].11 =].12 0" X(K( (1+k) X 

(161), aR * 
(167) : aK - a = r - K = ~y 

From (140), (168) and the concavity of R we can conclude that on path 6 

(R - wL - (a+r)K) is on its maximum, so: 

R - wL - (a+r)K > 0 

(121), (168), (169) 

X > 0" Y < 0, due to K = 0 

(166) 

(167) 

(168) 

(169) 

(170) 

So, the firm is paying back debt capital, keeping its capital stock and its money 

capital on a fixed level. 
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The fact that "1 is positive on paths 4 through 6, prevents that the transversality 

condition can hold, for, due to (131) and (132): 

(l7l) 

So, for T + .. and. 1 = 0 (see: (138», it must hold that 

(172) 

due to the transversality condition (139). This is path 5 when Al is Pos~tive. On that 

path, K is strictly increasing, so, we can assume that it surpasses Kyx while T is 

still far from infinity, and thus it will change into another path before that time. 

None of the other two paths is a feasible final path, due to (172), so paths 1 and 2 

are the only final paths. 

This brings us to the coupling procedure. Paths 1 and 2 are the only final paths and, 

just like in the former models, may form a whole string if the initial state is exact­

ly the relevant stationary state, so: 

if * i < (l-f)r and X(O) - ~, then the optimal trajectory is: 

* path I, with K(T) = ~ 

yeT) - 0 

* I(T) - ~ 

D(T) (l-f)! r(~) - wL - a¢ 

if 1 * i > (l-f)r and X(O) -l+k Ky, then the optimal trajectory is: 

* path 2 with: K(T) = Ky 

k * yeT) = l+k Ky 

* I(T) = a Ky 

* k * D(T) = (l-f)! R(Ky) - wL - (a + l+k r)Ky} 

(173) 

(174) 

Strings consisting of two stages are formed by coupling paths 4 through 6 before path 

1 or 2. From (104) in appendix 1 one can derive the continuity of ~l and ~2' even when 
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the control variables I and D are jumping, for in that case, $(x,u,t), as defined in 

(92) of appendix I, will be discontinuous and so, ~ 1 and ~ 2 are continuous. This nice 

property implies, through (131), the continuity of A I' so it is necessary for paths 

preceding paths 1 and 2 that: 

Al < 0 when Al = 0 on a preceding path. (175) 

Let us consider the relevant three paths apart from each other: 

Path 4. 

From (129), (130), (131), (159) and ~2 0 one can derive that (175) implies: 

- e-iTO_f){oR - a - ~ ( 0 when A 
OK T=fI 1 

o (176) 

OR 
+ --aK (177) 

Together with the necessary condition (163), this results in another necessary condi­

tion: 

i < (l-f)r (178) 

So, we get: 

* * if i < (l-f)r and ~ < X(O) < ~, then the optimal trajectory is: 

path 4 path 1 

* * * KyX<K<~ K = ~ 

K> 0 

Y = 0 Y = 0 

D = 0 D = (l-f){ R(~) - wL - a~ (179) 

which is the case of pure equity financed growth. 
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!!!U. 

From (165) and (166) result two possibilities of ending this path: 

(5.1) : A1 = 0 and then a change to path 1 or path 2 

* (5.2) : K = K.a: before A 1 = 0 

(5.1) A 1 = 0 and then a change to path 1 or path 2. 

On path 5 it holds that ~ 1 - 0, so through (129) - (131) and (160) we can translate 

(175) into: 

(180) 

3R 1 i * 
.. 3 K - a ) H:i«kr + 1-f) - K ~ Ky (181) 

Due to the continuity of X and K. this path must be connected with path 2, the case of 

maximum debt financing. Due to its necessary condition (152) we get: 

1 * if i > (1-f)r and X(O) < T-tk Ky, then the optimal trajectory is: 

path 5 .. path 2 

K> 0 

D = 0 * k * D - (1-f)! R(Ky) - wL - (a + l+k r)Kyl (182) 

which is the case of maximum debt financed growth. 

* (5.2) K = KylE before A 1~ 

We must check the following extensions: 

path 1 : not allowed for, because then a jump in A 1 should occur, which is prohibited 

by the optimality conditions, as shown in relation to (175). 

path 4 : infeasible, too, because then it must hold for the left side limit of Y on 

the coupling point of time: 
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(183) 

and for the right side limit: 

1{-0 (184) 

so we get on the coupling time point: 

(185) 

which implies a jump in X, and this is contrary to the continuity of X. 

path 6 feasible, stsrting with Y • O. It may end with: 

o < Y < kX and ). 1 • 0 or: Y - 0 and), 1 > O. (186) 

In the same way as above, we can check that only the last situation results 

in a feasible successor, i.e. path 4, and that after transgression of this 
• path, till K - ~, path 1 is entered. 

Combining all necessary conditions, we can derive the following optimal patterns from 

the above analysis: 

1 • 
If i < (l-f) and X(O) < 1+k ~Y , then the optimal trajectory is: 

path 6 + path 5' + path 4 + path 1 

K> 0 X> 0, Y < 0 K> 0 

Y - kX O<Y<kX Y • 0 Y - 0 

D - 0 D-O D - 0 D - (I-f)! r(~) - wL - .u¢ 
1 • 

If i < (l-f)r and X(O) - l+k ~, then the optimal trajectory is 

path 5 + path 4 + path 

1 * • If i < (l-f)r and 1+k ~ < X(O) < Ky' then the optimal trajectory is: 

path 4 + path 1. (187) 
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We will finish this section with a derivation of the critical Q-value Q, discussed in 

the main text. If the output in the optimal solution is below this level, capital 

goods and labour are complementary inputs. If the output exceeds this level, both 

inputs become substitutes to each other. 

