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Dedicated to Corwin Hansch 



Preface 

The present monograph is the first volume in a new series of handbooks entitled 
“Methods and Principles in Medicinal Chemistry”. The prime focus of this series 
is an educational introduction into the current knowledge of methodological 
aspects and basic principles in the rapidly developing field of Medicinal Chemistry. 

Potentials and limitations of techniques will be critically and comparatively 
discussed and comprehensively exemplified. It is intended to provide the reader 
with the appropriate information for applying the adequate techniques to a given 
problem and to avoid misleading interpretations due to the improper use of 
methodology. Main topics under the scope of this new publication are: 

- The determination of chemical properties of biologically relevant molecules. 
- Innovative approaches in the characterization of biological activity. 
- Methodological aspects in deriving SAR and QSAR analyses. 
- Current developments in the physiological and biochemical understanding of 

- Future perspectives in the development of Medicinal Chemistry. 

The first volume in the series deals with Hansch analysis and related approaches. 
Publication of the Hansch model in the early sixties represents the starting point 
of modern QSAR methodology and correspondingly the present monograph 
focuses on these aspects of Medicinal Chemistry. But not the historical reasons have 
primarily led the editors to start the series with this topic. The “classical” QSAR 
methods also nowadays play an important role in Medicinal Chemistry. Despite 
the advances in protein crystallography, molecular modeling, and structure-derived 
molecular design, Hansch analysis and related approaches are continuously useful 
tools to quantitatively derive and prove hypotheses on structure-activity relation- 
ships. In addition, the quantitative treatise of kinetic aspects of drug action remains 
an exclusive domain of these methods. 

According to the aim of this new series Hugo Kubinyi gives a practice-oriented 
introduction into Hansch analysis and related approaches which familiarizes the 
reader with the proper application of these methodologies. The comprehensive 
list of references gives an excellent access to current literature and comfortably 
introduces the reader to fields of his special interest. 

diseases. 

Diisseldorf 
Kopenhagen 
Amsterdam 
Summer 1993 

Raimund Mannhold 
Povl Krogsgaard-Larsen 
Hendrik Timmerman 



A Personal Foreword 

The first lipophilicity-activity relationship was published by Charles Richet in 1893, 
exactly 100 years ago. From his quantitative investigations of the toxicities of 
ethanol, diethyl ether, urethane, paraldehyde, amyl alcohol, acetophenone, and 
essence of absinthe (!) he concluded “plus ils sont solubles, moins ils sont roxiques” 
(the more they are soluble, the less toxic they are). One year later Emil Fischer 
derived the lock and key model of ligand-enzyme interactions from his results on 
the stereospecificity of the enzymatic cleavage of anomeric glycosides. 

In the following decades the receptor concept evolved from investigations of Paul 
Ehrlich ; a continuous development of medicinal chemistry began, leading to better 
and better drugs against many diseases. However, despite important contributions 
by Meyer, Overton, Traube, Moore, Warburg, Fuhner, and Ferguson to the depen- 
dence of nonspecific biological activities of drugs on their lipophilicity (most often ex- 
pressed by oil/water partitioning), the field of quantitative relationships between 
chemical structures and their biological activities lay dormant for about 70 years. 

The discipline of quantitative structure-activity relationships (QSAR), as we define 
it nowadays, was initiated by the pioneering work of Corwin Hansch on growth- 
regulating phenoxyacetic acids. In 1962- 1964 he laid the foundations of QSAR 
by three important contributions : the combination of several physicochemical 
parameters in one regression equation, the definition of the lipophilicity parameter n, 
and the formulation of the parabolic model for nonlinear lipophilicity-activity 
relationships. 

This was the time when I started my Ph. D. thesis on irritant and tumor-promoting 
phorbol esters, their isolation, partial synthesis, and structure-activity relationships 
at the Max Planck Institute of Biochemistry in Munich. Indeed, one diagram in this 
book (Figure 43, chapter 7.4) refers to these compounds. Although I recognized a 
nonlinear relationship between the biological activities and the chain length of the 
ester groups (I even measured partition coefficients and found a nice linear 
dependence on the lipophilicity of the compounds), the small step from drawing 
a diagram to formulating a mathematical model, i.e. deriving a parabolic equation, 
was too large for me at that time. Shortly afterwards, then doing research in 
pharmaceutical industry, I became aware of the work of Corwin Hansch, Toshio 
Fujita, William Purcell, and others on quantitative structure-activity relationships. 
Like some of my colleagues in pharmaceutical industry I noticed this new approach 
but did not consider to apply it to practical drug design. For years I lived with the 
prejudice that QSAR is a tool to describe only more or less nonspecific biological 
effects, like antibacterial, antifungal, hemolytic, narcotic, and toxic activities. 

My conversion from Saulus to Paulus happened after a discussion with Rudolf 
Gompper in Munich in 1974. In his seminar on theoretical chemistry he also 
mentioned the pioneering contributions of Corwin Hansch to medicinal chemistry. 
I presented my scepticism but, at the same time, felt ashamed of my ongoing 
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ignorance and decided to read some more papers. Three fortunate circumstances 
worked hand in hand: William Purcell’s book “Strategy ofDrug Design. A Molecular 
Guide to Biological Activity” had just arrived in our library and I read it in one 
day, fascinated by its content and style. An experienced technician helped me with 
his statistics programs (some months later I had discussions with a professional 
statistician who insisted that everything we QSAR people do is forbidden for this 
or that reason. I never would have started QSAR work if I had spoken to him 
first; now it was too late, I already was infected). A colleague provided a data set 
on antihistaminic compounds for which, another day later, a beautiful K - G  
relationship could be derived. A compound of this series came to preclinical and 
clinical development, but unfortunately it turned out to be only a drug for guinea 
pigs; it had almost no activity in humans. 

After this big start I tried to understand the underlying theories and recalculated 
many published equations. My knowledge and experience increased, but I found a 
lot of numerical and also logical errors in the early QSAR literature. The consequence 
was to refine old models, to develop new ones, and to write scientific papers. My 
attempts to publish them were a difficult task. The comments of the reviewers 
ranged from “much ado about nothing” to “wrong” and it took a lot of patience, 
insistence, and several rebuttal letters to place them in the Journal of Medicinal 
Chemistry. 

The publications of Corwin Hansch helped me to proceed. A two-month 
sabbatical in his group at the Pomona College followed in 1978. This visit led to a 
deeper understanding of quantitative structure-activity relationships and their 
physicochemical and biological foundations on my side. On the other hand, it 
stimulated Corwin Hansch to apply the bilinear model to the QSAR of enzyme 
inhibitors; the most interesting applications of this new model resulted from his 
work, from 1980 onwards. 

Nowadays drug development is much too expensive to be guided by trial and 
error. QSAR, molecular modeling, and protein crystallography are important and 
valuable tools in computer-assisted drug design. The aim of this book is to 
give an introduction to QSAR methodology for beginners and practitioners and to 
present selected examples of typical applications. Comments are derived from about 
20 years of practical applications, from thousands of calculated and recalculated 
QSAR equations. It still is my attitude to check other people’s equations, especially 
when reviewing manuscripts. Some warnings are given and the limitations of QSAR 
methods will be discussed. As the commonly used methods are Hansch analysis, 
the Free Wilson model, and, recently coming up, comparative molecular field 
analysis (CoMFA), the focus is on these approaches. 

Corwin Hansch initiated QSAR and he contributed the most to its development. 
Correspondingly, this book is dedicated to him on the occasion of his 75’h 
anniversary in October 1993. He taught us how to apply QSAR in a proper manner 
to gain more insight into structure-activity relationships and biological mechanisms. 
The one and only way to thank him is to feel responsible to use and to develop 
the QSAR discipline in his sense. Thus, the book shall also be understood as a 
stimulus to further research on the real relationships between chemical structures 
and biological activities. 

Heidelberg and Ludwigshafen Hugo Kubinyi 
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1. Introduction 

The interactions of drugs with their biological counterparts are determined by 
intermolecular forces, i.e. by hydrophobic, polar, electrostatic, and steric interactions. 
Quantitative structure-activity relationships (QSAR) derive models which describe 
the structural dependence of biological activities either by physicochemical parame- 
ters (Hansch analysis), by indicator variables encoding different structural features 
(Free Wilson analysis), or by three-dimensional molecular property profiles of the 
compounds (comparative molecular field analysis, CoMFA). 

Drugs, which exert their biological effects by interaction with a specific target, 
be it an enzyme, a receptor, an ion channel, a nucleic acid, or any other biological 
macromolecule, must have a three-dimensional structure, which in the arrangement 
of its functional groups and in its surface properties is more or less complementary 
to a binding site. As a first approximation the following can be concluded: the 
better the steric fit and the complementarity of the surface properties of a drug to 
its binding site are, the higher its affinity will be and the higher may be its biological 
activity. 

A complication arises from the functionalities of the biological macromolecules 
typically involved in ligand-protein interactions: certain structural features of the 
ligand determine whether a compound is 

a substrate (having a functional group which is hydrolyzed, acylated, oxidized, 

an inhibitor (exhibiting affinity to the binding site of an enzyme, but containing no 

a competitive receptor antagonist (having affinity to an agonist binding site, but 

an allosteric receptor antagonist (binding to a different site, see below), 
a functional receptor antagonist (having no affinity to the receptor molecule, but 

inhibiting the receptor response via a different mechanism of action), 
a receptor agonist (displaying intrinsic activity in addition to affinity, i.e. containing 

certain structural features which cause the receptor to respond in a certain 
manner), or  

an allosteric effector molecule (binding at  a different site of a protein and changing 
its 3D structure in such a way that a certain property of the protein, e.g. 
conformational flexibility or affinity to a substrate, an agonist, a cofactor, or any 
other small or large ligand is significantly changed). 

The fit of the three-dimensional structure and the complementarity of the surface 
properties of a drug to its binding site are conditions for its biological activity. 
Another one, at least equally important, is that the drug has to reach this binding 
site. Even in simple in uitro systems, e.g. in enzyme inhibition, the surrounding water 

etc., by an enzyme), 

such group), 

mediating no receptor response), 
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molecules compete to form hydrogen bonds to the binding site and to the functional 
groups of the ligand. The balance of hydrogen bonds in solution and in the bound 
state increases or reduces affinity. In more complex biological systems, like in cells, 
isolated organs, or whole animals, a certain range of lipophilicity enables the drug 
to walk its random way from the site of application to the site of action, i.e. to 
cross several lipophilic and hydrophilic barriers, lipid membranes as well as aqueous 
phases. In the case of nonspecific biological activities caused by membrane 
perturbation, only the distribution of the drug and its local concentration in a 
certain membrane compartment is responsible for its biological activity. 

While the affinity of a ligand to its binding site results from the skm of all 
hydrophobic, polar, electrostatic, and steric interactions, the influence of lipophilicity 
and ionization on the distribution of a drug in a biological system is much more 
complex. 

As long as the biological system is kept constant, the interaction of two dif- 
ferent drugs with the binding site as well as their distribution in the system only 
depend on the chemical structures of the compounds. If these structures are closely 
related, e.g. having a chlorine atom instead of a hydrogen atom in a certain 
position, the differences in their physicochemical properties and thus the dif- 
ferences in the interaction forces can easily be described in a quantitative manner; 
the corresponding difference in biological activities should directly be related to 
the differences in these properties. This is indeed the case and all quantitative 
models of structure-activity relationships are based on the assumption of a more 
or less strict additivity of group contributions to biological activity values. In many 
cases nonlinear models are needed to describe, in addition to binding and intrinsic 
activity, the dependence of drug transport and distribution on lipophilicity and 
ionization. 

While the classical models of quantitative structure-activity analyses do not 
consider the three-dimensional arrangement of functional groups, some recent 
approaches deal with this problem and describe biological activities in terms of 
favorable and unfavorable interaction spheres, derived from the hydrophobic, 
electrostatic, and steric interaction fields of the ligands. 

The methods of quantitative structure-activity relationships which have developed 
during the past 30 years nowadays are widely applied to describe the relationships 
between chemical structures of molecules and their biological activities. Many 
attempts have been made to understand structure-activity relationships in physico- 
chemical terms (or in terms of structural features, using indicator variables for 
individual substituents and groups) and to design new drugs on a more rational 
basis. However, the quantitative description of structure-activity relationships is no 
easy task and will remain difficult at least in the near future. 

Most often QSAR analyses are retrospective studies, whether they follow a rational 
design of investigated structures or not. Only after performing syntheses and 
biological testing, a quantitative relationship is derived. Often the optimization of 
a lead compound is step by step accompanied by QSAR analyses. 

The dispute, whether QSAR really aids to find the optimum within a series of 
biologically active molecules cannot generally be decided. Obviously, the QSAR 
results depend on the validity of the underlying hypotheses, on the complexity of 
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the test model, and on the precision of the biological data. For new compounds 
within a congeneric series the quality of prediction of the biological activity values 
is related to the spanned parameter space and to the distance of the physicochemical 
properties of the new analogs to those of the other compounds. To mention only 
a few other effects, it also depends on the conformational flexibility of the ligand 
and its binding site, on multiple binding modes, and on differences in transport and 
metabolism. 

Although sometimes taken as a criterion, prediction is not the primary goal of 
QSAR analyses. If it results from interpolation, it is often trivial; if extrapolation 
goes too far outside the included parameter space, it usually fails. QSAR helps to 
understand structure-activity relationships in a quantitative manner and to find the 
borders of certain properties, e.g. the optimum of lipophilicity within a series of 
analogs or the maximum size of a certain group in a stepwise procedure. The strategy 
and philosophy of QSAR enables medicinal chemists to look at their structures in 
terms of physicochemical properties instead of only considering certain pharmaco- 
phoric groups in it. 

Many published structure-activity relationships do not meet generally accepted 
standards in scientific research and statistics. Most often hypotheses are not justified 
by the experimental data and, even worse, in some cases the results only reflect the 
patience of the authors to investigate many different variables to describe the 
biological activity values of a small number of compounds, until a certain 
combination of these variables gives a delusively good result. 

Rational drug design did not start with QSAR. Chemists and biologists always 
followed rational guidelines, depending on the state of knowledge at their time. 
However, in the past 30 years several important qualitative concepts evolved from 
QSAR studies: 

The role of different physicochemical properties being responsible for the 

The understanding of the influence of lipophilicity and ionization on drug 

The concept of optimum lipophilicity of a drug for passive transport, e.g. 

Nowadays many medicinal chemists are familiar with these relationships and do 
not any longer realize that much of our knowledge came from such analyses. 

With the progress in protein'crystallography and, derived from the resulting 3D 
structures, in molecular modeling, the interactions between a ligand and its binding 
site can be "seen" in three dimensions. Nevertheless, QSAR methods are still used 
to prove and to quantify the underlying hypotheses regarding the dependence of 
biological activities on physicochemical interactions. Protein crystallography- 
derived drug design only concerns ligand design. It does neither contribute to the 
design of optimum transport and distribution properties nor to the selection of 
metabolically stable analogs. These areas still remain in the field of classical QSAR 
studies. 

drug-receptor interaction. 

transport and distribution within a biological system. 

gastrointestinal absorption or transfer through the blood-brain barrier. 
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1.1. History and Development of QSAR 

In 1868 Crum-Brown and Fraser [l]  published an equation which is considered 
to be the first general formulation of a quantitative structure-activity relationship. 
In their investigations of different alkaloids they recognized that alkylation of the 
basic nitrogen atoms produced significantly different biological effects of the resulting 
permanently charged quaternary ammonium compounds, as compared to the basic 
amines. Therefore they assumed that the “physiological activity” @ must be a 
function of the chemical structure C (eq. 1). 

0 = f(C) (1) 

Richet [2] discovered that the toxicity of organic compounds inversely follows 
their water solubility. Such a relationship corresponds to eq. 2, where A@ are the 
differences in biological activity values, caused by corresponding changes in the 
chemical and especially the physicochemical properties, AC. 

A@ = f(AC) (2) 

Strictly speaking, still today there is no way to apply eq. 1 to biological data. All 
QSAR equations correspond to eq. 2, because only the differences in biological 
activities are quantitatively correlated with changes in lipophilicity and/or other 
physicochemical properties of the compounds under investigation. 

At the turn of the last century Meyer [3] and Overton [4] independently of each 
other observed linear relationships between lipophilicity, expressed as oil-water 
partition coefficients, and narcotic activities [5]. Fiihner [6] realized that within 
homologous series narcotic activities increase in a geometric progression, i.e. 
1 : 3 : 32 : 33, etc., which gave the first evidence of an additivity of group contributions 
to biological activity values. This result was confirmed by many other studies, which 
used different lipophilicity parameters to describe various kinds of nonspecific 
biological activities. Ferguson gave a thermodinamic interpretation of such non- 
specific structure-activity relationships which also explained the often observed 
“cut-off” of biological activity values beyond a certain range of lipophilicity [7]. 

QSAR methodology rapidly developed from the mid fifties on: Bruice, Kharasch, 
and Winzler [S] formulated group contributions to biological activity values in a 
series of thyroid hormone analogs, which may be considered as a first Free 
Wilson-type analysis. Zahradnik [9 - 111 tried to apply the concept of the Hammett 
equation (eq. 3) [12], which at that time was used for three decades to describe the 
reactivity of organic compounds in a quantitative manner, also to biological data 

(3) 

(4) 

(eel. 4). 

log k,-, - log k R - H  = QCJ 

log z, - log ZFt = .p 
T, in this “biological Hammett equation” stands for the activity value of the ith 
member of a series, T~~ is the biological activity value of the ethyl compound of the 
same series, p is a substituent constant (corresponding to the electronic CJ parameter 
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in the Hammett equation), and LY is a constant characterizing the biological system, 
which corresponds to the Hammett reaction constant Q. Unfortunately, eq. 4 only 
holds true for nonspecific biological activities, most often within homologous series 
and within a certain lipophilicity range. 

In 1962 Hansen [13] derived the first (and for a long time the only one) real 
Hammett-type relationship between the toxicities of substituted benzoic acids and 
the electronic o constants of their substituents (eq. 38, chapter 3.5). In the same year 
the first QSAR publication of Corwin Hansch on “The correlation of the biological 
activity of phenoxyacetic acids with Hammett substituent constants and partition 
coefficients” [14] appeared. 

1964 may be considered as the year of birth of modern QSAR methodology. 
Time was ready for more general formulations, how to treat structure-activity 
relationships in a quantitative manner. Independently, two papers were published, 
one by Hansch and Fujita on “e-o-n Analysis. A method for  the correlation of 
biological activity and chemical structure” [15], the other by Free and Wilson on “ A  
mathematical contribution to structure activity studies” [16]. Both contributions 
started the development of two new methods of quantitative structure-activity 
relationships, later called Hansch analysis (linear free energy-related approach, 
extrathermodynamic approach) and Free Wilson analysis, respectively. The real 
breakthrough in QSAR resulted from the combination of different physicochemical 
parameters in a linear additive manner (eq. 5 ;  log 1/C is the logarithm of the inverse 
molar dose that produces or prevents a certain biological response, log P is the 
logarithm of the n-octanollwater partition coefficient P), as done earlier in theoretical 
organic chemistry. Further contributions were the definition of a calculated 
lipophilicity parameter TC (eq. 6), to be used instead of measured log P values (like 
Hammett o values are used instead of equilibrium constants of organic reactions), 
and the formulation of a parabolic equation for the quantitative description of 
nonlinear lipophilicity-activity relationships (eq. 7) [17 - 191. 

log 1/C = a l o g P  + b o  + ... + const. ( 5 )  

E X  = log PR-X ~ log PR-H 

log 1/C = a (log P)z + b log P + c o  + ... + const. 

Considering a significant contribution by Fujita and Ban [20], the Free Wilson 
model is defined by eq. 8, where ai j  is the group contribution of the substituent 
Xi in the position j and p is the (theoretical) biological activity value of a reference 
compound within the series; all group contributions aij of the different substituents 
Xi refer to the corresponding substituents (most often being hydrogen) of this 
reference compound. 

(8) log 1 / c  = 1 aij + p 
Both models remained unchanged over the past three decades. Some improve- 
ments resulted from the combination of Hansch equations with indicator variables 
[21], which may be considered as a mixed HanschlFree Wilson model (chapter 4.3) 
[22], and from the formulation of theoretically derived nonlinear models for transport 
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and distribution of drugs in a biological system, e.g. the bilinear model (eq. 9; 
chapter 4.4) [23]. 

log 1jC = a log P - b log (PP + 1) + c (9) 

Various attempts have been made to use pattern recognition [24, 251 in QSAR 
studies and successful applications have been reported. Soft modeling techniques, 
e.g. the partial least squares (PLS) method [26, 271, now offer better opportunities. 
With the help of this principal component-like method the explanatory power of 
many, even hundreds or thousands of variables can be used for a limited number 
of objects, a task being absolutely impossible in regression analysis in which the 
number of objects must always be larger than the number of variables. 

Three-dimensional quantitative structure-activity relationships (3D QSAR) were 
developed from the first attempts to map a receptor surface by analyzing a QSAR 
equation for noncovalent interactions of the ligands in the different positions of 
substitution (e.g. [28]). Holtje [29, 301 extended this approach. He postulated certain 
amino acid side chains as binding partners, calculated interaction energies in 
standard geometries, and correlated these energies with biological activity values. 
Several other attempts were made to map hypothetical interaction sites of a receptor, 
e.g. the distance geometry method of Crippen [31, 321. Goodford’s program GRID 
calculates interaction energies of certain probe atoms with the surface of a protein 
whose three-dimensional structure is known from crystallographic analysis [33]. 

If the three-dimensional structure of the protein is unknown, different fields of 
the ligands can be compared in 3D space. The molecules of a chemically related 
series are superimposed, following certain alignment hypotheses (the pharmacophore 
hypotheses), a grid is laid over the molecules, and values of the steric and electrostatic 
fields (and optionally other fields) are calculated in every grid point for each molecule 
of the series. An appropriate multivariate statistical method correlates thousands 
of such energy values in the different grid points (each one representing a column in 
the X block) with biological activities. In the first version, called DYLOMMS, 
principal component analysis was used [34]; later, PLS analysis turned out to be 
more suitable [35]. Comparative molecular field analysis (CoMFA), as it is used 
nowadays, was formulated in 1988 [36, 371. The method, which still is under active 
development, has found many successful applications in a short time [38]. 

A n  excellent, recently published monograph which covers the whole field of QSAR, 
is the book Quantitative Drug Design, volume IV of the six-volume set Com- 
prehensive Medicinal Chemistry [39]. In addition, numerous other monographs, 
either directly related to QSAR methodology and applications [40 - 471, on 
physicochemical parameters [48 - 561, or on related topics [57 - 641, have been 
published. 

As it is impossible to cite all the relevant work and as the selection of original 
contributions is always more or less ambiguous, the reader is referred to ref. [39], 
to several monograph series [65 - 671, to proceedings of QSAR and QSAR-related 
symposia [68 - 841, to the journal Quantitative Structure-Activity Relationships, 
especially to the abstracts section of this journal [85], which year by year contains 
about 400 ~ 500 excellently prepared abstracts of QSAR-related publications, to 
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other abstracts services [86 - 881, as well as to some other journals [89], including 
QSAR publications as their regular content. 

The history of QSAR has been reviewed in books (e.g. [40]) and in dedicated 
articles [5, 90-931; the development of 3D QSAR methods is commented in refs. 
[36, 381. 

1.2. Drug-Receptor Interactions 

“Corpora non agunt nisi fixata” (Ehrlich, 1913) [94] was an early formulation of the 
fact that drugs must interact with certain biological macromolecules to exert their 
biological activity. 

The concept of the interaction of drugs with certain “substances y with which they 
are capable of forming compounds, ... according to their chemical aflinity to y” 
goes back to the work of Langley in 1873 - 1878 [95]. The stereospecificity of such 
interactions was recognized by Fischer in 1894. In his investigations of the enzymatic 
cleavage of anomeric glycosides by invertin and emulsin (a-glucosidase and p- 
glucosidase, respectively), he formulated ,,urn ein Bild zu gebrauchen, will ich sagen, 
dass Enzyrn und Glukosid wie Schloss und Schliissel zu einander passen miissen, um 
eine chemische Wirkung aufeinander ausiiben zu konnen“ (to illustrate, I would 
like to say that enzyme and glucoside must fit together like lock and key, in 
order to exert a chemical effect on each other) [96]. The term receptor was first used 
by Ehrlich in his studies on dyestuffs and their interactions with biological tissues. 
In the following “receptor” sometimes is used as a synonym for any biological 
target, e.g.  any specific binding site of a macromolecule; strictly speaking, this broad 
meaning is not correct from our today’s definition of receptors as being soluble, 
membrane-anchored or membrane-embedded proteins that are able to produce a 
certain biological response uia a series of mostly unknown events (for reviews see 
refs. [59, 97, 981). 

It should be mentioned that the work of Ehrlich also contains a prominent (and 
most probably the very first) example of a fortuitous success based on “rational” 
drug design, which later turned out to be based on a wrong hypothesis. Prontosil 
rubrum, p-[(2,4-diaminophenyl)-azo]benzenesulfonamide, was designed to stain and 
kill infectious microorganisms. However, the metabolite sulfanilamide is the active 
agent, not the dyestuff itself (cited from [97]). One of the most famous examples of 
serendipity (a term coined by Horace Walpole in 1754 from Serendip, a former 
name of Ceylon, in an old Persian fairy tale called “The Three Princes of Serendip,” 
in which the princes are described as making happy or interesting discoveries 
unexpectedly or by accident) was Fleming’s finding of the antibacterial activities of 
certain fungi. The fortunate circumstance that he did not clean his dishes immediately 
after an unsuccessful experiment resulted in a fungal infection of a bacterial cell 
culture. This observation directly led to the discovery of penicillin. Less well-known 
is that the same Fleming, having a cold one day, just for fun “tested” his nasal 
mucus for antibacterial activity. This unplanned experiment led to the discovery of 
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the enzyme lysozyme, which is also found in egg white, milk, blood serum, tears, 
saliva, some other secretions and tissues of animals, and in plant latices (cited from 
1991)- 

Many drugs have been discovered by fortune; serendipity always played an 
important role in drug research [loo] and, despite all our efforts in rational design, 
this will continue in the future. The consequences of short-term planning on the 
probability of success and the effect of a too bureaucratic management in drug 
research have been critically commented [loo]. On the other hand, design and 
development of a new drug need the combined effort of a large team of specialists 
who can only work together in some form of organization; in addition, drug 
development is a costly and time-consuming multistage process which must be 
planned and controlled in a proper manner. 

During the past decades the originally static lock and key model of ligand-receptor 
interaction was modified to a more realistic picture, with flexible drug molecules 
and dynamic receptors [IOl, 1021. Whenever a ligand approaches its binding site, 
both partners may change their shape (induced fit, flexible fit). The three-dimensional 
structures of only a few membrane-bound proteins and receptor-type protein 
complexes have been resolved at atomic resolution; amongst them are the photosyn- 
thetic reaction center [ 1031, the light-driven proton pump bacteriorhodopsin [104], 
and the bacterial membrane-channel porin [105]. No three-dimensional structures 
of mammalian receptors are available at atomic resolution. Most of our knowledge 
regarding the geometry of ligand-binding site interactions resulted from 3D 
structures of soluble proteins, especially of enzymes and their inhibitor complexes 
[lo6 - 1101. Some common objectives against protein 3D structures from crystallo- 
graphic analyses can easily be dissipated. The contacts between the individual protein 
molecules in the crystal are relatively weak (which makes it so difficult to crystallize 
proteins). Thus, it is very unlikely that they will have an effect upon the native 
conformation of the protein, with the possible exception of some outer loops. In 
principle protein crystals are ordered aqueous solutions, because they may contain 
up to 70% water. They still show some flexibility of individual amino acid side 
chains and of even larger domains. Some proteins (e.g. hemoglobin, as well as many 
enzymes) retain their functional properties in the crystal, although rate constants 
may be very different to those in aqueous solution due to less favorable diffusion 
conditions in the crystal; cofactors and inhibitors can be cocrystallized or soaked 
into the protein crystals. 

Attempts have been made to model G protein-coupled receptors [ill- 1131 
because of their similarity in the number of trans-membrane domains to bac- 
teriorhodopsin. Such models prove to be useful for gaining further insight into the 
structure and function of receptors. However, their value for ligand design is limited; 
at atomic resolution such models are far from reality. 

An important contribution to the receptor concept resulted from recent investiga- 
tions of Herbette [114, 11 51 of the partitioning into and the distribution of drugs 
in biological membranes. The correct spatial arrangement of the drug and its proper 
orientation in the membrane with respect to the binding site at the surface of the 
membrane-embedded receptor are considered to be of utmost importance for the 
drug-receptor interaction (Figure 1). In addition, the model of a drug being 
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Figure 1: Drug-receptor interactions. 
A) A ligand L may reach its binding site S, or S, at the receptor R by direct diffusion in the 
aqueous medium or (in the case of site S,) by partitioning into the membrane and then diffusing 
to the binding site. 
B) The highly ordered structure of the lipid bilayer may restrict lipophilic and especially amphiphilic 
drugs to a particular depth of penetration; drug x will fit the binding site because it is positioned 
at a proper depth for optimal interaction with the binding site, whereas drug y will be less active 
or inactive. 
C) The orientation of the ligand relative to the binding site might also be optimized by the 
membrane by limiting the rotational degrees of freedom of the drug; drug x will be active, drug y 
not. In addition, the membrane may stabilize conformations of a drug which are different from 
those present in the liquid phase, thus enabling or disabling interaction with the receptor site in 
the membrane [114, 1151. 
(reproduced from Figure 2 of ref. [114] with permission from the Biophysical Society, Bethesda, 
MD, USA). 

transferred from the aqueous phase to the membrane, finding its way inside the 
lipid bilayer, reduces the problem of a ligand approaching its binding site from 
three dimensions to only two dimensions. 

Which forces are responsible for ligand binding to a receptor, be it an enzyme, 
a binding site at a receptor surface, a nucleic acid, or any other biological 
macromolecule? The affinity of a drug D to its binding site at the receptor R is 
determined by the free energy difference AG between the free states of both partners 
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and the drug-receptor complex [DR], which is made up from the enthalpy change AH 
and the entropy change AS (eq. 10). The free energy AG is related to the equilibrium 
constant K for the reaction D + R = [DR] by eq. 11. 

AG = AH - TAS (10) 

(1 1) AG = -2.303 RT log K 

A short overview of the intermolecular interactions between drugs and their binding 
sites is given below. 

Covalent bonds have energy values in the range of about 170-600 kJ . mol-'. 
As they are irreversible, they are not important for most therapeutically relevant 
drugs. Only alkylating agents (e.g. antitumor drugs like cyclophosphamide) as well 
as active site-directed and mechanism-based irreversible (suicide) enzyme inhibitors 
(e.g. the penicillins and cephalosporins as bacterial cell wall synthesis inhibitors, 
chloromethyl ketones as serine and cysteine protease inhibitors, or pargylin, 
deprenyl, and related analogs as monoamine oxidase inhibitors) form covalent bonds. 

Electrostatic interactions are considered to be important attractive forces, due to 
their relative strength, [59, 116- 1191. The molecular electrostatic field which 
surrounds a binding site guides the correct orientation of the drug [59] and is 
responsible for the first contact. However, the role of electrostatic interactions as 
being mainly responsible for high affinity has been questioned due to an often 
unfavorable solvation-desolvation energy balance. It is difficult to express their 
contribution in a quantitative manner, due to a number of reasons: 

The dielectric constant inside a binding pocket may be significantly different 
from its value in water. 

The strength of some interaction forces, e.g. of hydrogen bonds, depends on the 
interaction geometry [59, 117, 1201. 

In the case of additional dispersive interactions the resulting energy values heavily 
depend on small differences in the distances between the atoms participating 
in the interaction. 

Even minor changes in the binding mode, i.e. in the geometry of the drug-receptor 
complex, in going from one analog to another, may increase or reduce the 
binding enthalpy AH considerably, a fact which is much too often neglected in 
quantitative structure-activity analyses. 

Most interactions between charged groups include hydrogen bonds, e.g. between a 
positive ammonium group and a negative carboxylate, phenolate, phosphate, 
phosphonate, or sulfate group. Different energy values are given in literature (energies 
calculated in uucuo must not be compared with these values because they do not 
consider other intermolecular interactions, e.g. with the surrounding and competing 
water molecules). The values of charged hydrogen bonds have been estimated, mainly 
from the investigation of muteins, to be in the range of 15 - 19 kJ . mol-', while 
those of neutral hydrogen bonds were estimated to be 2-6 kJ . mol-' [121- 1231. 
Correspondingly, the introduction of a neutral hydrogen bond increases the binding 
affinity by a factor of about 2-20, while the introduction of a charged hydrogen 
bond increases it by a factor of 400 - 2,000. Differences in free energy values, derived 
from reaction rates of ligands containing a hydroxyl group and ligands having a 



1.2. Drug-Receptor Interactions 11 

hydrogen atom instead, have been compiled for different enzymes [124]. From a 
recent comparison of the binding energies of amide-amide hydrogen bonds in 
aqueous solution and in nonpolar solvents it was concluded that earlier values of 
neutral hydrogen bond energies may be too small [ 1251. 

Dispersion forces are attractive forces between atoms at close distances. Even 
molecules with no permanent dipole moment have, due to the movement of their 
electrons, local dipole moments which induce dipoles in the opposite molecule, 
leading to fluctuating electrostatic attractions. At a closer distance repulsive forces 
develop due to an unfavorable overlap of the van der Waals spheres of both 
molecules. These relationships are typically described by the Lennard Jones 
potential, with an r6 attractive term and an rl’ repulsive term (Figure 2) [59, 1161. 
Dipole-dipole interactions and dispersion forces are much weaker than other 
electrostatic interactions. Nevertheless, if there is a close contact between both 
molecules over a relatively large surface area, they may sum up to large values of 
overall interaction energies. 

Hydrophobic interactions are the most important single factor providing the 
driving force for noncovalent interactions in aqueous solution, especially in the case 
of large hydrophobic areas. They are merely entropic interactions. The molecules 
which surround the hydrophobic surfaces are loosely associated; they have a certain 
degree of order and are therefore in an unfavorable entropic state. The association 
of the hydrophobic areas of a ligand and its binding site displaces and releases the 
ordered water molecules into solution, which leads to a gain in entropy. The 
corresponding contribution of a methylene group (which is not in the neighborhood 

Figure 2: Dependence of the potential energy U of two atoms on their distance r (Lennard Jones 
potential). Coming from an infinite distance r, the energy decreases (attraction due to electrostatic 
interactions) until a minimum distance rmin is reached; from thereon repulsion due to increasing van 
der Waals overlap of the atoms results; o is the distance for which the interaction energy is zero 
(reproduced from Figure 3.1 of ref. [59] with permission from Cambridge University Press, 
Cambridge, UK). 
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Figure 3: Drug-receptor interactions. AHDw and 
AHRw are the enthalpies of hydration of the drug 
and the receptor, respectively, AHDR is the enthalpic 
contribution of the drug-receptor interaction, ASr, is 
the overall rotational and translational entropy in 
solution, and AS,,, the internal rotational entropy of 
the free drug ASw is the increase in entropy due to 
the release of hound water molecules (small circles) 
and ASvlb the entropy gain due to low-frequency 
vibrational modes associated with the drug-receptor 
noncovalent interaction (reproduced from Figure 1 
of ref [128] with permission from the American 
Chemical Society, Washington, DC, USA) 

of a polar group, i.e. shielded by a bound water molecule) is estimated to be about 
2 kJ . mol- ', the contribution of a phenyl ring is about 8 kJ . mol- ' [116]. However, 
there still is a considerable discussion about the actual strength of hydrophobic 
interactions [118, 1261. 

Negative contributions to drug-receptor binding result from the loss of trans- 
lational and rotational energies of the ligand in going from the free to the bound 
state, the loss of internal rotational degrees of freedom (conformational entropy) in 
the case of flexible molecules, and the enthalpy that is needed to remove water 
molecules associated to polar groups of both partners, i.e. from desolvation. After 
the drug-receptor complex has formed, a positive contribution results from the 
increase in entropy due to a low frequency vibration associated with the drug- 
receptor noncovalent bonds. 

The net balance of favorable (enthalpic and entropic) and unfavorable (entropic) 
contributions shows the influence of the flexibility of a drug molecule as well as the 
importance of the quality of fit. As a first approximation, the loss of translational 
and rotational entropy does not increase proportionally to the size of a molecule, 
while the loss of internal conformational degrees of freedom depends on the number 
of rotatable bonds. This explains why rigid analogs (if they contain the correct 
conformation of the pharmacophore) are often much more active and show a higher 
degree of selectivity than the more flexible ones. 

The contribution of polar and electrostatic interactions is often overemphasized 
because the transfer of the ligand from the aqueous medium to the binding site and 
especially the negative influence of desolvation are neglected. But hydrophobic 
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interactions also have negative consequences; limited solubility renders transport 
and distribution in the biological system more difficult or even impossible if a drug 
molecule becomes too lipophilic. The most important favorable and unfavorable 
enthalpic and entropic contributions to drug-receptor interactions are summarized 
in Figure 3. 

Whether a specific ligand-receptor interaction is enthalpy- or entropy-driven can 
be determined by thermodynamic analysis. According to Hitzemann [127], no general 
conclusions can be drawn whether the binding of agonists and antagonists is either 
stabilized by enthalpy or by entropy. Even the change of the receptor conformation, 
caused by the binding of an agonist and producing the receptor response, need not 
be the result of an enthalpic contribution. Furthermore, the ionic strength of the 
medium, e.g. the presence or absence of NaCl in the case of opiate receptors, may 
lead to opposite results. 

The different contributions to the overall free energy of the binding of a ligand 
to a biological macromolecule [38, 116, 118, 119, 128, 1291 and the important role 
of the surrounding water molecules [59, 1301 have been reviewed. 
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2. Biological Data. 
The Additivity of Group Contributions 

Biological data [41, 131, 1321 of all different kinds can be (and have been) used in 
quantitative structure-activity relationships; it should be noted that (especially in 
the case of pharmacokinetic parameters) only the dependence of these values on 
structural variation is considered in the context of QSAR studies: 

Affinity data, like substrate or receptor binding constants, 
rate constants, like association/dissociation, and Michealis Menten constants, 
inhibition constants, especially K, and IC ,, values of different enzymes, 
pharmacokinetic parameters, like absorption rate constants, distribution parame- 

ters, clearance, rate constants of metabolic degradation, and elimination rate 
constants, 

in uitro biological activity values, using bacterial, fungal, and other cell cultures, 
as well as isolated and in situ perfused organs, 

in uiuo biological activity values, i.e. various pharmacodynamic and toxic activities 
of drugs. 

All these data can be used in QSAR studies, provided they are in the right scale. 
Each single step of drug distribution and even the binding of the drug to its receptor 
site correspond to a partitioning of the drug between an aqueous and a nonaqueous 
phase, the latter being a membrane or another lipid phase, a serum protein, the 
active site of an enzyme, or the binding site of a receptor. 

Equilibrium as well as rate constants are related to free energy values AG by 
relationships of the type of eq. 11 (chapter 1.2). Thus, only equilibrium constants 
(e.g. Ki values or at least IC,, values, not YO inhibition at a certain concentration) 
and rate constants (e.g. log k values, not % absorption or YO concentration in a 
certain compartment) are suited for QSAR studies, which means that all biological 
data have to be transformed in an appropriate manner before being used in 
quantitative analyses. In the case of complex biological data resulting from a 
sequence of several independent processes (in the worst case whole animal data), 
sometimes one effect predominates: e.g. the bioavailability, the penetration of the 
blood-brain barrier, or the affinity to the receptor site. In other cases several effects 
overlap, which makes the QSAR analysis much more difficult. Due to the nonlinear 
characteristics of dose-response relationships, YO effect values at a certain dose must 
not be used in QSAR equations. In each case they have to be transformed to 
equieffective molar doses (i.e. dose levels which produce or prevent a certain 
pharmacodynamic effect; dose levels that increase the life span of animals to a 
certain extent; dose levels which kill a certain percentage of the animals). 

According to eq. 11, all values have to be converted into a logarithmic scale. 
Decadic logarithms are used in classical QSAR analyses; only in CoMFA studies 
(chapter 9.3) are natural logarithms (which are related to decadic logarithms 
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by a factor of 2.303) occasionally applied instead. As a convention negative 
logarithms, i.e. logarithms of reciprocal molar concentrations (e.g. log 1/C or pC 
values), are preferred to obtain larger values for more active compounds (values in 
this inverse scale are directly comparable to pH and pK, values). 

There is another reason to use the logarithmic scale for biological activity values 
in  quantitative structure-activity analyses. A condition for the application of 
regression analysis is a normal distribution of the experimental error in the dependent 
variable (not of the data themselves as sometimes stated in the literature; the 
biological activity values should be reasonably distributed over the whole range, 
without clustering of data, but they need not fulfill any other conditions). For 
biological data this holds true for the logarithmic scale, not for the linear scale. Thus, 
log 1/C (C being a molar concentration that produces a certain effect, e.g. an ED,, 
value), log l/Kl, PI,,,, log k values, etc. are appropriate biological parameters for 
QSAR studies. Other data, like mg/kg values, sometimes give satisfactory results 
because they are highly correlated with molar doses, at least within a narrow 
molecular weight range of the compounds included in the analysis. The same holds 
true for some YO effect or YO concentration data, ranging from a few percent values 
to values near 100% (measured at a single dose); also these values are not too far 
from being linearly related to the theoretically correct parameters; however, in good 
QSAR practice they should not be applied. Linear values (instead of logarithmic 
values) are sometimes found in the QSAR literature. If they are within a small range, 
they are closely correlated with logarithmic values. Any conclusions drawn from a 
comparison of the results as to whether one or the other scale might be “better” 
are meaningless. They only reflect an excessively narrow range of data; fortuitous 
errors may lead to wrong interpretations. 

Due to the relationship between biological activity and the free energies of binding 
(or partitioning) also the terms “extrathermodynamic relationships” or “linear free 
energy-related approach” are used for quantitative structure-activity relationships, 
especially Hansch analysis. 

A medicinal chemist, whether being familiar with the principles of quantitative 
structure-activity relationships or not, implicitly applies the additivity concept of 
group contributions to biological activity values. From general experience it is 
assumed that the activity contribution of the parent system of a lead structure will 
remain constant if a certain group of the molecule is exchanged for another 
group. Certain frustrations arising from exceptions to this rule (e.g. the older 
medicinal chemist’s joke: methyl, ethyl, propyl, futile; how about phenylbutazone 
and suloctodil?) nowadays may easily be explained by nonlinear lipophilicity-activity 
relationships. In general, the assumption of a more or less strict additivity of group 
contributions to biological activity values has been proven to be correct by thousands 
of QSAR equations and by a few dedicated investigations which will be discussed 
below. 

-While the success of QSAR analyses may be taken as sufficient evidence for the 
additivity of group contributions to biological activity values, the following question 
arises: are these group contributions more or  less constant from one system to the 
other or do  they depend on the choice of the compounds and/or the biological 
system? 
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To answer this question, they are definitely not constant for different systems. 
The “biological Hammett equation” (eq. 4, section 1.1) only applies to certain groups 
of compounds, covering a narrow range of lipophilicity, and to nonspecific biological 
data. On the other hand, the work of Andrews [116, 1281 gives evidence that certain 
functional groups contribute to receptor affinity within a more or less constant range. 
He used eq. 12 (AS,, = overall translational and rotational entropy of the drug in 
solution; nDOF and EDOF = numbers and energies of internal degrees of freedom; 
n, and Ex = numbers and energies of interaction of different functional groups) to 
calculate “mean binding energies” AVERAGE AG and derived eq. 13 from affinity 
constants which were converted to free energy values AG by eq. 11 (all Ex values 
are given in kJ . mol- ‘, in contrast to the values in refs. [116, 12x1). The 200 different 
ligands which were included in the investigation covered a wide variety of different 
chemical structures. The only weak point in eq. 13 is that the T AS,, term (first term 
at the right side of eq. 13) had to be fixed at 59 kJ . mol-’ before the regression was 
performed. 

AVERAGE AG = T AS,, + nDOF. EDOF + Cn, . Ex (12) 

AVERAGE AG = -59 - 3.OnDoF + 3.0nc(spz) + 3.4nC(+) + 48nN+ + 
+ 5.0nN + 34nc0; + 42npo;- + 10.5n0, + 14.2nC=. + 
+ 4.6no,s + 5.411”~~ (13) 

Eq. 13 is by no means predictive; if the intrinsic binding energy contributions are 
calculated from different subsets, they cover a wide range of values. AVERAGE AG 
means that there are “poor fit compounds”, like methotrexate ( -  74 kJ . mol- I) ,  

ouabain (- 64), penfluridol ( -  52), carboxyribitol 1,5-diphosphate (-40), thyroxine 
( -  39), buprenorphine (- 38), and keknserin ( -  38). They all bind to the receptor 
site much worse than predicted by eq. 13, which indicates that not all functional 
groups interact with the binding site or that some conformational energy is needed 
to adopt a conformation which allows the interaction of these groups with the 
binding site. On the other hand, there are “exceptional fit compounds”, like biotin 
(+ 69), camphor (+ 62), the phosphate3 ~ ion ( +49), 2,4-diamino-5-methyl-6-pentyl- 
quinazoline (DMPQ; +48), phenol (+45), valproate (+41), estradiol (+41), 
diazepam ( + 36), and oxalate ( + 26). They bind much better than predicted by eq. 
13, which indicates that all possible interactions contribute and that the values given 
in eq. 13 should be interpreted as the lower limits of interaction energies in a 
geometrically favorable arrangement of the interacting groups [128]. 

General rules of bioisosterism [133-1351 are reflected by eq. 13. However, 
significant exceptions may be obtained, depending on the biological system. Bartlett 
[136, 1371 described thermolysin inhibitors (l), where the exchange of the -NH- 
group of phosphonamidate analogs for oxygen (phosphonates) reduces affinities to 
the enzyme by a factor of about 1,000, while in the case of the -CH,- analogs 
(phosphinates) affinities are retained (Table 1). Protein crystallography shows that 
the -NH-  group of the phosphonamidates interacts as a hydrogen bond 
donor with the backbone carbonyl group of an alanine (Figure 4) [138]. 
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Series 

(R) 
OH 
Gly-OH 
Phe-OH 
Ala-OH 
Leu-OH 

Table 1. 
inhibitors (1) [137] 

Inhibition constants (Ki valucs in nmol) of thermolysin 

X 

-NH- 

760 
270 
78 
16.5 
9.1 

-CH,- 

660,000 1,400 
230,000 
53,000 
13,000 18.4 
9,000 10.6 

Neither the oxygen nor the methylene analogs are capable of forming such an 
interaction. The affinity differences can be explained by a consideration of the 
hydrogen bond balance: the phosphonamidates and phosphonates are hydrated in 
solution, which is unfavorable for binding. Only in the phosphonamidates is this 
negative effect counterbalanced by a hydrogen bond to the binding site. Therefore, 
the situation is balanced for the phosphonamidates (hydrogen bonds in water and 
at the binding site) and for the phosphinates (no hydrogen bonds at all); it is 
unfavorable for the phosphonates (hydrogen bonds only in water), thus explaining 
the large differences to the other analogs. The differences in affinities between the 
phosphonamidates and the phosphonates were also theoretically explained by a 
thermodynamic perturbation method, implemented with molecular dynamics [ 1391. 

There is another important limitation of the concept of bioisosterism, which arises 
from different conformational preferences of closely related analogs. A systematic 
investigation of the influence of X on allowed and preferred conformations of 

T 
Tyr-157 Arg-203 

Figure 4: Electrostatic interactions between 
inhibitors (1 )  and thermolysin i n  the vicinity of 
the - P0,NH - linkage (Table 1 )  (reproduced 
from Figure 1 of ref. [137] with permission 
from the American Chemical Society, 
Washington, DC, USA). 
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Phe-X-Phe (with and without ortho-substitution of the phenyl rings) demonstrates 
that even small structural variations of X (e.g. in going from X = -0- to 
X = -NH-) drastically change the conformation maps [140]. The results of 
semiempirical calculations [140] are identical with the experimental data for 
corresponding structures as contained in the Cambridge database of crystal 
structures [141]. 

To answer the question whether, within a certain group of compounds and for 
a certain type of biological interaction, the group contributions to biological data 
are strictly additive or not, the problem has to be defined in the correct manner. 
Evidence for additivity of binding energies has been derived in cases where a small 
molecule A and a larger molecule B interact with different parts of a binding site. 
If such molecules are combined to A-B, the group A may now be considered as a 
substituent of the larger molecule B (the “anchor principle”) [142- 1441. Most of 
the loss of entropy due to freezing translational and rotational degrees of freedom 
can be attributed to the binding of B. Thus, the difference of the free energy values 
between B and AB reflects the true binding energy of A. The difference AGAB - AG” 
is much larger than the binding energy AGA, since it does no longer include the 
unfavorable entropy term T ASA (eqs. 14- 16). 

AGA = AHA - TASA 

AGAB - AGg = A H A ~  - TASag - AHg + TASg z AHAB - AHg 

AGAB - AGg z AHA 

Consequently, the binding energy of a certain functional group can be estimated by 
comparing the binding energies of a pair of compounds, one bearing this group 
and the other lacking it. The same principle applies to mutagenesis experiments, to 
peptide or protein ligands and to the binding sites. Additivity in this sense has 
elegantly been proven by a series of single and double/multiple point mutation 
experiments [123, 1451, which demonstrate a strict additivity of multiple exchanges 
as compared to single exchanges, for transition-state stabilization energies as well 
as for free energies of interaction at protein-protein surfaces. Protein crystallography 
helps to understand some slight deviations from this additivity rule, resulting from 
unfavorable side-chain interactions, e.g. a difference of 1.7 kJ . mol-’ in the case of 
a Cys-35, Thr-51 double mutant of tyrosyl-tRNA synthetase, as compared to the 
single site mutations [146]. It should be mentioned that such mutation experiments 
also contribute to the understanding of enzymatic reactions [147] and to the function 
of distant groups, e.g. mobile loops, which participate in the enzymatic process 
[ 1481. The ongoing progress in the genetic expression of receptor proteins will lead 
to a better understanding of receptor function, regulation, and selectivity, even 
before the first experimental 3D structures become available. 

In only a few investigations has the number of various kinds of interactions of 
ligands with their binding sites been correlated with affinities or some other type 
of biological activity. The two most prominent ones shall be mentioned here: first, 
an investigation of hemoglobins from different species, where the shift of the oxygen 
binding curves has been explained by the different interactions of the allosteric 
effector molecules with the protein (eq. 17; nI, n, = numbers of ionic and covalent 

(14) 

(15) 

(16) 
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interactions) [ 1491; oxygen affinities were first converted to K, values and then to 
free energies of binding, AG (values in kJ . mol-'). In eq. 17, as in all following 
examples of QSAR equations, the values given in parentheses after the regression 
coefficients are 95% confidence intervals (not standard deviations, which are usually 
smaller by a factor of two), n is the number of compounds, r is the multiple correlation 
coefficient, and s is the standard deviation; sometimes F, the Fisher significance 
ratio, is given in addition to r and s values (chapter 5.1). 

AG = -3.14( f0.62) n, - 6.78( f 1.39) nc - 8.29(&2.87) (17) 
(n = 29; r = 0.928; s = 3.34; F = 81.15) 

Eq. 17 indicates that the binding energies of the different ligands to the various 
hemoglobins are closely related to the numbers of ionic and covalent interactions. 
A reversible covalent bond contributes about twice as much (-6.78 kJ . mol-l) 
as an ionic interaction ( -  3.14 kJ . mol- '). 

The second example is a recent investigation of thermolysin inhibitors [150], in 
which the hydrophobic and polar contacts between the inhibitors and the binding 
site were correlated with their inhibitory potencies (eq. 18, recalculated from the 
data given in ref. [150]; NPHO = total complementary nonpolar carbon contacts, 
i.e. hydrophobic interactions; NHBOND = buried complementary contacts, where 
the ligand provides a hydrogen donor or a hydrogen acceptor, i.e. hydrogen bonds 
are formed between the ligand and the binding site). One compound had to be 
excluded because of an extremely unfavorable contact between two hydrogen bond 
acceptor atoms (see above, discussion on phosphonates as thermolysin inhibitors). 

log 1/Ki = 0.624(*0.10) NPHO + 0.217(*0.08) NHBOND - 3.623(*0.59) (18) 
(n = 9; r = 0.993; s = 0.228; F = 202.51) 

Also the affinity constants of the phosphonamidate analogs (1, Table 1) confirm the 
additivity concept of group contributions to biological activity values. The different 
residues R are separated from the bridge atom X by two carbon atoms; all affinity 
values of the three series with X = -NH-, -0-, and -CH,- are closely 
correlated [137]. 

There is overwhelming evidence that the additivity of group contributions to 
biological data is not just a working hypothesis, but an intrinsic feature resulting 
from the thermodynamic relationships between the free energies of binding (and 
partitioning, respectively) and biological activity values. 

Deviations only arise from: 
nonlinear dependences of transport and distribution on lipophilicity (the most 

important reason for nonadditivity of group contributions; see chapter 4.4), 
different metabolic pathways, 
steric crowding of ligand groups, leading to conformational distortions, 
multiple binding modes, caused by steric interference or other repulsive interac- 

changes in the mechanism of action, e.g. substrates and inhibitors or agonists 
tions at the binding site (see chapter 9.3), and 

and antagonists (normally not being responsible for nonadditivity). 
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3. Parameters 

Parameters which encode certain structural features and properties are needed to 
correlate biological activities with chemical structures in a quantitative manner. Of 
special value are physicochemical properties which are directly related to the 
intermolecular forces involved in the drug-receptor interaction as well as to the 
transport and distribution properties of drugs. In this respect hydrophobic, polar, 
electronic, and steric properties are most important; most often, polarizability 
parameters are considered as being closely related to steric parameters and are 
discussed together with these parameters, although they are definitely different (if 
structural variation is appropriate). 

In this chapter physicochemical and other parameters will be differentiated 
according to: 

Lipophilicity parameters, e.g. partition coefficients and chromatographic parame- 
ters. 

Polarizability parameters, e.g. molar refractivity, molar volume, and parachor. 
Electronic parameters, e.g. Hammett 0 constants, field and resonance parameters, 

parameters derived from spectroscopic data, charge transfer constants, dipole 
moments, and quantum-chemical parameters. 

Steric parameters, derived from linear free energy relationships or from geometric 
considerations. 

Parameters like molecular weight, geometric parameters, conformational entro- 
pies, connectivity indices, and other topological parameters. 

Indicator (Free Wilson-type, dummy) variables. 
Hundreds of different parameters have been used in QSAR studies in the past 
30 years. Some scientists are really creative in steadily inventing new parameters, 
arguing that all problems in QSAR will disappear with their use. While some 
parameters may indeed turn out to be useful, most of them have no general 
significance. A certain saturation effect is seen in this field of QSAR research (like 
in the case of mathematical models for nonlinear lipophilicity-activity relationships; 
chapter 4.4). On the other hand, there still is a lack of adequate parameters to 
describe some important interactions like the membrane partitioning of drugs, the 
strength of hydrogen bonds, the influence of desolvation energies on drug-receptor 
affinity, and steric interactions with a (most often unknown) binding site. 

