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Foreword 

In any serious engineering discipline, it would be unthinkable to construct a 
large system without a precise notion of what is to be built. Equally, any 
professional engineer must record not only his or her proposed solution to 
an engineering challenge, but also reasons why the solution is believed to 
be correct. Software engineering faces the challenge of creating very large 
systems and must therefore solve both of these challenges. Combined with 
established good practice such as inspections, formal methods can make a 
significant impact on software dependability. 

The fact that descriptions and correctness arguments were required was ob­
vious to pioneers of computing as early as von Neumann and TUring, who both 
wrote about ways of reasoning about programs. Since their early attempts, the 
need has been to find tractable ways of coping with systems of ever increasing 
size. The landmark contributions of Bob Floyd and Peter Naur culminated 
in Tony Hoare's wonderfully clear exposition of "axioms" for reasoning about 
programming constructs. This in turn led to development methods like VDM, 
Z, and B. Such methods work well for systems which are sequential and self­
contained, but extensions were required to deal with other real world problems 
such as concurrency and "open" systems where obtaining specifications (and 
recognising that the requirements will evolve over the lifetime of the system) 
is as challenging as developing the "closed" components which result. 

This book brings together ideas from VDM and from object-oriented think­
ing to propose an approach to the development of realistic software systems. 
"SOFL" builds on some of the most pervasive ideas to come from theoretical 
computing science and amalgamates them into an approach which the author 
has used on a variety of practical applications. Such books are to be whole­
heartedly welcomed because they are written with an acute understanding of 
the issues for designers of useful software. 

The success and pervasiveness of object-oriented methods suggest that it 
is unnecessary to say more about their marriage with formal methods since 
it might appear to be an obvious step. I should however like to add some 
arguments in favour of this specific combination. It is frequently argued that 
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today's computer applications are inherently complex. I think only part of 
this complexity is inevitable in today's systems. Of course, the code for an 
online airline seat reservation system of 2003 is bound to be larger than the 
code for a simple batch payroll system of the 1960s. But it is also clear that 
much of today's software is very poorly structured: its architecture is often 
opaque and users find it almost impossible to form a mental model of how 
it works. With a WYSIWYG word processor, this can result in frustration 
and expensive loss of productivity for professional users; for safety-critical 
applications, poorly understood systems present the real danger of an operator 
making life threatening mistakes. The ultimate contribution of formal methods 
will be to help clean up the architecture of systems, and the marriage with 
object-oriented ideas is important in this regard. 

Another key contribution of object-oriented implementations is that they 
offer a way of controlling interference in concurrent computing. Interference 
is the key characteristic of concurrent programs (whether the parallel pro­
grams share states or interact only by communication primitives). Reasoning 
about interference can be delicate and complex; good engineers will reduce 
the areas where such complexity is required to a minimum. Object-oriented 
implementations put the control of interference where it belongs: that is, with 
the designer. 

The combination of formalism and object-oriented design has the potential 
to yield clean and accurate implementations. The reader is encouraged to 
understand and use SOFL. 

Cliff B. Jones 
University of Newcastle upon Tyne 



Preface 

This book aims to give a systematic introduction to SOFL (Structured 
Object-Oriented Formal Language) as one of the Formal Engineering Meth­
ods for industrial software development. Formal engineering methods are a 
further development of formal methods toward industrial application. They 
support the integration of formal methods into the software development pro­
cess, the construction of formal specifications in a user-friendly manner, and 
rigorous but practical verification of software systems. SOFL achieves all of 
these features by integrating data flow diagrams, Petri nets, VDM, and the 
object-oriented approach in a coherent manner for specifications construction, 
and by integrating formal verification with fault tree analysis and testing for 
reviewing and testing specifications. It also provides a way to transform for­
mal specifications into Java programs. SOFL has been taught for many years 
at universities, and has also been applied to systems modelling and design 
both in industry and academia. 

Formal methods have made significant contributions to the establishment 
of theoretical foundations and rigorous approaches for software development 
over the last 30 years. They emphasize the use of mathematical notation in 
writing system specifications, both functional and non-functional, and the em­
ployment of formal proofs based on logical calculus for verifying designs and 
programs. However, despite a few exceptions, most formal methods have met 
challenges lobbying for acceptance by industrial users. A lack of appropriate 
education may be seen as one of the major reasons for this unfortunate sit­
uation, but, apart from this, a bigger problem is that formal methods have 
not successfully addressed many important engineering issues related to their 
application in industrial environments. For example, how can formal specifica­
tions, especially for large-scale systems, be written so that they can be easily 
read, understood, modified, verified, validated, and transformed into designs 
and programs? How can the use of formal, semi-formal, and informal methods 
be balanced in a coherent manner to achieve the best quality assurance under 
practical schedule and cost constraints? How can formal proof and testing, 
static analysis, and prototyping techniques be combined to achieve rigorous 
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and effective approaches to the verification and validation of formal specifi­
cations, designs, and programs? How can the refinement from unexecutable 
formal specifications into executable programs be effectively supported? How 
can the evolution of specifications at various levels be assisted and controlled 
consistently and efficiently? How can software development processes be for­
mally managed so that they can be well predicated before they are carried 
out, and well controlled during their implementations? And how can effec­
tive software tools supporting the use of formal methods be built so that the 
productivity and reliability of systems can be enhanced? 

Since the research to provide possible solutions to these questions addresses 
a different aspect of the problem; I call this area Formal Engineering Methods. 
In other words, formal methods emphasize the utilization of mathematical no­
tation and calculus in software development, without considering the human 
factor (e.g., capability, skills, educational background) and other uncertainties 
(e.g., accuracy and completeness of requirements, changes in both specifica­
tions and programs, the scale and complexity of systems), whereas formal en­
gineering methods advocate the incorporation of mathematical notation into 
the software engineering process to substantially improve the rigor, compre­
hensibility, and effectiveness of commonly used methods for the development 
of real systems in the industrial setting. 

After introducing the general ideas of formal engineering methods, this 
book provides a tutorial on the recently developed formal engineering method 
SOFL. The material originally evolved from my research publications over last 
15 years, from courses, and from seminars offered at universities and compa­
nies in Japan, UK, USA, and Australia. It is intended to be the basis for 
courses on formal engineering methods, but it also contains the latest new 
research results in the field. By reading through this book, the reader will 
find that SOFL has provided many useful ideas and techniques as solutions 
to many of the questions raised above. It not only makes formal methods 
accessible to engineers, but also makes the use of formal methods enjoyable 
and effective. In order to help readers study SOFL easily, I have tried to 
make the descriptions as precise and comprehensible as possible. I have also 
tried to avoid unnecessary formal semantics of SOFL constructs, to the ex­
tent that this does not affect our understanding them. Numerous examples 
are given throughout the book to help the explanation of the SOFL specifi­
cation language and method, and many exercises are prepared for readers to 
improve their understanding of the material they have studied and to check 
their progress. 

The objective of this book is to bring readers to the point where they can 
use SOFL to construct specifications by evolving informal specifications to 
semi-formal ones, and then to formal ones. It is also intended to help readers 
to master rigorous and practical techniques for verifying and validating speci­
fications, to learn the process of developing software systems using SOFL, and 
to get new ideas for building intelligent software engineering environments. 
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Audience 
This book is written for people who want to improve their knowledge and 

skills in developing complex software systems. Readers who are interested 
in formal methods, but frustrated by using them in practice, will benefit 
greatly from this book. Although I have made efforts to make the book as 
self-contained as possible, and have provided many exercises for individual 
study, the reader will need some experience in programming and basic knowl­
edge of discrete mathematics to appreciate and digest some of the abstract 
material. 

Using This Book 
This book can be used at the second year undergraduate or above level 

as a computer science textbook for courses on logic and formal specification, 
advanced software engineering, and software specification, verification, and 
validation, respectively. According to my experience at Hosei University and 
other institutions, in the course on logic and formal specification that takes 
about 24 hours, the fundamental knowledge on first order logic and skills for 
writing comprehensible formal specifications for large-scale software systems 
can be introduced based on the contents of chapters 1 to 12. 

The course on advanced software engineering usually takes 26 hours, incor­
porating rigorous software development techniques using a formal specification 
language, including skills for writing modular, hierarchical, and comprehensi­
ble formal specifications, evolving informal specifications to semi-formal and 
then to formal ones, transforming structured abstract design into an object­
oriented detailed design, and transforming detailed design into object-oriented 
programs in Java. The contents of this course can contain chapters 1, 4 to 16, 
19, and 20. 

In the course on software specification, verification, and validation, which 
is suitable for graduate students and needs about 24 hours, the techniques for 
writing formal specifications and for their verification and validation can be 
introduced based on the contents of chapters 4 to 18. 

The book can also be used as a reference book to support the study of 
other related courses or individual study of formal engineering methods for 
software development. To make the book easier to use, I have organized the 
materials into nine parts: 

Introduction. Chapter 1 explains the motivation of formal engineering 
methods and describes what they are. After discussing the problems in soft­
ware engineering and difficulties in using formal methods, I describe the gen­
eral ideas and features of formal engineering methods and their relation with 
SOFL. 

Logic. Chapters 2 and 3 introduce mathematical logic that is adopted by 
SOFL. Both propositional logic and predicate logic are explained, and their 
application to the writing of and reasoning about SOFL specifications are 
discussed. 

Specification. Chapters 4 to 6 cover the most important components of 
SOFL specifications: module, hierarchy of modules, and explicit specifications. 
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We explain the techniques of combining graphical notation and formal tex­
tual notation in writing comprehensible but formal specifications with these 
components. 

Data types. Chapters 7 to 12 describe all the built-in data types in SOFL, 
which include basic types, set types, sequence and string types, composite 
and product types, map types, and union types. Each type is introduced by 
explaining its constructors and operators, and their use in specifications. 

Classes. Chapter 13 is concerned with the concept of class: a user-defined 
data type. We discuss the structure of classes by explaining their similarity 
with and differences from modules, and the way to use classes in module 
specifications. 

Software process. Chapters 14 and 15 present a software development 
process using SOFL from informal specifications to programs, and in partic­
ular elaborate several techniques for constructing formal specifications in an 
evolutionary manner. 

Case study. Chapter 16 describes a case study of specifying an ATM 
(Automated Teller Machine) using the SOFL specification language. This case 
study is designed to show the entire process of developing a detailed design 
specification from an informal user requirements specification, and gives the 
reader an opportunity to review and digest the contents studied before this 
chapter. 

Verification and validation. Chapters 17 and 18 introduce two tech­
niques for verification and validation of specifications: rigorous reviews and 
specification testing. We explain how formal proof and the practical techniques 
like reviews and testing are integrated to provide rigorous but practical meth­
ods for verification and validation of specifications. 

Transformation and software tools. Chapter 19 explains the principle 
and technique for the transformation of design specifications into Java pro­
grams, including data transformation and functional transformation; the last 
chapter, 20, discusses the potential features of an intelligent software engineer­
ing environment supporting formal engineering methods, in particular SOFL, 
and its importance in enhancing the productivity and reliability of software 
products. 

All readers are recommended to read Chapter 1, but those who are ex­
perienced in programming and have sufficient knowledge about mathematical 
logic can skip Chapters 2 and 3. Chapters 4 to 6 present the fundamental 
principles and techniques for constructing specifications, and therefore are 
suitable for all readers. Chapters 7 to 12, concerned with abstract data types, 
need attention from the beginners, but can be quickly browsed by those who 
are familiar with VDM (Vienna Development Method), with caution because 
of the differences in syntax. Chapters 13 to 20 contain specific materials on 
SOFL and are recommended for study by all readers. 
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1 

Introduction 

The development of complex software systems on a large scale is usually a 
complicated activity and process. It may involve many developers, possibly 
with different backgrounds, who need to work together as a team or teams 
in order to ensure the productivity and quality of systems within a required 
schedule and budget. Each developer plays a specific role, for example, as an 
analyst, designer, programmer, or tester, and is usually required to produce 
necessary documents. The documents may need to be provided to other devel­
opers in the team for reading or for assisting them in performing their tasks. 
For this reason the documents need to be well presented, with appropriate 
languages or notations, so that they can be understood accurately and used 
effectively. 

In the early days of computing, software was seen as synonym of pro­
gram, but this view was gradually changed after the birth of the field software 
engineering in the late 1960s [1, 2J. Software is no longer regarded only as 
a program, but as a combination of documentation and program. In other 
words, documentation is part of software that represents different aspects of 
the software system. For example, the documentation may contain the user's 
requirements, the goal to be achieved by a program, the design of the program, 
or the manual for using the program. 

The documentation is important for ensuring the quality and for facilitat­
ing maintenance of a program system. If the documentation containing the 
user's requirements or the program design is difficult to understand accurately 
by the developers undertaking subsequent development tasks, the risk of pro­
ducing an unsatisfactory program system will run high. The consequence of 
this can be serious: the program system either needs more time and effort to 
be improved to the level that is deliverable or needs to be completely rebuilt. 
In either case, a loss of money and time is unavoidable. 
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1.1 Software Life Cycle 

Software, like a human being, has a life cycle, composed of several phases. 
Each of these phases results in the development of either a part of the system 
or something associated with the system, such as a specification or a test 
plan [32). A typical software life cycle, known as waterfall model, is given in 
Figure 1.1. Although the real picture of the software life cycle may be much 
more complicated than the waterfall model, it depicts primary features of the 
software development process. Almost every other model uses the idea of the 
waterfall model as its foundation [11, 84, 8, 111, 98). 

The typical waterfall life cycle model comprises five phases: requirements 
analysis and specification, design, implementation, testing, and delivery and 
maintenance. 

Requirements analysis and specification is a study aiming to dis­
cover and document the exact requirements for the software system to be 
constructed [23)[51)[52). To this end, the system in the real world, which is to 
be computerized, may need modeling so that all the necessary requirements 
can be explored. The result of such a study is usually a document that de­
fines the identified requirements. A requirement in the document can be a 
statement, a formal logical expression, a text, a diagram, or their combina­
tions that tell what is to be done by the system. Such a document is usually 
called a requirements specification. For example, "build a student information 
system" can be an abstract level requirement. 

Design is an activity to construct a system, at a high level, to meet the 
system requirements. In other words, design is concerned with how to provide 
a solution for the problem reflected in the requirements [56). For this reason, 
design is usually carried out on the basis of the requirements specification. 
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Design can be done in two stages: abstract design and detailed design. Abstract 
design is intended to build the architecture of the entire system that defines 
the relation between software modules or components. Detailed design usually 
focuses on the definition of data structures and the construction of algorithms 
[15, 99]. The result of design is a document that represents the abstract design 
and detailed design. Such a document is called design or design specification. 
To distinguish between the activity of design and the document resulting 
from the design activity, we use design to mean the design activity and design 
specification to mean the design document in this book. 

Implementation is where the design specification is transformed into 
a program written in a specific programming language, such as Pascal [37], 
C [58], or Java [4]. The implemented program is executable on a computer 
where the compiler or interpreter of the programming language is available. 
The primary concerns in implementation are the functional correctness of the 
program against its design and requirements specifications. 

Testing is a way to detect potential faults in the program by running 
the program with test cases. As there are many ways to introduce faults 
during the software development process, detecting and removing faults are 
necessary. Testing usually includes the three steps: (1) test case generation; (2) 
the execution of the program with the test cases; and (3) test results analysis 
[115,53]. 

There are two approaches to program testing: functional testing and struc­
tural testing, which are distinguished by their purposes and the way test cases 
are generated. Functional testing, also known as black-box testing, aims to 
discover faults leading to the violation of the consistency between the spec­
ification and the program, and test cases are generated based on the func­
tional specification (requirements specification or design specification or both) 
[45, 9, 108]. Structural testing, alternatively known as white-box testing, tries 
to examine every possible aspect of the program structure to discover the 
faults introduced during the implementation, and test cases are therefore gen­
erated based on the program structure [106]. In general, both functional test­
ing and structural testing are necessary for testing a program system because 
they are complementary in finding faults. 

Deliver and maintenance is where the system is ultimately delivered 
to the customer for operation, and is modified either to fix the existing faults 
when they occur during operation or to meet new requirements [111]. Main­
tenance of a system usually requires a thorough understanding of the system 
by maintenance engineers. To enhance the reliability and efficiency of main­
tenance, well documented requirements specification and design specification 
are important and helpful. 

In addition to the forward flow from upper level phases to lower level 
phases in the software life cycle, we should also pay attention to the backward 
flow from lower level phases to upper level phases. Such a backward flow 
represents a feedback of information or verification. For example, it is desirable 
to check whether the design specification is consistent with the requirements 
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specification, whether the implementation satisfies the design specification, 
and so on. 

1.2 The Problem 

One of the primary problems in software projects is that the requirements 
documented in specifications may not be accurately and easily understood by 
the developers carrying out different tasks. The analyst may not understand 
correctly and completely the user requirements due to poor communication; 
the designer may misunderstand some functional requirements in the specifi­
cation due to their ambiguous definitions; the programmer may make a guess 
of the meaning of some graphical symbols in the design specification; and so 
on. The major reason for this problem is the use of informal or semi-formal 
language or notation, such as natural language (e.g., English) and diagrams 
that lack a precise semantics. Let us consider the requirements for a Hotel 
Reservation System as an example: 

A Hotel Reservation System manages information about rooms, reservations, 
customers, and customer billing. The system provides the services for making 
reservations, checking in, and checking out. A customer may make reservations, 
change, or cancel reservations. 

This specification defines necessary resources to be managed and desirable 
operations to be provided for the management of the resources. The resources 
include rooms, reservations, customers, and customer billing. The operations are 
making reservation, checking in, checking out, changing reservations, and cancel­
ing reservations. As all the terms representing either resources or operations 
are given in English, they may be interpreted differently by different devel­
opers. For instance, by customers the analyst might mean persons with a full 
name, address, telephone, and room reservations, but the programmer may 
misunderstand it as persons with only a full name; by checking in the analyst 
might mean that the customer has arrived at the hotel, obtained the room 
key, and made payment for all his or her room charges in advance, but the 
programmer may misunderstand that checking in does not require advanced 
payment. 

This problem is caused not only by the lack of the detailed and precise 
definition of the terms, but also by the free style of the documentation. In­
formal specifications can be written in a manner where every important term 
is defined in detail, but the free style of writing may make the specification 
tedious and keep important information hidden among irrelevant details. In 
fact, a well-organized documentation, even if written in an informal language 
or notation, can greatly help improve its readability. However, no matter how 
much the organization is improved in an informal documentation, it is usu­
ally impossible to guarantee no misunderstanding occurs because ambiguity 
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is an intrinsic feature of informal languages. Furthermore, in an informal de­
scription it is difficult to show the clear relations among different parts of a 
complicated specification. 

A specification should be consistent in defining requirements, that is, no 
contradiction should exist between different requirements in the specification. 
The specification is also expected to document all the possible user require­
ments; such a property is called completeness of specification. Since informal 
specifications lack formality in both syntax and semantics, it is usually dif­
ficult, even impossible in most cases, to support automated verification of 
their consistency and completeness in depth. Furthermore, informal specifi­
cations offer no firm foundation for design and coding, and for verifying the 
correctness of implemented programs in general. 

1.3 Formal Methods 

One way to improve the quality of documentation and therefore the quality 
of software is to provide formalism in documentation. Such a formalized doc­
umentation offers a precise specification of requirements and a firm basis for 
design and its verification. 

1.3.1 What Are Formal Methods 

Formal methods for developing computer systems embrace two techniques: 
formal specification and formal verification [55, 3, 38, 116, 43J. Both are es­
tablished based on elementary mathematics, such as set theory, logic, and 
algebraic theory, as illustrated in Figure 1.2. 

Formal specification is a way to abstract the most important information 
away from irrelevant implementation detail and to offer an unambiguous doc­
umentation telling what is to be done by the system. A formal specification is 
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written in a language with formal syntax and semantics. Of course, program­
ming languages are also formal languages, but they are for implementation 
of computer systems, not for specifications. In a specification language, there 
is usually a mechanism that allows the definition of what to be done by the 
system without the need of giving algorithmic solutions, whereas in a program­
ming language all the mechanisms are usually designed for writing algorithmic 
solutions (i.e., code). For this reason, formal specifications are more concise 
and abstract than programs. 

Formal verification is a way to prove the correctness of programs against 
their specifications [42][24][36][101]. A program is correct if it does exactly 
what the specification requires. The proof of the correctness is usually based on 
a logical calculus that provides necessary axioms and inference rules. An axiom 
is a statement of a fact without any hypothesis, while a rule is a statement of 
a fact under some hypotheses. Program correctness proof aims to establish a 
logical consistency between the program and its specification. 

A method offers a way to do something. This is true to formal methods 
as well. Figure 1.3 shows the principle of formal methods. A specification is 
constructed first, and then refined into a program by following appropriate 
refinement rules [90][6]. In general, since this refinement may not be done 
automatically, the correctness of the program may not be ensured. Therefore, 
a formal verification of the program against its specification is needed to ensure 
its correctness. Such a verification may sometimes also help detect faults in 
the specification. 

In principle, the activities of specification, refinement, and verification ad­
vocated by formal methods may not necessarily be completed within a single 
cycle; they are usually applied repeatedly to several level specifications. Thus, 
an entire software development can be modeled as a successive refinement 
and verification process, after the informal requirements are formalized into 
the highest level formal specification and the specification is validated against 
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the informal requirements, as illustrated in Figure 1.4. In this model, each 
level document is perceived as a specification of the next lower level docu­
ment, and each refinement takes the current level specification more toward 
the final executable program, represented by the lowest level specification 
(i.e., formal specification_n). Since refinement is a transitive relation between 
specifications, the final program must theoretically satisfy the highest level 
specification (i.e., formal specification_I). 

1.3.2 Some Commonly Used Formal Methods 

Many formal methods have been reported in the literature so far, such as 
VDM, Z, B-Method, HOL [35], PVS [20], Larch [39], RAISE [38], and OBJ [34, 
31], but in accordance with the international survey on industrial applications 
of formal methods [19] and the applications described in Hinchey and Bowen's 
edited book [88], the most commonly used formal mthods include VDM, Z, 
and B-Method. 

VDM (The Vienna Development Method) offers a notation, known as 
VDM-SL (VDM-Specification Language), and techniques for modelling and 
designing computing systems. It was originally developed based on the work 
of the IBM Vienna Laboratory in the middle 1970s. The publication of Jones's 
book titled "Systematic Software Development using VDM" [54, 55] has con­
tributed considerably to the wide spread of VDM technology in education and 
application. The most important feature in VDM is the mechanism for defin­
ing operations. An operation can be regarded as abstraction of a procedure 
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in the programming language Pascal (or similar structure in other program­
ming languages) and defined with a precondition and a postcondition. The 
precondition imposes a constraint on the initial state before operation, while 
the postcondition presents a constraint on the final state after operation. The 
most essential technique in writing an operation specification is definition of 
a relation between the initial and final states in the postcondition of the op­
eration. This technique allows the specification to focus on the description 
of the function of the operation, and therefore facilitates the clarification of 
functional requirements before providing them with a program solution. In or­
der to model complex systems, VDM provides a set of built-in types, such as 
set, sequence, map, and composite types. In each type, necessary constructors 
and operators are defined, which allow for the formation and manipulation of 
objects (or values) of the type. Using those built-in types as well as their con­
structors and operators in specifications, complex functions of operations can 
be modeled precisely and concisely. With the progress in software supporting 
tools [29], VDM has been gradually adopted in the development of industrial 
systems, and has been extended to VDM++ to support object-oriented design 
[27]. 

Z was originally designed as a formal notation based on axiomatic set 
theory and first order predicate logic for describing and modeling computing 
systems by the Programming Research Group at Oxford University around 
1980 [107][100], and later developed to a method by providing rules for refine­
ment and verification [116]. An essential component used in Z specifications 
is known as schema. A schema is a structure that can be used to define 
either system state or operation. The definition of state includes the decla­
rations of variables and their constraints given as predicate expressions. A 
schema defining an operation is usually composed of two parts: declarations 
and predicates. The declarations may include declarations of input variables 
and/or output variables, as well as the related state schemas. The predicates 
impose constraints on the input variables, output variables, and the related 
state variables. Complex specifications can be formed by using the schema 
calculus available in the Z notation. Although Z uses syntax different from 
VDM, they share the similar model-based approach to writing formal specifi­
cations. Based on Z notation, other formal notations have also been developed 
to support object-oriented design and concurrency, such as Object-Z [105] and 
TCOZ [81]. 

The B-method has been developed by Jean-Raymond Abrial. It provides 
an Abstract Machine Notation for writing system specifications and rules for 
refinement of specifications into programs [3, 102]. A specification in B is con­
structed by means of defining a set of related abstract machines. An abstract 
machine is similar to a module in VDM, which contains local state variables, 
invariants on the state, and necessary operations. Each machine must have a 
name in order to allow other machines in a large specification to refer to it. 
A machine can extend another machine in order to expand its contents (e.g., 
state and operations) and include another machine in order to allow for calling 
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of its operations. Following the refinement rules, an abstract specification can 
be transformed step by step into a concrete representation (or implementation 
in B termnology) that can then be translated into a program of a specific pro­
gramming language. With the progress of tools development, the B-Method 
has been applied in a few industrial projects [44]. 

1.3.3 Challenges to Formal Methods 

In my opinion formal methods have presented the most reasonable, rigorous, 
and controllable approach to software development so far, at least theoret­
ically, but their application requires high skills in mathematical abstraction 
and proof. The situation seems that if all the suggested steps in formal meth­
ods could be taken in practice, with no compromise, we would have no doubt 
in the correctness of the program produced. However, since software engineer­
ing is a human activity (with support of software tools), the effect of formal 
methods depends heavily on whether and how they can be applied in practice 
by software engineers, usually with many constraints. The major challenges 
are: 

• Formal specifications for large-scale software systems are usually more dif­
ficult to read than informal specifications, and this would be aggravated 
for complex systems. Informal specifications are usually easy to read, but 
offer no guarantee of correct understanding because of ambiguity in lan­
guage semantics. Formal methods offer precise specifications, but they are 
difficult to read, and there is no guarantee of correct understanding either. 
The two cases may result in the similar situation that the reader of the 
specification would make a guess about the meaning of some expressions, 
but for different reasons. The specification may be too imprecise to be 
correctly understood in the first case whereas it may be too difficult to be 
correctly understood in the second case. 

• Formal verification of program correctness is too expensive to be deployed 
in practice. Although it is the most powerful technique for demonstrating 
the consistency between programs and their specifications among exist­
ing verification techniques, such as testing, static analysis, animation, and 
model checking, but only a small number of experts can apply this tech­
nique, and it may not be cost-effective for complex systems. Except for 
safety-critical systems or the safety-critical parts of systems, formal ver­
ification is usually out of reach of most software engineers in industry, 
including even many formal methods researchers. 

• Another challenge is that the use of formal methods usually costs more 
in time and human effort for analysis and design. One of the important 
reasons is the constant change of requirements during a software devel­
opment process. When the initial high level specification is written, it is 
usually incomplete in terms of recording the user requirements. When it 
is refined into a lower level specification, the two specifications may not 
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satisfy the refinement rules, not necessarily because the lower level speci­
fication has errors, but rather because the high level specification is often 
not sufficiently complete. In this case, the high level specification needs to 
be modified or extended in order to reflect the user requirements, discov­
ered during its refinement. Such a modification often occurs, not only to 
one level specification, but also to almost every level specification. This 
imposes a strong challenge to developers, both in psychology and in cost, 
especially when the project is under pressure from the market. 

Having given the challenges to formal methods above, we should not deny the 
positive role of formal methods. In fact, formal methods have two advantages 
over informal ones. One is the high potential for automation in processing for­
mal specifications due to their formally defined syntax and semantics. Another 
is that formal methods can work effectively for compact specifications. If one 
has experience reading research papers in software engineering or other areas, 
one will easily understand that reading a paper full of mathematical definitions 
and formulas, with less informal explanations, is much harder than reading 
a paper with a proper combination of informal explanations and small-scale 
formal descriptions (leaving necessary large-scale formal definitions in the ap­
pendix). Using formal notation in specifications has a similar effect on their 
readability. This is an important point about formal methods that has made 
us realize the importance of integrating formal methods with commonly used 
and comprehensible informal or semi-formal notations in software engineering. 
Formal notation can be used for the most critical and lower level components 
of a complex system, while a comprehensible notation can be adopted to inte­
grate those formal definitions to form the entire specification, without losing 
the focus on what to do. 

Furthermore, although formal verification may be difficult to be deployed 
directly in practice, its principles may be incorporated into existing practical 
techniques, such as testing, static analysis, and animation to achieve more 
effective verification and validation techniques. It is important to strike a 
good balance between rigor and practicality in integrated verification and 
validation techniques. 

1.4 Formal Engineering Methods 

Formal Engineering Methods, FEM for short, are the methods that support 
the application of formal methods to the development of large-scale computer 
systems. They are a further development of formal methods toward industrial 
application. I proposed to use this terminology for the first time in 1997 when 
organizing the first International Conference on Formal Engineering Methods 
(ICFEM) in Hiroshima [63] and continued to use it in many publications since 
then [76, 70, 74, 75, 64, 78, 69]. 

Formal engineering methods are equivalent neither to application of formal 
methods, nor to formal methods themselves. They are intended to serve as 
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a bridge between formal methods and their applications, providing methods 
and related techniques to incorporate formal methods into the entire software 
engineering process, as illustrated in Figure 1.5. Without such a bridge, appli­
cation of formal methods is difficult. The quality of the bridge may affect the 
smoothness of the formal methods technology transfer. Some types of bridges 
may make the transfer easier than others, so the important point is how to 
build the bridge. 

Similar to formal methods, formal engineering methods are also aimed at 
attacking the problems in specification and verification of computer systems, 
but take more practical approaches. In principle, formal engineering methods 
should allow the following: 

• Adopting specification languages that properly integrate graphical nota­
tion, formal notation, and natural language. The graphical notation is 
suitable for describing the overall structure of a specification comprehen­
sibly, while the formal notation can be used to provide precise abstract 
definition of the components involved in the graphical representation. The 
interpretation of the formal definitions in a natural language helps under­
stand the formal definitions. Many graphical notations have already been 
used for requirements analysis and design in practice, such as Data Flow 
Diagrams (DFDs) [23, 117], Structure Charts [15], Jackson Structure Dia­
grams [50, 16], and UML (Unified Modeling Language) [30, 18], but most 
of them are informal or semi-formal. This is the reality, but not necessarily 
a definitive feature of graphical notation. In fact, a graphical notation can 
also be treated as formal notation, as long as it is given a precise syntax 
and semantics. Compared with textual mathematical notation, a graphi­
cal notation is usually easier to read, but it usually takes more space than 
textual notation, and perhaps drawing diagrams is less efficient than typ­
ing in textual notation. Therefore, an appropriate integration can create a 
comfortable ground for utilizing the advantages of both graphical notation 
and formal notation. 

• Employing rigorous but practical techniques for verifying and validating 
specifications and programs. Such techniques are usually achieved by in­
tegrating formal proof and commonly used verification techniques, such 
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as testing [108, 72, 91], reviews [94, 97], and model checking [49, 17]. The 
integrated techniques must take a proper approach to make good use of 
the strong points of the techniques involved and to avoid their weaknesses. 

• Advocating the combination of prototyping and formal methods. A com­
puter system has both dynamic and static features. The dynamic feature is 
shown only during the system operation, such as the layout of the graphi­
cal user interface, usability of the interface, and performance. The require­
ments for these aspects of the system are quite difficult to capture without 
actually running the system or its prototype. For this reason, prototyping 
- the development of an executable model of the system can be effective 
in capturing the user requirements for some of the dynamic features in 
the early phases of system development. The result of prototyping can 
serve as the basis for developing an entire system using formal methods, 
focusing on the functional behaviors of the system. Of course, sometimes 
prototyping can go along, in parallel, with the development using formal 
methods. 

• Supporting evolution rather than strict refinement in developing specifi­
cations and programs [57, 109, 82, 73, 7]. Evolution of a specification, at 
any level, means a change, and such a change does not necessarily satisfy 
the strict refinement rules (of course, it sometimes does). The interesting 
point is how to control, support, and verify changes of specification during 
software development in a practical manner. Although some of these issues 
are still open to be resolved, they have been increasingly paid attention to 
by researchers. 

• Deploying techniques for constructing, understanding, and modifying spec­
ifications. For example, effective techniques for specification construction 
can be achieved by integrating existing requirements engineering tech­
niques with formal specification techniques [77], and techniques in simula­
tion and computer vision can be combined to form visualized simulation 
to help specification understanding, and so on. 

In summary, formal engineering methods embrace integrated specification, 
integrated verification, and all kinds of supporting techniques for specification 
construction, transformation, and system verification and validation. They can 
be simply described as 

FEM = Integrated specification + 
Integrated verification + 
Supporting techniques 

Note that formal engineering methods are a collection of specific methods, 
so we should not expect a single formal engineering method to cover all the 
features given previously. 
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1.5 What Is SOFL 

SOFL, standing for Structured Object-Oriented Formal Language, is a for­
mal engineering method. It provides a formal but comprehensible language 
for both requirements and design specifications, and a practical method for 
developing software systems. The language is called SOFL specification lan­
guage, while the method is called SOFL method. Unless there is the need of 
clear distinction, SOFL is used to mean either the language or the method or 
both throughout this book, depending on the context. 

SOFL is designed by integrating different notations and techniques on the 
basis that they are all needed to work together effectively in a coherent man­
ner for specification constructions and verifications. The SOFL specification 
language has the following features: 

• It integrates Data Flow Diagrams [23], Petri nets [12], and VDM-SL (Vi­
enna Development Method - Specification Language) [54, 55, 110]. The 
graphical notation Data Flow Diagrams are adopted to describe compre­
hensibly the architecture of specifications; Petri nets are primarily used to 
provide an operational semantics for the data flow diagrams; and VDM-SL 
is employed, with slight modification and extension, to precisely define the 
components occurring in the diagrams. A formalized Data Flow Diagram, 
resulting from the integration, is called Condition Data Flow Diagram, 
or CDFD for short. It is always associated with a module in which its 
components, such as processes (describing an operation), data flows (de­
scribing data in motion), and data stores (describing data at rest), are 
formally defined. In semantics, the CDFD associated with a module de­
scribes the behavior of the module, while the module is an encapsulation 
of data and processes, with an overall behavior represented by its CDFD. 
Furthermore, the use of a natural language, such as English, is facilitated 
to provide comments on the formal definitions in order to improve the 
readability of formal specifications [76,41, 26]. 

• Condition data flow diagrams and their associated modules are organized 
in a hierarchy to help reduce complexity and to achieve modularity of 
specifications. Such a hierarchy is formed by decomposition of processes. A 
process is decomposed into a lower level CDFD and its associated module 
when the details of how to transform its input to output needs to be spelled 
out. 

• Classes are used to model complicated data flows and stores. A store is 
like a file or database in many computer systems; it offers data that can be 
accessed by processes in a CDFD or by different CDFD in the hierarchy. 
The value of a store can be used and changed by processes. If the changes 
are made by processes at different levels, it will be difficult to control the 
changes. For this reason, a store can be modeled as an instance of a class. A 
class is a specification for its instances or objects that contains definitions 
of attributes and methods (similar to processes, but with constraints). Any 
change of the attributes of an instance must be made by its own methods. 



14 1 Introduction 

<I ... S I; module SYSTEM; 

! const; type; var; iov; It const; type; var; iov; \. ~ ~ 
" method Init; ~ "0\, processInit; ~_ .... _'" ~ 
: \ '" 4 ...... ~.... ",," ~ 

Ii ' .. :;2: \: :=; // /-', ";,., 
I' \1 -< I ' \ ' '--------' B2 

1,1, ,:\ 
\ \ / \ r-------, ," Bl 

\',,\ " 't // <Is .. S2; ~ \ module A2_Deco~; " B3 
\ const; type; var; iov; ~, \ const; type; var; mv; / 

'~ method lnit; '\ \ process Init; " 

method Q 1; '\ \ process B 1; ,t' 
methndQ2; 

metbodQ3; 

\, .., process B2; 

~ processB3; 
end __ oIe; 

Fig. 1.6. An outline of a specification in SOFL 

Modules and classes are similar in their internal structures, but different 
in the way used in specifications. A module represents a decomposition 
of a high level process and has an overall behavior. No instance can be 
derived from a module; therefore, a module cannot be used as a type to 
declare variables. On the other hand, objects may be instantiated from a 
class that may offer many individual behaviors, as services, and are used 
to model a data flow or store in CDFDs. 

Figure 1.6 shows an outline of a specification in SOFL. The hierarchy of 
CDFDs and modules contains two CDFDs and associated modules. Each small 
rectangle in the CDFDs denotes a process, and each directed line represents a 
data flow. The CDFD involving processes Al and A2 is the top level CDFD, 
corresponding to the module SYSTEM. In this module, the functions of Al 
and A2 are formally defined. In addition, process Init is provided for the ini­
tialization of the local data stores (which are not given in this abstract figure) 
and necessary declarations are given. For some reason process, A2 is decom­
posed into the CDFD containing processes 81, 82, and 83, and its associated 
module, named A2_Decom, provides formal definitions of its processes, data 
flows, and so on. For the specification of processes in the hierarchy of CDFDs, 
classes SI and S2 are defined; they may be used in both modules, SYSTEM 
and Al Decom. 

The SOFL method has the following features: 

• It integrates structured methods and object-oriented methods for specifica­
tion construction, in order to utilize their advantages and to avoid their 
disadvantages. Structured methods are a top-down approach by which the 
construction of a specification starts from the top level module, and then 
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proceeds by decomposing high level operations defined in the modules 
into low level modules. The structured methods are usually intuitive for 
requirements analysis and design, because their way of documentation is 
consistent with the way in which people think in developing and organiz­
ing large-scale projects, such as building a bridge, launching a rocket, or 
making an aircraft. On the other hand, object-oriented methods are ba­
sically a bottom-up approach to software development. In this approach 
the low level classes are first built, and then they are composed to form 
more complicated classes. Furthermore, an object-oriented approach is ef­
fective in achieving system properties, such as encapsulation of data and 
operations, inheritance, and polymorphism. These properties are very im­
portant in achieving the qualities of information hiding, software reuse, 
and maintainability. However, this approach may be less intuitive than 
structured methods for requirements analysis and design. The integration 
of these two different but related approaches in SOFL offers a way to ef­
fectively support functional decomposition and object composition. The 
specifications are easy to be translated into commercially object-oriented 
programming languages, such as C++ [61] and Java [22]. 

• It supports a three-step approach to developing formal specifications. Such 
a development is an evolutionary process, starting from an informal spec­
ification, to a semi-formal one, to finally a formal specification. The in­
formal specification, usually written in a natural language, serves as the 
basis for deriving the semi-formal specification in which SOFL syntax, to 
a certain extent, is enforced. The formal specification is then derived from 
the semi-formal specification by formalization of the informal parts in the 
semi-formal specification. 
By considering the roles of requirements and design specifications, SOFL 
advocates the idea that requirements specifications are written in a semi­
formal manner, while design specifications need to be completely formal. 
The obvious reason for this is that requirements specifications are often 
used for communication between the user and the developer, which re­
quires the comprehensibility of documentation, while the primary role of 
design specification is to provide an unambiguous ground for implementa­
tion. Furthermore, the construction of design specification requires study 
of requirements given in the requirements specifications, and formalization 
can greatly help in this regard. 
An evolution of specification is a change, which can be a refinement, exten­
sion, or modification [66]. The evolution approach is suited to developing 
design specifications on the basis of semi-formal requirements specifica­
tions, since it usually results in many changes in the specifications. But 
for implementation from a design specification, refinement must be en­
forced, since we must make sure that the implementation does exactly 
same thing required by the design. For the details of this approach, see 
Chapter 14. 
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• It adopts rigorous review and testing for specification verification and val­
idation. Specification verification aims to detect faults in specifications. 
Rigorous review is a technique resulting from the integration of formal 
proof and fault tree analysis, a method for safety analysis. The reviews 
must be done on a precise ground, and supported by a rigorous mecha­
nism [67][68]. They are usually less formal than formal proof, but easy to 
conduct. 
Testing can be applied to both specifications and programs. Since some 
formal specifications are not executable, the testing needs a special tech­
nique [72]. The test cases used for specification can be reused for black-box 
testing of programs [91]. For the detailed discussions of these techniques, 
see Chapters 17 and 18. 

When building a specific software system, the techniques supported by 
SOFL can be used with flexibility, depending on the application domain. For 
critical systems, such as safety- and security-critical systems, a profound use 
of formal notation, rigorous testing, and rigorous review are recommended. 
But for less critical systems, semi-formal notation and reasonably rigorous 
verification may be sufficient. 

1.6 A Little History of SOFL 

The initial development of SOFL was made at the University of Manchester 
in the United Kingdom in 1989, when I was studying for a doctoral degree in 
formal methods. The motivation was to integrate the most well-known formal 
method, VDM at that time, with traditional DFDs to support the applica­
tion of formal methods in industry. I strongly believed, and still do now, that 
software development is not a pure mathematical process, although the rela­
tion between specifications and programs can be interpreted mathematically. 
It is, in fact, a highly disciplined human activity featured by creativity and 
constant changes, although it is likely supported by software tools. If any pow­
erful method wants to be accepted by practitioners at large, it must provide 
a user-friendly interface and effective mechanism to facilitate the structuring 
of large-scale systems. On the other hand, informal methods that have been 
using in practice offer no guarantee for the quality of software systems. It was 
my belief that it is necessary to develop a kind of formal method from the 
engineer's point of view, and a proper combination of formal, semi-formal, 
and informal notations can possibly provide a good solution. 

I chose VDM and DFDs for three reasons. One is that both are appro­
priate notations to describe "what to do" rather than "how to do it," but 
on different level. In DFDs this feature is reflected by focusing on data flows 
among processes (rather than control flows in algorithms), while in VDM it 
is featured by using pre- and post conditions for operation specifications. An­
other reason is that VDM lacks an effective and comprehensible structuring 
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mechanism to allow a large specification to be formed by integrating differ­
ent operations. Although the notion module is used to organize operations in 
specifications, its expressive power and scale-up ability are limited. In addi­
tion to this weakness, the readability of large-scale specifications may not be 
satisfactory. However, it became quite clear to me after a period of study that 
VDM and DFDs are complementary in providing rigorous and comprehensible 
specifications, and that the notation for operation specification in VDM is well 
suited to describing specifications for processes used in DFDs. This provided 
the third reason for the integration. The language resulting from this research 
was called FGSL, standing for Formal Graphical Structured Language. 

FGSL was evolved continuously later on, by combining my experiences 
gained from several projects on formal methods and safety-critical systems 
at the University of York, RHBNC of London University, Hiroshima City 
University, The Queen's University of Belfast, Oxford University, and Hosei 
University. It was an important step when FGSL was developed into SOFL by 
integrating the structured method and object-oriented method on the project 
titled "Formal Methods and Intelligent Software Engineering Environments" 
sponsored by the Ministry of Education, Culture, Sports, Science and Tech­
nology of Japan in 1996. It was an international joint project involving the 
researchers from several universities in Japan, USA, UK, and Australia. Since 
then, SOFL has been improved after being applied to the modeling or de­
velopment of some critical systems and information systems on national and 
international projects [74, 75, 78, 62, 71]. 

1. 7 Comparison with Related Work 

It is quite difficult within a section to give a comprehensive comparison of 
SOFL with all the existing work on integration of formal methods and informal 
or semi-formal methods. To help the reader understand the commonality and 
difference between SOFL and other related work, we try to focus on the work 
that attempts to integrate model-oriented formal methods (e.g., VDM, Z, 
Alloy [48]) and semi-formal methods (e.g., data flow diagrams, UML). 

From late 1980s more and more researchers began to realize the impor­
tance of combining formal and informal methods, and proposed several dif­
ferent approaches to integrating formal specification languages with informal 
notations (and associated methods). The approach taken by most researchers 
for integration is to use the Yourdon or the DeMarco approach to constructing 
data flow diagrams and their associated data dictionaries for expressing high 
level user requirements, and then to refine the data flow diagrams into formal 
specifications by defining data flows, necessary processes, and their integra­
tion with formal notation. The examples of this approach include Semmens 
and her colleagues' work on integrating Yourdon's data flow diagrams and Z 
[103], Bryant's work on Yourdon's method and Z [14], Plat and his colleagues' 
integration of data flow diagrams and VDM [96], and Fraser's work on data 
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flow diagrams and VDM [80]. In contrast to this approach, SOFL is aimed 
at achieving both the improvement of structuring mechanism in the VDM 
specification language for modularity and the comprehensibility of the ulti­
mate specifications. This target is realized by incorporating classical data flow 
diagram notation into a formal specification language to provide a decompo­
sitional method for structuring system specifications and a graphical view for 
the system specifications. In this way, data flow diagrams are treated as part 
of formal specifications. Although adopting a rather different data flow model 
for describing computer systems, Broy and Stolen's FOCUS formalism [13] 
shares the idea of employing visual formal notation in specifications. How­
ever, the major difference between FOCUS and SOFL is that the former tries 
to provide a mathematical and logical foundation for the specification and 
refinement of interactive systems, while the latter emphasizes the techniques 
for incorporating formal specification and verification into the entire software 
development process to improve the quality of the software process and to 
achieve the practicality of formal methods. 

Apart from the integration of formal methods and the structured method 
based on the data flow paradigm, much work has also been done in combining 
formal notations with the object-oriented paradigm or notation for concur­
rency to improve the rigor of object-oriented development or concurrent de­
velopment. Examples of this approach include VDM++ [27], Object-Oriented 
Z [85], TCOZ [81, 25], and OCL [112], the Object Constraint Language of 
UML (Unified Modelling Language) [93, 18, 30]. Although SOFL also adopts 
object-oriented features, such as class and object, class inheritance, and poly­
morphism, it emphasizes a quite different development paradigm than UML 
in that the structured method is mainly used for user requirements analysis 
and abstract design specification in order to effectively capture the desired 
functions and the overall architecture of the system, while the object-oriented 
method is mainly used for detailed design and implementation to achieve 
good maintainability and reusability of the system. Another distinct feature of 
SOFL is that it emphasizes a balance between and compatibility with graph­
ical notation and formal notation: it advocates the use of both formal and 
graphical notations for good readability and efficiency in constructing spec­
ifications, but does not encourage concentration on the use of only one of 
them. 

Developing practical techniques for verification and validation of software 
systems based on formal specification and proof has also been an intensively 
researched area. The proposed techniques include specification animation [40, 
89], model checking [17, 5], specification-based testing [108, 104, 113, 91, 92]' 
and software review, inspection, and analysis [94,87,79,21]. Since we take the 
view in SOFL that harmony among methods, tools, and human developers is 
the key to the success of software projects, we adopt the most practical tech­
niques, software review and testing, for verification and validation, although 
the specific methods for review and testing may be different from traditional 
approaches. In our methods, we emphasize utilizing formal specification and 
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proof principle to achieve rigor for the practical review and testing techniques, 
as well as their supportability using software tools. 

1.8 Exercises 

1. Answer the following questions: 

a) What is the software life cycle? 
b) What is the problem with informal approaches to software develop-

ment? 
c) What are formal methods? 
d) What are the major features of formal engineering methods? 
e) What is SOFL? 

2. Explain the role of specification in software development. 
3. Give an example of using a principle similar to formal methods to build 

other kinds of systems rather than software systems. 
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Propositional Logic 

SOFL specifications usually involve both diagrams and formal textual defini­
tions. The underlying languages for writing formal definitions are the classi­
cal propositional and predicate logics. These logics are also used for defining 
properties of specifications and for expressing conditions for specification ver­
ification. In this chapter, we introduce the propositional logic, and in the next 
chapter we explain predicate logic. Since SOFL adopts slightly different syn­
tax of some logical operators for the sake of readability, the presentations in 
this and the next chapter will directly use SOFL syntax to be consistent with 
specifications discussed throughout the book. 

Propositional logic deals with propositions, including representation, com­
bination, and evaluation of and reasoning about propositions. 

2.1 Propositions 

A proposition is a statement that must be either true or false, but not both. 
A proposition can be represented by either a natural language sentence or a 
mathematical expression. 

For example, the following statements are propositions: 

• A tiger is an animal. 
• An apple is a fruit. 
• 3 + 5> 10. 

The first and second propositions are true, but the third one is false under 
the usual interpretation of arithmetic symbols. 

In contrast with these statements, the following statements are not propo­
sitions, since their truth values are not decidable. 

• Are you happy? 
• Let's go swimming. 
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Table 2.1. Propositional operators 

operator read as priority 
not not highest 
and and 
or or 

=> implies 

<=> is equivalent to lowest 

We use bool to represent the boolean type, a set of the truth values: true 
and false. That is, 

bool = {true, false}. 

To facilitate manipulation of propositions, they are usually denoted by sym­
bols. For instance, the propositions given previously are denoted by the sym­
bols: 

• P: A tiger is an animal. 
• Q: An apple is a fruit. 
• R: 3 + 5 > 10. 

2.2 Operators 

Simple propositions can be combined using propositional operators, which are 
sometimes also called logical operators, to form compound propositions. The 
propositional operators used in SOFL are given in Table 2.l. 

The table gives the operator's symbol, how it is read, and its precedence 
when applied to form compound propositions. Using these operators, we can 
combine the previously introduced propositions P, Q, and R to form the 
compound proposition: 

P => Q and R <=> not P or Q and R . 

The evaluation of this proposition may start with those of Q and Rand 
not P. The results of these two constituent propositions can then be used 
for the evaluation of P => Q and R and not P or Q and R. Finally, the 
entire proposition is evaluated based on the intermediate results. To explicitly 
emphasize the priority of the propositional operators, parentheses can be used. 
Thus, this proposition is equivalent to 

(P => (Q and R)) <=> ((not P) or (Q and R)) . (1) 
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For convenience in our discussions, we use the term propositional expres­
sion or expression to mean a single proposition or compound proposition. A 
single proposition is also called atomic proposition, because it is the small­
est unit to form propositional expressions. For example, in the expression (1) 
given above, P, Q, and R can be atomic propositions, and their compositions 
formed by using the propositional operators are compound propositions. 

2.3 Conjunction 

A conjunction is a propositional expression whose principal operator is and. 
For example, 

x> 5 and x < 10 

shows a conjunction, stating that x is bigger than 5 and smaller than 10. The 
general form of a conjunction is: 

P and Q, 

where P and Q are constituent propositions. The complete interpretation of 
this conjunction is given by the truth table: 

P Q PandQ 
true true true 
true false false 
false true false 
false false false 

The first two columns, from the left, give all possible truth values P and Q 
can take, and the third column gives the results of the conjunction P and Q. 
The conjunction P and Q is true only when both P and Q are true, and 
false when one of them is false. 

For example, we can easily derive the following from this truth table: 

true and true < = > true 
false and true < = > false 
false and false < = > false 

Note that the operator <=> has the same function as the equality symbol =, 
but is used only between logical expressions, meaning that both sides have the 
same truth value. When appropriate, the symbol = is also used alternatively 
to express the equality between logical expressions in SOFL. 
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2.4 Disjunction 

A disjunction is a propositional expression whose principal operator is or. 
It is usually intended to represent a condition that holds as long as one of 
its constituent propositions holds. For example, suppose x is an integer; the 
proposition 

x> 5 or x < 3 

presents a condition that x is either bigger than 5 or smaller than 3. Let P 
and Q be two propositions, the disjunction of P and Q is written as 

P or Q. 

The meaning of operator or is defined by the truth table: 

P Q P or Q 
true true true 
true false true 
false true true 
false false false 

A disjunction is true when one of its constituent propbsitions is true, and 
false when both its constituent propositions are false. As an example, we 
derive the following from this truth table: 

true or true <=> true 
true or false < = > true 
false or false <=> false 

2.5 Negation 

A negation is a propositional expression whose principal operator is not. Let 
P be a proposition, the negation built of P is 

not P. 

The negation not P is true if and only if P is false, as defined by the true 
table: 

P not P 
true false 
false true 

The negation of a proposition represents an opposite state of the proposition. 
For example, if P denotes the condition x > 5, then not P will denotes the 
condition: x <= 5, where <= means "less than or equal to." 
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2.6 Implication 

An implication is a propositional expression that uses the operator => to 
connect its constituent propositions. Let P and Q be propositions, then the 
implication 

P=> Q 

expresses a statement that P is stronger than Q. P is called antecedent and 
Q is called consequent. The complete definition of the implication is given by 
the truth table: 

P Q P=> Q 
true true true 
true false false 
false true true 
false false true 

Basically the implication P => Q means that if P is true, it must ensure 
that Q is true; if P is false, Q can be either true or false. In other words, 
P => Q is true means that the values taken by P and Q are "reasonable." 
A daily life related example may help understand this point. Let P denote 
the proposition: "John works hard", and Q the proposition "John receives 
an award." Suppose we apply common sense that people working hard can 
receive an award. Then, the truth of the implication P => Q points to two 
situations: 

(1) John works hard and John receives an award. 
(2) John does not work hard and it does not matter whether John receives 

an award or not. 

In case (1), it is reasonable that John receives an award as he works hard. 
This does not seem to be difficult to understand based on common sense. In 
case (2), as John does not work hard, he mayor may not receive an award. 
We do not say, in this case, that he will definitely receive no award because he 
does not satisfy the precondition: working hard. Rather, we are not interested 
in what will happen since the precondition is not true. 

2.7 Equivalence 

An equivalence is a propositional expression indicating that its constituent 
propositions are of the same strength. Let P and Q be propositions. Then, the 
equivalence 

P <=> Q 
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means that P and Q are equivalent in the sense that their truth values are the 
same. The truth table for the equivalence is 

P Q P <=> Q 
true true true 
true false false 
false true false 
false false true 

Equivalence represents the equality between truth values. As mentioned be­
fore, the symbol = may also be used in SOFL alternatively to express the 
equality between truth values, or more generally between logical expressions. 

2.8 Tautology, Contradiction, and Contingency 

A tautology is a special proposition that evaluates to true in every combination 
of the truth values of its constituent propositions. Consider the proposition 

P or not P 

as an example. No matter what truth values P takes, this proposition always 
evaluates to true. 

On the other hand, if a proposition evaluates to false in every combination 
of its constituent propositions, it is known as contradiction. For example, the 
proposition 

P and not P 

is a contradiction. Apparently, a contradiction is a negation of a tautology. 
Tautology and contradiction are important concepts that will be used in for­
mal proof to be introduced later in this chapter. 

A proposition that is neither a tautology nor a contradiction is known 
as contingency. Regarding tautologies and contradictions as extreme cases, 
contingencies are the most common propositions to be used. For example, the 
proposition 

P => Q and R 

is a contingency, because the result of its evaluation depends on the truth 
values of P, Q, and R. 
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2.9 Normal Forms 

There are two important normal forms: disjunctive normal form and conjunc­
tive normal form. A disjunctive normal form is a special kind of disjunction in 
which each constituent propositional expression, usually known as disjunctive 
clause, must be a conjunction of atomic propositions or their negations. 

Let P _1, P _2, ... , P _n be conjunctions of atomic propositions or their 
negations, respectively. Then, the expression 

P 1 or P 2 or ... or P n 

is a disjunctive normal form. The characteristic of such a disjunctive normal 
form is that it evaluates to true as long as one of the disjunctive clauses 
evaluates to true. 

A conjunctive normal form is a special kind of conjunction in which each 
constituent propositional expression, usually called conjunctive clause, is a 
disjunction of atomic propositions or their negations. Suppose each of Q_1, 
Q_2, ... , Q_m is a disjunction of atomic propositions or their negations, then 

is a conjunctive normal form. Such a conjunctive normal form is featured by 
the property that it evaluates to false as long as one of its conjunctive clauses 
evaluates to false. 

2.10 Sequent 

A sequent is an assertion that a conclusion can be deduced from hypotheses. A 
hypothesis is given as a propositional expression, presenting an assumed prop­
erty or fact. A conclusion is also a propositional expression, which is expected 
to be supported by its hypotheses. Let P _1, P _2, ... , P _n be hypotheses and 
Q a conclusion. Then a sequent representing that Q is deduced from P _1, 
P _2, ... , P _n is written as 

P _1, P _2, ... , P _n f- Q 

where f- is called a turnstile. For example, the sequent 

P and Q f- P 

states that the conclusion P can be deduced from the hypothesis P and Q. 
Note that the validity of a sequent is not necessarily guaranteed by only 

conforming to its syntax. Usually, it needs to be proved in some way. That 
is, whether the conclusion of a sequent can be deduced from its hypotheses 
needs a formal proof. Without such a proof, we have no evidence to support 
the validity of the sequent. 
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Table 2.2. The truth table for a proof 

p Q not P and Q P=> Q 
true true false -
true false false -
false true true true 
false false false -

2.11 Proof 

A proof is a process (or activity or evidence) to show that the conclusion can 
be established from its hypotheses in a sequent. Two ways can be adopted 
to prove the validity of a sequent. One is by establishing a truth table for 
the sequent. Once the hypotheses of the sequent have been evaluated, the 
conclusion needs be evaluated only in those rows where the hypotheses are all 
true. Consider the sequent 

not P and Q f- P => Q 

as an example. A truth table for the proof of its validity is given in Table 2.2. 
In this truth table four combinations of truth values of P and Q are given, 
but there is no need to evaluate the conclusion P => Q for the first two and 
the last rows, since the evaluations of the hypothesis not P and Q for those 
rows are false. 

Using truth table for proof is rather straightforward. However, the diffi­
culty will be increased greatly when the number of constituent propositions 
becomes bigger. If a sequent to be proved involves 10 constituent propositions, 
then the number of all their combinations will be 210 = 1024. Obviously using 
truth table for proof in this case is not convenient and efficient at all. 

Another way of doing proof, which is known as natural deduction, can 
help reduce this problem. A deduction is a way to derive a conclusion from 
the hypotheses by applying appropriate inference rules available in the logic. 

2.11.1 Inference Rules 

An inference rule is composed of two parts: a list of premises and a conclusion. 
A premise is a propositional expression, and so is a conclusion. A rule is usually 
written in the form: 

premise!, premise2, ... , premisen ~ 
. name 

concluswn 

where the name is for reference in a proof; it usually indicates what this rule 
is about. 

This rule states that the truth of the conclusion is the consequence of 
the truth of the premises. In other words, when the premises are true, then 
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so is the conclusion. In a formal proof, a rule can be applied only when its 
premises are true. Note that the list of premises can be empty, meaning that 
the conclusion is a tautology. In this case, the rule is known as axiom, and 
can be applied whenever necessary. 

To make the introduction of the inference rules clear, we divide them into 
groups, each being associated with a specific kind of propositional expres­
sion (e.g., conjunction, disjunction, etc). we first describe the basic rules for 
conjunction, disjunction, negation, implication, and equivalence, respectively, 
and then introduce the properties of propositional expressions, which can be 
proved by applying these basic rules. These properties can also serve as derived 
rules for inference. 

2.11.2 Rules for Conjunction 

Three basic rules for a conjunction are available. These rules ether describe 
how to introduce the and operator from its constituent propositions or how to 
eliminate the and operator from a conjunction. They are named as and-intro, 
and-eliml, and and-elim2, respectively. 

P :~~ Q [and-introJ 
PandQ 

P [and-eliml J 

P and Q [ d l· 2J Q an -e zm 

Suppose P and Q are true; then, we can apply the [and-introJ rule to prove 
the truth of P and Q. On the other hand, if P and Q is already known to 
be true, the rule [and-elimlJ can be applied to deduce P, and the rule [and­
elim2] applied to deduce Q. It is easy to prove the validity of these rules by 
means of truth tables. 

2.11.3 Rules for Disjunction 

Similarly to the rules for conjunction, there are also three basic rules for 
disjunction: [or-introlJ, [or-intro2J, and [or-elimJ. 

P; Q [or-introlJ P ~ Q [or-intro2J 

P or Q, P f- R, Q f- R [ l· J R or-e zm 

The [or-introl J and [or-intro2J rules indicate how to introduce the or operator 
from its constituent propositions, while the [or-elimJ rule shows how the or 
operator is eliminated. 
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The validity of the [or-intral] and [or-intra2] rules can be easily proved 
by means of truth tables, but the [or-elim] rule is a little more complicated. 
The reason is that in the list of premises, sequents are involved. To ensure 
the validity of the sequents P I-- Rand Q I-- R, subsidiary proofs are necessary. 
These proofs are done by deducing R, the conclusion of the rule, from either 
P or Q. 

2.11.4 Rules for Negation 

The basic rules for negation are two, named [not-intra] and [not-elim]. 

P 
not not P [not-intra] 

not not P [ t t· ] p no -e zm 

The [not-intra] rules states that if P is true, then its double negation is also 
true. The [not-elim] rule shows the case opposite to the [not-intra] rule. 

2.11.5 Rules for Implication 

There are two basic rules for implication as follows: 

P =~ Q [=>-intro] P => Q, P [ t.] Q =>-e zm 

According to the truth table defining implication, whenever Q is true, no 
matter what truth value P takes, the implication P => Q evaluates to true. 
This definition leads to the establishment of the rule [= >-intra] . On the other 
hand, the rule [=>-elim] shows how to eliminate the operator =>. The reason 
for this rule to be valid is that when the antecedent P is true, the only value 
for Q to take is true, in order to ensure the truth of the implication P => Q. 

2.11.6 Rules for Equivalence 

For an equivalence P <=> Q , there are three basic inference rules describing 
how to introduce and eliminate the equivalence operator <=>. 

P => Q, Q => P 
P <=> Q [<=>-intra] 

P <=> Q . 
P => Q [<=>-elzml] 

P <=> Q . 
Q => P [<=>-ehm2] 

These rules are built based on the fact that P <=> Q is equivalent to the two 
implications: P => Q and Q => P. 
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2.11.7 Properties of Propositional Expressions 

There are many properties about propositional expressions, but we give only 
the important ones that are used in this book. Each property is given as a 
rule. 

Proposition 1. A conjunction, disjunction, or equivalence is commutative. 
That is, 

(1) 

(2) 

(3) 

Pand Q 
:::;;;==~ [and-comm] 
Qand P 

P or Q 
Q or P [or-comm] 

P <=> Q 
Q P [<=>-comm] 

<=> 

The rules given in this proposition are bidirectional: the expressions above 
and below the double line imply each other. For example, the [and-comm] 
rule is equivalent to the following two rules: 

PandQ 
Q and P [and-comml] and 

Qand P 
P and Q [and-comm2] 

The other two rules can be interpreted similarly. 
These properties can be formally proved by applying the basic rules in­

troduced previously. Let us first consider the proof of the commutativity of 
conjunction as an example of how a proof is actually constructed. In fact, 
proving this property is equivalent to proving the validity of the following 
sequents: 

(1) P and Q I- Q and P 
(2) Q and P I- P and Q 

As the proof of (2) is similar to that of (1), we only give the proof for (1). To 
provide a comprehensible presentation of the proof, we use a box to enclose 
the proof. Such an approach is known as boxed proof The boxed proof for the 
sequent (1) is given in Table 2.3. 

The keyword from starts a hypothesis, and infer is followed by a con­
clusion deduced by applying appropriate rules whose names are given on the 
right of the box. The intermediate results of the proof are marked by numbers, 
indicating the number of the steps that have been taken in the proof. 
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Table 2.3. A proof for commutativity of conjunction 

from P and Q 
1 P 
2 Q 
infer Q and P 

[and-eliml] 
[and-elim2] 
[and-into] 

Table 2.4. A proof for the commutativity of disjunction 

from P or Q 
1 from P 

infer P or Q 
infer Q or P 

2 from Q 
infer P or Q 
infer Q or P 

infer Q or P 

[or-intral] 
[or-comm] 

[or-intra2) 
[or-comm] 
[or-elim](h, 1, 2) 

The proof of the commutativity of disjunction is a little more complicated, 
because we need to consider two cases: when each of the constituent proposi­
tions is true. As in the case of conjunction, proving this property is equivalent 
to proving the following two sequents: 

(1) P or Q f- Q or P 
(2) Q or P f- P or Q 

Again, we only give the proof of (1), and leave the proof of (2) to the reader 
for exercise. The boxed proof for (1) is given in Table 2.4. 

The proof starts with the hypothesis P or Q. Since the truth of this dis­
junction depends on the truth of one of its constituent propositions, we need 
to consider the two cases independently. One is when P is true and the other is 
when Q is ture. In both cases we can deduce Q or P, by applying appropriate 
rules. Therefore, the disjunction Q or P is established by applying the rule 
[or-elim], based on the hypothesis, step 1, and step 2, which is indicated by 
the reference [or-elim] (h, 1, 2)]. 

The proof of the commutativity of equivalence can be done similarly. The 
reader can construct the proof as an exercise. 

Proposition 2. A conjunction, disjunction, implication, or equivalence is as­
sociative. That is, 

P and (Q and R) [ ] 
and-ass 

(P and Q) and R 

P => (Q => R) 
(P => Q) => R [=>-ass] 

P or (Q or R) 
~=~=~ [or-ass] 
(P or Q) or R 

P <=> (Q <=> R) [ ] 
<=>-ass 

(P <=> Q) <=> R 
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These properties are given in four rules, and their proofs can be done similarly 
to those of the properties given in Proposition 1. For brevity, we will omit all 
the proofs for the properties to be introduced in this section. 

Proposition 3. Conjunctions and disjunctions are distributive over each 
other. 

P and (Q or R) 
~==;=~====~====::::;=;~ [and-or-dist] 
(P and Q) or (P and R) 

P or (Q and R) . 
(P or Q) and (P or R) [or-and-dzst] 

The rule [and-or-dist] describes the equivalence between the expressions P 
and (Q or R) and (P and Q) or (P and R), while the rule [or-and-dist] 
states the equivalence between P or (Q and R) and (P or Q) and (P or R). 

Proposition 4. An implication is equivalent to a disjunction, i.e., 

P=> Q 
======~ [=>-or-equiv] 
not P or Q 

This rule provides a way of transformation between an implication and an 
equivalent disjunction. 

Proposition 5. Negations, conjunctions, and disjunctions satisfy the de Mor­
gan's laws: 

not (P and Q) 
=~==~ [and-deM] 
not P or not Q 

not (P or Q) 
====;:;====;==~~ [or- deM] 
not P and not Q 

By the rule [and-deM], the negation of a conjunction can be transformed into 
an equivalent disjunction of the negations of the constituent propositional ex­
pressions, and vice visa. The rule [or-deM], on the other hand, allows the 
negation of a disjunction to be transformed into an equivalent conjunction 
of the negations of the constituent expressions. You will find that de Mor­
gan's laws are necessary in the transformation of propositional expressions 
into disjunctive normal forms, which are to be introduced next. 

Proposition 6. A propositional expression is equivalent to a disjunctive nor­
mal form or a conjunctive normal form. 
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In other words, a propositional expression can be transformed into an equiv­
alent disjunctive normal form or a conjunctive normal form. Such a transfor­
mation is done by repeatedly applying distributivity rules [and-or- dist land 
[or-and-dist], as well as the de Morgan's laws introduced previously. 

For example, the propositional expression 

P _1 and not (P _2 and P _3) (1) 

can be transformed into a disjunctive normal form by taking the following 
steps: 

P _1 and not (P _2 and P _3) <=> 
P _1 and (not P _2 or not P _3) <=> 
(P _1 and not P _2) or (P _1 and not P _3) <=> 
P 1 and not P 2 or P 1 and not P 3 

The derived disjunctive normal form is composed of the two conjunctions: 

(1) P _1 and not P _2 
(2) P _1 and not P _3 

We can take similar approach to transforming a propositional expression 
into an equivalent conjunctive normal form. Since the notion of conjunctive 
normal form is not used in this book, we do not explain it further with exam­
ples. The reader can conduct this transformation as an exercise. 

2.12 Exercises 

1. Explain the notions: 
a) proposition 
b) conjunction 
c) disjunction 
d) negation 
e) implication 
f) equivalence 
g) tautology 
h) contradiction 
i) contingency 
j) sequent 
k) rule 
1) proof 

2. Give a truth-table proof for each of the properties: 

a) P, Q f- P and Q 
b) P and Q f-Q 
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c) P f- P or Q 
d) P or Q, P => R, Q => R f- R 
e) P f- not not P 
f) Q f- P => Q 
g) P =>Q, Q => P f- P <=> Q 

3. Give a boxed proof for each of the properties: 

a) P and (Q and R) f- (P and Q) and R 
b) P, Q, Q => R f- P and R 
c) not (P or Q) f- not Q 
d) P or Q f- not (not P and not Q) 

4. Transform each of the following propositional expressions into a disjunc-
tive normal form: 

a) P and not (not Q and R) 
b) P and (Q => R) <=> W 
c) (P or Q) and (R or W) 
d) not (P => Q) or (not P and Q) 
e) P < = > Q and Q < => R 



3 

Predicate Logic 

Predicate logic is an extension of the propositional logic to deal with the 
statements that may apply to many objects. The propositional logic intro­
duced in the preceding chapter allows us to make statements about specific 
objects, but it does not allow us to make statements applicable to a collection 
of objects. For example, in the propositional logic we can make the statement: 
John studies hard, but we cannot make statements like x studies hard, where 
x is one of the students John, Michael, Steven, or Paul, since the truth value 
of the statement cannot be determined until x is bound to a specific name. 
Note that when x is bound to a specific name, the entire statement can be 
either true or false. For example, the statement John studies hard can be true 
whereas the statement Steven studies hard can be false. 

Furthermore, sometimes we may want to describe a property that every 
member in a collection of objects must satisfy, such as "every player in the 
club is excellent" . These are known as universal statements. Some other times, 
we may wish to state that at least one member satisfies a particular property, 
without necessarily knowing which member it is (or they are). For example, 
"there is an excellent player in the club". Such a statement is known as exis­
tential statement. 

In this chapter we introduce the predicate logic by explaining what pred­
icates are, how predicates are combined to form compound predicates, how 
proofs can be done on predicates, and how predicates can be used to express 
specifications or properties. This logic is also extended to provide a reasonable 
treatment of undefined predicates, which may be employed in specifications. 

3.1 Predicates 

A predicate is a truth-valued function. A function is a mathematical abstrac­
tion of an important concept: mapping between two sets of values. The set of 
values to which the function can apply is known as the domain of the func-
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Table 3.1. The basic types available in SOFL 

I name I symbol I values 

natural numbers including zero nato 0,1,2,3, ... 
natural numbers nat 1,2,3,4, ... 
integers int ... , -2, -1, 0, 1, 2, ... 
real numbers real ... , -1.25, ... , 0, ... , 1.25, ... 
boolean bool true, false 

tion, while the set containing the images of the mapping from the domain is 
known as the range of the function. 

In SOFL, types are often used as the domain and range of functions. A 
type usually means a set of values, possibly with a set of operations. The 
name, symbol, and values of the basic types available in SOFL are given in 
Table 3.l. 

A function is defined by giving its signature and body. The signature is usu­
ally composed of three parts: function name, domain, and range. The function 
name is a unique identity, distinguishing it from other functions. The domain 
is written in parentheses following the function name, and the range is sepa­
rated from the right parenthesis by a colon. The body of the function is given 
after the double equality symbol ==. For example, the function square over 
integers is defined as follows: 

square (x: int): int 
== x * x 

In this definition, square is the function name; the int used to declare the 
parameter x denotes the domain; and the int on the right is the range. The 
body of the function is given as a product of the parameter x. Note that the 
name for the parameter of the function can be chosen freely, without changing 
the definition of the function. For instance, we can choose y instead of x so 
that the square function can be defined as 

square (y: int): int 
== y * y. 