First, we repeat some information that will be used in the derivation: 

d(~) 
(3.48): to (Q) :~ -T is a decreasing function of Q with: 

to (0) > 0 and to ( .. ) < 0 

The strict concavity of R(Q) and the optimality condition (140) give: 

We start the derivation by transforming (190) with the help op (188): 

Differentiation of (191) yields: 

Inserting (188) and (189) in (192) results into: 

Substituting w by (191) and omitting (1-a): 

Now, from (189) we can derive that: 

i" dR to • Q-+-
dQ2 dQ 

(188) 

(189) 

(190) 

(191) 

(192) 

(193) 

(194) 

(195) 
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Inserting (195) into the denominator of (194) yields: 

dL a A L 
dK = 

K(a ~ - (1..,.) 
dQ 

(196) 

From (190) we can conclude that the denominator of (196) has a positive value, so 

(dL/dK) has the same sign as A. From (189) we know that there is a value of Q, say 

Q, for which this sign must change from a positive value into a negative value, which 

thus implies the transition from the case of complementary inputs into the case of 

substitution. 

6. Summary. 

As far as we know, none of the publications on dynamic economic models of the firm in 

the area of Optimal Control contains a description of the way in which the author has 

found the relevant optimal solution. Discussions with several authors confirm, that 

the solution in most cases has been arrived at in a heuristic, intuitive way. In this 

appendix we present a general, iterative procedure to solve Optimal Control models 

containing mixed control and state constraints, that is based on the optimality condi­

tions as formulated in the previous appendix. The procedure is applied to the three 

dynamic models of the firm that may be regarded as precursors of the model of chapter 

4. 



Al'PENDIX 3. SOLUTION OF THE MODEL OF CHAPTER 4. 

1. A reduced form of the model. 

In order to simplify the solution procedure, we will first leave out some mathemati­

cally superflous elements in the formulation (4.16) - (4.28). From (4.19) an1 (4.20) 

results that, for a given state of the firm, not all control variables can be chosen 

freely, so the firm has in fact less independent instruments than the number of con­

trol variables. This fact will be used to reduce the model by leaving out two endoge­

nous variables. In our formulation, we have selected K2 and Y to be removed from the 

model. We can rewrite (4.19) and (4.20) in: 

(1) 

Y = K - X (2) 

Substitution of the above expressions in (4.16) through (4.24) results in the next 

reduced form of the model: 

maximize 
D,I,K1 

subject to 

z -iT -iz 
: feD dT+ e (X(z) - gK(z)} 

o 

X = (l-f)(O + rX - rK) - D + gI 

K-I-aK 

K) X 

(l+k)X) K 

D) 0, Kl ) 0 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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So, 0 is a function of K and KI • The non-negativeness of K is ensured by (8) and (9). 

The non-negativeness of X is ensured by the non-negativeness of K together with (7). 

To get a closed control region, we have to put artificial boundaries to D and I in the 

same way as done in several models of appendix 2: 

D < D max 
(l2) 

(l3) 

Two state variables remain: X and K, but the set of controls has been reduced to 

{D,I,KI}. The reduced model will be used in this appendix. Through (I) and (2) one can 

easily trace the consequences of the optimal solution for the removed variables. 

2. Optimality conditions. 

Equations (6) and (7) are constraints on state variables, (8) is a mixed constraint 

and (9) are pure control constraints, so theorems 8 through 10 of appendix 2 apply to 

this case. From theorem 8 we derive the following optimality conditions: 

Let the Hamiltonian be: 

and let the Lagrangian be defined as: 

Then there must be functions "'1(T), "'2(T), Il I (T), 1l2(T), AI(T), A2(T) and 
A3(T), such that: 

(14) 

(15) 

(l6) 

(17) 
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Ak ) 0, ~t ) 0, k - 1, ••• , 6 ; t 1, 2. 

-iz -iz 
e , "'2(z) = - ge 

~1(z) !K(z) - X(z)1 = 0, ~2(z) ! (1+k)X(z) - K(z)1 = ° 

'" and A 

continuous with piecewise continuous derivatives 

continuous on intervals of continuity of {n,I,K 1} 

continuou~ on. intervals of continuity of {D,I,K11 

or when (K - X) is discontinuous 

continuous on intervals of continuity of {D,I,K1} 

or when { (l+k)X - KI is discontinuous 

3. A reduced form of the optimality conditions. 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 

Before starting to design the optimal solution, we may simplify the optimality condi­

tions. In the first place, we leave out cases in which D and/or I are on their artifi­

cial boundaries, so: 

(30) 

Further, from the conditions in section 2 we can derive that ~ l' ~ 2 and A 3 are conti­

nuous functions. From (28) follows that ~1 is continuous 

if {D, I, K11 continuous and/or (K - X) discontinuous, (31) 

which can be rewritten, using (4) and (5), into: 
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if {D, I, KI} continuous and/or 

{(I-g)I + D - [a - (l-f)r)K - (l-f)rX - (I-f)O} is discontinuous (32) 

Due to the closed control region, X and K are continuous, so at least one of the con­

trol variables must be discontinuous in order to get a discontinuity of the last e,.... 

pression of (32). So, the above conditions (32) are complementary to each other and 

(31) will always be fulfilled. Therefore we may conclude that ~I is continuous in the 

above optimality conditions. 

