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Chapter 1

Introduction to Fatigue:
Fundamentals and Methodology

1.1. Introduction to the fatigue of materials

1.1.1. Brief history of fatigue: its technical and scientific importance

Experience shows that fracture of structures or machine parts during regular
operating conditions are most often due to fatigue. Structural integrity has always
been an obstacle to industrial development. Its consequences could be seen during
the development of mechanical industry in the 19™ century. The industrial
revolution, particularly the development of rail transportation, was affected from the
start by a certain number of serious accidents, such as the one in Versailles, 1842,
where the rupture of an axle caused the death of 60 people [SMI 90]. This death toll
is close to that of the two Comet plane crashes that occurred in 1954.

It is known that fatigue damage costs several percent of the gross domestic
product of the engineering industry. For this reason, we can understand the fact that
articles and papers about this type of damage are ever increasing. Toth [TOT 01],
who recently checked the COMPENDEX data base, found about 10,000 articles on
this topic between 1988 and 1993, which comes to 2,000 articles a year.

According to Schiitz [SCH 96], Braithwaite {BRA 1854] introduced the term
“metal fatigue” in 1854. Despite this, Lemaitre [LEM 01] reckons that Poncelet

Chapter written by André PINEAU and Claude BATHIAS.



2 Fatigue of Materials and Structures

mentioned this term during an engineering lecture in Metz as early as 1839, and that
Rankine used it in 1843. To gain a better understanding of the work carried by
Poncelet and Rankine in this field, we can refer to Timoshenko’s work dealing with
the history of the strength of materials [TIM 53]. As a matter of fact, this term has
probably been in use for a long time. For instance, Stendhal used it in one of his
pieces “Memoirs of a tourist” published in 1838 [STE 1838]. On his way to
Civitavecchia, in Italy (where he had been appointed Consul), while crossing the
Loire river in La Charité one of the axles of his carriage broke. What he wrote is as
follows:

“La Charité — April 13. I was riding through the small town of La Charité, when,
as a reminder of the long thoughts I had in the morning about iron diseases, the axle
of my carriage suddenly broke down. I have to be blamed: I swore that if I ever had
my own carriage, I would get a nice Fourvoirie axle, with six mild steel rods, forged
under my own eyes... I checked the iron grain of my axle; it was larger as it has
apparently been used for a long time... .”

We should remember that in those times, and for many years during the 19t
century, people thought that iron “crystallized” due to mechanical vibrations. The
fact that Stendhal, who lived at the same time as Poncelet, already knew what
fatigue was, at least in this form, is not surprising. They both campaigned for
Napoleon in Russia in 1812 and we can assume that they would have discussed this
subject.

Excellent reviews on the history of fatigue have been written, some of them very
recently. We can for instance refer to the work of Schutz [SCH 96] which lists more
than 550 references, such as Toth [TOT 01], or Schijve [SCH 03].

It is worth noting that some works on this subject have recently been published:

— Bathias and Bailon [BAT 97];

— Bathias and Paris [BAT 05];

— Henaff and Morel [HEN 05];

— Murakami [MUR 02, MUR 03];

— Polak [POL 91];

— Reifsnider [REI 91];

— Schijve [SCH 01];

— Shaniavski [SHA 07]; and

— Suresh [SUR 9§].
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Here we should mention two regularly published journals that explicitly refer to
the fatigue phenomenon: Fatigue and Fracture of Engineering Materials and
Structures and the International Journal of Fatigue. In addition to this, in other
countries scientific societies organize lectures and conferences on this subject, such
as the ASTM (American Society for Testing and Materials) in the USA and the
SF2M (French Society of Metallurgy and Materials) in France.

Year Event

1842 Meudon railway accident
1858 | First publication by Wohler

1860-70 Wohler experiments on smooth and notched axles. Bending
and torsion tests — Investigation on the effect mean stress

- 1881 | Study by Bauschinger which initiated low-cycle fatigue

1910 | Basquin law
1913 Stress distribution within notches (Inglis)

1920 Energy balance regarding the propagation of a crack (Griffith)

1930 Stress concentration factor and endurance limit (Peterson)

1937 | Neuber concept applied to notches
1939 | Statistical approach Weibull law

1945 | Miner concept for fatigue damage accumulation

1953-54 | Low cycle fatigue. Manson — Coffin law

1954 Comet aircrafts accidents

1956 | Introduction of strain energy released rate (Irwin)

1960 | Servohydraulic machines

1961 Paris law

1968 Introdcution of effective stress intensity factor (Elber)
1988 Aloha B737 accident

1989 DC 10 Sioux City accident

1996 | Pensacola accident

1998 | ICE. Eschede railway accident

2006 | Los Angeles B767 accident

Table 1.1. 4 few stages and main events regarding the history of the fatigue phenomenon

Some memorable stages and events that have marked the history of fatigue are
highlighted in Table 1.1. As mentioned earlier, this type of damage has clearly been
of great importance during the development of rail transportation. The various
ruptures that Wohler observed in Germany led him to undertake a systematic study of
this type of damage.
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Along with trains and many other mechanical structures, aircraft were also
readily affected by the fatigue phenomenon. The first serious accidents that occurred
are those involving two Comet aircraft in 1954. A more recent example was the
Aloha accident in 1988, which involved a Boeing 737. The damage was really
serious, as we can see in Figure 1.1. This accident was caused by the formation of
cracks due to fatigue and corrosion in the assembly rivets area within the fuselage.
As a result, numerous studies have been carried out regarding the issue of multiple
site damage.

Figure 1.1. The Aloha Airlines Boeing 737at Honolulu international airport, Hawaii,
Jollowing the accident on April 28, 1988

Another example concerns the MacDonald Douglas DC 10 crash, which
occurred in Sioux City in Iowa in 1989 (see Figure 1.2). The explosion of one of the
engines led to this tragic accident. Even more recent was the Pensacola crash, when
one of the engines broke apart due to cracking initiation caused by a drilling defect
within a fan disk (see Figure 1.3).

These three examples from the aeronautical industry should not lead people to
think that aircrafts as a means of transportation are dangerous and the only means
affected by fatigue phenomenon. If we calculate the distance to passenger ratio,
flying remains the safest means of transport. Nevertheless, due to its rapid
development and despite the work being done on its design, manufacturing and
maintenance, we can predict that in about 10 years’ time a major aircraft accident is
likely to occur every week (see Figure 1.4). Let us keep in mind that human error is
the main cause of accidents involving aircraft. Accidents caused by defects in the
materials are still occurring in spite of improved manufacturing processes.
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Figure 1.2, DC 10 aircraft crash. Part of a detached engine.
Sioux City Airport, July 19, 1989

Figure 1.3. Pensacola Crash (Florida, USA), July 6, 1996, was due to
a failure during thetake off of a Delta Airlines MD-88 aircraft

Fatigue also affects many other fields of transport, as shown in Figure 1.5 where
cylinder heads of diesel engines subjected to increasing thermo-mechanical loading
can break due to thermal and mechanical fatigue cracking if their design is wrong
[SAL 07].
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Figure 1.4. Statistical study of the evolution of air traffic and of the number
of crashes (MANHIRP, 2001, see also 1001crash.com)

Figure 1.5. Cracking within the cylinder head of a diesel engine [SAL 07]

1.1.2. Definitions

Fatigue or fatigue damage refers to the modification of the properties of
materials due to the application of stress cycles whose repetition can lead to fracture.

Uniaxial loading is defined as the amplitude of the maximum stress during a
cycle Gmax. The stress ratio R is the ratio between the minimum stress Gpi, and the
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maximum Stress Omay, that is to say R = Oyi/Onax. We sometimes have to distinguish
the alternating component o, from the mean stress o, Thus, depending on the
relative values of these two components, we can differentiate the tests under
different stresses (see Figure 1.6), such as:

— fully reversed: o, =0, R=-1;
— asymmetrically reversed: 0 < 6, < G,, -1 <R <0;
—repeated: R =0;

- alternating tension: 6, > G6,, 0 <R < 1.

Y c
Fully reversed
Ga
L —_—
¢ Time Strain
a)
c ci
Asymmetric
tension-compression
b) 0 ; Strain
c
Repeated tension
©) o Strain
c
Alternating tension
9 Time o Strain

Figure 1.6. Different cases of fatigue stresses: load-time; force-strain
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Plastic deformations occur with low-cycle fatigue (see Chapter 4). Usually, the
fatigue phenomenon occurs without any general plastic deformation, which makes it
less likely to be noticed. Nevertheless this phenomenon occurs with a localized
plastic deformation around pre-existing defects within the materials, at the notches
of the structures, or at the tips of a crack when it has already been initiated.

For multi-axial loading, which will be presented in [BAT 10], the definition of a
strain amplitude is much more subtle, especially when loading is not proportional.

Fatigue is rarely perfectly cyclic (of constant amplitude and frequency), as
shown in Figure 1.6. In many cases (thermal engines, bridges, etc.), loads have
variable amplitudes and frequencies. These kinds of loads are examined in detail in
Chapter 12.

Theoretically, fatigue damage only depends on the number of cycles and not on
their frequency. As a matter of fact in most cases frequency does have a
consequence. This is the case when environmental and visco-plasticity effects at
high temperatures are involved (see Chapters 10 and 11).

In general, lifetime is measured using the number of cycles to failure, Ng. When
N cycles have occurred (N < Ng) a given damage is accumulated and has to be
evaluated. This allows us to determine the residual lifetime of the structure and the
management of its operation, such as the timing between aircraft inspections.

We define endurance as the strength capability of components and entire
structures before fatigue develops.

Thus, in general, fatigue occurs as soon as time dependent forces are involved.
As a consequence, fatigue damage is characterized by its danger, which is basically
that fracture can occur at low cycle stresses that in most cases are lower than the
tensile strength and even lower than the elastic limit of the material.

1.1.3. Endurance diagrams

The easiest fatigue test consists of subjecting each specimen to periodic loading
cycles, most frequently sinusoidal, with a maximum amplitude J,, along with a
constant frequency. The number of cycles is measured once rupture starts to occur
(Ng). We then obtain a curve which looks like the one plotted in Figure 1.7.
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A

Low cycle Endurance

fatigue

Monocycle
fatigue

|
I
|
]
1
1
|
1
1
I

Gigacycle fatigue

AStrain amplitude

1 10! 102 103 104 105 106 107 108 109 1010
Number of cycles

Figure 1.7. Wohler curve and definition of the various endurance areas

With this curve, known as the Wohler curve, SN curve (stress-number of cycles)
or endurance curve, we can differentiate four different regions:

— with a high stress, we get low cycle plastic fatigue. Within this region, studied
later on in Chapter 4, fracture occurs after a relatively low number of cycles (10” to
10" along with a significant plastic deformation. This type of damage has been
studied since the 1950s, following Manson [MAN 52] and Coffin [COF 54] who
introduced the Coffin-Manson law;

— with a lower stress there is a fatigue region where endurance is limited. Within
this region, fracture occurs for a given number of cycles. The lower the stress
amplitude, the higher the number of cycles. The region of limited endurance is
presented in Chapter 2;

— an endurance region, which has been considered as an infinite lifetime, or
safety region, corresponding to what is called the endurance limit. For steels, this
region is reached after 10° to 107 cycles. In reality metal alloys have no real
endurance limit. This has led us to consider the fourth (gigacycle) region in the past
10 years;

— aregion corresponding to the gigacycle fatigue, which is significant for a given
number of applications. Within this region, studied in Chapter 5, we often see that
the “endurance limit” still decreases when the number of fracture cycles increases.
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1.2. Mechanisms of fatigue damage
1.2.1. Introduction/background

On the Wohler curve (see Chapter 2) we can see four stages, as shown in Figure
1.8, where, in contradiction with what is described in the previous figure, an
endurance limit G4 is highlighted for demonstration purposes. The upper region 1
corresponds to conditions in which specimens are broken. The lower region IV
corresponds to the cases of unbroken specimens, where curve A separates both
regions. Within the area directly below curve A, we can see two new regions located
above the endurance limit: region III corresponding to the initiation of a crack, and
region II associated with the propagation of this crack, the number of corresponding
cycles being N,. We can also see that initiation N; represents the main part of the
lifetime when the number of cycles to failure N, is high.

o)

Op

-

0 Number of cycles

Figure 1.8. Wéhler SN curve (4) and number of crack initiation cycles (B)

Numerous fatigue damage indicators, in addition to crack initiation and
propagation, have been studied, such as electrical resistivity. For a decade, infrared
thermography has been used, providing researchers with encouraging results [DOU
04, LUO 95, LUO 98]. However, it is still too early to know whether this method
can provide reliable results, and especially whether it can be used to speed up the
determination of endurance curves.

1.2.2. Initiation of fatigue cracks

Since the first observations were made using optical microscopy in 1903 by
Ewing and Humphrey [EWI 03], the initiation of fatigue cracks has been widely
studied. In the mid-1970s the articles published by Thompson and Wadworth [THO
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58] and by Laird and Duquette [LAI 71] enabled a review to be written on this
subject. Since then, significant efforts have been devoted to this stage of fatigue
damage.

Work carried out by Forsyth [FOR 51, FOR 53] showed that fatigue damage is
mainly surface related. On the polished surface of the specimens, we can observe
steps due to the formation of localized deformation bands, known as persistent slip
bands. These bands are formed on the sliding planes with a maximum resolved shear
stress. The mechanisms by which these bands form are presented in Chapter 4.
Topography of the surface reveals the formation of intrusions and extrusions, as
shown in Figure 1.9.

micro-cracks

4 0 pm
a

a) b c)

Figure 1.9. a) Initiation of micro-cracks due to the sliding of alternate planes and to the

formation of intrusions and extrusions at the free surface (cross-section); b) formation

of a main crack from micro-cracks; ¢) characteristic formation of stage I intrusions and
extrusions at the surface of a fatigue specimen made of copper

During a uniaxial test on polycrystalline specimens, these bands, which will lead
to the formation of stage I micro-cracks, appear at a 45 degree angle to the tensile
axis. Only a few grains are involved in the formation of these bands. Orientation of
the persistent bands and of the stage I cracks is significant not only in the case of a
uniaxial loading (tension or torsion), but also in the case of a multi-axial loading
where the directional characteristic of fatigue damage is essential. Brown and Miller
[BRO 79, MIL 91] have introduced the really useful notion of type A and B facets
regarding multi-axial loading, as shown in Figure 1.10. As expected, type B facets,
whose slip vector goes into the material, are usually more dangerous than type A
facets, whose slip direction is tangent to the free surface of the specimen.
Unfortunately, few studies have been carried out regarding this directional
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characteristic that occurs at the start of fatigue damage. We can nevertheless list
some studies, such as the one carried out by Jacquelin [JAC 85].

~

Figure 1.10. Directional characteristic of fatigue damage. The significance of the
orientation of the strain field compared to the surface plane and free
surface plane (cross hatched); a) type A facet; b) type B facet

Intrusions and extrusions, associated with persistent slip bands and the micro-
propagation of stage I cracks, extend over a distance of the order of the grain size.
Indeed, as soon as this micro-crack of significant crystallographic nature hits the
first grain boundary it branches off, following a stage II course and then propagates
perpendicularly to the direction of the maximum principal stress.

The definition of initiation remains ambiguous as it depends on the chosen scale.
We usually define this damage stage as corresponding to the number of cycles, Nj,
that have to be applied before the crack branches to stage II. Here, the corresponding
distance is similar to the size of a grain. To the best of our knowledge, this is the
most plausible definition. The most commonly accepted definition, which
corresponds to the failure of a specimen or to the reduction of the maximum tensile
stress by a certain amount (for example 5%), is not accurate enough.

1.2.3. Propagation of fatigue cracks

Stage II crack propagation according, that is to say in mode I, has been studied
frequently since the early work by Paris and Erdogan in 1963 [PAR 63]. When these
cracks are long enough, the rate of crack propagation, as presented in Chapter 4, can
be described using Paris’ law:
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E=C(AK)’“ [1.1]
dN

where a stands for the length of the crack and AK for the variation of the stress
intensity factor K, whereas C and m are constants, depending on the material. The
loading ratio R is also important. The various laws proposed are listed in Chapter 4.

A region between stage I and the long crack stage is known as the short crack
stage. It has been extensively studied since Pearson published his work on the topic
in 1975 [PEA 75]. He proved that short cracks propagate faster than long cracks at
the same apparent value, AK. This short-crack phenomenon is significant and is
presented in Chapter 7. It increasingly appears that the particular behavior of short
cracks, or at least those termed “physically short”, can mainly be explained by their
tri-dimensional aspect and by the crack closure phenomenon [LIN 95, PIN 86]
concept introduced by Elber in 1970 [ELB 70].

Paris’ law is purely phenomenological. Since then, some authors have tried to
develop and improve this law using the properties of materials. These authors have
developed what we call a local approach to fatigue crack. The principle of this
approach is to start from the crack tip stress-strain field ahead of the crack-tip (see
Chapters 8 and 9) and then introduce a fatigue failure criterion. The first model of
this type was proposed by McClintock in 1963 [CLI 63], who assumed that the
crack propagates in successive stages under the effect of low-cycle fatigue-type
damage. The law thus formulated by McClintock considers that the exponent m in
Paris’ law [1.1] is equal to four and a non-propagation crack threshold AKy, is
involved. A second model was also suggested by McClintock in 1967 [CLI 67], due
to the observations of Pelloux [PEL 64] and McMillan [MIL 67]. These authors
showed that fatigue failure surfaces were covered with striations — one striation
corresponding to one cycle — at least in a certain region of crack propagation rates
(0.01 to 1 pm/cycle). McClintock then related crack growth rate per cycle, being the
distance between the striations, to the blunting at the crack tip (see Chapter 6). This
model then considers that the slope m of Paris’ law is equal to two. In practice, we
can observe that the value of this exponent goes from two to six in the case of most
materials. Since McClintock developed his models, others have been proposed (see
Chapters 6, 8 and 9 for more information).

1.3. Test systems

The most commonly used method to obtain endurance curves is the rotating
bending or plane bending test (see Figure 1.11). The machines used for these tests
allow for frequencies close to 20 Hz.
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Figure 1.11. Principle of rotary bending tests

Compression

These machines are simple to use and relatively inexpensive. We can also use
these machines to perform some traction/compression tests. The advantage of this is
that the effect of a constant stress through the section of the specimen can be
observed. The choice of specimen and loading mode is significant because a size
effect 1s involved. Thus, with similar conditions, and especially with a similar cyclic
stress, the tension-compression endurance is lower than that calculated in the case of
rotary bending, itself being lower than that measured using plane bending.

Determination of an endurance curve takes a long time. A failure test with
Np =107 cycles performed at 20 Hz lasts around six days. In addition, the test results
are scattered. This is why testing methods were developed very early on to
determine the endurance limit of metallic materials at higher frequencies (see
Chapter 2). In the case of polymers and elastomers, the frequency has to be further
reduced, otherwise significant over-heating is observed.

Resonance machines have been developed in order to perform higher frequency
tests on metallic materials. Some specific machines can enable much higher
frequency tests (close to 20 KHz) and thus allow us to study the region of gigacycle
fatigue (see Figure 1.7). Chapter 5 deals with this particular topic.
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All of these tests have been carried out with a load or imposed strain within the
elastic region. Low-cycle fatigue tests, however, are performed under strain control,
meaning that an extensometer system has to be used. The servo-hydraulic machines
were developed in the mid-1960s for that purpose. A description of these tests,
specimens and of extensometers can be found in Chapter 4.

More specific and less common machines have to be used in order to carry out
multi-axial fatigue tests. Tension-torsion fatigue tests on thin tubes are well
developed. The introduction of an internal/external pressure within the traction-
torsion stressed tubes allows the degree of multi-axiality to be increased. These
machines are less commonly found in practice, especially the ones allowing a range
of temperatures to be studied. The downside (or the advantage, depending on the
context) of these tests, is that the reference of the main stresses is not fixed. This
issue can be overcome if a machine that can exert independent forces along three
orthogonal directions (XYZ) is used. Only one machine of this type can be found in
France. Biaxial machines (XY, however, are easier to use in order to test relatively
thin materials.

1.4. Structural design and fatigue

Since Wohler, engineers have developed new mechanical parts that are capable
of resisting fatigue. The improvement of fatigue tests came hand-in-hand with the
improvement in design methods.

The initial idea of an infinite lifetime or a fatigue limit under which a
propagating fatigue crack could not form within a metal, has been questioned. At the
same time, experiments based on Gauss statistics around the notion of a fatigue limit
in order to predict an infinite lifetime related to a quasi-asymptotic SN curve were
questioned. Statistics therefore had to be introduced to fatigue test results and the
design methods were no longer purely deterministic but probabilistic.

As an example, we can consider a research engineer working in the aeronautical
industry. He designed the “Caravelle” aircraft, in the 1950s, as beams put together
under bending conditions, using Timoshenko’s strength of materials approach.
“Concorde” was the first aircraft in which the fracture mechanics was partially
applied in 1970. The design of the European supersonic aircraft was first based on
the conventional concept of strength of materials but was then improved using the
notion of fail safe, which was developed from the application of fracture mechanics.
Following this, the “Airbus” was the first aircraft to be built using the damage
tolerance design in 1980.
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In scientific terms, the main stages in the development of mechanical design are
listed below chronologically:

— safe life: the structure is designed so that the stresses remain lower than the
endurance limit. No defect is considered or accepted,

— fail safe: the structure is designed in relation to the residual strength of the
metal when a planar defect, representing a crack, is involved. Some defects are
accepted;

— safe crack growth: the failure mechanism allows the crack growth instability to
be deterministically predicted.

A fourth approach — the local approach to failure — has recently been developed
in France to overcome problems in the analysis of the fatigue of metals. In addition
to this, the discovery of gigacycle fatigue in the 1990s highlighted the critical role of
microscopic defects, such as inclusions, porosities, large grains due to forging, etc.

Micro-cracks remain the most harmful lifetime defects in the region of a few
million cycles and micro-defects control billion cycle lifetime, the latter being the
lifetime of engines, turbines and bearings. The initiation of distortion bands around
the defects is then essential. Control of resistance to fatigue caused by micro-defects
has been extensively studied. The notion of infinite lifetime obviously has to be
discarded and the failure mechanism along with its local approach have to be added
to the study of the resistance of materials to fatigue failure.

1.5. Fatigue of polymers, elastomers and composite materials

As modemn industry commonly replaces one material with another, the fatigue of
non-metallic materials is worth mentioning. Moreover, a global representation of
material fatigue is fundamentally worth studying. This topic will be covered in
[BAT 10}.

All materials are prone to fatigue damage in their own way.

We can basically say that the fatigue of metals arises from:

— plasticity;

— general plasticity during low-cycle fatigue;

— plasticity during mega-cycle fatigue under plane stress; and

— micro-plasticity on a grain-scale during gigacycle fatigue.
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In any case, dislocation debris accumulates in permanent slip bands before the
first cracks develop (see Figure 1.12).

It would be a mistake to consider the fatigue of non-metallic materials as related
to plasticity because there is no dislocation within amorphous or semi-crystalline
polymers. Damage mechanisms in polymers are related to the formation of cavities
or cavitations, two terms used to differentiate the effects of stress tri-axiality and the
hydrostatic tensor. When plane stress prevails, fatigue quasi-cleavages can appear
within some polymers. All these mechanisms are related to the progressive
degradation of macromolecules and have no physical relationship to the plasticity of
metals (see Figures 1.13 and 1.14).

-_ A

Figure 1.12. Slip bands within low carbon steel

High magnification

Figure 1.13. Cavitations due to hydrostatic tension in an NR rubber
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X

Figure 1.14. Shear damage in epoxy matrix glass fiber composites

Basically, fatigue of metals is modeled from von Mises plasticity criteria, based
on the stress tensor deviator. This approach is totally justified by solid physics,
which confirms that dislocation slip is governed by the shear components of the
stress tensor. Experiments have shown that the formation of cavities, cavitations and
quasi-cleavages within polymer materials do not just depend on shearing, but also
on the principal main strains and the hydrostatic part of the stress tensor. As a
consequence, von Mises’ criterion and its variations do not apply to the modeling of
plastics, rubbers and fibrous composites. This has many important consequences.
For instance, an elastomer can crack due to compressive fatigue or under hydrostatic
loading, which is not the case with metals. Another example is the substitution of a
metallic part with a glass-fiber epoxy matrix in order to overcome the issue of
fatigue as fatigue will be increased due to tension but decreased due to compression.

We therefore have to keep in mind that the stress deviator is a main parameter in
metal fatigue.

1.6. Conclusion

Fatigue is of major technical and scientific importance. The design of many
components is directly related to this type of damage. Fatigue is still the subject of
numerous studies at various scales, from dislocations and point defects to
macroscopic cracks.

In this book, we have gathered the reviews of experts in this type of loading and
damage. The first volume mainly deals with metallic materials whose various
damage sequences (initiation of stage I cracks and stage Il propagation) are well
known. For greater elucidation on the topics covered in this book, we have quoted
experts in physical and mechanical metallurgy, fracture mechanisms and the local
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approach to failure. Environment and corrosion effects, which are of particular
significance, are also discussed.

Finally, a whole chapter has been dedicated to the case of fatigue due to loading
of variable amplitudes, which is commonly found in practice.
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Chapter 2

Modeling of Fatigue Strength
and Endurance Curve

2.1. Introduction

Scatter of the results of fatigue tests is now accepted to be an experimental and
physical fact. In the past, following a deterministic way of thinking, such scatter was
considered to be due to imperfections in the test conditions and, as a consequence, it
was assumed that scatter could be reduced ad libitum. The scatter is to be considered
as a physical aspect of fatigue phenomenon. Moreover, from a practical point of
view it is generally far too difficult and/or expensive to entirely remove some of the
causes of experimental error, even if it is possible in theory. The simultaneous action
of these two kinds of causes, both experimental and physical, leads to a scatter of
test results that are rarely negligible with regard to the amounts being measured. On
the contrary, in most cases such scatter is often important, and sometimes very
significant.

Figure 2.1 gives an example of the scatter observed during some tests performed
on a steel specimen.

This is why statistical methods have to be used in order to experimentally
determine the characteristics of the fatigue phenomenon. These methods allow us to
estimate either the fatigue strength at N cycles along with the corresponding

Chapter written by Henri-Paul LIEURADE in collaboration with Frangois BASTENAIRE and
Lionel REGNIER.
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standard deviation or to draw the curve resulting from the amplitude of cyclic stress
to the number of cycles to failure.
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Figure 2.1. Presentation of the test results
using a Wohler diagram (S-log N)

Various factors influence fatigue resistance; in particular, the conditions of cyclic
stress applications, which can relatively modify the fatigue strength of a piece or an
entire structure.

In addition, many studies show that the endurance of a material is related to its
ultimate tensile strength and ductility.

This is why, in the case of steels, several authors have suggested a rough
estimation of the endurance limit by relating it to the characteristics measured during
a tension test.

This chapter aims to present the main statistical methods that can be used to
characterize fatigue behavior under simple loading of a material from test results and
to specify the influence of the application conditions of cyclic stress.
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2.2. Nature and aspect of the scatter of fatigue test results

The scatter we observe results directly from the nature and physiology of a
material, which we can split logically into three parts:

— internal to the material;
— due or related to the preparation of the specimens or pieces;

— external to the specimen.

The nature and mode of action relating to the preparation of an environment
surrounding the specimen seem to be the most obvious causes of scatter. The setting
operations, which include turning, milling and straightening, for instance, relate to
preparation of specimens/pieces. The settings are known to influence the endurance
of the pieces, as well as the thermal treatments, so the results cannot be rigorously
reproduced on other identical specimens from the same batch.

External causes of scatter include, in particular, the uncertainty of the setting
within the test machines, and of adjustment of the applied loading, cycle frequency,
etc., in addition to the fact that the influence of the surroundings is not negligible.

The causes of scatter, whose mechanisms of action are less well known, are
those within the material: inclusions, structure heterogenities, etc. Moreover, these
causes are not independent from the influence of preparation settings, which can
modify the material and its heterogenity (especially the thermal treatments). Finally,
the mechanism of damage itself involves a combination of the various causes of
scatter.

Experience has shown us that the result of these combined actions generally
leads to the characteristic response shape of SN curves.

If a given number of stress cycles N is set (see Figure 2.2a) and the observed
event being the failure or non-failure of the specimen before this cycle number, we
define the response to the SN curve — the curve representing the probability of this
event — as a function of the amplitude of the cycles.

Various methods have shown that these curves are normal sigmoid shapes that
can be represented by the distribution function of a variable with a normal
distribution. The failure probability can then be expressed as a function of the
amplitude S of the stress using the following equation:

— ; N ~ _ 2 2
P(S)=— \/EEL“ expl- (x - #)*/26%]dx [2.1]
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where, u represents the stress amplitude where the failure probability is equal to 0.5
and o the parameter characteristic of the scatter.
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Figure 2.2. a) Three responses to the stress curves,; b) isoprobability curves
(p=0.16; p = 0.50; p = 0.84) using Wohler's diagram

The fact that failure probability follows equation [2.1] is similar to the “all or
nothing” aspect and allows the application of various statistical techniques to the
study of fatigue phenomenon.

Various methods used to deal with fatigue test results aim to estimate the
parameters u and o of a response to the stress curve for a given number of cycles.

Estimation o;, of the conventional endurance limit and s of the standard
deviation of the endurance region is a particular case (see Figure 2.2a).

Every response to the stress curve allows a value of the amplitude of the stress
S,, whose failure probability is P, to be defined. However, S,, is obviously a function
S,(N), of the number of cycles N and defines the curve of isoprobability of failure
corresponding to P.
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In Figure 2.2b, three isoprobability curves, respectively corresponding to
p = 0.16 (average minus standard deviation), p = 0.50 (average) and p = 0.84
(average plus standard deviation) are shown.

2.3. Determination of the endurance limit

As we just stressed, a normal sigmoid response curve is defined by two
parameters: its median and its standard deviation. Figures 2.2a and 2.2b show that
these parameters are obviously a function of lifetime N, set for the tests.

In the case of steels, every failure equiprobability curve is supposed to present an
asymptote; in particular, the equiprobability curve 0.5, which tends towards a limit
called the “endurance limit”.

In practice this limit cannot be reached and instead we use a conventional
endurance limit o, relative to a significant number of cycles N.

This value g, is related to a standard deviation called the “standard deviation of
the endurance region” (standard deviation of the response curve, defined by equation
[2.1] for the considered number of cycles N). Estimation of the standard deviation
of the endurance region is represented by the symbol s.

2.4. Estimation methods of fatigue resistance and standard deviation with N
cycles

The previous sections have shown that the estimation of fatigue resistance with
N cycles and of its standard deviation or endurance limit, and the standard deviation
of the endurance region, are actually the same problem.

The following estimation methods will be described and explained:

— the probit method;

— the staircase method;

— the iteration method;

— the method with K non-failed specimens.

The application of one of these methods, however, means that we need to know
in advance the order of magnitude of fatigue resistance we want to study and the

standard deviation of its response curve in order to choose the stress levels of the
first tests and their spacing.



28 Fatigue of Materials and Structures

2.4.1. Probit method

2.4.1.1. Principle

The probit method is a method of numerical calculation used to estimate
response curve parameters. We should make sure we do not confuse this with the
test plane, which is supposed to provide the results that are going to be submitted.
This confusion is common, however, because of a misuse of language. The test
plane is itself really easy to calculate; or at least it seems to be. Its aim is simply to
determine the response curve being sought.

As a stress amplitude has been chosen, » specimens are tested until a given
number of cycles, N, selected for the tests. In these conditions, the number £ of the
specimens which, among these #, fail before N cycles, follows binomial probability
distribution (the probability law of the number of specimens which, among », lead to
the birth of an event with a given probability).

The properties of the binomial law are well known. If p is the probability of the
observed event, k will be, on average, equal to np'. Nevertheless, k is a random
variable presenting a given scatter that we can characterize using either variance or
standard deviation £.

Theory shows that the value of this standard deviation otk) is:
o(k) = ynp(l -p) [2.2]

The real value p of the failure probability before N cycles under stress amplitude
S is obviously unknown and tests are carried out in order to estimate it.

We can show that, using probability calculation, the estimation of p is given by
frequency f;

F=X [2.3]
n

That is to say, in our case, by the ratio of the number of failed specimens & to the
number # of those tested during similar tests.

If k is random, f'is also random and the standard deviation of the frequency o(f)

is given by:

1 In more precise terms, the mathematical expected value of % is equal to mp, which can be
written as Efk] = np.
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s(f) = /p( In-p) [2.4]

The above equation enables us to measure the uncertainty, which is used to
estimate p. For instance, if we have » =20 and p = 0.25, we get:

o (f)=0.10

If we consider that the distribution of f can be roughly characterized as twice the
standard deviation, we can see that f is a poor estimation of p.

On the other hand, we understand that to define the studied response curve we
need at least four or five points. For this reason we need to carry out about 100 tests.
We will see that, despite the use of a statistical method of estimation allowing us to
get the most information from the observations, it is hard to appreciably reduce this
figure.
2.4.1.2. Graphic representation of a response and test result sigmoid curve
2.4.1.2.1. Galton’s anamorphosis

If we define:

X-u [2.5]

Equation [2.1], representing a response curve with parameters 4 and ¢ can be
written as:

P(S)=ﬁfw)e"2”df [26]

The advantage of this representation is that, with the second member of the
equation, we can use a function called the reduced Laplace-Gauss integral. This
integral only depends on the upper integration end-point (S — #)/c and has tables
that are known.

To simplify this, we consider:

G(u 12 gy [2.7]

1
)=EL‘?
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in such a way that equation [2.6] becomes:

FORIE=S 28]

(22

Figure 2.3 gives a representation of function P = G(u) and is summarized in
Table 2.1, which gives some characteristic points of G(u).

PA

Figure 2.3. Reduced Gauss integral

1

i

0

-
u

G@w) | 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99

u -2.326 | -2.054 | -1.645 | -0.282 0 1.282 | 1.645 | 2.054 | 2.326

Table 2.1. Characteristic points of G(u)

We can observe that G is an increasing monotonic function, which enables us to
reverse it; that is to say we can match a chosen value to every value p a priori given
(0 <p <1)using u, such as:

G(u)=p [2.9]

We define u, as the reduced deviation corresponding to p.

As the value of u, is unique, equation [2.8] of a response curve with parameters u
and o can also be written as:

STh_y, [2.10]
o
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or as:

S=p+ou, [2.11]

The above equation is of high practical importance as it enables us, using an
appropriate choice of scale for p values, to replace the direct representation of a
sigmoid curve (with p(S), S as coordinates) by a line (with u,, S as coordinates).

It is worth noting that this linear representation of a sigmoid curve can either use
linear scales for S and u, or directly display the value of p on the scale of u, (see

Figure 2.4).

The method dealing with the replacement of p with u, is called Galton’s
anamorphosis and is widely used in order to represent response curves.

It is worth noting that, when p = 0.50, u, = 0, and then § = x according to
equation [2.9].

We can also observe that, when the ordinates represent u,, equation [2.9] can be
written as:

=
f
Q|r4

-2 [2.12]
o)

The slope of the line representing the response curve then has a value of 1/c. The
higher this slope is, the lower the scatter o is.

2.4.1.2.2. Plotting of experimental points

We already know (section 2.4.1.1) that failure frequencies with N cycles among
n tests (k/n), is an estimation of the basic failure probability p.

Frequencies f;, observed at different stages S; of the stress amplitude and plotted

within the same graph will then be averaged but a given scatter, on the line will
represent the response curve (see Figure 2.4).

2.4.1.3. Estimation of parameters y and &

We can obviously graphically estimate y and o using a line crossing the (S, f)
points, representing our observations. Estimation of u is the value of S when
p = 0.50. In order to estimate o, we can use the fact that when u, = -1, p = 0.16 and
whenu,=+1,p=0.84.



32  Fatigue of Materials and Structures

We then have, according to equation [2.11]:
Sois=n-0
and:
Spga=U+O

therefore:

Fail probability %
@
)
A1

Steel XC-100

/ : : Rotating bending
5: : : R e O N =40 000 cycles
34--- sofe ---1 A N =280000 cycles
DLy N S e PO . O N =30 000 cycles
) T : : / : : @ N=107 cycles
T T T T T T T T T T T T ¥ T T T ¥
48 50 52 54 56 58 60 62 64 66

Stress (kg/mm)
Figure 2.4. Proportion of failed specimens with fewer N cycles as a function of the stress

amplitude. XC100 (N= 30,000 to 10’ cycles)

We then determine the values of S that correspond respectively to p = 0.16 and
p = 0.84 and divide their difference by two.
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Nevertheless, the graphic estimation of 4 and ¢ is a rough method and we
recommend the use of a statistical method for calculating the estimations m and s of
4 and ©.

Two of these statistical methods can be found: the “probit” method and the
“maximum likelihood” method. The study of these methods is not our goal,
however. Useful information about these two methods can be found in application
examples in [FIN 72] and [ULM 52].

The observations that have been made above regarding the number of tests
needed enable us to understand these methods are not commonly used for the study
of fatigue. Nevertheless, we appreciate that when these tests have been performed
there can be a genuine reason for the precise estimation of 4 and ¢ and that, as a
consequence, we should not stop at the graphic representation but should go further
using numerical calculation.

2.4.1.4. Conclusions

The “probit” method (wrongly termed as we do not proceed to a numerical
operation of the test results using the real “probit” method [FIN 72, ULM 52]) takes
a long time to be carried out. It is also expensive as a high number of tests is
required and is hard to perform. It will therefore only be used for fundamental
studies, when we are seeking sufficiently precise determinations of fatigue
resistance and especially the standard deviation of response to the stress curves. It
can also be used if we want to test, at the same time, the normal sigmoid shape of
these curves (using xz tests) [FIN 72, ULM 52].

In other cases, it is better to apply application methods that are simpler, like ones
presented in the next section.

2.4.2. Staircase method

The drawbacks of the “probit” method led to the birth of other application
methods that are simpler and cheaper.

In 1948, Dixon and Mood [DIX 48] proposed the “staircase” method. The test
stress stages can be found much more easily using this method. It can be carried out
automatically and gives the user a wide choice of the number of tests required
(which can be much lower than the “probit” method). However, if the method can be
performed with a low number of tests, we should still bear in mind that the precision
(accuracy and fidelity) of the results obtained will strongly depend on it.
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2.4.2.1. Rules of the staircase method

As was the case regarding the “probit” method, we set a maximum test duration
N and define a spacing of the stain amplitudes through arithmetic evolution, whose
pitch has a value similar to that of the standard deviation &, of the response curve.

The first test will be carried out at the level of spacing a priori thought to be the
closest to the targeted median u. From the second test, the stress amplitude level can
be chosen:

— for the new test, if the previous test did not lead to failure we should choose a
higher spacing stresses stage than the one used during the last test;

— if the previous test led to failure, we should choose the stage that is lower.

In other terms, as d stands for the spacing pitch of the stresses and S; for the
accepted value regarding the i-th test, we will consider that:

—8;+1=38;+ d when the i-th tested specimen did not fail;

—8;+1=S;— d when the i-th specimen failed.

The tests can then be carried out following this rule, one after another, until all »
available specimens have been used.

Figure 2.5 gives an example of a batch of this type of test.

2.4.2.2. Use of the results

Test results obtained using this method enables us to estimate the median
resistance of fatigue with the number of given cycles and, usually, the standard
deviation. The calculation to be performed is simple. We first determine the type of
event that occurred less frequently during the test batch: failure or non-failure. The
results of this type are enough for the calculation and are more acceptable compared
to other ones. The fact that the results of a given type (failures, for instance)
outnumber others is often due to the choice of a starting stage that is a long way
from the value to be estimated. The sequence then begins with an uninterrupted test
from a batch of the same type whose inclusion would lead to a systematic error.

We count the number ¥, of implementations of this event for each test stage, and

then number these stages with the attribution of value i = 0 to the lowest of those
stages observed at least once. As i stands for the number of the test stage, we then
have to calculate the following;:

N=E2N,; A=XiN, and B=Zi’.N,
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Sted - Torsion test - 50 Hz
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=232 MPa
d =20 MPa
0 : 10 failed

0 : 11 unfailed

Figure 2.5. Staircase method

The table in Figure 2.5 shows us how to perform these calculations in the case
where the results obtained are related to the failures.

Estimation of m and y is obtained using the following equation:
4 1
m=8p+d|—=x— [2.13]
N 2

where:

—S,: index 0 stage, as defined above (the lowest stage used allowing us to obtain
at least an accepted type of result);

— d: stage spacing:

- +1/2 when calculation is based on the test stresses of the non-broken
specimens;

- -1/2 when based on the test stresses of the failed specimens.

The staircase method also enables us to obtain an estimation s of the standard
deviation o of the response to the stress curve:

NB-A’ ) [2.14]

s=162d{——7——+0029
N-



36 Fatigue of Materials and Structures

According to Dixon and Mood [DIX 48], equation [2.14] can only be used if the
following condition is true:

NB - A?
N >0.3 [2.15]

As a matter of fact, estimation of the standard deviation of the response to the
stress curve, using the staircase method, has to be taken cautiously when the number
of tests is lower than 50. Estimation of this standard deviation is not any better, for
the same number of tests, than estimates obtained using the “probit” method.

2.4.2.3. Precision of m and s

The estimation m of u is usually scattered with a negligible bias and a standard
deviation:

o =% [2.16]

" VN
where G is a factor depending on the d/c ratio:

d
G=l+— [2.17]

The estimation s of o presents a significant bias, as a function of d/c. Scatter of s
is also a function of d/c. When d = o, where it is close to its minimum, the accuracy
of the estimate of standard deviation o is almost equivalent to the accuracy based on
quantitative data with N/3.5 degrees of freedom.

2.4.2.4. Observation on the practical application of the staircase method

In section 2.4.2.1, we mentioned that the spacing d should be of the same
magnitude as o. In practice, the estimation m of ux remains satisfying as long as
1.5 < d/o < 2. The estimation s of o, already less satisfying in optimum conditions
(1 <d/o < 1.5), rapidly becomes wrong if we move away from these conditions.

2.4.3. Iteration method

This method is applied to cases where the response curve is estimated using an
alternative more general method designed by Robbins and Monro [ROB 51].
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The probability distribution of a random variable Y is supposed to be a function
of a parameter x, so that E/Y/x] (the expected value or average value of Y to x) is a
monotonic function of x. Robbins and Monro’s method aims to estimate the value of
x when EfY/x] = Y,, with Y, being an a priori fixed value.

Regarding the application of Robbins-Monro’s law to the estimation of fatigue
strength, Y is the failure proportion observed and x the stress amplitude. Indeed, the
conditions of application of Robbins-Monro law are very wide. Random variable Y
can also be distributed according to a discontinuous probability law (which is the
case of a proportion, especially when there are few elements) rather than a
continuous one.

2.4.3.1. Rule of the testing method following the iteration method

As is the case with the staircase method, the iteration method defines for each
test (except for the first one) the stress to be applied as a function of the result
obtained during the previous test. Nevertheless the stress loading, instead of being
constant, varies and is defined by the test order number.

The choice of stress to be applied during the first test is very important. It has to
be as close as possible to the stated value. The acceptable deviations between the
applied stress during the first test S; and the value to be determined will be presented
later.

Tests can be carried out in groups of any size, and even separately — that is to say
specimen by specimen.

Each group of tests performed with the same stress S; enables us to determine a
failure frequency f.

Let p be a randomly chosen failure probability, o the standard deviation of the
response curve and 4 a properly chosen constant. We can prove that the sequence of
the values, defined as: '

S.u =8, + 2% (p- 1)) 2.18)
1

converges towards the value S(p), whose failure probability is p. We usually use this
method to estimate the median of the response curve and consider that p = 0.5, but it
is also worth noting we can estimate another point of this curve if we wish. An
example of the application of this method is given in Figure 2.6.
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Figure 2.6. Iteration method: graph of the successive values of a stress test

2.4.3.2. Estimation of S(p), stress amplitude with failure probability p

This estimation requires very little calculation as the sequence of the stress
amplitudes applied tends towards S(p). However, if S, is the last stress stage where
tests are performed, the results enable us to calculate a stress S,,, see equation
[2.18], that can be used to perform further tests if the procedure was continued.

In order to take the acquired result with S, into account, we estimate S(p) with
Sn+1'

2.4.3.3. Conditions and instructions of the iteration method

We previously said that the iteration method can be used in many other cases
besides p = 0.5. Nevertheless, we will avoid looking to determine response curve
points that correspond a values of p that are too close to 0 or 1. The reason for this is
that the behavior of the method becomes increasingly uncertain the closer we get to
these limits.

When p = 0.5, the theoretical value of 4 is [BAS 53]:
A=+2mn=25 [2.19]
Regarding a value of p different to 0.5, the theoretical value A(p) is [BAS 53]:

A(p)= m exp[up2/2] [2.20]
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where u, represents the reduced deviation of Gauss’ law corresponding to the
probability p.

The estimation of S,,; obtained is characterized by its bias (or systematic
deviation) and its scatter (defined by the standard deviation of S, ;).

