
Formal Engineering
for Industrial Software Development

Springer-Verlag Berlin Heidelberg GmbH

Shaoying Liu

Formal Engineering
for Industrial
Software Development

Using the SOFL Method

With 90 Figures and 30 Tables

, Springer

Shaoying Liu
Department of Computer Science
Hosei University
Tokyo, 184-8584
Japan
sliu@k.hosei.ac.jp

Library of Congress Control Number: 2004102480

ACM Computing Classification (1998): D.2, F.3.1, 1.6, K.6.3

ISBN 978-3-642-05827-1 ISBN 978-3-662-07287-5 (eBook)
DOI 10.1007/978-3-662-07287-5

This work is subject to copyright. All rights are reserved, whether the whole or part of
the material is concemed, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilm or in any other way,
and storage in data banks. Duplication of this publication or parts thereof is permitted
only under the provisions of the German copyright law of September 9, 1965, in its
current version, and permission for use must always be obtained from Springer-Verlag
Berlin Heidelberg GmbH.

Violations are liable for prosecution under the German Copyright Law.

springeronline.com

© Springer-Verlag Berlin Heidelberg 2004

Originally published by Springer-Verlag Berlin Heidelberg New York in 2004
Softcover reprint of the hardcover 1 st edition 2004

The use of general descriptive narnes, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such narnes are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KiinkelLopka, Heidelberg
Typesetting: Carnera-ready by the author
Printed on acid-free paper 45/3142 GF - 5432 1 O

To my family

Foreword

In any serious engineering discipline, it would be unthinkable to construct a
large system without a precise notion of what is to be built. Equally, any
professional engineer must record not only his or her proposed solution to
an engineering challenge, but also reasons why the solution is believed to
be correct. Software engineering faces the challenge of creating very large
systems and must therefore solve both of these challenges. Combined with
established good practice such as inspections, formal methods can make a
significant impact on software dependability.

The fact that descriptions and correctness arguments were required was ob­
vious to pioneers of computing as early as von Neumann and TUring, who both
wrote about ways of reasoning about programs. Since their early attempts, the
need has been to find tractable ways of coping with systems of ever increasing
size. The landmark contributions of Bob Floyd and Peter Naur culminated
in Tony Hoare's wonderfully clear exposition of "axioms" for reasoning about
programming constructs. This in turn led to development methods like VDM,
Z, and B. Such methods work well for systems which are sequential and self­
contained, but extensions were required to deal with other real world problems
such as concurrency and "open" systems where obtaining specifications (and
recognising that the requirements will evolve over the lifetime of the system)
is as challenging as developing the "closed" components which result.

This book brings together ideas from VDM and from object-oriented think­
ing to propose an approach to the development of realistic software systems.
"SOFL" builds on some of the most pervasive ideas to come from theoretical
computing science and amalgamates them into an approach which the author
has used on a variety of practical applications. Such books are to be whole­
heartedly welcomed because they are written with an acute understanding of
the issues for designers of useful software.

The success and pervasiveness of object-oriented methods suggest that it
is unnecessary to say more about their marriage with formal methods since
it might appear to be an obvious step. I should however like to add some
arguments in favour of this specific combination. It is frequently argued that

VIII Foreword

today's computer applications are inherently complex. I think only part of
this complexity is inevitable in today's systems. Of course, the code for an
online airline seat reservation system of 2003 is bound to be larger than the
code for a simple batch payroll system of the 1960s. But it is also clear that
much of today's software is very poorly structured: its architecture is often
opaque and users find it almost impossible to form a mental model of how
it works. With a WYSIWYG word processor, this can result in frustration
and expensive loss of productivity for professional users; for safety-critical
applications, poorly understood systems present the real danger of an operator
making life threatening mistakes. The ultimate contribution of formal methods
will be to help clean up the architecture of systems, and the marriage with
object-oriented ideas is important in this regard.

Another key contribution of object-oriented implementations is that they
offer a way of controlling interference in concurrent computing. Interference
is the key characteristic of concurrent programs (whether the parallel pro­
grams share states or interact only by communication primitives). Reasoning
about interference can be delicate and complex; good engineers will reduce
the areas where such complexity is required to a minimum. Object-oriented
implementations put the control of interference where it belongs: that is, with
the designer.

The combination of formalism and object-oriented design has the potential
to yield clean and accurate implementations. The reader is encouraged to
understand and use SOFL.

Cliff B. Jones
University of Newcastle upon Tyne

Preface

This book aims to give a systematic introduction to SOFL (Structured
Object-Oriented Formal Language) as one of the Formal Engineering Meth­
ods for industrial software development. Formal engineering methods are a
further development of formal methods toward industrial application. They
support the integration of formal methods into the software development pro­
cess, the construction of formal specifications in a user-friendly manner, and
rigorous but practical verification of software systems. SOFL achieves all of
these features by integrating data flow diagrams, Petri nets, VDM, and the
object-oriented approach in a coherent manner for specifications construction,
and by integrating formal verification with fault tree analysis and testing for
reviewing and testing specifications. It also provides a way to transform for­
mal specifications into Java programs. SOFL has been taught for many years
at universities, and has also been applied to systems modelling and design
both in industry and academia.