A function may have more than one parameter, so the definition of a 
function in general looks like 

f(x_I: T _1, x_2: T _2, ... , x_n: T _n): T 
== E(x_I, x_2, ... , x_n) , 

where T _i (i=1..n) are types; the domain of the function is the product type: 
T _1 * T _2 * ... * T _n; and E(x_I, x_2, ... , x_n) is an expression containing 
variables x_I, x_2, ... , x_no 
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For example, a function known as multi is defined as 

multi(xl: nat, x2: nat, x3: nat): nat 
== xl * x2 * x3 

multi(x1, x2, x3) yields the product of the three parameters. 
If we restrict the range of a function to the boolean type bool, then the 

function is known as a predicate. For example, the function is_big defined 
below is a predicate. 

is_big(x: int): bool 
== x > 2000 

As we mentioned in the beginning of this chapter, a predicate is different from 
a proposition in that the predicate cannot evaluate to truth values unless its 
parameters are bound to specific values in the domain. Therefore, we cannot 
say that is_big(x) is true or false, since x is not bound to a specific value in 
the domain into However, if we let x take the values 2000, 2004, 2008, 1996, 
respectively, we will be able to obtain the following four propositions: 

is_big(2000) 
is _ big( 2004) 
is_big(2008) 
is_big(1996) 

According to the definition of the predicate is_big, it is apparent that 
is_big(2000) is false; is_big(2004) is true; is_big(2008) is true; and is_big(1996) 
is false. Similarly to functions, predicates may also allow multiple parameters, 
so the definition of a predicate in general has the form 

P(x_l: T _1, x_2: T _2, ... , x_n: T _n): bool 
== E(x_1, x_2, ... , x_n) . 

Compound predicates may be formed by using the logical operators and 
other defined predicates that may contain function applications. Consider the 
predicate compare as an example. 

compare(x_l: int, x_2: int): bool 
== is_big(x_1) and square(x_1) >= square(x_2) 

The predicate is defined in terms of the predicate is_big and the predci­
ate square(x_1) >= square(x_2), in which the function square is applied. 
It states that when the parameters x_I and x_2 are bound to values in 
the domain of the predicate, and they satisfy the condition is_big(x_1) and 
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square(x_l) >= square(x_2), the proposition compare(x_l, x_2) will evaluate 
as true; otherwise, it will evaluate as false. 

Predicates can be combined by using the propositional operators: and, 
or, not, =>, and <=>, in the exactly same way as for propositions to form 
compound predicates. Thus, 

is_big(x_l) and compare(x_l, x_2) => x_I> x_2 
is_big(x_l) or compare(x_l, x_2) 
not is_big(x_l) 
is_big(x_l) => compare(x_l, x_2) 
is_big(x_l) <=> is_big(x_2) 

are all compound predicates. 

3.2 Quantifiers 

In the predicate logic we use two quantifiers. One is the universal quantifier 
and the other is the existential quantifier. 

3.2.1 The Universal Quantifier 

A predicate allows us to make a statement that is applicable to a set of objects, 
such as is_big defined in the previous section. However, if we wish to make a 
statement that requires a set of objects to satisfy a property, using only the 
notion of predicate introduced so far may not be sufficient to form concise 
predicate expressions. For example, if we want to make the statement that 
2004, 2008, 2012, and 2016 all satisfy the condition given by the predicate 
is_big, we can write it as 

is_big(2004) and is_big(2008) and is_big(2012) and is_big(2016) . 

However, this expression is long and cumbersome. To make such an expression 
concise, we introduce a notion known as universal quantifier, represented by 
the keyword forall. For example, the above predicate expression is written as 
follows using the universal quantifier: 

forall[x : {2004, 2008, 2012, 2016}] I is_big(x) 

This statement states that for any element x in the set {2004, 2008, 2012, 
2016}, the proposition is_big(x) evaluates to true. Such a predicate is called 
a universally quantified predicate or expression. In SOFL specifications, the 
general form of a universally quantified expression is written as 

forall[x: X] I P(x) . (1) 
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In this expression, forall is the universal quantifier; x is known as the bound 
variable; x: X is called a constraint and X is a bound set; and P(x) is known 
as the body of the quantified expression, which can be a single predicate, a 
compound predicate, or another quantified predicate expression. 

The quantified expression states that, for any value x in set X, P(x) is 
satisfied. It is true if all the elements in the set X satisfy P(x), and false 
otherwise. Note that P(x) may contain other variables, in addition to the 
bound variable x. If those variables are not bound variables in any quantified 
expression in P(x), we call them free variables. For example, in the expression 

forall[x: int] I square(x) > y , 

y is a free variable. This quantified expression cannot evaluate to a truth value 
due to the existence of the free variable y, unless y is bound to a specific value 
in its type. 

In the general form of the universally quantified expression (1), if the body 
P(x) does not contain free variables, the expression will become a proposition, 
since, in that case, its truth value can be decided. For example, the expression 

forall[x: {2004, 2008, 2012, 2016}]I is_big(x) 

is actually a proposition. It is true because every element of the set {2004, 
2008, 2012, 2016} satisfies the predicate is_big. If, however, we change this 
expression to 

forall[x: {1996, 2000, 2012, 2016}] I is_big(x) , 

then this expression is false, because both 1996 and 2000 do not satisfy is_big. 

3.2.2 The Existential Quantifier 

When making a statement that requires at least one element of a set to satisfy 
a property, we usually need to use a disjunction. For instance, 

is_big(1996) or is_big(2000) or is_big(2004) or is_big(2008) 

states that at least one element of the set {1996, 2000, 2004, 2008} satisfies 
is_big. By using the existential quantifier, represented by the keyword exists, 
this expression is written as 

exists[x: {1996, 2000, 2004, 2008}]I is_big(x) . 

Such an expression is known as an existentially quantified expression. The 
general form of an existentially quantified expression is written as: 
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exists[x: X] I P(x) , (2) 

except that the name of the quantifier in expression (2) is different from that 
of the quantifier in the universally quantified expression (1) (all of the other 
parts share the same names). The existentially quantified expression is true if 
at least one element of set X satisfies the predicate P(x), and false otherwise. As 
in a universally quantified expression, if the body P(x) involves free variables, 
the existentially quantified expression becomes a predicate, not a proposition. 

When constructing formal specifications using predicate logic, as we will 
explain later in this chapter, it is sometimes useful to be able to express "there 
exists exactly one," rather than "there exists one." This is represented by the 
extended existential quantifier exists!. For example, the predicate 

exists! [x: int] I x = 0 

states that there exists exactly one integer zero. 

3.2.3 Quantified Expressions with Multiple Bound Variables 

A quantified expression also allows multi'ple bound variables. In general, a 
universally quantified expression with n bound variables is written as 

If X_I, X_2, ... , X_n are all the same set, then this expression can also be 
written as 

Likewise, an existentially quantified expression has the form 

or 

if X_I, X_2, ... , X_n are all the same. For example, the following expressions 
are quantified expressions with multiple bound variables: 

forall[x_l. x_2, x_3: nat] I multi(x_l, x_2, x_3) >= x_I 
exists[x_l: int, x_2: nat] I square(x_l) + x_2 > 10 
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3.2.4 Multiple Quantifiers 

Multiple quantifiers can be used to express more complicated predicate expres­
sions. To make expressions with multiple quantifiers concise, the quantifiers 
can be combined with bound sets. For example, the expressions 

forall[x: nat] I forall[y: nat] I P(x, y) 
forall[y: nat] I forall[x: nat] I P(x, y) 
forall[x: nat, y: nat] I P(x, y) 
forall[x, y: nat] I P(x, y) 

all mean the same thing. Such a combination is also applicable to the exis­
tentially quantified expressions. However, when both the universal quantifier 
and existential quantifier are used in an expression, the combination becomes 
more complicated. Let us consider the expression 

forall[x: nat] I exists[y: nat] I y > x 

as an example. It states that for any natural number, there must exist an­
other greater natural number. This is obviously true. Note that we cannot 
simply exchange the universal quantifier and the existential quantifier in this 
expression, since the changed expression 

exists[y: nat] I forall[x: nat] I y > x 

means different thing: there exists a natural number that is greater than every 
natural number, which is apparently false. 

To reduce the need for parentheses and avoid unnecessary confusion, we 
adopt the convention that the body of a quantified expression is considered 
to extend as far to the right as possible. So the expression 

forall[x: nat] I (x> z and (exists[y: nat] I y > x)) 

can be written as 

forall[x: nat] I x> z and exists[y: nat] I y > x . 

3.2.5 de Morgan's Laws 

Just as de Morgan's laws for propositions, there are also de Morgan's laws 
for quantified expressions. These laws are especially useful for proofs, to be 
introduced later in this chapter. 
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Proposition 7. The quantified expressions satisfy de Morgan's laws. That is, 

===fo=r=a=ll[~x:=X:::::;I=1 =P=(x=) ==;=:::;:: [. d M) eXlsts- e 
not (exists [x: XII not P(x)) 

not (forall[x: XII P(x)) [forall-deM) 
exists[x: XII not P(x) 

These laws are quite straightforward. The law exists-deM implies that the 
statement "P(x) holds for every element in X" is equivalent to saying that 
"P(x) does not hold for some element in X is false." The law forall-deM states 
that the statement "P(x) does not hold for every element in X" is equivalent 
to the statement "P(x) does not hold for some element in X." 

3.3 Substitution 

Substitution is an operation that changes a predicate by substituting a vari­
able or expression for a free variable in the predicate. Such a substitution 
allows us to change the subject of the predicate. Let P be a predicate; we use 
P[x/yl to denote the predicate obtained by substituting variable x for every 
free occurrence of y in P. The following are examples of substitution: 

(x > 5 and y > x)[t/x] <=> (t > 5 and y > t) 
(10 > 20)[y/xl <=> (10 > 20) 
(x < 20 + y)[(2+z)/yl <=> (x < 20 + (2 + z)) 

In the first case, variable x is substituted by t, and the structure of the pred­
icate and other variables remain unchanged. In the second substitution, the 
predicate (an extreme case of predicate) is not changed at all, since x is not 
involved in the predicate. The third case shows a substitution of a variable by 
an arithmetic expression. 

When making a substitution to a predicate involving quantified expres­
sions, we must not substitute any bound variables in the predicate. Consider 
the following substitutions: 

(1) (forall[x: natll x + 1 > O)[y/x) <=> 
(forall[x: natll x + 1 > 0) 

(2) (exists[y: natll y > x and y < x + 15)[5/x) <=> 
(exists[y: natll y > 5 and y < 5 + 15) 

The first case shows that an attempt to substitute a variable for a bound 
variable in a predicate has no effect. In other words, such a substitution does 
not change the predicate at all. In the second substitution each occurrence of 
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the free variable x is substituted by 5. Note that a substitution must not cause 
confusion between free and bound variables. For instance, the substitution 

(y > 10 and exists[x: nat] I x > y)[xjy] 

results in the following predicate with confusion between the free and bound 
variables: 

x > 10 and exists[x: nat] I x > x 

A contradiction x > x is introduced as the result of this substitution, which 
is obviously not what we want. The reason for such a problem is that the 
substituting variable shares the same identifier with the bound variable; both 
are x. It is the general principle that the substituting variable should be dif­
ferent from any bound variables occurring in the predicate, especially when a 
potential confusion may occur. 

This conflict problem can be resolved by first changing the identifiers of 
the relevant bound variables in the predicate and then performing the substi­
tution. For example, before carrying out the substitution 

(y> 10 and exists[x: nat] I x > y)[xjy] , 

we first change the bound variable x to i, and then do the substitution, which 
results in the predicate 

x > 10 and exists[i: nat] Ii> x . 

Substitutions can be done sequentially more than once. We use P[xjy][tjx] 
to denote the predicate resulting from first substituting x for occurrences of y 

in P and then substituting t for occurrences of x in the predicate P[x/y]. The 
following is an example of a sequential substitutions: 

(y > 10 and exists[i: nat] Ii> y)[xjy][tjx] <=> 
(x > 10 and exists[i: nat] Ii> x)[tjx] <=> 
(t > 10 and exists[i: nat] Ii> t) 

A single substitution can be extended to allow multiple substitutions. We use 
P[xjy, tjz] to denote the predicate resulting from simultaneously substituting 
x for occurrences of y and substituting t for occurrences of z. The following 
example shows a multiple substitution: 

(y > z + 10 and exists[i: nat] Ii> Y + z)[xjy, tjz] <=> 
(x > t + 10 and exists[i: nat] Ii> x + t) 

Similarly, we can extend this notation to P[x1/yl, x2/y2, ... , xn/yn]. 
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3.4 Proof in Predicate Logic 

Since the predicate logic is an extension of the propositional logic, all the 
inference rules available in the propositional logic are applicable to predicates. 
However, there is no rule in the propositional logic to deal with quantifiers, so 
the existing rules are in general not sufficient to handle proofs in the predicate 
logic. It is necessary to introduce rules for reasoning about quantifiers in the 
predicate logic. 

3.4.1 Introduction and Elimination of Existential Quantifiers 

The existentially quantified expression exists [x: X] I P(x) states that P(x) 
holds for some element x in X. Therefore, if we know that a value, say m, is 
a member of X and P(x)[m/x] holds, we will definitely be able to assert that 
exists [x: X] I P(x) is true. Based on this observation, the rule for introducing 
an existential quantifier is formed as follows: 

m inset X, P(x)[m/x] [ . t . t ] 
. t [ X] I P() eXlS s-zn ro , eXlS s x: x 

where m inset X means that x is a member of X; the membership operator 
inset is discussed in detail in Section 8.3.2 of Chapter 8. 

On the other hand, if exists[x: X] I P(x) is known to be true, and an 
arbitrary value, say m, belongs to X and the expression Q can be induced 
from P(x)[m/x], then we can claim that Q holds. This idea is reflected by the 
following rule for the elimination of existential quantifiers: 

exists[x: X] I P(x), m inset X and P(x)[m/x] I-- Q 
Q [exists-elim] , 

m is arbitrary 

Note that m must not occur as a free variable in the predicate Q and must be 
different from any variables occurring in the earlier proof steps. 

3.4.2 Introduction and Elimination of Universal Quantifiers 

If we know any arbitrary value, say y, in X such that P(y) holds, then we can 
definitely conclude that forall[x: X] I P(x) holds, based on the meaning of the 
universally quantified expression. This idea is reflected by the rule 

y inset X I-- P(y) . 
forall[x: X] I P(x) [forall-mtro] , 

As with the existential quantifier, a rule of eliminating a universal quantifier 
is also available: 



3.5 Validity and Satisfaction 47 

Table 3.2. A boxed proof 

from 
1 
infer 

y inset X, not pry Ixl 
exists[x: Xl I not P(x) 

not (forall[x: Xli P(x» 

forall[x: X] I P(x), m inset X [fi 11 l' 1 
P(m/x) ora -e zm 

exists-intro(h) 
forall- deM (1) 

This rule defines that if forall[x: X] I P(x) holds and m is a member of X, 
then the truth of P(x)[m/x] can be safely claimed. 

Now let us look at an example of proof that applies the rules introduced 
above. Of course, we may also need other existing inference rules, including de 
Morgan's laws, given in Section 3.2.5. The proposition to be proved is given 
as the sequent 

y inset X, not PlY/x] f- not (forall[x: X] I P(x)) . 

The boxed proof of this sequent is given in Table 3.2. 

3.5 Validity and Satisfaction 

Validity and satisfaction are two important properties of the predicate logic. 

Definition 1. A predicate is valid if it evaluates to true for whatever values 
of the free variables involved. 

For example, let x be a variable over the type into Then the predicate 

x> 0 or x <= 0 

is valid, because it evaluates to true no matter what integer the variable x 
takes. Sometimes we are interested in whether a predicate is true for some 
values. If so, we say the predicate is satisfiable. 

Definition 2. A predicate is satisfiable if it evaluates to truefor some values 
of the free variables involved. Otherwise, the predicate is unsatisfiable. 

For instance, let x be a variable over the type int, the predicate 

x> 10 

is satisfiable, since it evaluates to true for some integers, say 15. On the other 
hand, the predicate 
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x > 10 and x < 10 

is unsatisfiable, since it evaluates to false for whatever integers bound to x. 
The notions of valid, satisfiable, and unsatisfiable predicates correspond in 

fact to those of tautology, contingency, and contradiction in the propositional 
logic, respectively. A valid predicate is similar to a tautology; a satisfiable 
predicate is similar to a contingency; and an unsatisfiable predicate is similar 
to a contradiction. 

3.6 Treatment of Partial Predicates 

It is possible that a predicate may not yield a truth value for some values 
bound to its free variables (arguments). Such a predicate is called partial 
predicate. For example, the predicate x / y > 20 involves a division between 
two real numbers x and y. If y is not zero, the truth value of this predicate 
can be determined. However, if y is equal to zero, the result of division x / y 
is undefined, which leads to the entire predicate being undefined. 

Furthermore, as the reader will see in Chapters 17 and 18, the predicate 
expressions that need to be evaluated for reviews or testing may involve un­
defined variables. In such cases, how to evaluate the expressions will become a 
problem: the result should be true, false, or undefined. To deal with this prob­
lem, we need a logical system in which undefinedness is treated as a "special 
value" for operations. It is treated as a "value" because it can join operations 
as an operand, and it is "special" because it is in fact not a real value, but 
represents a situation of no value or a situation when a variable is bound to 
a value of the wrong type. Fortunately, VDM has provided a proper logical 
system to handle partial predicates by extending the two-valued truth tables 
of propositional operators into three-valued truth tables. SOFL also adopts 
this extension for interpreting formal specifications. 

In the extended truth tables, the absence of value, i.e., undefinedmiss, is 
represented by the keyword nil. Since nine cases must be considered now for 
each operator, the truth tables are presented in a compact square style. The 
extended truth table for conjunction is: 

(and) true nil false 
true true nil false 
nil nil nil false 

false false false false 

In order to be distinguished from operands, the operator and is in parentheses. 
The extension is made in a way that a result is given whenever possible. For 
example, the conjunction 

nil and false 
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yields false, as it is always the result of the evaluation of this conjunction, 
no matter what truth value the nil can possibly be. That is, if the position 
of nil is true, the result of the evaluation is false, and so is the result of the 
evaluation when the position of nil is false. If the evaluation of a conjunction 
cannot yield a truth value due to the lack of truth values, reflected by the 
involvement of nil, the result of the evaluation must be nil. For example, 

nil and true < = > nil 
nil and nil <=> nil 

The same principle is also applied to extend the truth tables for disjunction, 
negation, implication, and equivalence, which are given below. 

(or) true nil false 
true true true true 
nil true nil nil 

false true nil false 

(not) 
true false 
nil nil 

false true 

(=» true nil false 
true true nil false 
nil true nil nil 

false true true true 

«=» true nil false 
true true nil false 
nil nil nil nil 

false false nil true 

As pointed out by Jones in his book titled Systematic Software Development 
Using VDM [55], the extended logical system does not inherit some properties 
of the classical logic. For example, 

P or not P 

is a tautology in the classical logic, but it is not true in extended logic because 
it yields no truth value when P is undefined. Therefore, in order to apply all the 
rules of the classical logic in proof, one must make sure that every predicate 
expression involved is defined. However, if only evaluations of expressions are 
required for necessary arguments, they can be performed by applying the 
extended truth tables, with no need for using the inference rules. Since proof 
is rarely employed in SOFL for verification of systems, this problem is not a 
major concern. 
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3.7 Formal Specification with Predicates 

This section explains how the predicate logic can be used to define functional 
requirements. As the detail of this technique will be introduced in Chapter 4, 
the description in this section is kept simple. The reader is expected to get, 
through examples, a preliminary idea about the use of the logic for functional 
specifications of software systems. 

A predicate is usually used to describe a condition, but its role may be 
interpreted in a number of ways in a specification, depending on the way it is 
used. Let us consider the predicate 

x> 5 and x < 10 

as an example. It can be used as a guard condition for determining the subse­
quent action or definition. It can also be used to express a functional require­
ment that the expected operation generates values satisfying this condition. 
This is similar to the following statement: 

my student finishes his homework. 

This proposition can serve as a condition to decide whether my student will 
be given a full mark or not, but it may also be used to express a require­
ment to my student for completing his homework. The reader will see more 
detailed discussions on this issue in Chapter 4. For the moment, as long as 
one understands the point that predicates can be used for writing both guard 
conditions and functional requirements, he or she is good to proceed to the 
next chapter. 

3.8 Exercises 

1. Answer the following questions: 

a) What is the similarity and difference between a predicate and a func­
tion? 

b) What is the difference between a universally quantified expression and 
existentially quantified expression? 

c) What is a substitution? 
d) What is a valid predicate? 
e) What is a satisfiable predicate? 
f) What is a partial predicate? 

2. Which of the following quantified predicate expressions are propositions? 

a) forall[x: int] I x > 5 and x < 10 
b) exists[x: int] I y > x and y < x + 10 
c) forall[x, y: real] I x + y > x - y 
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d) forall[x, y: real]exists[z: real] I x + y > z 
e) exists[x: int]forall[y: int] I x * y > z 

3. Evaluate the substitutions: 

a) (x > y + z => Y < x)[t/x] 
b) (forall[x, y: natO] I x < z and z < y => x < y)[m/y, t/z] 
c) (exists[x, y, z: nat] I x * y > z => x > z and y > z and b > c)[a/x, 

b/y, c/b] 
4. Give proofs for the properties (assuming all the involved predicates are 

defined): 

a) forall[x: X] I P(x) I-- not exists [x: X] I not P(x) 
b) x inset X, forall[y: X] I y > 15 I-- exists[z: X] I z > 15, where X is a 

subset of natO. 
5. Which predicates are true according to the extended truth tables? 

a) x > y and y / 0 > 5 <=> false 
b) x> y and y > x <=> nil 
c) true or nil <=> nil 
d) false or nil < = > false 
e) false => nil <=> nil 
f) true => false <=> nil 
g) true => nil <=> false 
h) true <=> false <=> nil 
i) false <=> nil <=> true 
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The Module 

This chapter introduces the most important component of SOFL specifica­
tions: the module. A specification is composed of a set of related modules in a 
hierarchical fashion. Each module is a functional abstraction: it has a behavior 
represented by a graphical notation, known as condition data flow diagmm, 
and a structure to encapsulate data and processes used in the condition data 
flow diagram. Each data item is defined with an appropriate type and each 
process is defined with a formal, textural notation based on the predicate logic 
introduced in chapter 3. 

4.1 Module for Abstraction 

When building a software system, the essential concern is what function should 
in the first place be provided by the system. An effective way to gain the under­
standing of the system function is abstmction and decomposition. Abstraction 
is a principle for extracting the most important information from implemen­
tation details. The result of an abstraction is usually a concise specification 
of the system, reflecting all the primarily important functions without unnec­
essary details. The understanding of this notion can be helped by studying 
the simplified ATM (Automated Teller Machine) example. Suppose an ATM 
is required to have the following functions: 

(1) Provide the buttons show the balance and withdraw for selection. 
(2) Insert a cash card and supply a password. 
(3) If show the balance is selected, the current balance is given. 
(4) If withdraw is selected, the amount of the money to withdraw is properly 

provided. 
(5) The requested amount of money must be supplied in cash. 

This list gives a functional abstraction of the desired system: it contains only 
the functions of interest, described abstractly, and does not focus on the de-
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tailed issues, such as what the buttons should look like and what the format 
of password is, and so on. 

In an abstract specification the dependency between required functions 
may exist implicitly. For example, to perform function (3), function (1) must 
be performed so that the current balance can be provided; to ensure that 
function (4) is provided correctly, function (2) must be carried out beforehand 
so that only the permitted person can access the account. Sometimes, such a 
dependency may need to be defined explicitly. For example, as a requirement, 
function (2) may need to be performed before actions (3), (4), and (5). If this 
is not the case, the implementation of the system may end up performing 
action (4) before performing action (2), something which is obviously unsafe. 

Abstraction may have different levels, and the high level abstraction may 
contain less information than the low level abstraction. For example, if we 
refine action (4) to take the possibility of a password mismatch into account, 
the functional specification can be written as follows: 

(4') If withdraw is selected and the password is correct, the amount 
of the money to withdraw is provided; otherwise, if the password 
is wrong, a message for reentering the correct password must 
be given. 

This may be considered as a concrete version of the abstract specification in 
(4), since it provides more detailed information about the required function. 
Of course, it may also be regarded as an abstraction of another lower level 
specification. 

In order to avoid any potential misunderstanding, an abstract specification 
of a system must not be ambiguous. However, as we have described in Chapter 
1, this problem will inevitably arise if informal languages are used to write the 
specification. For example, it is not clear what the phrase password is correct 
means in the above functional specification (4'). If we extend this specification 
to explain the meaning of phrases like this one, we will probably end up with a 
long, and probably more complex, documentation. To deal with this problem, 
formal notation can help greatly. 

To allow functional abstractions at various levels and to help achieve the 
comprehensibility of formal specifications, SOFL employs condition data flow 
diagrams for the abstraction of data flow relations between processes perform­
ing specific behaviors, and employs predicate logic-based formal notation for 
the abstraction of data items and processes occurring in the diagrams. The 
concept of condition data flow diagram, including data flows and processes, 
and the formal notation for defining the components of the diagrams, are in­
troduced from the next section in this chapter. Conceptually a module has 
the following structure: 

ModuleName 
condition data flow diagram 
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\ cash-+-

-pass accoUD§2 
Show_ balance----+ 
Balance 

Fig. 4.1. The CDFD modeling a simplifed cash dispenser 

Specification of the components 

The components, and their syntax, of a module are gradually introduced in 
this chapter, starting from the next section. 

4.2 Condition Data Flow Diagrams 

A condition data flow diagram, CDFD for short, is a directed graph that 
specifies how processes work together to provide functional behaviors. Before 
proceeding to the detail of CDFD, let us try to get a preliminary idea by 
looking at the example of modeling the ATM with a CDFD, as shown in 
Figure 4.1. 

Each box in this diagram denotes a process, such as Receive_Command and 
Check_Password, which describes an operation: it takes inputs and produces 
outputs. Each directed line with a labeled name denotes a data flow: the name 
indicates the nature of the data while the line gives direction of the data flow. 
The box with number 1 and the identifier account_file is known as a data 
store or store, which represents the data at rest, such as a file or database. 

The diagram conveys the functional requirements given in section 4.1 and 
the dependency relations between the functions represented by the processes 
in the diagram. The selection of balance, denoting the command of show the 
balance, or w_draw, denoting the command of withdraw, is handled by the 
process Receive_Command. This process then generates a data flow sel to in­
dicate which command has actually been selected, and passes this information 
to the process Check_Password. When the requested cash card card_id and 
password pass are provided, this process will check whether the provided ac­
count exists in the system account database account_file, and if so, whether 
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Fig. 4.2. A simple process 

the password pass is the same as that of the account. If these pieces of in­
formation are confirmed, the process Check_Password will pass the account 
information, denoted by accountl and account2, respectively, to either the 
process Withdraw or the process Show_Balance, depending upon the value of 
data flow sel. If security is, however, not confirmed, an error message pr_meg 
will be issued. The process Withdraw updates account_file by reducing the 
requested amount from the current balance of accountl if the amount is less 
or equal to the current balance. However, if this is not the case, the process 
will generate an error message to show that the amount requested is invalid. 
The process Show_Balance takes the confirmed account denoted by account2, 
which is the same as accountl in content, and displays the current balance of 
the account, which is represented by the data flow balance. 

In contrast with the informal functional specification given in Section 4.1, 
the functional abstraction expressed by the CDFD is obviously more compre­
hensible in modeling the dependency relations among processes. To completely 
define the CDFD, however, all the processes, data flows, and stores must be 
defined precisely, in a proper manner. To achieve this goal, the predicate logic 
is adopted. From the next section, we describe all the possible components of 
CDFDs and the techniques for their formal definitions. 

4.3 Processes 

One of the most essential components is known as process. A process performs 
an action, task, or operation that takes input and produces output. To model 
the variety of operations, a process can take several different forms. Figure 
4.2 shows a simple form of process. 

The process A is composed of five parts: name, input port, output port, 
precondition, and postcondition. The name A of the process is given in the 
center of the box. The input port is denoted by the narrow rectangle on 
the left part of the box, which receives the input data flows x and y. The 
output port is given on the right part of the box, similar to the input port, 
to connect to the output data flows z and w. The upper part of the box, a 
narrow rectangle, denotes the precondition, while the lower part of the box 
represents the postcondition. The precondition of a process is a condition 
which the inputs are required to meet, while the postcondition is a condition 
which the outputs are required to satisfy. Before understanding the notions 
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of pre and postconditions in detail, it is essential to study how the process 
transforms its inputs to outputs operationally. 

Briefly speaking this process transforms the input data flows, or inputs for 
short, x and y to the output data flows, or outputs for short, z and w. Note 
that the identifiers like x, y, z, and ware known as data flow variables, but 
when bound to specific values, they will represent the concrete data flows. In 
this case, we say that the data flows through variable x and yare available, 
or simply data flows x and yare available. We will discuss the notion of data 
availability in detail in Section 4.4. But for now this interpretation is sufficient 
to help us proceed to an explanation of the operational semantics of a process. 

Precisely speaking, the operational semantics of this process is interpreted 
by the sequence of activities: 

1. when both the input data flows x and y are available, the process is en­
abled, but it will not execute until the output data flows z and w become 
unavailable. 

2. the execution of the process consumes the input data flows x and y, and 
generates the output data flows z and w. 

Note that the availability of input data flows is not the only condition for 
executing a process. In fact, the execution requires both the availability of 
the input data flows and the unavailability of the output data flows. It is 
also important to understand the fact that only one of the input data flows x 
and y becomes available does not enable the process. Furthermore, after the 
execution of the process, all the input data flows are consumed; that is, they 
become unavailable. 

We must emphasize that only understanding the operational meaning of a 
process is not sufficient for understanding the function of the process precisely. 
For example, how are the input data flows x and y used to generate the output 
data flows z and w? To answer questions like this, we need to provide a textual 
specification that describes the relation between the input data flows and 
output data flows. Such a specification is mainly composed of a precondition 
and a postcondition; both are predicate expressions. The precondition is a 
necessary condition that must be met by the input data flows in order for the 
process to be executed correctly. In other words, if the precondition is not 
satisfied by the input data flows, no correct output data flows are guaranteed. 
The postcondition shows a condition that the output data flows must satisfy 
after the execution of the process. Usually, in a postcondition the relation 
between the input data flows and output data flows are defined. Thus, how 
the input data flows are used to generate the output data flows can be seen 
clearly. 

For example, the process A in Figure 4.2 is specified as: 

process A(x: Ti_I, y: Ti_2) z: To_I, w: To_2 
pre P(x, y) 
post Q(x, y, z, w) 
end_process 
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For consistency in documentation, process and end_process are a pair of 
keywords to mark the start and end of a process specification, respectively, 
and the process name A, and the input and output data flow variables must 
be kept the same as they appear in the graphical representation. Every data 
flow variable, including input and output data flow variables, must be declared 
with a type, such as nat, int, real. The declarations of the input data flow 
variables are given within parentheses following the process name A, and the 
declarations of the output data flow variables are given after the parentheses. 
Each variable declaration has the form 

variable: type 

and different declarations are separated by a comma. For example, the input 
data flow variable x is declared with the type Ti_l and y with Ti_2, and 
their declarations are separated by a comma. Likewise, the output data flow 
variables z and w are declared with the types To_l and To_2, respectively. 

The order of the declarations of data flow variables must be consistent 
with the order of their appearances in the corresponding graphical notation: 
the top-down order of appearances in the graphical notation corresponds to the 
left-right order of declarations in the textual specification. Thus, we can avoid 
potential confusions in understanding processes. For example, the specification 
of process A in the following form 

is illegal because x appears in a higher position than y in the graphical nota­
tion, which is inconsistent with the left-right order in the textual specification. 

pre is a keyword indicating the start of the precondition of the process, 
and the keyword post indicates the start of the postcondition. P(x, y) is the 
precondition of the process A, possibly involving x and y. Q(x, y, z, w) is the 
postcondition that possibly involves both the input variables x and y, and 
the output variables z and w, since it defines the relation between inputs and 
outputs. As an example, let us assume that all the variables x, y, z, and ware 
integers, and the process A does addition and subtraction based on x and y. 
Then the process A can be specified as 

process A(x: int, y: int) z: int, w: int 
pre x > 0 and y > 0 
post z = x + y and w = x - y 
end _process 

The precondition states that both x and y must be greater than zero in order to 
assure a correct execution of this process. The postcondition requires that the 
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output data flow z be equal to the addition of x and y, and w the subtraction 
of y from x, after the execution of the process. 

The declarations of input or output variables can be grouped together if 
they share the same type. For example, both x and yare the variables of type 
int, and so are z and w. Therefore, we can group x and y together, and z and 
w together in the specification of the process A to adopt the following form: 

process A(x, y: int) z, w: int 
pre x > 0 and y > 0 
post z = x + y and w = x - y 
end _process 

This form is different from the previous one only in syntax, but not in se­
mantics. A comma must be used to separate different variables in a group. 
Note that we must not group any input and output variables together, as 
they must be written in different places in the specification: input variables 
are given within the parentheses whereas the output variables are given after 
the parentheses. 

Sometimes we may not want to impose any specific constraint on the input 
data flows of a process. That is, any input data flows of their types are legal 
inputs to this process. In this case, we let the precondition be the boolean 
value true, as in 

process A(x, y: int) z, w: int 
pre true 
post z = x + y and w = x - y 
end _process 

Likewise, the same thing can be done for the postcondition of the process, as 
m 

process A(x, y: int) z, w: int 
pre x > 0 and y > 0 
post true 
end_process 

According to this, any output data flows, as a result of the execution of the 
process, will satisfy the specification. 

Sometimes we may not care what exactly a process does. For example, 
some university may want to give a special grant to a distinguished researcher 
for whatever research he or she wishes to conduct. In such a case, this univer­
sity may require no precondition and postcondition for the researcher's work. 
A process of this kind is specified with both pre and postcondition being true, 
as in 
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- x =0,-- y 

Fig. 4.3. Processes with multiple ports 

process A(x, y: int) z, w: int 
pre true 
post true 
end_process 

For the sake of simplicity, SOFL allows the omission of the pre and postcon­
dition parts in this special case. Thus, the above process A can be written 
as 

process A(x, y: int) z, w: int 
end _process 

Of course, we can omit either the precondition or the postcondition if it is 
true, such as in 

or 

process A(x, y: int) z, w: int 
post z = x + y and w = x - y 
end_process 

process A(x, y: int) z, w: int 
pre x > 0 and y > 0 
end _process 

In other words, the absence of a precondition or a postcondition means that 
it is defined as true. 

A process may have multiple input ports and/or output ports holding mul­
tiple groups of input and/or output data flows. Figure 4.3 illustrates various 
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forms of such a process. The process B has two input ports receiving the data 
flows x and y, and one output port holding the data flow z. When either x or 
y is available, process B takes x or y, but not both, as input, and produces 
z as output. The short horizontal line between the two input ports denotes 
an exclusive relation between the two groups of data flows in the sense that 
only one of them can be consumed in producing the output data flow. It is 
worth noting that this does not preclude situation in which both x and yare 
available. In such a situation, process B will choose non-deterministically one 
of x and y, say x, as its input for an execution. As the result of this execution, 
the data flow x is consumed, but the availability of y remains unchanged, and 
z is made available. Since y is still available, process B is enabled again, but 
its execution will not start until z is consumed by another process. Once z 
is made unavailable, process B will start an execution that consumes y and 
generates another z. 

The formal specification of process B may be given as 

process B(x:Ti_l I y: Ti_2) z: To_l 
pre P(x, y) 
post Q(x, y, z) 
end _process 

The vertical line between the declarations of x and y in the textual specifi­
cation corresponds to the horizontal line in the graphical representation of 
process B, denoting the exclusive relation between x and y. Since there is a 
possibility that either x or y, but not both, is available, and this availabil­
ity will enable process B, we need to give the precondition as a disjunction 
of clauses, each involving either x or y but not both, in order to avoid an 
unexpected situation in which the precondition of the process can never be 
evaluated to true. For example, we can specifically define process B as follows: 

process B(x: int I y: int) z: int 
pre x > 0 or y > 0 
post z = x + 1 or z = y - 1 
end _process 

Since the output variable z is defined based on one of the input variables x and 
y, the postcondition also needs to be a disjunction in this case. Otherwise, the 
postcondition may never be satisfied by any output data flows. Let us consider 
the following specification, which is derived from the modification of process 
B, as an example: 

process B(x: int I y: int) z: int 
pre x > 0 and y > 0 
post z = x + 1 and z = y - 1 
end _process 
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Suppose x, but not y, is available and greater than zero; then the precondition 
becomes 

x> 0 and nil , 

which is equivalent to nil (as explained in Chapter 3). Similarly, the postcon­
dition also evaluates to nil due to the unavailability of y. 

However, when no specific constraints are needed for all the possible input 
or output data flows, we will just let the precondition or postcondition be the 
boolean value true, as in 

process B(x: int I y: int) z: int 
pre true 
post z = x + 1 or z = y - 1 
end_process 

But, if there is a specific constraint on x but not on y in the precondition, 
for example, then we need to adopt a special symbol extended from the truth 
value true, to accurately reflect this condition, as illustrated by the process 
specification 

process B(x: int I y: int) z: int 
pre x > 0 or true(y) 
post z = x + 1 or z = y - 1 
end_process 

Where true(y) is a predicate (not a truth value) defined as follows: 

true(y) = true if y is available 
true(y) = nil if y is unavailable 

Thus, when x is available while y is not, the true(y) is nil, and the entire 
precondition can still be satisfied by x. 

Now let us discuss the other forms of processes given in Figure 4.3. Pro­
cess C takes x as input and produces either z or w, but not both. The short 
horizontal line between the two output ports related to z and w denotes an 
exclusive relation between z and w. Note that, which of z and w is generated 
can be nondeterministic; but it can also be deterministic, depending on how 
the process C is formally specified. For example, we can specify process C as 

process C(x: int) z: int I w: int 
pre x> 0 
post z = x + 1 or w = x * 2 
end _process 
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Upon the availability of input data flow x, this process generates either z that 
equals x + 1, or w that doubles x, but indicates no definite condition for 
choosing the generation of z or w. Therefore, it describes a nondeterministic 
situation. The exclusive relation between the availability of z and w is reflected 
using the vertical line between the declarations of z and w, as with the input 
data flows described previously. 

If the generation of x or w needs to be deterministically defined, specific 
conditions must be given. For example, the specification 

process C(x: int) z: int I w: int 
pre x> 0 
post x < 10 and z = x + 1 or x >= 10 and w = x * 2 
end _process 

defines z when x < 10, and otherwise w when x >= 10. 
Since only one of z and w can be generated as a result of executing the 

process, the postcondition of process C is given as a disjunction of clauses, each 
involving only one of output variables z and w. Note that the postcondition 
cannot be a conjunction; otherwise, the semantics of the formal specification of 
the process will conflict with its operational semantics. For instance, suppose 
the operator or is changed to and in the postcondition of process C, forming 

process C(x: int) z: int I w: int 
pre x> 0 
post z = x + 1 and w = x * 2 
end _process 

This postcondition will be impossible to satisfy with only one of the output 
data flows z and w. Note that only one of z and w is generated as the result 
of executing process C. 

The process D in Figure 4.3 takes either x or y as input, and generates 
either z or w as output. But which input data flow is used to produce which 
output data flow is not precisely given by the graphical symbol of the process. 
This detailed level definition can be given in the formal specification of the 
process. For example, process D is specified as follows: 

process D(x: Ti_1 I y: Ti_2) z: To_1 I w: To_2 
pre P(x, y) 
post x <> nil and Q_1(z, x) or y <> nil and Q_2(y, w) 
end_process 

When x is available, denoted by the expression x <> nil, output data flow 
z should be made available as a result of executing the process. When y is 
available, denoted by y <> nil, w should be generated. When both x and y 
are available, the generation of z or w is nondeterministic. In general, within 
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x z ---. 

Fig. 4.4. A process with a data flow loop 

a process specification there is no easy way to define exactly which of the 
available input data flows connecting to different ports needs to be consumed 
for executing the process. For this reason, the availability of more than one 
input data flows going to different input ports of a process should be avoided, 
unless it is absolutely necessary. 

A process may have a data flow loop: a data flow is both the input and the 
output of the process. For instance, process A1 in Figure 4.4 has a data flow 
loop formed by data flow y. This process describes a counter. The initial value 
of the counter is provided by data flow x with the value O. Then data flow y is 
generated as an increment of x, and y keeps increasing until its value reaches 
100. In this case, data flow z is generated to take 100 as the final result of this 
loop. This process can be specified as follows: 

process A1(y: natO I x: natO) y: natO I z: natO 
pre x = a or true(y) 
post y = x + 1 or 

-y < 100 and y = -y + 1 or 
-y >= 100 and z = -y 

end_process 

In the postcondition, the variable -y, decorated with the tiled symbol -, de­
notes the input data flow y, while y denotes the output data flow y. As we 
will see in Section 4.5 of this chapter, the same technique will also be used to 
represent data stores in the postconditions of processes. 

A process may have no input or output data flow. The graphical represen­
tations of such a process is given in Figure 4.5. Process E has no input data 
flow; it has only an output data flow z. Such a process is intended to provide 
a data flow like z whenever requested by other processes in a CDFD, so its 
operational semantics is described as follows: the process is always enabled to 
execute; once the output data flows are consumed, the new output data flows 
are generated. In other words, the output data flows of such a process are 
always available for use. We call this kind of process source process or source. 
The formal specification of process E has the form: 
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Fig. 4.5. Processes with no input or output 

process EO z: To_1 
pre P 
post Q(z) 
end _process 

Since there is no input data flow to this process, no input data flow variable 
is given in the parentheses; the precondition should involve no input variable 
(usually given as true unless the process accesses some data stores), and 
the output variable z should not be defined based on any input variable. For 
example, we can specifically define process E as follows: 

process EO z: natO 
pre true 
post z > 10 
end _process 

The output variable z is defined independently of any other variables in the 
postcondition. According to this specification, a natural number greater than 
10 is produced after the execution of process E. Compared with the relations 
between output variables and input variables given in the previously intro­
duced process specifications, the relation z > 10 implies a nondeterministic 
output: any natural number greater than 10 could be the output. 

Process F in Figure 4.5 has no output data flow, but has an input data 
flow. When the process is enabled by the input data flow x, it always starts 
execution immediately. The effect of the execution is to consume the input 
data flow. As this kind of process generates no output, we call it a sink process 
or a sink. The formal specification of such a sink process has the form 

process F(x: Ti_1) 
pre P(x) 
post Q 
end_process 
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Fig. 4.6. An illegal process with no input and output 

-x~ bd- y ---' 

Fig. 4.7. A process with empty input port and output port 

The precondition may involve the input variable x, but no output variable 
should occur in the postcondition. In this case, the postcondition is usually 
specified as true unless the process accesses a data store (see details of store 
access by processes in Section 4.5). A specific example given below can help 
illustrate the principle of specifying a sink process. 

process F(x: natO) 
pre x> 5 
post true 
end _process 

Note that processes with neither input data flow nor output data flow are 
illegal processes, since they provide no useful functions. For example, the 
process G in Figure 4.6 is illegal. 

Sometimes we may need an empty input port and/or an empty output 
port, together with other non-empty ports. An empty port connects to no 
data flows. The process Al in Figure 4.7 includes an empty input port and an 
output port. The process may generate y based on input x or independently of 
any input data flow. It may also just consume x and produce no output data 
flow. However, the situation of producing no output data flow independently 
of any input data flow is definitely disallowed, as it denotes the same situation 
as process G given in Figure 4.6. As an example, process Al can be specified 
as follows: 

process AI(x: int I) I y: int 
pre true 
post x > 0 and y = x + I or 

x < = 0 and y = x - I or 
x = nil and y = 0 

end_process 
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Fig. 4.8. The general structure of process 

The declaration of input variables consists of two parts, separated by the 
symbol I. The part on the left hand side of 1 is the declaration of input variable 
x, while the part on the right hand side is an empty space denoting the dummy 
input port. Similarly, we use the same format to express the combination of 
dummy output port and other output variables. Process Al requires that when 
x is available and greater than 0, y should be produced and be equal to x + 
1; when x is available and less than or equal to zero, y should be generated 
and be equal to x - 1. Otherwise, if x is unavailable, y will be generated with 
the value zero. Since processes with this kind of structure likely lead to a 
complicated specification, they should be avoided if possible. 

In summary of all the possible forms described so far, process A in Figure 
4.8 shows the general structure of a process. Each xi (i=1...n) or yj (j=1...m) 
denotes a group of data flows. When all of the data flows connected to one 
port are available, we say that this port is available. This concept applies to 
both input ports and output ports. The meaning of this process is interpreted 
as the following sequence of actions: 

1. when one ofthe input ports is available, the process A is enabled, and will 
not be executed until all the output ports become unavailable. 

2. the execution of the process consumes all the input data flows connected 
to the available input port for activating the execution, and makes exactly 
one of the output ports available (and therefore all the output data flows 
connected to this port become available). 

Note that a port is available if and only if all the data flows connected to it 
are available. In other words, if any single data flow of a port is unavailable, 
the entire port will be unavailable. 

The formal specification of process A in Figure 4.8 is abstracted as 

process A(xl_dec 1 x2_dec 1 ... 1 xn_dec) 
yl_dec 1 y2_dec 1 ... 1 ym_dec 

pre P(xl, x2, ... , xn) 
post Q(xl, x2, ... , xn, yl, y2, ... , ym) 
end _process 

Each xi_dec (i =1...n) is a sequence of input variable declarations separated 
by comma, such as 
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Fig. 4.9. An example of process with multiple ports 

where xi_I, xi_2, ... , xi_n are the data flow variables connecting to input 
port xi, and Ti_l, Ti_2, ... , Ti_n are their types, respectively. Likewise, each 
yLdec (j = L.rn) is a sequence of output variable declarations with a form 
similar to xi_dec. 

For example, Figure 4.9 gives a process with multiple ports. The outline 
of its formal specification is 

process A(xl: Ti_l, x2: Ti_2 I x3: Ti_3, x4: Ti_ 4, xS: Ti_S I x6: Ti_6) 
yl: To_I, y2: To_2, y3: To_3 I y4: To_ 4, yS: To_S I 

y6: To_6, y7: To_7 
pre P(xl, x2, x3, x4, xS, x6) 
post Q(xl,x2, x3, x4, xS, x6, yl, y2, y3, y4, yS, y6, y7) 
end _process 

where Ti_l, Ti_2, ... , Ti_6 are types for input variables xl, x2, ... , x6, and 
To_I, To_2, ... , To_7 are types for output variables yl, y2, ... , y7, respectively. 

To avoid confusion in the formal specification of a process, a syntactical 
rule must be applied when a process is drawn: all the input or output data 
flow variables must be different from each other. Thus, the process given in 
Figure 4.10 is an illegal process, as the two input data flows are labeled with 
the same name x. 

4.4 Data Flows 

A data flow represents a data transmission from one process to another, as we 
have understood, more or less, from the description of the previous section. 
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Fig. 4.10. An illegal process 

x • 

y ------. 
Fig. 4.11. Two kinds of data flows 

A data flow has a name, denoted by an identifier, and indicates the direction 
in which the data are transmitted. A legal identifier is formed by an English 
letter followed by numbers, letters, or their combinations. For the sake of 
readability, the underscore symbol "_ " may also be used in identifiers. 

There are two kinds of data flows. One is known as active data flow, and the 
other is control data flow. Figure 4.11 shows the graphical representations of 
these two kinds of data flows. An active data flow is denoted by a solid directed 
line like data flow x, while a control data flow is denoted by a dashed directed 
line like y. The primary function of an active data flow is to transmit the actual 
data that are expected to be used by another process, whereas a control data 
flow transmits "special data" that will not be used by another process during 
its execution, but its availability can enable the process (thereby playing the 
role of controlling the process execution). The control data flow is usually 
used when describing the requirement that a process be executed after the 
execution of its preceding process without the need for receiving any useful 
data flow. For example, Figure 4.12 shows that process B must be executed 
after process A, without the need for any "useful" data (but for a "signal" y 

supplied by process A), whereas process C, which must also be executed after 
process A, needs the actual data z supplied by process A for generating its 
output data flow w. 

In general, the graphical symbol of a data flow given in Figure 4.11 denotes 
a data flow variable, not a specific value like in the classical data flow diagrams. 
When a specific value is bound to this variable, the data flow through this 
variable is said to become available and the variable is said to be defined; oth­
erwise, the variable is said to be undefined. Since we use a data flow identifier, 
say x, as a variable and a specific data flow, alternately from time to time, for 
the sake of simplicity we use the following phrases equivalently: 
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Fig. 4.12. An example of using active and control data flows 

• data flow x is available. 
• data flow variable x is defined. 

Likewise for the following notions: 

• data flow x is unavailable. 
• data flow variable x is undefined. 

Thus, we treat x as a data flow variable whenever we talk about whether it is 
defined or undefined, and as a data flow whenever we talk about whether it 
is available or unavailable. 

Every data flow variable must be declared with a type, such as nat, int, 
real, so the binding of values to a variable must be restricted to its type. That 
is, when the value of its type is bound to the variable, we say this variable is 
defined; otherwise, it is undefined. Formally, 

Definition 3. Let x be a data flow variable of type T. x 
is defined if a value of T 
is bound to x. Otherwise, x 
is undefined. 

This concept is similar to a water pipe system. A data flow variable is like a 
water pipe and a specific data flow is like water going through the pipe, as 
shown in Figure 4.13. When water comes in the pipe, the pipe is occupied 
(defined); when water flows out, the pipe becomes empty (undefined). 

We use bound(x) to mean that variable x is defined or data through x is 
available. Formally, predicate bound is defined as follows: 

bound: X - > bool 
bound(x) = true if x is defined, and false if x is undefined 

where X is a set of variables. 



4.5 Data Stores 71 

x 

() () 
Fig. 4.13. An illustration of data flow variable and data flow 

As we have seen in section 4.3, a declaration of data flow variables uses 
the form: 

where v_i (i = L.n and n 2': 1) are variables and T is a type. There are 
several kinds of types available in SOFL, and they will be introduced in later 
chapters. But for now, we use only the basic types given in discussions of the 
fundamental concepts at the beginning of Section 3.1 of Chapter 3. 

Every control data flow variable must be declared with a special type 
known as signal, which is denoted by the symbol sign. This type contains 
only one value denoted by the exclamation mark !, serving as a signal to make 
the related control data flow variable defined. That is, a data flow variable 
of type sign is defined if it is bound to the value !; otherwise, the variable is 
undefined. Formally, 

sign = { ! } 

There is no operator on this type. It is worthy of notice that no active data 
flow variable can be declared with type sign. 

The availability of control data flows can be represented in different ways. 
Let x be a control data flow variable, the following three expressions mean the 
same thing: variable x is defined or data flow x is available. 

• bound(x) 
• x <> nil 
• x = ! 

For the sake of readability of process specifications, the third expression is not 
used in this book unless it is really necessary. 

4.5 Data Stores 

A data store, or store for short, is a variable that holds data in rest. In contrast 
with data flows, stores do not actively transmit data to any process; rather 
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Fig. 4.14. A data store 

Fig. 4.15. Different stores sharing the same name 

they hold data that is always ready to supply to any process when requested. 
In fact, the notion of store is not unfamiliar to us, since it is available almost 
everywhere in our daily life. For example, a library is a store of books; a 
warehouse is a store of products; a child's money box is a store of cashes and 
coins; and so on. In a program system, a file or database can be perceived as 
a store. But in SOFL specifications, stores are treated more generally: they 
are just normal variables holding values ready for use by processes. 

A store has a name and number for reference by people who are involved 
in the building of the specification. Figure 4.14 shows the general structure of 
the graphical representation of a store. The store is named 51, and identifiered 
by number n. As there may be many people working on the same large CDFD 
and the same name needs to be given to different stores, these stores can be 
distinguished from each other by different numbers. Figure 4.15 shows two 
different stores with the same name; they are different because they have 
different numbers. Thus, we can use the identifier my _file_l to denote the 
store on the left hand side and use my _ fi Ie _ 2 to denote the store on the right 
hand side in the textual formal specification of the associated module. This 
point will be explained in more detail later in this section. 

A store can be connected, by directed lines, only to processes. It does not 
make any sense to connect a store to a data flow because a data flow has no 
role of making requests for data; it can only transmit data from one process 
to another. 

There are two ways to connect a store to a process, each denoting a dif­
ferent kind of access to the data in the store by the process: read and write. 
Figure 4.16 illustrates the different connections between processes and stores. 
The connection between store 51 and process A on the left hand side represents 
a read from the store by the process during its execution. That is, process A 
only uses the data of store 51 in producing its output data flow y1, and 51 
stays unchanged before and after the execution of the process. The connec­
tion between store 52 and process B given on the right hand side represents 
a writing to or updating 52 by B. This does not exclude the case of reading 
data from 52, but must ensure that writing to the store is definitely involved. 
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Fig. 4.16. Connections between processes and stores 

A writing to the store may include the cases of updating part of the data 
of s2 or completely replacing the current data of s2 with new data. These 
two kinds of connections provide convenient ways to model communications 
among processes through stores. 

Note that the directed lines connecting stores and processes must not be 
drawn from or to the input ports and output ports because they are reserved 
for connecting input data flows and output data flows. However, there is no 
restriction on where the connection lines can be drawn from or to stores: you 
can draw a connection line from or to anywhere on any edge of a store. 

We treat a store connected to a process as an external variable of the 
process, which is, in fact, a state variable of the associated module whose 
CDFD contains the store. We will discuss more about the state of modules in 
the next section, but for now let us focus on the connection between stores 
and processes. 

When writing a formal specification of a process accessing a store, the 
method of access must be properly indicated by using the keywords rd or wr. 
rd is an abbreviation for "read", and wr is an abbreviation for "write" . A store 
variable declared as a rd external variable of a process means that the value, 
or part of the value, of the variable will possibly be read by the process, but 
not be updated during the execution of the process. A store variable declared 
as a wr external variable means that the variable will possibly be updated 
during the execution of the process, and it does not eliminate the possibility 
of the process reading from the variable. For example, process A in Figure 
4.16 can be specified as 

process A(x1: int) y1: int 
ext rd s1: int 
pre xl > 0 and sl > xl 
post yl = sl - xl 
end _process 
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where the keyword ext is an indication of the external variable declarations. 
Each declaration has the form 

access variable: type 

where access is one of the keywords rd and wr; variable is the variable to be 
declared like 51; and type is a type, the values of which can be bound to the 
variable. Note that type can be omitted if the corresponding store variable is 
declared as a state variable in the var section of the module; see details of the 
var section in Section 4.13. 

The specification of process A describes a subtraction: if the input data flow 
xl is greater than zero and is less than the store value 51, then the subtraction 
of xl from 51 will be bound to y1 as the output; otherwise, anything may 
happen. Since external variable 51 is not updated during the execution of 
process A, the value of 51 before and after the process is the same. Therefore, 
51 occurring in both the pre and postcondition denotes the same variable with 
the same value before and after process A. 

Process B writes data to store 52, so it can be specified as follows: 

process B(x2: int) y2: int 
ext wr 52: int 
pre x2 > 0 
post y2 = -52 + x2 and 52 = -52 - x2 
end _process 

This process produces output y2, which is equal to the addition of input x2 
and the initial value of store 52, and updates store 52 by subtracting x2 from 
the initial value of 52. The external variable 52 is used in the postcondition 
as a two state variable: initial external variable and final external variable. 
The initial external variable, denoted by the decorated identifier -52 with the 
mark tilde placed before the identifier, represents the value of external variable 
52 before the process, while the final external variable, denoted by the same 
identifier 52, represents the value of the external variable after the process. 

Note that we must not omit the tilde mark - in the equation 52 = -52 - x2 
to write it as 52 = 52 - x2 in the postcondition, because it will not define the 
52 properly as a result of the process. Actually, the omission of the tilde mark 
in this case converts the postcondition into a contradiction, which cannot be 
satisfied by any possible values of 52 after process B. 

Furthermore, the same store can be connected to multiple processes, and a 
process can be connected to multiple stores as well. The connections between 
a store to multiple processes mean that the store will be accessed from the 
processes in specific ways, indicated by the type of the connections (i.e., read 
or write), during their executions. The connections from a process to many 
different stores mean that the process will access those stores during its exe­
cutions. For example, Figure 4.17 shows that process A reads data from store 
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Fig. 4.17. Multiple connections between processes and stores 

51 and updates store 52, while process B reads data from store 52 and writes 
to store 53. Let us take process A as an example to show how to write a formal 
specification involving multiple external variables representing stores. 

process A(xl: int) yl: int 
ext rd 51: int 

wr 52: int 
pre P(xl, 51) 
post Q(xl, yl, 51, -52, 52) 
end_process 

In the ext part, 51 is declared as a rd variable and 52 as a wr variable. 
The general structure of a process specification considering all the possible 

situations discussed so far is summarized as: 

process A(x_l: Ti_l I x_2: Ti_2 I ... I x_n: Ti_n) 
y_l: To_II y-2: To_2 I ... I y-m: To_m 

ext acc_l z_l: Te_l 
acc 2 z 2: Te 2 

acc_q z_q: Te_q 
pre 
post 

P(x_l, x_2, ... , x_n, z_l, z_2, ... , z_q) 
Q(x_l, x_2, ... , x_n, y_l, y_2, ... , y-m, 
-z_l, -z_2, ... , -z_q, z_l, z_2, ... , z_q) 

end_process 

Each acc_i (i=l...q) is one of the keywords rd and wr. The precondition may 
involve all the input variables and external variables, depending on the type 
of their access control. The postcondition may involve all the input variables, 
output variables, initial external variables, and final external variables. Note 
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that each declaration given in this general form, such as x_l: Ti_l, can be a 
grouped declaration like: 

The specification of the process imposes a proof obligation for verifying its 
implementation: for any input satisfying the precondition before the execu­
tion of the process, the output of the process must satisfy the postcondition. 
Formally, 

forall[x_l: Ti_l, ... , x_n: Ti_n, -z_l: Te_l, .... -z_q: Te_q] I 
((P(x_l, nil, ... , nil, -z_l, ... , -z_q) => 

(exists[y_l: To_l, ... , y_m: To_m. z_l: Te_l .... , z_q: Te_q] I 
Q(x_l, nil, ... , nil, y_l, nil, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or 
Q(x_l, nil, ... , nil, nil, y_2, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or 

or 
Q(x_l, nil, ... , nil, nil, nil, ... , y_m. -z_l, .... -z_q. z_l, ... , z_q) 
) 

) or 

or 
(P(nil. nil, ... , x_n, -z_l, ... , -z_q) => 
(exists[y_l: To_l, ... , y_m: To_m, z_l: Te_l .... , z_q: Te_q] I 

) 
) 

) 

Q(nil, nil, ... , x_n, y_l, nil, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or 
Q(nil, nil .... , x_no nil, y_2, .... nil. -z_l ..... -z_q. z_l .... , z_q) or 

or 
Q(nil, nil, ... , x_n, nil. nil ..... y_m, -z_l .... , -z_q, z_l, .... z_q) 

For the sake of simplicity, a grouped expression for bound variable constraints 
is adopted. For example, suppose the declaration of xl is interpreted as the 
one given previously; then xl: Ti_l is equivalent to the following sequence of 
constraints: 

Likewise, for other bound variable constraints, such as x2: Ti_2, yl: To_l, 
and so on. 

According to this proof obligation, for any group of input data flows con­
nected to one port and initial values of the external variables of the process, 
if the precondition holds before the process, then there must exist a group of 
output data flows connected to one output port and final values of the exter­
nal variables such that the postcondition holds. However, if the precondition 
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Fig. 4.18. A simple process 

is false, then the postcondition can be either true or false, indicating that 
the specification is not responsible for such a situation. It is the operation 
environment that needs to ensure the truth of the precondition of the process 
before its execution. 

A simpler case can help illustrate the proof obligation of a process. Con­
sider the process B in Figure 4.18 as an example. The specification of process 
B is 

process B(x1, x2: int I x3: int) y1: int I y2, y3: int 
ext wr st: int 
pre xl > 0 and x2 > 0 or x3 > 0 
post yl > xl + x2 + -st and st = -st - (xl + x2) or 

y2 + y3 >= x3 + -st and st = -st + x3 
end _process 

Applying the general predicate expression of the proof obligation given pre­
viously, we derive the proof obligation of this process: 

forall[xl, x2: int, x3: int, -st: int] I 
((xl> 0 and x2 > 0 or nil > 0 => 

(exists[ yl: int, st: int] I 

) 

yl > xl + x2 + -st and st = -st - (xl + x2) or 
nil + nil >= nil + -st and st = -st + nil 

) or 
(nil> 0 and nil > 0 or x3 > 0 => 
(exists[ y2, y3: int, st: int] I 

) 
) 

) 

nil> nil + nil + -st and st = -st - (nil + nil) or 
y2 + y3 >= x3 + -st and st = -st + x3 
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We can simplify further this expression by applying the rules that any 
arithmetic operation involving the "undefined" (Le., nil) as an operand yields 
nil. Thus we can derive the following simplified expression: 

forall[xl, x2: int, x3: int, -st: int] I 
«xl> ° and x2 > ° => 

(exists[ yl: int, st: int] I 
yl > xl + x2 + -st and st = -st - (xl + x2) 

) 
) or 

(x3> ° => 
(exists[ y2, y3: int, st: int] I 

) 
) 

) 

y2 + y3 >= x3 + -st and st = -st + x3 

The proof obligation will not be used until we discuss strategies for spec­
ification construction, reviews, and testing of specifications in Chapters 15, 
17, and 18, respectively. The present concern is how we should understand a 
process. In other words, what is the semantics of a process. This concept is 
essential in understanding the function of processes and in choosing imple­
mentation strategies for processes. 

A process describes a relation between initial states and final states of the 
process. A relation is a collection of pairs, such as R = {(x_I, y_l), (x_2, 
y_2), (x_3, y_3)}. Two elements are said to have relation R if and only if the 
pair composed of them belongs to R. For example, x_I and y_l have relation 
R, usually represented by x_I R y_l. An initial state is the collection of all the 
input data flow variables and the initial external variables, together with their 
values, while a final state is the set of all the input data flow variables, initial 
external variables, output data flow variables, and final external variables, 
together with their values. Thus, a formal definition of the semantics of process 
A is 

where Sem(A) denotes the semantics of process A; s_o and s_l are the initial 
and final states, respectively; and pre_A(s_O) and post_A(s_O, s_l) denote 
the pre and postconditions of process A, respectively. 

It is worth noting that process A actually associates only those initial states 
satisfying the precondition to the final states meeting the postcondition. All 
the initial states that do not satisfy the precondition have no precisely defined 
final states to be associated with. In other words, the final states corresponding 
to the initial states not satisfying the precondition are uncontrollable by the 
postcondition. 
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4.6 Convention for Names 

The names of processes, data flows, and stores are denoted by identifiers. An 
identifier is a string of English letters, digits, and the underscore mark, but the 
first character must be a letter. An identifier is case sensitive, so Student_1 is 
different from student l. 

Syntactically, it is the convention in SOFL that names of processes are 
usually written with an upper case letter for the first character of each En­
glish word and lower case letters for the rest of characters, whereas names of 
data flows and stores are usually written using lower case letters for all the 
characters. If more than one English word is involved in a name, those words 
are separated by the underscore mark. Digits can be freely combined with 
letters and the underscore mark in names. For example, Receive_Command 
and Check_Password in Figure 4.1 denote two processes, respectively, while 
card_id, pass, and w_draw are used to name data flows. 

To provide good readability of CDFDs, the names of processes, data flows, 
and stores should be given appropriately so that they convey the potential 
meaning of the corresponding processes, data flows, or stores. Usually, pro­
cess names should indicate the potential functionality or behavior, such as 
Receive_Command and Check_Password, while the names of data flows and 
data stores should indicate the nature of the data they are carrying or hold­
ing. For example, card_id, pass, and w_draw are sensible names for data flows, 
and account_file is an acceptable name for the store in Figure 4.1. 

4.7 Conditional Structures 

In addition to processes, data flows, and stores, other comp(;ments, known as 
structures, are also provided in SOFL for the construction of complex CDFDs. 
In this section, conditional structures are introduced, and other structures will 
be discussed in the following sections. 

There are three kinds of conditional structures: single condition structure, 
binary condition structure, and multiple condition structure. These structures 
correspond respectively to the if-then- statement, if-then-else- statement, and 
case statement available in many programming languages like Pascal, but with 
some differences in both syntax and semantics. Each conditional structure 
consists of a node, denoted by a diamond or box, input data flow, and output 
data flows. Figure 4.19 shows the graphical representations of these three 
structures. 

The data flow on the left hand side of each node is known as input data 
flow, and the data flows on the right hand side of the node are called output 
data flows. 

The single condition structure means that when input data flow x is avail­
able and satisfies condition C(x), then the data flow will be passed to variable 
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xl. In fact, the single condition structure is like a process with the following 
operational semantics: 

1. if x is available and satisfies condition C{x), xl is generated to have the 
same value as x, and x is consumed. 

2. if x is available and does not satisfy condition C{x), x is just consumed, 
without generating xl. 

The binary condition structure allows a binary choice in moving data items 
between processes, and its semantics is interpreted as follows: 

1. if data flow x is available and satisfies condition C{x), then data flow xl 
with the same value as x will be made available. 

2. otherwise, if C(x) evaluates to false, then data flow x2 with the same value 
as x will be made available. 

3. in either case above, the input data flow x will be consumed. 
4. if C{x) is "undefined," x is just consumed, without producing any of xl 

and x2. 

Note that the small black circle marks the branch when C{x) evaluates to 
false. 

The multiple condition structure allows only one data flow to be generated 
based on one input data flow under the multiple conditions. Specifically, the 
multiple condition structure in Figure 4.19 means that 
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1. if x is available and satisfies condition Ci(x) (i=l...n), the corresponding 
data flow xi with the same value as x is made available. 

2. otherwise, if Ci(x) evaluates to false, then Ci+1(x) will be tested, and such 
tests go on until one of the Ci(x) (i=l...n) evaluates to true. 

3. however, if none of C1(x), C2(x), ... , Cn(x) are satisfied by x, then xn+1 
with the same value as x is made available as default. 

4. in any case above, the generation of the output data flow results in the 
consumption of x. 

Note that the multiple condition structure is similar to a case statement in 
the conventional programming language like Pascal. That is, the conditions of 
C1(x), C2(x), ... , Cn(x) are tested in turn, and once one of them evaluates to 
true, the corresponding output data flow will be generated. However, if none 
of the given conditions is true, the default data flow will be generated. Note 
that the default data flow must always be provided as a requirement of the 
multiple condition structure. In this way, we ensure that the input data flow 
is always transformed to an output data flow of the structure. 

In Figure 4.19 we use different variables to name the output data flows, 
although they have the same value as the input data flow. However, this is not 
required by SOFL syntax. As long as there is no confusion in distinguishing 
data flows, the same identifier can be used to denote both the input and the 
output data flows of a conditional structure. For example, we can rename 
all the output data flows in the multiple condition structure as x; this will 
not cause confusion in specification because they are distinguished by their 
drawing positions. 

Usually the output data flows are connected to different processes: they are 
treated as the input data flows of those processes. However, it is not impossible 
to have more than one different output data flow of a conditional structure 
connecting to the same process. If this is the case, we must make sure that all 
of those data flows are named differently, as required by the syntax of process. 

4.8 Merging and Separating Structures 

The conditional structures given in Figure 4.19 have a common feature: they 
all have a single input data flow. That is, the condition C(x) can only apply 
to the single input data flow x. However, sometimes we may need to decide 
where to transfer more than one data flows based on a condition involving all 
of those data flows. Such a case obviously cannot be described by using the 
conditional structures introduced so far. One solution to this problem is to 
model this case as a process: the multiple data flows are taken by the process 
and the output data flows with the same values are generated to transmit 
data to the expected destinations. However, the graphical representation of 
this process may not be straightforward in conveying sufficient information 
about such a conditional decision, because without understanding its formal 
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specification written in the textual format, it is difficult to figure out the 
behavior of this process. Since this kind of conditional decision may often be 
used in complex CDFDs, SOFL provides a pair of straightforward merging 
and separating structures to resolve this problem. 

Figure 4.20 shows the graphical representations of the merging and sepa­
rating structures. Like the conditional structures, both the merging and sep­
arating structures are composed of three parts: node, input data flows, and 
output data flows. The merging structure composes input data flows xl, x2, 
and x3 into a single composite data flow x. That is, x is formed as a composite 
object with the three fields xl, x2, and x3 as its components. The separating 
structure is opposite to the merging structure: it breaks up the composite 
data flow x into its components xl, x2, and x3. In fact, most of the time the 
merging structure and separating structure are used as a pair to describe the 
control of data flows. 

Figure 4.21 gives an example illustrating the use of the merging and sep­
arating structures. Data flows xl, x2, and x3 generated by processes AI, A2, 
and A3, respectively, are merged into the single composite data flow x. If x 
satisfies condition C(x), then x is diverted to the upper level data flow of the 
binary condition structure, and then divided into the three data flows xl, x2, 
and x3 by the related separating node. These data flows are the same as the 
input data flows xl, x2, and x3 of the merging node in both type and value. 
On the other hand, if x fails to meet condition C(x), then x is diverted to the 
lower level data flow of the binary condition structure, and then separated 
into the original component data flows xl, x2, and x3. 
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As we can see from this example, using the merging and separating struc­
tures can help us achieve straightforward CDFD, but it may also require us 
to draw more data flows compared to the use of a process. For example, the 
CDFD given in Figure 4.21 describes a specification equivalent to the CDFD 
shown in Figure 4.22, provided that process A is specified as follows: 

process A(xl: Ti_l, x2: Ti_2, x3: Ti_3) yl: Ti_l, y2: Ti_2, y3: Ti_3 I 
zl: Ti_l, z2: Ti_2, z3: Ti_3 

post (C(xl, x2, x3) => yl = xl and y2 = x2 and y3 = x3) and 
(not C(xl, x2, x3) => zl = xl and z2 = x2 and z3 = x3) 

end _process 

where C(xI, x2, x3) is equivalent to C(x) occurring in the CDFD in Figure 
4.21. They may appear to be slightly different due to the difference in the 
syntax between using xl, x2, and x3 as the components of a composite object 
and as individual variables. For example, C(x) may be something like x.xl > 
x.x2 + x.x3, while C(xl, x2, x3) may be something like xl > x2 + x3. 

In the case of the CDFD in Figure 4.22, we may not have a clear idea 
about what the CDFD describes by just looking at the CDFD itself, without 
referring to the textual specification of process A, but the entire CDFD has 
a simple structure. On the other hand, the CDFD given in Figure 4.21 pro­
vides a straightforward picture about the behavior of the CDFD, but it has a 
relatively complicated structure. Which approach should be chosen is really a 
matter of the user's preference, although the complexity of the specific CDFD 
may need to be taken into account. 
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4.9 Diverging Structures 

A diverging structure transforms an input data flow to either one of the out­
put data flows or all of the output data flows, depending on the type of 
the diverging structure. There are two diverging structures: nondeterministic 
structure and broadcasting structure, as shown in Figure 4.23. Again, each 
of these structures is composed of three components: input data flow, node, 
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Fig. 4.23. Diverging structures 
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and output data flows. The node involved in the nondeterministic structure is 
known as nondeterministic node, while the node involved in the broadcasting 
structure is called broadcasting node. 