In the same way one can derive the continuity of ~2 from (4), (5) and (29). Because of 

the continuity of PI and P2, and because of (18), (26) and (30) we may further conclu­

de that 1.3 1s continuous. 

Taking all in all, we can reduce (16) through (29) to the next form: 

-iT 
ljII = ~ 1 - (l+k) P 2 + e + 1.3 (33) 

(34) 

(35) 

• -IT ao 
ljI2 = - (e + A 3) {(1-f) (ai{ - r) + ag} - Al (36) 

(37) 

(38) 

(39) 

(40) 

Ak ) 0, Pt ) 0, k = I, 2, 3 ; t I, 2. (41) 

-iz -iz 
e , ljI2(z) = -ge (42) 

PI(z) {K(z) - X(z)} = 0, P2(z) {(1+k)X(z) - K(z)} o (43) 

ljII' ljI2' 1. 3 ' ~ 1 and P 2 continuous functions (44) 
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"'I' "'2' Al and 1.2 : continuous on intervals of continuity of {D,I,K1} (45) 

Finally we will derive some equations that will be needed later on in this appendix. 

We know that: 

(46) 

and from (10) that: 

(47) 

so: ~.q _q .!!l..q 
3K1 1 2'3K 2 

(48) 

Finally, we can easily find, due to assumption A4 in chapter 4, that only two diffe­

rent rankings of the relevant unit costs can occur: 

in which 

4. Infeasible paths. 

w(1. 2 - 1. 2) 

c21 - q2 - q1 
(51) 

From (38) and (40) one can form 32 different combinations of zero and non-zero valued 

lagrangian parameters and first derivatives of the auxiliary variables PI.' Not all of 

them are feasible paths. In this section we will look for combinations that cannot 

fulfill the above optimality conditions and the assumptions A1 through A6 as defined 

in section 7 of chapter 4. The remaining combinations, which are the feasible paths 

constituting the optimal patterns, will be discussed in more detail in the next sec­

tion. 

From (33) results that: 
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(52) 

Together with (35) this leads to the necessary condition that i = (l-f)r, which in 

contrary to assumption A3. So, the above combination is infeasible. 

b. Al = A 2 = 0 and PI = P 2 = 0 

c. Al = A 2 = 0 and P 2 = A 3 = 0 

d. Al = A 2 = 0 and PI = A 3 = 0 

If Al = 12 = 0, it results from (37) and (49) that: 

(53) 

Suppose further that: 

dS = l... (wt + a + 6 ) 
dQ q2 2 

(54) 

in which 6 is a parameter to be specified later on, than its holds that 

l... (wt + a + 6) = l... (wt + a + 6 ) 
ql 1 q2 2 

(55) 

We will use this theorem to prove that each of the above mentioned three cases con­

flicts with assumption A4. This assumption excludes the incidental cases in which the 

unit costs of both activities, defined for different financial structures, equal each 

other. We start with PI = P 2 = 0, which implies through (33) and (34) that 

(56) 

together with (35), (36), (50) and Al 0, this results in: 

(57) 

From (53) and (57) we can conclude that 

(58) 

which is contrary to assumption A4. So, combination b is infeasible. 
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In the case of \1 2 = h 3 = 0, we get from (33) and (34): 

-iT 
\1 1 = "'1 + ie 

Combining (59) and (60) with (35), (36) and (50)-Yields: 

dS • 1- {wi + (l _.JL) a + (l-g) +-;;Il:f := c2X dQ q2 2 1-f 

(59) 

(60) 

(61) 

Due to (53) and (61) a necessary condition to case c should be: c 1X = c2X' which is 

excluded by assumption A4, so combination c is infeasible. 

When \1 1 = A 3 = 0 we can derive from (33) and (34) that: 

- -iT 
(l+k) \1 2 = - ", 1 - ie 

resulting in: 

(62) 

(63) 

(64) 

Together with (55) this leads to the necessary condition that: c lY = c2Y' which is, 

again contrary to assumption A4 and therefore combination d is cancelled. 

e. \1 1 < 0 and \1 2 < 0 

f. A 1 > 0 and A 2 > 0 

Due to (40) and the conditions (4) through (8), the first case implies that 

x = K = 0 + Kl = I = D = 0 (65) 

The second case results into the same conclusion through (38): 

K = Kl = 0 + X = I = D = 0 (66) 

Due to the continuity of X, both cases have the necessary initial condition: 

(67) 
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in which to is the moment at which the relevant case starts. But, as we shall see in 

the next section, none of the remaining paths can end wi th a zero amount of equity. 

So, there are no feasible preceding paths for the above cases. Furthermore, assumption 

AS of chapter 4 prohibits the above cases to be feasible initial paths, because the 

initial value of equity must be more than zero. So, there is no place for the cases e 

and f in any optimal trajectory and therefore they are infeasible. 