Formal methods have made significant contributions to the establishment
of theoretical foundations and rigorous approaches for software development
over the last 30 years. They emphasize the use of mathematical notation in
writing system specifications, both functional and non-functional, and the em­
ployment of formal proofs based on logical calculus for verifying designs and
programs. However, despite a few exceptions, most formal methods have met
challenges lobbying for acceptance by industrial users. A lack of appropriate
education may be seen as one of the major reasons for this unfortunate sit­
uation, but, apart from this, a bigger problem is that formal methods have
not successfully addressed many important engineering issues related to their
application in industrial environments. For example, how can formal specifica­
tions, especially for large-scale systems, be written so that they can be easily
read, understood, modified, verified, validated, and transformed into designs
and programs? How can the use of formal, semi-formal, and informal methods
be balanced in a coherent manner to achieve the best quality assurance under
practical schedule and cost constraints? How can formal proof and testing,
static analysis, and prototyping techniques be combined to achieve rigorous

X Preface

and effective approaches to the verification and validation of formal specifi­
cations, designs, and programs? How can the refinement from unexecutable
formal specifications into executable programs be effectively supported? How
can the evolution of specifications at various levels be assisted and controlled
consistently and efficiently? How can software development processes be for­
mally managed so that they can be well predicated before they are carried
out, and well controlled during their implementations? And how can effec­
tive software tools supporting the use of formal methods be built so that the
productivity and reliability of systems can be enhanced?

Since the research to provide possible solutions to these questions addresses
a different aspect of the problem; I call this area Formal Engineering Methods.
In other words, formal methods emphasize the utilization of mathematical no­
tation and calculus in software development, without considering the human
factor (e.g., capability, skills, educational background) and other uncertainties
(e.g., accuracy and completeness of requirements, changes in both specifica­
tions and programs, the scale and complexity of systems), whereas formal en­
gineering methods advocate the incorporation of mathematical notation into
the software engineering process to substantially improve the rigor, compre­
hensibility, and effectiveness of commonly used methods for the development
of real systems in the industrial setting.

After introducing the general ideas of formal engineering methods, this
book provides a tutorial on the recently developed formal engineering method
SOFL. The material originally evolved from my research publications over last
15 years, from courses, and from seminars offered at universities and compa­
nies in Japan, UK, USA, and Australia. It is intended to be the basis for
courses on formal engineering methods, but it also contains the latest new
research results in the field. By reading through this book, the reader will
find that SOFL has provided many useful ideas and techniques as solutions
to many of the questions raised above. It not only makes formal methods
accessible to engineers, but also makes the use of formal methods enjoyable
and effective. In order to help readers study SOFL easily, I have tried to
make the descriptions as precise and comprehensible as possible. I have also
tried to avoid unnecessary formal semantics of SOFL constructs, to the ex­
tent that this does not affect our understanding them. Numerous examples
are given throughout the book to help the explanation of the SOFL specifi­
cation language and method, and many exercises are prepared for readers to
improve their understanding of the material they have studied and to check
their progress.

The objective of this book is to bring readers to the point where they can
use SOFL to construct specifications by evolving informal specifications to
semi-formal ones, and then to formal ones. It is also intended to help readers
to master rigorous and practical techniques for verifying and validating speci­
fications, to learn the process of developing software systems using SOFL, and
to get new ideas for building intelligent software engineering environments.

Preface XI

Audience
This book is written for people who want to improve their knowledge and

skills in developing complex software systems. Readers who are interested
in formal methods, but frustrated by using them in practice, will benefit
greatly from this book. Although I have made efforts to make the book as
self-contained as possible, and have provided many exercises for individual
study, the reader will need some experience in programming and basic knowl­
edge of discrete mathematics to appreciate and digest some of the abstract
material.

Using This Book
This book can be used at the second year undergraduate or above level

as a computer science textbook for courses on logic and formal specification,
advanced software engineering, and software specification, verification, and
validation, respectively. According to my experience at Hosei University and
other institutions, in the course on logic and formal specification that takes
about 24 hours, the fundamental knowledge on first order logic and skills for
writing comprehensible formal specifications for large-scale software systems
can be introduced based on the contents of chapters 1 to 12.

The course on advanced software engineering usually takes 26 hours, incor­
porating rigorous software development techniques using a formal specification
language, including skills for writing modular, hierarchical, and comprehensi­
ble formal specifications, evolving informal specifications to semi-formal and
then to formal ones, transforming structured abstract design into an object­
oriented detailed design, and transforming detailed design into object-oriented
programs in Java. The contents of this course can contain chapters 1, 4 to 16,
19, and 20.

In the course on software specification, verification, and validation, which
is suitable for graduate students and needs about 24 hours, the techniques for
writing formal specifications and for their verification and validation can be
introduced based on the contents of chapters 4 to 18.

The book can also be used as a reference book to support the study of
other related courses or individual study of formal engineering methods for
software development. To make the book easier to use, I have organized the
materials into nine parts:

Introduction. Chapter 1 explains the motivation of formal engineering
methods and describes what they are. After discussing the problems in soft­
ware engineering and difficulties in using formal methods, I describe the gen­
eral ideas and features of formal engineering methods and their relation with
SOFL.

Logic. Chapters 2 and 3 introduce mathematical logic that is adopted by
SOFL. Both propositional logic and predicate logic are explained, and their
application to the writing of and reasoning about SOFL specifications are
discussed.

Specification. Chapters 4 to 6 cover the most important components of
SOFL specifications: module, hierarchy of modules, and explicit specifications.

XII Preface

We explain the techniques of combining graphical notation and formal tex­
tual notation in writing comprehensible but formal specifications with these
components.

Data types. Chapters 7 to 12 describe all the built-in data types in SOFL,
which include basic types, set types, sequence and string types, composite
and product types, map types, and union types. Each type is introduced by
explaining its constructors and operators, and their use in specifications.

Classes. Chapter 13 is concerned with the concept of class: a user-defined
data type. We discuss the structure of classes by explaining their similarity
with and differences from modules, and the way to use classes in module
specifications.

Software process. Chapters 14 and 15 present a software development
process using SOFL from informal specifications to programs, and in partic­
ular elaborate several techniques for constructing formal specifications in an
evolutionary manner.