These two statistical characteristics of S,,; are a function of the deviation of §,,

first test stress level. They have a targeted value and standard deviation G, a priori
evaluation of the basic standard deviation, used in equation [2.18].

In the case of S;, we can show that its effect is dependent on its reduced
deviation at the median y, written as:

S, — 1
(¢

Accurate calculation of the bias and standard deviation S,.; for the final
estimation are performed as we are trying to estimate the median x (point p = 0.5),
S —u

o

with values of 4y ranging from 1.5 to 4, of ranging from O to 3 and n = 2, 4

and 6 (Table 2.2), the tests being carried out with a single specimen per stress level.
It is actually when » is low that it is worth studying the statistical characteristics of
S, +1, as this estimation tends towards the targeted value when » gets much higher.

When the starting error u: 1, the systematic error remains unimportant,
o

regardless of n, when compared to the random error o(S,, . ;). In this case, the choice
of 4 is no longer essential, especially when n > 4.

When Si-k 2, the systematic error regarding o(S,, ; ;) becomes higher. This is
o

also the case when the value of 4 taken is too low, let us say < 2.5.

This trend becomes more significant when Sio# 3. We can see that 6 (S, , )
c

increases when n = 4 or 6, whereas the systematic error decreases.

We can then conclude that, if we are worried of making a significant systematic
error right at the start, we should make sure that 4 > 2.5 but that its role decreases as
a function of ».
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S —

A '] ESy) | ofS) | EISs) | oS | ES;) | oSy
0 0 06293 | 0 0.5208 | 0 0.457 1

A LS 1 03725 | 05629 | 02721 | 04897 | 02232 | 04363
=L 2 09906 | 03093 | 0.7188 | 0.3494 | 05891 | 0.3401

3 1.8911 | 0.0980 | 1.4849 | 0.1504 | 12577 | 0.1747

0 0 0.7076 | 0 0.5675 | 0 0.487 2

A=138 1 02881 | 06625 | 02025 | 05463 | 0.1596 | 04737
' 2 08103 | 03944 | 05485 | 04260 | 04288 | 0.3990

3 1.6685 | 0.1360 | 12146 | 02153 | 09708 | 02465
0 0 07757 | © 06039 | 0 0.509 6

Aol 1 02215 | 07509 | 0.1499 | 05910 | 0.1144 | 05015
=2 2 06517 | 04818 | 04122 | 04927 | 03109 | 04444

3 14594 | 0.1809 | 09687 | 02926 | 0.7353 | 03185

0 0 08511 | 0 06420 | 0 0.5309

A2 1 0.1537 | 0.8563 | 0.0992 | 0.6385 | 00718 | 0.5283
: 2 04615 | 06107 | 02741 | 0.5656 | 0.1957 | 0.4910
3 11830 | 02591 | 06863 | 04071 | 0.4849 | 0.4060

0 0 09291 | 0 06781 | 0 0.551 6
~ 1 0.1001 | 09619 | 00597 | 06838 | 0.0404 | 0.5534
A=3.0 2 02705 | 0.7825 | 0.1587 | 06329 | 0.1076 | 0.5317
3 08541 | 03891 | 04286 | 05354 | 02831 | 04807

0 0 10212 | 0 0.7090 | 0 0.572'5

A=36 1 0.0655 | 1.0461 | 0.0336 | 0.7242 | 00206 | 05771
: 2 0.1220 | 09754 | 0.0749 | 06971 | 0.0489 | 0.5667
3 05117 | 05874 | 02358 | 06361 | 0.1427 | 05380

0 0 1.0872 | 0 07335 | 0 0.585 7

A=40 ] 00508 | 1.0812 | 0.0245 | 07473 | 00141 | 05915
. 2 00682 | 1.0851 | 0.0421 | 07323 | 0.0272 | 05851
3 03223 | 0.7526 | 0.1556 | 0.6739 | 0.0893 | 0.5640

NB: this table gives the values of the systematic distortion E[S,.;] and standard deviation
o(S,+1) resulting from application of the iteration method to a normal sigmoid response curve
of unit standard deviation and of an average equal to zero.

Both real systematic distortion and standard deviation are obtained by multiplying the values
of the above table with oy (real standard deviation)

Table 2.2. Average values and standard deviation of S ,,+; whenn = 2,4

and various values of A and of Si—#
o

We should also mention that the highest value of Si-# planned here (3) has to
c

be considered as already high. With the usual value of 6 = 0.05 E (representing 5%
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of the endurance limit ), 30 then corresponds to an evaluation error of E +15%.
Some preliminary fatigue tests within the limited endurance region usually allow us
to remain within these limits.

2.4.3.4. Estimation precision
The values of the bias and standard deviation of S,,; have just been given for

low values of » of the stress stages for a single test per stage.

When 4 = 2.5, a good approximation of o(S,.;) is given by the following
equation:

h
.0

0= Vi [2.21]

where m is the number of tests carried out at each stage if they are performed by
groups.
2.4.3.5. Application example

Figure 2.6 provides an example of the iteration method applied to estimate the
fatigue limit of steel. The values of 4 and & are as follows:
-A4=25 6 =32 MPa;

8

-8, =8+-(05-£);
1

i+
—f;=1 when failure occurs, f; = 0 when no failure occurs.

Ten tests have been carried out. The last stress applied in a test was 581.7 MPa.
The failure observed during this test allows us to calculate S, , ; = 577.7 MPa,

which corresponds to the estimation of the targeted conventional fatigue limit, and
6(S,+,) = 15.4 daN.

2.4.4. Non-failed specimen method

2.4.4.1. Principle

The K non-failed specimen method is a generic term involving other methods,
sometimes known as the “three specimen methods”.

Its aim is to basically determine a stage where K tests give K non-failures for
successive stress stages, X, X,,..., etc., decreasing due to arithmetic progression.
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As the starting stage x, is chosen — usually at a sensitivity higher than the
endurance limit — the tests are successively carried out with the choice of test stress
level being defined by the following rule:

— as the last test has been carried out at stage x; and the total number of
performed tests at this level is #;:

- if the last of these #; tests triggered a failure, the following test will be carried
out at one stress level lower than the last test;

- if the n; tests that have been carried out at level x; just triggered non-failures,
the following test will be performed at the same level x; as the previous ones if and
only if n; < K. If n; = K, tests will be stopped.

We can then see that with this rule we move to a stress one level lower than that
at which a failure is observed and that we do not carry out any more K tests per
level.

The result of this procedure is characterized by the last stress level at which the
tests have been carried out.

2.4.4.2. Statistical properties of the result

Statistical properties of the result can be determined using calculations when we
know the analytical nature of the response to the stress curves. If they are considered
sigmoid and normal, we can calculate the statistical behavior of the method during
its application to an average response curve ¢ and we can also calculate the standard
deviation G.

If we choose Sy as the stress level where the procedure stops, Sx is a random
variable whose distribution is a function of K (number of non-failures to be
obtained), spacing d of the test stress levels and the position of this scale in relation
to u.

We can, however, reduce the study of the corresponding cases to various values
of u and ¢ only when ¢ =0, 6 = 1, if we replace d with d/c and the values of Si
with those of (S - p)/o

Regarding a standard sigmoid curve (# = 0, 6 = 1) and given values of K and d
we have then calculated:

— E(Sy): the expected value of Sy or average value of this amount for a high test
number;

— 0 (Sx): standard deviation of Sy (scatter parameter of S);



— M(Sy): distribution mode of Sx or level where the halting probability is the

highest;
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— Gy: fraction percentage at level E(Sy);

— Uy, Vg limits of the probability interval of Sy at a minimum of 0.95; and

— 0%: real probability, expressed in %, where Sy is external to the interval

Uk, Vk-

These various values are listed in Table 2.3 as a function of X and of d/o.

The random nature of the test results enables us to predict the final result using
probabilities. The number of stages to be covered is random, as is the total number

of tests necessary.

K | 9 1 ESa | oS | MSq | Gk | Vk | Uk | o%
025 | 0673 | 0661 | 050 | 750 | -05 | +20 | 3.6
_ | 050 0244 | 0758 | 0 596 | ~1.0 | +2.0 | 21
K=111"1-0273| -0893 | 0 392 | -20 | +10 | 26
15 | -0641 | ~1.005 | 0 261 | -30 | +15 | -
025 | ~0.115 | 0546 | —025 | 454 | ~1.0 | +1.0 | 38
Koy | 050 | —0479 | ~0.635 | —0.50 | 316 | -L15 | <10 | 18
=211 | -0928 | —0.765 | =100 | 17.7 | -20 | +1.0 | 10
15 | -1257 | -0.871 | -150 | 104 | -30 | 0 -
025 | 0492 | -0493 | -0.50 | 311 | -15 | +05 | 42
K3 | 050 | -0824 | -0580 | =100 | 205 | =20 | +05 | 07
1 | -1243 | -0.710 | =100 | 107 | -20 | 0 | 28
15 | -1.555 | ~0.806 | -150 | 60 |-30 | 0 -
025 | ~0.728 | —0462 | ~075 | 233 | —15 | +025| -
Keq| 050 | -1043 | ~0548 | ~100 | 149 | -20 | 0 -
4Vl | -1444 | 0677 | -100 | 74 | =30 | 0 -
15 | -1742 | -0.769 | =150 | 41 [-35 | 0 -

d/o: no gradation of the stress, expressed in multiples of the standard deviation of the

response curve

E[Sk]: expected value of Sg or average value of this quantity for a high number of tests

o[Sk]: standard deviation of Sk (distribution parameter of Sk)

M[Sk]:distribution mode of Sk or stage where the halting probability is the highest

Gy: failure percentage at level E(Sk)

ug, vk: limit of the probability interval of Sk at a minimum of 0.95

a %: real probability in % in order for SK to be external to the interval g, vg

Table 2.3. Statistical properties of the three specimen/non-failed specimen method
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In addition to the probable region of the halting procedure, however, a probable
number of tests necessary to succeed can be found. This number is given as a
function of K and of d/c in Table 2.4, if we consider the stress test to be carried out
from three standard values of the targeted average.

K K=1 K=2 K=3 K=4
dic E(N) | DIN) | EN) | DON) | BON) | DOV | EQY) | DN
0.25 10| 3 16| 3 [ 201 a4 | 23] a
0.50 7 | 2 10 | 2 2| 2 15 | 3
1.00 1 1 8 | 2 10 | 2
1.50 1 5 1 7 1 8 | 2

K: number of non-failures required for the procedure to stop

d/o: fraction or multiple of the standard deviation of the response curve used as pitch
N: (random) number of specimens required for the procedure

E(N): expected (or average) value of N, rounded to the nearest whole unit

D(N): standard deviation of N, rounded to the nearest whole unit

Table 2.4. Average value and standard deviation
of the necessary number of specimens

This table enables us to see that regarding the three specimen method, for
instance (X = 3), and a spacing of the stress stages equal to a standard deviation, we
usually have to use eight specimens to complete the procedure, with a characteristic
standard deviation of two specimens.

2.4.4.3. Application example

Figure 2.7 gives an example of results obtained using this method with K = 3, on
specimens made of metal sheets bearing a welded clip of the same thickness. The
tests have been carried out under repeated bending, welding being loaded in
compression up to two million cycles. The results show that the tests have been
stopped at a value of 360 MPa — the limit of the standard deviation (twice the value
of the stress amplitude) — after using eight specimens.

If we make an assumption on the standard deviation of the response to the stress
curve, we can then estimate the conventional fatigue limit at 50% and determine the
precision of this estimation.

To do so, let us consider that 6 = 20 MPa. As the tests present a spacing of
20 MPa, we have:
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=1

In Table 2.3, when K =3 and d/c = 1 we have:

—E(Sp) =-1.24;
~o(Sg) = 0.71;

—M(Sg) =-1; and

~Gg=10.7.

The value of E(Sg) shows that, for the considered values of K and d/c, the

halting level is usually 1.24 standard deviations below the median of the response
curve, which is 24 MPa.

Upper limit of the strain (MPa)

A
4204 o
o Failed specimen
400 - e o ® Unfailed specimed
380 . o o
360 - e o o
340 S — -

EI% é Test numger

[w=]
—_
[\
w
I
W
(o)}
~

Figure 2.7, K non-failed specimen method (K=3)

When we correct the systematic error of S, we obtain an estimate of u:

p*¥=360+24.8 =384.8 MPa

In order to obtain the standard deviation of u*, we multiply the value o(Sy),
given in Table 2.5, which corresponds to a response curve of unit standard deviation,
with the standard deviation supposedly equal to 20 MPa: o (u*) = o(Sx) x 20=14.2

MPa.
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Stress (MPa)
Test .
number | Lower | Upper N¢ Observations
limit limit
1 20 420 1,513 | Failed specimen
20 400 2,000 | Unfailed specimen
2 20 400 | 1,703 | Failed specimen
20 380 2,000 | Unfailed specimen
3 20 380 2,000 Unfailed specimen
20 380 1,429 | Failed specimen
20 360 2,000 | Unfailed specimen
4 20 360 2,000 | Unfailed specimen
20 360 2,000 | Unfailed specimen

Table 2.5. Application examples

2.4.5. Choice of test method

To make things easier, we will distinguish three different degrees of precision or
demand regarding the estimation of fatigue resistance:

— approximate estimation;

— estimation of average precision; and

— accurate estimation of the median that can also be matched with that of
standard deviation.
2.4.5.1. Methods of approximate estimation

Estimation methods of fatigue resistance that fit into this category can be
performed with fewer than 10 to 15 tests, even if they can be applied to higher
numbers of tests.

Methods that therefore fit this category include:

— staircase;

— identical K results; and

— iteration.
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2.4.5.2. Estimation of average precision

Here we are talking about methods that can be applied when 15 to 40 tests are
carried out. The “probit” method remains outside this category as too many tests
need to be performed. The K identical results method does not fit either because the
method would lose its relevance as the standard deviation obtained would be too
high due to the number of tests considered.

The methods to be considered in this category are:

— the staircase; and

— the iteration test;
performed in groups from two to four tests at each level.

2.4.5.3. Accurate estimation methods
Accurate estimation methods include:
— the staircase, performed in test groups at each stress level;
— the iteration, still performed in test groups at each stress level; and

— the “probit”; applied methods with a test number higher than 40.

The first two are acceptable with random test numbers, whereas we have to be
ready to carry out at least 60 to 80 tests if we use the “probit” method.

The staircase method has the advantage of simplicity, but its execution takes
time due to the necessity of trying the specimens one after another. The iteration
method is more delicate but takes less time as the tests can be performed in groups.

2.5. Mathematical representations and plotting methods of the Wohler curve
2.5.1. Introduction

The general shape of the S-N diagram has already been described in section 2.2.
We have showed that its description is possible, from the response to the stress
curves (see Figure 2.2), or from the response to the failure isoprobability curves (see

Figure 2.3).

It then appears that a complete and accurate representation of the S-N diagram
involves the definition of one or another curve category.
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We will first focus on the shape of failure isoprobability curves and then on the
adjustment of an “average” curve.

2.5.2. Mathematical representation of the Wohler curve

Dengel [DEN] studied representations of various Wohler curves. The oldest one
introduced was:

LogN=a-bS, [2.22]

where N is the number of cycles at which a failure occurs, S is the amplitude of the
applied stress, and two constraints ¢ and b.

Although it cannot reflect a horizontal or asymptotic part of the entire S-N curve
due to its nature, it usually gives a good representation of the average part of the
curve. This is due to the fact that most of the experimental Wohler curves present
within the coordinate system S, log N, a slight inflection point close to which they
are almost straight. If we put the low-cycle fatigue domain (N < 5x10% cycles to get
a better idea) and the one with endurances higher than a million cycles aside, the S-N
curve is really close to a line.

The problem gets more serious when we want to reflect the bend and the almost
horizontal branch of the Wéhler curve.

We noted a while ago that the S-N curve does not present a pronounced bend, as
we can usually expect from a rough representation, but a progressive bend that joins

the decreasing branch to the horizontal one.

As early as 1910, Basquin proposed the equation below to highlight this curve:
LogN=a—-bLogS [2.23]
If we have 4 = €* and ¢ = 1/b, this equation can also be written as:
S =(A/N)® [2.24]

This equation represents a kind of hyperbole whose branch is asymptotically
linked to the N axis. Therefore, this type of curve does not allow us to describe the
phenomenon of fatigue limit, even if it is absolute or apparent but sufficiently
obvious, unlike the Wohler line.



Fatigue Strength and Endurance Curve 49

As early as 1914, Stromeyer then introduced the equation:
LogN=a-bLog(S—E) [2.25]

where three parameters a, b and E are involved, the latter one representing the
endurance limit.

The curve obtained is identical to the one described by Basquin’s equation where
S has been replaced by S — E. The curve displays a horizontal asymptote of ordinate

E, usually different from the lifetime axis.

Equation [2.25] (where 4 = €® and ¢ = 1/b) can also be written as:
S=E + (A/NY [2.26]
The Stromeyer equation is definitely more realistic than the equations proposed
by Wohler and Basquin. Much more data and a serious examination to detect any

deficiencies are needed.

This equation has been used by many authors but its adjustment is not that easily
done. We will discuss this matter later on, in Chapter 5.

In 1924, Palmgren introduced the following equation:

P [ﬁjc [2.27]

which can also be written as:
Log(N+B)=a-bLog (S—E) [2.28]

With coordinates S and Log N, and when B > 0, the S-N curve then presents an
inflection point that allows us to improve the quality of the data adjustment.

Corson [COR 49], using a greatly reduced experimental basis, introduced the
equation:

A

- 5E)
(S-E)d™" [2.29]

where 4, E and d are constants.
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If we have ¢ = Log d, this equation can be expressed as:

N = A exp[—c(S—E)]
(S-E) [2.30]

whose experimental justification has been established independently on the basis of
many test results [BAS 71].

Finally, as a reminder we should quote the Weibull equation:

Log((N+B)=a-bLlog ==
og(N+B)=a-blLog -

[2.31]

where a, b, B and E are constant parameters and R the traction resistance of the
material.

As equation {2.31] can be written as:
Log(N+B)y=[a+bLog(R-FE)]-bLog(S—-E) [2.32]
and as g and b are, a priori, unknown, we actually have to assume that:
a'=a+bLog(R-E) [2.33]

and then estimate B, a, b and E as if to adjust equation [2.31], and use equation
[2.33] in order to deduce a, knowing the values of @', b, R and E.

In the end, equation [2.31] does not bring anything more to the shape of the
adjusted curve than [2.28] does.

We have seen that the replacement of N in the Stromeyer equation [2.27] with
(N + B), which leads to the Palmgren equation [2.28], greatly improved the quality

of adjustments that could be made.

The same modification can be made to equation [2.24] and leads to:

[2.34]

which allows us, as was the case with equation [2.28], to highlight a possible
inflection point of the Wéhler curve.
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To compare which of the equations ([2.27], [2.28] and [2.34]) is better, we need
a large number of test results. The serious study of several data groups has allowed
us to show an increasing adjustment quality when we get from equation [2.25]
through to [2.28] and then to [2.34]. With fatigue test results that were performed on
a XC-10 steel, used as an example, we can obtain some adjustments of Figures 2.8
to 2.10.

g Steel XC-10

& ag="238 MPa

63 sq=12MPa
375
350
325 4
300 +
275 1 K>

o ey

250 0 GRRRRIK-43
225
200
175 ; , : : .

10! 102 103 10# 103 108 Hectocycles

Figure 2.8. Rotating bending fatigue tests on XC-10 steel

Figure 2.8 shows the adjustment of equation [2.26] (since B = 0). Using the
estimation of the value of B, we then obtain the adjustment in Figure 2.9, where the
inflection point of the isoprobability curves is obvious.

Finally, Figure 2.10 shows equation [2.34]. In these three figures, the two outer
curves are deduced from the median (center) curve using a translation of 2.05
standard deviations parallel to the stress axis. They then correspond to the failure
probabilities of 0.02 and 0.98, following the normal law. Circular points show
failures and square points non-failures.

We can see that, in Figures 2.9 and 2.10, the endurance limits obtained are close
to each other.
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Figure 2.9. Rotating bending fatigue tests on XC-10 steel
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Figure 2.10. Rotating bending fatigue tests on XC-10 steel
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2.5.3. Adjustment methods of a Wéhler curve to test results

Regardless of the adopted shape — [2.19]-{2.22], [2.24] or [2.26] — we have to
estimate the unknown constants using the test results.

The only curve whose adjustment is simple is the Wghler curve (equation
[2.19]). As we have already noted, it cannot be applied to the whole Wohler
diagram. It can however, be applied within the intermediate region where the
logarithm scatter of lifetimes does not often depend on the stress amplitude. We can
then apply the least-squares method in order to adjust a line of equation [2.19] to the
test results.

Figure 2.10 allows us to see that, even in the straightest region of the Wohler
curve, the scatter constant of Log N is not completely verified. In addition, within
the endurance zone, where we find some non-failing specimens, this scatter grows
significantly.

Adjustment of the regression line of Log N with regards to S using the least-
squares method has been used by various authors. Many people prefer to apply this
method to the values of Log N and Log S, which involves adopting Basquin’s
equation ([2.20]); see [GUR 92] for instance.

Despite the fact that the validity of Basquin’s equation [2.20], like that of
Wéhler’s line, falls apart within the endurance region and does not really work
compared to Wohler’s curve [2.19] within the intermediate zone, it is frequently
used. We wonder why this is so.

Adjustment of equations [2.21], [2.22], [2.23] and [2.26] with test data cannot be
performed using simple methods. With [2.25] we cannot really estimate E, whereas
with the different terms in [2.26] of the same equation, it is ¢ that cannot easily be
determined. The same goes for [2.27], where the estimation of B introduces an
additional issue. With equations [2.30] and [2.26], estimation of the parameters
presents similar issues.

Estimation of E in equations [2.25] or [2.26] can be performed graphically if
we try different values of E until we get a linear relationship between Log N and
Log (S — E) (which we achieve when we switch N and (S — E) to bi-logarithmic
coordinates). We can also optimize this graphic method if, for every value of E, we
adjust a second-degree curve to Log N, Log (S — E) values using the least-squares
method, and if we study the evolution of the second-degree term that we get as a
function of the value of E. We then determine, using interpolation, the value of E
whose second-degree term from the Log N, Log (S — E) equation is equal to zero
[ROY 73).
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We could also work on [2.26] from equation [2.25] and find the value of ¢ when
1/N¢ linearly depends on S. Other authors give ¢ a value “based on experience” and
adjust 1/N° to S using the least-squares method.

Serensen and co-workers [SER 72] set ¢ = 1 in Palmgren’s equation [2.27]. They
performed a regression adjustment of 1/(N + B) with regards to S for different values
of B that were randomly chosen. Then, using interpolation, they looked for the value
of B whose relationship between 1/(N + B) and S was the most linear if they
considered the correlation coefficient or residual variance.

None of the previous methods is statistically satisfying as the estimations
obtained for the targeted parameters cannot be matched with confidence intervals or
indications relative to their precision. However, to adjust some functions similar to
[2.25], [2.27] or [2.34] to some data, classic statistics does not seem to offer any
solution for several reasons.

Usually it appears that the relationship between the number of failure cycles N
and the stress amplitude S is related to a regression model, as N is affected by scatter
and S is considered to be known. This equation is non-linear when we consider data
from the endurance region, the fact that the scatter of N varies greatly and some of
the test results lead to non-failures.

From a statistical point of view, these two aspects of the S-N relationship would
not be drawbacks if:

— distributions of N, for each value of S, would be normal;

— the scatter of N would be represented by an analytically known function of §
(even when depending on unknown parameters).

Even though these conditions are clearly not satisfied, we can still try to achieve
them using a known transformation. The most commonly used one, Log N, does not
really satisfy these conditions — they roughly match within the decreasing part of
the Wohler curve but are very different within the endurance region (see equation
[2.25]).

Actually, no transformation a priori given can enable us to satisfy the two
previous conditions for the simple reason that the variable depending on N presents
an infinite point for a value of § that we can never experimentally consider to be
known. On the contrary, it has to be estimated.

If a transformation without any singular point is applied to A, it will not be able
to give an infinite value to infinite N.
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To overcome this issue, we have to use a transformation that bears a singular
point. The 1/N transformation [BAS 61] can occasionally be suitable. Usually,
however, the transformation that enables us to turn lifetime N into a random and
normal scatter variable that is constant or nearly constant, is a function of the
unknown parameters of the Wohler curve, which have to be estimated [BAS 61].

One method proposed for estimating the unknown parameters of a Wohler curve
consists of transforming the curve using approximate values for the unknown
parameters. The calculation can then be performed starting with the transformed
data and applying a regression method to the corrections to be applied to the
temporary parameters. Repetition of this calculation until convergence defines an
iterative process of the estimation of the parameters [BAS 53]. Mathematical study
of this method using a computer program enables us to calculate the precision of
estimations and the accuracy of the adjusted curve. This method, called the ESOPE
method, can be applied to the adjustment of any type of function representing the
Wohler curve.

This is how with the same system of test results we could adjust Stromeyer’s
equation (see Figure 2.8, with B = 0), Palmgren’s equation (see Figure 2.9, with
B > 0) and equation [2.26] with four parameters (see Figure 2.10). Calculation
involves statistical adjustment tests, that is to say, the validity of the equation used
changes depending on the treatment of data.

Figure 2.11 gives an example of the adjustment of a limited number of results
using equation [2.34] where B = 0. The automatic plotting program enables us to
establish curve 2, which corresponds to the estimated curves of failure isoprobability
0.10 and 0.90. The curves numbered 3 are the confidence bounds at the 0.95 stage of
the median curve 1. The lower curve 4 is a scatter unilateral limit. For each value of
the stress amplitude S, it defines a lower confidence bound at stage 0.95 of the
estimated lifetime N, for the same value of S, using curve 2. In other words, there is
a 95% chance that at the considered level the real fraction 0.10 of distribution N is at
the right of curve 4.

2.6. Estimation of the cycle number N for a given level of stress amplitude
When strictly applied with limited endurance, this method can also be used in the
two following cases:

— determination of the number of cycles, N,, corresponding to a failure

probability equal to p in the case of tests carried out at the same stress level (see
Figure 2.12);

— definition of the probabilized Wéhler curve, point-by-point.
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Figure 2.11. Fatigue tests on a cruciform welded joint — E36 steel
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Figure 2.12. Estimation of the cycle number and scatter
within the limited endurance region
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2.6.1. Principle

This method is based on the experimental observation that distribution of the
numbers of cycles to failure, for a given level of stress amplitude, is normal. It
enables us to graphically check this normality using a diagram (Henry diagram) with
Gausso-arithmetical coordinates (Gaussian scale as ordinates and arithmetic scale as
abscissa).

On this particular diagram (see Figure 2.13), we have the representative points of
the test numbers of cycles (expressed as log N) as a function of the proportions of
the broken specimens below the considered fatigue lives. Distribution of log N
follows a normal law when the experimental points are lined up.

2.6.2. Set-up

A minimum of 10 specimens is required. The first time, the # values of N are
sorted out following an increasing order: N;, N,,..., N,,..., N,..
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Figure 2.13. Henry line
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The proportion of broken samples is estimated using the frequency, which can be
written as:

Fi =i/n+1

We then plot the # points with log V; as abscissa and F; as ordinates on a Henry
diagram.

In the general case where the points are lined up, we can then estimate the
average and standard deviation of log N, using the following expression:

J;(logN,._@)z

(n-1)

The line representing the distribution goes through two points with the following
coordinates:

log N-s, 16%; log N—s, 84%.

2.6.3. Application

Figure 2.13 shows the experimental results.

In this case, we obtain log N = 4.803, which allows us to estimate N, which is
the number of failure cycles corresponding to a failure probability of 50%:

N5y 101987 = 63,500 cycles

The same goes for the estimation of N,, the number of failure cycles
corresponding to a failure p, which can be obtained if we calculate:

N_ =10en-w)

4

where u is given in Table 2.1.
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2.7. Influence of mechanical parameters on endurance

The fatigue resistance of a material is linked to numerous factors, which can be
either mechanical or metallurgical. One of the most significant factors deals with the
application conditions of the cyclic stresses being applied.

2.7.1. Influence of the mean stress

An increase in the mean stress or statistical stress leads to a reduction in the
dynamic stress resistance of a material.

If we take a force of the same nature, the stress amplitude &,, allowed, which
corresponds to a given lifetime, decreases when the mean stress, G,,, increases.

Om*GC, 4
MPa
2 000

Figure 2.14. Goodman-Smith diagram (35NCD16 steel)

If we focus on the fatigue calculation of pieces and entire structures, it is
important to know the evolution of o, as a function of G,,. To visualize this

evolution, different diagrams have been proposed:
— the Goodman-Smith diagram (see Figure 2.14): G, —C.;
— the Haigh diagram (see Figure 2.15): 6,-0,.

In these diagrams we plot the curves that were previously determined for finite
or infinite lifetimes (endurance limit).
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2.7.2. Influence of the nature of forces

For a given material, fatigue strength varies as a function of the nature of a force.
In particular, for a given steel we can find as many endurance limits as types of
cycles (alternate, repeated, waved) and stresss of different natures (traction, bending,
torsion) that we can imagine.

Comparison of test results usually shows that the endurance limit values decrease
when we switch from rotating bending to planar bending and then to compressive
traction and finally to torsion. Deviations between the different values depend on the
adaptation possibilities of the steel considered. Figure 2.16 shows an example of the
type of stress on the endurance limit of two materials [LIE 87].

UTS .
0 AN Elasticity limit

/—‘UTS

<

Op 10 6y =0

o
_—

Y
R, UTS Oy, Tension

Figure 2.15. Haigh diagram (simplistic description)

2.7.2.1. Alternate traction and alternate planar bending

In the case of alternate planar bending, stresses are highest for external fibers and
close to zero on the axis when there are non-uniform stresses within the sections
considered. In the case of compressive traction, however, stresses are homogenous
across the whole section.

Experience has shown us that we can find a certain difference between these two
types of solicitation. If we take specimens of the same dimension (same section) and
same shape within the useful part, planar bending usually gives some endurance
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limit values higher than those obtained with compressive traction. This difference
can reach 30% depending on the authors but it depends, to some extent, on the
dimension of the specimens.

Nevertheless, a component can modify these conclusions: in the case of planar
specimens of rectangular section, the edge is not well defined and can lead to some
local initiations that can reduce fatigue resistance. This is known as the edge effect.
Figure 2.16 shows the possibility of edge effect in the case of a 35CD4 steel
[LIE 87].

Cp
(MPa)
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) 35CD4
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Rotating Plane Tension- Tension-
bending bending compression tension

Figure 2.16. Influence of stress type on the endurance limit (R = -1)

2.7.2.2. Alternate traction and rotating bending

In the case of rotating and planar bending, stresses are not homogenous within
the section of the specimen.

When comparative tests are carried out with a specimen of the same dimension
and shape, and run at the same frequency, lifetimes within the limited endurance are
shorter in the case of alternate traction compared to rotating bending [RAB 67].

The same goes for endurance limits during rotating bending, which are usually
higher than during alternate traction: deviation can vary between 0 and 20% [RAB
69].
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2.7.2.3. Alternate planar bending and rotating bending

Distribution of stresses through a section should lead to a planar bending
endurance higher than a rotating bending endurance when specimens of the same
circular sections and shapes are used. In these conditions, Roos, Lemmon and
Ranson [ROO 49] found that, for a steel treated with nickel-chromium-molybdenum
(R,, = 900 MPa), the endurance limit during planar bending is 12% higher than the
one during rotating bending.

However, if we try bending specimens with a prismatic section b x 4 during
planar bending and compare them to specimens with a circular section of diameter
d = h run during rotary bending, we observe that there is either no significant
difference or we get lower values in the case of planar bending. This is due to the
edge effect (see Figure 2.16).

2.7.2.4. Alternate torsion and alternate bending

Elasticity theory says that there is a constant ratio equal to (1 / \/E) between
failure strength in the case of torsion and traction.

With alternating loading, we find some variable values relating to the endurance
limit ratios of alternate torsion op' and alternate bending 6'Tp. We also observe,
however, that endurance limits depend on the dimensions of the specimens that were
being examined.

According to numerous results, the op'/c"" ratio varies between 0.44 and 0.75,
with an average value of 0.55.

Moore, Jasper and MacAdam found that for different steels and alloys there was
a ratio ranging from 0.44 to 0.71 between the endurance limit during alternate
torsion alternate rotating bending. For most of the metals that were used, the ratio
ranged from 0.49 to 0.60. According to Foppl, the ratio ranges from 0.48 to 0.75 in
the case of steels; and from 0.54 to 0.65 in the case of aluminum alloys.

2.8. Relationship between endurance and mechanical characteristics (of steels)

2.8.1. Estimations of oy

Many authors [BRA 76, BUC 64, CAZ 34, CAZ 69, HEY 62, POH 64, RAB 54]
have tried to link endurance limit to mechanical properties and especially to:

— ultimate tensile strength, UTS or R, (in MPa);

— yield strength 6y or R, (in MPa);
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— elongation 4 (in %); and
— necking Z (in %).
Numerous equations have been proposed [CAZ 69] (op in MPa):
— Mailander o, = (0.49 £20%) UTS:
05 = (0.65 £30%) ov;

— Strinbeck 6 = (0.285 £20%) (UTS +oy);

—Rogers g = 0.4 oy + 0.25 UTS;

— Houdremont and Mailander o, = 0.25(oy + UTS) + 50;

—Junger 6, =0.2 (oy + UTS + Z);

— Lequis, Buchholtz and Schulz ¢, = 0.175 (UTS + oy - A% + 100);
— Fry, Kessner and Ottel o, = ¢ UTS + foy.

Coefficients o and B are not constant: o is proportional to R, whereas f is
reversely proportional to R,

— Heywood 6= UTS/2;

— Brand o, =0.32 UTS + 121.

This last equation deals with 489 endurance limit results of various natures
obtained during rotating bending for 107 cycles (300 < UTS < 2,000 MPa).

These expressions are only applied to specific cases where experiments have
already been carried out. As a matter of fact, the characteristics of endurance depend
on the number of parameters, such as the metallographic structure, cycle frequency
or dimension of the specimens.

Some results obtained with similar test conditions have been gathered by the
IRSID (French Research Institute of Steel making) [BUT 86]. Here, endurance
limits during rotary bending have been determined for 107 cycles at a frequency of
200 Hz on cylindrical specimens with an effective diameter ranging from 5 to 8 mm.

We suggest the following expressions between o}, on one hand and Rm, Re, A
and Z on the other hand:
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0.37 Rm +77

o |0-38 Re+160
?10.41 Rm+2
039 Rm+Z

where Rm = UTS, Re = oy.

As you can see in the diagrams in Figure 2.17, the expressions where UTS is
involved give the best test results. Thanks to these equations, we can now obtain an

approximate value of 6, at £15%.
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Figure 2.17. Relationship between endurance limit and characteristics
of traction in various steels



Fatigue Strength and Endurance Curve 65

2.8.2. Estimation of standard deviations

The values of the standard deviation, s, of the endurance region obtained during
the previous study [BUT 86] are widespread. This variation is due, in particular, to
the analysis method used.

Results show an average increase in s when UTS increases: we can admit
s =0.02 UTS as an indicative value.

2.8.3. Conclusion

The distribution of fatigue test results, related to either the nature of the material
or the experimental conditions, needs the use of appropriate statistical analysis
methods of test results.

In order to estimate the fatigue resistance with N cycles and its standard
deviation, several methods are proposed:

— the “probit” method;
— the staircase method;
— the iteration method;

~the K non-failed specimen method.

These methods require a minimum number of specimens and different set-up
reactions that enable us to obtain variable estimations that are acceptably accurate.

The same goes for the mathematical representation of the function o, = f{N),
which has led different authors to propose models that are increasingly elaborate.
Using a computer, these models now enable us to automatically plot the Wohier
curve as well as some failure iso-probability curves.

Where steels are concerned, a rough estimation of the endurance limit from a
simple traction test is often necessary. Different empirical equations are proposed.
The best agreement between experimental and calculated values is obtained when
we relate endurance limit to traction strength and failure elongation. Moreover,
fatigue resistance of a material is modified by mechanical parameters, for a given
fatigue life so:

— an increase in the static stress reduces the stress amplitude the sample can
endure;
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— endurance to stress decreases when we start with bending and then switch to
traction and then finally to torsion stress.

It is then worth remembering that we can rely on the French rules regarding
statistical analysis of fatigue data obtained on metallic compounds [NOR 91], and
that a new ISO TC 164/FDIS 12107 rule has been developed in the same field [ISO
071.
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Chapter 3

Fatigue Crack Initiation

3.1. Introduction

If we want to accurately estimate the fatigue behavior of mechanical parts we
have to evaluate the number of cycles that occur before crack initiation within a
region which is highly stressed or containing fabrication defects. In many practical
cases, the initiation stage represents a significant part of the fatigue life (by up to
90% of the lifetime), as is highlighted in Chapter 4.

Experience shows us that crack initiation usually results from the concentration
of plastic deformations that occur within a small region of finite dimension. From a
structural point of view, localized plastic deformations related to extrusion and
intrusion mechanisms lead to the development of stage I cracking.

From a practical point of view, we have to relate the number of cycles necessary
for the formation of a macroscopic initiation event to the operating conditions
(applied loads, design of the components) in order to calculate the total number of
cycles to failure.

This chapter examines the two sides of the problem: physical mechanisms and
methods of evaluating the number of cycles for crack initiation.

Chapter written by Paul RABBE and Louis ANQUEZ.
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3.2. Physical mechanisms of crack initiation
3.2.1. Three stages of fatigue failure: a reminder

When a specimen or a component fails due to fatigue, its life can be split into
three parts:

— crack initiation,;
— slow crack propagation;

— sudden propagation leading to fracture.

3.2.1.1. Definition of crack initiation

The definition of crack initiation can be different depending on whether we focus
on the microstructural evolution of the material or the formation of a microcrack.
We will come back to this definition in Chapter 4.

To evaluate the crack initiation stage within a structure, we usually rely on the
notion of microcracking. This notion itself, however, depends directly on the
resolution of the means of observation used. Moreover, as there is no general
agreement on the definition of crack initiation, different authors have defined the
number of cycles to crack initiation, N,, to create a crack of length ay of about
0.1 mm. Actually, this dimension can easily be detected and corresponds to a defect
size that we can compare to the grain size of many metallic materials. Finally,
experience shows us that in many cases, as soon as a crack reaches a depth close to
this dimension, it steadily propagates through the section of the specimen or the
component [PIN 76].

3.2.1.2. Relative significance of crack initiation and crack propagation stages

Classic fatigue tests (S-N curves that give stress as a function of the number of
cycles to fatigue Ny) give some global information on the endurance of a material
(initiation + propagation + fracture). These particular tests allow us to qualitatively
judge the choice of materials, but they can be difficult to apply in a quantitative
manner to a structure.

Figures 3.1 and 3.2 show some simplistic representations of:

— the S-N curve, with a separation of the initiation ; and propagation N, phases;

— the evolution of stress Ac as a function of the N/Ny ratio of the number of
cycles to crack initiation N, to the number of cycles to failure Ny.
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The relative significance of initiation and propagation stages depends on:
— the stress amplitude;

— the component geometry;

— the nature of the material;

— temperature;

— previous loading; and

— environment.

These different factors can interact in such a way that the number of possible
parameters is high.

Grosskreutz observed the evolution trends of the ratio N/N, [GRO 71] as a

function of these different parameters. These trends can be seen in Table 3.1, where
we plotted the N/Np ratio values on smooth and notched specimens for different

materials, and for some given values of the number of cycles to fracture Ny.

1 ) ) 1Rl
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\ -
N

i
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11yl

Propagation

L
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N (numberof cycles)

Figure 3.1. Number of cycles for crack initiation, crack propagation and
total fatigue life as a function of the applied stress amplitude

The ratio N/Np decreases when the alternate stress (or strain) amplitude
increases, in such a way that within the region of very low numbers of cycles, the
propagation phase represents the main part of the lifetime. In addition, the number
of initiation sites increases when the stress (or strain) increases.
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When we introduce a stress concentration (notch for example), the N/Ng ratio is
decreased.

In general, microcracks are more rapidly initiated within ductile materials.

In materials showing a stage I crack initiation within slip bands, the N/N. ratio
increases when the temperature decreases.

When a material undergoes a superficial work hardening effect, introducing
residual compressive stresses, produces an increase of the initiation phase.

- L 107
. L 105
3
= - 103
T 10!
0 50 100

Percentage of the initiation lifetime (N)

Figure 3.2. Graph showing the percentage of the fatigue life spent in crack initiation as a
function of applied stress amplitude (A o) and the total number of cycles to failure (Ng)

3.2.2, Influence of stress amplitude

The evolution of damage phenomenon due to fatigue is generally observed using
optical or scanning electron microscopy on a smooth specimen without any
significant defect.

Usually, crack initiation occurs at the surface of the specimen. More rarely, crack
initiation can occur within bulk, for example within welds (fish-eye), cast steels
(microshrinkage cavity), or under the skin (when large inclusions modify the local
strain distribution), see Chapter 5.
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Forsyth [FOR 72] explains that the three reasons why fatigue cracks develop at
the free surface of the specimens are:

— dislocations are more mobile at the free surface compared to the bulk;
— surface is a preferential site of the nucleation of dislocations;

— surface is subjected to the aggression of the environment.

: Shape of Initiation Length of the .
Material the sple)cimen localization | NFOYeles crafk for Nj Ni/N
Pure Cu Smooth Slip 2.106 0.203.10-2 mm 0.05
Pure Al - Grain Boundary| 3.105 0.127.10-! mm 0.10
2024-73 - 4.104 0.101 mm 0.40

108 0.101 mm 0.70
2024-T4 - 150 0.254 mm 0.60

103 | 0254 mm | o072
5103 | 0254 mm | 088

4130 - 103 0.254 mm 0.72
Pure Al Notched (K; = 2) Slip 2.106 0.254.10-3 mm 0.005
2024-T4 - Inclusion 105 0.203.10-! mm 0.05
3.106 0.101.10-! mm 0.07
2014-T6 - 2.103 0.635.10"1 mm 0.015
2.104 0.635.10-1 mm 0.02
106 0.635.10"1 mm 0.05
7075-T6 - Inclusion 2.105 0.508 mm 0.64
7075-T6 - 5.103 0.762.10-1 mm 0.20
105 0.762.10-1 mm 0.40
4340 - 103 0.762.10-1 mm 0.25

2.104 0.762.10°! mm 0.30

Table 3.1. Number of cycles to crack initiation as a function of the
ratio Ni/Nfand nature of crack initiation sites [GRO 71]

3.2.2.1. Very low stress region

Loadings that are lower than the so-called endurance limit are characterized by
dislocation and glide movements that are perfectly reversible: there is no blocking or
rearrangement of the dislocations, and the structure is not irreversibly modified.

3.2.2.2. Endurance region

The application of cyclic strains (or stress) close to the endurance limit, the
application of a certain number of cycles, produces slip bands (within some grains)
that can easily be observed on polished surfaces (see Figure 3.3).
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Figure 3.3. Slip bands observed in copper [THO 56]; a) after 7.5% of the lifetime;
b) after 42% of the lifetime; and c¢) after 77% of the lifetime [THO 56]

These bands have been observed in many single phase metals and alloys, such
as:

— aluminum [FOR 72];
—iron [KLE 65];
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— copper [THO 56];
—zinc [BRO 63];
—nickel [LAI 63];
—brass [JAC 60];

— carbon steels [KLE 65];
— austenitic steels; and

— aluminum alloys.

In a large number of metals the slip bands lead to the formation of microcracks
due to the intrusion-extrusion mechanism (see Chapter 4). Indeed, the atmosphere
reacts with the fresh surfaces of the slip bands over the surface (extrusion), and
prevent their back and forth movements, leading to metal damage. Figure 3.4 shows
some examples of the formation of intrusions and extrusions in copper.

Wood [WOO 58] suggested that the formation of the microcracks at the free
surface was a simple geometric consequence of back and forth movements within
large slip bands (see Figure 3.5).

Cottrell and Hull [COT 57] proposed a formation model of intrusions and
extrusions at the free surface, based on elementary mechanical movement of the
atoms. This model, shown in Figure 3.6, involves two slip bands that cross each
other and give rise to the formation intrusions and extrusions during tension and
compression cycles.

The formation of extrusions is favored by cross slip. Nevertheless, there is still
no intrusion and extrusion formation; cracks are then initiated from surface
irregularities caused by slip bands (see Figure 3.6). Microcracks are formed within
these bands, which are then called “persistent”.

Slip bands are not the only sites for crack initiation. Within some alloys
strengthened by precipitation, narrow and internal slip bands occur at the same time
as we observe a dissolution of the precipitates [BRO 63]. Moreover, even when
there is formation of deformation bands, cracks can be initiated at grain boundaries.