In the nondeterministic structure the input data flow x is converted into 
exactly one of the output data flow variables xl, x2, and x3 in a nondetermin­
istic manner. Meanwhile, the input data flow x is consumed. 

The nondeterministic structure is usually used to describe the situation 
when a choice of the processes to which a data item flows needs to be made 
without the necessity of knowing exactly which one will be chosen. Let us look 
at the CDFD in Figure 4.24. The data in variable x can be converted to one 
of xl, x2, and x3, depending on which of the processes Al, A2, and A3 can 
be first enabled (not necessarily executed). For instance, when x is available, 
and data flow yl is available before y2 and y3 become available, then xl will 
be made available in order to enable process AI, and x is consumed. Once the 
execution of Al terminates, data flow xl is consumed. However, if all of yl, y2, 
and y3 are available before x becomes available, then any of Al, A2, and A3 
can be enabled. In this case, the nondeterministic structure cannot tell which 
process is enabled. Such a nondeterministic situation provides a freedom for 
implementation: the implementer can choose any strategy appropriate to the 
specific application to implement this nondeterministic structure. 

In the broadcasting structure in Figure 4.23, the input data flow x is 
transmitted to all of the output data flows xl, x2, and x3, and x is consumed 
after the transmission. If no confusion occurs, output data flows xl, x2, and 
x3 can be named the same as input data flow x. This structure is usually used 
when a data flow needs to be used as input by several processes. Figure 4.25 
shows an example of applying the broadcasting structure in a CDFD. Data 
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flow x generated by process A is transmitted to processes A2, A3, and A4 
through equivalent data flows xl, x2, and x3. 

4.10 Renaming Structure 

The renaming structure is intended to allow the change of data flow variables 
without affecting their data (values of the corresponding types). Figure 4.26 
gives the graphical representation of the renaming structure. 

This structure changes data flow variable xl to yl, x2 to y2, ... , xn to yn, 
without changing their values. That is, each data flow yi (i=1..n) represents 
the same data flow as xi, but with a different variable. 

The renaming structure is usually used to resolve confusion of data flow 
variables when an already defined process is reused in a CDFD. Assume that 
we want to draw a CDFD that intends to reuse the behavior of process Al in 

xl 

x2 

- xn 

yl -----. 

y2 -----. 

yn -----. 

Fig. 4.26. The renaming structure 
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Fig. 4.27. An application of renaming structures 

Figure 4.24, but not necessarily its syntactical structure (e.g., input variables). 
Suppose process Al is specified as follows: 

process AI(yl: int, xl: int) 
pre xl + yl > 0 
post true 
end_process 

Then we reuse process Al in the CDFD given in Figure 4.27. The two renaming 
structures in the diagram are used to keep both the same input and the 
same output variables of process Al used. Thus, the consistency between 
the graphical representation of process Al and its formal specification can 
be sustained, which helps to improve the readability of the entire module 
specification. 

4.11 Connecting Structures 

A pair of connecting structures are available; they are used together to es­
tablish a connection of data flows in a complicated CDFD in order to reduce 
complexity and potential confusion of data flows. Figure 4.28 shows the two 
connecting structures. One is composed of the connecting node, denoted by a 
circle with a number n in it, and an input data flow, while the other consists of 
a connecting node and an output data flow. Note that the data flow variable 
x and the number n in both connecting nodes must be kept same in order to 
establish a consistent connection of the data flow x. 

When used together in a CDFD, this pair of connecting structures in­
dicates that input data flow x of the connecting node in Figure 4.28(a) is 
connected to the node in Figure 4.28(b), and further transferred to the out­
put data flow of this node. Thus, crossing data flows, such as xl and x2 in 
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Figure 4.29, can be avoided by using the connecting structures. For example, 
the CDFD in Figure 4.29 can be changed to the one given in Figure 4.30, which 
resolves the confusion of data flows xl and x2. The connecting structures are 
especially useful when a big CDFD is drawn on different pages. 

4.12 Important Issues on CDFDs 

To help build desirable CDFDs using the components introduced so far and to 
understand their behaviors as a whole, we need to address some fundamental 
issues related to both syntax and semantics of CDFDs. For example, how 
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can a CDFD be enabled, executed, and terminated? In order to answer these 
important questions, it is essential to introduce necessary concepts, such as 
starting process, starting node, terminating process, and terminating node. In 
this section, we discuss these concepts in detail step by step. 

4.12.1 Starting Processes 

Starting processes of a CDFD serve as the starting points for enabling and 
executing the CDFD. 

Definition 4. A starting process of a CDFD is a process with an empty input 
port or an input port whose data flows are not the output data flows of any 
other processes and structures in the same CDFD. 

In other words, a starting process of a CDFD can be enabled without the need 
for executing any other processes in the same CDFD. This includes two cases: 
a process with an input port, whose data flows are not connected to any other 
processes and structures in the CDFD, and a source process (process with no 
input data flow). For example, in Figure 4.31, process AI, which takes input 
data flow xl or x2, and A2, which takes no input data flow, are both starting 
processes of the CDFD. 
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4.12.2 Starting Nodes 

A starting node is a more broad notion than starting process. 

Definition 5. A starting node is either a starting process or any of the nodes 
involved in the conditional structures, merging and separating structures, di­
verging structures, and renaming structures whose input data flows are con­
nected to no processes and nodes in the same CDFD. 

In fact, a node involved in the structures available in SOFL can be modeled 
as a process. Like a process, when the input data flow of a node becomes 
available and all of its output data flows are unavailable, the node is enabled 
and executed, and then its output data flows are made available. So, it is 
not strange to use the term starting node to mean both starting process and 
node involved in those structures whose input data flow is not connected to 
any other processes in the same CDFD. For example, the node in the binary 
condition structure with input data flow x in Figure 4.31, as well as processes 
Al and A2, are all starting nodes of this CDFD. 

4.12.3 Terminating Processes 

A terminating process of a CDFD represents a terminating point of the CDFD. 

Definition 6. A terminating process is a process with an empty output port 
or an output port whose data flows are not the input data flows of any other 
processes and structures in the same CDFD. 



4.12 Important Issues on CDFDs 91 

According to this definition, several kinds of processes can be terminating 
processes. The following list gives all the possibilities: 

• a process with no output data flow (empty output port). 
• a process with an output port whose data flows connect to no processes 

or structures in the same CDFD. 
• a process with one empty output port together with other non-empty 

output ports. 

For example, process A4 and A5 in Figure 4.31 are terminating processes. 

4.12.4 Terminating Nodes 

Similar to a starting node, a terminating node is also a more broad notion 
than terminating process. 

Definition 7. A terminating node is either a terminating process or a node in 
the conditional structures, merging and separating structures, diverging struc­
tures, and renaming structures that has no output data flow connecting to 
other processes and nodes. 

For example, processes A4 and A5, as well as the node in the broadcasting 
structure in Figure 4.31, are all terminating nodes of the CDFD. 

4.12.5 Enabling and Executing a CDFD 

A CDFD can be enabled and executed to provide behaviors like a process, 
but the question is how the CDFD is enabled and executed, and under what 
condition the termination of the execution can be determined. The answers 
to these questions are provided by the definitions given below. 

Definition 8. A CDFD is enabled if one of its starting nodes is enabled. 

In other words, as long as one of the starting nodes of a CDFD is enabled, 
we say that the CDFD is enabled. As we have studied early in this chapter, 
enabling a process depends on the availability of its input data flows. There 
may be several ways to make the input data flows of a starting node available. 
They may be made available by some event that has happened outside the 
system under construction; for example, the arrival of a train at a railway 
crossing sends a signal, which can be modeled as a data flow, to activate the 
process that serves as a crossing controller. Sometimes, the input data flows of 
a starting node may be generated by the preceding processes in the high level 
CDFD; see more details about this issue in Chapter 5, where the hierarchical 
CDFDs are discussed. 

Definition 9. A CDFD starts execution if one of its input nodes starts exe­
cution. 
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This means that a CDFD starts an execution by executing one of its input 
nodes. Each execution traverses paths from a starting node, through some 
intermediate nodes, down to some terminating nodes of the CDFD. 

Definition 10. An execution of a CDFD is said to be terminated if the fol­
lowing two conditions are satisfied. 

• All the terminating nodes are terminated. 
• No process in the CDFD is enabled. 

The condition that all the terminating nodes are terminated is important. 
However, we must understand that this condition does not necessarily require 
that all of the terminating nodes be actually executed, since conditional and 
nondeterministic nodes may be involved. For example, the execution of the 
CDFD in Figure 4.31 may start from the binary condition node when input 
data flow x is available while xl and x2 are not available. If condition x > 5 
is true, then data flow y3 is made available, which then enables process A3 to 
execute. As a result of the execution, both data flows y5 and y6 are generated. 
These two data flows are then taken by process A5 and the broadcasting 
node, both of which are terminating nodes, as input to generate their output 
data flows zl, z2, and z3. In this execution the terminating process A4 is not 
involved, and therefore it stays in the terminated state during this execution 
all the time. On the other hand, if condition x > 5 is false, then process A4 is 
enabled and executed, whereas the other two terminating nodes, process A5, 
and the node in the broadcasting structure remain terminated all the time. 

The second condition given in this definition is also essential in determin­
ing the termination of a CDFD. With this condition, we can avoid mistak­
ing the situation for termination of the CDFD: some terminating nodes are 
terminated while some processes in the CDFD are still executing that may 
eventually result in the execution of some other terminating nodes. 

4.12.6 Restriction on Parallel Processes 

In a CDFD, parallel execution of processes is allowed, and it can be utilized for 
modeling systems in several ways. Firstly, parallel processes in a CDFD can 
be perceived as a mechanism to describe nondeterminism in process execu­
tions. Let us take the CDFD in Figure 4.32 as an example to see what exactly 
this means. When process Al is executed on the availability of data flow xl, 
the two data flows yl and y2 are generated. Since they are the only input 
data flows to processes A2 and A3, respectively, A2 and A3 are enabled and 
can be executed concurrently. However, when this CDFD is implemented in a 
sequential programming language like Pascal or C, the two processes must be 
scheduled to perform their executions in a sequential manner, but the order 
of the executions does not really matter in this case because they both do not 
change the shared store student_files (they only read data from the store). In 
other words, the CDFD, as a system specification, presents a nondeterminism 
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for its implementation using a sequential programming language. This is in­
deed an advantage because it allows the analyst to concentrate on "what to 
do" rather than "how to do it" in the early phases of software development. 
It also offers the programmer freedom to choose the most appropriate and 
efficient algorithm to implement the specification. 

Secondly, parallel processes can be used to model concurrency and parallel 
executions in the real world systems, such as railway control systems. Thus, 
the CDFD models of the systems may provide the best matching between 
the specifications and the real systems, and therefore facilitate communica­
tions between the users and the analysts during the validation of the system 
specifications. 

Another potential application of CDFD is to model concurrent or parallel 
systems, such as network computing. This kind of system may be implemented 
using a concurrent programming language like Java (using multi-threading). 
However, we must bear in mind that CDFD is not suitable for modeling sys­
tems that require communications between processes during their executions. 
The communications between two processes in CDFDs are performed by input 
and output data flows, as well as stores, in a sequential manner. That is, after 
the termination of the execution of one process, another process can possibly 
receive its output data flows as its input, and then executes to provide the 
desired behavior. If these two processes, like A2 and A3 in Figure 4.32, access 
the same store like student_files, the access must be controlled properly to 
avoid the violation of data integrity. 

The condition for the restriction on accessing data stores by parallel pro­
cesses is as follows: 
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Condition 1 Any two parallel processes that access the same store in a 
CDFD cannot write to the store during their executions. 

The reason for this restriction is because two parallel processes accessing the 
same store by writing or by reading and writing would possibly cause confusion 
in updating and reading the data of the store. Consider the CDFD in Figure 
4.33 as an example. Processes 82 and 83 execute in parallel and 82 writes to 
the store student_files while 83 reads from the store. In this case, the order 
of writing to and reading from the store is nondeterministic. Therefore, the 
behavior of the entire CDFD may not be precisely defined. 

However, if one really wants to specify that process 82 first write to store 
and then process 83 reads from the store, one can use a control data flow, like 
col in Figure 4.34, to connect processes 82 and 83. Thus, as the execution 
of process 83 needs the availability of data flow col generated by process 82, 
82 must be executed before 83. Note that a connecting node is used to avoid 
crossing of data flows in the CDFD. 

Note that this restriction is obviously not applicable to those parallel pro­
cesses that only read from the same store, such as A2 and A3 in Figure 4.32. 
This is because they have no possibility of causing confusion in using the 
shared store. 

4.12.7 Disconnected CDFDs 

When building a complex system, sometimes it may be necessary to draw 
a disconnected CDFD, especially when such a CDFD is a decomposition of 
a high level process. As process decomposition will be discussed in detail in 
Section 5.1 of Chapter 5, let us now concentrate on the notion of disconnected 
CDFD rather than how they can possibly be created. 



4.12 Important Issues on CDFDs 95 

-- COl---~ 

yl zl 

"B 
'f2 z2 

0-- col ---
B3 

Fig. 4.34. A CDFD with no confusion 

Fig. 4.35. An example of disconnected CDFD 

Definition 11. A disconnected CDFD is a disconnected graph: there exists at 
least one process or node, such as a conditional, diverging structure, which is 
not reachable through a data flow path (a sequence of data flows) from every 
starting process and node in the CDFD. 

In this definition, "a sequence of data flows" means an ordered data flows, 
disregarding their directions, For example, the CDFD given in Figure 4.35 is 
a disconnected CDFD because process A3 is not reachable from the starting 
process A2 through any data flow path and A4 is not reachable from Al 
through any data flow path. 

As we will see in the next chapter, every CDFD, except the top one, is a 
decomposition of a high level process in an entire specification. A disconnected 
CDFD may be inevitable when it is derived from decomposing a high level 
process, with several input and/or output ports connected to different groups 
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Fig. 4.36. A disconnected CDFD involving a store 

of data flows, in order to keep logical coherence between the high level process 
and the decomposition. 

There are three possibilities to start executing the CDFD in Figure 4.35. 
One is when data flow xl is available, and another is when data flow x2 is 
available. The third possibility is when both xl and x2 are available. It is 
not difficult to imagine the execution scenarios according to the rules for 
executing CDFDs, but it may not be straightforward to determine how to 
start the execution of the CDFD when both xl and x2 are available because 
there are two possibilities. One possibility is to enable one of the processes 
Al and A2 by the availability of data flow xl or x2, but not both. Another 
possibility is that both xl and x2 are used to execute the CDFD in parallel, 
which eventually leads to the generation of data flows zl and z2. The way to 
execute the CDFD in this case may sound nondeterministic, but since this 
CDFD is usually a decomposition of a high level process in a specification, it 
may be defined precisely by the high level process. 

Note that data stores might be involved during the execution of the pro­
cesses in Figure 4.35, such as in the situation illustrated in Figure 4.36. Al­
though this CDFD looks like a connected CDFD because of the connections 
between store sl and all the processes, it is still a disconnected CDFD by 
definition. Note that the connections between the store and processes are not 
data flows; they are just indications of store accesses by the processes. 

4.12.8 External Processes 

When modeling a system with a CDFD, we should pay attention not only to 
the correctness and preciseness of the CDFD, but also to the readability of the 
CDFD. One way to improve the readability of a CDFD is to show explicitly 
the entities that provide input data flows to the starting nodes of the CDFD 
or that receive output data flows produced by terminating nodes. Such an 
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Fig. 4.37. The CDFD with an external process 

entity may be a person, machine, organization, a group, or any object with 
the function of providing useful data information to the system concerned. 
Since such entities may not be suitable for being part of the system, we need 
to distinguish them from the normal processes used in the system. We call 
such entities external processes, because their behavior can be modeled as a 
process. An external process is represented graphically by a dashed-line box, 
such as the external process customer in the CDFD given in Figure 4.37. 

Since external processes are not treated the same as normal processes in 
CDFDs, their syntax and semantics do not need to conform to the rules for 
normal processes; they are just designed to provide useful information about 
the system to help communication between the developer and the user via the 
CDFDs. For example, the external process in Figure 4.37 is named customer, 
because this information can help us to understand who provides the command 
for displaying the balance of or withdrawing cash from the account. 

4.13 Associating CDFD with a Module 

A graphical notation like CDFD is comprehensible, but may not be capable of 
defining all the components precisely for the sake of the space it occupies. As 
we have described previously, the components of a CDFD can be formally de­
fined. To organize all the formal definitions related to the CDFD, the concept 
of a module is provided. 

A module is an encapsulation of data and processes with a behavior rep­
resented by the CDFD it associates with. Generally speaking, a module has 
the following structure: 
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module ModuleName / ParentModuleName; 
const ConstantDeclaration; 
type TypeDeclaration; 
var VariableDeclaration; 
inv TypeandStatelnvariants; 
behav CDFD_no; 
InitializationProcess; 
Process_1 ; 
Process_2; 

Process_n; 
Function_1 ; 
Function_2; 

Function_m; 
end module 

The keyword module indicates the start of a module. ModuleName provides 
a distinct identity of the module in the specification. Since the module proba­
bly describes a decomposition of a high level process that is defined in another 
module, that module name must be provided as ParentModuleName in order 
to build an explicit connection between the high level process and its decom­
position for good traceability of the entire specification. Such a traceability 
will facilitate reading and modifying of the specification. Since process decom­
position will be introduced in detail in the next chapter; the reader does not 
need to pay much attention to this issue for now. 

The keyword const starts the part for constant declarations. A constant 
with a special meaning may be frequently used in process specifications, but 
it may be subject to change when the specification is modified for whatever 
reason (e.g., to fit requirements changes or module version changes for different 
systems). ConstantDeclaration may consist of several declarations, separated 
by semicolons, as 

ConstIdentijier _1 = ConstanC1; 
ConstIdentijier _2 = ConstanC2; 

ConstIdentijier_q = ConstanCq; 

Each ConstI dentijier _ i (i = 1.. q, q ~ 1) is a constant identifier and ConstanC i 
is the value of any type available in SOFL. Each equation declares a constant 
identifier on the left hand side of the equality symbol = as the constant on 
the right hand side of =. For example, we declare a constant identifier age 
representing the age of lawfully becoming adult in Japan as follows: 

const age = 20; 
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Thus, age can be used to mean the constant 20 whenever 20 is intended to 
be used in process specifications. In the future, if the age of becoming adult 
should change to 18 for whatever reason (e.g., change of the law), there would 
be no need to change the constant 20 throughout the entire specification, but 
only to change it in the age declaration. 

The keyword type starts the part of type declarations. TypeDeclaration 
is usually a list of several type declarations and its structure is similar to that 
of ConstantDeclaration, as shown below: 

TypeI dentiJier _1 = Type _1 ; 
TypeIdentiJier _2 = Type_2; 

TypeIdentiJier_i (i = l..w and w 2 1) are normal identifiers, but it is the 
convention to name a type identifier as a sequence of several words, if ap­
plicable, with an upper case letter for the head character of each word. For 
example, UniversityStudentFile is a qualified type identifier. Each Type_i is 
either another already defined type identifier or a specific type built by apply­
ing the corresponding type constructor available in SOFL. For the basic types 
like natO, nat, int, real, and string, their type constructors are the same 
as their names. However, as we will see in later chapters, compound types 
are also available and their type constructors may vary depending on their 
constituent types; see the details in Chapters 8, 9, 10, and 11. An equation 
in the type declaration means that the type identifier on the left hand side of 
the symbol = is declared as the type given on the right hand side. 

For example, the type identifier Address is declared as follows: 

Address = string; 

Of course, we can use type string itself directly in the specification rather 
than declaring Address. However, Address may make better sense than string, 
because a string can be used to denote many different things whereas Address 
is rather specific. Thus, the use of Address in process specifications may help 
to improve the readability of process specifications. 

Sometimes there may be a need to declare a type identifier, without indi­
cating what specific type it will represent. In this case, the keyword given is 
used to indicate that the declared type identifier represents a given type (sim­
ply a set of unknown values). For instance, a given type Employee is defined 
as 

Employee = given; 

Thus, Employee can only be used as a given type, and nothing can be said 
about its values. 
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The keyword var marks the start of variable declarations. In this part, 
all the data stores occurring in the associated CDFD of the module must be 
declared with some types. Again, like type declarations, the variable declara­
tion part may include a list of individual variable declarations, separated by 
semicolons. The structure of VariableDeclaration is: 

Variable_l: Type_l; 
Variable_2: Type_2; 

Variable_ u: Type_ u; 

Each Variable_i (i = l..u) is an identifier, usually denoting a data store occur­
ring in the associated CDFD, and Type_i is either a type identifier declared 
in the type section of the module or a type formed by a type constructor. For 
example, we can declare the store account_file in Figure 4.37 as: 

student_files: set of Address; 

where Address is a type identifier, presumably already declared in the type 
section, and set of is the type constructor for set types to be introduced in 
Chapter 8. 

If some variables need to be declared with the same type, a shortcut is 
to group them together. Suppose we want to declare variables xl, x2, and x3 
with the same type int; we can write 

xl, x2, x3: int; 

All the variables declared in the var section are called store variables, which 
represent part of the state of the module. A state of a module is formed 
by all the store variables and available data flow variables, contained in the 
associated CDFD, with their values. 

Note that there may be two kinds of stores in a CDFD. One is local stores 
and another is external stores. A local store is local to the module; it is ini­
tialized by the InitializationProcess specified in the same module whenever 
the associated CDFD is executed. An external store is global to the current 
module; its data are taken from the high level CDFDs (this point can be 
difficult to understand before we study the notion of process decomposition, 
therefore the reader can skip this part for now and return to it when he or she 
has studied process decomposition in the next chapter) or outside the system 
under construction (e.g, an existing file or database). Therefore, its data are 
not changed by the local initializationProcess. To distinguish the external and 
local store variables, we put the keyword ext before an external variable in 
the declaration. For example, 

var 
ext xl, x2 : int; 
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states that xl and x2 are external store variables of type into It is also use­
ful to distinguish the external stores that are passed over from a high level 
CDFD and the external stores that exist independently of the system under 
construction, as this would facilitate the verification of specification consis­
tency. To this end, we use the sharp mark # to decorate those store variables 
representing existing stores outside the system. For example, 

var 
ext xl, #x2 : inti 

declares that both xl and x2 are external store variables, but xl is taken from 
another high level CDFD whereas x2 is an existing store outside the system. 
We call the external store variables like x2 existing external variables and the 
stores they denote existing external stores. 

Another important part of a module is the invariant section Typeand­
Statelnvariants, starting with the keyword iny. This section may include a 
list of invariants, separated by semicolons, as illustrated belqw: 

InvarianCl ; 
InvarianC2; 

InvarianCv; 

Each InvarianC i (i = 1.. v) is a predicate, mostly a quantified predicate; it 
expresses a property of types declared in the type section, variables declared 
in the yar section, or data flow variables used in the associated CDFD. These 
properties must be sustained throughout the entire specification by related 
processes. If a property is applicable to values of a type, it should be defined 
as an invariant of the type. If a property is, however, only applicable to specific 
variables, it should be defined as an invariant of the specific variables. As an 
example, we define the following invariants on type Address and store variable 
student_files: 

iny 
forall[x: Address] I len (x) <= 50; 
card(student_files) <= 1000; 

The first invariant specifies that every value of type Address must be no longer 
than 50 characters. The second invariant requires that the store student_files 
holds at most 1000 student files. The operator lenO is defined on string type 
and sequence types: it yields the length of the string or sequence (e.g., x). 
The operator cardO is defined on set types: it yields the cardinality of the set 
provided as the argument (e.g., studenC fi les). The detailed introduction of 
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string and sequence types is given in Chapter 9 and set types are discussed 
in Chapter 8. 

Note that the invariants specified are supposed to hold through the entire 
specification. This means that whenever the variable student_files, for exam­
ple, is used in the related process specifications, the constraint on it, defined 
by the invariant card(student_files) <= 1000, must not be violated by the 
process specification. Similarly, whenever type Address is used to declare any 
variable in the module, for example, 

place: Address; 

the variable place is assumed to hold the property len(place) <= 50. There­
fore, it is important to ensure that the invariant is not violated by the pre 
and postconditions of related process specifications given in the module. In 
other words, all process specifications must be kept consistent with the related 
invariants. 

The most important part in a module is the description of its behavior. 
Such a description is given by a CDFD. In order to associate the CDFD 
with the module, we use the keyword behav to indicate the section where 
the number of CDFD is provided in the format CDFD _no, where no is the 
number of the CDFD. For example, 

behav CDFD _10; 

indicates that the associated CDFD is numbered 10 in the entire specification 
(an entire specification may contain many CDFDs in a CDFD hierarchy; see 
more details in the next chapter). 

The next important part of a module is to specify all the processes occur­
ring in the associated CDFD. Apart from the processes used in the CDFD, an 
additional process, called Init, also needs to be defined for initialization of the 
local store variables, denoted by InitializationProcess in the module structure 
outline given previously. This initialization process has the same structure as 
other processes, such as process_i, process_2, etc., but the function is used 
to initialize all the local store variables. This initialization process is a little 
exceptional because it has neither input data flows nor output data flows. For 
a normal process contained in a CDFD, this is disallowed, but as an initial­
ization process of a module, it is a legal process. It is the convention not to 
draw the process Init in CDFDs. 

As far as the process specification is concerned, we have seen many ways 
of specifying various processes, but what has been discussed so far does not 
cover all of the aspects of a process specification. The general structure of a 
process specification is given as follows: 

process ProcessN ame ( input) output 
ext ExternalVariables 



pre PreCondition 
post PostCondition 
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decom Lower LevelM oduleN ame 
explicit ExplicitSpecification 
comment InformalExplanation 
end_process 

Since we have been discussing the name, input, output, external variables, 
precodition, and postcondition of a process, we assume that the reader is al­
ready familiar with those notions. Therefore, we focus only on the explanation 
of the decom, explicit, and comment parts here. The keyword decom in­
dicates that the following name is the name of the lower level module that is 
the decomposition of the current process ProcessName. The LowerLevelMod­
uleName is usually composed of two parts, connected by an underscore, such 
as 

ProcessName decom 

The ProcessName is the same as the name ofthis process itself, and decom is a 
common suffix that is adopted by every module name in SOFL specifications, 
except the very top level module, as you will see in the detailed explanation 
about this point in the next chapter. Thus, which module is the decomposition 
of which process will be very clear to readers of the specification. 

Sometimes, a process may not be suitable to be specified using pre and 
postconditions, especially when an object of a class is involved in the input 
and output of the process. In this case, the process may be defined by an 
explicit specification, which is written following the keyword explicit. Fur­
thermore, explicit specifications are also adopted to describe detailed design. 
The detailed discussion of explicit specifications are given in Chapter 6, and 
those of object and class are given in Chapter 13. 

To help in the understanding of a process specification, an informal ex­
planation can be very useful. The keyword comment starts the informal 
explanation that ends before the keyword end_process in the process spec­
ification. Basically, one can use any character and format to express one's 
comment, but it is important to bear in mind that the role of such a comment 
is to explain what the formal specification, given in terms of pre and post­
conditions, means. This part can be very helpful for communication between 
the specification writer and the end-user of the system, since we should not 
expect the end-user to understand the formal notation. 

Note that except for the keywords process and end_process, as well as 
the process name in a process specification, all the other parts are optional, 
depending on the necessity in specific processes. 

The final section of a module is function definitions. As many functions 
as necessary can be defined in a module. Functions can be applied in predi­
cate expressions wherever they are used, such as in invariants, preconditions, 
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postconditions, and the explicit specifications. As the format of function def­
initions is discussed in detail in Section 4.16, and functions are not involved 
in the discussions before that section, so let us ignore this topic for now. 

4.14 How to Write Comments 

A comment is useful in improving the readability of specifications. An informal 
comment can be given as part of a process specification to explain the func­
tionality of the process expressed with the formal notation. In addition, there 
is also a need to explain the meanings of defined types, data flow variables, 
store variables, or whatever the entities of interest in a module. These data 
items are usually defined in several different places in the module; therefore, 
it would not be very helpful to explain them in one specific place (because the 
explanations far away from the data items may not be effective in helping the 
reader understand the data items). 

SOFL has adopted another structure for comments similar to that used in 
the programming language C. Such a comment is written between a pair of 
slash-asterisk symbols 1* ... * /, and it can be written anywhere in a module. 
It does not contribute to the semantics of the module, but just provides help 
for understanding. For example, in the variable declaration 

var 
student_files: set of Address; 

j*student_files is defined as a collection of home addresses, and each 
address is represented by a string. * / 

the comment explains the structure of the variable student_file and the po­
tential meaning of the element type Address. 

By now we have introduced all the sections constituting a module, although 
the detailed discussions of some parts are left for later chapters. However, we 
should bear in mind that not necessarily all the sections are defined in a 
module, though it is possible. Some modules may have constant and type 
declarations, but with no invariants, while some other modules may have 
type declarations, but with no variable declarations and invariants. In fact, 
except for the module name and process specifications, all the other parts are 
optional, depending on the need of specific modules. 

4.15 A Module for the ATM 

We take the simplified ATM modeled as the CDFD in Figure 4.37 as an 
example to show a complete picture of a module. The way to build a module 
usually starts from the construction of the CDFD, because it expresses the 
potential behavior and the architecture of the module. Then all the data 
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stores, processes, and data flows used in the CDFD are defined. The module 
for the ATM is given as follows: 

module SYSTEM_ATM /* This module has no parent module.* / 
type 
Account = composed of 

account_no: nat 
password: nat 
balance: real 
end 

var 

ext #account_file: set of Account; 
/* the account_file is an external store that 

exists independently of the ATM system. 
It is defined as a set of accounts. * / 

inv 

forall[x: Account] 11000 <= x.password <= 9999; 
/* The password of every account must be a 

natural number with four digits. * / 

behav CDFD_l; 
/*Assume the ATM CDFD in Figure 4.37 is numbered 1.*/ 

process InitO 
end_process; 
/* The initialization process does nothing because there is no 

local store in the CDFD to initialize. In this case, this process 
can be omitted. * / 

process Receive_Command{balance: sign I w_draw: sign) sel: bool 
post balance <> nil and sel = true or w_draw <> nil and sel = false 
comment 
This process recognizes the input command show balance or withdraw 
cash. The output data flow sel is set to true if the command is showing 
balance; otherwise, if the command is withdrawing cash, sel is set to false. 

end_process; 

process Check_Password{card_id: nat, sel: bool, pass: nat) 
account1: Account I pr _meg: string I 
account2: Account 

ext rd account file /*The type of this variable is omitted because 
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this external variable has been declared in 
the var section. * / 

post (exists! [x: account_filell 

or 

x.account no = card id and 
x. password = pass and 
(sel = false and accountl = x or 
sel = true and account2 = x) 

not (exists! [x: account_filell x.account_no = card_id and 
x.password = pass) and 

pr_meg = "Reenter your password or insert the correct card" 
comment 

If the input card_id and pass are correct with respect to the existing information 
in account_file, then if sel is false, the account information is passed to the output 
accountl; otherwise, the account information is passed to the ouput account2. 
However, if one of card_id and pass is incorrect, a prompt message pr _meg is 
produced. 

end_process; 

process Withdraw(amount: real, accountl: Account) 
e_msg: string I cash: real 

ext wr account_file 
pre accountl inset account_file 

!*input accountl must exist in the account_file* / 
post (exists [x: account_file] I x = accountl and 

x.balance >= amount and 
cash = amount) 

and 
account_file = union( diffe account_file, {accountl}), 

{modify(accountl, balance -> account1.balance - amount)}) 
or 

not exists[x: account_filell x = accountl and 
x.balance >= amount and 
e_meg = "The amount is too big") 

comment 
The required precondition is that input accountl must belong to account_file. If 
the request amount to withdraw is smaller than the balance of the account, the 
cash will be withdrawn. On the other hand, if the request amount is bigger than 
the balance of the account, an error message "The amount is too big" will be 
issued. 

end _process; 

process Show_Balance(account2: Account) balance: real 
post balance = account2.balance; 
end _process; 
end module; 
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Since there is no local store in the CDFD of this module, the initialization 
process Init does not do anything. Some relatively complicated process speci­
fications are explained informally in the comment parts, such as for the pro­
cesses Receive_Command, Check_Password, and Withdraw, but for a simple 
process like Show_Balance no comment is provided. There is no need to spec­
ify the external process Customer, because its role is just to help understand 
the CDFD. 

Note that several operators defined in set types and composite types are 
used, such as unionO, diffO, modifyO, etc. Briefly speaking, the operation 
union(x, y) is the union of the two sets x and y; diff(x, y) yields the set whose 
elements belong to x but not y; and modify(x, f -> vI) yields a new composite 
object from the given composite object x by replacing the value of its field f 
with vl. The detailed discussion of these operators will be given in Chapters 
8 and 10, respectively. 

4.16 Compound Expressions 

Writing a process specification with the predicate expressions introduced so 
far may result in a poor readability of the specification due to their compli­
cated structures. For example, the postcondition of process Check_Password 
in module SYSTEM_ATM in the previous section actually defines three ex­
clusive conditions: the requested account exists and sel = true; the account 
exists and sel = false; and the account does not exist, but the description 
does not seem to be obvious because of the complicated structure of the ex­
pression. To achieve good readability of specifications, more explicit syntax 
may provide effective help. 

In this section, we introduce several compound expressions for this pur­
pose. These expressions include if-then-else, let, and case expressions. 

4.16.1 The if-then-else Expression 

An if-then-else expression is a conditional expression that yields a result 
based on the value of the guard condition involved in the expression. The 
general format is 

if B then E I else E 2. 

If the guard condition B is true, the result of this conditional expression is E_I; 
otherwise, if B is false, the result is E_2. Let result denote the conditional 
expression; then the expression is equivalent to the predicate: 

B and result = E lor not B and result = E 2 
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For example, 

if x > 5 then x + z else z - x 

or, the one with better readability, 

if x> 5 
then x + z 
else z - x 

4.16.2 The let Expression 

The let expression is used to declare some identifiers denoting expressions in 
predicate expressions. Two let expressions are designed for this purpose. The 
first let expression takes the format 

let v_I = E_I, v_2 = E_2, ... , v_n = E_n in P(v_l, v_2, ... , v_n) 
where n >=1. 

In this expression, each v_i (i=1..n) is an identifier that serves as a pattern 
other than a variable (whose value may change), because it has no function 
for holding any value; it just denotes the corresponding expression E_i. P is 
a predicate expression in which patterns v _ i are involved. Semantically, this 
let expression is equivalent to the following expression: 

This substituted expression is derived from substituting E_i for v_i (i=1..n) 
in expression P. Note that brackets ( ) are used to enclose E_i (i=1..n) if any 
ambiguity in interpreting the substituted predicate expression occurs. 

Consider the following let expression: 

let xl = y + z * * 2, x2 = y - z * 5 in 
a* xl ** 2 + b * xl + c > a * x2 ** 2 + b * x2 + c 

It is equivalent to the substituted expression: 

a * (y + z * * 2) ** 2 + b * (y + z * * 2) + c > 
a * (y - z * 5) ** 2 + b * (y - z * 5) + c 

Another let expression has the following format: 

let x: T I R(x) in P(x) 
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This let expression introduces a pattern x that is bound to a value of set 
T (which may also be a type) satisfying condition R(x). Pattern x is usually 
involved in P. For example, 

let x: nat I x > 5 in y > x + 1 

To keep this kind of let expression simple, we do not allow the introduction 
of multiple binding, such as xl: Tl, x2: T2. If such a multiple binding is really 
needed in an expression, we can use the let expression several times, as 

let x_l: T1 I Rl(x_l) in 
let x_2: T2 I R2(x_2) in P(x_l, x_2) 

Also, condition R(x) may be omitted in a let expression so that pattern x will 
be introduced as any value in type T with no constraint. Thus, the following 
format can also be used: 

let x: T in P(x) 

For example, 

let x: nat in y > x + 1 

describes a different predicate. 

4.16.3 The case Expression 

A case expression is a multiple conditional expression. Its format is as follows: 

case x of 
ValueList_l -> E_l; 
ValueList_2 -> E_2; 

ValueList_n -> E_n; 
default -> E n + 1 
end case 

where each ValueList_i (i=1..n) is a list of concrete values of the same type 
as that of x. x can be a variable, a pattern defined in a let expression, or an 
expression of any type. 

The case expression states that if x is equal to one of the values in Val­
ueList_l, the result of this expression will be E_l; otherwise, if x is one 
of the values in ValueList_2, the result of this expression will be E_2; and 
so on. However, if x is different from all of the values given in ValueList_l, 
ValueList_2, ... , ValueList_n, the result of this expression will be E_n + 1 as 
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default. Note that all of the values in ValueList_1, ValueList_2, ... , ValueList_n 
should be disjoint; but even if they are not, the case expression will not involve 
ambiguity in obtaining the final result, because ValueList_1, ValueList_2, ... , 
ValueList_n are evaluated in order, and once one of them matches x, the cor­
responding expression E_i (i=1..n) will be taken as the final result of the case 
expression. The default clause may not be used if ValueList_1, ValueList_2, 
... , ValueList_n cover all of the possible cases. However, having a default 
clause is always recommended for it will ensure a defined case expression. For 
example, 

case x of 
1, 2, 3 -> y + 1; 
4,5,6 -> Y + 2; 
7,8,9-> y + 3; 
default -> y + 10 
end_case 

4.16.4 Reference to Pre and Postconditions 

The pre and postconditions of an already defined process, say A, can be 
referenced as a predicate expression by another process, say B. Such a reference 
may arise when there is a need to write a predicate in the specification of 
process B that is exactly the same as the pre or postcondition of process A. 
Thus, the specification of B can be made more concise than the one without 
such references. However, we must bear in mind that such a reference is purely 
syntactical; it does not mean an invocation or execution of process A, but just 
the reuse of its pre or postcondition. 

The symbols pre_A and post_A denote the pre and postconditions of 
process A, respectively. Thus, the specification of process B involving the 
references to the pre and postconditions of A is given as follows: 

process BO 
pre P and pre_A 
post Q or post_A 
end _process 

where P and Q are two predicate expressions. 
If one wants to define another process, say C, with the same input and 

output data flows, external variables, and the functionality as those of process 
A, one can define C as follows: 

process C equal A 
end _process 

The only difference between A and C is that they have different names, and 
all of the other parts have the same syntax. However, it is worth noting that 
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this does not mean that executing process C is equivalent to executing process 
A. It really means that process C has the same syntax as process A, except 
for its name. If A is defined in another module, say M, then we need to write 
M.A to refer to A. Thus, process C above can be defined as follows: 

process C equal M.A 
end_process 

It is sometimes necessary to directly use process A, which is defined in 
module M, in the current CDFD. In this case, process A still needs to be 
defined in the associated module of the current CDFD for the consistency be­
tween CDFD and its module and for the readability of the entire specification. 
The form of the specification of process A occurring in the current CDFD is 

process A equal M.A 
end_process 

4.17 Function Definitions 

A function provides a mapping from its domain to its range. A function differs 
from a process in several ways: 

• A function does not allow exclusive inputs and outputs, whereas a process 
does. 

• A function yields only one output, whereas a process allows many outputs. 
• A function does not access external variables (like stores in CDFDs), 

whereas a process may do so. 

4.17.1 Explicit and Implicit Specifications 

There are two ways to define a function: explicit specification and implicit 
specification. An explicit specification shows how a function can actually be 
computed, whereas an implicit specification defines the function using pre and 
postconditions. 

The format of an explicit specification is 

function Name (InputDeclaration) : Type 

== E 
end function 

where Name denotes the function name; InputDeclaration is the parameter 
declaration (which can be empty); Type denotes the range of the function; 
and E is an expression of any type available in SOFL (e.g., int, real, bool), 
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and is called the body of the function. For example, function add is defined 
explicitly as follows: 

function add(x, y: int) : int 
==x+y 
end _function 

The format of implicit specification of a function is: 

function Name(InputDeclaration) : Type 
pre Pre 
post Post(Name) 
end _function 

where Post(Name) is a predicate expression that must involve Name. In fact, 
we use Name as the output variable to represent the result of the function. 
For example, the add function is defined implicitly as follows: 

function add (x, y: int) : int 
pre true 
post add = x + y 
end function 

where add is used as a variable to hold the result of the function. 
As the reader will see in later chapters, implicit specifications are usually 

constructed for abstract designs, and then refined into explicit specifications 
during detailed designs. In order to allow the developer to maintain the history 
of specification evolution over different development phases, the mixture of the 
implicit and explicit specifications in a function definition is allowed. That 
is, it is possible for a function to have both pre and postcondition and the 
explicit expression. Furthermore, since it is possible for a function to remain 
undefined completely in the specification for some reason, a function with only 
a signature is also allowed. In this case, how the function is defined will depend 
on the developer's decision made at the subsequent development phase. A way 
to claim that a function is undefined in the specification is to use the keyword 
undefined, like function A: 

function A(x, y: int) : int 
== undefined 
end_function 
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4.17.2 Recursive Functions 

A recursive function is a function that applies itself during the computation 
of its body. When writing a specification for a recursive function, two points 
are important: 

• the body of the function (for explicit specification) or the postcondition 
of the function (for implicit specification) must contain an application of 
the function. 

• an exit is necessary to ensure that any application of the function termi­
nates. 

Let us take the factorial function fact as an example. This function takes a 
natural number n and computes its factorial n! = n * (n - 1) * ( n - 2) * ... * 
3 * 2 * 1. The explicit specification is: 

function fact(n: nat) : nat 
== if n = 1 

then n 
else n * fact(n - 1) 

end function 

In the body of this function fact( n - 1) is an application of the same function, 
but to a different argument n - 1. The condition n = 1 provides an exit for 
this function. 

The implicit specification is: 

function fact(n: nat) : nat 
post if n = 1 

then fact = n 
else fact = n * fact(n - 1) 

end function 

The precondition is true (and therefore omitted). In the postcondition fact = 
n is the exit provided by the condition n = 1. The application of fact itself is 
involved in the expression fact = n * fact(n - 1), where fact denotes the result 
of the function, while fact( n - 1) is an application of the function to argument 
n - 1. 
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4.18 Exercises 

1. Answer the following questions: 
a) What is a process? 
b) What is a data flow? 
c) What is the difference between active data flows and control data 

flows? 
d) What is a data store? 
e) What is the difference between data stores and data flows? 
f) What are the conditional structures for? 
g) What are the merging and separating structures for? 
h) What are the diverging structures for? 
i) What are the connecting structures for? 
j) What is a condition data flow diagram (CDFD)? 
k) What is a module for? 
1) What is the general structure of a module? 

m) What is an invariant? 
n) What is the general structure of a process? 
0) How to make a reference to the precondition or postcondition of a 

process? 
p) What is a function? 
q) What is the difference between a process and a function? 
r) What are the general formats of explicit and implicit specifications of 

a function? 
s) What is a recursive function, and what are the important points in 

writing recursive functions? 
2. Define a calculator as a module. Assume that reg denotes the register that 

is accessed by various operations. The operations include Add, Subtract, 
Multiply, and Divide. Each operation is modelled by a process. 

3. Write a module defining all the data flows, stores, and processes of the 
CDFD in Figure 4.38, assuming all the data flows and stores are integers, 
and all the processes perform arithmetic operations. 

4. Change the following compound expressions into equivalent predicate ex-
pressions. 

a) let a = x + y, b = z + w in a **2 * b + b * y * w 
b) if x > 0 then a = x + 1 else a = x + 10 
c) a = case x of 1, 2, 3 -> x +1; 4, 5 -> x + 2; 6 -> x * x; default -> 

x end 

5. Write both the explicit and implicit specifications for the function Fi­
bonacci: 

Fibonacci(O) = 0; 
Fibonacci(1) = 1; 
Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2) 

Where n is a natural number of type natO. 
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com: command for checking the total amount of the money in the money-box 

arnount: the amount of money to be saved in the money_box 

total: the total amount of the money in the money_box 

expense: the sufficient amount for purchasing a toy 

warning: a warning message for the shortage of the money in the money_box 

Fig. 4.38. The CDFD for problem 3 in Exercise 4 
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Hierarchical CDFDs and Modules 

When building a specification for a complex system, it is almost impossible to 
construct only a one level CDFD and module. A complex system needs many 
processes, data flows, and data stores, as well as other structures. If we try to 
draw them in one CDFD, the diagram would be too large to manage. Also, the 
efficiency of constructing, editing, and reading such a complex CDFD would be 
very bad. Furthermore, building a large and complex software system usually 
involves many developers, and they need to share the job by taking care of 
different parts of the entire system. How to organize a large CDFD so that 
all of the developers can cooperate efficiently and responsibly becomes a very 
important issue to address. Even if a system is built by a single developer, the 
problem of how to reduce the complexity of a one level CDFD and the entire 
specification is still a major concern. The solution of SOFL to this problem is 
to support the construction of hierarchical CDFDs and the associated modules 
by process decomposition. 

In this chapter, the reader is expected to study how a process is decom­
posed into a CDFD; what the relation is between a process and its decomposi­
tion; and how hierarchical CDFDs and their associated modules are organized 
in a consistent manner, so that we can form supportive connections between 
logically related components in the entire CDFD and module hierarchies. 

5.1 Process Decomposition 

Process decomposition is an activity to break up a process into a lower level 
CDFD. The CDFD defines in detail how the input data flows of the process are 
transformed into its output data flows through other intermediate processes or 
structures. Let us take the process Check_Password in Figure 4.37 in Chapter 
4 as an example to explain what process decomposition exactly means. To 
facilitate the discussion, and to help us concentrate on this particular process 
rather than the entire CDFD given in Figure 4.37, process Check_Password 
and the associated store account_file are redrawn in Figure 5.1. 
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Fig. 5.1. Process Check_Password 

As defined by its specification in module SYSTEM_ATM given in Chapter 
4, this process receives card_id, sel, and pass, and checks whether or not the 
requested account exists in store account_file. If it does, and the value of sel 
is true, the account information will be supplied as the output data flow 
accountl. If this account exists but the value of sel is false, the account 
information will be provided as the output data flow account2. However, if 
this account is not included in account_file, the prompt message is given 
to suggest to the customer what to do next. A refinement of this process 
specification is to decompose the process into a lower level CDFD that gives 
more algorithmic information about how the functionality of this process is 
realized via other intermediate processes. The decomposed CDFD of process 
Check_Password is given in Figure 5.2. 

In this CDFD, the input data flows card_id and pass are checked by pro­
cess Confirm_Account against store account_file to confirm validity of the 
requested account. If this account is a valid one, its information is transferred 
to data flow account; otherwise, the prompt message pr_meg is generated. 
If account is available, then it will be transferred to data flow account! or 
account2 by process Transfer _Account, depending on the truth value of input 
data flow sel. 

Definition 12. If a process A is decomposed into a CDFD, we call the CDFD 
the decomposition of process A, and process A, the high level process of the 
CDFD. 

Thus, the CDFD in Figure 5.2 is the decomposition of its high level process 
Check_Password in Figure 5.1. Such a decomposed CDFD must also be asso­
ciated with a module, in a way that this CDFD represents the behavior of the 
module, and all data flows, stores, and processes occurring in this CDFD are 
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specified in the module. The outline of the module associated with the CDFD 
in Figure 5.2 is given as follows: 

module Check_Password_decom / SYSTEM_ATM; 
type 
Account = SYSTEM_ATM.Account; 
var 
ext account_file: set of SYSTEM_ATM.Address; 
behav CDFD _2; 1* Assume the CDFD in Figure 5.2 is numbered 2. * / 
process Confirm_Account( card_id: natO, pass: natO) 

account: Account I pr _meg: string 

end_process; 
process Transfer _Account(sel: bool, account: Account) 

end_process; 
end module; 

account1: Account I account2: Account 

This module is named Check_Password_decom, and its parent module in 
which process Check_Password is defined is SYSTEM_ATM. The type Ac­
count is declared in terms of the already declared type Account in mod­
ule SYSTEM_ATM. We use SYSTEM_ATM.Account to refer to the type 
identifier Account declared in module SYSTEM_ATM, and likewise for SYS­
TEM_ATM.Address. As far as the reference of type identifiers and other com­
ponents of a module is concerned, we will elaborate it in Section 5.5. Note 
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that the declared type Account in module Check_Password_decom is refer­
enced whenever it is used within this module. For example, the output data 
flow account of process Confirm_Account is declared as a variable of type Ac­
count, and this Account refers to the Account declared in the type section of 
this module, not the Account declared in module SYSTEM_ATM; although 
they are declared as the same type in this case. 

The advantage of the declaration of type Account in this module is that 
it makes the data flow variable or store variable declarations concise. For ex­
ample, suppose we want to declare three data flow variables account (out­
put data flow of process Confirm_Account), accountl, and account2 (out­
put data flows of process Transfer_Account) with the type Account defined 
in module SYSTEM_ATM, if the direct reference SYSTEM_ATM.Account is 
adopted, the process specifications will become much longer, and perhaps 
tedious. Of course, if a type declared in another module is only used oc­
casionally, the direct reference of the type may be appropriate to use, like 
SYSTEM_ATM.Address, which is used only once to declare the external store 
variable account_file. 

The outlines of the specifications of processes Confirm_Account and Trans­
fer _Account do not involve any new feature, so the reader is supposed to have 
no problem in understanding them and, therefore, the entire module. 

In principle any process in the CDFD of Figure 5.2 may be decomposed 
again if necessary. If such decompositions continue, the hierarchies of CDFDs 
and the associated modules will be created. Figure 5.3 depicts a hierarchy of 
three level CDFDs. The top level CDFD, numbered 1, is composed of four 
processes AI, A2, A3, A4, and a data store s1. For some reason, process Al is 
decomposed into the CDFD 2, while process A3 is decomposed into the CDFD 
3. Finally, process A33 in CDFD 3 is decomposed into the lowest level CDFD 
4. For each level of the CDFD hierarchy, it is necessary to provide a module to 
define the components of the associated CDFD. As the relation between high 
level processes and their decompositions are recorded in the process specifica­
tions given in the modules, a hierarchy of the associated modules is actually 
also created. Both the CDFD hierarchy and the module hierarchy constitute 
the entire specification. 

The associated module hierarchy of this CDFD hierarchy is outlined as 
follows: 

module SYSTEM_Example; 

var 
sl: Type1; 

behav CDFD_l; 
process Init; 
process Al 
decom: Al_decom; 
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Fig. 5.3. The outline of a hierarchy of three level CDFDs 

/*Module AI_decom is associated with the decomposition 
of AI. */ 

end_process; 
process A2; 
process A3 
decom: A3_decom; 
/*Module A3_decom is associated with the decomposition 

of A3. */ 
end_process; 
process A4; 
end_module; 

module AI_decom; 

var 
ext sI: TypeI; 

behav CDFD _2; 
process Init; 
process All; 
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process A12; 
process A13; 
end module; 

module A3_decom; 

behav CDFD 3; 
process Init; 
process A31; 
process A32; 
process A33 
decom: A33 decom; 
j*Module A33_decom is associated with the 

decomposition of A33. * / 
end_process; 
end module; 

module A33_decom; 

var 
s2: Type2; 

behav CDFD 4; 
process Init; 

process A331; 
process A332; 
process A333; 
end module. 

The four modules are separated by semicolons, but the last module ends with 
a period, indicating the end of the module definitions in the entire specifi­
cation. In each module are only those processes that are decomposed into 
CDFDs provided with more details about the modules associated with their 
decompositions, while the rest of the processes are represented simply by their 
names. For example, process Al is indicated as having a decomposition associ­
ated with module AI_decom, while process A3 has a decomposition associated 
with module A3 decom. 

From the viewpoint of operational semantics, a high level process is equiva­
lent to its decomposition. In other words, the execution of a high level process 
is actually performed by executing its decomposition. Also, from the functional 
semantics point of view, the high level process is defined by its decomposition 
in the manner that the decomposition satisfies the specification of the process. 
This property is known as correctness of the decomposition against its high 
level process specification. 
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There are many issues concerned with building the hierarchies of CDFDs 
and modules. For example, how stores, and input and output data flows of 
a high level process should be handled in the decomposition; how the notion 
correctness should be defined so that it can provide a guideline for decom­
posing processes; how the scope of declared data items, such as constants, 
types, and store variables, in each module should be defined; and how process 
specifications and/or invariants defined in another module should be reused. 
We discuss these issues one by one from the next section. 

5.2 Handling Stores in Decomposition 

When a process is decomposed into a CDFD, the stores connected to the 
process must also be consistently accessed by some lower level processes oc­
curring in the decomposition. This problem has two aspects. One is that the 
store accessed by the high level process must sink into its decomposition, and 
another is that the store should be accessed consistently with the way it is 
accessed by the high level process. 

For example, process Al in CDFD 1 of Figure 5.3 reads from the store 5l. 
When Al is decomposed into CDFD 2, store 51 is passed over to this lower 
level CDFD and also read by some lower level processes, like All and A13. 

Generally speaking, a store accessed by a high level process must also be 
drawn in the decomposition of the process, and must be accessed in the same 
way, probably by several processes. On the other hand, all the external stores 
(except the existing external stores) occurring in the decomposition of a high 
level process must occur in the high level CDFD (the CDFD in which the 
high level process is used). That is, all the external stores must be sunk from 
the high level CDFD, and all the other stores, if any, must be locally defined 
stores. Since this property constitutes part of the structural consistency of 
hierarchical CDFDs, it is important to formalize this notion by giving an 
appropriate rule. 

Let G denote a CDFD. Then we define the following notation that will be 
used in the formalization. 

Notation: 

Store(G) = the set of all the stores occurring in CDFD G. 
Store_ext(G) = the set of all the external stores occurring in CDFD G. 
Store_loc(G) = the set of all the local stores occurring in CDFD G. 
Store_acc(A) = the set of all the stores which process A accesses. 
Acc_p(A. 5) inset {rd, wr}, denoting the way of accessing store 5 by 

process A. 
Acc_d(G. 5) inset {rd, wr}, denoting the way of accessing store 5 by 

CDFD G. 
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Obviously, the union of Store_ext(G) and Store_loc(G) must be the same 
as Store(G). Furthermore, Acc_d(G. 5) = rd means that store 5 is possibly 
read by some process in G, but definitely not updated by any processes in 
G; and Acc_d(G. 5) = wr if there is a possibility that 5 is updated by some 
process in G, which does not eliminate the possibility of reading from 5 by 
some processes in G. 

Rule 5.1 Let A be a high level process in CDFD G_h and Store_acc(A) 
= {s_l, 5_2 .... , s_n}. Let CDFD G_d be the decomposition of process A. 
Then, the following conditions must hold: 

(1) Store_acc(A) is a subset of Store_ext(G_d) 
(2) forall[s: Store_ext(G_d)ll Acc_d(G. 5) = Acc_p(A. 5). 

Note that we treat all the external stores representing external devices or files, 
such as displays, files on disks, printers, and keyboards, as existing external 
stores (decorated with the sharp mark # when they are declared in a module), 
since they usually exist independently of the software system under construc­
tion. All the existing external stores are considered as global variables to all 
the CDFDs in a CDFD hierarchy. In principle, such an existing external store 
must occur in every related CDFD (in which it is accessed), but sometimes 
you may not want to show its access by a high level process in the high level 
CDFD, while there may be a need to show its access by some processes in 
the decomposition of the high level process. In that case, one may draw the 
existing external store in the decomposition without drawing it in the high 
level CDFD. This principle is reflected by condition (1) in Rule 5.1. 

For example, the store 52 of CDFD 4 in Figure 5.3 is treated as an existing 
external store; it does not occur in CDFD 3, in which the high level process 
A33 of CDFD 4 is included. 

This way of dealing with existing external stores can benefit the construc­
tion of CDFD hierarchies in two ways. One way is by allowing the specification 
writer to concentrate on the most important and necessary issues related to 
the high level process and other processes in the high level CDFD, and to put 
the existing external stores where they are most properly used. Another way 
is by helping avoid the unnecessary drawing of stores. 

It is worth noting that Rule 5.1 does not restrict the use of local stores 
in the decomposition of a high level process. This implies that as many local 
stores as necessary can be declared and used in a CDFD. 

5.3 Input and Output Data Flows 

Since a high level process is actually represented by its decomposition, the in­
put data flows, and the output data flows of the process and its decomposition 
must be kept consistent. If all input and output data flows of the high level 
process are the same as input and output data flows of the decomposition, 



5.3 Input and Output Data Flows 125 

the high level process and its decomposition are said to be consistent in their 
input and output data flows. 

To define formally this consistency property, we need the following nota­
tion: 

Notation: 

Port_i(A) = the set of input ports of process A. 
Port_o(A) = the set of output ports of process A. 
Dataflow_i(A, P) = the set of input data flows connected to the input 

port P of process A. 
Dataflow_o(A, P) = the set of output data flows connected to the output 

port P of process A. 
Input_p(A) = the set of the input data flows of process A. 
Output_p(A) = the set of the output data flows of process A. 
Input_d(G) = the set of all the input data flows of CDFD G. 
Output_d(G) = the set of all the output data flows of CDFD G. 

Obviously, Input_p(A) is the union of all the data flows connected to all the 
input ports of A, and Output_p(A) is the union of all the data flows connected 
to all the output ports of A. 

Definition 13. Let G be a CDFD; A_1, A_2, ... , A_n be all its starting nodes; 
and B_1, B_2, ... , B_m be all its terminating nodes. Then, Input_d(G) = 
union (Input_p(A_i), Input_p(A_2) . ...• Input_p(A_n)) and Output_d(G) = 
union (Output_p(B_1). Output_p(B_2) • ...• Output_pCB_mY). 

where all the starting and terminating nodes include starting and terminating 
processes. 

This definition states that the input data flows of CDFD G are the same 
as those of all the starting nodes of G, and the output data flows are the same 
as those of all the terminating nodes of G. 

Rule 5.2 Let process A be decomposed into CDFD G. Then, conditions 
(1) and (2) given below must be satisfied. 

(1) Input_d(G) = Inpucp(A) 
(2) Output_d(G) = Output_p(A) 

If conditions (1) and (2) are satisfied by process A and its decomposition G, 
we say A and G are consistent in their input and output data flows. 

Note that this rule only suggests very simple checking on the consistency 
of input and output data flows of a high level process and its decomposition. 
Since the high level process may have several input or output ports, and the 
data flows connected to different ports cannot be used together in executing 
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Fig. 5.4. An inconsistent decomposition of process W 

the process and its decomposition, the rule does not ensure that the high level 
process is implemented correctly by its decomposition. 

For example, Figure 5.4 shows a decomposition of process W. To execute 
W, input data flows xl and x2 must be used exclusively, but in the execution of 
its decomposition both xl and x2 are required by process WI. Furthermore, in 
process W, output data flows yl and y2 are both generated as the result of its 
execution, but only one of yl and y2 can be generated by the decomposition 
of process W, due to the exclusive generation of the intermediate data flows 
dl and d2. 

In fact, such an inconsistency is a semantic problem rather than a syntac­
tical problem, and checking this kind of problem can be done by verifying the 
correctness of the decomposition of process W. Before discussing the notion 
correctness, we need to define the structural consistency first. 

Definition 14. Let process A be decomposed into CDFD G. If A and G satisfy 
both Rule 5.1 and 5.2, we say that A and G are structurally consistent. 

Definition 15. Let H_g be a hierarchy of CDFDs. If every high level process 
and its decomposition are structurally consistent, we say that the hierarchy of 
CDFD H_g is structurally consistent. 
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The structural consistency is a necessary condition for the decomposition of 
a high level process to perform what the high level process requires in its 
specification, but not a sufficient condition, as we have analyzed previously. 

5.4 The Correctness of Decomposition 

The decomposition of a high level process can be perceived as an implementa­
tion of the process, in the sense that the decomposition is intended to provide 
the functionality of the high level process in a more "executable" style. We 
say that the decomposition is correct with respect to its high level process 
specification if it does exactly what is required by the high level process. To 
allow the verification of such a correctness, we first need to formalize the con­
cept of correctness. To this end, several other concepts concerned with CDFD 
are needed. 

Definition 16. Let G be a CDFD. Then, a data flow path of G is a sequence 
of data flow groups traversed by an execution of G from a starting process to 
all the necessary terminating processes of G. 

A data flow path of G is not a static concept but a dynamic concept. Thus 
a data flow path is always associated with an execution of the CDFD. For 
example, in Figure 5.5 possible paths of the decomposition of process Ware: 

(1) xl; {dl, d2}; {yl, y2} 
(2) x2; {dl, d2}; {yl, y2} 

where data flow groups in each data flow path are separated by semicolons. All 
the data flows in each group (denoted as a set), like {d 1, d2}, can be executed 
in parallel. Also, each data flow in a data flow group may also be another 
data flow group or sequence of data flow groups. This would be clearer if one 
draws a CDFD with a data flow loop. 

To make the discussion of the correctness of CDFDs simple to understand, 
we restrict the high level process to one as simple as process W in Figure 5.5. 
If one is interested in further investigation, one can extend the formalization 
given below to a general process. 

Let A be a high level process: 

process A (xl: Ti_l I x2: Ti_2) yl: TO_I, y2: To_2 
ext wr 5: Ts 
pre pre_A 
post post_A 
end _process 



128 5 Hierarchical CDFDs and Modules 

- xl 
- x2 

=Os 

- xl yl __ 

_ x2 W y2 __ 

High level process 

~Yl_ dl1L:Jt 
d2 n==:==lI \-.bd- y2 __ 

The decomposition of process W 

Fig. 5.5. An example of process deomposition 

Let G denote the decomposition of A. Then, the correctness of G with respect 
to A is defined as: 

Definition 17. If A and G are structumlly consistent and the following con­
dition holds, we say that G satisfies A, or G is correct with respect to A. 

(forall[xl: Ti_l, -5: T51 I pre_A(xl, x2, -5) => 
post_A(xl, x2, G(xl), -5,5)) 

or 
(forall[x2: Ti_2, -5: Tsli pre_A(xl, x2, -5) => 

post_A(xl, x2, G(x2), -5, 5)) 

We use G(xl) (or G(x2)) to denote a set of the arbitrary output data flows 
generated by G (e.g., {yl, y2}), through an execution taking xl (or x2) as 
its input. To obtain G(xl) (or G(x2)), we need to find a data flow path in 
G that starts with xl (or x2) and ends with {yl, y2}. Note that process A 
and its decomposition G are structurally consistent; that is, Rules 5.1 and 
5.2 are both satisfied, which is part of the condition for correctness; without 
them, only the quantified predicate expression may not be strong enough to 
ensure the real semantic consistency between the high level process and its 
decomposition. For example, if the pre and postconditions of process A are 
both true, and rule 5.1 is not satisfied, then a decomposition of A that does 
not access any store connected to the high level process A may still satisfy the 
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quantified predicate expression, and therefore may still be treated as a correct 
implementation, although it should not be. 

How to verify the correctness is an interesting issue. In principle, the cor­
rectness of a CDFD can only be performed by a formal proof. However, since 
proofs are usually difficult, even with the use of powerful theorem provers, we 
suggest the use of the compromised, but practical and reasonably powerful, 
rigorous reviews and testing techniques. These two techniques are introduced 
in detail in Chapters 17 and 18. 

Applying this definition to the decomposition of process W given in Figure 
5.4, we can easily recognize that when xl or x2 is available to process W, it 
is impossible to find a path starting from xl or x2 that ends up with output 
data flows yl and y2, because the execution of process WI requires both xl 
and x2, while process W only requires one of xl and x2. 

5.5 Scope 

When defining stores or input and output variables, or writing the pre and 
postconditions of a process specification in a module, we may need to use 
types, constants, or other components, such as functions, preconditions, and 
post conditions of processes, declared in another module in a module hierar­
chy (which corresponds to a CDFD hierarchy). How to make references to 
those components becomes a very important issue in writing specifications. 
SOFL has a simple rule for this. Any constant or type identifier used in a 
module refers to the corresponding declaration in the same module if the dec­
laration exists. However, if such a declaration does not exist in the current 
module, then it will refer to a possible declaration in its parent module; if 
no corresponding declaration is given in its parent module, then it will refer 
to a possible declaration in its grandparent module, and so on. However, if a 
constant or type identifier declared in a module that has no direct or indirect 
decomposition relation with the current module in which the constant or type 
identifier is used, the module containing the declaration must be indicated in 
the reference. 

To formally define the scope of the effectiveness of declarations, we need 
the following notions. 

Definition 18. Let process A be defined in the module Mi. If A is decomposed 
into a CDFD associated with module M2, we say that process A is decomposed 
into module M2. 

Definition 19. If process A defined in the module Mi is decomposed into 
module M2, M2 is called child module of Mi, while Mi is called parent module 
ofM2. 
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Fig. 5.6. A hierarchy of modules 

Definition 20. Let A_l, A_2, ... , A_n be a sequence of modules where 
n > 1. If A_l is a parent module of A_2, and A_2 is a parent module of 
A_3, ... , and A_n-l is a parent module of A_n, we call A_l ancestor module 
of A_n and A_n descendant module of A_i. 

Definition 21. If the module A is neither ancestor module nor descendant 
module of module B, A and B are called relative modules. 

For example, suppose that the tree given in Figure 5.6 represents a module 
hierarchy in which each node denotes a module. In this hierarchy, module M 
is an ancestor module of every other module in the tree; M2 is the parent 
module of M12, and an ancestor module of M121, M122, and M123. On the 
other hand, M121 is an descendant module of M12, M2, and M. Since M3 and 
M 1 have no decomposition relation, they are known as relative modules. 

From this example, we can easily find that a module like M2 may have 
several child and descendant modules; a module like M12 may have several 
ancestor modules like M2 and M, but can have only one parent module like 
M2. 

Having defined the above concepts, we are now able to define the rules for 
scopes of declarations of constants and type identifiers and of definitions of 
functions and processes. 
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Scope rules: 

• Let M_c be a type or constant identifier declared in module Ml. Then, the 
scope of the effectiveness of this declaration is M I and all its descendant 
modules. 

• Let M c be declared or defined in both module MI and its ancestor module 
M. Then M_c declared or defined in MI has higher priority in its scope 
than M. 

In other words, if the identifier M_c is used in module M1, it first refers to 
the corresponding declaration or definition in MI, if any. If not, it will refer 
to the first declaration in the ancestor modules sequence tracing back from 
Ml. For example, suppose type identifier Person is used in module MI22 in 
Figure 5.6. It first refers to the type declaration of Person in M122. If there is 
no such a declaration, it will trace back from MI22 to search the declaration 
in M12, M2, and M until the declaration of Person is found. If Person is not 
declared in M122, M12, M2, or M, the use of Person in M122 will result in a 
type reference error. 

However, if type Person is declared in module MI and needs to be used in 
module M122, then the following reference expression must be used: 

Ml.Person 

For example, we can declare a store variable s with type Person as follows: 

s: Ml.Person; 

In general, if an identifier M_c is declared in module Ml and needs to be 
used in a relative module, say M2, of MI, the reference must be written in 
the format 

Ml.M c 

This format is also applicable to functions and processes, including their pre 
and postconditions. The following is a list of references to function fact used 
in module M2, pre and postconditions of process A, and constant identifier 
Age, which are all assumed to have been defined and declared in module Ml: 

• Ml.fact{5} 
• Ml.pre-A 
• Ml.post-A 
• Ml.Age 
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5.6 Exercises 

1. Answer the questions: 
a) What is a hierarchy of CDFDs? 
b) What is a hierarchy of modules? 
c) What is the relation between module hierarchy and CDFD hierarchy? 
d) What is the relation between a CDFD and its high level process in a 

CDFD hierarchy? 
e) What is the condition for a CDFD to be correct with respect to its 

high level process? 
f) What does it mean to say that module Ml is an ancestor module of 

M2? 
g) What does it mean to say that modules Ml and M2 are relative mod­

ules? 
h) What is the scope of a variable, type identifier, constant identifier, 

invariant, function, and a process? 

2. Explain whether the CDFD in Figure 5.5 is structurally consistent with 
its high level process W. Is it possible for the CDFD to be correct with 
respect to process W? Explain why. 
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Explicit Specifications 

As we have learned in Chapter 4, a process specification, given with pre and 
postconditions, is usually concise and precise in defining the functionality of 
the process. This kind of specification is usually suitable for defining require­
ments and high level design, because it allows the developer to concentrate 
on the relation between the inputs and outputs, with no need to think of how 
the relation can be implemented. However, when deriving a detailed design 
specification from a high level design, an algorithmic solution using sequence, 
choice, and iteration usually needs to be provided. Compared with program 
code, the detailed design specification may still be expressed in an abstract 
manner. 

In this chapter, we introduce statements for writing explicit specifications. 
A statement performs an operation that may change the state of the pro­
cess. A process specification written using statements is known as an explicit 
specification. In SOFL statements are similar to those available in high level 
programming languages, like Pascal, Java, and C, but their expressive power 
is much greater because of the use of quantified predicate expressions. 

Since high level processes in a module hierarchy are defined in terms of 
their decompositions, there is no need to write explicit specifications for them, 
unless extremely necessary. Explicit specifications are mainly employed for the 
lowest level processes in the detailed design. 

6.1 The Structure of an Explicit Specification 

As we have introduced in Chapter 4, the entire structure of a process is 

process ProcessN ame ( input) output 
ext ExternalVariables 
pre PreCondition 
post PostCondition 
decom LowerLevelModuleName 
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explicit ExplicitSpecification 
comment InformalExplanation 
end_process 

The part following the keyword explicit is for explicit specification. The ex­
plicit specification should not coexist with the decomposition part marked by 
the keyword decom, because they both actually play the same role: describing 
the functionality of the process in detail. However, the explicit specification 
can coexist with the implicit specification written with pre and postcondi­
tions, but they may be produced at different development phases: the implicit 
specification is usually written in the phase of requirements analysis and/or 
high level design, whereas the explicit specification is usually given in detailed 
design. A process with only explicit specification is treated the same as that 
with both precondition and postcondition being true. 

The general format of an explicit specification of a process is: 

explicit 
VariableDeclarations; 
Statement 

The VariableDeclarations gives the declarations of local variables within this 
process, and their format is the same as for declarations of local store vari­
ables in a module. Statement indicates an operation. Various statements are 
available, and they are introduced in the next section. 

6.2 Assignment Statement 

An assignment statement is composed of a variable and an expression, and 
takes the form 

v:= PE 

The statement assigns the value resulting from the evaluation of the expres­
sion PE to the variable v, provided that the evaluation of the expression 
terminates. However, if the evaluation does not terminate, v will become un­
defined and a run time error will occur. Note that the expression PE may 
involve local variables, function applications, and method invocations; but as 
a method invocation usually changes the current state, the evaluation of the 
expression may involve state changes. 

For example, the assignment statement 

x := x + fact(y) + obj.ml{y) 

states that variable x is updated with the result of evaluating the expression 
x + fact(y) + obj.ml(y). Note that x occurring in the expression denotes the 
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value of variable x before the execution of this assignment statement. We 
also assume that y is an input variable; fact(y) is a function computing the 
factorial of y; obj is an object of a class; and ml is its method that yields 
a natural number for a given natural number y. The execution of method 
ml may change the attributes of obj; therefore, the obj may actually have 
been changed after the execution of ml, before completing the evaluation of 
the entire expression. See Chapter 13 for detailed discussions about method 
invocations. 