Case study. Chapter 16 describes a case study of specifying an ATM
(Automated Teller Machine) using the SOFL specification language. This case
study is designed to show the entire process of developing a detailed design
specification from an informal user requirements specification, and gives the
reader an opportunity to review and digest the contents studied before this
chapter.

Verification and validation. Chapters 17 and 18 introduce two tech­
niques for verification and validation of specifications: rigorous reviews and
specification testing. We explain how formal proof and the practical techniques
like reviews and testing are integrated to provide rigorous but practical meth­
ods for verification and validation of specifications.

Transformation and software tools. Chapter 19 explains the principle
and technique for the transformation of design specifications into Java pro­
grams, including data transformation and functional transformation; the last
chapter, 20, discusses the potential features of an intelligent software engineer­
ing environment supporting formal engineering methods, in particular SOFL,
and its importance in enhancing the productivity and reliability of software
products.

All readers are recommended to read Chapter 1, but those who are ex­
perienced in programming and have sufficient knowledge about mathematical
logic can skip Chapters 2 and 3. Chapters 4 to 6 present the fundamental
principles and techniques for constructing specifications, and therefore are
suitable for all readers. Chapters 7 to 12, concerned with abstract data types,
need attention from the beginners, but can be quickly browsed by those who
are familiar with VDM (Vienna Development Method), with caution because
of the differences in syntax. Chapters 13 to 20 contain specific materials on
SOFL and are recommended for study by all readers.

Acknowledgements
The development of SOFL benefited from numerous discussions with many

people during the period 1989 to 2003. The initial research on SOFL, started

Preface XIII

in 1989 at the University of Manchester in the UK, was motivated by Cliff
B. Jones's book titled "Systematic Software Development using VDM" (first
edition), and benefited from the seminars and discussions he provided for the
formal methods group while I was studying for my PhD in Manchester. I am
grateful to John Latham for his constructive comments on the initial work
on the integration of VDM and Data Flow Diagrams, which establishes the
foundation for the development of SOFL. The initial integration work also
benefited from Tom DeMarco's book titled "Structured Analysis and System
Specification" and from my experience of working with John A. McDermid at
the University of York. My sincere thanks also go to the people whose joint
work with me has impacted on the development of both the SOFL language
and the method presented in this book. Chris Ho-Stuart defined an operational
semantics for SOFL, and provided many suggestions on the improvement of
the SOFL language. Jeff Offutt developed an approach to testing programs
based on SOFL specifications. Yong Sun worked out with his research student
a prototype of a graphical user interface (GUI) for SOFL. Jin Song Dong pro­
vided a denotational semantics for SOFL using Object-Z. My former students
Tetsuo Fukuzaki and Koji Miyamoto developed a prototype specification test­
ing tool and a GUI for SOFL, respectively. I would also like to express my
gratitude to all the research partners and my students who have completely or
partially applied SOFL to develop their software systems, or combined SOFL
with other methods for software development. I appreciate very much the
feedback from my students after they read the draft of the book. Financial
support from the Ministry of Education, Culture, Sports, Science and Tech­
nology of Japan through several research grants is gratefully acknowledged.
Finally, my thanks go to three anonymous referees for their constructive com­
ments and suggestions, and the editor Ralf Gerstner of Springer-Verlag for his
encouragement and suggestions that helped me to improve the initial draft
and for his painstaking efforts in the editing of the text.

Contents

1 Introduction. 1
1.1 Software Life Cycle .. 2
1.2 The Problem. .. 4
1.3 Formal Methods. .. 5

1.3.1 What Are Formal Methods. .. 5
1.3.2 Some Commonly Used Formal Methods. 7
1.3.3 Challenges to Formal Methods .. 9

1.4 Formal Engineering Methods. .. 10
1.5 What Is SOFL .. 13
1.6 A Little History of SOFL .. 16
1. 7 Comparison with Related Work 17
1.8 Exercises... 19

2 Propositional Logic .. 21
2.1 Propositions.. 21
2.2 Operators.. 22
2.3 Conjunction .. 23
2.4 Disjunction... 24
2.5 Negation ... 24
2.6 Implication... 25
2.7 Equivalence... 25
2.8 Tautology, Contradiction, and Contingency 26
2.9 Normal Forms .. 27
2.10 Sequent .. 27
2.11 Proof.. 28

2.11.1 Inference Rules. .. 28
2.11.2 Rules for Conjunction. .. 29
2.11.3 Rules for Disjunction 29
2.11.4 Rules for Negation. .. 30
2.11.5 Rules for Implication 30

XVI Contents

2.11.6 Rules for Equivalence. .. 30
2.11.7 Properties of Propositional Expressions 31

2.12 Exercises. .. 34

3 Predicate Logic. .. 37
3.1 Predicates.. 37
3.2 Quantifiers... 40

3.2.1 The Universal Quantifier. .. 40
3.2.2 The Existential Quantifier. .. 41
3.2.3 Quantified Expressions with Multiple Bound Variables. 42
3.2.4 Multiple Quantifiers 43
3.2.5 de Morgan's Laws 43

3.3 Substitution.. 44
3.4 Proof in Predicate Logic. .. 46

3.4.1 Introduction and Elimination of Existential Quantifiers. 46
3.4.2 Introduction and Elimination of Universal Quantifiers.. 46

3.5 Validity and Satisfaction 47
3.6 Treatment of Partial Predicates 48
3.7 Formal Specification with Predicates. .. 50
3.8 Exercises... 50