Inclusions are usually the sites where crack initiation occurs, due to the stress
concentrations they bring or due to the cleavages occurring within these particles
(see Figures 3.7 and 3.8). In 2024 or 7075 aluminum alloys, these particles enriched
in iron or silicon are cleaved, whereas within the 2618 alloy, the AlsFeNi component
is cleaved [BAT 74].
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Crack initiation depends on the quantity, size, nature and inclusion distributions,
as well as on their shape regarding load direction. In addition, cohesion of the
matrix-inclusion interface plays a key role.

Figure 3.4. Intrusions and extrusions associated with slip bands
in copper subjected to fatigue cycles at 183°C [COT 57]
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1
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c) d

Figure 3.5. Surface crack formation due to glide: stair formation due to
“statistical ” glide (a, b); intrusion (c); or extrusion (d} formation due
to fatigue. Wood model (WOO 587

Figure 3.6. Intrusion and extrusion formation; Cottrell and Hull model [COT 57]
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Figure 3.8. Initiation of a surface fatigue crack in an
aluminum alloy after 5% of its total lifetime

Cracking of the interface, which is sometimes observed in aluminum alloys
[BOW 73], is also the preferential initiation site in high strength steels of 40 NCD 8
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type (AISI 4340) {LAN 73]. In this steel, inclusions of MnO, SiO, and Al,O3 are

not cleaved during the fatigue phenomenon and it seems that the increase in shear
stress close to the inclusions leads to matrix cracking (see Figure 3.9).

Proposition of an initiation mechanism
by decohesion of the inclusion-matrix
interface then afterwards formation in
the matrix of micropores initiating crack

ITA Q O O propagation.

a) |nitial state.
(®) © b) Decohesion at a pole.
¢) Enlargement of the decohesion and

decohesion at the other pole.
d) Accentuation of the decohesions
accompanied by the nucleation of

(d) (e) point defects in the matrix on the
equatorial plane.

¢) Increase and coalescence of these
defects to form a microcrack.

) Propagation of this microcrack and
nucleation of similar defects from
the other side of the inclusion.

a Interface

Inclusion « —_

Figure 3.9. Mechanism of fatigue crack initiation from surface inclusions
proposed by Lankford and Kusenberger [LAN 73].
TA arrows show the direction of the tensile axis
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3.2.2.3. High stress region

The initiation of fatigue cracks at high stresses involves a number of
mechanisms that can be compared to those described in the previous section.
Nevertheless, in this case the formation of microcracks occurs more rapidly and a
greater number of initiation sites can be found.

3.2.2.4. Stage I crack propagation

The initiation of a microcrack is caused by one of the mechanisms previously
described and is usually followed by a transgranular propagation along a defined
crystallographic direction, even if initiation is intergranular. This stage has been
described by Forsyth as being the first stage (stage I) of crack propagation (see
Figure 3.10).

Stage I cracks are characterized by their fractographic aspect, which is brittle
without any striations, and by the orientation of the crack, which is typical of a
shearing process.

Stage 1 has been observed within aluminum, copper, iron, nickel and titanium
alloys. It is sensitive to the grain size, especially within alloys where cross slip is
difficult {THO 71]. According to some authors [BAT 74], a reduction of grain size
leads to an increase in the duration of stage I in copper alloys (brass), austenitic
stainless steels, zirconium, titanium (TA6V), refractory materials and also in low
carbon steels.

Stage I is limited to the area close to the free surface. It is then followed by stage
II crack growth, where cracking first propagates in a direction perpendicular to the
main principal stress (see Figure 3.10).

Transition between stage I and stage II is due to the decrease in shear strain with
crack growth and the concomitant increase in normal stress.

The crack length during stage I has a magnitude of about 20 pm in copper, 5 pm
in titanium alloy/TA6V, and 80 pm in large-grain brass.

We can then see that the fracture surface in stage I is limited compared to the
total fracture surface; however, this stage represents a significant portion of a
specimen’s lifetime, as the crack growth at each cycle is of the order of a few
nanometers per cycle. We will focus on the importance of stage I in Chapter 4.

We should keep in mind that the stage of crack formation and stage I represent
40-99% of the lifetime of the specimens that are commonly used to determine the
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Wohler curve. We then note that the formation of slip bands is usually premature
and that the nucleation of microcracks within these slip bands is particularly slow.

]

Stage 11

Yo

Figure 3.10. Simplified representation of stages I and II of the
propagation stages for fatigue cracks

Stage I does not always occur. Indeed, a crack can be directly initiated according
to stage Il mechanism. This can happen, if significant cleaved inclusions are present
[FOR 72], during rough machining/manufacturing leading to sharp slits, or within
cast alloys when cracks are initiated from solidification microporosities.

3.3. Methods of evaluating crack initiation
3.3.1. Smooth specimens

As indicated in Chapter 1, classic analysis methods allow us to determine the
curve giving the number of cycles to failure as a function of stress or applied
nominal strain (for a given type of loading) where we can usually distinguish three
regions:

— a low cycle fatigue (LCF) region;

— a fatigue or limited endurance region;
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— a limited endurance region.

We have already indicated that the initiation and propagation times vary
depending on the number of cycles.

In the case of fatigue with a high number of cycles (107 cycles), the endurance
limit can be comparable to the lowest stress that leads to the initiation of a crack.

This estimation gives a value that is far too high, as in some cases we observe
that an applied stress below the endurance limit can initiate cracks that do not
propagate. Nevertheless, this property is sufficient to characterize crack initiation in
materials tested at high cycle numbers.

As we previously stressed, at this stress level the number of cycles to crack
propagation is very low compared to the number of initiation cycles. Thus, in this
region the Wohler curve provides a good approximation of the number of initiation
cycles.

According to the endurance limit at 107 cycles in many materials, we can directly
link the resistance to crack initiation to the mechanical strength of the material, and
in particular to the conventional tensile strength R,, [EEL 75]. Although there are
many factors that affect the endurance limit of a material (surface state, geometry,
loading spectrum, etc.), many studies have shown that the resistance to crack
initiation, within the region of high cycle numbers, is directly related to the
mechanical resistance of the material

Although for high cycle numbers (N > 109) fatigue resistance essentially depends
on the hardness level of the matenal, for intermediate and low cycle fatigue,
ductility becomes an important factor. This fact is highlighted in Figures 3.11a and
b, which give a comparison of a mild, semi-mild and hard steel. In the case of large
stresses, hard steel demonstrates poor fatigue resistance due to its low ductility,
whereas in the case of low stresses this material exhibits a very high resistance to
fatigue. We can observe the opposite in mild steel, and an intermediate behavior in
medium strength steel.

A large number of low cycle fatigue results have been obtained for different
materials. Chapter 4 focuses on this type of damage and the associated behavior of
various materials. If we consider — due to the small dimension of specimens used,
and therefore short propagation time — that these results represent a qualitative
measurement of the resistance to low cycle fatigue initiation, we can conclude that
the resistance to low cycle fatigue initiation depends on both the ductility and the
tensile strength of the material.
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64 High str?ngth steel

Medium strength steel ~
Mild steel -

a) Stress-strain relationships

High strength steel
Medium strength ste
Mild steel

J

b) Variation of strain amplitude
as a function of the number
of cycles to failure

Figure 3.11. Schematic representation of the low cycle
fatigue behavior of different materials

However, these data do not provide any quantitative measurement of crack
initiation as they do not show the initiation and propagation phases.

3.3.2. Notch effect

The effect of a geometric discontinuity in a loaded structural element is to
intensify the value of the nominal stress near the discontinuity.

Localized stresses can lead to local plastic strains. As the nominal stresses are
elastic, the region of plastically deformed metal remains confined within a field that
is globally elastic. In this region, the deformations that act on the structure are
controlled by the deformations of neighboring regions that remain elastic. In other
words, when the structure is stressed with an imposed load, the regions of localized
plastic deformation are submitted to imposed local strains.

As a consequence, in order to predict the effects of stress concentrations in the
structures, the fatigue behavior of the localized plastic regions has been simulated
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using smooth specimens under strain controlled conditions (see Figure 3.12a). A
better simulation of the effects of stress concentrations is obtained using notched
specimens that are of the same type as those used in fracture mechanics and loaded
under imposed stress (see Figure 3.12b).

Three main methods of initiation evaluation are being investigated. The first is
based on the Neuber coefficient, the second on the stress intensity factor and the last
method on the local strain amplitude.

3.3.2.1. Stress distribution around a notch

A section change in a specimen due to the presence of a notch, threading, hole,
etc., leads to the modification of the uniform strain distribution and to the formation
of local stress concentration (see Figure 3.13). This local stress concentration is
measured using a stress concentration coefficient defined by:

g, . .
K, =—2% (tension or bending) [3.1]
O-nom
or:
K = T nax .
. =% (torsion) [3.2]
Tnom
Ac Ao
Ac
Pttt
Ae
Test specimen Test specimen
under imposed [*~ under imposed
deformation stress
Ae
- R
ructure
- under v
A imposed stress A
a) b)

Figure 3.12. Simulation specimens of strain concentration
within a structure
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Figure 3.13. Notch stress concentration in tension (a) and bending (b)

®

Index ¢ is used in order to show that these coefficients are theoretical and that
their calculation relies on the hypotheses of elasticity theory. They are static
coefficients that, for a given solicitation mode, result from the geometric shape of
the specimens. They are mathematically determined using formulae established
thanks to the work of Neuber (Petersen formula) [PET 53]. In the case of more
common notches, we have:

K, =1+ ! [3.3]

2
/A 2r +BZr(1+2r/d)
D-d d

D = external diameter or external width of the specimen;

where:

d = notch root diameter or notch root width;

r = radius of the notch root.
Coefficients 4 and B depend on the type of loading (tension, bending or torsion).

In practice, calculation has been performed for many simple situations that can
occur in mechanical construction. Curves giving the values K; or Ky corresponding

to the different shape parameters have been published [PET 63].
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All of these results are valid if the highest calculated tensile stress does not
exceed the elastic limit of the material. If the metal has a good capacity for
permanent deformation (is a ductile metal) and the notch root stress exceeds its
elasticity limit, a localized plastic flow occurs. This plastic flow, modifying the
shape of the notch, leads to a decrease in stress concentration (relaxation). However,
plastic deformation generates a local hardening due to cold working. Thus, a ductile
metal adapts itself to the presence of a notch by decreasing the stress concentration
and increasing the resistance of the notched section.

In brittle materials there is no stress reduction or work hardening. Fracture can
then occur at a low nominal stress when a notch is present in these materials.

With fatigue, metals behave differently in the presence of a notch depending on
whether they have a high capacity for permanent deformation. Experience has
shown that, in all cases, the endurance limit is reduced when there is a notch, but its
influence is stronger when the metal has a low adaptation capacity.

Stress concentration factors provide a parameter that is useful for describing
stress conditions at the notch root, but do not give any information on the stress
distribution around the notch.

The localized character of high stress around the notch is shown using the elastic
strain field around a circular hole within a rectangular plate of infinite length (see
Figure 3.14).
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Figure 3.14. Stresses around a hole within a plate
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In the case of a uniformly distributed tensile loading, the stresses at point P are
given by [TIM 51]:

2 4 2
o, =§(1—1J+§(1+3L—@—Jc0829

2 2 42

sl &) s 3a
Oy =—|l=—5 |=—|1+—F |cos28
2 r 2 r

4 2
0 =§[1—3"—+3a—-]sin 26

[3.4)

2 r4 r2

The longitudinal stress along the A4 direction is obtained with 6= 7z/2 in the
second equation:

S a 34
Cau4 =5 2+t

r 4

[3.5]

At the edge of the hole (» = 4) in this section, 6444 has a maximum value of 3 §;
this value rapidly tends towards S when r increases.

In the case of a cylindrical notched specimen subjected to tension or bending, the
stress field depends on the notch root radius o (see Figure 3.15).

Notch

Notch root radius : p

Figure 3.15. Notch root geometry in the case of a notched cylindrical specimen
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If the depth of the notch is at least equal to p and the lowest diameter is at least
equal to 10 p, 0,44 is given by [NIS 68]:

J (
Opaa = vt %5
2r 1+ —
21+— 0

where Gy is the notch root stress.

[3.6]

When p — 0, the stress field is close to the field of a crack and can be described
by using the stress intensity factor X;. Using the coordinates of Figure 3.15, the

stresses at a point close to the notch root are given by [CRE 67]:

K; o . 8 . 36 K; p 36
Oy =—— 75008~ 1—sin—sin— 5 5 Cos 3.7
(277) 2 2 (2zr)22r 2 3.7
K
o, = —LlEcosg(Hsingsinﬁ)+L1/2ﬁcosﬁ (3.8
(27r) (27r)/% 2r 8l
T =Lsingcosgcos£— K p inzg

xy (27”)1/2 2 2 2 (27”)1/2 ;S 2

These equations contain some terms that disappear when p — 0.
The stress intensity factor K| is related to stress concentration factor K, with the

following equation [PAR 63]:

KI = lim iI<t anom(np)”z [39]

p—o

where Gyop, is the nominal stress in the notched specimen.
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3.3.2.2. Reduction coefficient of fatigue resistance K, (relationship K, — K)

The fatigue notch effect can be measured using the ratio:

_ endurance limit on smooth specimens
endurance limit on notched specimens

. [3.10]

(where we can see that K is a cyclic coefficient whereas K, is a static coefficient)
and that sensitivity to the notch effect is expressed by factor ¢:

q= K, -1 [3.11]
K, -1
We sometimes use factor K:
k=K g [3.12]
K, -1

Factor g can vary from 0 to 1: when g = 0 (K= 1), the material is not sensitive to
the notch effect; and when ¢ = 1 (K, = K)), there is no adaptation and the effect
obtained is equal to the theoretical effect.

A large number of test results on notched specimens tested with a mean stress
equal to zero have been published. For stress concentration factors K,, ranging from

1 to 4, we can observe that [FRO 74]:

— for low values of K|, K can be equal to K, but is usually slightly lower;

— for specimens of different dimensions, but with similar geometries leading to
the same K|, depending on the situation we get some results that highlight a size

effect and some that do not;
— different geometries giving the same K| can give different values of K;
— for high values of K|, K, is usually lower than K,;

— for a given material and different notch geometries, we have a particular value
of K, for which K, reaches a maximum value;

— K seems to increase when grain size decreases.
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3.3.2.3. Method based on Neuber’s coefficient

To take the notch root radius and the material into account, Neuber [NEU 58}
proposed an effective coefficient of stress concentration Ky under static conditions:

K, -1
Ky=1+ ' [3.13]

1+ L

o

where:

— p'is a constant of the material representing a distance beyond which there is no
stress gradient;

— pis the notch root radius.

When p tends towards zero, Ky tends towards a constant value for a given
material and a given notch root.

It has been shown that in fatigue [KUH 52], K, can be expressed with a similar
equation:

K, -1
Kp=1+—— [3.14]

T L

y?)

The results obtained with this calculated value of K, have been used to predict
the lifetime of smooth and notched specimens and, in particular, to determine the
notch effect on endurance limit [FRO 57, FRO 59].

Usually the stress concentration coefficient is only valid when there is no plastic
notch root deformation.

Allery and Birbeck tried to apply the previous analysis to crack initiation and
total lifetime on a carbon-manganese mild steel [ALL 72]. They used 300 x 25 x 6
mm specimens containing a lateral notch, and notch root radii ranging from 0.02 to
2.5 mm. Initiation has been optically detected on the free surface of the specimens, and
defined as the formation of a crack of a 0.1 mm length.

These authors found a linear relationship between the number of initiation cycles
N, and the logarithm of K, (see Figure 3.16):

log Ky = 1.2969 — 0.1602 N, [3.15]
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Figure 3.16. Relationships between stress concentration factors and
number of initiation cycles [ALL 72]

Figure 3.17 shows the evolution of the notch root radius as a function of the
number of initiation cycles N; for a given stress amplitude. This figure shows that,
for a radius lower than 0.1 mm, the variation of N, is almost negligible and that, for a
larger radius, the number of initiation cycles increases with notch radius.

Figure 3.18 shows that the notch root radius varies with the ratio of the number
of initiation cycles to the number of cycles to failure.
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Figure 3.17. Evolution of the notch root radius as a function of the number
of initiation cycles for a given stress [ALL 72]
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Figure 3.18. Influence of notch root radius on the ratio of the number
of initiation cycles to total number of cycles [ALL 72]

3.3.2.4. Method relying on the stress intensity factor

Different authors have used the concepts of linear fracture mechanics to describe
the results of initiation tests on notched specimens.

Jack and Price [JAC 70,JAC 72] showed that, in a mild steel, N; depends on the
thickness of the specimen for the highest stress levels (Opax >
200 N/mm?). Beyond a thickness of 5 mm, N; is almost constant, all things
considered. Initiation tends to be faster for low thicknesses and large stresses. The
thickness threshold from which the number of initiation cycles is independent of this
parameter can be related to the conditions of plane strain at the notch root.

According to Jack and Price [JAC 72], at equal stress the number of initiation
cycles depends on the thickness of the specimen but, once again, there is a 20 mm
threshold beyond which thickness loses its influence and N, reaches a maximum and

constant value.

The same authors confirmed the results of Allery and Birbeck, specifying that
the number of initiation cycles is no longer dependent on the notch root radius when
the radius is less than 0.25 mm (see Figure 3.19).
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As a consequence, in the case of a sharp notch within a plate > 20 mm wide and
> 5 mm thick, the number of initiation cycles is as a simple function of the stress
intensity factor. In the case of mild steel, Jack and Price found the following
parametric equation:

8
N, = ﬂ [3.16]
(4K)
In addition, these authors obtained a satisfying correlation of the results obtained
with different notch root radii » using the parameter 4K/\p where p is the notch
radius (see Figure 3.20).

Figure 3.21 shows the results obtained by Clark [CLA 74] on a martensitic
stainless steel of 403 type. The number of initiation cycles is represented as a
function of the variation of maximum stress AGy,,x, obtained by analyzing the finite

elements of the specimen.

We can see that the results covering a wide range of notch root radii (K, ranging
from 1.7 to 11) are located within a relatively narrow distribution band.
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Figure 3.19. Evolution of notch root radius r as a function of the
number of cycles necessary to initiate a crack of 0.25 mm
within a 25.4 mm thick specimen [JAC 72]
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Heckel, Wagner [HEC 75] and Clark [CLA 74] showed that there is no
difference in the values of notch root stresses calculated using the finite element
method and those calculated with the following formula:

2K,

max
A/

where K is the stress intensity factor calculated if the value of crack length is
considered to be the length of the mechanical notch.

o [3.17]

Similar results to those published by Clark have been obtained by Barsom and
McNicol {BAR 74] for different notch geometries. Figures 3.22 and 3.23 show the
results obtained by these authors on a steel of HY-130 type.

The results of Clark and Barsom and McNicol show that the parameter AGy,x Or
4K/ Jp correctly describes the initiation. In addition to these results is the existence
of a value for AGax Or 4K/\/p limit that agrees with the results of classic endurance

if we consider the total variation of stress corresponding to the endurance limit and
not its amplitude [SMI 70].
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Figure 3.20. Evolution of factor AK/p'? as a function of the number
of initiation cycles Ni [JAC 72]
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Figure 3.21. Evolution of sress amplitude AGy,q, as a function
of the number of initiation cycles in a stainless steel
of ASI-403 type [CLA 74]

3.3.2.5. Method based on local strain amplitude
This method is based on the Neuber rule [NEU 61]:

Kl =K, K, [3-18]

where:

— K, is the stress concentration factor for the elastic model of the material’s
behavior;

— K & is the stress concentration factor for the elastoplastic model;
~ K¢ is the strain concentration factor for the elastoplastic model.

This formula has been modified by Morrow, Wetzel and Topper [MOR 70] by
replacing K, with the notch effect coefficient X. The modified Neuber rule then

becomes:

2
K; =K, K, [3.19]
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Figure 3.22. Evolution of nominal stress amplitude as a function of the number of initiation

cycles for different notch geometries in a HY-130 steel [BAR 74]
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Thanks to these expressions, these authors showed in an aluminum alloy that it is
possible to accurately simulate tests on notched, specimens when the coefficient K,
is known. They have also shown that, in the case of a notched specimen tested under
a nominal stress AG,,y, below the elasticity limit, the notch root is subjected to a
stress-strain state such as:

K2 (A0,,)"

Ac . Ag=—L 1 —reml [3.20]
E

Smith and his co-workers [SMI 70] proposed the following expression that can
be applied to both smooth specimens and notched specimens:

log N;=A + B log (EGyax€a) !/ [3.21]

where:
— A and B are constants;
~ Omax 18 the maximum tensile stress;
— €, is the local strain amplitude along the loading direction;

— E is Young’s modulus.

This equation has successfully been applied by Mowbray and McConnelee
[MOW 73] to smooth and notched specimens:

-~ within a carbon steel and a 21/4Cr-1Mo steel that were tested at room
temperature and at high temperature; and

~ a stainless steel of 304 type tested at high temperature.

The values of G, and g, at notch root are determined using the finite element
method. Figure 3.24 shows the resuits obtained by Mowbray and Mc Connelee.
3.4. Practical method of structure calculation
3.4.1. Preliminary

The prediction of crack initiation under spectral loading is a complex problem
for many reasons.
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First, the phenomenon is statistical. It is well known that, subjected to the same
loading, “identical” specimens break at an inconsistent number of cycles. This cycle
number obeys a statistical law and we rarely have enough specimens available to
perform a rational analysis. We can check Chapter 2 for statistical aspects of this
problem.

Second, the definition of an “initiated” crack is subjective. Industrially speaking,
the crack length can be accurately determined using a measuring device; and it can
be the crack strength for which “long crack” propagation law is applied.

At first, these two notions are definitely not the same; one is related to a device
and we might think it does not change when we use another material, whereas the
second notion is experimentally known to be dependent. We can refer to Chapter 4
regarding the definition of initiation.

Many other reasons could be put forward instead of trying to give the prediction
method, however. Here we have chosen a more liberal approach, where the general
concepts will be described. We will, when possible, explain the choices we made
when we had to build a provisional method in order to give satisfying results.

a 550°F 75°F
500 . 0 Measurement on smooth specimens )
7] O Notched specimens Kt = 1.97{ Calculated values
300 A A Notched specimens K¢= 3.463
o]
O 2004 0 el
. A -
w
2
g 100
5 ]
N o A
7] Smoothing of the results
50 on smooth specimens
30
20 T T TTTT T 1T T TTTH T T T 11T
102 103 104
a) Number of initiation cycles

Figure 3.24. Correlation of the initiation results on notched
specimens for: a) a carbon steel
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Figure 3.24. Correlation of the initiation results on notched specimens for:
b) a 21/4 Cr-1 Mo steel; and c) an austenitic stainless steel of 304 type

3.4.2. The problem to be solved

Structures are not only submitted to static loading; they also undergo spectrum
loading. Structural analysis at crack initiation then has to guarantee that during the
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chosen lifetime of the structure no crack with a dimension larger than the detectable
one will form within the structure. The influence of loading spectra is presented in
Chapter 12.

We have to keep in mind, however, that we have imperfect knowledge of:
— applied loading;

— the distributed property of the static fractures of the materials;

— the inaccuracy in the knowledge of local strains; and

— inherent inaccuracy in the calculation of complex structures.

In addition to a lifetime guarantee, therefore, we have structures that have to
statically hold when submitted to what is called extreme loading. This extreme
loading is equal to the maximum loading that we can applied to a structure, at least
once in its life, multiplied by a safety coefficient (equal to 1.5 in aeronautic
engineering, for instance).

This limitation due to static, for instance, sets us free experimentally from
fatigue with a low number of cycles. This limitation confines the plasticity induced
by maximum loading to the over-strained region. This is an essential point, as it
allows us to make sure that the local strains that are responsible for initiation
continue to be controlled by the deformations of neighboring regions, which remain
elastic.

The practical methods that we are trying to develop have to be judged by
considering these simplifying limitations.

3.4.3. Initiation parameters

The condition, usually acknowledged as the cause of fatigue crack initiation, is
that the material within an elementary volume located at the free surface of the
specimen, undergoes a low-cycle fatigue evolution (open strain-deformation cycle,
see Chapter 4).

Fatigue fractures that we can observe during the alternate loading of a specimen
with k, = 1 for stresses that are lower than the conventional elasticity limit are not, as
a consequence, explained rationally if we do not admit that this low-cycle fatigue
behavior occurs within the grains or subgrains of the material. These grains or
subgrains are poorly oriented compared to the local loading direction. The low-cycle
fatigue behavior of these few grains does not affect the macroscopically elastic
behavior of the structure.
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It is not then surprising that the first and main initiation parameter is the
measurement of local shear amplitude. This shear amplitude can be measured using
the second invariant of the stress amplitude (Mises-type formulation) or by using the
maximum absolute value of the difference between two values of the main stress
amplitude (Tresca-type formulation).

This first parameter is directly related to the parameter G, (the semi-amplitude of
the applied stress), which is largely used to determine the ordinates of the Wélher
curve in the case of some specimens with k£, = 1. We know that this parameter is not
unique, since we have to account for the mean stress.

As a consequence, a second parameter is necessary. This is either “hydrostatic
pressure” (equal to the trace of the average or maximum stress tensor) during the
cycle when a Mises-type formulation is used as the first parameter, or the average or
maximum normal stress to the facet of the maximum shear stress amplitude when
we use a Tresca-type formulation.

These two parameters, used by Mohr, Coulomb, Tresca, von Mises and others,
regarding brittle fracture are also used by Crossland, Sinés and Dang Van for
unlimited endurance. The nature of these parameters is known but a choice has to be
made between an “invariant”-type approach (Mises of the stress amplitude plus
hydrostatic pressure) and a “facet”-type approach (Tresca of the stress amplitude and
normal stress to the associated fact).

3.4.4. The master Wohler curve (k,= 1)

In the case of axisymmetric specimens with &k, = 1, whatever the adopted
approach (Mises or Tresca), the two initiation parameters used are the same:

— 0, being the semi-amplitude of the applied stress (first parameter); and

— Op Or Oy being the average stress or maximum stress of the applied cycle
(second parameter).

An example of a result obtained on an aluminum alloy is shown in Figure 3.25.
As arule a representation with the two parameters 6, and G, is used.

If we plot the parts of the Wohler curve (o,, LogNg) for the various available
values of o, on the same diagram, considering what was described in the second
section it appears that the iso-curves o, can be deduced from each other with a
simple translation (if we limit ourselves to the cycles leading to a fracture before
3.10° cycles).
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Figure 3.25. Wohler curves with a constant average stress (2024 T6 alloy)
We can then rationalize the results by introducing a notion of equivalent
stress, X:
LogNr=f(Z)
with:
2=0,+g(0m) (3.22]

If we have g (0) = 0, X is identical to alternate stress G,.

Identification of g (0.,) is an issue that is purely experimental and quite delicate
as we have to work with averages. Nevertheless, it seems that there is a significant
decrease in the number of tests and that we can set the following as a first and
correct approximation:

2=0,t00p [3.23]

where « is a constant of the material to be identified as accurately as possible.

The values of o that we can identify in the case of aluminum alloys, titanium
alloys or maraging steel are all located within a range of 0.3 to 0.5.
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To summarize, it seems that it is possible to represent the experimental results
with the following expression:

Log N; = £ (G, + 0L G [3.24]

For couples of values (G,, 0,) leading to a failure before 3 x 10° cycles and such
as sup (Omax, | OMIN I) is lower, at around 0.85 or (where Og is the tensile static
fracture).

3.4.5. Cumulative damage (k,= 1)

Cumulative damage is an issue that has to be considered and resolved for smooth
specimens with k, = 1 as soon as we want to predict lifetimes under spectral loading.

The linear cumulative damage assumes that, if Ny cycles are necessary to fail a
specimen submitted to an equivalent stress  the incremental damage per cycle, D is
equal to 1/Ns.

To verify or invalidate this hypothesis, the simplest thing to do is to apply
sequential tests where N, cycles applied at Xy, are followed by N, cycles at ;.
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Figure 3.26. Master Wohler curve (2024 T6 alloy)



104  Fatigue of Materials and Structures

If fatigue damage circulation is linear, the number Ng of sequences to need to be
applied in order to reach failure is given by:

1_N N,
N, N; N [3.25]

I3

(where N3, is the number of fracture cycles when X is applied alone).

Usually, the experimental results obtained show that this equality is not satisfied,
and therefore a non-linear cumulative damage rule must be introduced.

The non-linear cumulative damage sets itself up:
— regarding linear accumulation: mathematical formalization of the cumulative

damage is as follows (for a constant amplitude loading):

D=—
N, [3.26]

Damage, initially equal to zero, reaches 1 once Ny cycles have been applied.

Here we must mention that D is, in this case, a mathematical variable that does not
need to have any physical meaning;

— regarding non-linear accumulation: the damage D is usually expressed as:

P
o
N, [3.27)

where the non-linear property of the damage accumulation is given by an exponent
which is a function of the applied stress X.

As an example, a simple expression for F(Z) is:

F(Z)=1+B [Z“E_Z) [3.28]

where 8 and y are two constants to be determined. An example of the master Wohler
curve thus obtained is given in Figure 3.26.
3.4.6. Specimens with k,> 1: correspondence curve

Specimens with &, = 1 have a very particular property compared to specimens
with £, higher than 1: the elastic or elastoplastic stress is uniaxial and defined by the
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operator. There is no issue in choosing the approach (von Mises or Tresca type) as
the parameters coincide when the stress is uniaxial.

Analysis of notched axisymmetrical specimens with & > 1 creates more
difficulties. At the free surface and at the notch root, the stress state is not uniaxial:
when o;; is equal to zero, Oy is not. The three stresses then evolve when we move
away from the free surface towards the core of the specimen (presence of a
gradient). Finally, everything becomes more complicated when local plasticity is
reached. An example of experimental results is given in Figure 3.27.

In addition, an industrial approach to the problem demands that we follow the
history of both initiation parameters (that is to say without relying on any
elastoplastic calculations).

At this stage, a choice has to be made between a von Mises-type approach and
Tresca-type approach.

We wanted to compare an alternating tension-compression curve with k, = 1 and
an alternating torsion Wohler curve on a tubular specimen. For this reason we
decided to use a Tresca-type approach to measure the local shear stress amplitude
associated with the average normal stress of the facet where the highest shear
occurs.

102 102 104 105 105 107 LogNg
Figure 3.27. Wohler curve under an alternating stress for three different specimens
We have to mention that this comparison, performed on two aluminum alloys

(2024 T351 and 7010 T651), requires that the propagation between “initiated”
cracks and failure is as low as possible in order to reduce interpretation errors.
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As this choice has been made alternating tension compression tests with &, > 1
are becoming more important. As a matter of fact, in this case we think that, even
with plasticity, the stress states regarding the largest and smallest applied loads are
equal and opposite. In this case, the second initiation parameter remains equal to
zero (no mean stress effect).

Under alternating loading conditions, a specimen with &, = 1 and one with &, > 1
that both fail at an identical number of cycles have, where the loading is highest, the
same Tresca value of stress amplitude. This value, which is difficult to calculate in
the case where k, > 1, is nevertheless easy to calculate when k, = 1 as it is the
alternating stress G,.

By simply processing the Wohler curves of a specimen with k£, = 1 and of a
specimen with k, > 1, it is then possible to plot a corresponding curve between the
applied reference stress for the specimen with &, > 1 and the Tresca value of the
amplitude of local stresses.

If the calculation point of the Tresca stress was at the free surface, where oy, is
null and oy of the same sign as o, (regarding elasticity, by definition of %, to £,
O.f), the Tresca stress is equal to %, O,¢ as long as the material is elastic.

The slope of the correspondence curve within its first part would then be equal to
1/k,.

We can observe that this is not often the case, especially when the notch root
radius is small (a standard specimen with &, = 3.3 has a notch root radius equal to
0.35 mm). The value of the Tresca stress has to be calculated at a certain distance
from the notch rather than at the free surface. This distance, which we will call
critical distance, characterizes the material studied.

We notice that at this critical distance, 6, remains low but is not equal to zero.
This means that we will need two correspondence curves: the first relative to
O, — O (given experimentally); and the other relative to 6, + 6, (to deal with non-
alternating loading). This curve is easy to plot if we admit that, as a first
approximation, the three stresses evolve proportionally. This is strictly valid under
elasticity, and more or less so under plasticity.

We should nevertheless highlight that this is not that serious because the second
correspondence curve will be used to determine the average normal stress which,
when calculating equivalent stress %, is multiplied by a coefficient ranging from 0.3
to 0.5, as we already mentioned. Therefore, if we make an error on the average
normal stress it is not as bad as if we made one on the Tresca of the stress amplitude.
This explains the fact that some approximations can be made.
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3.4.7. Use of correspondence curves

Starting from the idea that correspondence curves are similar to cyclic work
hardening curves, it is possible, if we adopt a rule of Masing type, to follow the
elastoplastic evolution of two local parameters, 6,, — 6, and G,, + G, as a function
of the evolution of G, As soon as a loop is closed, we calculate:

— the Tresca value of the stress amplitude;

— the average normal stress using the second correspondence curve.

3.4.8. Plotting the correspondence curves

The last problem that has to be solved is as follows: as we have a structural detail
that we cannot closely analyze using elasticity, which correspondence curves must
be used?
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Figure 3.28. Correspondence curves

If we approximate the correspondence curve using a hyperbolic branch, there is
no difficulty in plotting the branch going through the origin when the critical
distance is known. As the center of the hyperbole is related to the elastic limit, if 6,
07 and 63 are known and a function of a reference stress, we can easily identify the
position of this center. We then have to determine the slope of the hyperbole’s

plastic branch and the distance at the maximum. If we already have two or three
correspondence curves, the identification rules can easily be deduced.
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When the correspondence curves are plotted, we can transform the history of G¢
into a local one of the two initiation parameters, and thus into the history of the
equivalent stress Z. As the history of X is known, linear and non-linear cumulative
damage rules can be applied to determine the lifetime at crack initiation the detail of
the structure being analyzed. An example of correspondence curves is given in
Figure 3.28, whereas the use of the principle of correspondence curves is
schematically shown in Figure 3.29.
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Figure 3.29. Use of the corresponding curve (vule similar to the Masing rule)

3.4.9. Comments and conclusion

We wanted to show that, if we already have a database that allows us to identify
the various material parameters, we can develop a moduie of predictive calculation
that is satisfactory from the point of view of precision.
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We then appreciate that we do not completely trust the elastoplastic calculation
and prefer to draw conclusions from experimental results. We think that this is the
best way to ensure that we are relying on an appropriate data.

Each detail must be carefully examined through calculation tests and
comparisons between tests and calculations before being implemented in the
calculation module. The ideal case would be to rely on a database established from
test results obtained on various specimens subjected to very different loading
spectra.
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Chapter 4

Low-cycle Fatigue

4.1. Introduction
4.1.1. Application domain of low cycle plastic fatigue

4.1.1.1. Background

As we expect from its name, low cycle fatigue (LCF) has two fundamental
aspects:

- a significant plastic deformation occurs in each cycle, i.e. plasticity;

— low cycle phenomenon, in that the materials have a finite endurance for this
type of loading. Analysis of material behavior under this type of loading is quite
common.

Indeed, if the first studies on the role of plastic deformation on fatigue endurance
go back to the early 20™ century: Bauschinger (1886) to Bairstow (1909), we have to
wait until 1948 for the first strain-controlled tests to be carried out (Liu, Lynch and
Ripling) and 1952-1953 for the formulae relating endurance to strain amplitude to
be proposed (Manson and Coffin [COF 54, MAN 52]). Since then, studies on fatigue
have been rapidly multiplied and their importance has been emphasized.

Chapter written by André PINEAU.

This chapter is largely inspired by the chapter written by André PINEAU and Pierre PETREQUIN
for [BAT 97].
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The interest in the studies related to low cycle fatigue lies mainly in two fields:

— application to the size and design of components in aeronautics, energy
production, etc., which can be performed using advanced calculation methods;

— the use of LCF results allows us to analyze the behavior of the materials in
greater detail and to better understand the complex mechanical and metallurgical
phenomena (strain concentration, crack propagation, work-hardening, work-
softening, etc.).

4.1.1.2. Low-cycle fatigue in structural analysis

Industrial devices are calculated in such a way that the materials in the main
structures are not loaded within the plastic domain under normal operating
conditions. “Primary” stresses are those that depend mainly on imposed forces and
do not disappear under plastic deformation. “Secondary” stresses are those that are
mainly due to imposed displacements and relax under a limited plastic deformation.
If primary stresses are kept strictly below some fraction of the elastic limit of the
materials, “secondary” stresses can be slightly higher than the elastic limit.

In addition, under exceptional working conditions we can accept a limited
amount of plastic deformation.

Among the main causes of secondary stresses, we can include the temperature
gradients and differential dilatations, deformation incompatibilities in geometrically
complex structures, etc.

In practice, these types of loading occur mainly during transitory operating
conditions:

— start-up and shut-down of a system;
— take off and landing of aircraft;

—etc.

Thus, we can associate LCF with plastic deformation and a limited number of
cycles. Analysis of the durability of structures to LCF can usually be carried out by
calculating the deformations the component is subjected to.

Calculation is often performed using elasticity theory, but at the present time
elastoplastic calculation are only used for complex cases. This can be done thanks to
the development of constitutive laws and numerical calculation methods. When a
particular material is used, that is to say for a given number of cycles, the calculated
deformation is compared to the acceptable deformation deduced from the LCF
properties of the material.
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This is why the basic data for these applications of LCF is the fatigue endurance
curve, presented later in this chapter. The fatigue resistance curve for a given
material provides the number of cycles the material can sustain under a given
imposed deformation. In practice, as elasticity theory is largely used for the
calculation of structures, the imposed plastic deformation is sometimes turned into
ficticious elastic stress by multiplying it by Young’s modulus. Nevertheless, as
experimental results are obtained for particular test conditions, reduction coefficients
are introduced to take different effects into account:

— bi-axiality;
— type of materials;
—role of a mean stress or mean strain;

— etc.

Thus, in the electro-nuclear industry the number of life reduction coefficients
usually used for special codes is 20 and two as applied to stresses.

One of the first descriptions of the use of LCF data as a sizing criterion was
suggested by Langer in 1962 [LAN 62].

Since then, construction codes, and especially the ones from the American
Society of Mechanical Engineers (ASME), propose some analysis methods for LCF.
From the aspect perspective of applications of LCF, we may suggest that the most
productive lines are:

— determination of the basic data of materials and especially of the fatigue
resistance curves;

— advanced analysis of the behavior of materials to better control the used
reduction coefficients.

For instance, within this field we can use the example of:

— the combination rules of the cycles with different amplitudes;
— the role of deformation or average stresses;

— the connection with fatigue with high cycle fatigue;

— the effect of intermediate plastic deformations of different nature (creep for
instance);

— etc.
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4.1.1.3. Low cycle plastic fatigue as the key to understanding mechanical or
metallurgical phenomena

Earlier, LCF was considered to be a global phenomenon whose consequences
were simply controlled using reduction coefficients.

The modern calculation methods of the structures — calculation based on finite
elements for instance — try to analyze the behavior of the materials as closely as
possible in order to reduce the uncertainties and safety coefficients, which are
usually excessively conservative and, as such, very limiting.

This then leads to the development of elaborate elastoplastic or even
elastoviscoplastic calculation codes that, in order to work, need specific
formulations of the behavior of the materials. The elastoplastic behavior laws and
work hardening laws, etc., are complex and vary significantly from one material to
another, often not being that well known. This remains a significant research topic
where low cycle plastic fatigue is involved.

Finally LCF, which we have considered at the macroscopic and global scale, can
also occur at the microscopic or localized scale in specific areas of a structure that is
elastically loaded. Knowledge of these laws enables us to predict elastic
macroscopic behavior by performing a local analysis. The use of LCF theories helps
us a great deal in understanding the phenomena of deformation at strain
concentrations.

It is exactly at this point that the use of LCF theories becomes widely applicable
in the industry of rotary machinery. These theories are also commonly used for the
analysis of crack propagation, etc.

4.1.2. General description of the test methods: main issues

4.1.2.1. Background

The general principle of LCF tests involves setting a load that triggers a cyclic
plastic strain within the body of a specimen. We are then able to determine the
number of cycles that the specimen can handle under a given strain, along with
different parameters.

As LCF depends mainly on deformation, most tests are carried out with an
imposed strain. This technique is discussed below.
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Some tests with controlled load can also be performed, but then the analysis of
the phenomena is more complex (including the possibility of the ratcheting effect or
of adaptation) and the domain of study is more limited.

Nevertheless, the tests allow us to better evaluate the connection between LCF
and classic fatigue. In addition, these tests are usually useful for identifying or
testing the constitutive equations of the materials. Most of the time, tests are carried
out with a total given reversed strain under strain controlled conditions:

However, in most cases, testing is done in total strain control. These tests are
carried out using some analog systems and electronic controls that allow us to
compensate for variations in elastic deformation due to hardening or softening of the
material.

4.1.2.2. Test machines

In this section, we will focus on the test methods with imposed strain. We will
not go into too much detail, but will simply identify the main issues and sources of
inaccuracy.

Test methods are presented in detail in the literature [LIE 76]. ASTM
International, originally known as the American Society for Testing Materials, has
proposed a detailed standard for such tests (E606-77T) [AST 88].

In France, a working group of the Fatigue Committee of Metallurgy, French
Society, has studied these issues. The French standard 403-403 Pratique des Essais
de Fatigue Oligocyclique, which can be translated as Methods of Low Cycle Fatigue
Testing, of December 1990, is the result of their work [AFN 90].

The first attempts to simplify the problem of reversal of the main strain involved
performing alternate twisting tests. This method is still used but it is mainly for
tension—compression that the most significant tests have been developed. In the case
of compression, in order to avoid buckling we have to use specimens that are
slightly thinner, with a short gauge section and significant connecting radii (see
Figure 4.1). Tests are limited to about 105 cycles and are carried out with a low
frequency or strain rate (a few cycles per minute), as the energy that is dispersed at
each cycle is significant and could lead to a serious heating effect.
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Figure 4.1. Low-cycle fatigue specimens

4.1.2.2.1. Mechanical machines

The first tension-compression machines devised were mechanical and had a
system of eccentric bearing units that enabled tension/compression displacements to
be imposed on the specimen. Recording the force and imposed displacement
allowed people to control and analyze the test. After a time, this technique was
discarded because of experimental uncertainties.

Indeed, as we mentioned earlier, the gauge section of the specimen is short. The
reduced section compared to the loading system needs to be of large volume to
avoid the problem of buckling. The sinusoidal displacement imposed to one end of
the load train, therefore, is not entirely passed on to the calibrated part of the
specimen. The elastic deformations of the loading line disturb the test.
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This effect would be inconsequential if the forces passed on to the specimen and
thus the elastic deformations were constant during the test. We will see later that this
is often untrue, and thus the real strain imposed on the specimen can vary
considerably during the test, which complicates the interpretation of the test results.

This is why we had to constantly control the strain imposed on the specimen
using servo machines. This was first performed using electromechanical machines.
The appearance at the beginning of the 1970s of servo-hydraulic machines allowed
people to make significant progress regarding low-cycle fatigue tests.

4.1.2.2.2. Servo-hydraulic machines

These machines enable us to keep the strain or stress imposed on the specimen,
as well as the strain rate, at a constant level. The strain does not have to be
sinusoidal and we can carry out some tests with a constant strain rate.

If the variable we need to control is the strain, it is better to determine strain
using an electrical system providing an analogical signal to control the machine.

Analysis of the results is then simplified as the parameters imposed are strictly
controlled. The main problems come from the extensometry techniques, which will
be presented in the next section. Finally, it is also worth mentioning that we can use
servo-mechanical machines, but this type of machine is currently less popular than
hydraulic techniques.

4.1.2.3. Extensometry: set-up and grips

Extensometry is usually performed using inductive sensors or strain gauges.
Contact-free laser extensometry is being developed but is not widely used. The
gauge length is small for reasons of compressive stability and this influences the
way the extensometer is fixed on the specimen .

Depending on the test temperature, the extensometer is either attached directly to
the specimen or is located on rods that transmit specimen deflection.

There are two main types of extensometry: axial and diametral. It is worth
mentioning that, in some cases, it is better to rely on mechanical contact-free
extensometers (optical or laser extensometers).

4.1.2.3.1. Axial extensometry

In axial extensometry, fixing an extensometer to the gauge section allows us to
deduce the imposed deformation immediately. The basis for measurement can be
defined by the extensometer or the specimen.
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In the first case, the specimen is smooth and for accuracy of measurement, the
extensometer is calibrated using known displacements. The extensometer may be
fixed with various tightening devices.

In the second case, the specimen has a section increase that is a localized:
flanked shoulder allowing the extensometer to be fixed.

The difficulty in both cases is to make sure that, for a given material and test
condition, fixing the extensometer does not lead to a premature fracture of the
specimen at the attachment point.

We have to mention that the sensitivity of materials to this phenomenon varies
widely but the difficulties met are much greater in the case of tension—compression
fatigue rather than for simple tension tests (tension or creep tests). These localized
fracture phenomena are usually associated with large strain amplitudes.