6.3 Sequential Statements 

Sequential statements describe a series of actions, and usually contain more 
than one statement. The general structure of sequential statements is 

where n >= 1 and 5_i(i = 1..n) are statements. 
In these statements, the external variables, input variables, and output 

variables of the process can be used, but they should have names different 
from those of the local variables declared in the explicit specification. 

6.4 Conditional Statements 

Two conditional statements are available: if-then and if-then-else. Their 
formats are as follows: 

(1) if Bl then 5 
(2) if B2 then 51 else 52 

In the conditional statement (l), if condition Bl evaluates to true, statement 5 
is executed; otherwise, no statement is executed. In statement (2), if condition 
B2 is true, statement 51 is executed; otherwise, if B2 is false, 52 is executed. 
For example, 

if x > 10 then x:= 20; 

if x > 10 then x := x + 1 else x := x-I; 

are two legal conditional statements. The first one states that if x is greater 
than 10, the number 20 is assigned to variable x. The second statement states 
that if x is greater than 10, then x is increased by one; otherwise, if x is less 
than or equal to 10, x is decreased by one. 
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6.5 Multiple Choice Statements 

Using if-then or if-then-else statements to express a behavior depending 
on multiple choice of values of a certain variable may lead to a deeply nested 
structure of statements. Such a nested structure is usually complicated and has 
poor readability. To resolve this problem, one way is to design a statement with 
a simple and clear structure, allowing the expression of behaviors based on 
multiple choices. Such a multiple choice statement is known as case statement, 
which, in general, has the following form: 

case x of 
ValueList_1 -> 5_1; 
ValueList 2 -> 5 2; 

ValueList_n -> 5_n; 
default -> 5 n + 1 
end case 

where each ValueList_i (i=1..n) is a list of concrete values of the same type as 
that of x; x can be either a single variable or an expression whose type matches 
that of the values given in ValueList_i; and 5~ U=1..n+1) are statements. 

The case statement means that if x is equal to one of the values in Val­
ueList_1, statement 5_1 will be executed, and then the case statement will 
terminate; otherwise, if x is one of the values in ValueList_2, statement 5_2 
will be executed, and then the case statement will terminate; and so on. How­
ever, if x is different from all of the values given in ValueList_l, ValueList_2, 
... , ValueList_n, statement 5_n+1 will be executed as default, and then the 
case statement will terminate. 

Note that the values in ValueList_1, ValueList_2, ... , ValueList_n should 
be disjoint, but even if they are not, the case statement will not involve any 
ambiguity in selecting one of the statements 5~ U=1..n+1) to execute, be­
cause ValueList_1, ValueList_2, ... , ValueList_n are evaluated in order, and 
once one of them matches x, the corresponding statement will be executed, 
and then the case statement will terminate. The default clause may not be 
used if ValueList_1, ValueList_2, ... , ValueList_n cover all the possible cases. 
However, having the default clause is always recommended, for it will avoid 
the situation of not choosing any given statement to execute. For example, 
consider 

case x of 
I, 2, 3 -> Y := Y + x + 1; 
4,5,6-> Y := Y + x + 2; 
7, 8, 9 -> Y := Y + x + 3; 
default -> y := y + x +10 
end case 
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Which one of the four assignment statements is executed depends on the value 
of variable x. If x is equal to 1, 2, or 3, the assign statement y := y + x + 
1 is executed, and then the case statement terminates; if x is different from 
any given integer, the statement y := y + x +10 is executed, and the case 
statement terminates. 

6.6 The Block Statement 

A block statement in an explicit specification plays a role similar to paren­
theses in an expression. A block statement is used when several statements 
must be treated as one statement, for whatever reason. A block statement 
starts with keyword begin and ends with keyword end. For example, the 
conditional statement 

if x> 1 
then 
begin 
5_1; 
5_2; 
5 3; 

end 
else 
begin 
5 4; 
5 5; 

end; 

involves two block statements: one contains statements 5_1, 5_2, and 5_3, 
and another is made up of statements 5_4 and 5_5. When x> 1, the first block 
statement is executed; otherwise, the second block statement is executed. 
Since each block statement is a sequence of other statements, the execution 
of a block statement is actually done by executing the contained statements 
sequentially. 

6.7 The While Statement 

A while statement describes an iteration of executions, and takes the form 

while B do 
5 
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When condition B evaluates to true, S is executed repeatedly until B becomes 
false. To ensure the termination of the while statement, there must be some 
variables involved in S and B that control the iteration. For example, 

f = 1; 
n = 10; 

while n > 1 do 
begin 
f = f * n; 
n = n - 1; 

end; 

The while statement computes the factorial of natural number 10, and the 
result is held in variable f. The variable n is used to control the termination 
of the while statement. 

Since the readability and verification of while statements are usually dif­
ficult, and writing them usually involves detailed consideration of algorithms, 
one should avoid using them as much as possible in explicit specifications. 
Instead, recursive functions should be considered whenever an iteration is 
needed. For example, if we make use of function application fact{lO}, where 
fact is assumed to have been defined before as a recursive function computing 
factorials of a natural number, the while statement given above is simplified 
as the following statement: 

f = fact{lO}; 

6.8 Method Invocation 

Although the issue of invoking a method of an object should be discussed 
after the introduction of "class" and "object," we need to emphasize here 
that invoking a method can be part of an explicit specification of a process. 
If this topic feels premature, you can skip this section. The material will be 
discussed in detail in Chapter 13. 

Let obj be an object of the class Obj, which is treated as a user-defined 
type, and m1 be a method defined in class Obj. If m1 does not yield any 
output value, the method invocation 

obj.m10; 

can be used as an independent statement in explicit specifications. However, 
if m1 returns an output value, it can be used in any place appropriate (e.g., 
the expression involved in an assignment statement); see Chapter 13 for more 
details. 
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6.9 Input and Output Statements 

Sometimes it may be necessary to express the idea of either reading values 
from outside the system under construction (e.g., input device like keyboard) 
or writing values to a device outside the system (e.g., output device like printer 
and display). In this case, we need appropriate input and output statements. 
Since explicit specifications are still intended to be an abstraction of the ulti­
mate program, the input and output statements are designed to facilitate the 
specification of what to input or output, without caring about how the input 
and output are done. The format of input and output needs to be decided 
during the implementation of the system. 

The general form of the input statement is 

The read statement reads values from the input device sequentially into vari­
ables x_I, x_2, ... , x_n, respectively. The types of these variables may vary, 
but the type of the value to be read must be kept the same as that of the 
variable to which the value is read. 

The output statement takes the following form: 

The write statement writes the results of expressions e_l, e_2, ... , e_m se­
quentially to the output device. The types of these expressions may vary as 
well. For example, the statement 

read(x, y) 

reads two values sequentially from the input device to variables x and y, re­
spectively. While the statement 

writeC'The result is" , x + y, '! ') 

writes "The result is," the result of x + y, and the character' I,' in turn, to 
the output device. 

6.10 Example 

Let us take the process Check_Password of the ATM specification given in 
Chapter 4 as an example to illustrate how to write an explicit specification 
for a process. As given before, the implicit specification of the process is as 
follows: 
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process Check_Password(card_id: nat, sel: bool, pass: nat) 
account!: Account I pr_meg: string I 
account2: Account 

ext rd account_file j*The type of this variable is omitted because 
this external variable has been declared in 

the var section. * / 
post (exists! [x: account_file] I 

x.account_no = card_id and 
x.password = pass and 

or 

(sel = false and account! = x or 
sel = true and account2 = x) 

not (exists![x: account_file] I x.account_no = card_id and 
x. password = pass) and 

pr _meg = "Reenter your password or insert the correct card" 
comment 

If the input card_id and pass are correct with respect to the existing information 
in account_file, then if sel is false, the account information is passed to the output 
account!; otherwise, the account information is passed to the ouput account2. 
However, if one of card_id and pass is incorrect, a prompt message pr _meg is 
produced. 

end_process; 

An explicit specification implementing this implicit specification is given 
as follows: 

process Check_Password(card_id: nat, sel: bool, pass: nat) 
account!: Account I pr _meg: string I 
account2: Account 

ext rd #account_file: set of Account; 
explicit 
begin 

account! := get( {x I x: account I x.account_no = card_id and 
x.password = pass}); 

if account! = nil 
then pr _meg = "Reenter your pass or insert the correct card" 
else if sel = true 

then 
begin 

account2 := account!; 
account! := nil; 

end 
else account2:= nil; 

end 
comment 

end_process; 
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The explicit specification consists of a block statement that contains two state­
ments: an assignment statement followed by a conditional statement. The as­
signment statement is intended to assign the account in account_file whose 
number and password are the same as required by the input value to the 
variable accountl. If such an account does not exist, that is, account! = nil, 
the prompt message pr _meg is given. However, if the account does exist, and 
variable sel is equal to true, account2 is updated with account!, and account! 
is set as nil; otherwise, account2 is set as nil. In this specification, the op­
erator get defined on set types is applied to obtain an element (no matter 
which one) in the set defined by the set comprehension get ( {x I x: account I 
x.account_no = card_id and x.password = pass}). Detailed discussions on set 
comprehension and the operator get are given in Chapter 8. 

6.11 Exercises 

Write explicit specifications for the following processes of the ATM given in 
Chapter 4. 

1. a) Receive_Command 
b) Withdraw 
c) Show_Balance 
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Basic Data Types 

Data types are essential for specifications because they provide a notation 
for defining data structures used in specifications. From this chapter, through 
Chapter 13, we introduce all the data types available in SOFL. Data types are 
divided into two categories: built-in types and user-defined types. The built-in 
types are further divided into basic types and compound types. The com­
pound types include set types, sequence types, composite types, map types, 
product types, and union types. The user-defined types are the types that can 
be defined by the specification writers for constructing well-structured, main­
tainable, and reusable specifications. The user-defined type is known as class. 
At the end of each chapter, examples are given to show how the introduced 
types are used to define data structures for process specifications. 

In this chapter, we focus on the basic types, while from the next chap­
ter through Chapter 12, we introduce set types, sequence and string types, 
composite types, map types, product types, and union types, in that order. 
Classes and their instantiations are discussed in Chapter 13. 

The basic types include numeric types, boolean type, character type, and 
enumeration types. Since boolean type has been introduced in Chapter 2, we 
will just give a brief description of it. 

7.1 The Numeric Types 

Four numeric types are employed in SOFL; they are natural numbers including 
zero, natural numbers, integers, and real numbers. These types are denoted 
by the symbols natO, nat, int, and real, respectively, and their values are 
already explained in Chapter 3. 

Several arithmetic operators and relational operators are provided for com­
puting numeric values. The arithmetic operators and their names, as well as 
types, are given in Table 7.1. In the table, product types, such as real * real, 
are used in defining the types of the operators. The reader who is not famililar 
with the concept of product type can refer to Chapter 10 for details. 
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Table 7.1. Arithmetic operators 

Operator Name Type 
- x Unary minus real-> real 

abs(x) Absolute value real-> real 
floor (x) Floor real-> int 
x+y Addition real * real - > real 
x-y Subtraction real * real - > real 
x*y Multiplication real * real - > real 
x/y Division real * real - > real 

x div y Integer division int * int -> int 
xremy Remainder int * int - > natO 
xmody Modulus natO * natO - > natO 

x ** y Power real * real - > real 

Each operator is a function that yields a single value when applied to its 
arguments. It is worth noting that every operator with parameters of "super­
types" can apply to arguments of "subtypes." For example, an operator with 
parameters of type real can apply to arguments of types int, nat, and natO; 
parameters of int can apply to arguments of nat; and parameters of nat 
can apply to arguments of natO. Since most of these operators are commonly 
used in fundamental mathematics, there is no need to explain their semantics 
formally here. Instead, some examples may be more helpful. 

For example, let x = 9, Y = 4.5, z = 3.14, a = - 4, and b = 3. Then, we 
apply these operators and get the following results: 

- z = - 3.14 
abs(a) = 4 
fioor(y) = 4 
x + z = 12.14 
x - Y = 4.5 
a * b = - 12 
x / y = 2.0 
a div b =-1 
aremb=l 
x mod b = 0 
x ** b = 729 

The relational operators over numeric types are given in Table 7.2. Each 
relational operator is a predicate that takes some arguments and yields a truth 
value. Except the less-between and less-equal-between operators, all the other 
relational operators have been used in previous chapters, and are supposed to 
be familiar to the reader. x < y < z evaluates to true if y is greater than x but 
less than z; otherwise, it yields false. x <= y <= z evaluates to true if y is 
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Table 7.2. Relational operators 

Operator Name Type 
x < y Less than real * real - > bool 
x> y Greater than real * real - > bool 

x <= y Less or equal real * real - > bool 
x >= y Greater or equal real * real - > bool 

x<y<z Less-between real * real * real - > bool 
x <= y <= z Less-equal-between real * real * real - > bool 

x=y Equal real * real - > bool 
x <> y Not equal real * real - > bool 

greater than or equal to x, but less than or equal to z; otherwise, it evaluates 
to false. 

For example, let x = 9, Y = 4.5, and z = 12.5. Then, 

x> y <=> true 
x < y <=> false 
x <= y <=> false 
x >= y <=> true 
y < x < z <=> true 
x < y < z <=> false 
y <= Y <= z <=> true 
x = x <=> true 
x <> z <=> true 

In fact, x < y < z is equivalent to the conjunction x < y and y < z, and x <= 
y <= z is equivalent to the conjunction x <= y and y <= z. 

7.2 The Character Type 

Character is the atomic unit for constructing identifiers (for names, variables, 
types, constants), operators of types, and delimiters for separating different 
parts in a specification. The character type contains all the characters of the 
SOFL character set, defined in Table 7.3. The type is denoted by the keyword 

char 

and each character value is written in the form 

'x' 

where x is a single element of the SOFL character set. For example, the fol­
lowing is a list of legal characters: 
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'a' 
'8' 

'I' 
')' 
'.' 
'@' 

'7' 

Table 7.3. SOFL character set 

English letters: 
abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 

Other characters: 
, . : ; * + _ / _ -I \ ( ) [J { } @ ., , & % $ # " ! < > = ? 

Newline: 
White space: 

The only operators available on the type char are the two relational operators 
"=" and "<>". Thus, characters can be compared with each other for their 
equality. For example, 

'a' = 'A' <=> false 
'a' = 'a' <=> true 
'8' = '=' <=> false 

7.3 The Enumeration Types 

An enumeration type is a finite set of special values, usually with the feature 
of describing a systematic phenomenon. For example, the days of a week can 
be modeled as an enumeration type Week: 

Week = {<Monday>, <Tuesday>, <Wednesday>, <Thursday>, <Friday>, 
<Saturday>, <Sunday>} 

Each value in an enumeration type is written in the form: 

<x> 

where x is a string of SOFL characters. 
Although each value of an enumeration type is enclosed by a pair of angle 

brackets, the brackets are just part of the syntax to help distinguish values of 
enumeration types from normal string values (see Chapter 9 for the detailed 
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discussion of the string type); they do not add any additional meaning to the 
values. For example, you should understand <Monday> in the same way as 
you understand the notion Monday. 

If we declare a variable weekday with the type Week as 

weekday: Week; 

then the variable can take any value of the type, that is, weekday can take 
<Monday>, or <Tuesday>, or <Wednesday>, and so on, as its value. 

The only operators over an enumeration type are equality and inequality, 
allowing the comparison between values of an enumeration type. For example, 
suppose we declare 

x, y, z: Week; 

and let x = <Monday>, y = <Wednesday>, and z = <Monday>, then: 

x = Y <=> false 
x = z <=> true 
y <> z <=> true 
x <> z <=> false 

7.4 The Boolean Type 

The boolean type is denoted by the symbol: bool, and it contains only two 
values: true and false, as we have already learned from the previous chapters. 
The only thing we would like to mention about the boolean type here is the 
additional operators: "=" and "<>". 

If there is no confusion, the equality symbol "=" can be used in the same 
way as <=> for boolean values (i.e., truth values). The inequality symbol 
"<>" can be applied to check whether two boolean values are not equivalent. 
For example, suppose we declare 

p, q, r: bool; 

and let p = true, q = false, and r = true. Then, 

p = r <=> true 
p <> q <=> true 
p <> r <=> false. 

There is a rule on the priority of applying relational operators and logical 
operators in predicate expressions: relational operators always have higher 
priority than logical operators. For example, when both a relational operator, 
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= or <>, and the logical operator, <=>, are used for variables (including 
boolean variables), the priority of = or < > is always higher than that of 
<=>. Thus, when evaluating the expression p = r <=> true, the relation p 
= r must evaluate first, followed by the entire expression. 

7.5 An Example 

Let us specify a simple process, reporting fares of railway tickets for different 
kinds of passengers, as an example to illustrate the use of the basic types 
in process specifications. Assume that the fare for student is 25 percent less 
than the normal fare, and the ticket for the pensioner is 30 percent less than 
the normal fare. All the other people are treated as ordinary passengers. The 
process is then specified as follows: 

type 
Passenger = {<STUDENT>, <ORDINARY>, <PENSIONER>}; 
process Tell_Fare(passenger: Passenger) 

fare: real 
ext rd normal_fare: real 
post fare = case passenger of 

<STUDENT> -> normal_fare - 0.25 * normal_fare; 
<ORDINARY> -> normal_fare; 
<PENSIONER> -> normal_fare - 0.30 * normal_fare 
end_case 

end_process; 

The input of this process is the type of the passenger: student, ordinary pas­
senger, or pensioner. The output is the fare of the ticket the passenger needs 
to pay. The normal fare of the ticket is treated as a rd type external variable. 
In the postcondition, a case expression is used to define the output fare based 
on the input passenger and the railway company's ticket discount policy. 

7.6 Exercises 

1. Let x = 12, y = 9.8, z = 2, and a = -20. Evaluate the following expressions: 

a) - z 
b) abs(a) 
c) floor(y) 
d) x + z 
e) x - y 
f) a * z 
g) x / y 
h) a div z 
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i) a rem x 
j) x mod z 
k) x ** z 

2. Let x = 20, Y = 5.5, z = 'd', and a = true. Evaluate the following expres-
sions: 

a) a = z 
b) ')' <> z 
c) x >= y 
d) x < y <= Y 
e) a = false 
f) a <> true 

3. Assume that the courses to teach on weekdays are as follows: "Software 
Engineering" on Monday, "Program Design" on Tuesday, "Discrete Math­
ematics" on Wednesday, "Programming Language" on Thursday, and 
"Formal Engineering Methods" on Friday. Write a formal specification for 
the process that gives the corresponding course title for an input weekday. 
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The Set Types 

Computation by computer is not limited only to numeric calculations. In fact, 
computation has a more broad meaning: manipulation of data or information 
by algorithms. Many commercial program systems and those in the public 
domain actually have little to do with numeric calculation; their essential 
functionalities are closely related to dealing with data structures. For example, 
searching for a data item in a file, or sorting students' examination results in 
a list, can be regarded as such kinds of programs. 

The set types are one of the compound types available in SOFL, and usu­
ally used for the abstraction of data items that have a collection of elements. 
A set type contains a collection of set values with the same feature (e.g., their 
elements are the values of the same type) and a group of operators. The col­
lection of set values offers a range of set values that can be taken by a variable 
of the set type, while the operators are used to manipulate set values. 

In this chapter, we first explain the concept of set, and then introduce 
the set type constructor, by which a specific set type can be constructed. 
Furthermore, all the operators on set types are discussed in Section 8.3, and 
examples of applying sets for data abstraction in process specifications are 
given to explain how set data structures can be used for data abstraction in 
specifications. 

8.1 What Is a Set 

A set is an unordered collection of distinct objects where each object is known 
as an element of the set. Since computers can deal with only finite sets, we 
require that any set (value) of a set type be finite (i.e., it contains finite number 
of elements). For example, a school class is a set of students; a car park is a 
set of cars; a library is a set of books; and so on. Set values are written as 
a list of their elements, separated by commas, and enclosed by braces. For 
example, the following are some set values: 
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(1) {5, 9, 10} 
(2) {"John", "Chris", "David", "Jeff"} 
(3) {"J ""P sal" "C" "C++" "Fortr n"} ava, a C,' , a 

Set (1) is a set of three natural numbers; set (2) denotes a set of four people's 
names; and set (3) shows a set of programming languages. 

An essential property a set value has is that its elements are unordered, 
that is, changing the order of the elements does not change the value of the 
set. Thus, 

{5, 9, 10} = {9, 5, 10}, and 
{" John" , "Chris", "David" , "Jeff"} = {" David" , "Chris" , "Jeff" , "John"} 

Another important property of a set is that there is no duplication of its 
elements. For example, 

{5, 9, 10, 5} 

is an illegal set value because element 5 appears twice. It is important to 
remember these two properties when using set values to model data items 
and when reading a specification involving set values. 

8.2 Set Type Declaration 

A set type is declared by applying the set type constructor to an element type. 
The set type constructor is 

set of 

Applying this constructor to a specific element type, say T, yields a specific 
set type. Let A denote this type, then we can write: 

A = set of T 

which represents a set type in which each set value is a collection of elements 
of type T. Formally, A is a power set of T, i.e. 

A = {x I subset (x, T)}. 

where subset(x, T) Jlleans that x is a subset of T (this operator is defined in 
Section 8.3.2). 

For example, let T be the enumeration type: 

T = {<STUDENT>, <ORDINARY>, <PENSIONER>} 
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Then, a set type ST is declared as 

ST = set of T 

Thus, ST is a power set of T: 

ST = {{ }, {<STUDENT>}, {<ORDINARY>}, {<PENSIONER>}, 
{<STUDENT>, <ORDINARY>}, 
{<ORDINARY>, <PENSIONER>}, 
{<STUDENT>, <PENSIONER>}, 
{<STUDENT>, <ORDINARY>, <PENSIONER>}} 

where { } denotes the empty set. 
In a specification, a declaration of variable x with type ST can be given as 

x: ST 

This allows variable x to take any value of type ST. For instance, x can take 
the following set values: 

x = {<STUDENT>} 
x = {<ORDINARY>, <PENSIONER>} 
x = { } 
x = {<STUDENT>, <ORDINARY>, <PENSIONER>} 

8.3 Constructors and Operators on Sets 

Given a specific set type, set values of the type can be constructed in two ways. 
One is by using the constructors, and another is by applying the operators to 
existing set values. A constructor of the set type is a special operator that 
constitutes a set value from the elements of an element type, while a normal 
operator is used to generate a set value based on existing set values. Since the 
term "set" is the synonym of "set value," we use them alternately as necessary 
for the convenience of discussions in this chapter. 

8.3.1 Constructors 

There are two sets constructors: set enumeration and set comprehension. A 
set enumeration has the format 

{e_l, e_2, ... , e_n} 

where e_i (i=l..n) are the elements of the set {e_l, e_2, ... , e_n}. For example, 
a set of integers is 

{5, 9, 10, 50} 
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A set comprehension defines a set containing all the elements satisfying 
some property. The general form of a set comprehension is 

{e(x_l, x_2, ... , x_n) I x_I: T _1, x_2: T _2, ... , x_n: T _n & 
P(x_l, x_2, ... , x_n)} 

where n 2: l. 
The set comprehension defines a collection of values resulting from eval­

uating the expression e(x_l, x_2, ... , x_n) (n 2: 1) under the condition that 
the involved variables x_I, x_2, ... , x_n take values from sets (or types) T _1, 
T _2, ... , T _n, respectively, and satisfy property P(x_l, x_2, ... , x_n). If it is 
obvious or unnecessary, the bindings in the set comprehension can be omitted. 
Thus, we may use another form of set comprehension: 

Some examples are given below to illustrate the use of set comprehensions. 

{x I x: nat & 1 < x < 5} = {2, 3, 4} 
{y I y: natO & y <= 5} = {D, 1, 2, 3, 4, 5} 
{x + y I x: natO, y: natO & 1 < x + y < 8} = {2, 3, 4, 5, 6, 7} 
{i I i: natO & 9 < i < 4} = { } 
{i I i inset nat and i < 5} = {I, 2, 3, 4} 

We can also use the following special notation to represent a set containing 
an interval of integers: 

{i, ... , k} = {j I j: int & i <= j <= k} 

Thus, 

{I, ... , 5} = {I, 2, 3, 4, 5} 
{-2, ... , 2} = {-2, -1, 0, 1, 2} 

8.3.2 Operators 

In addition to the set constructors, there are also operators for manipulating 
set values. Given the element type T, all the built-in operators on set types 
are discussed below one by one. 

Membership 

The operator for determining whether a value is a member of a set is inset. 
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inset: T * set of T -> bool 

The expression x inset 5 evaluates to true if x is a member of set 5; otherwise, 
it yields false. For example, 

7 inset {4, 5, 7, 9} <=> true 
3 inset {4, 5, 7, 9} <=> false 

Non-membership 

The operator for determining if a value is not a member of a set is not in. 

notin: T * set of T -> bool 

If x is not a member of 5, the expression x notin 5 evaluates to true; otherwise, 
it evaluates to false. Note that the non-membership operator is opposite to 
the membership operator in determining whether a value is a member of a 
set. For example, 

7 notin {4, 5, 7, 9} <=> false 
3 notin {4, 5, 7, 9} <=> true 

Cardinality 

The cardinality of a set means the number of the elements in the set. The 
cardinality operator is card. 

card: set of T -> natO 
card(s) == the number of elements in 5 

where == means "is defined as," the same as for defining a function introduced 
in Chapter 4. 

When applying the operator card to a set value, say x, we are required to 
use parentheses to enclose the argument. For example, 

card( {5, 7, 9}) = 3 
d({ 'h' , , , , , , "'}) - 5 car ,o,s,e,'-

Equality and inequality 

Two sets can be compared to determine if they are identical or not. Set 51 is 
equal to 52, that is, they are identical, if they have exactly the same members; 
otherwise, they are not identical. The operators for equality and inequality of 
sets are = and <>, the same as for numeric values. 

=: set of T * set of T -> bool 
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51 = 52 == forall[x: 51] I x inset 52 and card(51) = card(52) 
<>: set of T * set of T -> bool 
51 <> 52 == (exists[x: 51] I x notin 52) or (exists[x: 52] I x notin 51) 

For example, 

{5, 15, 25} = { 5, 15, 25} <=> true 
{5, 15, 25} <> {5, 20, 30} <=> true 

Subset 

A set 51 is said to be a subset of another set 52 if the members of 51 are all 
the members of 52. The operator is subset. 

subset: set of T * set of T -> bool 
subset(51 , 52) == forall[x: 51] I x inset 52 

If 51 is a subset of 52, subset(51, 52) evaluates to true; otherwise, it evaluates 
to false. Let 51 = {5, 15, 25}, 52 = {5, 10, 15, 20, 25, 30}. Then, 

subset(51, 52) <=> true 
sUbset(52, 51) <=> false 
subset( { }, 51) <=> true 
subset(51, 51) <=> true 

The third expression shows that the empty set is a subset of 51. In fact, the 
empty set is a subset of any set. The fourth expression states that set 51 is a 
subset of itself, which is also true of any other set. 

Proper subset 

The set 51 is a proper subset of the set 52 if the members of 51 are all the 
members of 52 and 51 is not equal to 52. The operator for proper subset is 
psubset. 

psubset: set of T * set of T -> bool 
psubset(51 , 52) == subset(51, 52) and 51 <> 52 

For example, let 51 = {5, 15, 25} and 52 = {5, 10, 15, 25, 30}. Then, 

psubset(51, 52) <=> true 
psubset(51, 51) <=> false 
psubset(52, 51) <=> false 
psubset({ }, 51) <=> true 

The empty set { } is a proper subset of any set except the empty set itself. 
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Member access 

The member access operator is designed for obtaining a member from a set. 
The operator is get, and it is defined as follows: 

get: set of T -> T 
get(5) == if 5 <> { } then x else nil 

where x inset 5. 
Note that the application of the get operator to a set yields a member 

of the set in a nondeterministic manner. If the set is empty, the application 
becomes undefined (Le., it yields nil). It is also important to bear in mind 
that get(5) returns a member of set 5, but does not change 5. For example, 
assume 5 = {5, 15, 25}j then, 

get(5) = 5 or 
get(5) = 15 or 
get(5) = 25 

and 5 still remains the same as before: 5 = {5, 15, 25}. 

Union 

The union of sets is an operation to merge two sets into one, that is, to join 
together their members to form another set. The operator is union, and it is 
defined as 

union: set of T * set of T - > set of T 
union(51, 52) == {x I x inset 51 or x inset 52} 

Since a set must have no duplication of members, the union of sets must also 
be performed in the way that ensures this property. Consider the following 
examples: 

union( {5, 15, 25}, {15, 20, 25, 30}) = {5, 15, 25, 20, 30} 
union( {IS, 20, 25, 30}, {5, 15, 25}) = {15, 20, 25, 30,S} 

A simple way to obtain the result of the operation union(51, 52) is to 
include all the members of 51 in the resulting set and then extend it by 
adding the members of 52 that do not belong to 51, as shown in the above 
examples. 

The union operator is commutative. Thus, union(51, 52) = union(52, 51). 
It is also associative, that is, union(51, union(52, 53)) = union(union(51, 
52), 53 ). Due to these properties, the operator union can be extended to deal 
with more than two sets: 
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union: set of T * set of T * ... * set of T - > set of T 
union(51, 52, ... , 5n) == {x I x inset 51 or x inset 52 or ... or x inset 5n} 

The use of this extended union operator is an effective way to shorten ex­
pressions involving the union operation of many sets. This can be understood 
by seeing the following two expressions as equivalent: 

union(51, union(52, union(53, ... ))) 
union(51, 52, ... , 5n) 

Intersection 

The intersection of two sets yields a set that contains the common members 
of the two sets. The operator for intersection of sets is inter, and is defined 
as 

inter: set of T * set of T - > set of T 
inter(51, 52) == {x I x inset 51 and x inset 52} 

For example, let 51 = {S, 7, 9}, 52 = {7, 10, 9, IS}, and 53 = {8, 5, 20}. Then, 

inter(51, 52) = {7, 9} 
inter(51, 53) = {S} 
inter(52, 53) = { } 

The properties of commutativity and associativity also hold for the inter 
operator. That is, inter(51, 52) = inter(52, 51), and inter(51, inter(52, 53)) 
= inter(inter(51, 52), 53). Taking the same approach as that of extending the 
union operator, we extend the inter operator as follows: 

inter: set of T * set of T * ... * set of T - > set of T 
inter(51, 52, ... , 5n) == {x I x inset 51 and x inset 52 and ... and 

x inset 5n} 

Difference 

The difference between two sets is an operation that yields another set. The 
operator for the difference operation is diff, and it is defined as 

diff: set of T * set of T -> set of T 
diff(51, 52) == {x I x inset 51 and x notin 52} 

For example, let 51 = {S, 7, 9}, 52 = {7, 10, 9, IS}, and 53 = {8, 12}. Then, 

diff(51, 52) = {S} 



diff(51, 53) = {5, 7, 9} 
diff(52, 51) = {1O, IS} 
diff(51, { }) = 51 

Distributed union 
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A set can be a set of sets, and the distributed union of such a set is an operation 
that obtains the union of all the member sets of the set. The operator for 
distributed union operation is dunion. For example, suppose 51 = {{5, 10, 
IS}, {5, 10, 15, 25}, {1O, 25, 35}} is a set of the three sets: {5, 10, IS}, {5, 
10, 15, 25}, and {10, 25, 35}; then, the distributed union of 51 is 

dunion(51) = union({5, 10, IS}, {5, 10, 15, 25}, {1O, 25, 35}} 
= {5, 10, 15, 25, 35} 

Formally, the distributed union operator is defined as 

dunion: set of set of T -> set of T 
dunion(5) == union(51, 52, ... , 5n) 

where 5 = {51, 52, ... , 5n}. 

Distributed intersection 

Similarly to the distributed union operator, the distributed intersection op­
erator also applies to a set of sets. The operator is dinter, and it is defined 
as 

dinter: set of set of T - > set of T 
dinter(5) == inter(51, 52, ... , 5n) 

where 5 = {51, 52, ... , 5n}. 
For example, let 51 = {{5, 10, IS}, {5, 10, 15, 25}, {1O, 25, 35}}. Then, 

dinter(51) = inter( {5, 10, IS}, {5, 10, 15, 25}, {10, 25, 35}} 
= {1O} 

Power set 

Given a set, we can apply the operator power to yield its power set that 
contains all the subsets of the set, including the empty set. The power set 
operator is defined as follows: 

power: set of T - > set of set of T 
power(5) == { 51 I subset(51 , 5)} 

For example, let 5 = {5, 15, 25}. Then, 

power(s) = {{ }, {5}, {15}, {25}, {5, 15}, {15, 25}, {5, 25}, {5, 15, 25}} 
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8.4 Specification with Set Types 

The importance of learning the set notation introduced in this chapter is 
to understand how it can be used for process modeling and specification. A 
process usually deals with data items, and these data items may be defined 
as sets. The most interesting question is whether it is appropriate to declare 
the data items as sets. To answer this question, we must examine the nature 
of the data items to see whether they are intended to represent unordered 
collections of distinct objects. If so, choosing sets as the abstraction of the 
data items would be a right decision. 

In this section, we use the example of an email (electronic mail) address 
book to illustrate how the setJlotation is used for process specifications. Usu­
ally, there is no benefit either in recording duplicated email addresses in the 
address book or in defining a specific order in which the email addresses are 
organized, as long as the addresses can be easily managed (e.g., through find, 
add, and delete operations). Therefore, it is sufficient to abstract the email 
address book as a set of email addresses. An email address is usually a string 
of characters, but for now there is no point to go into that detail. So we declare 
Email as a given type: 

Email = given; 

Based on this type declaration, we declare a state variable email_book and 
three processes to manipulate the email addresses contained in the book. The 
processes are add, find, and delete. All of these components are defined in the 
module Email Address_Book. 

module Email_Address_Book; 

type 

Email = given; 

var 

email_book: set of Email; 

behav: CDFD_8.1; 

process Find(e: Email) r: bool 



ext rd email_book 
post r = (e inset email_book) 
end _process; 

process Add( e: Email) 
ext wr email_book 
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post email_book = unionC email_book, {e}) 
end_process; 

process Delete( e: Email) 
ext wr email_book 
post email_book = diffC email_book, {e}) 
end _process; 

The process Find checks whether a given email address e is already included 
in email_book. If it is, the process assigns true to the output variable r; 
otherwise it assigns false to r. Since the checking can be done for any given 
email address, no specific precondition is required by the process. 

The process Add takes an email e and adds it to the email address 
book email_book. This function is described by using a set union operation: 
email_book = unionC email_book, {e}), in the postcondition. Since the oper­
ator union preserves the property of a set to disallow duplication of elements 
in the set, element e will not be added to the set -email_book if e does not 
belong to the set before the union operation. For this reason, the precondition 
of this process is defined as true, imposing no specific constraint on the input 
variable e and the external variable email book. 

The elimination of an email address from email_book is done by means of 
the process Delete. It is specifically defined by an application of the set dif­
ference operator diff in the expression email_book = diffC email_book, {e}) 
of the postcondition. Since operator diff properly deals with both situations, 
when e belongs and does not belong to -email_book, no specific requirement 
for e to be a member of -email_book in the precondition is given. 

The overall behavior of this module is depicted by the CDFD in Figure 
8.1. If the input data flow e of process Find is available, the process is executed 
and its output r is generated. If the input e of process Add is available, Add is 
executed and the store email_book is updated. Furthermore, if the input e of 
process Delete is available, the process is executed and the store email_book 
is updated. In the CDFD, it is assumed that the input data flows of the three 
processes are exclusively available. Thus, only one of processes Add, Find, and 
Delete can be executed at any time. 
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e 

- e ---. Find ~ Add 

- e ---. Delete 

Fig. 8.1. The CDFD for the module Email_Address_Book 

8.5 Exercises 

1. Given a set T = {5. 8. 9}, define a set type based on T, and list all the 
possible set values in the type. 

2. Let T = {5. 8. 9}. Evaluate the following set comprehensions: 

a) {x I x: nat & x < 8} 
b) {y I y: natO & y <= 3} 
c) {x - y I x: int, y: int & -2 < x < 3 and -1 < y < 2} 
d) {i I i: set of T & card{i) < 3 and forall[x. y: i) I x + y <= 13} 

3. Let 51 = {5. 15. 25}, 52 = {15. 30. 50}, 53 = {30. 2. 8}, and 5 = {51. 52. 
53}. Evaluate the following expressions: 
a) card(51) 
b) card(5) 
c) union{51. 52) 
d) diff{52. 53) 
e) inter{union{52. 53). 51) 
f) dunion(5) 
g) dinter(5) 
h) inter{union(51. 53). diff(52. union(51. 53))) 

4. Write set comprehensions for the following sets: 

a) a set of natural numbers whose elements are all smaller than 10. 
b) a set of integers whose elements are all greater than 0 and smaller 

than 10 and cannot be divided by 3. 
c) a set of prime numbers. 
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5. Construct a module to model a telephone book containing a set of tele­
phone numbers. The necessary processes are Add, Find, Delete, and Up­
date. The process Add adds a new telephone number to the book; Find 
determines whether a given telephone number is available or not in the 
book; Delete eliminates a given telephone number from the book; and 
Update replaces an old telephone number with a new number in the book. 

6. Write a specification for a process Merge. The process takes two groups of 
students, and merges them into one group. Since the merged group will 
be lectured by a different professor, the students from both groups may 
drop from the merged group (but exactly which students will drop is not 
known). 
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The Sequence and String Types 

The set types have provided us with a powerful tool for the abstraction of data 
items. However, they are not sufficient for modeling data items for various 
requirements. Sometimes we may need to clearly emphasize the order of the 
elements in a set, such as a list of countries with the number of gold medals 
obtained at the 2000 Sydney Olympics. The position of each country in the list 
cannot be changed because this would otherwise probably alter the number of 
the gold medals obtained by those countries. Some other times we may need to 
record duplicate elements in a set, each duplicate element denoting a different 
object. For example, it is quite possible that a class of undergraduates has 
two or more students with the same name, so defining such a class as a set is 
obviously inappropriate. If one wants to represent the ages of all the students 
in a class as a set corresponding to the name set of the class, one must be 
careful in using a set type, because the class is very likely to have more than 
one student with the same age. 

To model data items with a set of values whose order is important and 
whose duplications are possible, we introduce another kind of data type, se­
quence type, in this chapter. A special kind of sequence type, the string type, 
is also discussed. 

9.1 What Is a Sequence 

A sequence is an ordered collection of objects that allows duplications of ob­
jects. As with sets, the objects are known as elements of the sequence. As 
mentioned previously, there are two important differences between sequences 
and sets. The order of the elements of a sequence is important whereas the 
order of the elements of a set is not significant. Thus, changing the order of 
the elements of a sequence usually changes the sequence to a different one, 
whereas the change of the order of elements in a set does not change the set. 
Another difference is that a sequence allows duplicated elements whereas a set 
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does not. For the same reason as for sets, we only deal with finite sequences 
(Le., the sequences containing a finite number of elements). 

A sequence value is represented by a list of elements contained within 
square brackets, [ ]. The elements are all from the same type, called element 
type. For example, the following are some sequences: 

(1) [5, 15, 15, 5, 35] 
(2) [' I , , 1"' r , , , " , , 1"' 't' , '] U,n,I,V,e,r,S,I, ,y 
(3) [20.5, 40.5, 85.5] 

Sequence (1) provides a group of natural numbers; sequence (2) is a group of 
characters; and sequence (3) gives a list of real numbers. A sequence with no 
element is called empty sequence. The empty sequence has the form 

[ ] 

Since sequences composed of characters like sequence (2) are often used 
to represent names, addresses, and other texts, it would appear more natural 
to write them as a string of characters, such as "university", rather than as a 
sequence. We classify all the sequences composed of characters into a new type 
known as string (but this does not disallow us to use sequence of characters 
in sequence notation). A string value is a list of characters in double quotes, 
such as: 

" university" 
.. sofl@yahoo.ac.jp" 
"Formal Engineering Methods" 

All the operators on sequences, to be introduced in this chapter, are ap­
plicable to string values in the same manner. So, we will just apply those 
operators to string values in examples as necessary, without additional expla­
nations. 

9.2 Sequence Type Declarations 

A sequence type is declared by applying the sequence type constructor 

seq of 

to a specific element type. For example, 

seq of nat 
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forms a sequence type in which each sequence is constituted by a collection 
of natural numbers. A new type identifier can be declared using the sequence 
type. For example, 

Ages = seq of nat 

Thus, Ages can be used as the same type as seq of nat, containing all the se­
quence values whose elements are natural numbers. Using this type identifier, 
the variable student_ages can then be declared as 

student_ages: Ages; 

Thus, the variable student_ages may take any value in the type Ages. 

9.3 Constructors and Operators on Sequences 

As with the set notation, sequences can be created by applying either sequence 
constructors or operators. In this section, we discuss all the constructors and 
operators on sequence types. 

9.3.1 Constructors 

A constructor is a special operator that allows us to form sequences from 
element types. There are two constructors: sequence enumeration and sequence 
comprehension. A sequence enumeration has the format 

where a_i (i=1..n) are the elements of the sequence. For example, 

[5, 9, 8, 9, 5] 

is a sequence of natural numbers. The order and occurrence of the elements 
are significant. Thus, 

[5, 9] <> [9, 5] 

and 

[5, 9, 5] <> [5, 9] 

When forming a sequence, it is important to ensure that all the elements 
are the values of the same type. Thus, we should be careful in constructing 
the sequence, 
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[5, 'a', "university" , 20,05] 

unless a sequence of union type (to be introduced in Chapter 12) is desired, 
A sequence comprehension is similar to a set comprehension, but since 

the order of elements is significant and the duplicated occurrences of elements 
are possible, sequence comprehensions need to be constructed with caution, 
A sequence comprehension takes the format: 

[e(x_l, x_2, .. " x_n) I x_I: T _1, x_2: T _2, .. " x_n: T _n & 
P(x_1, x_2, .. " x_n)] 

A sequence comprehension defines a sequence whose elements are derived from 
the evaluation of expression e(x_1, x_2, .. " x_n) under the condition that x_I 
takes values from type T _1, x_2 from T _2, .. " x_n from T _n, and all of these 
values satisfy property P(x_1, x_2, .. " x_n), If unnecessary, the bindings can 
be omitted, Thus we may use another form of sequence comprehension: 

Note that all the types T _i (i=l..n) are countable numeric types and the 
elements of the sequence must occur in an ascending order, For example, 

[i * j I i: nat, j: nat & 1 <= i + j <= 3] = [1, 2, 2] 

As with the set notation, we also use the following special notation to 
represent a sequence of integer interval from i to j: 

[i, .. " j] = [x I x: int & i <= x <= j] 

Thus, 

[3, .. " 6] = [3, 4, 5, 6] 
[-2, .. ,' 2] = [-2, -1, 0, 1, 2] 
[0, .. " 4] = [0, 1, 2, 3, 4] 

However, if index j is smaller than index i, [i, .. " j] represents the empty 
sequence [], For example, 

[9, .. " 2] = [] 
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9.3.2 Operators 

Sequences can be manipulated by sequence operators. Some operators take a 
sequence and yield a value related to its elements, while other operators take 
several sequences and yield another sequence. 

In the discussions of sequence operators below, we assume that T is the 
element type for building up sequences. Each operator is explained by giving 
both a formal definition and examples to help in the understanding of its 
meaning. 

Length 

The length of a sequence means the number of its elements. The length oper­
ator is denoted by symbol len, and is defined as 

len: seq of T -> natO 
len(s) == the number of elements in 5 

For example, let 51 = [4,9, 10], 52 = [{3, 9}, {6}], 53 = [10, 9, 4, 25], and 54 
= .. university" . Then, 

len(sl) = 3 
len(s2) = 2 
len(s3) = 4 
len(s4) = 10 

Note that 52 is a sequence of set values, so its length is the number of all the 
set values occurring in the sequence. 

Sequence application 

A sequence can apply to an index, a natural number, to yield the element 
occurring at the position indicated by the index. Let 5 be a sequence of type 
seq of T. Then,s can be regarded as a function from nat to T: 

5: nat -> T 
s(i) == the ith element of sequence 5 

The precondition for applying 5 to an index i is that index i is within the range 
of 1 to len(s). Otherwise, if i is beyond this range, the sequence application 
s(i) is undefined. For example, 

51(1) = 4 
51(2) = 9 
52(1) = {3, 9} 
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53(4) = 25 
54(5) = 'e' 

Subsequence 

A subsequence of a sequence is part of the sequence. Let 5 be a sequence of 
type seq of T, and i and j be two indexes. Then, the subsequence of 5 that 
keeps the elements in the same order as they are in 5 is denoted as 

s(i. j): nat * nat -> seq of T 
s(i. j) == [s(i). s(i + 1) ..... s(j - 1). s(j)] 

Thus, 

51(2. 3) = [9. 10] 
51(1. 3) = 51 
53(2. 4) = [9.4, 25] 
54(2, 8) = "niversi" 

Head 

The head of a non-empty sequence is its first element. The head operator is 
denoted by symbol hd, and is defined as 

hd: seq of T -> T 
hd(s) == if len(s) > 0 

then 5(1) 
else nil 

For example, 

hd(sl) = 4 
hd(s2) = {3. 9} 
hd(s3) = 10 
hd(s4) = 'u' 

It is not difficult to understand the head elements of 51 and 53, but one may 
be a little puzzled when looking at the result of hd(s2), because the result 
is not a simple number but a set of numbers. In fact, since a sequence can 
contain any type of value, the result of an application of the operator can be 
either a value of a basic type or a value of a compound type, as long as the 
type is the element type of the sequence. Note that if 5 is the empty sequence, 
hd(s) is undefined. 

Tail 
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The tail of a non-empty sequence is its subsequence resulting from eliminating 
its head. The tail operator is denoted by the symbol tI, and is defined as 

tl: seq of T -> seq of T 
tl(s) == 5(2, len(s)) 

The application of the operator tI to the empty sequence is undefined, that 
is, tl([ ]) = nil. For example, 

tl(sl) = [9, 10] 
tl(s2) = [{6}] 
tl(s3) = [9, 4, 25] 
tl(s4) = "niversity" 

Elements 

The operator for obtaining the set of all the elements of a sequence is elems: 

elems: seq of T - > set of T 
elems(s) == {x I x: T & (exists[i: {I, ... , len(s)}]I x = sCi)} 

Since the result of elems(s) is a set, not a sequence, duplication of elements 
is not allowed in it. Thus, 

elems(sl) = {4, 9, 10} 
elems(s2) = {{3, 9}, {6}} 
elems(s3) = {10, 9, 4, 25} 
elems([5, 10, 5, 10, 15]) = {5, 10, IS} 

1 ( 4) {' r r , ,", , , , , " , , '"' 't' , '} eeIllSS = U, n, I, v, e, r, 5, I, ,Y 

If 5 is the empty sequence, elems(s) is the empty set, that is, 

elems([ ]) = { }. 

Indexes 

A sequence corresponds to a set of natural numbers that indicates the posi­
tions of the elements in the sequence. Such a set is known as index set. The 
operator for obtaining an index set of a sequence is inds: 

inds: seq of T - > set of nat 
inds(s) == {i I i: nat & exists[ x: elems(s)]I sCi) = x} 

It is obvious that the index set of the empty sequence is the empty set. Fur­
thermore, the cardinality of inds( 5) is equal to the length of sequence 5, but 
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may be greater than that of the element set elems(s} due to the possibility 
of duplicate elements in s. For example, suppose 51 = [4, 9, 10],52 = [{3, 9}, 
{6}], 53 = [10, 9, 4, 25], and 54 = "university" . Then, 

inds(sI} = {I, 2, 3} 
inds(s2} = {I, 2} 
inds(s3} = {I, 2, 3, 4} 
inds(s4} = {I, 2, 3, 4, 5, 6, 7, 8, 9, IO} 

The index set is often used when describing a property of a sequence. 
Consider the example 

exists[i: inds(s}]I s(i} > 5 
This quantified expression describes the property of sequence 5: that 5 has at 
least one element greater than 5. 

Concatenation 

Sequences can be concatenated to form another sequence. The operator for 
sequence concatenation is cone, and is defined in an implicit manner as 

conc(s_I: seq of T, 5_2: seq of T} cs: seq of T 
post len(cs} = len(s_I} + len(s_2} and 

(forall[i: inds(s_I}]I cs(i) = s_I(i}} and 
(forall[i: inds(s_2)] I cs(i + len(s_I}} = s_2(i}} 

The concatenation of sequences 5_1 and 5_2 is formed by appending 5_2 to 
the end of 5_1. For example, 

conc(sI, 53} = [4, 9, 10, 10, 9, 4, 25] 
conc(s4, 54} = "universityuniversity" 

The concatenation of sequences is not commutative. Thus, 

conc(sI, 53} <> conc(s3, 51} 

because 

conc(s3, 51} = [10, 9, 4, 25, 4, 9, 10] 

which is different from conc(sI, 53} given above. 
The concatenation operator cone can be extended to deal with more than 

two sequences. Thus, 
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conc(s_l, 5_2, ... , s_n) = conc(s_l, conc(s_2, conc(s_3, ... ))) 

For example, let 51 = [5, 15, 25], 52 = [10, 20, 30, 40], and 53 = [2, 4, 6, 8, 
10]. Then, 

conc(sl, 52, 53) = [5, 15, 25, 10, 20, 30, 40, 2, 4, 6, 8, 10] 

Distributed concatenation 

As we have mentioned before, the elements of a sequence can be values of any 
type available in SOFL, so it is possible to have sequences whose elements are 
again sequences. Such a sequence is called sequence of sequences. Let 5 be a 
sequence of sequences: 

where s_i (i=1..n) are sequence values of a sequence type. Then, the operator 
for the distributed concatenation of 5 is defined as 

dconc: seq of seq of T - > seq of T 
dconc(5) == conc(s_l, 5_2, ... , s_n) 

For example, let 51 = [[5, 15, 25], [10, 20, 30, 40], [2, 4, 6, 8, 10]] and 52 = 
[[{2, 3, 4}, {7}, {8, 9}], [{1O, 20}], [{50, 100, ISO}, {30, 60}]]. Then, 

dconc(51) = [5, 15, 25, 10, 20, 30, 40, 2, 4, 6, 8, 10] 
dconc(52) = [{2, 3, 4}, {7}, {8, 9}, {10, 20}, {50, 100, 150}, {30, 60}] 

Since each element of a string value can only be a character, not another 
sequence, the distributed concatenation operator dconc cannot be applied to 
string values. 

Equality and inequality 

Sequences can be compared to determine whether they are identical or not. 
As in many examples of this chapter, the operators for equality and inequality 
are = and <>, respectively: 

5_1 = 5_2 <=> 
len{s_l) = len(s_2) and forall[i: jnds(s_l)]I s_l(i) = s_2(i) 

5_1 <> 5_2 <=> 
not 5_1 = 5_2 

For example, let 51 = [5, 15, 25], 52 = [10, 20, 30, 40], and s3 = [2, 4, 6, 8, 
10]. Then, 

51 = 51 <=> true 
51 <> 52 <=> true 
52 = s3 <=> false 
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9.4 Specifications Using Sequences 

In this section, let us look at two examples of specifications with the sequence 
notation. The first example describes an input and output module that takes 
care of inputting data from an input device (e.g., keyboard, file) and out­
putting data to an output device (e.g., display, file). The second example 
models a simplified membership management system of a club using a module 
called MembershipManagementSystem. This system is intended to deal with 
the registration of members, searching of members, and exchange of members 
in the member list. 

9.4.1 Input and Output Module 

The input and output module is named InputOutput. To model the input and 
output processes, we first need to model the input device and output device 
using appropriate data types. Since the order of elements in an input and 
output device is significant, and there is the possibility of having duplicate 
elements on such a device, we model them as sequences of characters. On the 
basis of this data modeling, the three processes are provided: Input, Output, 
and Delete. The process Input reads a character from the input device whereas 
Output outputs a character to the output device. The process Delete removes 
the last character from the current output device. The formal specification of 
this module is as follows: 

module InputOutput; 

var 

input_device, output_device: seq of char; 

process InputO ic: char 
ext wr input_device 
pre inpuCdevice <> [] 
post conc([ic], input_device) = ~input_device 
comment 

The precondition of this process requires that input_device not be empty. The 
postcondition describes that the head of input_device before the process is read 
and bound to the output variable ic, and that input_device is updated by removing 
its head character. 

end_process; 

process Output( oc: char) 
ext wr output_device 
post output_device = concCoutput_device, roc]) 
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comment 
The output of character oc to output_device is defined by a sequence concate­
nation of the initial output_device and the sequence composed of element oc. 

end_process; 

process DeleteD dc: char 
ext wr output_device 
pre output_device <> [] 
post ~output_device = conc(output_device. [dc)) 
comment 

This process removes the last character of output_device. which is reflected by 
defining the initial output_device as a concatenation of the final output_device 
and the sequence composed of character dc. 

end_process; 
end_module; 

9.4.2 Membership Management System 

The first step in modeling this system is to define a data structure recording 
all the members in the club. Since the order of joining the club may affect the 
right of the members in the club, and it is possible to have members who share 
the same name, we model the list of members as a sequence. In addition, three 
processes are provided: Register, Search, and Exchange. The process Register 
records a new member in the member list; Search provides a set of indexes of 
a requested member in the member list; and Exchange makes two members 
exchange their positions in the member list. The module is formally specified 
as follows: 

module MembershipManagementSystem; 

type 

Member = string; 1* A member is denoted by its name 
which is a string of characters * / 

var 

all_members: seq of Member; 

process Register(m: Member) 
ext wr all_members 
post all_members = concCall_members. [m)) 
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comment 
The function for recording member m in the member list all_members is specified 
by defining the final all_members as a concatenation of the initial all_members 
and the sequence composed of member m. 

end_process; 

process Search(m: Member) pos: set of nat 
ext rd all_members 
post pos = {i I i: nat & all_members(i) = m} 
comment 
Finding all the positions of member m in the member list all_members is 

modeled by a set comprehension. 
end_process; 

process Exchange(pos1, pos2: nat) 
ext wr all_members 
pre pos1 inset inds(all_members) and pos2 inset inds(all_members) 
post all_members(pos1) = -all_members(pos2) and 

all_members(pos2) = -all_members(pos1) and 
forall[i: inds(all_members)] I i <> pos1 and i <> pos2 => 

all_members(i) = -all_members(i) 
comment 

This process exchanges only the members at position pos1 and pos2, and keeps 
the rest of the members unchanged in the list 

end_process; 
end_module. 

9.5 Exercises 

1. Given a set T = {I, 2, 5}, define a sequence type based on T, and give 
ten possible sequence values in the type. 

2. Evaluate the following sequence comprehensions: 

a) [x I x: nat & 3 < x < 8] 
b) (y I y: natO & y <= 3] 
c) [x - y I x: natO, y: natO & 1 < x + y < 3] 

3. Let sl = [5, 15, 25]' s2 = [15, 30, 50], s3 = [30, 2, 8}, and s = [sl, s2, s3]. 
Evaluate the following expressions: 

a) hd(sl) 
b) hd(s) 
c) len(tl(sl)) + len(tl(s2» + len(tl(s3)) 
d) len(sl) + len(s2) - len(s3} 
e) union(elems(sl}, elems(s2)) 
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f) inter(union( {hd(52)}, elems(53)), elems(51)) 
g) union(inds(51), inds(52), inds(53)) 
h) elems(conc(51, 52, 53)) 
i) dconc(5) 

4. Construct a module to model a queue of integers with the processes Ap­
pend, Eliminate, Read, and Count. The process Append adds a new element 
to the queue; Eliminate deletes the top element of the queue; Read returns 
the top element; and Count yields the number of the elements in the queue. 

5. Write a specification for a process Search. The process takes an integer 
and searches through a sequence of integers. If the input integer is found 
in the sequence, its indexes (there might be more than one occurrences 
of the input integer in the sequence) are given as the result. If the input 
integer is not found, then the empty set is given as the output. Note that 
the sequence of integers must be treated as an external variable of the 
process. 
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The Composite and Product Types 

It is often the case that an object in the real world has many attributes, 
each describing an aspect of the object. For example, a bank account is often 
associated with the attributes account name, account number, password, and 
balance; a student may be described by a name, identification number, age, 
department, and so on. The composite types introduced in this chapter provide 
a data structure for modeling such objects. 

Sometimes, we may need to represent an object by several data items 
as a group in a certain order. For example, a date is characterized by year, 
month, and day, that is, a specific day of a year can be described by the three 
data items, year, month, and day, in a certain order. The representation of 
the date varies depending on countries. For example, Americans adopt the 
order month, day, year, whereas the British use the order day, month, year. 
Chinese and Japanese express a date in the order of year, month, day. The 
common feature of these three different representations is that the order of 
the occurrence of several data items in a group is important: changing the 
order may change the value of the data item group. The objects with such 
characteristics can be modeled by product types discussed in this chapter. 

Composite types and product types share the similarity that a value of 
both types is composed of several data items. But they are different in the 
sense that the data items contained in a value of a composite type is referred 
to by name, so the order ofthe occurrences of the data items is not important, 
whereas a value of a product type is sensitive to the order of its data items. 

In this chapter we first introduce composite types and then discuss product 
types. 

10.1 Composite Types 

10.1.1 Constructing a Composite Type 

A composite type is constructed using the type constructor: composed of ... 
end. The general format of a composite type is: 
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composed of 
C1: T_1 
C2: T_2 

Cn: T n 
end 

where Ci (i=l..n) are variables called fields and T _i are their types. Each 
field is intended to represent an attribute of a composite object of the type. 
We can give a name A for this type in the form 

A = composed of 
Cl: T_1 
C2: T_2 

Cn: T n 
end 

A value of a composite type is called composite object or composite value. 
If variable co is declared as 

or 

co: A; 

co: composed of 
Cl: T_l 
C2: T 2 

Cn: T_n 
end 

then the variable co can hold any values of type A. For example, in Chapter 
4 we declare Account as a composite type of three fields: 

Account = composed of 
account_no: nat! 
password: nat! 
balance: real 

end 

With this type, the variable account is declared as 

account: Account; 

Note that it is not the fields of a composite type like Account that are asso­
ciated with values, but the fields of a composite object like account that are 
associated with values. 
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10.1.2 Fields Inheritance 

Fields inheritance provides a convenient mechanism for defining a new com­
posite type based on an already defined one. Suppose we want to declare a 
composite type Q containing fields already defined in another existing com­
posite type W; then, we adopt the following form for the type declaration: 

Q / W = composed of 
b_I: Tb_I 
b 2:Tb 2 

Where type W is assumed to have been defined before in the form 

W = composed of 
a 1: Ta 1 
a 2: Ta_2 

a n: Ta h 

end 

Thus, type Q is defined as a composite type that contains all the fields a_1, 
a_2, ... , a_n of type W, and b_I, b_2, ... , b_m are defined explicitly in type 
Q. In this case, we say type Q inherits from type W. However, this kind of 
inheritance is syntactical inheritance and there is a strict constraint on the 
order of the inherited fields (e.g., a_I, ... , a_n) in the current type (e.g., Q): 
the inherited fields are all assumed to be declared before the fields declared 
explicitly in the current type (e.g., b_I, ... , b_m). Applying this rule, the 
declaration of type Q above is in fact equivalent to the following declaration: 

Q = composed of 
a_I: Ta_I 
a 2: Ta 2 

a_n: Ta_n 
b_I: Tb_I 
b_2:Tb_2 

b_m: Tb_m 
end 

To ensure simplicity and avoid possible confusion in field names, we allow 
a composite type to inherit from only one other composite type. Thus, the 
following declaration is not allowed: 
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Q / W, A = composed of 

end 

10.1.3 Constructor 

There is only one constructor that is used to generate composite values of 
composite types. This constructor is known as make-function, and its general 
format is 

The make-function yields a composite value of composite type A whose field 
values are v_i (i=l..n) that corresponds to fields C1, C2, ... , Cn, respectively. 
For example, 

mk_Account(1073548, 1234, 5000) 

makes a composite value of type Account whose account_no is 1073548, pass­
word is 1234, and balance is 5000. If we write 

account = mk_Account(1073548, 1234, 5000) 

then the account_no of the variable account is 1073548, password is 1234, and 
balance is 5000. 

10.1.4 Operators 

Two kinds of operators are available to deal with composite values. One is 
called field select and the other is called field modification. 

Field select 

Let co be a variable of composite type A, as defined in Section 10.1.1. Then, 
we use 

co.C 

to represent field Ci (i=l..n) of composite object co. For example, 

account. password 

refers to the field password of composite value account, and 
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account. balance 

refers to the field balance of account. 

Field modification 

Given a composite value, say co, of type A, we can apply the field modification 
operator modify to create another composite value of the same type, but with 
possibly different field values. The format of the operator is 

The result of this application of the operator modify to composite value co 
and the pairs Cl -> v_I, C2 -> v_2, ... , Cn -> v_n is a composite value 
whose values of fields Cl, C2, ... , Cn are v_I, v_2, ... , v_n, respectively. 
Let us take composite value account of type Account, given previously as an 
example. As defined before, 

account = mk_Account(1073548, 1234, 5000) 

The application of modify to account and field password yields value 

accountl = modify(account, password -> 4321) 

Thus, the password field of accountl is 4321 and the other two fields remain 
the same as those of account. That is, 

accountl = mk_Account(1073548, 4321, 5000) 

Applying the modify operator again to accountl, we generate another value 
account2: 

account2 = modify(accountl, balance -> 10000) 

This is equivalent to: 

account2 = mk_Account(1073548, 4321, 10000) 

Note that the operator modify does not change the current composite 
value. For example, after the evaluation of modify(account, password -> 
4321), account remains the same as before the evaluation, that is, account 
= mk_Account(1073548, 1234, 5000) still holds. 
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10.1.5 Comparison 

Two composite values can be compared to determine whether they are iden­
tical or not. Suppose col and co2 are two composite values of type A. Then, 

col = co2 

means that col and co2 have the same type and all their field values are 
exactly the same, respectively. Thus, 

mk_Account{1073548. 1234. 5000) = mk_Account{1073548. 1234. 5000) 
mk_Account{1073548. 4321. 5000) = 

modify{mk_Account{1073548. 1234. 5000). password -> 4321) 

If the above condition is not met, the two composite values are not identical. 
For example, 

mk_Account{1073548. 1234. 5000) <> mk_Account{1073548. 4321. 5000) 
mk_Account{1073548. 4321. 5000) <> mk_Account{1073548. 4321. 10000) 

10.2 Product Types 

A product type defines a set of tuples with a fixed length. A tuple is composed 
of a list of values of possibly different types. Let T _1, T _2, ... , T _n be n types. 
Then, a product type T is defined as follows: 

T=T l*T 2* ... *T n 

A value of T is expressed as 

mk_T{v_1. v_2 ..... v_n) 
where v_I inset T _1. v_2 inset T _2 ..... v_n inset T _no The values v_i 
(i=l..n) are called elements of this tuple. For example, suppose type Date is 
declared as 

Date = natO * natO * natO 

Then, the tuples 

mk_Date{1999. 7. 25) 
mk_Date(2000. 8. 30) 
mk_Date(2001. 7. 10) 

are all values of type Date, where mk_Date is a make-function for product 
type Date. If a variable d is declared with type Date as 
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d: Date 

then, we can use the following expressions in specifications: 

d = mk_Date(1999, 7, 25) 
d = mk_Date(2000, 8, 30) 
d = mk_Date(2001, 7, 10) 

There are two operations on tuples: tuple application and tuple modification. 
A tuple application yields an element of the given position in the tuple, whose 
general format is 

a(i) 

where a is a variable of product type; and i is a natural number indicating 
the position of the element referred to in tuple a. The result of a(i) is the ith 
value in the tuple a. For example, let 

datel = mk_Date(1999, 7, 25) 
date2 = mk_Date(2000, 8, 30) 

Then, the following results can be derived: 

datel{l) = 1999 
datel(2) = 7 
datel(3) = 25 
date2(1) = 2000 
date2(2) = 8 
date2(3) = 30 

Or tuples can be directly used in applications, such as 

mk_Date(2000, 8, 30)(2) = 8 
mk_Date(2000, 8, 30)(3) = 30 

A tuple modification is similar to a composite va~ue modification. The 
same operator modify is also used for tuple modification, but with slightly 
different syntax: 

This operation yields a tuple of the same type based on the given tuple tv, with 
the first element being v_I, the second element being v_2, and so on. Unlike 
the application of operator modify to composite objects, the indexes of the 
elements of a tuple, rather than the field names, are given in the argument 
list. The signature of the modify is 
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Table 10.1. A student record table 

personal data coursel course2 total 
Helen, 0001, A3 2 2 4 
Alexis, 0002, A2 0 2 2 

... ... . .. ... 

modify: T * (nat * T _1) * (nat * T _2) * ... * (nat * T _n) -> T 

where T is a product type, and T _i(i=1..n, n >= 1) are the element types. 
For example, 

modify(mk_Date(2000, 8, 30), 1 -> 2001, 3 -> 20) = (2001, 8, 20) 
modify(mk_Date(2001, 8, 20), 2 -> 15) = (2001, 15, 20) 

As with composite values, tuples can also be compared with each other 
to determine whether they are the same or not. Suppose t1 and t2 are two 
tuples, then tl = t2 means that t1 and t2 are the values of the same type 
and they have exactly the same elements in the same order. However, if this 
condition is not satisfied, the two tuples are not identical, that is, t1 <> t2. 

Using values of product types together with set values or sequence values, 
we can build relations and tables. A relation is a set of pairs that describes an 
association between members of its domain and those of its range, but with no 
restriction on the type of association. Thus, one element in the domain may 
be associated with many members in the range, and vice versa. A table is a 
sequence of tuples, such as the truth tables for logical operators and, or, and 
not given in Chapter 2. In the next section we give an example to explain how 
composite and product types are used for data abstraction in specifications. 

10.3 An Example of Specification 

Suppose we want to build a table to record students' credits resulting from two 
courses, like Table 10.1. Each row of the table corresponds to one student and 
has four columns presenting personal data, the credits of the two courses, and 
the total credit. The personal data includes name, identification number, and 
class to which the student belongs, which are denoted by the fields name, id, 
and class, respectively, in the table. Many processes can be built to manipulate 
data of the table, but to keep the description as brief and comprehensible as 
possible, we only give the two processes Search and Update, which are specified 
in the module Students_Record. 



module Students_Record; 

type 

CourseCredit = natO; 

TotalCredit = natO; 

Personal Data = composed of 
name: string 
id: natO 
class: string 

end; 
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OneStudent = PersonalData * CourseCredit * CourseCredit * TotalCredit; 

StudentsTable = seq of OneStudent; 

var 

students_table: StudentsTable; 

inv 

forall[i, j: inds(students_table)]I 
i <> i => students_table(i)(l).id <> students_tableU)(l).id); 

process Search(search_id: natO) info: OneStudent 
ext rd students_table 
pre exists[i: inds(students_table)]I students_table(i)(l).id = search_id 
post exists![i: inds(students_table)]I students_table(i)(l).id = search_id 

and 
info = students_table(i)] 

process Update(one_student: OneStudent, credit!, credit2: CourseCredit) 
ext wr students_table 
pre exists[i: inds(students_table)] I students_table(i) = one_student 
post len(students_table) = lenCstudents_table) and 

forall[i: indsCstudents_table)] I 
Cstudents_table(i) = one_student => 

students_table(i) = 
modifyCstudents_table(i), 2 -> creditl, 3 -> credit2, 

4 -> credit! + credit2)) and 
Cstudents_table(i) <> one_student => 
students_table(i) = -students_table(i)) 

end_process; 

end_module; 
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In this module, several types including CourseCredit, TotalCredit, and Person­
alData are declared in order to declare type OneStudent. The type OneStudent 
is declared as a product type composed ofthe three types: Personal Data, Cour­
seCredit, and TotalCredit. Based on type OneStudent, the type StudentsTable 
is defined as a sequence type. 

The state variable students_table is declared with the type StudentsTable. 
This variable must satisfy the invariant given in the inv section, which re­
quires that no different elements representing different students' data share 
the same identification number. In this invariant, students_table(i), a sequence 
application to index i, denotes a tuple of the product type OneStudent, and 
students_table(i){l) is a tuple application representing the first element of the 
tuple (i.e., personal data). This first element is a value of composite type Per­
sonalData, so students_table(i)(l).id denotes the identification number field of 
the composite value. 

The process Search provides the entire data of the student whose identi­
fication number is the same as search_id, provided as the input. To ensure 
that this process behaves correctly, the student to be searched must exist in 
students table. Since there are no elements in the table that share the same 
identification number according to the invariant, we use the quantifier exists!, 
rather than exists, in the postcondition. 

The function of process Update is to modify the credits of the two courses 
of student one_student with the given credits creditl and credit2. To ensure 
that the modification can be conducted, the given student one_student must 
exist in the table. This requirement is specified as the precondition of the 
process. The postcondition is given as a universally quantified expression that 
describes the relation between the initial value and the final value of the 
state variable students_table by modifying the corresponding attributes of 
the student having the same identification number as that of one_student 
with the given credits creditl and credit2. The total credit of the student to 
be updated is derived by adding up creditl and credit2. Except for this change, 
all the other students' data in the sequence students_table remain unchanged. 

10.4 Exercises 

1. Explain the similarity and difference between a composite type and a 
product type. 

2. Let a = mk_Account(OlO. 300. 5000), where the type Account is defined 
in Section 10.1.1. Evaluate the following expressions: 

a) a.account no 
b) a. password 
c) a.balance 
d) modify(a, password -> 250) 
e) modify(mk_Account(020, 350, 4050), account no -> 100, balance 

-> 6000) 
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3. Let x be a variable of the type Date defined in Section 10.2, and x = 
mk_Date(2002, 2, 6). Evaluate the following expressions: 

a) x(l) 
b) x(2) 
c) x(3) 
d) modify(x, 1 -> 2003) 
e) modify(x, 2 -> 5, 3 -> 29) 
f) modify(x, 1 -> x(I), 2 -> x(2)) 

4. Define a composite type Student that has the fields name, data_oCbirth, 
college, and grade. Write the specifications for the processes Register, 
Change_Name, and Get_Info. Register takes a value of Student and adds 
it to an external variable student_list, which is a sequence of students. 
Change_Name updates the name of a given student with a given name. 
Get_Info provides all the available field values for a given student name 
(assuming that the student name is unique). 



11 

The Map Types 

Different level associations between two sets can be defined by different math­
ematical notions. A relation defines a relaxed association by providing a set 
of pairs: an element in the domain may be associated with several elements 
in the range, and vice versa. A function defines a more restricted association 
between elements in its domain and range: an element in the domain can be 
associated with only one element in the range. Such an association is often 
known as mapping. As we have introduced in Chapter 4, the domain and range 
of a function can be infinite sets (e.g., natO, int, real), therefore the function 
itself can describe an infinite mapping from its domain to its range. However, 
it is often sufficient to use finite mappings in software specifications because 
computer software deals with a finite number of data items. For example, 
a table describing cars and their makers usually contains a finite number of 
pairs with the property that a car is made by only one maker. 

In this chapter, we introduce map types by discussing the important issues, 
such as the definition of map types, the manipulation of map values, and the 
application of map types in process specifications. 

11.1 What Is a Map 

A map is a finite set of pairs, describing a mapping between two sets. The set 
whose elements are to be mapped to another set is known as the domain of 
the map, while the set whose elements are to be mapped to from the domain 
is called the range of the map. Figure 11.1 illustrates a simple map whose 
domain is the set {a, b, c, d} and range is {I, 2, 3}. Both a and b in the 
domain are mapped to 2 in the range; c is mapped to 3; and d is mapped 
to 1. 