Early parameter collections, published by Hansch et af. [151, 1521 included n, om, 
op, 9, B, and MR values of 284 aromatic substituents. Another publication contai- 
ned n, n-, 9, (separated according to ortho-, meta-, and para-substitution) and 
MR values of 34 aromatic substituents [ 1531. In the book “Substituent Constants 
for Correlation Analysis in Chemistry and Biology”, published by Hansch and Leo 
in 1979, n, MR, E,, and all known o values were compiled for about 2,000 different 
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substituents [50]. Two tables included 7c, MR, 9, W, om, op, and indicator variables 
for hydrogen bond acceptor and donor properties of 166 aromatic substituents as 
well as hydrophobic fragmental constants, hydrogen bond acceptor and donor 
properties, MR, and F values of 103 aliphatic substituents. By cluster analysis the 
substituents were separated into 20, 10, and 5 different groups, respectively, to allow 
a rational selection of substituents in the design of new analogs according to their 
distances in multidimensional parameter space [50, 1541. 

Physicochemical parameters, the underlying theories, and their use in QSAR 
studies have been reviewed in several other monographs [39-43, 48, 49, 51, 52, 
54-56] and in dedicated articles (e.g. [155- 1581). 

The most comprehensive compilation of physicochemical parameters mentions 
more than 220 different parameters and contains a table of 58 parameters of 59 
different substituents, groups, and fragments, together with a correlation matrix of 
all 58 parameters [158]. Later, another 16 parameters of the same set of substituents 
were added; about 18% of missing values had to be estimated [159, 1601. All 
parameter values are included in a commercially available database DESBASE 
[161]. An in-house compilation of Eli Lilly, mentioned in the literature but not 
available (!) to the scientific community, contains more than 17,000 physicochemical 
parameters of 3,000 different substituents [162], organized in a relational database 
for fast and efficient retrieval. 

Principal component analysis (PCA; chapter 5.3) reduces the data matrices of 
physicochemical properties to fewer, orthogonal dimensions [159, 160, 163 - 1691. 
Six properties (aqueous solvation energy, partition coefficient, boiling point, molar 
refractivity, volume, and vaporization enthalpy) of 114 liquid compounds are nearly 
quantitatively correlated with the first two principal components, termed B (bulk) 
and C (cohesiveness), which were derived from a large number of physicochemical 
properties of these compounds [164 - 1661. Some other properties can be explained 
by B and C and additional minor components D, E, and F; only a few properties, 
e.g. dipole moment, melting point, and molecular weight, are not correlated with 
these parameters. The BC(DEF) parameters were used to “predict” some known 
properties of 139 further compounds with a relatively high degree of reliability [165]. 

Principal component analysis of several electronic parameters showed that more 
than 90% of the information is contained in their first principal component [167]. 
PCA of seven different chemical descriptors (lipophilic, electronic, and steric 
properties of 28 aromatic substituents) led to a clear grouping of substituents in a 
plot of the loadings of the first two components according to hydrogen bond 
acceptors, hydrogen bond donors, alkyl groups, and halogens [168]. Nine descriptor 
variables, i.e. K, MR, om, op, and the STERIMOL parameters L, Bi, Bii, Bi,i, and 
B,,, of a set of 100 aromatic substituents (Table 2) were investigated by PCA [169]. 
The first four components contained 39%, 21%, 9%, and 7% (together explaining 
76%) of the total variance; from the weights and the loadings of the components 
it could be concluded that the first component is mainly related to steric bulk and 
hydrophobicity, the second component to electronic parameters, and the third one 
again to hydrophobicity and shape. 

Principal component analysis was also used to investigate 74 parameters of 59 
different substituents [159, 1601. Five significant components contained about 84% 
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Representative parameters of aromatic substituents (reproduced from Table 1 of ref. [169] Table 2. 
with permission from the copyright owner) 

Substituents 

Br 

c1 
F 

SO2F 

SF5 
I 

NO 

NO2 

N3 

H 

OH 

SH 

NH2 
S02NH2 

NHNH, 

N=CCl2 

CF3 
OCF, 

S CF3 

CN 

NCS 

SCN 

S02CF3 

NHCN 

CHO 

C02H 

7K - 
0.86 

0.7 1 

0.14 

0.05 

1.23 

1.12 

-1.20 

-0.28 

0.46 

0.00 

-0.67 

0.39 

-1.23 

-1.82 

-0.88 

0.41 

0.88 

1.04 

1.44 

-0.57 

1.15 

0.41 

0.55 

-0.26 

-0.65 

-0.32 

M R ~ )  
~ 

0.888 

0.603 

0.092 

0.865 

0.989 

1.394 

0.520 

0.736 

1.020 

0.103 

0.285 

0.922 

0.542 

1.228 

0.844 

1.835 

0.502 

0.786 

1.381 

0.633 

1.724 

1.340 

1.286 

1.014 

0.688 

0.693 

__ 

0.39 

0.37 

0.34 

0.80 

0.61 

0.35 

0.62 

0.71 

0.27 

0.00 

0.12 

0.25 

-0.16 

0.46 

-0.02 

0.21 

0.43 

0.38 

0.40 

0.56 

0.48 

0.4 1 

0.79 

0.21 

0.35 

0.37 

op 
0.23 

0.23 

0.06 

0.91 

0.68 

0.18 

0.91 

0.78 

0.15 

0.00 

-0.37 

0.15 

-0.66 

0.57 

-0.55 

0.13 

0.54 

0.35 

0.50 

0.66 

0.38 

0.52 

0.93 

0.06 

0.42 

0.45 

L 

3.83 

3.52 

2.65 

3.50 

4.65 

4.23 

3.44 

3.44 

4.62 

2.06 

2.74 

3.47 

2.93 

3.82 

3.40 

5.65 

3.30 

4.57 

4.89 

4.23 

4.29 

4.08 

4.1 1 

3.53 

3.53 

3.91 

- 
1.95 

1.80 

1.35 

2.03 

2.49 

2.15 

1.70 

1.70 

1 S O  

1 .oo 
1.35 

1.70 

1 S O  

2.11 

1 S O  

1.70 

1.98 

1.35 

1.70 

1.60 

1 S O  

1.70 

2.1 1 

1 S O  

1.60 

1.60 

1.95 

1.80 

1.35 

2.70 

2.49 

2.15 

2.44 

1.70 

4.18 

1 .oo 
1.93 

2.33 

1 S O  

3.07 

2.82 

1.80 

2.61 

3.33 

3.69 

1.60 

2.24 

4.45 

3.64 

3.08 

1.60 

1.60 

Bii? - 
1.95 

1.80 

1.35 

2.45 

2.49 

2.15 

1.70 

2.44 

2.34 

1 .oo 
1.35 

1.70 

1.84 

2.67 

1.84 

1.84 

2.44 

2.44 

2.44 

1.60 

1.64 

1.70 

2.67 

1.90 

2.00 

2.36 

Bi?) - 
1.95 

1.80 

1.35 

2.51 

2.49 

2.15 

1.70 

2.44 

2.57 

1 .oo 
1.35 

1.70 

1.84 

2.67 

1.84 

4.54 

2.44 

2.44 

2.44 

1.60 

1.76 

1.70 

2.67 

1.90 

2.36 

2.66 
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Table 2. (continued) 

OCHZCH, 

CHZOCH, 

SC2H5 

NHCZH, 

S02C2H5 

NMez 

PMe, 

CYC~O-PROPYL 

C02C2H5 

(CH2)2C02H 
NHCOZC2H5 

CHMe, 

u - C ~ H ~  

OCHMe2 

OC3H7 

SC3H7 
NHC3H7 

2-Thienyl 

CH=CHCOCH, 

COC3H7 

C02C3H7 

wc-C4H9 

' s o - C ~ H ~  

Y I - C ~ H ~  

fert-C4Hg 

3C4H9 
VHC4H9 

25Hll 

Z6H5 

N=NC~HS 

0.38 

-0.78 

1.07 

0.08 

-1.09 

0.18 

0.44 

1.14 

0.5 1 

-0.29 

0.17 

1.53 

1.55 

0.85 

0.85 

1.61 

0.62 

1.61 

-0.06 

0.53 

1.07 

2.04 

2.13 

1.98 

1.55 

1.16 

2.67 

1.96 

1.69 

- 
1.247 

1.207 

1.842 

1.498 

1.814 

1.555 

2.1 19 

1.353 

1.747 

1.652 

2.118 

1.496 

1.496 

1.706 

1.706 

2.307 

1.963 

2.404 

2.1 10 

2.048 

2.217 

1.959 

1.959 

I .969 

1.962 

Z.166 

2,426 

1.426 

l.536 

3.131 

__ 

0.10 

0.02 

0.18 

-0.24 

0.60 

-0.15 

0.03 

-0.07 

0.37 

-0.03 

0.07 

-0.07 

-0.07 

0.10 

0.10 

0.15 

-0.24 

0.09 

0.21 

0.38 

0.37 

-0.08 

-0.10 

0.10 

-0.34 

-0.08 

0.06 

0.32 - 

-0.24 

0.03 

0.03 

-0.61 

0.72 

-0.83 

0.3 1 

-0.21 

0.45 

-0.07 

-0.15 

-0.15 

-0.13 

-0.45 

-0.25 

0.00 

-0.61 

0.05 

-0.01 

0.50 

0.45 

-0.12 

-0.12 

-0.16 

-0.20 

-0.32 

-0.5 1 

-0.16 

-0.01 

0.39 

4.92 

4.91 

5.24 

4.96 

5.31 

3.53 

3.88 

4.14 

5.96 

5.96 

4.4s 

4.11 

5.05 

4.59 

6.05 

6.21 

6.07 

5.97 

5.80 

4.67 

6.90 

5.02 

5.05 

6.17 

4.11 

6.99 

7.01 

7.1 1 

6.28 

8.43 

1.35 

1.52 

1.70 

1 S O  

2.1 1 

1 .so 
2.00 

1.98 

1.90 

1.52 

1 S O  

2.04 

1.52 

1.35 

1.35 

1.70 

1 S O  

1.65 

1.60 

2.36 

1.90 

1.90 

1.52 

1.52 

2.59 

1.35 

1 .so 
1.52 

1.70 

1.70 

3.36 

2.88 

3.97 

3.42 

3.67 

2.56 

2.97 

2.24 

1.90 

3.05 

4.97 

2.76 

3.49 

3.61 

4.30 

4.90 

4.36 

1.77 

3.24 

3.69 

1.90 

3.16 

4.21 

4.42 

2.97 

4.79 

4.97 

4.94 

1.70 

1.70 

- 
1.35 

1.90 

1.90 

1.90 

2.67 

2.80 

2.84 

2.29 

2.36 

2.35 

1.90 

3.16 

I .90 

1.90 

1.90 

1.90 

I .90 

3.13 

1.83 

3.16 

2.36 

2.76 

1.90 

1.90 

2.86 

1.90 

1.90 

1.90 

3.11 

1.92 - 

1.90 

1.90 

1.90 

1.90 

2.67 

2.80 

3.29 

2.88 

4.29 

2.67 

5.57 

3.16 

1.90 

3.16 

1.90 

1.90 

1.90 

3.16 

3.73 

3.16 

4.83 

3.49 

3.16 

1.90 

2.86 

1.90 

1.90 

1.90 

3.11 

4.31 
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Table 2. (continued) 

CH2Br 

CH2C1 

CH2I 

NHCHO 

CONH2 

CH=NOH 

CH3 
NHCONH, 

NHCSNHZ 

OCH, 

CHZOH 

SOCH, 

OSOZCH, 

SOZCH, 

SCH, 

NHCH3 

NHSO,CH, 

CF2CF3 

C=CH 

NHCOCF, 

CH2CN 

CH=CHNOz 

CH=CH2 

COCH, 

SCOCH, 

DCOCH, 

CO2CH, 
VHCOCH, 

CIONHCH, 

CH2CH3 

0.79 

0.17 

1 S O  

-0.98 

-1.49 

-0.38 

0.56 

-1.30 

-1.40 

-0.02 

-1.03 

-1.58 

-0.88 

-1.63 

0.61 

-0.47 

-1.18 

1.68 

0.40 

0.08 

-0.57 

0.1 1 

0.82 

-0.55 

0.10 

-0.64 

-0.01 

-0.97 

-1.27 

1.02 

1.339 

1.049 

1.886 

1.031 

0.98 1 

1.028 

0.565 

1.372 

2.219 

0.787 

0.719 

1.370 

1.699 

1.349 

1.382 

1.033 

1.817 

0.923 

0.955 

1.430 

1.01 1 

1.642 

1.099 

1.118 

1.842 

1.247 

1.289 

1.493 

1.457 

1.030 - 

0.12 

0.11 

0.10 

0.19 

0.28 

0.22 

-0.07 

-0.03 

0.22 

0.12 

0.00 

0.52 

0.39 

0.60 

0.15 

-0.30 

0.20 

0.47 

0.21 

0.30 

0.16 

0.32 

0.05 

0.38 

0.39 

0.39 

0.37 

0.21 

0.35 

-0.07 
___ 

0.14 

0.12 

0.11 

0.00 

0.36 

0.10 

-0.17 

-0.24 

0.16 

-0.27 

0.00 

0.49 

0.36 

0.72 

0.00 

-0.84 

0.03 

0.52 

0.23 

0.12 

0.01 

0.26 

-0.02 

0.50 

0.44 

0.31 

0.45 

0.00 

0.36 

-0.15 

4.09 

3.89 

4.36 

4.22 

4.06 

4.88 

3.00 

5.09 

4.62 

3.98 

3.97 

4.03 

4.03 

4.37 

4.30 

3.53 

4.06 

4.11 

4.66 

3.99 

4.29 

4.29 

4.06 

5.19 

4.87 

4.85 

5.15 

5.00 

4.11 

1.52 

1.52 

1.52 

1 S O  

1.60 

1.60 

1.52 

1.84 

1 S O  

1.35 

1.52 

1.60 

1.35 

2.11 

1.70 

1 S O  

1 S O  

1.98 

1.60 

1.52 

1.60 

1.60 

1.90 

1.70 

1.3;’ 

1.90 

1 S O  

1.60 

1.52 

3.75 

3.46 

4.15 

1 S O  

1.60 

1.60 

2.04 

1.84 

4.18 

2.87 

2.70 

2.93 

3.86 

3.15 

3.26 

3.08 

1.90 

3.64 

1.60 

4.12 

3.24 

1.60 

1.90 

4.01 

3.68 

1.90 

3.61 

2.23 

2.97 

1.95 

1.90 

2.15 

1.94 

2.42 

1.92 

1.90 

1.94 

2.34 

1.90 

1.90 

2.49 

1.90 

2.67 

1.90 

1.90 

3.59 

2.44 

1.60 

1.90 

1.83 

2.00 

2.36 

1.90 

1.90 

2.36 

1.90 

2.42 

1.90 

1.95 

1.90 

2.15 

3.61 

3.07 

3.11 

1.90 

3.61 

2.57 

1.90 

1.90 

3.36 

3.57 

2.67 

1.90 

1.90 

3.88 

2.44 

1.60 

1.90 

4.21 

3.09 

2.93 

1.90 

1.90 

3.36 

1.94 

3.07 

1.90 
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Table 2. (continued) 

2.08 

0.27 

0.93 

1.37 

0.45 

2.51 

1.05 

1.46 

-0.29 

-0.29 

2.01 

1.66 

2.65 

0.49 

2.768 

3.320 

3.670 

3.004 

3.788 

2.669 

3.033 

3.233 

3.301 

3.301 

3.001 

3.219 

3.321 

3.464 

0.25 

0.61 

0.36 

-0.12 

0.16 

-0.15 

0.34 

0.21 

-0.08 

0.35 

-0.08 

0.03 

0.14 

0.02 
~ 

~ 

-0.03 

0.70 

0.33 

-0.40 

0.01 

-0.22 

0.43 

0.13 

-0.55 

0.42 

-0.09 

0.04 

0.16 

-0.19 

4.51 

5.82 

8.20 

4.53 

6.17 

4.57 

8.15 

8.40 

8.50 

3.63 

8.19 

8.88 

8.40 

1.35 

2.11 

1.61 

1 .so 

2.04 

2.36 

1.70 

1.70 

1.70 

1.52 

1.52 

1.70 

1.94 

5.89 

6.01 

3.64 

5.95 

3.49 

5.98 

4.40 

3.55 

1.70 

6.02 

3.09 

1.70 

3.61 

3.1 1 

2.67 

1.80 

3.11 

3.16 

3.11 

1.70 

1.80 

2.36 

3.11 

3.11 

3.11 

3.11 

3.11 

2.67 

3.57 

3.11 

3.16 

3.11 

1.84 

3.66 

4.07 

3.11 

3.11 

3.11 

3.11 

a' MR is scaled by a factor of 0.1, as usual 
') B, - Bi, are defined as in [169]; B, is the smallest value orthogonal to L, B,, is opposite to 

B,; Biii and Bi, are orthogonal to B, and Bit and arranged in such a manner that B,,, < Bi,. 

of the total variance; lipophilic, steric, and electronic parameters were nicely 
separated in a plot of the first two components (containing 33% and 25% of the 
information), while several less well defined properties as well as a random variable 
were close to the origin of this diagram. After discarding 12 irrelevant descriptors, 
three significant components explained 77% of the total variance (38%, 28% and 
11Y0). Lipophilicity was interpreted as being related to bulk (i.e. the size of the 
substituents) and polarity, which was also confirmed by corresponding combinations 
of such parameters in regression equations [160]. 

Amino acids were characterized by a principal component analysis of their 
side-chain properties [170, 1711; first, for 20 coded amino acids three principal 
components zl, z2 and z3 were derived (interpreted as being related to hydrophilicity, 
side-chain bulk, and electronic properties) [170] and afterwards new z scales resulted 
[171] from a partial least squares (PLS) analysis of the side-chain properties of these 
amino acids and additional 35 noncoded (unnatural) amino acids. The use of these 
scales (instead of the original variables) was recommended for structure-activity 
analyses. 
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Principal component scores have several advantages as compared to the original 

The individual error of a single parameter value does not significantly distort the 

The problem of missing data is greatly reduced. 
Correlation of biological activity values with the first few components (which can 

be interpreted in terms of lipophilicity, bulk, and electronic properties) gives a 
clear picture of the inherent properties which might be responsible for the 
variation in the activity values. 

On the other hand, there are serious shortcomings. The principal component 
scores of substituents clearly depend on a proper selection of the original variables. 
In one of the cases cited above, five out of seven variables were electronic parameters 
[168]. In another study five out of nine variables were related to the size of the 
substituents [169]. A further disadvantage is that higher components can no longer 
be interpreted in physicochemical terms. Nowadays the use of the PLS method 
(chapter 5.3) [26, 271, including all physicochemical parameters in the block of X 
variables, seems to be a better alternative. 

variables: 

values of the principal component scores. 

3.1. Lipophilicity Parameters 

No other physicochemical property has attracted as much interest in QSAR studies 
as lipophilicity (synonymously called hydrophobicity; any differentiation between 
both terms is only a semantic nicety; the opposite to lipophilicity is hydrophilicity) 
[172, 1731, due to its direct relationship to solubility in aqueous phases, to membrane 
permeation, and to its (merely entropic)contribution to ligand binding at the receptor 
site. Several monographs [49, 50, 54, 561 and numerous reviews (e.g. [158, 173- 1791) 
have been published, the recent article by Taylor [ 1731 providing the most 
comprehensive overview (the reading of this excellent review, being a masterpiece 
in elegant style and critical comments, is highly recommended; also the theoretical 
background of partitioning and solubility is discussed there in detail). 

Lipophilicity is defined by the partitioning of a compound between an aqueous 
and a nonaqueous phase. While early definitions of the partition coefficient P referred 
to “light” and “heavy” phases (leading to complications in the case of organic 
solvents having higher density than water), nowadays P is defined as the ratio of 
substance concentrations in the organic and aqueous phases of a two-compartment 
system under equilibrium conditions (eq. 19); due to possible association of the 
solute in the organic phase (e.g. dimers of carboxylic acids), partition coefficients 
should be measured at low concentrations or P values must be extrapolated to 
infinite dilution of the solute in the system (the partitioning of acids and bases is 
discussed in chapter 4.5). 
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While partition coefficients from many different organic solventlwater systems 
have been used in early structure-activity relationships, n-octanol became the organic 
solvent of choice after the pioneering work of Hansch on n-octanollwater partition 
coefficients of substituted phenoxyacetic acids and the lipophilicity parameter n 
derived from these partition coefficients [14, 15, 17, 18, 173, 1801. 

n-Octanollwater has many important advantages as compared to other systems 
[173, 1801: 

It is a suitable model of the lipid constituents of biological membranes, due to its 
long alkyl chain and the polar hydroxyl group. 

Its hydroxyl group is a hydrogen bond donor and a hydrogen bond acceptor, 
interacting with a large variety of polar groups of different solutes. 

Despite its lipophilic character it dissolves many more organic compounds than 
alkanes, cycloalkanes, or aromatic solvents do. 

While the aqueous phase of the n-octanollwater system contains nearly no octanol 
at equilibrium, the octanol phase dissolves an appreciable amount of water 
(2.3 mol . 1 -  I ,  corresponding to a molar ratio of n-octanollwater z 4/1); 
therefore, polar groups need not be dehydrated on their transfer from the 
aqueous phase to the organic phase. 

n-Octanol has a low vapor pressure, allowing reproducible measurements; on the 
other hand, its vapor pressure is high enough to allow its removal under mild 
conditions. 

n-Octanol is UV-transparent over a large range, making the quantitative 
determination of many compounds relatively easy. 

By far the most partition coefficients have been measured in n-octanollwater 
[50, 1811; also calculated partition coefficients (chapter 3.3) refer to this 
system. 

Last but not least, many lipophilicity-activity relationships, using n-octanollwater 
partition coefficients or lipophilicity parameters derived therefrom, prove the 
relevance of this system (e.g.  [18, 19, 1821). 

The use of a single standard system for drug partitioning is justified by the 
Collander equation (eq. 20) [183], which relates partition coefficients from different 
solvent systems. 

log P, = a log P, + c (20) 

To give an example, slopes a = 1.04 to 1.06 and correlation coefficients r = 1.00 
were obtained for the partitioning of a homologous series of 4-alkylpyridines in 
different organic solventlwater systems. Values c = - 1.20, - 1.14, -0.78, -0.50, 
and 0.46 resulted for the organic phases hexadecane, octane, dibutyl ether, carbon 
tetrachloride, and chloroform (based on n-octanol as reference), corresponding to a 
quantitative scale of solvent polarity [184]. Numerous other examples (e.g. Figure 5 )  
[ 174,185,1861 confirm the validity of Collander-type relationships. For some solvents 
different equations have been obtained for hydrogen bond donor and acceptor 
solutes [174]. Inherent limitations of the Collander equation have been discussed 
by Taylor [173]. 
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Figure5: Log P of homologous alcohols as a function of n (number of alkyl carbon atoms): 
(a) n-octanol/water, slope 0.54 (lipophilicity contribution of the methylene group); (b) chloro- 
form/water, slope 0.62; (c) cyclohexane/water, slope 0.65 (reproduced from Figure 11 of ref. [I731 
with permission from Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, UK). 

Eq. 21 correlates the partitioning of some alcohols between human erythrocyte 
membranes and aqueous buffer with n-octanollwater partition coefficients [ 1871. 

log Pmembrane = 1.003(f0.13) log Po,, - 0.883(+0.39) 
(n = 5 ;  r = 0.998; s = 0.082) 

Several hundreds of linear relationships between various kinds of (mostly nonspecific) 
biological data and n-octanollwater partition coefficients have been published (e.g. 
[18, 1821). However, the choice of n-octanollwater as the standard system for drug 
partitioning must be reconsidered in the light of some recent results. Principal 
component analysis of partition coefficients from different solvent systems [188 - 1901 
shows that lipophilicity depends on solute bulk, polar, and hydrogen-bonding effects 
[189]; isotropic surface areas, i.e. areas where no water molecules bind and hydrated 
surface areas, were correlated with the first and the second principal components 
of such an analysis [190]. 

The hydrogen-bonding ability I, of different functional groups was first defined 
by Seiler (Table 3) [ 1911 as the difference between cyclohexane/water and n-octa- 
nollwater partition coefficients (eq. 22). 

A log P = log Po,, - log Pcyclohexane = C I H  - 0.16 
(n = 195; r = 0.967; s = 0.333; F = 107) 

Corresponding scales can be derived, e.g. from log P values measured in n- 
octanol/water, heptanelwater, and other systems [ 1921, from the “water dragging 
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Table 3. 
and substructures (eq. 22) [191] 

Hydrogen-bonding ability values I, of various substituents 

Substituent I substructure 

Aromatic -COOH 
Aromatic -OH 
-CONH- 
-SO,NH- 
Aliphatic -OH 
Aliphatic -NH2 
Aromatic -NH2 
-NR,R, (RI, R, <> H) 
-NO2 
> c = o  
-C-N 
-0- 
ortho-Substitution to -OH, -COOH, -NRIR2 

I H  
2.87 
2.60 
2.56 
1.93 
1.82 
1.33 
1.18 
0.55 
0.45 
0.3 1 
0.23 
0.1 1 
-0.62 

effect” (the ability of a solute to carry water molecules from the aqueous phase into 
a polar organic solvent like e.g. dibutyl ether) [193, 1941, and from water/gas phase 
equilibrium constants of different solutes [195]. The significance of hydrogen-bonding 
parameters in QSAR studies has been discussed [196- 1981 and examples for their 
application have been given [196, 199-2031, the most interesting ones being 
relationships between the blood-brain barrier penetration of H,-antihistaminic drugs 
and A log P [199,200], the difference between n-octanollwater and cyclohexane/water 
partition coefficients (eqs. 23 and 24). 

108 (Cbrain/Cblood) = -0.604(&0.17) A log P + 1.23(&0.56) (23) 
(n = 6; r = 0.980; s = 0.249; F = 98.0) 

log (Cbrain/Cblood) = - O m (  k0.16) A log P + 0.889( k0.50) 
(n = 20; r = 0.831; s = 0.439; F = 40.2) 

The use of different solvents, alkane (inert), n-octanol (amphiprotic), chloroform 
(hydrogen bond donor), and propylene glycol dipelargonate (PGDP; hydrogen bond 
acceptor), was proposed to model different membranes and tissues [204, 20.51; a 
large number of PGDP/water partition coefficients have been measured. While 
n-octanol seems to be a suitable model of amphiprotic regions of a membrane, PGDP 
resembles more its lipid part. Therefore, PGDP should be considered as a 
supplementary solvent, not as a substitute for n-octanol. “The proper choice of solvent 
system is more open now than at m y  time in the last 50 years” [173]. 

Systematic investigations by Herbette [114, 115, 206- 2111, based on mem- 
brane/water partition coefficient measurements and on small-angle neutron diffrac- 
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Biological Membranes 
125,000 

6,000 
5,000 

200 
32 
16 
3 

Table 4. Membrane and n-octanollbuffer (pH = 7.2) partition coefficients [ I  141 

n-OctanollBuffer 
42 
38 

730 
18 
0.003 
0.7 
0.6 

Drug 
Bay P 8857 
Nisoldipine 
Nimodipine 
Propranolol 
Acetylcholine 
Timo lo1 
Ethanol 

tion experiments, show that an isotropic two-phase solvent system cannot be an 
appropriate model for the lipid bilayer of membranes, with their inner hydrophobic 
part and the outer, polar and negatively charged surface of the phospholipids. Indeed, 
biological membrane/buffer partition coefficients of drugs arc significantly different 
from those measured in n-octanol/water systems (Table 4). Not only the partitioning 
of the drugs into the membrane has to be considered to understand the structure- 
activity relationships of receptor ligands in a quantitative manner but also their 
orientation relative to the binding site at the membrane-bound receptor or channel 
protein (Figure 1, chapter 1.2) [115]. 

The important role of membranes in drug action was also recognized by Seydel 
[212 - 2141. In the drug/membrane interaction, the membrane acts on the drug 
molecules: 

The diffusion through the membrane.may become the rate-limiting step. 
The membrane may prevent diffusion to the active site. 
The membrane may bind or accumulate drugs. 
The solvation of the drug in the membrane may lead to a conformational change 

of its structure. 
Vice versa, the drug acts on the membrane properties: 

The drug may change the conformation of acyl groups. 
The drug may increase the membrane surface. 
The drug may change the thickness of the membrane. 
The drug may change the fluidity of the membrane. 
The drug may change the membrane potential and the hydration of the polar 

All these effects have an important, hitherto mostly neglected influence on drug 
activity [2  141. The differences in inhibitory activities of trimethoprim (TMP) analogs 
in cell-free and whole cell systems of Escherichia coli strains being sensitive and 
resistant to TMP, the interaction of amphiphilic benzylamines with artificial bilayers, 
the interaction of neuroleptics with bilayer membranes (measured by NMR 
techniques), and the reversal of multidrug resistance by amphiphilic agents could 
quantitatively be described in relation to these effects [214]. 

head groups. 
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The role of biomembranes in mediating the receptor subtype selectivities of 
peptides was investigated by Schwyzer [215, 2161; eq. 25 defines the different 
contributions to the overall drug-membrane interaction. 

A G t o t a l  = AGeiectrostat ic  - AGtrani frr  + AGirnrnohilization + AGarnphiphiiic + 
+ A G d i n o i e  (25) 

3.2. The Measurement of Partition Coefficients 
and Related Lipophilicity Parameters 

The measurement of partition coefficients [40, 41, 49, 156, 173, 174, 217, 2181 is 
not as easy as one would expect from their simple definition (eq. 19, chapter 3.1): 

Practical problems arise for polar and highly lipophilic (log P > 4) compounds. 
Even small impurities may drastically distort the experimental values, especially 

if the analytical method is more sensitive to impurities. 
Radioactive material is only suited if it has a high degree of radiochemical purity. 
Phases must be equilibrated in advance without the solute. 
After the addition of the solute and the attainment of equilibrium (after extensive 

shaking and waiting for 24 hours), centrifugation is necessary to separate the 
phases quantitatively. 

Partition coefficients should be measured with as small amounts of solute as 
possible to avoid association phenomena in either phase; in ambiguous cases the 
concentration dependence of the partition coefficient should be determined. 

Aqueous buffers should not contain extractable ions. 
Solute concentrations should be determined in both phases and at  least two 

independent measurements should be made. 
It is desirable to dissolve the solute independently in both phases in order to prove 

that equilibrium is attained from both sides (surprising deviations may be 
obtained). 

To sum up, a lot of experience is needed to determine log P values by the classical 
shake flask method. Alternatives have been developed and compared with each other, 
e.g. filter probe methods [219, 2201, the AKUFVE method [221], and different 
centrifugal partition chromatographic techniques (which correspond to true partitio- 
ning because only two immiscible liquid phases and no solid support are involved) 
[222 - 2251. As the scope and limitations of most of these techniques have been 
reviewed [173, 217, 218, 2251, they shall not be discussed here in detail. 

Chromatographic parameters obtained from reversed-phase thin-layer chromato- 
graphy are occasionally used as substitutes for partition coefficients [226 - 2291. 
Silica gel plates, being coated with hydrophobic phases (nowadays being com- 
mercially available), are eluated with aqueous/organic solvent systems of increasing 
water content. Eq. 26 converts the resulting R, values to RM values, which are true 
measures of lipophilicity. 

RM = log (l/Rf - 1) (26) 
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Chromatographic R, values are at least useful as a “quick and rough” estimation 
of lipophilicity. If they are determined in a proper manner, i.e. by using several 
aqueous/organic solvent systems with increasing water content and by extrapolating 
all R, values to 100% water (provided the extrapolated values are not too far 
outside the range of solvent concentrations used for their experimental determina- 
tion), they are closely related to log P values [227 - 2291. This relationship has been 
confirmed by several investigations, e.g. of a large, chemically heterogeneous group 
of compounds (n = 415; r = 0.933; s = 0.377; F = 2803) [228] and by systematic 
studies of the correlations between R, values and experimental log P values as well 
as log P values calculated by two different methods (compare chapter 3.3) [229]. 

The determination of R, values offers many important advantages, as compared 
to the measurement of log P values: 

Compounds need not be pure. 
Only traces of material are needed. 
A wide range of hydrophilic and lipophilic congeners can be investigated. 
The measurement of practically insoluble analogs poses no problems. 
No quantitative method for concentration determination is needed (the spots can 

be detected by any specific or nonspecific method). 
Several compounds can be investigated simultaneously. 

The main disadvantage is a certain lack of precision and reproducibility and the 
use of different organic solvent systems, which renders the derivation of x- or f-related 
scales (chapter 3.3) impossible. In addition, a chromatographic method is no 
equilibrium process (even if it results from distribution), leading to deviations, e.g. 
in the case of charged compounds [229]. 

Nowadays high-performance liquid chromatography (HPLC) 1230 - 2351 is the 
method of choice in many (especially industrial) laboratories. Log k’ values, which 
are calculated from t,, the retention time of the compound, and to, the retention 
time of the solvent front (eq. 27), are closely correlated with n-octanol/water partition 
coefficients, e.g. by eq. 28 [231]. 

k‘ = (t, - t,)/to 
log P = 1.025( 50.06) log k‘ + 0.797 

(27) 

(28) 
(n = 33; r = 0.987; s = 0.127) 

Technical details, including solid support, coating and column filling techniques, 
eluents, and factors affecting the reproducibility have been reviewed [173, 235, 2361. 
Lipophilicity values from HPLC measurements are not on a unique scale, but the 
log k’ values can be converted to n-octanol/water partition coefficients with the 
help of a set of HPLC calibration standard compounds for which classical shake- 
flask partition coefficients are known. Experience shows: once the HPLC method 
is successfully established in a laboratory, it will remain the method of choice for 
lipophilicity determinations. 

Aqueous solubility, although closely related to lipophilicity (e.g. for neutral liquids, 
log i/S us. log P: n = 140; r = 0.955; s = 0.344) 1181, is not and should not be used 
as a parameter in QSAR studies for two reasons: first, for solids it is no pure 
measure of lipophilicity due to the intermolecular forces in the crystal (equations 
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relating partition coefficients to solubilities indeed contain the melting point as 
an additional parameter), and second, its experimental measurement is even more 
difficult than in the case of partition coefficients. Wrong values result if equilibrium 
is not attained due to low dissolution rate constants. On the other hand, solubilities 
increase considerably with even small amounts of impurities and hypersaturation 
phenomena are very common. 

3.3. Lipophilicity Contributions and the Calculation 
of Partition Coefficients 

One of the most important contributions of Hansch was the discovery that 
partition coefficients are additive constitutive parameters, like some other molecular 
properties. He defined a lipophilicity parameter K (eq. 29) 115, 17, 18, 174, 218, 237, 
2381 in the manner that Hammett (5 constants (eq. 3, chapter 1.1) were defined. 

nx = logP,-, - logPR-H (29) 

The only difference to the Hammett equation is the absence of a term like Q, 
because K values only refer to aromatic substituents and to n-octanol/water partition 
coefficients, if not stated otherwise. Slightly different n values were obtained for meta- 
and para-substituents and for electron donor, acceptor, and neutrally substituted 
benzenes. n Values from different scales can be interrelated if electronic effects are 
considered (e.g. eq. 30) [237]. 

An = Xphenoi - X B ~ ~ ~ ~ ~ ~ ~  = 0.8230 + 0.061 
(n = 24; r = 0.954; s = 0.097) 

However, the differences between most .n scales are not significant; nowadays the 
q,enzenc values which were derived from monosubstituted benzenes are most often 
used. 

The application of 7c values for lipophilicity calculation of aliphatic compounds 
led to significant deviations between observed and calculated values (back folding 
of aliphatic chains to an aromatic ring was one of the desperate attempts to support 
a wrong concept by a wrong hypothesis). The problem could easily be solved by 
Rekker, who recognized that the use of n values is inappropriate in the case of 
aliphatic compounds. He defined a hydrophobic fragmental constant f (eq. 31; 
ai  = number of occurrences of the fragment with the lipophilicity contribution fi) 
149, 56, 239 - 2411, which is a measure of the absolute lipophilicity contribution 
of the corresponding substituent or group and is no longer based on the exchange 
of H for X, as K values are. 

log P = C a,fi 

f Scales were not only derived for n-octanol/water but also for other solvent systems, 
e.g. alkane/water, chloroform/water, and PGDP/water systems 1173, 204, 2051. 
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Morphine: Break and number five ring closures: 

Generate SMILES for resulting noncyclic structure: 

Figure 6 :  
with permission from Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, UK). 

Generation of the SMILES code of morphine (reproduced from Figure 6 of ref. [256] 

Methylene group fragment values are even known for 24 different organic solvent/ 
water systems [242, 2431. They regularly decrease with increasing water content of 
the organic phase, i.e. with increasing polarity of the organic solvent. 

The new f system, later modified by Leo and Hansch [50, 244, 2451 and others 
[246,247], was a real advance because it allowed the de nouo calculation of partition 
coefficients. The computer program CLOGP, developed by Chou and Jurs [177, 
2481 from the hydrophobic fragmental constant approach of Leo and Hansch, was 
later largely extended and fully computerized (e.g. [179, 218, 249- 2521) to its current 
version [253]. The input of structures is being done in SMILES notation [253 -2561, 
an easy and powerful language for converting chemical structures into a computer- 
readable form (e.g. CCCC = butane, Cclcccccl = toluene, clncccclC( = 0 ) O  = nico- 
tinic acid) (Figure 6); no human interaction, like the definition of certain groups 
or correction factors, is needed after the input of the structures. 

Calculations based on the two different f scales, the one by Rekker, derived from 
a set of thousand compounds by statistical methods [241], and the other by Leo 
and Hansch, derived from a few highly accurate measurements of appropriate 
standard compounds [244], have been compared in their predictive ability [56, 158, 
257, 2581; some step by step calculations (Tables 5 and 6) [56, 158, 257, 2591 
demonstrate how difficult it is to calculate log P values by hand, without the help 
of a computer program. 
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Table 5. Log P calculation of DDT (2); comparison of the LeoIHansch and the 
Rekkcr method (reproduced from ref. I2591 with permission from the copyright 
owner) 

DDT, C,H,CI, 

log Pobs = 5.98”) 
C l e H O C I  - I - (2) 

CCl, 

Leo/Hansch Rekker 

= 2.(1.90) = 3.80 fc6m = 2.(1.658) = 3.316 

= -2.(0.23) = -0.46 fCH = 0.337 
= 2.060 

= 0.23 2 fg = 2.(0.924) = 1.848 
= 2.(0.20) = 0.40 f&13 

= 3.(0.06) = 0.18 
= 2.(0.94) = 1.88 log Pcalc = 7.561 

= 5.(-0.12) = -0.60 

= -0.13 

= 3.(0.53) = 1.59 

log Pealc = 6.89b) 

’’ new value: log Pob, = 6.36 (HPLC determination) [253] ‘’ new value: log Pcrlc = 6.61 (CLOGP 3.54) [253] 

No general conclusions can be drawn from such comparisons. Both approaches 
give reliable results and both have their limitations. Although partially computerized 
versions of the Rekker method have been developed [259 - 2611, nowadays CLOGP 
is by far the most convenient, advanced, and accurate computer program for the 
calculation of n-octanollwater partition coefficients (Table 7); together with the 
POMONA database (Table 8) it is part of the MEDCHEM software [253]. The 
database contains experimental n-octanollwater and other partition coefficients, 
experimental pK, values, and additional valuable information on about 11,000 drugs 
and other standard compounds (version 3.54; 25,400 compounds in the current 
UNIX version 4.2) [253]. Compounds can be retrieved by various criteria; in addition, 
substructure, superstructure, similarity, and even 3D searches (3D structures 
generated by the program CONCORD, see chapter 9.3) can be performed on the 
structures which are included in this database. 

Some complications arise in the calculation of partition coefficients of highly 
polar compounds and in the case of fragments not known to the program 
CLOGP. Possible improvements of CLOGP have been discussed [262]. 
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Table 6. Log P calculation of propranolol (3); comparison of the Leo/Hansch 
and the Rekker method (reproduced from ref. [259] with permission from the 
copyright owner) 

CH3 
CH3 

H 
o - CH 2- CH - CH 2 - ~ -  CH: Propranolol, C1,H2,N02 

log Pobs = 3.56,3.18”) OH (3) 

I Leo/Hansch Rekker 

7 f& = 7.(0.355) = 2.49 ~ c ~ ~ H ~  

2 fp = -2.(0.225) = 0.45 2fcHZ = 2.(0.519) - 

0 = 0.13 2fcH, = 2.(0.701) 
f c 
f8 = -0.61 2fCH = 2.(0.337) 
2 f ~ ~ ~  = 2-(0.66) = 1.32 fg 

fCH = 2.(0.43) = 0.86 fgH 
fOH = -1.64 f& 

fNH = -2.15 2x 2CM = 4.(0.289) 
fCH3 = 2.(0.89) = 1.78 

(9 - l).Fb = 8.(-0.12) = -0.96 log Peak 

Fpz(O/OH) 

Fp2(OH/NH) = -0.26.(-1.64 - 2.15) = 0.99 

= -0.26.(-0.61 - 1.64) = 0.59 

FgBr = -0.22 

FcBr = -0.13 

log Peale = 2.90b) 

= 3.113 

= 1.038 

= 1.402 

= 0.674 

= -0.439 

= -1.470 

= -1.814 

= 1.156 

= 3.660‘) 

actual value: log Pobp = 3.56 [253] 
h, new value: log Pcalc = 2.75 (CLOGP 3.54) [253] 
‘) revised value: Pcalc = 3.46 [56] 

Nonadditivities of n-octanollwater partition coefficients [ 1731 limit the appli- 
cability of the CLOGP program. There is experimental evidence that some “polar” 
compounds may not be as polar as expected from their chemical structures, due to 
a network of intramolecular hydrogen bonds [263]. 

A modified version of the Rekker method, which has to be further evaluated, was 
recently published [56]. Some other atom-, bond- and group-based calculation 
procedures (e .g .  [264- 2711) have been developed; most of them are reviewed and 
critically commented in ref. [ 1731. The calculation of hydrophobic fields from 
lipophilicity contributions is discussed in chapter 9.2. 
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Table 7. Log P calculation of chlorpromazine (4) by the program CLOGP [253]. Input of the 
structure in SMILES code: cl2cc(Cl)ccc2Sc3ccccc3N1CCCN(C)C; unique SMILES code, generated 
by the program CN(C)CCCN2clcccccl Sc3ccc(Cl)cc23 (reproduced from ref. [253] with permission 
from the copyright owner). 

NAME: CHLORPROMAZINE 

SMILES : CN(C)CCCN2clccccclSc3ccc(CI)cc23 
ISOC-ID : A - - A-AAA- - a-  aaaaa- - a- aaa - - - - aa-  - 
FRAG-ID : p1p2p3p4p 
H-COUNT: 3 - 3 X 2 2 2 ~ 1 1 1 1 ~ 1 1 ~ 1 -  
RING I : a-aaa-aa- 
RING 2 : A-ApA.AApAp 
RING 3 : a-aaaaa 

Class 

FRAGMENT 
FRAGMENT 
FRAGMENT 
FRAGMENT 
ISOLATING 
ISOLATING 
EXFRAGMENT 
EXFRAGMENT 
FRAGBRANCH 
ELECTRONIC 

# 1  
# 2  
# 3  
# 4  
CARBON 
CARBON 
HYDROG 
BONDS 
FRAG 1 
SIGRHO 

~ 

~ 

5 
12 
19 
5 
5 
2 

~ 

Log(P) Contribution Description Comment Value 

Tertiary Amine (ZW+)  
Tertiary Amine (ZW +) 
Sulfide 
Chloride 
Aliphatic isolating carbon(s) 
Aromatic isolating carbon(s) 
Hydrogen(s) on isolating carbons 
chain and 0 alicyclic (net) 
net bonds (out of 6) count. 
Potential interactions; 1.50 used 

MEASURED -2.180 
MEASURED -0.390 
MEASURED -0.770 
MEASURED -0.940 

0.975 
1.560 
4.313 

- 0.600 
- 0.400 

Within Ring 0.213 

RESULT v3.4 All fragments measured CLOGP 5.201 

React: list of electronically active fragments 

Frag No. Ring No. type sigma rho 

4 1 attached 0.280 0.000 
3 1 attached 0.000 0.300 
2 I attached 0.000 0.610 
2 3 attached 0.000 0.610 
3 3 attached 0.000 0.300 

Pact: list potential electronic activity 
frag ring sigma frag ring rho dist value 

4 1 0.280 3 1 0.300 0 1.000 
4 1 0.280 2 1 0.610 0 1.000 
4 1 0.280 2 3 0.610 -1 0.000 
4 1 0.280 3 3 0.300 - 1 0.000 

Elect: Details oC sigma-rho corrections used. 2 possible interactions allocated as 
follows: 

Sigma Rho Potential Net 
frag drop Crag drop Corr. Corr. 

4 1.0000 2 1.0000 0.1708 0. I708 
4 0.5000 3 1.0000 0.0840 0.0420 
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Table 8. The POMONA database [253]. Part of the information given on chlorpromazine (4); 
entries # 1 - 11 and 29 -33, out of 67 entries on chlorpromazine and additional 14 entries on different 
salts of chlorpromazine (reproduced from ref. [253] with permission from the copyright owner) 

>>>> THOR "POMONA89" database TYPE ALL <<<< 
+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +  

+ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +  
I SMILES CN(C)CCCN2clccccclSc3ccc(Cl)cc23 11 

I CMR 9.3765 21 
I ERROR LEV High confidence CMR estimate I 
I VERSION 3.54 I 

I ERROR LEV All fragments measured I 
I VERSION 3.54 I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

- .  ~ 

i SOLV PAIR Octanol 
I REFERENCE Clarke, F., J. Pharm. Sci., 73, 226 (1984) 
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From a theoretical point of view it might be worthwhile to correlate lipophilicity 
with principal components of other molecular properties, e.g. the BC(DEF) 
parameters (eq. 32) [164, 1651. However, these parameters are available only for a 
very limited number of organic compounds. 

log P = 3.65(*0.08) B - 7.66(*0.11) C - 5.74(f0.37) D - 0.31(&0.71) E + 
+ 5.09( k 0.90) F + 1.604(? 0.014) (32) 

(n = 114; r = 0.998; s = 0.08) 

Many attempts were made to explain lipophilicity by related properties, e.g. by 
solubility, solvent-accessible surface, and charge distributions calculated from 
semiempirical methods ([190, 272 - 2841 and references cited therein); while some 
of the results allow a better understanding of the intrinsic nature of lipophilicity, 
none of these alternative approaches have led to a reliable log P prediction system 
so far. 

3.4. Polarizability Parameters 

Molar volume MV, molar refractivity MR, and parachor PA are theoretically 
and practically closely interrelated parameters (eqs. 33 - 35; MW = molecular 
weight, Q = density, n = refractive index; y = surface tension) [285]. Another related 
parameter is the molar polarization P, (dielectric constant E instead of the n2 term 
in eq. 34) [286]. 

MV = MW/g (33) 

n2 - 1 
n2 + 2 

MR = MV.- (34) 

PA = MV . y1’4 (35) 
Molar volume itself is not strictly additive, but the corrected volume parameters 
MR and PA are additive constitutive molecular properties, like log P and the 
Hammett o parameter. While molar refractivity has attracted much attention [50, 
286-2881, molar volume [55, 2891 and parachor [50, 2901 have only rarely been 
used in QSAR studies. 

MR still is the chameleon [91] amongst the physicochemical parameters, despite its 
broad application in QSAR studies. It has been correlated with lipophilicity, molar 
volume, and steric bulk. Of course, due to its MW/e component it is indeed related 
to volume and size of a substituent. But two recent statements that MR is only 
based on these properties [91,291] cannot be accepted. The refractive index-related 
correction term in MR accounts for the polarizability and thus for the size and the 
polarity of a certain group [158, 173, 2861. The larger the polar part of a molecule 
is, the larger its MR value will be. Even hydrophobic substituents have a weak 
enthalpic interaction due to dispersion forces, in addition to their entropic 



3.4.  Polurizability Purumeters 41 

contribution to AG, coming from the displacement of ordered water molecules. For 
hydrophobic substituents a close interrelation between volume, surface, lipophilicity, 
and MR is to be expected, which breaks if polar substituents are included. No 
correlation could be obtained between MR and the steric parameter E," (n = 142; 
r = 0.67; s = 12.82) [286]. Since the refractive index n varies only slightly for most 
organic compounds, molar volume (MV) is usually highly interrelated with MR. 

In the above-mentioned parameter collection of 59 different substituents [I 581, 
MR is correlated with 

van der Waals volume (r = 0.97), 
parachor (r = 0.92), 
the bulk parameter B of the BC(DEF) components (r = 0.84), 
aromatic (r = 0.90) and aliphatic (r = 0.91) fragmental volume constants, and 
the connectivity parameters 

different lipophilicity parameters (r = 0.53 - 0.62), 
the steric parameters E, (r = 0.56) and E: (r = 0.36), and 
Charton's u parameter (r = 0.58) (chapter 3.6) [158]. 

( r = 0.95) and lx:I (r = 0.95) (chapter 3.7), 
but not with 

The significance of molar refractivity terms in QSAR equations of some ligand- 
enzyme interactions could be interpreted with the help of 3D structures. These 
investigations show that substituents modeled by MR bind in polar areas, while 
substituents modeled by 7c bind in hydrophobic space [288, 2921. Correspondingly, 
a positive sign of MR in a QSAR equation can be explained by binding of the 
substituents to a polar surface, while a negative sign or a nonlinear relationship 
indicates a limited area or steric hindrance at this binding site. Most often the MR 
values are scaled by a factor of 0.1 to achieve reasonable values of the regression 
coefficients of the resulting QSAR equations. 

The different nature of MR, as compared to hydrophobic and steric properties, 
can only be detected in cases where a proper selection of substituents allows this. 
One such example is the inhibition of malate dehydrogenase by 4-hydroxyquinoline- 
3-carboxylic acids (5), where the interaction of the ligands with the enzyme is 
described better by MR (eq. 36) than by n ( ~ 1 ~ ~  vs. TC: n = 13; r = 0.604; s = 0.716), 
and the respiration inhibition of ascites tumor cells, where the transport into or 
the accumulation in the cells is more appropriately described by n (eq. 37; same 
set of compounds) than by MR ( ~ 1 , ~  vs. MR: n = 14; r = 0.699; s = 0.554) 
(Table 9) [293]. 

, 

pI,,(MDH) = 0.70(f0.17) MR + 2.29(f0.30) 
(n = 13; r = 0.939; s = 0.315) 

(36) 

(37) pI,,(ascites) = 0.46(+0.11) n + 3.22(+0.16) 
(n = 14; r = 0.933; s = 0.280) 
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%a' 

0.00 
0.55 
0.06 
0.49 
-0.39 
1.10 
1.81 
3.23 

-0.40 
-1.18 
-2.80 
-1.39 
0.06 
-1.36 
-4.76 

Table 9. 
cellular respiration [293] 

7-Substituted 4-hydroxyquinoline-3-carboxylic acids (5) as inhibitors of 

M R ~ )  

0.103 
0.603 
0.092 
0.787 
1.118 
1 .555 
3.174 
4.174 
0.736 
0.98 1 
0.605 
1.349 
0.285 
1.228 
0.971 

Substituent R 
Dehydogenase 

H 
c1 
F 
OCH3 
COCH, 
N(CH3)2 
O C H ~ C ~ H S  
OCH,C,H3(3,4-CI,) 
NO2 
CONHZ 
COOH 

OH 
SOzNHZ 
so?- 

SO2CH3 

2.44 
1.98 

3.04 
3.32 
4.49 
5.32 
2.72 
3.13 
2.97 
3.18 
3.31 
3.02 
2.67 

PI507 
Ascites 

2.98 
3.84 
3.30 
3.28 
3.10 
3.33 
4.41 
4.82 
3.24 
2.24 
2.24 
2.75 
3.04 
2.47 
2.88') 

a) calculated from measured log P values '' MR values are scaled by a factor of 0.1 
') not included in the calculation 

Atomic molar refractivity contributions have been defined [267 - 2691. The 
MEDCHEM software [253] also contains a routine for the calculation of MR 
values. 

3.5. Electronic Parameters 

Electronic properties of molecules [12, 40-43, 53, 57, 158, 294-2971 can be 
described by a wide variety of different parameters, e.g. by 

Hammett (3 constants, 
field and resonance parameters 9 and 9, 
pK, values, 
parameters derived from molecular spectroscopy, 
charge transfer constants, 
dipole moments, 
hydrogen-bonding parameters, and 
parameters derived from quantum-chemical calculations, e.g. orbital energies and 

partial charges. 
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As all these parameters describe the influence of a certain group or substituent 
on electron density distribution, all have been used in QSAR studies. In contrast 
to global molecular properties, like lipophilicity and molar refractivity, they normally 
refer to a certain atom or group (the only exception being dipole moments). To 
give an example: if oP is used to describe the influence of para-substituents on the 
acidity of a phenolic group, this term models the ability of the phenolic group to 
interact as a hydrogen bond donor or acceptor with a (most often unknown) acceptor 
or donor atom at the binding site. 

The use of (T constants in QSAR studies started with the early finding of Hansen 
[13] that the toxicities of substituted benzoic acids against mosquito larvae are 
correlated with Hammett G values (Table 10); eq. 38 was derived after the p-nitro 
analog had been excluded (all analogs: n = 14; r = 0.711; s = 0.427). 

log 1/C = 1.454(+0.42) (T + 1.787(*0.17) 
(n = 13; r = 0.918; s = 0.243; F = 58.91) 

Indeed, all analogs can be described much better by using 7c instead (eq. 39) [15]. 
The log 1/C us. G relationship in eq. 38 only exists by fortune. It results from a close 
relationship between n and G, if the nitro analog is excluded (n = 13; IT us. (T: 

r = 0.91); all equations were recalculated by using the nbenzene, om, and oP values 
presented in Table 10. 

Table 10. Toxicitv of substituted benzoic acids us. mosquito larvae 

I Substituent R 

3,4,5-Tri-I 
3,s-Di-I 

3,4-Di-C1 
4-1 

4-C1 
4-Br 
3-CI 
3,4-CH=CH-CH=CH- 
4-F 
4-CH3 
H 
4-OCH3 
4-NO2 
4-OH 

3ra’ 

3.36 
2.24 
1.12 
1.42 
0.71 
0.86 
0.7 I 
1.27 
0.15 
0.56 
0.00 

-0.02 
-0.28 
-0.67 

0.88 
0.70 
0.18 
0.60 
0.23 
0.23 
0.37 
0.17 
0.06 
-0.17 
0.00 

-0.27 
0.78 

-0.37 

log l /C  

obsd. 
3.54 
2.85 
2.31 
2.28 
2.06 
2.03 
2.00 
1.92 
1.85 
1.66 
1.64 
1.60 
1.52 
1.29 

log 1/c 
ca1c.b) 
3.40 
2.80 
2.20 
2.36 
1.98 
2.06 
1.98 
2.28 
1.68 
1.90 
1.60 
1.59 
1.45 
1.24 
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log 1/C = 0.535( k0.09) n + 1.602( f O . l l )  

(n = 14; r = 0.969; s = 0.151; F = 181.88) 
(39) 

In considering electronic effects, one has to differentiate between field (inductive) 
effects and resonance effects. Due to the characteristic features of a benzene ring, 
om mainly describes the inductive effect while op stands for a combination of both 
effects, with the resonance effect predominating. Over the past decades many different 
o scales were developed in organic chemistry, besides om and oP also o' (to account 
for substituents which donate electrons to the aromatic ring system by direct 
resonance interaction), o- (for corresponding acceptor substituents), o" and on 
(normal or unexalted o constants), o, and oR (inductive and resonance contributions), 
etc. 