All in all, the following combinations are infeasible: 

. 
case Al AZ 1.3 u 1 Uz 

a 0 0 0 

b 0 0 0 0 

c 0 0 0 0 

d 0 0 0 0 

e + + 
f - -

Table A3.1. The infeasible combinations. 

5. Feasible paths. 

Based on the complementary slackness conditions (38) and (40) and table 1, we can now 

list the remaining feasible paths: 

path path 

nr Al 1.2 1.3 U1 U2 nr Al 1.2 1.3 u 1 U2 

1 0 + + 0 - 7 0 + + - 0 

2 0 + 0 0 - 8 0 + 0 - 0 

3 0 0 + 0 - 9 + 0 + 0 0 

4 + 0 + 0 - 10 0 0 + - 0 

5 + 0 0 0 - 11 + 0 + - 0 

6 0 + + 0 0 lZ + 0 0 - 0 

Table A3.2. The feasible paths. 

In this section we will demonstrate in more detail the main characteristics of these 

feasible paths. We need this information partly for the coupling procedure and partly 

for the analysis of the optimal solution. In this section we will apply another numbe­

ring of formulas: the first number indicates the path concerned and the second number 

the rank of the formula in the relevant subsection. 



!!!U. 

(38) ,(40), 

(1.2) 

(37),(41) , 

(49),(51), 

(1.1) 

(33)-(36) , 

(39),(1.1) 

(A.6) 

(4),(5), 

(40),(1.2) 

Kl = 0 

D = 0 

(l+k)X = K - Y = k.X 
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(e-iT + A 3) { - (I-f) ~~ + (1-g)(l-f)r - ag} < 0 + 

dS * 
dQ) c2YX + Q < Q2YX 

• k 
X = (1-f) {O - l+k rK} + g(K + aK) -

• k 
{I - g( l+k)} X = (1-f) {O + R - l+k r K} 

Due to the concavity of S, (1.4) and (1.7) it holds that: 

(38),(47), 

(1.2) 

(1.8-10) , 

(59) 

(1.5,11) 

o = S - (wR. 2 + a)K 

{I - g(l+k)}X > (l-f) e -l!~l+k) rK} + ;;. > ~~~ rK 

1{ > 0, K > 0, Y > 0 

(1.1) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

Due to (1.2), A3 is positive on path I, but its value may approach zero at the begin­

ning or at the end of this path. From the non-negativeness restriction (41), we can 

derive the following necessary conditions for such cases: 
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+ 
),3 • 0 + ),3 > 0 when),3 = 0 on path 1 (1.13) 

),3 - 0 + >'3 < 0 when >'3 = 0 on path 1 (1.14) 

(An arrow to the right (left) indicates the right (left) side limit of the relevant 

variable on the relevant time intersection). Now we will translate these conditions in 

conditions on the parameters and/or on the value of Q. 

(33)-(36), 

(1.1) 

(1.13,15) 

(A4),(51), 

(1.6,7,16) 

(1.14,15) 

(38),(40), 

(2.2) 

(33), (35), 

(2.1) 

(Al) ,(40), 

(2.4) 

1 • • -iT 
),3 - 1 - (l+k)g hI + (l+k) ~2) + ie 

(1+k)(l-f) -iT {dS I 
1 - (l+k)g e "2 dQ - e2Y' when>. 3 - 0 

~ =O+E!., 3 dQ c 2Y 

+ 
),3 = 0 + e21 < c2Y + c1Y > c2Y 

c2YX < c2Y + i > (l-f)r 

+ 
dS> * >. = 0+ e2y - Q< Q2Y 3 dQ 

(1+k)X • K - Y = kX 

• -iT -iT "'I = - (l+k) 112 - ie = - e (l-f)r 

112 < 0 + i > (l-f)r 

(l.15) 

(1.16) 

(1.17) 

(1.18) 

(2.1) 

(2.2) 

(2.3) 

(2.3) 

(2.4) 

(2.5) 
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In the same way as on path 1, we can derive: 

(33)-(36) , 

(2.1,4) 

Analogously to (1.6) of path I, we get: 

(37) , 

(2.1,2) 

(A4),(51), 

(2.6,7) 

(38),(40), 

(3.2) 

D = 0 

(1+k)X = K - Y = kX 

Analogous to the previous paths, it holds that: 

(37), (49), 

(3.1) 

Just like on path 1 we can derive: 

(33)-(36) , 

(39),(3.1) 

(A4) ,(51), 

(3.4,5) 

We will now prove that X increases on path 3. 

(l.5) : K = (1+k)X 

(2.6) 

(2.7) 

(2.8) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 



(4),(5), 

(3.3) 
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{ k vi _ O-f) { (.!L _l vi 
X - (1-f) 0 - l+k r"j + gl - 1 _ g(l+k) 0 + I-f l+k r)"j 

Due to the concavity of Sand (3.5) it holds that: 

dS 
S > Q dQ > Q.c2yX 

Together with (46), (59) and (3.6) this results in: 

(47),(3.10): 0> {(I-g)r -~ a}K 

(3.8,11) q.e.d. 