A map (or map value) is represented with a notation similar to the set 
notation: 
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Fig. 11.1. A simple map 

Each a_i -> b_i (i=1..n) denotes a pair which is known as mapZet, indicating 
that a_i in the domain is mapped to b_i in the range. For example, the map 
illustrated in Figure 11.1 is given as follows: 

{a -> 2, b -> 2, C -> 3, d -> I} 

Since a map is a set of maplets, the order of maplets are not significant, 
that is, changing the order of maplets of a map does not change the map itself. 
As mentioned in the beginning of this chapter, a map describes a many-to-one 
mapping in general: it allows the mapping from many elements in the domain 
to the same element in the range, but does not allow the mapping from the 
same element in the domain to different elements in the range. The empty 
map is given in the form 

{->} 

It has the same meaning as the empty set, but takes a different syntax from 
that of the empty set in order to help type checking of specifications. 

11.2 The Type Constructor 

The map type constructor is a function that constructs a map type for the 
given domain type T1 and range type T2, and the constructed type is written 
as 

map Tl to T2 

The map type provides a maximum mapping from T1 to T2, and any map 
value of this type defines a subset of this maximum mapping. Note that T1 
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and T2 in the map type may be any kinds of types, including infinite types, 
such as nat and int, but all map values of the map type must be finite. For 
example, given the type: 

map nat to char 

the following map values can be constructed: 

{1 -> 'a', 2 -> 'b', 3 -> 'c', 4 -> 'd'} 
{5 -> 'u', 15 -> 'v', 25 -> 'w'} 
{1O -> 'x', 20 -> 'y'} 
{50 -> 'r'} 
{->} 

As with the other types introduced so far, we can also declare map type 
identifiers and then use them to declare variables in modules. 

11.3 Operators 

In this section, we explain all the operators defined on the map types. The 
operators include two kinds: constructors and operators. The constructors 
provide a way to form a map value from the element types, whereas the other 
operators manipulate map values. 

11.3.1 Constructors 

There are two constructors: map enumeration and map comprehension. A map 
enumeration is given as a set of map lets, as we have illustrated in Section 1l.l. 
Its general format is: 

For example, the following are some maps: 

{3 -> 'a', 8 -> 'b', 10 -> 'c'} 

{" Hosei University" -> "Japan", 
"University of Manchester" -> "U.K.", 
"Jiaotong University" -> "China"} 

{1 -> s(1), 2 -> s(2), 3 -> s(3)} 
where s is a sequence of integers containing three elements. 

A map comprehension is similar to a set comprehension, except that the 
elements of such a set are maplets. The map comprehension takes the form 
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{a -> b I a: Tl, b: T2 & P(a, b)} 

This expression defines a map composed of all those maplets whose elements 
a and b satisfy the property P(a, b). As with set types, if they are unnecessary 
or obvious, the bindings in the map comprehension can be omitted. Thus, the 
following form of map comprehension can be possible: 

{a -> b I P(a, b)} 

It is also essential that such a map comprehension does not violate the 
fundamental invariant of map values that one element in the domain can be 
mapped to only one element in the range. For example, 

, {x -> y I x: {5, 10, 15}, y: {10, 20, 30} & y = 2 * x} = 
{5 -> 10, 10 -> 20, 15 -> 30} 

defines a legal map, but the following map comprehension defines an illegal 
map: 

{x -> y I x: {1, 2, 3}, y inset {5, 10, 15, 20} & y > x * 5} = 
{1 -> 10, 1 -> 15, 1 -> 20, 2 -> 15, 3 -> 20} 

11.3.2 Operators 

The operators on map types take some maps as their arguments and yield 
other maps. All the operators available on map types are discussed below one 
by one. 

Map application 

Let m be a map: 

m: map T1 to T2; 

Then, m can be applied to an element in its domain to yield an element in 
its range. The map application takes the same syntax as that of the function 
application. Thus, 

m(a) 

denotes an application of map m to element a. For example, let 

m1 = {5 -> 10, 10 -> 20, 15 -> 30} 

Then, 



ml(S) = 10 
ml(lO) = 20 
ml(lS) = 30 

Domain and range 

Let m be a map: 

m: map Tl to T2; 
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Then the domain of m is a subset of Tl and its range is a subset of T2, which 
can be obtained by applying the operators dom and rng, respectively. When 
applied to a map, the domain operator dom yields the set of the first elements 
of all the maplets in the map: 

dom: map Tl to T2 - > set of Tl 
dom(m) == {a I a: T1 & exists[b: T211 m(a) = b} 

For example, by applying dom to the map ml given previously, we derive 

dom(ml) = {S, 10, IS} 

The range operator rng, when applied to a map, yields the set of the second 
elements of all the maplets in the map. This operator is formally defined as 
follows: 

rng: map Tl to T2 -> set of T2 

rng(m) == {m(a) I a inset dom(m)} 

Applying rng to the map ml, we get 

rng(ml) = {10, 20, 30} 

Domain and range restriction to 

Given a map and a set, we may sometimes want to obtain the submap of the 
map whose domain or range is restricted to the set. Such operations are known 
as domain restriction to and range restriction to, respectively. The operator 
for domain restriction to is domrt and the operator for range restriction to 
is rngrt: 

domrt: set of T1 * map T1 to T2 -> map T1 to T2 
domrt(s, m) == {a -> b I a inset inter(s, dom(m)) and b = m(a)} 
rngrt: map Tl to T2 * set of T2 -> map Tl to T2 
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rngrt(m. 5) == {a -> b I a: dom(m) & b = mea) and b inset inter(5. 
rng(m))} 

For example, let m1 = {5 -> 10. 10 -> 20. 15 -> 30} and 51 = {5. 1O}. Then, 

domrt(51. m1) = {5 -> 10. 10 -> 20} 
rngrt(m1. 51) = {5 -> 10} 

Domain and range restriction by 

In contrast with "domain restriction to" and "range restriction to" operations, 
we may sometimes want to derive a submap of a map whose domain or range is 
the subset of the domain or range of the map that is disjoint with a given set. 
Such operations are known as domain restriction by and range restriction by, 
respectively. The operators for these two operations are domrb and rngrb, 
respectively, and they are defined as follows: 

domrb: set of T1 * map T1 to T2 -> map T1 to T2 
domrb(5. m) == {a -> b I a inset diff(dom(m). 5) and b = mea)} 

rngrb: map Tl to T2 * set of T2 -> map T1 to T2 
rngrb(m. 5) == {a -> b I a: dom(m) & b = mea) and b inset 

diff(rng(m). 5)} 

domrb(5. m) yields a submap of map m whose domain is the subset of 
dom(m) disjoint with set 5, while rngrb(m. 5) denotes the submap of m 
whose range is the subset of rng(m) disjoint with 5. 

For example, the following results are derived by applying these two op­
erators to the map m1 and the set 51 given previously: 

domrb(51. m1) = {15 -> 30} 
rngrb(m1. 51) = {10 -> 20. 15 -> 30} 

In fact, the result of domrb(51. m1) is obtained by eliminating the maplets 
from the map m1 whose first element is a member of set 51, while the result 
of rngrb(m1. 51) is obtained by removing the maplets whose second element 
belongs to set 51. 

Override 

Overriding is an operation of performing a union of two maps m1 and m2, 
denoted by override(m1. m2), with the restriction that if a maplet in map m2 
shares the first element with a maplet in m1, the resulting map includes only 
the maplet in m2 as its element. Formally, the operator override is defined 
as follows: 
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override: map T1 to T2 * map T1 to T2 - > map T1 to T2 
override(m1, m2) == {a -> b I a: union(dom(m1), dom(m2)) & 

a inset dom(m2) => b = m2(a) and 
a notin dom(m2) => b = m1(a)} 

For example, let m1 = {5 -> 10, 10 -> 20, 15 -> 30}, m2 = {10 -> 5, 15 -> 
50, 4 -> 20}. Then, 

override(m1, m2) = {1O -> 5, 15 -> 50, 4 -> 20, 5 -> 10} 

Such an operation can be done in several different ways, but a simple way to 
do it is to first include all the maplets in m2 in the resulting map override(m1, 
m2), and then expand it by including those maplets in m1 whose first elements 
are not in the domain of m2 (i.e., dom(m2)). Note that override is not 
commutative, that is, override(m1, m2) <> override(m2, m1) in general, as 
we can see by comparing override(m1, m2) given above and override(m2, 
m1) given here 

override(m2, m1) = {5 -> 10, 10 -> 20, 15 -> 30, 4 -> 20} 

However, if the domains of maps m1 and m2 are disjoint, the overrid­
ing operation is the same as the union of m1 and m2 (regarding these two 
maps as sets of maplets). Only under this restriction is the override operator 
commutative, that is, 

override(m1, m2) = override(m2, m1) 

Suppose we change the map m 1 given previously to the map 

m1 = {5 -> 10,8 -> 20, 2 -> 30} 

Then, the following result can be easily derived: 

override(m1, m2) = override(m2, m1) 

because 

override(m1, m2) = override(m2, m1) = 
{5 -> 10, 8 -> 20, 2 -> 30, 10 -> 5, 15 -> 50, 4 -> 20} 

Map inverse 

Map inverse is an operation that yields a map from a given map by exchanging 
the first and second elements of every maplet of the given map. The operator 
for the map inverse operation is inverse: 
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inverse: map T1 to T2 - > map T2 to T1 
inverse(m) == {a -> b I a: rng(m), b: dom(m) & a = m(b)} 

For example, by applying the inverse operator to map m1 = {5 -> 10, 8-> 
20, 2 -> 30} we get another map: 

inverse(m1) = {10 -> 5, 20 -> 8, 30 -> 2} 

However, we must bear in mind that if the map defines a many-to-one rather 
than a one-to-one mapping between its domain and range, application of 
the inverse operator is undefined, because it would yield a map violating 
the fundamental property of maps that one element in the domain can be 
mapped to only one element in the range. Consider the application of the 
inverse operator to the map m2 = {10 -> 5,15 -> 5, 4 -> 20} as an example: 

inverse(m2) = {5 -> 10, 5 -> 15, 20 -> 4} 

This result is no longer a map but a relation, because element 5 is mapped to 
two different elements: 10 and 15. 

Map composition 

By composing two maps, we can construct a more complicated map. To make 
such a composition possible, the range of the first map must share the same 
type as for the domain of the second map. The operator for map composition 
is comp: 

comp: map T1 to T2 * map T2 to T3 - > map T1 to T3 
comp(m1, m2) == {a -> b I a: dom(m1), b: rng(m2) & 

exists [x: rng(m1)] I x inset dom(m2) and 
x = m1(a) and b = m2(x)} 

For example, suppose m1 = {5 -> 10, 8 -> 20, 2 -> 4}, m2 = {1O -> 5, 15 
-> 5, 4 -> 20}j then, the composition of m1 and m2 is: 

comp(m1, m2) = {5 -> 5, 2 -> 20} 

The composition is derived by considering the facts: m1(5) = 10 and m2(10) 
= 5, m1(2) = 4, and m2(4) = 20, and there is no element 8 in the domain of 
m2. 

Like the override operator, comp is also not commutative. Thus, com­
position comp(m1, m2) is usually different from composition comp(m2, m1). 
Sometimes, composition comp(m2, m1) may not make sense because of type 
incompatibility (give a specific example as an exercise). 
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Equality and inequality 

As with values of any other types, maps can also be compareo. to determine 
whether they are the same or not. We use ml = m2 to mean ml is identical 
to m2, and ml <> m2 to mean ml is different from m2. Formally, 

ml = m2 <=> 
dom(ml) = dom(m2) and rng(ml) = rng(m2) and 
forall[a: dom(ml), b: rng(ml)ll b = ml(a) <=> b = m2(a) 
ml <> m2 <=> not ml = m2 

The map m 1 is identical to m2 if and only if they have exactly the same 
maplets. Otherwise, they are not identical. 

Note that although a map is a set of maplets, the set operators are not 
applicable to maps because maps and sets are objects of different types. SOFL 
is a strong typed language that usually does not allow the operators on one 
type to be applied to the values of different types, except clearly polymorphic 
operators, such as +, =, <>, and modify. 

11.4 Specification Using a Map 

Let us reconsider the definition of type Account, declared in Section 4.15 of 
Chapter 4, with a map type. Since every customer's account number is unique 
and it is common to allow one customer to have only one account of the same 
kind in the same bank, the customer account can be modeled as a map from 
the account number to the account data, including password and balance. 
The real system dealing with customer accounts can be much more complex 
than the model we are discussing, but the primary purpose of our simplified 
example is to show how map types can be used to model data structures. The 
principle of this technique can be extended to deal with more complicated 
cases. 

For brevity, we do not provide a full picture of the module in which the 
Account and the related processes are defined; rather, we give only the neces­
sary parts in the module so that the problem can be well focused. First, the 
type Account is defined as a map type with the type AccountNumber being its 
domain and AccountData being its range: 

Account = map AccountNumber to AccountData; 
AccountNumber = nat; 
AccountData = composed of 

password: nat 
balance: real 

end; 
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We then redefine the processes Check_Password, Withdraw, and Show_Balance 
by simplifying their interfaces pre and postconditions. 

process Check_Password(card_id: AccountNumber, pass: nat) 
confirm: bool 

ext rd account_file: Account 
post card_id inset dom(account_file) and 

account_file(card_id).password = pass and confirm = true 
or 

card_id notin dom(account_file) and confirm = false 
comment 

If the given account number card_id and password pass are matching with the 
account_file, the output confirm will be true; otherwise, it will be false. 

end_process; 

process Withdraw(card_id: AccountNumber, amount: real) cash: real 
ext wr account_file: Account 
pre card_id inset dom(account_file) and amount <= 

account_file( card_id). balance 
post account_file = overrideCaccount_file, 

{card_id -> mk_AccountDataCaccount_file( card_id). password , 
-account_file(card_id).balance - amount)}) and 

cash = amount 
comment 

The precondition requires that the provided card_id be registered in the ac­
count_file and the requested amount to withdraw be smaller than or equal to 
the current balance. The updating of the current balance of the account with 
the account number card_id is expressed by a map overriding operation: the up­
dated balance is the result of subtracting the requested amount from the current 
balance. 

end_process; 

process Show_Balance(card_id) bal: real 
ext rd account_file: Account 
pre card_id inset dom(account_file) 
post bal = account_file( card_id).balance 
comment 

The account number card id must exist in account_file before the execution of 
the process. The output variable bal is equal to the current balance, which is 
reflected by a map application in the postcondition. 

end_process; 

The simplicity of process specifications may be affected by using different 
data structures for modeling the data items involved. The process specifica­
tions given in Section 4.15 of Chapter 4 are more complicated than those given 
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just above. Of course, in this particular case the complexity of the process 
specifications are due not only to the use of map data structure, but also due 
to the simplification of interfaces of the processes. 

11.5 Exercises 

1. Describe the similarity and difference between a map and a function. 
2. Given two sets T1 = {I, 2}, T2 = {la, ll}, construct a map type with 

Tl being its domain type and T2 being its range type, and enumerate all 
the possible maplets of the map type. 

3. Let ml and m2 be two maps of the map type from natO to natO; ml = 
{I -> 10, 2 -> 3, 3 -> 30}, m2 = {2 -> 40, 3 -> 1, 4 -> 80}, and s = 
{I, 3}. Then, evaluate the following expressions: 

a) dom(ml) 
b) dom(m2) 
c) rng(ml) 
d) rng(m2) 
e) domrt(s, ml) 
f) domrt(s, m2) 
g) rngrt(ml, s) 
h) rngrt(m2, s) 
i) domrb(s, ml) 
j) domrb(s, m2) 
k) rngrb(ml, s) 
1) rngrb(m2, s) 

m) override(ml, m2) 
n) override(m2, ml) 
0) inverse( m 1) 
p) inverse(m2) 
q) comp(m1, m2) 
r) comp(m2, ml) 
s) ml = m2 
t) m1 <> m2 

4. Give a concrete example to explain that comp(ml, m2) is defined, whereas 
comp(m2, ml) is undefined. 

5. Define BirthdayBook as a map type from the type Person to the type 
Birthday, and specify the processes Register, Find, Delete, and Update. 
All the processes access or update the external variable birthday _book of 
the type BirthdayBook. The process Register adds a person's birthday to 
birthday _book; Find returns the birthday of a person in birthday _book; 
Delete eliminates the birthday for a person from birthday _book; and Up­
date replaces the wrong birthday existing in birthday _book with a correct 
birthday. 
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The Union Types 

A compound object may come from different types. For example, a compo­
nent of a World Wide Web home page may contain normal text, pictures, 
audio data, and so on, each belonging to a different category. To model such 
compound objects using only one of the types introduced so far may not be 
sufficient. Types composed of several other types are needed to cope with this 
problem. 

The union type is a solution to this problem. A union type is a union of 
several types: it contains all the elements of all the constituent types, and 
each element of the union type belongs to one of its constituent types. 

In this chapter, we introduce the union types and the related operators. 
An example is given to illustrate the use of the union types. 

12.1 Union Type Declaration 

Let TI, T2, ... , Tn denote n types. Then, a union type T constituted of these 
types is declared in the format 

T = T1 I T2 I ... I Tn 

Thus, a value of T can come from one of the types TI, T2, ... , Tn. It is possible 
that types TI, T2, ... , Tn are not disjoint, but a union type should usually 
be formed by disjointed constituent types so that, for any value of type T, it 
can be precisely determined, by the is function (to be introduced later in this 
chapter), to which constituent type it belongs. For example, the union type 
Mixture that is composed of the three types string, char and set of nat is 
declared as 

Mixture = string I char I set of nat 
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Thus, the following values belong to type Mixture: 

"Hosei University" 
"SOFL" 
'b' 
'5' 
{3, 5, 8} 
{10, 20, 100} 

Since values of a union type are mixtures of values of different constituent 
types, it is difficult to build operators for manipulating them properly; but, as 
with the other types introduced so far, values of a union type can be compared 
to determine their equality and inequality. For example, 

"Hosei University" =" SOFL" <=> false 
'b' = 'b' <=> true 
'5' <> {3, 5, 8} <=> true 
"SOFL" = {10, 20, 100} <=> false 

12.2 A Special Union Type 

To specify some functions, it may need a union type that contains any possible 
value of any possible type in a specific system. For example, we may want a 
process to display the value of any possible type (onto an output device), such 
as an integer, a character, a string, a sequence of integers, a set of composite 
objects, and a set of classes. To allow the function of the process to be specified 
on an abstract level, one solution is to define the output device as a sequence 
of the values of a special union type that contains any possible value. We 
use the keyword universal to denote the special union type. Thus, the type 
declaration 

A = universal 

defines that type A contains any possible value of any possible type, and the 
variable declaration 

v: A 

allows variable v to take any possible value. 
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12.3 Is Function 

When writing specifications there may be a situation that requires a precise 
type of a given value. Such a type can be determined by applying a built-in 
function, known as is function. The format of the is function is 

is_ T(x) 

The keyword is must be used when forming such a function. This function is 
in fact a predicate that yields true when the type of value x is T; otherwise, 
it yields false. Consider the function application: 

is_string(" Hosei University") 

It yields true because value" Hosei University" belongs to type string. Since 
this value is also a value of type Mixture, we have the following result as well: 

is_Mixture(" Hosei University") <=> true 

The is function is applicable to values of any types available in SOFL. Some­
times, a value like 5 can be a value of different types, such as natO, nat, int, 
and real; the application of the is function to all the types on value 5 yields 
the truth value true. For example, 

is_natO(5) <=> true 
is_nat(5) <=> true 
is_int(5) <=> true 
is_real(5) <=> true 

12.4 A Specification with a Union Type 

We take the identifier of SOFL as an example to illustrate the use of union 
types. An identifier is defined as a string of characters, including English 
letters, digits, and the underscore mark, but the first character must be an 
English letter. The type Identifier, whose values have a structure conforming 
to this restriction, is defined as follows: 

Identifier = EnglishLetter I EnglishLetter * IdentifierBody 
IdentifierBody = EnglishLetter I Digit I Underscore I 

IdentifierBody * Identifier Body 
EnglishLetter = {<a>. <b>. <c> ..... <X>. <V>. <Z>} 
Digit = {<O>. <1>. <2>. <3>. <4>. <5>. <6>. <7>. <8>. <9>} 
Underscore = {<_>} 
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The union type Identifier is composed of type EnglishLetter and the product 
type EnglishLetter * IdentifierBody that is defined in terms of type English­
Letter and IdentifierBody. The type IdentifierBody is then defined recursively 
as the union type of EnglishLetter, Digit, Underscore, and the product type 
IdentifierBody * IdentifierBody. Types EnglishLetter, Digit, and Underscore are 
defined as the enumeration types. Formally, all the 52 English letters (both 
lower case and upper case letters) of the enumeration type EnglishLetter need 
to be given in the list, but for brevity, we use ... to denote the omitted letters 
in the type. As we have explained before, despite a value of an enumeration 
type being contained in a pair of angle brackets, the brackets do not add any 
additional meaning to the value. For example, we should understand <c> as 
letter c rather than the string of the three characters <, c, and >, and <3> 
as digit 3 rather than the string of the three characters <, 3, and >. 

The values of type Identifier can be derived from this type definition. For 
example, the following are possible values of this type: 

mk_ldentifier( <a» 
mk_ldentifier( <b>, <1» 
mk_ldentifier( <b>, mk_ldentifierBody( <2>, <3») 
mk_ldentifier( <X>, mk_ldentifierBody( <_>, <3>)) 

These values represent the strings of characters, regardless of their syntax. So 
they can be more intuitively interpreted as the following strings: 

12.5 Exercises 

1. Define a union type School with the constituent types ElementarySchool, 
JuniorHighSchool, HighSchool, and University, assuming that all the con­
stituent types are given types. 

2. Let s1 and s2 be two variables of the type set of Mixture. Let s1 = {" Hosei 
University", {3, 5}, 'b'} and s2 = {"SOFL", 'a', 'b', {9}}. Evaluate the 
following expressions: 

a) card(s1) = card(s2) 
b) union(s1, s2) 
c) inter(s1, s2) 
d) diff(s1, s2) 
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3. Let a, b, c: Identifier. Evaluate the following expressions: 

a) is_ldentifier(a) 
b) is_Digit(b) 
c) is_EnglishLetter(c) 
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Classes 

We have discussed all the built-in types so far, such as basic, set, sequence, 
composite, product, map, and union types, but these types may not be power­
ful enough for the construction of large scale specifications due to the limited 
operators provided in each type. It is often the case that one needs to build 
one's own types on the basis of the built-in types to provide more flexible and 
powerful operations over the values contained in the types. Such a user-defined 
type is known as class. 

The aim of this chapter is to introduce class, an fundamental concept in 
object-oriented methods for software development [86], and the other related 
concepts. These concepts are intended mainly to help construct explicit spec­
ifications in SOFL. We start by defining the concepts of class and object, and 
then proceed to discussions of other important issues in object-oriented de­
sign and programming languges [18] [22], such as object identity, access control, 
inheritance, polymorphism, and generosity. 

13.1 Classes and Objects 

A class is a user-defined type, which defines a collection of objects with the 
same features. The features of objects include attributes, describing their data 
resources, and operations offering the means for manipulating their data re­
sources and providing functional services for other objects. An object is an 
instance of a class with a unique identity. 

For example, Student is a class that contains a set of specific students, as 
illustrated in Figure 13.1. Mike, Jean, and John are three students of the class; 
each of them has attributes id (identification number) and dept (department) 
he or she belongs to, and can perform the operations Study and Take_exam. 
These attributes and operations are defined in class Student, which imposes 
a specification requiring that all the objects in the class have these attributes 
and operations, but the attributes have no concrete values until an object is 
instantiated. For example, object Mike has 001 as its id and CS (Computer 
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Mike 
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Take_exam Take3xam 

Object 2 Object 3 

Fig. 13.1. An illustration of class and objects 

Science) as its dept; Jean has 005 as its id and CE (Computer Engineering) 
as its dept; and John has 008 as its id and EE (Electronic Engineering) as its 
dept. 

13.1.1 Class Definition 

To use a class as a user-defined type for creating objects, the class must be first 
defined. The structure of a class takes a format similar to that of a module, 
introduced in Chapter 4, except the following differences: 

• The keyword class is used instead of module to make a clear distinction 
between the two similar but different concepts. 

• The process specification is replaced with method specification, so the 
keyword method is used instead of process for consistency with the 
convention of terms used in the object-orientation. A method is allowed 
to have only one or no output, and to have only one port for both input 
and output. 

• The behav part in a class is optional: a CDFD can be drawn for improving 
the readability of the class, but can be omitted if unnecessary. 

• A method can be defined either by an implicit specification or explicit 
specification, but cannot be decomposed into another lower level CDFD. 
Note that not any method can be defined using implicit specifiction, it may 
cause confusion in some cases. In SOFL there is a strict rule for defining 
methods using pre and postconditions: only those methods that do not 
change objects possibly received from either input or external varaibles of 
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the methods can be defined using pre and postconditions. In other words, 
the methods that may change the objects received from input or external 
variables must be defined as explicit specifications. 

Thus, a class in general has the following structure: 

class (jlasslVa~e / Super(jlasslVa~e; 
const (jonstantDeclaration; 
type TypeDeclaration; 
var VariableDeclaration; 
inv TypeandStatelnvariants; 
behav CDFD_no; 
method Init; 
~ethod_l; 

~ethod_2; 

~ethod_n; 
function_l ; 
function_2; 

function_~; 

end_class; 

A class must have a name, like Student explained in the previous example, and 
may have a superclass, denoted by Super(jlasslV a~e; a slash / is used to sepa­
rate the class name and the superclass name. The notion of super class will be 
discussed in Section 13.4 in detail. The variables declared in the var section 
are known as attribute variables, which will be used to denote attributes of 
objects of the class. The method Init is the constructor that has a function 
similar to the initialization process Init of a module: to initialize the attribute 
variables when an object is instantiated from the class. Since method Init is 
supposed to initialize all the attribute variables of the class, the listing of all 
the attribute variables as its external variables can be omitted for conciseness. 
A method has the same structure as that of a process, except the constraints 
given above. In fact, both methods and processes define operations, so they 
have no substantial differences. However, since the ways of using processes and 
methods are quite different, which reflects different development paradigms, 
they are deliberately distinguished by different terms. The principle for adopt­
ing the terms is to be as consistent as possible with the term conventions being 
adopted in both the structured method and object-oriented method commu­
nities. Modules and processes are used for constructing a specification in a 
model-oriented fashion, while classes and methods are employed to construct 
specification components used by other parts of the entire specification in an 
object-oriented manner. Both approaches help each other in the construction 
of large-scale systems. 
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All the other parts in the outlined structure of a class, such as const, 
type, inv, behav, and function, are interpreted in exactly the same way as 
those of a module. However, we must bear in mind that the declarations of 
constants, types, invariants, CDFD, and functions are directly associated with 
the class itself, whereas attributes and methods are associated with specific 
objects when they are created. That is, the attributes and methods of objects 
must be accessed through the reference of the objects rather than through 
the reference of the class from which the objects are instantiated, as we will 
discuss in detail in the next section. 

Now let us take class Student, given previously as an example, to illustrate 
the definition of class. 

class Student; 

type 

Record = string * real; 1* A record a pair: (course title, score). */ 

var 

id: natO; 
dept: Dept; 
study _records: set of Record; 
/* All the records are different becuase of their different id * / 

inv 

id <= 9999; 

method Init 0 
post id = 0 and dept = «S> and study_records = { } 
end_method; 

method Study( course: string) 
ext wr study _records; 
post study_records = unionCstudy_record, {mk_Record(course, O)}) 
end_method; 
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method Take_exam(course: string) score: real 
ext wr study_records; 
post (exists [x: natO] I 0 <= x <= 100 and score = x) and 

study_records = union( diffCstudy _records, 
{mk_Record( course, O)}), {mk_Record( course, score)}) 

end_method; 

The two attribute variables id and dept of class Student are declared with 
types natO and {<CS>, <CE>, <EE>}, an enumeration type, respectively. 
The invariant of the class requires that the id of every object be less than 
or equal to 9999 for administrative reasons. The constructor Init is a special 
method: it initializes the attribute variables of the class when an object is 
instantiated. The two methods Study and Take_exam are defined in the class. 
Study takes a course as input and registers the course title course, together 
with the score 0 (the status before an examination), in the attribute (external) 
variable study_records. The method Take_exam takes a course as input and 
provides a score as the result of the method. In addition, it also updates the 
attribute variable study_record by replacing the pair mk_Record(course, 0) 
with the pair (course, score) in study_record. 

13.1.2 Objects 

An object of a class is instantiated from a class through the operator new. 
To hold an object, we need to have a variable of the class declared, 

obj: C; 

where C is a class, presumably defined somewhere else in the specification, 
and obj is a variable of class C. An object to be held by the variable obj is 
then instantiated in the form 

obj := new C; 

The attributes of object obj are initialized by the constructor InitO of class C. 
For simplicity, we allow a class to provide only one constructor named Init. 
The definition of the constructor InitO cannot be omitted if the class has at 
least one attribute variable and can be omitted if there is no attribute variable 
defined in the class. 

Let us consider the class Student as an example. Suppose we declare 

s: Student; 
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then, we derive an object by applying the new operator to the class Student: 

s := new Student; 

According to the specification of constructor InitO of the class Student given 
in the previous section, object s satisfies the following properties: 

s.id = 0 and s.dept = <CS> and s.study_records = { } 

where s.id, s.dept and s.study_records refer to the attributes id, dept, and 
study _records of the object s, respectively. 

13.1.3 Identity of Objects 

After an object is instantiated, it is assigned to a unique identity distinguishing 
it from other objects, and this identity is sustained throughout the "execution" 
of the entire specification. This is similar to the situation that a student is 
given a unique identification number after he or she enters a university and 
the number is kept in use until he or she graduates from the university. 

For the people who either write or read a specification, there is no need to 
know what exactly the identities of objects are. It would be sufficient to know 
that every object created is different, and kept alive until the termination of 
the execution of the entire system. 

13.2 Reference and Access Control 

After an object of a class is created, its attributes and methods can be used 
by other objects in their methods or by processes of a CDFD in their speci­
fications. Suppose obj is a variable of the class C in which attribute variables 
a_I, a_2, ... , a_n and methods m_l, m_2, ... , m_q are declared and defined. 
Formally, obj is declared as 

obj: C; 

where class C is defined as 

class C; 

var 

a_I: T _1; 
a_2: T _2; 
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m_l( ... ); 
m_2( ... ); 

m_q( ... ); 
end_class; 

where T _i (i =1..n) are types or classes. Then we refer to the attributes and 
methods of the object in the form 

and 

obj.m.J( ... ) 

where i = 1..n and j = 1..q. 
To achieve information hiding, all the attributes of an object must be 

private, that is, the attributes can only be accessed and updated directly by 
the methods of the object. Any access or updating of the attributes of an 
object by other objects must be done by means of the methods of the object. 
When an attribute a_i of an object obj needs to be used for evaluation of 
an expression or definition of other variables in another object, in principle a 
method whose function is to get the attribute needs to be invoked. However, 
to simplify the expression of referring to the attribute and to reduce the effort 
of defining methods to get attributes of object obj, we use the expression 
obj.a_i as a shortcut for the method invocation whose result is to yield a_i of 
object obj. Thus, the reference obj.a_i must not be used on the left hand side 
of an assignment operator := in an explicit specification outside the class of 
object obj, but it can be used either on the right hand side of an assignment 
statement (e.g., obj.a_i may be used in the expression E of the assignment 
statement x := E) or in an implicit specification (e.g., in the precondition or 
postcondition of a method) to mean the use (or reference) of the attribute 
a i. 

The form obj.m.J( ... ) denotes an invocation of the method m.J of the 
object obj, with the arguments provided in the parentheses. Such an invoca­
tion may change some of the attributes of object obj due to execution of the 
method, and may return some value as output. 

If method m.J returns any value as output, it must be used in an appro­
priate expression that uses the output of this method for evaluation. However, 
if it does not return any value, the reference of the method obj.m.J( .. ) must 
be used as an independent statement in the explicit specification of a method 
or process. Since the invocation obj.m.J( ... ) may cause the change of the 
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attributes of object obj, such an invocation must not be used in implicit spec­
ifications, either in the pre or postcondition of a process or method; it can 
only be used in an explicit specification of a method defined in a class or of a 
process defined in a module. 

For example, a class A is defined as 

class A; 

var 

s: Student; 

method InitO 
explicit 
s := new Student; 

end_method; 

method Check_Score(course: string) exam_score: natO 
ext wr s 
explicit 
exam_score := s.Take_exam(course); 

end_method; 
end_class; 

In this class, the attribute variable s is declared with class Student, and a 
method Check_Score is defined by an explicit specification. The variable s 
is initialized using the new operator in the explicit specification of the con­
structor Init. The execution of the method Check_Score will assign the score, 
resulting from the invocation of the method Take_exam of object s, to the 
output variable exam_score of the method Check_Score. Note that in order 
to ensure that the output variable of a method is defined by its explicit spec­
ification, there must exist at least one assignment statement that assigns an 
expression to the output variable, as it does for exam_score in the above 
example. 

13.3 The Reference of a Current Object 

When writing the specification of a method of a class, we may encounter the 
situation where some parameters of the method share the same name with 
some attribute variables of the class. If both the parameters and the attribute 
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variables need to be used in the specification of the method, a confusion in 
distinguishing the two variables will occur. To solve this problem, we use the 
keyword this to denote the current object, and reference the attribute variable 
through the current object this. Let us look at a very simple example below. 

class A; 
var 
xl: int; 
yl: real; 

method Add(xl: int, yl: real) 
ext wr this.xl 

wr this.yl 
explicit 
if xl > 5 
then this.xl := xl + yl 
else this.yl := xl + yl 

end_method; 

end_class 

Class A has two attribute variables, xl and yl, which share the same names 
as the two parameters of method Add. In the specification of Add, this.xl and 
this.yl refer to the attribute variables xl and yl, respectively, while xl and 
yl refer to the two parameters of Add, respectively. 

13.4 Inheritance 

13.4.1 What Is Inheritance 

It is quite possible that many classes share the same characteristics (attributes 
and methods), but some classes have fewer attributes and/or methods than 
other classes. The classes with fewer attributes and/or methods may be used as 
the basis to build the other classes with extended attributes and/or methods. 
For example, we can build another class known as Student_with_Scholarship 
that has all the attributes defined in class Student discussed previously and 
another additional attribute scholarship. Thus, a student with scholarship, an 
object of class Student_with_Scholarship, should also be a student (object) of 
class Student. In this case, we say class Student_with_Scholarship inherits from 
class Student. Thus, inheritance serves as a mechanism for building new classes 
based on existing classes, and therefore allows for the reuse of attributes and 
behaviors (methods) of some classes by some other classes. For example, we 
can define class Student_with_Scholarship as follows: 
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class Student_with_Scholarship / Student; 

var 

scholarship: int; 1* amount of the money provided by the scholarship * / 

method InitO 
post scholarship = 0 
end method; 
end_class; 

This definition explicitly indicates that class Student_with_Scholarship inher­
its from class Student by providing the class name Student after the slash sym­
bol /. Apart from the additional attribute scholarship, this class also treats 
the attributes, id and dept defined in class Student as its own attributes and 
the methods Study and Take_exam as its own methods. 

13.4.2 Superclasses and Subclasses 

In general, if class B inherits from class A, we define B in the form: 

class B / A; 

end_class; 

Thus, class B inherits all the attributes and methods defined in class A. In fact, 
by using this mechanism we are able to construct a class inheritance hierarchy: 
all classes lying below a class inherit from the class. As an example, we define 
another two classes C and D, both inheriting from class B: 

class C / B; 

end_class; 

class D / B; 

end_class; 
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Fig. 13.2. An inheritance hierarchy 

Thus, C inherits all the attributes and methods defined in both Band A. From 
the object point of view, an object of class C is also an object of classes Band 
A, but not vice versa. 

Figure 13.2 illustrates the inheritance hierarchy composed of these four 
classes. Since an inheritance hierarchy may include several level classes, we 
may want to emphasize the relation between two classes. If a class directly 
inherits from another class, we call this class a direct subclass and the class 
a direct superclass. For example, class B is a direct subclass of A, while A 
is a direct superclass of B. Any class lying below a class in the inheritance 
hierarchy is known as a subclass of this class, while this class is known as a 
superclass of the class lying below it. For instance, class C is a subclass of A 
and A is a superclass of C, but they are not a direct subclass and superclass 
of each other, respectively. 

Note that SOFL does not support multiple inheritance, that is, we do 
not allow a class to inherit from more than one superclass. There are two 
reasons for this. One reason is that, by enforcing the single inheritance, we can 
avoid the difficulties in dealing with multiple superclasses with homonymous 
properties (e.g., the same name for different attribute variables or methods 
in different superclasses) and in verifying specifications (e.g., reviewing and 
testing specifications). Another reason is that a multiple inheritance can be 
converted to a single inheritance through good design. Due to this restriction, 
it will not be difficult at all to transform a SOFL specification into a program 
of an object-oriented programming language allowing only single inheritance, 
like Java. 
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13.4.3 Constructor 

An object of a class in an inheritance hierarchy is instantiated by executing 
its constructor. If this class inherits from its direct superclass (if any), the 
unique constructor Init of its direct superclass is assumed to be automatically 
executed at the beginning of the execution of its own constructor. There is no 
need to write anything explicitly in the definition of the subclass constructor 
to indicate that the constructor of its superclass is invoked. This assumption 
is part of the semantics of SOFL; it should not be forgotten when interpreting 
a specification involving class hierarchies. 

For example, suppose an object of class C is instantiated and held in 
variable objl, which is written as 

objl: C; 
objl := new C; 

which invokes the constructor Init of class C. At the beginning of the execution 
of this constructor, the constructor Init of class B is assumed to be invoked 
in order to initialize all the attributes defined in class B; these initialized 
attributes are part of the attributes of the object of class C being created. 

13.4.4 Method Overloading 

Method overloading is a way to define different methods with the same name. 
SOFL allows several methods of the same name to be defined as long as these 
methods have different sets of parameters (based on the number of parame­
ters, the types of the parameters, and the order of the parameters). When an 
overloaded method is invoked, the number, types, and order of the arguments 
of the method in the invocation will be compared to those of the correspond­
ing parameters of the method in its definition, and the completely matched 
one will be executed. Method overloading is commonly used to create sev­
eral methods with the same name that perform similar tasks, but on different 
data types. For example, in the class Exam we define the overloaded method 
square to calculate the square of an integer and the square of a real number, 
respectively. 

class Exam; 

method square(x: int) res: int 
post res = x ** 2 
end method; 

method square{x: real) res: real 
post res = x ** 2 
end method; 
end class; 
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However, for simplicity, the principle of method overloading is not applica­
ble to the constructor Init of a class, that is, we do not allow two or more 
overloaded Init to be defined in the same class. If one wants to initialize some 
attribute variables with specific values, one can define a method to update 
the initialized attribute variables properly with the specific values. 

13.4.5 Method Overriding 

Method overriding is a mechanism that allows a subclass to redefine a method 
of its superclass while sustaining its interface. Let us take the class hierarchy 
given in Figure 13.2 as an example. Let a method ml be defined in class A. 
Then it is inherited by class B, as B is a subclass of A. However, for some 
reason, the definition of method m 1 may need to be modified. In this case, 
the following rules must be followed: 

1. The interface of method m 1 must be sustained: the name, input parame­
ters, and output parameters of method ml cannot be changed. 

2. Every other part of method ml is subject to change. 

Consider the extensions to classes A and B: 

class A; 

method ml(x: int) y: int 
post y ** 2 = x 
end method; 

method m20 

end_method; 
end class; 

class B / A; 

method ml(x: int) y: int 
post y ** 2 = x and y > 0 
end method; 
end_class; 

Let b be an object of class B. Then, the invocation of method ml in the 
form 
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b.ml{5} 

refers to the method m 1 defined in class B instead of the corresponding method 
in class A. It is a general principle that a method invocation of any object 
refers to the corresponding method definition given in its own class. If the 
invoked method is not defined in its own class, however, the invocation will 
search for the method definition given in the direct superclass of the current 
class, and then another higher level superclass, and so on, until the method 
definition is found in the class hierarchy in a bottom-up manner. For example, 
the method invocation 

b.m20 

refers to the definition of method m2 given in class A, although b is an object 
of class B, because m2 is not defined in class B, and B is a direct subclass of 
class A. 

13.4.6 Garbage Collection 

Garbage collection is an operation that collects the memory spaces occupied 
by lost objects (the objects no longer being used) during the execution of 
a program written in an object-oriented programming language (e.g., C++, 
Java). Since SOFL is a specification language that does not concern itself 
with memory issues, there is no need to address the garbage collection is­
sue in specifications. However, when a specification is implemented using an 
object-oriented programming language, the garbage collection issue must be 
addressed in order to achieve efficiency in the use of computer memory. 

13.5 Polymorphism 

Polymorphism is a mechanism by which a single method may be defined in 
more than one class and may take on different implementations in each of those 
classes. It is usually implemented dynamically on the basis of inheritance of 
classes. For example, if a variable of a class is used as an input variable to 
a method, then it may be bound to different objects coming from the same 
class as that of the variable or from its subclasses. For this reason, the method 
may behave differently, because different objects may use different methods 
(in terms of their functionality) that may share the same interface. 

Let us take classes A and B, declared previously, as an example, where B 
is a subclass of A. Suppose method d is defined in class D as follows: 



class D; 

method d{x: A) 
explicit 
x.ml(5); 
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Then, when method d is invoked, its input variable x can be bound to objects 
of either class A or class B. This is because objects of B can be treated as 
objects of A due to the inheritance relationship between B and A. However, 
if the signature of method d is changed to 

method d{x: B) 
explicit 
x.ml(5); 

end_method; 

then, since objects of class A are not regarded as objects of class B, invoking 
method d with an object of class A will be disallowed. This point is similar 
to the situation where a variable of type real can be bound to either real 
numbers, integers, or naturals, as both integers and naturals are real numbers, 
but not vice versa. 

Now, let us look at why method d could behave differently when x is bound 
to an object of class A or B. If x is bound to an object, say a, of class A, x.ml(5) 
means the invocation of method ml defined in class A. In other words, it is 
equivalent to the invocation a.ml(5). However, if x is bound to an object, say 
b, of class B, x.ml(5) means the invocation of method ml defined in class B, 
that is, it is interpreted as b.ml(5). As the same method ml may be defined 
differently in class A and B, the invocation of x.ml(5) in method d may behave 
differently, which may result in a different behavior of method d itself. 

An operator known as downcast allows us to convert an object of a class 
to that of its subclass. Such an operator is given in the form 

( className) 

where className is the name of the class to be converted to. When applying 
this operator to an object, say x given in the previous example, of class B, the 
object x is converted into an object of class B. For example, 

(B) x; 
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Thus, the invocation of methods defined in class B can be carried out by 
means of object x. To avoid any potential confusion in interpreting expressions 
involving the downcast operator, we specify that the downcast operator has 
the highest priority of application. For example, the method invocation 

(B) x.ml(5); 

means that the downcast operator (B) is first applied to object x, and then 
the method ml of the resulting object is invoked. A clearer expression may 
be obtained by using parentheses, 

((B) x).ml(5); 

The built-in boolean function is-function, introduced in Chapter 12 can 
also be applied to determine whether an object belongs to a specified class. 
For example, 

is_A(a) <=> true 
is_B(a) <=> false 
is_B((B) a) <=> true 
is_A(b) <=> true 
is_B(b) <=> true 

13.6 Generic Classes 

A class is a generic class if it allows type parameters that will be bound 
to concrete types (or type identifiers). The parameters are used as types to 
declare variables within the class definition, and must be bound to specific 
types when variables are declared using the class. 

Let A be a generic class with type parameter T. Then, A is declared in the 
form 

class A[T]; 

end class; 

For example, the type parameter T is used to declare a state variable sl and 
the input parameter of method m: 



13.6 Generic Classes 225 

class A[T]; 

var 

s1: seq of T; 

method m(s: set of T) 

end method; 

end class; 

Semantically, a generic class represents a mapping from a set of types to a set 
of classes. Consider class A[T] as an example, it is defined as 

A[ _]: Types -> Classes 

where instances of T are members of Types, that is, the collection of all possible 
types, and the class of A[T], derived by binding a specific member of Types to 
T, is a specific class of Classes denoting the collection of all possible classes. 

When a variable x is declared with class A, it is necessary to specify a 
concrete type, say real, for T. Thus, a declaration of x can be 

x: A[real]; 

The state variable s1 in class A then becomes a variable of type seq of real, 
and the parameter s will be bound to values of type set of real. 

Note that type parameter T of class A can also be bound to another class, 
but not another generic class because a generic class cannot be treated as 
a concrete type. Of course, if a language allows high-order functions, such a 
high-order class may be allowed. However, it is the principle of SOFL that 
the first order logic be a good balance between the expressive power and the 
simplicity for practice. 

The principle of generic class described above can be extended to multiple 
type parameters of classes. That is, we allow a class, say B, to be declared in 
the form 

class B[T _1, T _2, ... , T _n]; 

end class 

Thus, a variable y of class B may be declared as follows: 

y: B[int, real, set of natO] 
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13.7 An Example of Class Hierarchy 

In this section, we describe in detail how to build a class inheritance hierarchy 
by discussing an example of building classes Point, Circle, and Cylinder. Since 
any object of a point, circle, and cylinder has a center point, class Point is a 
sensible generalization of Circle and Cylinder. Therefore, we first define Point 
as a class, and then define Circle as a subclass of Point, and Cylinder as a 
subclass of Circle. 

Since a point consists of coordinates x and y, they should be declared as 
the attributes of class Point. To create points at required coordinates x and y, 
we define a method known as setPoint. Thus: 

class Point; 

var 

x, y: int; 

method InitO 
post x = 0 and y = 0 
end_method; 

method Set_Point(a: int, b: int) 
ext wr x, y 
post x = a and y = b 
end_method; 

Now we define Circle as a subclass of Point: 

class Circle / Point; 

const 

PI = 3.14; 

var 
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radius: real; 1* radius of Circle * / 

method InitO 
post radius = 0.0 
end method; 

method Set_Radius(r: real) 
ext wr radius: real 
pre r >= 0.0 
post radius = r 
end_method; 

method Create_Circle(xl, yl: int, r: real) 
ext wr x, y: int 

wr radius: real 
pre r >= 0.0 
explicit 

Set_Point(xl, yl); 
radius = r; 

comment 
This method is defined with a mixed specification of implicit and explicit styles. 
The precondition requires that parameter r be greater than 0.0, while the explicit 
specification defines how to create a circle. Note that attributes x and y inherited 
from class Point are accessed through method Set_Point of class Point, while 
attribute radius is directly assigned a value because it is defined in the current 
class Circle. 

end_method; 

method Compute_AreaO area: real 
ext rd radius 
post area = PI * radius ** 2 
end method; 

end_class; 
Since class Circle inherits from class Point, there is no need to carry out ex­
plicitly an initialization of the inherited attributes x and y in the specification 
of the constructor Init of class Circle, because it is assumed to be implicitly 
done through the Init method of the superclass Point by SOFL semantics. 

The method Set_Radius and Compute_Area are simple; the former sets 
the attribute radius with a new value r, while the latter computes the area of 
the current circle object. In the specification of Compute_Area, the constant 
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PI, which is defined in the const part of the class, is used in the definition of 
the area of the circle. 

The most interesting method in this class is Create_Circle; it shows a need 
for using a mixed specification of implicit and explicit styles. When defining 
conditions for variables of the built-in types (e.g., int, real, string, seq of 
real), pre and postconditions can be used, but when defining conditions or 
functions involving objects (e.g., an object of Point), explicit specification 
must be adopted (in this case, precondition can still be defined if it involves 
only variables of the built-in types). 

When writing an explicit specification for a method, since the primary 
concern is how the behavior of the method is provided by means of the invo­
cation of methods of the related objects, we must enforce the principle that 
attributes of a class can only be dealt with by means of its methods. For 
example, the method SeCPoint(xl, yl) is invoked to change the attributes x 
and y of the current object of the class Circle, instead of directly using the 
assignments x := xl and y := yl, because both attributes x and y as well as 
the method Set_Point are declared in the class Point. In contrast with this, 
attribute radius is defined using the assignment statement: radius := r, since 
it is an attribute of the current object of the class Circle. 

It is possible to provide both an implicit and an explicit specification for 
the same process, although there is no need to do so in general. In fact, implicit 
specification is designed for abstract design, while explicit specification is for 
detailed design. However, this is not a definitive rule for the use of implicit and 
explicit specifications; they should be utilized with flexibility, depending on 
the concrete application. Sometimes it may be easier to describe the behavior 
of a method in an explicit manner, while at other times it may be simpler to 
describe the behavior using an implicit specification. The fundamental point 
is that an explicit specification is needed if invocations of methods of related 
objects are inevitably used; otherwise, an implicit specification may be written. 

As a subclass of Circle, the class Cylinder is defined as follows: 

class Cylinder / Circle; 
var 
height: real; /* height of Cylinder * / 

method InitO 
post height = 0 
end_method; 
method Set_Height(h: real) 
ext wr height 
pre h >= 0.0 
post height = h 
end method; 
method Create_Cylinder(xl, yl: int, r, h: real) 
ext wr x, y: int 

wr radius: real 
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wr height 
pre r >= 0.0 and h >= 0.0 
explicit 
begin 
Set_Point(xl, y1); 
Set_Radius(r); 
Set_Height(h) 

end 
end_method; 
method Compute_Surface_AreaO area: real /*surface area of Cylinder 

ext rd radius: real 
explicit 
begin 

area := 2 * Compute_AreaO + 2 * Circle.PI * super.radius * height 
/*the constant PI defined in the class Circle is used. * / 

end 
end_method; 
method Compute_ VolumeO vol: real /*surface area of Cylinder * / 
ext rd height: real 
explicit 
vol := Computer _AreaO * height; 
/* a method of the superclass is invoked. * / 

end_method; 
end_class; 

Since the evaluation of the surface area of cylinder contains the invocation 
of the method Compute_Area of the superclass Circle, an explicit specifica­
tion is adopted for defining the method Compute_Volume. Compute_Area is 
defined as a public method in class Circle and inherited by class Cylinder; 
it is therefore used without referring to the superclass. In the method Com­
pute_Surface_Area, we need to refer to the private attribute variable radius of 
the superclass in order to compute the surface area of the cylinder object. We 
use super to represent the object of the direct superclass from which the cur­
rent class inherits, and therefore we use super.radius to refer to the attribute 
radius of the related object of the direct superclass. 

13.8 Example of Using Objects in Modules 

The example presented in this section aims to explain how classes, objects, 
and their methods are used in building modules, including CDFDs and process 
specifications. After building class Cylinder in the previous section, we now 
want to build a module whose CDFD describes the behavior of creating an 
object of Cylinder and carrying out some interesting evaluations, as illustrated 
in Figure 13.3. The center point of the bottom circle of the cylinder is created 
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by process Create_Point based on the input coordinates x and y. Then, store 
cylinder, an object of class Cylinder, is created by process Create_Cylinder, 
based on the inputs point, r (radius), and h (height). If radius r or height 
h is not positive, error message err is produced; otherwise, control data flow 
goto is made available. The copies of this data flow, gotol and goto2, are then 
used as the inputs of processes Evaluate_Area_ Volume and Draw_Cylinder, 
respectively. Process Evaluate_Area_ Volume calculates the surface area and 
volume of the cylinder, while Draw_Cylinder draws the cylinder on an output 
device (e.g., screen). 

The specification of the module whose behavior is described by the CDFD 
in Figure 13.3 is given below. For constructing this module, the classes Cylinder 
and Poi nt are assumed to have been defined previously. Thus, they can be 
directly used in the module. 

module Cylinder_Test; 
var 
cylinder: Cylinder; 

j*class Cylinder is assumed to have already been defined. * I 
process InitO 
explicit 
cylinder := new Cylinder 
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comment 
This process initializes the only store variable, cylinder. 
end_process; 
process Create_Point(x, y: int) point: Point 
explicit 
begin 

point = new Point; 
point = point.SeCPoint(x, y) 

end 
comment 
A point is created by the invocation of method Set_Point of 
object point. 
end_process; 
process Create_Cylinder(point: Point, r, h: real) err: string I goto: sign 
ext wr cylinder 
explicit 

if r >= 0.0 and h >= 0.0 
then 
begin 

cylinder := cylinder.Create_Cylinder(point.x, point.y, r, h); 
goto :=!; 1* making goto available * / 

end 
else 

err := "The radius or height of the cylinder is negative" 
comment 
This process creates an object cylinder of class Cylinder by invoking method 
Create_Cylinder of cylinder based on the inputs point, r, and h, if the radius 
r and the height h are both positive; otherwise, the error message err is 
generated. 
end_process; 
process Display _Error _Message( err: string) 
post Display(err) 
comment 
The error message err is displayed on an output device by means of the 
function application Display(err). The Display function is defined later in this 
module. 
end_process; 
process Evaluate_Area_ Volume(gotol: sign) area: real, vol: real 
ext rd cylinder 
explicit 
begin 
area := cylinder.Compute_Surface_AreaO; 
vol := cylinder.Compute_ VolumeO 

end 
comment 
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The surface area and vol are generated by assigning the results of invoking 
the methods Compute_Area and Compute_Volume of the object cylinder, 
respectively. 
end_process; 
process Draw_Display(goto2: sign) 
ext rd cylinder 
post Draw(cylinder) 
comment 
The drawing of cylinder is done by the function application Draw(cylinder). 
The function Draw is defined below. 
end_process; 
/* Display is intended to display the given error message on an output 

device *j 
function Display( meg: string): bool 
== undefined 
end _function; 
/* Draw is intended to draw the given cylinder on an output device * j 
function Draw(cylinder: Cylinder): bool 
== undefined 
end_function 
end_module. 
Since this module is built by applying the knowledge of SOFL we have 

introduced before, there is no need to explain this specification further, ex­
cept the point of defining the functions Display and Draw with the keyword 
undefined. The functions defined with the keyword undefined indicate that 
we do not care in the phase of formal specification how the error message is 
displayed and how the cylinder is drawn on an output device, because it is an 
implementation problem. However, if this point is a primary concern in either 
requirements or design, it should be defined precisely in the specification. 

13.9 Exercises 

1. Answer the following questions: 

a) What is a class? 
b) What is an object? 
c) What is inheritance? 
d) What are superclass and subclass? 
e) What is polymorphism? 
f) What is a generic class? 

2. Define the class Polygon as the superclass of the classes Triangle and Rect­
angle. Define an attribute variable area and a method Compute_Area in 
each of the classes, but with different specifications, depending on the 
specific shapes. 
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3. Specify a module whose CDFD creates a required shape that can be one 
of the objects of the two classes Triangle and Rectangle, and compute its 
area. 
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The Software Development Process 

The development of a complex software system needs a well-planned process to 
ensure its quality. There are already many existing process models, such as the 
waterfall model [32], the spiral model [106], the formal methods-based trans­
formation model, and the proto typing model [84], and each model indicates the 
necessary activities, resources, relations between activities and resources, and 
necessary technologies for carrying out the activities. Although each of these 
models has a different emphasis on the way systems are developed, they all 
share the commonality of using the waterfall model as the underlying concept. 

14.1 Software Process Using SOFL 

Developing software systems with SOFL takes a combined approach of the 
waterfall and transformation models. The overall process shares the similar­
ity with the waterfall model of emphasizing the activities of requirements 
analysis, design, and coding, but differs from the conventional transformation 
model in the way that transformations from high level documentation into 
low level documentation may not necessarily be strict refinements; it can be 
either an evolution or refinement, depending on the phase of the development. 
Feedbacks from later phases to early phases are usually inevitable, and such 
feedbacks may lead to changes of the documentation produced in early phases. 

Figure 14.1 illustrates the SOFL process model. One of the important fea­
tures of this model is to support the three-step approach for building formal 
specifications: informal, semi-formal, and formal specification. Each specifi­
cation contains different level information of the requirements and serves a 
different role. In this chapter we concentrate on the explanation of the three­
step approach to specification construction, with a simple example, and dis­
cuss briefly the related activities in the process model. The specific techniques 
for specification, verification and validation, and transformation from specifi­
cations to programs are described in detail from Chapter 15 to Chapter 19. 
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Fig. 14.1. The software development process using SOFL 

14.2 Requirements Analysis 

Requirements analysis is an activity to discover, understand, and document 
the user's requirements [51]. It is usually the starting point of building a sys­
tem, after the feasibility study of the system is completed with a positive 
conclusion. Since intensive communications between the developer and the 
end user are frequently involved, the documentation usually has to be written 
in a natural language, possibly coupled with other comprehensible notations 
(e.g., diagrams) _ If the system to be developed is rather complex and has a 
corresponding system in the real world, such as a banking system, the real 
world system may first need to be modeled in order to derive accurate and 
complete requirements_ Otherwise, the requirements can be documented in­
formally based on communications between the developer and the user. Such 
an informal documentation is known as informal specijication_ 

Trying to use a formal specification language from the very beginning 
would cause tremendous difficulties, not only because of the difficulty in com­
munication, but also due to the lack of sufficient knowledge about the require­
ments_ However, this does not mean that the preciseness of the specification is 
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not important. The point is that we need to strike a good balance between pre­
ciseness and readability of the specification. Such a balanced documentation 
is known as semi-formal specification. To achieve this kind of requirements 
specification, it is natural to take two steps: from informal to semi-formal 
specifications. 

14.2.1 The Informal Specification 

Informal specifications are often criticized as a cause of faults in software 
systems due to the ambiguity in expressions, but in fact the way of writing 
informal specifications should take the blame even more. A well organized 
specification can make a significant difference in reducing misunderstanding 
and complexity of requirements. Although it is difficult to define the concept 
of well organized specification, such a specification must clearly and concisely 
describe the following items: 

• the functions to be implemented 
• the resources to be used 
• the necessary constraints on both functions and resources 

At this stage, there is no need to pay much attention to the relations between 
functions, resources, and constraints; these will be the task for the stage of 
semi-formal specification. Let us take a simplified hotel reservation system 
as an example. An informal specification of this potential system is given as 
follows: 

1. The required functions: 

• Reserve room 
• Cancel reservation 
• Change reservation 
• Check in 
• Check out 

2. The resources of the hotel to be managed: 

• Single rooms: 100 
• Twin rooms: 50 
• Double rooms: 50 

3. The constraints reflecting the policy of the hotel: 

• One customer can reserve only one room each time. 
• Only customers with reservations can check into the hotel. 
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Fig. 14.2. The outline of an informal specification 

This informal specification consists of three parts: the required functions, the 
resources of the hotel to be managed, and the constraints reflecting the pol­
icy of the hotel. The functions includes the room reservation, cancellation of 
reservations, change of reservations, checking in, and checking out services. 
The room resources which the hotel manages include 100 single rooms, 50 
twin rooms, and 50 double rooms. The hotel has a policy requiring that a 
customer can reserve only one room each time and no customer can check 
into the hotel without reservation (e.g., for security reasons). 

This example only shows an abstract idea of how to organize an informal 
specification. For a more complex system, some of the functions may indicate 
a complex task. In that case, those functions may need to be described in 
detail, indicating their sub-functions. For this purpose, each function can be 
taken as an abstraction of a module in the specification. There is no need to 
strictly follow the syntax of the module in this stage, but conceptually each 
function being treated as a module will help in the creation of the semi-formal 
specification in the next stage. For example, if function Reserve room needs 
more detailed description, it can be written as follows: 

1.1 Reserve room includes the functions: 

• Check the vacancy. 
• Register the customer on the reservation list. 
• Issue the reservation number. 

In a similar way, the other functions in this example can also be decom­
posed into detailed sub-functions, if necessary. Thus, the entire informal spec­
ification may take the form illustrated in Figure 14.2. 
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An important point about an informal specification is that the specification 
needs to cover as many functions, resources, and constraints as necessary. In 
primary and critical functions, especially, resources and constraints must not 
be missed. In other words, achieving the completeness of requirements in the 
specification, in terms of the aspects to cover, is essential. Although there 
is no definitive formula to follow in discovering complete requirements, the 
field of Requirements Engineering has come up with many techniques to help 
analysts. Since this topic is beyond the scope of this book, we do not develop 
further along this line. 

14.2.2 The Semi-formal Specification 

The semi-formal specification derives from the informal specification. Its goal 
is to clarify and define all the functions, resources, and constraints, and to de­
termine the relations among those three parts contained in the informal speci­
fication. For example, which resources should be allocated to which functions, 
and which constraints should be applied to which functions and/or resources, 
and so on. To this end, the formal notation can playa positive role. Since the 
semi-formal specification still serves as a vehicle for communication between 
the developer and the end user, it should not be fully formal, because the user 
should not be expected to understand a specific formalism used for writing 
the specification. The most distinct feature of a semi-formal specification is 
that the format of the specification obeys the syntax of the specification lan­
guage, but the pre and postconditions of all processes in modules are defined or 
described in a natural language in an organized manner. This idea is similar 
to pseudocode for program design. 

Specifically, the tasks and features of a semi-formal specification should 
include: 

• Associating data resources, constraints, and functions in modules. That is, 
using modules to encapsulate the data resources, related data constraints, 
and the related operations that conform to the functional constraints. 

• The specification is defined as a set of related modules. Each module de­
fines either a function given in the informal specification or a derived 
function resulting from further decomposition of an existing function. 

• All the data used in the specification are defined with appropriate data 
types precisely in modules, but their constraints, which are usually given 
as invariants, are defined in an informal manner. In these definitions, types 
are allowed to be defined as given types, if necessary. 

• The CDFD for each module can be constructed when it is necessary to 
reflect user requirements for the inter relation of processes in the module. 
There is no strict restriction of whether CDFDs should be drawn for mod­
ules in semi-formal specifications; it all depends on whether it benefits the 
definition of the user requirements. 
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• All the requirements for operations are defined in terms of processes and 
functions in the associated module. Such definitions include the declaration 
of input data flows, output data flows, and external variables represent­
ing related stores. They also include the pre and postconditions, but the 
contents of the pre and postconditions are usually written in an informal 
manner. 

These features emphasize the importance of both grouping data resources, 
constraints, and operations, and clarifying data structures of all the related 
data items by defining formally corresponding data types. This is because 
strategies for performing functions often depend on the data structures of the 
data items to be processed. Also, by defining the data types the developer 
can get help in understanding the business of the real world system and the 
potential functional targets. 

For example, a semi-formal specification for the hotel reservation system is 
constructed. The outline of the specification that helps to explain the features 
of the semi-formality is given as follows: 

module Reservation_system; 
type 

FuliName = given; 
Customer = composed of 

name: FuliName 



address: string 
tel: natO 
pass_no: string 
reservation no: natO 

end; 
Room = composed of 

room_no: natO 
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room_type: {<Single>, <Twin>, <Double>} 
status: {<Reserved>, <Check In>, <Check Out>} 

end; 
ReservationList = map Customer to Room; 
Rooms = set of Room; 
ReservationRequest = given; 
Cancellation Request = given; 
ChangeRequest = given; 

var 

rlist: RservationList; 
rooms: Rooms; 

inv 

(1) every room in rooms is available for reservation; 
(2) the status of every customer on the reservation 

list rlist must be either <Reserved> or <Check In>; 

behav CDFD _1; 

process Reserve (res-req: Reservation Req uest) 
no-vacancy: string I res_no: natO 

ext rlist, rooms 
pre the customer is not on the reservation list rlist. 
post if there is vacancy 

then reserve a room for the customer and 
issue a reservation number. 

else produce a no_vacancy message. 
end _process; 

process Cancel(cancel_req: CanceliationRequest) 
confirmation: string 

ext rlist 
pre the customer is on the reservation list rlist 
post (1) delete the customer's reservation from rlist. 
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(2) release the reserved room resource by returning 
it to rooms so that it can be used for another 
reservation. 

end_process; 

process Change( chage-req: ChangeRequest) 
no-vacancy-mes: string I 
confirmation-mes: string 

ext rlist, rooms 
pre the customer is on the reservation list rlist 
post (1) if the requested room is available, cancel the 

original reservation and make a new reservation. 
(2) if the requested room is not available, generate 

a no vacancy message. 
end _process; 

process Check_ln( customer: Customer) 
no_reservation_mes: string I 
room no: natO 

ext rlist 
post (1) if the customer has a reservation recorded on 

the reservation list rlist, check in the customer. 
(2) if the customer has no reservation, a message 

of refusing check in is issued. 
end_process; 

process Check_Out(room_no: natO) 
warning_mes: string I 
bill_receipt: string 

ext rlist, rooms 
post (1) if room_no is associated with a check in customer 

on the reservation list rlist, delete the customer's 
information and release the room. 

(1.1) calculate the cost and print out the bill. 
(1.2) receive payment and print out receipt. 

(2) if a room to be checked out is associated with no 
customer on the reservation list rlist, generate a 
warning message. 

end_process; 
end module; 

In the specification, the module Reservation_System is defined. In this module, 
seven types are defined: FuliName, Customer, Room, ReservationList, Rooms, 
ReservationRequest, CancelRequest, and ChangeRequest. ReservationList defines 
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a map type from the composite type Customer to type Room; Rooms is de­
fined as a set type; FuliName, Reservation Req uest, Cancel Request, and Chang­
eRequest are all given types. These types are then used to declare the store 
variables rlist and rooms, and the input or output variables for processes Re­
serve, Cancel, Change, Check_In, and Check_Out. In the invariant part, two 
invariants are given to impose constraints on the type Rooms and the store 
variable rlist, respectively. In the specification of process Reserve, both pre and 
postconditions are given basically in English, but combined with an if-then­
else expression for readability. For the other processes, the specifications are 
written in English, but possibly in an enumerated manner. Of course, this does 
not oppose the use of any useful formal expressions, such as if-then-else and 
let expressions, together with informal descriptions. 

In the development of critical systems, such as safety-critical, security­
critical, and commerce-critical systems, providing formal specifications for 
the critical parts in the phase of requirements analysis may be necessary 
and cost-effective. But, in general, semi-formal specifications are sufficient for 
documenting user requirements. 

14.3 Abstract Design 

Abstract design transforms the semi-formal requirements specification into a 
formal specification that represents the architecture of the entire system and 
functional definitions of its components. There is a substantial difference be­
tween the requirements specification and the design specification: the former 
focuses on the description of the user's requirements, while the latter focuses 
on the architecture of the system to provide a solution to the problem. There­
fore, such a transformation is not only a formalization, but also involves the 
creation of a system structure that fulfils the requirements. 

In general, the system architecture is different from the structure of the 
requirements specification, but this does not mean that the semi-formal re­
quirements specification cannot be reused in the design. In fact, it is often the 
case that during the construction of the system architecture, some of the mod­
ules, types, processes, and functions in the semi-formal specification may be 
employed without any change to their interfaces and functionality, but some 
others may need to be modified, extended, or combined with others. In ad­
dition to formalizing the existing semi-formal specification, new specification 
components are usually created and integrated into the system to support the 
functionality of the entire system. 

Formalization of abstract design can benefit the system development in 
several ways. Firstly, the designer is given a chance to study the requirements 
rigorously and to clarify the ambiguity in the semi-formal specification. This 
would force the designer to communicate with the analyst who wrote the 
semi-formal specification. In the era of globalization in business and commu­
nication, distributed software projects carried out through the Internet are 
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increasing. Requirements analysis may be conducted in one place, while the 
design may be carried out in another remote location. In this situation, formal­
ization of abstract design based on the semi-formal requirements specification 
definitely helps the designer to study, clarify, and understand the require­
ments thoroughly. Secondly, the activity of formalization can also stimulate 
discussions among the developing team members, and therefore it would help 
to improve their understanding of their tasks. Finally, the design specifica­
tion serves as a firm foundation for the detailed design, coding, and testing; 
therefore, it can facilitate the transformation from the abstract design to the 
detailed design and, further, to the program. 

Apart from the criteria imposed to the semi-formal specification, a formal 
specification is required to satisfy the following additional criteria: 

• All the modules are integrated into a hierarchy of CDFDs. 
• All the given types are defined precisely. In other words, no given types 

are allowed in the formal specification, because their values are not defined 
precisely. 

• The pre and postconditions of every process and function in modules are 
written in the SOFL language, not in any informal language. 

Note that these criteria do not forbid the use of explicit specifications for 
processes, but implicit specifications are encouraged because the focus of this 
phase is on the architecture of the entire system and the functionality of its 
components; the issue of how the components are expressed in an algorithmic 
manner should be left to the detailed design. 

In principle, in the stage of abstract design, we do not encourage defining 
classes and then using their objects in process and function specifications. 
The reason is that, in the use of objects, invoking their methods may cause 
undesirable changes of the same object, and therefore cause confusion in pre 
and postcondition semantics. If methods of an object must be invoked in a 
process specification in order to define its behavior, an explicit specification 
must be adopted to define the process. In order to avoid undesired side effects, 
no object is allowed to be used as a parameter of a function in its specification. 

Let us consider the simplified hotel reservation system as an example to 
see how to transform a semi-formal specification into a formal specification. 
On the basis of our understanding of the semi-formal specification, a top-down 
approach is taken to design the formal specification. The top level CDFD in 
the specification aims at dealing with various requests, such as reservation, 
cancellation, and change of reservation, but takes one at each time. Then, 
the request is passed to a specific program component to process. Figure 14.4 
illustrates the top level CDFD of this system, and the associated module is 
given as follows: 



module SYSTEM_Hotel_Reservation; 

type 

Full Name = string * string * string; 
/*first name. middle name. and family name * / 
Customer = composed of 

name: FullName 
address: string 
tel: natO 
pass_no: string 
reservation no: natO 

end; 
Room = composed of 

room_no: natO 
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room_type: {<Single>. <Twin>. <Double>} 
status: {<Reserved>. <Check In>. <Check Out>} 

end; 
ReservationList = map Customer to Room; 
Rooms = set of Room; 
RoomNo = natO; 

var 

ext #rlist: Reservation List; 
ext #rooms: Rooms; 

inv 

forall[x: RoomNo] I 1 <= x <= 200; 
forall[x: rooms] I x.status = <Check Out>; 
forall[x: dom(rlist)] I rlist(x).status = <Reserved> or 

rlist(x).status = <Check In>; 

behav CDFD_Nol; 

process Hotel_Reservation(res_req: ReservationRequest I 
cancel_req: CancellationRequest I 
change_req: ChangeRequest I 
check_in_req: Customer I 
check_out_req: RoomNo) 
no_vacancy: string I res_no: nat I 
confirmation: string I 
no_vacancy_mes: string I 
confirmation_mes: string I 
no_reservation_mes: string I 
room_no: RoomNo I 
warning_mes: string I 
bill_receipt: string 
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Customer 
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Device 

Fig. 14.4. The top level CDFD of the Hotel Reservation System 

ext rw rlist 
rw rooms 

post (bound(res_req) => bound(no_vacancy) or bound(res_no)) 
and 
(bound(cancel_req) => bound(confirmation)) 

and 
(hound(change_req) => bound(no_vacancy_mes) or 

bound( confirmation_mes)) 
and 
(bound(check_in_req) => bound(no_reservation_mes) or 

bound( room_no)) 
and 
(bound(check_out_req) => bound(warning_mes) or 

bound(bill_receipt)) 
comment 
This process specifies only the relation between the input data flows and 
output data flows. In other words, it specifies only which input data flows 
are consumed to produce which output data flows. The details of how the 
input data flows are used to produce the output data flows are spelled out 
in its decomposition. 
end_process; 
end_module; 

The top level CDFD, given in Figure 14.4, involves the terminators Cus­
tomer, providing requests, and Output_Device, displaying or printing out re-
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suIts; a process Hotel_Reservation; and two existing external stores rlist and 
rooms. Since these two stores are intended to represent independent entities 
of this reservation system, we use sharp mark # to indicate this feature of the 
store variables when they are declared in the module, as we have explained 
in Section 4.13 of Chapter 4. The defined types, variables, and invariants 
are derived from the semi-formal specification, with necessary extensions and 
modifications. The process Hotel_Reservation is an abstraction of the entire 
system; it is intended to describe the overall functionality of the system, with­
out giving details of how the functionality is actually realized; the details are 
expected to be spelled out in its decomposition. 