In 1968 Swain and Lupton [298] tried to stop the proliferation of o scales. They 
defined field and resonance components 9 and 9, by assuming that any set of o 
values can be expressed by a weighted combination a 9  + b 9 ,  that there is no 
resonance contribution in the case of 4-substituted bicyclo[2.2.2]octane-carboxylic 
acids (b = 0), and that there is no resonance contribution of a N+(CH,), substituent 
(9 = 0). They were able to correlate 43 different electronic parameters with linear 
combinations of these two parameters (many r values being larger than 0.98), e.g. 
eqs. 40 and 41. 

0, = 0.60( f 0.00) 9 + 0.27( kO.00) 9 + O.OO( kO.00) 

(n = 42; r = 1.00; s = 0.00) 

oP = 0.56(k0.00) 9 + l.OO(kO.00) 9 + O.OO(+O.OO) 

(n = 42; r = 1.00; s = 0.00) 

Hansch redefined F and 9 values-in a more consistent manner (eqs. 42 and 43); the 
F values in eq. 42 are now in the right scale, as compared to the 9 values [50, 15 I]. 

F = 1.369( a0.19) 0 ,  - 0.373( k0.14) oP - 0.009( k0.04) 

(n = 14; r = 0.992; s = 0.042) 

9 = oP - 0.9219 (43) 

There has been considerable discussion pro [299, 3001 and contra [301- 3051 the 
validity of the underlying assumptions. Despite this (more philosophical) question, 
the separation of o values into inductive and resonance effects seems to be justified, 
at least from a practical point of view. 

A recent compilation [306] contains om, op, and the redefined 9 and 9 values 
of 530 substituents, together with o;, o;, 9' values (eq. 4 4 , 9 +  values of n-electron 
donor substituents; eq. 45, W+ values of n-electron acceptor substituents), and 9- 
values (eq. 46, 9- values of n-electron donor substituents) of 223 substituents as 
well as some other electronic parameters derived from spectroscopic data; as 
compared to normal 92 values, the 9' and 9- values of n-electron donor 
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substituents are significantly enhanced (eqs. 44 and 46). 

W+ = 1.90(&0.26)9 - 0.07(f0.11) 
(n = 29; r = 0.945; s = 0.170) 

B+ = 1.16(*0.45)B - O.Ol(f0.07) 
(n = 16; r = 0.829; s = 0.060) 

9- = 1.93(*0.59)2 + 0.19(*0.11) 
(n = 34; r = 0.758; s = 0.173) 

(44) 

(45) 

In addition, optimized and normalized S values (field-inductive (T bond perturbation) 
and P values (resonance n bond perturbation; orthogonal to S) have been defined 
and used in QSAR studies [307]. The factorization of (T values into different field 
and resonance contributions is reviewed in ref. [306]. 

Ortho-substituents pose special problems because their (T values include a steric 
contribution; furthermore, as compared to rneta- and para-substituents, many 
ortho-substituents cause conformational changes, sometimes being favorable for 
binding, sometimes being very unfavorable; although the problem of ortho- 
substituent parametrization has been discussed in detail (e .g .  [41, 296]), it is (and 
will remain) a difficult problem in QSAR studies. 

Aliphatic (T constants ((T* values) are defined by eq. 47, where log k and log ko 
are the rate constants of acid- (subscript A) and base-catalyzed (subscript B) 
hydrolysis of RCOOR' and CH,COOR', respectively [308]. 

pK, Values [53, 2951 reflect electronic properties in a direct manner, due to the 
definition of Hammett (T values relative to the ionization constants of benzoic acids 
(e = 1.00); thus, they may be used as substitutes for (T values. However, their use is 
inadequate if they are taken to describe the relative amounts of the unionized form 
of different drugs (see chapter 4.5). One of the rare exceptions to this rule is e.g. 
eq. 48, which describes the antibacterial activities of sulfonamides us. Escherichiu coli 
[309]. 

log 1/C = 1.044(f0.13) pK, - 1.640($-0.18) log ( p .  lopKa + 1) + 
+ 0.275( f0.65) (48) 

log p = -5.96 
(n = 39; r = 0.956; s = 0.275; F = 124.1) 

Parameters derived from molecular spectroscopy, e.g. from infrared or NMR 
measurements, have relatively early been used in QSAR studies (e.g. [158,310- 3121). 
They are extremely valuable in describing the electronic influence of substituents 

pK, optimum = 6.22 
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in systems for which no o values are known, which applies to most heterocyclic 
compounds. 

Charge-transfer constants C ,  [313] and K [314, 3151 were derived from association 
constants of different analogs with tetracyanoethylene and 1,3,5-trinitrobenzene, 
respectively. Although charge-transfer interactions are supposed to be important 
for the interaction of some drugs with their binding sites (e.g. in DNA intercalation) 
[116], they have not attracted much attention in QSAR studies. Values are known 
for only few substituents but they are definitely interrelated with other electronic 
parameters. 

[296, 3161 in QSAR studies was proposed by Lien 
[316-3181; group dipole moments of 311 aromatic [317] and 214 aliphatic 
substituents [318] are tabulated in literature. A certain problem of the use of dipole 
moments is their directionality. Vector addition has to be used to estimate the dipole 
moment of compounds having more than one site of substitution. 

Hydrogen-bonding parameters have, in part, been discussed in chapter 3.1. In 
addition to Seiler’s I, values [191] several other scales were derived, e.g. by Hansch 
and Leo (discriminating donor, acceptor, and neutral substituents) [50, 3 191 and by 
Taft (PKHB values, derived from the complex formation of bases with p-fluorophenol 
in CCI,) [320, 3211; the subject has been reviewed in [296]. 

In contrast to the enormous importance of hydrogen bonds in drug-receptor 
interactions, only a few QSAR analyses have been performed by using such 
parameters. This may reflect the fact that hydrogen-bonding ability is related to 
some other electronic parameters, at least within structurally related series. A more 
pessimistic but, nevertheless, plausible explanation might be that the choice of 
parameters in QSAR studies mainly depends on their availability and ready-to-use 
tabulation in handbooks. It seems that a lot of further work has to be done with 
respect to hydrogen bonds in drug-receptor interactions and their proper, i.e. 
quantitative consideration in QSAR studies. 

Quantum-chemical parameters [297] are a matter of their own. Their frequent 
abuse in the early, heroic times of QSAR discredited them for long time. Quantum- 
chemical calculations yield so many different values, e.g. net atomic charges, charge 
densities, superdelocalizabilities, electrostatic potentials, values for inductive, reso- 
nance, and polarizability effects, as well as HOMO and LUMO energies, etc., that 
their uncritical combination, as done in these early days, often ended in chance 
correlations. Nowadays some more appropriate applications demonstrate their real 
value for QSAR studies [322- 3281, e.g. eq. 49 (correlating biodegradability, 
expressed as BOD = biological oxygen demand, with an atomic charge difference 
parameter, A 161x-y) [324] and eq. 50 (mutagenicity of various aromatic compounds; 
TA98 = Ames test results, using Salmonellu typhimurium, strain TA98) [328]. The 
advantage of ELUMO ( = lowest unoccupied molecular orbital) in eq. 50, as compared to 
classical o values, results from the possibility to include various heteroaromatic 
compounds for which no o values are known. 

The use of dipole moments 

% BOD = 1015 A 161x-y + 1.523 
(n = 197; r = 0.991; s = 3.822) 

(49) 



3.6. Steric Parameters 41 

log TA98 = 0.65( k0.16) log P - 2.90(+0.59) log (PP + 1) - 
- 1.38( k0.25) ELUMO + 1.88( f0.39) 1 1  - 2.89( k0.81) I, - 

- 4.154 *0.58) (50) 
log = -5.48 optimum log P = 4.93 
(n = 188; r = 0.900; s = 0.886) 

Classical and magnetic aromaticities of heterocycles have been defined and correlated 
with biological activities [329]. 

Rapid calculation procedures of electronic effects in organic molecules were 
proposed by Gasteiger and Marsili [330-3321 as an alternative to ub initio and 
semiempirical quantum-chemical calculations, which are relatively time-consuming 
procedures. 

3.6. Steric Parameters 

Steric effects are difficult to describe, due to the fact that the 3D structures of the 
binding sites of drugs are most often unknown. Several reviews of steric effects and 
steric descriptors [50, 52, 287, 308, 333-3361 contribute to this problem but a 
general solution seems to be inherently impossible. 

E, constants, as defined by eq. 51 (acid-catalyzed hydrolysis of RCOOR' us. 
CH,COOR') [308], were the first parameters which have been used to describe steric 
effects in QSAR studies. 

Es = log(k/k,), (51) 

Van der Waals radii of symmetrical substituents followed, due to the relationship 
given in eq. 52 (rv(avl = average van der Waals radii of the substituents) [50]. 

E, = -1.839rv(,,) + 3.484 
(n = 6; r = 0.996; s = 0.132) 

Charton [337 - 3391 defined a steric substituent parameter u (r, = minimum van der 
Waals radius of a substituent) (eq. 53), which is highly correlated with E, values 
(eq. 54) [50]. 

ux = rvx - rvH = rvx - 1.20 (53) 

E, = -2.062(*0.86) u - 0.194(+0.10) 
(n = 104; r = 0.978; s = 0.250) 

(54) 

Hancock [340] modified Es to E," values by correcting them for the number 
of a-hydrogen atoms, nH (eq. 55). 

(55) E: = E, + 0.306(nH - 3) 
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x axis - - -  

L I 

Figure7: STERIMOL parameters L and B,-BB,. Projections of a substituent (a) along and 
(b) perpendicular to the axis of substitution (x axis) [335]; according to the definition of Skagerberg 
et a!. [169], Bi = B,, Bii = B,, Biii = B,, and Bi, = B, (reproduced from Figure 12 of ref. I2871 
with permission from Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, UK). 

\ /  
v 

Figure 8: Revised STERIMOL parameters L, B,, and B, of the OCH, group. B, is the minimum 
width, B, the maximum width of the substituent [336, 3431. Different possibilities result from the 
definition of the parameters B,-B,, depending on the selection of B, (reproduced from Figure 13 
of ref. [287] with permission from Pergamon Press Ltd., Headington Hill Hall, Oxford OX3 OBW, 
U K). 



3.7. Other Purarneters 49 

Fujita expressed Ek values of substituents of the type CR'R2R3 as a weighted sum 
of the individual E," values of R', R2, and R3 [341] to overcome problems arising 
from the use of steric parameters of unsymmetrical substituents. A simple steric 
parameter S, was formulated on the basis of substituent branching [342]. 

Many other parameters related to size, e.g. van der Waals volumes, molar volumes, 
solvent-accessible surface, molar refractivity, etc. have been used to describe steric 
effects in QSAR equations. 

A real progress resulted from the definition of the STERIMOL parameters L, 
B,, B,, B,, and B, [335, 3361. L is defined as the length of a substituent along the 
axis of its substitution to the parent skeleton; the width parameters B are all 
orthogonal to L and have angles of 90 degrees to each other. They are arranged 
in such a manner that 9, has the smallest value and 9, the largest one; in most 
cases B, is close to the maximum width of the substituent (Figure 7). A slightly 
different definition was used by Skagerberg et al. (Table 2, chapter 3) [169]: Bi still 
is the smallest value orthogonal to L but Bii is opposite to Bi; Biii and Bi, are 
orthogonal to Bi and Bii and arranged in such a manner that Biii < Bi,. 

Due to some criticism [SO] and due to a number of chance correlations in the 
QSAR literature, arising from uncritical combinations of linear and squared terms 
(i.e. 10 possible values for one site of substitution and many more for several different 
sites), Verloop reduced the width parameters to B,, being the smallest width, and 
B,, now being the largest width orthogonal to L, but independent of the angle 
between B, and B, (Figure 8) [336, 3431. The use of the STERIMOL parameters 
in QSAR studies has been reviewed [287, 335, 336, 3431. 

However, as said before, even the most elegant description of steric bulk of a 
substituent cannot cope with the problem of the unknown geometry of the binding 
site and its steric constraints. The quantitative description of steric effects is a 
puzzling problem even in the case of known 3D structures of the protein, due to 

different conformations of different ligands, 
small (or even larger) differences in the binding modes of different analogs (see 

variations in the positions of side chains and even backbone atoms of the protein 
chapter 9.3), and 

in different ligand-protein complexes. 
Compilations of different steric parameters are given in refs. [1S8, 287, 335, 3361. 

3.7. Other Parameters 

An important group of parameters in QSAR studies are terms derived from 2D 
and 3D structures of drugs, which are not directly related to lipophilic, electronic, 
or steric properties. 

A molecular weight term was used by Lien [344] to improve the fit of parabolic 
Hansch equations, e.g. for the antifungal activities of homologous aliphatic amines 
us. Rhinocludium beurmanni (log 1/C us. (log P)2, log P, and log MW: n = 15; 
r = 0.994; s = 0.161). However, in this case the M W  term only accounts for 
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systematic deviations between the parabolic model and the experimental data, due 
to a close interrelation between log P and log MW (r = 0.985). A better and more 
consistent result is obtained if the bilinear model (chapter 4.4) is used instead, 
without the log MW term (n = 15; r = 1.000; s = 0.031) [345]. 

A more appropriate application of a molecular weight parameter has been 
demonstrated in a QSAR study of the multidrug resistance CR of tumor cells [346], 
where the MW term stands for the dependence of CR values on diffusion rate 
constants. The relationship between MW and volume implies that m, corre- 
sponding to a linear dimension of size, i.e. being directly related to diffusion 
rate constants [347], should be better suited than log MW (n = 29; r = 0.871; 
s = 0.394) [346], which indeed is the case (eq. 56) [348]. 

log CR = 0.70(10.24) - l.Ol(k0.32) log (f3 . 10- + 1) - 

- 0.10(&0.05) log P + 0.38(+0.28) I - 3.08(* 1.42) (56) 
log p = -6.851 optimum = 7.21 
(n = 40; r = 0.891; s = 0.344) 

No general survey can be given of the use of geometric parameters in QSAR 
studies; such parameters are derived from known or hypothetical pharmacophores 
and therefore they only apply to certain sets of compounds. Much too often 
conformational preferences are unknown and cannot adequately be considered fn 
QSAR studies. An impressive example, how this can be done, is given below. Eq. 57 
describes the calcium channel affinities of a series of cyclic lactones (6) (Figure 9) 
which are structurally closely related to nifedipine. Due to their conformational 
restrictions these lactones have different torsion angles between the two rings which 
should adopt a 90" angle in the biologically active conformation (KI = displacement 
of 3H-nimodipine, AN = deviation from 90" angle) (Figure 10) [349]. 

log KI = 0.067( k0.017) AG! + 0.19( +0.34) (57) 
(n = 7; r = 0.88; F = 16.5) 

Conformational energy and entropy values have been proposed and used as 
parameters in QSAR studies [350- 3531. 

The hyperstructure approaches MSD and MTD (minimal steric difference and 
minimal topological difference) and molecular shape analysis (MSA) are discussed 
in chapter 4.6, the use of similarity indices is discussed in chapter 9.4. 

A large (unfortunately much too large) group of parameters in QSAR studies are 
topological indices, e.g. connectivity values x (Figure 1 l), based on the characteriza- 
tion of chemical structures by graph theory. Since the first publications on the use 
of molecular connectivity values in correlation analysis and QSAR studies appeared 
[354 - 3671, a huge number of related papers followed, most of them by Kier and 
Hall (for reviews see [48, 158, 175, 178, 287, 368-3711). 

Molecular connectivity indices x are calculated from molecular formulas in a 
unique manner and, due to their mathematical definition, some physicochemical 
properties of branched and unbranched isomers can be described with high accuracy 
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C H , ~ N * C H ,  
H 

Figure 9: Superimposed X-ray structures of dihydropyridine lactones with six- to twelve-membered 
rings (6; X = - ( C H J -  , n = 0-6) (reproduced from Figure 5 of ref. [349] with permission from 
the copyright owner). 
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Figure 10: Calcium antagonism of 
the dihydropyridine lactones (6);  plot 
of the angular deviation Aa us. KI 
(reproduced from Figure 6 of ref. 
[349] with permission from the 
copyright owner). 



iso-butanol (Atom connectivity) (Valence connectivity) 

0th order: 

ox = 3(1)-W + (3)-Il2 + (2)-ll2 

0 x = c (si)- 1’2 

= 4.284 
o v  x = 2(1)-”’ + (3)-”2 + (2)-”’ + (5)-”2 = 3.732 

1st order: 

‘x = 2(1 . 3)-1’2 + ( 2 .  3)-”’ + ( 2 .  l)-”’ = 2.270 
‘x’ = 2(1 . 3)-”’ + (2 .  3)-”‘ + ( 2 .  5 ) - ’ j 2  = 1.879 

/ , I , \ , /  lx  = c (6i6j)-1’z 

3rd order path: ,n../ , I_, 3 x p  = c (6i6jsk61);l’2 

3 ~ p  = 2(1 . 3 . 2 .  1)-’” = 0.816 
3 ~ ;  = 2(1 . 3 . 2 .  S)-”2 = 0.365 

3rd order cluster: /I, 3Xc = 1 (~,6,6,6,),”’ 

3 ~ c  = (1 . 1 . 3 . 2)-’/’ = 0.408 
’x: = (1 . 1 . 3 . 2)-l/’ = 0.408 

4th order path: (*) 4xp = c (Si6,Sk6,6,)P 

not present 

4th order cluster: (>o 
not present 

4th order pathlcluster: ,,(, 4xPC = 1 (6isjSk61sm)~~i2 
4 

4 v  
xPc = (1 . 1 . 3 .  2 .  1)-’” = 0.408 
xPc = (1 . 1 . 3 . 2 .  5)-1’2 = 0.183 

Figure 11 : 
ref. [ 1751 with permission from Birkhauser Verlag AG, Basel, Switzerland). 

Calculation of various molecular connectivity indices of iso-butanol (reproduced from 
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[48]. It is this relationship to physicochemical properties like partition coefficients, 
molar refractivities, and steric properties that allows a quantitative description of 
(most often nonspecific) biological activities within chemically closely related series. 

In addition to normal and valence connectivity [372, 3731 values, many other 
topological indices have been defined (for reviews see [52, 158, 287, 369, 3711). 

Some more topological indices have been created in the last few years: 
A molecular shape index K [371, 374-3761. 
A fragment approach to structure-activity correlations, based on the characteriza- 

A flexibility index, calculated from molecular shape descriptors [378, 3791. 
Linearly transformed x values [380]. 
The concept of topological state and the total topological index [381]. 
A redefinition of the Wiener index [382], according to the contributions of different 

Topology-based electronic descriptors [384]. 
An electrotopological state index [385]. 
A differential molecular connectivity index [386]. 

tion of fragments by suitably weighted paths [377]. 

bond types [383]. 

Needless to say that every new parameter and new approach is praised to be superior 
to the older ones. However, nobody should be surprised if some biological activities 
can fortuitously be explained by any combination of so many different para- 
meters. 

The use of topological indices in QSAR studies has been criticized (e.g. [158, 175, 
173, 287, 3871). “Good QSAR practice” is violated in many papers: 

In contrast to general recommendations on the selection of biologically meaningful 
parameters [307], the physicochemical meaning of the topological parameters is 
never clear. 

Chance correlations may arise from the uncritical combination of a large number 
of closely interrelated connectivity terms, including normal and valence 
connectivity values, higher order path and cluster connectivity terms, and 
squared terms. 

In many cases standard deviations of regression coefficients are given instead of 
confidence intervals, suggesting that terms are significant which in reality are not 
significant. 

Although Taylor’s comments on topological indices are generally favorable, with 
respect to their use in QSAR studies he formulates [173]: “Calculation is simple and 
their use has become widespread. There has been some tendency, therefbre, to use 
molecular connectivity in contexts for which it is unsuitable, and unfortunutely, this 
has been encouraged by Kier and Hall themselves” and “regard molecular connectivity 
as an irrelevance which has had the unfortunate effect of diverting attenfion.from the 
real work that needs doing”. Nothing can be added to this criticism. To whom it 
may concern. 
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3.8. Indicator Variables 

Indicator variables (sometimes called dummy variables or de nouo constants) are 
used in linear multiple regression analysis [388, 3891 to account for certain features 
which cannot be described by continuous variables [21, 22, 41, 390, 3911. In QSAR 
equations they normally describe a certain structural element, be it a substituent 
or another molecular fragment; thus, Free Wilson analysis may be interpreted as 
a regression analysis approach using only indicator variables [21, 22, 390, 3911. At 
a first glance, indicator variables do not appear to be linear free energy-related 
parameters. Indeed, they are (chapter 4.31, but most often the relationships to linear 
free energy terms remain unknown. Numerical values of activity contributions to 
biological activity values can be derived from a linear free energy relationship (i.e. 
a linear Hansch equation) for each substituent of a group of compounds. The values 
are numerically equivalent to the group contributions of a corresponding Free 
Wilson analysis, if both analyses are based on hydrogen as reference substituent in 
every position of substitution (compare chapter 4.3) [390 - 3941. 

Indicator variables have also been used to account for other structural features, 
e.g. for intramolecular hydrogen bonds, hydrogen bond donor and acceptor 
properties, ortho effects, cis/trans isomerism, different parent skeletons, different test 
models, etc. [22, 3901. Some precautions are necessary: indicator variables should 
not describe a single compound (in this case the corresponding group contribution 
includes the experimental error of this one biological activity value) and the use of 
indicator variables should be justified from a theoretical point of view; otherwise, 
continuous variables will be mixed with meaningless dummy variables, just to fit 
the data. 

The proper use of an indicator variable to combine a group of different but related 
analogs can be demonstrated with two subsets of papain ligands. Eq. 58 was derived 
for a series of N-mesylglycine phenyl esters (7, R = SO,CH,) and eq. 59 for a 
corresponding series of N-benzoylglycine phenyl esters (7, R = COC,H,) (Table 11) 
[395]. 

log 1/K, = 0.529(+0.23) MR + 0.370(+0.20) o + 1.877(+0.13) (58) 
(n = 13; r = 0.935; s = 0.105; F = 34.51) 

log 1/K, = 0.771( k0.67) MR + 0.728( k0.37) 0 + 3.623( k0.34) (59) 
(n = 7; r = 0.971; s = 0.148; F = 32.85) 

While the coefficients of the MR and o terms are not significantly different (as 
indicated by an overlap of their confidence intervals), the constant terms are. The 
combination of eqs. 58 and 59 with the help of an indicator variable I (I = 1 for 
mesylamides; I = 0 for benzamides) [395] leads to eq. 60 (recalculated). 

log 1/K, = 0.569(+0.26) MR + 0.561(+0.19) o - 1.922('0.15) I + 
+ 3.743(+0.17) (60) 

(n = 20; r = 0.990; s = 0.148; F = 272.04) 
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Table 11. Binding of glycine X-phenyl ester amides (7) to papain [395] 

~ O C O C H , N H R  x -  
I x  R 

4-OH 
4-OMe 
4-Me 
3-Me 
H 
4-F 
3-OMe 
4-CHO 
4-C1 
3-F 
4-COMe 
3-NO2 
4-NO2 

4-NH2 
4-Me 
H 
4-C1 
4-F 
3-NO2 
4-NO2 

(7) 

log l/K, 

2.05 
2.13 
2.08 
2.23 
1.79 
1.95 
2.29 
2.33 
2.38 
1.98 
2.57 
2.53 
2.71 

3.58 
4.02 
3.77 
4.00 
3.69 
4.74 
4.85 

MR 

0.28 
0.79 
0.56 
0.56 
0.10 
0.09 
0.79 
0.69 
0.60 
0.09 
1.12 
0.74 
0.74 

0.54 
0.56 
0.10 
0.60 
0.09 
0.74 
0.74 
< 

0 

-0.37 
-0.27 
-0.17 
-0.07 
0.00 
0.06 
0.12 
0.42 
0.23 
0.34 
0.50 
0.7 1 
0.78 

-0.66 
-0.17 
0.00 
0.23 
0.06 
0.7 1 
0.78 

i 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

The value of the indicator variable I corresponds to the biological activity 
contribution of a mesylamido group, based on the benzamido group as the reference 
substituent. While not too much information can be derived from this value, there 
is no other way to combine eqs. 58 and 59 to one equation. The large increase 
in the value of the correlation coeficient r (from 0.935 and 0.971, respectively, to 
0.990) results from the fact that the overall variance of the data increases by 
combining both subsets, while the unexplained variance remains constant, as can 
be seen from a comparison of the standard deviations s of all equations (compare 
chapter 5.1). 

Indicator variables are especially useful in the early phases of a QSAR analysis 
and for large, complex data sets. Different subsets can be combined with their help, 
until the real dependence of biological activity values on some physicochemical 
parameters can be derived from a more extensive structural variation. 
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4. Quantitative Models 

4.1. The Extrathermodynamic Approach 
(Hansch Analysis) 

Hansch analysis [14, 15, 17, 18, 40-44, 3961 correlates biological activity values 
with physicochemical properties by linear, linear multiple, or nonlinear regression 
analysis; thus, Hansch analysis is indeed a property-property relationship model. 
As practically all parameters used in Hansch analysis are linear free energy-related 
values (i.e. derived from rate or equilibrium constants), the terms “linear free 
energy-related approach” or “extrathermodynamic approach” [396] are sometimes 
used as synonyms for Hansch analysis. Also the biological activity values are, if 
they are properly defined, linear free energy-related values (e.g. binding or inhibition 
constants, absorption and distribution rate constants, or complex data which 
correspond to a weighted combination of several such unit processes). 

Early attempts to correlate biological activity values with lipophilicity, expressed 
e.g. by solubility or partition coefficients [3 - 71, only explained nonspecific structure- 
activity relationships; the application of the concept of a general biological Hammett 
equation (eq. 4, chapter 1.1) failed. The methodological breakthrough came from a 
suggestion by Fujita, at that time working in Hansch’s group [17], to apply an 
approach used earlier by Taft [308]. Ldce he, Hansch and Fujita combined different 
physicochemical parameters in one equation, e.g. eq. 61 (C = molar concentration 
that produces a certain biological effect; k,, k,, k, = coefficients determined by a 
least squares procedure, e.g. linear multiple regression analysis, to fit the biological 
data). 

log 1/C = k, log P + k,o  + k, (61) 

For in uiuo data eq. 61 was extended to eq. 62 by including a parabolic lipo- 
philicity term. The idea behind eq. 62 was that molecules which are too hydrophilic 
or too lipophilic will not be able to cross lipophilic or hydrophilic barriers, 
respectively. Therefore, they will have a lower probability to arrive at the receptor 
site than molecules with intermediate lipophilicity, being readily soluble in aqueous 
phases as well as in lipid phases. 

log 1/C = -k,(log P)’ + k, log P + k 3 0  + k, (62) 

Eqs. 61 and 62 are only two examples of an enormous wide variety of Hansch 
equations. Later steric parameters were added to this general model and even later 
molar refractivity values. With such multiparameter equations it was possible to 
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describe much more complex dependences of biological activities on physicochemical 
properties than before. In the last three decades nearly all conceivable combinations 
of lipophilic, polarizability, electronic, and steric parameters, with and without 
additional indicator variables, have been used and correlated with biological activity 
values in linear, parabolic, and bilinear equations. 

Only one illustrative example is given here to describe and explain the proper 
application of Hansch analysis (for further examples see chapter 7). Graham and 
Karrar [397] determined the antiadrenergic activities of a series of a-bromo- 
phenethylamines (8). Hansch and Lien [398] derived eq. 63, which was at this time 
considered to give the best quantitative description of the data (Table 12; only some 

Table 12. Antiadrenergic activities of meta- and para-substituted N.N-dimethyl- 
a-bromo-phenethylamines (8) [307, 393, 3971 

Y b t H C H 2 N M e ,  . HC1 
Br 

meta 
(X) 
H 
H 
H 
H 
H 
H 
F 
CI 
Br 
I 
Me 
c1 
Br 
Me 
CI 
Br 
Me 
CI 
Br 
Me 
Me 
Br 

a) eq. 65 ' 

para 
(Y)  
H 
F 
CI 
Br 
I 
Me 
H 
H 
H 
H 
H 
F 
F 
F 
C1 
c1 
c1 
Br 
Br 
Br 
Me 
Me 

:q. 68 

n; 

0.00 
0.15 
0.70 
1.02 
1.26 
0.52 
0.13 
0.76 
0.94 
1.15 
0.51 
0.91 
1.09 
0.66 
1.46 
1.64 
1.21 
1.78 
1.96 
1.53 
1.03 
1.46 

B+ 

0.00 
-0.07 
0.11 
0.15 
0.14 

-0.3 1 
0.35 
0.40 
0.41 
0.36 

0.33 
0.34 

0.5 1 
0.52 
0.04 
0.55 
0.56 
0.08 

-0.38 
0.10 

-0.07 

-0.14 

1.24 
1.24 
1.24 
1.24 
1.24 
1.24 
0.78 
0.27 
0.08 
-0.16 
0.00 
0.27 
0.08 
0.00 
0.27 
0.08 
0.00 
0.27 
0.08 
0.00 
0.00 
0.08 

log 1/c 
obsd. 

7.46 
8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 

log 1/c 
ca1c.a) 

7.82 
8.09 
8.46 
8.77 
9.06 
8.87 
7.45 
8.11 
8.30 
8.61 
8.51 
8.38 
8.57 
8.78 
8.75 
8.94 
9.15 
9.06 
9.25 
9.46 
9.56 
9.35 

log 1/c 
ca1c.b) 

7.88 
8.17 
8.60 
8.94 
9.26 
8.98 
7.43 
8.05 
8.22 
8.51 
8.36 
8.34 
8.51 
8.65 
8.77 
8.94 
9.08 
9.11 
9.29 
9.43 
9.47 
9.33 
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selected physicochemical parameters are included); slightly different results are 
obtained if different scales, e.g. TC values from the phenoxyacetic acid system, Xbenzene 

values, or any other x values are used. 

log 1/C 1 . 2 2 ~  - 1.590 + 7.89 
(n = 22; r = 0.918; s = 0.238) 

Later Cammarata [399] presented eq. 64 (recalculated) which describes meta- 
substituents by their TC and o values and para-substituents by a steric parameter 
r P .  However, the steric parameter has the wrong sign; the positive value of its 
regression coefficient implicates that steric bulk increases biological activity, which 
cannot be true. In addition, it is difficult to understand how an electronic effect can 
only be obtained for the meta-substituents. 

log 1/C 0.747( k0.26) X, - 0.91 1 (f 0.52) O, i 
+ 1.666( k0.26) r Y  + 5.769( k0.45) 

(n = 22; r = 0.962; s = 0.168; F = 74.01) 

Correspondingly, eq. 64 was criticized by Unger and Hansch [307] in a noteworthy 
paper, which constitutes a milestone in the development of Hansch analysis. They 
formulated rules for the derivation of extrathermodynamic equations which are 
summarized here because of their general validity (supplementary comments are 
given in parentheses): 

Selection of independent variables. A wide range of different parameters, like 
log P or X, 0, MR, and steric parameters, should be tried; M O  parameters 
and indicator variables should not be overlooked (the problem of testing too 
many parameters will be discussed below). The parameters selected for the 
“best equation” should be essentially independent (i.e. the intercorrelation 
coefficients r should not be larger than 0.6-0.7; exceptions are combinations 
of linear and squared terms, like (log P)’ and log P, which are usually highly 
interrelated, with r values > 0.9). 

Justification of the choice of independent variables. All “reasonable” parameters 
must be validated by an appropriate statistical procedure, e.g. by stepwise 
regression analysis (nowadays sometimes cross-validation is recommended, see 
chapters 5.2 and 5.3). The “best equation” is normally the one with the lowest 
standard deviation, all terms being significant (indicated by the 95% confidence 
intervals or by a sequential F test). Alternatively, the equation with the highest 
overall F value may be selected as the “best” one (see chapter 5.1). 

Principle of parsimony (Occam’s Razor; William of Ockham, 1285 - 1349/50, 
English philosopher and logician). All things being (approximately) equal, one 
should accept the simplest model. 

Number of terms. One should have at  least five to six data points per variable 
to avoid chance correlations (this rule only applies to data sets of intermediate 
size; for small data sets more parameters may be allowed if they are based on a 
reasonable model; for large data sets, e.g. n > 30, this recommendation leads to 
equations which include too many variables). 
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Qualitative model. It is important to have a qualitative model which is consistent 
with the known physical-organic and biomedicinal chemistry of the process 
under consideration. 

Following these recommendations, Unger and Hansch reconsidered the mecha- 
nism of action of the a-bromophenethylamines and argued that CT' instead of 
CT might be a better electronic descriptor, because the compounds are supposed to 
interact with the receptor site via the formation of an ethyleneiminium ion (9) and 
subsequently a benzyl cation (10). They derived eq. 65 (recalculated values) [307], 
which gave a much better description of the data than eq. 63. 

log 1/C = 1.151(+0.19) 7~ - 1.464(?0.38) 0' + 7.817(f0.19) (65) 
(n = 22; r = 0.945; s = 0.196; F = 78.63) 

Out of many other equations derived by Unger and Hansch [307], separating 
hydrophobic and electronic effects for meta- and para-substituents and splitting 
electronic effects into inductive and resonance contributions S and P, only eqs. 66 
and 67 shall be discussed here. 

log 1/C = 0.83( k0.27) 7~, + 1.33( k0.20) x p  - 0.92(+0.50) 0; - 
- 1.89(+0.57) 0,' + 7.80(+0.17) 

(n = 22; r = 0.966; s = 0.164) 

log 1/C = 0.86(+0.30) 7~ + 0.47(f0.26) S, - 0.36(+0.21) S, - 
- 0.92( + 0.61) P, + 0.62( f 0.49) r Y  + 7.08( 5 0.62) (67) 

(n = 22; r = 0.967; s = 0.167) 

Later eq. 68 was derived from the assumption that hydrophobic and electronic 
influences are identical in the meta- and para-positions, but that there might be a 
steric hindrance to the meta-substituents (the E, scale is opposite in sign to the rv 
scale, having smaller and even negative values for large substituents; thus, the 
positive sign of the coefficient in eq. 68 indeed indicates a negative steric influence 
of large substituents) [393]. 

log 1/C = 1.259(_+0.19) TC - 1.460(_+0.34) 0' + 
+ 0.208(-k0.17) Ere'' + 7.619(f0.24) 

(n = 22; r = 0.959; s = 0.173; F = 69.24) 
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Eqs. 63-68 reveal a typical dilemma in Hansch analysis: while eqs. 65-68 are 
significantly better than eq. 63 and are based on more reasonable assumptions than 
eq. 64, which one of them is the “best” equation? On the basis of the correlation 
coefficients r (the crutches of a QSAR beginner), eq. 67 is to be preferred; eq. 66 
seems to be the best one if the standard deviation s, a much better criterion, is 
considered. The differences in the correlation coefficients r and in the standard 
deviations s of eqs. 65-68 are rather small. However, if one applies the principle 
of parsimony, eqs. 66 and 67 should be omitted because too many parameters are 
included for such a small data set. 

How to decide between eqs. 65 and 68? The confidence interval of the E, term 
in eq. 68 is rather large and the overall F value of eq. 68 is smaller than the one of 
eq. 65, indicating that there may be too few degrees of freedom to favor eq. 68. On 
the other hand, the additional E, term in eq. 68 is justified by a sequential F test 
(see chapter 5.1). 

With the evidence on hand it is impossible to differentiate between both equations 
on a rational basis and to prefer either eq. 65 or 68. The equations are derived from 
a less well designed group of compounds; with the exception of hydrogen and the 
methyl group, all other substituents are halogens. A validation of all these equations 
can only be achieved after synthesis and testing of additional compounds with larger 
meta-substituents, hydrophilic, and/or electron donor substituents (the importance 
of a proper selection of substituents in Hansch analysis is discussed in chapter 6). 

In addition to the ambiguity of the results there is another serious problem in 
Hansch analysis. One compound of the original series, the para-phenyl analog, was 
not included in all the analyses described above, because of its bad fit. This procedure 
is the only choice if a single compound represents a largely different substituent 
which could only be described by a separate parameter. But most often the 
elimination of data points is an arbitrary, subjective, and therefore dangerous 
procedure. An important effect may ,be overlooked or a false hypothesis may 
incorrectly be justified, starting from a wrong selection of so-called “outliers”. 

The biological activity values of other analogs, having different substituents in 
the positions for which the equations were derived, can be predicted from Hansch 
equations. While this is easy from a mathematical point of view (the parameter 
values of the new substituents have to be inserted in the corresponding Hansch 
equation), such predictions are indeed a rather difficult task. Of course, the predicted 
values depend on the underlying equation; different predictions result from different 
equations, e.g. for large meta-substituents from eqs. 65 and 68. If a point to be 
predicted is far outside the included parameter range (once compared by Hansch 
with predictions on Paris, derived from a map of London) there is not only a risk, 
but certainly a guarantee for failure. In the case of the phenethylamines it might 
happen that hydroxy analogs are no longer antagonists but agonists instead. 

Often predictive ability is considered to be a criterion for the relevance of 
quantitative structure-activity analyses. While this is an obviously reasonable 
demand, it should be realized that the main purpose of Hansch analysis is a better 
understanding, not prediction. New hypotheses can be established from quantitative 
analyses, which are proven or disproven by synthesis and testing of new analogs. 
If the predicted values are close to the experimental ones, the model can be accepted. 
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Otherwise, the hypothesis was wrong or limited to a certain parameter range; new 
conclusions and new models must be derived. 

Topliss was the first to investigate the risk of chance correlations in Hansch ana- 
lyses in a systematic manner. Several simulations, using random numbers instead 
of real parameter values, revealed that for a given number of compounds the chance 
of obtaining correlation coefficients r larger than 0.9 not only drastically increases 
with the number of variables included in the equation, but also with the number 
of variables from which the different combinations are being selected [400, 4011. 

Probably the most terrific example of an overprediction of biological data, 
resulting from the use of too many variables, was published in 1986 (!). Several 
hundred equations were derived for the antitumor activities (a type of biological 
activity that usually is associated with standard deviations much larger than 0.3) 
of eight glutamic acid derivatives (11, R’ = H, CH,; R2 = H, alkyl, cycloalkyl) 
[402]. Only one frightening example, eq. 69 (YoITW = YO inhibition of tumor weight), 
is cited here; six variables for eight compounds leave one degree of freedom, just 
enough not to receive an error message by the computer program. In addition, the 
biological activity values are defined in an improper manner, the range of the log 
%ITW values is only 0.24 log units (!), the signs of the log P and (log P)2 terms 
are wrong (inverse parabola), the coefficients of the o terms are unreasonably 
large, no confidence intervals of the regression coefficients are included, and too 
many decimal places are given. 

R ~ ~ S O ~ N H ~  
HOOC CONHR’ (11) 

log Yo ITW = 1.4111(10g P)2 - 0.5971 log P - 0.1714& - 

- 3.22930~1i + 0.9595Esa1i - 6.619901 + 1.3249 (69) 
(n = 8; r = 0.9912; s = 0.0310) 

The factors being important for the significance and validity of QSAR relationships 
(compare chapter 5.2) have been reviewed in several publications [403 -4091. 

4.2. The Additivity Model (Free Wilson Analysis) 

The Free Wilson approach [16, 20, 390, 3911 is a true structure-activity relationship 
model. An indicator variable is generated for each structural feature that deviates 
from an arbitrarily chosen reference compound. Values 1, indicating the presence 
of a certain substituent or structural feature, and 0, indicating its absence, are 
correlated with the biological activity values by linear multiple regression analysis. 
The resulting regression coefficients of the indicator variables are the biological 
activity contributions of the corresponding structural elements. “Mathematical 
model”, “additivity model”, or “de nouo approach” are synonyms for the Free 
Wilson method. 
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The Free Wilson model was in its original formulation [16] not as simple. No 
reference compound was selected and so-called symmetry equations were generated 
to avoid the problem of linear dependences between the variables. 

The version described by Fujita and Ban (eq. 8, chapter 1.1) [20, 390, 3911 is a 
straightforward application of the additivity concept of group contributions to 
biological activity values. As nowadays only this modification is used, no details of 
the original formulation of the Free Wilson model and its complicated symmetry 
equations are discussed here. 

In comparison with the classical version of the Free Wilson analysis, the 
Fujita Ban variant offers a number of important advantages: 

The table for regression analysis can easily be generated. 
The addition and elimination of compounds is simple and does not change the 

values of the other regression coefficients significantly. 
Any compound may be chosen as the reference compound. 
Substituents which always occur together in two different positions of the molecule 

Singularity problems are easily avoided. 
The values of the group contributions are directly related to Hansch analysis- 

Fujita Ban-type indicator variables can be combined with Hansch analysis to a 

If the Free Wilson method is applied to the a-bromophenethylamines (Table 12; 
chapter 4.1) and if the unsubstituted parent compound (12, X = Y = H) is selected 
as the reference compound, Table 13 results; the regression analysis of these data 
leads to eq. 70 [390, 391, 3931. 

can be combined to a pseudosubstituent. 

derived group contributions (see below, chapter 4.3). 

mixed approach (see chapters 3.8 and 4.3) [22, 390, 3911. 

log 1/C = -0.301 ( &  0.50) [m-F] + 0.207( f 0.29) [m-Cl] + 
+ 0.434( k 0.27) [m-Br] + 0.:79( f 0.50) [m-I] + 
+ 0.454( 50.27) [m-Me] + 0.340( i0 .30)  [p-F] + 
+ 0.768( f 0.30) [ p-Cl] + 1.020(5 0.30) [ p-Br] + 
+ 1.429( 50.50) [ p-I] + 1.256( k0.33) [ p-Me] + 7.821( k0.27) (70) 

(n = 22; r = 0.969; s = 0.194; F = 16.99) 

Different regression coefficients are obtained if any other compound is chosen as 
the reference compound or if the classical Free Wilson model is applied. However, 
these values are only linearly shifted to the values of eq. 70; all statistical parameters 
are identical, with the only exception of the 95% confidence intervals [390, 391,4101. 

The Free Wilson model is easy to apply. Especially in the early phases 
of structure-activity analyses it is a simple method to derive substituent contributions 
and to have a first look on their possible dependence on different physicochemical 
properties. 

However the Free Wilson model also has some shortcomings: 
First of all and most important, structural variation is necessary in at least two 

different positions of substitution; otherwise, meaningless group contributions 
would result, one for each compound. 
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Table 13. 
bromo-phenethylamines (12); table for Free Wilson analysis [391, 3931 

Antiadrenergic activities of rneta- and para-subsliluted N,N-dimethyl-r- 

V b C H C H , N M e , .  HCI 
Br 

meta 

(XI - 
H 
H 
H 
H 
H 
H 
F 
c1 
Br 
I 
Me 
CI 
Br 
Me 
c1 
Br 
Me 
c1 
Br 
Me 
Me 
Br 

~ 

’ eq. 70 

para 

(Y) 
~ 

H 
F 
CI 
Br 
I 
Me 
H 
H 
H 
H 
H 
F 
F 
F 
c1 
c1 
CI 
Br 
Br 
Br 
Me 
Me 

~ 

meta- 

CI 
- 

1 

1 

1 

1 

- 

B r  
- 

1 

1 

1 

1 

1 - 

Me - 

1 

1 

1 

1 
1 

para- 

F 
- 

1 

1 
1 
1 

CI 
- 

1 

1 
1 
1 

B r  - 

1 

1 
1 
1 

Me 
- 

1 

1 
1 - 

log 1 / c  
obsd. 
7.46 
8.16 
8.68 
8.89 
9.25 
9.30 
7.52 
8.16 
8.30 
8.40 
8.46 
8.19 
8.57 
8.82 
8.89 
8.92 
8.96 
9.00 
9.35 
9.22 
9.30 
9.52 

log l/C 
ca1c.a) 

7.82 
8.16 
8.59 
8.84 
9.25 
9.08 
7.52 
8.03 
8.26 
8.40 
8.28 
8.37 
8.60 
8.62 
8.80 
9.02 
9.04 
9.05 
9.28 
9.30 
9.53 
9.5 1 

Every substituent which only once occurs in the data set, leads to a single-point 
determination; the corresponding group contribution contains the whole experi- 
mental error of this one biological activity value. 

Only a common activity contribution can be derived for substituents which always 
occur together in two different positions of the molecule. 

In most cases a large number of parameters is needed to describe relatively few 
compounds, sometimes leading to equations which are statistically not signi- 
ficant (10 parameters are needed in the case of eq. 70 to describe 22 data 
points, leaving only 11 degrees of freedom). 

Only a small number of new analogs can be predicted from a Free Wilson analysis 
(14 other compounds in the case of eq. 70). 
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Predictions for substituents which are not included in the analysis are generally 
impossible; estimated values may be derived from working hypotheses regarding 
a physicochemical interpretation of the obtained group contributions. 

By its definition the Free Wilson analysis is limited to linear additive structure- 
activity relationships (its application to nonlinear relationships and the combina- 
tion with Hansch analysis to a mixed approach are described in chapter 4.3). 

A detailed discussion of the scope and limitations of the Free Wilson model is given 
in refs. [390, 3911; some applications are discussed in chapter 8. 

The values of the confidence intervals have different relevance in Hansch analysis 
and in the Free Wilson model [390, 391, 4101. While in Hansch analysis they 
are a measure of the significance of the corresponding variable, in the Free Wilson 
analysis they depend on the choice of the reference substituents; they only indicate 
whether two group Contributions (one being e.g. the group contribution of the 
reference substituent, which is arbitrarily set to zero) are significantly different or not. 
Correspondingly, “nonsignificant” terms are usually not eliminated in presenting 
the results of a Free Wilson analysis (compare eq. 70). 

The use of stepwise principal component regression analysis in the Free Wilson 
approach has been proposed [411]. Other modifications which consider and 
include only significant terms [e.g. 412, 4131, like the “reduced Free Wilson 
model” [414-4161 and the BEL-FREE method [417], have the advantage of 
a larger number of degrees of freedom and therefore most often a higher statistical 
significance of the results is obtained. However, these modifications have not 
generally been accepted. In addition, the elimination of parameters depends on the 
selection of the reference substituents. 

The DARC-PELCO approach [418-4231 is a simple application of a hyper- 
structure concept to the Free Wilson method; while the approach may be appro- 
priate for extremely large data sets, e.g. for the derivation of lipophilicity contribu- 
tions from partition coefficients, it is useless for most structure-activity analyses, due 
to the much too large number of variables (compare eqs. 199 and 200, chapter 
8) [390, 3911. The results from Hansch, Free Wilson, and DARC-PELCO analyses 
have been compared with each other [421, 422, 4241; no advantages of the latter 
approach could be seen. 

Other hyperstructure approaches, which to some extent are related to the 
Free Wilson model, are discussed in chapter 4.6. 

4.3. The Relationships between Hansch 
and Free Wilson Analysis (The Mixed Approach) 

Hansch analysis and the Free Wilson method differ in their application, but they 
are nevertheless closely related [390, 39 1, 3941. From the general formulation 
of a linear Hansch equation (eq. 71; 0, is any physicochemical property) group 
contributions a, can be derived for each substituent under consideration (eq. 72; 
Qij is the physicochemical property j of the substituent Xi). 
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log 1/C = k,@., + k2@2 + ... + k,@, + c =CkjQj + c 

a, = Ck.@.. 1 1J 

(71) 

(72) 

If all physicochemical properties are normalized to Qj = 0 for hydrogen and if the 
Free Wilson group contributions also refer to hydrogen as reference substituent, 
the values of corresponding activity contributions are (within experimental error) 
identical [393]. To give an example, eqs. 73 and 74 (the E, term in eq. 74 only applies 
to rneta-substituents) can be derived from the Hansch equations 65 and 68 
(chapter 4.1) [390, 391, 3931; the resulting a, values are numerically equivalent to the 
corresponding Free-Wilson group contributions (eq. 70). 

a, = 1.1517~~ - 1.4640: 

a, = 1.2597~~ - 1.4600' + 0.208(Eyt" - EF$) 

(73) 

(74) 

This theoretical relationship between Hansch analysis and the Free Wilson model 
was first recognized by Singer and Purcell [392]. Although it was questioned by 
Cammarata [399,425], later investigations confirmed it theoretically and by practical 
examples [390, 391, 393, 3941. 

According to eq. 72, Free Wilson group contributions contain all possible 
physicochemical contributions of a substituent; correspondingly, a Free Wilson 
analysis always gives the upper limit of correlation which can be achieved by a 
linear Hansch analysis [390, 391, 3931. No linear Hansch equation (not including 
squared terms or nonadditive terms like the dipole moment) can be obtained for 
the a-bromophenethylamines (chapters 4.1 and 4.2) with a correlation coefficient 
larger than r = 0.969 (the correlation coefficient of the Free Wilson analysis, eq. 
70). On the other hand, the standard deviation s may become smaller due to the 
usually larger number of degrees of freedom in a Hansch analysis (for the definition 
of the correlation coefficient r and the standard deviation s see chapter 5.1). 

A comparison of the results from Hansch and Free Wilson analyses offers some 
information, whether a certain Hansch model can be considered to be acceptable or 
not. In most cases the Free Wilson analysis of a data set shows whether a linear 
additive model is suited for the analysis; only in certain cases is a good fit obtained 
for nonlinear relationships, especially if there are only few degrees of freedom 
[22, 390, 3911. 

An example, how a Hansch equation can be improved by comparing the group 
contributions with those obtained from Free Wilson analysis, is given below. 
Eq. 75 was derived for the antifungal activities of phenyl ethers (13, X, Y = H, OH) 
[426]. Eq. 76 results if all members of the series are included, giving an even worse 
fit [393]; in both equations the o term is not significant. 

OOCH,CHCH,Y I (13) 
X R -  

log 1/C = 0.691(+0.14) log P + 0.428( 40.51) o + 1.213 
(n = 26; r = 0.911; s = 0.216) 

(75) 
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log 1/C = 0.665( f0.15) log P + 0.500( f0.57) o + 1.235 

(n = 28; r = 0.879; s = 0.241) 

The Free Wilson analysis of the same data set [393] indicates that the smaller group 
contributions of the ortho-substituents might be explained by a steric effect. 
Correspondingly, eq. 77 was derived [393], which gives a much better fit than eqs. 
75 and 76; eq. 77 includes all compounds and, in addition, only contains significant 
variables. 

log 1/C = 0.741(f0.11) log P + 0.214(f0.08) Err"' + 0.846 

(n = 28; r = 0.942; s = 0.170) 

(77) 

Due to the relationships between Hansch analysis and the Free Wilson model, 
indicator variables (chapter 3.8) have relatively early been included in Hansch 
analyses (e.g. [21, 427, 4281). Both models can be combined to a mixed approach, 
in a linear (eq. 78) and a nonlinear form (eq. 79), which offers the advantages of 
both, Hansch analysis and Free Wilson analysis, and widens their applicability in 
quantitative structure-activity relationships [22]. 

log 1/C = klQl + k2Q2 + ... + k,@, + Cai + c = CkjQj + Ca, + c (78) 

log 1/C = b,Qf + b2Q$ + ... + klQl + k,Q, + ... + knQn + Ca, + c = 

= Cbj@; + CkjQj + Ca, + c (79) 

It should be mentioned that Bocek and Kopecky, independently and at the same 
time as Free and Wilson, proposed an additive model with additional interaction 
terms (eq. 80, reformulated; eXeY = interaction term) [429, 4301. 

log 1/C = Ca, + Cexe, + c (80) 

The Bocek Kopecky model is theoretically and practically related to the nonlinear 
Hansch model [22, 392, 3931 and thus to eq. 79. However, due to the large number 
of variables this modification has never been used. 

The mixed approach allows the description of data sets, when the structural 
variation is sufficient to derive a Hansch-type relationship for one or several sites 
of substitution (parameters with index j in eqs. 78 and 79), while for others indicator 
variables are appropriate because the structural variation is too narrow (group 
contributions with index i), e.g. eq. 60 (chapter 3.8) or eq. 81 for the inhibition of 
dihydrofolate reductase by dihydrotriazines (14) [28, 43 1, 4321. 

X (14) ,k %CH3 
CH3 

H,N N 
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log 1/C = 0.680(+0.12) x3 - 0.118(,0.03) K: + 0.230(k0.07) MR, - 
- 0.0243( k0.009) MR: + 0.238( t0 .12)  I ,  - 2.530( k0.27) I, - 
- 1.997(i0.29)13 + 0.877(*0.23)1, + 0.686(_+O.t4)I5 + 
+ 0.704(f0.16) I, + 6.489(*0.16) (81) 

optimum 7t3 = 2.9 
(n = 244; r = 0.923; s = 0.377) 

For a successful application of the mixed approach it is highly recommended to 
derive Hansch equations for each subset and to compare whether they correspond 
to each other or not, before combining them into one equation with the help of 
indicator variables (e.g. eqs. 58 - 60, chapter 3.8). 

Today the mixed approach is the most powerful tool for the quantitative 
description of large and structurally diverse data sets. Numerous Hansch analyses 
including Free Wilson-type variables have been published (some more examples 
are discussed in chapter 7). 

optimum MR, = 4.7 

4.4. Nonlinear Relationships 

Nonlinear relationships between biological activities and lipophilicity are very 
common. While biological activity values most often linearly increase with increasing 
lipophilicity [182], such an increase is no longer obtained if a certain range of 
lipophilicity is surpassed; biological activities remain constant or decrease more or 
less rapidly with further increase of lipophilicity [7, 191. Many reviews deal with 
nonlinear lipophilicity-activity relationships [19, 175, 178, 345, 4331. 
Different explanations have been given for this effect, 

the kinetics of drug transport in biological systems and 
the distribution of drugs in different compartments of a biological system 

limited space for the interaction of hydrophobic groups at the binding site, 
allosteric effects, 
increased metabolism of higher, lipophilic analogs, 
end product inhibition by lipophilic products of an enzymatic reaction, 
micelle formation or limited solubility of higher analogs, and, 
last but not least, the principle of minimum receptor occupation 

have been discussed as being responsible for such nonlinear relationships [19]. 
Hansch formulated a parabolic model (eq. 7, chapter 1.1) [15, 17-19] for the 

mathematical description of nonlinear relationships. He was aware that the sides 
of a parabola are always more or less curved, while in most cases at least the “left 
side” of the structure-activity relationship (i.e. the lipophilicity dependence of the 
more hydrophilic analogs) is strictly linear; equations including a third-order 
lipophilicity term did not produce much improvement [19]. A computer simulation 
of the transport of drugs in a biological system, using hypothetical rate constants, 

being the most common. In addition, 
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Log P 

Figure 12: Comparison of the parabolic Hansch model (left curve) and Franke’s protein binding 
model (right curve). Log P, is the lipophilicity limit, where steric hindrance or other unfavorable 
interactions cause a change of the linear lipophilicity-activity relationship to a parabola (repro- 
duced from Figure 9 of ref. [175] with permission from Birkhauser Verlag AG, Basel, Switzerland). 

was performed [434] to support the parabolic model. Even this computer simulation 
showed some systematic deviations at the sides of the parabola. 