4 The Module ... 53
4.1 Module for Abstraction 53
4.2 Condition Data Flow Diagrams 55
4.3 Processes... 56
4.4 Data Flows .. 68
4.5 Data Stores. .. 71
4.6 Convention for Names. .. 79
4.7 Conditional Structures .. 79
4.8 Merging and Separating Structures 81
4.9 Diverging Structures. .. 84
4.10 Renaming Structure 86
4.11 Connecting Structures 87
4.12 Important Issues on CDFDs 88

4.12.1 Starting Processes. .. 89
4.12.2 Starting Nodes. .. 90
4.12.3 Terminating Processes 90
4.12.4 Terminating Nodes. .. 91
4.12.5 Enabling and Executing a CDFD 91
4.12.6 Restriction on Parallel Processes 92
4.12.7 Disconnected CDFDs 94
4.12.8 External Processes 96

4.13 Associating CDFD with a Module 97
4.14 How to Write Comments 104
4.15 A Module for the ATM 104

Contents XVII

4.16 Compound Expressions 107
4.16.1 The if-then-else Expression 107
4.16.2 The let Expression 108
4.16.3 The case Expression 109
4.16.4 Reference to Pre and Postconditions 110

4.17 Function Definitions 111
4.17.1 Explicit and Implicit Specifications 111
4.17.2 Recursive Functions 113

4.18 Exercises ... 114

5 Hierarchical CDFDs and Modules 117
5.1 Process Decomposition 117
5.2 Handling Stores in Decomposition 123
5.3 Input and Output Data Flows 124
5.4 The Correctness of Decomposition 127
5.5 Scope .. 129
5.6 Exercises ... 132

6 Explicit Specifications 133
6.1 The Structure of an Explicit Specification 133
6.2 Assignment Statement 134
6.3 Sequential Statements 135
6.4 Conditional Statements 135
6.5 Multiple Choice Statements 136
6.6 The Block Statement 137
6.7 The While Statement 137
6.8 Method Invocation 138
6.9 Input and Output Statements 139
6.10 Example ... 139
6.11 Exercises ... 141

7 Basic Data Types 143
7.1 The Numeric Types 143
7.2 The Character Type 145
7.3 The Enumeration Types 146
7.4 The Boolean Type 147
7.5 An Example .. 148
7.6 Exercises ... 148

8 The Set Types 151
8.1 What Is a Set ... 151
8.2 Set Type Declaration 152
8.3 Constructors and Operators on Sets 153

8.3.1 Constructors 153
8.3.2 Operators .. 154

XVIII Contents

8.4 Specification with Set Types 160
8.5 Exercises ... 162

9 The Sequence and String Types 165
9.1 What Is a Sequence 165
9.2 Sequence Type Declarations 166
9.3 Constructors and Operators on Sequences 167

9.3.1 Constructors 167
9.3.2 Operators .. 169

9.4 Specifications Using Sequences 174
9.4.1 Input and Output Module 174
9.4.2 Membership Management System 175

9.5 Exercises ... 176

10 The Composite and Product Types 179
10.1 Composite Types .. 179

10.1.1 Constructing a Composite Type 179
10.1.2 Fields Inheritance 181
10.1.3 Constructor 182
10.1.4 Operators .. 182
10.1.5 Comparison 184

10.2 Product Types .. 184
10.3 An Example of Specification 186
10.4 Exercises ... 188

11 The Map Types ... 191
11.1 What Is a Map .. 191
11.2 The Type Constructor 192
11.3 Operators .. 193

11.3.1 Constructors 193
11.3.2 Operators .. 194

11.4 Specification Using a Map 199
11.5 Exercises ... 201

12 The Union Types .. 203
12.1 Union Type Declaration 203
12.2 A Special Union Type 204
12.3 Is Function ... 205
12.4 A Specification with a Union Type 205
12.5 Exercises ... 206

13 Classes .. 209
13.1 Classes and Objects 209

13.1.1 Class Definition 210
13.1.2 Objects .. 213
13.1.3 Identity of Objects 214

Contents XIX

13.2 Reference and Access Control 214
13.3 The Reference of a Current Object 216
13.4 Inheritance ... 217

13.4.1 What Is Inheritance 217
13.4.2 Superclasses and Subclasses 218
13.4.3 Constructor 220
13.4.4 Method Overloading 220
13.4.5 Method Overriding 221
13.4.6 Garbage Collection 222

13.5 Polymorphism .. 222
13.6 Generic Classes ... 224
13.7 An Example of Class Hierarchy 226
13.8 Example of Using Objects in Modules 229
13.9 Exercises ... 232

14 The Software Development Process 235
14.1 Software Process Using SOFL 235
14.2 Requirements Analysis 236

14.2.1 The Informal Specification 237
14.2.2 The Semi-formal Specification 239

14.3 Abstract Design ... 243
14.4 Evolution ... 252
14.5 Detailed Design ... 252

14.5.1 Transformation from Implicit to Explicit Specifications. 253
14.5.2 Transformation from Structured to Object-Oriented

Specifications 255
14.6 Program ... 257
14.7 Validation and Verification 258
14.8 Adapting the Process to Specific Applications 259
14.9 Exercises ... 260

15 Approaches to Constructing Specifications 261
15.1 The Top-Down Approach 261

15.1.1 The CDFD-Module-First Strategy 262
15.1.2 The CDFD-Hierarchy-First Strategy 263
15.1.3 The Modules and Classes 264

15.2 The Middle-out Approach 265
15.3 Comparison of the Approaches 267
15.4 Exercises ... 268

16 A Case Study - Modeling an ATM 269
16.1 Informal User Requirements Specification 270
16.2 Semi-formal Functional Specification 273
16.3 Formal Abstract Design Specification 279
16.4 Formal Detailed Design Specification 287