It is likely that alignment problems of the machines and spurious bending
moments, which can appear during the compression part of the cycle, play a
significant role in test results. When there is a problem, the main solution consists of
improving the alignment of the machines — for example with wood, metal pots and
use of some wider specimens and grips. In the case of knife-edges, extensometer,
tightening control has to be considered as well as the existence of any local deposits
under the knives, such as varnish or electrolytic deposits.

With flange systems, we can attenuate the stress and strain concentrations by
using larger connecting radii. We may then encounter a problem due to heterogenity
of the deformation within the gauge section or the determination of the significant
deformation. A correction factor has to be introduced, either by calculation or by
prior calibration, or by using both techniques. The strain measurement is then no
longer direct and involves a calculation. When we try to minimize all stresses and
strains, we have to use an hour glass specimen. With such a specimen the gauge
section is reduced to zero. The determination of the deformation from such a
specimen is done through the use of diametral extensometers from which axial
strains are calibrated.

4.1.2.3.2. Diametral extensometry

This type of extensometry was used extensively for the first LCF studies.
Difficulties due to alignment problems and the rigidity of the loading systems can be
limited. Nevertheless, diametral extensometry has been progressively replaced by
longitudinal extensometry because of advances in equipment which minimizes
alignment and measurement.
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Within the reduced section of the specimen we can control variations in
diameter. This can be done using rods of cylindrical extensometers. When the rods
become blunt, the risk of indentation is limited. From measurement of the total
diametral strain and from the measured force, we can determine and control the axial
plastic strain. The axial strain may be obtained using a small calculating device.
Unfortunately, this technique also presents some drawbacks. Calculation of the axial
plastic strain requires knowledge of the elastic and plastic constants of the material.
Anisotropy of plastic deformation can lead to significant problems.

Such problems are particularly noticeable in the case of Poisson’s ratio in the
plastic region. This is theoretically equal to 0.5 due to the conservation law of the
volume during a plastic deformation. In reality, however, it can vary from 0.4 to 0.7
depending on the contact diameter chosen.

If the specimen was taken from a sheet of metal or a welding, it is often the case
that a circular section becomes oval under plastic deformation due to the
development texture. This is a serious issue that also occurs for single crystals.

Another problem connected to the volume of a deformed metal occurs for hour
glass specimens. Plastic flow can be modified if the minimum radius is reduced due
to a bulging phenomenon but the effect is particularly noticeable if the strained
surface is reduced. As cracking leading to fracture usually occurs at the surface, a
reduction in the initiation crack sites on an hour glass specimen can lead to longer
life compared to that of cylindrical specimens, as shown by Soo and Chow [SOO
77].

These observations have led us to study the effect of surface condition on life.
The sensitivity of the materials can vary a great deal. Finish machining is usually
used and is often followed by manual or electrolytic polishing.

4.1.2.3.3. Summary of extensometry issues

It is really hard to find an extensometry system that is entirely satisfying if we
want to avoid any premature fracture. The cases where deformation can be
determined directly without any calculation are limited to materials that are not very
sensitive to the effects of strain concentration, allowing the extensometer to be fixed
directly to the gauge section. In other cases — such as axial extensometry with
connecting radii or diametral extensometry — corrections and preliminary calibration
are essential. Calibration and inclusion of corrections usually makes the test
programs more complex because the results depend on every operating parameter:
materials, temperature and specimen geometry. As the phenomenon of premature
fracture for such conditions is limited and the deformations are correctly determined,
the remaining problem is to determine whether these results, obtained under axial
and diametral extensometry, are identical.
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The sensitivity of materials to local effects can be different depending on
whether LCF or high cycle fatigue (HCF) occurs. For instance, stainless steels,
which exhibit significant plasticity are much more sensitive to the phenomena
described above than the medium-strength ferritic steels.

4.2. Phenomenological description of low-cycle fatigue
4.2.1. Background

In order to describe the LCF behavior of materials, consider the simplified case
of a test with fully-reversed deformation: (Rs = —1) . We will describe the following
phenomena: cyclic cold working, the stress-strain relationships, fracture resistance
and, finally, analytic methods used to represent these different behaviors.

4.2.2. Cyclic work hardening

When a specimen is subjected to an imposed cyclic plastic deformation, we can
see that the highest and lowest stresses do not remain constant throughout the test.
Most of the time, after a transitory stage where the highest stresses vary slightly
(increasing or decreasing), they become relatively steady for a long time. After this
time, the tensile stress begins to decrease and this can be associated with the onset of
cracking.

This decreasing strain, associated with crack initiation, is sometimes used to
define a conventional number of cycles to fracture. N5, for instance, corresponds to
the number of cycles that give a 5% drop in highest tensile stress. The compressive
curve with an inflexion point is less frequently used to characterize crack formation.

In Figure 4.2, we can see the behavior of two different steels: 304 type stainless
steel, which presents cyclic work-hardening (the stress increases at the start of the
test); and high-strength 4340 steel, which shows a cyclic work-softening effect (the
stress decreases slightly).

The presence of a stable stage allows us to associate the imposed strain with a
resulting stress. The period of time taken to reach this equilibrium stage may be
called “adaptation”. Later in this chapter, we will introduce the notion of “adaptation
limit”, which corresponds to a more specific phenomenon. Some cases exist (for
example, welding 9-12% Cr ferrito-martensitic steels [FOU 06a, FOU 06b]) where
there is no adaptation and the properties evolve continually during the test. It is not
possible to study these particular materials using non-servo-hydraulic machines
because, as we have previously indicated, neither stress nor strain can be controlled.



Low-cycle Fatigue 123

Ac A ’ Elastic Ac A

w3 w
o &
s 304 steel 2
T . L . T -
Total strain Ag,/2 (%) Cycles - linear scale N
Ac
_____________________ 2.
________________________ \

Stress
o TTrmms
AN
AN
G
Loo-4

3
tress

4340 steel

- T -
- -

Total strain Agy/2 (%) Cycles - linear scale N

Figure 4.2. Examples of cyclic work-hardening (a) and work-softening (b)

We also have to pay attention to the way in which the results are presented. Most
of the time, the evolution of stress as a function of the logarithm of number of cycles
is plotted on a graph. Nevertheless, this useful representation has the drawback of
exaggerating the significance of the first cycles when plotted on a semi-log basis.

Figure 4.3 shows how a very brief transitory phenomenon on a 316-L steel is
amplified using a log scale. We can see that with a Cartesian diagram the steady
domain is more seems to last far longer than on a log scale.

It is important to define what is meant by stable cycle. Observation of these
diagrams usually shows that the stress obtained at half a lifetime is much more
representative of what a material experienced during most of the test compared to
the highest stress or a conventional stress corresponding to a given number of cycles
(10, 20 or 50 cycles).
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Z2 CND 17 12 steel (AISI 316L steel) at 450°C
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Cyclic work-hardening is sometimes quite spectacular. The stresses reached are
usually higher than the tensile strength of the material. What we said about tests
where strain is controlled can also be applied to alternative tests carried out under
controlled stress, with some precautions.

When a material is cycled under an imposed strain (work-hardening), the stress
increases. Under a controlled force, strain decreases. The reverse of this effect
occurs in work-softening.

Usually, a stabilized state does exist. The stress-strain relationship is relatively
independent from the type of test if tests with imposed forces are carried out with
caution. As a matter of fact, if the material cyclically work-hardens, we see that the
stabilized stress can become higher than the tensile strength. In order to reach
consolidation under a controlled stress, we have to progressively increase the strain
applied to avoid a premature fracture.

We will now examine cyclic stress-strain relationships in more detail.

4.2.3. Cyclic stress-strain relationships

If stress is recorded as a function of strain, we obtain hysteresis loops that evolve
and become stable provided that a stable regime exists. Figure 4.4 illustrates cyclic
work-hardening observed in a 316-L type austenitic stainless steel.

F (daN) A

2,000

1,000 i
/[ First quater
o cycles

Figure 4.4. Example of force-strain cycles exhibiting cyclic work-hardening:
Z2 CND 17 12 steel (AISI 316L steel) at 20°C
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Figure 4.5 shows an idealized plot of a stable hysteresis loop as well as the
definitions of different variables that are described in detail in AFNOR A 303-403
standard.

Ae, = total strain range
Ae, = elastic strain range
A F Ag, = plastic strain range
L AF =load range

AF
Ac= Y = stress range

AG stabilized
G, = — = stress amplitude
Agp 2
AF €, = % = strain amplitude
Ag,, Ag, Mgy, AR, Ao, = values referring to

¥

AAEP/ 2 /| Agef 2‘ e the first cycle

b o N; = number of cycles to fracture

m = exponent of COFFIN — MANSON's law
Ag, =C, x N"

p=exponent of Ae, =C, x Nllaw

n' = cyclic strain hardening exponent

Ae T
L de? Ga:K.[_%}

2
! Ast n = monotonic strain hardening exponent
~ > law (firstl/4cycle) o, =K[ep, [

Figure 4.5. Plot of the hysteresis loop

We can see that the variation in global imposed variation Ag, is made of a

plastic part Ae > and an elastic part, Ag_ . The initial part of the loading curve is

linear and is equal to Young’s modulus E. The elastic strain range is:

de. = Ao | E

Usually, the linearity of the stress-strain relationship is greatly reduced.

This shows that the elastic limit under compression after a tension cycle or vice
versa is slightly reduced: it is a consequence of what is called the
“Bauschinger effect”, or kinematical work-hardening effect.
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We usually have:
Age, =Ag +Ag, [4.1]
but sometimes:

Ag, = Ag, +Ag, +Ag, with Ag, =Ac/E [4.2]

where Ag, is defined as an inelastic strain.

Decomposition of global deformation sometimes requires a sophisticated
statistical analysis (see [FOU 07], for instance).

It is important to be precise when calculating the evolution of the elastic limit
because it allows us to define the model of cyclic work-hardening, which can be
introduced in the calculations.

Here we make a distinction between two main models: isotropic work-hardening
(the elastic limit increases in both tension and compression) and kinematic work-
hardening (the elastic limit under tension compression remains constant and equal to
the limit of the virgin material). In reality, most materials display behavior in
between these two extremes. When the stabilized state exists, we can plot the curve
representing stabilized stress as a function of stabilized strain, as seen in Figure 4.6.

The curve thus obtained is called the “cyclic stress-strain curve”. We have to
distinguish the cyclic consolidation curve from the stress-strain relationship during a
given cycle.

In order to obtain this cyclic stress-strain curve, we will now present several
techniques:

— starting from several test specimens at different levels of constant strain;

— starting from a specimen with a strain amplitude that is low at first, waiting for
stabilization to appear, and then choosing a higher deformation level, etc.;

— finally, cycling by block in which the strain amplitude is linearly increasing or
decreasing.

In some cases there is a reasonable agreement between the three methods but this
is not always so. This point is discussed in [LIE 76].
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Figure 4.6. Example of a cyclic work-hardening curve: three different Z2 CND 17 12
steel samples (AISI 316L steel) tested at 20°C
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Experience has shown the first method to be the best. The second method can be
affected by strong deformations due to the start of a fracture.

With the third method, the cycle of highest amplitude has the greatest
significance. This point is always in agreement with the other methods. For the rest
of the curve, however, the method produces results that remain under the curve
determined using several specimens if the material softens or remains over the curve
if it hardens.

An example of a cyclic stress-strain curve compared to a tensile curve (or a
curve at the end of the first cycle), represented in Figure 4.6. These curves refer to a
316 L type steel showing a strong work-hardening effect.

4.2.4. Fatigue strength

The cyclic stress-strain curve provides the essential data from which we can
choose the most suitable model of cyclic behavior or analyze the microstructural
behavior of a metal. When designing a device, fatigue strength is an obvious asset
for anyone who wants to control fatigue by LCF.

A diagram of fatigue strength relates strain to the number of cycles leading to
fracture. In this diagram, the total plastic and elastic deformations are separated.
This type of diagram is illustrated in Figure 4.7. These curves are usually known as
Coffin-Manson curves and were introduced in the early 1950s [COF 54, MAN 52].
If we multiply the elastic deformation by Young’s modulus, the plot of the real
stress thus obtained as a function of the number of cycles to failure gives a curve
usually known as the Basquin curve. This curve often provides a good connection
between the high numbers of cycles and classic endurance curves [SOO 76, SOO
77].

We notice here that in most of the HCF tests carried out under bending, within
the region of low endurance (i.e. with a plastification side), the calculated elastic
stress is usually overestimated and incorrect. This can sometimes explain the relative
disagreement seen in the relationship between LCF and HCF.

Using the Coffin-Manson and Basquin equations within the Ae — log N diagrams,
which we will see later on, we obtain lines for Ag, and Ae,. Data obtained on a large
range of materials (steels, titanium and aluminum alloys, nickel and cobalt super
alloys) have been gathered by Baumel! and Seeger [BAU 90].
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Figure 4.7. Example of to low-cycle fatigue curves:Z2 CND 17 12 steel (AISI 316L steel)
tested at 20°C in three different laboratories

4.2.5. Mathematical equations

4.2.5.1. Cyclic work-hardening

The cyclic hardening curve can usually be well represented by the power law
c=K" (AEP/Z)"', which we can compare to the tensile curve:

o =K. (g)"

Most of the time this equation is used to represent the stress-strain curve of the
material during the test [JAM 62, MAS 26].

A change of origin and of scale (by a factor of two) sometimes allows us to
determine the monotonic stress-strain curve from the cyclic one [HAL 62] (details of
this procedure are shown in Figure 4.8). This action is not always accurate and
usually only works for moderate plastic strains of the order of elastic deformation
[ABD 77, SCH 70]. The relationship between this procedure and the Bauschinger
effect is discussed in [ABD 77].

It seems to be more suitable, therefore, to use the isotropic and kinematical
work-hardening concepts, or even viscoplasticity, to describe the shape of the
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mechanical hysterisis loops as well as the cyclic work-hardening curve [LEM 85].
The reader can find further information in the following references: [FOU 06a, FOU

06b].
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Figure 4.8. Comparison between the cyclic work hardening curve (c— &
and the stress-strain relationship (0— & with a change of origin

4.2.5.2. Fatigue strength

A power equation has been shown by [COF 54, MAN 52] to relate plastic
deformation (Ag,) and elastic deformation (4¢,) to the number of cycles to fracture,

Nr.

This leads to the following equations:

Ag, = AN;"

Ag, = BN

Ag, = AN;® +B.N;

[4.3]
[4.4]

[4.5)

The first experiments showed that a is close to 0.5, which gives the Coffin law:

Ae, N =C.
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Exponent b is usually close to 0.12. Parameters a and 5 do not vary much
between materials and many attempts have been made to predict resistance to
fatigue from tensile properties. These methods are known as the “universal slope
law” and “four correlation points” method. They are described in detail in [MAN
65] and highlighted in Figure 4.9.
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Figure 4.9. Prediction of the resistance to low-cycle fatigue [MAN 65]

The method of universal slopes assumes that a tensile test is a very short fatigue
test under a plastic strain equal to the tensile ductility D and the elastic ductility
proportional to o,/E:

D =Ln100/(100-%RA), [4.6]
RA being the reduction of area in percent and o, the ultimate tensile strength.

Many variants also appear depending on whether the number of cycles
corresponding to the tensile test is equal to 1, 1/2 or 1/4.
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According to Manson [MAN 65] the best description is obtained with a = 0.6
and A = D0'6/2, thus:

Ag, =D N7 [4.7]
and also:
Ag, = 3.5.(0u )/E.N‘O'12 [4.8]

These methods enable us to estimate the LCF life of a material. It clearly appears
from all these diagrams that the life, in terms of total strain, is closely connected
to the ductility of a material with a low number of cycles (predominant equation
Ag, — N) while the elastic limit and tensile strength, dominate at a high number of
cycles (predominant equation 4&,— N).

Since the Manson’s proposal in 1965, other laws have been proposed. Here it is
worth mentioning the modified law of universal slopes introduced by Muralidharan
and Manson [MUR 88] and the “universal” law proposed by Baumel and Seeger
[BAU 90]. These last authors suggested two slightly different approaches, one for
steels, the other for aluminum and titanium alloys.

4.2.6. General behavior: sequence effects and control mode

In the models we have presented up to this point, we have considered the ideal
case of constant amplitude cyclic loading. Now let us focus on how things are
modified if we are no longer in this situation.

4.2.6.1. Cumulative damage law

This is a large field and we present the major approaches here. Usually, we use a
Miner—type law in order to combine cycles of variable amplitudes.

For classic LCF at 4g,, the number of cycles to failure is Ng, we can see that a
cycle of this type generates damage 1/Ng, with fracture occurring when 2 1/N; = 1.

If we consider Coffin’s law, we obtain the following as a fracture criterion:
2
z(Ae,) =C [4.9]
This has led some authors to look for a fracture criterion incorporating the cyclic

mechanical energy (which is proportional to (Ag‘,,)2 within a plastic elastic model).
Readers can refer to [POL 91] for further information.
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This useful rule nevertheless has to be viewed with caution. Indeed, the behavior
of materials is rarely linear and is very rarely cumulative, as the material has a
memory. In addition, there is also doubt about the meaning of an energetic criterion,
which presents at least two draw-backs:

— by nature, energetic criterion is scalar and so cannot easily be applied to
directional phenomena for initiation facets of fatigue cracks;

— as only a low part of the energy during plastic deformation is stored within the
materials (several percent), most of the energy being dispersed as heat, an energy-
based criterion seems to be inappropriate for representing fatigue damage.

4.2.6.2. Influence of mean strain or mean stress

It is commonly said that an average strain does not influence behavior under low
cycle plastic fatigue. This is true if we perform a test between two values of & and
& with an average value different to zero. The effect has been well observed during
the first cycle, but the mean stress obtained during the first cycle rapidly relaxes and,
besides the initial elongation, everything behaves as if the mean stress is equal to
Zero.

In a test with an imposed stress different from zero, we frequently observe the
phenomenon of ratcheting. Depending on the amplitude of the applied stress, this
progressive deformation can become stabilized. During repeated tests we can then
define the adaptation limit which, if it is reached, pushes the material past its
stability stage and leads to failure [LIE 72, PLE 68].

After this general description of the behavior of materials, the following sections
will focus on the relationships between the phenomenological behavior and
microstructural evolutions.

4.3. Adaptation mechanism and cracking during low-cycle fatigue
4.3.1. Introduction

During low-cycle or high-cycle fatigue, the lifetime can be split into different
stages which are:

— microstructural evolution;
— crack initiation; and then

— propagation of the cracks which leads to the final fracture.
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As we mentioned earlier, we can observe that when a test is carried out under an
imposed total strain, the stress and, as a consequence, the plastic strain evolve more
or less progressively towards stable values in most cases. This is because the stress
amplitude and amplitude of the plastic part of the cycle become almost constant or
evolve slowly with the number of cycles. In general this stage, which we call the
“adaptation stage”, represents 10 to 50% of the lifetime. During this time, the
structure of the material evolves in order to bear the imposed cyclic strain. The
adaptation stage is followed by or overlaps with the initiation stage of cracking,
which leads to the formation of microcracks that are usually located at the free
surface of the specimen.

As we will see later, the definition of the start of crack initiation is
rather sensitive.

Nevertheless, we often notice that, after a certain number of cycles which will be
given later on, one of these microcracks propagates more rapidly than the others
(“propagation stage”), first steadily, and then leading to fracture of the sample.

A detailed study of these three stages is interesting for different reasons. First of
all, the observation of adaptation time allows us to relate the mechanical behavior of
the material to its microstructural evolution. Indeed, the observed cyclic behavior is,
just as for the monotonic tensile curve, an indicator of the microscopic mechanisms
that occur during cyclic deformation. In addition, as the global lifetime recorded on
the Manson-Coffin curves incorporates initiation and propagation of phenomena, it
is necessary to clearly distinguish the predominant mechanical and metallurgical
factors for each of these stages.

4.3.2. Adaptation of the material

In order to present this stage, we will adopt the metallurgist’s point of view by
trying to show how, for a material whose microstructure is known, it is possible to
predict its mechanical behavior. Consider the case of structural steels, for instance.
As the hardening of these steels usually involves several mechanisms (cold working,
phase change and precipitation hardening) we will first examine the simplest
microstructures (annealed or pre-deformed solid solutions) and then try to explain
the behavior of more complex structural materials, such as quenched and tempered
steels. Beforehand, we will focus on single crystals.

4.3.2.1. Single crystals

In the past single crystalline metals of face-centered cubic (FCC) structure (such
as copper, nickel and aluminum) have largely been studied. Readers can refer to
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Polak [POL 91] and Suresh’s [SUR 98] work to get a general idea of the results
obtained from these metals.

The cyclic work-hardening curve of a copper single crystal oriented for single
slip presents a particular shape, as shown in Figure 4.10, where T, is the shear stress
resolved on the glide plane and v, the applied shear strain. This figure exhibits three
different domains.
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Figure 4.10. Cyclic work-hardening curve of a copper single crystal
oriented for single glide [POL 91]

Within domain A, which precedes the saturation plateau, the single crystal is
cyclically and uniformly deformed. However, the dislocation structure is
heterogenous on a smaller scale. We can observe the formation of tangles of dipoles
and dislocation loops located on the primary glide plane. This dislocation structure
is usually represented by the term “veins” because of the geometric organization of

dislocations. The veins line up along the [1 2 1:| direction, which is perpendicular to

the Burgers vector.

Within domain B of the cyclic cold-working curve, the saturation stress is almost
constant and independent of the imposed shearing amplitude. Deformation along the
gauge length of the specimen is heterogenously distributed. This deformation is
localized and concentrated within slip bands called “persistent slip bands” (PSBs).
These PSBs form dislocation layers that possess various microstructures parallel to
the primary slip plane. These layers are trapped within the matrix made of the veins.
The thickness of these layers is a few microns. They are made of very thin
dislocation walls (about 0.1 pm), regularly spaced out and separated by some
channels. The walls are perpendicular to the direction of the primary slip plane and
contain a high density of dislocation dipoles.
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When we analyze the crystal on a plane, approximately parallel to the primary
slip plane (111), we can easily highlight these walls. When we examine the crystal

within a (1 2 1) plane or a (1 1 1) plane, we can observe a structure made of really

special bands in the shape of ladder rungs. The deformation is localized within these
PSBs, which are shown in Figure 4.11. Crack initiation occurs within these PSBs
when the shear amplitude is increased to reach the saturation plateau on the cyclic
work-hardening curve (see Figure 4.10).
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Figure 4.11. Dislocation structures within face-centered cubic metals: a) veins within the
matrix; b) dipole walls and dislocation fragment within persistent slip bands (PSBs);
and c) 3D representation of a PSB within copper

Within area C of the cyclic work-hardening curve, we can also observe an
increase in the shear stress an addition to the increased amplitude of the imposed
strain. Some secondary slip systems are activated which can explain the fact that the
structure of the dislocations becomes more complex.
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When the crystals are oriented for multiple slip, we observe the formation of
PSBs on different slip systems that intersect at some point. The corresponding
shearing stress is much higher than the plateau stress for a single slip. We can
therefore often observe an initial hardening followed by softening.

4.3.2.2. Poly-crystalline metallic alloys

In order to characterize the cyclic behavior of a material, we can use various
methods.

As previously presented, comparison of the monotonic tensile curve and cyclic
work-hardening curve is an easy method to characterize a material’s behavior. This
does not present any difficulties when a material possesses a unique and well
defined cyclic work-hardening curve. Nevertheless, as we have already said, plotting
the cyclic stress-strain curve is difficult in some circumstances as some materials
have a memory effect.

In addition, when our major interest is in the mechanisms involved during cyclic
work-hardening, it is better to use curves that give the evolution of stress with the
number of cycles, plotted for various amplitudes of imposed strain. We want a curve
that for a given material shows whether the strain leads to strong or weak memory
effects and how it does so.

The adaptation stage, which has been examined in this way, has been studied for
various single-phase alloys, especially copper-based ones. An important factor here
is the initial state of the solid solution, which can be in the annealed or pre-strained
state.

A certain number of studies have also dealt with alloys hardened by the
precipitation of a second phase. Here, it seems that we have to distinguish between
alloys containing some particles that can be sheared by dislocations from the alloys
containing precipitates that cannot be penetrated by the dislocations.

4.3.2.2.1. Solid solutions

Adaptation stage within annealed body-centered cubic (BCC) and FCC solid
solutions

The behavior of solid solutions, initially in the annealed state, is highlighted in
Figure 4.12.

The material progressively hardens and then reaches a stable regime, which we
can assume to be a saturation stress o;. The evolution of stress o, with number of
cycles or cumulative 2A¢g, is shown in Figure 4.12b. The stable regime is more
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rapidly reached when the deformation amplitude Ag,, which is kept constant during
the test, is large. It is then easy to match saturation and the cyclic work-hardening
curve, which most of the time is expressed as follows:

n'
o5 =K'(4e, /2) [4.10]
G “/1 2 A Cp AC.C;
1 Aep2 Cyclic (o - Aep/2)
Gp / _ Asp | /
. /— %
- » monotonic
Aepi2| Aep/ € Aep2> Aep | ©
- 8 B
N or X Agp Monotonic, Aep/2 o
a) b) ¢)

Figure 4.12. Cyclic behavior of annealed materials: a) evolution of the hysteresis loop;
b) stabilized regime observed, and ¢) comparison of the monotonic
and cyclic work-hardening curves

Comparison of this curve with the monotonic stress-strain curve shows that in
the annealed state, cycle loading has a hardening effect on the material.

The substructures introduced during cyclic deformation have been observed by a
number of authors. The most detailed observations were those relating to FCC
metals, and especially with copper. For a detailed description of the results thus
obtained, readers can refer to the review published by Grosskreutz [GRO 71].

During the hardening stage of copper, we can observe microstructural
modifications that look like those observed during stage I and Il of deformation
under monotonous traction. Dislocations gather to form bands and we can see the
presence of many dipoles. As the stress increases, the density of these gatherings
increase and we observe the formation of a cellular arrangement of dislocations.
This reorganization of dislocations into cells becomes more uniform as the
deformation increases in importance. The typical cells resulting from high amplitude
fatigue possess different properties to those formed during a monotonic strain as the
fatigue walls are thinner. The size of the cells decreases when the amplitude of the
imposed strain, and as a consequence the saturation stress, increases. Several authors
have tried to correlate saturation stress g; to cell size d, as shown in Figure 4.13 for
copper.
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Figure 4.13. Variation of the size of dislocation cells
with increasing saturation stress [PRA 67]

Another important phenomenon is the formation of intense slip bands, which are
similar to the PSBs observed in single crystals. These develop at the saturation
stage. The consequence of this is a heterogenous deformation that is localized within
the intense slip bands, as has been shown by Finney and Laird [FIN 75]. The
heterogenity of the deformation occurs with a modification of the sub-structures of
dislocations. At low strains, dislocations are grouped in bands. As strains increase
these bonds are replaced by cells and PSBs. This structure leads to localized fatigue
damage.

When the adaptation stage is reached point defects are formed. Resistivity
measurements seem to show that the resistivity changes recorded for copper are not
only due to the increase of the dislocations density during cyclic deformation, but
also to the formation of point defects [POL 59].

Recent observations have been reported on FCC metals possessing a relatively
high stacking fault energy. These observations can also be applied to BCC metals,
such as iron, where cross slip occurs easily. Nevertheless, within FCC alloys of
copper-zinc and copper-aluminum type it is much harder for the dislocations to
form. For these materials, the slip character remains planar and the dislocations
retain their planar arrangements. All of these observations were made by Lukas and
Klesnil [LUK 73] and are summarized in Figure 4.14.
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Figure 4.14. Different arrangements of dislocations as a function
of the stacking fault energy y and of strain amplitude Ag,
Jfor copper and copper-zinc [LUK 73]

Saxena and Antolovich [SAX 75] compared the cyclic behavior of copper and
copper-aluminum alloys (Cu-2.2 Al; Cu-4.2 Al, Cu-6.3 Al). The addition of
aluminum to copper modifies the slip character such that dislocation movements
occur in a more planar direction within alloys that than within pure copper. Saxena
and Antolovich’s results are shown in Figure 4.15. We can see here that, although
the most highly alloyed material leads to the highest stress values, it is the one
giving the longest lifetime. We can also observe that all of the alloys containing
aluminum have a cyclic work-hardening curve that cannot be represented by a single
value of the exponent n'.

These results suggest that an improvement in lifetime can be obtained if the
stacking fault energy is lowered. Nevertheless, it has not yet been clearly established
whether this improvement in lifetime is due to a late initiation or to the reduction in
propagation rate within the high deformation fatigue domain.

It is important to consider this difference in behavior — which is related to the
stacking fault energy and the slip character — when we focus on plotting the cyclic
work-hardening curve. Indeed, the materials that easily lead to cellular arrangements
have an almost unique cyclic work-hardening curve that does not really depend on
the way hardening is established (increment, block methods or the method of using a
single specimen for each level). Nevertheless materials that possess a lower stacking
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fault energy, and that as a consequence give rise to planar arrangements of the
dislocations, are more likely to demonstrate a memory effect. Metals that, like Cr-12
Ni type austenitic stainless steel that easily give rise to mechanical twinning due to
monotonic or cyclic deformation, are those where most of the difficulties in defining
the cyclic cold work-hardening effect are addressed.
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Figure 4.15. Comparison of the behavior of Cu and Cu-6.341:
a) cyclic work-hardening curves; and b) fatigue lives [SAX 75]

Pre-strained initial state

On pre-strained materials, we can usually observe a softening stage as soon as
the pre-strain level is higher than the amplitude of the imposed cyclic deformation.
The corresponding behavior is presented in Figure 4.16, which shows that softening
is chiefly significant at the beginning of cyclic deformations. In this case, we can
also discern a stationary regime s, the cyclic cold-working curve being below the

monotonic tensile curve.

Instability of work-hardening due to pre-straining has to be considered as it
shows that the material has a lower flow stress when it is cyclically strained. It is also
worth noting that this softening phenomenon occurs within some structures that are
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naturally “cold worked” such as from a martensitic type phase change, as we will show
further on.
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Figure 4.16. Cyclic behavior of pre-strained materials: a) evolution of the hysteresis loop;
b) softening and stable regime; and c) comparison of the
monotonic and stress-strain curves

In the annealed state, the materials cyclically harden, whereas in the pre-strained
state they soften. For this reason we may ask whether in these conditions a given
metal possesses a unique cyclic stress-strain curve independent of its initial state.

For metals such as copper and nickel, we can observe a behavior similar to that
described in Figure 4.17a. However, Lukas and Klesnil [LUK 73] showed that in
most cases this situation can be observed when the amplitude of cyclic deformation
is high. They also showed that for lower strains there is a difference between the two
types of work-hardening curves. Nevertheless, within these materials, the difference
between the annealed state and pre-strained condition remains small.

ACO Monotonic, 0,0, Monotonic,
e pre-strained A s pre-strained
Cyclic, pre-strained Cyclic,
and annealed pre-strained
Monotonous, Cyclic,
annealed annealed
Monotonous,
/ annealed
€ e
Aep/2™ Aep/2”
a) P b) p

Figure 4.17. Monotonic and cyclic curves: a) materials without any memory effect (for
instance Cu, Al, etc.); and b) materials with memory effect (for instance Cu-Zn, Cu-Al, etc.)
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Alloys with a lower stacking fault energy, such as copper-zinc and copper-
aluminum, show a more significant memory effect, as described in Figure 4.17b. If
they are always different in their pre-strained state, softening is insufficient to
provide us with a unique cyclic work-hardening curve.

Feltner and Laird showed that the kind of mechanical instability that we can
observe in pre-strained states exists as instability at the microstructural level [FEL
67]. These same authors noticed that, for copper and nickel, dislocation cells
induced by monotonic pre-strain become organized according to their size and
degree of perfection during cyclic deformation. This happens particularly when:

— the amplitude of cyclic plastic deformation is large;
— the cells associated with the pre-strain conditions are progressively erased; and

— when saturation is reached.

Here, the size of the newly formed dislocation cells roughly corresponds to those
formed directly from the annealed state under the same conditions. Changes in the
microstructure can therefore be reversed and we think that, in these conditions, there
is no memory effect on saturation stress. In the case of lower strains, especially
strains leading to significant irreversibility in alloys (Cu-Zn, Cu-Al), the situation is
more complex. Even here, however, part of the pre-deformation sub-structure is
“erased” because of the later cyclic deformation.

Mechanisms controlling the adaptation stage

All the observations that have been made suggest that the rapid work-hardening
stage is controlled by a phenomenon of defect multiplication. In this stage, the
hardening mechanisms are similar to those that can be found during a monotonic
deformation.

Fatigue hardening raises the question of the reversibility of deformation. In
general terms the dislocations carrying the tensile deformation can only carry part of
the compressive deformation [MOR 75].

Qualitatively, we expect the reversibility of the deformation to be large when the
amplitude of the deformation is low. When the amplitudes are significant, tensile
deformation, along with the compressive cycle, require the accumulation of new
defects. The situation is then close to what is encountered during a continuous
tensile test. This hypothesis has generally been confirmed by experiments performed
on an unstable stainless steel using the martensitic transformation y — o' induced by
deformation in order to estimate the level of reversibility of plastic deformation in the
specimen [BAU 77].
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Within the stabilized regime, the observations showing that the dislocation sub-
structure is not modified during the cycle have also led several authors to suggest
that the deformation that occurs is mainly reversible, in line with a back and forth
movement of the dislocations within the cells. Grosskreutz argued with this
interpretation [GRO 71]. One of the difficulties with the proposed models lies in the
fact that we do not know how the steady hysteresis loop affects the movement of
dislocations within the matrix [WIN 75] or within the intense slip bands. Kuhlmann
Wildsdorf and Laird [KUH 77] proposed some relatively sophisticated models in
order to analyze this state. How we can find a saturation stress still remains unclear,
however. It is unlikely that saturation stress is directly related to the size of the
dislocation cells, as suggested by the correlation established by Pratt [PRA 67].

The reversibility of deformation is still important, although indirectly, in the
approaches developed to take the Manson-Coffin endurance law into account, in
terms of the energy of plastic deformation. As we have already seen, many authors
have tried to use cyclic mechanical energy as a low-cycle fatigue damage criterion.
If AW stands for the mechanical energy per cycle, a very simple damage law
consists of assuming that a fracture will occur when the total energy W, where
Wt = Ny AW, has reached a critical value independent of Ag,. In general, it is
observed that most of the time the value of Wt = N; AW becomes lower when the
strain amplitude A&, is lowered. As a consequence of this, the lifetime becomes
longer. Moreover, a better representation of the results can be obtained if we write
the following empirical equation:

N (aw)* =C [4.11]

where « is constant for a given material, and C is a constant, the value of ¢ being
higher than 1. The value of a being known, this equation enables us to determine the
Manson-Coffin law. Indeed, we can use the equation proposed by Halford and
Manson [HAL 67} to measure the area under the hysteresis loop:

AW = Ac.Ae, (1-n')/(1+n) [4.12]

This equation, combined with the previous one and with the one giving the
expression of the cyclic stress-strain curve (see Figure 4.5), leads to the following
endurance equation C:

N, (g, =C [4.13]

Using an energy criterion as a fatigue damage criterion leads to some issues as
its physical origin is not that certain. As a matter of fact, we have already observed
that in most cases the energy accumulated as defects, which then contribute to
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damage, represents just a small part of the mechanical energy AW applied, this
proportion being just a small percentage of the energy, the rest being dissipated as
heat. We therefore have to estimate damage using a measure that is usually 10 to 20
times larger than the one we wish to use. This problem is not that serious as this
“amplification factor” is not constant and is independent of Ag,. Nevertheless, we
are not sure that the ratio of the accumulated energy per cycle to imposed strain is
independent; the increase in total energy N.AW, along with the lifetime suggests
something different. We actually think that the increase in Nz AW is due mainly to
the fact that the reversibility level of the deformation increases when the applied
strain Ag, decreases.

Despite these facts, in some cases, such as low-cycle fatigue with various
deformation levels, the previous equations based on an “energy criterion” approach
([4.11] and [4.13]) allow us to evaluate, with a sufficient precision, the number of
cycles to fracture.

4.3.2.2.2. Alloys strengthened by precipitates

In order to present the behavior of alloys reinforced by the precipitation of a
second phase, we will use the results that we obtained on two important types of
alloys: the light aluminum-copper type alloys on one hand and the nickel-based
alloys of Waspaloy type, hardened by the precipitation of y' phase (Ni; Ti Al) on the
other. As a matter of fact, because of the behavior of these alloys we are able to
distinguish two extreme cases:

— one corresponding to the shearing of some particles by dislocation; and

— another associated with the bypass of precipitates by dislocations.

These two modes of dislocation-particle interaction can correspond to the nature
of the different precipitates (in the case of aluminum-copper alloys) or to the
different sizes of particles of a phase (in case of the ¥' phase within the forged alloys
based on nickel).

Adaptation where the particles are sheared by dislocations

This shearing mechanism occurs for the aluminum-copper alloy when it contains
some precipitates #". Within nickel-based forged alloys this sharing mechanism
occurs with fine particles ¥, or for Waspaloy when the diameter of the particles @,,
is lower than about 20 nm. The behavior of the aluminum-copper alloy has been
studied by Calabreése and Laird [CAL 74}, whereas the Waspaloy treated alloy in
these conditions was examined by Stoltz and Pineau [STO 79] (see Figure 4.18).

Although some differences do exist between the two cases considered, the
important phenomenon to focus on is hardening followed by a progressive softening,
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the curve giving the evolution of the highest stress (tension or compression) going
through a maximum.

Thus, the behavior of similar alloys is very different from that of solid solutions
and in such cases the precise definition of the cyclic work-hardening curve is more
challenging as a steady regime does not necessarily appear.

To make it simple, we can interpret this behavior as follows. First of all, the
hardening period has physical origins that are generally the same as those described
for single-phase solid solutions; that is to say the dislocation density increases with
the presence of precipitates that prevent easy gliding within the matrix.

The softening phenomenon is more characteristic and has been noticed in other
cases. Various explanations have been proposed to take softening into account.
Among them, the hypothesis of putting the precipitates within the slip bands back
into solution has often been accepted [CLA 64].
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Figure 4.18. Examples of alloys presenting some sheared precipitates due to dislocations:
a) aluminum-copper [CAL 74]; and b) Waspaloy ¢,-: 80 A [STO 79]
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Nevertheless, with the nickel-based alloy Inconel 718, Fournier and Pineau
[FOU 77] have shown that the lack of precipitate contrast within these bands does
not correspond to a dissolution of the particles, but to a change in their
crystallographic structure due to the slip itself.

Thus, as Calabrése and Laird [CAL 74] in their study on an aluminum-copper
alloy suggested, it is more sensible to assume that the softening mechanism is
triggered by a progressive diminution of the precipitation hardening, this diminution
being basically due to a decrease of the “order” within the particles. Thus, in the
case of Waspaloy for instance, the observations made using an electronic
microscope show that the deformation remains localized within bands. Within these
bands, the back and forth movement of the dislocations progressively decreases the
average fraction of the surface taken up by the particles intersecting a glide plane
and, as a consequence, leads to a diminution of the stress necessary to shear the
particles.

Basically, the behavior observed is the sum of two competing phenomena (see
Figure 4.19). The loss of hardening by precipitation can be more important than the
hardening due to dislocations within the solid solution.

Aop
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GSss

N or X Aep

Figure 4.19. Evolution of the various components of softening: o,,: solid solution hardening;
Oy hardening due to precipitation;, Aoy hardening due to an increase
in dislocation density; o,: resulting stress

Adaptation where particles are by-passed by the dislocations

This type of particle bypass occurs within aluminum-copper alloys treated to
contain the phase §”and within Waspaloy alloys treated to contain larger precipitates
Y. Some examples of curves giving the evolution of stress along with the number of
cycles are given in Figure 4.20.
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Figure 4.20. Examples of alloys showing particle bypass by dislocations:
a) aluminum-copper (from Calabrese and Laird [CAL 74]);
b) Waspaloy ¢,-: 800 4 (from Stoltz and Pineau [STO 79])

In both cases, after a stage of rapid consolidation we can observe a saturation
regime. This behavior seems to be characteristic of alloys that contain some non-
sheared particles.

In this case, contrary to shearing, the distribution of deformation bands is much
more homogenous at the grain scale. This is because there are no weak spots in the
crystal that concentrate dislocation activity.

Although it is not necessarily fundamental for the study of LCF, especially
regarding endurance, it is interesting to point out that the large internal stresses due
to the formation of dislocation loops, which we can observe around the precipitates,
can significantly modify the shape of the 6 ~ & hysteresis loops, especially during
the first cycles. This was noticed for the first time by Stoltz and Pelloux [STO 76]
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and was then confirmed and studied by other authors. For example, in Figure 4.21
we have reproduced the shape of the hysteresis loops recorded on a Fe-20 Cr-4 Ni-2
Al alloy, hardened by the precipitation of the Ni Al phase [TAI, TAI 82]. We can
compare the shape of these loops when the particles are small and are sheared and
also when they have a size that allows them to be bypassed by the dislocations.
Contrary to the first case, we can observe that, when the by-passing mechanism
occurs, the first hysteresis loops present a reverse curve and an inflection point, this
phenomenon disappearing when the number of cycles is increased. This effect,
associated with a strong Bauschinger effect, was studied by Stoltz and Pelloux [STO
76] and Atkinson and Brown [ATK 74].

1,000

aa |

Figure 4.21. Shape of the hysteresis loops recorded within the same alloy (Fe-20Cr-4Ni-24l).
The figures next to the curves indicate the numbers of cycles: a) under-aged
State — precipitates sheared by the dislocations; and b) over-aged
state — precipitates by-passed by the dislocations

The interpretation of the hardening effect that was observed when the by-passing
mechanism occurs is the same with monotonic tension; the presence of particles,
that cannot be sheared by the dislocations, accelerates the multiplication of
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Chapter 5

Gigacycle Fatigue

5.1. Introducing the real-life fatigue life of machines

When Wohler introduced the SN curve, the applications at that time were
actually steam engines used by locomotives or ships. These slow machines were
running at a few dozen cycles per minute, which led to fatigue life ranging from a
million to tens of millions of cycles. It was therefore totally acceptable, on a
practical basis, to consider a high cycle fatigue limit as these fatigue machines could
not exceed more than a dozen Hertz.

Nowadays, as the rotation rate of engines are several thousand cycles per minute,
the fatigue life of an internal combustion engine reaches more than a 10* cycles per
minute and that of turbines can reach around a billion cycles, for example.
Nevertheless, we have to say that the fatigue tests of more than 107 cycles are rare
due to the cost related to the operating mode of the conventional machines used.

To summarize the present situation, it is accepted that the concept of fatigue
limit is related to the hypothesis of a horizontal asymptote on the SN curve above
10% or 107 cycles. We thus consider that every non-broken specimen after 10’
cycles has an infinite lifespan/time, which is a convenient and economical
assumption albeit not a rigorous one (see Figure 5.1).

Chapter written by Claude BATHIAS.
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Actually, we have to understand that if the staircase method is widely used today
in order to determine fatigue limit, we need to shorten the duration of the tests. A
fatigue limit determined using this method with 107 cycles requires about 30 hours
of tests in order to break a specimen of 10’ cycles with a machine working at
100 Hz. In order to reach 10® cycles, 300 hours of tests are necessary, which is then
a costly process.

55
Axial force fatigue tests, ASTMA36 steel,
ground surfaces, frequency = 26.7 Hz
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in air at room temperature.
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Figure 5.1. SN curve according to international standards

Figure 5.1 reminds us that this endurance concept, which can be approximately
applied to carbon steels, is not a global characteristic. Experience shows us that
fatigue fracture occurs between 107 and 10'° cycles. Another useful way of assessing
the risk of fatigue fracture is given by the SN curve between 10° and 10'° cycles.
Since Wohler, the SN curve is usually shown with a hyperbole that is more or less
modified as indicated below:

— hyperbole Ln Nf=1n a- Ln G,;

— Wohler LnNf=a-b c,;
—Basquin  Ln Nf=a-bLn oy

— Stromeyer Ln Nf=a—-bLn (o, c).

Obviously, an accurate model can only be found if we analyze the fatigue life
domain between 10° and 10'° cycles. For all these reasons, it is worth studying the
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very-long life spans from accelerated fatigue tests carried out at 20 kHz using
machines equipped with a piezoelectric converter [BAT 05].

5.2. Testing process
5.2.1. Piezoelectric machines

In the literature [HOP 11], the first publications on vibratory fatigue with a
frequency of 33 Hz go back to 1911. They were written by Hopkinson, then Jenkins
and Lehmann, but the first machine that could reach 20 kHz was invented by Mason
in 1950 [MAS 50]. This frequency is a threshold below which the wave becomes
inaudible. In 1959 and 1965, Girard and Vidal respectively carried out tests to
increase the frequency to 92 and 199 kHz, but these were difficult to perform and
were of little interest. At that time, controlling the tests using computer techniques
was not possible and the results obtained were wrong. Numerical control of
piezoelectric machines has only relatively recently been achieved by Bathias and his
team [WU 95]. This technique, with an unofficial standard of about 20 kHz, is used
to study the very long life span of these materials and fracture mechanics.