Franke developed another empirical model to bridge the gap between so many 
linear relationships and a nonlinear model (Figure 12). He considered binding of 
ligands at a hydrophobic protein surface of limited size as being responsible for 
nonlinear lipophilicity-activity relationships and formulated two equations, one for 
the linear left side (eq. 82) and the other one for the right side, the nonlinear part 
(eq. 83; log P, = critical log P value, where the linear relationship changes to a 
nonlinear one) [435]. 

log /C  = a log P + c (if log P < log P,) 

log 1/C = cl(log P)z + log P + y 

(82) 

(83) (if log P > log P,) 

For practical reasons and to avoid too many parameters, it is better to combine 
both equations to eq. 84. The term log [P > P,] in eq. 84 is zero for all log P values 
being smaller than log P,, while it is the difference (log P - log P,) for all log P 
values being larger than log P, [175, 3451. 

log 1/C = a(1og [P > P,])’ + b log P + c (84) 

The Franke model is a definite improvement as compared to the parabolic model. 
In many practical cases it gives a much better fit, e.g. eqs. 85 and 86 for the spasmolytic 
activities of mandelic acid esters (Table 14; RA = relative biological activity values, 
based on cyclandelate (15), RA = 100%) [345]. 

log RA = -0.189( k0.09) (log P)z + 1.566( f0.56) log P - 1.438 (85) 
optimum log P = 4.15 

(n = 11; r = 0.958; s = 0.298) 

log R A  = -0.585(f0.15) (log [P > P,])’ + 0.802(+0.11) log P - 0.901 (86) 
log P, = 3.43 
(n = 11; r = 0.989; s = 0.164) 

optimum log P = 4.12 
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Table 14. Spasmolytic activities of mandelic acid esters in the 
guinea pig ileum us. histamine [345]; RA = relative biological 
activity values, based on cyclandelate (15) (RA = 100%) 

Compound 
Methyl ester 
Ethyl ester 
Propyl ester 
Butyl ester 
Pentyl ester 
Hexyl ester 
Heptyl ester 
Octyl ester 
Nonyl ester 
Decyl ester 
Undecyl ester 

log P 
0.41 
0.91a) 
1.41 
1.91 
2.41 
2.91 
3.41 
3.91 
4.41 
4.91 
5.41 

log RA 

-0.52 
-0.22 
0.20 
0.59 
1.08 
1.52 
1.70 
2.18 
2.26 
1.45 
1.28 

a) experimental value, all other values extrapolated 

Theoretical approaches were followed by others, the first one laying the foundation 
for all other theoretical models. McFarland considered the rate constants k (transport 
from the aqueous phase into an organic phase) and 1 (transport in the reverse 
direction) to be related to the probabilities of a molecule to enter either the lipid 
phase (eq. 87) or the aqueous phase (eq. 88) from an aqueous/lipid interface 
(pi,j = probabilities) [436]. 

1 1 = p1,o = ~ 

P + l  

From these two equations he derived the probability of a molecule of crossing many 
different aqueous and lipid barriers and to arrive at  the receptor by multiplying the 
different probabilities (eq. 89; p l , z  = pl,o,  p2,3 = PO, etc.). As cr, the concentration 
in the receptor phase, is proportional to PO,,,, eq. 90 results from appropriate 
transformation of eq. 89 [175, 345, 4361. 

log c, = a log P - 2a log (P + 1) + c (90) 



4.4. Nonlinear Relat ionsh ips 71 

n =  I 2 3 4 n-! n 

Figure 13: McFarland probability model 
(eqs. 87-90). Symmetrical curves with linear 
ascending and descending sides result from 
eq. 90 (reproduced from Figure 1 and redrawn 
from Figure 3 of ref. [436] with permission 
from the American Chemical Society, 
Washington, DC, USA). 

7 i - -  I I I 
-4 -2 0 2 4 

log P 

Symmetrical curves with linear ascending and descending sides, having their 
optimum at log P = 0, result from eq.90 (Figure 13). No practical application of 
eq. 90 was possible because most often nonlinear lipophilicity-activity relationships 
are unsymmetrical and their optimum log P values are different from zero. 

Higuchi and Davis considered a biological system under equilibrium conditions 
[437]. From different simulations they obtained unsymmetrical curves with linear 
ascending and descending sides; however, no general equation for quantitative 
structure-activity analyses was derived. This was done by Hyde by considering much 
simpler model systems [438, 4391. Eq. 91 (slope = 1) and eq. 92 (different slopes at 
the ascending left side) describe nonlinear relationships with linear left sides, leveling 
off to a plateau [438, 4391; only such examples of lipophilicity-activity relationships 
can be described by this model [175, 3451. 

log 1/C = log P - log (aP + 1) + c (91) 

logl /C = b l o g P  - log(aPb + 1) + c (92) 

The bilinear model (eq. 93) (Figure 14) was derived from a reconsideration of the 
McFarland model, taking into account the different volumes of aqueous and organic 
phases of a biological system [23, 175, 345, 440-4421. 
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Figure 14: Bilinear model. 
log c, = a log P - b log (PP + 1) + c 
(c, = concentration in the receptor phase of a 
hypothetical biological system); for symmetrical l og  Po -log 0 I curves the lipophilicity optimum is log Po Y - log 0. 

0 log P 

time (hours) 

Figure 15: Determination of the rate constants k, and k, of the transport of homologous 
quaternary alkylaminonium bromides in a three-compartment model system. Water/n-octanol/water 
system (upper diagram) and time dependence of substance concentrations in the different 
compartments after different times t (lower diagram) (reproduced from Figures 1 and 4 of ref. [443] 
with permission from Editio Cantor Verlag GmbH, Aulendorf, Germany). 
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log 1/C = a log P - b log (PP + 1) + c (93) 
a optimum P = 

P . (b - a) 
(only valid for b > a) 

A different formulation of the bilinear model (e.g. eq. 94) is used if the physicochemical 
parameters are already in the logarithmic scale; on the other hand, terms like l 0 ' O g p  
(= P), sometimes seen in the QSAR literature, should be avoided. 

log 1/C = an - b log ( P .  10" + 1) + c (94) 

Eqs. 93 and 94 may be considered as extensions of eqs. 90-92. In contrast to 
these equations, the bilinear model is generally applicable to the quantitative 
description of a wide variety of nonlinear lipophilicity-activity relationships. In 
addition to the parameters that are calculated by linear regression analysis, it 
contains a nonlinear parameter p, which must be estimated by a stepwise iteration 
procedure [440, 4411. It should be noted that, due to this nonlinear term, the 
confidence intervals of a, b, and c refer to the linear regression using the best estimate 
of the nonlinear term. The additional parameter P is considered in the calculation 
of the standard deviation s and the F value via the number of degrees of freedom 
(compare chapter 5.1). The term a in eq. 93 is the slope of the left linear part of the 
lipophilicity-activity relationship, the value (a - b) corresponds to the negative slope 
on the right side. 

The bilinear model is confirmed by simulations, using experimental rate constants 
of drug transport, which were determined from the time dependence of substance 
concentrations in the different phases of a three-compartment system waterln- 
octanol/water (Figure 15) [443]. 

Eqs. 95 and 96 could be derived for the dependence of the transport rate constants 
k,  (from the aqueous phase into the oLganic phase) and the reverse rate constants 
k, (from the organic phase into the aqueous phase) on lipophilicity [444]. According 
to eq. 95, the rate constants k ,  are thermodynamically controlled, they linearly 
increase with lipophilicity. With further increase in lipophilicity the diffusion of the 
solutes becomes rate-limiting; a plateau is reached because now thermodynamic 
control is replaced by kinetic control. The reverse holds true for the rate constants 
k, (eq. 96) (Figure 16). 

log k,  = log P - log (PP + 1) + c (95) 

log k, = - log (PP + 1) + c 196) 

Both equations were confirmed by independent investigations of other series of 
structurally largely different substances, including neutral compounds, ionized 
compounds, and quaternary ion pairs, with molecular weights in the range < 100 to 
> 500 dalton, and in different solvent systems (e .g .  eqs. 97 and 98) [445 -4471. 

log k, = log P - log (0.386P + 1) - 3.999 
(n = 45; r = 0.997; s = 0.047) 

(97) 
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Figure 16: Rate constants k,  and k, 
of the transport of homologous 
quaternary alkylammonium bromides 
in a three-compartment model system; 
comparison of experimental [443] and 
calculated values (eqs. 95 and 96) 
(redrawn from Figure 2 of ref. [444] 
with permission from the American 
Pharmaceutical Association, 
Washington, DC, USA). 

N (number of CH2 groups) 

log k, = - log (0.385P + 1) - 4.002 (98) 
(n = 45; r = 0.998; s = 0.047) 

Prior assumptions [e.g. 433,4341 that the product k ,  . k, is equal to unity or at least 
a constant value, are disproved by eqs. 95 and 96; in reality, the product k, . k, is 
related to lipophilicity by the function k, . k, = const. P/@P + 1)’ [442]. 

Eq. 93 can be derived from kinetically controlled model systems (Figure 17) as 
well as from equilibrium models (Figure 18), indicating that the bilinear model is 
valid under diffusion control as well as under equilibrium or pseudoequilibrium 
conditions [175, 345, 440, 448, 4491. 

Many data sets can be explained much better with the help of this theoretically 
derived model than with the empirical parabolic model [23, 175, 3451. Only two 
examples shall be given here, one (eq. 99) describing the spasmolytic activities of 
mandelic acid esters (Table 14; eqs. 85 and 86), the other one describing the antifungal 
activities of aliphatic amines us. R ~ ~ ~ ~ c Z ~ ~ i u ~  beurmanni (eq. 100) [345]; in the latter 
case the parabolic model gives r = 0.967, while a combination of the parabolic 
model with an additional, highly interrelated MW term yielded r = 0.994 [344] 
(chapter 3.7). 

log 1/C = 0.851( f0.12) log P - 2.259( j0.55) log (PP + 1) - 0.963( *0.29) 

log p = -4.359 

(n = 11; r = 0.990; s = 0.160; F = 109.94) 

(99) 
optimum log P = 4.14 
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Figure 17: Simulation of the 
lipophilicity dependence of drug 
concentrations in compartment 
D of a five-compartment non- 
equilibrium model system after 
different times t ; calculated 
values, using experimental rate 
constants k ,  and k, (Figures 15 
and 16), are fitted with the 
bilinear model (Figure 14; eq. 93); 
A and C model the outer and 
inner aqueous phases of a simple 
biological system, B and E are 
lipid barriers, and D stands for 
a receptor compartment. 
Unsymmetrical hrves  describe 
the lipophilicity dependence of 
the concentration in com- 
partment D (redrawn from 
Figures 6 and 9 of ref. [442] 
with permission from Editio 
Cantor Verlag GmbH, Aulen- 
dorf, Germany). 

Figure 18: Lipophilicity 
dependence of drug concentra- 
tions in a hypothetical three- 
compartment equilibrium model 
system; curve A represents the 
concentration dependence in the 
aqueous phase, curve B in a 
lipid phase, and curve C in a 
phase of intermediate lipo- 
philicity; log P, is the phase C/ 
phase A partition coefficient 
(reproduced from Figure 3 of 
ref. [442] with permission from 
Editio Cantor Verlag GmbH, 
Aulendorf, Germany). 
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1 2 3  4 

log 1/C = 0.944(*0.01) log P - 2.347(-f-O.O5)10g(PP + 1) - 0.053(&0.05) (100) 
log P = -5.787 

(n = 15; r = 1.000; s = 0.031; F = 7945) 

However, the parabolic model is still valuable for structure-activity analyses. It 
is the simpler model, easier to calculate, and most often a sufficient approximation 
of the true structure-activity relationship. The calculation of bilinear equations is 
relatively time-consuming, as compared to the parabolic model; strange results may 
be obtained in ill-conditioned data sets. On the other hand, in many cases the, 
bilinear model gives a better description of the data, especially if additional 
physicochemical parameters are included in the regression equation. The lipophilicity 
optimum of symmetrical curves is precisely described by both, the parabolic model 
(optimum log P = - b/2a) and the bilinear model (optimum log P = - log p). In 
the case of unsymmetrical curves the site of the lipophilicity optimum is described 
much better by the bilinear model (optimum log P = log a - log p - log (b - a); 
eq. 93) than by the parabolic model. 

Other models, which are closely related to the bilinear model, have been derived 
for the quantitative description of nonlinear structure-activity relationships [41, 156, 
450-4551, e.g. eq. 101 [41, 1561, eq. 102 [453], eq. 103 [454, 4551, and eq. 104 
(Figure 19) [455]. 

optimum log P = 5.62 

log 1/C = a log P - log (ppb + 1)  T c 

log 1/C = a log P + Cbi log (pip + 1) + c 

log 1/C = a log P - bP"/(dP" + 1) - log (dP" + 1) + const. 

(101) 

(102) 

(103) 

(104) 

I 

log P 
Figure 19: Different functions generated by eq. 104 (dots; c = 1.6, curve 1 ;  c = 1.0, curve 2; 
c = 0.8, curve 3; c = 0.6, curve 4; ic = C = isoeffective concentration) are fitted by the function 
log IjC = a log P - bP + const. (lines; eq. 104, c = 1) (reproduced from Figure 5 of ref. [455a] 
with permission from the copyright owner). 
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In certain cases the functions described by eqs. 90-92 and 101 - 104 may indeed 
give a better fit of the data. However, none of these models combines general 
applicability and ease of calculation to the same extent as the parabolic model and 
the bilinear model do; while some of them contain too many nonlinear parameters 
(eqs. 101 - 103), others are only appropriate for certain nonlinear cases, having either 
a symmetric (eq. 90) or an asymmetric shape (eqs. 91, 92, 104). 

The use of lipophilicity similarity matrices for the quantitative description of 
nonlinear lipophilicity-activity relationships is discussed in chapter 9.4. 

Other nonlinear relationships are known in addition to nonlinear lipophilicity- 
activity relationships. Most common are nonlinear dependences on molar refractivity 
(e.g. resulting from a limited binding site at the receptor; for examples see chapter 
7.1), but also other types of nonlinear relationships, e.g. with steric parameters, are 
frequently obtained. Even electronic parameters (eq. 48; chapter 3.5) or molecular 
weight terms (eq. 56; chapter 3.7) have been used in nonlinear equations. 

Cross product terms, like e.g. MR, . MR, . MR, [456], should be avoided because 
they are highly interrelated with squared terms (e.g. MR, . MR, . MR, us. a combina- 
tion of ZMR’, MR,, MR,, and MR,: n = 71; r = 0.993) [175]. Curious nonlinear 
models, like hyperbolic regressions [422, 4571, sinus [457], or tangens terms [458] 
shall be mentioned here without giving advice to use them; these approaches can 
only be characterized by a phrase, created by Hansch, as “statistical unicorns, beasts 
that exist on paper but not in reality” [307]. 

Figure 20: Dissociation and partitioning equilibria 

n-octanollaqueous buffer (redrawn from Figure 2 of 
ref. [I751 with permission from Birkhauser Verlag AG, 
Basel, Switzerland). 

of an acid AH in the two-compartment system 

4.5. Dissociation and Ionization of Acids and Bases 

Ions are much more polar than neutral compounds, due to their positive or 
negative ‘charges. Correspondingly, the degree of dissociation and protonation has 
a significant influence on the partition coeficients of acids and bases; the dependences 
of the apparent partition coefficients Papp on pH values, pK, values, P, values 
(partition coefficient of the neutral, unionized form) and Pi values (partition 
coefficient of the ionized form) are described by eq. 105 (acids) (Figure 20) and eq. 
106 (bases) (for reviews see refs. [41, 156, 173, 175, 4591). 

log Papp = log (P, . 10PKa + Pi . l op” )  - log (10PKa + 10PH) 

log Papp = log (P” . l o p H  + Pi .  10PKa) - log (10PKa + 10PH) 

(105) 

(106) 
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Figure 21: Sigmoidal pH partition profile of an acid AH. Log Pa,, (= log D) is constant at low 
pH values (log Pa,, = log P,), decreases witkincreasing pH values (Papp = OSP, at pH = pK,) 
with a slope = 1 and reaches again a constant value at log Pa,, = log P,,, (reproduced from 
Figure 2 of ref. [220] with permission from the copyright owner). 
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Figure 22: pH Partition profile of pro- 
pranolol (16) calculated from measured 
values pK, = 9.72, log P, = 3.41, and log 
Pi = 0.48 (reproduced from Figure 3 of 
ref. [463] with permission from the 

Washington, DC, USA). 
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.5 American Pharmaceutical Association, 
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Figure 23: pH Partition profile of the 
amino acid CGS 13080 (17) calculated 
from measured values pK, = 4.51, pK, = 
6.01, log P, = 1.46 and 1.50, log = 
0.78, and log Panion = 0.65 (reproduced 
from Figure 3 of ref. [463] with permission 
from the American Pharmaceutical 

n 

- . 6  
r I I I I I I I I I 1 I I I 1 I I I I I I I I Association, Washington, DC, USA). 
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Sigmoidal curves are obtained for the pH dependence of the log Pap, values of most 
acids and bases (Figures 21 and 22) [184,460-4631. At pH values, where the neutral 
form predominates (pH < pKa for acids; pH > pK, for bases), the P,,,values are 
identical with the P,values. With increasing ionization, i.e. with increasing (acids) 
or decreasing (bases) pH values, the log Pap, values decrease linearly, until again a 
constant Pap, value is obtained, because now only the ionic form contributes to 
partitioning (Pa,, = Pi). 

It is not surprising that many drugs are either weak acids or weak bases. They 
are able to cross membranes in their neutral forms and they are soluble in aqueous 
phases in their ionized forms. Due to this dual character they are readily absorbed 
and distributed in the different compartments of a biological system. 

Complex pH dependences are obtained for amino acids (e.g. [463]) and other 
compounds containing more than one ionizable group (e.g. Figures 23 and 24) 
[173, 4641. ? 

r l I  1 1 1 1 1  I I I  I I I  I I I  
1 2 3 4 5 6 7 8 9 10 

SOLUTION PH 

Figure 24: pH Partition profile of tri- 
fluoperazine (18) calculated from measured 
valuespK, = 4.04,pK2 = 8.08,log P, = 
4.95, and log Pi = 2.04 and 0.74 (repro- 
duced from Figure 3 of ref. [463] with 
permission from the American Pharma- 
ceutical Association, Washington, DC, 
USA). 
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Figure 25: pH Partition profile of sali- 
cylic acid (19) calculated from measured 
values pK, = 2.95, log P, = 2.34, and 
log Pi < - 5.0 (reproduced from Figure 3 
of ref. [463] with permission from the 
American Pharmaceutical Association, 
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Most often Pi values are 3 to 5 decades smaller than the corresponding P, values; 
the differences can be larger, e.g. for salicylic acid (19) which contains two acidic 
groups (Figure 25) [463], but also much smaller, e.g. for chenodesoxycholic acid, 
which forms micelles [462], or in the presence of lipophilic counter ions, e.g. for 
salicylic acid in the presence of tetrabutyl-ammonium bromide (20) (Figure 26) [463]. 
Lipophilicity and polarizability of the counterion have a significant influence on 
the partitioning of ion pairs (e.g. [465 - 4681). 

The concentrations of A -  and BH+ in the organic phase may be neglected for 
compounds which are not too lipophilic; much simpler equations than eqs. 105 and 
106 can be used to estimate the log Papp values of most acids (eq. 107) and bases 
(eq. 108) at pH values which are not too far from the pK, values. 

Figure 26: 
pair salicylic acid/tetrabutyl-ammonium 
bromide (20) calculated from measured 
values pK, = 2.95, log P, = 2.27, and 
log P,onp,i, = 0.39 (reproduced from 
Figure 3 of ref. [463] with permission 
from the American Pharmaceutical 

I I I I I I I I I I I I I I I I I I I I I 1 Association, Washington, DC, USA). 

pH Partition profile of the ion 
! 

log Papp = log P,, - log (1 + 1 0 P H - P K a  

log Papp = log P, ~ log (1 + l O P K a  -pH 1 
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Table 15. 
[442, 469, 4721 

Colonic absorption of acidic compounds in a rat in situ model at pH = 6.8 

Compound 
5-Nitrosalicylic acid 
rn-Nitrobenzoic acid 
Salicylic Acid 
Benzoic Acid 
Phenylbutazone 
o-Nitrophenol 
Thiopental 
p-Hydroxypropiophenone 

Phenol 
rn-Nitrophenol 

log P 
1.98 
1.83 
2.26 
1.85 
3.22 
1.79 
2.50 
1.85 
2.00 
1.46 

-2.52 
-1.57 
-1.54 
-0.75 

-2.4 0.82 

0.8 2.44 
1 .o 1.81 
1.4 2.00 
3.1 1.46 

log %ABS 
0.30 
1 .oo 
1.08 
1.28 
1.58 
1.74 
1.70 
1.66 
1.64 
1.55 

log kabs 

-1.69 
-0.98 
-0.89 
-0.68 
-0.32 
-0.10 
-0.16 
-0.21 
-0.24 
-0.35 

Scherrer [469-4711 calculated log D (= log Papp) values by eqs. 107 and 108, 
respectively, and used them instead of the most often inappropriate (pK, - pH) 
terms. The (pK, - pH) approximation [472] only holds true for pH ranges where 
the compounds predominantly exist in their ionized forms. Eq. 109 (Yo ABS = YO 
colonic absorption at pH = 6.8) [472] is incorrect in two respects: first, percentage 
values are used instead of rate constants, and second, the (pK, - pH) term produces 
wrong values (corresponding to more than 100% neutral form of the molecules) for 
compounds with pK, values larger than 6.8 (Table 15) [175, 4691. 

log Yo ABS = 0.156(*0.08) (pK, - PH) + 0.366(*0.44) log P + 0.755 (109) 
(n = 10; r = 0.866; s = 0.258) 

A better and more consistent result is obtained if log kabs values are calculated from 
YO ABS values by appropriate transformation and if log Pap,, values and the parabolic 
[469] or the bilinear model are used, e.g. eq. 110 [442]. 

log k a b s  = 1.024(+0.31) log Papp - 0.881(f0.36) log (pPapp + 1) + 0.935 (110) 
log p = '1.600 

(n = 10; r = 0.991; s = 0.081) 

Eq. 111 [345] correlates the buccal absorption rate constants of an acid ( p -  
hexylphenylacetic acid, pK, = 4.36) and a base (propranolol, pK, = 9.45) at different 
pH values with log Pap,, values (Table 16) [345, 4701. 

log kabs = 0.448( k0.05) log Papp - 0.448( k0.05) log (pPapp + 1) - 1.689 

log p = -2.792 
(1 11) 

(n = 12; r -= 0.988; s = 0.102) 
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Table 16. 
different pH values [345,470] 

Buccal absorption of propranolol and p-hexylphenylacetic acid at 

Comuound 

Propranolol 
log P = 3.33 
pK, = 9.45 

s-Hexylphenylacetic acid 
log P = 4.25 
pK, = 4.36 

PH 
5.08 
6.02 
7.00 
7.93 
8.94 
9.93 

4.0 
5.0 
6.0 
7 .O 
8.0 
9.0 

log Papp 

-1.04 
-0.10 
0.88 
1.81 
2.70 
3.21 

4.20 
3.63 
2.72 
1.72 
0.72 
-0.28 

log kabs 

-2.19 
-1.71 
-1.22 
-0.79 
-0.53 
-0.35 

-0.46 
-0.54 
-0.72 
-1.07 
-1.44 
-1.78 

The use of log Pap' values is appropriate in all cases where rate constants are 
involved, but not for binding or other equilibrium systems [173]. The correct 
approach to equilibrium systems is demonstrated by eq. 112 (Ki = inhibition of 
monoamine oxidase by amines and alcohols; I = 0 for amines, I = 1 for alcohols), 
where the biological data have been corrected for the concentration of the unionized 
form (Table 17) [175]. 

log l/KFo" = log 1/Ki + log (1 + 10'&-'") = 3.1 30(*0.17) log P - 
- 3.797(+0.32)10g(pP + 1) - 3.507(f0.12)1 + 3.379(*0.15) (112) 

log p = -1.781 

(n = 21; r = 0.999; s = 0.118; F = 1737) 

Deviations from the simple pH partition hypothesis (i.e. the pH absorption profiles 
should be parallel to pH partition profiles) (e.g. [473, 474]), called pH shift, are 
obtained for highly lipophilic compounds; their absorption profiles are shifted to 
higher (acids) and lower (bases) pH values (Figure 27). The higher the lipophilicity 
of the neutral species is, the higher is the observed pH shift. 

Different explanations were discussed for this effect [175, 4751, which even is 
obtained in simple n-octaaol/water in uitro systems (Figure 28) [476]. Without 
questioning the relevance of different reasons in certain cases, the pH shift can easily 
be explained by the assumption of an aqueous diffusion layer at the aqueous/organic 
interface. Neutral species rapidly enter the organic phase from the aqueous/organic 
interface. They are steadily regenerated by the dissociation equilibrium from ionized 
species within the aqueous diffusion layer, much faster than the neutral molecules 
can diffuse from the bulk solution into this layer. 

optimum log P = 2.45 
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Table 17. 
aliphatic amines and alcohols at different pH values [175] 

logP 

-0.03 
0.47 

0.97b) 

1.47 

1.97 

2.47 
2.97 

3.47 

Compound pH 
8.72 
7.62 
8.72 
7.51 
8.1 1 
8.72 
7.62 
8.72 
7.57 
8.72 
7.62 
7.48 
7.62 
8.72 

Ethylamine 
n-Propy lamine 

n-But ylamine 

n-Pentylamine 

n-Hexy lamine 

n-Heptylamine 
n-Octy lamine 

n-Nonylamine 

0.38 
0.88b) 

1.38 
2.38 
2.88 

n-Propanol 
n-Butanol 

n-Pentanol 
n-Heptanol 
n-Octanol 

8.72 
7.51 
8.72 
8.72 
8.72 
7.51 
8.72 

Ki, mmol 

36 
25 

2.0 
1.2 
0.3 1 
0.073 
0.044 
0.0035 
0.0092 
0.00068 
0.0075 
0.015 
0.010 
0.00096 

72 
3.6 
3.6 
0.17 
0.025 
0.034 
0.032 

log 1/Ki 

1.44 
1.60 
2.70 
2.92 
3.51 
4.14 
4.36 
5.46 
5.04 
6.17 
5.12 
4.82 
5.00 
6.02 

1.14 
2.44 
2.44 
3.77 
4.60 
4.47 
4.49 

log 1/KiCorr a) 

3.39 
4.64 
4.64 
6.07 
6.06 
6.08 
7.40 
7.40 
8.13 
8.11 
8.17 
8.00 
8.04 
7.96 

a) log l/KC"" = log l/Ki + log (1 + 10pKa-pH); pK, (amines) = 10.66 
b, experimental values, all other values extrapolated 

Much more complex mathematical models have been derived for the quantitative 
description of pharmacokinetic data of acids and bases at different pH values. 
Applications to practical examples are discussed in chapter 7.3 and in refs. [41, 156, 

Several methods were described for the simultaneous determination of II- 
175, 459, 477-4791. 

octanol/water log P values and pK, values [463, 464, 480-4861. 
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Figure 27: 
absorption rate constants of propicillin (21) 
(pK, = 2.76) in rat stomach and intestine 
in situ models under various conditions. 
0, gastric absorption rate constants at a 
flow rate of 10 ml . min-’ (pK:PP = 3.49, 
corresponding to a pH shift of 0.73); 0, 
intestinal absorption rate constants at a flow 
rate of 10 ml . min-’ (pK:Pp = 4.61, 
pH shift = 1.85) and A, same experiment 
with perfusion stopped after 2.5 min 
(pKtPP = 4.87, pH shift = 2.1 I ) .  The solid 
lines represent the best fit of the experimental 
data (reproduced from Figure 4 of ref. [476] 
with pcrmission from the American Pharma- 
ceutical Association, Washington, DC, USA). 
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Figure 28: 
rate constants of propicillin (21) (pK, = 2.76) 
in a two-compartment n-octanol/water in vitro 
model under various conditions. 
A, at a rotation rate of 10 rpm (pKzPP = 5.08, 
pH shift = 2.32); 0, 20 rpm (pK,””” = 5.02, 
pH shift = 2.26); 0, 38 rpm (pKtPP = 4.89, 
pH shift = 2.13). The solid lines represent 
the best fit of the experimental data 

permission from the American Pharma- 

pH Dependence of the transfer 

1-  

- (reproduced from Figure 9 of ref. [476] with 

1 I 1 I * ceutical Association, Washington, DC, USA). 
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4.6. Other QSAR Approaches 

Pattern recognition techniques have attracted much attention in the past two 
decades [24,25,58,487 - 5021. In principle, there is no difference between the classical 
QSAR methods and pattern recognition, only the number of variables is much 
larger in pattern recognition than in Hansch analysis. In most cases, no preselection 
of variables is done on the basis of a biochemical model; a large variety of variables 
(physicochemical parameters, quantum-chemical indices, topological parameters, 
indicator variables, etc.) is included, but only a part of the data (usually 50- 70%, 
the training set) is selected to derive a quantitative model for the prediction of the 
rest of the data (the test set). Many problems are associated with the selection of a 
proper training set (e.g. [503]) and the limitations arising from stepwise regression 
analysis (few degrees of freedom, interrelated variables); more consistent results are 
obtained by using other multivariate methods, like principal component analysis or 
soft modeling techniques, e.g. SIMCA or PLS analysis (see chapter 5.3), instead of 
regression analysis. An overview of pattern recognition techniques is given in two 
recent reviews [487, 5021. 

While the application of pattern recognition methods, at least in combination 
with a reasonable preselection of variables and use of the PLS method, seems to 
be justified for groups of congeneric drugs which have the same mechanism of 
action, its abuse to correlate and predict global toxic, mutagenic, teratogenic, 
carcinogenic, and other biological properties [504- 51 11 must be criticized. By no 
means it makes sense to correlate the toxicities of drugs as different as e.g. HCN, 
dibenzodioxines, strychnine, tetrodotoxin, and toxic peptides (all having different 
mechanisms of toxic action) with any combination of physicochemical and/or other 
parameters. All obtained results must be considered as chance correlations. The 
common argument that such studies are useful or necessary for risk assessment 
purposes can easily be refuted: while even the proponents of these approaches admit 
that there are at least 5 to 10% false positive and false negative predictions (in a 
qualitative manner, i.e. yes or no), 20 to 50% wrong predictions seem to be a more 
realistic estimate for compounds which are neither included in the training set nor 
in the test set. 

That this estimate is not too pessimistic is confirmed by a recent joint effort of 
several groups to predict the carcinogenicity of some chemicals considered to be 
relevant as environmental health hazards [512, 5131. In 1990 Tennant et al. [512] 
published prospective predictions of the potential rodent carcinogenicity for 44 
chemicals that were being tested by the U.S. National Toxicology Program (NTP). 
The journal editor encouraged other groups to make their predictions and as a 
result in 1993 several published and unpublished investigations, using different 
approaches, were reviewed at a workshop on rodent carcinogenicity prediction 
[513]. While human expertise, combining in vitvo results (Salmonella mutagenesis 
test) with other short-term test data, chemical, and biological experience, led to 
cdrrect predictions (carcinogenic activity yes/no) for nearly 80% of the compounds, 
all automated expert systems and other prediction methods, without using such 
short-term biological test results, more or less failed, being predictive to only 
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45 - 65%. In evaluating these figures, it must be considered that even in unbalanced 
groups, i.e. independent of the number of active and inactive analogs being included 
in the test set, there is a 50% probability of success (!)of an unbiased blind guess. 

From a merely scientific point of view such investigations may be justified, but 
for practical purposes they are useless. If the prediction is negative, there is by no 
means a guarantee that the compound indeed is not cancerogenic or toxic; if the 
“prediction” gives a false positive answer, then it will be much harder to disprove 
the negative image of such a compound than without the wrong prediction. 

A somewhat more reliable approach seem to be rule-based expert systems which 
compare and categorize structures of new compounds with respect to the information 
that is extracted from a large database, e.g. the CASE (computer-automated structure 
evaluation) program [514- 5231. CASE and MULTICASE (a modification of CASE 
including a hierarchical selection of descriptors) (Figure 29) [524] are artificial 
intelligence programs which automatically identify molecular features that con- 
tribute to (biophores) or reduce (biophobes) biological activity. In congeneric series 
these fragments are correlated (corresponding to a stepwise Free Wilson analysis) 
with biological activities; in noncongeneric series structural features are identified 
which discriminate the active compounds from the inactive ones. 

It is claimed that CASE differs from other techniques in being completely 
automatic and by learning directly from the crude data, selecting its own descriptors 
from the practically infinite number of possible structural assemblies and creating 
an ad hoc dictionary without human interference [524]. While this statement is 
against all prior experience with automated approaches, even from a critical point of 
view it cannot be ruled out that the CASE approach may for the first time be an ap- 
proximation of artificial intelligence to the medicinal chemist’s intuition and skill. 

A machine learning program GOLEM from the field of inductive logic pro- 
gramming was developed and applied to model the structure-activity relationships 
of dihydrofolate reductase (DHFR) inhibitors [525]. GOLEM uses activity, structure, 
and stereochemistry information of active and inactive analogs to derive inductive 
hypotheses, i.e. rules relating the structures of arbitrarily chosen pairs of analogs 
with their activities. The rules are refined with all possible pairs of compounds and 
rules having a high degree of confidence are added to a knowledge base. The process 
of rule generation is repeated until no improvement in prediction is produced. 44 
DHFR inhibitors were used as a training set to automatically derive rules which 
where applied to predict the activities of 11 test compounds. It was concluded that 
rules obtained by GOLEM yield more accurate data than a Hansch regression 
model, on the training set as well as on the test set [525]. 

Many different but inherently related QSAR approaches start from a hyper- 
structure, which is a hypothetical molecule including all structural features of the 
molecules under investigation. The presence and absence of certain hyperstructure 
atoms or groups in the individual molecules are correlated with their biological 
activities in a Free Wilson-like procedure. The DARC-PELCO method [418 - 4231 
was used to analyze and optimize a large group of anticholinergics [526] by deriving 
a common superstructure. 

In the topological pharmacophore methods [527 - 5311, e.g. LOCON [527, 528, 
5301, LOGANA [528 - 5301, and EVAL [531], Free Wilson-type indicator variables 
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are in a stepwise procedure connected by logical operators, e.g. negation (not), 
conjunction (and), adjunction (inclusive or), disjunction (exclusive or), implication 
(if  then), replication (so if), equivalence (if and only if), Sheffer’s function (incompatible 
with), and Nicod’s function (neither nor) [531] to correlate structures and activities. 
The LOGANA and LOCON methods were applied to phenethylamine agonists 
and antagonists of the P-adrenergic receptor t.527, 5311 and to a group of 382 
antimalarials [529]. Succinate dehydrogenase inhibitors R, - X - 2 - Y - R, 
(n = 89; X = n-propyl, phenyl, heterocycles; R, = substituents at the X fragment; 
Z = -CONH-, -COCH,-, etc.; Y = H, phenyl, cyclohexyl; R, = substituents 
at the Y fragment) were separated by different logical operators into classes of active 
and inactive analogs. The conjunction “ - C = C - C = O  in X and no orrho- 
unsubstituted ring X” is present in 63 of 64 active compounds, but also in 12 inactive 
compounds. Another conjunction “ - C = C - C = 0 in X and no ortho-unsubstituted 
ring X and no ring in Y and Z o -CONH- and X o -CH=CH-CH, and 
R, o ortho-phenyl” is present in 61 of the active compounds and in no inactive 
compound [528]. 

Also the minimal steric difference (MSD) [52, 532- 5341, MCD (Monte Carlo 
version of MSD) [52, 535 - 5371, the minimal topological difference (MTD) [52, 534, 
538 - 5421, and SIBIS [543] methods (for reviews see [38, 52,2871) define hypothetical 
hypermolecules. These hypermolecules are generated from an approximate atom- 
by-atom superposition of all molecules; hydrogen atoms and minor differences 
in atomic positions, bond lengths, and bond angles are neglected. The definition of 
the hypermolecule is a relatively easy and straightforward procedure if the series 
includes a rigid and highly active analog. In many other cases an intuitive approach 
is applied and arbitrary assumptions have to be made on the connectivity of the 
hypermolecule; problems associated with the superposition of different ring systems 
are discussed in [542]. 

With respect to the binding site, some of the atomic positions of the hypermolecule 
will be in the receptor cavity (E = - l), some at the binding site surface (the “cavity 
wall”) (E = + l), and the rest in aqueous solution (E = 0). The minimal steric 
difference (MSD) is defined as the difference in the number of atomic positions that 
are occupied by each analog, with respect to the analog of highest biological activity 
value within the series, which is assumed to have an optimal fit to the binding site. 
A slightly different definition is used for the minimal topological difference (MTD). 
MTD is the sum of all E values, multiplied by their occurrence in a certain molecule. 
As the E values in the different positions are a priori unknown, arbitrary values of 
+ 1, 0, and - 1 (the start map) are assigned to the different atoms (vertices) of the 
hypermolecule and correlated with biological activity values. In the next step all E 

values are systematically changed to achieve a maximum correlation between the 
optimized maps and the biological activities. This is an ambiguous procedure, leading 
to a huge number of different permutations and to several optimized receptor maps; a 
validation test, e.g. cross-validation (chapter 5.3), must be performed to prove the 
significance and predictive ability of the different maps. 

Magee [544, 5451 combined the hyperstructure concept with the strategies of 
Hansch analysis and the mixed approach (chapter 4.3). As only several atoms or 
groups of a molecule modulate biological activity, each position of the hypermolecule 
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can be characterized as being favorable, unfavorable, or indifferent for biological 
activity. Positional effects for lipophilic interactions, polarizability, electronegativity, 
steric interactions, and hydrogen bonds may be assigned to certain positions. 

While all these methods regard hypermolecules as rigid frames, molecular shape 
analysis (MSA) [38, 287, 546 - 5561 considers conformational flexibility. Minimum 
energy conformations are calculated for all molecules within the series; the differences 
in the overlap volumes to a reference structure are calculated and correlated with 
biological activities. Also in this approach it is advantageous to start with a rigid 
analog of high biological activity as the template. 

The application of neural networks in structure-activity relationship studies is a 
recent development in QSAR [557- 5701. Neural networks are approaches to model 
and simulate the information processing in the brain. A multilayer network, as 
typically applied in QSAR studies, consists of an input layer, a small number of 
hidden connection layers, bias neurons, and an output layer. Each neuron is 
connected to every neuron of the adjacent layers and to the bias neurons. In a 
training phase the network is fed with input values (the independent variables) 
and the expected output values (the dependent variable). Connection weights and 
biases of the network are iteratively modified to reduce the differences between 
observed and predicted values of the dependent variable. By performing a sufficient 
number of iterations the network “learns” to recognize patterns in the data. After 
successful training the network may be used to predict the biological activity values 
of new analogs from new input values. 

It seems too early to judge on the real suitability of neural nets for QSAR studies; 
further investigations which compare classical structure-activity analyses and results 
from neural networks (e.g. [570]) are required to evaluate the scope and limitations 
of neural nets. Some problems of neural networks, e.g. the design of the network, 
lack of convergence, chance correlations, and overtraining of the network, have 
been discussed and critically commented [562, 567 - 5701. 
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5. Statistical Methods 

5.1. Regression Analysis 

Regression analysis [388, 389, 5711 correlates independent X variables (e.g. physico- 
chemical parameters, indicator variables) with dependent Y variables (e.g. biological 
data) (Figure 30). The dependent variables contain error terms E ,  while the 
independent variables are supposed to contain no such error. In reality, this is 
only an approximation, because the physicochemical parameters of a QSAR 
equation indeed contain experimental error; however, in most cases this error is 
much smaller than the error in the biological data. Only Free Wilson (indicator) 
variables are error-free terms. 

Regression analysis is an exact mathematical procedure, despite the fact that it 
derives correlations from data containing experimental error (Table 18). 

Eqs. 113 and 114 describe a regression model containing two X variables, which 
is the simplest case of a linear multiple regression analysis. 

yobs = ax1 + bx, + C + E 

ycalc = ax, + bx, + c 

(1 13) 

(1 14) 

Since CE, = C A2 = Z(Yobs - ycalc), shall be a minimum, the function 
f = C(y& - ax, - bx, - c ) ~  is differ'entiated according to df/da = df/db = df/dc 
= 0 (eqs. 115-117). The so-called normal equations 118-120 result from eqs. 
115 - 11 7. 

/ 
// 

I 
X 

Figure 30: Example of a regression model, y = ax + b; the dots are experimental values, the bold 
line is the regression line (line of best fit to these data), the thin lines are the 95% confidence 
intervals of the regression line (indicating a 95% probability that by repetition of the experiment 
the resulting regression line will be within these borders), and the dotted lines are the 95% confidence 
intervals for new observations. 
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Table 18. Example of a linear regression. Hemolytic activity of alkanoic acids 

Compound 

Octanoic acid 
Nonanoic acid 
Decanoic acid 
Undecanoic acid 
Dodecanoic acid 
Tetradecanoic acid 

Log P 

-1.20 
-0.70 
-0.20 
0.30 
0.80 
1.80 

Log 1/c 

1.46 
1.72 
2.37 
2.67 
3.23 
3.93 

cx: CX,X, cx, 
cx,x,  cx;  xx, 
Cx, Zx2 n 

x = log P 
k = number of x variables (in this case = 1) 

y = log l/C n = number of data sets 

e x  = 0.80 
Cy = 15.38 Xy2 = 43.7136 Cxy = 7.0290 

ex* = 5.94 

y = a x + b  

a = (n.Cxy - Cx.Cy)/(n.Zx2 - (ex)’) = 0.85 
b = (Zy - a.Cx)/n = 2.45 

r2 = (Zxy - Zx.Zy/n)2/((Zx2 - (Cx)’/n).(Cy2 - (Cy)2/n)) = 0.990469 
r = 0.995 
s2 = (1 - ?).(Cy’ - (Xy)2/n)/(n - k - 1) = 0.0102 
s =0.101 
F = r2(n - k - l)/(k-(1 - r2)) = 415.68 

log l /C = 0.85 log P + 2.45 
(n = 6; r = 0.995; s = 0.101; F = 415.68) 

Cx,y 
= Cx,y 

CY 

df/da = 2 .  C(y - ax, - bx, - c) . x, = 0 

df/db = 2 .  C(y - ax, - bx, - c) . x2 = 0 

df/dc = 2 . C ( y  - ax, - bx, - c) = 0 

aCx: + bCxIx2 + cCxl = Cxly 

aCxlx2 + bCx: + CZX, = Cx2y 

aCx, + bCx, + c . n = Cy 
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a l l  a12 a13 

a 2 2  a23  

a3] a32 a33 

c l l  c12  c13 f o r a 1 2  = a211 a13 = a31 
c21 c22  c23 a23  = a32 

~ 3 1  ~ 3 2  c33 (symmetrical matrix) 

The correlation coefficient r (eq. 124) is a relative measure of the quality of fit of 
the model because its value depends on the overall variance of the dependent variable 
(this is illustrated by eqs. 58 - 60, chapter 3.8; while the correlation coefficients r of 
the two subsets are relatively small, the correlation coefficient derived from the 
combined set is much larger, due to the increase in the overall variance). The squared 
correlation coefficient r2 is a measure of the explained variance, most often presented 
as a percentage value. The overall (total) variance S,, is defined by eq. 125, the 
unexplained variance (SSQ = sum of squared error; residual variance; variance not 
explained by the model) by eq. 126. 

(124) r2 = 1 - C A2/S,, 

Another algorithm (eqs. 127-129) is more convenient for the calculation of the 
correlation coefficient r in computer programs. 

r2 = (as,, + bS2, + ...)I S,, 

S, ,  = Cx,y - Cx, . Cy/n 

Si, = Cxiy - Cxi . Cy/n (129) 

The standard deviation s (eq. 130) is an absolute measure of the quality of fit, as 
can be seen from its definition and, e.g. from a comparison of the standard deviations 
of eqs. 58-60 (chapter 3.8). Its value considers the number of objects n and the 
number of variables k. Therefore, s depends not only on the quality of fit 
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Table 19. 
level) 

Selected F values (DF = n - k - 1 ;  two-sided, 95% significance 

2 

99.5 
19.00 
9.55 
6.94 
5.79 

4.10 

3.49 
3.32 
3.15 
3.00 

.... 

.... 

DF 3 

215.7 
19.16 
9.28 
6.59 
5.41 

3.71 

3.10 
2.92 
2.76 
2.60 

.... 

.... 

1 
2 
3 
4 
5 

10 

20 
30 
60 

.... 

.... 

00 

)n 
10 

!41.9 
19.40 
8.79 
5.96 
4.74 

2.98 

2.35 
2.16 
1.99 
1.83 

.... 

.... 

1 20 
248.0 

19.45 
8.66 
5.80 
4.56 

2.77 

2.12 
1.93 
1.75 
1.57 

.... 

.... 

61.4 
18.51 
10.13 
7.71 
6.6 1 

4.96 

4.35 
4.17 
4.00 
3.84 

.... 

.... 

of vari 
4 

124.6 
19.25 
9.12 
6.39 
5.19 

3.48 

2.87 
2.69 
2.53 
2.37 

.... 

.... 

des in I 

5 

l30.2 
19.30 
9.01 
6.26 
5.05 

3.33 

2.71 
2.53 
2.37 
2.21 

.... 

.... 

e equa 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 
.... 

but also on the number of degrees of freedom, DF = n - k - 1. The larger the 
number of objects and the smaller the number of variables is, the smaller the standard 
deviation s will be for a certain value of C A2. 

- (1 - r2) .  S,, 
- 

C A2 s2 = 
n - k - 1  n - k - 1  

The F value (eq. 131) is a measure of the level of statistical significance of the 
regression model. The number of variables being included to derive the model has 
an even stronger influence than in the case of the standard deviation s; only F 
values being larger than the 95% significance limits (Table 19) prove the overall 
significance of a regression equation. 

r2 . (n - k - 1) 
k . (1 - r2) 

F =  

The confidence intervals of the regression terms a, b, and c (eq. 114) can be calculated 
from the standard deviation s, the Student t value (Table 20), and the diagonal 
terms of the inverted matrix, e.g. for a: f s . t . fi, for b: f s . t . 6, and for 

Two different regression models, containing different numbers of variables k 
(smaller number) and k, (larger number), can be compared by a sequential (partial) 
F test (eq. 132). The use of the model containing the larger number of variables is 
justified if the resulting partial F value indicates a 95% significance (Table 19) for 
the introduction of the new variable/s. 

c: *s.t.1/C33. 
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Table 20. 
cance level) 

Selected t values (DF = n - k - 1; 95% signifi- 

DF t95% 

1 12.706 
2 4.303 
3 3.182 
4 2.776 
5 2.571 
6 2.447 
7 2.365 
8 2.306 
9 2.262 

10 2.228 
11 2.201 
12 2.179 
13 2.160 
14 2.145 
15 2.131 
16 2.120 
17 2.1 10 
18 2.101 
19 2.093 
20 2.086 - 

DF t95% 

21 2.080 
22 2.074 
23 2.069 
24 2.064 
25 2.060 
26 2.056 
27 2.052 
28 2.048 
29 2.045 
30 2.042 

40 2.021 
50 2.009 
60 2.000 
70 1.994 
80 1.990 
90 1.987 

100 1.984 

.... .... 

.... .... 
00 1.960 

5.2. The Significance and Validity of QSAR 
Regression Equations 

In general, a regression equation can be accepted in QSAR studies, 
if the correlation coefficient r is around or better than 0.9 for in uitro data and 

0.8 for whole animal data (as already discussed, its value depends not only on the 
quality of fit but also on the overall variance of the biological data; compare eqs. 
124- 126, chapter 5.1), 

if the standard deviation s is not much larger than the standard deviation of the 
biological data (normally around 0.3, which closely corresponds to the mean 
error of most biological data; this value may be considerably smaller for in 
vitro data. If natural logarithms of biological activity values are used instead 
of decadic logarithms, as done in some CoMFA studies, all biological activity 
values and the standard deviation s are 2.3 times larger), 

if its F value indicates that the overall significance level is better than 95%, and 
if the confidence intervals of all individual regression coefficients prove that they 

are justified at the 95% significance level (i.e. if their confidence intervals are 
smaller than the absolute values of the regression coefficients). 
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In addition, the biological data should cover a range of at least one, better two or 
even more logarithmic units; they should be well distributed over the whole distance 
(k, no clustering of activity values should occur, as discussed in chapter 2). Also 
the physicochemical parameters should be spread over a certain range and should 
be more or less evenly distributed; if a certain parameter has identical values for 
all but one or two objects, then this parameter must be considered as a hidden 
indicator variable and should be replaced by such a term. In parabolic and especially 
in bilinear equations the nonlinear parameter should cover a range of at  least two 
logarithmic units, in order to justify the presence of a nonlinear term. 

The equation has to be rejected 
if the number of variables included in the regression equation (or used for the 

selection of variables to be included in the equation) is unreasonably large (see 
chapter 4.1) or 

if the standard deviation s is smaller than the error in the biological data 
(overprediction by the model). 

Eq. 132 (chapter 5.1) is used in automated algorithms to derive a regression model 
in a stepwise manner (e.g. [389]), e.g. by backward elimination (starting with all 
possible variables and in each further step eliminating the variable which is the 
least significant one), forward selection (starting with the best single variable and 
adding further significant variables, according to their contribution to the model) 
and stepwise procedures (using a forward selection procedure with intermediate 
proof whether already introduced variables are no longer significant at a later stage) 
(Table 21). While such procedures avoid the testing of hundreds or  even thousands 
of different variable combinations, their results often are ambiguous. In the case of 
large numbers of (partially interrelated) variables a local optimum may be obtained 
instead of the global optimum. 

Some of the problems in automated stepwise regression analysis can be illustrated 
by an artificial data set (Table 22):vThe dependent variable is highly correlated with 
X-4 (r = 0.918), but not with X-1, X-2, or X-3 (all r values <0.25). Stepwise selection 
of variables first picks X-4 and then stops because a sequential F test indicates no 
significance of additional variables; multiparaineter equations can only be derived 
if this significance barrier is forced to zero. However, the “best” three-parameter 
equation contains X-1, X-2, and X-3 (r = 1.000), but no longer X-4! Although this 
example is constructed to demonstrate such an effect, it reflects the situation that 
all points are located in a plane which is skewed against the X-1, X-2, and X-3 
planes; simple projections of the data to the different planes do not indicate any 
correlations; only the combination of all three variables gives a perfect fit. 

A more suitable procedure in QSAR studies is first to establish a physicochemical 
model for a small subset of compounds, which is in accordance with the biological 
mechanism of action. Then more and more compounds can be added by introducing 
new variables for additional structural variation (e.g. eqs. 133 - 135) or by combining 
different subsets with the help of indicator variables (e.g. eqs. 58 - 60, chapter 3.8). 
Eqs. 133 - 135 describe the inhibition of chymotrypsin by various thiophosponates 
(22) [573], starting from a small group of compounds and ending up with the whole 
series of inhibitors. Eq. 133 includes 19 analogs with structural variation in the ester 
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x -  1 
x-2 
x-3 
x-4 

Table21. 
variables (adapted from ref. [389]) 

Stepwise regression analysis of a data set with 4 independent 

x- 1 x-2 x-3 x-4 
I .ooo 0.052 0.679 0.060 

1 .ooo 0.019 0.947 
1 .ooo 0.001 

1 .ooo 

Y 

78.5 
74.3 

104.3 
87.6 
95.9 

109.2 
102.7 
72.5 
93.1 

115.9 
83.8 

113.3 
109.4 

x-1 

- 7  
1 

11 
11 
7 

11 
3 
1 
2 

21 
1 

11 
10 

x-2 
~ 

26 
29 
56 
31 
52 
55 
71 
31 
54 
47 
40 
66 
68 

x-3 

6 
15 
8 
8 
6 
9 

17 
22 
18 
4 

23 
9 
8 

Y vs. x-1 r = 0.73 1; s = 10.73; F = 12.60 

Y vs. x-2 r=0.816; s = 9.08; F=21.96 

Y vs. x-3 r = 0.535; s = 13.28; F =  4.40 

Y vs. x-4 r =  0.821: s = 8.96: F =  22.80 

x-4 
~ 

60 
52 
20 
47 
33 
22 

6 
44 
22 
26 
34 
12 
12 

"best" equation: 

Y = 1.468 (k0.27) X-1 + 0.662 (kO.10) X-2 + 52.58 (k5.09) 
(n = 13; r = 0.989; s = 2.41; F = 229.50) 
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Table 22. Regression analysis of a data set with 4 independent variables 

~ ~ 

x-1 
x-2 
x-3 
x-4 

_____ 
Y 

1 .o 
1 .o 
2.0 
2.0 
1 .o 
2.0 
1 .o 
2.1 

Y vs. x-1 

Y vs. x-2 

Y vs. x-3 

~ ~ ~ - 
x-1 x-2 x-3 x-4 
1 .ooo 0.527 0.154 0.073 

1 .ooo 0.663 0.030 
1 .ooo 0.002 

1 .ooo 

X-l  x-2 

0 
0 
1 

-2 
0 
0 
0 
3 

x-3 

r =  0.153; s = 0.586; F =  0.14 

r =0.239; s =0.576; F =  0.36 

r = 0.096; s = 0.590; F =  0.06 

x-4 

Y vs. x-4 r = 0.918; s = 0.236; F =  31.97 
Correlation matrix of the X variables (r2 values) 

"best" three-variable equation 

Y = 1.027 (k0.05) X-1 + 1.034 (k0.05) X-2 + 1.005 k0.05) X-3 - 
- 0.016 b0.07) 
(n = 8; r = 1 .OOO; s = 0.023; F = 1385.76) 

substituent R2. Then 21 analogs with additional variation in the thioester group 
R 3  are added (eq. 134). The last equation includes all compounds, the new ones 
containing an additional charged group (I = 1) in residue R 3  (eq. 135). 

Q 3  

S-R3 
b...O 

RZO/ CH3 
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log k; = 1.60( k0.22) MR, - 3.85( & 1.17) log (p . loMR2 + 1) - 4.76(+0.51) (133) 

log p -3.86 optimum MR, = 3.72 

(n = 19; r = 0.978; s = 0.258) 

log ki = 1.42(f0.12) MR, - 3.30(f0.88) log (p . loMR2 + 1) + 
+ 0.35(f0.10) MR3 + 1.21(+0.42) 0: - 5.18(f0.45) 

log p = -3.87 

(n = 40; r = 0.981; s = 0.253) 

optimum MR, = 3.75 

log ki = 1.47( fO.lO) MR, - 3.43( *0.74) log (p . loMR2 + 1) t 

+ 0.34(f0.09) MR3 + 1.25(f0.19) 0: - 1.06(*0.31) I - 

- 5.26( 20.38) 

log p = -3.85 

(n = 53; r = 0.985; s = 0.243) 

optimum MR, = 3.71 

(134) 

1135) 

Sometimes a certain parameter (e.g. a nonlinear term) is only justified by a single 
activity value. Due to the most often small number of data points being included 
in a QSAR equation, the best way to deal with this problem is to present both 
regression equations, one including all variables, the other one eliminating this term 
and the corresponding activity value which led to its consideration. 