XX Contents

16.5 Summary ... 300
16.6 Exercises ... 301

17 Rigorous Review .. 303
17.1 The Principle of Rigorous Review 303
17.2 Properties .. 305

17.2.1 Internal Consistency of a Process 305
17.2.2 Invariant-Conformance Consistency 307
17.2.3 Satisfiability 308
17.2.4 Internal Consistency of CDFD 309

17.3 Review Task Tree 310
17.3.1 Review Task Tree Notation 310
17.3.2 Minimal Cut Sets 312
17.3.3 Review Evaluation 313

17.4 Property Review .. 314
17.4.1 Review of Consistency Between Process and Invariant .. 314
17.4.2 Process Consistency Review 316
17.4.3 Review of Process Satisfiability 317
17.4.4 Review of Internal Consistency of CDFD 317

17.5 Constructive and Critical Review 319
17.6 Important Points .. 320
17.7 Exercises ... 321

18 Specification Testing 323
18.1 The Process of Testing 323
18.2 Unit Testing .. 325

18.2.1 Process Testing 326
18.2.2 Invariant Testing 332

18.3 Criteria for Test Case Generation 335
18.4 Integration Testing 338

18.4.1 Testing Sequential Constructs 339
18.4.2 Testing Conditional Constructs 341
18.4.3 Testing Decompositions 343

18.5 Exercises ... 346

19 Transformation from Designs to Programs 349
19.1 Transformation of Data Types 350
19.2 Transformation of Modules and Classes 351
19.3 Transformation of Processes 357

19.3.1 Transformation of Single-Port Processes 357
19.3.2 Transformation of Multiple-Port Processes 360

19.4 Transformation of CDFD 362
19.5 Exercises ... 369

Contents XXI

20 Intelligent Software Engineering Environment 371
20.1 Software Engineering Environment 371
20.2 Intelligent Software Engineering Environment 373
20.3 Ways to Build an ISEE 375

20.3.1 Domain-Driven Approach 375
20.3.2 Method-Driven Approach 375
20.3.3 Combination of Both 376

20.4 ISEE and Formalization 376
20.5 ISEE for SOFL ... 377

20.5.1 Support for Requirements Analysis 377
20.5.2 Support for Abstract Design 378
20.5.3 Support for Refinement 378
20.5.4 Support for Verification and Validation 379
20.5.5 Support for Transformation 379
20.5.6 Support for Program Testing 379
20.5.7 Support for System Modification 380
20.5.8 Support for Process Management 380

20.6 Exercises ... 381

References . .. 383

A Syntax of SOFL ... 391
A.1 Specifications ... 391
A.2 Modules .. 392
A.3 Processes ... 392
A.4 Functions ... 394
A.5 Classes ... 394
A.6 Types .. 395
A.7 Expressions ... 396
A.8 Ordinary Expressions 396

A.8.1 Compound Expressions 396
A.8.2 Unary Expressions 397
A.8.3 Binary Expressions 397
A.8.4 Apply Expressions 397
A.8.5 Basic Expressions 399
A.8.6 Constants .. 399
A.8.7 Simple Variables 400
A.8.8 Special Keywords 400
A.8.9 Set Expressions 400
A.8.lO Sequence Expressions 400
A.8.11 Map Expressions 401
A.8.12 Composite Expressions 401
A.8.13 Product Expressions 401

XXII Contents

A.9 Predicate Expressions 401
A.9.1 Boolean Variables 401
A.9.2 Relational Expressions 401
A.9.3 Conjunction 402
A.9.4 Disjunction 402
A.9.5 Implication 402
A.9.6 Equivalence 402
A.9.7 Negation ... 402
A.9.8 Quantified Expressions 402

A.IO Identifiers .. 403
A.ll Character .. 403
A.12 Comments .. 403

Index .. 405

1

Introduction

The development of complex software systems on a large scale is usually a
complicated activity and process. It may involve many developers, possibly
with different backgrounds, who need to work together as a team or teams
in order to ensure the productivity and quality of systems within a required
schedule and budget. Each developer plays a specific role, for example, as an
analyst, designer, programmer, or tester, and is usually required to produce
necessary documents. The documents may need to be provided to other devel­
opers in the team for reading or for assisting them in performing their tasks.
For this reason the documents need to be well presented, with appropriate
languages or notations, so that they can be understood accurately and used
effectively.

In the early days of computing, software was seen as synonym of pro­
gram, but this view was gradually changed after the birth of the field software
engineering in the late 1960s [1, 2J. Software is no longer regarded only as
a program, but as a combination of documentation and program. In other
words, documentation is part of software that represents different aspects of
the software system. For example, the documentation may contain the user's
requirements, the goal to be achieved by a program, the design of the program,
or the manual for using the program.

The documentation is important for ensuring the quality and for facilitat­
ing maintenance of a program system. If the documentation containing the
user's requirements or the program design is difficult to understand accurately
by the developers undertaking subsequent development tasks, the risk of pro­
ducing an unsatisfactory program system will run high. The consequence of
this can be serious: the program system either needs more time and effort to
be improved to the level that is deliverable or needs to be completely rebuilt.
In either case, a loss of money and time is unavoidable.

2 1 Introduction

Requirements
analysis and
specification

Design

Implementation

Testing

D elieve[and
maintenance

Fig. 1.1. The waterfall model for software development

1.1 Software Life Cycle

Software, like a human being, has a life cycle, composed of several phases.
Each of these phases results in the development of either a part of the system
or something associated with the system, such as a specification or a test
plan [32). A typical software life cycle, known as waterfall model, is given in
Figure 1.1. Although the real picture of the software life cycle may be much
more complicated than the waterfall model, it depicts primary features of the
software development process. Almost every other model uses the idea of the
waterfall model as its foundation [11, 84, 8, 111, 98).