We can further derive from (46) and (3.4): 

Just like on path 1 we can derive that: 

; = - (l+k) O-f) e-iT q {~- c2y) when A 3 = 0 
3 1 - (l+k)g 2 dQ 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

and combining this with (3.4) and the necessary conditions as mentioned on path I, we 

get: 

(3.16) 

(4.1) 

(4.2) 
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Next results can be found in the same way as on the above paths, so we will only men­

tion them: 

(4.2) 

(37), 

(4.1,2) 

(33)-(36) , 

(4.1,2) 

(A4),(5l), 

(4.4,5) 

K = Kl 

D = 0 

(l+k)X = K - Y = kX 

* Q) ~1 

(4),(4,2-5) and the concavity of S: 

x > 0, K > 0, Y > 0 

In the same way as on the previous paths we derive from (33) - (36): 

• 1 • • iT 
"3 = 1 - g(l+k) {I/Il + (l+k) ljI2l + ie-

Which now leads, due to (4.1) and (37), to: 

(l+k){l-f) -iT {dS } 
"3 = - 1 - (l+k)g e ql dQ - c1Y when" 3 = 0 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

This results, together with (4.6), in the following necessary conditions for zero 

initial or final values of "3 on path 4: 

+ 
0+ 

dS 
dQ < c 1Y + c 1YX < elY + (l-f)r < i 

(4.10) 
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(5.1,2) K - K1 

(l+k)X = K* Y = kX 

Like on path 2 it holds, due to (5.1), that: 

(33)-(36) , 

(49),(50), 

(5.1,2) 

(37),(49), 

(5.1,2) 

(A4) , (51), 

(5.6,7) 

(6.1,2) 

(33)-(36), 

(6.1) 

(37),(49), 

(6.1,2) 

i > (l-f)r 

aD dS 
a K1 ( 0.. dQ < e21 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(6.1) 

(6.3) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 



(A4), (51), 

(6.5,6) 
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In the same way as on path I, the concavity of S, together with (6.5) leads to: 

(33)-(36) , 

(58) 

X '> 0 + Y < 0 (because K - 0 due to Q - 0) 

Which results together with (6.5) and analogous to path 1 in: 

(7.1,2) 

(37),(49), 

(7.1,2) 

i > (l-f)r 

+ + * 
A 3 - 0 + Q < Q2X + c2YX > c2X + i < (l-f)r 

K=X*Y=O 

• dS 
(33)-(36), g WI + W2 - - (l-g) jJ 1 + dQ < c 2yx 
(39),(7.1,2) 

(A4) ,(51), 

(7.4,5) 

(Al) , 

(7.1-3) 

(4)-(6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

(7.7) 



Just like on path 6, it holds that: 

(A4),(51), 

(7.4,8) 

(8.1,2) 

(A3) ,(33), 

(35),(39), 

(8.1) 

(33)-(36) , 
(8.1,2,4) 

(37), 

(8.1,2) 

(A4) , (51), 

(8.5,6) 

(9.1,2) 

Kl • 0 * K = K2 

K-X*Y=O 
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(7.9) 

i < (l-f)r (7.10) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 

(8.6) 

(8.7) 

(9.1) 

(9.2) 

(9.3) 



(33)-(37), 

(9.1) 

(37) , 

(9.1,2) 

(A4),(51), 

(9.4,5) 
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(9.4) 

(9.5) 

(9.6) 

Due to the "on"avity of S and due to (9.4) we "an derive, analogous to the above 

paths: 

(33)-(36) , 

(49),(50), 

(9.1,2) 

(A3) , 

(9.4,8) 

X>O+Y<O 

A3 =0+Q) 

+ 

* QIX + "IYX < "IX 
+ 

* A3 =0+Q< QIX + "lYX) "IX + 

Path 10. 

(10.1,2) 

(37),(49), 

(10.1) 

D = 0 

K-X-Y=O 

30 dS * 
aK" = 0 + dQ = "21 - Q = Q21 

1 

(A2),(4)- : X 

(6) ,(10.3) 

i > (1-f)r 

i < (1-f)r 

(9.8) 

(9.9) 

(10.1) 

(10.2) 

(10.3) 

(10.4) 

(10.5) 

(10.6) 



(10.4,6) 

In the same way as on path 7 we get: 

dS 
(33)-(36) : dQ < "2YX 

(39),(10.1,2) 

(A4), (51), 

(10.4,8) 

Like on path 9 it holds that: 

-iT 
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(see path 3) 

ql e dS 
A = (1-g)(1-f) {c 1X - dQ} when A 3 = 0 

3 

* (A4),(5I), A = 3 
0-> Q) QIX -> "IX) "2X 

(10,4,10) 

* A = 
3 

0-> Q < QIX -> "IX < "2X 

Path II. 

A2 = ~2 = 0 

A I ) 0, A3 ) 0, ~ I < 0 

(11.1,2) K = Kl 

D = 0 

X = K- Y = 0 

~) dS * (37), (49), a Kl 
0-> dQ < "21 -> Q) Q21 

(11.1,2) 

In the same way as on path 10 we "an derive that: 

X)O+K)O->Q>O 

(10.7) 

(10.8) 

(10.9) 

(10.10) 

(IO.l1) 

(II.I) 

(1l.2) 

(1l.3) 

(1l.4) 

( ll.5) 

Also the necessary conditions for A3 to vanish can be found in the same way as on path 

10, for the same formula of ~ holds on this path: 
3 
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+ + 
* A3 = 0'" Q) Q1X (11.6) 

... 
* A3 = 0'" Q < Q1X ... c 1X < c 1YX ... i < (1-f)r (11.7) 

Path 12. 