Cross-validation, in which objects are eliminated and only the excluded objects 
are predicted from the resulting model to check its stability and validity (see chapter 
5.3 for a detailed description), seems to be a too crude instrument to (automatically) 
decide on the validity of a QSAR regression equation. Cross-validation may be 
applied to relatively large data sets. But if only few compounds are included in the 
QSAR equation, if a certain parameter is mainly based on a single data point, or 
if the compounds have been selected according to a rational design procedure, e.g. 
a D-optimal design (chapter 6), cross-validation may incorrectly indicate a lack of 
validity of the QSAR model. 

Outliers, i.e. data that cannot be explained by the model, constitute a serious 
problem in QSAR studies. Most often they are omitted from the data set without 
further comments, which is not a good practice. A lot of information might be 
derived from the careful inspection and consideration of the residuals of a multiple 
regression analysis (e.g. [574]) and of so-called outliers (e.g. [575, 5761). 

Some problems related to the proper application of regression analysis and of 
other multivariate statistical methods in QSAR studies and concerning the validity 
of the obtained results have recently been reviewed [403, 408, 4091 (compare 
chapter 4.1). 
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5.3. Partial Least Squares (PLS) Analysis and 
Other Multivariate Statistical Methods 

Discriminant analysis (Figure 31) [41,487,577 - 5811 separates objects with different 
properties, e.g. active and inactive compounds, by deriving a linear combination of 
some other features (e.g. of different physicochemical properties), which leads to the 
best separation of the individual classes. Discriminant analysis is also appropriate 
for semiquantitative data and for data sets, where activities are only characterized 
in qualitative terms. As in pattern recognition, training sets are used to derive a 
model and its stability and predictive ability is checked with the help of different 
test sets. 

COMPACT (computer-optimized molecular parametric analysis of chemical 
toxicity) [582, 5831, a discriminant analysis approach, is described to predict 
carcinogenicity and other forms of toxicity involving the formation of reactive 
intermediates by determining the structural criteria for substrate specificity towards 
cytochrome P-450 enzymes; it is claimed that the method is about 75% predictive 
for rodent carcinogenicity [583]. Recently, a discriminant-regression model was 
described [584]. It applies stepwise discriminant analysis to form clusters of 
compounds for which quantitative relationships are derived by multiple regression 
analysis. 

The adaptive least squares (ALS) method [396, 585-5881 is a modification of 
discriminant analysis which separates several activity classes (e.g. data ordered by 
a rating score) by a single discriminant function. The method has been compared 
with ordinary regression analysis, linear discriminant analysis, and other multivariate 
statistical approaches; in most cases the ALS approach was found to be superior 
to categorize any numbers of classes OF ordered data. ORMUCS (ordered multicate- 
gorial classification using simplex technique) [589] is an ALS-related approach which 

I 
o o /  Discriminant line 

O Class I 

Figure 31 : Two classes of objects are 
separated by a discriminant line (repro- 
duced from Figure 3 of ref. [487] with 
permission from Pergamon Press Ltd., 
Headington Hill Hall, Oxford OX3 OBW, 
UK). 
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Figure 32: SIMCA description of two different classes. The classification problem (left diagram) 
and the resulting hyperboxes for each class (right diagram) (reproduced from Figures 1 and 2 of 
ref. [495] with permission from the American Chemical Society, Washington, DC, USA). 

applies a simplex technique for the derivation of the discriminant function. Recently, 
a fuzzy ALS version was developed and used in QSAR studies [590, 5911. 

Regression analysis and discriminant analysis are extremely sensitive to inter- 
related X variables; multivariate statistical methods which reduce the dimensionality 
of the X block are robust in this respect. Factor analysis (FA) and principal 
component analysis (PCA) [592 - 5951 derive vectors which are orthogonal and, in 
decreasing order, contain the maximum amount of information that can stepwise 
be extracted from the X block. These principal components are then correlated with 
biological activity values. Applications of F A  and PCA in QSAR are illustrated by 
several studies (e.g. [596 - 6001). Single-class discrimination, using PCA, was used 
to identify “embedded” classes of active analogs surrounded by diffuse classes of 
inactive compounds [601]. The application of PCA to extract principal properties, 
e.g. the BC(DEF) parameters, out of a large group of partially interrelated 
physicochemical properties has already been discussed in chapter 3. 

The SIMCA method (SIMCA stands for “similarity, chemistry, and analogy”) 
[407, 487, 495, 499, 602-6051 is a class modeling technique which places objects 
from p-dimensional space into lower dimension boxes. The “box” can have any 
dimension (e.g. a line, plane, or hyperplane); its size is determined by the scatter of 
the data (Figure 32). Discrimination of objects of different classes is possible by 
deriving separate principal component models for each class. The NIPALS 
(nonlinear iterative partial least squares) algorithm [606], an iterative procedure 
avoiding time-consuming matrix diagonalization, is applied to derive a user-defined, 
limited number of principal components for each class. 

The most promising new approach in multivariate statistical methods is the PLS 
(partial least squares in latent variables) method [26, 27, 38, 607 - 6101. Many, even 
hundreds or thousands of independent variables (the X block) can be correlated 
with one or several dependent variables (the Y block). PLS analysis is a principal 
component-like method, with the main difference that the vectors are not indepen- 
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Figure 33: Representation 
of a PLS regression through 
the inner relation u = b.t. 
The solid lines in X- and 
Y-space are the principal 
components and the dashed 
lines are the PLS vectors. 
These are slightly skewed to 
account for the correlation 
between the two data blocks 
(redrawn from Figure 9 of 
ref. [487] with permission 
from Pergamon Press Ltd., 
Headington Hill Hall, 
Oxford OX3 OBW, UK). 

dently extracted for the X and the Y brock. As in the SIMCA method, the NIPALS 
algorithm is used to derive a certain number of vectors for each block. In contrast 
to the principal components derived by PCA, the resulting vectors are slightly 
shifted to their exact positions, in such a manner that the correlation of corresponding 
X block-derived and Y block-derived vectors is optimized while these vectors are 
still located in their corresponding boxes (Figure 33). Detailed descriptions of the 
PLS algorithm have been published [27, 607, 6081. 

The results of a PLS analysis can be transformed to regression coefficients of the 
X block variables, most often leading to the curious result that more regression 
coefficients than objects are obtained. It should be mentioned that in the case of 
one dependent variable and a number of X variables that equals the number of 
PLS components, the results from regression analysis and, after appropriate 
transformation, from PLS analysis are numerically identical. 

Depending on the number of components, often perfect correlations are obtained 
in PLS analyses, due to the usually large number of included X variables. 
Correspondingly, the quality of fit is no criterion for the validity of a PLS model. 
A cross-validation procedure (Figure 34) [26, 409, 6111 must be used to select the 
model having the highest predictive ability. In cross-validation many PLS runs are 
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from the copyright owner). 

Cross-validation procedure (reproduced froin Figure 3 of ref. [611] with permission 

performed in which one (leave-one-out technique) or several objects are eliminated 
from the data set either randomly or in a systematic manner. Only the excluded 
objects are predicted by the corresponding model. 

The standard deviation SPRESS (calculated from PRESS, the sum of the squared 
errors of these predictions, divided by the number of degrees of freedom; compare 
eq. 130, chapter 5.1) [611] is taken as the criterion for the optimum number of 
components. As long as only significant components are derived in the PLS analysis, 
PRESS and SPRESS will decrease; if too many components are extracted, overpredic- 
tion results and PRESS and S ~ R E S S  increase. The smallest SPRESS value indicates the 
optimum number of components. SDEP (standard deviation of the error of 
predictions) [612, 6131 corresponds to sPREss, the only difference being that the 
number of degrees of freedom is not considered in the calculation of the SDEP 
value. 
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The bootstrapping process (reproduced from Figure 2 of ref. [61 I ]  with permission from 

The squared correlation coefficient r2 is defined in PLS analysis as in regression 
analysis. Correspondingly, a rZREss value can be formulated for cross-validation runs 
using PRESS instead of the unexplained variance [611]. Cross-validated r2 values 
are always more or less smaller than the r2 values including all objects (&), 
depending on the quality of the model. In severe cases of overprediction PRESS 
may become larger than the overall variance of the Y values; then negative r&ss 
values are obtained, indicating that the predictions from the model are even 
worse than the ymedn values. The significance of cross-validation results has to be 
commented: in well designed data sets, where a small number of objects is selected 
to explore the parameter space with a minimum number of objects, cross-validation 
fails because the eliminated objects cannot be predicted by the model derived from 
the other objects. On the other hand, the leave-one-out cross-validation procedure 
gives a much too optimistic result in redundant data sets, where all or at least most 
objects have close neighbors in multidimensional parameter space. A much more 
rigorous cross-validation procedure was proposed by Simon [542]. All compounds 
are ordered according to their biological activity values; odd- and even-numbered 
analogs are being selected as training and test sets, and vice versa. 
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Bootstrapping (Figure 35) [409, 6111 is a procedure in which several times N 
random selections out of the original set of N objects are performed to simulate 
different samplings from a larger set of objects. In each run some objects are not 
included in the PLS analysis, some others are included more than once. Confidence 
intervals for each term can be estimated from such a procedure, giving an independent 
measure of the stability of the PLS model. 

Although the PLS method is claimed to be a robust modeling technique, experience 
shows that too many noise variables, i.e. variables that do not contribute to 
prediction, obscure the result. For prediction such additional variables are most 
often useless or even detrimental. This effect can clearly be demonstrated by different 
PLS analyses of the data set given in Table 22, using different combinations of the 
independent variables X-1, X-2, X-3, and X-4 (Table 23); three vectors were chosen 
as the maximum number of PLS components. If all X variables are included, the 
results are only slightly better than those obtained from regression analysis using 
X-4 as the only independent variable (Tables 22 and 23). 

Cross-validation does not confirm any of these models; the r&ss values have a 
maximum at two components but all values are smaller than 0.4. If a fourth 
component is added, rFIT jumps to 1.000 (s = 0.007; F = 9646.4; same result as 
obtained from the regression analysis) and the cross-validated r&s to 0.992 
(sPREss = 0.083). But if X-4 is eliminated from the original data set, PLS analysis gives 
a much better result. The three-component model indicates high significance 
(r = 1.000; s = 0.023; F = 1385.75; same result as obtained from the regression 
analysis) and also high predictive ability, as shown by cross-validation ( r h S  = 0.993; 
SPRESS = 0.070). PLS analysis of the same data, using X-4 as the only independent 
variable, gives an identical result as compared to regression analysis; now the 
cross-validation result is much better ( r i b s  = 0.798; S ~ R E S S  = 0.304) than the 
one-component cross-validation result of the original data set, including all X 
variables ( r L S  = 0.287; SPRESS = 0.572). 

A procedure for variable elimination, called GOLPE (generating optimal linear 
PLS estimations), was developed [38, 614, 6151 to solve such problems in cases of 
extremely large X variable blocks. In GOLPE first a D-optimal design is used to 
preselect non-redundant variables; a smaller number of variables, having a high 
degree of orthogonality in multidimensional parameter space, is selected by this 
procedure. ItLthe next step a fractional factorial design is used to run PLS analyses 
with different combinations of these variables. The predictive ability of each model 
is checked by a cross-validation procedure and the effect of every variable can be 
estimated from a comparison of the PRESS values of the models including this 
variable and those not containing it. Variables significantly contributing to 
prediction (i.e. lowering PRESS) are kept in the X block, all others are excluded. 

Recently, a nonlinear version of PLS analysis was described [616]. The CARS0 
(computer-aided response surface optimization) procedure [617, 61 81 aims at 
obtaining response surfaces for non-designed data sets. Quadratic terms and 
interaction terms are generated for each independent variable and PLS analysis is 
used to model the data, due to the fact that regression analysis will fail for data 
sets with many highly interrelated variables in the X block. 
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I Fit I 1 Vector I 2vectors I 3 Vectors 

Table 23. 
combinations of the independent variables 

PLS analyses of a data set (Table 22), using different 

r2pRESs 
SPRESS 

PLS analysis, all X-variables included 

0.287 0.360 -0.177 
0.572 0.594 0.900 

I Fit I 1 Vector I 2vectors I 3 Vectors 

r values 
s values 
F values 

sequential F values 
Cross-validation 

T2PRESS 

SPRES s 

r values 0.926 0.943 0.946 
s values 0.224 0.215 0.236 
F values 35.95 20.22 1 1.25 1 1.50 1 0.16 se q uential F values 1 

Cross-validation 1 Vector 2 Vectors 3 Vectors 

0.861 0.945 1 .ooo 
0.301 0.213 0.023 

17.22 20.74 1385.75 
7.01 443.63 

1 Vector 2 Vectors 3 Vectors 
-1.696 -0.270 0.993 
1.113 0.836 0.070 

r2pRESs 
sPRESS 

0.798 
0.304 

Fit I 1 Vector I 2 Vectors I 3 Vectors 
r values 0.918 
s values 0.236 
F values 31.97 

Cross-validation 

PLS analysis has a number of important advantages as compared to regression 
analysis [611]. Nevertheless, only in a few cases has it been used in classical QSAR 
studies (e.g. [27, 619-6221). An explanation might be the complexity of the PLS 
algorithm and the better availability of computer programs for regression analysis. 
In addition, no physical meaning is attributed to the components, although the 
loadings of the X variables and the regression coefficients calculated from these 
loadings tell about the contributions of the individual X variables; the relative 
importance of different parameters can be seen at a glance, without the problems 
that usually are associated with high interrelation of variables and local minima in 
stepwise regression analysis. 

Concerning the application of 3D QSAR methods, e.g. comparative molecular 
field analysis (CoMFA, chapter 9.3), PLS analysis is the method of choice. No 
other method is suited to correlate one or several dependent variables with thousands 
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of independent variables that are incorporated in this approach. However, PLS 
analysis of such large data sets also offers some problems. There is clear evidence 
that, due to the large number of included variables, PLS analysis will not reveal 
the explanatory effect of an unweighted single variable, even if this variable alone 
could perfectly correlate the data (compare Table 23). It is hoped that the GOLPE 
variable selection procedure makes PLS analysis an even more powerful tool in 
3D QSAR studies [38]. 

Cluster analysis separates and arranges different objects into groups, according 
to their distances in multidimensional space. Different algorithms are used to 
agglomerate related objects, most often in a hierarchical manner. Its application to 
the rational selection of substituents in drug design [50, 1541 and in QSAR studies 
(e .g .  [623-6261) has been discussed. The results from cluster analyses and from 
nonlinear mapping, a method which projects data from multidimensional space to 
fewer, e.g. two dimensions (the nonlinear map), by a principal component-like 
iterative procedure, have been compared [624]. 

Cluster significance analysis (CSA) [577, 627 - 63 11, originally derived from the 
so-called parameter focusing technique (chapter 6), is a graphical method to look 
at the clustering of active compounds in a space that is made up of various 
physicochemical parameters. The advantage of the method is that qualitative or 
rank-ordered biological data can be used. A significance probability value is 
calculated to judge whether any cluster must be considered as a chance occurrence 
or not. After a selection of the descriptors being relevant for class separation by 
cluster significance analysis, SIMCA can be used to predict the activity classes for 
new members of a series [631]. Cluster significance analysis is discussed in detail 
and FORTRAN programs for CSA are given in ref. [577]. 
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6. Design of Test Series in QSAR 

The statistical analysis of data requires a proper design of experiments to prove 
or disprove a certain hypothesis which has been formulated in advance. From the 
viewpoint of a puritanical statistician most QSAR analyses are “forbidden”, because 
they are retrospective studies and, in addition, many different hypotheses (i.e. 
combinations of independent variables) are tested sequentially. Indeed, many 
problems arise from the application of regression analysis in ill-conditioned data 
sets. Only in later stages of lead structure optimization are certain hypotheses, e.g. on 
the influence of more lipophilic, electronegative, polar, or bulky substituents in a 
certain position, systematically tested, now fulfilling the requirements for the 
proper application of statistical methods. 

The most important condition in a QSAR study is the design of a congeneric 
series, including only compounds having the same mechanism of action. Sometimes 
both principles are violated. While congenericity is not easy to define, from common 
experience it is clear that all compounds of a set should have the same molecular 
frame, i.e. an identical parent compound, with structural variation in only one or 
several positions. Exceptions are compounds having nonspecific biological activities 
(e.g. narcotic activity) which are only caused by their membrane-partitioning 
properties. Normally, the mechanism of action is not proven for all members within 
a series. While it is evident that a group of enzyme inhibitors, being active in the 
nanomolar range, displays the same mecbanism of action (even here multiple binding 
modes may occur and complicate the analyses), in the case of millimolar activities 
or just toxic, carcinogenic, mutagenic, or teratogenic effects it cannot be presumed 
that all analogs indeed exhibit the same mechanism of action. 

The relationships between structures and specific biological activities are caused 
by many different physicochemical interactions, they are multivariate. Parameter 
interrelation in less well designed data sets was recognized as a problem in QSAR 
anaIyses from the very beginning (see eqs. 38, 39; chapter 3.5). The first contribution 
to solve this problem in a proper manner was made by Craig [632]; he proposed 
to study 2D plots of physicochemical properties (Figure 36) and to select substituents 
from all different quadrants of the resulting diagram. 

This qualitative graphical method is easy to apply and different physicochemical 
n be plotted against each other. Substituents may be chosen by the 
rding to their relative ease of synthesis. If e.g. a n  us. (T plot is considered, 

optimum substituents may be H (in the origin of the diagram), C1 or Br (lipophilic 
electron acceptors), NO, (electron acceptor), NH, (polar electron donor), N(Et), 
(lipophilic electron donor), and NH(C0Me) (polar electron acceptor), all analogs 
being easily accessible in most series. The Craig method has also been extended to 
3D plots [633]. However, the main disadvantage of Craig plots is that they are 
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Figure 36: 
[632] with permission from the American Chemical Society, Washington, DC, USA). 

Craig plot of aromatic substituents in a o vs. K diagram (adapted from Figure 1 of ref. 

restricted to at most three dimensions while it is a priori not known which 
physicochemical properties will be responsible for the biological activities. 

Parameter focusing is a related technique, developed by Magee [634]. Different 
2D plots of physicochemical properties are drawn to find out which parameter 
combination separates active and inactive compounds to the largest extent. 
Therefore, the method can be applied, in contrast to QSAR analyses, also to 
qualitative data. Cluster significance analysis (chapter 5.3) was developed from this 
approach. 

A sequential simplex technique was proposed by Darvas [635] to find the most 
active analog within a series in a stepwise,procedure. Any triangle of different 
substituents may be chosen by starting from a 3D graph where biological activities 
are plotted against two different physicochemical parameters (Figure 37). A line is 
drawn from the least active analog in the direction to and beyond the mean value 
of the other two compounds and a substituent is selected in this area. In the next 
step the biological activity of this new analog is determined. The least active analog is 
omitted and it is expected that a new triangle of more active compounds results. 
The procedure is continued until there is no further increase in biological activities 
(Figure 38). Although the method has been applied to several examples [635, 6361, 
it has some limitations: first of all, only two physicochemical parameters are 
considered simultaneously, and secondly, it is only suited for retrospective analyses 
or for cases in which synthesis is much easier and faster than biological testing. 

A real advance in design strategy resulted from the Topliss operational schemes 
[637, 6381. The Topliss scheme for aromatic substituents (Figure 39) starts from two 
analogs, e.g. a compound bearing an unsubstituted phenyl ring and the corre- 
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Figure 37: Sequential simplex procedure. A triangle is spanned on the biological activity values 
(z axis) of the H, 4-C1, and 4-Ac analogs. The H analog is the least active one and a new analog is 
searched in the direction between and beyond the mean value of the other two analogs (left dashed 
line; the right dashed line is the projection onto the n us. (5 plane) (reproduced from Figure 4 of 
ref. [635] with permission from the American Qemical  Society, Washington, DC, USA). 

sponding p-C1 analog. The biological activity of the p-C1 analog can be higher, 
equal, or lower than that of the parent compound. Correspondingly, in the next 
step more lipophilic analogs (in the case of higher activity of the p-C1 analog) or 
more hydrophilic analogs, e.g. p-OMe (lower activity of p-CI), are proposed by the 
operational scheme. If the activity of both analogs is about the same, either the 
lipophilicity or the electron acceptor properties of the chlorine substituent are 
unfavorable, while the other property might increase biological activity. Thus, a 
lipophilic donor substituent, e.g. Me, and a not too lipophilic acceptor substituent, 
e.g. the NO, group, are the next proposals. If activity is increased in any direction, 
this guides further syntheses; if not, it has to be considered that large substituents in 
the para-position may be unfavorable and the same procedure as above is applied to 
the metu-position. A corresponding scheme was developed for aliphatic substitution. 

A manual method was proposed by Topliss [639] as a modification of his 
operatio-nal schemes: a larger number of substituents is selected in the first step to 
derive the dependence of biological activities on n (linear and nonlinear) and CJ with 
a minimum number of analogs. This latter approach has been criticized because of 
collinearity and unbalanced spanning of the parameter space [640]. 
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Figure 38: Sequential simplex procedure. In a hypothetical set of compounds a search is made for 
analogs having the highest biological activity by starting from the compounds A, B, and C 
(reproduced from Figure 2 of ref. [635] with permission from the American Chemical Society, 
Washington, DC, USA). 

Start with substituents H and 4-C1 

I. if 4-C1 > H then 3,4-C1, 
1.1. if 3,4-C1, > 4-C1 then 3,4-Br2, I, CF, 
1.2. if 3,4-C1, < 4-C1 then Br, I, 4-NO, 

11.1. I f  4-OCH3 > H then 4-N(CH3), 
11. if 4-C1 < H then 4-OCH3 

a) if 4-N(CH3), > 4-OCH3 then 4-N(C,H5), 
b) if 4-N(CH3), < 4-OCH3 then NH,, OH 

11.2. if 4-OCH3 < H then 3-C1, etc. 

111.1. if 4-CH3 > H, 4-C1 
111.2. if 4-CH3 < H, 4-C1 then 3-Cl 

111. if 4-C1 zz H then 4-CH3 
then Et, Pr, i-Pr, Bu, t-Bu 

a) if 3-C1 > 4-CH3 then 3,5-C1,, 3-Br, 3-1 
b) if 3-C1 < 4-CH3 then 3-CH3, 3-N(CH3),, 

4-F, 4-NO2, 4-CN, 4-CONHz 

Figure 39: 
permission from the American Chemical Society, Washington, DC, USA). 

Topliss scheme for aromatic substitution (adapted from Scheme 1 of ref. [637] with 
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The different approaches proposed by Topliss should not be understood as rigid 
schemes; they are strategies which have to be adjusted to each problem. A recent 
review [403] lists more than 50 references where the Topliss methods have been 
applied, mostly in medicinal chemistry. It was shown that optimum activity would 
have rapidly been reached in many series of compounds in accordance with 
the Topliss scheme [641]; on the other hand, there are at least some examples where 
the Topliss method failed [403, 6331. 

All stepwise approaches have the disadvantage that iterative synthesis and testing 
are extremely time-consuming strategies. In most cases a brief study of the parameter 
table and the correlation matrix provides a QSAR practitioner enough details on the 
parameter spanning and on the interrelation of the parameters (with the exception 
of multiple correlations). 

2"-Factorial design techniques are quite common in experimental design [642 - 
6441. They have successfully been applied to series. design in lead structure opti- 
mization, using + and -, or i- , 0, and - as descriptors for each physicochemical 
property of the different substituents [645 - 6501. As compared to graphical methods 
and the Topliss operational schemes, the advantage of factorial design procedures 
is that several physicochemical properties can be considered simultaneously. In 
addition, synthetic accessibility guides the choice of the substituents to be included 
in the fractional design. The program package EDISFAR [651] extracts physico- 
chemical information out of a database and uses different factorial design techniques 
to select the substituents. 

More objective procedures in series design are clustering methods in multidimen- 
sional parameter space; substituents from different clusters are selected for synthesis 
(chapter 3) [50, 154, 4031. As this approach cannot automatically avoid collinearity 
or multicollinearity, several different standard sets of aromatic substituents have 
been proposed (e.g. [652, 6531). A distance mapping technique may be used to select 
further substituents on the basis of a npximum distance to the substituents which 
already are included [652]. A modification [654] of this approach uses the determinant 
of the parameter correlation matrix as the criterion for substituent selection. 

D-optimal design methods [389, 403, 655, 6561 calculate the determinant of the 
variance-covariance matrix; its value is largest for substituent sets with maximum 
variance and minimum covariance (linear and multiple correlation) in their 
physicochemical properties. An information theory approach, which leads to 
comparable results, has been proposed by Herrmann [657]. In some other approaches 
synthetic accessibility has been included as an additional selection feature [656, 658, 
6591. 

Other design methods like principal component methods that are combined with 
multidimensional mapping [ 1631 and a two-dimensional mapping of intraclass 
correlation matrices [660] are reviewed in [403]. Principal components of properties 
were also used in fractional design methods (Figure 40) [661,662] and in D-optimal 
design [662]. Principal properties of amino acids (so-called z scales) [170, 1711 are 
suited to select minimum analog peptide sets for QSAR studies, according to 
statistical design methods [663, 6641. 

Other design strategies have to be applied in Free Wilson analysis [390, 6491. 
While in Hansch analysis structural modification is sometimes restricted to only one 
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Figure 40: Representation of substituents of Table 2 according to their principal properties. The 
block represents a two-level factorial design in the three principal components PP,, PP2, and PP, 
(reproduced from Figure 1 of ref. [662] with permission froin the copyright owner). 

position of substitution, including a relatively large number of different substituents, 
in a Free Wilson analysis at least two different positions of substitution must be 
included. Each substituent in every position should occur several times (at least 
twice); otherwise, the group contribution of such a single-point determination 
contains the whole experimental error of this one biological activity value. 
Substituents which always occur together must be combined to a pseudosubstituent; 
only the group contribution of this hypithetical substituent can be derived from 
the analysis (compare chapter 4.2). Also for Free Wilson analyses a factorial design 
technique [649] and a quantitative procedure to extract an optimal set out of all 
possible analogs, based on the maximization of the determinant of the substituent 
correlation matrix, have been proposed [665]. 

Experimental design strategies for QSAR studies have been reviewed [38,403,648]. 
They have been compared on the basis of more than 20 different criteria [403] and 
some of their practical limitations [403, 640, 6561 have been discussed. 
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7. Applications of Hansch Analysis 

In the original definition of the extrathermodynamic approach [15,17], a linear 
combination of lipophilic and electronic terms accounted for the drug-receptor 
interaction, while a nonlinear lipophilicity parameter was included to model the 
transport and distribution of the drugs. Therefore, Hansch analysis can be used to 
describe complex biological data, where several different transport processes and 
equilibria contribute to the overall structure-activity relationship. Correspondingly, 
all different kinds of biological activities have been correlated with linear free 
energy-related parameters, using Hansch analysis. 

Only in special cases, e.g.  in enzyme inhibition, is an isolated process measured 
and described. In the case of membrane-bound receptors, the drug-membrane 
interaction may influence the ligand binding to the active site (compare chapter 
1.2). In other biological systems, like in cells, isolated organs, or whole animal data, 
much more complex relationships are to be expected, an exception being pharmaco- 
kinetic data, where only rate constants or concentrations of different drugs in certain 
compartments are described in a quantitative manner. 

Activity-activity relationships, i.e. the comparison of biological activities of a 
group of compounds in different biological test models, are originally not the domain 
of QSAR analyses. However, in industrial practice such relationships and their 
quantitative description are of utmost importance. Instead of wasting thousands of 
animals, nowadays enzyme inhibition, 5eceptor binding, and cell culture data are 
used to derive activity profiles of large classes of compounds and to predict the 
pharmacodynamic effects of new drugs from simple and efficient in vitvo test 
models. 

Thousands of Hansch equations have been published in the past 30 years. An 
early review [42] contains several hundred examples of the successful application 
of Hansch analysis; a recent starting point to collect all relevant information resulted 
in a database that already contains 3,000 QSAR equations of biological data as 
well as 3,000 linear free energy relationships in organic chemistry [666]. Such an 
effort will for the first time allow systematic comparisons of different biological 
effects, e.g. of nonspecific toxicities or of the inhibition of different classes of enzymes, 
and of the effects of certain groups of compounds on different biological systems; 
it is evident that comparative structure-activity relationships [667] will provide 
further insight on the intrinsic nature of drug-receptor interactions. 

No attempt has been made to present a comprehensive overview of the use of 
Hansch analysis in medicinal chemistry. Only a subjective selection of typical 
applications is given in this chapter to demonstrate its proper use and its value for 
rational drug design. For more examples the reader is referred to refs. [39-441 and 
to the abstracts services listed in chapter 1.1 [85-$81. 
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7.1. Enzyme Inhibition 

Significant progress in QSAR resulted from Hansch analyses of enzyme inhibitors 
[432, 456, 668 - 6701, especially from the systematic work of Hansch and his group 
on dihydrofolate reductase and on cysteine and serine proteases. Most of our current 
knowledge of the quantitative aspects of ligand-protein interactions has been derived 
from QSAR equations, aided by the interpretation of the 3D structures of enzymes 
and their inhibitor complexes with molecular graphics [38, 288, 671 - 6761. 

Dihydrofolate reductase (DHFR) is by far the most extensively investigated 
enzyme. 3D structures of binary and ternary DHFR complexes from different 
bacteria and vertebrates have been published and an extremely large number of 
QSAR equations have been derived, both for the isolated enzyme and for growth 
inhibition of whole cells [288, 396, 431, 432, 671, 677-6911. Due to the central role 
of DHFR in purine biosynthesis, DHFR inhibitors are therapeutically important 
as highly selective antibacterial (trimethoprim), antimalarial, and antitumor agents 
(methotrexate). 

DHFR was also the target of one of the very first attempts of a structure-based 
drug design using crystallographic information. From the chemical similarity of 
trimethoprim (23, R = Me) and methotrexate (24) Kuyper and Goodford concluded 
[692] that replacement of one methoxy group of trimethoprim by an acidic side 
chain should lead to an additional contact of this newly introduced carboxylate 
group with the charged guanidinium group of a buried arginine. Indeed, a 50-fold 

(23) 
OMe 

OMe 7 

Table 24. Trimethoprim analogs (23) 
as dihydrofolate reductase inhibitors 
~ 9 2 1  

R 

-CH3 (trimethoprim) 
-CH,COOH 
-(CH2)2COOH 
-(CH&COOH 
-(CHz),COOH 
-(CH,),COOH 
-(CH&jCOOH 

Ki, nmol 

1.3 
2.6 
0.37 
0.035 
0.066 
0.024 
0.050 
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Test system 

Escherichia coli 
I,,, cell-free 
MIC, whole cells 

Mycobacterium lufu 
I,,, cell-free 
MIC, whole cells 

Table 25. Cell-free and whole cell inhibitory activities (pmol . 1- ') of 
trimethoprim (23, R = CH,) and its diphenyl sulfone analog K130 (25) 

Trimethoprim K130 

0.0045 0.00039 
1 S O  56 

0.325 0.034 
> 110 1 .o 

increase in inhibitory activities was obtained for analogs having the optimum chain 
length (Table 24); unfortunately, selectivity and membrane permeability significantly 
decreased. 

Seydel [214, 6931 followed this approach and designed a hybrid structure (25) of 
trimethoprim and the antileprotic drug 4,4'-diaminodiphenyl sulfone. The new 
analog is active against Mycobacterium lufu, in cell-free systems and against whole 
cells, most probably due to the replacement of the charged carboxylate group of the 
inhibitors of Table 24 by the neutral sulfonyl group. On the other hand, although 
the compound is a potent in vitro inhibitor of Escherichia coli DHFR, the inhibition 
of E. coli cell growth is low, indicating that both bacteria largely differ in the 
permeability of their cell walls (Table 25) [214, 6931. 

Some QSAR equations for 5-(X-benzyl)-2,4-diaminopyrimidines (26) as inhibitors 
of DHFR from different species are given below (eqs. 136- 140) [671]. 

Escherichia coli DHFR 

1% 1/KLaPp = 0.75(10.26) ~3.4.5 - 1.07( 20.34) log (b . lo"' + 1) + 
+ 1.36( f 0.24) MR;, 5 + 0.88( f 0.29) M+Rb + 6.20 (136) 

log p s 9 . 1 2  

(n = 43; r = 0.903; s = 0.290) 

optimum 7c = 0.25 
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Lactobacillus casei DHFR 

log l/Kiapp = 0.31(+0.11)~~3,4 - 0.88(+0.24)10g(p. + 1) + 
+ 0.95(+0.21) MR;,4 + 5.32 

log p = -1.33 
(n = 42; r = 0.876; s = 0.222) 

optimum K = 1.05 

Chicken liver DHFR 

log l/'Kiapp = 0.55(f0.19)~~3,4,5 - 0.43(f0.35)10g(P. lo"',".' + 1) + 
+ 0.20( f0.10) MR3 + 0.32( f0.26) C o  + 4.46 

log p = -0.222 
(n = 39; r = 0.900; s = 0.241) 

no optimum (b < a) 

(137) 

Bovine liver DHFR 

log l/Kiapp = 0.48(&0.11) ~ ~ 3 , s  - 1.25(f0.40)10g(p. lO"'8' + 1) + 
+ 0.13(&0.10) MR3 + 0.24(f0.24) C o  + 5.43 (139) 

log p = -1.98 
(n = 42; r = 0.875; s = 0.227) 

optimum TC = 1.52 

Human lymphoblastoid DHFR 

log l/Kiapp = 0.59( f0.20) 7~3,s - 0.63( k0.59) log (p . lo"',' + 1) + 
+ 0.19(&0.14)n4 + 0.19(+0.15)MR3 + 0.30($0.28)Co + 
+ 4.03 ( 140) 

log = -0.82 optimum TC = 1.94 
(n = 38; r = 0.879; s = 0.266) 

While the equations look the same at a first glance, some striking differences can 
be seen on a closer inspection. First, the vertebrate, but not the bacterial DHFR 
equations contain an electronic parameter in addition to lipophilicity and molar 
refractivity terms. Second, in the case of L. casei (eq. 137) the 5-position of the 
benzyl group does not at all contribute to biological activities. An explanation could 
be derived by a comparison of the 3D structure of L. casei DHFR with the E. coli 
DHFR structure. The active sites of both enzymes are more or less identical in the 
geometries of the protein backbone and the amino acid side chains. However, there 
is one significant difference: E. coli DHFR contains a methionine side chain in the 
area where the 5-substituents bind, while there is a relatively rigid leucine side chain 
in the L. casei DHFR which obviously interferes with the 5-substituents. Therefore, 
the active site of L. casei DHFR is sterically more constrained and the positive 
lipophilicity and polarizability contributions of the 5-substituents are counter- 
balanced by their steric hindrance [432, 6821. 
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Another well investigated enzyme is the cysteine protease papain (eqs. 58 - 60, 

N-(X-Benzoy1)glycine methyl esters (27) [694] 

chapter 3.8; eqs. 141 - 143) [288, 395, 673, 694-7001. 

log 1/K, = 1.01( kO.11) n: + 1.46 
(n = 16; r = 0.981; s = 0.165) 

N-Benzoylglycine X-phenyl esters (28) [695] 

0 
@ N H C H , C O O ~  / - x  

log l/Km = 1.03( k0.25) n:; + 0.57( k0.20) (T + 
+ 0.61( f0.29) MR, + 3.80( f0.17) 

(n = 25; r = 0.907; s = 0.208) 

N-Mesylglycine X-phenyl esters (29) [673] 

C H 3 S 0 , N H C H , C O O a  - x  
log 1/K, = 0.61( k0.09) n:j + 0.55(f0.20) (T + 

+ 0.46(f0.11) MR, + 2.00(f0.12) 
(n = 32; r = 0.945; s = 0.178) 

(143) 

A comparison of eqs. 141, 142, and 143 and an inspection of the 3D structure of 
papain show that the phenyl ester group binds in a polar environment, while the 
substituents of the N-benzoyl group (eq. 141) are located in hydrophobic space. 
This hydrophobic interaction explains the different intercepts in the case of the 
benzamides (eq. 142) as compared to the much more polar mesylamides (eq. 143; 
eqs. 58 - 60, chapter 3.8). 

A QSAR study of a larger series of N-(X-benzoy1)glycine pyridyl esters revealed 
significant differences for log 1/K, and log kcat values (log 1/K, us. 7c4: n = 22; 
r = 0.946; s = 0.176. Log kcat us. (T: n = 23; r = 0.933; s = 0.094. Log kCac/K, us. 
n, and (T: n = 22; r = 0.926; s = 0.193) [700]. Possible explanations for the 
differences to equations having been derived earlier were discussed. 

Hydrophilic meta-substituents at the phenyl ester group are not parametrized in 
eqs. 142 and 143; only the more hydrophobic substituent is considered in the case 
of two different meta-substituents. It seems that the phenyl ring turns around by 
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180" if hydrophilic meta-substituents are repelled by a hydrophobic area at the 
binding site. The smaller coefficient of the n term in eq. 143, as compared to eq. 
142, has been explained correspondingly [288]. 

Similar equations were derived for the closely related cysteine hydrolases actinidin 
[288, 696 - 6981, bromelain [694, 697, 6981, and ficin [697, 6981. 

N-Benzoylglycine X-phenyl esters (28, eq. 142) were also investigated as inhibitors 
of the serine proteases chymotrypsin (eq. 144) [288, 6751 and trypsin (eq. 145) 
[288, 7011. 

log l/Km = 0.28(+0.06) T C ~  + 0.42(+0.08) 0- + 3.87(+0.05) (144) 
(n = 28; r = 0.945; s = 0.081) 

log l/K, = 0.71(+0.17) 0 + 3.31(f0.09) 
(n = 10; r = 0.961; s = 0.100) 

(145) 

The inhibition of trypsin by benzamidines (30) and 2-naphthylamidines (31) is 
described by eqs. 146 and 147, respectively [288, 7021. 

log 1/K, = -0.59($-0.49) MR, + 0.88(*0.52) log ( a .  loMR4 + 1) + 
+ 0.23( a0.07) 7 ~ ;  - 0.74( k0.20) o + 0.20( k0.30) 1-M + 
+ 0.65(+0.22)1-1 + 0.43(+0.19)1-2 + 0.51(+0.15)1-3 t 

+ 1.38( k0.28) ( 146) 
log p = -0.73 
(n = 104; r = 0.924; s = 0.222) 

optimum MEa = 1.03 

+ 
NH2 

&c)@H2 (31) 

X 
log 1/Ki = 0.47(+0.19) MR, - 1.40(+0.40) o + 2.59(*0.24) (147) 
(n = 21; r = 0.915; s = 0.322) 

Out of many other Hansch analyses that were derived for different enzymes, only 
investigations on 

ADP-ribosyltransferase [703], 
alcohol dehydrogenase [288, 704 - 7071, 
butyrylcholinesterase [708], 
carbonic anhydrase [288, 709, 7101, 
chymotrypsin (eqs. 133- 135, chapter 5.2) [288, 456, 573, 669, 7111, 
cytosine nucleoside deaminase [669], 
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DNA polymerase [712], 
P-glucosidase [713], 
glutamate dehydrogenase [669], 
glyceraldehyde 3-phosphate dehydrogenase [669], 
glycolic acid oxidase [714], 
guanine deaminase [668, 7151, 
lactate dehydrogenase [669], 
lipoxygenase [716], 
malate dehydrogenase (eq. 36, chapter 3.4) [293, 6691, 
monoamine oxidase (eq. 112, chapter 4.5) [175, 7171, 
phenol sulfotransferase [718], 
thiopurine methyltransferase [719], 
thromboxane synthase [720], 
thymidilate synthase [669], 
thymidine phosphorylase [669], 
HSV-thymidine kinase [721], 
uridine phosphorylase [669], and 
xanthine oxidase [668, 7221 

shall be mentioned here. A recent compilation of QSAR studies of enzyme inhibitors 
[670] reviews more than 400 Hansch equations. 

7.2. Other in vitro Data 

Specific and nonspecific binding of drugs to proteins (other than enzymes) show 
significant differences. While the serum albumin binding of miscellaneous neutral 
compounds can be explained by their lipophilicity (eq. 148) but not by their 
polarizability (log 1/C us. MR: r = 0.307) [18,723], the highly specific, polar binding 
of phenyl b-D-glucosides to concanavalin A is described much better by a polari- 
zability term MR (eq. 149) than by their lipophilicity (log Mso us. n: r = 0.664) [724]. 

log 1/C = 0.751( k0.07) log P + 2.300 
(n = 42; r = 0.960; s = 0.159) 

log Mso = 0.019(&0.003) MR + 2.23 
(n = 19; r = 0.954; s = 0.038) 

(149) 

Structure-activity relationships in immunochemistry [21, 335, 396, 725 - 7281 reveal 
the importance of steric interactions in the QSAR of hapten-antibody (32) interac- 
tions (eq. 150) [396, 7251; eq. 151 could be derived for the 50% inhibition of 
complement by benzylpyridinium ions (33) [727]. 

protein - [ N = N  0 - CO;] 
X 
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log Krel = 0.864( & 0.07) EYtho + 0.084( f 0.07) Ere'' - 
- 0.436(+0.08) E Y  + 0.166(+0.07) CK - 0.715(*0.12) (150) 

(n = 22; r = 0.989; s = 0.120) 

log 1/C = 0.16(+0.03) K-I + 0.38(50.10) K-2 + 0.86(f0.23) 0+-1 + 
+ 0.69(+0.09) D-1 + 0.33(+0.14) D-2 + 2.59(*0.09) (151) 

(n = 132; r = 0.953; s = 0.197) 

Systematic investigations have been performed for more than one decade on 
muscarinic receptor ligands [729 - 7321. Examples of QSAR equations for a 
combined set of rigid and flexible agonists (eq. 152) [729] and for a group of 
structurally different antagonists (eq. 153) [730] are given below. 

pD, = 1.13(+0.19)~,, - 0.42(+0.08)B, + 0.81(+0.06)I-X,,5,5, + 
+ 5.70(+0.14) (152) 

(n = 62; r = 0.968; s = 0.196) 

log l /C = 1.69( f0.32) CK, , ,  - 2.42( k0.50) log (0 . 10Zn1,2 + 1) + 
+ 0.66(+0.20) E, + 1.37(+0.23) 1-2 - 0.93(+0.54) C O Q , ~ , ~  + 
+ 3.07(f 1.92) CMR,,,,, - 0.51(*0.35) (CMR3,4,5)2 - 

- 4.12( _+ 2.84) (153) 
log 0 = -3.92 optimum Cn,,, = 4.3 7 

optimum CMR,,,,S = 3.0 
(n = 64; r = 0.921; s = 0.365) 

A QSAR equation for the acetylcholine receptor affinity of quaternary ammonium 
compounds was used to predict the potency of a new, structurally different analog 
(34) 17331. The compound was synthesized and tested; however, the prediction turned 
out to be completely wrong [734]; observed and predicted affinities differed by 
6 log units (!), once again showing the risk of predictions for structurally dissimilar 
compounds which are too far outside the included parameter range. A reanalysis 
of the data led to an equation which gave a much better prediction of the affinity 
of this compound (error: 1.4 log units) [403]. 

H& CH,CH,&(Me)Et, (34) 

\ / 
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QSAR studies of 
H I  receptor antagonists [735], 
serotonin antagonists and uptake inhibitors [736] as well as of 
receptor and thyroxine binding protein (TBP) affinity of thyroid hormone analogs 

[737] have been reviewed. 
In addition to these reviews, Hansch analyses for binding affinities to the 

p-adrenergic receptor [738, 7391, 
benzodiazepine receptor [740], 
tetrachlorodibenzodioxin (TCDD) receptor [741, 7421, 
dopamine receptor [743], and 
estrogen receptor [744] as well as for 
dopamine-, norepinephrine-, and serotonin-uptake inhibition [745] 

shall be mentioned here. Some more QSAR studies of receptor agonists and 
antagonists are discussed and reviewed in ref. [98]. 

Many QSAR studies have been published for calcium antagonists [349, 396, 
746-7531. Eq. 154 was derived for verapamil-type compounds (35) [753]; a chemi- 
cally closely related series of compounds (36) turned out to be potent a-adrenergic 
antagonists (eq. 155) [753]. While it is difficult to decide on the biological significance 
of these multiparameter equations, one must at least consider the complexity of 
such drug-receptor interactions. 

PA, = -0.31(&0.08) Ex2 + 0.95(&0.30) CTC - 0.93(f0.41) AMRk,,,(A) t 
+ 1.45( k0.53) AMR,,,,(A) - 0.30( f0.16) AL&,(A) + 
+ 0.76( f 0.37) ALpar,(A) - 1.74( & 0.59) Fortho(B) - 
- 0.59(+0.17) ABY(B) + 0.36(f0.26) TC~~ , .~ (B)  + 
+ 1.45(f0.61)AB1(Q) + 5.45(f0.54) 

(n = 75; r = 0.89; s = 0.33; F = 24.97) 
(154) 

PA, = -0.22(&0.12) Cn:, - 0.17(f0.13) Cn: + 0.35(+0.31) I(A) + 
+ 0.99( f0.29) Iortho(B) - 0.53( f0.18) AB';"'"(B) - 
- 0.65(f0.16) ALPar,(B) + 6.70(+0.34) (155) 

(n = 59; r = 0.92; s = 0.37; F = 48.25) 

Nonspecific hemolytic, antibacterial, and antifungal in uitro activities generally follow 
linear [ 18, 1821, parabolic [18, 191, and bilinear [23, 3451 lipophilicity-activity 
relationships. Many of the bilinear equations (e.g. eq. 100, chapter 4.4) have 
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correlation coefficients r close to unity [345]. It seems that at least in some cases 
biological activities only depend on the critical micelle concentration (CMC) of the 
compounds [754]. QSAR studies of antibacterial sulfa drugs (eq. 48, chapter 3.5) 
[396, 7551 and some other examples of specific antibacterial activities [41, 42, 3961 
have been reviewed. 

Much work has been done to elucidate the molecular mechanisms of drug 
resistance [756]. Comparative QSAR equations were derived for the inhibition of 
bacterial DHFR, bacterial cell cultures [213, 214, 288, 432, 677, 6851, and different 
tumor cell lines [288, 432, 671, 678, 679, 681, 684, 6871, all being sensitive and 
resistant to methotrexate (MTX), e.g. eqs. 156- 161. 

Inhibition of MTX-sensitive Lactobacillus casei DHFR by 3'-X-l-phenyl-s- 
triazines (37) [677]. 

log 1/C = 0.53(k0.10) 7c3 - 0.67(f0.35) log (p .  l W 3  + 1) + 
+ 0.79( k0.25) MR' + 3.13( k0.15) 

log p = -3.46 
(n = 28; r = 0.949; s = 0,302) 

optimum n3 = 4.03 

Inhibition of MTX-resistant Lactobacillus casei DHFR by 3'-X- l-phenyl-s-triazines 
(37) [677]. 

log 1,'Kiapp = 0.52( f O . l O )  n' - 0.64(f0.24) log ( p .  10"' + 1) + 
+ 1.80(+0.40) I + 0.68(+0.63) o - 0.27(&0.28) MRy + 
+ 2.94( 5 0.25) r (157) 

log p = -3.68 
(n = 44; r = 0.958; s = 0.308) 

Inhibition of MTX-sensitive Lactobacillus casei cell culture by 3'-X-l-phenyl-s- 
triazines (37) [288, 6771. 

optimum n' = 4.33 

log 1/C = 0.80(+0.15) X> - 1.06(f0.27) log ( p .  10"' + 1) - 
- 0.94( k0.39) MRy + 0.80( 50.56) I + 4.37( 50.19) (158) 

log p = -2.45 
(n = 34; r = 0.929; s = 0.371) 

Inhibition of MTX-resistant Lactobacillus casei cell culture by 3'-X-l-phenyl-s- 
triazines (37) [288]. 

optimum n> = 2.94 

log 1/C = 0.42(*0.05) 7~ + 1.09(f0.33) I - 0.48(&0.24) MRy + 
+ 3.39( k0.14) (159) 

estimated optimum 7c = 6 
(n = 38; r = 0.960; s = 0.274) 
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Inhibition of MTX-sensitive murine leukemia (L5178Y) tumor cells by 3'-X-phenyl- 
l-s-triazines (37) [684] 

log 1/C = 1.40(&0.23) x - 1.65(f0.26) log (p .  lo" + 1) + 0.88(*0.57) o t 
+ 0.52( k0.20) I - 0.25( k0.24) OR + 0.63( f0.33) DO + 
+ 7.94( -t 0.21) ( 160) 

log p = -0.054 
(n = 64; r = 0.904; s = 0.298) 

Inhibition of MTX-resistant murine leukemia (L5178Y) tumor cells by 3'-X- 
phenyl-l-s-triazines (37) [684]. 

optimum x = 0.89 

log 1/C = 0.63( k0.20) TC - 0.26( *0.25) log (p . lo" + 1) - 
- 0.17(f0.07) MR - 0.33(f0.24) OR + 5.11(+0.19) (161) 

log p = -0.718 
(n = 61; r = 0.878; s = 0.335) 

While the lipophilicity optima of eqs. 156 and 157 are identical, the most striking 
differences between eqs. 158 and 160 on the one hand and eqs. 159 and 161 on the 
other hand are the much higher lipophilicity optima of the MTX-resistant cells; 
even larger differences were obtained in other cases [679, 681, 6841. From this 
evidence Hansch concluded that a change in the membrane properties should be 
responsible for the MTX resistance. Seydel [213, 2141 found differences in the dose 
response curves of Escherichia coli strains, that are sensitive and resistant to 
trimethoprim (TMP), to be responsible for TMP resistance. Lipophilic analogs still 
bind to the enzyme, but they are no longer antagonists; the higher, amphiphilic 
analogs are nonspecific membrane-periurbing agents. Chloroquine resistance and 
multidrug resistance were explained in the same manner [213]. 

Multidrug resistance (MDR) is the acquired resistance of tumor cells to a 
wide variety of structurally diverse, polar and lipophilic, small and large antitumor 
drugs, caused by a single antitumor agent. MDR is associated with an over- 
expression of a membrane-embedded active transport glycoprotein GP- 170, which 
steadily eliminates the antitumor drugs from the resistant cells. The QSAR of 
muitidrug resistance shows linear dependences as well as nonlinear ones on 
lipophilicity and on the size of the molecules (e.g. eq. 56, chapter 3.7) [327, 346, 
3481; the nonlinear dependence of MDR on the size of the molecules was explained 
by the inability of medium-sized molecules to reenter the cells either by passive 
diffusion (pathway of the small molecules) or by endocytosis (pathway of the large 
molecules) [346]. 

Another extensively investigated field in QSAR are mutagenic agents [325 - 328, 
757 - 7601. The QSAR equations of a series of l-(X-phenyl)-3,3-dialkyltriazenes show 
that mutagenic activity (and presumably carcinogenicity) can be minimized with 
relatively little loss in antitumor potency. While such hints are useful, they should 
not be overemphasized: lipophilicity optima can be significantly different in isolated 
cells and in whole animals. 

estimated optimum TC % 5 - 6 
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Recent studies [325 - 3281 resulted in a revival of quantum-chemical indices; their 
important advantage is that much more heterogeneous sets, e.g. aromatic and 
heteroaromatic compounds, can be combined in a single QSAR equation (e.g. 
eq. 50, chapter 3.5). 

7.3. P har maco kinet ic Data 

Pharmacokinetics describes the time dependence of transport and distribution of a 
drug in the different compartments of a biological system, e.g. by rate constants of 
absorption, blood and tissue levels, and metabolism and elimination rate constants. 
Quantitative structure-pharmacokinetics relationships [433, 442, 451, 452, 472, 
761 - 7661 investigate the structural dependence of such parameters within groups 
of chemically related compounds. 

Model simulations (see chapter 4.4) substantiate that the lipophilicity dependence 
of the rate constants of drug transport should follow bilinear relationships [41, 156, 
175,345,440,4421. Indeed, bilinear equations have been derived for the rate constants 
of drug transport in n-octanollwater (eqs. 95 -98, chapter 4.4) [444-4471 and for 
the rate constants of the transfer of various barbiturates (38) in a Sartorius absorption 
simulator& from an aqueous phase (pH = 3) through an organic membrane 
to another aqueous phase (pH = 7 3 ,  modeling the gastric absorption of these 
compounds (Figure 41) (eq. 162; recalculated optimum log P value) [442]. 

log kabs = 0.949(&0.06) log P - 1.238(f0.11) log (PP + 1) - 3.131 (162) 
log J3 -1.271 optimum log P = 1.79 
(n = 23; r = 0.992; s = 0.081; F = 389.66) 

The buccal absorption of homologous alkanoic acids can be described by eqs. 163 
(at pH = 3.1 - 3.6) and 164 (at pH = 6) [442]. 

log kabs = 0.339(+0.08) log P - 0.318(&0.13) log (PP + 1) - 1.246 (163) 
log J3 = -2.450 
(n = 8; r = 0.995; s = 0.030; F = 124.68) 

log kabs = 0.862(+0.16) log P - 0.661(&0.20) log (PP + 1) - 3.015 ( 164) 
log p = -2.282 
(n = 8; r = 0.998; s = 0.034; F = 431.21) 
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Figure 41: 
turates (38) in the Sartorius absorption simulator I' 
(eq. 162) (reproduced from Figure 11 of ref. [442] 
with permission from Editio Cantor Verlag GmbH, 
Aulendorf, Germany). 

Diffusion rate constants log k of barbi- 

- 2  0 2 4 
log P 

Much more complex models correlate the buccal absorption rate constants of 
these acids at different pH values, e.g. eq. 165 [479]. Even the rate constants for 
acidic and basic drugs can be combined to obtain one equation by using log Papp 
instead of log P (eq. 111, chapter 4.5). 

Pb(afu + efi) 
1 + cPb(afu + efi) 

log kabs  = log 

a = 0.054(f0.01), b = 0.523(-t0.03), c = 2.435(f0.15), e = 0.000212(~0.00007) 
(n = 71; r = 0.97; s = 0.12) 

Gastric and intestinal absorption rate constants of neutral carbamates are described 
by eqs. 166 and 167 [442], respectively.*The slopes of the resulting curves are 
relatively flat because the gastric and intestinal walls are no true lipid membranes 
but relatively polar, pore-containing tissues (Figure 42). The lipophilicity optimum 
of the intestinal absorption is shifted to the left because the polar glycocalyx inside 
the intestinal wall prevents the absorption of lipophilic compounds. On the other 
hand, the intestinal absorption rate constants are much larger than the gastric 
absorption rate constants (as can be seen from the intercepts of eqs. 166 and 167 
and from Figure 42), due to the larger and morphologically more differentiated 
surface structure of the intestinal wall. 

log k A s s  = 0.138(+0.06) log P - 0.228(*0.16) log (PP + 1) - 2.244 (166) 
log P = - 1.678 
fn = 8; r = 0.971; s = 0.030; F = 22.14) 

optimum log P = 1.87 

log k A s s  = 0.234( kO.10) log P - 0.502( k0.15) log (PP + 1) - 0.786 (167) 
log P = -0.621 
(n = 8; r = 0.989; s = 0.031; F = 61.10) 

optimum log P = 0.56 
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Figure 42: Gastric and intestinal absorption 
rate constants log k,,, of homologous n-alkyl 
carbamates R-OCONH, (R = methyl to 
n-octyl; eqs. 166 and 167) (reproduced from 
Figure 14 of ref. [442] with permission from Editio 
Cantor Verlag GmbH, Aulendorf, Germany). 