Since 1970, experimental means in the field of vibratory fatigue have been
improved and other systems and test devices have been developed. In 1998, the first
international congress entitled Fatigue Life in the Gigacycle Regime [BAT 98] was
held in France by Euromech. Following this, three others followed in Vienna (2001),
Kyoto (2004) and Ann Arbor (2007), proving that attention is now being paid to
fatigue at a very high number of cycles. A book dealing with this topic was written
by Bathias and Paris [BAT 05]. The highly technical vibratory fatigue testing
system, which has been developed by Bathias in the last 10 years, is presented in the
next section.

5.2.2. Principle of vibratory fatigue

The general principle of vibratory fatigue has already been the main topic of
several publications [STA 86, STA 98]. We will therefore focus on the essential
theory developed in [BAT 05, KON 91].

The basic principle of the vibratory fatigue machine is to produce a stable
vibratory resonance within the specimen. To do so, we first need a converter that is
capable of converting the sinusoidal signal produced by the electric generator into a
mechanical vibration. The commercially available converters and generators usually
have a set frequency of 20 kHz.
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In most cases the vibration of the converter is too low to damage the specimen.
In these cases, therefore a sonotrode is necessary to increase the amplitude of the
vibratory movement. If the vibratory system (converter, sonotrode and specimen)
has the same intrinsic frequency (20 kHz), we can then obtain a strong vibration
amplitude with low energy and a stable wave within the system.

The different hypothesis regarding vibratory fatigue is as follows:

— the metal being studied is homogenous and isotropic;

— the metal is purely elastic (the plastic domain being considered is negligible
compared to the elastic one in the case of fatigue with a really long lifespan);

— as vibration moves longitudinally, the theoretical analysis can be reduced to
one dimension from the differential element which is presented in Figure 5.2.

dx

| ~—————

| s+(ds/dx)dx
S

\

C ~— = G+(do/dx)dx

Figure 5.2. Differential element

The equilibrium equation based on Newton’s second law, F = ma, can be written

as:
c+a—cdx S+£dx -oS=ma [5.1]
ox dx
oo d a2V
(0‘+a—xdxj(s+&sdx]—cs=p8dxa—2 [5.2]

t

If we ignore the second-order terms, we then have:
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Here, © is the axial vibratory strain, S the section area, U the displacement, and
0 volume mass.

For linear elasticity, if we suppose that the behavior laws that are valid for static
situations are also valid for dynamic ones with inertia effects, we can then write:

dU(x,t)

X

o(x,t) = BEqg

[5.4]

where Ej4 is the dynamic Young’s modulus.

The mechanical equation of the longitudinal and planar wave in a single
dimension rod with a variable section is:

QUGN SV __p UKD _, [5.5]
ox® S(x) ox E, o

where U is displacement, S section area, p volume mass and Ey dynamic Young’s
modulus.

If we consider a harmonic vibration regime:
U, t)=U (x) exp. (wt) [5.6]
after derivation, equation [5.5] becomes:

d’U(x) + S'(x) dU(x)

- -K*U(x)=0 57
dx S(x) dx

where:

K.0', w=27mfandC. [Es
c? yo

In which f is intrinsic frequency and C propagation rate of the wave within the
material.

Equation [4.7] enables us to determine the natural modes of longitudinal
vibration and the resonance frequency for a beam with a given section.
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5.2.3. Calculation of resonance lengths
In order to operate a machine under vibratory fatigue, the profiles of the
specimen and sonotrode have to be designed based on the following considerations:

— the geometry has to lead to a longitudinally vibratory system with the same
frequency as the one provided by the piezoelectric converter;

— the geometry has to be easily manufactured and the profile of the section has to
allow a suitable amplification of the strain within the specimen in order to damage
it;

— the global mass of the specimen and sonotrode has to be acceptable relative to
the power of the excitation generator.

5.2.4. Calculation of the specimens

The geometry of the specimens under vibratory fatigue is usually designed with
either an hour-glass axisymmetric profile (see Figure 5.3a) for endurance tests, or a
flat profile (see Figure 5.3b) of crack growth tests.

Ry (or exponential profile)

2R2

2R1

L2 L1

Ry (or exponential profile)

2R1]

2R2

L2 L1

Figure 5.3. Profile example of a specimen working at 20 kHz
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Figure 5.4. Geometry of an axisymmetric endurance specimen

The geometry of the axisymmetric specimen is based on the following equations:

y(x):{ 2 i [5.8]
R1 Ch(OLX), x{[—Lzst]
[’TYRZ2 X{[LZ,L], X{[_L7_L2]
Sx)=my’ = [5.9]
mR? ch*(ox), x{[-L,,L,]
with:
0!=Larcch(£) [5.10]
L, R, ‘

The length L, has to be determined in order to obtain a fundamental resonance
frequency of the vibratory system at 20 kHz.

If we develop equation [5.8] with the boundary conditions, we then obtain the
analytical resolution of the resonance length given by the following equation:

L

arctg %{ b —(xth(ocLz)}

1
'K th (BL,

or p=+o’ -K’

[5.11]
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and the displacement, deformation and strain distributions at half the length of the
specimen (0 < x < L) within the elastic domain is developed below:

— catenary part:
-(0<x<Ly)
uch(x) = Ug ¢(L1,L2) sh (Bx)/ch (X x)
ech(X)=Ug &(L1,L2) [B ch (Bx) ch (& x) —~ & sh (Bx) sh (& x)]/ch 2 (ax)

och(x) = Eq Ug ®(L1,L2) [B ch (Bx) ch (x) —& sh (Bx) sh (@x))/ch

2(arx)
where:
&(L1,L2) = cos (KL,) ch (@ Ly)/sh ( BL,) [5.12]
— cylindrical part:
-(L2<x<L)

ucy(x) = Ug cos K(L —x)
gcy(x) = K Ug sin K(L ~x)
Ocy(x) =Ed K Ug sin K(L —x) [5.13]

At the center of the specimen (x = 0), the strongest deformation and strongest
strain can be written as:

emax(x) = U ¢(L1.L2) B
omax(x) =Eq Ug ¢(L1,L2) B
We can observe that the calculated strain is proportional to Young’s modulus,

which is one of the properties of the metal that we have to carefully determine under
a dynamic regime.

5.2.5. Calculation of the sonotrodes

The geometry of the chosen sonotrode is a rod with a constant section connected
to a variable cross-section whose dimensions can dramatically affect the
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amplification coefficient. Depending on the type of test (endurance, cracking, R = -
and R variable, room or cryogenic temperature, traction or compression, etc.) and on
the level of strain amplitude, we can choose the sonotrode with the most suitable
geometry.

Two types of sonotrode (see Figure 5.5) enable us to cover a large range of
applications. The so-called SC sonotrode is a standard device with an amplification
factor of 2.4. The TGD sonotrode is a high amplification sonotrode with an
amplification factor from 8 tol10. This allows us to obtain the highest stress within
the specimen at about 550 MPa in the case of steel for the SC sonotrode. For the
other sonotrode, the maximum stress that develops is about 2,200 Mpa.

Figure 5.5. SC and TGD sonotrodes

In the case of a cone-shaped sonotrode, there is no calculation that will enable us
to determine the resonance length in Eigen mode. The problem has to be resolved
using the finite element method.

A finite element equation is done using the following vibration equation:

[K] {u} = @2 [M] {u} [5.14]

where ®is pulsation equal to 2mf, [K] rigidity matrix as a function of the
temperature, {u} displacement vector or the intrinsic mode, and [M] mass matrix.

The sonotrodes are meshed, as shown in Figure 5.6. The boundary conditions are
u = 0 along the axis of the sonotrode and displacement towards this is free. As a
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consequence, the inertia force automatically moves in the direction of y to keep the
balance.

\o
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a) Meshing of the TGD sonotrode
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b) Meshing of the SC sonotrode

Figure 5.6. Meshing and boundary conditions of> a) TGD and b) SC sonotrodes

5.3. Systems of piezoelectric fatigue machines

The vibratory fatigue system illustrated in Figure 5.7 is made of several
elements:

— a Branson vibration generator that can reach a power of 2 KW and whose
frequency is calculated at 20 kHz. It gives a sinusoidal signal to the converter, which
triggers vibration;

— a converter to turn electric vibrations into mechanical ones;

— a sonotrode (amplifier) made of a cylindrical part followed by a cone-shaped
profile section. As the displacement amplitude of the converter is limited, the cone
allows us to increase the vibratory amplitude of the specimen in order to reach the
necessary strain. The specimen is fixed to the end of the sonotrode using a screw;

— a digital system made from a computer, a 16-channel and 12-bit A/D converter
(analog to digital) whose conversion rate is theoreticaily of 20 vs, and a 5-channel
and 12-bit D/A converter (digital to analog) in order to control the machine.

The computer controls the generator and converter in order to put a constant
strain amplitude on the specimen using an automation program that was specially
designed for vibratory fatigue tests. At the same time, the vibration frequency and
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vibratory amplitude of the head of the sonotrode (and therefore of the specimen) are
locked. The number of vibration cycles is memorized.

An optical fiber gauge or a capacitive gauge is used to directly measure the
vibratory amplitude at the head of the specimen. Its frequency ranges from 10 Hz to
70 kHz and it can measure displacements of 1 um to 199 pm with a resolution of

0.1 wm. We can also perform some vibratory fatigue tests with an average load equal
to zero (R =-1).

i e e e e Branson BA | Frequency: 20kHz + 50 Hz and
- automatic continuation
© Power: 2 kW
Power A
Frequency Amplitude
Amplitude ‘ instruction
A/D D/A

16 track A/D and 2 track D/A
Resolution: 12 bits

Figure 5.7. General view of a piezoelectric and vibratory fatigue device

Using a traction machine, which allows us to exert a constant traction on the
specimen without preventing the resonator from working and producing vibrations,
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we can carry out vibratory fatigue tests with an average loading different to zero (R
being variable).

5.4. SN curves above 10 cycles
5.4.1. General aspects of SN curves

Currently the results of fatigue tests 107 are pretty rare because of the cost of
operating conventional machines. It is worth noting that the fatigue tests are
accelerated by resonance machines, but these were not popular. One of the
drawbacks of resonance machines is that control of the test parameters along with
the resonance machines are now being replaced with computer control and high
speed sensors.

Nowadays there are some very reliable fatigue machines that can produce 10"
cycles in less than a week, whereas the conventional systems led to tests taking over
three years for a single specimen.

For this reason, we may wonder whether we need to apply the rules in order to
determine a reliable fatigue limit at 10" cycles from a statistical approach or not, or
if we need to determine a SN curve up to 10'° cycles and more.

We have selected four examples to convince the reader that a crack may occur
due to fatigue after 107 cycles and that the SN curve does not present any asymptote.

The first example, given in Figure 5.8, presents an SN curve that has been
determined up to 10° cycles, at 20 kHz, 300 K and R = -1 for various forging types
of a 6,246 titanium alloy and, as a consequence, for the different microstructures.

Within these titanium alloys, where there are neither inclusions nor porosity, it is
particularly striking that cracks can occur up to 10° cycles and that there is no
horizontal asymptote as predicted by the models inspired by Woéhler. The initiation
strain at 10° cycles is much lower than the conventional fatigue limit at 10° cycles
(100 to 200 MPa).

Finally, we note that the microstructure of titanium has a significant impact on
very long lifespans (325 to 490 MPa at 10°cycles).

The second example (see Figure 5.9) confirms that there is no asymptote and that
fractures occur at 10° cycles within titanium alloys subjected to cyclic strains at
20 K, into liquid hydrogen or helium, either with R = -1 or with R = 0.1.
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Figure 5.8. Influence of the forging range on the fatigue of a titanium alloy
at a very high number of cycles (6,246); T = 300K, -R = -1, - f = 20 kHz
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Figure 5.9. Test results at R = 0.1 and R = -1/TA6V PQ at 20 K

Finally, Figures 5.10 and 5.11 present the results of very long lifespan fatigue in
the case of nickel alloys at room temperature and at 450°C. No asymptote is
detected at any temperature. The alternate strain at the fracture seems to be two
times lower at 10"° cycles than at 10° cycles in Udimet 500.
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Figure 5.10. SN curve of Udimet 500 at room temperature, 20 kHz and R = -1
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Figure 5.11. SN curve of the N18 alloy at 450°C, 20 kHZ, R=0

In order to generalize gigacycle fatigue, several types of alloys have been chosen
whose behavior is known to be different under gigacycle fatigue. All of these alloys,
details of which are listed in Tables 5.1 and 5.2, are of obvious interest in industry.
Micrograph images of these alloys (steels, cast irons and foundry aluminum alloys)
are shown in Figures 5.12 to 5.21.



5.4.2. Case of ferrous metals

5.4.2.1. Steels and cast irons
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Nuance C Mn P S Si Al | Fe | Mg | Ni Cr Cu | Mo
SAE 8620 | 0.183} 0.62 | 0.01710.027|0.324 1.768 | 0.481 0.243
D38MSV5S | 0.384 | 1.23 [ 0.012(0.064 | 5.67 | 0.025 0.063 0.063 | 0.018
XC 170 0.669 | 0.568 | 0.011 ] 0.062 | 0.158 | 0.002 0.071] 0.136 | 0.127 | 0.21
408i7 0.392 | 0.62 | 0.008 | 0.004 | 1.608 | 0.014 0.092 | 0.125 [ 0.115 ] 0.036
100 Cé 1.03 | 0.339 | 0.012]0.008 | 0.242 0.147 | 1.461 0.032
SuUJ 2 1.01 | 0.36 [ 0.012 | 0.007{ 0.23 0.04 145 | 0.06 | 0.02
3ISMV7 0.344 { 1.813 | 0.011 |1 0.074 | 0.247 | 0.22 0.189 | 0.213 [ 0.256 | 0.044
42CD4 0.428 | 0.827 1 0.012 | 0.024 | 0.254 | 0.023 0.173 | 1.026 | 0.21 | 0.224
SAF 2507 | 0.03 2 1 5 22 32
SAF 2205 | 0.03 1.2 0.8 7 22 48
Fonte
GS 51 3.65 0.5 2.49 0.04 0.7
AS5U3G 0.32 5.1 0.5510.36 315
Table 5.1. Chemical composition of the alloys studied (% weight)
Ed 20
E, d R, Ry R, A .
(GPa) KHz (MPa) |(MPa) |(MPa) | (%) d HV3, Microstructure
(GPa)
SAE 8620 204.8 720 26 7.85 25% ferrite + perlite
D38MSV5S 211.5 439 608 878 20 7.85 | 246 | 45% ferrite + perlite
XC170 210 [217.9 | 463 513 9272 | 8.12 7.85 (304 | 10% ferrite + perlite
40si7 | 213 838 | 1,041 | 1,677 | 09 | 7.85 |432 10% ferrite +
martensite
100 Co6 210 1,158 | 2,300 7.86 | 780 martensite
SuUl 2 210 2,316 7.86 |778 martensite
3sMV7 208 447 632 894 5.51 7.85 (294 bainite
100 G6 210 1,179 2,358 7.86 | 704 bainite
42CD4 210 754 1482 | 1,508 | 2.71 7.85 |469 martensite
42CD4 210 517 963 1,035 | 6.39 7.85 |[335 martensite
SAF 2507 200 956 372 7.80 | 470 [55% austenite + ferrite
SAF 2205 200 723 48.2 7.80 | 297 |45% austenite + ferrite
f;osnstf 169 | 397 | 460 | 795 9 | 7.10 [265 | 5% ferrite + perlite
71 111 182 222 1 2.70 198.6

Table 5.2. Mechanical properties of the studied alloys
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We have chosen a wide range to cover several steel families that are known to
give an asymptotic SN curve. The properties, chemical composition and
microstructure are mentioned here in order to facilitate the interpretation of the
results (Tables 5.1 and 5.2). It seems that this review is necessary as the
microstructure and microdefects are of primary significance in understanding crack
initiation under gigacycle fatigue.

The micrographs of Figures 5.12 to 5.20, taken after polishing with 1um alumina
and etched with Nital, show ferrito-perlite, austenite-ferrite, martensite, bainite or
cementite microstructures in order to demonstrate to the reader that there is no steel
capable of escaping gigacycle fatigue.

Figure 5.12. SAE 8620 ferrite-perlite steel

Figure 5.14. XC70 ferrite-perlite steel



Gigacycle Fatigue 195

Figure 5.15. 100C6 steel

Figure 5.16. Bainitic 35MV7 steel

Figure 5.17. Ferrite-martensitic spring 40Si7 steel

Figure 5.18. 42CD4 steel
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Figure 5.19. SAE 2507 steel

Figure 5.20. Cemented SAE 8620 (430 um) steel

5.4.2.2. Experimental results and comparison of results obtained under ultrasonic
fatigue with those of classical methods

Within the 8620 ferrite-perlite steel, failure through gigacycle fatigue will always
occur between 10° and 10'° cycles. Initiation occurs at the surface before reaching
107 cycles and, in the core, this part of the lifespan SN curve is really flat, but the
fatigue strength may drop and reach 35 MPa between 10° and 10'° cycles, see Figure
5.21.

Figure 5.21. GS 51 cast iron
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Figure 5.22. SN curve in the case of SAE 8620 at R = -1 and 20 kHz
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Figure 5.23. SN curve in the case of XC 70, R = -1 at 20 kHz and 35 Hz
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XC70 ferrite-perlite steel can crack under fatigue between 10° and 10° cycles,
with a drop in resistance of about 75 MPa. We note that there is a slight difference
between the results obtained at a high (20 kHz) and a low (35 Hz) frequency, see
Figure 5.23.

Within D38 ferrite-perlite steel, fatigue failure occurs up to 2.10% cycles but not
beyond. In this case, five tests were carried out at up to 10'® cycles in order to make
sure that an asymptote would appear. Nevertheless, we can observe a 100 MPa drop
between 107 and 2.10°. We do not observe any frequency effect between the tests
carried out at 35 Hz and 20 kHz.

Under tension-tension, we find that the D38 ferrite-perlite steel fatigue resistance
drops down to 275 Mpa, with a very large distribution. The results of tension-
tension fatigue at 35 Hz and at 20 kHz drop into a distribution band of about
100 MPa, which remains a significant but usual distribution under conventional
fatigue. Whereas with R = -1 we can observe a fatigue limit after 2.10® cycles, with
R = 0.1, a fatigue limit is reached as soon as 6.10° cycles (see Figures 5.24 and
5.25).
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Figure 5.24. SN curve of D38 steel, R = -1, at 20 kHz and 35 Hz
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Figure 5.25. SN curve of D38 steel, R = 0.1, at 20 kHz and 35 Hz

The family of bearing steels, regardless of their origin, displays a particular
aspect of gigacycle fatigue for industrial as well as scientific reasons. Martensitic or
bainitic steels, whether notched (k, =2.2) or not, of 100C6 type, can crack under
fatigue beyond 10'° cycles! The notion of fatigue limit obviously loses any practical
meaning in such cases (Figures 5.26 and 5.27).

It is therefore interesting to compare the SN fatigue curves obtained under
rotating-bending and traction-compression strain.

In the Japanese literature, a large number of results were obtained under rotating-
bending strain, giving a SN curve with a plateau, which is considered to be the
transition of gigacycle fatigue.

As long as it remains difficult to detect this plateau under axial loads, we can
assume that the plateau is related to the calculation of nominal strain under rotating
bending when initiation is internal.
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Figure 5.28. SN curve of the SUJ2 steel at R = -1, under tension-compression, at 20 kHz
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Figure 5.29. SN curve of the SUJ2 steel under rotating bending



202 Fatigue of Materials and Structures

The curve of the bainitic 35MV7 steels presents a low slope within the gigacycle
domain, with a shape that is almost asymptotic, the initiation always occurring
within the sub-layers at up to 10® cycles. As the distribution/dispersion is quite
significant, no influence of frequency is observed (see Figure 5.30).
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Figure 5.30. Fatigue results of 35MnV7 steel R = -lat 20 kHz and 35 Hz

The ferrite-martensitic spring 40Si7 steels can crack due to fatigue beyond 10°
cycles (Figure 5.31). The dispersion/distribution is rather important, as the SN curve
is really flat. The results obtained under gigacycle fatigue do agree with the ones
obtained under megacycle fatigne. As a consequence, a frequency effect is
discarded.

The case of 42CD4 steels (Rm =1,510 MPa) is especially interesting because of
the difference between the results depending on the direction of sampling.
Lengthwise, the fatigue resistance at 10° cycles is 0.45 R; it drops down to 0.33 R
crosswise, where the dispersion of the results is very high and related to the
distribution of thick inclusions (see Figures 5.32 and 5.33).

The austenite-ferrite SAF2507 and 2205 steels also show that cracking due to
fatigue can occur above and beyond 10° cycles. We do not observe any influence of
frequency between 140 Hz and 20 kHz (see Figures 5.34 and 5.35).
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Figure 5.31. SN curve of 40Si7steel, R = -1, at 20 kHz and 30 Hz
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Figure 5.32. Fatigue of the 42CD4 steel, Rm = 1510 MPa, crosswise, R = -1, at 20 kHz
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Figure 5.33. SN curve of 42CD4, Rm = 1035 MPa, crosswise, R = -1, at 20 kHz
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Figure 5.34. SN curve of the SAF 2205 steel, R = 0, at 20 kHz and 140 Hz
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Figure 5.35. SN curve of the SAF 2507curve, R = 0, at 20 kHz and 140 Hz

The SAE 8620 steel cemented between 0.4 and 0.8 mm thickness cracks under
gigacycle fatigue beyond 10° cycles following a very steep and dispersed SN curve.

We can see that the infulence of cement thickness on fatigue strength is slightly
less obvious under gigacycle fatigue than under rotary/rotative bending, as no
difference is detected before 10° cycles (see Figures 5.36 and 5.37).

We might then think that cementation has no effect on fatigue strength after a
billion cycles.

Nodular cast iron also cracks under gigacycle fatigue up to 10'° cycles under
alternate and undulating tractions. The SN curve is almost flat but failure can occur
at up to 10" cycles, which means that there is no infinite lifespan for car industry
pieces made of nodular cast iron.

We do not observe any frequency effect between 20 kHz, 30 kHz and 30 Hz (see
Figures 5.37 and 5.38).
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Figure 5.38. SN curve of nodular cast iron GS51, R = 0.1, at 20 kHz and 35 Hz
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5.4.3. Case of aluminum alloys

The AS5U3G-Y35 aluminum alloy, like steels and cast iron, is a material that is
widely used in the construction of car industry pieces. This aluminum cast iron is
mainly used to manufacture engine cylinder heads.

Tables 5.1 and 5.2 show the chemical composition and the mechanical properties
of the aluminum alloy. Figure 5.40 shows the aspects of the microstructure (chemical
etching with 5% fluorhydric acid for 30 seconds and polishing with 1 um alumina).
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180 4 ® 35 Hz
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Figure 5.40. a) Microstructure of the AS5U3G-Y35 alloy; b) SN curve
up to 10" cycles. Tests at various frequencies and R = -1
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We can see that, as is expected for aluminum alloys, there is a significant drop in
fatigue resistance between 10° and 10° cycles.
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Figure 5.41. SN curves of aluminum foundry alloys within the gigacycle domain,
compared to the SN curve of ASSU3G, at 20 kHz

5.5. Initiation mechanism under gigacycle fatigue

Observations show that initiation at the surface becomes less frequent after
and/or beyond cycles, whereas typical localization of the initiation site within the
metal is a characteristic of long lifespans. If the initiation of fatigue cracks occurs at
the surface, however, it is due to the planar strain effect and to the von Mises
plasticity criterion. Nevertheless, from a load that is low enough, the surface
plasticity tends to be evanescent and only the localized strain concentration around
the defects can lead to nucleation of a crack.

Mughrabi [MUG 07] suggested that the nucleation mechanism at the
microscopic scale is almost the same whatever the fatigue regime, but what changes
is the localization of the permanent slip bands. As the likelihood of getting a defect
within a volume is higher than the chance of a defect at the surface-envelope,
internal initiation under gigacycle fatigue can easily be understood. Nevertheless,
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the defects of a metal are various, an inclusion having a different behavior
depending on the porosity or defect of a microstructure [BAT 05, WAN 98].

A discussion dealing with a few specific cases is presented in the following
section.

5.5.1. Non-metallic inclusions

Non-metallic inclusions lead to an internal initiation within high-strength steels
and nickel alloys with really long lifespans. This is also the case for some foundry
alloys, such as cast iron, and some alloys resulting from powders that are used in
metallurgy (see Figures 5.42 to 5.49).

Figure 5.42. Marensitic 100C6 steel, Ac= 960 MPa, Ny= 1.0816 X 1 0 cycles at 20 kHz,
R = -1: a) internal initiation of failure; b) inclusion (2.8% MgO + 2.2% Al,0;
+ 47% CaO + 48% SiO), ap = 20 um, a = 608 um and h = 371 um
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Within the three chosen steels, 100C6, 4240 and SAE 8620, initiation occurs at
an inclusion. Even in the case of cemented steel, cracking is initiated in the core and
bears the shape of a fish eye.

Figure 5.43. Martensitic 42CD4 steel with lengthwise inclusions, Rm = 1,530 MPa,
Ao =760 MPa, Ny= 5. 75.10° cycles, 20 kHz, R = -1,
internal initiation on an inclusion, ag= 20 um

Later on, we will see that g, is the radius of the circumscribed circle around the
inclusion corresponding to the corner of the Paris curve at the cracking threshold.
Letter / gives the distance of the inclusion at the edge and «a is the radius of the fish
eye when the regime is unstable.

5.5.2. Metallurgic defects within the matrix

Within some alloys like titanium or some other ferrite-perlite steels,
microstructure defects such as the grain size prevail over the inclusions as initiation
sites of gigacycle fatigue cracks. This is the consequence of the presence of two
phases that possess different tensile strengths. Within steels, the initiation site is
related to the size of the ferrite grains, and within titanium alloys the large platelets
are involved. There is then a microplasticity localized within the less resistant
grains.

5.5.3. Microporosities

Beyond 10’ cycles, porosity is the most frequent cause of crack initiation within
cast alloys. Microporosities can occasionally trigger initiation within powder
metallurgy alloys and rarely within wrought alloys presenting a dual phase matrix.
Sometimes porosities can be associated with inclusions.
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Figures 5.46 and 5.48 illustrate this type of initiation, which occurs either at the
surface when there are many porosities, or within the core, which is within the sub-
layer most of the time.

Figure 5.44. SAE 8620 (20NiCrMo2) cemented steel, 0.81 mm of the cemented layer,
Ao =570 MPa, Ny= 4.6603 X 107 cycles, 20 kHz, R = -1, internal initiation of the
Sailure, inclusion (SiO; + AL,03), ag= 34.5 um, a = 1024 um and h = 1,010 pum:
a) the defect in the steel; and b) a close-up of the defect
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Figure 5.45. SAE 8620 (20NiCrMo?2) ferrite-perlite steel, Ao = 290 MPa, N~ 2.3072 X 1 o’
cycles, 20 kHz, R = -1, internal initiation, microstructure (ferrite grain), ay= 10.9 um,
a =846.8 um and h = 576 um: a) the defect in the steel; and b) a close-up of the defect
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Figure 5.46. Titanium alloy 6246. Internal initiation on large platelets a related to the
Jorging range; a) the defect in the titanium alloy, and b) a close-up of the defect
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b)

Figure 5.47. SAE 8620 (20NiCrMo2) ferrite-perlite steel, Ac = 305 MPa, Ny = 2.0854 X 1 g
cycles, 20 kHz, R = -1, internal initiation of the failure, microporosity, ay= 19.8 um,
a =531 umand h = 317 um: a) the defect in the steel; and b} a close-up of the defect
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Figure 5.48. GS51 ferrite-perlite cast iron, Ao = 250 MPa, Ny= 1.0131 X 1 0 cycles,
20 kHz, R = -1, internal initiation of the failure, microporosity, ag= 431 um
and h = 1,000 um:a) the defect in the steel; and b) a close-up of the defect
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b)

Figure 5.49. Aluminum AS5U3G-Y35, Ac = 60 MPa, Ny=1.929 x| 0’ cycles, 20 kHz,
R = -1, internal initiation, microporosity, a) the defect in the aluminum,; and
b) a close-up of the defect
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For a large range of alloys, we can conclude that the initiation for very-high
cycle fatigue (between 10° and 10'° cycles) is mainly governed by the following
internal initiation mechanisms:

— From non-metallic inclusions with a size of g, (um) within homogenous matrix
alloys, cast ones (GS51 cast iron) and occasionally within dual phase matrix alloys,
where in summary we have:

- D38MSVS5S ferrite-perlite steel: 13.5 < gy (Wm) < 46,
- 100C6 martensitic steel 2: 10 < gy (um) < 26,

- 100C6 martensitic steel SUJ2: 6.7 < gy (um) < 20.3,
- 100C6 bainitic steel: 5 <ay (um) < 22,

- 42CD4 martensitic steel, inclusions in transverse direction, Rm = 1,508 MPa:
25.5X36.8 <a,(Uum) <223.8 X21.8,

- SAE 8620 steels with 0.41 and 0.83 mm of carburized layer: 21.8 < g, (um)
<66.8,

- GS51 cast iron (graphite): 73 < a, (Wm) < 138;

— From big grains within the matrix with a size of a, (Wm) (mainly ferrite grains)
within the dual-phase alloys and occasionally within the homogenous matrix of the
alloys, we have:

- SAE 8620 ferrite-perlite steel: 6.3 < a, (um) < 34.6,

- D38MSVS5S ferrite-perlite steel: 27 < ay (um) < 119,

- XC70 ferrite-perlite steel: 21.4 < ay (um) < 29,

- 100C6 martensitic steel 2: 17 < ap (Uum) < 20,

- 100C6 bainitic 2 steel: 17 <ay (um) <21,

- 40Si7 martensitic steel with ferrite traces: 8 < ay (Uum) < 44,

- SAE 8620 steels with 0.41 and 0.83 mm of cemented layer: 21 <a, (um) <41.9;

— From microporosities within cast alloys, such as the GS51 cast iron and
AS5U3G-Y35 aluminum. Nevertheless, in some cases, we can find that initiation
occurs from the porosities within a dual-phase matrix as well as from a homogenous
matrix.

Within ductile cast iron and some alloys coming from powder metallurgy,
complex initiations simultaneously involving porosity and inclusion frequently
occur.



Gigacycle Fatigue 219

5.6. Assessing fatigue strength

5.6.1. Comparison between the staircase, Bastenaire, Wohler, Basquin and
Stromeyer/linear methods

The results from gigacycle fatigue were treated using an agreed standard
statistical method. This is not in order to predict a hypothetic fatigue limit with an
infinite life span, but to validate the dispersion results. In order to compare the
different statistical methods used in fatigue, we propose to calculate the fatigue
strength and find the most efficient method.

Several equations can be obtained using the ESOPE software that describes the
possible different behaviors:

— Stromeyer/linear model: N = A/(S — E);

— Bastenaire model: N = A Exp [-((S — E)B))/[S - E};
— Wohler model: LogN=A S + B;

— Basquin model: Log N =A Log S + B.

The staircase method can also be described using the ESOPE software.

Calculations have been developed on different levels, with lifespans ranging
from 10® to 10' cycles. The methods indicated above are applied in order to
determine the fatigue strength op with a probability of failure of 50% and standard
deviation s.

Theoretically, op at 10° cycles, minus 3s, should be equal to or lower than o, at
10° cycles, which is not the case for some alloys. We found that the Bastenaire
model best suits the experimental results. The Wohler and Basquin models are also
correct, as long as the SN curve presents a constant decreasing slope. If this is not
the case, a curve presenting two different segments is necessary (see Figure 5.49).
This type of model is associated with the staircase method and will allow us to
obtain the fatigue strength op (50%) at the expected lifespan, as recommended by
international standards.

The results show that in general the Wéhler curves determined under megacycle
(regular) fatigue on one hand, and under gigacycle fatigue on the other, are in
agreement with the cross-check domain (~ 107 cycles), thus validating the use of
high frequency vibratory fatigue.
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Nevertheless, this is not the case with endurance limits determined by these two
methods: the endurance limits determined under gigacycle fatigue are usually lower
or at best equal to the ones measured under megacycle fatigue. The difference
between the two fatigue limits is not constant and strongly depends on the material.

o Log N=-6.24 Log Gmax+35.38

Log N=-17.5 Log Gmx+ 84

1,E+04 1,E+05 1,E+06 1,E+07 1,E+08 1,E+09 1,LE+10 1,E+11
N¢ (cycles)

Figure 5.50. Fatigue SN curve with two different segments for aluminum AS5U3G-Y35,
R =-1, 30 Hz, 20 kHz and 30 kHz

Figure 5.51 presents the fatigue strength drop at 107 and 10" cycles for some
materials, that is to say regarding the fatigue limit measured at 10’ cycles:
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which is represented by:

Ao,

Oy



Gigacycle Fatigue 221

Observing the results in Figure 5.52, we can see that the drop in fatigue strength
depends on the traction as well as the microstructure, that is to say on the chemical
composition, thermal treatment, processing, etc., at the same time.

5.6.2. Kitawaga diagram under gigacycle fatigue

Kitawaga proposed an approach that enables us to appreciate the relative role of
the matrix and defects on the fatigue strength of materials.

The Kitawaga diagram is a simple and efficient tool that can be used by
engineers. It is useful in the analysis of the evolution of fatigue strength op (50%) at
10" cycles as a function of the size of the defect localized within the initiation zone.

The Kitawaga diagram brings to light two different domains, as shown in Figure
5.51:

— the domain where fatigue strength is ruled by the matrix; and

— the domain where fatigue strength is ruled by the defects.

Evolution of the endurance limit between 107 and 1019 cycles
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Figure 5.51. Evolution of fatigue strength between 1 0" and 10" cycles for different materials
at the tensile strength level (results obtained when R = 0.1 and R = 0).
The staircase method of statistical calculation was used



222  Fatigue of Materials and Structures

10,000 -

) Ry, ~ 2,500 MPé * 2
Ry~ LS00OMPa .,

‘-E; L0 3 b e st Rin = 2:000-MP&
o 1 :

T~ the matrix 04~Ra/2 |

o ——+ et L PR G L e
1 10 100 1,000
Default diameter @ (pm)

Relationship between the fatigue limit and the default size, according to Kitagawa (obtained on
inclusions, surface defects (lamination, manufacturing, rectification), for a wide range of material).

Figure 5.52. Relationship between fatigue strength and
the size of the defect, according to Kitawaga

5.6.3. Assessment of initiation fatigue life using the ITMA model and Paris-
Hertzberg law

The observations made on the initiation mechanisms with really long lifespans
show that the almost circular fish eye, centered on the defect, typically characterizes
the domain of gigacycle fatigue. The formation of a fish eye corresponds to a
number of cycles much higher than 10° to 107 cycles. As cracking will occur within
a domain of short cracks and depending upon the cracking threshold, it is worth
integrating the Paris-Hertzberg equation [5.15] which seems to suit these conditions.

Paris, Tada, and Bathias have shown, from the model represented in Figures 5.43
and 5.53, that for most of the materials studied under gigacycle fatigue the crack
growth within the fish eye is low, compared to the very long fatigue life reached
until the final failure occurs [BAT 05].
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The Paris-Hertzberg law is written as:

3
da _, AK,, [5.15]
dN Eb

The equation of the strain intensity factor for a circular line is given by:
2
AK =—Ao~ra [5.16]
V4

Integration of equation [5.15], from the threshold crack propagation corner AKX,
corresponds to an initial circular crack with a radius a, (see Figure 5.42). By
replacing the subsequent equations and integrating from ay to afnqi. Using the ITMA
results, Paris obtained an equation that is capable of predicting the number of cycles
necessary for crack growth inside the fish eye. This equation is:

2
N, =-TE [5.17)
2(Ao)

The part of the number of cycles relating to growth of an internal crack within
the fish eye Ny is usually much lower than 1% of the total fatigue life within the
gigacycle regime. This was the case for the results obtained at the ITMA, with few
exceptions, as shown in [PAR 04]. Some more complex calculations considering the
short-to-long crack transition do not bring any significant modifications to the
magnitudes obtained by the above equation, which has the advantage of remaining
very simple.

It is quite obvious that as soon as the fish eye appears at the surface the crack
becomes unstable, as failure occurs rapidly. If the formation of the fish eye is very
short, it implies that initiation of the crack around the defect is the main phase of the
gigacycle regime. In order to experimentally check this model, confirmation was
given by a thermo-graphical study in some fatigue tests. An example illustrating
these results is given in Figure 5.54. From this we can see the thermal dissipation
occurring at the beginning of crack propagation within the fish eye, right at the end
of the test.

Thermal dissipation can easily be measured within an aluminum alloy where the
fish eye is visible before crack propagation. The phenomenon is the same in the case
of steels but is harder to observe. As a consequence, it appears that fatigue strength
within the gigacycle regime is ruled by initiation of the microcracks around any
defects, as the influence of other factors like hydrogen is not necessary. This is why
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it appears that the area called ODA attributed to the influence of hydrogen could
also be related to the transition from a short to long crack.

12 5
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Figure 5.54. Thermo-graphical test highlighting thermal dissipation in ASSU3G:
a) beyond 107 cycles; and b) at the formation of the fish eye

5.6.4. Prediction of fatigue strength using the Murakami model

Murakami [MUR 90, MUR 94, MUR 96, MUR 98] proposed an equation to
predict the fatigue strength of steels. This equation is determined from the cracking
threshold and the size of the defect (equation [4.18]). To use this equation, we have
to know the Vickers hardness of the material and square root of the area of the initial
size of the defect at the center of the fish eye:

- =1.56(HV+120)[1—R} [5.18]

w (M)I/G 2

where:

- C: 1.56 for internal defects;
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— oy: fatigue strength (MPa);
—R: loading ratio, = 0.226 + Hv.10™,

Within the gigacycle regime, coefficient £ can be adapted to incorporate the
number of cycles:

o =ﬂ(HV+120){1—R} [5.19]

(Varea)V® 2

where:
—B=3.09-0.12 log Nrfor the internal inclusions or defects;
—B=2.79 - 0.108 log Ny for the inclusions or the defects at the surface.

The prediction of fatigue strength provided by using Murakami’s parametrical
model is an interesting and practical approximation for the engineer. Nevertheless,
we can see in the results published in [MUR 90, MUR 94, MUR 96, MUR 98] that
the error between experience and prediction can sometimes reach 26% and is often
of about 10%.

5.7. Conclusion

The discovery of gigacycle fatigue at the end of the 1980s cast doubts on
international standards and calculation codes. For instance, we can no longer design
mechanical components based on the concept of an infinite fatigue life of over a
million cycles. Even if the fatigue strength gap is low (between 1 million and
1 billion cycles), the approach to fatigue is still modified due to gigacycle fatigue.

Finally, we can consider the elasticity limit at 0.2% to be a design criterion
because a high number of elastic cycles, regarding the von Mises criterion, leads to
very localized microplasticity and failure within the metal. For this reason, a local
approach seems mandatory.
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Chapter 6

Fatigue Crack Growth Laws

6.1. Introduction

In order to predict the fracture of mechanical components stressed under fatigue,
many laboratories have tried, for practical reasons, to establish empirical crack laws
that are useful for design. Some laws result in theoretical models and some models
are just descriptive. Some hypotheses are approximate, and some models try to
isolate and understand the behavior of cracks under fatigue. We can place the
parameters involved in cracking into two categories:

— intrinsic parameters that depend on the material: Young’s modulus, elasticity
limit, cyclic properties and the metallurgic state of the material;

— extrinsic parameters that depend on the test conditions for any material being
tested: temperature, frequency, environment, dimensions of the specimen, load ratio
R, etc.

Nevertheless, we should note that the influence of these last parameters depends
on the material being studied and its state.

Chapter written by Jacques MASOUNAVE, Jean-Paul BAILON and John-Ivan DICKSON.
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6.2. Models describing crack propagation

Models that try to describe the propagation of a crack should consider all of the
parameters relating to propagation within a given material. Initially engineers wrote
down the empirical equations that, as accurately as possible, described the effect of
various parameters on propagation rate: these are the phenomenological models,
whose number increased significantly between 1969 and 1980. We will now
distinguish some important types of model and briefly explain them by way of
examples.

6.2.1. Phenomenological models

Using an empirical approach, these models try to describe the variations that
were experimentally observed in the simplest manner. Usually, the principle is to
isolate and transcribe the effect of these parameters on growth rate itno equations.

In 1963, Paris and Erdogan [PAR 63] proposed a law that is probably be the
most useful in practice. The authors used some modifications of the notions of stress
intensity factor, K, developed by Irwin [IRW 57]. Calculation of X is applicable
only to brittle and semi-brittle materials. Thus, plastic materials are not usually
included. As long as plasticity remains low, calculation of K remains acceptable.
Paris and Erdogan proposed:

qa_ g [6.1]
dN

In the case of their material (2024-T3), the value of exponent m is 4. Usually,
most results obtained in the laboratory are expressed using equation [6.1]. If this
equation allows us to present the results in a simple manner, it does not precisely
reflect the influence of intrinsic or extrinsic parameters on propagation phenomenon.
It does not describe the behavior of the crack close to ultimate failure or at the
threshold of non-propagation 4K, either (see Figure 6.1). Nevertheless, it allows
us to perform a simple calculation in order to predict the propagation time. When
K.nax becomes higher than 0.7 K, Paris’ equation under-predicts the crack growth rate

[LIN 78].

The opposite applies when 4K tends towards A4K,: Paris’ equation over-
estimates the propagation rate.

Several authors have since tried to modify equation [6.1] in order to take these
boundary conditions into consideration and integrate parameters such as the load
ratio R or K,,,x.
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Broek and Schijve [BRO 63] proposed an empirical equation:

da aK Y [6.2]
———:( — _‘ R .
dN I(J—R) e (-C, k)

where C, and C, are parameters that are characteristic to the material and have to be
determined.
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Figure 6.1. Representation of the propagation rate of a crack da/dN as a function of the
strain intensity factor AK. Region A = low cracking rate (threshold),
region B = intermediate regime (Paris equation) and
region C = high cracking rate (Kc)

When R = 0, this equation leads to:
==, AK? [6.3]

Experimentally, we can observe that the exponent m of Paris’ equation can vary
from 2 to 6 for most materials. In addition, equation [6.2] only involves the effect of
R on the parameter C of Paris’ equation. This was experimentally observed by Broek
and Schijve for several aluminum alloys (2024-T3 and 7075-T6).
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Similar observations can be made for the equation proposed by Frost and
Dugdale [FRO 68]. These authors studied several materials (mild steels, stainless
steels and aluminum alloys). From dimensional analysis considerations and the
analysis of their experimental results, they proposed the following equation:

22 _(P+Qo).dc’a [6:4]

with P and Q as adjustable parameters. They also noticed that steels are often not
that sensitive to the influence of the mean/average stress (Q ranging from 0.8 to 4.4).
This variation in the behavior of steels and aluminum alloys towards the mean strain
o was confirmed experimentally.

Forman et al. [FRO 67] observed that equation [6.4] is not valid for fracture
when K = K, and thus, they proposed an empirical equation:

da _ _ CAK" 6.5]
dN (1-R)K, - AK

This equation has been confirmed many times in the case of aluminum alloys
[BAT 76, CRO 68, HUD 69], but does not appear to correctly describe the behavior
of steels [YAH 74] where the influence of the ratio R observed is less than the
Forman equation expects.

Pearson [PEA 72] noticed that the Forman equation works best for thin
aluminum alloy specimens that are thin and that the rate calculated using equation
[6.5] depends mainly on the value chosen for K.

Erdogan and Ratwani [ERD 70], on observing that the Forman equation does not
describe crack growth behavior for low crack growth rates when AK tends towards
AK,,, proposed the following equation:

da _CU+P)* (4K — AKy)"
dN K. ~(+p) 4K

[6.6]

with:

where C, m and «&/represent experimental parameters.
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Sperr [SPE 77], starting from the same observations, proposed the equation:

da _ . (AK-AK,)" [6.7]

dN (1-R) K, -AK

This equation is valid on three high-strength alloys, except for a small change in
rate.

Nicholson [NIC 73] applied the same analysis the previous authors had: he
wished to describe the whole cracking curve. He thus proposed the following
empirical equation:

da _ {(A_KM} [6.8]
dN (K,-K,,)

Richards and Lindley [RIC 72] proposed an equation close to the one Nicholson
introduced:

da _ , (4K - 4K, )"

PR —— (Kc —KM) [6.9]

where o is the “fracture” stress of the material.

The above equation is obtained from the modifications of Bilby ef al.’s theory
[BIL 63]. This equation has the advantage of correctly describing the high and low
propagation rates, but parameter o (the strength of the material) is not well defined
(0w, 03 O, etc.).

We should note that the influence of X,... on equation [6.9] is only important
when the values of K, are high, which is usually accepted [LIN 78, RIC 72]. This
influence can usually be explained by the appearance of “static” fracture modes,
such as microcleavage or intergranular fracture.