(12.1) 

Al>O'~l<O (12.2) 

(12.1,2) 
(12.3) 

Like on path 8, ),3 = ~2 0 results in the necessary condition: 

i < (1-0r (12.4) 

(34)-(37) , 

(12.1,2) 

(37),(49), 

(12.1,2) 

(A4),(51), 

(12.5,6) 

1/1 1 + 1/1 2 = - (1-g) 

ao dS iiK"") 0... dQ < c21 
1 

6. Final paths. 

-iT e ... (12.5) 

(12.6) 

(12.7) 

Final paths must fulfill the transversality conditions. Together with (33) and (34) we 

get: 

implying: ~2(z) = ~). (z) 
k 3 

(68) 

(69) 

(70) 

We will now demonstrate in an indirect way that A 3 has to vanish at the planning 

horizon. Suppose: 
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(71) 

Then, by (70) and (43) it must hold that: 

11 2(Z) > 0 + K(z) a (l+k)X(z) < X(z) + IIl(Z) - 0 (72) 

This results, together with (69) and (70) in: 

II (z) _ 1 - (l+k)g >.. (z) _ 0 
1 g 3 (73) 

Due to (71) this can only be true if: 

O+k)g - I, (74) 

which is contrary to assumption A6. So, due to (69), (70) and (74), feasible finsl 

paths are characterized by: 

(75) 

This results in the following final paths: 

path necessary conditions main properties of 

nr the stationary state 

2 i > (l-f)r and c IY > c2Y Y-kXandK-Kz 

5 i> (l-f)r and c IY < c2Y Y = kX and K = Kl 
8 i < (l-f)r and cIY > c2Y y- O and K- K2 
12 i < (l-f)r and cIY < c2Y y- O and K - Kl 

Table A3. 3. The feasible final paths. 

As described in figure 1 of appendix 2, we will now start looking for feasible paths, 

preceding the above mentioned final paths. In order to select them, we derive some 

coupling conditions from the optimality conditions in the next section. 

7. Coupling conditions. 

From (2) and from the fact that the variables X and K are continuous, we can derive 

that Y must be continuous, so: 

+ + 
Y = Y on a coupling time point (76) 
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We have derived in (44) that: 

A3 is continuous (77) 

From the continuity of K and from the fact that activity 1 is the capital-intensive 

one, so q1 < q2' it results thst: 

+ + + * + * 
K • K2 and Q = QJN + Q' QJN on a coupling point of time - (78) 

in which j - I, 2, 21 N - X, Y, YX, fJ (j - 21 - N - fJ) 

The above implication is true because: 

+ + + + + + + + 
Q = q1K1 + q2(K - K1) < q2K when K1 ) 0, for: K - K snd q1 < q2' 

In the same way one can derive that: 

(79) 

Beside the rankings ss mentioned in (51), we need the following implication which can 

easily been derived: 

(80) 

8. Coupling procedure. 

In this section, we will describe the selection procedure for feasible preceding 

paths. Only for the first set of strings, all ending with path 2, we will describe 

this procedure at length. Having all the information on relevant details in this way, 

the reader is assumed to be able to construct the selection procedure for the remai­

ning sets of strings with the help of the tables, presented later on. 

8.1. Strings ending with path 2. 

From the coupling conditions and the characteristics of path 2, we can derive that a 

path, preceding path 2, must have the next properties: 

+ + + 
Y = kX ;c1Y > c2Y ; A3 • a and :i > (l-f)r (81) 

We will now check which path(s) fulfill(s) these constraints: 
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path feasible reason 

nr predecessor 

1 yes .. 
2 no A3> 0 

.. .. 
* * 

. 
4 no A3 > 0 for Q > 02l > Q1Y due to c 1Y > c2Y and Q> 0 

5 no c 1Y < c2Y should be necessary for feasibility 

.. 
6 no A3 > 0 because i > (l-f)r 

.. 
7 no A3 > 0 because i > (l-f)r 

8 no i < (l-f)r should be necessary for feasibility 

.. 
9 no A3 > 0 because i > (l-f)r 

.. 
10 no Y = 0 .. 
11 no A 3 > 0 because i > (l-f)r 

12 no i < (l-f)r should be necessary for feasibility 

Table A3.4. Selection of paths preceding path 2. 

So, only path 1 can precede path 2. On path 1, the amount of capital goods rises and 

so, because there is no switch of production activity, total output increases. From 

this fact, from the necessary conditions of the final path 2 and from the characteris­

tics of paths 1 and 2, we can derive the following properties for a feasible path 

preceding path 1: 

path 1 preceding path 

Y = leX .. Y leX 

* Q < Q2Y and K1 = 0 (82) 

on both paths: i > (l-f)r and c1Y > c2Y 

None of the feasible paths can meet all these conditions at the same time: 
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path feasible reason 

nr predecessor 

+ 
2 no "3 - 0 

+ ... + q2 ... ... 
3 no Q - Q21 - q1K(t31 ) + Q - q2K(t31 ) -- Q > ~y ql 21 

... + + q2'" ... 
4 no Q21 < Q - q1K(t41 ) + Q - q2K(t41 ) > q Q21 > Q2Y 

1 
5 no c1y < c2y should be necessary for feasibility 

+ + 
6 no Y < kX 

+ 
7 no y- O 

8 no i < (l-f)r should be necessary for feasibility 

+ + 
9 no Y < kX 

+ 
10 no Y = 0 

+ 
11 no Y - 0 

+ 
12 no Y = 0 

Table A3.5. Selection of paths preceding path 1 + path 2. 