The colonic absorption of different acidic compounds is described by eq. 110 
(chapter 4.5) [442]. 

The blood-brain barrier is a tight layer of endothelial cells which inhibits the 
passage of hydrophilic compounds from the blood into the central nervous system 
(CNS). For various groups of CNS-active drugs lipophilicity optima for blood-brain 
barrier penetration at log P values around 2.1 [767], 1.8 -2.0 [768, 7691, and 1.4-2.7 
[472, 7701 have been reported [433, 7711. A dedicated investigation of the extraction 
of neutral "C-labeled compounds into adult baboon brain showed that compounds 
having log P values between 0.9 and 2.5 were completely extracted [772]. The 
rat-brain capillary permeability coefficients P, of a wide variety of compounds, 
ranging from water (MW = 18) to bleomycin (MW = 1400), can be described by 
eq. 168 [771], giving evidence for the importance of the size of the molecules 
(approximated by log MW, compare eq. 56, chapter 3.7) for diffusion and pore 
transport. 

log P, = 0.50( *0.10) log P - 1.43( f0.58) log MW - 1.84 
(n = 23; r = 0.927; s = 0.461) 

The blood-brain barrier penetration of H, receptor antihistaminics has been 
correlated with A log P, the difference between n-octanollwater and cyclohexane/ 
water partition coefficients (eqs. 23 and 24, chapter 3.1) [199, 2001. An even better 
correlation could be obtained by using Aalk, a hydrogen-bonding capability 
parameter, and V,, the van der Waals volume (eq. 169) [773]. 

log (Cbrain/Cblood) = -0.338( 50.03) Aalk + 0.007( +O.OOI) V, + 
+ 1.730( f 0.30) ( 169) 

(n = 20; r = 0.934; s = 0.290; F = 58) 

Hansch emphasized the importance of lipophilicity for central nervous system- 
mediated and other nonspecific (e.g. toxic) side effects of drugs [771]; hydrophobic 
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drugs do not only readily pass the blood-brain barrier (e.g. sedative side effects of 
most antihistaminics), they are also slowly eliminated from the biological system, 
are more inhibitory to biochemical systems than hydrophilic compounds, induce 
cytochrome P-450 [774], and reactive species may be formed in their metabolism. 
Thus, without convincing evidence to the contrary, drugs should be made as 
hydrophilic as possible [771]. 

Also the placenta has a barrier for hydrophilic and very lipophilic compounds, 
which is comparable to the blood-brain barrier. Correspondingly, quantitative 
relationships could be derived for the placental transfer ratios TR of various drugs 
(eq. 170, recalculated) [775]. The diffusion of drugs into milk and prostatic fluid has 
been reviewed [472, 7611. 

log TR = 0.354(f0.06) log P - 0.469(f0.13) log (PP + 1) - 

- 0.116(+0.07) ( 170) 
log p = -0.658 

(n = 21; r = 0.949; s = 0.106; F = 51.17) 

The most comprehensive review of quantitative structure-pharmacokinetics rela- 
tionships [452] tabulates about 100 equations, including absorption, distribution, 
protein binding, elimination, and metabolism of drugs. Since many of these equations 
and those included in other reviews (e.g. [472, 7611) have been derived before 
appropriate mathematical models for nonlinear lipophilicity-activity relationships 
(chapter 4.4) and for the correct consideration of the dissociation and ionization of 
acids and bases (chapter 4.5, especially eqs. 107 - 110) were available, some of the 
older results should be recalculated by using the theoretical models (chapters 4.4 and 
4.5) instead of the empirical ones. 

optimum log P = 1.15 

7.4. Other Biological Data 

Numerous kinds of biological activities have been correlated with physicochemical 
properties; only a few selected examples will be discussed here to show the wide 
variety of quantitative relationships that were derived in different therapeutic 
fields. 

The local anesthetic activities of lidocaine analogs (39, eq. 171) have been compared 
with their acute toxicities (eq. 172) [776]. Possible reasons for the differences between 
both equations were discussed, but no structural proposals were derived for local 
anesthetics with lower toxicity. 
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log 1/EDs, = 1.24( k0.90) log Papp - 1.80( k 1.13) log (PPapp + 1) - 
- 0.92( _+ 0.27) I-NHCO + 0.36( f 0.20) I-DIET + 
+ 3.22( k 1.40) (171) 

log p = -1.90 
(n = 59; r = 0.808; s = 0.332) 

optimum log Papp = 2.24 

log l/LDso = 0.18( k0.07) log Papp - 0.30( f0.16) I-OCOOC - 
- 0.22(+0.12) I-MOR + 3.86(f0.18) (172) 

(n = 60; r = 0.762; s = 0.192) 

Antiadrenergic activities of a-bromophenethylamines are described by eqs. 65 - 68 
(chapter 4.1). Eqs. 173 and 174 correlate the P1- and P,-antagonistic activities 
(measured in dogs) of a series of 4-imidazol-2’-yl-phenoxypropanolamines (40) [777]; 
MR must be about 2 for maximum P1 antagonism (eq. 173), while electron-acceptor 
substituents increase the P,-antagonistic potencies (eq. 174). 

pD2(01) = 0.99( k0.43) MR - 0.25( k0.12) MR2 + 0.58( k0.26) I, + 
+ 6.22( f 0.34) (173) 

optimum MR = 1.98 
(n = 15; r = 0.84; s = 0.25) 

pD2(P2) = 0.63(+0.26)~  + l . l l ( f0 .99)  O~ + 0.50(F0.46)IS + 4.88(+0.44) (174) 
(n = 15; r = 0.82; s = 0.46) 

The structure-activity relationships of antimalarial drugs attracted much attention 
in the early years of QSAR [778,779] because of an extensive program of the Walter 
Reed Army Institute for Medical Research during the Vietnam war. Eq. 175 
correlates the antimalarial activities of a large group of structurally diverse 
phenanthreneaminoalkylcarbinols and related analogs in mice [779]; this equation 
is one of the two examples which include more than 500 analogs in one equation 
(the other one being eq. 180, see below). 

log 1/C = 0.576(f0.09) CO + 0.168(+0.05) XE + 0.105(f0.05) log P - 
- 0.167( +0.07) log (PP + 1) - 0.169( fO.10) c-side + 

- 0.795( k0.06) < 3-cures + 0.278( *O.ll) MR-4-Q + 
+ 0.252( f0.18) Me-6,8-Q + 0.084( f O . l O )  2-Pip + 
+ 0.151(+0.19) NBrPy - 0.683(f0.22) Q2P378 + 
+ 0.267(+0.11) Py + 2.726(f0.15) 

optimum log P = 4.19 

+ 0.319(+0.136) CNR, - 0.139(f0.06) AB - 

log p = -3.959 
(n = 646; r = 0.898; s = 0.309) 

(175) 
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Figure 43: Inflammatory activities of 
phorbol-12,13-diesters (41, R = n-propyl to 
n-tridecyl); comparison of the parabolic model 
(r = 0.978; dashed line) with the bilinear model 
(r = 1,000; solid line) (redrawn from Figure 3 
of ref. [440] with permission from Editio 
Cantor Verlag GmbH, Aulendorf, Germany). 

CH,OH 

Inflammatory activities (eq. 176; topical application at the mouse ear) of phorbol 
esters (41, R = n-propyl to n-tridecyl) [23, 440, 4421 are correlated with their 
lipophilicity values, giving evidence that in addition to some specific mechanism of 
action the skin permeation of the compounds is responsible for their biological 
activity. This example may be criticized due to the small number of compounds. 
However, these phorbol esters are amongst the compounds having highest in uiuo 
activities (up to lo-" mol . kg-') and also standard deviations of the biological 
activity values have been determined. In addition, the compounds cover an extremely 
wide range of lipophilicity values (10 logarithmic units!), clearly showing a typical 
bilinear lipophilicity-activity dependence (Figure 43). 

log l /C  = 0.193( k0.04) TC - 1.054( k0.09) log (p . 10" + 1) + 9.373( f0.30) (176) 
log = -9.983 optimum TC = 9.33 
(n = 6; r = 1.000; s = 0.041; F = 1390) 

Also the relative tumor-promoting activities [nrtpa] of phorbol esters (41) have been 
correlated with their lipophilicity (eq. 177) [780]. 
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log [nrtpa] = 0.441(50.09) log P - 0.738(+0.16) log (PP + 1) - 

- 2.571(+0.32) (177) 
logp = -5.026 

(n = 42; r = 0.853; s = 0.326; F = 33.80) 

Quantitative structure-activity relationships of antitumor drugs have been reviewed 
[781- 7831. Out of many studies performed by Hansch et al. (e.g. [784 - 7891) some 
are discussed here to demonstrate how QSAR results can be used to decide on the 
probability of success of further research. 

The antitumor activities of aniline mustards against Walker 256 solid tumor and 
L1210 and P388 leukemia are correlated with the hydrolysis rate constants of these 
compounds; also acute toxicity parallels their antitumor efficacy [784]. The anti- 
leukemic activities (L 1210 in mice) of l-(X-aryl)-3,3-dialkyltriazenes (42) can be 
described by eq. 178 [785], indicating that orrho-substituents reduce antileukemic 
activity, while electron donor substituents X increase it. However, from the hydrolysis 
rate constants of these compounds (eq. 179) follows that the introduction of electron 
donor substituents produces unstable drugs; the 4'-OCH, analog has a half-life of 
only about 12 min [785]. In addition, the acute toxicities of these compounds are 
correlated with their antitumor activities; thus, no more syntheses and testing of 
new analogs were recommended on the basis of this comparative QSAR study [786]. 

optimum log P = 5.20 

log 1/C = 0.100( 50.08) log P - 0.042( 50.02) (log P)' - 

- 0.312(+0.11) CO' - 0.1,78(fO.O8) MR-2,6 

+ 0.391(+0.18) E,-R + 4.124(*0.27) 

optimum log P = 1.18 

(n = 61; r = 0.836; s = 0.191) 

log kJk, = -4.42(50.29) 0 - 0.016(+0.13) 

(n = 14; r = 0.995; s = 0.171) 

+ 

(179) 

Eq. 180 was derived for the antitumor activities of 9-anilinoacridines (43) [789]. The 
coefficients of the C.n terms indicate that activities fall off more rapidly for the 
hydrophilic analogs; as the parent compound has a log P value of about 4.8, the 
lipophilicity optimum can be estimated to be close to log P = 0. 
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log l/Dso = 0.63($-0.27) CX - 0.75(f0.23) log (p1 . 10”” + 1) - 
- 1.01(+0.09)C0 - 1.21(+0.36)R~s - 0.26(?0.16) MR2 + 
+ 4.95( k0.75) MR, - 5.13( k0.86) log (p2 . loMR3 + 1) - 

- 0.67(f0.12) 13.6 - 1.67(+0.20) Es-3’ - 1.57(f0.21)(E,-3’)2 + 
+ 0.58( k0.13) I-NO2 + 0.87( f0.31) IDAT + 0.52( k0.17) IBS + 
+ 9.24( f 1.33) 1180) 

log p1 = 5.64 
log pz = 0.01 

(n = 509; s = 0.893; s = 0.305) 

QSAR studies on hallucinogens [790] and on drugs acting at the central nervous 
system [791] have been reviewed; together both reviews contain about 260 QSAR 
equations. Also the QSAR of steroids, displaying a wide variety of different biological 
activities, has been reviewed [792]. 

Some more examples of quantitative structure-activity relationships are contained 
in textbooks [40-441 and in dedicated reviews (e.g. [18, 3961). QSAR publications 
are regularly reviewed in the abstracts section of the journal Quantitative Structure- 
Actiuity Relationships [85] and by some other abstracts services [86 - 881. 

optimum Cn = -4.93 
optimum MR3 = 1.44 
optimum E,-3’ = -0.53 

7.5. Activity-Activity Relationships 

Activity-activity relationships, i.e. the ,comparison of activities of a group of 
compounds in different biological test systems, are the orphans in QSAR research. 
No systematic investigations of the dependence of activity-activity relationships on 
the physicochemical properties of drugs have been performed, although such studies 
would be of utmost importance for drug research in pharmaceutical industry. In 
industrial lead structure optimization hundreds or even thousands of compounds 
are tested in simple in uitro models, e.g. in enzyme inhibition, receptor binding, cell 
culture test models, and isolated organs. In uivo activities of the compounds are 
then estimated from the activity-activity relationships which were obtained from a 
few standard compounds in more complex test models, e.g. in whole animals. In 
this way the lives of legions of test animals are saved. 

Most often linear relationships are obtained between different types of biological 
activities within a group of related compounds, provided that both activities are 
caused by the same mechanism of action and that drug transport and distribution 
do not predominate (e.g. Figure 44) [132, 396, 793 - 7951. 

Most often lipophilicity plays an important role if different compartments of a 
biological system or if in uitro and in viuo data are compared. From a statistical 
point of view a problem of such activity-activity relationships is that both sides of 
the equation contain variables including experimental error. 
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Eqs. 18 1 and 182 correlate hypotensive and bradycardic activities of a,-adrenergic 
clonidine analogs (44) [796, 7971. While no log P term was necessary for the 
ED,,(bradycardia) values (eq. 181), it had to be included to describe ED,,(hypoten- 
sion) values by ED,,(bradycardia) values (eq. 182) [396]. 
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log l/ED,,(hypotension) = 1.118( f0.15) log l/ED,,(bradycardia) - 0.824 
(n = 14; r = 0.979; s = 0.177; F = 283.01) 

(181) 

log l/ED,,(hypotension) = 1.039( f0.26) log l/ED,,(bradycardia) + 
+ 0.566(+0.19) log P - 1.511 (182) 

(n = 14; r = 0.976; s = 0.199; F = 111.2) 

For the same class of compounds Timmermans determined log Papp values 
(n-octanollbuffer, pH = 7.4), binding affinities to a, adrenoceptors, IC,,a, (displace- 
ment of the a, antagonist prazosin), binding affinities to a, adrenoceptors, IC,,a, 
(displacement of the a2 agonist clonidine), antihypertensive activities (mediated by 
a central mechanism) in anesthetized normotensive rats (ED25%, i.v. application), 
and hypertensive activities (mediated by peripheral a stimulation which, in the 
absence of central nervous system regulation, causes blood vessel contraction) in 
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pithed rats (ED60mm, i.v. application) [798,799]. The $60 values are directly related 
to ICjoa2 values (eq. 183), because the site of application of the drugs and the site 
of action are identical. On the other hand, a parabolic lipophilicity relationship had 
to be included to describe the relationship between the antihypertensive activities 
(pC25 values) and the IC50a2 values, because the drugs must cross the blood-brain 
barrier to achieve their central effect. A slightly better description of the data is 
obtained if the bilinear model is used instead (eq. 184) [SOO, 8011. As a consequence, 
the antihypertensive effect and the undesired hypertensive side effect can be correlated 
by eq. 185. 

pC60 = 1.163(40.21) log 1/IC50~2 - 0.962(*0.39) (183) 
(n = 21; r = 0.936; s = 0.317; F = 135.15) 

pc25 = 0.805(+0.22) IOg P - 3.373(f 1.02) log (pP + 1) + 
+ 1.071(&0.20) log 1/ICjoaz - 1.164(+_0.39) 

log P = - 1.986 
(n = 21; r = 0.971; s = 0.284; F = 65.22) 

optimum log P = 1.48 

pC7.5 = 0.784(*0.26) log P - 3.685( F 1.39) log (PP + 1) + 
+ 0.830(f0.20) pC60 - 0.189(&0.30) 

log P = -2.078 
(n = 21; r = 0.954; s = 0.354; F = 40.52) 

optimum log P = 1.51 

Compounds with log P values around 1.5 display the highest antihypertensive 
selectivity, because they easily penetrate the blood-brain barrier. Much more 
important is the result that both biological effects can be predicted with a high 
degree of accuracy from the simple?binding assay (eq. 183), combined with 
lipophilicity measurements (eq. 184). While the determination of $25 and pC60 
values of a single compound needs about twenty to fifty (and even more) rats, the 
brain homogenate of only one rat is sufficient to measure the in vitro binding 
affinities of a large number of analogs. 

Similar equations have been derived for bacterial systems, comparing the folate 
biosynthesis inhibition 150 of a series of 4’-substituted 4-aminodiphenyl sulfones (45) 
in a cell-free system with Escherichia coli and Mycobacterium smegmatis (eq. 186) 
cell culture inhibition, MIC (log k’ is a HPLC capacity factor, closely related to 
lipophilicity, expressed by n: n = 15; r = 0.994) [596]. 

6 
log l/MIC = 0.729( k0.38) PI50 + 0.933( k0.73) log k’ - 

- 1.438(+0.68) log (pk‘ + 1) + 1.532(+2.33) 
log P = -0.35 
(n = 17; r = 0.899; s = 0.329; F = 9.22) 

optimum log k = 0.621 
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Figure 45: Spectral mapping diagram of neuroleptic drugs. Circles represent the compounds and squares the different test models. The sizes of the 
symbols indicate the relative activities of the drugs and the sensitivities of the test models; numbers refer to Figure 3 of ref. [802] (diagram 
provided by courtesy of Dr. Paul Lewi, Janssen Pharmaceutica, Beerse, Belgium). 
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A spectral mapping technique, based on principal component analysis, has been 
developed for the two-dimensional interpretation of multidimensional activity 
data. It was successfully applied to characterize the activity profiles of drugs 
according to their effects in different pharmacological test models (e.g. Figure 45) 

Principal component analysis and QSAR were used to analyze various biological 
test systems for the quantification of ecotoxic compounds [808]. The QSAR of in 
vitro approaches for developing non-animal methods to substitute the in vivo LDso 
test has been reviewed [809]. 

[SO2 - 8071. 





QSAR: Hansch Analysis and Related Appmaches 
by Hugo Kubinyi 
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8. Applications of Free Wilson Analysis 
and Related Models 

The Free Wilson model never became as popular as the Hansch model, due to the 
limitations inherent in its applicability and predictive ability. Only a few hundred 
studies [390, 3911 have been published since 1964. 

From a Free Wilson analysis of antimalarial 2-phenylquinolinylmethanols (46), 
including 40 substituents in 6 different positions (n = 69; r = 0.905; s = 0.359; 34 
variables, corresponding to 69 - 34 - 1 = 34 degrees of freedom), Hansch equations 
could be derived for the group contributions in different positions of the molecule, e.g.  
in the 4-position (eq. 187), 7-position (eq. 188), and the 8-position (eq. 189) [SlOl. 

CH(OH)CH,R 
R6 

(46) R7 R3’ 

R4’ 
a4, = 0.220( k0.35) TC + 0.626(? 0.94) ometa - 0.232( If: 0.23) 
(n = 7; r = 0.895; s = 0.133; F = 8.06) 

a7 = l .Sll(k0.65) upora - 0.010(+0.19) (1 88) 

a, = 0.959( k0.78) TC - 0.395( f0.57) i- (189) 

(n = 5; r = 0.981; s = 0.123; F = 77.7) 

(n = 4; r = 0.966; s = 0.151; F = 27.9) 

These analyses aided in the stepwise derivation of Hansch equations for the 
antimalarial activities of structurally related phenanthreneaminoalkylcarbinols (47) 
(eq. 190) [778] and finally led to the derivation of eq. 175 (chapter 7.4) for a much 
larger group of analogs [779]. 

CH(OH)CH,NR’R~ 

Y 
(47) 

log 1/C = 0.396(&0.134) n, + 0.270(f0.105) n, + 0.654(*0.280) ox + 
+ 0.878( k0.269) oY + 0.137(+0.087) nsum - 0.015(+0.009) ( T C ~ ” ~ ) ~  + 
+ 2.335150.194) ( 190) 

optimum n,,, = 4.44 
(n = 102; r = 0.913; s = 0.258) 



140 8. Applications qf Free Wilson Analysis and Related Models 

Some other examples of the stepwise derivation of Hansch equations and of the 
improvement of Hansch equations from the interpretation of Free Wilson analyses 
have been published (compare eqs. 75-77, chapter 4.3) [22, 390, 3931. 

Different sets of compounds were used in a Free Wilson analysis of analgesic 
benzomorphans (48); the first one included all compounds (38 variables; n = 99; 
r = 0.893; s = 0.466), a second one only contained racemic compounds (36 variables; 
n = 86; r = 0.909; s = 0.457) and a last one excluded all single point determinations 
(20 variables, n = 70; r = 0.879; s = 0.457) [811]. 

P 
R' 

Two extra variables in the first analysis accounted for (+)-enantiomem 
(ai = -0.97) and (-)-enantiomem (ai = 0.17). While the value for the more active 
(-)-enantiomem is not too far from the theoretical value of 0.3, which results if the 
( + )-enantiomers are absolutely inactive, general experience shows that the less active 
enantiomers cannot be expected to differ from the active ones (or the racemates) 
by a constant value (problems associated with QSAR analyses of optically active 
compounds are discussed below and in chapter 9.1). The group contributions of 
the benzomorphans could be used to predict the biological activity values of 
structurally related morphinans (49), which are more active than the benzomor- 
phans by some orders of magnitude (eq. 191) [811]. 

R" 

log 1/C,b, = 0.769(&0.35) log l/Ccalc + 4.052( f 1.02) 
(n = 6; r = 0.950; s = 0.254; F = 37.12) 

In a Free Wilson analysis of norepinephrine-uptake inhibiting phenethylamines 
(50), including achiral analogs, racemates, and pure enantiomers, but also 
diastereomeric mixtures, different group contributions were attributed to the R and 
S substituents (9 variables; n = 30; r = 0.963; s = 0.276) [812]. 

While the assignment of values of 0.5 to R and S positions (1 to either position 
in the case of pure enantiomers) is correct for the racemates, ratios of 0.5 : 0.5 : 0.5 : 0.5 
were arbitrarily assigned to the R and S positions of the two independent chiral 
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centers of diastereomeric mixtures; however, this is an arbitrary and most often 
wrong assumption (see chapter 9.1). 

A comparative study of the inhibitory activities of benzamidines (37 variables) 
against the serine proteases thrombin (n = 83; r = 0.90; s = 0.39), plasmin (n = 82; 
r = 0.96; s = 0.24), and trypsin (n = 84; r = 0.91; s = 0.35) [813] shows differences 
between the group contributions of different substituents, giving some hints for 
analogs displaying higher selectivities to any of the three different proteases. The 
use of the partial least squares (PLS) method (chapter 5.3) has been proposed for 
comparative analyses [390], but seemingly Free Wilson analyses have not yet been 
performed by using PLS analysis. Recently, a stepwise principal component regres- 
sion analysis was used in Free Wilson analysis [411]. 

The simplest form of a Free Wilson analysis is presented in eq. 192 [22], which 
describes the antibacterial activities of phenol and isomeric chlorophenols (51, 
R = H, C1; one to five chlorine atoms) us. Staphylococcus aureus; at least the linearity 
of the structure-activity relationship can be derived from eq. 192; on the other hand, 
although most probably lipophilicity is responsible for the variance in the biological 
activities, no Hansch equation can be derived, because each other physicochemical 
property of the chlorine atom will give identical results. 

D O H  
R -  

log 1/C = 0.503(&0.13) [Cl] + 2.578 (192) 
(n = 9; r = 0.960; s = 0.256; F = 83.06) 

Free Wilson analyses which include too many single-point determinations 
(substituents which only once occur in the data matrix) suggest a much better fit 
of the biological data than is actuallp obtained without these values. For the 
hallucinogenic properties of phenylalkylamines excellent statistical parameters result 
if all members are included in the analysis (15 variables; n = 23; r = 0.985; 
s = 0.182; F = 15.28; recalculated F value) [390, 8141. Elimination of the single- 
point determinations tells the truth (7 variables; n = 15; r = 0.896; s = 0.182; 
F = 4.08) [390]: the correlation coefficient and the overall significance considerably 
decrease; only the number of degrees of freedom and therefore the standard deviation 
s remain constant (as for the sets of 86 and 70 benzomorphanes, see above), indicating 
that s is the only reliable statistical parameter if single-point determinations are 
included. 

Sometimes Free Wilson analyses are presented in graphical form (e .g .  [413, 815]), 
which allows an easier interpretation of the results if many variables in different 
positions are involved. 

The use of Free Wilson-type indicator variables in Hansch analysis has been 
discussed in chapters 3.8, 4.3, and 7 [21, 390, 391, 3931. Nonadditivities in Free 
Wilson analyses due to nonlinear lipophilicity-activity relationships have been 
discussed in chapter 4.3 [22, 390 - 392, 3941. 

The effect of an additional nonlinear term in a Free Wilson equation is 
demonstrated by eqs. 193 and 194 [390, 3931, which have been derived for the 
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Table 26. 
table for the Free Wilson analysis [393] 

Hypnotic activities of N,N’-diacylureas R’NHCONHR2; structures and 

Substi 
R’ 

Acet 
Prop 
Acet 
Prop 
Acet 
But 
Prop 
Acet 
But 
Prop 
Acet 
Pent 
But 

ents”) 
RZ 

Prop 
Prop 
But 
But 
Pent 
But 
Pent 
Hex 
Pent 
Hex 
Hept 
Pent 
Hex 

Tab 
Prop 

1 
2 

1 

- 

1 

1 

for F 
But 

1 
1 

2 

1 

1 - 

!e Wi 
Pent 

1 

1 

1 

2 

- 

In Ar 
H e x  

1 

1 

1 - 

ysis 
Hept - 

1 

- 

Interaction 
term, N1.N2 

6 
9 
8 

12 
10 
16 
15 
12 
20 
18 
14 
25 
24 

Log 1/c 
1.84 
2.06 
2.16 
2.23 
2.21 
2.40 
2.35 
2.46 
2.38 
2.25 
2.55 
2.32 
2.28 

a)  Acet, Prop, But, Pent, Hex, Hept = acetyl, propionyl, butanoyl, pentanoyl, 
hexanoyl, and heptanoyl 

hypnotic activities of N,N’-diacylureas (Table 26). Although eq. 193 contains 
5 parameters for only 13 compounds, it is not significant at the 95% level. 

log 1/C = -0.003(f0.22) [Prop] + 0.149(f0.22) [But] + 
+ 0.186( k0.23) [Pent] + 0.242( k0.29) [Hex] + 
+ 0.511(+0.47) [Hept] + 2.039(&0.34) (193) 

(n = 13; r = 0.822; s = 0.135; F = 2.93) 

A much better and highly significant result is obtained if an interaction term N, . N, 
(N being the number of carbon atoms of each of the acyl residues) is included 
to account for a noillinear dependence of the biological activity on the chain 
length; all regression coefficients in eq. 194 are significant at the 95% level. In 
addition, the group contributions of the acyl residues are highly correlated with 
their chain lengths (a, us. N, including the acetyl group, ai = 0: n = 6; r = 0.993; 
s = 0.090). The nonlinear dependence on N results from a nonlinear lipophilicity- 
activity relationship (eq. 195) [767]; absolutely identical statistical results are obtained 
if the log P term in eq. 195 is replaced by N [393]. 

log 1/C = 0.430( k0.17) [Prop] + 0.910( k0.28) [But] + 
+ 1.249(+0.39) [Pent] + 1.487(*0.45) [Hex] + 
+ 1.813( k0.49) [Hept] - 0.085( A0.03) N, . N, + 1.930( f0.13) (194) 

(n = 13; r = 0.982; s = 0.049; F = 26.59) 
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Table 27. Result of a Free Wilson analysis (R', 
RZ, R3 = alkyl, cycloalkyl; p = 6.499; n = 128; 
r = 0.991; s = 0.231) [390, 8011 of the affinities of 
quaternary ammonium compounds to the post- 
ganglionic acetylcholine receptor [8 161 

-2.479 
-2.175 
-1.228 
-1.177 
-0.909 
- 1.035 
-0.819 
-0.683 
0.872 

0.374 
2.035 
2.047 
1.467 
0.806 
2.975 

-0.070 

log 1/C = -0.177( k0.09) (log P), + 0.599( k0.22) log P + 1.893 (195) 
(n = 13; r = 0.918; s = 0.079) 

Although this example may be criticized because of its too narrow range of activity 
values, it clearly shows that the Free Wilson model is generally restricted to linear 
structure-activity relationships. 

Another type of hitherto unexplained nonadditivity is observed in a Free Wilson 
analysis of the affinities of quaternary ammonium compounds to the postganglionic 
acetylcholine receptor [816]. While the whole set of compounds, including a large 
number of antagonists, but also some agonists and partial agonists, can excellently 
be described by only 15 variables (n = 128; r = 0.991; s = 0.231) (Table 27) [390, 
8011, a closer inspection of the individual group contributions shows that they 
themselves do not behave in an additive manner. 

In all analogs that contain no ring, the introduction of a phenyl group, C6H,, 
or a cyclohexyl group, C6H, 1, increases affinity by about 1.2 to 1.7 logarithmic 
units. But it makes a large difference, whether R = C,H, (instead of H) is 
introduced into R-CH,CH,CH,-, R-CH,CH,O-, C,H,CH(R)COO-, or 
C6H1 ,CH(R)COO - ; a corresponding effect is observed for the introduction 
of C6H11 into R-CH,CH,CH,-, R-CH,CH,O-, C,H,CH(R)COO-, or 
C,H,,CH(R)COO- (Table 28). If one phenyl group in (C,H,),CHCOO- is 



144 8. Applications of Free Wilson Analysis and Related Models 

Table 28. 
ammonium compounds X-CH,CH2-N+(R1RZR3) [390, 8011 

Nonadditivies in the Free Wilson group contributions of quaternary 

Differences in receptor affinity (logarithmic scale), by changing 

R in group X from: H to C6H5 H to C,jH,, C6H5 to C&,, 

R-CHzCH2CH2- 1.266 1.492 0.226 

R-CHzCHZO- 1.302 1.660 0.358 

C6H&H(R)COO- 2.100 3.263 1.163 

C6Hl iCH(R)COO- 3.070 2.502 -0.568 

exchanged for C,H, ,, the affinity increases by + 1.163 log units; on the other hand, 
the same exchange in C,H,(C,H,,)CHCOO- reduces the affinity by -0.568 log 
units [390, 8011. 

Eq. 196 (K = affinity constant) results if the information from the Free Wilson 
group contributions is translated into indicator variables [PHE] (number of phenyl 
groups in the molecule), [c-HEX] (number of cyclohexyl groups), IOH (presence of a 
hydroxyl group), Icoo (presence of a sterically hindered carboxylate group, i.e. an 
acetyl group bearing two large substituents), and [INTI for the simultaneous presence 
of C,H, and C,H,, in the ester group. The coefficient of [INTI indicates that 
whenever C,H, and C,H, , appear together, affinity is much higher than expected; 
although some other QSAR analyses were derived for this data set [366, 403, 545, 
733, 7341, no reasonable explanation for [INTI can be given, even if the entropy of 
ligand binding or a cooperative effect are taken into account. 

log K = 1.258(&0.09) [PHE] + 1.545(*0.11) [c-HEX] + 
r 

+ 1.069( k0.19) IOH + 0.755( k0.17) Icoo + 
+ 0.769( k0.19) [INTI + 4.142( k0.12) (196) 

(n = 128; r = 0.983; s = 0.290; F = 711.14) 

Free Wilson analyses may include far fewer variables than substituents, if group 
contributions being not significant are eliminated. Indicator variables for 28 different 
structural features and different test models and 15 interaction terms were 
investigated to describe the inhibition of dihydrofolate reductase by 2,4-diaminopyri- 
midines (52); 9 indicator variables and 2 interaction terms were selected and eq. 
197 was derived out of the 2047 theoretically possible linear combinations of any 
numbers of these variables [412]. 

SO,F 
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log 1/C = 0.365(*0.12)1-1 + 1.013(f0.12)1-8 - 0.784(,0.19)1-9 + 
+ 0.419( k0.20) 1-13 - 0.220( k0.09) 1-15 t 

+ 0.513(&0.18) 1-20 + 0.674(+0.23) 1-4 ’ 1-8 + 7.174(f0.07) (197) 
(n = 105; r = 0.903; s = 0.229) 

In a series of ACTH-derived peptides the same quality of fit was obtained if only 
11 group contributions (n = 52; r = 0.984; s = 0.406; F = 112) were used instead 
of the original set of 24 variables (n = 52; r = 0.986; s = 0.464; F = 40) [413]; the 
standard deviation s is even smaller, because a slight increase in the sum of squared 
errors is more than counterbalanced by the much larger number of degrees of 
freedom. 

Mager [414-4161 introduced the term “reduced Free Wilson model” for this 
modification and proposed the use of stepwise regression analysis to derive the 
equation; some more examples of this approach have been published [417, 544, 
5451. However, one should bear in mind that the significance of a certain group 
contribution not only depends on its confidence interval but also on the selection 
of the reference substituents [390, 391, 4101. 

The computer-automated structure evaluation (CASE, chapter 4.6) of 9- 
anilinoacridines (53) is illustrated below. The CASE program automatically 
generated fragments, containing about 3 - 10 heavy atoms, to differentiate between 
active and inactive analogs. Out of nearly 200 descriptors produced in this manner, 
several biophores and biophobes (i.e. fragments increasing or reducing biological 
activities) were selected by the program and correlated with the antitumor activities 
of the compounds (eq. 198) [519]. 

log l/ED,, = 0.63n1F, + 0.31n,F2 + 0.20n3F, - 1.85n,F4 + O.l6n5F, + 
+ 0.51n6F, - 0.34n7F, - 0.21n8F, + 0.41n9F, + 
+ 0.40n10F10 + 0.37nI,F,, - 0.40n,,F,, - 0.35n13F13 - 

- 0.26nl4Fl, - 0.08 log P + 4.11 (198) 

(n = 461; r = 0.805; s = 0.46; F = 54.52) 

An example of the application of the DARC-PELCO approach is given in eq. 199 
(PC’ = phenol coefficient) [421], which describes the antibacterial activities of linear 
and branched alcohols (54); however, the result is trivial, because the compounds 
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are described with about the same quality of fit just by a linear lipophilicity-activity 
relationship (eq. 200) [817]. 

log PC' = 0.392( k0.21) A1 + 0.268( k0.21) A2 + 0.158( k0.21) A3 + 

(n = 15; r = 1.000; s = 0.050) 
+ 0.446(fO.l5)Bl + 0.533(+0.04)Ci - 2.05(+0.16) (199) 

log P C  = 1.024( k0.06) log P - 1.536( k0.07) 
(n = 15; r = 0.996; s = 0.090) 

Hypermolecule approaches, like the MSD and MTD method (chapter 4.6), are to 
some extent related to the Free Wilson model. For a series of progesterone analogs, 
a hypermolecule was constructed (Figure 46); in a stepwise procedure the different 
atomic positions were characterized as being beneficial ( E  = - l), irrelevant ( E  = 0), 
or detrimental (E = + 1) to biological activities. Afterwards the minimal topological 
difference (MTD) values us. this optimized map were calculated for each member 
of the series; together with a side chain-corrected lipophilicity parameter f they were 
correlated with the relative binding affinities (RBA) to the progesterone receptor 
(eq. 201) [542]. 

E = - 1: positions 1, 14, 20, 39 
E = 0: positions 3, 6, 8, 13, 15, 16, 22-27, 30, 33-36, 40 
E = + 1: positions 2, 4, 5, 9, 11, 28, 29, 31, 32, 37, 38 

log RBA = 0.696( k0.09) f - 0.744( k0.13) MTD + 3.917( +0.66) (201) 
(n = 55; r = 0.935; s = 0.331) 

Magee's approach to active-site binding analysis [544, 5451 may be considered as 
a combination of the hyperstructure conc_ept (chapter 4.6) with the mixed approach 
(chapter 4.3), as can e.g. be seen from eq. 202 [545]; first a hyperstructure (55) was 
formulated for a series of para-substituted phenyl-N-methylcarbamates and then 

22 

- 30 
2 

-3 1 

-37 

'12 

15 

Figure 46: Hypermolecule for progesterone derivatives (eq. 201). Open circles o stand for beneficial 
(E = - I ) ,  filled circles for detrimental (E = +I), and dots for irrelevant ( E  = 0) positions 
(reproduced from Figure 2 of ref. [542] with permission from the copyright owner). 
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their inhibitory activities against acetylcholinesterase were correlated with lipo- 
philicity and polarizability in the l-position and with Free Wilson group 
contributions in the 2-, 5-, and 6-positions. 

PI,,, = 0.221(-t0.18)f1 + 0.064(*0.04) MR, + 0.859(+0.36) P, + 
+ 0.864(f0.30) P, - 0.390(f0.31) P, + 3.40 

(n = 40; r = 0.865; s = 0.341) 

The Free Wilson analysis was also applied to describe 
a-adrenoceptor binding [8 151, 
analgesic activities [16, 415, 492, 811, 818, 8191, 
antibacterial activities [16, 22, 40, 41, 42, 421, 424, 803, 820-8251, 
anticholinergic activities [826], 
antilipemic activities [827], 
antiviral activities [828 - 8301, 
ATPase inhibition [831], 
benzodiazepine receptor binding [832 - 8341, 
bradykinin potentiation [835], 
butyrylcholinesterase inhibition 1393, 836 - 8401, 
carboxylesterase inhibition [836], 
dopamine P-hydroxylase substrate properties [20, 8411, 
dopamine receptor binding [815, 8421, 
glucocorticoid activities [843], j r  

inhibition of oxytocin contraction [844- 8471, 
learning and behavior [413, 8481, 
muscarinic receptor binding [8 1.51, 
neuroleptic activities [815], 
norepinephrine-uptake inhibition [812, 841, 8491, 
phenylethanolamine-N-methyltransferase inhibition [841], 
phenylethanolamine-N-methyltransferase substrate properties [20, 841, 8491, 
progestational activities [850], 
renin inhibition [85 11, 
serotonin receptor binding [815], 
thyromimetic activities [8, 3931, 
toxicities [16, 414, 415, 425, 429, 430, 827, 836, 852-8581, and 
tranquillizing activities [853, 8591. 

More applications of the Free Wilson model are reviewed in textbooks (e.g. 
[40-431) and in dedicated articles [390, 3911. Some statistical problems arising in 
the application of the Free Wilson model are discussed in refs. [390, 4111. 
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9. 3D QSAR Approaches 

9.1. Stereochemistry and Drug Action 

The different enantiomers of optically active compounds have identical chemical 
and physicochemical properties, except their different influence on the rotation of 
polarized light. However, a binding site is a chiral environment that discriminates 
between the different enantiomers as if they were completely different molecules; 
optical enantiomers also differ in their metabolism. Thus, stereochemistry plays an 
important role in the biological activity of drugs. 

Several contributions by Ariens and Lehmann [860 - 8671 stress the important 
influence of chirality on biological activity; in a strong effort to push pure 
enantiomers instead of racemates for human medication, Ariens polemically catego- 
rized racemates as “drugs containing 50% impurity” [861]. The situation is even 
worse in the case of diastereomeric mixtures, for two reasons: first, 2” species (n 
being the number of asymmetric centers) are involved and second, despite the fact 
that each individual racemate is a 50 : 50 mixture of the corresponding enantiomers, 
the amount of the different racemates in the mixture varies largely. The relative 
ratios of the racemates depend on the reaction conditions used in their synthesis, 
on the stability and relative energies of the different transition states as well as 
on the isolation and purification conditips. 

The pure enantiomers of labetalol (56), a P-antiadrenergic drug containing two 
different centers of optical asymmetry, show different pharmacological charac- 
teristics: while the RS and the SS isomers are only weakly antagonistic against a,, 
PI ,  and B2 receptors, the SR isomer carries most of the a,-antagonistic activity 
and the RR isomer contributes mainly to the P I -  and &-antagonistic activities 
(Table 29) [861]. 

I 

H O W  CH, 
Whenever possible, pure enantiomers are nowadays developed and introduced 

into the pharmaceutical market; the only exception are compounds, where identical 
pharmacological profiles are found for both enantiomers or compounds, where the 
much higher price of one enantiomer, as compared to the racemate, precludes such 
a selection. 

Different QSAR equations have been derived for different enantiomers of 
phenoxypropionic acids 18681, giving evidence for the validity of Pfeiffer’s rule 
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Isomer 

R,R 
R,S 
S,R 
s,s 

Table 29. 
of labetalol (56) [861] 

Antiadrenergic activities (PA, values) of different stereoisomers 

a1 Receptor p1 Receptor pz Receptor 
(rabbit aortic (guinea pig (guinea pig 

strip) left atrium) tracheal strip) 
5.87 8.26 8.52 
5.5 6.97 6.33 
7.18 6.37 < 6.0 
5.98 6.43 < 6.0 

[860,869] that the activity ratio (the eudismic index) of the active (eutomer) to the less 
active enantiomer (distomer) increases with increasing activity of the more active 
one. Because of exceptions to this rule [97] there has been some dispute, whether 
Pfeiffer’s rule indeed is generally valid or not [870 - 8741. Heterogeneous groups of 
compounds have to be separated into appropriate subgroups: while for a mixed 
group of acetylcholine receptor antagonists no correlation could be found (n = 18; 
r = 0.57), excellent results were obtained after separation of the 1,3-oxathiolanes 
(57, X = S) (n = 6; r = 0.98) and the 1,3-oxathiolane 3-oxides (57, X = >SO) 
(n = 12; r = 0.98), giving evidence that Pfeiffer’s rule at least holds true for closely 
related series (Figure 47) [871-8731. Comparing the eudismic ratios of more 
heterogeneous series, one should also consider the possibility of multiple binding 
modes of different analogs. 

Schaper derived equations to describe the nonlinear dependence of the biological 
activities of racemates at different concentrations on the activities of the pure 
enantiomers [875]. Not only quantitative but also qualitative differences were 
observed for the QSARs of different enantiomers of chiral phosphonic acids; a 
linear dependence of butyrylcholinesterase inhibition on chain length resulted for 
the (+) enantiomers, while a clear bilinear dependence was observed for the (-) 
isomers [876]. 

On the other hand, different enantiomers of chymotrypsin ligands (2 achiral 
compounds, 19 D-isomers, and 24 L-isomers) could be combined in one equation 
on the assumption that the group with the largest MR value binds in a hydrophobic 
cleft (the so-called e2 area), while the smaller groups bind in Q ,  space (eq. 203; 
MR-L = MR of the larger group, MR-S = MR of the smaller group) [877]. 

log 1/K = 0.72( k0.13) MR-L + 0.230( k0.07) MR-S + 
+ 0.323(f0.20) 1-1 + 0.311(f0.15) 1-2 - 1.062(&0.45) (203) 

(n = 45; r = 0.928; s = 0.235) 
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Figure 47: Pfeiffer’s rule [860]. Eudismic indices (= logarithm of the ratio of the affinities of the 
more active analog to the less active analog) are plotted against the affinities pK, of the eutomers 
(open symbols, 1,3-oxathiolane 3-oxides 57, X = >SO; filled symbols, 1,3-oxathiolanes 57, X = S; 
circles indicate the affinities to the ileum muscarinic receptor, triangles indicate the affinities to the 
bladder receptor) (reproduced from Figure 2 of ref. [871] with permission from Elsevier Trends 
Journals, Cambridge, UK). 

The proper parametrization of optically active compounds in Free Wilson analysis 
has been discussed in chapter 8. 

With the exception of the ambiguities in the alignment procedure, stereochemistry 
is adequately considered in 3D QSAR ahalyses. 

9.2. Active Site Interaction Models 

Early attempts to map the properties of an unknown receptor (or any other ligand 
binding site) started from qualitative structure-activity relationships [878], from MO 
calculations of preferred conformations of ligands [879] and from the interpretation 
of multiparameter Hansch equations (e.g. Figure 48) [28]. 

Pharmacophoric pattern searching and receptor mapping [41, 132,288,880- 8821 
use information from the QSARs in the different positions of the ligands and also 
from ligands with restricted internal rotations (rigid analogs) to derive the structural 
elements being necessary for receptor affinity (the pharmacophore) and to draw a 
conclusion which properties are relevant at the different sites of the receptor surface 
(the receptor map) (e.g. [28, 737, 883 - 8891). Receptor maps can be used to predict 
the affinities or activities of new analogs in a qualitative manner or, if a QSAR 
equation has been derived, in quantitative terms. Also hyperstructure models, 
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hydrophobic 
stericallv sensitive f 
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-2.0(1- 3) 

nonhydrophobic 

CH3 0.2(MR) - 0.02(MR)2 
H2N 
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hydrophobic? for displacement of OC6H4X 

from S020C6H4X, 0.9(1- 4) 

Figure 48: Receptor map of dihydrofolate reductase, derived from eq. 81 (chapter 4.3) (reproduced 
from Chart I of ref. [28] with permission from the American Chemical Society, Washington, DC, 
USA). 

like MSD, MTD, and related methods (chapter 4.6) may be considered as 
quantitative approaches to receptor mapping. 

Systematic investigations of the interaction energies between ligands and hypo- 
thetical binding sites have been performed by Holtje et al. for 

chloramphenicol binding to ribosomes [29, 30, 890, 8911, 
pyrimidinone H,-antihistaminics [89l, 8921, 
acetylcholinesterase substrates [890, 8931, 
cyclopropylamine inhibitors of monoamine oxidase [894, 8951, 
antihypertensive benzothiadiazine 1,l-dioxides [896], 
norepinephrine-uptake inhibition by phenethylamines [897], 
sulfonamide binding to serum albumin [898], 
calcium antagonism of verapamil analogs [899, 9001, 
binding, calcium agonism, and calcium antagonism of 1,4-dihydropyridines 
[901- 9041, and 
5-HT2 agonism of 2,5-dimethoxyphenethylamines [905]. 

Simple organic molecules are taken as models of the different amino acid side 
chains, e.g. 

propane for aliphatic amino acids, 
acetamide for amide side chains, 
toluene, p-cresol, and 3-methylindole for aromatic amino acids, 
n-propylguanidine (positively charged) for basic amino acids, 
acetate (negatively charged) for acidic amino acids, and 
methanol for serine. 

Next, the interaction forces of each molecule are calculated by using several of these 
probes; all analogs of a series are placed in standard geometries and at certain 
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Figure49: Regression line for the arginine binding site model of the acyl side chain of 
chloramphenicol (58) and analogs. Biological activity values are plotted against the calculated 
interaction energies IE (kcal instead of kJ and 8, instead of nm were given in the original diagram; 
1 kcal = 4.18 kJ, 1 8, = 0.1 nm) (reproduced from Figure 2 of ref. [30] with permission from the 
copyright owner). 

distances to the different amino acid side chains (the hypothetical binding sites). 
The resulting energies are then correlated with receptor affinities or biological 
activities. 3D coordinates from protein crystallography were used to calculate the 
interaction energies of sulfonamide inhibitors of erythrocytic carboanhydrase [906] 
and of methotrexate analogs as inhibitors of dihydrofolate reductase [907]. 

The binding of the acyl side chain of chloramphenicol (58) analogs to ribosomes 
could be explained by the interaction energies with an arginine side chain 
(n = 12; r = 0.857; s = 0.286) (Figure 49), while a histidine side chain modeled the 
interaction with the aromatic ring system of some other analogs (n = 12; r = 0.887; 
s = 0.205) (Figure 50) [30, 8911. 

H NHCOR 

X -  &&!-CH20H (58) 

OH H 

A hypothetical three-dimensional receptor complex was constructed from the 
known primary structure of the ribosomal L16 protein by using a short histidine- 
containing peptide of the L16 sequence in a low-energy conformation (Figure 51) [30]. 

The interaction energies between an arginine side chain and the aromatic ring 
close to the chiral center of verapamil analogs could be correlated with their calcium 
antagonistic activities (n = 10; r = 0.973; s = 0.095) [899]. 
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Figure 50: Regression line for the histidine binding site model of the aromatic ring substituents of 
chloramphenicol (58) and analogs. Biologicaloactivity values are plotted against the calculated 
interaction energies IE (kcal instead of kJ and A instead of nm were given in the original diagram; 
1 kcal = 4.18 kJ, 1 A =  0.1 nm) (reproduced from Figure 3 of ref. [30] with permission from the 
copyright owner) 
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Figure 51: Hypothetical receptor model for chloramphenicol (58) binding. Arginine and histidine 
in their postulated distances (left diagram) and the potential ribosomal protein L16 binding site 
(right diagram) for chloramphenicol (reproduced from Figures 4 and 5 of ref. [30] with permission 
from the copyright owner). 
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Figure 52: 
amino group with the active site of 
Eschevichia coli dihydrofolate reductase, 
calculated by GRID; the water molecule 
H39 is treated as a structural part of the 
enzyme in the calculations. The energy 
contours are plotted at -63 kJ . mol-'; 
they indicate two sites of strong attraction. 
The position of trimethoprim relative to 
the active site was adjusted so that the 
amino nitrogens N2 and N4 are located 
in these regions (reproduced from Figure 8 
of ref. [33] with permission from the 
American Chemical Society, Washington, 
DC, USA). 

Interaction potential of an 

In general, good to excellent correlations are obtained for certain amino acid side 
chains, while others fail to explain the structure-activity relationship. Quaternary 
charged and neutral acetylcholine analogs showed a much closer relationship of 
their acetylcholinesterase affinities to the interaction energies with a benzene ring 
than with a negatively charged acetate ion [890, 8931; thus prior assumptions that 
the cationic head of these analogs interacts with an anionic site at the enzyme had 
to be reconsidered. 

The concept of pharmacophore identdication based on molecular electrostatic 
potentials has been reviewed [908]. Some other approaches to correlate biological 
activities with the interactions at certain positions of the binding site were discussed 
in chapter 2 (eqs. 17 and 18). 

The strategy of interaction energy calculations has been extended by Goodford 
[33, 130,9091 to the program GRID [910], which calculates the interaction energies 
of different probe atoms around the surface of a protein of known 3D structure, 
giving contour maps of energy values (Figure 52). 

Contours having negative values can be interpreted as regions of attraction 
between the probe atom and the protein. Methyl (CH,), amino groups (NH,), 
charged amino groups (NH:), carbonyl oxygens (0), carboxy oxygen (0 -), hydroxyl 
(OH), and water (H,O) are used as probe atoms and groups; empirical hydrogen- 
bond potentials were derived for the determination of energetically favorable binding 
sites of proteins and of small molecules [38,909]. Thus, GRID is suited for the design 
of new ligands, to calculate fields for CoMFA-related 3D QSAR approaches 
(chapter 9.3), and (in a reverse mode) to model receptor binding sites for series of 
active analogs [909]. 

A simple and much faster rule-based algorithm is used in the program LUDI for 
the de now design of enzyme inhibitors (Figure 53) [38, 911 -9131. The program 
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Figure 53: 
the de nouo design of enzyme inhibitors. The 
program automatically identifies hydrogen bond 
donor, acceptor, and lipophilic aliphatic and 
lipophilic aromatic groups within a predefined 
area, e.g. the active site of an enzyme; in the next 
step favorable positions of interacting groups 
are generated (upper diagram) and a database 
is searched for possible ligands; a hitlist of 
molecules optimally interacting with these sites 
is generated (middle diagram; example of a 
good hit). Another hit, including additional 
interactions, is shown in the lower diagram; 
alternatively, this hit can be generated by the 
program by adding a small fragment to the 
ligand shown in the middle diagram (reproduced 
from Figure 3 of ref. [912] with permission from 
ESCOM Science Publishers BV, Leiden, 
The Netherlands). 

Concept of the program LUDI for 

interprets the 3D structure of a binding site in terms of hydrogen bond donor, accep- 
tor, and lipophilic aliphatic and aromatic interaction sites; it assigns complementary 
sites in standard geometries and distances, derived from the Cambridge database 
of crystal structures [141] and fits fragments and molecules from its own or external 
libraries of 3D structures to these sites. Finally, the obtained hits are evaluated 
according to their quality of fit and their estimated affinity, in this manner proposing 
new ligands as well as a rational modification of already existing lead structures. 

In an active analog mode LUDI may also be used to propose potential new drug 
candidates. Hydrogen-bonding and hydrophobic interaction sites are derived from 
a set of active analogs, the internal or external databases of 3D structures are 
searched for molecules having the same geometry of interaction sites, and ratings 
are estimated for the affinity values of these new structures. 

Atom-based lipophilicity contributions and molar refractivity contributions have 
been derived for 3D QSAR studies [266-2691. Audry et ut. defined molecular 
lipophilicity potentials [914- 9161 for the determination of lipophilic and hydrophilic 
regions of a molecule. 
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Abraham and Leo [917] proposed the conversion of hydrophobic fragmental 
constants to atomic contributions for the evaluation of hydrophobic interactions 
between molecules. Hydrophobic atom constants were estimated from published 
hydrophobic fragmental constants f [50, 9171 and applied to calculate the hydro- 
phobic field in a grid around the molecule [918]. The program HINT [38,918-9211 
maps such hydrophobic fields of molecules for 3D QSAR studies. HINT may also 
be used to estimate the log P values of molecules [920]. Additional routines KEY, 
LOCK, and LOCKSMITH were developed to predict complementary hydro- 
phobicity maps of drug structures from a known receptor surface and vice versa 
receptor maps from drugs [920, 9211. KEY uses the 3D structure of a binding site 
to model the hydrophobicity profile of the ideal ligand; correspondingly, LOCK 
uses substrate or drug structures to model the hydrophobic character of the binding 
site. LOCKSMITH identifies the significant hydrophobic areas of a series of active 
agents, based on their biological activities, as e.g. exemplified for allosteric modifiers 
of hemoglobin [921]. 

Distance geometry, originally introduced by Crippen [38, 9221, is an approach to 
calculate 3D coordinates from a set of distances; nowadays, it is routinely used for 
the calculation of 3D structures of organic compounds, peptides, and small proteins 
from 2D NMR measurements. The method was extended to quantitative receptor 
modeling [31, 923-9261 and Crippen demonstrated its application for the QSAR 
of DHFR inhibitors [31, 32, 432, 926-9311, Approximate 3D structures of the 
ligands are constructed in the distance geometry approach and low-energy conforma- 
tions are selected. Each ligand is characterized by ligand points, i.e. by positions of 
atoms or groups. Different conformers are considered by defining upper and lower 
boundaries of the distances between all different points. Also the binding site is 
defined by points, which can be either empty (a ligand point may be there) 
or filled (no ligand allowed). Different binding modes may hypothetically be assumed; 
allowed binding modes result from conformations where all the ligand points occupy 
empty space. The site points are classified to differentiate the nature or intensity of 
interaction. Then the smallest set of site points is determined and interaction 
parameters are calculated by a least squares procedure to minimize the differences 
between theoretical and observed binding energies. Scope and limitations of the 
method have been discussed [926]. The method was also applied to P,-adrenoceptor 
ligands [738, 925, 932-9341. 