According to the postcondition of process Hotel_Reservation, a reserva­
tion request res_req results in the generation of either output data flow 
no_vacancy or res_no; a cancellation request cancel_req leads to the gen­
eration of confirmation; a change reservation request change_req results in 
the generation of either no_vacancy_mes or confirmation_mes; a check-in re­
quest check_in_req leads to the generation of either no_reservation_mes or 
room_no; and a check_out_req results in the generation of. warning_mes or 
bill_receipt. 

The process Hotel_Reservation is decomposed into the CDFD in Figure 
14.5, which is associated with the module Hotel_Reservation_Decom. This 
module is a formalization of the corresponding module in the semi-formal 
specification. For brevity, we present only the interesting parts in detail, and 
give an outline of the other parts. 

module Hotel_Reservation_Decom / SYSTEM_Hotel_Reservation; 

type 

Date = natO * natO * natO; 
ReservationRequest = composed of 

name: FuliName 
address: string 
tel: natO 
period: Date * Date 
room_type: {<Single>. <Twin>. <Double>} 
end; 

CanceliationRequest = composed of 
reservation no: natO 
name: Customer.FuliName 
end; 

ChangeRequest = composed of 
reservation no: natO 
name: Customer.FuliName 
room_type: {<Single>. <Twin>. <Double>} 
end; 
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Fig. 14.5. The decomposition of the process HoteLReservation 

var 

ext #rlist: Reservation List; 
ext #rooms: Rooms; 

behav CDFD_No2; 

process Reserve(res_req: ReservationResquest) 
no_vacancy: string I res_no: nat 

ext wr rlist 
wr rooms 

pre not exists!c: dom(rlist)] I 
c.name = res_req.name and 
c.address = res_req.address 

decom Reserve_Decom 
comment 
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This process reserves a room according to the request, 
if there is vacancy. Since this process has a decomposition, 
the postcondition is given as true, which is omitted in the 
specification. 
end_process; 

process Cancel(cancel_req: Cancel Request) 
confirmation: string 

ext wr rlist 
wr rooms 

pre exists[c: dom(rlist)]I 
c.reservation_no = cancel_req.reservation_no and 
c.name = cancel_req.reservation_no 

end_process; 

process Change(change_req: ChangeRequest) 
no_vacancy_mes: string I 
confirmation_mes: string 

ext wr rlist 
wr rooms 

pre pre_Cancel[change_req / cancel_req] 

end _process; 

process Check_ln(check_in_req: ChecklnRequest) 
no_reservation_mes: string I 
room no: natO 

ext wr rlist 

process Check_out(check_out_req: RoomNo) 
warning_mes: string I 
bill_receipt: string 

ext wr rlist 
wr rooms 

post (exists[c: domCrlist)]I 
Crlist(c).room_no = check_out_req and 
rlist = domrb({c}, -rlist) and 
rooms = union( - rooms, 
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Fig. 14.6. The decomposition of the process Reserve 

{modifyCrlist(c), status -> <Check Out» } and 
bill_receipt = Print_Bill_Receipt(c))) or 

warning_mes = "The room number is wrong." 
end_process; 

function Print_Bill_Receipt(c: Customer): string 
== undefined; 

! 

1* this function returns a receipt that may be printed out on a printer. * / 
end_function 

The specification demonstrates a skill in using the SOFL language. For some 
reason we want to define the precondition of process Change the same as that 
of process Cancel, except that variable cancel_req needs to be substituted by 
change_req. This reference is written as pre_ Cancel[change_req / cancel_req] 
in the precondition of process Change. 

Several processes in the module Hotel_Reservation_Decom are decomposed 
into lower level modules and their associated CDFDs. As an example, Figure 
14.6 shows the decomposition of process Reserve, and the associated module 
is given as follows: 

module Reserve_Decom / Hotel_Reservation_Decom; 

var 

ext rlist: Reservation List; 
ext rooms: Rooms; 
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behav CDFD_N03; 

process Check_ Vacancy(res_req: ReservationRequest) 
no _ vaca ncy: string I 
res_req: ReservationRequest 

ext rd rooms 
post (exists[r: rooms] I r.room_type = res_req.room_type) and 

res_req = -res_req) or 
(not exists[r: rooms] I r.room_type = res_req.room_type) and 
no_vacancy = "No vacancy" 

comment 
No specific precondition is required. If there exists a room whose type is the 

same as the required type of the reservation request. pass the reservation request 
reCreq to the output of this process. Otherwise. produce a " No vacancy" message 
as its output. 

end _process; 

process Make_Reservation(res_req: ReservationRequest) 
cust: Customer 

end_process; 

process Issue_Reservation_Number( cust: Customer) 
res_no: natO 

end_process; 

end module; 

This module involves three processes: Check_Vacancy, Make_Reservation, and 
Issue_Reservation_Number. Process Check_Vacancy first checks whether the 
requested room is available or not. If it is, nothing is done except transfer­
ring the reservation request res_req to the next process. Otherwise, a "no 
vacancy" message is issued. If the available room is confirmed by process 
Check_Vacancy, process Make_Reservation will reserve a room for the cus­
tomer, and then activate process Issue_Reservation_Number to issue a reser­
vation number to the customer. 
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14.4 Evolution 

Transformations from informal to semi-formal, and then to formal specifica­
tions, are in general an evolutionary process. An evolution of a specification 
can be one of the following three activities: 

• Refinement 
• Extension 
• Modification 

Refinement is an activity of improving a specification by resolving non­
determinism. The result of a refinement is a concrete specification or program 
that does exactly what is required in the abstract specification. When a speci­
fication (e.g., of a process) is finalized in accordance with the user's agreement, 
refinement is usually intended to provide a satisfactory program solution. A 
detailed discussion of refinement is given in Section 14.5. 

Extension of a specification means the addition of new components to the 
specification. A component can be a module, CDFD, process, or even a data 
type definition. The extension approach emphasizes the reuse of the existing 
specification in the extended specification; it is therefore appropriate if the 
existing ideas in the specification need developing. For example, the module 
Reservation_system and the associated CDFD in the semi-formal specification 
given in Section 14.2.2 are an extension of the informal specification, and 
the top level module SYSTEM_Hotel_Reservation in the formal specification 
defined in Section 14.3 is new to the semi-formal specification. 

Modification of a specification is a change, either in syntax or semantics, 
without conformance to any formalized standard. Since requirements analy­
sis and abstract design involves intensive study of the user's requirements, 
which may often be changeable in reality, modification is an intrinsic feature 
of software development. Although modifications are inevitable, it is always 
desirable to have modifications conducted in a well-controlled manner. 

In practice, a combination of refinement, extension, and modification may 
be employed to develop specifications. The important point is that all of these 
activities must be performed in a well-controlled manner to ensure the con­
sistency and correctness of all the specifications produced. 

14.5 Detailed Design 

Detailed design has two goals. One goal is to transform the implicit specifica­
tions of processes and functions, defined in modules, into explicit specifications 
in order for the algorithmic information provided by such explicit specifica­
tions to serve as a foundation for implementation in a specific programming 
language. Another goal is to transform the structured abstract design specifi­
cation into an object-oriented detailed design specification in order to achieve 
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good quality of final implementation (e.g., encapsulation, information hid­
ing, reusability, and maintainability). Such a specification will facilitate the 
implementation using an object-oriented programming language (e.g., Java, 
C++). 

It is worth mentioning that such a transformation needs to keep the hi­
erarchy of CDFDs in the abstract design specification; thus, we can give as 
much freedom as possible to the programmer in deciding the strategy for the 
implementation of the specification. For example, the programmer can decide 
how to implement each CDFD in the specification based on the programming 
language he or she uses for implementation. 

14.5.1 Transformation from Implicit to Explicit Specifications 

Since a high level process is defined by its decomposition, there is no need to 
transform its implicit specification into an explicit one. Only the lowest level 
processes (Le., processes with no decompositions) need to be transformed 
from the implicit specification into an explicit one. The transformation from 
an implicit specification into an explicit specification is in fact a functional 
refinement. Refinement is an activity of improving a specification by resolving 
non-determinism. In other words, a refined specification must do whatever is 
required by the abstract specification, but can make a choice in resolving non­
determinism. Note that during a transformation from an implicit specification 
to an explicit specification, there may be a need to adjust or modify the 
definitions of some types given in the abstract design, but data refinement 
should not be emphasized because this issue will be addressed during the 
implementation of design specifications. Thus, it can help to avoid additional 
cost, caused possibly by performing strict data refinement in specifications. 

Definition 22. Let P and Q be two processes. Q is a refinement of P if and 
only if the following two conditions hold: 

(1) pre_P => pre_Q 
(2) pre_P and post_Q => post_P 

Weakening the precondition of P in the refinement allows the refined process 
Q to have a bigger capacity to deal with more possible inputs, but such a 
weakening of precondition must be done within the constraint of the second 
condition on the postcondition: strengthening the postcondition of P in Q. 
Such a strengthening of postcondition requires that Q provide exactly the 
same functionality expected by process P. For example, suppose we specify 
process P as 
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process PO 
ext wr x: int 
pre x> 0 
post x > -x 
end _process 

Then, we improve this process into process Q: 

process QO 
ext wr x: int 
pre true 
post x = -x + 1 
end _process 

Obviously, since both conditions required in Definition 22 are met by processes 
P and Q, Q is a qualified refinement of P. In this case, we also say that Q 
satisfies P. 

The notion of refinement can be easily applied to the refinement of an 
implicit specification into an explicit specification, as we can treat the implicit 
process as P and the explicit process as Q. For example, the process P given 
above is extended by adding an explicit specification: 

process PO 
ext wr x: int 
pre x> 0 
post x > -x 
explicit 
x:= x + 1 

end_process 

To demonstrate that the explicit specification satisfies the implicit specifica­
tion, we first need to derive the weakest precondition of the explicit speci­
fication based on its structure from the postcondition given in the implicit 
specification, and then prove that the rules (1) and (2) given in Definition 22 
are satisfied by the implicit and explicit specifications. However, this technique 
is usually difficult to apply in practice due to the requirement for advanced 
skill and effort in conducting formal proofs. 

Another definition of refinement that treats a process either in implicit or 
explicit style as a relation may be more straightforward in facilitating the ap­
plication of conventional but practical verification techniques, such as testing 
and inspection. 

Definition 23. Let P and Q be the implicit and explicit specifications of a 
process, respectively. Q is an refinement of P if and only if the following con­
dition holds: 
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forall[x: dom(P), y: rng(Q)] I pre_P(x) and x Q y => post_P(x, y) 

where dom(P) and rng(Q) denote the domain of P and the range of Q, 
respectively, and x Q y means that x and y have relation Q. 

According to this definition, if any value x in the domain of P satisfies the 
precondition of P, and any value y in the range of Q has relation Q with x, 
they must satisfy the postcodition of P. 

Verification of this refinement obligation can be done by testing, although 
this is unable to provide a full justification due to the intrinsic limitation of 
testing. Since our focus in this chapter is on the process of software develop­
ment using SOFL, the testing techniques are described in detail in Chapter 
18. 

14.5.2 Transformation from Structured to Object-Oriented 
Specifications 

To transform a structured abstract design specification to an object-oriented 
detailed design specification, the main task is to build appropriate classes and 
their relations, if any, by converting appropriate data types in the specifica­
tion (e.g., composite types) into classes, and to achieve information hiding by 
converting all the stores in the CDFDs to appropriate objects. Specifically, 
the following points need to be considered for the transformation: 

• Convert a composite type into a class definition in the way that the field 
variables of the composite type are defined as the attribute variables of the 
class, and its methods are formed based on the operations on the values 
of the composite type in process specifications. 

• Convert a product type into a class definition in a way similar to that for 
converting a composite type into a class definition. 

• Convert a union type as a class hierarchy in which the union type itself 
is converted into a superclass and all the constituent types are converted 
into its subclasses. 

• If a store in a CDFD is a value of composite, product, or union type, define 
an appropriate class and convert the store into an object of the class. 

• Create new classes to meet the need for developing the abstract design 
specification (e.g., developing the function of a process). 

• Transform the implicit specification of each process and function into an 
explicit specification in which objects, if any, are manipulated in the way 
that the principle of information hiding is not violated (Le., all the at­
tributes of an object are accessed through its methods). To enhance the 
robustness of the detailed design specification, the precondition of each 
process and function in the implicit specification must be taken into ac­
count in the explicit specification in a way that a proper measure is taken 
to deal with the violation of the precondition (e.g., produce an error or 
warning message if the precondition is not met by the inputs of the process 
or function). 
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As an example, we transform the process Check_out in the abstract design 
given previously into the following explicit specification: 

process Check_out( check_out_req: RoomNo) 
warning_mes: string I 
bill_receipt: string 

ext wr rlist 
wr rooms 

explicit 
begin 
cus: Customer; 

cus := new Customer; 
cus := get ( {c: dom(rlist) I (rlist( c).room_no = check_out_req}; 
if cus <> nil 
then 
begin 

rooms := union(rooms, {(rlist( cus)).setStatus( <Check Out>)}); 
bill_receipt := Print_Bill_Receipt(cus); 
rlist := domrb( {res}, rlist) 

end 
else 

warning_mes := "The room number is wrong." 
end 

end_process; 

class Customer; 

type 
FuliName = string * string * string; 
j*first name, middle name, and family name * / 

var 
name: FuliName 
address: string 
tel: natO 
pass_no: string 
reservation no: natO 

method InitO 

class Room; 



var 
room_no: natO; 
room_type: {<Single>. <Twin>. <Double>}; 
status: {<Reserved>. <Check In>. <Check Out>}; 

method InitO 
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method setStatus(st: {<Reserved>. <Check In>. <Check Out>}) 
explicit 

status := st; 
end method; 

end class; 

The explicit specification of process Check_Out is derived based on the un­
derstanding of its implicit specification. Several sub-expressions are reused, 
but in combination with other expressions. Both Customer and Room are con­
verted into classes, and their values are treated as objects of those classes 
rather than the values of the corresponding composite types as used in the 
implicit specification. This leads to an extension of the class Room to include 
the new method setStatus, which assigns the given value st of the enumeration 
type to the attribute variable status of an object of the class. 

14.6 Program 

Program is an implementation of the detailed design in a specific program­
ming language. It is desirable to ensure that a program transformed from a 
detailed design (an explicit specification) satisfies the specification. However, 
in comparison with transforming an implicit specification into an explicit spec­
ification, this process needs to deal with the refinement of abstract data types 
defined in the design specification into concrete data types available in the 
programming language. In general, four levels of transformations are neces­
sary: 

1. Transformation of the abstract data types. 
2. Transformation of explicit specifications of processes, methods, and func­

tions. 
3. Transformation of modules. 
4. Transformation of classes. 

Transformation from an abstract data type into a concrete data type should 
be a refinement. That is, all the values defined in the abstract data type 
must be represented by values of the concrete data type. Thus, the function­
ality required by a process is allowed to be correctly realized by the program. 
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Formally, let abs and con denote the abstract and concrete data types, respec­
tively; then, con is a refinement of abs if and only if there exists a retrieve 
junction, say Retr, such that: 

forall[a: abs] exists[c: con] I Retr(c) = a 

An explicit specification of a process is usually transformed into a procedure 
(in Pascal), function (in C), or a method (in Java). This transformation must 
deal with the transformation of all the built-in operators, predicates, and 
control statements involved. Since explicit specifications describe deterministic 
functional requirements for the implementation, the program generated from 
their specifications must have an equivalent functionality or behavior. That is, 
given an input, both the explicit specification and the program must produce 
the same output. 

A module can be transformed into a procedure in Pascal or a class in 
Java. Since SOFL has the feature of object-orientation, Java is considered 
as the target programming language for the transformation in the following 
discussion. A module corresponds naturally to a class in Java: all the variables 
declared in the var section of the module are transformed into the instance 
variables of the corresponding class, and all the processes of the module usually 
correspond to the methods in the class, possibly with some modifications. In 
addition, another method needs to be defined in the class to implement the 
CDFD associated with the module. 

A class in the design specification can be transformed into a class in Java 
almost in the same way as when transforming a module, but there is no need 
to create a new method in the class of implementation to realize the CDFD of 
the class in the design, because the CDFD in a class of the design specification 
does not play the role of integrating all the methods defined in the same class 
to form an overall functionality of the class; it is just used as "syntactic sugar" 
to help illustrate the relation between methods and attribute variables (which 
are represented by stores in the CDFD) declared in the var section of the 
class for readability. The detailed discussion on transformation from explicit 
specifications into Java programs is given in Chapter 19. 

14.7 Validation and Verification 

Validation and verification of specifications are emphasized in the SOFL 
method to ensure the consistency between the specifications and the user's real 
requirements and between different level specifications including programs. 

Validation of a specification can be done using either specification testing 
or face-to-face communication based on static analysis of the specification. 
Its primary purpose is to ensure that the written specification reflects the 
user's requirements accurately and completely. The benefit of validation of 
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specifications is to remove faults in the early phase of software development, 
and to therefore considerably reduce the cost of development. 

Verification of a specification aims to ensure that specifications are in­
ternally consistent, satisfiable, and really met by their implementations (or 
programs). An internally consistent specification means that the components 
and their relations are defined consistently with the syntax and semantics of 
the SOFL language. For example, a process specification must not violate the 
invariant of the module in which it is defined. A satisfiable specification en­
sures the existence of a mathematical model, and therefore an implementation 
of the system. A specification is met by an implementation if and only if the 
refinement rules given in both Definition 22 and Definition 23 are satisfied. 

Two techniques are provided for the validation and verification of specifi­
cations. One is known as rigorous review, and another is testing. These two 
techniques can be applied to both high level and low level specifications, im­
plicit specifications and explicit specifications. Their extensions, known as 
specification-based rigorous review and specification-based testing, can also 
help the verification and validation of programs. The detailed introductions 
to rigorous review and testing for specifications are given in Chapter 17 and 
Chapter 18, respectively. 

14.8 Adapting the Process to Specific Applications 

We have suggested a software process model for organizing software devel­
opment projects, and emphasized its importance in enhancing the reliability 
and other qualities of final software systems, in previous sections. However, 
this does not necessarily mean that the process model must always be fully 
adopted for any kind of software system development. In fact, taking into 
account the complexity of systems as well as the cost and time needed to 
develop the systems, the process model can be tailored to properly achieve 
the best productivity and reliability for specific development projects. For a 
small-scale system with low complexity, the formal detailed design phase may 
be omitted, that is, the formal abstract design can be directly transformed 
into a program, because the abstract specification may be explicit enough for 
direct implementation. For a software system required to be implemented by 
a structured programming language, such as Pascal or C, there is no need to 
transform the structured abstract design into an object-oriented detailed de­
sign. Instead, the abstract design may be transformed to a structured detailed 
design in which more functions may need to be defined to achieve good mod­
ularity. For a large-scale system in the familiar application domain (e.g., the 
developer has experience in developing similar systems before) the explicit 
object-oriented detailed design specification may be achieved directly from 
the semi-formal specification, without going through the phase of abstract 
design, because many existing specification components defined in terms of 
classes for previous systems may be reused for the design of the present sys-
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tem, and process specifications involving invocations of methods of objects 
are in general more suitable to be expressed using the explicit specification 
language rather than pre and postconditions. 

Although the process model can be tailored to adapt to different applica­
tions, the three-step approach to constructing the user requirements and de­
sign specifications is desired to apply to almost all kinds of software projects, 
because it is a natural approach to take and it presents a good balance between 
comprehensibility in communication with the users and preciseness in design­
ing the systems. It also helps provide a good traceability for system evolution 
whenever it is necessary, either during development or maintenance. 

14.9 Exercises 

1. Give an example to explain the difference between evolution and refine­
ment of processes. 

2. Construct a formal design specification of library system by taking the 
three steps: informal, semi-formal, and formal specification. The system 
is required to provide the services: Borrow, Return, and Search. Each of 
these services should be implemented by a process. The process Borrow 
registers the data of the borrowed book; Return removes the registered 
information about the borrowed book; and Search provides the requested 
information of the wanted book, if it is available. 

3. Refine the implicit specifications of all three processes in the library system 
into explicit specifications. 
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Approaches to Constructing Specifications 

In Chapter 14, we have studied the three-step approach to building formal 
specifications, but the approach only addresses the issue of how to express 
specifications in different formats; the question of how to create the architec­
ture of specifications from scratch still remains unanswered. In this chapter 
we focus the discussion on this problem, and introduce two approaches to 
constructing specifications: top-down and middle-out. Each approach contains 
specific strategies for building specifications, and each strategy has its own 
features and may have different effects on the process of specification con­
struction. The SOFL method does not restrict the use of these approaches, 
because different approaches can be effective to different problems. Since a 
pure bottom-up approach usually does not work well in practice, SOFL is not 
intended to support this kind of approach. For this reason, we do not give any 
detailed discussion on the bottom-up approach, although the related tech­
niques for synthesizing lower level CDFDs are described when the middle-out 
approach is introduced in Section 15.2. 

15.1 The Top-Down Approach 

The top-down approach is a way to build a specification by first constructing 
the top level CDFD, and then developing it into a hierarchy of CDFDs by 
repeatedly decomposing processes occurring in some of the CDFDs involved. 
The top level CDFD presents an abstraction of the entire system, describing 
the processes, data flows, and stores that are necessary to provide the most 
interesting information about the system, while the decomposition of processes 
helps to develop the abstraction into concrete representations. 

There are two strategies for building specifications in this approach; they 
are known as CDFD-module-first and CDFD-hierarchy-first strategies. The 
first strategy stresses the importance of the mutual effect of CDFDs and 
modules in ensuring the quality of the specification, while the second strategy 
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Fig. 15.1. An illustration of CDFD-module-first strategy 

emphasizes the importance of the architecture of the system in providing an 
outline for formalization in the modules. 

15.1.1 The CDFD-Module-First Strategy 

The fundamental idea of this strategy is that after a CDFD is constructed, 
its associated module must be defined precisely, before any decomposition of 
processes in this CDFD takes place. After both the CDFD and module are 
finalized, the decomposition of another process can take place. Such a pro­
cess goes on until no process needs further decomposition. Figure 15.1 depicts 
this strategy. CDFD _1 is the top level CDFD of the specification, and its two 
processes are decomposed into CDFD_2 and CDFD_3, respectively. Further­
more, two processes of CDFD _2 are decomposed into CDFD _ 4 and CDFD _5, 
respectively. Taking the CDFD-module-first strategy, this specification is con­
structed by first drawing CDFD _1, and then defining module M_l. Then, a 
process in CDFD _1 is decomposed into CDFD _2, and the associated module 
M_2 is defined. This process continues until all the CDFDs and their modules 
are defined. 

Since a CDFD usually represents only an outline of an idea, formed on the 
basis of an initial consideration, it is usually subject to modification when the 
precise picture of its components and their relations becomes clear. For this 
reason, before taking any further action in decomposing processes, ensuring 
desirable components and structure of the current CDFD is important. This 
can be achieved by defining the associated module of the CDFD. In addition, 
defining the module may also result in the following effects: 
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• Improving the understanding of the processes, data flows, and stores in-
volved. 

• Improving the structure of the CDFD. 
• Identifying processes that need decomposition. 

Usually, the meaning and roles of data flows and stores become much clearer 
when they are defined with specific data types. This is also true of processes 
when they are specified with pre and postconditions, since nothing can usu­
ally be written in the pre and postconditions without a good understanding 
of the processes. The clarification in formal definitions is likely to help the de­
veloper improve the understanding of the components of the current CDFD, 
and therefore may facilitate modifications of the CDFD. Furthermore, the 
formalization of the CDFD also serves as a forceful tool for improving the re­
lations among processes, data flows, and stores, as the current relations may 
be recognized to be incorrect during the formalization. 

Determining which processes in a CDFD need decomposition is always a 
difficult, but important, issue to address. Although it is extremely difficult to 
give a definitive formula to cope with this problem, the following guidelines 
may be useful: 

1. If the relation between the input and output data flows of a process cannot 
be expressed without further information, the decomposition of this process 
should be considered. 

2. If the behavior of a process involves a sequence of actions, this process 
needs to be decomposed. 

3. If the postcondition of a process is too complex to be written in a concise 
manner, it may need decomposition. 

The guideline 1 describes a situation in which no relation between the input 
and output data flows of a process can be defined without further information. 
This means that some intermediate data flows, which are possibly generated 
by some intermediate processes, are required to bridge the input and output 
data flows of the process. The guideline 2 is given because pre and postcondi­
tions of a single process are not suitable for defining a sequence of operations. 
A pair of pre and postconditions can comfortably express only one change 
of the state, but not many changes. If the postcondition of a process is too 
complex, it is likely to involve some sort of structure of several operations, 
so guideline 3 is an implicit way to express guideline 2, possibly with some 
extension. 

15.1.2 The CDFD-Hierarchy-First Strategy 

Building a specification using the CDFD-hierarchy-first strategy starts with 
the construction of the CDFD hierarchy by means of decomposition of pro­
cesses, and then proceeds to define the modules of the CDFDs involved in the 
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CDFD hierarchy. For example, taking this strategy to build the specification 
illustrated in Figure 15.1, we will first draw the CDFD hierarchy made up 
of CDFD_l, CDFD_2, CDFD_3, CDFD_ 4, and CDFD_5, and then complete 
their modules M_l, M_2, M_3, M_ 4, and M_5, respectively. 

The CDFD-hierarchy-first strategy has an advantage over the CDFD­
module-first strategy: it allows one to create an outline of the entire speci­
fication and the foundation for formalization. Also, the formalization can be 
done with a global view so that the consistency between the interfaces of pro­
cesses at different levels can be taken into account during the formalization. 
However, there might be a risk of having to carry out a global modification, 
when it is found necessary, during the definitions of the modules. 

There are two ways to build a CDFD hierarchy. One is the conventional 
way: top-down for processes, data flows, and stores. That is, drawing all the 
processes, data flows, and stores necessary when creating a new CDFD. How­
ever, this can be difficult sometimes, because the data flows and stores nec­
essary at a high level CDFD may not be known precisely. Rather, this in­
formation is likely to become clear during the construction of the lower level 
CDFDs. In this case, another way of building CDFD hierarchies can be ap­
plied: top-down for introducing processes and bottom-up for introducing data 
flows and stores. That is, when creating a new CDFD as the decomposition 
of a high level process, only necessary processes are drawn, without describ­
ing the relations among processes in terms of data flows and stores. After 
the hierarchy of the incomplete CDFDs is formed, the lacking data flows and 
stores are then added to processes and CDFDs. The addition of data flows 
and stores usually starts from the lowest level CDFDs and moves up toward 
the top level CDFD. Of course, there may be changes to be made during the 
addition of data flows and stores to ensure the structural and semantic con­
sistency between high level processes and their decompositions. Figure 15.2 
depicts this approach. 

15.1.3 The Modules and Classes 

During the building of CDFD and module hierarchies, it is also important to 
pay attention to defining class hierarchies. However, since classes are primarily 
treated as user-defined data types, their definitions are attempted whenever 
the necessity arises during the construction of the CDFD and module hier­
archies. Of course, this does not mean we disallow the construction of class 
hierarchies independently of the CDFD and module hierarchies. If the system 
under development is within a familiar application domain, building classes 
as components based on previous experiences can be an effective contribution 
to the construction of the entire specification. In fact, we can be flexible in 
using classes and modules in practice, depending on the application domain. 

The top-down approach can also be applied to the building of class hier­
archies, but based on different notions: generalization and specialization. A 
high level class is defined to provide common attributes and methods which 
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Fig. 15.2. An illustration of the CDFD-hierarchy-first strategy 

all its subclasses can inherent. Thus, it represents a generalization of a group 
of classes. Based on a superclass, subclasses are defined. Such an activity is 
different from a functional decomposition, as for a process in a CDFD; it actu­
ally performs a specialization of its superclass by possibly providing additional 
attributes and methods. 

15.2 The Middle-out Approach 

Constructing a specification by the middle-out approach usually starts with 
the building of the CDFDs and modules modeling the functions that are most 
familiar to the developer and crucial to the system. These CDFDs and modules 
are often located somewhere between the top level CDFD and the bottom level 
CDFDs of the finalized specification hierarchy. On the one hand, for each of 
these CDFDs the top-down approach is taken to define its processes, until 
all of the lowest level processes are defined completely and precisely. On the 
other hand, these CDFDs are used as available components for building high 
level CDFDs by abstraction and integration. That is, each of these CDFDs 
is abstracted into a high level process, and then all the high level processes 
are integrated to form high level CDFDs. Such actions continue until the top 
level CDFD is reached. Figure 15.3 illustrates this approach. CDFD _2 and 
CDFD_3 are built first for some reason, and then process A1_3 is decomposed 
into CDFD _ 4 to spell out its implementation detail. Finally, CDFD 2 and 
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Fig. 15.3. An example of the middle-out approach 

CDFD_3 are abstracted into processes Al and A2 in CDFD_l, respectively, 
and are integrated into the top level CDFD CDFD_l. 

When developing a middle level CDFD by the top-down approach, the 
same criteria for decomposing processes proposed in Section 15.1.1 can be 
applied. One of the two strategies, the CDFD-module-first and the CDFD­
hierarchy-first strategies, can also be utilized to construct a local hierarchy of 
CDFDs. This hierarchy is seen as local because it would be part of the CDFD 
hierarchy of the entire specification. 

When carrying out integrations of the available CDFDs to build high level 
CDFDs, the following criteria can be used as guidelines for abstraction: 

1. If there are more than two input data flows to different starting processes 
of a CDFD, the CDFD needs to be abstracted into a high level process 
that defines precisely the relationship among those input data flows. For 
example, processes Al_l and Al_2 in CDFD_2 of Figure 15.3 receive data 
flows al and bl, respectively, but at this level the relationship between 
these two data flows in terms of their availability is unknown. That is, 
whether both of them are required or only one of them is required to 
enable the entire CDFD is unknown from this CDFD. Such a relationship 
between the input data flows can be defined precisely when this CDFD is 
abstracted into a high level process, such as process Al in CDFD_1. 
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2. If two processes in a CDFD access the same store for both reading and 
writing, the CDFD needs to be considered for abstraction. Again, let us 
look at processes AI_I and AI_2 in CDFD _2; AI_I reads from 5, whereas 
AI_2 writes to store s. Since this will cause confusion in accessing and 
updating store 5, processes Al_l and AI_2 must not be executed concur­
rently. However, this cannot be ensured at the level of the current CDFD. 
It is therefore necessary to abstract this CDFD into the high level pro­
cess AI, which clearly specifies that only one of its input data flows al 
and bl can be used to enable and execute the process. This restriction 
will prevent the concurrent executions of processes AI_I and AI_2 in its 
decomposition CDFD_2. 

3. If two CDFDs have relations in terms of data flows, they need to be ab­
stracted into high level processes, and the connections between these pro­
cesses need to be formed in the high level CDFD. Consider process Al_3 in 
CDFD_2 and process A2_1 in CDFD_3; the output data flow of AI_3 is 
the same as the input data flow of A2_1. This indicates that these two pro­
cesses, belonging to different CDFDs, need communication by data flows. 
Therefore, the high level processes representing their abstractions should 
be integrated together in a reasonable form to support the construction 
of the high level CDFD. 

15.3 Comparison of the Approaches 

In the previous sections, we have discussed the nature of the top-down and 
middle-out approaches for building specifications, but have said little about 
where they can be utilized effectively. Before providing any answer to this 
problem, we need to get a good understanding of the advantage and weakness 
of each approach. 

The top-down approach is usually effective and intuitive in providing sub­
goals or sub-tasks to support the current goal or task, and in developing ideas 
with little information into ideas with more information. It also provides a 
good global view of data flows and stores that may be used across CDFDs 
at different levels; thus the consistency in using data flows and stores can be 
well managed during the decomposition of high level processes. However, the 
difficulty in applying this approach may be caused by frequent modifications 
of high level processes, data flows, stores, and even the CDFDs, as with the 
progress of decomposition of high level processes. Modifications are necessary 
because creating accurate components of a high level CDFD in the first place 
is usually challenging, due to the lack of sufficient knowledge about what 
data flows and stores will be used or produced by the processes in the lower 
level CDFDs. To reduce the effect of this problem, the top-down approach for 
introducing processes and the bottom-up approach for introducing data flows 
and stores can be helpful. 
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In contrast to the top-down approach, the middle-out approach may be 
more effective and natural, because it always starts with modeling the most 
familiar and crucial functions. It also adopts a flexible way to utilizing the top­
down and the bottom-up approaches, and taking the approach which usually 
stems from natural demands during the construction of the entire specifica­
tion. However, by using this approach the developer may not find it easy to 
take a global view of the specification in the early stages; thus data flows, 
stores, and processes created in different CDFDs may overlap or be defined 
inconsistently. 

Experience suggests that the middle-out approach is effective in require­
ments analysis and requirements specification constructions, especially for 
semi-formal cases, because the most familiar and important functional re­
quirements are often focused in the early stages of requirements analysis. 
While the top-down approach is suitable for design, because the designer usu­
ally has a fair understanding of the functional requirements after studying 
the semi-formal requirements specification, and needs to take a global view in 
structuring the entire system. 

15.4 Exercises 

1. Explain the advantages and weaknesses of the top-down and middle-out 
approaches to building specifications. 

2. What is the difference between the CDFD-module-first strategy and the 
CDFD-hierarchy-first strategy. 

3. Build a Personal Expense Management System using both top-down and 
middle-out approaches, respectively. The management system provides 
the following services: (1) record the expense of an item, (2) search the 
expenses for a specific item, (3) search for the expense for a kind of item 
(e.g., cloth, book), (4) update the record of the expense for a specific item, 
and (5) show the total expense of all the items purchased in a specific 
month. 

4. Rebuild the same Personal Expense Management System using both 
the CDFD-module-first and the CDFD-hierarchy-first approaches, respec­
tively, and compare the advantages and disadvantages of the two different 
approaches. 
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A Case Study - Modeling an ATM 

The aim of this chapter is to show the entire procedure for developing a formal 
detailed design specification by evolution and refinement from the informal 
and semi-formal requirements specifications, and then for formal abstract de­
sign specification by describing a systematic case study of modeling an ATM 
(Automated Teller Machine). It is also intended to show how the structured 
method can help identify desire.d functions and then be transformed into an 
object-oriented detailed design. Although a very simple ATM example is given 
in Chapter 4, the example is intended to help in the explanation of the module 
and formal specification of processes, and is not appropriate for showing the 
entire process of building a formal specification. 

Basically, the functional requirements of the ATM are obtained from the 
informal description of the functionality of the online ATMs of a bank in 
Japan, but with necessary simplification to suit the purpose of the case study. 
Even so, the entire contents of the case study are still too large to fit into one 
chapter of a book. The entire case study contains 69 pages of specifications 
and is available as a CIS (Faculty of Computer and Information Sciences) 
technical report of Hosei University [62]. 

The case study starts from the capturing and documenting of informal 
requirements, and proceeds to clarify all the operations and data resources 
involved by the writing of a semi-formal specification. Following the SOFL 
process model, we then transform the semi-formal specification into a formal 
abstract design specification to define the architecture and the precise func­
tionality of all the processes and functions involved. Finally, we refine the 
abstract design specification into a detailed design specification to provide 
more algorithmic expressions of the functionality of the processes and func­
tions defined in modules in order to facilitate implementation of the system. 

By studying this chapter, the reader is expected to deepen his or her un­
derstanding of the techniques for the construction of specifications introduced 
in Chapters 14 and 15, and form a clear picture for the entire process of build­
ing a formal specification using SOFL. From the next section, the case study 
is described in accordance with the SOFL process model step by step. 
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16.1 Informal User Requirements Specification 

The top-down approach is taken to document the informal user requirements 
specification. To ensure good readability, the specification is organized as a 
collection of informal modules (Le., informal description of a set of desired 
operations suitable for being put into a single module). A module is usually 
composed of potential operations, policy on the operations, and data resources 
necessary for the operations. Each complex operation in a high level module 
is decomposed into a low level module, if necessary, and their connection is 
reflected properly for traceability. Note that since the informal specification 
is the initial document of the ATM system, the focus is on the potential 
operations or functions to be provided by the system rather than on the 
correctness of the syntax of modules. Therefore, the clear shape of modules 
may not be explicitly seen in the specification. Below is the outline of the 
informal specification. 

1. The desired functional services: the top-level module: 
(1) Operations on current account. 
(2) Operations on savings account 
(3) Transfer money between accounts 
(4) Manage foreign currency account 
(5) Change password 

2. Decomposition of function (1) in the top-level module 
2.1 Operations 

(1.1) Deposit 1* put money into the current account * / 
(1.2) Withdraw 1* get money out of the current account * / 
(1.3) Show balance 1* display the balance of the current account * / 
(1.4) Print out transaction records 1* print a list of transactions so far * / 

2.2 Policy on operations 

(1) Withdraw: (1.1) Maximum amount to be withdrawn each time is 
1, 000, 000 JPY. /* JPY = Japanese yen * / 

(1.2) Maximum amount to be withdrawn each day is 
5, 000, 000 JPY. 

(1.3) No overdraw is allowed. 
(2) Deposit: at most 1, 000,000 JPY can be deposited each time. 
(3) Password is required for all the four operations given above. 
(4) Bank-card is required for all the four operations. 
(5) Bank-book is required only for operation 1.4: print out transaction records. 
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2.3 Data resources 

(1) Each customer has ONE current account. 
(2) It is necessary to record the following data items in the system for each 

customer: 
(2.1) full name 
(2.2) account number 
(2.3) password 

3. Decomposition of function (2) in the top-level module 
3.1 Operations 

(2.1) Deposit /* put money into the savings account */ 
(2.2) Application of withdrawing money from the savings account. 

/* withdrawing money from the savings account needs application in 
advance */ 

(2.3) Withdraw /*only after a customer submits an application, can he with­
draw money from the savings account. * / 

(2.4) Show balance 
(2.5) Print out transaction records 

3.2 Data resources 

(1) Each customer has ONE savings account. 
(2) Each customer needs the following data items to be recorded in the system: 

(2.1) full name 
(2.2) account number 
(2.3) password 

3.3 Policy on operations 

(1) After every 6 months the customer can withdraw money and 
money cannot be withdrawn without application in advance. 

(2) The maximum amount to be withdrawn each time is 3, ODD, 000 JPY. 
That is, when applying for the withdraw, the customer can 
apply for up to 3, ODD, 000 JPY 

(3) The maximum amount to deposit is 3,000,000 JPY 
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4. Decomposition of function (3) in the top-level module 
4.1 Operations 

(1) Transfer money between the current and the savings account 
using cash-card 

4.2 Data resources 

(1) The current and savings accounts. 

4.3 Policy on operations 

(1) The maximum amount of each transfer transaction is 1,000,000 JPY. 

5. Decomposition of function (4) in the top-level module 
5.1 Operations 

(1) Purchase US dollars using the money of the current account. 
(2) Sell US dollars to JPY and deposit the money into the current account. 
(3) Purchase US dollars using cash and deposit the dollars into the foreign 

currency account. 
(4) Withdraw JPY from the foreign currency account. 

/*The JPY is converted from US dollars * / 
(5) Show balance. 

5.2 Data resources 

(1) Each customer needs a foreign currency account. 
(2) Each customer's following data items need to be recorded in the account: 

(2.1) full name 
(2.2) account number 
(2.3) password 

6. Decomposition of function (5) in the top-level module 
6.1 Operations 

(1) Change password for the current account. 
(2) Change password for the savings account. 
(3) Change password for the foreign currency account. 
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16.2 Semi-formal Functional Specification 

The goal of writing the semi-formal specification is to clarify the meaning of all 
the operations, policies, and data resources that are involved in the informal 
specification. During this process, undiscovered potential requirements or new 
aspects of the existing requirements are also expected to be uncovered. 

In accordance with the guidelines for transformation from informal spec­
ifications to semi-formal ones, given in Section 14.2.2 of Chapter 14, we take 
the following specific actions to build the semi-formal specification based on 
the informal one: 

• Organize the specification as a set of inter related modules conforming to 
the SOFL syntax. 

• Define all the necessary data types for defining the involved data resources. 
• Relate data resources, which are declared as variables of appropriate types, 

with operations, which are defined as processes, and organize them prop­
erly in modules. 

• Incorporate the policies on operations into either the pre and postcondi­
tions of the corresponding processes or the invariants of the related types 
and/or state variables. 

• Define each process and function (if any) with pre and postconditions, but 
leave the contents of the pre and postconditions informal. 

• When it is necessary, draw a CDFD for a module, but the CDFD may not 
be a complete one. 

• Define composite types in a way the common fields can be reused, that is, 
try to build a hierarchy of related composite types. 

Since the top-down approach allows us to have a global view in defining con­
stants, types, store variables (state variables), and operations, the specific ac­
tions described above are taken to construct modules in a top-down manner. 
However, this does not necessarily mean that the process of building modules 
has no feedback and change. On the contrary, it involves a lot of changes in 
the high level modules while the low level modules are being written. 

The top-level module, named SYSTEM_ATM, is derived from the top-level 
module in the informal specification. It declares all the necessary constants, 
types, and stores for the descendent modules to use, and the necessary pro­
cesses for functional abstraction. The top-level module is shown below. 

module SYSTEM_ATM; 
const 
maximum_withdraw_once = 1,000,000; 
j*The unit is JPY, likewise for the following constants. * / 
maximum_withdraw_day = 5,000,000; 
maximum_deposit_once = 1,000,000; 
maximum_withdraw_application = 3,000,000; 
ATM_no = i; j*i is any natural number* / 
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type 
Customerlnf = composed of 

account_no: natO 
pass: Password 

end; 
Password = natO; j*A password is a natural number or zero * / 
Accountlnf = composed of 

name: string j*The customer's full name * / 
balance: natO j*The unit is JPY* / 
transaction_history: seq of Transaction 

end; 
CurrentAccountlnf = Accountlnf; 
SavingsAccountlnf / Accountlnf = 

composed of 
withdraw_application_amount: natO 
application_status: bool j*true for yes, false for no * / 

end; 
ForeignCurrencyAccountlnf / Customerlnf = 

composed of 
name: string 
balance: real j*The unit is US dollar * / 

end; 
CurrentAccountFile = map Customerlnf to CurrentAccountlnf; 
SavingsAccountFile = map Customerlnf to SavingsAccountlnf; 
ForeignCurrencyAccountFile = 

map Customerlnf to ForeignCurrencyAccountlnf; 
ApplicationNotice = composed of 

application_amount: natO; 
appication_successful: bool; 

end; 
Transaction = composed of 

date: Date 
time: Time 
payment: natO 
deposit: natO 
balance: natO 
atm no: natO 

end; 
Date = Day * Month * Year; 
Day = natO; 
Month = natO; 
Year = natO; 
var 
ext #current_accounts: CurrentAccountFile; 
ext #savings_accounts: SavingsAccountFile; 
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ext #foreign _ cu rrency _ accou nts: Foreign Cu rrency Accou ntFi Ie; 
ext #today: Date; 
j*The variable today is assumed to change to reflect 

the date of today in calender. * / 
ext #current_time: Time; 
j*This variable represents a clock telling the current time * / 

inv 
forall[x: Customerlnf] I not exists[y: Customerlnf] I 

x.account_no = y.account_no; 
j*Each customer's account is unique * / 

forall[x, y: Transaction] I x <> y; 
j*AII the transactions are different. * / 

process Manage_ Current_Account( current: sign) 
end_process; 

process Manage_Savings_Account(savings: sign) 
end_process; 

process Manage_ Transfer(transfer: sign) 
end _process; 

process Manage_Foreign _ Cu rrency _ Accou nt( foreign _ cu rrency: sign) 
end_process; 

process Change_Password( change_pass: sign) 
end_process; 

end _ Illod ule; 

Defining data types is one of the most important tasks in writing the semi­
formal specification. Since each customer must have a unique account number 
and password for each kind of bank account, and his or her bank data (e.g., 
name, balance) must be associated with the customer's account number and 
password, we declare the composite type Customerlnf for the modeling of the 
customer's most important information - account number and password - and 
then define the type Accountlnf to represent the information related to the 
contents of the bank account, including name, balance, and transaction_history. 
Since each kind of bank account has its own features in addition to the com­
mon fields, they are defined as a composite type inheriting from Accountlnf, 
such as SavingsAccountlnf and ForeignCurrencyAccountlnf. 

We need several data stores to represent the collection of the available 
current accounts, savings accounts, and foreign currency accounts, and these 
stores need to exist independently of the ATM system (i.e., they should be 
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available even when the ATM system is not working). For this reason, we de­
clare several existing external stores in the module, such as current_accounts, 
savings_accounts, and foreign_currency_accounts, each being a map associat­
ing the customer's key data (account number and password) with the bank 
information (e.g., name, balance, and transaction_history) of the correspond­
ing bank account. In addition, we model today and current_time as existing 
external stores for being used to record the date and time of each bank trans­
action. 

Since each process in the top-level module needs to be decomposed into 
the next lower level CDFDs, they are defined by specifying both the pre and 
postconditions as true (in this case its pre and postconditions are omitted). 
We do not draw the CDFD for this module because it is clear enough to reflect 
the requirements at this level. 

The process Manage_ Current_Account in the top-module is then decom­
posed into the module Manage_ Current_Account_Decom, as shown below. 

module Manage_Current_Account_Decom /SYSTEM_ATM; 
type 
Notice = composed of 

transaction_account: natO 
updated_balance: natO 

end; 
var 
ext current_accounts: CurrentAccountFile; 

process Current_Authentication( current_inf: Customerlnf) 
permission: sign I e_mesgl: string 

ext rd current_accounts 
post if the input account_no and password match those 

of the customer's current account in the store 
current_accounts 

then generate output permission 
else output an error message 

end_process; 

process Current_Deposit(permission: sign, 
current_inf: Customerlnf, 
deposit_amount: natO) 
notice: Notice I warning: string 

ext wr current_accounts; 
post if the input deposit_amount is less than or equal 

to the maximum_deposit_once 
then 
(1) add the deposit_amount to current_account 
(2) give the customer a notice showing the amount 
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of deposit and the updated balance 
(3) update the transaction history of the account 

else give a warning message to indicate that the 
amount is over the limit. 

end_process; 

process Current_ Withdraw(permission: sign, 
current_inf: Customerlnf, 
amount: natO) 
notice: Notice I warning2: string 

ext wr current_accounts 
post if the input amount is less than or equal to the 

balance of the account and the 
maximum withdraw_once 

then 
(1) output the cash of the requested amount 
(2) reduce the withdraw amount from the balance 
(3) update the transaction history of the account 
(4) give the notice 

else 
generate the warning message 

end _process; 

process Current_Show_Balacnce(permission: sign, 
current_inf: Customerlnf) 
balance: natO I warning3: string 

ext rd current_accounts 
post if the input account_no and pass match those of the 

customer in the store current_accounts 
then display the balance of the customer's current account 
else issue an error message 

end _process; 

process Current_Print_ Transaction_Records(permission: sign, 
current_inf: Customerlnf, 
date: Date) 
transaction records: TransactionRecords 

ext rd current_accounts 
post print out the transaction records since the input date 
end _process; 

Since all the types declared in the top-level module can be directly used in 
the module Manage_ Current_Account_Decom, only do additional types to be 
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used in this module, such as the composite type Notice, need to be declared. 
However, the store variables which are declared in the top-level module but 
used in the current module, such as current_accounts, are declared as ex­
ternal store variables to indicate the fact that the store variables are used 
(either be read or updated) in the current module. In the case of variable 
current_accounts, it is the convention to omit the sharp mark # declara­
tion for an existing external variable when it is not declared in the specifi­
cation for the first time, so We write ext current_accounts rather than ext 
#current_accounts for the declaration of current_accounts in the current mod­
ule. 

Since there is no local store variable, the process Init for initialization of 
the local store variables is omitted. The other operations listed in the corre­
sponding informal module of the informal specification are defined as processes 
in the current module with pre and post conditions whose contents are writ­
ten in an informal manner, such as Current_Deposit, Current_Withdraw, Cur­
rent_Show_Balance, and Current_Print_ Transaction_Records, although their 
nameS are slightly different from those in the informal specification. Apart 
from these processes, we also define a process known as Current_Authentication 
to ensure security in using the customer's current account. In other words, the 
functionality of Current_Authentication is to guarantee that only the customer 
with the correct account number and password can access his current account. 
As the requirements expressed by the module are quite clear even without its 
CDFD, it is not given for the module. In fact, there is another important rea­
son why we do not draw the CDFD: the CDFD is usually changed or extended 
to properly reflect the architecture of design when the corresponding formal 
abstract design specification is constructed. 

Compared with the informal modules, the semi-formal modules are much 
more precise because all the date structures are well-defined by types and 
each process is defined by giving a precise signature and reasonably clear 
description of its functionality through pre and postconditions. This provides 
a rather firm base for validation against the USer requirements and for further 
formalization in abstract design. 

For brevity, we give the outline of the remaining part of the semi-formal 
specification to help the reader understand the full picture of the specification 
without going into tedious details. 

module Manage_Savings_Account_Decom / SYSTEM_ATM; 
var 
ext savings_accounts: SavingsAccountFile; 

1* process specifications * / 
end_module; 

module Manage_Foreign_Currency_Account / SYSTEM_ATM; 
type 
ExchangeNotice = composed of 
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amount_in_yen: natO 
current balance: natO 
foreign_balance: real 
exchange_rate: natO /*US$l = n JPY * / 

end; 
CashExchangeNotice = 

composed of 
amount_in_yen: natO 
amount in dollar: real 
foreign_balance: real 

end; 
var 
ext current_accounts: SavingsAccountFile; 
ext foreign _ currency _ accou nts: ForeignCu rrency Accou ntFi Ie; 

/* process specifications * / 
end_module; 

module Change_Password_Decom / SYSTEM_ATM; 
var 
ext #current_accounts 
ext #savings_accounts 
ext #foreign _ cu rrency _ accou nts 
ext #all_used_passwords: set of Passwords 

/* process specifications * / 
end module. 

16.3 Formal Abstract Design Specification 

There are two main goals of the formal abstract design. One is to define the 
system architecture using CDFDs in a hierarchical fashion, and the other is 
to formally define the functionality of all the involved processes and functions 
by formalizing their pre and postconditions. Through these activities, the 
designer is expected to gain a precise understanding of the desired functional 
and non-functional requirements, to organize all the necessary processes in the 
system architecture in a way that they all work together to provide a solution 
for the user requirements, and to build a firm foundation for detailed design 
and implementation. 

The abstract design specification is constructed by gradually working on 
all the modules in the semi-formal specification in a top-down manner. For 
example, the formal specification of the top-level module SYSTEM_ATM is 
produced based on the corresponding semi-formal module, as shown below. 
For brevity, we omit all the constant, type, and store variable declarations, as 
well as invariants that are the same as those in the corresponding modules in 
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the semi-formal specification. Thus, we can focus on the new aspects of the 
CDFD and the formalization of the modules in the design specification. 

module SYSTEM_ATM; 
... /* the same as those in the semi-formal module * / 

inv 
... /*the same as those in the semi-formal module * / 

forall[x, y: {current, savings, transfer, foreign_currency, change_pass}] I 
bound(x) and bound(y) = false; 

/*Any two of the input control data flows cannot become 
available at the same time * / 

behav CDFD_Nol; 

process Manage _ Cu rrent _ Account( cu rrent: sign) 
ext wr current accounts 
end _process; 

process Manage_Savings_Account(savings: sign) 
ext wr savings_accounts 
end_process; 

process Manage_ Transfer(transfer: sign) 
ext wr current accounts 

wr savings_accounts 
end_process; 

process Manage_Foreign_ Currency_Account 
(foreign_currency: sign) 

ext wr foreign_currency _accounts 
end_process; 

process Change_Password(change_pass: sign) 
ext wr all_used_passwords 

wr foreign_currency _accounts 
wr savings_accounts 
wr current_accounts 

end _process; 

The CDFD is drawn to represent the design when one of the input data flows of 
the starting processes (in fact, all the involved processes are starting processes 
in this particular CDFD) becomes available. This design is reasonable because 
in reality only one of the bank accounts can be accessed at a time through the 
same graphical user interface of an ATM. However, since the idea of allowing 
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only one of the input data flows to become available at a time is not properly 
reflected in the CDFD, we define a new invariant, as a universally quantified 
expression given in the inv section, in the module to formalize this idea. The 
association of the CDFD, which is named Nol, with the module is reflected 
by the expression behav CDFD _Nol. The pre and post conditions of each 
process in the module is still kept as true as they were in the semi-formal 
module. 

The decomposition of process Manage_ Current_Account is formalized as 
follows: 

module Manage_Current_Account_Decom /SYSTEM_ATM; 
type 
... 1* omit the same type declarations * / 

Output Device = seq of universal; 
ServiceColiection = {<I>. <2>. <3>. <4>}; 
var 

... 1* omit the same variable declarations * / 
ext #output_device: OutputDevice; 
inv 
forall[x. y: {deposit. withdraw. s_balance. p_transactions}ll 

bound(x) and bound(y) = false; 
behav CDFD No2; 

process Select_Services( deposit. a: sign 
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b, withdraw: sign I 
c, s_balance: sign I 
d, p _ tra nsactions: sign) 
sel: ServiceColiection 

post bound(deposit) and sel = <1> or 
bound(withdraw) and sel = <2> or 
bound(s_balance) and sel = <3> or 
bound(p_transactions) and sel = <4> 

comment 
The output data flow sel takes different value depending 
on the availability of the input data flows. 
end _process; 

process Cu rrent_ Authentication( sel: ServiceCollection, 
current_inf: Customerlnf) 
current_infl: Customerlnf I 
current_inf2: Customerlnf I 
current_inf3: Customerlnf I 
current_inf4: Customerlnf I 
e_mesgl: string 

ext rd current_accounts 
post if current_inf inset dom(current_accounts) 

then case sel of 
<1> -> current_infl = current_inf; 
<2> -> current_inf2 = current_inf; 
<3> -> current_inf3 = current_inf; 
<4> -> current_inf4 = current_inf; 
end_case 

else e_mesgl = "Your password or account number 
is incorrect." 

comment 
If the input account_no and password match those of 
the customer's current account in the store current_accounts, 

then generate output permission; otherwise, output an error 
message. 
end _process; 

process Current_Deposit( deposit_amount: natO, 
current_infl: Customerlnf) 
notice1: Notice I 

warningl: string 
ext wr current accounts; 
post if deposit_amount <= maximum_deposit_once 

then 
current accounts = 
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overrideC current_accounts, 
{current_infl-> 

modifyC cu rrent _ accou nts( cu rrent _ i nfl ), 
balance -> 

} 

~ current_accounts( current_infl).balance + deposit_amount, 
transaction_history -> 
concC cu rrent_ accounts( cu rrent_infl). transaction_h istory, 
[Get_ Transaction( current_accounts, today, 

current_time, 0, deposit_amount, current_infl)] 
) 

) 

) and 
notice1 = mk_Notice( deposit_amount, 

current_accounts( current_infl ).balance)) 
else warning1 = "Your amount is over 1000000 yen limit." 

comment 
If the input deposit_amount is less than or equal to the 

maximum_deposit_once, 
then 

else 

(1) add the deposit_amount to the current_account 
(2) give the customer a notice showing the amount of 

deposit and the updated balance 
(3) update the transaction history of the account; 

give a warning message to indicate that the 
amount is over the limit. 
end _process; 

process Current_ Withdraw( current_inf2: Customerlnf, 
amount: natO) 
notice2: Notice I 

warning2: string 
ext wr current_accounts 
post if amount <= maximum_withdraw_one and 

amount <= ~ current_accounts( current_inf2).balance 
then 
current_accounts = 
overrideC current_accounts, 

{current_inf2 -> 
modifyC current_accounts( current_inf2), 

balance -> 
~ current_accounts( current_inf2).balance 

- amount, 
transaction_history -> 
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} 

concC current_accounts( current_i nf2). transaction_history, 
[Get_ Transaction( current_accounts, today, 

current_time, amount, 0, current_inf2)] 
) 

) 

) and 
notice2 = mk_Notice(amount, 

current_accounts( current_inf2).balance)) 
else warning2 = "Your withdraw amount is over the limit." 

comment 
If the input amount is less than or equal to the 

balance of the account and the maximum_withdraw_once 
then 

else 

(1) output the cash of the requested amount 
(2) reduce the withdraw amount from the balance 
(3) update the transaction history of the account 
( 4) give a notice 

generate a warning message 
end_process; 

process Cu rrent _ Show _ Ba I acnce( cu rrent _ i nf3: Customerl nf) 
balance: natO 

ext rd current_accounts 
post balance = current_accounts( current_inf3).balance 
comment 
Display the balance of the customer's current account 
end_process; 

process Current_Print_ Transaction_Records( 
current_inf4: Customerlnf, date: Date) 
transaction records: TransactionRecords 

ext rd current_accounts 
post let transactions = 

cu rrent _ accou nts( cu rrent _ i nf4 ). tra nsaction _ history 
in let i = get( {i I i: inds(transactions) &. 

transactions(i).date = date}) 
in 
transaction_records = 

transactions(i, ... , len (transactions)) 
comment 
Print out the transaction records since the input date 
end_process; 
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process Display _Information( noticel: Notice I 
notice2: Notice I 
balance: natO I 
transaction_records: 

ext wr output_device 
post bound( noticel) and 

Tra nsaction Records) 

output_device = concCoutput_device, [noticel]) or 
bound(notice2) and 
output_device = concCoutput_device, [notice2]) or 

bound(balance) and 
output_device = concC output_device, [balance]) or 

bound(transaction_records) and 
output_device = 

conc( -output_ device, [transactions_records]) 
comment 
Display the input data flows onto the output device 
based on their availability. 
end_process; 

process Display_Message(warningl: string I 
warning2: string I 
e_mesgl: string) 

ext wr output_device 
post bound(warningl) and 

output_device = concC output_device, [warningl]) or 
bound(warning2) and 

output_device = concCoutput_device, [warning2]) or 
bound(e_mesgl) and 

output_device = concCoutput_device, [e_mesgl]) 
comment 
Display the input data flows onto the output device 
based on their availability. 
end_process; 

function Get _ Tra nsaction (cu rrent _accou nts: Cu rrentAccountFile, 
to_day: Date, 
time: Time, 
pay_amount: natO, 
deposit_amount: natO, 
customer _inf: Customerlnf): Transaction 

== mk_ Transaction(to_day, time, pay_amount, deposit_amount, 
current_accounts( customer _inf). balance, 
ATM_no) 

end function 
end_module; 
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Processes are integrated into the CDFD to define the behavior of the en­
tire module. To ensure that no confusion occurs, which is usually caused by 
crossing data flows, several connecting nodes are used in the CDFD to indi­
cate the source and destination of the data flows involved. When drawing the 
CDFD for the module, we realized that some necessary data, such as notices 
and warning messages, need to be displayed onto an output device. For this 
reason, we declare the new type OutputDevice and the new existing external 
variable output_device with this type. Since the output device is expected to 
accept any type of value produced by the system, we modeled it as a sequence 
of universal (a union type containing values of any types). Apart from the 
type OutputDevice, another type, ServiceColiection, necessary for modeling the 
process Select_Services in the CDFD is also defined. 

It is practical to allow only one request from the customer to be provided 
to the ATM at a time; therefore, we define a new invariant to restrict the input 
control data flows deposit, withdraw, s_balance, and p_transactions from being 
concurrently available. 
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Each process in the module is formalized by pre and postconditions, either 
defining what value is produced for the output data flow variable and/or store 
variables depending on the availability of the different input data flows, such 
as the processes Select_Services, Display_Information, and Display _Message, or 
describing how the output data flows and/or store variables are determined 
based on the input data flows, such as processes Current_Authentication, Cur­
rent_Deposit, Current_Withdraw, Current_Show _Balance, and 
Current_Print_ Transaction_Records. Since pre and post conditions of each pro­
cess is a formalization of the corresponding informal pre and post conditions, 
the informal ones are reused as comments to interpret the formally defined 
pre and postconditions in the process specification. 

We give for brevity the outline of the remaining part of the entire specifi­
cation below. 

end_module; 

end module. 

16.4 Formal Detailed Design Specification 

There are two major tasks in constructing the detailed design specification. 
One is to transform the structured design specification resulting from the 
abstract design into an object-oriented design specification by converting and 
developing all the composite types (as well as product types and union types) 
involved into classes. Another task is to refine the implicit specification of each 
process into an explicit specification, providing a more algorithmic expression 
of the defined behavior of the process. In order to maintain a good traceability 
of the specification to show the history of building the current version of 
specification, we always try to keep the existing parts of each process. For 
example, we still keep the formal expressions of the pre and post conditions for 
each process while we add the explicit specification to the process definition. 

Note that changing the composite types to classes usually does not cause 
any syntactical change in the declarations of variables because the syntax 
for declaring a variable with a composite type and a class of the same name 
have no difference. However, the type declaration part may need updating; 
for example, the composite type declarations are eliminated because they are 
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replaced by the corresponding class definitions. Furthermore, in the explicit 
specifications of the involved processes, operations concerned with the at­
tribute variables of the classes must be implemented by appropriate method 
invocations. 

Again, we take the top-down approach to work out the detailed design 
specification, as follows: 

module SYSTEM_ATM; 
... 1* updated declarations, omitted for brevity * / 

behav CDFD Nol; 

process Manage_ Current_Account( current: sign) 
ext wr current accounts 
end; 

process Manage_Savings_Account(savings: sign) 
ext wr savings_accounts 
end; 

process Manage_ Transfer(transfer: sign) 
ext wr current accounts 

wr savings_accounts 
end; 

process Manage_Foreign_ Currency _Account( 
foreign_currency: sign) 

ext wr foreign_currency_accounts 
end; 

process Change_Password( change_pass: sign) 
ext wr all_used_passwords 

wr foreign _ cu rrency _ accou nts 
wr savings_accounts 
wr current accounts 

end; 

The top-level module SYSTEM_ATM is almost unchanged, except for the 
elimination of the composite types that are converted into the following class 
definitions: 

class Customerlnf; 
var 
account_no: natO; 



pass: natO; 

method InitO 
post account_no = 0 and 

pass = 0 
end_method; 
end_class; 

class Accountlnf; 
var 
name: string; 
balance: natO; 
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transaction_history: seq of Transaction; 

method InitO 
explicit 
begin 
name := /*empty string* / 
balance := 0; 
transaction_history := [1 /*empty sequence * / 

end 
end_method; 

method Increase_Balance(amount: natO) 
ext wr balance 
post balance = -balance + amount 
end_method; 

method Decrease_Balance(amount: natO) 
ext wr balance 
post balance = -balance - amount 
end_method; 

method Update _ T ra nsaction _ H istory( tra nsaction: Transaction) 
ext wr transaction_history 
post transaction_history = 

conc( - tra nsaction _ history, [tra nsaction 1) 
end _ method; 

class CurrentAccountlnf / Accountlnf; 
end_class; 

class SavingsAccountlnf / Accountlnf; 
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var 
withdraw_application_amount: natO; 
application_status: bool; 

method InitO 
post withdraw_application_amount = 0 and 

application_status = true 
end_method; 

method Set_Application_Amount(amount: natO) 
ext wr withdraw_application_amount 

wr application_status 
post withdraw_application_amount = amount and 

application_status = true 
end_method; 

class ForeignCurrencyAccountlnf / Customerlnf; 
var 
name: string; 
balance: real; 

method InitO 
post name = "" and 

balance = 0.0 
end_method; 

class ApplicationNotice; 
var 
application_amount: natO; 
appication_successful: bool; 

method InitO 
post application_amount = 0 and 

application_successful = true 
end_method; 
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class Transaction; 
type 
CurrentAccountsFile = 

SYSTEM_ATM.CurrentAccountsFile; 
var 
date: Date; 
time: Time; 
payment: natO; 
deposit: natO; 
balance: natO; 
atm_no: natO; 

method InitO 
explicit 

begin 
date := new Date; 
time := new Time; 
payment = 0; 
deposit = 0; 
atm_no = 0; 

end 
end_method; 

method Get_ Transaction( 

ext wr date 
wr time 
wr payment 
wr deposit 
wr balance 

explicit 
begin 
date := date1; 

current_accounts: CurrentAccountsFile, 
date1: SYSTEM_ATM.Date, 
time1: SYSTEM_ATM.Time, 
pay1: natO, 
deposit1: natO, 
balance1: natO, 
current_inf: Customerlnf) 

time := time1; 
payment := pay1; 
deposit := deposit1; 
balance := current_accounts( current_inf).balance; 

end 
end method; 
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method Get_Savings_ Transaction( 
savi ngs _ accou nts: Savi ngsAccou ntsFi Ie, 
datel: SYSTEM_ATM.Date, 
time1: SYSTEM_ATM.Time, 
pay1: natO, 
deposit1: natO, 
balance1: natO, 
customer _inf: Customerlnf) 

ext wr date 
wr time 
wr payment 
wr deposit 
wr balance 

explicit 
begin 
date := date1; 
time := time1; 
payment := pay1; 
deposit := deposit1; 
balance := savings_accounts( customer _inf).balance; 

end 
end_method; 
end_class; 

class Date; 
var 
day: natO; 
month: natO; 
year: natO; 

method InitO 
post day = 0 and 

month = 0 and 
year = 0 

end _ method; 

class Notice; 
var 
transaction_amount: natO; 
updated_balance: natO; 

method InitO 
post transaction_amount = 0 and 

updated_balance = 0 
end_method; 
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method Make_Notice(amount: natO, balance: natO) 
ext wr transaction_amount 

wr updated_balance 
explicit 
begin 
transaction_amount := amount; 
updated_balance := balance 

end 
end_method; 
end_class; 

class TransferNotice; 
var 

transaction_amount: natO 
from account balance: natO 
to account balance: natO 

method InitO 
post transaction_amount = 0 and 

from account balance = 0 and 
to_account balance = 0 

end_method; 

method Make_ TransferNotice(transfer _amount!: natO, 
from_balance: natO, 
to_balance: natO) 

ext wr transaction_amount 
wr from account balance 
wr to_account_balance 

post transaction_amount = transfer _amountl and 
from account balance = from balance and 
to_account balance = to balance 

end method 

In principle the methods of the classes are defined using implicit specifications 
if all the state variables (i.e., attribute variables of the related class) involved 
are basic types (e.g., natO, int, and real) or compound types built based on . 
them (e.g., set of natO), and using explicit specifications if some of the state 
variables involved are objects and the invocation of their methods is involved. 

Compared with the original composite types, these classes provide more 
methods to model related operations. The important point is that these meth­
ods are derived from the demand in defining processes in CDFDs. In other 
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words, they are formed when they are necessary for contributing to the build­
ing of the entire system. This is much more reasonable than defining classes 
with imagined or assumed methods from the beginning of a system develop­
ment. 