By combining the above results with the characteristics of paths 1 and 2, we get two 

strings of final path 2, a one staged and a two staged string. So, in the case of 

i> (l-f)r, c1y > c2y and: K(O) -,(l+k) X(O), the follOWing strings and initial condi­

tions hold: 

initial conditions optimal trajectory 

X(O) = a1 path 2 

X(O) < a1 path 1 + path 2 

Table A3.6. Optimal trajectories resulting from tables A3.4 and A3.5. 

in which (83) 
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8.2. Strings ending with path 5. 

In the same way as abo~e, by combining the properties of the paths and the coupling 

conditions in selecting fessible preceding paths, one can derive the other trajecto­

ries. From these remaining strings, we will only present the conditions to be posed on 

preceding paths. The selection procedure itself will be left to the reader. For the 

string ending with path 5, we get the following preceding conditions: 

conditions to precede 

path 5 path 5 path 4 path 3 path 1 

'" 
+ 

'" '" '" '" Q - QlY Q> QlY Q> Q2l Q< Q2l Q < Q2l 
+ + + 

when K > Kl when Kl > Kl 
+ + + + + + + + 

Y = kX Y= kX Y = kX Y - kX Y- kX 

+ + + + 

A3 - 0 A3 - 0 A3 > 0 A3 > 0 A3 > 0 

i > (l-f)r i > (l-f)r i > (l-f)r i > (l-£)r i > (l-f)r 

clY < c2Y clY < c2y clY < c2Y clY < c2Y clY < c2Y 

preceding 

path path 4 path 3 path 1 -

Table A3.7. Preceding conditions of the strings with final path 5. 

From table 6 and the characteristics of the paths, we can derive the following strings 

and relevant initial conditions in the case of i > (l-f)r, clY < c2Y and: 

K(O) = (l+k)X(O) 

initial conditions optimal trajectory 

X(O) - bl path 5 

b2 < X(O) < bl path 4 + path 5 

b3 < X(O) < b2 path 3 + path 4 + path 5 

X(O) < b3 path 1 + path 3 + path 4 + path 5 

Table A3.B. Optimal trajectories resulting from table A3.7. 
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in which (84) 

8.3. Strings ending with path 8. 

conditions to precede 

path 8 path 8 path 7 path 6 path I 

* * 
.. 

* 
.. 

* Q = QZX Q = QZX Q < QZI Q < QZYX .. 
KI = 0 when KI = 0 

.. .. .. .. 
y = 0 Y = 0 y = 0 y> 0 Y> 0 

.. .. .. .. 
"3 = 0 "3 = 0 "3 > 0 "3 > 0 "3 > 0 

i < (I-f)r i < (I-f)r i < (I-f)r i < (l-f)r i < (l-f)r 

c lX > cZX c lX > czx c lX > czx c lX > czx c lX > cZX 

preceding 

path path 7 path 6 path I -

Table A3.9. Selection of paths preceding path Z. 

Note that: 

(85) 

So, we can derive the following optimal strings and their relevant initial conditions 

for the case of i < (l-f)r and c lX > CZX : 

initial conditions optimal trajectory 

X(O) = K(O) and c i ( X(O) path· 8 

X(O) = K(O) and c2 ( X(O) < c i path 7 .. path 8 

K(O) = bZ and c3 ( X(O) < Cz path 6 .. path 7 .. path 8 

K(O) = ( l+k)X(O) and X(O) < c3 path I" path 6 .. path 7 .. path 8 

Table A3.10. Optimal trajectories reSUlting from table A3.9. 

in which (86) 
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8.4. Strings ending with path 12. 

In the selection we will need the following orderings of Q*-values: 

i < t:l: :I: :I: 
(l-f)r + Q1yx < Q1Y < Q1X 

.. * .. 
Q2yx < Q2Y < Q2X 

(87) 

conditions to precede 

path 12 path 12 path 11 

.. ... .. ... ... .. ... 
Q - QIX Q - QIX when K = Kl Q> Q21 when K- K2 

... .. ... 
K = Kl Q > QIX when K2 > 0 

... ... 
Y = 0 Y - 0 Y = 0 

... ... 
~3 - 0 ~3 = 0 ~3 > 0 

i < (l-f)r i < (l-f)r i < (l-f)r 

c1X < c2X c1X < c2X c1X < c2X 

preceding path 9 when c1YX < c2YX 
path path 11 path 10 when c1YX > c2YX 

Tabel AJ.ll. Selection of paths preceding path 12. 