Another distance approach was developed for the conformational analysis of 
calcium antagonistic benzothiazepines and related analogs [935, 9361. The most 
polar groups of the analogs are identified. Then the distances between these groups 
are calculated in different conformations. After a principal component elimination 
of redundant values the remaining distances are correlated with biological activity 
values, leading to a hypothesis on the active conformations at the receptor site. 

Voronoi binding site models [937 - 9391 are an approach to correlate binding 
affinities of ligands with proposed site geometries which are projected onto the surface 
of polyhedra. The allowed conformational space of each ligand is searched for the 
conformation and binding mode which is the energetically most favorable one, 
without further hypotheses concerning how the ligands may bind and which parts 
of the ligands might interact. 
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REMOTEDISC (receptor modeling based on the three-dimensional structure and 
physicochemical properties of the ligand molecules) [940 - 9441 starts from the 
low-energy conformation of a reference compound. Low-energy conformations of 
all other analogs are automatically superimposed to achieve a maximum overlap 
of atom-based physicochemical properties, e.g. the molecular lipophilicity potential. 
The relative importance of the different physicochemical properties of different 
regions of the active site cavity is then determined by using stepwise regression 
analysis. The method has been applied to 

antiviral ribonucleosides [940], 
benzodiazepine receptor ligands [941], 
the binding site of the nucleoside transporter protein [942, 9431, and 
the in vitro antitumor activities of purine-6-sulfenamides, -sulfinamides, and 

Like in the CoMFA approach (chapter 9.3), also in this case PLS analysis might 
be more suitable. 

A more sophisticated method, the hypothetical active site lattice (HASL) model, 
was developed by Doweyko [38,945]. Minimum energy conformations are calcuiated 
for similar or dissimilar ligands and the molecules are placed in a three-dimensional 
grid. A user-selected physicochemical property, e.g. lipophilicity or electron density, 
is added to it as the fourth dimension. The resulting multidimensional lattices are 
automatically superimposed by an iterative fitting. In this manner a hypothetical 
active site lattice is formed, capable of predicting the relative orientations and 
affinities of the ligands. Wiese and Coats [946] modified the HASL approach by 
using PLS analysis instead of an iterative fitting and obtained better results, especially 
in the predictive ability of the models. The HASL approach has been applied to 

-sulfonamides [944]. 

glyoxalase inhibitors [945], 
dihydrofolate reductase inhibitors [945], 
glutamine synthetase inhibitors 19461, 
hexokinase inhibitors [946], and to the 
analysis of the sequence specificity of DNA alkylation [947]. 

Two-dimensional or even three-dimensional electron-topological matrices of con- 
gruity are constructed in the so-called electron-topological approach [948]; they 
contain both electronic and geometric characteristics of the atoms of a certain drug 
molecule, e.g. atomic charges, polarizabilities, HOMO and LUMO energies, etc.; 
the non-diagonal elements (i.e. the elements attributed to two different atoms) can 
be bond-related indices, if both atoms are covalently linked, or interatomic distances, 
if they are nonbonded atoms. In the next step the matrices of active and inactive 
molecules are compared to find the matrix elements which are present in the active 
analogs and absent in the inactive ones. QSAR applications of this approach have 
been reviewed [948]. 

A logico-structural approach to computer-assisted drug design [949, 9501 was 
further developed to a three-dimensional structure-activity expert system Apex-3D 
[95 1,9521, which recognizes pharmacophores in biologically active molecules. 
Various descriptors are used, e.g. aromatic ring centers, lipophilic regions, electronic 
and hydrogen bond donor and acceptor properties, quantum-chemical indices, as 
well as atomic contributions to hydrophobicity and molar refractivity. The program 
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compares the descriptors and their distances with respect to active and inactive 
analogs and stores the results as rules in a knowledge base, which can be used to 
predict the activities of new compounds. Apex-3D is claimed to be more robust 
than the classical QSAR methods. 

9.3. Comparative Molecular Field Analysis (CoMFA) 

Comparative molecular field analysis (CoMFA) developed slowly. From the very 
first formulation of a lattice model to compare molecules by aligning them with a 
putative pharmacophore and by mapping their surrounding fields to a three- 
dimensional grid [953], it took nearly 10 years till the CoMFA model, as it is used 
nowadays, was defined [35 - 381. 

An application of the DYLOMMS (dynamic lattice-oriented molecular modeling 
system) approach [34, 35, 954, 9551, as the method was called till 1987, was only 
reported once [34,955]. For GABA-uptake inhibitors potential maps were calculated 
in a grid, containing 11 x 11 x 11 points; principal component analysis was used 
to deal with that many variables. The grid points around the 2- and the 5-positions 
of 17 nipecotic acid derivatives (59) were the major contributors to the principal 
components that were correlated with activity (log 1/IC50 values; 5 components; 
s = 0.39). It was already recognized that the PLS method might be more efficient 
to eliminate the redundancy in the X variables. 

n, COOH 
R t N J  

H 

A real advance resulted in 1987 [35]; the method was still named DYLOMMS, 
but now it used grids including several thousands of points, PLS analysis and, most 
important, a cross-validation procedure (see chapter 5.3) to check the predictive 
ability of different models. An excellent result was obtained for the binding of 
steroids to the corticosteroid-binding globulin (5 components; n = 20; r;IT = 0.992; 
sFIT = 0.045; TiRESS = 0.860; spRESS = 0.434) and other binding, uptake, and enzyme 
inhibition data. 

To illustrate the degree of innovation, it should be mentioned that the book 
Quantitative Drug Design [39], comprising 766 pages and published in 1990, contains 
less than one page (!) on 3D QSAR methods related to CoMFA [882] while only 
three years later numerous successful applications have proven the usefulness of 
the CoMFA approach [38]. Thus, the statement made by Blaney and Hansch that 
“there have been many reports in which electrostatic surface potentials have been 
calculated fo r  ligands and some for  enzymes, but it is not yet clear how these can be 
put into numerical f o rm for use in QSAR” [288] seems no longer to be true. 

Many of the approaches that were reviewed in chapter 9.2 aimed at developing 
the strategy of this 3D QSAR model. A detailed description of the method was 
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Figure 54: The CoMFA method. 
Field calculation in a grid and 
generation of the QSAR table for 
PLS analysis (reproduced from 

from the American Chemical Society, 
Washington, DC, USA). 
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given in a later paper, at the time when the method was called comparative molecular 
field analysis (CoMFA) (Figure 54)_[36, 371 and a program became commercially 
available [956]. 

There are several important and critical steps in a CoMFA study [36,38,957,958]. 
First, a group of compounds having a common pharmacophore is selected. Then 
three-dimensional structures of reasonable conformations must be generated from 
the 2D structures. Several 2D/3D conversion procedures are in use or have been 
described in literature, e.g. CONCORD [38, 959, 9601, AIMB [961], WIZARD and 
COBRA [962- 9661, and CORINA [967]. Alternatively, 3D structures derived from 
crystallographic analyses or 2D NMR studies may be used. 

The program MIMUMBA starts from an arbitrary 3D structure and generates 
other conformations by changing individual torsion angles to values which 
correspond to different conformational preferences [968]; the distribution profiles 
of allowed and preferred torsion angles are retrieved from corresponding partial 
structures in the Cambridge database of crystal structures [141]. 

Methods for searching the conformational space of small and medium-sized 
molecules have been reviewed [969]. A general problem in the prediction of 3D 
structures of flexible drugs if  the fact that conformations in U ~ C U O  (i.e. all 
conformations calculated by force field, semiempirical, or ab initio methods) may 
be significantly different from the conformations in aqueous solution (2D NMR 
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measurements), in the crystal (X-ray structure determination), and at the binding 
site of a protein. While in U ~ C U O  intramolecular hydrogen bonds predominate, 
intermolecular hydrogen bonds (to the surrounding water molecules) determine the 
geometry of low energy conformations in aqueous solution, in the crystal (to the 
adjacent molecules), and in the bound state at a receptor surface (to the acceptor 
and donor groups at the binding site). As a general rule it can be concluded that 
substrates often are significantly distorted in order to achieve a certain chemical 
reaction (enzymes are primarily designed to stabilize a transition state, not to display 
high affinity either to the substrate or to the product of the enzymatic reaction). 
Thus, enzyme inhibitors should be in their 3D structures as close to the transition 
state as possible. 

The (optionally) energy-minimized structures are stored in a database and fitted 
to each other according to their chemical similarity by using a pharmacophore 
hypothesis and postulating orientation rules. 

While chemical similarity [970-9731 is not easy to define on an objective basis 
(compare chapter 9.4), every medicinal chemist has some hypothesis or intuition how 
a pharmacophore can be extracted from the structures of a series of active molecules. 
Rational methods for the alignment of congeneric molecules are e.g. the active analog 
approach [882,974-9771 and the distance geometry method [31,926]. In the active 
analog approach large numbers of different conformations of the molecules are 
superimposed ; often only a few conformations are allowed for all molecules, which 
lead to a restricted conformational space for their common pharmacophore. 

Several other attempts have been made to develop and use computer-assisted or 
computer-automated procedures (e.g. [950 - 952, 978 - 9881) for the alignment of 
molecules. ALADDIN [986] calculates the location of points which may be 
considered for the superposition of the molecules for all low-energy conformers 
of a series of compounds (only conformers separated by a certain distance are 
considered for the same molecule); such points are e .g .  atoms, ring centers, and 
projections from the molecule to hydrogen bond donor, acceptor, and charged 
groups at the binding site. The molecule with the smallest number of possible 
conformations forms the template; DISCO [987] uses a clique-detection method to 
find superpositions of the molecules that contain at least one conformation of 
each compound in the user-defined three-dimensional arrangement of site points. 
The program CATALYST [988] claims to use a corresponding strategy to derive 
3D pharmacophores from sets of active molecules and to search 3D databases for 
hits which are ordered according to the quality of fit of the molecules to the 
hypothetical pharmacophore. 

In the alignment of molecules it must be considered that multiple binding modes 
of chemically closely related analogs, once being regarded as rare exceptions, in 
fact are relatively common. As more and more 3D structures of ligand-protein 
complexes have become known, more and more examples of multiple binding modes 
have been identified [38], e.g. for 
a- and P-N-acetylglucosamine binding to lysozyme [989], 
thermolysin inhibitors [990], 
dihydrofolate and methotrexate binding to dihydrofolate reductase (Figures 55 

and 56) [102, 991, 9921, 
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Figure 55: Binding mode of the substrate dihydrofolate (upper diagram) and predicted binding 
mode of the inhibitor methotrexate (lower diagram) to the active site of dihydrofolate reductase; 
hydrogen bonds are indicated by dashed lines. If the carboxamide oxygen atom of dihydrofolate 
is replaced by the 4-NH2 group of methotrexate, an unfavorable donor-donor interaction would 
result; the rotation of the pteridine ring around the bond between the ring system and the 
p-aminobenzoyl-L-glutamate portion (R) brings the pteridine ring of methotrexate in a much better 
position, now leading to an additional hydrogen bond to Ala-97 (reproduced from Figure 8 of ref. 
[99 I] with permission from the American Society for Biochemistry and Molecular Biology, Baltimore, 
MD, USA). 
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Figure 56: 
substrate dihydrofolate (FOL) and the inhibitor 
methotrexate (MTX) to the active site of dihydrofolate 
reductase, as derived from protein crystallographic 
analyses (reproduced from Figure 4 of ref. [992] with 
permission from the American Chemical Society, 
Washington, DC, USA). 

Superimposed binding geometries of the 

viral coat protein ligands [993 - 9951, 
binding of isomeric phenylimidazole inhibitors to cytochrome P-450,,, (Figure 57) 

trimethoprim analogs [997], 
carbonic anhydrase inhibitors [998], 
purine nucleoside phosphorylase inhibitors (Figure 58) [999], 
thrombin inhibitors [lOOO, 10011, and 
thyroid hormone analogs [1002]. 

[9961, 

In some of these cases only minor changes are observed which, nevertheless, have a 
significant influence on the resulting structure-activity relationships (e.g. Figure 58) 
[999]. In other cases some analogs bind just in the reverse direction [990,993 -9951, 
ring systems turn around by 180" (e.g. Figure 56) [991,992], or totally new, unexpected 
binding modes are observed (e.g. Figure 57) [989, 9961. 

On the other hand, there is at least one example of an identical binding mode 
of chemically different analogs. Despite the reverse direction of the amide bonds in 
thiorphan and retro-thiorphan, both molecules bind in the same manner, due to a 
slight modification in their interaction geometries (Figure 59) [ 10031. In addition 
to the flexibility of the ligands also a certain flexibility of the binding site has to 
be taken into account, sometimes leading to different positions of amino acid side 
chains and even to dislocations of the protein backbone. 

Once the molecules are aligned, a grid or lattice is established which surrounds 
the set of analogs in potential receptor space; although 0.2 nm (= 2 A) is the default 
value for the distance between the grid points, other values may be chosen; smaller 
distances seem desirable, but they lead to unreasonably large numbers of grid points. 
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Figure 57: Binding of camphor and three different inhibitors to cytochrome P-450,,,, as deter- 
mined by protein crystallography of the substrate and inhibitor complexes. The camphor molecule 
is kept in place by hydrophobic intera&ons and by a hydrogen bond between its carbonyl group 
and the phenolic hydroxyl group of Tyr-96 (upper left diagram); in all other diagrams theerefined 
structures (solid lines) are superimposed to the native, camphor-bound structure (dotted thin lines). 
LPhenylimidazole (upper right diagram) binds with its N2 to the Fe atom of the heme system and 
its phenyl ring replaces the camphor molecule; the same holds true for 4-phenylimidazole (N1 binds 
to the Fe atom; lower left diagram). A completely different binding mode is observed for 
2-phenylimidazole (lower right diagram): a N-Fe bond cannot be formed because of unfavorable 
steric interactions of the phenyl ring with the heme system. Thus, one N atom binds to the hydroxyl 
group of Tyr-96, the other one binds to an inserted water molecule W, which itself is fixed by 
hydrogen bonds to Thr-185 and Asp-251; both amino acid side chains move in the direction of 
this water molecule to form these bonds (reproduced from Figure 4 of ref. [996] with permission 
from the American Chemical Society, Washington, DC, USA). 

The fields which a certain probe atom would experience at every grid point are 
calculated for each molecule, leading to thousands of columns in the X block. For 
the steric field a (a/r12 - b/r6) Lennard-Jones potential (Figure 2, chapter 1.2) is 
calculated, the electrostatic field is a l/r Coulomb potential; the use of rl' - r6 
van der Waals potentials has been criticized to produce unrealistic results in the 
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Figure 58: Binding of unsubstituted (left) and 8-amino-substituted (right) purines (upper formulas) 
and 9-deazapurines (lower formulas) to purine nucleoside phosphorylase. When N7 has an attached 
hydrogen (9-deazapurines), Asn-243 undergoes a shift to form a highly favorable N(7)-H ... 0 
hydrogen bond, increasing the affinity of the unsubstituted analog by a factor of 170 (left formulas). 
The introduction of an 8-amino group into the purine leads to a new hydrogen bond to Thr-242, 
thereby increasing the inhibitory potency by a factor of 70 (upper formulas). No such hydrogen 
bond can be formed to the 8-amino group of the 9-deazapurine. On the contrary, the methyl group 
of Thr-242 approaches the 8-amino group, genekting a hydrophobic environment, which decreases 
affinity by a factor of 10 (lower formulas). Proposed hydrogen bonds, derived from X-ray structure 
analyses of the inhibitor complexes, are shown as dotted lines (reproduced from Figure 4 of ref. 
[999 b] with permission from the American Chemical Society, Washington, DC, USA). 

case of steric overlap of the ligand and the receptor [1004]. Large positive energy 
values, i.e. grid points inside the molecules, are set constant at certain cut-off values 
to avoid unreasonably large energy values. 

Normally, the steric and electrostatic fields are kept separate for ease of 
irkerpretation of the results. Grid points without variance (e.g. inside the volume 
shared by all molecules) or with small variance (e.g. in the corners of the box, far 
away from the van der Waals spheres of the molecules) are eliminated before the 
PLS analysis is performed. 

Other fields than those implemented in the CoMFA program have been proposed 
for 3D QSAR analyses, e.g. different interaction fields calculated by the program 
GRID [33,909,910] or hydrophobic fields derived from HINT [918-9211 (chapter 
9.2). In addition, any other parameters, e.g. physicochemical properties like log P 
or quantum-chemical indices, may be added to the X block, if they are properly 
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Figure 59: Binding of (S)-thiorphan and (R)-retro-thiorphan to the active site of thermolysin; 
schematic illustration (upper part) and three-dimensional structures (lower part) (reproduced from 
Figures 3 and 4 of ref. (10031 with permission from the American Chemical Society, Washington, 
DC, USA). 

weighted; as discussed in chapter 5.3, PLS analysis will not reveal the explanatory 
effect of an unweighted single variable, even if this variable significantly contributes 
to explanation and prediction of the data. 

The molecular alignment, i.e. the selection and relative orientation of a certain 
3D structure out of several conformers of each molecule, is the most important 
determinant in a CoMFA study. Recently, a field fit procedure [l005, 10061 has 
been proposed to improve the alignment; the objective of the field fit is to minimize 
the residual mean square differences between a fixed template field (consisting of 
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a steric and an electrostatic field) and the fields of the molecules to be aligned. It 
is claimed that most often better results are obtained by using this field fit after a first, 
preliminary alignment of the molecules. No better results could be obtained in 
comparative studies if 3D coordinates from the X-ray structures of ligand-protein 
complexes were used instead of a user-defined alignment of the ligands [1007], even 
in the case of analogs binding in different modes (!). 

Steric and electrostatic fields are only suitable for the description of the enthalpic 
contribution of a ligand-protein interaction; as the free energy of binding also 
involves entropic effects, one cannot a priori expect that this default combination 
of fields is sufficient for the quantitative description of binding affinities or biological 
activities [ 10071. The addition of hydrophobic fields and, optionally, of internal 
conformational entropy parameters may improve this situation. The combination 
of global lipophilicity parameters with CoMFA fields (corresponding to a mixed 
Hansch analysis/CoMFA approach) might be appropriate in certain cases. The 
CoMFA method should not be applied if transport and distribution predominate, 
e.g. in the case of nonlinear lipophilicity-activity relationships (see below). 

The last step in a CoMFA study is a partial least squares (PLS) analysis 
(chapter 5.3) to determine the minimal set of grid points which is necessary to explain 
the biological activities of the compounds. Most often good to excellent results are 
obtained. However, the predictive value of the model must be checked by 
cross-validation; if necessary, the model is refined and the analysis is repeated until 
a model of high predictive ability is obtained. 

The PLS variant GOLPE [38, 614, 6151 seems to be better suited than ordinary 
PLS analysis because it eliminates variables not contributing to prediction in a 
stepwise procedure; some recent applications in CoMFA studies confirm [615,1008] 
that the predictive power of the CoMFA model increases after reduction of the 
number of variables according to the GOLPE procedure. An alternative to GOLPE 
could be the use of genetic algorithms; It has to be proven whether this procedure 
gives better results than GOLPE without increasing the risk of chance cor- 
relations. 

The risk of chance correlations seems to be low in CoMFA studies if arbitrary 
orientations of the molecules are chosen instead of a reasonable alignment [ 1005, 
10061 or if series of random numbers are correlated with biological activities [1009]. 
On the other hand, CoMFA offers many different options, resulting from slightly 
different alignments of the molecules or certain side chains, different positions or 
sizes of the grid box, different distances between the grid points, the use of different 
fields and additional variables, different values for the cut-off of large positive 
energy values, etc. ; while this flexibility of the CoMFA method makes it a powerful 
tool to perform a QSAR study, the risk of user-generated chance correlations 
increases considerably. Even cross-validation offers no guarantee to avoid such 
chance correlations. In large groups of compounds or in groups including several 
clusters of compounds which are closely related in their respective structures as 
well as in their biological activities, a leave-one-out cross-validation will not spot 
such fortunate results. 

Biological activities of new compounds can be predicted by transforming the 
PLS result into a multiple regression equation (e.g. [608, lOlO]). For a comparison 
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c 

Figure 60: Graphical presentation of the results of CoMFA analyses. Positive (left diagrams) and 
negative (right diagrams) steric (upper diagrams) and electrostatic (lower diagrams) interactions of 
steroids with the human corticosteroid-binding globulin are shown as contour maps (reproduced 
from Figures 4-7 of ref. [1010] with permission from ESCOM Science Publishers BV, Leiden, 
The Netherlands). 

7 

of classical QSAR analyses with 3D QSAR studies the PLS results have been 
presented in the form of multiple regression equations, including the PLS com- 
ponents as the independent variables (see below). 

As in all other QSAR methods, predictive ability depends on the distances of 
the compounds to be predicted from the other congeners of the series. One cannot 
expect reliable predictions of biological activity values for analogs having additional 
side chains or groups with significantly different electronic properties. 

Most often the results of a CoMFA study are presented in graphical form, with 
contours for favorable and unfavorable regions of the different fields (e .g .  Figure 
60). Difference maps were proposed as tools to analyze and identify areas of interest 
with respect to activity and selectivity, if two different types of biological activities 
are compared [lo1 11. 

CoMFA results are difficult to compare with each other because of the different 
Gelds, box sizes, and other options. In addition to this, prior CoMFA versions (up 
to 5.4) contained an error in the calculation of the electrostatic fields [1012]. 
Autoscaling of variables should be avoided; PLS analysis may produce wrong 
results if individual grid points largely reduce their variance in the cross-validation, 
which seemingly occurs quite often [ 101 31; in the CoMFA cross-validation wrong 
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r2 values (too large, due to a wrong correction factor) resulted in version 5.3 [1012]; 
the revised r2 values are still wrong (slightly too small) because now identical overall 
ymean values are used for all cross-validation groups instead of the correct y,,,, 
values of each individual group [1013]. 

In applying 3D QSAR methods related to CoMFA one should bear in mind that 
“a computer based method of designing a molecule which will bind to a larger 
molecule ... comprising the ,following steps ... synthesizing a molecule with atoms 
arranged to occupy or not occupy ... the three-dimensional spacesluolumes indicated 
in the display as being critical to binding of the molecule to the larger molecule” is 
protected by a US patent [37]. Whether it is really possible to protect not only the 
software but also the design and synthesis of possible drug candidates, without 
claiming at least general structures and biological actions in the patent, remains 
open to discussion. 

The use of additional (or other) fields than the default steric and electronic fields 
of the original CoMFA method, together with PLS analysis or GOLPE, is quite 
common as a valuable extension of the CoMFA program, but it also constitutes 
an alternative to the relatively expensive commercial software. A combination of 
shape, lipophilic, steric, and electrostatic potentials in comparative analyses was 
termed comparative molecular potential analysis (CoMPA) [1014]. 

CoMFA and related 3D QSAR approaches have been applied to correlate various 
physicochemical properties. Equilibrium constants of the hydration of carbonyl 
groups could be explained by a combination of C = O  bond order, steric, and 
electrostatic fields [1005]. 3D QSAR studies that correlate 0, inductive, and resonance 
parameters of benzoic acids [1015, 10161 as well as pK, values of clonidine analogs 
[lo171 show that a H +  field precisely describes such electronic parameters, e.g. om,p 
of benzoic acids (n = 49; rFIT = 0.976; SFIT = 0.082; SPRESS = 0.093). Steric parame- 
ters of benzoic acids, like surface area and van der Waals volume can be described 
by a steric field alone, while E, values of acetic acid methyl esters need a com- 
bination of both steric and electrostatk fields (n = 21; rFIT = 0.984; SFIT = 0.133; 

CoMFA fields were also proposed and used to derive new steric and electronic 
parameters for classical QSAR studies [38, 10181. 

Results from CoMFA studies have been compared with those from Hansch 
analyses [38, 1019 - 10231 and the minimal topological difference (MTD) method 
[ 10241. Examples for the comparison of Hansch equations with CoMFA studies are 
e.g. the papain hydrolysis of N-(X-benzoy1)glycine pyridyl esters (60) (eqs. 204, 205; 
Zn = PLS component n of the corresponding field; compare chapter 7.1) [1019, 
10201, the emulsin-catalyzed hydrolysis of phenyl-P-D-glucosides [ 10201, the muta- 
genic activities of substituted (0-pheny1enediamine)platinum dichlorides [1020], 
dihydrofolate reductase (DHFR) inhibition [1020], and some other biological 
activities [38, 1021 - 10231. 

SPRESS = 0.209) [1016]. 
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log l/K, = 0.40( * 0.06) n4 + 4.40( & 0.09) 

(n = 22; r = 0.946; s = 0.176) 

log I/K, = 0.056( f 0.003) Z1H20 + 0.051 ( f 0.006) Z2H20 + 
+ 0.026( f 0.005) Z ~ H ~ O  + 0.040( f 0.008) Z ~ H , O  + 
+ 0.037( k0.012) Z5H,o + 4.616( k0.022) (205) 

(n = 22; r = 0.986; s = 0.103; SPRESS = 0.334) 

The results show that a H’ field is suitable for the description of the interaction 
of ligands with a positively charged receptor group, while a H,O probe in GRID 
describes hydrophobic as well as hydrogen-bonding effects [ 1019, 10231. 

The CoMFA methodology was also used to describe nonlinear lipophilicity- 
activity relationships, e.g. the inhibitory activities of quaternary alkylbenzyl- 
dimethylammonium compounds us. Clostridium welchii (eqs. 206 - 208) [ 10251, other 
antibacterial and hemolytic activities [ 1026, 10271, and toxic activities of alkanes in 
mice (eqs. 209-211) [1026]; the results of classical QSAR studies (eqs. 206, 207, 
209, and 210) [23, 4401 were compared with the corresponding CoMFA results 
(eqs. 208 and 211) [1025-10271; only homologous series of compounds were 
investigated. 

log MIC = -0.17(*0.06) (log P)’ + 0.91(*0.21) log P + 3.87(f0.21) (206) 
optimum log P = 2.68 

(n = 12; r = 0.966; s = 0.230) 

log MIC = 0.942( +0.26) log P - 1.274($-0.31) log (PP + 1) + 3.774(+0.18) (207) 
z- 

log p = - 1.800 

(n = 12; r = 0.983; s = 0.172) 

optimum log P = 2.25 

log MIC = 0.071(f0.003) ZIHzO + 0.066( k0.005) z 2 ~ , 0  + 4.410(f0.025) (208) 
optimum log P = 2.82 

(n = 12; r = 0.995; s = 0.088; SPRESS = 0.156) 

log 1/LDioo = -0.107( k0.05) (log P)’ + 0.939( k0.47) log P + 0.200 (209) 
optimum log P = 4.37 

(n = 11; r = 0.930; s = 0.148) 

log l/LDloo = 0.958( +0.11) log P - 1.309( f0.13) log (PP + 1) - 0.654 (210) 
log p = -3.52 

(n = 11; r = 0.996; s = 0.039) 
optimum log P = 3.96 
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log l/LDloo = 0.038(f0.004) ZlH,o + 0.038( k0.006) z 2 ~ , 0  + 
+ 1.940( 0.029) (211) 

optimum log P = 4.75 
(n = 11; r = 0.992; s = 0.054; SPRESS = 0.170) 

However, despite the simplicity of the analyses and the good correlations obtained 
in these studies, a ligand interaction-based model like the CoMFA method should 
not be used to model nonlinear effects arising from transport and distribution; no 
reasonable results can be expected for sets of compounds which are no homologous 
series. Better and theoretically more consistent alternatives would be the addition 
of suitably weighted log P values to the CoMFA table, the use of lipophilicity 
similarity matrices (chapter 9.4), or the correlation with log P values in the classical 
manner, applying either the parabolic or the bilinear model. 

Due to the definition of the method, many CoMFA studies and related 3D QSAR 
analyses, where GRID and other molecular fields are implemented in a CoMFA-like 
model, deal with the quantitative description of ligand-protein interactions, like 
enzyme inhibition, e.g.  

angiotensin converting enzyme inhibition [35, 958, 1028 - 10301, 
prolyl endopeptidase inhibition [lo311 
prostaglandin synthase inhibition [958], 
renin inhibition [1007], 
thermolysin inhibition [1007], and 
tyrosine kinase inhibition [1032]; 

the toxic activation of MPTP analogs by monoamine oxidase [1033, 10341; 

binding of a,-adrenergic agonists [1008], 
benzodiazepine receptor binding [lo25 - 10381, 
binding of tetrahydrocannabinol analogs to the cannabinoid receptor [ 10391, 
binding of CCK-A antagonists [1040], 
affinity of phenyltropane carboxylic acids to the cocaine binding site [1041], 
D, receptor affinity of clozapine analogs [lo421 and salicylamides [1043], 
muscarinic receptor binding [ 1044, 10451, 
non-competitive GABA receptor antagonism [ 10461, 
non-NMDA antagonist binding [1047], 
cs receptor ligands [1048], 
serotonin receptor ligands [1014, 1049 - 10511, and 
the affinities of various halogenated dibenzofurans, dibenzodioxins, and biphenyls 

substrate properties of enzyme ligands, e.g.  

receptor binding, e.g.  

to the tetrachlorodibenzodioxin receptor [615, 10521; 
other ligand-protein interactions, e.g.  

the binding of steroids to various carrier proteins [35, 36, 919, 958, 1010. 011, 
1024, 10531. 

GABAiuptake inhibition [35], 
ligand binding to viral coat proteins [1007, 10541, and 
antigenic complexes between peptides and a histocompatibility glycoprotein 

10561. 
055, 
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CoMFA was also applied to correlate various other biological activities, e.g. 
the induction of human leukemia cell differentiation [1057], 
response of tumor cells to estrogens [1058], 
diuretic activities of sulfonamides in the isolated perfused tubulus of rabbit kidney 

various biological activities of prostaglandin analogs [ 10601, and 
bone resorption regulation by biphosphonate esters [1061, 10621. 

[10591, 

However, the more distant a biological model from the pure ligand-receptor 
interaction is, e.g. the toxicities of alkanes in mice [lo261 or the anticoccidial activities 
of triazines in chicken [ 10631, the more unrealistic becomes the application of 
3D QSAR methods. 

Not all the above-mentioned studies fulfill the necessary statistical requirements, 
especially proper PLS component selection by cross-validation. The crucial influence 
of different CoMFA options on the obtained results has been demonstrated [38,1059]. 
More objective alignment procedures, additional fields (e.g. a better consideration 
of polarizability), and more efficient variable selection procedures are needed. In 
addition, further research is necessary to find out which of the different CoMFA 
options should be selected to obtain stable and reproducible results. Theoretical 
and practical aspects, methodology and applications, as well as some limitations of 
CoMFA and related approaches have recently been reviewed in a book on 3D QSAR 
methods 1381. 

9.4. Molecular Similarity QSAR Analyses 
? 

Most often structurally similar molecules have a comparable range of physico- 
chemical properties and biological activities, while structurally dissimilar molecules 
differ in their properties both qualitatively and quantitatively. Classical QSAR 
methods as well as 3D QSAR approaches are implicitly based on this trivial fact. 

Richards et al. [1064, 10651 recently developed a new method to correlate the 3D 
similarities of molecules in a direct manner with their biological activities. In the 
first step 3D structures of reasonable conformations of all molecules are generated 
and aligned in space, as in the CoMFA approach. Then similarity indices between 
all pairs of molecules are calculated and the resulting N x N similarity matrices are 
correlated with biological activities. 

The Carbo index RAB was originally proposed as a method of comparing molecules 
in terms of their electron density e [1066]. In a more general version (eq. 212) this 
similarity index can be applied to compare any structural properties PA and PB of 
two molecules A and B. 
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An alternative to the Carbo index is the Hodgkin index HAB (eq. 213) [1067]. While 
the Carbo index is sensitive to the shape of the property distribution, the Hodgkin 
index reflects more its magnitude. 

Both indices have been applied to other molecular properties, e.g. electrostatic 
potentials and fields, a'nd to describe the shape similarity of molecules [1068, 10691. 

The program ASP (automatic similarity package) has been developed to compute 
the electrostatic potential and field at certain points on a grid [1070, 10711. A 
modification of the ASP program uses Gaussian function approximations rather 
than grids to calculate electrostatic potential and shape similarity [1064, 1072, 10731. 
Singularities (due to the fact that l/r approaches infinity values near atom centers) 
arc avoided by considering properties only outside the van der Waals volumes of 
the molecules. 

In addition, linear and exponential similarity indices, LAB and EAB (eqs. 214 and 
215), have been defined [972, 1065, 10741 to evaluate electrostatic similarities in grid 
points; the sum over all individual grid point values is divided by the number of 
grid points n. 

n c 

Molecular similarity indices can be optimized by fixing one molecule and translating 
and rotating the other one until their similarity reaches an optimum. This 
ASP-implemented procedure constitutes another promising tool for the rational 
alignment of molecules in 3D space, also considering the flexibility of molecules 
[1075]. 

In a preliminary study [1070], Hodgkin electrostatic potential molecular similarity 
indices of nitromethylene insecticides were calculated for all analogs in comparison 
with the most active compound. After the elimination of three data points a 
plot of the similarity indices us. biological activity values showed a nice linear 
correlation. 

The current version of this approach uses N x N matrices (N being the number 
of molecules included in the data set), in which the 3D similarity indices of each 
molecule as compared to every other molecule of the whole set arc the non-diagonal 
elements of the similarity matrix [1064, 10651. In an application to the affinities 
of 3 1 steroids to corticosteroid- and testosterone-binding globulins (same data as 
used in CoMFA studies, e.g. [36]), Carbo index similarity matrices were calculated 
for the shape and the electrostatic potentials of all molecules. Using the similarity 
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matrices as input data, a neural network (see chapter 4.6) was applied to qualita- 
tively analyze the binding affinities. In the resulting plots a clear separation of 
high affinity, intermediate affinity, and low-affinity compounds was achieved 
[1064]. 

PLS analysis was used to quantitatively correlate the similarity matrices with the 
affinities to the different steroid-binding proteins. As in the corresponding CoMFA 
study [36], compounds 1-21 were used as the test set and compounds 22-31 were 
predicted from the analyses. The obtained r;RESS and s ~ R E S S  values [ 10641 were 
somewhat inferior, but nevertheless close to the values resulting from the CoMFA 
studies. Much better results were obtained after the elimination of noise variables (ix.  
variables not contributing to prediction) before performing the PLS analysis, by 
using the program GOLPE [614, 6151 (chapter 5.3). 

In a more detailed study of technique validation and of the comparison of different 
similarity evaluation methods [1065], 

several Carbo indices (also using Gaussian function approximations), 
the Hodgkin index (eq. 213), 
linear and exponential indices (eqs. 214 and 215), and 
the Spearman rank correlation coefficient 

were tested as coefficients in the shape and electrostatics similarity matrices. All 
different types of N x N similarity matrices and also combined electrostatic and 
shape 2N x N similarity matrices were applied to correlate several data sets [lo651 
for which CoMFA analyses have been published, i.e. 

Hammett o constants of substituted benzoic acids [1015], 
pK, values of clonidine analogs and substituted imidazolines [ 101 71, 
binding of steroids to different carrier proteins [36], 
the toxic activation of MPTP analogs by monoamine oxidase [ 10331, 
binding to the benzodiazepine inverse agonist receptor site [1035], 
the affinity of phenyltropane carbo$ylic acids to the cocaine binding site [1041], and 
anticoccidial activities of triazines in chicken [ 10631, 

using PLS analysis with and without elimination of variables not contributing to 
prediction. As good &ESS values as in the CoMFA studies and in some cases even 
better ifREss values resulted [ 10651. Especially after GOLPE variable selection 
(Table 30) the reduced matrices produced improved rZRESS values in fewer components 
and with far less variables, as compared to the original 2N x N matrices. 

Gaussian electrostatic evaluations of the Carbo index provided better results than 
grid-based calculations, while in the case of shape the grid-based evaluations seemed 
to be more suitable. Grid distances of 0.05 nm for shape and 0.2 nm for electrostatics 
were sufficient to give a satisfactory description of the biological data. 

3D QSAR analyses based on similarity matrices offer a valuable new tool for the 
quantitative description of structure-activity relationships. Also hydrophobic fields 
and interaction fields with different probe atoms may be implemented, like in 
CoMFA studies. It is hoped that the preliminary results [1064, 10651 stimulate 
active research in this field to achieve further methodological improvements. Several 
CoMFA-inherent problems apparently do not arise in the molecular similarity 
matrices approach, e.g. the cut-off selection, a proper grid spacing, and the 
elimination of variables having low variance. 
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Table 30. 3D QSAR analyses of several data sets, using electronic and shape similarity 
matrices [ 10651. Cross-validated r;,,,, values and the number of significant componcnts 
(except last three rows, see below) of different analyses are given for comparison 

Data set 

Steroids, testosterone-binding globulin 
Steroids, corticosteroid-binding globulin 
Anticoccidial triazines 
Benzodiazepine receptor ligands 
Cocaine receptor ligands 
Toxic activation of MPTP analogs by MA0 
pK, Values of clonidine analogs 
pK, Values of imidazolines 
Hammett 0 values of substituted benzoic acids 

Complete 
matrixa) 

0.1313 
0.7912 
0.7415 
0.6914 
0.5412 
0.5012 

- 4 
- 4 
- a 

GOLPE 
Reduced 
Matrixb) 

0.77l2 
0.8212 
0.1313 
0,7213 
0.6412 
0.5612 
0.32 
0.90 
0.12 

CoMFA 
Resultsc) 

0,4414 
0.6912 
0.4112 
0.5914 
0.5714 
0.5714 
0.27 
0.69 
0.05 

a) combincd electronic and shape similarity matrices, except last three rows 

') results from different groups (for references see text) 
dl  only electronic similarity matrices have been used in these cases; as cross-validated 

r;RESS values were not provided in the original CoMFA publications, standard errors 
of prediction are listed instead 

h) . . similarity matrices after variable selection by GOLPE 

In addition to the similarity indices described above, other similarity indices may 
be defined and used in QSAR studies. A simple lipophilicity similarity index 
aij  = - [log Pi - log Pjl (log Pi, logPj = logarithms of the partition coefficients of 
molecules i and j) can be applied to describe nonlinear lipophilicity-activity 
relationships of any type by the corresponding lipophilicity similarity matrices [ 101 31. 
For different data sets excellent results were obtained (Table 31), not only in 
homologous series (as in CoMFA studies [lo25 - 10271) but also in heterogeneous 
sets of compounds, where 3D QSAR approaches must fail. A selection procedure 
based on genetic algorithms was developed for fast and efficient variable elimination 
in the PLS analyses [1013]. Also in these examples the similarity matrices produced 
improved rZREss values in fewer components after elimination of variables which 
did not contribute to prediction (Table 31). 

While such lipophilicity similarity matrices do not consider the 3D structures of 
the molecules, they seem to be appropriate for the incorporation of nonlinear 
lipophilicity-activity relationships in 3D QSAR analyses, e.g. in CoMFA studies. 
At least from a theoretical point of view lipophilicity similarity matrices should be 
preferred when the nonlinear lipophilicity-activity relationship does not result from 
binding but from transport and distribution of the drugs in the biological system, 
which most often is the case. 

Even the combination of extrathermodynamic parameters with similarity matrices, 
leading to a mixed Hansch analysis/molecular similarity approach, seems to be 
reasonable and should be further investigated. 
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1 Monoamine oxidase 
inhibitorsc), 
eq. 11 2 (chapter 4.5) 
(n = 21; r2 = 0.998; 

Table 31. Nonlinear lipophilicity-activity relationships. Comparison of the bilinear model (rZ values 
are given instead of r values) with results from PLS analyses, using lipophilicity similarity matrices 
aij = - llog Pi - log Pjl [lo131 

Data set 

(bilinear model) 
Mandelic acid esters, 

eq. 99 (chapter 4.4) 
(n = 11; ? = 0.979; 
s = 0.160) 

Antifungal amines, 
eq. 100 (chapter 4.4) 
(n = 15; r2 = 1.000: 
s = 0.031) 

Buccal absorption, 
acid and base, 
eq. 11 1 (chapter 4.5) 
(n = 12; r2 = 0.977; 
s = 0.102) 

~ 

Carbamates, intestinal 
absorption, 
eq. 167 (chapter 7.3) 
(n = 8; r2 = 0.979; 
s = 0.031) 

Li 

Parame teP) 
components 

SFIT 

SPRES s 

components 

SFIT 

SPRESS 

components 

?nT 

?PRESS 

?FIT 

?PRESS 

?FIT 

Z E S S  

SPRESS 

components 

SFIT 

SPRESS 

?FIT 

?PRESS 

components 

SFIT 

SPRESS 

?FIT 

$PRESS 

components 

SFIT 

SPRESS 

components 

SFIT 

SPRESS 

?FIT 

?PRESS 

?FIT 

?PRESS 

philicity similarit: 

Complete Matrix 
3 
0.982 
0.150 
0.956 
0.255 

5 
1 .om 
0.027 
0.998 
0.085 

2 
0.965 
0.124 
0.939 
0.179 

7 
I .om 
0.059 
0.991 
0.269 

3 
0.990 
0.066 
0.984 
0.084 

2 
0.939 
0.028 
0.886 
0.044 

2 
0.98 1 
0.026 
0.965 
0.040 

iatrices 

Reduced Matri 
1 
0.984 
0.124 
0.98 1 
0.148 

3 
0.999 
0.039 
0.998 
0.073 

1 
0.976 
0.098 
0.97 1 
0.117 

4 
0.999 
0.062 
0.999 
0.079 

3 
0.993 
0.053 
0.991 
0.063 

1 
0.952 
0.023 
0.932 
0.03 1 

2 
0.993 
0.015 
0.990 
0.022 
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Table 31. (continued) 

Placental transfer ratios 
of various drugs, 
eq. 170 (chapter 7.3) 
(n = 21; r2 = 0.900; 
s = 0.106) 

Inflammatory activity, 
phorbol esters, 
eq. 176 (chapter 7.4) 
(n = 6; r2 = 1.000; 
s = 0.041) 

components 
?FIT 

FLs 
SPRESS 

components 
?FIT 

T R E S S  

S P m S  

Antihypertensive 
clonidine analogsd) 
eq. 184 (chapter 7.5) 
(n = 21; r2 = 0.942; 
s = 0.284) 

components 

SFIT 

SPRESS 

?FIT 

?PRESS 

1 
0.901 
0.100 
0.878 
0.116 

3 
0.999 
0.065 
0.908 
0.677 

4 
0.955 
0.25 1 
0.920 
0.352 

1 
0.910 
0.095 
0.897 
0.107 

2 
0.996 
0.098 
0.987 
0.21 1 

5 
0.968 
0.217 
0.956 
0.268 

') components = number of significant components, as determined by cross-validation spress values. 
b, variable elimination by a genetic algorithm, based on the predictive ability of the tested 

') including an indicator variable I as additional parameter 
variable combinations [lo131 

including IC,,ct, values as additional parameter 
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10. Summary and Conclusions 

Classical QSAR methods still play an important role in drug design, despite the 
progress in protein crystallography, molecular modeling [1076], and structure-based 
drug design [911-913, 983, 1077-10921. QSAR methods are cheap and efficient 
tools to derive and prove hypotheses on structure-activity relationships in a 
quantitative manner, especially in those cases where the 3D structure of the biological 
target is not known. In addition, 3D structure-based drug design is only applicable 
to ligand design; the quantitative description of transport, distribution, metabolism, 
and elimination of drugs still remains the domain of classical QSAR methods. 

Predictions from QSAR studies (e.g. [43, 396, 403, 656, 1093 - 10981) and success 
stories of QSAR-guided drug design [396, 1099, 1100] have been reviewed, e.g. the 
design of 

antiallergic purinones [396] and pyrenamines [396, 6331, 
antidepressant 4-anilinopyrimidines [396, 11011, 
cerebral vasodilating benzyldiphenylmethylpiperazines [396, 1100, 11021, 
the development of norfloxacin, a novel quinolone carboxylic acid with anti- 

antihypertensive quinazolines [396, 11001, 
antiinflammatory and analgesic furoindolecarboxamides [396], and 
antiulcer benzylpiperazineacetic acid esters [ 1100, 11041. 

Success stories in agrochemistry are the development of the fungicide myclobutanil 
and the herbicides metamitron and bromobutide [396, 10991. 

In most cases QSAR does not directly contribute to the development of a new 
drug. However, with the increasing evidence of the importance of lipophilicity, 
dissociation, polarizability, electronic and hydrogen-bonding interactions, and steric 
fit on drug action, our ability and performance in drug design and in the optimization 
of lead structures improve. QSAR neither brings the solution of all our problems, 
nor can it only be considered as an academic game; “the great advantage of the 
QSAR paradigm lies not in the extrapolations which can be made f rom known Q S A R  
to fantastically potent new drugs, but in the less spectacular slow development of 
science in medicinal chemistry” [ 10941. 

As stated earlier, prediction is not the main goal of a QSAR analysis. Much more 
often general conclusions on the reduction of toxic properties, on selectivity, on 
optimum lipophilicity to pass the blood-brain barrier or, on the other hand, to 
avoid CNS side effects, are more important for the optimization of a lead structure. 
As i t  still is industrial praxis (and will remain for patent reasons) to synthesize and 
test large numbers of closely related analogs, QSAR is also an important tool to 
decide when to stop a synthetic program (compare e.g. eqs. 178, 179; chapter 7.4) 
[786, 10951. 

bacterial activity [396, 1099, 11031, 
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Another example of a proper QSAR application is given in eqs. 183-185 
(chapter 7.5), which describe the central antihypertensive and peripheral hyperten- 
sive activities of clonidine analogs. While no predictions for more active analogs 
can be derived, three most important conclusions can be drawn from these equations: 
first, the analogs can be tested in simple in vitro systems instead of whole animal 
models, second, log P values around 1.5 are optimal for the central nervous system- 
mediated antihypertensive activity, and third, one cannot expect to separate the 
antihypertensive activity from the hypertensive side effect. 

Speculating about the future of QSAR, Hansch [1105] stated that the situation 
in QSAR may be compared with the development of the Hammett o constant till 
1968, when 43 variations of o existed. Today, there is rather broad agreement that 
only four of them, o, oo, o-, and o', are needed; however, still no agreement exists 
how o can be factorized into field and resonance effects. In deriving a single QSAR 
equation, one can never be sure that the relationship is a causal one; neither statistical 
tools nor any other criteria can help in this respect. Only the comparison of QSAR 
equations from different but related sources [666,667, 11051 can assure the relevance 
of certain parameters, e.g. lipophilicity for cytochrome P-450 induction by different 
types of compounds and in different systems [774, 11051 or the importance of a o 
term in the description of the rate constants of the hydrolysis of glycine ester amides 
by different proteases (Table 32) [667, 11051. Understanding of true structure-activity 
relationships will depend on lateral validation of QSAR, i.e. relating a new QSAR 
to a matrix of self-consistent structure-activity relationships [1105]. 

The problem of validation of QSAR studies has also been approached from a 
statistical point of view [1106]: 

Since the biological activity of a compound is most often a combination of several 
known and unknown subeffects, it is important to measure a fairly large number 
of different biological effects in different test systems. 

i. 

Table32. Comparison of the p coefficients in QSAR equations of the 
hydrolysis of X-C6H,0COCH,NHCOC,H5 (I) and 
X-C6H,0COCH,NHS02CH, (11) by various enzymes; p for the uncatalyzed 
reaction at pH 6 is 1.91 [667, 11051 

Enzyme 

Papain 
Papain 
Ficin 
Ficin 
Actinidin 
Bromelain B 
Brornelain B 
Brornelain D 
Subtilisin 
Chymotrypsin 
Trypsin 

~ ~ 

Substrate p pH Class of Hydrolase 

I 
II 
I 
II 
I 
I 
II 
I 
I 
I 
I 

0.57 
0.55 
0.57 
0.62 
0.74 
0.70 
0.68 
0.63 
0.49 
0.42 
0.71 

6 
6 
6 
6 
6 
6 
6 
6 
7 
6.9 
7 

Cysteine 
Cysteine 
Cys teine 
Cysteine 
Cysteine 
Cysteine 
Cysteine 
Cysteine 
Serine 
Serine 
Serine 
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The aggregation of these effects to one magic number, “the biological activity”, 
reduces the information content. 

With certain exceptions, e.g. nonspecific, lipophilicity-related biological activities, 
separate QSARs must be derived for each structural class of chemicals to 
distinguish between compounds with different mechanisms of biological action. 

As most often the structural factors determining biological activities are not 
directly known, multiparameter tables should be used together with a multi- 
variate characterization approach. 

The training set for the development of the model should be selected by a statistical 
design. 

An appropriate data modeling and data analysis system should be used, e.g. 
partial least squares analysis or, in the case of a single activity variable, multiple 
regression. 

A validation procedure must be performed (the use of a fixed number of 
components in cross-validation runs is criticized because it gives too optimistic 
results). 

The real criterion for the validity of a model is always synthesis and testing of 
new analogs. 

Biological hypotheses can only be tested on a quantitative basis. 
We have to live with the fact that only few QSAR studies fulfill these (by no means 
exaggerated) demands. 

The state of the art and some other aspects of the future development of QSAR 
[39, 1105, 11071 as well as computer-aided drug design [39, 1021, 1107 - 11091 have 
recently been reviewed. 

With the largely increasing number of 3D structures of enzymes and enzyme 
inhibitor complexes our understanding of the corresponding QSAR equations will 
further increase [288,674,676]. CoMFA and CoMFA-related 3D QSAR approaches 
[38] are powerful new tools but they will go t  displace classical QSAR studies. New 
and hopefully better QSAR parameters will be derived from comparative molecular 
field analyses [38, 10181. On  the other hand, CoMFA cannot describe biological 
activities other than ligand-protein interactions, if no global physicochemical 
parameters are included in the data tables; if they are, then CoMFA imitates classical 
Hansch analysis. From the current limitations of both methodologies it seems that 
they may approach each other and may even grow together in the future. Molecular 
similarity matrices [ 10641 constitute another promising tool in this respect. 

It is the combination of so many different effects which contribute to biological 
activity that makes the formulation of a sound QSAR model so difficult. To repeat 
only the most important factors: 

Lipophilicity and ionization are responsible for the transport and the distribution 
of the drug in the biological system. 

The drug-receptor interaction is a highly specialized hydrophobic, polar, elec- 
tronic, and steric interaction; the lipophilicity pattern, the electron density 
distribution, and the polarizability pattern at  the surface of both the drug and 
its binding site contribute to the interaction energy. 

Neither the drug nor its binding site are completely rigid systems; a flexible fit 
occurs during the binding of the drug. 
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The topology of the drug molecule must be considered in three dimensions, with 
restricted rotations or at least conformational barriers around certain bonds. 

It is evident that a drug cannot bind in a conformation which is energetically 
highly unfavorable; however, this does not imply that only minimum energy 
conformations of a drug are able to interact with the receptor. 

The conversion of a favorable conformation to a less favorable one has to be 
taken into account in those cases, where a higher net free energy results from this 
new conformation of the ligand. 

Even structurally closely related analogs may bind in a completely different 
manner (multiple binding modes). 

The solvation-desolvation balance may be favorable or unfavorable for binding. 
The insertion of water molecules between the ligand and its binding site has to 

Entropy effects, e.g. the freezing of conformational degrees of freedom, play an 

Hansch formulated that “nobody in the world is condemned to work with as many 
variables as the medicinal chemist” (with the exception of the people being responsible 
for the weather forecast, but in their case the working hypothesis is proven within 
a few days). The multivariate nature of biological systems leads to enormous 
complications and to the risk of totally wrong conclusions. “Not all scientists are 
brave enough to withstand the temptation of accepting a hypothesis as being true only 
because it more or less f i ts  the experimental data, or to discard their own old concepts 
for  new ones” [783]. In addition, the elimination of outliers (are they indeed outliers 
or do they only disprove an arbitrarily chosen, subjective model?) is an often played 
game to polish the results of QSAR equations. In any case it is the responsibility 
of the scientist to list the outliers, to look for other reasonable explanations, and 
to perform further experiments to prove or disprove different hypotheses [783]. 

We have the ability to intuitively extract high-level information from facts at 
different levels, without being programmed like a computer. QSAR cannot and will 
never substitute the creativity and intuition of an experienced medicinal chemist or 
biologist. But our logical reasoning is limited to one or two, at most three dimensions. 
QSAR aims at giving an objective interpretation of multidimensional results in 
medicinal chemistry and at deriving new hypotheses to an extent which is far beyond 
the intellectual capacity of the human mind. In drug design theoretical chemistry, 
physical organic chemistry, QSAR studies, protein crystallography, and molecular 
modeling work hand in hand. They cannot predict drugs, but they lead to deeper 
insights, they generate new ideas, and they rationalize and shorten the way from 
the lead structure to an active analog with the desired biological activity, selectivity, 
and pharmacokinetic properties - the new remedy for a certain disease. 

be considered. 

important, but much too often neglected role. 