Fitzgerald [FIT 77] studied the influence of R using a different approach. He
followed the work of Elber [ELB 70, ELB 71] and looked at a wide variety of
materials fatigued at two different ratios, R; and R, both of which have propagation
rates proportional to a certain “efficient” strain intensity factor:
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() k),

= [6.10]
(4] (o),
dN &,
where:
AK ;= AK - 4K, [6.11]

AK, is the apparent threshold, which is essentially a fitting parameter to be
determined between the measured and the calculated values. When all of the
equations obtained with different values of R were incorporated into the equation
obtained when R = 0, Fitzgerald obtained:

da .
— | =CK"™? (AK-AK, 6.12
(dN )R max ( 0 ) [ ]

He verified that this equation was applicable to steels (A514, A316), aluminums
(7075-T6, 2024-T3) and titanium alloy (Ti-6AI-4V) was valid. He also integrated
the effect of the environment, considering:

da m-2 2
— | =CK K, -K)(-R 6.13
(dN JR max ( max ““e ) ( ) [ ]

where parameter K, is the effect of the environment.

Sullivan and Crooker [SUL 76a, SUL 76b] also used the notion of AK.
developed by Elber [ELB 70, ELB 71]. They do not give any physical sense to the
effective intensity stress intensity factor, however. As in most models using the
notion of AK4, they define:

4K

s =U.AK [6.14]

In order to calcuiate U, they define:

AK  =(1-bR)K,,, [6.15]

where b is a constant. Knowing that, by definition, AK = (/ - R} K, they obtain:
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ﬁizA(ﬁfEYAKm [6.16]
dN I-R

This equation works fairly well for sinusoidally cycled aluminum alloys, and for
some cycled high-strength steels under a loading spectrum [CLE 78, MAS 76, OGU
77, PIT 74, RIC 74, SHI 77]. Constant b, however, does not have a physical
meaning and remains a fitting parameter.

6.2.2. Models based on dislocation theory

During the 1960s and 1970s, several theoretical models appeared that attempted
to calculate the propagation based on crack tip dislocation movement [BIL 63, DUG
60].

The best known of these models is probably the one developed by Bilby et al.
[BIL 63], which considers a crack under plane strain and calculates the
displacements at the tip of the crack.

The effect of stress concentration creates some forces that can take dislocations
out of the plasticized zone. A friction force that Bilby et al. associated with the
elasticity limit of the material acts against this movement. The authors calculated the
equilibrium that occurred and then deduced the displacement, which was calculated
for each cycle. When this sum of displacements reached a critical value, the crack
propagated by release of the accumulated energy through a propagation, they thus
found that:

da AK? 6.17]

where W corresponds to the work associated with the plastic deformation.
Weertman [WEE 69] generalized his theory to the case of a crack that propagates

as a planar deformation and for any values of mean stress. He then experimentally
found the following equation:

4aa _ . [6.18]

Within the same group of models, the one proposed by Tomkins [TOM 68] was
based on a plastic deformation concentrated along two slip bands inclined at 45°
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from the propagation plane. He made use of the Bilby-Swinden theory [BIL 65],
which has been verified [HAH 65]. Formulation of the Tomkins model is discussed
in Chapters 4 and 8 of this book.

It should also be noted that the Bilby-Swinden equation can only be applied to
elastic-plastic and not to plastic-plastic cases, as Tomkins did in the past [PEL 70].
Nevertheless, several experimental results seem to agree with Tomkins model,
especially under high stress fatigue [FRO 58, LIU 63].

Finally, we can introduce the Yokobori model [YOK 77]. This author presented
a kinetic theory using the elementary forces being applied to the dislocations.

In his work, Yokobori considers a dislocation at the crack-tip, at a distance o and
forming an angle ¢ with the propagation plane. After an analysis of the various
forces being applied on this dislocation, Yokobori concluded that the strongest
forces are the applied force £, and image force f; because the force due to surface
energy is assumed to be negligible.

Slip plane of
the dislocation

Figure 6.2. Relative representation of a dislocation and of
the crack according to Yokobori’s model [YOK 77]

Yokobori proposed the following equations:

_ Kb

; ¢
T =T,,°b, sin¢cos —cos
f P.o \/m ¢ 2 v

_ ub’ 1
/. 41tp(1—1))

He choses =0 and ¢= 90° (see Figure 6.2). He calculates the activation energy
U, for a moving dislocation. He then deduces that, for the values of K; usually used
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with fatigue, that dU,./da < 0. He concludes that in the case of body-centered cubic
and face-centered cubic materials, there is always a spontaneous emission of
dislocations at the crack-tip during part of the tension cycle. Thus the crack tip
radius (see Figure 6.3) in the opening of the crack root model is equal to 2 nb, where
n is the number of dislocations and b their Burgers vector, and the propagation rate
is equal to ¥0.

We then obtain:

da/dN = nb

Yokobori calculates the propagation rate of the crack and he reminds us that:

Figure 6.3. Crack blunting due to the emission of dislocations.
The variable 8 stands for the opening of the crack root [YOK 77]

Movement of
dislocations

—]

da/dN

Figure 6.4. McClintock model [CLI 65]
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where v is the displacement rate of a dislocation subjected to a shear 7, and he thus
obtains:

pl (pt1)

da _ [ﬁ) AK ) p+2 (Uo—aInK) [6.19]
N A4 ) [ﬂ\/; exp - %7

where f'is the frequency, 4 the shearing module, x the average distance where the
strain is applied (arbitrarily chosen) and U, the activation energy.

This equation shows the influence of some parameters. The influence of
frequency remains low with the usual values of coefficient p (between 1 and 4). It is
only at high frequencies that there is a significant effect on the FCP rate. A
temperature rise usually tends to increase the propagation rate [AND 74, KAW 75].
According to Yokobori’s model, the exponent of Paris’ equation is equal to:

(p+1)

p+2

when 1 < p < 4. We thus obtain 1.32 < m < 4.2, which is in agreement with the usual
values of the exponent of Paris’ equation.

Yokobori considered the case where there was strain hardening:

2

2n’ (p+1)
da AK I+n" p+2
da | __AK [6.20]
dN [ «/2 X O'YC
Asa consequence:
, 2
2n’ (p+1)
=2 ML [6.21]
I+n p+2

With 0.08 <n’< 0.3 and 4 < p < 10, we can find suitable values of m.

We should also note that Yokobori’s model predicts a relationship between
parameters m and C of Paris’ equation. With constant frequency and temperature,
the Yokobori equation becomes:
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da - B AK p+2 [6.22]
dN u~x
and with:
8 _c pxcm
dN
we obtain:
-_ B
( “\/—;)l"

This equation is of the type: m = a In C + b with:

-1

B ln(p.\/;)

and:

b= In B

In{u~/x)

This relation between m and C was experimentally proven by Yokobori et al.
[YOK 73, YOK 77]. We will focus on it in section 6.3.2.

6.2.3. Models based on the behavior of a material at the crack-tip

Models based on crack tip opening displacement [CLI 63, CLI 65, LAR 68, PEA
66] have been discussed previously. We will therefore sort out the number of models
that rely on a fracture criterion at the crack-tip in this section. The crack will expand
and/or go forward:

— if the strain at the crack-tip reaches a critical value of; or
— if the deformation reaches a critical value &.
According to the first hypothesis, the models predict that for every material, we

can find a given value of the stress, usually arbitrarily chosen in such a way that
cracking does not propagate below it.
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Pook and Frost [POO 73], from the calculation performed by Frost and Dixon
[FRO 67], determined the distribution of strains at the crack-tip in the case of a
central crack with a length of 2 a, within an infinite plate subjected to cyclic stress
varying from 0 to o. Due to this loading, the crack opens up and takes the shape of
an ellipse. The authors then obtained:

2
ﬁz 2 K_I under plane stress [6.23]
dN 7 E

and:

[k, (1-v)]

E

da
dN

2 under plane strains [6.24]
V4

Pook and Frost included the effect of mean stress with the substitution of K, by
AK in the previous two equations. Pook and Frost verified their equation under plane
stress in the case of mild steel and some aluminum, copper and titanium alloys. The
gap observed with the experimental results can be explained due to the micro-
structure effect. We should also note that the crack, in this model, propagates during
the closing of the cycle, which is at the opposite of what is observed experimentally.

Lal and Weiss [LAL 78] calculated the strain distribution at the crack tip using
an elastic calculation. Plasticity at the crack-tip is introduced using the length of a
Neuber microsupport 0. On this length p, we can calculate the average strain. Under
fatigue, by analogy with the static model, Lal and Weiss introduced a fictitious
length 2 pr. If we assume that the crack spreads when the stress at the crack-tip
becomes higher than a given value or, we obtain:

n'+1

da o " 0
_— = a JW Y- £
vk { p } f(aW )=~ [6.25]

where g, is the applied stress, and fla/W) is a function that considers the geometry of
the sample. The crack propagates when the stress at the crack-tip oyy becomes
higher than a critical stress Or.

In this model o depends on the material and the applied strain. The higher the
applied stress, the smaller the critical stress ox; and the volume V. where the stress is
applied thus becomes very high (see Figure 6.5).
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By studying variations of the stress or and coefficient of the cyclic strain
hardening exponent, the authors were able to develop an expression for the three
regimes of crack propagation. In stage 1, for instance, or = ¢,, where 0, is the
fracture stress of a non-notched sample, and n’ = 1. We usually accept that o, = 0.1
E. We then obtain:

2
da o
da_ foa \'_ )5 [6.26]
dN a(O,]E) PF

We have already observed from some results [FRO 71, PEA 66] that the da/dN
curves where normalized on the basis of delta AK (see Figure 6.1). Note that the
model is applicable even when the mechanism is not a striation formation.

In the second group of models in this section, we have added models based on
deformation rather than those based on stress, which is presently the case. The
authors suggest therefore that the crack spreads when the deformation at the crack-
tip reaches a certain value & We must then calculate the distribution of
deformations at the crack-tip.

Purushothaman and Tien [PUR 75] adopted the distribution calculated by Rice
[RIC 65] in the ideal elastic-plastic case. This distribution is modified to introduce
the curvature radius of the crack into the calculation process. These authors obtained
two expressions, which illustrate two extreme cases. First, the radius curvature is
equal to ay, the lattice parameter. In this case, we obtain:

da 1 AK? 2
—_— = —aplLn —
dN  moycép E 2-(I1-R)

[6.27]

In the second case, they assumed that the radius of curvature was equal to &2, a
hypothesis that McClintock had previously adopted. We thus find:

2
da _ 2-¢; 4K [6.28]

dN oy £, E

The truth probably lies in between these two extremes.
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AG —

Figure 6.5. Variation of the cyclic volume Vc where critical stress occurs at the crack-tip.
Variation of the fracture critical stress o and of the cyclic consolidation coefficient is
shown as a function of variation of the applied hardening exponent [LAL 78]

This model, which describes a crack spreading continuously during each cycle,
cannot be applied to the propagation with striation formation. While the McClintock
[CLI 75] and Liu [LIU 63] models (see section 6.2.4.1) do not predict any variation
in the rate of propagation with the ratio R, the current model predicts a low variation
as a function of R. The experimental results do not therefore reflect what is really
happening.

6.2.4. Models based on the cyclic properties of the material

In this section, we will discuss the models that rely on the macroscopic and
cyclic properties of a material, such as the cyclic or static consolidation coefficient,
the Miner or Manson-Coffin laws, the measurement of the strain hardening
exponent, etc.

We divided these models into two different groups. In the first one, we do not try
to precisely elucidate the mechanism of propagation. Miner assumes that the
material at the crack-tip is fatigued due to significant strain amplitude and behaves
like the bulk material subjected to the same deformations, i.e. it is governed by the
low-cycle fatigue laws. In the second group, we find the models built from the
energy balance study. Most of the time, Mason and Coffin use measurement of the
hysteresis loops in order to evaluate the propagation rate.
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6.2.4.1. Models based on low-cycle fatigue laws

Duggan [DUG 77] focused on the deformation of a volume element located at
the crack-tip. This volume element is only subjected to elastic deformations and so
the effect of softening or of hardening is disregarded.

Propagation will occur when the Manson-Coffin and Miner laws are obayed.
Thus, when:

, — 1/0

€, —E

N; =|———| (modified Manson-Coffin law) [6.29]
Ae - Ag,

where:

- S'f is a characteristic constant of the fatigue ductility;

— E the mean value of the strain;

— Ag, the endurance limit;

— Ag the total strain range;

- 8 a characteristic constant of the material usually equal to 1/2;

— N, the number of cycles to failure of the microscopic crack tip element; and
then:

\/B
_‘___} =1 (Miner’s law) [6.30]
where L is the total number of cycles required for a crack to spread by the amount
Ar.

Duggan, once he considered the boundary conditions (4K — AK,; or K., — K.),
found that:

d e 2 A\
_az[lj 1) 2 [, AR e [6.31]
av \32) a|e,E(K,-K, N\ K

c

With = 1/2, the above equation then gets simplified:
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2
da_n( 1 A [6.32]
dN 4\ &, EK,

The simplified law is not rigorously exact as exponent m is constant.

Chanani et al. [CHA 72] assumed that damage accumulation ahead of the crack
tip controls the crack propagation rate. The criterion they used was:

— 1
AN1/2~A€pc =ng [6.33]

with Ag,. being the average value of the amplitude of cyclic deformation within the
whole region where fracture criterion is applied. This deformation is calculated
using the elastic-plastic model designed by Huit and McClintock [HUL 57]. The
size of the plastic zone is calculated according to Dugdale’s [DUG 60] model. We
then obtain:

2 2 4
da_Js(ey) o (mao N ¥t (6.34]
dN | 6‘f 4O'Y 71'2

where Y is a correction function of the finite dimensions of the specimen, / the
distance on which the fracture criterion is applied and J a constant.

The above equation can be simplified when 4670y < 0.2 and a/W ranges from 0.3
to 0.7, which is often the case. We then have:

2
da_8 ey | (aKY’ [6.35]
dN I &, Oy
The equation of the propagation rate then becomes:

da _ [6.36]
dN

This equation is experimentally verified for high strength steels. It is obvious that
it could not be applied to every metal, where the exponent of the Paris equation
varies from 2 to 10.

Antolovich et al. [ANT 75] assumed that fracture occurs within a process zone
of length /. The crack moves by a length / in AN cycles. They then applied the
Coffin-Manson law in order to obtain equation [8.18] (see Chapter 8).
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Experimentally, these authors [ANT 75, CHA 72] found that / has a magnitude
similar to that of the dislocation cells and then becomes a constant of the material.

6.2.4.2. Models based on plastic energy dissipation at the crack-tip

In this section, we have gathered together the models whose authors have
computed the plastic energy dissipated at the crack tip. They basically calculated the
monotonic and cyclic plasticized zones created by cycling of the force and we
usually assume that the propagation rate is proportional to the energy lost within
these plasticized zones. Once again, we have to rely on a macroscopic behavior
characterized by hysteresis loops in order to explain microscopic behavior at the
crack-tip.

Lal and Garg [LAL 77] developed a model that integrates some notions, such as
the effective strain intensity factor defined by Elber. These authors calculate the
monotonous and cyclic plasticized zones:

1+n'
o - ( 0.5AK J L (m 2 [6.37]
O.Y

This equation is obtained from the calculation performed under a simple tension
if the monotonous cold-working coefficient is replaced by the cyclic cold-working
coefficient and X is replaced by AK. If we apply Elber’s hypothesis, Lal and Garg
presume that a single part of a cycle is necessary to close the crack, and thus to
create the plasticized zone, the other part of the cycle inducing the grounding of the
crack lips. They then use the definition of the monotonous plastic zone that was
calculated previously, by replacing AK by AK,4, and thus obtain the dimensions of
the cyclic plasticized zone:

@ = a)r-U1+”' [6.38]

c

Using the hypothesis suggested by Tomkins [TOM 68], Lal and Garg define:

5_;= 4e, o, [6.39]

In order to caiculate Ag,, they use the equation Aoy = k, Ag;' . which describes

the hysteresis loops, where Aoy is the variation of strain within the ligament. The
propagation rate is then equal to:
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; | ( \/a/_W )n'(l—n')
)" ot 1)

=(05 U)1+n’ (\/I/—V)I—nl—l/n/ AKH_n'_H/nl [640]

L
N

This long equation has been verified for many materials (aluminum, mild steel,
stainless steel and copper) and the calculated and measured values of parameters C
and m of Paris’ equation agree with it.

Two of the parameters of equation [6.40], a and @ are geometric and easily
measurable. The other three, U, oy and k; depend on the material. The rate
decreases when the elasticity limit increases, and it increases if R increases, which
matches the experimental results well. Parameters oy and kz; might be easy to
calculate, but U (except for some aluminum alloys) is less well known. There is not
enough experimental evidence, however, to determine variation of the rate as a
function of crack length, however.

Schwalbe [SCH 77] studied a model of the same type as the previous one, but
simpler. His hypotheses and final equation are also simple. By giving several
hypotheses on monotonous crack propagation and on the plasticized zone, he
obtains:

da_ (1-2v) (20, ”"_(AK_AK y._ K [6.41]
dN  4(1+n)no; | Ee; " K.-K

< max

Predicted variations of the rate as a function of gy, of Young’s modulus, and of
the fracture deformation agree with experimental measurements. Only the first term
of equation [6.41] comes from the theoretical model. The formula da/dN that this
author has found is very sensitive to the values of AK,;, and K, chosen.

Liu [LIU 63] proposed a simpler model than the two previous ones. He
calculates the strains and the deformations occurring at the head of the crack. He
then deduces, by considering some simple geometrical hypotheses on the shape of
the hysteresis loop, the energy absorbed for every cycle. When the energy absorbed
reaches a critical value, propagation occurs. He thus finds that the propagation rate
is proportional to AK”. As in McClintock’s model (see section 6.5.5), Liu’s model
can be well applied to the formation of streaks. He does not predict any influence of
R on microscopic propagation rate. Under vacuum, displacement of the dislocations
would be reversible and there would not be any streak formation.
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After summarizing several models, Irving and Cartney {IRV 77] developed a
new model based on an energy criterion and the notion of a fracture process zone.
They thus obtain:

da 4 AK*(aKk?-4K}) [6.42]
dN oy KiK.

6.3. Critical evaluation of the models

Evaluation of the validity of a model is difficult in most instances. In addition,
the number of adjustable parameters is high, so the ability of the model to predict the
experimental results becomes a calculation of parameters.

Theoretical models often use parameters that are not available in practice as they
are rarely measured (for example oyc, n', &, k;) or are dificult to measure (for
example, oF, & etc.). To varify the models, we therefore have to make
approximations in order to obtain the values of the desired coefficients.

6.3.1. Influence of the parameters of cyclic behavior

We propose to evaluate the influence of the:
— cyclic consolidation coefficient »”;

— coefficient & of the Manson-Coffin law;

— cyclic resistance coefficient £, ; and

— cyclic ductility coefficient €'s.

In most of the models, the cyclic consolidation coefficient »' is involved. An
empirical equation was obtained by Bauss ez al. [BAU 77] for a wide range of steels:

m=20n' [6.43]

This equation totally contradicts the theoretical results of three models and of a
number of experimental results.

Indeed, Tomkins® model predicts that:

m=2+1/n'
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Weiss’ model, that:

m=1+n"+1/n' [6.44]
and Lal and Garg’s model:
m=1+1/n'

These three equations indicate that m increases if #’ decreases. Experimentally,
Kickerson and Hertzberg [HIC 72] find a variation that is inversely proportional
between m and ' for a wide range of steels. This is:

m=1/En’ [6.45]
9
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Figure 6.6. Variation of the exponent of Paris’ equation m as a function
of cyclic consolidation coefficient n'

Nevertheless, the equation found by Bauss e al. [BAU 77] indicates the same
variation direction between m and »n' as the theoretical prediction of Yokobori (see
section 6.2.2):

me< 2 n(1 +n') [6.46]

if we admit that exponent p of the displacement rate of a dislocation is independent
from »'.

The problem is then unresolved. We need to know whether the crack spreads
faster [BAU 77, YOK 77] or more slowly [HIC 72, LAL 77, LAL 78, TOM 68]
when the material consolidates.
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Morrow [MOR 65] found a semi-empirical equation between exponent ¢ of the
Coffin-Manson law and cyclic consolidation coefficient n”.

PR S [6.47]
1+5#

This empirical equation allows us to rapidly calculate one of the two coefficients.
Knowing #', we can calculate the cyclic resistance coefficient &, from Ramberg and
Osgood’s rule [RAM 43]:

/0
4e=2% 1 0.002| 42
E oy

thus:

- % 6.48
k (0.002)" [6.48]

The cyclic consolidation curve for the ductility coefficient under fatigue 8},

must also be known. Even if this curve cannot be measured, several authors have
proposed that £ be replaced by €, or &, which were measured from the

monotonous traction curves. The same goes for when no precise measurements are
performed — the exponent of Coffin-Manson’s law can be chosen to equal 1/2.

Once these coefficients are determined, we still have to compare the theoretical
predictions with experimental results. The simplest technique consists of graphically
comparing both results. This is how we find [BAT 78] that Forman’s law can
usually be correctly applied in the case of aluminum alloys and rarely in the case of
steels, where the influence of R is less noticeable. Schwalbe [SCH 74] compared the
predictions of eight models with experimental results obtained within different
metals. He concludes that the equations designed by Paris, Frost and Dixon,
Schwalbe, and Liu, more or less correctly describe the results for these metals.

McCarney and Cooper [CAR 77] propose a mathematical method, more rigorous
than visual appreciation, in order to control the validity of the equations obtained.
For the first time, these authors can minimize the error on the derivative. This
method has the advantage of enabling us to easily calculate the primary and
secondary derivatives of a function without increasing the errors, as is often the case
with classic differentiation methods. One of the important observations of the
analysis performed by both authors is that the measurement of length, a, of the crack
has to be really precise in order to minimize the errors in the propagation rate.
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McCartney and Cooper [CAR 77] then proposed to analyze the precision of
calculation methods for the proposed models. For every equation, they calculated
the square root of the sum of least squares of the residues and the sum of these
residues. Thus, they tested five equations (Paris, Forman, Pearson, Nicholson and
McCartney) with four different steels and found that, for the steels studied, the most
acceptable was the Paris equation with the exponent m = 4.

6.3.2. Equations between m and C

Yokobort [YOK 73] was the first to notice (see section 6.2.2) that an equation
connected m to C:

m=alnC+b [6.49]

Several authors verified this equation for different materials [MAS 76, NIC 76.
LIE 73]. Figure 6.7 illustrates the results of these studies. Two main facts can be
obtained from Figure 6.7:

— the curve m = a In C + b remains parallel, regardless of the material
considered;

— the coefficient b seems to vary along with Young’s modulus.

We then tried to write Paris’ equation as follows:

*

da_C" om [6.50]
dN E?
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Figure 6.7. Variation of exponent m of Paris’ equation as a function of logarithm of
parameter C of this equation for different materials
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Figure 6.7 illustrates the relationship between the C* and m values obtained. We
can then write m = a In C* + b*, therefore:

_p*
da_1 (’" b )AK'" [6.51]
dN E? a

with g and b* being independent parameters of the material as a first approximation.

This comes to be written:

dN E? 4K,

with 4K, = exp (1/a) = 21.7 and exp (-b*a) = 2.155.1077 if the units are mm/cycles
and MPa+/m for the rate and AK respectively.
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Figure 6.8. Variation of exponent m in Paris’ equation
as a function of parameter C* [AUB]
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6.3.3. Influences of the intrinsic parameters on cracking

Although the different models lack precision, we can still observe a certain
number of tendencies relative to some intrinsic parameters that have an effect on
cracking.

6.3.3.1. Influence of Young's modulus

As any parameter can be constant, the propagation rate is low when Young’s
modulus £ is high. Some authors propose a variation with 1/E. Others plot the Paris
laws with AK/E. If this last approach rationalizes cracking somehow, it nevertheless
involves E as a variable power function (1/E™). It is likely that this rationalization is
not valid in the particular case where m = 2. Figure 6.9 shows the same observation:
for a given AK, the higher Young’s modulus is, the more slowly the crack
propagates. Most of the models agree with this fact.

% g
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31076
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AK, MP2Vm

Figure 6.9. Comparison of the propagation rates
of several metals [BAT 69]

6.3.3.2. Influence of grain size

During initiation of the crack, the stage close to the propagation threshold, and
the final stage when fracture occurs, the size of the grain has a major role.

During the initiation stage, the number of fracture cycles, measured with non-
notched specimens, was proven to vary depending on an equation of the following

type:

Ny=N,+kd" [6.53]
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We also know that:

— the endurance limit varies in the same way, as a function of the size of the
grain:

op=0o+kg d'? [6.54]
— the propagation threshold varies in the opposite way {[MAS 76]:
AKy =Ko + Kpd? [6.55]

During stage II of propagation, the size of the grain does not seem to have any
influence [HAH 70, TOM 75], unless the thickness is much greater than the size of
the grain [TOM 73].

6.3.3.3. Influence of the elasticity limit

In comparison to the previous result, it is normal that the elasticity limit &, has
no effect on cracking. Nevertheless, in the literature there are many contradictory
results. For steels and brass, it has been proven that the propagation rate is
independent of the elasticity limit [HOE 67, TOM 73, TRO 70]. Strong variations of
the elasticity limit do not cause a significant variation in the propagation rate.

It is likely that the dislocation cells that were formed at the end of the crack are
significant obstacles to propagation and thus mask the effect of grain size. This
therefore, indirectly makes propagation independent from the initial elasticity limit.
The cyclic elasticity limit at the end of the crack would then be independent of the
elasticity limit.

6.3.3.4. Effect of tenacity K;c

We will now consider the tenacity, measured by K¢ or the fracture deformation,
in order to introduce a ductility factor within the equations [BUR 70]. With all of the
models where K;¢1s involved, it appears that the denominator is:

da_ . _1 [6.56]
aN KL

with » a variable coefficient.

This proposition is physically acceptable: an increase in ductility has to lead to a
decrease in propagation rate, with all of the other parameters remaining constant.

Lindley et al. [LIN 76] also showed that exponent m is related to Kj. It is
usually accepted that m decreases when K¢ increases (see Figure 6.10).
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Figure 6.10. Relationship between the exponent m of Paris’ equation and the toughness K;c.
Most of the points plotted in this graph come from [LIN 76],
o come from [HAY 77] and ® from [MIL 68]

6.3.4. Influence of the parameters extrinsic to cracking

In this section, we gathered together all of the parameters that were not intrinsic
to the material. These are the parameters that depend on the person performing the
test:

— frequency of loading;

— thickness of the specimen;
— corrosion;

— type of signal;

— temperature; etc.

There are only a few theoretical or empirical laws that consider the effect of
these parameters. We usually observe that the variation of some of these parameters
hardly had any consequence on the cracking rate.

It is the case, for instance, that the parameters that mattered were the frequency,
the type of signal, the thickness of the specimen, etc.

6.3.4.1. Influence of the thickness of the specimen

The description of cracking using Paris’ equation da/dN=CAK™assumes that
we are capable of calculating the stress intensity factor for a given geometry. These
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factors were calculated in the case of planar deformations for many specimen
geometries [BRO 66]. This calculation of X is only variable if the cracking occurs
under a plane strain. In practice, as soon as the thickness reaches a certain value, the
influence of the thickness of the specimen becomes low [HAH 73, RIT 77].

6.3.4.2. Influence of frequency

The influence of frequency is related to the influence of the environment. Within
a corrosive medium, the loading frequency plays a major role [VOS 88]. We can
summarize the interaction of these parameters in Figure 6.11. Beyond a certain
critical frequency, the frequency only slightly influences propagation rate. For a
given material, this critical frequency depends on the environment [BRA 69]. At
room temperature and in the laboratory atmosphere, it seems that the regular
frequencies used (ranging from 0.1 Hz to 100 Hz) do not have any important
mfluence within steels [MAS 76, TOM 75] or brasses [TOM 73].
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Figure 6.11. Effect of frequency in a corrosive medium on the propagation
rate within a pipeline steel X65 [VOS 76]

6.3.4.3. Effect of corrosion

The influence of corrosion will be presented in Chapters 10 and 11. Here we will
only give the phenomenological description of the action of corrosion on the
propagation rate of a crack. Depending on the response of the material to corrosion
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under tension, the action of this phenomenon only acts on coefficient C or acts on
coefficients m and C simultaneously:

da _ ”

- C0 4K [6.57]
and:

da _ m(t)

- Cl)aK [6.58]

We usually admit that when K,,,, remains lower than K, the second of these
above reactions remains valid. We have to remember that the frequency has to be

low enough for corrosion to have an influence that can be observed (see Figure
6.11).

6.3.4.4. Effect of temperature

The effect of temperature on cracking is complex. An increase in temperature
acts at different levels. It usually leads to an increase in oxidation and, as a
consequence, cracking becomes sensitive to the frequency of the test. On the other
hand, a temperature rise changes the cold-working modes of the material. This effect
is mainly sensitive in metals that are slightly ductile at room temperature.

Unfortunately, this effect is not known precisely and the information obtained
has to be qualitative. A temperature rise usually leads to an increase in propagation
rate [AND 74, JAM 77, KAW 75]. Yokobori [YOK 73, YOK 75] has presented this
effect and he developed a model that considers the influence of temperature.

6.4. Future plans

In section 6.3.4 we have already stressed, the weaknesses of Paris’ equation. The
dimensions of parameter C are variable and are a function of the value of parameter
m. We have also seen that by using the equation proposed by Yokobori, m =a In C
+ b, we can get a simpler equation than Paris’ one from the dimensional point of
view.

We can also find another hypothesis dealing with this topic. The notion of AK,
variation of the strain intensity factor, is only valid if there is no plastic deformation
at the end of the crack, that is to say that it is only valid for a material where the
crack propagates easily. However, under fatigue there is always a plastic
deformation at the end of the crack. This plastic deformation is negligible close to
the propagation threshold, but very significant when K gets close to K. In this last
case, the notion of K would not be applied.
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Rice [RIC 68] defined a criterion, the integral J, which defines certain plasticity
at the end of the crack. This definition is more general than that of K in the case
where plasticity at the end of the crack is higher, but still low overall. In the case
where plasticity is negligible, we can have simple equations between J and K
(J = K¥/E under plane strain).
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Figure 6.12. Comparison of the propagation rate measured as a function of (AK)*/E (linear
mechanics) or AJ (plasticity). The e results are obtained from measurements of the value of
integral J and 0 from the linear mechanics (measurement of K) [DOW 76]

In Figure 6.12 we present the results that Dowling [DOW 76] obtained using
linear fracture mechanics (if we define A/ = AK”/E) and the results obtained by the
measurement of AJ. With high rates, we can observe that application of the
definition of AJ continues the application range of Paris’ equation, which can then
be written as:

ﬁ = C AJm [6‘59]

dN
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Thus, the propagation rate becomes proportional to the energy necessary to
initiate crack propagation, that is to say the energy necessary to spread the crack
with an elementary length, represented by &

Within this newly modified Paris equation we should then introduce the action of
all the parameters that we presented earlier.

6.5. Conclusion

We can see that building a model is not easy. Some of the phenomena are not
clearly known and the action of the different parameters is sometimes controversial.
Many models, theoretical or empirical, correctly describe a given situation but then
become invalid as soon as a parameter in the experiment varies. We can, however
conclude that a certain number of criteria define a model that has to consider various
parameters.

6.5.1. Metallurgic parameters

The propagation rate has to be of the type da/dN o 1/E". The exponent of E
remains uncertain.

The influence of grain size is only involved in two extreme cracking cases: when
AK — AKy, and K, — K. The size of the grain does not have a pronounced effect
within the central area of the cracking curves.

The effect of the cyclic consolidation coefficient is still controversial. The study
of the influence of the consolidation coefficient is a way to control propagation
rates. For high-strength steels, this consolidation coefficient varies slightly (0.15 +
0.05) and risks diminishing the practical interest in the control of propagation
through »”; the tenacity, measured with coefficient K;- (or K¢), is interconnected
with the cracking rate.

We usually accept that an increase in K;c (or K¢) leads to a decrease in
propagation rate. -

We often propose equations that are inversely proportional between the
propagation rate and Kjc.

The exponent of K still has to be defined.
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6.5.2. Extrinsic parameters

The exact influence of temperature is not yet perfectly established
experimentally and theoretically; the boundary conditions have to be respected:

d—a—>0when AK — AK, and da — o when K — K,
dN

dN

Usually, the models based on the notion of crack-tip opening do not fulfil the last
boundary condition. A correction has to be arbitrarily introduced. The influence of
the strain ratio, R, has to be correctly described:

— the propagation rate increases when R increases;

— the influence of the ratio R decreases when Young’s modulus increases.
There is no model yet that correctly describes this influence.

Without any corrosion, the influence of frequency remains low. There is a cut-
off frequency fry beyond which the effect of corrosion is low. There is no model yet
that correctly describes this phenomenon.

Finally, we have to mention the importance of equations regarding the
dimensions of theoretical or empirical formulae given by the models: we believe that
it is essential that the dimension of every parameter being used is independent from
the values given to the other parameters. It will then be easier to determine the
physical meaning of the parameters.

It is likely that the notion of AJ, or that of AC* [LAN 76], will become
increasingly significant. The opposite of the concept of X, these two last notions
consider, to some extent, the plasticity occurring at the crack tip.
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Chapter 7

Short Crack Propagation

7.1. Introduction

Numerous experimental results highlight the fact that the theory of linear elastic
fracture mechanics (LEFM), which is applied to long cracks under confined
plasticity, cannot describe the behavior of short cracks that are growing at the
smooth surface of a material or from the root of a notch. Depending on the material,
the geometry and the type of loading, cracks whose size can vary from grain to
millimeter scale do not match the univocal equation (with R constant) between the
propagation rate da/dN and variation in stress intensity factor AK. The three
following differences are observed with respect to long cracks:

— for a given AK, short cracks grow faster than long cracks (by at least one order
of magnitude);

— short cracks grow with AK values lower than the propagation threshold AK;;

— their initial growth can present some decelerations: we can observe a minimum
rate, or sometimes, at low loading levels, the crack stops; it becomes a so-called
non-propagating crack.

In practice, these differences have consequences. Most of the life of parts in
service is spent within the short-crack regime, especially in the domain of high-cycle
fatigue. The fatigue lives predicted by the calculation methods based on LEFM
therefore over estimate the real lives of a material if initial defects of small size are
taken into account. In addition, the stress amplitude at the propagation threshold is
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lower than the fatigue strength but also lower than the value calculated with the
threshold of the long cracks, AKj,.

It seems that there is no global explanation whatever the material, geometry, and
type of loading. Depending on the individual case, the differences in behavior are
attributed to one or more of the following conditions that question the similitude
principle of LEFM:

— the crack has a size comparable to that of a grain or to another characteristic
dimension of the microstructure. Its propagation is very sensitive to the heterogenity
of the microstructure; continuum mechanics cannot be applied at this scale;

— the condition of confined plasticity at the crack tip is no longer verified. The
short crack can be surrounded by a plastic zone of comparable or larger size because
of a high stress level close to full yielding or to a notch that leads to a stress
concentration;

— even under an elastic regime, the stress and strain fields at the tip of a crack
whose depth tends towards zero are no longer described by the singular term that
defines factor X

— the short crack has a limited wake and the crack closure mechanisms cannot
yet be developed, for example the closure induced by the residual plastic
deformation left along the crack lips.

Authors in this field use a varied terminology in order to distinguish different
types of short cracks. In this book, we will use the term “microstructurally short”
crack when the first condition prevails and “mechanically short” crack for the other
three macroscopic conditions. We should also note some other terms used in the
literature, for instance [CLU 92, EVI 98]:

— “physically short” crack in order to introduce the fourth condition;

— “small crack” instead of “short crack™ in order to describe that the crack is
small in both dimensions (depth and width);

— “chemically short” crack when the effects of the environment are amplified at
low crack depth.

In order to better enlighten the reader who might not be familiar with this topic,
we will first present some theoretical considerations that demonstrate the limits of
LEFM to describe the behavior of short cracks, from a smooth edge or a notch root.
We will then provide a review of the experimental observations and interpretations
reported in the literature (influence of the microstructure, influence of a notch and
development of the closure). Finally, we will present the main models that are
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proposed in order to describe either the behavior of microstructurally short cracks or
that of mechanically short cracks.

7.2. Theoretical considerations showing the limits of LEFM
7.2.1. Propagation of cracks from a smooth edge: Kitagawa diagram

The diagram presented in Figure 7.1a, called the “Kitawaga diagram” [KIT 76],
simply illustrates a limit of the LEFM theory when the length of the crack is too
short. It represents, on logarithmic scales, the stress amplitude at the propagation
threshold as a function of the depth of a crack.

According to LEFM, if the propagation threshold 4K}, is a material constant, we
then obtain a line with a slope of -1/2. Nevertheless, this prediction cannot be
applied to cracks that are too short as the stress amplitude is limited by the “fatigue
limit” AS, of the material without defect (fatigue strength at 5.10% cycles, for
instance). The intersection of the two lines allows us to calculate a first critical
length a,:

2
1| AK,,
—_ 7.1
“ w[YASo] 7.1}

where Y is a correction factor function of the geometry. It has no dimension
(Y = 1.12 for a straight-fronted crack; and Y = 0.728 for a semi-circular crack). This
critical length, as a function of AK,, and AS,, can vary a lot depending on the
material. For instance, it is lower than 10 um in the case of high-strength alloyed
steel, whereas it can reach a millimeter in the case of mild steel.

The Kitagawa diagram can be turned into a second diagram (see Figure 7.1b),
which represents the decrease in the AK};, threshold under the regime of short cracks.
In other terms, short cracks grow with values of AK that are lower than the
propagation threshold of long cracks.

The critical length, where LEFM gives non-conservative predictions, is actually
higher than a,. The experimental results obtained by Kitagawa and many other
authors [TAN 87] are given as a transition curve between the two previous lines and
give a deviation from LEFM, which occurs at a depth a, higher than a, (see Figure
7.1; dotted lines).
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Figure 7.1. Kitagawa-Takahashi diagram: a) in the plane AS — a; and b) in the plane AK — a

Considering the first two interpretations of the abnormal behavior of the short
cracks previously introduced, Taylor [TAY 89] proposed and verified for different
materials that the value of a, corresponds to the highest of the following two values:

a, =10d [7.2a]
a, =10r, [7.2b]

where d is the average grain size (or another characteristic dimension of the
microstructure) and r, is the cyclic plastic zone size at the propagation threshold:

2
r o= | ARy 73]
’ 3z 20,

with g, the cyclic yield strength of the material.

Equation [7.2b] is a small scale yielding condition at the crack tip: the crack
length has to be an order of magnitude higher than 7, for the plasticity to remain
confined within the elastic singularity. This condition is equivalent to limit the



Short Crack Propagation 273

nominal stress AS with respect to yield strength. As a matter of fact, equation [7.3]
can be written as:

2
2
%o o Y?[——ZAS ] [7.4]
a o,

Brown [BRO 86] proposed, for instance, that AS <2 0,./3 with R =-1.

Murakami [MUR 02] carried out a systematic study on the influence of the depth
and geometry of small defects on the resistance of different steels and some other
metals at 107 cycles. The resistance of carbon steels, 1013 and 1046, is not affected
by any defects that have a depth lower than 70 um and 45 wm respectively. The
cracks that are initiated do not grow anymore. Within the transition zone between a,
and a, (see Figure 7.1a), he could gather almost all of the experimental data using
the following empirical equation:

AS, /2(MPa) = 143 (HV + 120)(Jarea) "/ [7.5]

where HV is the Vickers hardness of the material and varea (um) is the square root
of the area of the defect projected on a plane perpendicular to the applied stress. The
corresponding increase in the propagation threshold is given by:

AK,, /2(MPam) = 3.3 (HV + 120)(Jarea)"” [7.6]

In logarithmic scales, the equation between 4K, and+area is approximately
linear up to 1,000 um with a slope of 1/3.

7.2.2. Propagation of cracks from a macroscopic notch root: Frost diagram

Some experimental results, that we will focus on later, show that short cracks
from notches that are severe enough initially have decreasing growth rates, before
accelerating and joining the trend of the long cracks, where da/dN is an increasing
function of AK. Nevertheless, the cracks can stop growing if the level of nominal
stress is low enough.

It seems that Frost [FRO 59] was the first to observe this behavior, which is not
predicted by LEFM as AK always increases with crack length if the nominal stress
amplitude A4S remains constant. Using specimens made of mild steel that are notched
with a V shape and subjected to rotating bending (R = -1), he showed that these
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cracks could be initiated but that they stop if the radius of curvature o is small
enough (see Figure 7.2; k, > 2.5 corresponds to p < 600 um).
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Figure 7.2. Resistance of V-notched specimens made of mild steel as a function of stress
concentration factor k, [FRO 59]. The open symbols represent the stress that is necessary to
initiate a crack and the full symbols to get a propagation leading to a complete fracture

Smith and Miller [SMI 78] proposed a simple theoretical interpretation of this
experimental result. Let us consider the case of a notch with a constant depth D. The
concentration factor &, remains variable according to the chosen radius of curvature
at the notch root. The condition at the initiation of a crack can be written as:

AS,
kt

AS > (7.7

and is represented by the hyperbola in Figure 7.2. On the other hand, the stress
intensity factor of a crack that passes over the notch field will rapidly tend towards
that of a crack with a depth of D + a. In order to get a complete fracture, this crack
will also have to fulfill the propagation condition:

YAS\m(D+a) = AK > AK,

th
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which can also be written as:

. _AK,

* Vb e

if a is neglected compared to D. This second condition, independent from £, is
represented by the horizontal line in Figure 7.2.

A domain of non-propagating cracks is then observed if the notch is severe
enough, i.e. when the stress concentration factor exceeds a certain value:

k= [Y AS, )\/775 [7.9]
AK

th

Within this domain, the nominal stress is enough for the crack to be initiated
[7.7], but not enough to create a propagation leading to a complete fracture [7.8].

We can also observe that, if D varies whereas k&, remains constant, the
propagation stress is higher than the initiation stress when the notch does not reach a
given depth:

D" = k%a [7.10]

7.3. Experimental observations
7.3.1. Propagation rates of short cracks

Some divergences between the propagation rates of short cracks and those of
long cracks were observed for the first time by Pearson [PEA 75] within an
aluminum alloy. He found that the surface cracks with a size similar to the average
size of a grain were growing more rapidly than the long cracks when the correlation
parameter was AK. Later on, this phenomenon was reported for different materials
and geometries, and even beyond the microstructural scale. Sometimes,
nevertheless, we cannot observe any significant gap between the rates of long cracks
and short ones, which is the case with a nickel-based super-alloy and with tempered
and quenched steels [LAN 85].

For the same material, the evolutions of small cracks at the surface present a
great deal of scatter. Curves A to E in Figure 7.3 are a summary of various tests that
were carried out by Lankford [LAN 85] on crack propagation at the microstructure
scale within an aluminum alloy. Here:
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— the propagation rate was up to two orders of magnitude higher than those
predicted by the extrapolation of data from the long cracks;

— short cracks are propagated with AK values lower than AK; ;

— slowing down was relatively significant when the size of the crack was about
the depth of a superficial grain (curves B to D) and could lead to a complete stop in
development of the crack (curve A).

The average rates of short cracks are sensitive to the level of applied stress as the
slope of the S-N curves can be very low within the domain of high-cycle fatigue.
The rate well is less deep when AS increases and tends to disappear at a high stress
level [PIN 86].
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Figure 7.3. Propagation rates of microstructurally short cracks within the aluminum alloy
7075-T651, compared to the ones of long cracks, as a function of AK

The cracks growing from a notch root present similar divergences on a da/dN —
AK diagram (see Figure 7.4) but the mechanisms responsible are different. The
influence of a notch will be presented in section 7.3.4.
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Figure 7.4. Propagation rates of some cracks from a notch root as a function of AK,
compared to propagation rates of long cracks within a standard specimen according to
Tanaka and Nakai [TAN 83] (steel SM41B, R = ()

7.3.2. Microstructurally short cracks

7.3.2.1. Microstructural barriers

Short cracks initiated at the surface of smooth samples rapidly and irregularly
grow with significant variations in rate. In addition, we can observe one or two
reductions in growth rate that are often related to the interaction of the crack with the
grain boundaries or other “microstructural barriers” [PED 88], at deviations of the
crack [GRA 92] and when the mechanism of the propagation changes [PED 88].

In most cases, stage I cracks that grow along slip bands slow down when they
get close to a grain boundary. This is because of the crystallographic disorientation
of the adjacent grain [LAN 85, PED 88)]. Many of the cracks stop but one of them
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will continue at a significant rate until it reaches the next grain boundary. The
process can be repeated several times before the transition to stage 11 occurs [EVI
98, ZHA 02]. The propagation rate then increases but at this point the crack does not
necessarily behave as a long crack (see sections 7.3.3 and 7.4.2).

Crack decelerations and stops have been observed on the surface within the
grain. They were attributed to:

— the interaction between the crack and a discontinuity of the microstructure
underneath the surface [LUD 03];

— the variation of the shape of the crack front [PIN 86, TOK 87]; and

— the deviation of the crack within the grain due to the change in orientation of
the slip bands [GRA 92, PED 88].