From this table can be derived that two distinct strings may precede path II, one 

ending with path 9 and the other ending with path 10. In addition, we have found a 

supplementary condition which indicates, that each string holds under different condi­

tions. we will present the tables of the relevant strings apart from each other. The 

condition on c jYX results in another ordering of Q*-values: 

(88) 

This ordering will be used in the selection procedure, too. 
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conditions to precede 

path 9 patlt 4 path 3 path 1 

+ 
* * 

+ 
* 

+ 
* 

+ 
* Q> Q1yx (> Q21) Q > QIYX Q < Q21 Q < Q21 

+ + + + + + + 
Y> 0 Y = kX Y = kX Y = kX 

+ + + + 

~ 3 > 0 ~3 > 0 1.3 > 0 ~3 > 0 

i < (l-f)r i < (l-f)r i < (l-f)r i < (l-f)r 

c1YX < c 2YX c 1YX < c2YX c1YX < c2YX c 1YX < c2YX 

preceding 

path path 4 path 3 path 1 -

Table A3.12. Selection of paths preceding path 9 when cI YX < C2YX • 

So we get the next optimal strings and initial conditions to match in the case of 

i < (l-f)r and c 1YX < c 2YX (+ c 1X < c 2X) : 

initial conditions : optimal tr.ajectory 

K(O) = X(O) and d1 < X(O) path 12 

K(O) - X(O) and d2 < X(O) < d 1 path 11+ path 12 

K(O) = c2 and d3 < X(O) < d2 path 9 + path 11+ path 12 

K(O) = (l+k)X(O) and d4 < X(O) < d3 path 4 + path 9 + path 11 + path 12 

K(O) = (l+k)X(O) and d5 < X(O) < d4 path 3 + path 4 + path 9 + path 11 

+ path 12 

K(O) • (l+k)X(O) and X(O) < d 5 path I + path 3 + path 4 + path 9 

+ path 11 + path 12 

Table A3.13. Optimal trajectories resulting from tables A3.11 and A3.12. 

In which 

(89) 
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conditions to precede 

path 10 path 7 path 6 path 1 

+ 
* 

+ + + 
* 

+ 
* 

+ 
* Q < Q21 when Kl =K Q < Q21 Q< Q2yx Q < Q2yx 

+ 
* 

+ + 
Q = Q21 when K2 ~ K 

+ + + + + 
Y = 0 Y = 0 Y> 0 Y= kX 

+ + + + 

).3 > 0 ).3> 0 ).3 > 0 ).3 > 0 

i < (l-f)r i < (l-f)r i < (l-f)r i < (l-f)r 

c1yX > c2yx c1YX > c2YX c 1YX >c2yX c1yX > c2YX 

preceding 

path ,path 7 path 6 path 1 -

Table A3.14. Selection of paths preceding path 10 when cIYX > c2YX' 

From table 13 and the properties of the relevant paths we can derive the following 

optimal patterns: 

initial conditions optimal trajectory 

K(O) = X(O) and e 1 < X(O) path 12 

K(O) = X(O) and e2 < X(O) < e1 path 11+ path 12 

K(O) - X(O) and e 3 .; X(O) < e2 path 10 + path 11 + path 12 

K(O) = X(O) and e 4 <; X(O) < e 3 path 7 + path 10 + path 11 + path 12 

K(O) - d4 and e S <; X(O) < e4 path 6 + path 7 + path 10 + path 11 

+ path 12 

K(O) = (I+k)X(O) and X(O) < e S path 1 + path 6 + path 7 + path 10 

+ path 11 + path 12 

Table A3.IS. Optimal patterns resulting from tables A3.II and A3.I4. 

In which * 1* 1* 1* 
QIX e 2 = q; Q2I' e3 = q;- Q21' e 4 = q2 Q2YX' 

(90) 
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9. Summary. 

In order to solve the model of chapter 4, it is reduced to its mathematically most 

condensed form. The reduced model still contains 2 state variables, 3 control vari­

ables, 2 state constraints and 3 (mixed) control constraints. The solution procedure, 

as designed in appendix 2, is then applied to this reduced model and the main features 

of this process are described. 



LIST OF SYMBOLS 

(Small letters are constants, capitals are variables) 

A advertising expenditures, age of a 

capital good. 

B goodwill, inflow of debt. 

C costs. 

D dividend. 

E firing rate, (retained) earnings. 

F corporation profit tax. 

G gross revenue. 

H plant choice function. 

I investments.: 

J birthdate of the eldest vintage of 

machines. 

K stock of capital goods (or its 

value). 

Kj capital goods assigned to activity j. 

L labour. 

M new equity issued. 

N natural quit rate. 

o operating income. 

P price. 

Q output (-capacity). 

R return (on sales). 

S sales (volume or value). 

T time. 

U supply of labour, stocks other than 

capital goods. 

V value of the firm. 

W wages, cash flow. 

X equity. 

Y debt. 

Z recruitment rate, terminal value of 

assets. 

a 

aj 
b 

c 

d 

f 

g 

h 

i 

k 

I. j 
m 

n 

p 

qj 

r 

Sij 

w 

x 

z 

depreciation rate. 

parameter. 

redemption rate. 

price of capital good. 

total demand of the output market. 

corporation profit tax rate. 

investment grant rate. 

maximum borrowing rate. 

discount rate. 

maximum debt/equity rate. 

labour to capital rate of activity 

retaining rate. 

floatation costs of new equity. 

issued. 

price. 

capital productivity of activity. j. 

interest rate on debt. 

rate of technical substitution 

between activity i and j. 

wage rate. 

degree of homogeneity of H. 

planning horizon. 

j. 
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