Addendum 

This book is ‘a greatly extended version of a text being published as a chapter 
I ‘  The Quantitative Analysis of Structure-Activity Relationships” in Burger’s Medi- 
cinal Chemistry and Drug Discovery [1110]. Chemometric methods in QSAR 
(chapters 4.6 and 5.3) are discussed in more detail in Volume 2 of this series [l  1 1 11. 
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- factorial 105, 113 
-in QSAR 114 
- of congeneric series 
- of test series l09ff 
-rational 99, l09ff 
- strategies, criteria 114 
desolvation 10, 12, 182 
-energy 21 
determinant 93 
- parameter correlation matrix 1 13 
development, of QSAR 4ff 
DHFR, see dihydrofolate reductase 
diacylureas, QSAR 142 
diaminodiphenyl sulfone 117 
diaminometh yl-pentylquinazoline 

diaminophen yl-azobenzenesulfonamide 

diaminopyrimidines, QSAR 144 
diastereomeric mixtures 
- of drugs 149, 150 

155, 156 

15, 95 
66, 94, 102 

155, 156 

109, ff 

(DMPQ) 17 

7 

-QSAR 140, 141 
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diazepam 17 
dibenzodioxins, CoMFA 171 
dibenzofurans, CoMFA 171 
dielectric constant 10, 40 
difference contour maps, CoMFA 168 
differential molecular connectivity index, 

diffusion 
- control, transport rate constants 

73,74 
- layer, aqueous 82 
- of drugs 
- - into milk and prostatic fluid 
- - through membranes 31 
- rate constants 50, 127 
dihydrofolate, binding mode 161ff 
dihydrofolate reductase 86, 116fl, 

- active site 
- different sources 117 
- inhibition 116ff, 153 

- - distance geometry 157 

- - ligand design 
- - MTX resistance, QSAR 

- multiple binding modes 
- purine biosynthesis 1 16 
- receptor map 152 
dihydropyridines 152 
- X-ray structures 5 1 
dihydrotriazines, DHFR inhibition 

dimethoxyphenethylamines 152 
dipole-dipole interactions 1 1 
dipole moment 1 1, 21, 22, 42, 46 
DISCO program, superposition 161 
discriminant analysis lOOfl 
discriminant-regression analysis 100 
disjunction (exclusive or) 88 
dispersion forces 11, 40 
dispersive interactions 10 
displacement, of water molecules 41 
dissociation 15, 771L 82 
-acids and bases 77f, 129 

53 

129 

161ff 
155, 162, 163 

--CoMFA 169 

--HASL 158 
1 16 

124ff 
-- QSAR 67, 86, 116ff, 124, 144 

16 Iff 

67 

dissolution rate constants 34 
distance geometry method 6,157,161 
distance mapping technique 1 13 
distance of grid points, in CoMFA 
distances, in multidimensional space 

distomer 150 
distribution 
- of drugs 68f’j 179, 181 

- parameters 15 
- rate constants 57, 68ff 
diuretic activities, CoMFA 172 
diyhdropyridines, calcium antagonism 

51 
DNA 
- alkylation, HASL 158 
- intercalation 46 
- polymerase, QSAR 121 
donor-donor interactions 162 
dopamine P-hydroxylase substrate 

dopamine receptor binding, QSAR 

dopamine-uptake inhibition, QSAR 

dose response curves, Escherichia coli, 

dose response relationships 15 
doses, inverse molar 5 
drug action, and stereochemistry 149ff 
drug design 2, 182 
- computer-aided 158, 18 1 
- industrial praxis 179 
-QSAR in 179 
- structure-based 116, 179 
drug development 8 
-and QSAR 179 
- enantiomers 149 
drug distribution 2, 68ff, 129, 179, 

drug enantiomers 149 
drug-membrane 
- interaction 3 lfl, 1 15 
- partition coefficients 8, 31 
drug partitioning, standard system 28 

163 

107 

--QSAR 129 

properties, QSAR 147 

123, 147 

123 

, 125 

181 
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drug-receptor 
-affinity 21 
- binding, negative contributions 12 
- complex 10, 12 
- interaction 3, 7ff, 21, 115, 181 
- - complexity 123 
- - stereospecificity 7 
drug research, in pharmaceutical 

drug resistance 3 1, 124ff 
- see also multidrug resistance 
drug transport 2, 3, 20, 68fi, 179 
- computer simulation 68 
- in biological systems 68 
-rate constants 69, 72, 74 
drugs 
-acids and bases 79 
- activity profiles 137 
- amphiphilic 125 
dummy variables 2 1, 54ff 
DYLOMMS approach 6, 159 
dynamic lattice 159 

industry 133 

E, parameter 7 
-sign 60 
E," values 47, 49 
ecotoxic compounds, QSAR 137 
EDISFAR program, for design 113, 
electron 
-acceptor substituents 109 
-density 172 
--distribution 43, 181 
- donor substituents 109 
electron-topological approach 158 
electronic 
-effects 44 
- - calculation 47 
-parameters 4, 5 ,  2lff, 4 2 8  

-- inQSAR 58 
- properties 2 1, 42 f f  
- similarity matrices 175 
electrostatic 
- attractions 1 1  
-fields 6, 173 

--CoMFA 169 

- - COMFA 164, 167 

- interactions 
- - contour maps 168 
- potential 46, 173 
- - similarity matrices 173ff 
electrotopological state index 53 
elimination, of drugs 179 

- rate constants 15, 126 
embedded classes of compounds 101 
empirical models, nonlinear 

emulsin 7 
- hydrolysis, CoMFA 169 
enantiomers 149ff 
- alignment 15 1 
- in drug development 149 
- of labetalol 149, 150 
- pharmacological properties 149, 150 

end product inhibition 68 
endocytosis, in MDR 125 
energy balance 10 
energy-minimized structures 16 1 
enthalpic contributions, ligand binding, 

enthalpic interaction, hydrophobic 

enthalpy, AH 10, 12 
entropic contributions 
-hydrophobic groups 40 
-1igand binding 13, 27 
entropic effects, ligand-protein 

interaction 167, 182 
entropic interactions 11 
entropy, AS 10 
environmental health hazards 85 
enzymatic cleavage, glycosides 7 
enzymatic reaction 19, 68 
enzyme 
- inhibitor complexes, 3D structures 

- inhibitors 
- - binding modes 161ff 

- - Free Wilson analysis 
- - Hansch analyses 

1, 10, 11, 18 

-QSAR 129 

relationships 68ff 

- QSAR 140, 150 

13, 167 

groups 40 

8, 116, 161ff, 181 
I ,  10, 115, 116fi, 133 

--CoMFA 171 
I47 

1 16ff 



Index 22 1 

equieffective molar doses 15 
equilibration, in partitioning 32 
equilibrium constants 10, 15 
- organic reactions 5 
equilibrium model 7 1, 74, 75 
equilibrium systems 74 
- pH dependence 82 
equivalence (if and only if) 88 
equivalence 
-of Free Wilson models 63 
- of group contributions 66 
error, in biological data 96 
error terms 91 
erythrocyte membrane/buffer partition 

Escherichia coli 

- - GRID potentials 155 
- - inhibition 117 
estradiol 17 
estrogen receptor binding, QSAR 

estrogens, tumor cell response, CoMFA, 

eudismic index 150, 15 1 
eutomers 150, 151 
EVAL method 86 
experimental .- 
- error, in regression analysis 
- partition coefficients 
- pK, values 36 
expert systems 
- Apex-3D program 158 
- carcinogenicity prediction 86 
- rule-based 86 
explained variance 93 
exponential similarity indices, EAB 

extrapolations 
- of R, values 33 
- from QSAR 179 
extrathermodynamic approach 5, 57, 

- applications 1 15 ff 
- recommendations 59 ff 
- relationships 16 

coefficients 29 
31, 117, 125, 135 

-DHFR 117 

123 

172 

91 
32 f f ,  36 

173 

115ff 

fvalues 34ff 
- calculation of partition coefficients 

- different scales 34 
F test, sequential 
F values 94, 95 
-table 94 
9 values 21fJ 42ff 
- redefinition 44 
-validity 44 
factor analysis 101 
factorial design 105, 113ff 
-in Free Wilson analysis 114 
factorization, of CT values 45 
favorable binding sites, GRID 155 
ficin inhibition 
- comparative QSAR 180 

field fit, CoMFA 166 
field parameter 9 21,fL 42ff 
fields 
- contour maps, CoMFA I68 
- in CoMFA 160, 164 
- hydrophobic 167 
filter probe methods 32 
Fisher significance ratio, F 
five-compartment system, drug 

flexibility 
- binding site 163 
-index 53 
- of ligands 163 
- of molecules 12 
flexible 
-drugs, 3D structures 160 

- molecules 12 
fluidity of membranes 31 
folate biosynthesis inhibition 135 
force field methods 160 
forward selection, stepwise regression 

fractional factorial design 105 
fragment approach 53 
fragmental volume constants 41 
Franke protein binding model 69 

35 

59, 61, 94, 96ff 

-QSAR 120 

20, 94, 96 

transport 75 

-fit 8, 181 

96 
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free energy, AG 9, 15, 17 
- ligand binding 13 
- ligand-protein interaction 167, 182 
Free Wilson analysis 

- and Hansch analysis, relationships 

- applications 139 ff, I47 
- classical version 63 
- degrees of freedom 64 
- design in 113 
- equivalence of different models 
- graphical presentation 141 
- group contributions 66 
-interaction terms 67, 142, 144 
- interpretation 140 
- limitations 139 
- nonadditivities 143,ff 
- predictive ability 139 
- reduced model 65, 145 
- restrictions 143 
- scope and limitations 65 
- shortcomings 63 
- statistical problems 147 
- stepwise 86 
- variable elimination 144 
Free Wilson-type indicator variables 

Fujita Ban model 5,  63 
- advantages 63 
Fujita Ban-type indicator variables 63 
fungicides, QSAR 179 
furoindolecarboxamides, QSAR 179 
future development, of QSAR 1 SOff 
fuzzy ALS method, in QSAR 101 

1, 5, 54, 62Jj 
139ff 

651f 

63 

21,67,K 86 Y 

G protein-coupled receptors, modeling 

GABA receptor antagonism, CoMFA 

GABA-uptake inhibition 

-DYLOMMS 159 
gastric absorption 126ff 
- lipophilicity optimum 127 
-model 126 

8 

171 

-CoMFA 171 

-QSAR 176 
- rate constants 84, 127 
gastric wall 127 
gastrointestinal absorption 3, 84 
Gaussian function approximations 

genetic algorithms 
- in PLS analysis 167 
- variable selection 175 
genetic expression, receptor proteins 

geometric parameters 21, 50 
geometry of 
-binding site 49 
- drug-receptor complex 10 
glucocorticoid activities, QSAR 147 
glucosidase 
- u a n d  p 7 

glutamate dehydrogenase, QSAR 121 
glutamic acids, antitumor activities 62 
glutamine synthetase inhibitors, HASL 

glyceraldehyde phosphate dehydrogen- 

glycine ester amides, QSAR 
glycocalyx 127 
glycolic acid oxidase, QSAR 121 
glycoprotein G P  170, MDR 125 
glycosides, enzymatic cleavage 7 
glyoxalase inhibitors, HASL 158 
GOLEM program 86 
GOLPE variable selection 105, 167, 

- similarity matrices 174 
GP 170, transport glycoprotein 125 
graph theory 50 
graphical presentation, Free Wilson 

analyses 141 
GRID program 6, 155 
-contour lines 155 
-interaction fields 155, 165, 171 
- - in CoMFA 
- water probe 170 
grid points, in CoMFA 
- distances 163 

173, 174 

19 

-QSAR 121 

158 

ase, QSAR 121 
55, 180 

174 

155, 163 
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- variance 165 
group contributions 
- additivity 15 
- and physicochemical properties 65ff 
-biological activity values 2, 4, 16, 54 
- equivalence 66 
-in Free Wilson analysis 62ff 
growth inhibition, cells 116 
guanine deaminase, QSAR 121 

5, 15f5 54, 62 ff 

H, antagonists 123 
H, antagonists, blood-brain barrier 30, 

hallucinogens, QSAR 133, 141 
Hammett equation 4, 34 
-biological 4, 17, 57 
Hammett 0 parameter 5, 21, 34, 40, 

- similarity matrices 174, 175 
Hammett-type relationship 5 
Hancock E," values 47 
Hansch analysis 
- and CoMFA 169 
- and Free Wilson analysis, relation- 

ships 65ff 
- applications 1 15ff 
- best equation 
- chance correlations 62 
- group contributions, derived from 

-outliers 61, 99, 182 
- predictions 6 1 
- recommendations 59ff 
Hansch equations 54, 57ff, 1 l5fl 
- improvement 140 
- parabolic 69 
- stepwise derivation 139ff 
- validation 61 
hapten-antibody interactions, QSAR 

HASL, see hypothetical active site lattice 

health hazards, environmental 85 
hemoglobin 8 
-ligands, QSAR 19, 20 
- allosteric modifiers 157 

128 

42ff 

1, 5, 16, 57fj ll5ff 

58fl, 61, 96 

63 

121 

model 

hemolytic activities 
-CoMFA 170 

- regression analysis example 92 
herbicides, QSAR 179 
hexokinase inhibitors, HASL 158 
hexylphenylacetic acid, buccal 

hidden layers, neural networks 89 
high-performance liquid chromato- 

Higuchi Davis equilibrium model 
HINT, hydrophobic fields 157, 165 
- log P estimation 157 
histocompatibility glycoprotein binding, 

history, of QSAR 4ff, 159 
Hodgkin index, HA* 173, 174 
HOMO energies 46 
homologous series 5, 171 
HPLC capacity factor 135 
HSV-thymidine kinase, QSAR 121 
human lymphoblastoid DHFR 118 
Hyde model 71 
hydrated surface areas 29 
hydrogen bond 
- acceptors 20, 22 

- acceptor solutes 28 
-balance 18 
-donors 20, 22 
--in LUDI 156 
- donor solutes 28 
-network 37 
-potentials, GRID 155 
-properties 22, 54 
hydrogen bonds 
- binding energies lOff 
- intramolecular 37, 54 
h ydrogen-bonding 
- ability 29fL 46, 128 
-effects 29 
- interactions 179 
- parameters 30, 42, 46 
hydrolysis rate constants, QSAR 180 
hydrophilic barriers 2 

-QSAR 123 

absorption 81, 82 

graphy (HPLC) 33 
7 1 

CoMFA 171 

r- - in LUDI 156 

2, lOff, 21, 89, 161 
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hydrophilicity 27 
hydrophobic 
- atom constants 157 
-fields 37, 157 

- - for 3D QSAR studies 
- - HINT program 
- fragmental constants 
- interactions 
- properties 21 
-surfaces 11 
hydrophobicity 22, 27 
-maps 157 
-profile 157 
hydroxyquinoline-carboxylic acids, 

hyperbolic regression, in QSAR 77 
hyperboxes, in SIMCA 101 
hypermolecule 88g, 146 
hyperplane 10 1 
hypersaturation phenomena 34 
hyperstructure approaches 50, 65, 

hypertensive activities, QSAR 134, 180 
hypnotic activities, QSAR 142 
hypotensive activities, QSAR 134, 180 
hypothetical 
- active site lattice (HASL) model ~ 158 
- binding sites 152ff 
- pharmacophore, CATALYST 

- rate constants 68 

--CoMFA 167 
157 

157, 165 
22, 34 f f ,  157 

1, 11, 12, 13, 157 

QSAR 41, 42 

SSff, 146, 151 

program 161 

IC5,, values 15 
ill-conditioned data sets 76, 109 
imidazolines, similarity matrices 174, 

imidazol yl-phenox ypropanolamines, 

immunochemistry, QSAR 121 
implication (if then) 88 
improvement, Hansch equations 140 
independent variables 91, 101 
indicator variables 21, 54fL 85, 91, 96 
-Free Wilon model 62 

175 

QSAR 130 

-in Hansch analysis 67 
-in QSAR 55 
induced fit 8 
inductive 
- contributions 60 
-effects 44 
-hypotheses, GOLEM program 86 
- logic programming 86 
industrial practice 1 15 
- drug design 179 
inflammatory activities, QSAR 13 1 
information theory approach 1 13 
inhibition 
- classes of enzymes 
- constants 15, 57 
inhibitors I ,  20, 116ff 
input layer, neural networks 89 
insecticides, similarity matrices 173 
in situ 
- absorption models 81, 84 
- perfused organs 15 
interaction 
- charged groups 10 
- energies 6, 17, 153, 154, 181, 182 
- - calculation 155 
- - of functional groups 
- - of ligands 152 
- fields, GRID program 165 
-geometry 10 
- - of thermolysin inhibitors 
- ligand-receptor 1 
-models 151 
-terms, in Free Wilson analysis 

intercorrelation, 7[: us. o 43 
interface, aqueous/organic 70, 82 
intermolecular forces 1, 21 
intermolecular interactions 10 
internal degrees of freedom 
internal rotational entropy 12 
interpretation, Free Wilson analyses 

interrelated variables 96, 101, 106 
- in pattern recognition 85 
intestinal absorption 84, 128, 176 

11 5 

17 

163 

67, 
142, 144 

12, 17 

140 

Free Wilson-type 86, 141 - lipophilicity optimum 127 
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-rate constants 84, 127 
intestinal wall 127 
intraclass correlation matrices 11 3 
intramolecular hydrogen bonds 37, 54 
intrinsic activity 1 
intrinsic binding energy contributions 

inverse molar doses 5 
inverted matrix 93 
invertin 7 
in vitro 
- activity values 15, 95, 121 
-models 1, 115, 133 
- - and animal models 180 
- vs. in vivo data 133 
in vivo activities 15, 57, 133 
ion pairs, pH partition profile 
ionization 3, 77fA 181 
- acids and bases 
- constants, benzoic acids 45 
ionized species 82 
ions, acids and bases, lipophilicity 

irreversible enzyme inhibitors 10 
iso-butanol, molecular connectivity 

isolated organs 15, 115, 133 
isotropic surface areas 29 
iterative fitting, HASL model 158 

17 

80 

77.fA 129 

77ff 

values 52 

ketanserin 17 
KEY program 157 
Ki values 15 
kinetic control, transport rate constants 

kinetics of drug transport 68 
knowledge base 
- Apex-3D program 159 
- GOLEM program 86 

73 

labetalol, enantiomer properties 149, 

lack of validity, of a QSAR model 

lactate dehydrogenase, QSAR 121 
Lactobacillus casei 

150 

99 

- DHFR inhibition 1 18 
- methotrexate resistance, QSAR 124 
latent variables 10 1 
lateral validation, in QSAR 180 
lattice, in CoMFA 163 
lattice model, CoMFA history 159 
LD,, test, non-animal methods 137 
lead structure optimization 

learning and behavior, QSAR 147 
least squares procedure 57 
leave-one-out cross-validation 103, 

Lennard Jones potential 11, 164 
Leo/Hansch method 35ff 
leukemia 
- cell differentiation, CoMFA 172 
-tumor cell inhibition, QSAR 125 
lidocaine analogs, QSAR 129 
ligand 
- binding 8,f, 11 5 
- ~ free energy 13 
- - modes 49, 161,ff 
- conformations 49 
- conformational space 157 
- design 3, 8, 179 
-flexibility 163 -- orientation 9 
-points 157 
ligand-binding site interactions 8 
ligand-enzyme interactions 41 
ligand-pro tein complexes 
- 3D structures 8, 116, 161ff 
- multiple binding modes I61ff 
iigand-protein interaction 1, 1 16fL 

2, 109, 133, 
179 

104, 167 

181 
-CoMFA 167, 171 
ligand-receptor interactions SjJ, 13 
- energies 152 
limitations 
- Collander equation 28 

- Free Wilson analysis 139 
- of design strategies 114 
limited binding site 68, 77 
limited solubility 68 

-CoMFA 172 
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linear --models 76 
- activity-activity relationships 133 lipoxygenase, QSAR 121 
- additive structure-activity relation- 

- dependences, between variables 63 loadings of variables 106 
- discriminant analysis 100 local anesthetics, QSAR 129 

liquid chromatography, high- 
ships 65 performance 33 

-free energy-related approach 5 ,  16, lock and key model 7, 8 
57f f  

li 

- free energy-related parameters 
- free energy relationships 
- Hansch equations 58 
- lipophilicity-activity relationships 

-mixed approach 67 
- regression analysis 
- similarity indices, LAB 173 
lipid membranes 2, 9, 31 
lipophilic 
-barriers 2 
-counter ions 80 
-groups, LUDI 156 
lipophilicity 2, 26, 27fA 57, 181 
- CNS side effects 128 
-contributions 34 
- - atom-based 156 
- of neutral species 82 
-optima 3, 73, 76, 179 
- - antitumor drugs 132 
- - cells and animals 125 
- - CNS-active drugs 128 
- - sensitive and resistant cells 
- parameters 
- - calculation 34jf 

- - inQSAR 58 
- - measurement 32 . r  
-pattern 181 
- potential, molecular 158 
- similarity indices 175 
-similarity matrices 77, 171, 175Jf 
- values, HPLC measurements 33 
lipophilicity-activity relationships 28, 

-and CoMFA 170 
-nonlinear 5 ,  16, 29, 68f, 142, 176, 

1 15 
54, 57ff 

19, 123 

57, 9 Iff 

125 
5 ,  21, 27fA 34 

--CoMFA 167 

123 

LOCK program 157 
LOCKSMITH program 157 
LOCON method 86, 88 
log 1jC values 16 
log l/Ki values 16 
log 1/K, values, papain 119 
log D values 78, 81 
log k values 15, 16 
log k’ values, correlation with log P 

log kcat values, papain 119 
log P values 5 ,  27ff 
- and pK, values, determination 
- calculation 34 ff 
-in CoMFA 165 
- of alcohols 29 
log Papp values 
- pH dependence, acids and bases 
LOGANA method 86, 88 
logarithmic scale, activity values 15 
logical operators 88 
logico-structural approach 158 
loss of variance, variables 168 
low-energy conformations 157, 158, 

low-frequency vibration 12 
LUDI program, de nouo design 

LUMO energies 46 
lysozyme 8 
-multiple binding modes 161 

values 33 

83 

77fl, 127, 134 
77ff 

161 

155, 
156 

machine learning program, GOLEM 

malate dehydrogenase inhibition, 

mammalian receptors 8 
mandelic acid esters, QSAR 

86 

QSAR 41, 42, 121 

69, 70, 74, 
177 176 
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MAO, see monoamine oxidase 
mapping 
- intraclass correlation matrices 
~ receptor I5  1 
mathematical model 62 
~ pharmacokinetic data 83 
matrix 
- diagonalization 101 
- inversion 93 
~ of normal equations 92 
MCD, Monte Carlo version of MSD 

McFarland probability model 70, 71 
MDR, see multidrug resistance 
mean binding energies, AVERAGE AG, 

mean error, biological data 95 
measurement, of partition coefficients 

mechanism-based enzyme inhibitors 

mechanism of action 109 
mechanisms of toxicicity, and QSAR 

MEDCHEM software 36, 42 
melting point 22, 34 
membrane 2, 31 
 and drug action 31 
-channels 31 
~ N M R  measurements 31 
- partitioning, drugs 8, 21 
- permeation 27 
- perturbation 2, 125 
~ potential 31 
 transport, neutral forms 79 
membrane-bound 
-proteins, 3D structures 8 
-receptors 31, 115 
membrane/buffer partition coefficients 

membrane-embedded receptors 8 
membrane/water partition coefficients, 

MEP, see molecular electrostatic 

1 I3 

method 88 

17 

32 

10 

85 

31 

measurement 30 

potential 

7 

~ papain inhibiton 119 

metabolic pathways 20 
metabolism 3, 179 
- of enaiitiomers 149 
~ of lipophilic drugs 68 

-rate constants 126 
- reactive species formation 129 
metamitron, QSAR 179 
methodology 

-QSAR 54 

-QSAR 129 

-CoMFA 172 
-QSAR 5 
methotrexate 17, 116 
-analogs 153 
- binding mode 16 1.f 
- resistance, QSAR 124ff 
methylene group, fragment values 35 
mg/kg values 16 
micelle formation 68 
micelles 80 
Michealis Menten constants 15 
MIMUMBA, 3D structure generation 

160 
minimal steric difference method 50, 

88, 146, 152 
minimal topological difference method 

50, 88, 146, 152 
- and CoMFA 169 
minimum analog peptide sets, for 

minimum-energy conformations 89, 

minimum receptor occupation 68 
mixed approach 63, 65fi, 88, 146 
- applications 67ff 
mixed Hansch/Free Wilson model 5, 

MO calculations 151 
model 
-hypotheses, from Hansch analysis 61 
- refinement, in CoMFA 167 
- simulations, in pharmacokinetics 

- systems, kinetically controlled 74 

QSAR 113 

182 

65fi 

126 

mesylglycine phenyl esters models 
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-in vitro I ,  115, 133 
- in vivo 15, 57, 133 
- nonlinear 2, 68jf 
-quantitative 2 
-sensitivity 136 
molar 
-doses, inverse 5 
- polarization, P, 0 
- refractivity 21,fh 40fJ; 49 
- - and connectivity values 
- - calculation 42 
- - contributions, atom-based 
- - correlation with other properties 

- - in QSAR studies 40fA 57 
- - MEDCHEM software 42 
- - nonlinear relationships 77 
- - scaling of values 
- volume 21, 40, 49 
molecular 
-alignment, in CoMFA 166 
- connectivity indices 50ff 
-dynamics 18 
- electrostatic field 10 
- electrostatic potential 155 
- field analysis, comparative, 

see CoMFA 
- graphics 1 16 
- lipophilicity potential 156, 158 
- mechanisms, of drug resistance 
- modeling 3, 179, 182 
- orbital energies 46, 151 
- shape analysis (MSA) 50, 89 
- shape descriptors 53 
- similarity indices 
-weight 
monoamine oxidase 
- inhibition 10, 152 

-.ligands 

- - similarity matrices 
Monte Carlo version, of MSD method 

morphinans, QSAR predictions 140 
morphine, SMILES code 35 

53 

42, 156 

4Off 

41 

124ff 

172fL 18 I 
21, 22, 40, 49, 74 

--QSAR 82, 83, 121, 176 

--CoMFA 171, 175 
174, 175 

88 

mosquito larvae 43 
MPTP toxic activation 

- similarity matrices 174, 175 
MR values 21, 22, 40ff 
- scaling of 41 
MSA, see molecular shape analysis 
MSD, see minimal steric difference 
MTD, see minimal topological difference 
MTX, see methotrexate 
MULTICASE program 86, 87 
multicategorial classification 

(ORMUCS) 100 
multicollinearity 1 13 
mu1 tidimensional 
- activity data 137 
-mapping 113 
- parameter space 22 
multidrug resistance 31, 50, 125 
multi-layer network 89 
multiparameter equations 57, 96 
multiple binding modes 

multiple regression equations 
- from PLS analysis 167 
-in QSAR 181 
multivariate statistical methods 85, 

muscarinic receptor 
- agonists and antagonists, QSAR 
~ affinities 15 1 
~ ligands 

-CoMFA 171, 175 

3,20, 109, 150, 
161fj 182 

1 OOYf 

122 

--CoMFA 171 
--QSAR 122, 147 
mutagenesis, ligand binding 10, 19 
mutagenesis test, Salmonella 85 
mutagenicity 46 
-CoMFA 169 
~ QSAR 85, 109, 125 
myclobutanil, QSAR 179 
Mycobacteriuin lufu 117 
Mycobacterium sinegmatis 135 

naphthylamidines, trypsin inhibition 

narcotic activities 109 
120 
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natural logarithms, in CoMFA 15,95 
negation (not) 88 
negative r&ESS values, PLS analysis 

net atomic charges 46 
net free energy of interaction 
neural networks 89 
-problems 89 
- similarity matrices 174 
neuroleptics 
- and membranes, NMR 31 
-QSAR 147 
- spectral mapping 136 
neutral 
-form, acids and bases 
-hydrogen bonds 10 
neutron diffraction, small-angle 30 
Nicod’s function (neither nor) 88 
nifedipine analogs, QSAR 50 
nimodipine 50 
- log P values 31 
NIPALS algorithm 101, 102 
nipecotic acids, DYLOMMS 159 
nisoldipine, log P values 31 
nitromethylene insecticides, similarity 

NMR measurements, neuroleptics 31 
noise variables, in PLS analysis 105 , 
nonadditivity 
- in Free Wilson analysis 
- partition coefficients 37 
- of group contributions 20 
non-animal methods, for LD,, test 

noncongeneric series 86 
noncovalent interactions 6, 11 
non-designed data sets 105 
non-equilibrium model system, drug 

nonlinear 
- activity-activity relationships 135 
- CoMFA models, critizism 171 
- iterative partial least squares 101 
- lipophilicity-activity relationships 

5, 16, 20, 68,fh 142, 176, 177 
- - and CoMFA 170 

104 

182 

79, 82 

matrices 173 

143 f f  

137 

transport 75 

- - similarity matrices 175 
-mapping 107 
- mixed approach 67 
-models 2, 68ff 
- - applicability 76, 77 
- - calculation 76 
-- comparison 13 1 
- - in pharmacokinetics 129 
--other 76 
- - transport and distribution 
- molar refractivity-activity relation- 

- parameter p, bilinear model 
- structure-activity relationships 66, 

- - and CoMFA 167 
- - empirical models 68,ff 
- - enantiomers 150 
- - in Free Wilson analysis 142 
- - theoretical models 70,ff 
- terms, in Free Wilson analysis 
-version of PLS analysis 105 
non-NMDA antagonist binding, 

nonspecific 
- binding, to proteins 121 
- biological activities 

- structure-activity relationships 57 
- toxicities 1 15 
norepinephrine-uptake inhibition 152 

norfloxacin, development 179 
normal distribution, experimental error 

normal equations, regression analysis 

nucleoside transporter protein 158 
number of 
- components, in PLS analyses 
-degrees of freedom, in Free Wilson 

-terms, in Hansch analysis 59 
- variables, in regression equations 96 
numerical equivalence, group contribu- 

5 

ships 77 
73 

68ff 

141 

CoMFA 171 

2, 5, 17, 29, 109 
--QSAR 123 

-QSAR 123, 140, 147 

16 

91 

103 

analysis 141 

tions 66 
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Occam’s razor 59 
octanol/water partition coefficients 

- advantages 28 
- standard system 29 
opiate receptors 13 
optically active compounds 140, 

optimal set of analogs 114 
optimization, lead structures 2, 133, 

optimized map, in MTD 
optimum lipophilicity 3, 73, 76, 

- antitumor drugs 132 
- blood-brain barrier 128 
-cells and animals 125 
optimum number of components, in PLS 

orbital energies 42 
ordered water molecules 11, 41 
orientation 
-of a ligand 9 
- of drugs, in a membrane 
- rules, in 3D QSAR 161 
ORMUCS 100 
ortho effects 54 
ortho-substituents 45 
ouabain 17 
outliers 
- in Hansch analyses 61 
- in QSAR 99, 182 
output layer, neural networks 89 
overall variance 93, 104 
overlap of properties, REMOTEDISK 

overlap volumes 89 
overprediction 96 
- in Hansch analysis 62 
- in PLS analysis 102ff 
overtraining, neural networks 89 
oxathiolanes, QSAR of enantiomers 

oxygen affinities, hemoglobin 19, 20 
oxytocin contraction inhibition, QSAR 

5 ,  27.f 

149.Lf 

179 
88, 146 

179 

analysis 103 

31 

158 

150, 151 

147 

TI values 21, 22, 34 
- different scales 34f, 59 
- lipophilicity calculation 34 f f  
nbenzene values 34 
P values (resonance 7t bond perturba- 

P values, see partition coefficients 
Pap,,, Pi and P, values 
papain 
- comparative QSAR 180 
- inhibition, QSAR 119 
- ligands 

tion) 45 

77ff 

--CoMFA 169 
--QSAR 54, 55  
parabolic 
- lipophilicity-activity relationships 

68, 123 
- lipophilicity term 57 
- model 
- - comparison with bilinear model 

- - systematic deviations 50 
parachor 21, 40, 41 
parameter 
- correlation matrix 
-focusing 107 110 
- interrelation 109 
- rpge ,  and predictions 61 
-space 3 
- - collinearity 1 11 
- - multidimensional 22 
parameters 21 
- aliphatic 22 
- aromatic 21, 23ff 

-collections 2lff 
- connectivity indices 
- electronic 218; 42,f, 58 
-field 21#, 42ff 
- for QSAR, from CoMFA 
- geometric 21, 50 
- hydrogen-bonding 30, 42, 46 
-indicator variables 21, 54,f, 85, 91, 

- linear free energy-related 1 15 
- lipophilicity 21, 27g, 58 

5 ,  58, 68#, 74, 81, 96 
76, 

131 

22, 1 13 

-BC(DEF) 22 

21, 41, 50Jf 

169, 18 1 

96 
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- molar refractivity 21ff, 40,fl, 49 
-other 49ff 
- physicochemical 21 f f  
- polarizability 21, 40fA 58 
- quantum-chemical 

- resonance 21ff, 42ff 
- spectroscopic 42, 45 
- steric 

-table 23ff 
- topological 21, 50ff 
parametrization, of enantiomers 15 1 
pargylin 10 
parsimony, principle of 59, 61 
partial charges 42 
partial F test 94ff 
partial least squares method, see PLS 
partition coefficients 5, 21, 22, 27,ff 
- acids and bases 77ff 
- additive constitutive parameter 34 
- and connectivity values 53 
- apparent Papp 771f 
- atom-based calculation 37 
- calculation 28, 34ff 
- CLOGP program 35ff 
- different solvent systems 28 
- experimental 36 c 

- measurement 27, 32 
- nonadditivities 37 
- pH dependence 77ff 
- principal component analysis 29 
- step by step calculations 
partitioning 27 f f  
- alkylpyridines 28 
- equilibrium, of an acid 
-of drugs 15 
- - into a membrane 3 1 
- of ion pairs 80 
passive diffusion, in MDR 125 
pattern recognition 85, 100 
- by neural networks 89 
- inQSAR 6 
pattern searching, pharmacophoric 

PCA, see principal component analysis 

21, 42, 46, 85, 
126 

21, 47 f f ,  58 
- STERIMOL 22, 48ff 

35 

77 

151 

PDE inhibitors, activity-activity 

penetration, blood-brain barrier 128 
penfluridol 17 
penicillin 7, 10 
peptides, receptor selectivity 32 
perfused organs 15 
permeability, cell wall 1 17 
perturbation method 18 
Pfeiffer’s rule 
PGDP/water system 
- f  values 34 
-partition coefficients 30 
pH absorption profiles 82 
pH dependence 
- absorption rate constants 84 
- log Papp values 77ff 
- partition coefficients of amino acids 

- transfer rate constants 84 
pH partition 
-hypothesis 82 
- profiles 78 f f  
pH shift 82 
pH values 77ff 
pharmacodynamic effects 15, 1 15 
pharmacokinetic data 15, 115, 126 
-acids and bases, pH dependence 
- mathematical models 83 
pharmacokinetics, QSAR 126, 129 
pharmacological models 137 
pharmacological profiles, of 

pharmacophore 50, 15 1 
- CATALYST program 

- conformation 12 
- hypotheses 6, 161 
--in 3D QSAR 161 
- identification 155 
- recognition, Apex-3D program 158 
pharmacophoric groups 3 
pharmacophoric pattern searching 15 1 
Phe-X-Phe conformations 18 
phenanthreneaminoalk y lcarbinols, 

relationships 134 

149, 150, 15 1 

79 

83 

enantiomers 149 

1 6 1 
-CoMFA 159ff 

QSAR 130, 139 



232 Index 

phenethylamines 
- binding site model 152 

phenol 17 
phenol coefficient 145 
phenol sulfotransferase, QSAR 121 
phenols, QSAR 141 
phenoxyacetic acids 5, 28 
phenoxypropionic acids, QSAR of 

enantiomers 149 
phenylalkylamines, QSAR 141 
phenylbutazone 16 
phenyldialkyltriazenes 125 
phenylenediamineplatinum dichlorides, 

phenylethanolamine-N-methyltram- 

phenyl ethers, QSAR 66 
phenyl glucosides 
- binding to concanavalin A 

phenylimidazoles, multiple binding 

phenylmethylcarbamates 146 
phenylquinolinylmethanols, QSAR 

phenyltriazines, QSAR 124 
phenyltropane carboxylic acids 

- similarity matrices 174, 175 
phorbol esters, QSAR 1311, 177 
phosphinates 17,ff 
phosphodiesterase inhibitors 134 
phospholipids 3 1 
phosphonamidates 17 ff, 20 
phosphonates 17ff 
phosphonic acids, chiral, QSAR 150 
phosphorylase inhibitors, multiple 

photosynthetic reaction center 8 
ph ysicochemical 
-model 96 
-parameters 21fL 85, 91 

- properties, and group contributions 

-QSAR 88, 140 

CoMFA 169 

ferase, QSAR 147 

12 1 
-CoMFA 169 

modes 163, 164 

139 

-CoMFA 171, 175 

binding modes 163 

range 96 -- 

65J7 

PI,, values 16 
pK, values 42, 45, 77ff 
- and log P values, determination 83 
-CoMFA 169 
- 3D QSAR 175 
- experimental 36 
- of benzoic acids, CoMFA 
- similarity matrices 174 
pK,-pH approximation 81 
pK,, values 46 
placenta barrier 129 
placental transfer ratios 129, 177 
plasmin inhibition, QSAR 141 
PLS analysis 

141, 166jf 
- advantages 106 
- algorithm 102 
-bootstrapping 104, 105 
- components 102 
-- selection, in CoMFA 172 
- cross-validation 102ff 
-diagram 102 
- genetic algorithms 167 
- GOLPE variable selection 167 
- in CoMFA 166ff 
-in DYLOMMS 159 
-in HASL 158 

in QSAR 106, 181 
- nonlinear version 105 
- in pattern recognition 85 
- predictions 103 f f  
- predictive ability 102, 105 
-results 102 
- robustness 105 
- similarity matrices 174, 175 
- statistical parameters 103 
- validity 102 
-variable selection 
- variance of variables 168 
- vectors 10 1 ff 
polar interactions I 
polar properties 21 
polarity 26 
polarizability 21, 40ff 
- parameters 2 1, 4 0 8  
-- inQSAR 58 

169 

6, 26, 27, 85, 100, lOlfA 

105, 167, 174, 175 
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-pattern 181 
POMONA database 36, 39 
porin, 8 
positive inotropic responses, PDE 

potential maps, DYLOMMS 159 
prazosin 134 
predictions 
- carcinogenicity 85jf 
- from Free Wilson analysis 
- from Hansch analysis 61 
- from PLS models 104 
-in QSAR 3, 122, 140, 179 
- prospective 85 
-toxicity, criticism 85 
-value of 86 
predictive ability 
- CoMFA models 167, 168 
- Free Wilson analysis 139 
- HASL method 158 
- in PLS analysis 102, 105 
-of a model 100 
- of CoMFA models 167 
- of DYLOMMS models 159 
- of Hansch equations 61 
predictive value, CoMFA models 167 
preselection, of variables 85 
PRESS value, cross-validation 103, 

principal component analysis 6,22,26, 

inhibitors 134 

64, 65 

104 

85, 101, 137 

- in design 11 3 
- partition coefficients 29 
-scores 27 
principal component regression analysis 
- Free Wilson model 65 
- stepwise 141 
principal components 101 
-in PLS analysis 102 
- of properties I 13 
principal properties 10 1 
- of amino acids 113 
- of substituents 114 
principle of parsimony 59, 61 
probability 

-DYLOMMS 159 

- model, see McFarland model 
- of success, predictions 86 
- to  arrive at a receptor site 
probe atoms 6 

- in CoMFA 164 
problems 
-in QSAR 181 
- neural networks 89 
progestational activities, QSAR 147 
progesterone 
- hypermolecule 146 
- receptor binding, QSAR 146 
prolyl endopeptidase inhibition, 

prontosil rubrum 7 
properties of proteins, in the crystal 
property-property relationships 57 
propicillin absorption, pH dependence 

propranolol 
- buccal absorption 
- log P calculation 37 
- log P values 31 
- pH partition profile 78 
propylene glycol dipelargonate, 

prostaglandin analogs, CoMFA 171, 

proteases, comparative QSAR 180 
protein binding 
-model 69 

- specific and unspecific 121 
protein-protein surface interactions 

proteins 
- conformations 8 
-crystallography 
- crystals, functional properties, 8 
- 3D structures 8, 116, 161 f f  
pseudoequilibrium systems 74 
pseudosubstituents 63, 114 
purine biosynthesis 1 16 
purine nucleoside phosphorylase, 

57 

-GRID 155 

CoMFA 171 

8 

84 

8 1 ,  82 

see PGDP 

172 

-QSAR 129 

19 

3,6, 17, 19, 179, 182 

multiple binding modes 163, I65 
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purine-sulfonamides, antitumor 

purines, binding modes 165 
purinones, QSAR 179 
pyrenamines, QSAR 179 
pyrimidinone H,-antihistaminics 152 

activities 158 

QSAR lfl, 15, 16 
-abstracts 6, 7 
- analyses 
-- and multiple binding modes 
-best equation 58fl, 61, 96 
-comparative 132, 141, 180 
- development 4 
- drug design and 179 
-enzyme inhibitors 121 
- equations, significance and validity 

- future development 
- history 4f5 159 
- introduction I f f  
- lateral validation 180 
- methodology 5 
- models, validity 99 
- multiple binding modes 163 
- paradigm 179 
- parameters, from CoMFA 169, 

- philosophy 3 
- predictions 122, 140 
- problems 18 1 
- publications 6 
- relevance 6 1 
-strategy 3 
-studies 15, 115fl, 139fl, 169ff 
-- reviews 133 
- success stories 179 
- three-dimensional 149 ff 
quadrants, of Craig plots 109 
qualitative data 100 
qualitative model, in Hansch analysis 

quality of fit 93, 95 
- PLS analysis 102 
quantitative 
-models 2, 57 

1 15fA 139,f, 169ff 
165 

95 
180, 18 1 

181 r 

60 

- structure-activity relationships, 

- structure-pharmacokinetics relation- 

quantum-chemical parameters 21, 42, 

- in QSAR 46, 126 
- rapid calculation 47 
quaternary ammonium compounds 4 
-transport rate constants 72, 74 

quinazolines, QSAR 179 

see QSAR 

ships 126, 129 

46, 85, 165 

-QSAR 122, 143, 144 

p 0 - n  analysis 5 
r value, see correlation coefficient 
r&?,,,,value 104ff 
B values 21 f f ,  42ff 
- redefinition 44 
-validity 44 
Bi and B- values 44Jf 
R, values 32 
R, values 32ff 
- advantages 33 
- correlation with log P values 
racemates 149 
random number simulations, Hansch 

analysis 62 
random walk 2 
rank-ordered biological data 107 
rat, gastric and intestinal absorption 

rat, in situ absorption model 
rate constants 15, 115 
- of drug transport 69, 72H, 126 
- - experimental 73 
- of metabolic degradation 15 
- pH dependence 82 
- pharmacokinetic 126 
rational 
- alignment 161 
- design, in QSAR 99, l09ff 
-drug design 2, 3, 7 
- selection of substituents 22 
reaction constant, e 5 
receptor 7fh 31, 115, 151 
- 3D structures 8 

33 

84 
81 
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- affinities 15, 151, 153 
- agonist 1 
- antagonist 1 
-binding 15, 115, 123, 133 

- - similarity matrices 
- binding site models 
-cavity 88 
- conformation 13 
-function 19 
- ligands, QSAR 122ff 
- map, of DHFR 152 
- mapping 15 Iff 
- modeling 8, 157 
- - chloramphenicol binding 54 

- occupation 68 
- regulation 19 
-response 13 
- selectivity 19 
- sites, hypothetical 152fl, 155 
-space 163 
- subtype selectivity 32 
-surface 161 
--mapping 6 
recommendations, for Hansch analysis 

reduced Free Wilson model 65, 145 
redundant data sets 104 
reference compound 5 
-in Free Wilson analysis 62 
reference substituent selection, 

in Free Wilson analysis 145 
refractive index 40, 41 
regression analysis 6, 16, 57, 85, 91fl, 

- and PLS analysis 102 
- comparison of different models 94 
-example 92 
- linear multiple 92, 181 
- ordinary 100 
- procedure 9 lff 
- proper application 99 
- stability and validity 99 
- stepwise 96fl, 158 
regression coefficients 20, 96 

--CoMFA 171, 175 
174, 175 

152fL 155 

- - REMOTEDISK 158 

59ff 

100, 101 

- from PLS analysis 167 
- significance 59 
Rekker method 34ff 
relationships 
- between Hansch and Free Wilson 

-nonlinear 66, 68ff 
relevance, of QSAR analyses 61 
REMOTEDISC 158 
renin inhibition 

analyses 65ff 

-CoMFA 171 
-QSAR 147 
replication (so if) 88 
repulsive forces, ligand binding 11 
residual variance 93 
residuals, in regression analysis 99 
resistance 
-drug 31, 124ff 
- methotrexate 124ff 
- multidrug 31, 50, 125 
- trimethoprim 3 1, 125 
resonance 
- contributions 45, 60 
-effects 44 
- parameter &? 21’j’j 42f’j 
respiration inhibition, tumor cells, 

QSAR 41 
“response surfaces 105 
restricted rotations 182 
restrictions, of Free Wilson analyis 

retention values, RPTLC 32 
retro-thiorphan, binding mode 163, 

reversed-phase thin-layer chromato- 

Rhinocladium beurmanni 49, 74 
ribonucleosides, antiviral 1 58 
ribosomal protein 153 
rigid analogs 
risk assessment, and QSAR 85 
robustness, of statistical methods 101 
rodent carcinogenicity, prediction 85ff 
rotational entropy 12, 17 
rule-based algorithms, LUDI 155 
rule-based expert system, GOLEM 86 

143 

166 

graphy 32 

12, 88, 89, 151 



236 Index 

(r bond perturbation parameter S 
(T constants 

- aliphatic u* values 45 
-compilations 44 
- different scales 44 
-in QSAR 43 
- similarity matrices 174 
(T receptor ligands, CoMFA 171 
s value, see standard deviation 
spRESS value 103 
S values (field-inductive (T bond 

salicylamides, CoMFA 17 1 
salicylic acid, pH partition profile 

Salmonella typhimurium 46 
- mutagenesis test 85 
Sartorius absorption simulator 126, 

scaling, of MR values 41 
scores, principal components 27 
SDEP value 103 
searches, in 3D databases 36, 161 
selection 
- of substituents, in drug design 
- of variables 

- - in Hansch analysis 
selectivity, 12 
-and QSAR 179 
semiempirical methods 19,40,47,160 
semiquantitative data 100 
sensitivity, of test models 136 
sequence specificity of DNA alkylation, 

HASL 158 
sequential F test 
sequential simplex technique 110,ff 
serendipity 7 
serine proteases 116, 120 
- comparative QSAR 180 
-inhibitors 10 

-selectivities 141 
serotonin 
- 5-HT2 agonism 152 

45 
4, 5, 2lfl, 42fl 

- 3D QSAR 175 

perturbation) 45 

80 
tetrabutyl-ammonium ion pair 80 

127 

107 

--GOLPE 105 r 

59 

59, 6 1, 94ff 

-QSAR 116, 120, 141, 180 

-antagonists, QSAR 123 
- ligands, CoMFA 171 
- receptor binding, QSAR 147 
serotonin-uptake inhibition, QSAR 

serum albumin binding 121 
shake flask method 32 
shape similarity, of molecules 
Sheffer’s function (incompatible with) 

SIBIS method 88 
side effects, sedative 128 
sigmoidal curves 79 
significance 
-level 95 
- of cross-validation results 104 
- QSAR equations 62, 95 
- of regression coefficients 59 
- of regression equations 94 
- of terms, in Free Wilson analysis 
- of variables 96 
- probability value 107 
significant components, in PLS analysis 

SIMCA model 85, 101, 107 
similarity 
- ASP program 173 
- chemical 161 
- indices 50, 172, 173 
-matrices 77, 171, 172fJ 181 
- - and CoMFA studies 
- - lipophilicity 
- QSAR analyses 172ff 
-searches 36 
simplex technique 100, 110 
simulations 
- bilinear model 73 
- nonlinear models 7 1 
single class discrimination 101 
single-point determination 
singularity problems 63 
sinus terms, in QSAR 77 
size, of substituents 26 
skin permeation, phorbol esters 
small-angle neutron diffraction 30 
SMILES code 35 

123 

22, 173j7’ 

88 

65 

103 

174, 175 
17 I ,  175,ff 

64, 1 14, 141 

13 1 
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soaking, protein crystals 8 
soft modeling techniques 6, 85 
solubility 4, 27, 33, 40, 57 
-ions 79 
- limited 13, 68 
solvation-desolvatjon balance 10, 182 
solvation of drugs, in membranes 
solvent-accessible surface 40, 49 
solvent polarity, scales 28 
solvent/water systems, different 28 
spasmolytic activities, QSAR 69, 70, 

Spearman rank correlation coefficient 

specific binding, to proteins 121 
specific biological activities 109 
spectral mapping 136, 137 
- neuroleptic drugs, diagram 136 
spectroscopic data 21, 42, 45 
stability 
-of a model 99, 100 
- of a PLS model 105 
- of a regression model 
stabilization, of conformations 9 
standard deviation of error of 
predictions, SDEP 103 
standard deviation s 20, 55, 61, 66, 

-in Free Wilson analysis 141 
- of regression coefficients 53 
- spRESS value 103 

31 

74 

174 

99 

93ff> 96 

standard system, drug partitioning 
28 ff II 

Staphylococcus aureus 141 
start map, MTD 88 
statistical 
-design 113, 181 
- methods 9 1, ff 
- - multivariate 100 
- - proper application 109 
- parameters, PLS analysis 103,f 
- problems, in Free Wilson analysis 

- requirements, CoMFA studies 172 
- significance 94 
- unicorns, in QSAR 77 

147 

stepwise 
- approaches, Topliss scheme 
- derivation, Hansch equations 139ff 
- discriminant analysis 100 
- Free Wilson analysis 86 
- iteration of p, bilinear model 
- principal component regression 65, 

- regression analysis 59, 85, 96ff, 106, 

- - in Free Wilson analysis 145 
- selection of variables 96ff 
stereochemistry, and drug action 149ff 
stereospecificity, drug-receptor 

steric 

- constraints, binding site 49 
- crowding of ligand groups 
- field, CoMFA 6, 164, 167 
-fit 1 
- interactions 1,  18 1 
- - contour maps 168 
- overlap, CoMFA steric fields 
-parameters 21, 41, 47ff 

- - compilations 49 
- - in QSAR 57ff 
- properties 21 
- - and connectivity values 
STERIMOL parameters 22, 48ff 
steroid-binding globulins, 3D QSAR 

steroids 

- contour maps 168 

- similarity matrices 173 ff 
structural variation, in data sets 
structure-activity relationships 5, 15, 

- and multiple binding modes 
- comparative 
-nonlinear 66, 68fl 
- nonspecific 57, 123 
structure and function, of receptors 8 

1 13 

73 

141 

158 

interactions 7 

-bulk 22, 59 

20 

165 

--CoMFA 169 

53 

159, 171, 173ff 

-CoMFA 159, 160, 168, 171ff 

-QSAR 133 

109 

28, 57Jx 1I5ff, 139ff 
163 

1 15, 124, 132, 141, 180 
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structure-based drug design 
structure-pharmacokinetics relation- 

Student t values 94 
-table 95 
substituent group contributions 5,63ff 
substituent parameters, for correlation 

substituents 
- cluster analysis 22 
- principal properties 1 14 
- rational selection 22 
-size 26 
substrates 1, 20 
substructure searches 36 
subtilisin, comparative QSAR 180 
success stories, in QSAR 179 
succinate dehydrogenase inhibitors, 

suizide enzyme inhibitors 10 
sulfa drugs, antibacterial 124 
sulfanilamide 7 
sulfonaniide carboanhydrase inhibitors 

sulfonamides 45 
-binding 152 

suloctodil 16 
sum of squared errors of predictions, 

superdelocalizability 46 
superposition 
- atom-by-atom 88 
- of molecules 161 
- of ring systems 88 
superstructure 86 
-searches 36 
surface 
- area, CoMFA 169 
- complementarity 1 
- solvent-accessible 49 
-tension 40 
symmetrical curves, McFarland model 

symmetrical matrix 93 
symmetry equations 63 

1 16, 179 

ships 126ff 

analysis 21ff 

QSAR 88 

153 

-CoMFA 172 

PRESS l03,ff 

71 

t values, Student 94ff 
table 
- F  values 94 
- substituent parameters 23,ff 
- t values 95 
tangens terms, in QSAR 77 
TCDD, see tetrachlorodibenzodioxin 
template field, CoMFA field tit 166 
teratogenicity 85, 109 
test models 137 

~ sensitivity 136 
 in uitko 115 
test series, design I09ff 
test set 85, 86, 100, 104 
- in pattern recognition 85 
tetrachlorodib~nzodioxin receptor 

binding 123 
-CoMFA 171 
tetracyanoethylene 46 
tetrahydrocannabinol analogs, CoMFA 

theoretical aspects, CoMFA 172 
theoretical models, nonlinear relation- 

ships 70ff 
thermodynamic 
t analysis 13 
~ control, transport rate constants 
- perturbation method 18 
- relationships 20 
thermol ysin 

~ active site 166 
-inhibitors 17#; 20 

- - binding mode 166 
~ - interaction geometries 163 
- - multiple binding modes 
thin-layer chromatography, reversed- 

thiophosponates, QSAR 96, 98 
thiopurine methyltransferase, QSAR 

thiorphan, binding mode 163, 166 
three-compartment system 72 ff 
- equilibrium model 75 
- water/n-octanol/water 73 
three-dimensional 

171 

73 

--CoMFA 171 

161 

phase 32 

121 
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- grid, in CoMFA 159 
- QSAR, see 3D QSAR 
thrombin inhibitors 

- multiple binding modes 163 
thromboxane synthase, QSAR 121 
thymidilate synthase, QSAR 121 
thymidine kinase, QSAR 121 
thyroid hormones 
- multiple binding modes 163 
- receptor affinity, QSAR 123 

thyromimetic activities, QSAR 147 
thyroxine, 17 
-binding protein affinity 123 
timolol, log P values 31 
tissue levels 126 
Topliss operational schemes 1 lOff 
- applications 1 13 
-diagram 112 
topological 
- indices 21, 50, 53, 85 
- ~ critizism 53 
-- inQSAR 53 
- pharmacophore methods 86, 88 
-state 53 
topology-based electronic descriptors 

topology of drugs 182 
total topological index 53 
toxic activation of MPTP analogs 

- similarity matrices 174, 175 
toxicity 4, 15, 109 
-alkanes, CoMFA 172 
- benzoic acids 5, 43 

-QSAR 141 

-QSAR 4, 123 

53 

-CoMFA 171, 175 

-CoMFA 170 
-QSAR 43, 85,  100, 147, 179 
- predictions, criticism 85 
training, of neural networks 89 
training set 85, 86, 100, 103 
- in pattern recognition 85 
-in QSAR 181 
tranquillizing activities, QSAR 147 
trans-membrane domains 8 
transfer rate constants 126, 176 

transformation, of biological data 15 
transition state 149, 161 
- stabilization energies I9 
translational entropy 12, 17 
transport glycoprotein GP-I 70 125 
transport of drugs 2, 3, 5 fj 20 ff, 179, 

-and CoMFA 167 
- computer simulation 68,ff 
-rate constants 72fj 84 
- - experimental 73, 84 
triangularisation of a matrix 93 
triazi nes 

- similarity matrices 174, 175 
trifluoperazine, pH partition profile 79 
trimethoprim 1 I6ff 
-analogs 31 
- - ligand design 116 
- - multiple binding modes 
- diphenylsulfone analog 1 17 
- in DHFR active site 155 
-resistance 31, 125 
trinitrobenzene 46 
trypsin inhibition 
- comparative QSAR 180 

tumor cells 
- drug resistance, QSAR 125 
- inhibition, QSAR 42, 124 
- multidrug resistance, QSAR 3 1, 50, 

- response to estrogens, CoMFA 172 
tumor promoting activities, phorbol 

tyrosine kinase inhibition, CoMFA 

tyrosyl-tRNA synthetase, 19 

181 

- COMFA 172, 175 

163 

-QSAR 120, 141 

125 

esters 131 

171 

unexplained variance 93, 104 
unicorns, statistical 77 
unionized form, correction for 82 
unsymmetrical curves, bilinear model 

upper limit of correlation coefficient r 
75 

66 
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uptake inhibitors, QSAR 123 
uridine phosphorylase, QSAR 121 
U. S. National Toxicology Program 

85 

valence connectivity values 53 
validation 
- of Hansch equations 61 
- of QSAR studies 180 
- procedure, in QSAR 
validity 
- of a PLS model 102 
- of a regression model 
- of QSAR equations 62, 95, 99, 181 
valproate 17 
van der Waals 
- potentials 164 
-radii rv 47 
-spheres 165 
--overlap 11 
-volumes 41, 49, 128 

vaporization enthalpy 22 
variable elimination, Free Wilson 

analysis 144 
variable selection 

- in Hansch analysis 59 i. 

- in PLS analysis 
- stepwise 96j)” 
variables 
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