On the other hand, some cracks can cross a grain boundary without experiencing
any deceleration (see Figure 7.3, curve E). The blocking mechanism at the grain
boundaries is a function of the inclination and rotation angles of the sliding planes of
the adjacent grains with the plane of the crack [ZHA 05]. The crack goes from one
grain to another if the rotation angle remains very low [LUD 03].

Miller [MIL 93] showed how the fatigue strength of smooth and slightly notched
specimens is controlled by microstructural barriers of the material. The resistance
AS, (see Figure 7.1a) corresponds to the stress level that is necessary for a crack to
reach the strongest barrier. Below this level, the pre-existing cracks do not grow
further and the specimen cannot be damaged [MUR 02]. Nevertheless, the length of
a; in Figure 7.1a can be greater than the size of the grain as the grain boundaries
may not be the only ones or the strongest barriers; the distribution of a second hard
phase can reduce or take over the effect of grain size. Within ferritic-pearlitic steels,
for instance, cracks can easily progress through the grain boundaries ¢ until they
have to interact with a pearlite band [DAV 06, MUR 02].

7.3.2.2. Influence of the grain size

Long cracks within the propagation threshold region grow more slowly if the
grain size increases due to the corresponding increase in propagation threshold [BAI
80]. Usually the opposite seems to occur for microstructurally short cracks.

Tokaji et al. [TOK 94] observed an increase in propagation rates in the case of
pure titanium when the grain size increases. The difference seems to be due to a
lower number of perturbations of the propagation by microstructural barriers. This
trend was reported for other materials too (Ti-8.6 Al, low carbon steel) and was
predicted by several models of the behavior of short cracks that consider hindrance
to propagation due to grain boundaries (see section 7.5.1).
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Nevertheless, other experimental observations have been made. No grain size
effect was observed within the titanium alloy Ti- 6Al-4V «/B. A slight diminution of
the propagation rate was observed when the grain size increased from 12 to 130 um
in the aluminum alloy 7075-T6 and a more significant decrease was observed in
A533B steel [JAM 89].

7.3.2.3. Irregularity of the evolution of the crack tip

At the microstructure scale, the crack is still far from adopting a planar surface
with a regular semi-circular or semi-elliptic front. As a matter of fact, it can remain
still in most places and only grow in the “easy” zones where the crystallographic
orientation is favorable. The crack front does not grow homogenously; for instance,
it alternatively goes from a grain in depth to a grain in width [RAV 97a].
Nevertheless, when the crack grows towards a certain number of grains, its front
will progressively adopt a stable semi-circular shape [NAD 97, RAV 97a].

Ravichandran [RAV 97b] worked on the propagation of cracks within a Ti-8Al
alloy with large grains (200 um) using surface photomicroscopy as well as laser
interferometry by measuring the compliance between two Vickers prints located on
both sides of the crack. The material is an alloy « that is only deformed on a single
slip band per grain, which leads to a strong interaction between the crack and grain
boundary and to a very crystallographic fracture. However, the compliance of the
crack presents an almost continuous growth, which shows that the crack
continuously grows in different locations. In addition, the author shows that the
extensive variability of the data da/dN — AK comes partly from the error made when
calculating AK with a constant ratio of a/2¢. By taking the irregularity of the crack
front into account, polynominal regressions allowed him to reduce the data scatter of
short cracks to that of long cracks.

7.3.2.4. Stage I to stage I transition

The progression of microstructurally short cracks at high rates has been
associated with crystallographic propagation in stage I [GRA 92, PED 88]. Some
results, reported by Pedersen [PED 88], prove this clearly in the case of an
aluminum alloy Al-Mg-Si hardened by tempering and cycled at R = - 1. The most
significant propagation rates (up to 10"7 m/cycle) were measured in the case of
cracks growing crystallographically along a persistent slip band within grains
oriented towards a single slip. Close to the grain boundaries, when several slip
systems were activated, the crack propagation turned into a non-crystallographic
mode (stage II) and was observed to be lower, the rate decreasing from one to two
orders of magnitude.

Brown and Hicks [BRO 83] reported similar results in the case of titanium alloy
IMI 685. The crystallographic short cracks grow faster than the long ones when the
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correlation parameter is AK; nevertheless, when the short cracks were compelled to
grow non-crystallographically, they do so at rates just slightly higher than those of
the long cracks.

The stage I to stage II transition usually occurs at the first grain boundaries [EVI
98], but crystallographic cracks presenting marked interactions with the
microstructure (slowing down at the grain boundaries, and an irregular front) were
observed in certain conditions up to 10 times the grain size [RAV 97, ZHA 02]. An
inert environment encourages a long propagation in stage I, whereas an average
tensile stress can result in a more rapid stage I to stage II transition and even to the
disappearance of stage I [EVI 98, PAT 99]. As is the case for long cracks, the
transition would occur at the crack length where the size of the plastic zone exceeds
the grain size [HAL 99, LAN 85]. In this case, the crack no longer behaves like a
monocrystal. Several slip systems have to be activated within adjacent grains in
order for their deformations to match.

In the context of multi-axial fatigue, we should mention that the term “stage I” is
only valid for a crack within the first grains. Propagation within further grains, even
if crystallographic, occurs in mode I — that is to say perpendicularly to the highest
normal stress. After the first grains, a stage I-like crack becomes established that this
time has a slower mechanism than stage II [PET 00] and should therefore give way
to stage II.

The stage 1 to stage II transition corresponds perhaps to the strongest
microstructural barrier to crack propagation. Miller [MIL 93] noticed that this
transition phase, when a crack becomes deeper and wider through several grains
with different sizes and crystallographic orientations it represents the main part of
the fatigue life at a low stress level. It is also the main component of the fatigue
strength of a material.

7.3.3. Mechanically short cracks

7.3.3.1. Non-confined plasticity

After a few grains, the crack growth from a smooth edge increases at a
continuous rate with depth. In some studies, growth rates seem to be at the same
level as the da/dN — AK curve of long cracks [NEW 00]. Other studies, however,
show that they can also be higher than the rates of long cracks at a given AK [ESP
95, LUO 04]. Thanks to an indirect technique using the response of miniature
deformation gauges, Espinosa studied the behavior of semi-elliptical cracks (0.7 <
alc <1.1) growing between a depth of 100 and 500 um at the surface of an offshore
construction steel [ESP 95, VER 97]. On a da/dN — K,,.. graph, the rates of these
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cracks at R = 0 and R = -1 appear between 10 and 100 times higher than the rates of
long cracks growing at a low stress level (see Figure 7.5).
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Figure 7.5. Propagation rates as a function of K., for semi-elliptical cracks at the surface
of smooth specimens made of structural steel (0, = 265 MPa) [ESP 95]. The depth of the
cracks, which varies from 100 um to 500 pm, exceeds the grain size,
which is about 30 um

In addition to the closure effects that will be presented in section 7.4.2, this type
of divergence is understandable since, to apply the LEFM theory, the plasticity has
to be confined at the notch root (r,/a << 1) and be completely constrained by an
elastic region. As we said in section 7.2.1, however, this condition is no longer
fulfilled for the high values of nominal stress that are necessary to get the short
crack to grow. The crack is then termed “mechanically short”.

Lankford et al. [LAN 84] and Davidson and Lankford [DAV 86], using
techniques of retro-diffused electron diffraction and of stereoimaging, found a value
of r,/a of about unity (S,../6, = 0.8) for short cracks, whereas for long cracks, r,/a
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was far lower than unity (S,../0, = 0.2). At R = 0.1, the sizes of the monotonous and
cyclic plastic zones were almost the same for short cracks, whereas for long cracks
the LEFM predicts a ratio of 1/4.

In a recent article, Davidson summarized the main differences observed between
short and long cracks [DAV 04]. He highlights that, close to the threshold, the long
ones at the same AK value, due to the absence of stress triaxiality. Although long
cracks often propagate under plane strain, short cracks undergo an almost plane
stress state as long as they make a small perturbation within a uniaxial field.

Finite element calculations also show that the plastic zones are more easily
developed when the crack is short, and that they reach the free surface under high
nominal stress [CHI 82, ESP 95, RIT 87]. At the same value of 4K, the plastic zone
of a short crack is eight times larger than the one of a long crack [RIT 87], and more
importantly plastic deformations compared to short cracks have been reported [CHI
82, ESP 95].

The increase in plastic deformation of short cracks, related to negative opening
levels (see section 7.4.2), can explain more important damage and therefore higher
propagation rates. Espinosa [ESP 95] highlights the fact that plastic deformation,
which occurs ahead of short cracks spreads, farther from the crack tip than it does
from long cracks. The damage could then start when the material elements are
farther from the crack tip. A cracking model based on cumulative damage would be
an interesting research topic.

7.3.3.2. T stress

Some authors have suggested other ideas that could explain the different
behavior of mechanically short cracks. Even under pure elasticity, the singular term
that corresponds to K is no longer enough to describe the stress and strain fields at
the crack tip. We also have to consider a second parameter, the T stress, which
corresponds to a higher-order term in the Williams series [LIN 95]:

o, (r,0)=——/,(8)+ T 8,5, [7.11]

K
~27zr
This second term, which consists of a constant tensile or compressive normal
stress in the cracking direction, affects the distribution of plastic strain around the

crack. It is evident when comparing the effect of a uniaxial loading (7 < 0) with the
one of a bi-axial loading (7T'= 0) within a large cracked plate [RIE 02].

In addition, numerical analyses [BLO 90] and photoelasticity results [SMI 88] of
surface and straight-fronted cracks show that the dominance of the inverse square
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root singularity of the stress and strain fields is lost at the intersection of the crack
with the free surface. Blom and Anderson [BLO 90] show, under isotropic elasticity,
that this situation is still occurring under the surface at a depth up to about 2.5% of
the material’s thickness. This zone can contain a significant fraction of the short
crack regime.

7.3.3.3. Influence of a notch (stress concentration)

When a short fatigue crack grows from a notch, its growth can be strongly
influenced by the plastic deformation due to this notch. It is actually a mechanically
short crack, whose size goes beyond the microstructure scale, but which is initially
surrounded by the plastic zone of the notch.

On a da/dN — AK diagram, we can observe the three differences that were
presented in the introduction (see Figure 7.4). If the notch is severe enough, the
propagation rate can initially decrease before increasing again and reaching the rates
of long cracks under confined plasticity. Nevertheless, when the nominal loading
has a too low an amplitude, the propagation rate continues to decrease until the
crack stops growing (see Figure 7.4, AS = 60 MPa).

Here we observe the case of non-propagating cracks that Frost first described
(see section 7.2.2). It seems that this notch effect is observed when the ratio R is
low. Verreman et al. [VER 87], who studied stress-relieved welded joints made of
mild steel (V-shaped notches with a low radius of curvature), did not observe any
effect when R = 0, but found differences with respect to long cracks that are
pronounced when R is negative (R = -1 and R = -2). We also know that a crack can
grow at a given distance from a notch root under fully compressive loading (R = -e<)
[SUR 91].

Many geometric configurations have been studied in the past. Here we present
two different ones:

— Shin and Smith [SHI 88] studied the behavior of thin plates (of 2 to 3 mm
thickness) of different materials (stainless steel 316, low carbon steel and semi-hard
aluminum alloy) mainly when R = 0.05. Semi-elliptic notches, with a 35 mm depth
but variable curvature radius, were machined in these plates. Using an optical
microscope, they observed straight-fronted cracks presenting abnormal behaviors up
to a depth of 8 mm. Nevertheless, they were unable to record any initial decrease in
crack growth rate of the bluntest notches, or when the ratio R was increased;

— Espinosa and Verreman [ESP 95, VER 97] tested mild steel specimens of
significant thickness at R = 0 and R = -1. These specimens that are close to a plane
strain state, have a cruciform profile where the notch is L-shaped with two possible
curvature radii: 0.1 and 3 mm. The notch field has a low depth, of about 1 mm, but
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the main part of the fatigue life is spent in this field. In specimens with a low
curvature radius, they observed straight-fronted cracks or elongated semi-elliptical
cracks that grew faster than long cracks and presented some decelerations at R = -1
up to a depth of 0.3 mm. However, the specimens with a curvature radius of 3 mm
presented a behavior similar to the one observed in smooth specimens: a single
crack with high a/c ratio, high but continuously increasing propagation rates (see

Figure 7.5).

To describe the propagation of a mechanically short crack from the notch root,
Smith and Miller [SMI 78] proposed that, when the crack is still within the plastic
zone of the notch, its driving force is the sum of two contributions:

— the first from the plasticity of the notch;

— the second from the plasticity of the crack (see Figure 7.6).
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Figure 7.6. Propagation rate of a crack from the notch root, according to Smith and Miller
[SMI 78]. The driving force is the sum of the contributions
of notch plasticity and crack plasticity

LEFM under-estimates the propagation rate as it only considers the plasticity of
the crack. The relative significance of every contribution depends on the loading
level as well as the crack length. The contribution of the notch decreases when the
crack grows, whereas the contribution of the crack increases as a power function of
AK. If the contribution of the notch decreases more rapidly than the contribution of
the crack increases, propagation will slow down and the crack will no longer grow



Short Crack Propagation 285

if, out of the plastic zone of the notch, the plasticity of the crack is not high enough
(4K < AKy,).

The proposition suggested by Smith and Miller seems to be in agreement with
experimental results. Leis roughly found a one-to-one correspondence between the
extent of the plastic zone and the transition length where cracks reach the LEFM
behavior, for different notch geometries and loading levels, the crack lengths
concerned varying from 50 pum to 12 mm [LEI 82]. Verreman also showed that the
transition length of cracks growing at the toe of stress-relieved welded joints
increases with loading level and is comparable to the size of the notch’s plastic zone
[VER 86].

Nevertheless, some other authors reported that the short crack effect can still
occur beyond this zone [SHI 88]. With 3D finite elements Espinosa and Verreman
[ESP 95, VER 97] precisely calculated the plastic flow around their L-shaped notch:
the plastic zone depth did not go beyond 0.1 mm for the highest stress levels,
whereas they observed some decelerations in propagation up to 0.3 mm.

We may wonder whether the diagram in Figure 7.6 is correct from a theoretical
point of view. If we do not consider the cyclic nature of the mechanical stress, the
plastic deformation at the crack tip should always increase when the crack grows
from a notch root (under a constant nominal stress). If we consider the extreme case
of a notch whose shape is close to a crack, for instance a saw cut, the plastic
deformation always increases with the extension of this crack, whereas in this case
we still observe an initial deceleration in propagation [SHI 88].

We then have to consider another mechanism: the progressive development of
the closure of a crack that leads to a decrease in amplitude of cyclic deformation at
the crack tip. The notch plasticity is certainly significant, as the closure level will
become steady after the crack extends beyond the initial plastic zone. What really
makes propagation slow down, however, is the decrease in amplitude of plastic
deformation at the crack tip, which is produced by the development of crack closure.
The authors, who measured the evolution of closure level in parallel to crack
propagation, agree that the lowest propagation rate occurs when crack closure
reaches its highest level.

7.4. Role of closure in the behavior of short cracks
7.4.1. Closure of fatigue cracks

The concept of the closure of plasticity-induced cracks was introduced by Elber
[ELB 70], who observed the premature contact of the crack lips during unloading
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when the nominal stress was still positive. During the propagation of the crack, a
zone of residual plastic elongations is left in its wake, thus decreasing the driving
force of the crack propagation. Considering that a crack can only grow when it is
entirely open, Elber then concluded that in the Paris equation, da/dN = C(4K)", the
total variation of stress intensity factor has to be replaced by its effective variation:

AK = K, . —K

op

[7.12]

where K, is the maximum stress intensity factor, and K,,, the stress intensity factor
corresponding to the nominal stress necessary to entirely open the crack. Elber
found that the effective fraction of the amplitude of the stress intensity factor:

U= 20 [7.13]

is a linear function of the R ratio:
U=05+04R [7.14]

for the conditions he studied (thin plates made of an aluminum alloy, -0.1 <R <0.7).
The propagation rates obtained for different R ratios are consolidated close to the
same line in a log da/dN - log AK 5 graph.

Newman [NEW 81] developed a semi-analytical method in order to calculate
plasticity-induced crack closure as a function of R, the nominal stress level and the
stress triaxiality. This method is based on a Dugdale model that was modified to
leave residual plastic elongations within the wake of the crack. The closure is more
important for plane stress than for plane strain but it disappears in every case when
R is high enough (see Figure 7.7). In addition, the closure level decreases when the
nominal stress increases, especially in the case of a plane stress state. It comes close
to zero and even becomes negative when plasticity is extensive. These results are in
good agreement with more recent studies [PAN 01].

Nowadays, the finite element method is a tool that is being increasingly used to
model plasticity-induced crack closure [SOL 04]. More complex problems have
been analyzed (for instance, the influence of geometry and influence of
consolidation), but improvements have still to be made (propagation of a semi-
elliptical crack, variable amplitude loading, etc.).
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The concept of closure and the use of AK,y has allowed many authors to
interpret, or even rationalize, several aspects of the propagation of fatigue cracks:
the effects of the R ratio and of the thickness; and the effects of residual stresses and
variable amplitude loadings.

The literature tends also to highlight the significant role of closure in the
behavior of mechanically short cracks. When a short crack presents a limited wake
we can expect the closure effects to be less pronounced compared to a long crack. A
higher effective driving force will lead then to a faster propagation and to a lower
apparent threshold.

7.4.2. Development of the closure of short cracks

Espinosa and Verreman [ESP 95, VER 97] tested smooth and notched specimens
made of mild steel at R =0 and R = -1 (see section 7.3.3). They used miniature strain
gauges in order to study the evolution of closure as a function of crack depth.

The notched specimens present a transient variation from U=1ata=0to a
stabilized value typical of a long crack under confined plasticity (U = 0.6 when
R =0and U= 0.3 when R = -1). The depth of stabilization is about 0.1 to 0.3 mm.
The significant variation of U when R = -1 explains the deceleration of the crack that
was observed in this case.

Within smooth specimens where the nominal stress is the highest, U always
remains equal to 1 when R =0 and it is always above 0.5 when R = -1 for any crack
length. This behavior is predicted by calculations (see Figure 7.7). It explains that
the propagation rate is one order of magnitude higher than that for long cracks under
confined plasticity (see Figure 7.5).

The available studies usually show that short cracks initially open at a level close
to the minimum load (negative values when R is negative, and close to zero when
R = 0). During crack propagation, there is a progressive increase in opening level to
reach a stabilized level that is equal to or lower than that of long cracks under
confined plasticity. This transient variation, where the opening level increases and
stabilizes, was observed in the case of short cracks growing from a smooth surface
[JAM 89, JON 96, LEE 86] and from the root of a notch [SAV 94, TAN 83, VER
86]. Figure 7.8 shows the evolution of the opening level of elongated cracks
that grow from the toe of stress-relieved fillet-welded joints made of mild steel
(V-shaped severe notch) when R = -1 [VER 86]. This study shows a correlation
between the depth of the crack where U becomes stabilized and the extent of the
notch plastic zone.
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7.4.3. Correlation between propagation rates and AK .

The use of AK,yin order to determine the effect of closure on the propagation of
fatigue cracks usually manages to eliminate differences between the propagation
rates of short and long cracks, with short cracks growing from a smooth surface
[NAD 97, RAV 97b, VER 97] or growing at a notch root [SHI 88, TAN 83, VER
86].
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The variations of U or of S,,/S,.. presented in Figure 7.8 in the case of a severe
notch with R = - 1 enables us to understand that:

— the initial propagation rates were more than one order of magnitude higher than
those of long cracks at the same AK;

— the decrease in propagation rate: even if AK increases with crack length, the
decrease in U is significant enough to lead to the decrease in AK 4

— the existence of a non-propagating crack at the lowest level of nominal stress
(Spax = 98 MPa).

In addition, the short crack effect was less pronounced when R = 0, where lower
variations in U were recorded, and the opposite occurred when R = -2 [VER 87].

Within severe notches, factor 4K, is at its lowest when the opening level
reaches its highest value or when it gets close to this value. Several authors have
associated this moment to the one where the propagation rate is at its lowest value
[SHI 88, TAN 83, VER 86, VER 97]. This agreement shows the role of closure in
the behavior of short cracks. Nevertheless, the use of factor AK,; as a correlation
parameter is questionable. In the cases of cracks that are becoming increasingly
short, its value has to decrease in order to tend towards zero when a = 0; and the
notion of stress intensity factor theoretically has no more meaning when the
plasticity is not confined within the crack tip. Experimentally, some differences have
been observed by different authors. For instance, Jono and Sugeta [JON 96]
correlated the propagation rates of short and long cracks with AK; within a HT80
steel, but they observed some differences for a titanium alloy.

7.4.4. Roughness-induced crack closure

Other closure mechanisms can be observed, especially the roughness—induced
crack closure surfaces [SUR 91, WAL 79]. This closure occurs in the case of
crystallographic propagation at the propagation threshold. Local mode 1I
displacements prevent the two fracture surfaces fitting perfectly during unloading
which leads to a very high closure level when the crack opening displacement is
low. This closure mechanism was identified as the one resulting in the effect of
grain size on propagation threshold [BAI 80].

For long cracks within an aluminum alloy 7075-T651 tested at R = 0, Lankford
and Davidson reported that U decreases towards zero (K,, — K..) when 4K
decreases towards the threshold. For short cracks within the same alloy, U remains
more or less constant at around 0.4, even with the smallest crack lengths [DAV 04].
Some measurements, that were made in situ under a scanning electron microscope,
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suggest that closures induced by the plasticity and roughness should be combined in
order to better understand the behavior of short cracks [ZHA 97].

7.5. Modeling of the behavior of short cracks
7.5.1. Modeling of microstructurally short cracks

Several models were proposed to describe the propagation of small cracks,
remaining at the microstructure scale (see section 7.3.2). They consider in particular
that grain boundaries and other microstructural barriers hinder crack propagation.

7.5.1.1. Hobson’s model

According to Hobson ez al. [HOB 86], the propagation rate at any crack length
can be calculated as the sum of two terms:

— the first one, which characterizes short cracks, predicts the slowing down of the
crack as it gets close to the microstructural barrier (grain boundary or other
metallurgical obstacle);

— whereas the second one, which characterizes long cracks, predicts the
acceleration of the crack.

These two terms respectively are:

;’_;= B, (AS)" (d-a) [7.15]
j_;= B, (A¢) a- B, [7.16]

where B, B,, B3, m, n and d are material constants, and AS and Ag are the nominal
stress and strain ranges (4¢ being equal to AS/E when there is no macroscopic
plastic deformation). The constant d, which represents the distance at the
microstructural barrier, is empirically determined by representing the experimental
data on a da/dN — a graph, and then by extrapolating at zero a linear regression
carried out on the first points where the propagation rate is decreasing.

Figure 7.9 presents the predictions of the model for three levels of applied stress.
The stress level has to be high enough otherwise the crack will stop when ¢ = d.
When the stress level increases, the crack growth rate becomes higher and there are
less significant decelerations. This is observed during the experiments. Brown [BRO
86] used the Hobson model to reproduce the Kitagawa diagram with an iso-rate
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curve of 107 mm/cycle = 0.1 nm/cycle (see Figure 7.10). On the AS — a plane,
Brown also represents other higher iso-rates and he distinguishes on it different
behavior regimes. The diagram shows that, under constant loading amplitude, a
crack can be initiated below A4S, but it does not continue to propagate when it
approaches the microstructural barrier.

ASI>AS >ASs

Short cracks Long cracks

AS;

P
microstructure

f the

©)

ASi

barrier

da/dN

AS3

T
d: grain size

Figure 7.9. Hobson et al.'s model of the behavior of microstructurally short cracks [HOB 86].
Propagation rate is shown as a function of crack length for three levels of applied stress. At
the intermediate level two equations, [7.15] and [7.16], are added

Hobson’s model only considers one microstructural barrier, and this barrier is the
most disturbing one. Some other models try to consider several barriers met by the
crack.

Yates and Grabowski [YAT 90] used the Hobson mode! in order to describe the
propagation of a crack beyond the first grain. Cracking in stage I is characterized by
equation [7.15], expressed in terms of strain, but this time d represents the distance



Short Crack Propagation 293

between the initiation site and the next barrier. The propagation of long cracks (stage
1) is described by Paris’ equation. The transition from stage I to stage II occurs
when the propagation rate of long cracks exceeds that of short cracks in stage L.
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Figure 7.10. Generalization of the Kitagawa diagram [BRO 86]
according to the predictions of Hobson’s model [HOB 86]

Grabowski and King [GRA 92] developed a model that can be applied to a
nickel-based super-alloy — the Waspaloy — which presents a faceted fracture.
According to this model, propagation occurs at a high rate, as in a crystal, but is
slowed down by two types of microstructural barriers:

— the grain boundaries (strong barriers) that strongly hinder propagation by
decreasing the rate until it reaches a minimum level; and

— defects within the grain (weak barriers), like annealing twins, which lead to
deviation of the crack and to its propagation slowing down at an intermediate level.

McDowell proposed a generalization of the Hobson model to multi-axial fatigue
using the concept of critical plane [DOW 97]. He considers just one microstructural
barrier, but he distinguishes three different regimes corresponding to the three zones
of Kitagawa diagram (a < a;, a; < a < a; and a > a»; see Figure 7.1).
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7.5.1.2. Navarro and de los Rios model

The Navarro and de los Rios [NAV 88] model is based on the idealization of a
crack that grows along a persistent slip band whose end is blocked at a grain
boundary. The propagation rate is proportional to the plastic displacement in mode
1T at the crack tip, ACTSD:

da _2£ 1-n°

yie f.ACTSD  with  ACTSD = AS a [7.17]

n

where G is the shearing modulus, A4S is the applied stress, and k=1 ork=1- v if
we consider screw or edge dislocations. Parameter » is the ratio between the crack
length a and the sum of length o and the extent of the plastic zone (persistent slip
band blocked at a grain boundary).

According to the model, the crack slows down by growing towards the grain
boundary until » reaches a critical value for which stress concentration within the
adjacent grain triggers a new persistent slip band. Parameter » then suddenly
decreases and the crack grows rapidly before it slows down again as it gets close to
the grain boundary.
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1.000 anew grain
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Figure 7.11. Oscillations of plastic displacement at the crack tip and of the propagation rate
according to the Navarro-Rios model [NAV 88]
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Figure 7.11 schematically illustrates the predictions of the Navarro-Rios model.
The propagation rate oscillates between two envelopes whose gap rapidly narrows
after crossing a few grains.

Turnbull and de los Rios compared the da/dN — a data from a commercially pure
aluminum alloy with the predictions of Navarro-Rios and Hobson’s models [TUR
95]. They obtained better life predictions with the Navarro-Rios model, even if this
model only has two adjustable constants instead of four (as is the case with
Hobson’s model).

Hussain also made some comparisons between different experimental data and
the predictions of Navarro-Rios; and Hobson’s models [HUS 97]. He suggested a
variant of Navarro-Rios’ model where the decelerations/accelerations of the crack
do not occur after three to four grains, as is observed experimentally.

Based on Navarro-Rios’ model, Rodopoulos [ROD 02] proposes two equations
that would predict the behavior of both short and long cracks:

— one of them gives the stress amplitude at the propagation threshold as a
function of crack length; it includes a crystallographic orientation factor in order to
incorporate the increasing number of grains that are crossed by the crack front
during propagation;

— the other one gives the stress amplitude at the transition between stage I to
stage II as a function of crack length; this amplitude makes the size of the cyclic
plastic zone twice as large as the average grain size.

These two equations correspond to two decreasing curves in the Kitagawa
diagram (the second one being above the first one). The propagation regime in stage
I (the surface between the two curves) gets smaller when the ratio of yield stress on
the material strength decreases and when the ratio R increases [ROD 04]. Stage I
entirely disappears when R = 0.5. The predictions are confirmed by data obtained
with an aluminum alloy 2024-T351.

7.5.1.3. Current tendencies

Navarro-Rios’ model is based on a physical description of the microstructurally
short cracks. The reality, however, is simplified: progression of the crack in one
dimension, sliding on a single plane per grain, assumptions where we want to
calculate the displacement at the crack tip. The model does not consider several tri-
dimensional aspects, such as the predominant influence of rotation angle of the
crack with respect to inclination angle (see section 7.3.2.1) and the irregularity of the
crack front (see section 7.3.2.3). This evolution does not come down to the variation
of a single crack “length”.
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Several authors are currently developing numerical models that try to deal with
the physical complexity of cracking at microstructure scale. The combined use of
the finite element method and crystal plasticity theory is one of the models being
used. The growth of a planar crack within an aluminum grain possessing different
crystallographic orientations was studied using a bi-dimensional model (two sliding
planes) [POT 04], and then a tri-dimensional model (12 sliding systems) [JOH 06].
These studies showed how the shape and extent of the plastic zone, the
displacements at the crack tip and the crack opening levels vary as a function of
grain orientation.

Lillbacka [LIL 06] built a “numerical crystal” made of two grains with a face-
centered cubic structure within a set of grains with a body-centered cubic structure
(austenitic-ferritic steel). A crack is initiated and propagates on a sliding plane of the
first austenitic grain, and then turns towards another plane within the second grain.
The result of the calculation (in two dimensions) shows that the evolution of the
displacement in mode II at the crack tip (ACTSD) as a function of crack length, thus
the evolution of the crack propagation rate, is strongly influenced by the
crystallographic disorientation between both austenitic grains.

7.5.2. Modeling of mechanically short cracks

Many microstructurally short cracks are also mechanically short, but here we
will focus on short cracks whose size goes beyond the microstructure scale. Within
this regime, continuum mechanics can be applied, even if the condition of confined
plasticity is not respected or the closure significantly influences propagation due to
fatigue. Different approaches have been proposed in order to predict the behavior of
mechanically short cracks.

7.5.2.1. Empirical approaches

Some authors suggested describing the propagation rates of short cracks using an
equation of the type:

da/dN =D AS" a [7.18]

where D and » are material constants that are determined by adjustment with the
experimental data. This approach, which is not based on the principles of fracture
mechanics, was proposed, for instance, by Nisitani for different steels [NIS 86].
Although it should be equal to two for a long crack under confined plasticity,
exponent » varies from 3 to 8.5 depending on the material. Note that these values are
approximately in inverse proportion to exponent b in Basquin’s law for S-N curves.
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By saying that plastic deformation of surface grains is more important because of
there is no stress triaxiality, E1 Haddad ef al. [HAD 79] proposed to increase the real
crack length of the fictive length a, = (1/7)(AK,/AS,). In addition, according to an
initial idea proposed by Haigh and Skelton, they replaced A4S with EAg within the
expression of 4K so they obtained a “strain intensity factor”:

AK, = EAe(r(a+a,) [7.19]

where A¢ is the amplitude of the local deformation when there is no crack. This
parameter allowed the data of short cracks to be consolidated with the ones of long
cracks for smooth and notched specimens made of steel.

Such a consolidation, however, was not observed by other authors. Lankford ez
al. [LAN 84] used 4K, to correlate the data obtained with smooth specimens made
of an aluminum alloy. This parameter allowed the correlation of the data obtained in
laboratory air, but the opposite occurred when data were obtained under a vacuum.
They thus concluded that the success obtained in the first case was just chance.

The approach of El Haddad has no real physical meaning. The advantage of
adding the fictitious length g, to the real length is to enable us to model the curves of
Figures 7.1a and 7.1b (Kitagawa diagram) using the two following equations:

AS = AK, /Jm(a+a,) [7.20]
AK = AK,, \Jal(a+a,) [7.21]

The approach of El Haddad also allows us to consider higher rates in the case of
short cracks, but its use is questionable when describing their deceleration at a notch
tip (see section 7.3.3.3). Note that geometry correction factor Y in the expression of
a, (see equation [7.1]) is omitted for simplicity; it is not necessarily equal to one.

Other authors proposed approaches similar to that of El Haddad, where the
driving force is not equal to zero when a — 0 but tends to AK when a — <. For
instance, Kfouri suggests the use of parameter Ao(mm,)"” where Ao is the stress
amplitude at a distance a,/2 from the crack tip [KFO 97]. This approach was
inspired by the concept of critical distance [TAY 00].

7.5.2.2. Effective variation of the stress intensity factor

As the influence of plasticity-induced crack closure has been observed by
numerous experiments, it is natural for us to try to model the behavior of short
cracks using a Paris-Elber equation:
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da/dN =C (MK ;)" = C (UAK)" [7.22]

where U is the effective fraction of the cycle.

We can also predict the threshold of short cracks by introducing an effective
threshold:

AK, = AK; , /U [7.23]

Some models, such as the Newman one, can be used to appreciate the increase of

U in the regime of short cracks. Nevertheless, this type of calculation is made in two

dimensions and it is sensitive to the plastic constraint factor resulting from stress

triaxiality. In addition, it can lead to non-conservative predictions if, instead of a

plastic wake of constant thickness, we consider a linear variation of the wake with

the crack length [ROS 01]. On the other hand, in practice it seems acceptable to

predict the rate of short cracks by simply using the data from long cracks where
closure is negligible (U = 1 when R is high).

A few authors used the finite element method in two dimensions to calculate the
evolution of the opening level of a crack growing from a notch root (see Figure 7.8).
Different geometric configurations were studied [CLU 92, SAN 02, SUN 90]. For
instance, we can refer to Sun and Sehitoglu who developed a model under plane
stress regarding the propagation of a crack from severe lateral notches (3 <k, < 7,
0.4 < S,./0, < 0.8). This model predicts the conditions which favor the rapid
decrease of factor U, thus the slowing down of the propagation and the possibility of
getting non-propagating cracks (high %, low S,./0,, negative R ratio). In the
opposite conditions, the crack propagates at a growing rate until the final fracture.
The predictions match the experimental results.

7.5.2.3. Elastic plastic fracture mechanics (EPFM)

Even if it takes into account the closure phenomenon, the 4K, parameter is not
theoretically valid, as the notion of stress intensity factor no longer makes sense if
plasticity is not confined at the crack tip. When the nominal stress is of about 0.5-0.7
g, it can still be correct to use K, providing a first-order plastic correction is made,
such as the Irwin correction [ISH 02]. Nevertheless, when the nominal stress gets
close to o, the plasticity becomes generalized. Factor K should then be replaced by
an EPFM parameter, such as the J-integral.

Dowling was the first to use a AJ parameter to correlate the behavior of short
cracks under extensive plasticity [DOW 77]. He reported an excellent match
between the behavior of small surface cracks and that of long cracks within a steel
AS533B, except for cracks with a length below 0.18 mm where continuum mechanics
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can no longer be applied. Nevertheless, such a match was not verified in later
studies, such as [LEI 82]. Recently, Laue and Bomas [LAU 06] reused an
approximate formulation of J that was previously proposed by Dowling. They tried
to correlate the rates of short and long cracks within 1017 steel with a parameter that
takes crack closure within the elastic and plastic parts of J into account:

AS.? 1.02
_ eff .
AJQ,,{LM 5T Ay |- [7.24]

where »' is the cyclic consolidation exponent of the material. Nevertheless, they
underwent some problems, including an overestimation of short crack growth rates
within the domain of high-cycle fatigue.

The application of J to a cyclic loading has always been questioned in the
literature. Although some authors now use AJ in the case of multi-axial fatigue
[HOF 06], others still question its theoretical basis [RIE 02]. A second parameter
that proposed to rationalize the behavior of mechanically short cracks is the cyclic
plastic displacement at the crack tip [PAN 01]. It is defined by:

ACTOD = 6, -6, [7.25]

where 0, is stretching at the crack tip at maximum load and & is the residual
plastic stretching at minimum load.

Analytical solutions were obtained in the case of Dugdale’s model [ROS 01].
The cyclic displacement ACTOD is proportional to AS".a (high »), which was
brought close to the experimental equation of Nisitani [7.18]. In addition, the ratio
Or/Onax is as high as 0.8 when S,,./0, = 0.2 but it rapidly decreases (at R < 0) when
the nominal stress increases.

7.5.2.4. A new approach to predicting the life of notched components

Even though some methodologies were developed in particular cases [NEW 00],
applying fracture mechanics to the prediction of fatigue life consumed in the regime
of short cracks is not that easy. The integration of equation [7.22] presents several
unknown variables or uncertainties:

— initial dimensions of the crack;
— evolution of the aspect ratio a/2c;
— solutions of K or J as a function of a;

— evolution of U as a function of a; etc.



300 Fatigue of Materials and Structures

To predict the macroscopic “initiation” life at the notch root, the engineer usually
relies on traditional methods based on local stress or strain amplitude. Within the
domain of high-cycle fatigue, some empirical equations (Peterson, Neuber, etc.) are
available to calculate the fatigue notch factor % i.e. the reduction in strength with
respect to the unnotched material. Factor k; which can be significantly lower than £,
depends on geometry and loading but also on the material and number of cycles.
Most of the time, the formulae are inaccurate [BRA 80].

Several authors used the old concept of critical distance or volume to interpret
and predict sensitivity to the notch effect in different conditions [KAD 02, TAY 00].
The material is not sensitive to maximum stress at the notch root but it is, for
instance, sensitive to the local stress at a certain distance from the notch root. This
“critical distance” 7, depends on the material. It can be determined by considering
the extreme case of a notch turning into a crack [TAY 00]:

2
, = L[ AK, [7.26]
° 27\ AS,

nevertheless, although the concept of critical distance or volume has been
experimentally approved, it does not directly consider the initiation and propagation
mechanisms of short cracks at the notch root. In addition, the critical distance 7,
depends on the number of cycles considered.

Analysis of the propagation of short cracks leads to a more rational explanation
of the notch effect. Figure 7.12 compares two typical evolutions of crack depth with
the number of cycles recorded for mild steels at R = -1 within the domain of high-
cycle fatigue [LAU 06, VER 97]. For the smooth specimen as well as for the severe
notch, the macroscopic initiation life N; (defined here by the crack depth a;=0.5
mm) represents most of the total life. Nevertheless, the parts relative to microscopic
initiation life N, (microstructurally short cracks) and propagation life N,
(mechanically short cracks, up to ¢= 0.5 mm) are very different. Within the smooth
specimen, most of the life N; is spent during the initiation and propagation of
microcracks (N; = Ng; N, = 0) whereas the opposite occurs at the root of a severe
notch (Ny = N,; Ny = 0).

In the general case of a notch of arbitrary severity, the fatigue life can be split
into two non-negligible parts:

N,=N,+N, [7.27)

dividing the S-N curve of a smooth sample by £, will then lead to an over-estimation
of the notch effect. The fatigue life taken for crack initiation is the same as the value
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of local stress is k.S, but the fatigue life for crack propagation will be longer than in
the case of smooth specimen. As a consequence, the total fatigue life is longer and
the S-N curve higher than the one obtained by dividing with %; thus factor k; is
lower than k,.
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Figure 7.12. Evolution of crack depth as a function of relative life
within the domain of high-cycle fatigue

A recent study enabled us to quantify the relative weight of N and N, within the
life of V-notched components. The notch has a constant angle (for instance 90°) but
has a variable size and curvature radius [VER 06, VER 08]. The initiation life is
correlated with maximum stress at the notch root, whereas propagation life is
correlated with the stress intensity factor of the notch’s singular field. The study
showed that fatigue is controlled by crack initiation (% = k) or by crack propagation
(ks < ky), depending on:

— the severity of the notch (radius and size);

— the material resistance to crack initiation; and

~ short crack propagation at the considered life.

Both resistances are determined by a SN curve, one measured with a smooth

specimen the other measured with a specimen with a very severe notch (0 — 0).
This new approach is interesting for two reasons:
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— it enables us to understand the notch effect as a function of the physical
mechanisms involved, i.e. crack initiation and short crack propagation;

— it enables us to perform a global prediction of the proportion of a material’s
macroscopic initiation life spent at the notch root without making any elastic plastic
description of the propagation of short cracks. The notion of notch stress intensity
factor is correct as long as the plastic zone is confined within the elastic singularity
of the notch.

7.6. Conclusion

The propagation of short cracks is an important topic in the field of fatigue, as in
most cases it represents the main part of the life of the parts in service, especially
within the domain of high-cycle fatigue. In addition, fatigue strength can be
controlled by a condition of propagation of a short crack. Reliable predictions of
fatigue performance then require us to have a good understanding of the behavior of
short cracks and of appropriate models.

The behavior of short cracks has been studied for the past 30 years and is still a
really active research field. Many experimental results have been gathered for a wide
variety of conditions and new concepts have been adopted by the scientific
community, such as the interaction of cracks with microstructural barriers, and the
development of crack closure at the notch root.

Nevertheless, from a quantitative point of view, most of the models are still
limited to one or two dimensions and do not consider the tri-dimensional reality of
crack propagation. Several aspects need to be better understood, such as the irregular
evolution of the crack front, the stage I to stage II transition and, at the continuous
mechanics scale, the cyclic plastic deformation around the front of a semi-elliptical
crack.

If we have to consider the tri-dimensional complexity of the propagation of a
crack to better understand its behavior, we also have to prepare simple and safe
calculation tools to be used by the engineer. For instance, the approach based on the
notch stress intensity factor allows us to make a global prediction of the
macroscopic initiation life spent at the notch root.

Finally, the study of short cracks has to be extended to multi-axial fatigue and to
variable amplitude loadings. It is not sufficient to “extrapolate” uniaxial behavior
under constant amplitude loading. Several challenges still have to be addressed. The
effect of the environment is important and needs to be taken into consideration. Also
to date, very few studies on chemically short cracks have been carried out.
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Chapter 8

Plastic Deformation Mechanisms
at the Crack Tip

8.1. Introduction

In the 1960s, around 100 years after the first studies carried out by Wohler,
advances in optical and electronic microscopy combined with electro-polishing
enabled the presence of a plastic zone at the fatigue crack tip to be revealed. From
that moment, cracking mechanisms could be understood and theoretical models
could be proposed to complete the parametric approaches, with the most popular
being invented by Paris. A new and important step was taken thanks to digital
calculation in the 1980s.

It is also noted that cracking mechanisms due to fatigue depend on plastic
deformation and the effects of the environment. Knowing the plastic zone at the
fatigue crack tip enables us to answer at least three questions on the propagation
mechanisms of a crack, dealing with:

— the morphology of cracks and microscopic fracture processes;
— the establishment of behavior laws from a low-cycle fatigue at the crack tip;

— the influence of the closure of a crack on plasticity, which is itself related to
cumulative damage effects experienced in the history and fatigue of the material
being studied.

Chapter written by Claude BATHIAS.
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This chapter is strongly related to Chapters 6, 7 and especially Chapter 9, which
was written by Sylvie Pommier, and deals with the same topic but with a more
mechanical than physical approach. In this chapter, we successively develop the
main aspects of cracking mechanisms due to fatigue, and insist on the role of plastic
deformation, take a micro-structural point of view of the dislocation arrangement
and, from a mechanical point of view consider the opening of the crack tip during
crack propagation.

8.2. Fatigue plastic deformation at the crack tip

As we saw in Chapter 6, the growth of a fatigue crack is usually expressed as a
function of stress intensity factor K with a parametric equation initially proposed by
Paris:

LIS [8.1]
dN

The drawback of such an equation is that the influence of the usual mechanical
parameters, such as Young’s modulus and the stress-stress coefficient of the
elasticity limit, cannot easily be determined.

Using more theoretical theories, for a long time we tried to express the cracking
rate due to fatigue by isolating the influence of various mechanical parameters. Up
until now, the most successful trials have relied on the theory of opening at the crack
tip [CLI 67, PEL 70] and on cyclic stress-stress behavior at the crack tip [CLI 63].

In both cases, knowing the plastic zone at the crack tip is useful but, obviously, it
is when we consider that progression of the crack depends on a localized plastic
fatigue that determination of the plastic zone and profiles of the deformation more
directly leads to a better understanding of the problem.

8.2.1. Theoretical aspect

8.2.1.1. Reminder: fracture mechanics

In order to focus on the plastic zone under fatigue, we will briefly talk about the
research led by Irwin on the formation of the plastic zone at a crack tip, contained
within a plate, and subjected to a constant tensile stress that is perpendicular to the
crack plane.
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Within this stress mode (mode I), the stress state close to the crack is given by
the Westergaard equations, written as:

= —K’—mCosg(l + singsinie—) [8.2]
(mr)” 20 2 2
where:
— K = stress intensity factor;
— 0,7 = polar coordinates of a point at the front of the crack.

Under a planar stress, o3 is equal to zero and because 0; is not involved the only
active component is ¢, When r = O, we have:

K

I

o, = W [8.3]

During traction, the stress o; will locally reach the elasticity limit and at that
moment plasticization at the crack tip within this zone will occur, leading to:

o, =0 K
1 y (27”)1/2 [8.4]
thus:
o Ki
2707 [8.5a]

Irwin then defined the radius (7) of a plastic zone at the crack tip, within mode I,
and under a planar stress.

This simple model predicts that the section of the plastic zone is a circle.
Actually, the shape and the size of this zone depend on several parameters.