The typical waterfall life cycle model comprises five phases: requirements
analysis and specification, design, implementation, testing, and delivery and
maintenance.

Requirements analysis and specification is a study aiming to dis­
cover and document the exact requirements for the software system to be
constructed [23)[51)[52). To this end, the system in the real world, which is to
be computerized, may need modeling so that all the necessary requirements
can be explored. The result of such a study is usually a document that de­
fines the identified requirements. A requirement in the document can be a
statement, a formal logical expression, a text, a diagram, or their combina­
tions that tell what is to be done by the system. Such a document is usually
called a requirements specification. For example, "build a student information
system" can be an abstract level requirement.

Design is an activity to construct a system, at a high level, to meet the
system requirements. In other words, design is concerned with how to provide
a solution for the problem reflected in the requirements [56). For this reason,
design is usually carried out on the basis of the requirements specification.

1.1 Software Life Cycle 3

Design can be done in two stages: abstract design and detailed design. Abstract
design is intended to build the architecture of the entire system that defines
the relation between software modules or components. Detailed design usually
focuses on the definition of data structures and the construction of algorithms
[15, 99]. The result of design is a document that represents the abstract design
and detailed design. Such a document is called design or design specification.
To distinguish between the activity of design and the document resulting
from the design activity, we use design to mean the design activity and design
specification to mean the design document in this book.

Implementation is where the design specification is transformed into
a program written in a specific programming language, such as Pascal [37],
C [58], or Java [4]. The implemented program is executable on a computer
where the compiler or interpreter of the programming language is available.
The primary concerns in implementation are the functional correctness of the
program against its design and requirements specifications.

Testing is a way to detect potential faults in the program by running
the program with test cases. As there are many ways to introduce faults
during the software development process, detecting and removing faults are
necessary. Testing usually includes the three steps: (1) test case generation; (2)
the execution of the program with the test cases; and (3) test results analysis
[115,53].

There are two approaches to program testing: functional testing and struc­
tural testing, which are distinguished by their purposes and the way test cases
are generated. Functional testing, also known as black-box testing, aims to
discover faults leading to the violation of the consistency between the spec­
ification and the program, and test cases are generated based on the func­
tional specification (requirements specification or design specification or both)
[45, 9, 108]. Structural testing, alternatively known as white-box testing, tries
to examine every possible aspect of the program structure to discover the
faults introduced during the implementation, and test cases are therefore gen­
erated based on the program structure [106]. In general, both functional test­
ing and structural testing are necessary for testing a program system because
they are complementary in finding faults.

Deliver and maintenance is where the system is ultimately delivered
to the customer for operation, and is modified either to fix the existing faults
when they occur during operation or to meet new requirements [111]. Main­
tenance of a system usually requires a thorough understanding of the system
by maintenance engineers. To enhance the reliability and efficiency of main­
tenance, well documented requirements specification and design specification
are important and helpful.

In addition to the forward flow from upper level phases to lower level
phases in the software life cycle, we should also pay attention to the backward
flow from lower level phases to upper level phases. Such a backward flow
represents a feedback of information or verification. For example, it is desirable
to check whether the design specification is consistent with the requirements

4 1 Introduction

specification, whether the implementation satisfies the design specification,
and so on.

1.2 The Problem

One of the primary problems in software projects is that the requirements
documented in specifications may not be accurately and easily understood by
the developers carrying out different tasks. The analyst may not understand
correctly and completely the user requirements due to poor communication;
the designer may misunderstand some functional requirements in the specifi­
cation due to their ambiguous definitions; the programmer may make a guess
of the meaning of some graphical symbols in the design specification; and so
on. The major reason for this problem is the use of informal or semi-formal
language or notation, such as natural language (e.g., English) and diagrams
that lack a precise semantics. Let us consider the requirements for a Hotel
Reservation System as an example:

A Hotel Reservation System manages information about rooms, reservations,
customers, and customer billing. The system provides the services for making
reservations, checking in, and checking out. A customer may make reservations,
change, or cancel reservations.

This specification defines necessary resources to be managed and desirable
operations to be provided for the management of the resources. The resources
include rooms, reservations, customers, and customer billing. The operations are
making reservation, checking in, checking out, changing reservations, and cancel­
ing reservations. As all the terms representing either resources or operations
are given in English, they may be interpreted differently by different devel­
opers. For instance, by customers the analyst might mean persons with a full
name, address, telephone, and room reservations, but the programmer may
misunderstand it as persons with only a full name; by checking in the analyst
might mean that the customer has arrived at the hotel, obtained the room
key, and made payment for all his or her room charges in advance, but the
programmer may misunderstand that checking in does not require advanced
payment.

This problem is caused not only by the lack of the detailed and precise
definition of the terms, but also by the free style of the documentation. In­
formal specifications can be written in a manner where every important term
is defined in detail, but the free style of writing may make the specification
tedious and keep important information hidden among irrelevant details. In
fact, a well-organized documentation, even if written in an informal language
or notation, can greatly help improve its readability. However, no matter how
much the organization is improved in an informal documentation, it is usu­
ally impossible to guarantee no misunderstanding occurs because ambiguity

Formal Methods =

1.3 Formal Methods 5

Formal Specification

+

Formal Verification

t t
Set theory, logic,

algebra, etc.

Fig. 1.2. The description of formal methods

is an intrinsic feature of informal languages. Furthermore, in an informal de­
scription it is difficult to show the clear relations among different parts of a
complicated specification.