On the basis of these classes, the module Manage_Current_Account_Decom 
is developed into the specification below to represent the detailed design of 
the module. 

module Manage_Current_Account_Decom /SYSTEM_ATM; 
... 1* the declarations are omitted * / 

behav CDFD _N02; 

process Select_Services(deposit, a: sign I 
b, withdraw: sign I 
c, s_balance: sign I 
d, p_transactions: sign) 
sel: ServiceCollection 

post bound(deposit) and sel = <1> or 
bound(withdraw) and sel = <2> or 
bound(s_balance) and sel = <3> or 
bound(p_transactions) and sel = <4> 

explicit 
if bound( deposit) 
then sel := <1> 
else if bound( withdraw) 

then sel := <2> 
else if bound(s_balance) 

then sel := <3> 

comment 

else if bound(p_transactions) 
then sel := <4> 

The output data flow sel takes different value depending 
on the availability of the input data flows. 
end_process; 

process Current_Authentication(sel: ServiceCollection, 
current_inf: Customerlnf) 
current_inf1: Customerlnf I 
current_inf2: Customerlnf I 
current_inf3: Customerlnf I 
current_inf4: Customerlnf I 
e_mesg1: string 

ext rd current_accounts 
post if current_inf inset dom(current_accounts) 

then case sel of 
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<1> -> current_infl = current_inf; 
<2> -> current_inf2 = current_inf; 
<3> -> current_inf3 = current_inf; 
<4> -> current_inf4 = current_inf; 
end case 

else e_mesg1 = "Your password or account 
number is incorrect." 

explicit 
if cu rrent _ i nf inset dom( cu rrent _ accou nts ) 
then case sel of 

<1> -> current_infl := current_inf; 
<2> -> current_inf2 := current_inf; 
<3> -> current_inf3 := current_inf; 
<4> -> current_inf4 := current_inf; 
end_case 

else e_mesg1 := "Your password or account 
number is incorrect." 

comment 
If the input account_no and password match those 

of the customer's current account in the store 
cu rrent _ accou nts 

then generate output permission 
else output an error message. 

end_process; 

process Current_Deposit( deposit_amount: natO, 
current_infl: Customerlnf) 
notice1: Notice I 

warning1: string 
ext wr current_accounts; 
post if deposit_amount <= maximum_deposit_once 

then 
current_accounts = 
override( -cu rrent _ accou nts, 

{current_infl -> 

} 

modifyC current_accounts( currenCinfl), 
balance -> 
- cu rrent _ accou nts( cu rrent _ i nfl ). ba la nce + deposit _ amou nt, 
transaction_history -> 
concC cu rrenC accou nts( cu rrent _ i nfl ). tra nsaction _ history, 
[Get_ Transaction( current_accounts, today, 

current_time, 0, deposit_amount, current_infl)] 
) 

) 
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) and 
noticel = mk_Notice(deposit_amount, 

current_accounts( current_infl ).balance)) 
else warningl = "Your amount is over 1000000 yen limit." 

explicit 
accou nt _ i nf: C u rrentAccou ntl nf; 
transaction: Transaction; 
begin 

account_inf := new CurrentAccountlnf; 
transaction := new Transaction; 
if deposit_amount <= maximum_deposit_once 
then 
begin 
account_inf := current_accounts( current_infl); 
account_inf.lncrease_Balance(deposit_amount); 
accou nt _ i nf. Update _ T ra nsaction _ H istory( 
tra nsaction. Get _ T ra nsaction ( cu rrent _ accou nts, 

today, current_time, 
0, deposit_amount, 

current_infl)) ; 
current_accounts := 

override( current_accounts, 
{current_infl -> account_inf}); 
noticel := new Notice; 
noticel. Make_Notice( deposit_amount, 

current_accounts( current_infl ).balance) 
end 

else warningl := "Your amount is over 1000000 yen limit." 
end 

comment 
If the input deposit_amount is less than or equal to the 

maximum_deposit_once 
then 

(1) add the deposit_amount to the current_account 
(2) give the customer a notice showing the amount 

of deposit and the updated balance 
(3) update the transaction history of the account 

else give a warning message to indicate that the amount 
is over the limit. 

end_process; 

process Current_ Withdraw( current_inf2: Customerlnf, 
amount: natO) 
notice2: Notice I 

warning2: string 
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ext wr current_accounts 
post if amount <= maximum_withdraw_one and 

amount <= - current_accounts( current_inf2).balance 
then 
current accounts = 
override ( - cu rrent _ accou nts, 
{current_inf2 -> 
modify( - cu rrent _ accou nts( cu rrent _ i nf2), 

balance -> 
-current_accounts(current_inf2).balance - amount, 
transaction_history -> 
conc(-current_accounts( current_inf2) .transaction_history, 

[Get_ Transaction( current_accounts, today, 
current_time, amount, 0, current_inf2)] 

} 

) 
) 

) and 
notice2 = mk_Notice(amount, 

current_accounts( current_inf2). ba lance)) 
else warning2 = "Your withdraw amount is over the limit." 

explicit 
account inf: CurrentAccountlnf; 
transaction: Transaction; 
begin 

account_inf := new CurrentAccountlnf; 
transaction := new Transaction; 
if amount <= maximum_withdraw_once and 

amount <= current_accounts( current_inf2).balance 
then 
begin 
account_inf:= current_accounts(current_inf2); 
account_inf. Decrease_Balance( amount); 
account_inf.Update_ Transaction_History( 
transaction.Get_ Transaction( current_accounts, 

current accounts:= 

today, current_time, 
amount, 0, current_inf2)); 

override( current_accounts, 
{current_inf2 -> account_inf}); 

notice2 := new Notice; 
notice2.Make_Notice(amount, 

current_accounts( current_inf2) . balance) 
end 

else warning2 := "Your amount is over 1000000 
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yen limit." 
end 

comment 
If the input amount is less than or equal to the 

balance of the account and the 
maximum withdraw once 

then 

else 

(1) output the cash of the requested amount 
(2) reduce the withdraw amount from the balance 
(3) update the transaction history of the account 
( 4) give a notice 

generate a warning message 
end_process; 

process Current_Show _Balance( current_inf3: Customerlnf) 
balance: natO 

ext rd current_accounts 
post balance = current_accounts(current_inf3).balance 
explicit 
balance := current_accounts(current_inf3).balance 
comment 
Display the balance of the customer's current account 
end_process; 

process Current_Print_ Transaction_Records( 
current_inf4: Customerlnf, date: Date) 
transaction records: TransactionRecords 

ext rd current accounts 
post let transactions = 

current_accounts( cu rrent_inf4) .transaction_history 
in let i = get( {i I i: inds(transactions) & 

transactions(i).date = date}) 
in 
transaction records = 

transactions(i, ... , len (transactions)) 
explicit 
transactions: seq of Transaction; 
index: natO; 
begin 
transactions := 

cu rrent _ accou nts( cu rrent_ i nf4). tra nsaction _ history; 
index := 

get( {i I i: inds(transactions) & 
transactions(i).date = date}); 
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transaction records:= 
transactions(index, ... , len (transactions)) 

end 
comment 
Print out the transaction records since the input date 
end_process; 

process Display_lnformation(notice1: Notice I 
notice2: Notice I 
balance: natO I 
transaction_records: 

ext wr output_device 
post bound(notice1) and 

Tra nsaction Records) 

output_device = concCoutput_device, [notice 1]) or 
bound(notice2) and 

output_device = concCoutput_device, [notice2]) or 
bound(balance) and 

output_device = concCoutput_device, [balance]) or 
bound(transaction_records) and 

output_device = 
conc( -output _device, [tra nsactions _records]) 

explicit 
if bound( notice1) 
then output_device := conc(output_device, [notice1]) 
else if bound(notice2) 

then outpuCdevice = conc(output_device, [notice2]) 
else if bound(balance) 

then output_device = 
conc( output_device, [balance]) 

else output_device = 
conc( output_device, [transactions_records]) 

comment 
Display the input data flows onto the output device 
based on their availability. 
end_process; 

process Display_Message(warning1: string I 
warning2: string I 
e_mesg1: string) 

ext wr output_device 
post bound(warning1) and 

output_device = concCoutput_device, [warning1]) or 
bound(warning2) and 

output_device = concCoutput_device, [warning2]) or 
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bound(e_mesgl) and 
output_device = concC output_device, [e_mesgl]) 

explicit 
if bound(warningl) 
then output_device := 

concC output_device, [warningl]) 
else if bound(warning2) 

then output_device := 
conc( output_device, [warning2]) 

else output_device := 
conc( output_device, [e_mesgl]) 

comment 
Display the input data flows onto the output device 
based on their availability. 
end_process; 

end_module; 

Writing the explicit specification for each process does not involve data refine­
ment in this case study. The essential job, however, is to find out necessary 
statements and their correct order for the implementation of the meaning 
of the implicit specification. The explicit specification is therefore more al­
gorithmic than the implicit one, but this does not imply that the explicit 
specifications is executable like a program, since quantified expressions and 
set, sequence, and map comprehensions are likely to have been used. It is 
extremely difficult, if not impossible, to come up with a general algorithm 
to automatically implement those complicated expressions. Nevertheless, the 
explicit specification definitely narrows the gap between the implicit specifi­
cation and its potential program. 

16.5 Summary 

This case study has demonstrated that SOFL is effective and helpful in three 
aspects. One aspect is the effectiveness of the combination of CDFDs and for­
mal definitions of their components in the modules: CDFDs provide graphical 
views of the architecture of the modules, while the formalization of their com­
ponents help to precisely define the components and improve the structure 
of the CDFDs. Another important point is the good traceability due to the 
systematic documentation mechanism in the specifications. This point is espe­
cially useful for specification modification. The final point is the reuse of the 
high level specifications in the low level specifications; thus, the gradual way 
of developing the formal specification is not a waste of time and effort, but 
creates necessary documents for progress toward the final formal specification. 
For example, all the data declarations (e.g., types, store variables, invariants) 
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are almost copied to the formal specification, and the informal descriptions of 
the pre and postconditions of processes are used as comments in their formal 
specifications. 

On the other hand, drawing and updating CDFDs may take time and 
need great care for internal consistency. However, this problem can be ad­
dressed by a powerful software supporting tool. The issues of software tools 
and environments are discussed in Chapter 20. 

16.6 Exercises 

1. Give a semi-formal specification for the module 
Manage_Savings_Account_Decom. 

2. Give a formal abstract design specification for the module 
Manage_Savings_Account_Decom. 

3. Write a formal detailed design specification for the module 
Manage_Savings_Account_Decom. 



17 

Rigorous Review 

In order that a specification serve as a trustable contract between the de­
veloper and the user, and a firm foundation for implementation, it must be 
ensured that the specification contains no faults or as few faults as possible. 
Many studies have shown that detecting faults in specifications help substan­
tially reduce the cost and risk of software projects [10]. In this chapter, we 
introduce a technique known as rigorous review for verifying and validating 
specifications. 

Review is a traditional technique for static analysis of software to detect 
faults that undermine its reliability [28]. Basically, software review means 
to check through software in an appropriate manner, either by a team or an 
individual. Since software means both program and its related documentation, 
such as specification, abstract design, and detailed design, a review can be 
conducted for every level of documentation. Various review methods have been 
proposed and/or applied in practice with different names, such as software 
reviews, walk-through, static analysis, and code inspection [95][33][114][60]. 

When dealing with specifications with no formal semantics, the review 
techniques have to be applied intellectually, based on reviewers' experience, 
and may not be supported systematically in depth. However, for formal spec­
ifications, more rigorous review techniques can be applied. To make reviews 
effective, especially for complex systems, it is important to use a systematic 
method that allows the reviewer to focus on a manageable component at each 
time, and provides an automatic analysis based on the review results of all 
the related components. The rigorous review introduced in this chapter is a 
technique developed along this line. 

17.1 The Principle of Rigorous Review 

The fundamental idea of rigorous review is to improve the rigor and compre­
hensibility of reviews by utilizing the advantages of formal proof and tradi­
tional review techniques as well as appropriate graphical notations. All the 
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important properties of a specification are expressed as predicate expressions, 
and conventional review techniques are used to check the properties. A rigor­
ous review is conducted by following the three steps. First, derive properties 
to be reviewed. Second, for each property generate a graphical representation 
analyzing the property. Finally, review all the necessary components occur­
ring in the graphical representation. The conclusion of the review for each 
property is given based on the review results of all the components. 

In order that a specification accuratly reflect the user requirements and 
guarantee a program solution, it is essential to ensure the internal consistency, 
satisfiability, and validity of the specification. 

Definition 24. A specification is said to be internally consistent if and only 
if there is no contmdiction with the semantics of the SOFL language in the 
specification. 

Specifically, the internal consistency of a SOFL specification is divided further 
into several aspects: internal consistency of process, invariant-conformance 
consistency, and internal consistency of CDFD, each being discussed in detail 
in Sections 17.2.1, 17.2.2, and 17.2.4, respectively. 

Definition 25. A specification is satisfiable if and only if there exists a math­
ematical model representing the semantics of the specification. 

Such a model ensures the existence of an implementation for the specification. 

Definition 26. A specification is valid if and only if it satisfies the user's 
requirements. 

A property is usually represented by a predicate expression, possibly a 
quantified predicate expression. It can usually be derived from the formal 
specification, based only on the syntactic structure of the specification. 

The graphical notation used in the rigorous review technique for analyzing 
properties is known as Review Task Tree. The detailed description of this 
notation will be given in Section 17.3. Review task tree notation is a simplified 
and extended version of the Fault Tree notation that is traditionally used for 
the analysis of safety properties of safety-critical systems whose failure may 
cause catastrophic disaster to human life and/or important properties [59]. 
Compared with the fault tree notation, the review task tree notation has 
several advantages: (1) it takes less space in drawing, (2) it defines review 
tasks clearly, and (3) it shows the dependency relations among review tasks 
explicitly. 

From the next section, the three steps of rigorous review, mentioned in the 
beginning of this section, are introduced in detail. 
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17.2 Properties 

Let us focus on a single CDFD and the associated module to discuss, respec­
tively, the four important properties: internal consistency of process, invariant­
conformance consistency, satisfiability, and internal consistency of CDFD. 

17.2.1 Internal Consistency of a Process 

Let M denote a module in which the process P is defined. 

module M; 

type 

U sableInt = int; 

inv 

I; 

process Pea: T _1) b: T_2 
ext wr x: T_3 

rd y: T _ 4 
wrz: T 5 

pre 0_1 
post 0_2 
end _process; 

end module; 
In this module the invariant 1 and process P are given abstractly, for we intend 
to discuss the issue of the internal consistency here in general. To express the 
internal consistency of a process, we need the following notation: 

Notation: 

• Input(P): the set of all input data flow variables of process P. 
• Output(P): the set of all output data flow variables of process P. 
• WR(P): the set of all writable (wr) external variables (including both 

decorated and undecorated variables) of process P. 
• RD(P): the set of all readable (rd) external variables of process P. 
• Variables(C): the set of all free variables occurring in condition C. 
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-a 

Fig. 17.1. The CDFD of module M 

In the definition of internal consistency of a process given below, we assume 
that the process does not violate the syntactic and typing rules. 

Definition 27. A process P is internally consistent if the following conditions 
hold: 

(1) forall[v: Output(P)ll v not in Variables(pre_P) 
(2) v inset union(Variables(pre_P), Variables(post_P)) => 

v inset union(lnput(P), Output(P), WR(P), RD(P)) 

The condition (1) requires that no output variable occur in the precondition 
of process P, for output variables are only made available as the result of 
executing the process P. Therefore, the output variables are required to meet 
the postcondition, but not the precondition. The condition (2) states that any 
variable used in the pre and postconditions must be one of the input, output, 
and external variables of the process. In other words, no variables except the 
input, output, and external variables of the process is allowed to be involved 
in its pre and postconditions. 

For example, let process P be specialized into the following specific process: 

process P(a: Usablelnt) b: Usablelnt 
ext wr x: Usablelnt 

rd y: Usablelnt 
wr z: Usablelnt 

pre a > 0 and y > 0 
post x = a + y and b > x - a and z = -z + a 
end _process; 

Then, 

Input(P) = {a} 
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Output(P) = {b} 
WR(P) = {x, z, -x, -z} 
RD(P) = {y} 
Variables(pre_P) = {a, y} 
Variables(post_P) = {x, a, y, b, z, -z} 

This process is internally consistent, according to Definition 27. 

17.2.2 Invariant-Conformance Consistency 

The invariant-conformance consistency means that any invariant defined in 
a module must not be violated by the pre and post conditions of any process 
defined in the specification. 

Definition 28. Let a type invariant I be defined as forull [x_1: T _1, x_2: 
T _2, ... , x_n: T _nJ I Q(x_1, x_2, ... , x_n) . Then, a process P and invariant 
I are consistent if and only if the following two conditions hold. 

false 

(1) (pre_P(y_1, y_2, ... , y_m) and 
(exists[x_2: T _2, ... , x_n: T _nIl 

Q(x_1, x_2, ... , x_n)[y_1/x_1]) and 
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _nIl 

Q(x_1, x_2, x_3, ... , x_n)[y_2/x_2]) and 
... and 

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-111 
Q(x_1, x_2, x_3, ... , x_n-1, x_n)[y_n/x_n])) <> false 

(2) (pre_P(L1, L2, ... , y_m) and 
post_P(z_l, z_2, ... , z_w) and 
(exists[x_2: T _2, ... , x_n: T _nIl 

Q(x_1, x_2, ... , x_n)[y_1/x_1]) and 
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _nIl 

Q(x_1, x_2, x_3, ... , x_n)[y_2/x_2]) and 
... and 

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-111 
Q(x_1, x_2, x_3, ... , x_n-1, x_n)[y_n/x_n])) <> 

where n >= 1; we assume that y_1, y_2, ... , y_m are the variables of types 
T _1, T _2, ... , T _m (m <= n), respectively; and likewise z_l, z_2, ... , z_w 
are the variables of T _1, T _2, ... , T _m (w <= n), respectively (assuming 
that the x_i (i =l..n) are all different from the y-.J (j=l..m) and the z_k 
(k=l..w)). 
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In other words, invariant 1 must not be violated by either precondition or 
postcondition of process P, for the invariant is part of the overall requirements 
documented in the specification and is required to be sustained throughout 
the entire system operation. Note that in SOFL an invariant 1 is regarded 
as an implicit part of the pre and postcondition of a process. For exam­
ple, the precondition (or postcondition) of process P discussed above is not 
only pre_P(y_l, y_2, ... , y_m) (or post_P(z_l, z_2, ... , z_w)), but is in 
fact pre_P(y_l, y_2, ... , y_m) and forall[x_l: T _1, x_2: T _2, x_n: T _n] 
I Q(x_l, x_2, ... , x_n) (or post_P(z_l, z_2, ... , z_w) and forall[x_l: T _1, 
x_2: T _2, ... , x_n: T _n] I Q(x_l, x_2, ... , x_n)). Thus, when module M 
described previously is implemented, it is the programmer's obligation to im­
plement process P in a manner that invariant 1 is sustained before and after 
the execution of process P. 

Let us take module M given previously as an example to illustrate the 
conditions for ensuring the consistency between an invariant and a process. 
Assuming that invariant 1 given in module M is defined as 

forall[i: Usablelnt]I i <= 10000 

where the type Usablelnt contains only integers less than or equal to 10000. 
Substituting the concrete precondition, postcondition, and the invariant for 
the corresponding expressions in the conditions (1) and (2) given in Definition 
28, the concrete conditions for process P, given previously to be consistent with 
I, become 

1. ((a> 0 and y > 0) and a <= 10000 and y <= 10000) <> false 
2. ((a> 0 and y > 0) and (x = a + y and b > x - a and z = -z + a) and 

a <= 10000 and y <= 10000 and x <= 10000 and b <= 10000 and 
z <= 10000 and -z <= 10000) <> false 

The review of these conditions to determine whether they hold or not will 
be discussed in Section 17.3, as an example of rigorous review based on the 
review task tree analysis. At the moment, let us continue to concentrate on 
the definitions of properties of interest. 

17.2.3 Satisfiability 

Before trying to implement a process specification, we must make sure that the 
specification is satisfiable. Otherwise, the efforts in the implementation may 
be wasted because there may be no program solution to meet the specification. 

Definition 29. The satisfiability of process P is defined as: 
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forall[a, y, -x, -z: Usablelntll (pre_P(a, yWx/x, -z/zl => 
exists[b, x, z: Usablelntll post_P(a, b, x, -x, y, -z, z)) 

The satisfiability requires that, for any input, if the precondition evaluates to 
true, there must exist an output based on which the postcondition evaluates 
to true. Note that an input may be a group of values bound to the corre­
sponding input variables, including input parameters and appropriate exter­
nal variables. The review of this property for verification will be explained in 
Section 17.3. 

17.2.4 Internal Consistency of CDFD 

The internal consistency of a CDFD is an important property necessary for the 
correctness of the CDFD with respect to its high level process, if we assume 
that the CDFD is a decomposition of the high level process. Specifically, this 
concept is defined as follows. 

Definition 30. The internal consistency of a CDFD is a property that the 
output data flows of the CDFD can be generated based on its input data flows 
under the condition that the pre and postconditions of all the processes involved 
in the execution of the CDFD evaluate to true. 

Obviously, a necessary condition for ensuring the internal consistency is that 
the output data flows of the CDFD are reachable from the input data flows 
(i.e., there exists a path syntactically from the input data flows to the output 
data flows). In addition, we also need to ensure that each process involved 
in an execution of the CDFD is consistently defined and the precondition of 
each process is guaranteed by the operational environment (e.g., the preceding 
processes). A consistent CDFD ensures that all the output data flows of the 
CDFD will be produced consistently, but gives no guarantee whatsoever for 
the correctness of the CDFD with respect to its high level process, because 
this will depend on whether the CDFD and the high level process satisfy the 
refinement rules given in Definition 17 of Section 5.4 in Chapter 5. It is very 
possible that a CDFD is internally consistent, but not correct with respect to 
its high level process (giving an example is left to the reader as a homework). 

Let us consider the CDFD in Figure 17.1 as an example. The overall 
internal consistency property is expressed as 

bound(a) and pre_P => bound(t) and post_P3 

The availability of an a that satisfies the precondition of process P must lead 
to the availability of a t that satisfies the postcondition of process P3. It is 
not difficult to tell that the output data flow t is reachable from the input 
data flow a in Figure 17.1. In addition to the reachability, we also need to 
ensure that the preconditions of processes PI, P2, and P3 are implied by the 
post conditions of their preceding processes. Formally, 
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(1) post_P => pre_PI 
(2) post_PI => pre_P2 
(3) post_PI and post_P2 => pre_P3 

To facilitate rigorous review of these properties, they are converted into the 
following equivalent three expressions: 

(1') not post_P or pre_PI 
(2') not post_PI or pre_P2 
(3') not (post_PI and post_P2) or pre_P3 

17.3 Review Task Tree 

17.3.1 Review Task Tree Notation 

To review a property described above, there may be several different strate­
gies, and each strategy may indicate how the property, as a top-level task, 
should be reviewed in order to support a systematic process of rigorous re­
view. Perhaps many notations can be used to represent a review strategy, but 
such a representation should be comprehensible, and capable of presenting 
task decompositions to support "team reviews" (in which a review process of 
a single property may need to be explained to the other team members) and 
documentation of the review process (which might be required when the final 
program product is certified by an authorized organization or the customer). 

In this section, we present a graphical notation for representing review 
tasks in a systematic, logical, and hierarchical manner. The notation is known 
as review task tree (RTT). It is derived by simplifying the fault tree notation 
traditionally used for safety analysis of safety-critical systems [59]. Each node 
of a review task tree represents a review task, defining what to do with a prop­
erty, and it may be connected to "child nodes" in different ways, depending 
on the type of the node. 

Definition 31. Let 5 be a specification and P be a property of s. Then, a 
review task related to P is a property about P. 

There are two kinds of review tasks. One is "the property involved holds" and 
another is "the property involved can hold." The former is represented by a 
rectangle node, while the latter represented by a round-edged rectangle node. 
Figure 17.2 gives all the possible nodes in each category of the review task tree 
notation. To help the drawing of large-scale RTT, some nodes for connecting 
different parts of an RTT are needed. Figure 17.3 gives two connecting nodes 
used in RTT. 
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8 
Property A (or B) can 

( A ) hold (or holds) if all of 

= its child properties hold. 

CD 
Property A (or B) can hold 

( A ) (or holds) if one of its 

= child properties hold. 

8 
Property A (or B) can hold 

( A ) (or holds) if all of its child 
v properties hold in the order 

from left to ri~ht. 

QJ 
Property A (or B) can hold (or 

( A ) holds) if one of its child 
properties holds in the order 

z::s from left to right 

cp c;J 
Property A (or B) can 

hold (or holds) if its only 
child property holds. 

8 
Property B holds if its right 
child property holds under 
the assumption that its left 

child property holds. 

Property A (or B) can hold (or 

( A ) GJ holds). It is an atomic 
property that has no 

decomposition. 

Fig. 17.2. The major components of RTT 

cb 
Input connecting node, meaning 
the connection will continue to 

reach the output connecting node 
with the same number. 

cp Output connecting node, meaning 
it takes the connection from the 
input connecting node with the 

same number. 

Fig. 17.3. The connecting nodes of RTT 

Figure 17.4 shows a simple RTT. It represents that property A can hold 
if properties B, C, and 0 hold; property B holds if G or F holds; property C 
holds if E holds; and property 0 holds if H can hold and then W holds. In 
this RTT, the node containing property A presents the overall task for review 
and the task is decomposed into three sub-tasks that are represented by the 
three nodes containing properties B, C, and D, respectively. Then, each of the 
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Fig. 17.4. An simple example of RTT 

sub-tasks is decomposed further into the smaller tasks: the nodes containing 
properties G, F, E, H, and W. 

Definition 32. We use can_hold (P) to represent the task that property P 
can hold, and hold (P) to mean that P holds. 

We will often use these two expressions in our discussions concerned with 
review tasks. 

17.3.2 Minimal Cut Sets 

Given an RTT, it is important to know what combinations of the leaf tasks, 
which usually represent the atomic properties for review of the top-level task, 
will imply the top-level task. Thus, by reviewing appropriate leaf tasks we can 
check whether the top-level task has been reviewed and whether there exist 
faults in the related property of the top-level task. For this reason, we need 
the concept known as minimal cut sets. 

Definition 33. Let T be a review task tree. A minimal cut set of T is a 
smallest combination of the leaf tasks that implies the top-level task of T. 

By the definition, a minimal cut set is thus a combination of the leaf tasks 
sufficient for implying the top-level task. The combination is a "smallest" one 
in the sense that reviews of all the tasks in the minimal cut set are needed 
for performing the review of the top-level task. If one of the tasks in the 
minimal cut set is not reviewed, then the top-level task cannot be considered 
to have been reviewed based on this combination. For example, the RTT in 
Figure 17.4 has two minimal cut sets {G, E, H, W} and {F, E, H, W}, since 
the combination of each set forms the smallest task implying the top-level 
task. 
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For an RTT, its minimal cut sets are finite and unique. Let T denote an 
RTT, and A its top-level task. Then the minimal cut sets are expressed as 
follows: 

A=M I+M 2+ ... +M n 

where M_i (i = l..n) are minimal cut sets. Each minimal cut set consists of a 
set of specific leaf tasks, and is expressed as 

Thus, the minimal cut set expression for the top-level task of the review task 
tree given in Figure 17.4 is 

A = {G. E. H. W} + {F. E. H. W} 

17.3.3 Review Evaluation 

The review result of the top-level task of an RTT can be evaluated by means 
of evaluation of its minimal cut sets. The review result of a task in an RTT has 
three possibilities: positive, uncertain, and negative. A positive result means 
that no fault in the task under review is detected; an uncertain result provides 
no evidence to either support or deny the task (property); and a negative result 
indicates that the task contains faults. 

Suppose the top-level task A of a review task tree T is expressed in terms 
of its minimal cut sets 

A=M l+M 2+ ... +M n 
and each minimal cut M_i (i = l..n) consists of a set of specific leaf tasks 

M_i = {E_l. E_2 ..... E_m} 
Then, the way to evaluate the review result of the top-level task based on its 
minimal cut sets is given through Definitions 34 and 35. 

Definition 34. The review result of M_i (i=1..n) is positive only if the review 
result of every E-.J(j=l..m) is positive, negative if the review result of one of 
all the E-.J(j=1..m) is negative, and uncertain otherwise. 

Definition 35. The review result of the top-level task A is positive, negative 
only if the review results of all M_i (i=l..n) are negative, and uncertain oth­
erwzse. 

Consider the RTT in Figure 17.4 as an example. Since the top-level task 
A = {G. E. H. W} + {F. E. H. W}, the review result of A is determined, by 
definitions 34 and 35, as follows: 
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• The review result of A is positive if the review results of G, E, H, and W 
are all positive or the review results of F, E, H, and Ware all positive. 

• The review result of A is negative if one of the review results of G, E, H, 
and W is negative and one of the results of F, E, H, and W is negative. 

• The review result of A is uncertain if it is neither positive nor negative. 

17.4 Property Review 

The review of a specification is done by means of reviewing all the important 
properties discussed in section 17.2 that are derived from the specification. 
The properties are called review targets. To review a property , we take the 
following steps: 

Step 1: Construct a review task tree for the property to show the overall 
review task and its decomposition. 

Step 2: Identify the minimal cut sets of the review task tree. 
Step 3: Review all the leaf tasks to determine their truth (remember that a 

task in a review task tree is also a property). 
Step 4: Determine whether the top-level task holds based on the review re­

sults of the minimal cut sets. 

An RTT for a property (a predicate expression) can be built based on the 
requirement for and the structure of the property. The requirement for the 
property forms the top-level task, and it may be decomposed into sub-tasks 
based on the semantics of its logical expression. A strategy for constructing 
an RTT for a property is summarized as follows: 

• For a compound property (predicate expression), review its constituent 
predicates first and then its integration. 

• For an atomic predicate (e.g., a relation or a negation of an atomic pred­
icate), review whether the set of values constrained by the predicate is 
empty or not. Such a set must be given in form of set comprehension, so 
that the types of the involved variables in the predicate will be clearly 
indicated. 

These guidelines serve as a foundation for building review task trees for various 
kinds of properties, such as those described in Section 17.2. 

17.4.1 Review of Consistency Between Process and Invariant 

Let us take the process P and the related invariant I given in Section 17.2.1 as 
an example to show how an RTT can be generated to review the consistency 
between the process and the invariant. An RTT for reviewing the consistency 
between the invariant and the precondition of the process is formed based on 
the review conditions given in Definition 28, as shown in Figure 17.5. 
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a> 0 and y > 0 and a <= 10000 and y <= 10000 

inter({a I a: UsableIn! & a > 0], {y I y: UsableIn! & y > 0), 
{a I a: UsableIn! & a <= 10000], {y I y: Usablelnt & y <= lOOOO}) 

<> {} 

Fig. 17.5. An example RTT for the review of the consistency between the precon­
dition of a process and an invariant 

The top-level task of this RTT is can_hold(a > 0 and y > 0 and a <= 
10000 and y <= 10000), which is equivalent to the property: ((a> 0 and y > 
0) and a <= 10000 and y <= 10000) <> false. To check whether this top­
level task is true, we need to review all of its sub-tasks, such as can_hold( a > 
0), can_hold(y > 0), can_hold(a <= 10000), and can_hold(y <= 10000). 
When reviewing a task, say can_hold(a > 0), it will be helpful if the re­
viewer is provided with the type of variable a, because in that way the re­
viewer can understand not only the involved predicate expression (i.e., a > 
0), but also the related context. Furthermore, a straightforward way to show 
how to determine if can_hold(a > 0) is true would be more instructive to 
the reviewer. To meet these two requirements, we convert the review of the 
truth of the atomic task can_hold(a > 0) into the review of whether the 
model of the predicate, which is a non-empty set of elements satisfying the 
predicate (i.e., {a I a: Usablelnt &. a > O}), exists or not (i.e., hold({a I a: 
Usablelnt &. a > O} <> { })). Obviously, as long as we can find one element 
of the model, we will be able to assert that hold( {a I a: Usablel nt &. a > O} 
<> { }) is true. The same principle can also be applied to review the other 
atomic tasks. 

Since only ensuring the truth of each individual sub-task of the top-level 
task does not necessarily guarantee the truth of the top-level task, there is a 
need to review whether these sub-tasks are true on the same elements. That 
is, we need to review whether the task hold(inter( {a I a: Usablelnt &. a > O}, 
{b I b: Usablelnt &. b > O}, {a I a: Usablelnt &. a <= 10000}, {y I y: Usablelnt 
&. a <= 10000}) <> { }) is true, as illustrated in the RTT in Figure 17.5. 
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v inset union(Variables(pre_P), Variables(poscP» => 
v inset union(Input(P), Output(P), WR(P), RD(P» 

v inset la, b, x, y, z, -z} => 
v inset I a, b, x, -x, y, z, -z} 

Fig. 17.6. A review task tree for process consistency 

It is worth noting that the property in each task in an RTT does not 
necessarily need to be written in a formal expression, such as a predicate ex­
pression; it may be written in an informal language, as long as it facilitates the 
review of desired properties. We will see more examples of such an RTT below 
in which the combination of informally and formally described properties are 
involved. 

17.4.2 Process Consistency Review 

The consistency of a process specification is defined in Definition 27 in Sec­
tion 17.2.1. A review task tree for a given process, say P defined in module 
M in Section 17.2.1, is derived based on the Definition 27 and the concrete 
specification of P. The review task tree is given in Figure 17.6. 

The top-level task of the tree is "P is consistent." There are three inter­
mediate sub-tasks that correspond to the three general conditions given in 
Definition 27. All the leaf tasks are specialization of their corresponding in­
termediate tasks by taking the specification of process P into account. For 
example, the leaf task on the left is a specialization of the intermediate task 
on the left. Since the only minimal cut set for this review task tree contains 
all the leaf tasks, if all of them are reviewed and confirmed to be true, then 
the truth of the top-level task "P is consistent" will be confirmed. In fact, this 
can be easily concluded by checking the specification of process P. Since the 
internal consistency of a process is defined solely based on the syntax of the 
process specification, the derivation of the review task tree and reviews of all 
the leaf tasks can be performed automatically. 
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17.4.3 Review of Process Satisfiability 

As mentioned in Section 17.2.3, the review target for process satisfiability is 
the proof obligation given in Definition 29. Let us take the process P spec­
ified in Section 17.2.1 as an example to explain the technique for building 
an RTT. Since the proof obligation for the satisfiability of process P involves 
an implication in the body of the universally quantified expression, we sim­
plify the proof obligation by converting the body of the universally quantified 
expression into an equivalent disjunction as follows: 

forall[a, y, -z: Usablelntl I not pre_P(a, y, z)rx/x, -z/zl or exists[b, x, 
z: Usablelntll post_P(a, b, x, -x, y, -z, z)) 

The RTT built based on this expression is simpler and more comprehensible 
than that for the original expression of the proof obligation. 

We treat the property "P is satisfiable" as the top-level property in the 
top-level task hold(P is satisfiable), and then decompose the task into sub­
tasks, as shown in Figure 17.7. Note that there is no part in the tree directly 
corresponding to the universal quantifier, because it is unnecessary to inde­
pendently check anything related to the type Usablelnt for the bindings. The 
most important part to review is the body of the universally quantified expres­
sion. Since it is a disjunction of two constituent expressions, we decompose 
the top-level task into two sub-tasks, checking hold(not pre_P(a, y, z)rx/x, 
-z/z]) and hold(Existentially quantified expression). The first task is decom­
posed into the single task hold( {(a, -x, -z) I a, -x, -z: Usablelnt & not a > 0 
and y > O} <> { }) and the second task is again divided into the two tasks 
hold(Usablelnt <> { }) and hold(post_P(a, b, x, -x, y, -z, z)). Finally, the 
latter task is again decomposed into another single sub-task hold( {(b, x, z) I 
b, x, z: Usablelnt & x = a + y and b > x - a and z = -z + a } <> { }). 

When reviewing this tree, we just need to review all the atomic tasks in 
the two minimal cut sets {hold( {(a, -x, -z) I a, -x, -z: Usablelnt & not a > 0 
and y > O} <> { })} and {hold(Usablelnt <> { }), hold( {(b, x, z) I b, x, z: 
Usablelnt & x = a + y and b > x - a and z = -z + a } <> { })}, and then 
evaluate the overall review result based on review results of the two minimal 
cut sets. 

17.4.4 Review of Internal Consistency of CDFD 

As described in Section 17.2.4, an internal consistency review for a CDFD aims 
to check whether an output data flow of the CDFD (which can be an output 
data flow of a terminating process or node of the CDFD) can be reached from 
its input data flows (which can be input data flows of some starting processes 
or nodes of the CDFD) syntactically, and whether the pre and post conditions 
of all the processes involved in an execution of the CDFD evaluate to true. 
For example, to review the internal consistency of the CDFD given in Figure 
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{(a. -x. - z) I a. -x. -z: Usablelnt 
& not a > 0 and y > OJ <> { J 

{(b. x. z) I b. x. z: Usablelnt 
&x=a+yandb>x-a 

and z = -z + a J <> {J 

Fig. 17.7. A RTT for reviewing the satisfiability of process P 

17.1, it is necessary to check whether the output data flow t can be produced 
based on the input data flow a through the CDFD. Such checking is equivalent 
to finding a path of data flows from a to t through the CDFD. However, the 
existence of such a syntactical path may not necessarily lead to the correct 
generation of t semantically. For example, when process PI is not satisfied 
by its input data flow b, PI is still executed according to the semantics of 
CDFD, but its output data flows dl and d2 may not be correctly produced 
under the postcondition of PI, which cannot be expected to eventually result 
in a desired output data flow t. 

To ensure the internal consistency of the CDFD, we need to ensure every 
possible output data flow of the CDFD is consistently produced. In the case of 
Figure 17.1, we must make sure that the only output data flow t is produced 
consistently based on the input data flow a through the CDFD. In order to 
review the consistency of the CDFD, we treat the property hold{The CDFD 
of module M is internally consistent) as the top-level task, and build an RTT 
as shown in Figure 17.8. The top-level task is ensured by establishing the task 
hold{Data flow t is generated consistently). According to the semantics of a 
process, the assurance of the consistent generation of t must be based on the 
following conditions (tasks): 

(1) dl and d3 are generated consistently. 
(2) P3 is satisfiable. 
(3) t occurs in the postcondition of P3 (i.e., t inset Variables{post_P3)). 
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Fig. 17.8. A RTT for the internal consistency of the CDFD of module M 

The truth of each of these three conditions may need a further analysis. 
The consistent generation of data flows d1 and d2 can be analyzed in the same 
way as that for the analysis of data flow t. The review of the satisfiability of 
P3 can be done by following the approach described in Section 17.4.3. The 
truth of condition (3) can be easily found out by a review of the process 
consistency discussed in Section 17.4.2. For brevity, Figure 17.8 does not give 
a complete RTT for the review of the internal consistency of the CDFD. All 
the intermediate tasks whose reviews are already discussed in previous sections 
in this chapter are connected to an input connecting node, indicating that the 
existence of another sub-RTT for reviewing the corresponding intermediate 
task is provided somewhere in the review documentation. 

17.5 Constructive and Critical Review 

By now we have taken the approach to reviewing properties by trying to 
establish the properties. That is, suppose we want to ensure property P, we 
try to establish the sub-tasks that lead to the assurance of P. We call this 
constructive review. However, constructive review is not always possible, due 
to the lack of necessary information or to the difficulty in doing it explicitly. 
Since the aim of reviewing a specification is to detect potential faults, one 
practical way to do it is to review properties by considering the possible 
reasons for causing them not to hold. This approach is known as critical review. 

Specifically, suppose we want to ensure property P; we treat not P as the 
top-level property and hold{not P) as the top-level task of the RTT to review 
property P. We then develop the review task tree in the same way as that 
used before for constructive review. In fact, the way of doing review in both 
constructive and critical approaches are the same: both try to establish the 
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Dot (a > 0 and y > 0 and a <= 10000 and y <= 10000) 

inter({a I a: UsableIn, & not a > OJ, {y I y: UsableIn' & Dot y > O}, 
(al a: UsableIn, & nota <= l(){)()()}.{y I y: UsableIn, & nuty <= l(){)()())) 

<> {} 

Fig. 17.9. A RTT for critical review of the consistency between an invariant and 
the precondition of a process 

top-level task of a CDFD; the only difference between them is at the content 
of the top-level property: the top-level property of a constructive review task 
tree is the property itself, while the top-level property of a critical review task 
tree is the negation of the top-level property of the corresponding constructive 
review task tree. 

Let us take the RTT in Figure 17.5 as an example to illustrate the critical 
approach. By treating the negation of the top-level property a > 0 and y > 
a and a <= 10000 and y <= 10000 as the top-level property, we build the 
critical review task tree in Figure 17.9. 

17.6 Important Points 

The review task tree approach to rigorous review of specifications introduced 
in this chapter is only a tool for presenting and organizing the review tasks, 
and for evaluating the review results; it does not conduct reviews automati­
cally. The reviews have to be done by another means, for example, by reading 
through all the atomic tasks manually, or by testing all the atomic tasks, 
possibly with some testing tools. While reviews by human reviewers reading 
through the atomic tasks are usually effective for validating a formal specifi­
cation, testing can be effective for verifying the consistency properties of the 
specification. In the next chapter, we will give a detailed introduction to a 
technique for testing formal specifications. 

Although deriving a review task tree for a property of a specification does 
not ensure that the review of the property will be done satisfactorily, the 
review task tree approach offers several potential advantages over traditional 
review techniques: 
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• the review task tree can be constructed automatically based on a property 
derived from the specification. 

• it allows the reviewer to focus on a manageable review task at a time. 
• the review results of manageable tasks can be automatically utilized to 

determine the result of the overall review. 
• the review task tree notation is comprehensible in conveying the ideas of 

a review, which will be useful and helpful when a review is explained to 
other people, such as the teammates or the managers involved in the same 
project. 

Since a graphical notation usually occupies more space than texts, skill in 
drawing review task trees is important. The input and output connecting 
nodes given in Figure 17.3 are usually very helpful in facilitating the organi­
zation of a large review task tree across different pages. 

17.7 Exercises 

1. Suppose the process P is defined as follows: 
process P(a: int) b: set of int 
ext wr x: set of int 

rd y: int 
pre card(x) <> 0 
post inter(x, b) = union({a, y}, -x) 
end _process 
Build a review task tree for reviewing the internal consistency of process 
P, and determine whether the process is internally consistent. 

2. Build a review task tree for both constructive review and critical review 
of the satisfiability of process P given above, and determine if process P 
is satisfiable. 

3. Construct review task trees for the "library system" required in Exercise 
2 of Chapter 14, to review the following properties: internal consistency 
of each process involved, the consistency between each process and the in­
variants (if any), satisfiability of each process, and the internal consistency 
of all the CDFDs involved in the specification. 
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Specification Testing 

Specification testing shares the objective of rigorous reviews, but takes a differ­
ent approach. It aims to verify various consistency properties of specifications, 
and to check whether specifications accurately and completely reflect the user 
requirements by testing the specifications [72] [89]. The testing technique intro­
duced in this chapter combines the advantages of formal proof and traditional 
program testing paradigm, and can be applied to both implicit and explicit 
specifications. However, since the testing of explicit specifications, which are 
likely executable, can be done in a way similar to that of testing programs, 
which have been well researched and studied in the course of software engi­
neering, we focus in this chapter only on the introduction to the technique for 
testing implicit specifications. Since testing a software system usually requires 
execution of the system, a special skill for testing implicit specifications, which 
are usually not executable, is necessary. After studying the process of speci­
fication testing, we will go through the details of the testing techniques step 
by step in this chapter. 

18.1 The Process of Testing 

Testing a specification consists of three steps. First, generate test cases that 
may include both input and output values for the specification (e.g., process 
specification). This point may sound strange to the reader who is familiar 
with the program testing paradigm, in which only input values are required 
for executing programs, but it is not a mistake. In fact, this point is actually 
the keypoint that distinguishes the specification testing technique from the 
traditional program testing paradigm. We will elaborate this point later in 
Section 18.2.1. Second, evaluate the specification with the test cases, without 
executing any program implemented based on the specification. Third, analyze 
test results in order to determine whether faults are detected. This process is 
illustrated in Figure 18.1. 
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specification 

Fig. 18.1. The process of specification testing 

Test results 
analysis 

Analysis 

criteria 

The most important task in testing a specification is to create test cases 
that help uncover as many faults as possible. Two methods for test case gen­
eration can be used. One is to generate test cases by examining the structure 
of the specification itself. This shares the principle of white-box testing for 
programs. Such test cases are usually expected to detect faults leading to the 
violation of consistency properties of the specification, for example, the sat­
isfiability of a process and the consistency between process specifications and 
invariants in a module. Several criteria are given in Section 18.3 for generating 
test cases based on specifications. Another way is to generate test cases based 
on the user's functional requirements. This method is similar to the black-box 
testing for programs, aiming to validate the specification, that is, to ensure 
the consistency between the specification and the actual user requirements. 

Implicit specifications usually do not indicate algorithms for implemen­
tations; therefore, they are not executable in general. However, since they 
are expressed with predicate expressions, such as pre and postconditions for 
processes, they can be evaluated if all the variables involved are substituted 
with concrete values of their types. The results of such evaluations are truth 
values: true or false. Of course, they can also be undefined: nil. For example, 
suppose x > y is the precondition of a process; it evaluates to true if x is 
bound to 9 and y bound to 5, and to false if x is substituted with 10 and y is 
substituted with 15. 

The analysis of test results is done by comparing the evaluation results 
with the analysis criteria. Usually, the analysis criteria are predicate expres­
sions, representing the properties to be verified. If the evaluation results are 
consistent with the predicate expressions, the analysis shows that no faults are 
detected by the test. Of course, due to the intrinsic limitation of testing (test 
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cases do not usually cover the entire input domain), this does not necessarily 
mean that there is no fault existing in the specification. 

Testing an entire specification can be conducted at two levels: unit test­
ing and integration testing. Unit testing aims to detect faults in components, 
which can be invariants, processes, or methods, in order to ensure their cred­
ibility. The credibility of components must be ensured before they are used 
in the testing of the entire specification, because the credibility of the spec­
ification usually relies on that of its components. Integration testing tries to 
uncover faults occurring in the integration of the components and to check 
whether the interfaces between components are specified consistently. The 
testing targets for integration testing are modules, CDFDs, and classes. 

18.2 Unit Testing 

In this section the testing of processes and invariants are discussed, respec­
tively. To this end, we first need to define the necessary notions. 

Definition 36. Let P(x_1, x_2, ... , x_n) be a predicate expression. A test case 
for this expression is a group of values v_1, v_2, ... , v_n bound to x_1, x_2, 
... , x_n, respectively. 

Let us consider the expression x > y and y > z + 1 as an example. To test 
its truth, the following three test cases are provided. 

(1) x = 15, y = 8, Z = 6 
(2) x = 10, y = 9, Z = 5 
(3) x = 6, y = 10, Z = 8 

Definition 37. A test set for a predicate expression is a set of test cases. 

For example, the three test cases given above form a test set for the predicate 
expression x > y and y > Z + 1. 

Definition 38. A test suite for a predicate expression is a set of pairs {(T _1, 
E_1), (T_2, E_2), ... , (T_n, E_n)}, where each T_i (i=1..n) is a test case 
and each E_i is an expected result corresponding to the test case. 

As a predicate expression always evaluates to either true or false, the ex­
pected results are actually the truth values. These are different from program 
testing, where the expected result can be any type of value. This point will 
become much clearer as our discussion proceeds. 

Definition 39. Let P be a predicate expression and T _5 be a test set. Then, 
a test is a set of evaluations of P with all the test cases in the test set T _5. 
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Table 18.1. A test 

x y E_r P 
-1.0 4 false false 
1.0 o true nil 
1.5 2 true true 

A test for an expression can be represented by a table. For example, consider 
the predicate expression P = x> 0 and x < 10/ y. A test for this predicate 
expression is given in Table 1B.l, where the column corresponding to E_r 
shows the expected results and the one corresponding to P presents the actual 
evaluation results. As we will notice later in this chapter, there is no need of 
any expected results given explicitly for testing consistency properties. For 
this reason, the E_r column may not occur in some tests given as examples 
in this chapter. 

18.2.1 Process Testing 

The objectives of testing a process are twofold. One is to ensure that the 
process specification is satisfiable, that is, the specification is possible to im­
plement by a program. Another objective is to ensure that the process speci­
fication is valid against the user requirements. 

Satisfiability Testing 

As discussed in the preceding chapter, a process is satisfiable if its proof 
obligation can be discharged by formal proof. However, since formal proof 
may not be cost-effective for large-scale systems in practice, as we mentioned 
in Chapter 1, we can use testing rather than formal proof to check the proof 
obligation. Although the proof obligation may not be completely discharged 
by a test, a rigorous checking of the proof obligation can be performed if the 
test is carefully designed. 

Let us start by looking at a simple process. Suppose process P is defined 
as follows: 

process P{x:int) y: int 
ext wr z: int 
pre x > 0 and z > 0 
post z > x + y + -z 
end _process 

For brevity, this process is represented as 

P: [I, 0, pre, post] 
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where I denotes the set of input variables, 0 denotes the set of output variables, 
and pre and post are the pre and post conditions of the process, respectively. 
Specifically, the contents of these components of process Pare 

I = {x, -z} 
0= {y, z} 
pre = x > 0 and z > 0 
post = z > x + y + -z 

Note that variable z in the precondition is the same as the variable -z in the 
postcondition. To distinguish variable z in the postcondition, denoting the 
value after the execution of process P, from variable z in the precondition, 
denoting the value before the execution, we use -z rather than z in the set of 
input variables I. 

The proof obligation for the satisfiability of process Pis: 

forall[x, -z: int] I 
(pre_P(x, zWzjz] => exists[y, z: int] I 

post_P(x, -z, y, z) 
) 

The satisfiability requires that, for any input, if the precondition evaluates to 
true, there must exist an output based on which the postcondition evaluates 
to true. Note that an input may be a group of values bound to the corre­
sponding input variables if there is more than one input variable. Similarly, 
an output may mean a group of values bound to the corresponding output 
variables. As we will see later, the proof obligation can be revised to serve as 
a test oracle for test result analysis. 

Definition 40. A test oracle is a logical expression or mechanism that can 
determine whether a test is successful or not. 

For example, a test oracle for the satisfiability of process P can be derived 
from the proof obligation given previously by limiting the types of input and 
output variables to the collections of their values generated in the test 

forall[x: T _x, -z: T _ -z ] I 
(pre_P(x, zWzjz] => exists[y: T _y, z: T _z] I 

post_P(x, -z, y, z) 
) 

where T _x, T _-z, T _y, and T _z denote the set of values generated for variable 
x, -z, y, and z in the test, respectively. 

To test the satisfiability of a process specification, we need to generate test 
cases for both input and output variables, because otherwise the evaluation 
of the postcondition of the process would be impossible. Imagine if we have a 
program that implements this process specification; the actual output values 
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Table 18.2. A test for process P 

x -z zy pre post pre => post 
5 6 20 8 true true true 
7 8 30 9 true true true 
-5 9 8 7 false false true 
8 11 13 7 true false false 
8 11 40 12 true true true 

will be produced as a result of the execution of the program with the test 
cases as input. However, for implicit specifications, such executions are usually 
impossible. 

The primary problem in testing a process specification is how to generate 
test cases for both input and output variables. We will see several criteria 
for test case generation in Section 18.3. Until then, let us concentrate on the 
procedure of testing the satisfiability of the process. 

Given test cases for both input and output variables of process P, its pre 
and postconditions can be evaluated. Table 18.2 shows a test of process P. 
In this table, pre represents the substituted precondition pre_P(x, z)[-z/zj 
and post the postcondition post_P(z, -z, y, z). Having this test, we can now 
analyze the test results to check whether the satisfiability of the process is 
met or not. In fact, the analysis is simple: we only need to check the results 
of the implication pre => post for all the test cases. In other words, we can 
perform this analysis by checking the test oracle for process P. An algorithm 
for such an analysis derived based on the test oracle is given as follows: 

Algorithm 

1. If the implication pre => post evaluates to true for all the test cases, the 
satisfiability of the process is met by the process specification under the 
current test. 

2. If, for any false evaluation of the implication pre => post there is no true 
evaluation of the implication based on the same input values in the current 
test, the satisfiability will not hold under the current test. Otherwise, the 
satisfiability holds under the current test. By true or false evaluation of 
a predicate expression we mean that the expression evaluates to true or 
false. 

The first step of this algorithm is not difficult to understand, because it is 
consistent with the description of the proof obligation for satisfiability. A 
little tricky situation is described in the second step. A false evaluation of 
the implication pre => post does not necessarily mean that the implication 
cannot be met by the same input values, because the result of the evaluation 
also depends on the output values. For example, the input values x = 8 and -z 
= 11, together with the output values z = 13 and y = 7, makes the evaluation 
of the implication false, but makes it true when used together with output 
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Table 18.3. Another test for process P 

-x z zy pre post pre => post 
5 6 20 8 true true true 
7 8 30 9 true true true 
-5 9 8 7 false false true 
8 11 13 7 true false false 

values z = 40 and y = 12. Therefore, despite the false evaluation of the 
implication, the satisfiability of the process still holds under the current test. 

However, we must not over-evaluate the credibility of testing in verifying 
the satisfiability of a process. Even if a test has demonstrated the satisfiability 
according to the test oracle, this does not necessarily mean that the satisfia­
bility holds for every input of the process, because the test cases in the test 
oracle usually do not cover the entire domain and range of the process. The 
only benefit resulting from such a demonstration is to gain confidence in the 
process specification. This is similar to program testing. By testing we can 
only establish the existence of faults, but cannot prove the absence of faults, 
in programs and specifications. 

Compared with program testing, process specification testing involves 
more uncertainties. Even if a test does not meet the proof obligation for the 
satisfiability of a process, it still does not give sufficient evidence to support 
the fact that the satisfiability of the process does not hold. Consider the test 
given in Table 18.2 as an example. If the test case in the bottom row of the 
table is eliminated, the test will be changed to the one given in Table 18.3. 
Obviously, under this test we cannot demonstrate that the process is satisfi­
able because, for the input x = 8 and -z = 11, there are no output values given 
in this test that satisfy the postcondition. However, such an output value may 
exist, but just not be provided in the test. 

Definition 41. A test that does not violate the satisfiability proof obligation 
of a process is called a failed test. 

Since the objective of testing is to detect faults, well-designed tests must be 
encouraged. If a test does not detect any fault, it may be bacause of the 
weakness of the test cases. Of course, there is a possibility of no fault in the 
specification, but this is usually hard to know. Therefore, considering a test 
showing no fault as a failed test may encourage more tests to be conducted, 
which will help improve the confidence in the quality of process specifications. 
The test given in Table 18.2 is a failed test. 

Definition 42. A test that does not support the satisfiability of a process is 
known as an uncertain test. 

If a test does not show sufficient evidence to support the satisfiability of a 
process, like the one given in Table 18.3, it presents an uncertain situation in 
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verifying the satisfiability of the process: whether the satisfiability holds or 
not is unknown. 

As we will see in discussions throughout this chapter, these two concepts 
may also apply to the testing of other properties. In general, if a property is 
shown by a test to hold, the test is said to be a failed test. If a test is unable 
to either support or deny the property under testing, the test is called an 
uncertain test. Furthermore, if the property is shown not to hold for some 
test cases, the test is called a successful test. 

Definition 43. If A test uncovers a fault in a property, the test is known as 
a successful test of the property. 

The success of a test is interpreted as a success in detecting faults. Such a 
connotation may help encourage more successful tests to be conducted, and 
therefore to improve the quality of specifications. 

The results of the discussions above can be easily extended to a more 
general process that involves two input and output ports: 

process Q(x_1: int I x_2: int) y _1: int I y _2: seq of int 
ext wr z: int 
pre x_I> 0 and z > 0 or x_2 > 0 and z > 0 
post z > x_I + y-I + -z or z > x_2 + hd(y_2) + -z 
end _process 

The test cases for testing this process can be generated based on the same 
criteria, and the test steps are the same. However, one thing is worth noting. 
Since inputs x_I and x_2 are exclusive, that is, only one of them is used when 
the process is executed, we must include the test cases in which one of the two 
input variables is undefined (i.e., the test value for it is nil) when using the 
other for testing. For example, if x_I is used for testing process Q, x_2 should 
be given as nil. For output variables y _1 and y _2, the same principle must 
be applied. Of course, normal values for all the input variables and output 
variables, even exclusive ones, can be used in tests. Table 18.4 gives a test of 
process Q, where pre = pre_Q(x_l, x_2, zWz/z] and post = post_Q(x_l, 
x_2, y_l, y_2, -z, z). 

Comparing this result with the test oracle, derived from the proof obliga­
tion for the satisfiability of process Q 

forall[x_1: T _x_I, x_2: T _x_2, -z: T _ -z] I 
((pre_P(x_I, x_2, zWz/z, nil/x_2] => 

exists[y-I: T _y-l, y_2: T _y_2, z: T _z]1 
post_P(x_l, x_2, y_l, y_2, -z, z)[nil/x_2, nil/y-2]) 

or 
(pre_P(x_l, x_2, zWz/z, nil/x_I] => 

exists[y_1: T _y_l, y_2: T _y-2, z: T _z]1 
post_P(x_l, x_2, y_l, y-2, -z, z) [nil/x_l , nil/y_l]) 
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Table 18.4. A test for process Q 

x 1 x 2 y-1 y-2 -z z pre post pre => post - -
5 nil 20 nil 4 35 true true true 
7 nil 30 nil 2 50 true true true 
-5 nil 8 nil 10 45 false true true 
nil 11 nil [2,5,8) 5 20 true true true 
nil 1 nil [-6, 12) 9 10 true true true 
nil 3 nil [9,2) -5 20 false true true 
2 4 1 [9) 3 50 true true true 

Table 18.5. A test with expected results for process P 

x -z z y pre Exp_pre post Exp_post pre => post 
5 6 20 8 true true true true true 
7 8 30 9 true true true false true 
-5 9 8 7 false true false true true 
8 11 13 7 true false false true false 
8 11 40 12 true true true true true 

we can easily show that process Q is satisfiable under the test given in Table 
18.4, because for all the input values satisfying the precondition, the postcon­
dition of the process evaluates to true. In the test oracle, T _x_I, T _x_2, 
T _ -z, T _y _1, T _y _2, and T _z denote the set of all the test values generated 
for variables x_I, x_2, -z, y_I, y_2, and z, respectively. 

Validity Testing 

Since validity testing aims to check whether a process specification is consis­
tent with the user's conception of requirements, the test cases for both input 
and output variables, as well as the expected test results (truth values), need 
to be derived from the user's requirements rather than from the process spec­
ification itself as we do in satisfiability testing. Apart from this difference, 
the criterion for analyzing test results is also different. In validity testing, the 
actual evaluation results of pre and post conditions of a process are compared 
with the expected results, rather than with the test oracle derived from the 
proof obligation. Of course, a satisfactory process must also be satisfiable, 
therefore, satisfiability testing should usually be carried out prior to validity 
testing. The point is that satisfiability does not necessarily ensure validity 
with respect to the user's requirements. Let us extend the test given in Table 
18.2 for process P to include expected results, which include the expected re­
sults of both precondition and postcondition of process P. The extended test 
is shown in Table 18.5. 
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In this table, Exp_pre and Exp_post denote the expected results of precon­
dition and postcondition, respectively. Apparently, the truth value of Exp_pre 
in the fifth row (false) is different from the actual evaluation result of the pre­
condition pre, and the value of Exp_post in the third row (true) is different 
from the actual evaluation result of the postcondition. Although this process 
specification is demonstrated to be satisfiable by the current test, it does not 
satisfy the user's requirements because the evaluation results of its pre and 
post conditions are not exactly the same as the expected results (the expected 
results are assumed to be correct). 

18.2.2 Invariant Testing 

An invariant presents a constraint on either types or state variables that must 
be sustained throughout the entire specification. To ensure this property, two 
aspects must be checked. One is whether the invariant is feasible, and another 
is whether the invariant is not violated by all the related processes. For brevity 
in discussions on the testing method in this section, we focus on invariants 
involving only a single bound variable in the universally quantified expression. 
The same method can be extended to invariants containing multiple bound 
variables. 

Feasibility Testing 

A feasible invariant of a type must ensure that the type is non-empty. 

Definition 44. Let I denote the invariant forall [x: OJ I P(x). I is feasible if 
and only if there exists a value r in 0 that P(r) holds. 

The fact that type D contains some members satisfying property P implies 
that the invariant forall[x: Dj I P(x) is possible to satisfy with some val­
ues. Therefore, requiring that all the members of D satisfy the invariant is 
meaningful, because an empty type is usually neither interesting nor useful in 
specifications. 

To test an invariant for the demonstration of its feasibility, test cases can be 
generated based on the structure of the invariant, and the following condition 

exists[r: T _rj I P(r) 

must be used as the test oracle for test results analysis, where T _r is a set of 
values generated for variable r in the test, and subset(T _r, D) (Le., T _r is a 
subset of D) holds. Let us consider the type Customer: 

Customer = composed of 
id: natO 
name: string 

end 



18.2 Unit Testing 333 

Table 18.6. A test for the feasibility of invariant 

x I 
(0, "Mark") false 
(1, "John") false 

(11, "David") true 
(350, "Darrell") true 

(23, "Chris") true 

Assume the type has an invariant 

forall[x: Customer] I x.id >= 10 and x.id < 1000 and len(x.name) <= 15 

A test oracle derived from this invariant is 

exists[r: T _r]1 r.id >= 10 and r.id < 1000 and len(r.name) <= 15 

where T _r, a subset of Customer, denotes the set of all test values generated 
for the bound variable x occurring in the invariant. 

As an example, a test for this invariant is given in Table 18.6, in which 
x is a variable over type Customer and I denotes the body of the quantified 
expression in the invariant x.id >= 10 and x.id < 1000 and len(x.name) <= 
15. Apparently, this test is a failed test because it does not detect any fault 
in the invariant as far as the feasibility is concerned. In fact, in this particular 
case, the feasibility of the invariant has actually been proved by the test, in the 
sense of providing sufficient evidence to support the truth of the feasibility. 

Consistency Testing 

As defined in Section 17.2.1 of the preceding chapter, an invariant is consistent 
with the related process specifications if it is not violated by those processes 
before and after executions of the processes. Let P be a process and I be an 
invariant. I is consistent with P if and only if the following two conditions 
hold: 

(1) (pre_P(y_l, y_2, ... , Lm) and 
(exists[x_2: T _2, x_n: T _n]1 

Q(x_l, x_2, ... , x_n)[y_l/x_l]) and 
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _n]1 

Q(x_l, x_2, x_3, ... , x_n)[y_2/x_2]) and 
... and 

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-l] I 
Q(x_l, x_2, x_3, ... , x_n-l, x_n)[y_n/x_n])) <> false 
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(2) (pre_P(y_I, y_2, ... , y_m) and 
post_P(z_I, z_2, ... , z_w) and 
(exists[x_2: T _2, x_n: T _n] I 

Q(x_I, x_2, ... , x_n)[y_I/x_I]) and 
(exists[x_I: T _1, x_3: T _3, ... , x_n: T _n] I 

Q(x_I, x_2, x_3, ... , x_n)[y_2/x_2]) and 
... and 

(exists[x_I: T _1, x_2: T _3, ... , x_n-I: T _n-I] I 
Q(x_I, x_2, x_3, ... , x_n-I, x_n)[y_n/x_n])) <> false 

Condition (1) ensures that the precondition of process P does not violate 
invariant I, while condition (2) ensures that the postcondition does not violate 
I. Note that if there is no common type or state variable involved in the 
specification of process P and invariant I, and I is feasible, then conditions 
(1) and (2) will definitely hold, assuming that the precondition of P is not 
a contradiction. The reason is obvious: the evaluations of invariant I and the 
precondition pre_P do not interfere with each other. 

For example, suppose we define a process Change_ld as 

process Change_ldO 
ext wr cus: Customer 
pre cus.id > 50 
post cus = modifyCcus, id -> 8) 
end _process 

This process changes the id of a customer with identification number greater 
than 50 to 8. The functionality of this process may not make a good sense, 
but it helps our discussion at the moment, because the consistency testing 
is done based entirely on logical expressions, without necessarily considering 
their meaning. 

A test for checking the consistency between the precondition of this process 
and the invariant I of type Customer described in Section 18.2.2, and between 
the postcondition of this process and the invariant, is given in Tables 18.7 
and 18.8, respectively, where conI = pre and I, con2 = post and I, I_bodyl 
denotes the evaluation result of the body of invariant I based on the input 
-cus, and l_body2 represents the evaluation result of the body of I based on 
the output cus. 

Since in Table 18.7 the conjunction conI evaluates to true twice, it provides 
sufficient evidence to support the claim that the precondition and the invariant 
are consistent, according to condition (1) defining consistency above. However, 
the situation in Table 18.8 is very different: the conjunction con2 evaluates to 
false for all the values of cus. This fact does not support the assertion that the 
postcondition and the invariant are consistent, but it is also not sufficient to 
deny this assertion, because the given values for cus are limited. So, the test in 
Table 18.8 is qualified as an uncertain test. The key point in designing such a 
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Table 18.7. A test for checking the consistency. 

-cus pre I body1 con! 
(0, "Mark") false false false 

(11, "David") false true false 
(350, "Darrell") true true true 

(60, "Chris") true true true 

Table 18.8. A test for checking the consistency. 

-cus cus pre post l_body2 con2 
(0, "Mark") (8, "Mark") false true false false 

(11, "David") (8, "David") false true false false 
(350, "Darrell") (8, "Darrell") true true false false 

(60, "Chris") (20, "Chris") true false true false 

test is to try to provide test cases based on which the pre and post conditions 
can evaluate to true, and so do their conjunctions with the relevant invariants. 

18.3 Criteria for Test Case Generation 

To test the specification properties discussed so far, we need a rigorous and 
effective method for generating test cases. Except for the validity testing, 
test cases are usually generated based on test targets, which are predicate 
expressions, such as pre and postconditions of a process. The fundamental 
problem is how test cases should be generated so that they can be used most 
effectively to detect faults contained in specifications. 

One solution to this problem is to provide a set of criteria by which effective 
test cases can be generated. In this section, we present several criteria, each 
representing a different testing strategy. The primary idea of these criteria is 
to provide a framework based on which test cases are generated to meet a 
desired standard in terms of test coverage. 

The discussions of the test criteria are based on the assumption that the 
predicate expression to be tested is in a disjunctive normal form. Since any 
predicate expression can be transformed to an equivalent disjunctive normal 
form by applying deMorgan's laws and the related rules (e.g., distributivity), 
this assumption is not unreasonable. 

Let P = P _lor P _2 or ... or P _n be a disjunctive normal form and 
P _i = Q_i_1 and Q_i_2 and ... and Q_i_m be a conjunction of relational 
expressions Q_U (i = Ln, j = Lm). Let T _d be a test set (a set of test 
cases). The test criteria for testing P are described below. 

Criterion 1 Evaluate P with T _ d to true and false, respectively. 

This criterion is illustrated in Tabel 18.9. 
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Table 18.9. Criterion 1 

IT] 

Table 18.10. Criterion 2 

Ip lip 21p 31···lp nl - - - -
true * * * ... 
false * * * ... 

* true * * '" 

* false * * ... 

* * * * ... 

* * * ... true 

* * * ... false 

A test set meeting this criterion is expected to explore the two situations 
of predicate P when P evaluates to true and false, respectively. However, it 
is worth noting that a tautology is impossible to evaluate to false; therefore, 
this criterion must not be used as a strict measure of the qualification of a test 
set, but rather as a guideline for the generation of the test set. This principle 
is also applicable to the other criteria introduced later. 

This criterion is easy to apply, and reasonable when testing is only for an 
abstract level checking, but it is not strong enough for detecting faults because 
it focuses only on the overall evaluation of the predicate expression: it does 
not examine every clause of a disjunctive normal form. A stronger criterion is 
given next. 

Criterion 2 Evaluate each P _i (i 
respectively. 

l..n) with T _d to true and false, 

The idea of this criterion is illustrated in Table 18.10, in which the asterisk * 
denotes a truth value, either true or false. 

This criterion requires that, by the test set T _d, each disjunctive clause 
P _i (i = l..n) evaluates to true and false, respectively. For example, consider 
the predicate Q: x - y < 5 or x + y > 10; the test of Q given in Table 18.11 
satisfies this criterion. Note that this criterion may not give an assurance that 
each disjunctive clause P _i is tested independently. In other words, a test sat­
isfying this criterion may not allow us to test independently each clause when 
its evaluation result dominates the evaluation result of the overall predicate 
expression. Let us take the test in Table 18.11 as an example. The case when 
clause x + y > 10 evaluates to true while the clause x - y < 5 evaluates to 
false is not tested. Thus, potential faults that might occur in this particular 
situation may not be detected. The next criterion resolves this weakness. 
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Table 18.11. A test meeting criterion 2 

Ixlylx -y < six + y > 101 
34 true false 
l2 true false 
69 true true 
8 1 false false 

Table 18.12. Criterion 3 

Ip lip 21p 31· .. lp nl - -
true false false ... false 
false ture false ... false 
false false true ... false 

... ... ... ... ... 
false false false ... true 

Criterion 3 Evaluate P _i with T _d to true while all other clauses P _1, 
P _2, ... , P _i -1, P _i + 1, ... , P _n evaluate to false, and evaluate P _i to false 
while all P _1, P _2, ... , P _i -1, P _i + 1, ... , P _n evaluate to true. 

Table 18.12 explains the essential idea of this criterion. Since a true eval­
uation of each clause P _i (i = 1..n) results in a true evaluation of the entire 
predicate expression P; even if all the other clauses P _1, P _2, ... , P _ i-I, 
P _i + 1, ... , P _n evaluate to false, it is definitely useful to test P _i in such a 
situation. However, for some predicate expressions this criterion may not be 
applicable. Let us take the predicate expression Ql: x + y > 5 or x + y > 
10 as an example to explain this point. When the clause x + y > 10 evaluates 
to true with a test case, it is impossible to evaluate the clause x + y > 5 to 
false with the same test case. Therefore, this criterion cannot be met by any 
test set. In this case, as mentioned before, this criterion can be used only as 
a guideline for test case generation, rather than as a strict standard. In fact, 
all of these criteria can be used flexibly in practice depending on the testing 
target: they can be used in combination or independently. 

Criterion 4 When evaluating a disjunctive clause P _i (i = 1..n) with T_d 
to false, evaluate each Q~ (j = 1..m) to false at least once, respectively. 

Table 18.13 illustrates the idea of this criterion. In this criterion, when 
Q~ evaluates to false, there is no specific requirement for the evaluations of 
all the other conjunctions Q_l, Q_2, ... , Q~ - 1, Q~ + 1, ... , Q_m. Another 
stronger criterion is given next. 
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Table 18.13. Criterion 4 

[Q I[Q 2[Q 3[ ... [Q ml - -

true true true ... true 
false * * * ... 

* false * * ... 

* * false * ... 

* * * ... false 

Table 18.14. Criterion 5 

[Q I[Q 2[Q 3[ ... IQ ml - - - -
true true true ... true 
false true true ... true 
true false true ... true 
true true false ... true 
true true true ... false 

Criterion 5 When evaluating a disjunctive clause P _i (i = l..n) with T_d 
to false, evaluate each Q~ (j = l..m) to false at least once, respectively, while 
all the other disjuncts Q_l, Q_2, ... , Q~ - 1, Q~ + 1, ... , Q_m evaluate to 
true. 

The idea of this criterion is explained by Table 18.14. It is worth noting 
that this criterion may not be applicable completely to some predicate ex­
pressions. For example, to evaluate the expression x > 10 and x > 5 to false, 
it is impossible to evaluate x > 10 to true when evaluating x > 5 to false. In 
this case, Criterion 4 can be applied instead. 

18.4 Integration Testing 

Since processes are integrated into a CDFD in specifications, the correctness of 
CDFD depends not only on the correctness of each process, but also the consis­
tency between the interfaces of the processes. Therefore, testing only processes 
is apparently insufficient in detecting faults existing in CDFDs. Integration 
testing aims to uncover faults leading to the violation of the consistency be­
tween processes in CDFDs. Apart from the verification of the consistency 
between processes in the same CDFD, it is also important and necessary to 
ensure the consistency between a process and its decomposition. 

A sensible strategy for integration testing of a CDFD is to test every 
construct contained in the CDFD in order to cover all the possible paths, 
where a path is a sequence of data flows from a starting node to a terminating 
node, as defined in Section 5.3 of Chapter 5. As with the unit testing, the 
approach we take in testing a CDFD is first to derive a proof obligation 
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Fig. 18.2. A sequential construct 

for ensuring the consistency between processes and then to test the proof 
obligation. 

Basically, there are two kinds of constructs in CDFDs: sequential and con­
ditional constructs. The focus in testing these constructs is on the derivation 
of the proof obligations as the testing targets. Verifying the proof obligations 
by testing can be done by taking an approach similar to that of unit testing. 

18.4.1 Testing Sequential Constructs 

Let A_I, A_2, ... , A_n, and B denote processes. Let x_I, x_2, ... , x_n be 
output data flows of A_I, A_2, ... , A_n, respectively, and the input data flows 
of B as well. Then A_I, A_2, ... , A_n, and B form a sequential construct, as 
depicted in Figure 18.2. 

According to the semantics of a process, when all of x_I, x_2, ... , x_n 
are available, the precondition of B must evaluate to true on these input 
data flows, because it is an assumption for the postcondition of the process to 
hold after an execution. A condition for the assurance of such a consistency 
between A_I, ... , A_n and B is formalized as 

(pre_A_I and post_A_I(x_I)) and ... and 
(pre_A_n and post_A_n(x_n)) 
=> pre_B 

where each post_A_i(x_i) (i = l..n) is a sub-logical expression of the post­
condition post_A_i of process A_i that contains variable x_i (i = l..n). For 
example, let post_A_I denote the predicate expression: x_I> a and x_I < 
10 or x_I> a + 10 or y < a, where a is an input constrained by the pre­
condition pre_A_l. Then post_A_I(x_I) = x_I> a and x_I < 10 or x_I 
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> a + 10. Note that pre_B does not necessarily involve all x_i syntactically 
(e.g., pre_B = true). 

A test oracle is derived from the consistency condition given above: 

forall[x_1: T _x_I. x_2: T _x_2 ..... x_n: T _x_n] I 
(pre_A_1 and post_A_1(x_l» and ... and 
(pre_A_n and post_A_n(x_n» => pre_B (Seq-oracle) 

where each T _x_i (i = l..n) denotes the set oftest values generated for variable 
x_i in the test. 

Let us take the sequential construct in Figure 18.2 as an example to see 
how such a construct can be tested by applying the procedure introduced 
above. Assume n = 3, and process A_I, A_2, A_3, and B are defined as 
follows: 

process A_10 x_I: int 
post x_I = 5 
end _process; 

process A_20 x_2: int 
post x_2 > 10 
end_process; 

process A_30 x_3: int 
post x_3 = 20 
end _process; 

process B(x_1. x_2. x_3: int) 
pre x_I + x_2 + x_3 < 30 
end _process; 

A test is given in Table 18.15, where 

post_conj = post_A_1 and post_A_2 and post_A_3 
imp = post_conj => pre_B 

Analyzing this test based on the test oracle (Seq-oracle), we can easily conclude 
that this test is a successful test, because of the first three test cases and 
their test results. This implies that there is a fault existing in this sequential 
construct leading to the violation of the consistency condition. 