8.2.1.2. Shape and size of the plastic zone

The size of the plastic zone mainly depends on the stress state. Under a planar
deformation, Irwin suggests multiplying the value o, by a factor of 1.68. It then
leads to the following new equation:
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_K
67203

r

[8.5b]

which shows that the plastic zone is smaller under planar deformation than under
planar stress. This is then verified at the core and surface of a specimen.

The shape of the plastic zone is not as simple as the shape predicted by this
elementary approach. In reality, within mode I the plastic zone is made of two wings
that are determined by calculation using the finite element method [LEV 71], as
shown in Figure 8.1.

In mode II, the plastic zone is elongated towards the direction crack propagation,
mode II being the only one where we find a circular shape.

We can then see that Irwin’s model, which allows us to introduce the plasticity
notion at the crack tip, is not really reliable for performing a precise study of the
phenomenon.

AY/(K/Re)?
4 0.15-

X/(K/Re)2
P — >
v 0.05 0.10

Figure 8.1. Outline of the plastic zone at the crack tip calculated by Rice
Jor an elastic-plastic solid without any consolidation

In mode I, it seems that currently the most convenient model is that the one
proposed by Rice [LEV 71]. The two wings of the plastic zone can be determined by
the coordinates r, and ry, with r, in the direction of cracking and r, in the

perpendicular direction.
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Under a planar deformation, Rice finds that:

2
r,=0.155L [8.6]
O-J’
2
I, =0.036K—2I
o

The dimensions of the plastic zone calculated by Rice are close enough to the
dimensions experimentally measured, as we will see later on. Nevertheless, the cold-
working coefficient, that is to say the ability of the metal to consolidate, influences
the shape of the plastic zone. When this coefficient increases, both wings tend to
straighten up. The average direction of the wing with regards to the cracking
direction is 60° with Rice’s model. Some experiments show that it varies from 44 to
30° when the cold-working coefficient goes from 0.25 to 0.07 [MAI 73}. Some other
factors, such as the chosen plasticity criterion or configuration of the crack, can also
affect the shape of the plastic zone [LAL 77, LAR 73].

We should also mention that calculation (see Figure 8.1) shows that
plasticization occurs mainly on both sides and at the front of the crack. To some
extent it also occurs at its back.

We will now see how we can apply this information in the case of cyclic loading,
starting with the model proposed by Rice.

8.2.1.3. Mechanism of plasticity at the fatigue crack tip

The plastic zone at the fatigue crack tip will be modified for the most part by
closure of the crack at each cycle. Even when the nominal stress remains within the
traction domain, a local compression still occurs during closure [RIC 67].

Figure 8.2 roughly shows how the plastic zone gets formed at the fatigue crack
tip. For repeated tensile loading with a triangular shape, we can suppose that, during
the opening of the crack, plasticity occurs when the elasticity limit is reached
locally. We can also assume that during the closure a stress amplitude that is twice
as high as the elasticity limit will lead to a new plastic deformation within the plastic
zone during the opening of the crack. Under fatigue, we then find a double plastic
zone. The radius of the external plastic zone can be written as (mec/o3,)2 whereas

the radius of the reverse zone is written as (4K/2 0),)2.
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As a consequence, the central plastic zone OR is four times smaller than the
external plastic zone OM (see Figure 8.2). The variations in stress amplitude Ao and
deformation amplitude ¢ are presented in Figure 8.3, where the respective positions

of the crack tip and of plastic zone are considered to be fixed.

Outside the external zone, deformation is elastic. Within this external zone,
cyclic deformation remains elastic so the stress-deformation cycles are closed (see
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Figure 8.2). Nevertheless, the monotonic plastic deformation due to the opening of
the crack regularly increases from M to R, according to a function of 1/r. Within the
central plastic zone, the amplitude of the stress reaches 2 o, and cyclic plastic
deformation occurs.

Skin zone

Central zone

=

Figure 8.3. Stresses at the fatigue crack tip.
Evolution of the microhardness [BAT 72, BAT 73]

The cyclic stress hardening that occurs within the central plastic zone comes
strictly with a variation in the elasticity limit ¢, depending on the bardening or
softening of the alloy. We should therefore not expect the radius of the central
plastic zone to be exactly four times smaller than that of the external zone. Plastic
deformation at the limit of the external zone and the central zone &,z can be
determined if we consider the deformation ratio to be inversely proportional to
distance at the crack tip. We then find that g,z = 3 &, &, being deformation at the
elasticity limit.

The monotonic deformation at point R is therefore relatively low; from what we
know of &, using calculations we determine that the plastic deformation of the
plastic external zone will not exceed 1%. In addition, we can assume that the limits
of both plastic zones are well defined because both stress hardening states of the
metal are different.

At every cycle, the crack moves forward with a length of da and thus leads to
progression of the plastic zone, which occurs mainly through the extension of the
outline of the external zone, and then with an increase in plastic deformation within
this zone. The central plastic zone grows as the crack closes.
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Because of the shape of the plastic skin zone, within a plane perpendicular to that
of the crack, the metal is subjected to an increasing number of cycles towards
increasing ry. At the same time, however, the amplitude of the deformation
decreases. The deformation obtained within the plastic external zone then has to be
relatively uniform in a direction perpendicular to the plane of the crack. Obviously,
the same does not occur regarding the direction of crack propagation.

To summarize, at the front of a fatigue crack, we can find three different zones:

— a first zone, the furthest away from the crack tip, where deformations are
mainly elastic;

— a second zone, which displays plasticification during the opening of the crack,
and where deformations are low and uniform;

— a third zone where the amplitude of the stress is of about 2 &, Plastification

occurs due to the closure of the crack and deformations are significant, especially
those close to the crack tip.

8.2.2. Experimental trials

Experience usually agrees with theory in our case. Different methods —
metallographic etching, microhardness measurement, X-ray diffraction, moiré and
electron microscopy, and Moiré techniques — were used to show how plastification
at the crack tip occurs. Several authors have been able to confirm the existence of
both plastic zones [BAT 73, HAH 72] (see Figure 8.4).

Among the oldest experimental trials is the work carried out by Hahn and
Rosenfield on 4% silica steel [HAH 72]. Thanks to an appropriate metallographic
etching, they were able to determine not just the shape and dimensions of the plastic
zone surrounding the fatigue crack, but also the deformation ratio. The measured
dimensions of the external zone were close to the dimensions calculated by Rice. In
addition, the number of cycles that were necessary to describe the plastic zone
agrees with that predicted by Coffin’s law within the deformation domain
considered. This observation proves that the propagation of a crack can be
considered to be due to a localized low-cycle fatigue.

The drawback of Hahn’s method is that it is specific to silica steels and cannot be
applied to any other alloys. With the metallographic etching, the microhardness
technique offers two main advantages:

— using microhardness techniques, we can detect local plastic deformations as
low as a hundredth within any kind of material. This technique can then therefore
usually be used in any situation;
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— as a consequence, we can then identify the nature of the cold working:
hardening or softening. Calibration/standardization of the values of hardness enables
us to link the evolution of hardness within the plastic zone to the distribution of
plastic deformations at the crack tip.

Using this method, we could study several alloys [BAT 73, KUD 70] and
determine the shape and dimensions of the plastic zones. This theory could be
verified on different levels:

— existence of a twin plastic zone;

— uniformity of the plastic deformation zone within the external zone; and

— the shape and the dimensions of this zone.

The evolution of microhardness could enable us to determine either the

hardening (carbon steels, austenite steels) or the softening of the metal (maraging
steels).

In every case, the external zone is characterized by a hardness plateau. Some
examples are given in Figures 8.4, 8.5 and 8.6.
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Figure 8.4. Experimental determination of dimensions of the plastic zone
within steel 316. The plastic skin zone depends
on Kygyi alone [BAT 72, BAT 73]
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The main limitation of the microhardness technique lies in the size of the prints
(of about 10 um), which limits measurements of the radius of the plastic zone to about
50 microns. The fluctuations in hardness due to the orientation and anisotropy of the
stress-hardened grains are almost discarded, using parallel filiations and by going
through different grains.

Different techniques using X-rays have been used in an attempt to measure the
size of plastic zones and to determine the deformations. The most classical one
consisted of studying the evolution of Debye and Scherrer’s diagrams. The
continuity of rings observed on the diagrams depends on the deformation of grains
and we can observe the limit of the plastic zone as discontinuous stains appear. To
perform this process, we have to use numerous diagrams, but it could still be
successfully carried out on some steels [FEL 56].

Another technique is based on the evolution of Laué diagrams. By the time the
grain reaches a diameter of about 0.1 mm, we can gain an idea of the size of the
plastic zone using a single diagram [LAT 73]. For some alloys bearing small grains,
we have to take several pictures and we have to use an alloy that was quenched
beforehand in order to rearrange the structure of the plastic zone and to discriminate
the Laug stains.

A Moiré process was used by Liu within a light alloy and a steel to measure the
plastic zone [LIV 69]. Other measurements have been preformed using the same
technique by Ohta et al. within a microalloyed steel where the deformations close to
the crack tip were of about 4% [OHT 77]. Finally, Davidson and Lankford used the
crystallographic contrast of the scanning microscope to measure the plastic zone
[DAV 76].

8.2.3. Crystallographic aspects

From a crystallographic point of view, some studies were carried out using both
transmission and optical electron microscopy.

Plastic deformations are very different within the external and central zones. In
the external zone, we can observe an increase in density of dislocations that agree
with the low level of deformation that was theoretically predicted. Within the central
zone, the dislocation cells are replaced by some configurations typical of strong
deformations and that differ depending on the stacking fault energy.

Dislocation cells appear within copper [WK 69], aluminum [BRO 72], carbon
steels [BAT 72] and even within maraging steels [BAT 72], and apparently within
the other high-fault energy alloys. Within stainless austenite steels [BAT 72] with
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lower fault energy, the central zone is mainly occupied by mechanical twins or
martensite strips (see Figure 8.7 and 8.8).
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Figure 8.7. Plastic zones after cracking within low-carbon steel (cells)
and within a 25-20 stainless steel (twins)

When formation of dislocation cells occurs, the diameter of the cells increases
with distance from the crack, and immediately below it the cells are packed parallel
to the striations. The disorientation of the cells inversely varies with their size [DAV
76, LUK 69]. For instance, within a 0.5% carbon steel, the diameter of the cells is 2
to 6 um [DAV 76]. It can reach up to 20 wm within low-carbon steel [BAT 72].

Bailon et al. [BAI 96] measured some dislocation cells at the crack tip within a
copper whose diameter varied from 1 to 10 um. They showed that, for the same
loading, the cells that were formed during cracking under a vacuum are smaller than
if they had been formed under standard air pressure. Finally, from the size of the
cells, the plastic deformation can be determined at less than 1% of the crack with
uncertainty due to the deformation gradient close to the crack.
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Figure 8.8. Plastic zones under fatigue cracks X 1,000 within a maraging steel. The platelet
structure almost disappears next to the crack

8.3. Microfractographic aspects of the fatigue crack
8.3.1. Fractographic observations

Fatigue cracks are usually initiated at the surface of the material, from one or
several points, where it first grows under a planar stress, corresponding to stage I of
cracking, and then under a planar deformation, corresponding to stage II where the
crack reaches a macroscopic dimension.

The surface of the crack presents some lines in the direction of propagation that
are split due to the initiation of the crack. The lines, usually related to other
concentric marks centered on the initiation, enables us to determine without doubt
what caused the cracking to be initiated.

On the macroscopic scale, a fatigue crack usually presents a regular and smooth
relief. Its aspect is matte. Most of the time, there are many secondary cracks.
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The fatigue crack is mainly transgranular at the microscopic scale. It then grows
along with the formation of striations, which is the most typical cracking mechanism
due to fatigue but is not the only one. We usually wrongly assume that the surface of
the crack due to fatigue is covered with striations s. As a matter of fact, striations
cannot always be observed, for various different reasons. We should first note that
within some alloys, high-strength steels for example, striations are not well defined
and, as a consequence, cannot be observed. We should also bear in mind that when
the cracking rates are high, static mechanisms such as cleavages and dimples occur
when striations are formed.

In reality, when striations are significant cracking rates can range from 10
mm/c to 10-3 mm/c, depending on whether we are observing a steel or an aluminum
alloy.

Even within this domain, the formation of striations is not always global and
some other mechanisms that have been developed to a greater or lesser extent can be
observed. We can use the cracking of copper alloys to illustrate the different
phenomena that can occur {BAI 96]. Neumann observed within copper monocrystals
that in order to obtain a striation fracture surface its plane has to be oriented towards
a crystallographic plane of type (100). Some similar observations have been made in
the case of an o polycrystalline brass. When the orientation of cracking does not
correspond with a later one, the fracture facies presents some steps and occasionally
inter-granular facets. In addition, the facies distribution strongly depends on the
value of the stress intensity factor, as the ratio of non-striation fracture surface
increases with decreasing loading. At the non-propagating fatigue threshold, fatigue
striations do not usually occur.

8.3.2. Mechanisms of striation formation

It seems that Zapffe was the first person to discover the existence of striations in
1945 using an optical microscope, before other researchers described the striation
mechanisms that were observed using an electron microscope. It was only 20 years
later that Pelloux proved that a striation is formed during a single cycle.

In 1961, Forsyth discovered two different types of striation: ductile striations and
fragile striations [FOR 61] (see Figures 8.9 and 8.10).

At this time, we noticed that a corrosive medium encourages the formation of
fragile striations; nevertheless, within failed light alloys in humid air we can find
two types of striations simultaneously. The mechanism by which striations are
formed will be presented later on, but first let us deal with the morphology of the
surfaces of fatigue cracks.
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Figure 8.9. Fatigue fracture surface of a stainless steel 25-20 (top)
and of a ferritic steel (X 5000) (bottom) [BAT 73]

In short, this morphology is characterized by the fact that striations are arranged
roughly perpendicularly to the cracking direction, at least within carbon steels and
high-fault stacking energy alloys. Some exceptions to this rule are observed within
low-fault stacking energy alloys and some austenite stainless steels, for instance,
where twinning occurs. It is also worth mentioning the case of nodular cast irons,
where the arrangement of the striations depends on graphite nodules [MAI 72]. The
truth is that the rule presented above can only be applied if we consider the local
propagation of the crack.

The direction of striations is connected to the crystallographic orientation of the
grains. Within a 2024 alloy or in copper alloys, the fracture plane is close to a (100)
plane and the striations are parallel to a (110) direction [PEL 69]. The striations of
austenite stainless steel also present a well-defined crystallographic property [BAT
72]. :
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Nevertheless, it seems that this property is weakened within carbon steels.
Indeed, within mild steels the orientation of striations does not change when
crossing a grain boundary [POM 701.

We should finally note that the profile of the ductile striations is usually more or
less flat and serrated: the root of the striations is often characterized by a microcrack.
It appears that within face-centered cubic alloys, the sides of the serrated striations
are oriented towards (111) planes.

Plastic deformation at the crack tip plays a significant role in the cracking
process: the formation of striations and, as a consequence, the cracking rate, both
depend on the nature of the plastic deformations.

Usually, fatigue cracks seem to be transgranular and the plastic deformation that
results is mainly located within a thin band. The study of the plastic zone shows us
that the surface of the crack is connected with the plastic deformation of the sub-
layers. Within aluminum alloys, the striations are associated with dislocation walls
that are oriented towards (110) directions [BRO 72].

Figure 8.10. Fragile striations within a cracked 7,075 alloy within a solution containing
3.5% sodium chloride, with AK = 22 MPa m. The dark line highlighting every striation
represents the step during the decreasing part of the stress cycle [PEL 70]

Within carbon steels, we can also find a correlation between striations and
dislocation walls [BAT 72], whereas within austenite stainless steels, martensite
strips or twins are the ones to be connected to striations [BAT 72] (see Figure 8.11).
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Figure 8.11. Fatigue fracture surface within a mild steel afier polishing and electrolytic
etching. The network of dislocation walls perpendicular to the direction of propagation is
indicated by the arrow. Magnification is X 1,600 in a) and 2,500 in b)

Within o brass, the striations are correlated with some deformation bands created

by dislocation stacking depending on the bisector plane of easy (111) sliding planes
[NEU 74].

We can therefore conclude that when cracking occurs at every cycle we can
observe an ultimate rearrangement of dislocations to prepare for sliding of the crack
tip, as this rearrangement will only be final when closure occurs. Depending on the
sliding property, we can observe the formation of a martensite strip, sub-boundary or
twin at the same time as the formation of a striation.

In addition, the gap between striations depends on the sliding property. The same
goes for the arrangement of striations, regarding orientation and growth of striation
planes, to plastic deformation and to the stacking fault energy (see Figure 8. 12).
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Figure 8.12. Mechanical twins appearing at the surface of a fatigue crack
within an austenite stainless steel 25-20 (magnification X 1,600)

8.4. Model based on displacement on crack tip opening

One of the two main theoretical models for understanding crack growth is based
on the opening at the crack tip [CLI 63, CLI 67]. In this model, we assume that the
fatigue crack spreads due to the sliding of the crack tip in directions oriented at 45°
to the propagation direction [PEL 69]. The model of striation formation that was
proposed by Pelloux agrees with this hypothesis.

In these conditions, if we have d representing the crack tip opening displacement
and da/dN as the gap between the striations, then da/dN and &, are proportional due
for various geometrical reasons. If we do not consider the external plastic zone but
just the most cold-worked central plastic one, the cyclic crack tip opening
displacement &,, under a plane stress can be written as:

AKZ
*~ 4ko [8.7]
y
thus:
dN 8 EO'y . '

This equation can be written differently to get the dimension of the plastic zone.
We then highlight the fact that the growth of the crack has to be proportional to the
size of the plastic zone:
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da _1AK* 0O,
dN 80'y2 E

[8.9]

Unlike Paris’ equation, this theory considers da/dN as a function of AK 2 instead
of AK 4.

In practice, we find that the propagation rate of the crack is a function of the:
— length of the crack;

— amplitude;

— applied stress;

— highest stress;

— frequency;

— temperature;

— environment;

— geometry; and

— history of the crack.

In addition, for a given AK, the macroscopic rate is different from the
microscopic one by an amount that varies depending on the domain considered. For
low AK, the microscopic rate is higher than the macroscopic rate (see Figure 8.13).
We can explain this difference as the striations are locally disoriented from the
general propagation direction at the subdivision of the striation planes and especially
at the temporary halt of the crack front [BAT 72].

It is worth mentioning that the tenet that rules the microscopic rate is a function
of (AK?), as predicted by equation [8.8], the value of the exponent of AK not being
that different from its theoretical value. Nevertheless, we cannot apply the same
rules to the macroscopic rate, which is a function of (AK)Y" where the value of m
ranges from 2 to 10 in the case of steels [CLA 70] and from 3 to 5 in the case of
light alloys.

Some attempts to correlate m to the toughness, expressed with factor K- were
not entirely satisfying [BRO 72]. Usually, we can observe that a high value of m
corresponds to a low value of K., but some exceptions like austenite steels show
that the propagation under a constant regime does not allow us to predict
propagation under a cyclic regime.
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Figure 8.13. Gap of the streaks within austenite steels
and macroscopic cracking rate [BAT 72, BAT 73]

In summary, we should mention first that if the spacing between striations is
really a function of AK 2 — as the gap theory of crack opening displacement (COD)
says ~ it cannot be applied to the macroscopic rate. In addition to the COD theory at
the crack tip, we know that the spacing between striations can vary instantaneously
when a loading variation is set [MIL 66]; the average spacing between striations is a
linear function of the radius of the plastic zone [BAT 72].

In opposition to this theory, experience shows us that, if da/dN really depends on
the elasticity modules, the conventional elasticity limit has almost no consequence
for a given type of alloy [BAI 96, DAV 76, NEV 74]. This apparent contradiction
shows us how unsuitable the model based on COD is.
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8.5. Cyclic stress hardening at the crack tip

Another way to write the growth of fatigue cracks is to consider that the zone at
the front of the crack tip is where a localized low-cycle fatigue occurs.

In 1963 McClintock [CLI 63] proposed a model of crack propagation due to
fatigue based on cumulative damage at the front of the crack due to the plastic
deformation of increasing amplitude.

He assumed that the amplitude of the plastic deformation ¢, at a distance r from
the crack tip, within the plastic zone of dimension R is given by:

R
g, =ee(——l). [8.10]

r

The damage leading to an increase in elementary cracks is supposed to match the
Manson-Coffin equation, such as:

lp
[ 4[&] dN =1 [8.11]
£

S

Considering the fact that dimension P of the equivalent damaged zone is a
fraction of the plastic zone, McClintock finds that:

da _15 AKT [8.12]
dN 16 ¢,E*c.p

Antolovich [ANT 75] completed the McClintock model by using several
approximations. The first one consists of determining the plastic deformation with
the following equation:

R

r+c

£, =&,

[8.13]

& R ..
where ¢ =R g—e If we admit that at the limit, when » = 0, we have:
f

€ =& [8.14]
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the average plastic deformation within the damaged equivalent zone p comes to:

e, =%R log(£+1)= 0.7¢ X [8.15]
P c P

if we assume p/c is close to 1.

Antolovich then defines the radius R of the plastic zone, as follows:
2+S
R= a{i‘ﬁ] 8.16]

and finally finds, if he assumes that the crack grows when:

—\ VA
I3

4 AN[—E-J =1 [8.17]
&

that:
/8
L — ,ﬁd_a_ = 4 O~7a 1 AK(2+S)//9
AN dN Eo (i+s)gf p1/3 _1 [818]
y

The model proposed by Tomkins [TOM 73] is different from the two first
because of the calculation hypotheses. He considers that damage occurs within two
bands of length R at both ends of the crack at an angle of 45° to the direction of
propagation. He supposes that the opening of the crack for every cycle is the sum of
a plastic term and of an elastic one, thus:

b= J: ” Rde, + LA * Cde, (8.19]

with:
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The cracking rate is then given by the following equation:

da &
“ _ Y 8.20
dN 2 [8.20]

If we consider that the cold-working law of the material is:
Ao =kAg, [8.21]
and that the Manson-Coffin equation can be written as:
Ae NYC™ = Cte [8.22]

Tomkins gives the global equation:

2 2 A
da_ 7 | S | ag2 4 | 2% |5 |2e [8.23]
dN 8J2| 20, (2n+1) &, ) 6

which is presented in Chapter 4.

Under plastic fatigue, this global equation comes to:

2 +
—fdi_ ﬂ_z k Ag‘(pZn 1)
dN 8J2|20,) (2n+1)

a [8.24]

Under fatigue, at a low stress level the global equation can be simplified to give:

2
2 3
da & ( 1 j &, Ao’a [8.25]

;]V=48\/5 20,) ¢, E

The theories of damage due to cyclic cold-working have the advantage when
explaining the influence of the metallurgical parameters. In equations [8.13] and
[8.25], the cracking rate is a function of g, E and & As long as o, varies inversely

with &; we can then find a suitable explanation for the apparent absence of influence
of the elasticity limit on the cracking phenomenon.
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8.6. Model based on the effective stress intensity factor
8.6.1. Elber’s model

Elber [ELB 71] showed that a fatigue crack within an aluminum plate can be
closed when the entire set of specimens is still subject to traction. Some compressive
stress is then created around the crack when the loading tends towards zero [RIC
67]. He concluded that a fatigue crack is different from an ideal mechanical one as it
creates a zone of residual deformation during its propagation. The theoretical crack
tip opening displacement is then decreased.

By assuming that a fatigue crack does not spread when it is closed, he concluded
that considering the total amplitude of the cycle to establish Paris’ equation —
da/dN = f (AK) — is wrong, and proposed replacing the stress intensity factor AK of
this equation with an effective stress intensity factor: AK .= K),— K, where K is
the maximum stress intensity factor and K, the stress intensity factor necessary to
entirely open the crack.

In order to determine AK ¢ Elber [ELB 71] recorded the displacement d at the tip
of the crack as a function of stress, using an extensometer sensor on thin plates made
of 2024-T3 aluminum alloy. The example, shown in Figure 8.14, allows us to
distinguish three different stages that were defined by Elber and which are presented
bellow.

Between C and D, the equation is also linear and the measurement is equal to
that of a similar plate containing a mechanical notch of the same lengths as the
fatigue crack.

Between B and C, the curve d2P/dd? is negative. As the plastic behavior of a
material leads to a positive curve during the unloading, the only explanation of the
negative curve that we can find is a change in configuration that increases the
rigidity of the specimen under decreasing loads. This change in configuration can be
explained by the closure phenomenon. The crack is entirely open between D and C,
during the unloading, gets closed gradually between C and B and is then closed
between B and 4.

Depending on the position of the sensor, and the nature of the material, the last
part CD can be split into two sections: a linear section that is more or less significant
and a curve section, being also negative, corresponding to CD and DE respectively.
As a tensile plastic deformation can only occur when the crack is completely open,
Elber concluded that the BC curve is entirely due to progressive opening of the
crack, whereas the DE curve is due to a plastic deformation at the crack tip. The
determination of point C allows P,, and finally K, to be identified.
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Figure 8.14. Opening and closure at the fatigue crack tip.
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Elber carried out tests where he allowed some parameters to vary, such as:
— the length of the crack,

— the stress intensity factor, and

— the ratio R;

in order to observe their influence on the efficiency of loading, defined by the ratio

U= max op [826]

Only ratio R seems to have a significant influence on ratio U. Elber found a
linear equation between these two parameters that can be written with the following
function U= 0.5 + 0.4 R. It had —0.1 < R < 0.7, in the case of the aluminum alloy
2024-T3, thus explaining the influence of ratio R on the propagation rate of fatigue
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cracks within this alloy. We should finally mention that these results were obtained
mainly under plane stress conditions. Some experimental verifications show that U
can vary from 0.4 to 0.75 when R = 0, depending on the geometry and the alloy.

The notion of AK.¢r leads us to admit that there is no stress singularity at the
front of the crack as long as its root is not entirely open.

8.6.2. Application of Elber’s model

When a crack spreads towards a configuration of plane stress, the problem is
slightly more complicated because the plastic zone at the crack tip is about three
times bigger at the surface than within the core. As a consequence, the residual
stresses associated with this plastic deformation are more important at the surface
than within the core.

The opening of the crack tip is therefore more premature within the core than at
the surface. When the force applied to the specimen increases, we can initially
observe the phases described by Elber under a plane stress, until opening of the
center of the specimen occurs. Between this moment and the opening at the surface,
however, in the case of the cracking under plane stress there is a transitory phase
during which the opening of the crack goes from the inside to the outside at the same
time as the crack gets a new configuration (see Figure 8.15). The definition of AKcs¢
can appear to be ambiguous as it usually varies at the front of the crack. Apparently,
we have to calculate AK,x from the opening at the surface. In these conditions we

can observe that AK, ¢ increases with the thickness of the specimen [SCH 77].

A number of authors, including Lindley, McEvily, Pineau, Schijve, [LIN 74,
EVI 77, SCH 77], have experimentally shown that the crack tip is less open at the
surface than within the core. They performed some metallographic cuts and surface
dissolutions.

The experimental detection of the closure or opening of the cracks is not easy to
interpret correctly using the recordings from various methods. If we use an
extensometer and mechanical method, an electric one or a method with ultrasound
transmission, the interpretation of results leads to different conclusions. It seems that
mechanical opening does not always correspond to “electric” opening or to
“acoustic” opening because of the formation of an isolating oxide film, for instance.
It is thus more suitable if we consider the extensometric measurement to be the
reference measurement. We should then bear in mind that the measurement of the
opening at the surface will give some precise but localized information; and that the
measurement of the opening of the notch will give some rough but global
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information on the evolution of opening along the crack tip under a plane stress
[BAT 78, BRO 72, GAR 77, SHI 77].
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Figure 8.15. Evolution of the opening of the crack tip for an increasing loading
within a thick plate [BAT 72, BAT 73]

8.6.3. Interpretation of the fundamental mechanisms

8.6.3.1. Influence of ratio R

Experience shows us that when the ratio R = 0;,,;,/0;,,, increases, the cracking

rate increases and becomes more significant when the alloy is less ductile. This
increase cannot be described by the amplitude of the opening of the crack tip, but
can be considered with the concept of AK 4z [PET 96]. An example of a cracking

curve given as a function of AK is presented in Figure 8.16. These results, obtained
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on aluminum alloys with ratios R ranging from 0 to 0.75, show that the growth of
the crack depends on the effective intensity factor.
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Figure 8.16. Influence of ratio R on the cracking rate
of aluminum alloys

8.6.3.2. Influence of the environment

It is well-known that some aggressive or salted mediums increase the speed of
fatigue cracking. We have been wondering for a long time whether the influence of
the surroundings was a key in the opening of the crack tip or the effective stress
intensity factor. Some contradictory results have been published [BAT 78, BUC 74,
IRV 75]. As a matter of fact, the influence of the environment on fatigue cracking
depends on the interaction of absorption at the crack tip with the microstructure, and
on the formation of oxide layers that can modify the efficiency of the cycle.
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We can finally say that for an identical AK,4 cracking does depend on the

surroundings [PET 96]. The reader will find more information on this topic in
Chapter 11.

8.6.3.3. Influence of overloading

During a fatigue test, when we temporarily increase the stress intensity factor
from a given initial value, we can first observe that growth of the crack during
overloading is not ruled by Paris’ equation. We can also observe that after going
back to the conditions of the initial loading, the propagation of the crack is
significantly slowed down if the temporary overloading is due to traction. It goes
slightly faster if the overloading is due to compression. These disturbances in
cracking rate due to the application of overloading are really interesting for the
engineer, as they represent the conditions usually met in practice.

The typical phenomenon in the slowing down of a crack after overloading has
been described as presenting several phases (see Figure 5.17), with one of them
where the cracking rate reaches a constant and minimum value (da/dN)gej,. This
maximum slowing down phase is framed by two transitory phases, both limited by
the rate of the established regime (da/dN),. The lowest rate is not immediately
reached after overloading except when a sequence of several consecutive peaks is
observed.

The process of slowing down is correctly described using two parameters:

— the number of cycles Np, which is affected by the rate of crack development
slowing down; and

— the crack length a;,, where the rate is disturbed as soon as the loading is applied
(see Figure 8.17).

Many studies have shown that, for a given material, the deceleration of crack
development increases with the surface K4, the ratio Kj.4/Ky, and the number of
overloading peaks. On the other hand, it decreases when ratio R increases. Due to
the high number of parameters, this phenomenon is complex and its modeling is not
satisfying for various different reasons [SCH 77].

The low-intensity overloading, whose ratio does not exceed 10%, leads to a
temporary disorientation of the crack and to the low rate of deceleration. The more
intense overloading leads to a static failure within the core of the specimen when the
specimen is several millimeters thick. The crack then remains blocked at the surface
due to the significant plastic deformation occurring under a planar stress (see Figure
8.18). The crack, which is then disturbed, is initiated again at the surface within the
ligaments limiting the failure (see Figure 8.19). In these conditions, the
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deceleration/retardation phenomenon after overloading will depend upon the
thickness of the specimen.

Wheeler and Willenborg [WHE 70, WIL 71] considered that the length of a
crack affected by overloading is equal to the journey necessary for the plastic zone
at the crack tip to become tangential to the one produced by the overloading. This
hypothesis corresponds to a rough approximation in the case of thin plates under a
planar stress but is not accurate enough, however, under a plane stress.

Some measurements of the plastic zones confirmed that their size in relation to
the propagation direction is three to five times smaller than the maximum size. This
can lead us to believe that the retardation is apparently unrelated to structural
overloading at the front of the crack [BAT 78].
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Figure 8.17. Retardation phenomenon after over-loading [BAT 78]

We should mention that experience shows that there is no simple and unique
relationship between the length of the affected crack and the real diameter of the
plastic zone with overloading. For every ratio, every value of Kpeq, every
frequency, we can find a different equation between these two dimensions. It then
leads us to find that for a diameter of a given plastic zone, the length that is affected
by the retardation is not always the same.
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It appears that the retardation phenomenon does not exclusively depend on
modifications of the microstructure by overloading or the geometry of the
subsequent plastic zone, but rather on residual stresses connected to plastic
deformations [CHA 77]. As a consequence, the effective stress intensity factor is
strongly affected by the residual stresses, which are compressive after tensile
overloading [SCH 77]. The reduction in effective stress intensity factor better
explains this retardation phenomenon.

The experimental verifications and calculations [SCH 77] have shown that
determination of the effective stress intensity factor allows us to predict the growth
of cracks after an overloading for a crack growing under a plane stress regime within
thin plates.
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Figure 8.18. a) Cracking mechanism after overloading within a 2024 T 351 alloy,
and b) plastic zone at the surface

Within the thick plates, the problem is more difficult. Depending on the
thickness of the specimen, the strong overloading intensities lead to a crescent-like
failure and, as a consequence, modify the almost straight profile of the crack front. It
is therefore likely that the relative variations Kegcien Within the core and at the

surface of the specimen will be different. Indeed, after overloading, at the surface
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the crack spreads within the ligaments located between the failure and the surface,
whereas they remain totally blocked within the core.

Right after intense overloading, Kygiciens is lower within the core than at the
surface. After an acceptable number of cycles, the crack front tends to change back
to its initial shape, leading to a higher K, gc;en; Within the core than at the surface.
This inversion can be explained by the combined action of dullness of the crack
within the specimen’s core by the formation of cupules and by the existence of
residual compressive stress due to plasticity at the crack tip.

1) Crack before over-loading 2 Failuze due to the over-loading ~ 3) Crack after over-loading

Figure 8.19. Cracking model before and after overloading
under planar deformation conditions [BAT 78]

8.7. Conclusion

In this chapter, the relationships between the mechanisms of plastic deformation
and those related to cracking propagation are presented. In summary, we should bear
in mind that:

— fracture surfaces due to fatigue depend on plastic deformation at the crack tip,
on the dislocation arrangements of the twinning, etc.;

— the spacing between fatigue striations and opening of the crack tip depend on
the size of the cyclic plastic zone;
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— the efficiency of the fatigue cycle mostly depends on the plastic zone, but it
also depends on the roughness of the crack, which is additionally related to the
plastic deformation and to the size of the grain.

Nevertheless, cracking due to fatigue more often than not depends on the
surroundings and it seems that we cannot entirely understand the cracking
mechanisms if we do not consider interactions with the environment and plastic
deformation.
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Chapter 9

Local Approach to
Fatigue Crack Growth

9.1. Introduction

Within ductile materials, constrained crack tip plasticity can lead to some quite
spectacular effects. Among them, the overload retardation effect may be the most
well-known effect. When overloading is applied to a cracked structure, the crack
growth rate strongly decreases immediately afterwards. This phenomenon can be
qualitatively explained as follows: during the application of the overload, the
material is plastically deformed within a region confined to the end of the crack,
whereas the bulk of the structure remains elastic.

Thus, at unloading, the main part of the structure comes back to its original, un-
deformed shape and imposes its deformation on the plastic region at the crack tip.
The plastic zone is then in compression. The level of compressive residual stresses
and the extent of the residual stress field strongly depend on the cyclic elastic-plastic
behavior of the material. In any case, these compressive stresses decrease the
efficiency of the subsequently applied fatigue cycles. The fatigue crack growth rate
strongly decreases after the application of an overload, and this remains true until
the crack propagates enough for its end to come out of the overload plastic zone.

Chapter written by Sylvie POMMIER.
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Some other effects, which will be presented in this chapter, also come from the
ability of the material to be plastically deformed, such as the short crack effect and
the so-called “constraint” effect related to the shape of the specimen.

In this chapter, we will see how to estimate the dimension of the plastic zones
and level of residual stresses.

Then, we will show how these residual stresses occur experimentally and,
finally, how to consider, more or less simply, the effects of plasticity on the crack
growth rate.

9.2. Plasticity at the crack tip
9.2.1. Irwin’s plastic zones

The first evaluation of the dimension of the zone disturbed by plasticity is due to
Irwin [IRW 60]. In mode I, the asymptotic solutions of the linear elastic fracture
mechanics (LEFM) (equations [9.1] to [9.5]), enable us to calculate the von Mises
equivalent shear stress [9.4] in the case of a planar crack within a plane that is
orthogonal to the y axis and whose front is locally parallel to the z axis.

The strains 7, Ty, and T, are the first non-singular terms of the asymptotic
development of stresses at crack tip . In mode I, in local plane strain conditions, T} is
equal to zero. If the uncracked equivalent structure does not undergo any shearing,
T, is also equal to zero:

_ K cos—e—(l—singsin£]+T [9.1]
2 2 2

g,
2w

- K cosg(1+singsinﬁ [5.2]
2 2 2
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with:
l [9.5]

To estimate the dimension of the plastic zone, we calculate the distance ry
beyond which the von Mises equivalent shear stress determined using the LEFM
stress fields (equations [9.1] to [9.5]) is lower than the yield stress oy of the
material. In this calculation, only singular terms are considered. When =0, which is
to say on the plane of the crack, for ry with v=0 under plane strain conditions, we
obtain:

9 2
, 2 (1-2) [&] [9.6]

2z oy

If we assume that the behavior of the material is elastic-ideally plastic, the von
Mises equivalent shear stress is equal to oy within the whole plastic zone. To
calculate the value of each term of the stress tensor, we presume that the ratio
between these terms within the plastic zone is unchanged when the material reaches
the yield point, which is to say that when 6= 0:

0,.=0 o.=2o, o,=(1-2v)o, [9.7]

xx Yy

Then, to calculate the dimension 7, of the plastic zone, Irwin [IRW 60], came up
with an additional hypothesis. Between » = 0 and » = ry, the tensile stress g, is
limited and equal to oy/(1-2v). As a consequence, the forces are distributed beyond »
= ry. Between » = ry and » = r,, this distribution allows the material to reach its yield
stress. Beyond 7, the material remains elastic. The elastic fields are assumed to be
similar to those of a crack that is longer than the real crack with a difference of ry.
The distribution of forces, illustrated in Figure 9.1, allows us to calculate the
dimension of the plastic zone:

7=00 r=0c0

j dr ro‘f+ j [9.8]

1/27Z r— ry

We can then deduce the equation of the dimension of the monotonic plastic zone,
which evolves as the square root of the ratio between X; and oy:
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9 2
. :(l;iv)_(§j [9.9]
Y

If a load release with amplitude AK] is then applied from this point, the local
stress amplitude that needs to be applied to create plasticity at unloading is equal to
20y. If we simply apply equation [9.9], we find that the dimension of the zone that is
plastically deformed at unloading, also called the cyclic plastic zone, is equal to a
quarter of the dimension of the monotonic plastic zone when the stress intensity
factor amplitude AK] is equal to the maximum value of the stress intensity factor K; :

2 2
r;fu)—(AK’j 1 [9.10]
T 20y 4
A oy, (MLER)
b
e
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Figure 9.1. a) Determination of ry using von Mises’ equivalent stress from the linear elastic
Jracture mechanics fields, and b) determination of the dimension r,, of the plastic zone from
the distributions of the tensile stress ahead of the crack tip. Stresses ave plotted
as a function of distance from the tip of the crack r

If we compare this simplified method with finite elements calculations under
elastic ideally plastic conditions, it correctly estimates the stress level g, reached
within the plastic zone, either under plane stress or plane strain conditions , as well
as the area of the plastic zone in plane stress conditions. In plane strain condltlons,
the area of the plastic zone reaches its maximum on an axis with an angle 70° from
the crack plane and not with 6= 0.
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9.2.2. T-Stress effect

In the particular case of a through thickness crack in an infinite plane subjected
to a bi-axial loading state at infinity (S,, S,) (Griffith cracks), the stress intensity
factor is equal to K;= Sy(ﬂa)” ? whereas the T-stress is equal to 7 = S,— Sy

Usually, in mode I, the non-singular terms 7, 7, and T, depend:

— on the stress normal to the crack plane o;,;

— on stresses Oy, 0y, and ¢, applied to the uncracked structure;

— on the distance between the crack tip and the free surfaces;

— on the crack length.

2
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Figure 9.2. Dimension of Irwin’s plastic zone with T-stress non-dimensioned by the one
calculated when T = 0: a) as a function of the ratio between the T-stress and the yield stress
of the material oy, b) As a function of crack length a, when oy = 400 MPa, K, =15MPa.m"”
and for a Griffith crack with a length of 2a under a uni-axial loading

Using the same simplified hypotheses that were presented above, we can study
the effect of T-stress on the plastic zone dimension at the crack tip. Simple
calculation [9.11] under plane stress conditions shows that the dimension of the
plastic zone strongly depends on the ratio between stress 7 and the elasticity limit of
the material oy:

n(T) 2

(2oL

[9.11]
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In the particular case of a Griffith crack, and for an infinite uni-axial loading
(S.= 0), we can calculate the T-stress as a function of the stress intensity factor and
of the length of the crack: T= - K] (77a)"". Thus, equation [9.11] enables us to show
that, for an identical stress intensity factor, the dimension of the plastic zone
strongly decreases when the crack length increases (Figure 9.2b).

Terms 7, and Ty, have the same role regarding plasticity at the crack tip.
Negligible in the case of a short crack, these terms are significant when the
dimension of the crack decreases.

9.2.3. Role of strain hardening of the material

The previous calculations allow us to estimate the dimension of the plastic zone
for an elastic ideally plastic material. Nevertheless, the materials usually present
some strain hardening, which can significantly modify the dimension and shape of
the plastic zone at the crack tip.

In order to study the role of strain hardening, the strain fields at the crack tip
were independently calculated by Hutchinson [HUT 68], Rice and Rosengren [RIC
68] for a non-linear elastic behavior (HRR fields).

Let us consider an elastic-plastic material following the Ramberg-Osgood
behavior law, with hardening exponent » under uni-axial traction conditions. This
law can be used in multi-axial conditions [9.12] through a hypo-elastic formulation:

n=1
19

E=¢ =§—]—a-ﬂ $ [9.12]
= =r 2F o} =

o

To obtain the stress fields at the crack tip, Rice ef al. [RIC 68] calculated the
order of the singularity using energetic considerations based on integral J, and then
determined the angular functions. Coefficient I,, along with the angular functions
g, (0) is a function of the hardening exponent. Solutions of differential equations

are quite complex. Some tabulated solutions can be found in [SHI 83].

The asymptotic stress field at the crack tip can be written with the following
[9.13]}:

1 1

= ao[#jm & (6)(1)"“ [9.13]
aoel, )] =" r

(]S
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These calculations enabled us to show that the strain hardening of a material
strongly influences the distribution of stresses around the crack tip. Indeed, the stress
field presents a singularity with order 1/(1 + n) where » is the strain hardening
exponent.

In addition, Rice et al. [RIC 68] present a figure where the shape of the
approximate boundary between the plastic and elastic zones at the crack tip is
plotted (see Figure 9.3). We can clearly see in this figure that the shape of the plastic
zone strongly depends on the hardening exponent. Located around the y axis in
plane strain conditions and for an ideally elastic plastic behavior, this plastic zone
bows backwards when the strain hardening of the material is increased (see Figure
9.3). Finite element calculations have enabled us to confirm these results.

=200

00 0 o0 o
. oy,

.

Figure 9.3. Shape of the approximate boundary between the elastic and plastic
domains following the exponent of the Ramberg-Osgood law [RIC 1968]

Nevertheless, the singularity of the stress at (J/#) with a power of 1/(1 + #) means
that the stresses are infinite when 7 tends towards zero. This is not often the case as
the bluntness at the crack tip leads to a free surface in » = 0 where, depending on the
Tresca criterion, the maximum principal stress does not exceed the yield stress of the
material.

Ma and Kuang [MA 95] published an analytical calculation of the stress fields
for a hypo-elastic behavior and for a blunted crack. Using this approach, the stress is
not singular anymore at the crack tip and reaches its maximum ahead of the crack
tip, within the plastic zone.
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Figure 9.4. Ratios between &, and &,, or between G, and 0, on the crack plane at 100 um
and 200 pm from its end; the dimension of Irwin’s plastic zone being about 130 ym.
Calculations were performed using the finite element method, with an elastic-plastic

law presenting some isotropic hardening (R,=350 MPa, R,=700 MPa)
and size of the elements being 10 tim

The HRR fields were established to deal with non-linear fracture mechanics
problems for which plastic deformation is not constrained at crack tip, and for which
it is possible to neglect elastic deformation compared with plastic deformation. This
is not the case, however, in fatigue.

In Figure 9.4, for instance, the stresses and strains that were calculated using the
finite element method within the plastic zone are plotted as a function of the nominal
stress intensity factor applied. During the loading of the specimen, the ratio between
two stress or strain terms is not constant.

Thus, the distribution of stresses and strains, and not only their intensity, depends
on the loading applied. For instance, as deformation &, increases, &, also increases
at the start, as predicted by the linear elastic fracture mechanics fields. Then, since
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plastic strain occurs without any changes in volume, the plastic deformation in the y-
direction comes with a contraction towards direction x.

Thus, the sign of the ratio between &, and &, is changed when the plastic
deformation increases. The same thing can be observed for stresses. These path
changes, due to competition between the relative importance of elastic deformation
(with volume change) and plastic deformation (without volume change), cannot be
ignored under fatigue conditions as the elastic deformation cannot be neglected
when compared with plas