A specification should be consistent in defining requirements, that is, no
contradiction should exist between different requirements in the specification.
The specification is also expected to document all the possible user require­
ments; such a property is called completeness of specification. Since informal
specifications lack formality in both syntax and semantics, it is usually dif­
ficult, even impossible in most cases, to support automated verification of
their consistency and completeness in depth. Furthermore, informal specifi­
cations offer no firm foundation for design and coding, and for verifying the
correctness of implemented programs in general.

1.3 Formal Methods

One way to improve the quality of documentation and therefore the quality
of software is to provide formalism in documentation. Such a formalized doc­
umentation offers a precise specification of requirements and a firm basis for
design and its verification.

1.3.1 What Are Formal Methods

Formal methods for developing computer systems embrace two techniques:
formal specification and formal verification [55, 3, 38, 116, 43J. Both are es­
tablished based on elementary mathematics, such as set theory, logic, and
algebraic theory, as illustrated in Figure 1.2.

Formal specification is a way to abstract the most important information
away from irrelevant implementation detail and to offer an unambiguous doc­
umentation telling what is to be done by the system. A formal specification is

6 1 Introduction

Refinement

Specification Implementation

Verification

Fig. 1.3. The principle offormal methods

written in a language with formal syntax and semantics. Of course, program­
ming languages are also formal languages, but they are for implementation
of computer systems, not for specifications. In a specification language, there
is usually a mechanism that allows the definition of what to be done by the
system without the need of giving algorithmic solutions, whereas in a program­
ming language all the mechanisms are usually designed for writing algorithmic
solutions (i.e., code). For this reason, formal specifications are more concise
and abstract than programs.

Formal verification is a way to prove the correctness of programs against
their specifications [42][24][36][101]. A program is correct if it does exactly
what the specification requires. The proof of the correctness is usually based on
a logical calculus that provides necessary axioms and inference rules. An axiom
is a statement of a fact without any hypothesis, while a rule is a statement of
a fact under some hypotheses. Program correctness proof aims to establish a
logical consistency between the program and its specification.

A method offers a way to do something. This is true to formal methods
as well. Figure 1.3 shows the principle of formal methods. A specification is
constructed first, and then refined into a program by following appropriate
refinement rules [90][6]. In general, since this refinement may not be done
automatically, the correctness of the program may not be ensured. Therefore,
a formal verification of the program against its specification is needed to ensure
its correctness. Such a verification may sometimes also help detect faults in
the specification.

In principle, the activities of specification, refinement, and verification ad­
vocated by formal methods may not necessarily be completed within a single
cycle; they are usually applied repeatedly to several level specifications. Thus,
an entire software development can be modeled as a successive refinement
and verification process, after the informal requirements are formalized into
the highest level formal specification and the specification is validated against

Validation

(
Verification \

\ .. --
/"

Verification (
\
"'---

1.3 Formal Methods 7

l
Verification Cr----...3------,

Fig. 1.4. Software development using formal methods

the informal requirements, as illustrated in Figure 1.4. In this model, each
level document is perceived as a specification of the next lower level docu­
ment, and each refinement takes the current level specification more toward
the final executable program, represented by the lowest level specification
(i.e., formal specification_n). Since refinement is a transitive relation between
specifications, the final program must theoretically satisfy the highest level
specification (i.e., formal specification_I).

1.3.2 Some Commonly Used Formal Methods

Many formal methods have been reported in the literature so far, such as
VDM, Z, B-Method, HOL [35], PVS [20], Larch [39], RAISE [38], and OBJ [34,
31], but in accordance with the international survey on industrial applications
of formal methods [19] and the applications described in Hinchey and Bowen's
edited book [88], the most commonly used formal mthods include VDM, Z,
and B-Method.

VDM (The Vienna Development Method) offers a notation, known as
VDM-SL (VDM-Specification Language), and techniques for modelling and
designing computing systems. It was originally developed based on the work
of the IBM Vienna Laboratory in the middle 1970s. The publication of Jones's
book titled "Systematic Software Development using VDM" [54, 55] has con­
tributed considerably to the wide spread of VDM technology in education and
application. The most important feature in VDM is the mechanism for defin­
ing operations. An operation can be regarded as abstraction of a procedure

8 1 Introduction

in the programming language Pascal (or similar structure in other program­
ming languages) and defined with a precondition and a postcondition. The
precondition imposes a constraint on the initial state before operation, while
the postcondition presents a constraint on the final state after operation. The
most essential technique in writing an operation specification is definition of
a relation between the initial and final states in the postcondition of the op­
eration. This technique allows the specification to focus on the description
of the function of the operation, and therefore facilitates the clarification of
functional requirements before providing them with a program solution. In or­
der to model complex systems, VDM provides a set of built-in types, such as
set, sequence, map, and composite types. In each type, necessary constructors
and operators are defined, which allow for the formation and manipulation of
objects (or values) of the type. Using those built-in types as well as their con­
structors and operators in specifications, complex functions of operations can
be modeled precisely and concisely. With the progress in software supporting
tools [29], VDM has been gradually adopted in the development of industrial
systems, and has been extended to VDM++ to support object-oriented design
[27].

Z was originally designed as a formal notation based on axiomatic set
theory and first order predicate logic for describing and modeling computing
systems by the Programming Research Group at Oxford University around
1980 [107][100], and later developed to a method by providing rules for refine­
ment and verification [116]. An essential component used in Z specifications
is known as schema. A schema is a structure that can be used to define
either system state or operation. The definition of state includes the decla­
rations of variables and their constraints given as predicate expressions. A
schema defining an operation is usually composed of two parts: declarations
and predicates. The declarations may include declarations of input variables
and/or output variables, as well as the related state schemas. The predicates
impose constraints on the input variables, output variables, and the related
state variables. Complex specifications can be formed by using the schema
calculus available in the Z notation. Although Z uses syntax different from
VDM, they share the similar model-based approach to writing formal specifi­
cations. Based on Z notation, other formal notations have also been developed
to support object-oriented design and concurrency, such as Object-Z [105] and
TCOZ [81].