In comparison with the testing of processes, the test oracle of a sequential 
construct is deterministic in deciding its success or failure. That is, we can 
definitely determine, by its test oracle, whether a test of a sequential construct 
is a successful test or failed test. 
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Table 18.15. A test for the sequential construct 

x 1 x 2 x 3 post conj pre B imp 
5 15 20 true false false 
5 11 20 true false false 
5 30 20 true false false 
4 9 20 false false true 
5 9 12 false true true 

(a) Single condition structure 

-II B 1 II 

-II B_2 II 
(b) Binary condition structure 

C _1 (x) x - 1 -II B 1 II 
C _2 (x) x_2 __ II II B_2 

C _o(x) x_n~1I B - 0 II 
X_D + 1 ----1IB _0+ 111 

(c) Multiple condition structure 

Fig. 18.3. Three conditional constructs 

18.4.2 Testing Conditional Constructs 

There are three kinds of conditional constructs in SOFL: single condition 
structure, binary condition structure, and multiple condition structure, as 
shown in Figure 18.3. Since the testing of these constructs shares the same 
procedure as for sequential constructs, we do not repeat the discussion on how 
to generate tests and how to analyze the test results. Instead, we only give 
the proof obligations for the assurance of the consistency of the constructs, 
and the derived test oracles for test results analysis. 

Single Condition Structures 

A construct of this kind is illustrated by Figure 18.3(a). The proof obligation 
for ensuring the consistency of the construct is 
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pre and post(x) and C(x) => pre_B 

where pre and post(x) denote the pre and postconditions (in fact, only the 
part containing variable x) of the preceding process of the condition node 
C(x), respectively, which produces data flow x as its output; pre_B is the 
precondition of process B. 

A test oracle for determining whether a test of the single condition struc­
ture is successful or has failed is derived from the proof obligation and given 
as follows: 

forall[x: T _xl I pre and post(x) and C(x) => pre_B 

where T _x is the set of values generated for variable x in the test. 

Binary Condition Structures 

This kind of construct is depicted by Figure 18.3(b). The proof obligation for 
ensuring the consistency of the construct includes the following two conditions: 

pre and post(x) and C(x) => pre_B_l 

pre and post(x) and not C(x) => pre_B_2 

If C(x) is true, the pre and post conditions of the preceding process must, in 
conjunction with C(x), imply the precondition of process B_1. Otherwise, if 
C(x) is false, the conjunction of pre, post(x), and negation of C(x), must imply 
the precondition of process B_2. 

A test oracle derived from this proof obligation also includes the two con­
ditions 

forall[x: T _xli pre and post(x) and C(x) => pre_B_l 

forall[x: T _xli pre and post(x) and not C(x) => pre_B_2 

where T _x, pre, and post(x) have the same interpretations as those given 
previously. 

Multiple Condition Structures 

A multiple condition structure is depicted by Figure 18.3( c). The proof obli­
gation includes several conditions: 

(i = l..n) 

pre and post(x) and 
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not (C_I(x) or C_2(x) or ... or C_n(x)) => 
pre_B_n + I 

The test oracle for testing a multiple condition structure of such a kind is 
derived from this proof obligation: 

forall[x: T _xli pre and post(x) and C_i(x) => pre_B_i 

forall[x: T _xli pre and post(x) and 
not (C_I(x) or C_2(x) or ... or C_n(x)) => 
pre_B_n + I 

18.4.3 Testing Decompositions 

(i = l..n) 

As we have discussed in Section 5.4 of Chapter 5, when a process is decom­
posed into a CDFD, it is desirable to ensure the correctness of the decomposi­
tion. That is, for every input of the process, if its precondition holds, then its 
postcondition must hold on the outputs generated by its decomposition (i.e., 
the decomposed CDFD). Let P and G denote a process and its decomposition, 
respectively. Then the correctness of the decomposition is ensured if and only 
if the following conditions are satisfied: 

pre_P => pre_G 
pre_P and post_G => post_P 

where pre_G and post_G denote the pre and post conditions of CDFD G, 
respectively. 

If we restrict the range of values for the input and output variables of 
process P and other related processes contained in G to the test set used in 
a test, a test oracle can be derived, as we did for sequential constructs and 
conditional constructs in previous sections. 

We try to avoid in this section a general discussion on how to test the cor­
rectness of a CDFD against its high level process, because it may be hard for 
the reader to understand the important idea. Instead, we explain the method 
for testing the correctness of a CDFD with a comprehensible example. 

Figure 18.4 gives two CDFDs, where process A in CDFD (a) is decomposed 
into CDFD (b). Assume the processes A, AI, A2, A3, and A4 are defined as 
follows: 

process A(x: seq of natO) y, z: natO 
pre len(x) > 0 
post Y < len (x) and z < len(x) 
decom G 
end_process; 



344 18 Specification Testing 

-'-Dc1 1 

B I~'rl c I~ q -

z 

(a) 

dt~1 Ih A2 

x -11 At IK ~ '11 A4 I~ y 

d2 
"11 A3 I~ z _ 

(b) 

Fig. 18.4. An example of process decomposition 

process Al(x: seq of natO) dl, d2: seq of natO 
pre len(x) > 0 
post forall[a: elems(dl)] a < 60 and 

forall[b: elems( d2)] I b >= 60 and 
union(elems(dl), elems(d2)) = elems(x) 

end _process; 

process A2(dl: seq of natO) d3: seq of natO 
post dl = [ ] and d3 = [ ] or 

dl <> [ ] and subset(elems(d3), elems(dl)) and 
forall[e: elems( d3)] I e >= 40 

end_process; 

process A3(d2: seq of natO) z: natO 
post z = len( d2) 
end _process; 

process A4(d3: seq of natO) y: natO 
post y = len( d3) 
end_process; 

-+ 

In this particular case, to test the correctness of CDFD (b) with respect to 
process A, we are required to show that the following conditions hold under 
the test: 
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Table 18.16. A test for condition (1) 

x pre_A pre Al condition 1 
[35, 90, 85, 39] true true true 

[35,85,95] true true true 
[ ] false false true 

[28,60] true true true 

Table 18.17. A test for condition (2) 

x dl d2 conjl conj2 condition 2 
[35, 90, 85, 39] [35,39,85] [90] false true true 

[35,85,95] [35] [85,95] true true true 
[ ] [ ] [ ] false true true 

[28,60] [28] [60] true true true 

Table 18.18. A test for condition (3) 

dl d3 pre A2 post A2 pre A4 condition 3 
[35,39,85] [85] true true true 

[35] [ ] true true true 
[ ] [ ] true true true 

[28] [ ] true true true 

(1) pre_A => pre_AI 
(2) pre_AI and post_AI => pre_A2 and pre_A3 
(3) pre_A2 and post_A2 => pre_A4 

true 
true 
true 
true 

(4) (pre_AI and post_AI) and (pre_A3 and post_A3) and 
(pre_A4 and post_A4) => post_A 

The testing of these four conditions can be carried out separately, but the 
consistency of the test cases used in the tests must be guaranteed in order to 
ensure that these four conditions are accurately tested. For example, the test 
cases for the input variable x of process A must be the same as those for the 
input variable x of process Al in testing condition (1), and the same test cases 
must also be used in testing condition (2). The reason for this is that, for the 
same input of process A, we want to find out whether there is any fault in 
producing its output by its decomposition G. 

The tests for testing conditions (1), (2), and (3) are given in Table 18.16, 
18.17, and 18.18, respectively. A test for condition (4) is given in Table 18.19 
and 18.20. In Table 18.17, conjl and conj2 are defined as 

conjl == pre_AI and post_AI 
conj2 == pre_A2 and pre_A3 

In Table 18.20, conj3, conj4, and conj5 are defined as follows: 
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Table 18.19. The first part of the test for condition (4) 

x d1 d2 d3 zy 
[35, 90, 85, 39] [35,39,85] [9O] [85] 11 

[35,85,95] [35] [35] [ ] 10 
[ ] [ ] [ ] [ ] 00 

[28,60] [28] [28] [ ] 10 

Table 18.20. The second partt of the test for condition (4) 

conj3 conj4 conj5 
false true true 
true true true 
false true true 
true true true 

conj3 = (pre_AI and post_AI) 
conj4 = (pre_A3 and post_A3) 
conj5 = (pre_A4 and post_A4) 

post_A condition 4 
true true 
true true 
false true 
true true 

Since all the four conditions hold under these tests, no fault is detected. Of 
course, to make this claim more trustable, more test cases are needed. How­
ever, with the increase of test cases, the testing process may become more 
complicated, and the management of test cases, test targets, and test results 
may become a serious problem to be resolved. A possible solution to these 
problems is automation of every activity involved in the testing, usually sup­
ported by powerful test tools. Such tools are expected to provide assistance 
for test case generation, test case optimization (e.g., selecting only the repre­
sentative test cases from the generated test cases), predicate evaluation, test 
results analysis, and the management of tests. A prototype tool for testing 
SOFL specifications has already been developed by our research group, but 
we need to put more effort for developing it into a useful product. 

18.5 Exercises 

1. Answer the following questions: 

a) What is a test case? 
b) What is a test set ? 
c) What is a test suite ? 
d) What is a test target? 
e) What are possible ways of generating test cases ? 
f) What are the three steps for testing a specification ? 
g) What is a failed test, a successful test, and an uncertain test? 
h) Is it possible to have a successful test for a process? If so, give an 

example. If not, explain why. 
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2. Generate a test based on Criterion 2 given in Section 18.3 for process 
A1 in Figure 18.4. 

3. Try to generate a test based on Criterion 3 given in Section 18.3 for the 
process A2 in Figure 18.4; Criterion 2 can be used when Criterion 3 is 
not applicable. 

4. Generate a different test from the one given in Section 18.4.3 for the 
verification of consistency between process A and its decomposition (or 
the correctness of the decomposition with respect to process A) given in 
Figure 18.4. 
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Transformation from Designs to Programs 

Transformation from design specifications to programs is an activity of con­
structing programs in a programming language that satisfy the specifications 
in a specification language; it does not take only the semantics of both specifi­
cations and programs into account, as the refinement approach usually empha­
sizes, but also considers the syntactical change from one language to another. 

Transformation is a very important issue to address, because the ulti­
mate goal of software development is to achieve a satisfactory and executable 
program system. In this chapter, we discuss the techniques for transforming 
design specifications to programs. As we have learnt in the previous chapters, 
a design specification may contain several level components, such as modules 
and classes, CDFDs, and processes and methods. A CDFD represents the be­
havior of a module, and may contain other kinds of structures for describing 
complex systems, such as conditional and diverging structures. Each process 
in a CDFD, as well as each method in a class, is defined with an implicit 
specification, which is although not desirable at the end of the design phase, 
or with an explicit specification, or with a mixture of both. Apart from these 
functional components, data structures defined with various abstract data 
types, such as set and sequence types, are also involved in the specifications 
to represent data resources necessary for processes or methods to manipulate. 
Therefore, transformation from a design specification to a program must take 
both data and functional components into account. 

Usually, a design specification can be transformed into a functionally 
equivalent program in any kind of high level language, such as Pascal, C, 
C++, and Java. But, as we mentioned in Chapter 1, object-oriented program­
ming is effective in helping implement good qualities, such as maintainability, 
in programs. We choose Java as the target language for the transformation of 
design specifications. That is, the discussions in this chapter are all about how 
to transform various data and functional components of design specifications 
in SOFL into Java programs. 

Since design specifications are an abstraction of implementations, they 
usually provide freedom to choose an appropriate implementation strategy. 
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For this reason, there may be more than one way of transformation. The 
solution provided in this chapter is only one of them, expected to convey the 
general guidelines for transformation, from which the reader may derive his 
or her own way of transformation. 

19.1 Transformation of Data Types 

Transformation from an abstract data type in specification into a concrete 
data type in program requires both semantics preservation and syntactic 
changes. Let T _a and T _c denote an abstract data type and concrete data 
type, respectively. Semantically, when T _a is transformed into T _c, all the 
elements of T _a must be represented by the elements of T _c, that is, T_c 
should contain sufficient elements to represent all the elements of T _a, for 
this will eliminate the possibility of inappropriate data structures causing the 
program using T _c not to satisfy the required functions defined in the speci­
fication. 

Formally, this means that there must exist a retrieve function from T _ c 
to T _a, as explained in Section 14.6 of Chapter 14, which should satisfy the 
condition 

forall[a: T _a] exists[c: T _c) I Retr(c) = a (data-tran) 

Transformation of a data type does not need only to conform to this rule, 
but need also to take other related issues into account, such as what the 
data type is used for and how easily the related built-in operators can be 
implemented, and so on. For example, a sequence of integers, that is, seq of 
int, can be transformed into an array of integers, a vector, or a sequential 
file in Java; it can also be directly transformed to a list, depending on how 
it is used in the program. In general, the choice of the concrete data types 
in the transformation will affect somehow the algorithms of the implemented 
program using the data types. Therefore, it is essential to strike a balance 
between data structures and algorithms. 

Under the constraint of the rule (data-tran), A suggested transformations 
of all the built-in data types in SOFL are given in Table 19.1. 

Java is a powerful language because of its rich data structures, supported 
by related classes available in the class libraries. The transformation of most 
abstract data types in the table is quite straightforward, because they can be 
implemented by similar concrete data types available in Java. The only trans­
formations that may puzzle the reader are those of composite and product 
types: both are transformed to proper classes. This is in fact not that difficult 
to understand, as long as one makes a comparison between a composite type 
or a product type and a class with no methods. For example, consider the 
composite type C: . 
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Table 19.1. Transformation of data types 

Idata type in SOFLldata type in Java 
natO 
nat 
int 
real 
bool 
char 
Enumeration 
set type 
seq type 
string 
map type 
composite type 
product type 
union type 

C = composed of 
Cl: T_1 
C2: T_2 
C3: T 3 
end 

int 
int 
int 
double 
boolean 
char 
Enumeration or array of String 
Set, array, vector, or file 
List, array, vector, or file 
string 
Map, array, vector, or file 
class 
class 
Object class 

By transforming each field of the composite type C to an instance variable (or 
attribute variable) of the corresponding class in Java, we get 

class C { 

} 

T _1 C1; 
T_2 C2; 
T_3 C3; 

where the types T _1, T _2, and T _3 are assumed to have been transformed 
either to a class or to basic types of Java. Note that the syntax of variable 
declaration in Java differs from that of variable declaration in SOFL. The 
former gives the type prior to the variable, with a space in between, while the 
latter lets the variable appear before the type, with a colon separating them. 
Of course, methods may be defined in the class C, if necessary. 

19.2 Transformation of Modules and Classes 

A module or class in specifications, known as source module or class, has a 
structure similar to that of a class in Java, known as target class. Therefore, 
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transformation 
modulem • class m { 

store s • instance variable s 

data flows Z,U,v,t,w • attributes Z,U,v,t,w 

process Init • constructor m 

CDFD • method G 

process A • method A 

processB • methodB 

process C • method C 

function F • method F 

Fig. 19.1. An illustration of the main ideas of the tranformaqtion guidelines 

it is quite natural and convenient to transform a source module or class to a 
target class. Although their transformations share the similarity due to their 
similar structures, source classes are much more straightforward than modules 
to transform to target classes. The reason for this is that source classes share 
the same concepts as target classes, whereas source modules have additional 
features, such as CDFDs and exclusive inputs and/or outputs, which need 
special treatment during transformations. 

The underlying guidelines for the transformation of a source module to a 
target class are summarized as follows: 

• Transform the module name to the class name. 
• Transform a constant declaration to a constant declaration (using the key­

word final prior to the constant variable in the declaration). 
• Transform a type declaration to either a corresponding basic type or a 

proper target class, as described in Table 19.1. 
• Transform a store variable declared in the var part to an instance variable 

(or field) of the class. 
• Transform a source process (a process of the source module) to a target 

method (a method of the target class). 
• Transform a function, if any, defined in the module to a target method 

that does not change the state of the target class. 
• When transforming a process or a function, make sure that the invariants 

defined in the inv part of the module are not violated. 
• Transform the CDFD of the module to a target method of the class in 

which all the related methods are integrated through their invocations. 

Figure 19.1 illustrates the main ideas of these guidelines. 
These guidelines are also applicable to transformations of source classes, 

except that superclasses need to be taken into account in the transformations. 



19.2 Transformation of Modules and Classes 353 

Update --conf~ 

xl 

- x Find 

el 

Fig. 19.2. The CDFD of module Student __ Management 

That is, the class hierarchy in the specification must be transformed to a 
proper class hierarchy in the program. Furthermore, there is no need to take 
into account the CDFD of a source class, if it is given, in the transformation, 
because semantically it does not represent anything additional, but is just 
"syntactical sugar" to depict the source methods and their relations with the 
state variables of the class. 

Consider the transformation of the module Student_Management and the 
class Student, given below, as an example. We assume that the module Stu­
dent_Management is a decomposition of a process defined in the high level 
module Faculty _System, which is presumably defined somewhere in the speci­
fication. The CDFD given in Figure 19.2 describes the behavior of the module 
Student_Management: when a student x is available, the process Find tries to 
find x in the store students; If x exists, it is passed to process Update through 
x2; otherwise, x is passed to the process Add through variable xl. 

Furthermore, a class Student is defined as a subclass of an already defined 
class Person, and used for defining the type Students as a set of Student objects. 

module Student_Management / Faculty_System; 
const 
PI = 3.14159; 

type 
Students = set of Student; 

var 
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students: Students; 
inv 
forall[x: Student] I x.total_credit <= 135; 

behav CDFD_el; 

process InitO 
post students = { } 
end_process; 

process Find(x: Student) x2: Student I xl: Student 
ext rd students 
post if (exists[y: students] I x.id = y.id) 

then x2 = x 
else xl = x 

end_process; 

process Add(xl: Student) 
ext wr students 
post students = unionC students, {xl}) 
end_process; 

process Update(x2: Student) confirm: bool 
ext wr students 
post if x2 inset students 

then students = diffCstudents, {x2}) and confirm = true 
else students = unionCstudents, {x2}) and confirm = false 

end_process; 
end_module; 

class Student / Person; 
var 
id: string; 
name: string; 
total_credit: natO; 

method InitO 
post id = 0 and name = "" and total_credit = 0 
end_method; 

method Set_Name(namel: string) 
ext wr name 
post name = namel 
end_metho~; 

end_class; 
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Applying the guidelines introduced previously, we transform the source mod­
ule Student_Management into the following target class: 

public class StudentManagement { 
static final double PI = 3.14159; 
private Set students; 

public Student_ManagementO { 
students = new HashSetO; 

} 

public boolean Find(Student x) { 
if (students.contains(x)) 
return true; 
else 
return false; 

} 

public void Add(Student x) { 
students.add( x); 
} 

public boolean Update(Student x2) { 
/ /create an array objs containing all the elements of the set students. 
Student objs[] = students.toArrayO; 
int control = 0; 
for (int i = 0; i < objs.length; i++) 

if (objs[i].getIDO == x2.getIDO) 
{ 

} 

/ /Remove the identified element from the set students 
students. remove( objs[i]); 

control = 1; 
break; 

/ / Add the element x2 to the set studnets 
if (control == 1) { 

students. add (x2); 
return false; 
} 

else return true; 
} 

/ / A method derived from the CDFD of the module in the specification 
public boolean CDFD(Student x) { 
if (Find(x)) 
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Add{x); 
else 
return Update(x); 

} 
} 

The class name StudentManagement, conforming to the convention of Java 
identifiers, is derived from the source module name Student_Management. 
The constant PI is declared in the same way as it is declared in the specifi­
cation. It is quite interesting to see that the type Students defined as a set 
of Student in the source module is no longer necessary in the target class; in­
stead, the store variable students in the source module is directly transformed 
to the instance variable students declared with the class Set in the target class 
StudentManagement. Since the invariant in the module only imposes a con­
straint on the type Students, and therefore on variable students, it does not 
correspond to any construct in Java. However, it must be ensured that the 
invariant is not violated by the related methods. The constructor Student­
ManagementO, which is required to share the same name as the target class, 
is defined based on the process Init in the source module. The methods Find, 
Add, and Update are all derived from the corresponding processes in the source 
module, but the parameters and types of these target methods may have been 
modified to properly fit into the context of the program. The important thing 
in the transformation is not to forget to transform the CDFD of the source 
module to a method in the target class. In our transformation, the CDFD 
of the module is transformed to the method CDFD (of course, the method 
can be named differently) of the target class. The body of this method is an 
implementation of the CDFD of the source module. 

The target class Student used in the class StudentManagement needs to 
be defined by transforming the source class Student. Since all the instance 
variables of Student are required to be private, methods necessary for accessing 
those instance variables, such as getlD, must be defined in the target class. 
Thus, the source class Student is transformed into the following target class: 

public class Student extends Person { 
int id; 
string name; 
int totalCredit; 

public StudentO { 
id = 0; 

} 

name = 
totalCredit = 0; 

public void SetName{String name!) { 
name = name!; 

} 



public int getlDO { 
return id; 

} 
public String getNameO { 
return name; 

} 
public int getTotalCreditO { 
return totalCredit; 

} 
} 
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The transformation from the source class Student to the target class with 
the same name is quite straightforward: mapping from attribute variables to 
instance variables, from the constructor Init to the constructor StudentO, and 
from source methods to target methods. To supply necessary functionality, 
additional methods may be defined in the target class. The methods getlD, 
getName, and getTotalCredit in the class Student are the methods of this kind, 
through which the attributes of the objects of the class can be accessed. 

19.3 Transformation of Processes 

We have seen the transformation of some processes in the module Stu­
dent_Management discussed in the preceding section, which dealt only with 
some examples. In fact, a general transformation strategy for processes can be 
difficult, because the correctness, efficiency, structure, and conciseness of the 
program must be taken into account in a transformation. Since most of these 
issues are still under research, and there is no clear solution yet, we will dis­
cuss the transformation only from the correctness point of view. That is, the 
guidelines to be given are all for the assurance of the semantic correctness of 
the program against its specification, without consideration of other factors. 

As mentioned in the underlying guidelines before, a process in a source 
module is usually transformed to a method in the target class. However, there 
is a difference between a process in a module and a method in a Java class: a 
process allows exclusive inputs and outputs, whereas a method does not. How 
to resolve this difference in transformation is an important issue to address. 
In this section, we first discuss the guidelines for transforming a process with 
no exclusive inputs and outputs, and then proceed to explain how to tackle 
the exclusive inputs and outputs problem. 

19.3.1 Transformation of Single-Port Processes 

A single-port process is a process with only one input port and one output 
port. For example, the processes Add and Update in Figure 19.2 are both 
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single-port processes, whereas the process Find is not a single-port process 
because it has two output ports. In general, a single-port process, say A, has 
the form 

process A(x_l: Ti_l, x_2: Ti_2, ... , x_n: Ti_n) 
y_l: To_I, y_2: To_2, ... , y_m: To_m 

pre pre_A 
post post_A 
end_process 

where Ti_k (k = l..n) are types for input variables and To-.J U = l..m) are 
types for output variables. 

There are two ways to transform this process to a target method. One 
is to take the precondition into account, which usually results in a robust 
implementation, and the other is to completely ignore the precondition, which 
will possibly lead to a non-robust (but correct) implementation. 

Taking the precondition into account, we transform process A into method 
A in the target class Transformationi 

class Transformationi { 
To_1 y_l; 
To_2 y_2; 

public void A(Ti_I x_I, Ti_2 x_2, ... , Ti_n x_n) { 
if (pre_A) 
{ 

Tran(post_A) 
} 

} 

where Tran(post_A) denotes the program segment generated from post_A. 
The variables y_l, y_2, ... , y_m that are originally declared as the out­

put variables of the process A are declared as the instance variables of the 
target class, because a method in a Java class does not allow more than one 
output. The reason that this transformation is robust is that the precondition 
of process A is always checked before the execution of the program segment 
resulting from the transformation of post_A. If the precondition is false, then 
no program code (or, alternatively, the code segment for generating error mes­
sages) is executed, which satisfies the requirement of the process specification. 
If pre_A is a more complex predicate expression, it may first need to be trans­
formed into a proper program code, evaluating it to a truth value, and then 
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the result is used in the conditional statement. If process A is given in an 
explicit form, such as 

process A(x_l: Ti_l. x_2: Ti_2 ..... x_n: Ti_n) 
y_l: To_I. y_2: To_2 ....• y_m: To_m 

pre pre_A 
explicit 
5 

end_process 

then, by taking the same strategy, we transform it into method A of the target 
class Transformation2: 

class Transformation2 { 
To_1 y_l; 
To_2 y_2; 

public void A(Ti_1 x_I. Ti_2 x_2 ..... Ti_n x_n) { 
if (pre_A) 
{ 

Tran(S) 
} 

} 

The only difference between this transformation and the previous one is the 
use of Tran(S), the program segment produced from the explicit specification 
5, to replace Tran(post_A). 

Another transformation strategy is to take only the postcondition of the 
process into account. The reason we can ignore the precondition of the process 
is that the precondition is only an assumption for the postcondition to hold 
after the execution of the process. That is, the precondition is assumed to be 
ensured by the environment before available input data flows are sent to the 
process, and the process is responsible for providing outputs satisfying the 
postconditions only for those inputs satisfying the precondition. 

Let us consider the implicit specification of process A again as an example. 
It is transformed into the method A in the target class Transformation3: 

class Transformation3 { 
To_1 y_l; 
To_2 y_2; 
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A(Ti_l x_I, Ti_2 x_2, ... , Ti_n x_n) { 
Tran(post_A) 

} 

} 

Although this transformation generates a correct method A in the sense that it 
satisfies its process specification, the method is less robust than the one result­
ing from transforming the process A taking its precondition into account. The 
reason for this is that method A is not capable of dealing with the exceptional 
cases when the inputs do not satisfy the precondition; it may cause abnormal 
termination of the program or undesirable results. This is especially possible 
when the method directly takes inputs from a graphical user interface, where 
it is usually difficult to ensure that the inputs satisfy the required precondi­
tion. Therefore, the transformation involving the precondition given before is 
usually a better choice, although it may sacrifice a little time efficiency due 
to the necessity of evaluating the precondition in the program. 

19.3.2 Transformation of Multiple-Port Processes 

A process with multiple input or output ports allows exclusive input or output 
data flows. In order to focus on the issue of how to deal with the multiple­
ports problem in process transformation, rather than on the issue of dealing 
with the number of ports, we take the process B with two input and output 
ports, respectively, as an example to explain the transformation strategy. 

Let B be defined as 

process B(x_l: Ti_l I x_2: Ti_2) y_l: To_l I y_2: To_2 
pre pre_B 
post post_B 
end_process 

Assume that output y_l is generated based on input x_I, and y_2 is based on 
input x_2. A simple way to transform this process is to define two methods in 
the target class, for example, Bl and B2. The method Bl takes x_I as input 
and generates y_l as output, while B2 takes x_2 and produces y_2. Thus, we 
get the target class AnotherTransformation: 

class AnotherTransformation { 

public To_l Bl(Ti_l x_I) { 
if (pre_B(x_l» 
Tran(post_B(y_l» 

} 



public To_2 B2(Ti_2 x_2) { 
if (pre_B(x_2)) 
Tran(post_B(y _2)) 

} 

} 
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In this transformation, pre_B(x_l) denotes the subexpression of the pre­
condition of process B that is intended to constrain x_I but not x_2, while 
pre_B(x_2) is another subexpression of the precondition constraining x_2 
but not x_I. For example, suppose pre_B = x_I > 0 and x_2 > 0, then 
pre_B(x_l) = x_I> 0 and pre_B(x_2) = x_2 > O. Likewise, post_B(y_l) 
and post_B(y_2) can be interpreted similarly, but within the context of the 
postcondition of process B. Thus, when x_I is supplied, method B_1 will be 
invoked to provide the required functionality, whereas when x_2 is supplied, 
B 2 will be invoked. 

Another possible transformation strategy is to implement process B as a 
class, say ProcessCiass, in which the two methods Bl and B2 are defined. Then, 
in class AnotherTransfromation, an object of class ProcessCiass, say processOBJ, 
is instantiated to allow possible invocations of the methods Bl and B2 through 
processOBJ in the method implementing the corresponding CDFD in class 
AnotherTransformation. As the result, we may produce the following classes: 

class AnotherTransformation { 

public void CDFD( ... ) { 
ProcessCiass processOBJ = new ProcessCiassO; 

processOBJ.B1(x_1); / /invoke method B1 of the object processOBJ 

processOBJ.B2(x2); / /invoke method B2 of the object processOBJ 

} 

} 

class ProcessCiass { 

public To_l Bl(Ti_l x_I) { 
if (pre_B(x_l)) 
Tran(post_B(y _1)) 

} 
. public To_2 B2(Ti_2 x_2) { 

if (pre_B(x_2)) 
Tran(post_B(y _2)) 
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} 

} 

It is important to keep in mind that a process in a CDFD is usually trans­
formed to a method invocation (or method call) in the corresponding method 
implementing the CDFD of the target class. A simple example of transfor­
mation will help the reader understand the principle of this transformation 
strategy. 

19.4 Transformation of CDFD 

We have mentioned that the CDFD of a module needs to be transformed 
into a target method of the target class in which all the related methods are 
integrated according to their invocations. However, we have not systemati­
cally discussed anything about the transformation strategy for CDFDs. In 
this section, we address this problem. 

To help the reader focus on the main idea of transformation rather than 
struggle to understand complicated formal expressions dealing with general 
cases, we take the approach of using examples, as we did before, to explain 
the transformation strategy. 

A CDFD may contain the the following structures: sequential, conditional, 
nondeterministic, broadcasting, parallel structures. There are three kinds of 
conditional structures: single condition structure, binary condition structure, 
and multiple condition structure. We discuss the transformation of these struc­
tures by giving the corresponding guidelines. Before proceeding to introduce 
the guidelines, we need a function from CDFD structures to algorithms to 
help in the description of the guidelines. 

Definition 45. Let Scdjd denote the set of all possible CDFD structures and 
Ajava the set of all possible algorithms in Java. Then, we let Tc denote the 
function mapping from Scdjd to Ajava , that is, 

Guideline 1 Let 5 denote the sequential structure in Figure 19.3. Then, 
Tc(S) == TY _1 y1; 

TY _2 y; 
TY _35; 
y1 = A1(x, 5); Iitake x and 5 to produce 

Ilyl and update 5, which is implemented 
I lin the definition of Al 

y = A2(yl, 5); Iitake y1 and 5 to produce 
Ily and update 5, which is implemented 

I lin the definition of A2 
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Fig. 19.3. A sequential structure 

where we use == to mean "is defined as" and = to mean assignment in Java. 
The fundamental idea of the guideline is to treat each process in the CDFD 

as a method invocation in the corresponding Java program. This underlying 
idea is shared by the other guidelines to be introduced below. For example, 
process Al is invoked first with the actual parameters x and s, and then its 
result serves as the actual parameter of process A2 when it is invoked. An 
interesting point is the way of handling store s in the transformation. Since s 
is accessed by two processes in turn, it is treated as a global variable in the 
method invocations. The reference variable s provides the initial values for 
methods Al and A2, and holds the final values after the invocations of the 
methods. 

Guideline 2 Let 5 denote the conditional structure in Figure 19.4. Then, 
Tc(S) == TY _1 s; / /store s is treated as a global variable 

/ / other related variable declarations 
if (P(y)) 
{ yl = y; 

wI = B(yl); 
} 

else 
{ y2 = y; 

w2 = C(y2); 
} 

The resulting program reflects the semantics of the conditional structure. If 
condition P(y) evaluates to true, data flow y is passed to yl, process B is 
executed, and output data flow wI is produced based on yl and s. However, 
if P(y) evaluates to false, data flow y is passed to y2, process C is executed, 
and data flow w2 is generated based on y2 and 5, and 5 is possibly updated 
as well. 
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Fig. 19.4. A binary condition structure 

-y-4- Yi B 

Fig. 19.5. A single condition structure 

Guideline 3 Let 5 denote the single condition structure in Figure 19.5. 
Then, 

Tc(S) == TY _1 5; / /store 5 is declared as a global variable 

if (P(y)) 
{ y1 = y; 

w = B(y1, 5); 

} 

The generated program implements the semantics of the single condition 
structure. If condition P(y) evaluates to true, y is passed to y1, and pro­
cess B is executed to produce w based on y1 and 5, and to possibly change 
the value of global variable 5. However, if P(y) is false, y1 is just consumed, 
without executing any process (that is, the execution of the current structure 
terminates). In the program, variable w can be treated either as a global vari­
able or as a reference variable of the corresponding method of the structure, 
for it may hold the final result of the execution. 
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Fig. 19.6. A Multiple condition structure 

Guideline 4 Let 5 denote the CDFD containing a multiple condition 
structure given in Figure 19.6. Then, 

Tc(S) == TY _1 s; / /declaring s as a global variable 

if (P1(y)) 
{ y1 = y; 

wI = B(yl, s); 
} 

else if (P2(y)) 
{ y2 = y; 

w2 = C(y2, s); 
} 

else if (!(PI(y)IIP2(y))) 
{y3 = y; 

w3 = D(y3, s); 
} 

When one of the conditions PI(y) and P2(y) is true, the corresponding pro­
cess B or C is executed. If both conditions are false, the default process D is 
executed. In fact, the best program construct for implementing the multiple 
condition structure may be a case statement, but since a similar statement 
known as switch in Java allows decision expressions to be only integral ex­
pressions, it is not sufficient to deal with possibly complicated decisions in the 
multiple condition structure. Therefore, in general if-then-else statement can 
be used to implement the multiple condition structure. 
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Fig. 19.7. A nondeterministic structure 

Guideline 5 Let 5 denote the CDFD of Figure 19.7 that involves a non­
deterministic structure. Then, 

Tc(S) == TY _1 s; / /treating store s as a global variable 

if (P(x)) 
{xl = x; 

yl = B(xl, s); 
} 
else if (P1(x)) 
{x2 = x; 

y2 = C(x2, s); 
} 
else if (P2(x)) 
{x3 = x; 

y3 = D(x3, s); 
} 

When x is available, it will be transmitted through xl, x2, or x3 to only one of 
processes B, C, and D in a nondeterministic manner. In the nondeterministic 
structure, the specific conditions for determining which of processes B, C, 
and D needs to be executed is not given explicitly; therefore, they need to 
be given in the program resulting from transformation of the CDFD, such as 
P(x), Pl(x), and P2(x). The conditions must be given in a way that ensures 
the smooth execution of the CDFD (that is, no deadlock of executions should 
be created in the program due to the transformation of the nondeterministic 
structure) . 
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Fig. 19.8. A broadcasting structure 

Guideline 6 Let 5 denote the broadcasting structure in Figure 19.8. Then, 

Tc(S) == TY _1 5; I Is is declared as a global variable 

xl = Xj 

x2 =Xj 

x3 =Xj 

y1 = B(x1,s)j 
y2 = C(x2,s)j 
y3 = D(x3,s)j 

The broadcasting structure is opposite to the nondeterministic structure: 
when x is available, it will be transmitted to all the processes B, C, and D. 
Since there is no direct connection between any two of the three processes B, 
C, and D, and all of them only read data from store 5, executions of the three 
processes do not depend on each other. Therefore, the broadcasting structure 
can be implemented by a sequence of method invocations in any order. In 
the guideline, one choice of such a sequence is provided, that is, first invoke 
method B, then C, and finally D. 

Guideline 7 Let 5 denote the iteration structure in Figure 19.9. Then, 

Tc(S) == TY _1 Sj Iideclare s as a global variable 

y = E(x)j 
while (P(y)) { 

y = E1(y)j 
} 
y1 = E2(x, y)j 
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Fig. 19.9. An iteration structure 

The transformation of the iteration structure tries to implement its seman­
tics: when x is available, either y or y1 is generated, depending on the related 
guard condition given in the postcondition of process A; if y is generated, 
the loop starts until the guard condition becomes false and y1 is produced. 
This transformation is less straightforward than other transformations given 
in the previous rules, because the production of data flow y or y1 is actu­
ally dependant on the pre and post conditions of process A. Therefore, the 
resulting program given in the guideline shows only an outline of the trans­
formation, in the sense that the specific expressions E, E1, E2, and condition 
P(y) are not given precisely; they must be formed by taking the specific pre 
and post conditions of process A into account. 

Guideline 8 Let 5 denote the parallel structure in Figure 19.10, where 
the executions of process A and B are independent of each other. Then, 

Tc(S) == TY _1 s; / /store s is treated as a global variable 

y1 = A(x1, s); 
y2 = B(x2, s); 

Since the executions of processes A and B are independent of each other, 
although they read data from the same data store s, it is correct to transform 
the parallel structure into a sequential structure in the program. Of course, 
the order of invoking methods A and B (corresponding to processes A and B 
in the CDFD) can be altered due to their independence in execution. 

By now we have discussed the guidelines for transforming all the funda­
mental CDFD structures. The important thing is that we should not treat the 
introduced guidelines as precise rules for the transformation of CDFDs, be­
cause they may not cover all the possible cases in each structure category. In 
fact, since there are numerous ways to combine the fundamental structures in 
CDFDs, providing rules to cover general cases can be extremely difficult, if not 
impossible. Readers who are interested in the transformation of CDFDs are 
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Fig. 19.10. A parallel structure 

encouraged to study this issue further to see whether there is any possibility 
of coming up with general rules for transformation of CDFDs. 

19.5 Exercises 

1. Give another way of transforming a source module and class that differs 
from that of the one given in Section 19.2. 

2. Give a transformation of process A that is different from the one given in 
Section 19.3.1 in the sense that the target method A produces an error 
message when the precondition is not satisfied by the inputs. 

3. Give another different transformation of process B, whose format is given 
in Section 19.3.2, with two input and output ports. 

4. Suppose process A is decomposed into a CDFD. Give a transformation of 
A that utilizes the CDFD in defining the body of the target method. 
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Intelligent Software Engineering Environment 

To help people enjoy the benefit of using the SOFL formal engineering method, 
software support tools are extremely important. The combination of condition 
data flow diagrams and the textual language for defining their components in 
the associated modules provides good comprehensibility of the entire specifica­
tion and allows people at different levels of software projects to work together 
smoothly, but drawing condition data flow diagrams can be time consuming, 
especially when the diagrams need frequent changes during the construction 
of specifications. Furthermore, all the activities involved in the SOFL process, 
including the capturing of informal user requirements, transformation from 
informal to semi-formal and then to formal specifications, verification and 
validation of various level specifications and programs, and process manage­
ment usually take time and effort and may result in high cost. To resolve these 
problems, a quality software engineering environment for SOFL is necessary 
and useful. In this chapter, we discuss the issues concerned with the building 
of software engineering environments. 

20.1 Software Engineering Environment 

Software Engineering Environment refers to integrated software toolkits in 
which different tools work together to fulfill software engineering tasks [83]. 
They are an effective way to enhance the productivity and reliability of soft­
ware development due to the high speed and large memory capacity of modern 
computers. Ideally, such an environment should contain software tools sup­
porting every activity in every phase of software engineering, such as require­
ments analysis, design, transformation, verification, and maintenance, but due 
to the difficulty and complexity of building such a powerful environment, most 
of the existing environments concentrate on the support for specific activities. 
For example, the IFAD VDM-SL Toolbox supports the construction and test­
ing of formal specifications using VDM-SL (Vienna Development Method -
Specification Language) [110]; Rational Rose supports system analysis and 
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documencl, documenC2, ... , documenCn 

Software 
product 

Fig. 20.1. An illustration of production line for software development 

design using UML (Unified Modelling Language) [47J; and JBuilder supports 
the building of program systems using Java [46J. 

Ideally, a software engineering environment should have the capability of 
enforcing a production line for software development, as illustrated in Figure 
20.1, to achieve the harmony of software tools, development methods, and 
human developers, since such harmony will eventually contribute to high pro­
ductivity and reliability of the final software product. However, such a rigorous 
production line still seems impossible under the support of existing software 
engineering environments for many reasons, including 

• The languages for specifications and designs are mainly informal, which 
imposes a difficulty for high automation in construction, transformation, 
and verification of specifications. 

• The environments are implemented in a way that human developers need 
to make decisions on selecting software tools and activities in software 
process. This may create the risk of developers avoiding some necessary 
activities (e.g., specification review) and/or not meeting the required stan­
dards (e.g., not updating the high level specifications after the low level 
specifications are changed). 

• The languages and methods for writing documents at different levels may 
not be coherent; therefore, a powerful support environment is difficult to 
build. 

However, since SOFL has properly combined natural language, graphical 
notation, and formal textual notation to form a single coherent language with 
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precise syntax and semantics, a more intelligent software engineering environ­
ment for SOFL can be built to overcome the weakness of the present software 
environments. 

20.2 Intelligent Software Engineering Environment 

Intelligent Software Engineering Environment, ISEE for short, is a further 
development of the present software engineering environments toward pro­
viding more intelligence in supporting software engineering activities [65J. By 
intelligence we usually mean the power of perceiving, learning, understand­
ing, and knowing things of interest. Traditionally, intelligence is regarded as 
the quality which only human beings can posses. The typical way to make 
a computer intelligent is to write programs that have the knowledge of solv­
ing problems of interest, that can conduct reasoning based on the existing 
knowledge, and that can learn new knowledge from experience. However, since 
software development itself is an intelligent process involving intelligence in 
documentation, understanding, communication, creation of system architec­
ture and algorithms, and so on, it seems difficult to realize all the qualities of 
intelligence in supporting software development. In this section, we intend to 
discuss potential features of intelligent software engineering environments in 
general, and possible ways to build them, especially the ones for SOFL. Al­
though the theory and technology for building intelligent software engineering 
environments are far from mature, we hope the discussions in this section will 
inspire more researchers, students, and tool builders to develop their interests 
and technologies in this area. 

In fact, a realistic intelligent software engineering environment does not 
need to be very ambitious. It should focus on the issue of how to help human 
(developers) provide their best intellectual inputs (e.g., formal specification 
of a process) necessary for system development, which for the computer is ex­
tremely difficult or impossible to provide. The intelligent environment should 
treat a human being as a special "software tool," and automate all the de­
velopment and management operations necessary for software projects. The 
role of a human "software tool" differs from that of other software tools in 
the sense that human beings provide intellectual inputs that are impossible 
to obtain in any other way, whereas other software tools provide functionality 
based on the stored data and algorithms implemented in advance. The dis­
tinctive feature of an intelligent environment is that human beings must be 
controlled and guided by the environment in developing their systems. This 
point is quite different from the traditional software engineering environments 
in the sense that a traditional environment provides only a collection of re­
lated software tools that can be freely used by human beings to fulfill their 
software development tasks. Furthermore, to facilitate the interaction between 
the computer and human developers, an intelligent environment must provide 
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a user-friendly interface, allowing developers to input their information by 
speaking, drawing on the screen, and typing on the keyboard, and so on. 

In summary, an intelligent software engineering environment should pro­
vide the following functions: 

• Human developers are treated as "software tools," and managed by the 
environment. 

• Human developers are guided by the environment to fulfill their tasks, and 
to proceed from one phase to another. 

• Faults in documents are prevented during the construction of documents, 
rather than detected after the construction of documents. 

• All the project management operations are automated by the environment. 
• A user-friendly interface is provided to help human developers input their 

information by speaking, drawing, and typing. 

To build an intelligent environment, we need the environment to embody nec­
essary knowledge in a knowledge base, which indicates what is to be done 
under what conditions. Also, the knowledge base should be expanded au­
tomatically by learning from human inputs and past experience in building 
similar software systems. The important role of the knowledge base is to en­
able the software environment to present guidance to human developers, to 
instruct them what to do next, and to automate management operations, such 
as linking different parts of a specification, or the corresponding parts in both 
specifications and programs. 

From the internal structure point of view, an intelligent software engineer­
ing environment should provide the following mechanisms: 

• A knowledge base storing all the necessary knowledge for software systems 
development. 

• A control program that interacts with both the human developer and the 
knowledge base, and carries out effective search and application of the rele­
vant rules in the knowledge base to provide accurate and efficient guidance 
to human developers. 

• A learning program that automatically collects and builds knowledge from 
the documentation of previous software projects and the human inputs 
during the development process. 

The knowledge for software development can basically be divided into two 
categories: domain-based knowledge and method-based knowledge. The domain­
based knowledge is domain specific, encompassing all the necessary knowledge 
about a specific domain, for example, a banking system, the common archi­
tecture of the software systems solving the problems in the domain, the tech­
niques to build specific software systems in the domain based on the common 
architecture and the knowledge of previous systems, and so on. 

The method-based knowledge is method specific, containing all the nec­
essary knowledge about the documentation techniques, the process of pro­
ceeding from one stage to another, the software tools and their applications 
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available in the environment of a specific development method, such as SOFL, 
and other related operations required by the specific method. 

20.3 Ways to Build an ISEE 

There are three ways to build an intelligent software engineering environment, 
based on the two kinds of knowledge about software development discussed 
in the preceding section, domain-driven, method-driven, and the combination 
of both. 

20.3.1 Domain-Driven Approach 

The domain-driven approach to building an ISEE makes use of domain-based 
knowledge to support the construction of software systems in a specific do­
main. The key issue in this approach is how to build the knowledge base 
that contains sufficient knowledge about the domain and provides efficient 
knowledge retrieving capability. 

Since software systems in the same domain usually share common features 
while each specific system differs from the others, the common features should 
be captured and expressed as knowledge in a knowledge base. When a spe­
cific system in the domain is built, the common features must be properly 
adopted and the system-specific features must be obtained by both tailoring 
the common features and using the developer's inputs. 

Apart from expressing the common features, the domain-based knowledge 
base should also contain knowledge about the rules for checking the con­
sistency and completeness of systems, transformation from specifications to 
designs and programs, and verification and validation of the programs pro­
duced. 

20.3.2 Method-Driven Approach 

The method-driven approach to building an ISEE is based on the construc­
tion of a method-based knowledge base. The knowledge base should contain 
sufficient knowledge about the development method itself, including the syn­
tax and semantics of the language concerned, rules for using the language, 
and the steps to take to ensure the consistency and validity of documentation 
at all the possible levels. The most distinctive feature of this approach from 
the domain-driven approach is that the knowledge base usually contains no 
knowledge about specific domains, but only the one about the specific method. 

Two levels of knowledge can be supported by this kind of ISEE: 

• Language-level knowledge 
• Method-level knowledge 
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Language-level knowledge expresses the rules of the syntax and semantics of 
the language used in the specific method, and the rules for meeting various 
properties of documentation written using the language, such as consistency, 
satisfiability, and completeness. Thus, the knowledge can be applied to sup­
port the automation of documentation construction and verification, and can 
possibly provide an effective way to prevent faults during documentation (e.g., 
specification, design). 

Method-level knowledge records all the knowledge related to the method 
the ISEE is expected to support, and is usually used to guide human develop­
ers in applying the method to develop software systems. Techniques such as 
help panels, checklists, context-dependent menus, and checking mechanisms 
are used to prompt the developer in the proper use of the method. Such an 
ISEE is able to provide context-dependent advice about how to get a soft­
ware project started, what to do next, what the inputs and outputs are of 
each step of the method, and how to check the properties of the system under 
development. 

To provide useful knowledge about a specific software development method, 
the language used in the method must have a formal syntax and semantics, 
and the rules for developing systems provided by the method must be precise 
enough to allow for their formal expression in the knowledge base. In this 
regard, formal engineering methods have obvious advantages over informal 
methods. 

20.3.3 Combination of Both 

Since each of the domain-driven and method-driven approaches focuses only 
on the support for one kind of knowledge, its effectiveness in supporting soft­
ware development may be limited when it is applied individually, because a 
development usually needs both domain-based knowledge and method-based 
knowledge; lacking either of them would affect the productivity and the reli­
ability of software projects. 

The combination of both approaches provides greater potential for improv­
ing the performance of each kind of ISEE. Since a combined ISEE supports 
both domain-based and method-based knowledge, it needs to keep both kinds 
of knowledge consistent in providing guidance and checking documentation. 
Perhaps an integrated knowledge base, in which each rule reflects a proper 
combination of domain-based and method-based knowledge, is a better solu­
tion to resolve the consistency problem. 

20.4 ISEE and Formalization 

It has become apparent that knowledge is necessary in order to provide in­
telligence in an ISEE. However, the most challenging problem in obtaining 
knowledge is how to easily extract, form, and express the knowledge about the 
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domain and the software development method, if a realistic ISEE is desired. 
In our view, formalization of both documentation produced during software 
development and the software development methods are necessary conditions 
for achieving an ISEE. 

The formalized documentation, such as formal specification, has precise 
syntax and semantics; therefore, there is a high possibility of building a soft­
ware tool to analyze the documentation. The capability of analysis may lead 
to the possibility of the presentation of appropriate guidance to the devel­
oper and/or of a high degree of automation in specification verification and 
validation. 

The formalization in software development methods means that all the 
rules for specifications construction, evolution, refinement, transformation, 
verification, and validation are well-defined. Thus, the rules can be properly 
incorporated into knowledge about software development methods to provide 
a method-based intelligent software engineering environment. 

In fact, compared with informal languages and methods, formal engineer­
ing methods have many more advantages. It is hard to imagine that we 
can build an efficient and reliable ISEE based on informal documentation 
and informal development methods, because that would require an incredible 
amount of time, and intelligence in understanding, analyzing, and manipu­
lating informal languages that have neither well-defined syntax nor formal 
semantics. On the other hand, with the support of ISEE, the usability and 
accessibility of formal engineering methods will likely be improved, and the 
productivity and reliability of the software products developed will likely be 
enhanced. 

20.5 ISEE for SOFL 

Since the domain-driven approach to building an ISEE for SOFL needs the 
involvement of specific domains which are, in general, difficult to describe, this 
section focuses on the description of the method-driven approach. In other 
words, we are interested only in the issue of building an ISEE to support the 
SOFL specification language and method for developing software systems at 
large. 

An ISEE for SOFL is expected to support requirements analysis, spec­
ification construction, design, refinement, transformation, rigorous reviews, 
testing, documentation, system modification, and process management. 

20.5.1 Support for Requirements Analysis 

The ISEE supports an interactive approach to requirements analysis by fol­
lowing the method for building a specification. Once the ISEE is started, the 
user, the developer of the desirable software system, of the environment is 
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requested to input the overall goal, possibly in a natural language like En­
glish, and will be guided by the ISEE to develop the informal specification 
by following the "abstraction and decomposition" principle to define mod­
ules in an informal manner. The interaction under the guidance of the ISEE 
goes on until the input of all the necessary requirements, at an abstract level, 
terminates. 

The ISEE then produces a well-formed informal requirements specification 
that is consistent with SOFL syntax, and tries to instruct the user to carry 
out the next step's task: transforming the informal specification into a semi­
formal specification. Again, the process is interactive, but the ISEE gives 
heuristic suggestions in declaring data types, store variables, invariants, data 
flows, the CDFDs, and in defining processes and functions of modules. In 
such an interactive way, the user is guided to explore all the possible aspects 
of the requirements. After the interaction terminates, the ISEE automatically 
checks the consistency and validity of the semi-formal specification produced, 
and helps perform a modification of the specification. 

20.5.2 Support for Abstract Design 

The ISEE takes the semi-formal specification as input and instructs the user 
to start constructing a design specification accordingly. The top level mod­
ule is formed automatically and the associated CDFD is drawn. Then, the 
ISEE takes an interactive approach to guide the user to complete the de­
sign specification in a top-down or middle-out manner. During the process of 
specification construction, the user is usually required to input the informa­
tion that is impossible for the ISEE to understand, such as new CDFDs and 
pre and post conditions of processes. What the ISEE does is to raise questions 
and request necessary information from the user on the basis of its analysis 
of the consistency, satisfiability, and completeness of the current specification. 
For example, the ISEE may request from the user the definitions of addi­
tional classes and data types, existing given types, and processes that need 
to produce the open input and/or consume the output data flows of CDFDs 
in order to complete the design specification. Also, the ISEE assists the user 
in drawing CDFDs, and automatically creates the associated module outlines 
to help the user to concentrate on providing inputs for specific components of 
the module (e.g., pre and postcondition of a process). 

20.5.3 Support for Refinement 

After an abstract design specification is constructed, the ISEE takes an in­
terleave approach to aiding the user refine the abstract design specification of 
each process and function, usually in an implicit form, into an explicit speci­
fication. To start the refinement process, the ISEE takes initiative in refining 
the implicit specification of each process. If the specification cannot be refined 
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completely into an explicit one, the unrefined parts in the implicit specifica­
tion will be highlighted to signal the user to refine those parts manually. The 
ISEE is able to accept the user's inputs of the explicit specifications and sub­
stitute them for the unrefined parts in the explicit specification generated by 
the ISEE. This interleave process continues until an explicit specification is 
completely achieved. 

20.5.4 Support for Verification and Validation 

The design specifications, both implicit and explicit ones, need to be verified 
and validated before they are implemented. The ISEE guides the user in con­
ducting rigorous reviews, and in the testing of the specifications for verification 
and validation. The support includes automatic derivation of various proper­
ties from the specifications concerned, automatic construction of review task 
trees and generation of test cases, and interactive reviewing of the properties 
or evaluating of the test results. Also, the ISEE issues appropriate advice, 
whenever necessary, to the user to conduct more but essential reviews or test­
ing. Furthermore, to help in the understanding of design specifications, the 
ISEE also conducts automatic simulation based on specifications to demon­
strate how systems will behave when the programs implementing them are 
executed. 

20.5.5 Support for Transformation 

The ISEE provides aids for transformation from design specifications into Java 
programs in two ways: data transformation and functional transformation. 
The ISEE usually takes a top-down approach to work on the transformation 
starting from the top-level module, and then proceeding to its decompositions 
and to the related classes. For each abstract data type defined in the specifi­
cation, the ISEE gives the corresponding target data type in the program. For 
each module, class, process, method, and function, the ISEE usually suggests 
an outline for the target programs, and requests the user to fill in the contents. 
Of course, the ISEE tries to do as much as possible in the transformation. 

20.5.6 Support for Program Testing 

To validate the ultimate program system against the user requirements, the 
ultimate program produced by transformation of the design specification must 
be tested under the guidance of the ISEE. Both functional and structural 
testing are supported. In this process, the test cases generated for testing 
the design specification can be reused for functional testing of its program. 
However, the new test cases for structural testing also need to be generated, 
under the ISEE's guidance, aiming at detecting faults that occurred during 
the implementation phase. The ISEE supports both interactive and batch 
testing, and takes care of test case management and program debugging. 
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20.5.7 Support for System Modification 

Modification of documentation is an intrinsic feature of software development; 
it may be conducted throughout the development process when abstract speci­
fications are evolved or refined into concrete specifications. The ISEE provides 
several levels of support for documentation modification. When a specifica­
tion, at any level, is modified, the ISEE highlights automatically all the related 
parts in the specification to draw attention from the user for possible modi­
fications of the those parts. When an abstract specification is refined into a 
concrete specification, if any additional modification is made to the concrete 
specification that leads to the violation of the refinement rules, the corre­
sponding parts of the abstract specification will be marked automatically to 
indicate the necessity of modification at those parts in order to sustain the 
refinement rules. Another level of modification may occur when an abstract 
specification is modified to meet new requirements. In this case, the ISEE will 
highlight automatically the corresponding parts to be modified in the concrete 
specification. 

20.5.8 Support for Process Management 

The software development process is an important element affecting the qual­
ity of software products. In the ISEE, software development process is decided 
by the software environment based on the application domain and the existing 
knowledge of SOFL software process. The management activities supported 
may include (1) planning and defining the software process, (2) producing 
documentation, (3) analyzing project risks, (4) controlling the progress of the 
software process, and (5) handling exceptional incidents (e.g., over budget or 
behind schedule). All the activities must be organized in a manner to facilitate 
systematic development and maintenance of software products. 

It is worthy of mention at the end of this chapter that, although the 
functional features of the ISEE for SOFL described above are not a reality 
yet, they show the goals for building an ISEE for SOFL in the future. We have 
so far implemented several prototype tools for SOFL, including a graphical 
user interface for building specifications and tools to support for specification 
testing and rigorous reviews, and will continue to make efforts to develop 
them into a prototype software engineering environment for SOFL. Readers 
who are interested in this environment and its further development can pay 
attention to my homepage at http://wwwcis.k.hosei.ac.jpFsliu/ for timing 
information. The current version of the software engineering environment for 
SOFL is intended to evolve into a more intelligent one in the future. 
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20.6 Exercises 

1. Describe the major differences between a traditional software engineering 
environment and an intelligent software engineering environment. 

2. Give some ideas about building an intelligent office environment by sim­
ulating the idea of an intelligent software engineering environment. 

3. Explain why it is important that human developers be treated as a "soft­
ware tool" in an intelligent software engineering environment. 

4. Draw a diagram to depict an intelligent software engineering environment 
for SOFL that provides all the functions presented in Section 20.5. Those 
functions need to be arranged logically in the diagram to show support 
for the entire software development process using SOFL. 
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A 

Syntax of SOFL 

This appendix contains a complete definition of the syntax of the SOFL spec­
ification language introduced in this book. Although all the keywords, such 
as pre, post, card, and len, are presented in bold font to draw the attention 
of the readers, they are all given in plain text in the formal definitions of the 
language. Each definition is given in a context-free grammar in which we use 
the following conventional symbols: 

Meta identifier non-terminal symbols are written in upper case letters 

underline 

{ } 

[ J 
( ) 

for the first letter and lower case letters for the other 
parts (possibly including a dash mark) 
each terminal symbol is underlined, e.g., process 
define symbol 
encloses syntactic items that may occur zero or more 
times 
definition separator symbol (with lower 
precedence than the concatenate symbol) 
used to describe a range of terminal symbols, 
e.g., ~ .. ~ 
encloses optional syntactic items 
encloses the choice of syntactic items 

A.1 Specifications 

Specification ::= Modules !-I Modules; Classes !-
Modules ::= Top-module{; Module} 
Classes ::= Class{; Class} 
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A.2 Modules 

Top-module ::= module SYSTEMJ:dentifier;. 
Module-body endJIlodule 

Module ::= module Identifier [ L Identifier]i. 
Module-body endJIlodule 

Module-body ::= [Const-declaration;] [Type-declaration;] 
[Var-declaration;] [Inv-definition;] -
[Behaviori.] - -
Process-function-specifications 

Const-declaration ::= const Identifier = Constant 
{; Identifier = Constant} 

Type-declaration ::= type Identifier =- Type 
{i. Identifier =- Type} 

Var-declaration ::= var Variable~ Type 

Inv-definition 

Behavior 

fi. Variable~ Type} 
::= inv Predicate-expression 

{; Predicate-expression} 
::= behav (CDFD.-Number 
I CDFDJ:dentifier) 

Variable ::= ext Identifier 
I ext #Identifier 
I Identifier 

Process-function-specifications ::= Processesfi. Function} 

A.3 Processes 

Processes ::= Initialization-process{; Process} 
Initialization-process ::= process InitO Process':body 

end_process 
Process ::= process Identifier([Dataflow-declarations]) 

[Dataflow-declarations] 
Process-body end_process 

Dataflow-declarations::= Parameter-declarations [ I 
{Parameter-declarations I} 
[[I {Parameter-declarations I}] 
Parameter-declarations]] -
I Parameter-declarations 
{lParameter-declarations} 



Process-body ::= [ext Ext-variables] [Precondition] 
[Postcondition] [Decomposition] 
[Explicit-specification] [Comment] 

Ext-variables ::= External-variable[~ Type] 
{External-variable[~ Type]} 

External-variable ::= (rd I wr) Identifier 

Precondition ::= pre Predicate-expression 
I pre_Referenced-variable 

Postcondition ::= post Predicate-expression 
I posLReferenced-variable 

Decomposition ::= decom Identifier decom 

::= explicit Explicit-body 

A.3 Processes 393 

Explicit-specification 
Explicit-body ::= Local-variable-declaration; 

Statement 
Local-variable-declaration ::= Identifier: Type{; Identifier: Type} 
Statement ::= Sequential-statement 

Other-statement 

Block-statement 
Assignment-statement 
Sequential-statement 
Conditional-statements 

While-statement 
Method-invocation 

I Other-statement 
::= Assignment-statement 
I Block-statement 
I Conditional-statements 
I While-statement 
I Method-invocation 
I Multiple-selection-statement 

::= begin Statement end 
::= Identifier := Expression 
::= Statement{i Statement} 
::= if Predicate-expression then Statement 
I if Predicate-expression 

then Statement 
else Statement 

::= while Predicate-expression do Statement 
::= Referenced-method-name 

([Arguments]) 
- -

I Method-invocation~Method-invocation 
Referenced-method-name ::= IdentifiertIdentifier} 

I this.Identifier 
Arguments ::= Expression {~ Expression} 
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Multiple-selection-statement ::= case Expression of Case-alternatives 

Case-alternatives 
Case-alternative 
Case-patterns 
Default-expression 

[; Default-expression] end case 
::= Case-alternativet Case-alternative} 
::= Case-patterns -> Statement 
::= Expression{, Expression} 
::= default -> Statement 

Comment ::= comment Text 

A.4 Functions 

Function ::= function Identifier 
([Parameter-declarations]): Type 
[Precondition] [Postcondition] 
[==- Expression] end.1unction 

Parameter-declarations ::= Identifier{, Identifier L Type 
I Parameter-:'declarations~ 

Parameter-declarations 

A.5 Classes 

Class ::= class Identifier [ L Identifier]i. 
Class-body end class 

Class-body ::= [Const-declaration;] [Type-declaration;] 
[Var-declaration;] [Inv-definition;] -
[Behaviori.] Method -function-specifications 

Method-function-specifications ::= Methods {; Function} 
Methods ::= Constructort Method} 
Constructor ::= method Init 

([Parameter-declarations] ) 
Process-body end method 

Method ::= method Identifier 
([Parameter-declarations] ) 
[Identifier~ Type] 
Process-body end method 



A.6 Types 

Type ::= Type-identifier 
I Basic-type 
I Set-type 
I Sequence-type 
I Composite-type 
I Product-type 
I Map-type 
I Union-type 
I Special-type 

Type-identifier ::= IdentifierUdentifier} 
I Class-name 

Class-name ::= Identifier 

Basic-type ::= natO 

I nat 

I int 

I real 

I char 

I bool 

I Enumeration 
Enumeration ::= {Enumeration-value 

{2 Enumeration-value} 1 
Enumeration-value ::= <String-of-characters> 
String-of-characters ::= Character { Character} 

Set-type :: = set of Type 

Sequence-type ::= seq of Type 

Composite-type ::= composed of Field-list end 
Field-list ::= Identifier: Type 

{Identifier: Type} 

Product-type ::= Type {* Type} 

Map-type ::= map Type to Type 

Union-type ::= universal 
I Type {I Type} 

Special-type ::= sign 

A.6 Types 395 
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A.7 Expressions 

Expression ::= Ordinary-expression 
I iExpressionl 

A.8 Ordinary Expressions 

Ordinary-expression ::= Compound-expression 
I Unary-expression 
I Binary-expression 
I Apply-expression 

I 
I 
I 
I 
I 
I 

Basic-expression 
Set-expression 
Sequence-expression 
Map-expression 
Composite-expression 
Product-expression 

A.S.l Compound Expressions 

Compound-expression ::= If-expression 
I Let-expression 
I Case-expression 

If-expression ::= if Predicate-expression 

Let-expression 

then (Expression I Predicate-expression) 
else (Expression I Predicate-expression) 

::= let Pattern-definition 
in (Expression I Predicate-expression) 

Pattern-definition ::= Pattern-equal-definition-list 
I Pattern-binding 

Pattern-equal-definition-list ::= Identifier =- (Expression I 
Predicate-expression) 
{, Identifier =- (Expression I 
Predicate-expression) } 

Pattern-binding ::= Identifier.;. (Type I Expression) 



A.8 Ordinary Expressions 397 

Case-expression ::= case (Expression I Predicate-expression) of 
Case-alternatives 
[; Default-expression] end case 

Case-alternatives ::= Case-alternative{; Case-alternative} 
Case-alternative ::= Case-patterns ->- (Expression I 

Predicate-expression) 
Case-patterns ::= (Expression I Predicate-expression) 

{, (Expression I Predicate-expression)} 
Default-expression ::= default -> (Expression I Predicate-expression) 

A.8.2 Unary Expressions 

Unary-expression ::= Unary-operator Expression 
Unary-operator .. -: 

A.8.3 Binary Expressions 

Binary-expression ::= Expression Binary-operator Expression 
Binary-operator ::= + 

I 
I * 
I L 
I div 
I rem 
I mod 

I ** 

A.8.4 Apply Expressions 

Apply-expression ::= Method-apply 
I Function-apply 
I Composite-apply 
I Product-apply 
I Operator-apply 

Method-apply ::= Function-apply 
I Function-apply.:.Simple-variable 
I Function-applY.:.Method-apply 

Function-apply ::= Referenced-variable~ [Arguments II 
Composite-apply ::= Field-select I Modify-expression 
Field-select ::= IdentifierUdentifier} 
Modify-expression ::= modify(Identifier, Modifying-field-list) 
Modifying-field-list ::= Identifier -> (Expression I Predicate-expression) 

{, Identifier - > (Expression I 
Predicate-expression) } 
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Product-apply ::= modify(Identifier, Modifying-value-list) 
Modifying-value-list ::= Index -> (Expre~sion I -

Predicate-expression) 
{, Index - > (Expression I 
Predicate-expression) } 

Index :: = Number 

Operator-apply ::= Operator-name(Arguments) 
I Boolean-type-apply -

Operator-name ::= abs 
bound 
floor 
get 
card 
union 
inter 
diff 
dunion 
dinter 
power 
hd 
jJ 
len 
elems 
inds 
cone 
dconc 
Sequence-name 
dom 
rng 
domrt 
rngrt 
domdl 
rngdl 
inverse 
override 
comp 
Map-name 

Sequence-name ::= Identifier 
Map-name ::= Identifier 
Boolean-type-apply ::= subset(Arguments) 

I psubset(Argument~) 



A.8.5 Basic Expressions 

Basic-expression ::= Constant 

A.8.6 Constants 

I Simple-variable 
I Special-keywords 
I Function-apply 

Constant ::= Basic-type-constant 
I Set-type-constant 
I Sequence-type-constant 
I Map-type-constant 
I Composite-type-constant 
I Product-type-constant 

Basic-type-constant ::= Sign-type-value 

A.8 Ordinary Expressions 399 

I Constant-identifier 
I Number 

Sign-type-value 
Constant-identifier 
Number 

Integer 

Real-number 

Negative-number 
Digits 

Digit ::= Q 
1 
2 
~ 
.4 
Q 
Q 
1 
~ 
~ 

I Character-value 
I Enumeration-value 
::= 1 
::= Identifier {Jdentifier } 
::= Integer 
I Real-number 
::= Negative-number 
I Digits 
::= Integer 
I Integer~Digits 
::=:. Digits 
::= Digit{Digit} 

Character-value ::= ~Character~ 
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Set-type-constant :: = 1[Expression-List II 
Expression-List ::= (Expression I Predicate-expression) 

{! (Expression I Predicate-expression)} 

Sequence-type-constant ::= l[Expression-Listll 

Map-type-constant ::= { -> } 
I {(Expression I Predicate-expression) - > 

(Expression I Predicate-expression) 
{,(Expression I Predicate-expression) - > 
(Expression I Predicate-expression)} 1 

Composite-type-constant ::= mk-Referenced-variable 
(Expression-List) 
- -

Product-type-constant ::= mkJ:dentifieriExpressiont Expression}2 

A.8.7 Simple Variables 

Simple-variable ::= Identifier I ':::'Identifier 
I Referenced-variable 

Referenced-variable ::= IdentifierUdentifier} 

A.8.8 Special Keywords 

Special-keywords ::= nil 
I undefined 

A.8.9 Set Expressions 

Set-expression ::= {Expression IParameter-declarations & 
Predicate-expression} 
{Expression I Predicate-expression} 
Set-type-constant -
{Integer! .:.::.! Integer 1 

A.8.l0 Sequence Expressions 

Sequence-expression ::= [Expression I Parameter-declarations &. 
Predicate-e~pression ] 
[Expression I Predicate-expression] 
Sequence-type-constant -
lInteger! .:.::.! Integerl 



A.9 Predicate Expressions 401 

A.S.ll Map Expressions 

Map-expression ::= {Identifier -> Identifier I 
[Parameter-declarations &] 
Predicate-expression 1 
Map-type-constant 

A.S.12 Composite Expressions 

Composite-expression ::= Composite-type-constant 

A.S.13 Product Expressions 

Product-expression ::= Product-type-constant 

A.9 Predicate Expressions 

Predicate-expression ::= true 
false 
nil 
Boolean-variable 
Relational-expression 
Conjunction 
Disjunction 
Implication 
Equivalence 
Negation 
Quantified-expression 
iPredicate-expressionl 

A.9.1 Boolean Variables 

Boolean-variable ::= Simple-variable 
I Method-apply 

A.9.2 Relational Expressions 

Relational-expression ::= Expression Relational-operator 
Expression 
Expression Relational-operator 
Expression Relational-operator 
Expression 
is_Type-identifier( (Expression I 
Predicate-expression) 1 
Boolean-type-apply 
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Relational-operator ::= =-

A.9.3 Conjunction 

I <> 
I < 
I <= 
I > 
I >= 
I inset 
I notin 

Conjunction ::= Predicate-expression and 
Predicate-expression 

A.9.4 Disjunction 

Disjunction ::= Predicate-expression or 
Predicate-expression 

A.9.5 Implication 

Implication ::= Predicate-expression => 
Predicate-expression 

A.9.6 Equivalence 

Equivalence ::= Predicate-expression <=> 
Predicate-expression 

A.9.7 Negation 

Negation ::= not Predicate-expression 

A.9.S Quantified Expressions 

Quantified-expression ::= Quantifier-list I Predicate-expression 
Quantifier-list ::= forall[Binding-list 1 {Quantifier-list} 

I exists [ll1Binding-llst H Quantifier-list} 

Binding-list ::= Identifier-list~ (Type I Expression) 
{, Identifier-list~ (Type I Expression)} 

Identifier-list ::= Identifier{! Identifier} 



A.I0 Identifiers 

Identifier ::= Letter{(Letter I Digit I =)} 
Letter ::= 2, .. £ 

A .. Z 

A.II Character 

Character ::= Letter 
Digit 
New-line 
White-space 
Other-characters 

Other-characters ::= ~ I , I ; I 2 I ~ I + I : I / I \ 
I 11:1~1(1)1[lllfln@ 
I ~ I ~ I & 1-%-1 fl #= I-~ III I 

A.12 Comments 

Brief-comment ::= /* Text * / 
- -

Text ::= String-of-characters 

A.12 Comments 403 
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class, 209, 210 
comment, 104 
comp, 198 
composite object, 180 
composite types, 179 
composite value, 180 
compound expressions, 107 
compound types, 143 
conc, 172 
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control program, 374 
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Deliver and maintenance, 3 
Design, 2 
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equivalence, 25 
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false, 22 
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Formal engineering methods, 10 
Formal methods, 5 
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get, 157 
given, 99, 160 
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Implementation, 3 
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index set, 171 
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inheritance, 217 
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inset, 154 
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integration testing, 325 
intelligent software engineering 

environments, 373 
inter, 158 
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ISEE, 373 
ISEE for SOFL, 377 

knowledge base, 374 
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