The B-method has been developed by Jean-Raymond Abrial. It provides
an Abstract Machine Notation for writing system specifications and rules for
refinement of specifications into programs [3, 102]. A specification in B is con­
structed by means of defining a set of related abstract machines. An abstract
machine is similar to a module in VDM, which contains local state variables,
invariants on the state, and necessary operations. Each machine must have a
name in order to allow other machines in a large specification to refer to it.
A machine can extend another machine in order to expand its contents (e.g.,
state and operations) and include another machine in order to allow for calling

1.3 Formal Methods 9

of its operations. Following the refinement rules, an abstract specification can
be transformed step by step into a concrete representation (or implementation
in B termnology) that can then be translated into a program of a specific pro­
gramming language. With the progress of tools development, the B-Method
has been applied in a few industrial projects [44].

1.3.3 Challenges to Formal Methods

In my opinion formal methods have presented the most reasonable, rigorous,
and controllable approach to software development so far, at least theoret­
ically, but their application requires high skills in mathematical abstraction
and proof. The situation seems that if all the suggested steps in formal meth­
ods could be taken in practice, with no compromise, we would have no doubt
in the correctness of the program produced. However, since software engineer­
ing is a human activity (with support of software tools), the effect of formal
methods depends heavily on whether and how they can be applied in practice
by software engineers, usually with many constraints. The major challenges
are:

• Formal specifications for large-scale software systems are usually more dif­
ficult to read than informal specifications, and this would be aggravated
for complex systems. Informal specifications are usually easy to read, but
offer no guarantee of correct understanding because of ambiguity in lan­
guage semantics. Formal methods offer precise specifications, but they are
difficult to read, and there is no guarantee of correct understanding either.
The two cases may result in the similar situation that the reader of the
specification would make a guess about the meaning of some expressions,
but for different reasons. The specification may be too imprecise to be
correctly understood in the first case whereas it may be too difficult to be
correctly understood in the second case.

• Formal verification of program correctness is too expensive to be deployed
in practice. Although it is the most powerful technique for demonstrating
the consistency between programs and their specifications among exist­
ing verification techniques, such as testing, static analysis, animation, and
model checking, but only a small number of experts can apply this tech­
nique, and it may not be cost-effective for complex systems. Except for
safety-critical systems or the safety-critical parts of systems, formal ver­
ification is usually out of reach of most software engineers in industry,
including even many formal methods researchers.

• Another challenge is that the use of formal methods usually costs more
in time and human effort for analysis and design. One of the important
reasons is the constant change of requirements during a software devel­
opment process. When the initial high level specification is written, it is
usually incomplete in terms of recording the user requirements. When it
is refined into a lower level specification, the two specifications may not

10 1 Introduction

satisfy the refinement rules, not necessarily because the lower level speci­
fication has errors, but rather because the high level specification is often
not sufficiently complete. In this case, the high level specification needs to
be modified or extended in order to reflect the user requirements, discov­
ered during its refinement. Such a modification often occurs, not only to
one level specification, but also to almost every level specification. This
imposes a strong challenge to developers, both in psychology and in cost,
especially when the project is under pressure from the market.

Having given the challenges to formal methods above, we should not deny the
positive role of formal methods. In fact, formal methods have two advantages
over informal ones. One is the high potential for automation in processing for­
mal specifications due to their formally defined syntax and semantics. Another
is that formal methods can work effectively for compact specifications. If one
has experience reading research papers in software engineering or other areas,
one will easily understand that reading a paper full of mathematical definitions
and formulas, with less informal explanations, is much harder than reading
a paper with a proper combination of informal explanations and small-scale
formal descriptions (leaving necessary large-scale formal definitions in the ap­
pendix). Using formal notation in specifications has a similar effect on their
readability. This is an important point about formal methods that has made
us realize the importance of integrating formal methods with commonly used
and comprehensible informal or semi-formal notations in software engineering.
Formal notation can be used for the most critical and lower level components
of a complex system, while a comprehensible notation can be adopted to inte­
grate those formal definitions to form the entire specification, without losing
the focus on what to do.

Furthermore, although formal verification may be difficult to be deployed
directly in practice, its principles may be incorporated into existing practical
techniques, such as testing, static analysis, and animation to achieve more
effective verification and validation techniques. It is important to strike a
good balance between rigor and practicality in integrated verification and
validation techniques.

1.4 Formal Engineering Methods

Formal Engineering Methods, FEM for short, are the methods that support
the application of formal methods to the development of large-scale computer
systems. They are a further development of formal methods toward industrial
application. I proposed to use this terminology for the first time in 1997 when
organizing the first International Conference on Formal Engineering Methods
(ICFEM) in Hiroshima [63] and continued to use it in many publications since
then [76, 70, 74, 75, 64, 78, 69].

Formal engineering methods are equivalent neither to application of formal
methods, nor to formal methods themselves. They are intended to serve as

1.4 Formal Engineering Methods 11

r-,... ~
Application of Formal Methods

Formal Methods

Formal Engineering Methods

Fig. 1.5. An illustration of formal engineering methods

a bridge between formal methods and their applications, providing methods
and related techniques to incorporate formal methods into the entire software
engineering process, as illustrated in Figure 1.5. Without such a bridge, appli­
cation of formal methods is difficult. The quality of the bridge may affect the
smoothness of the formal methods technology transfer. Some types of bridges
may make the transfer easier than others, so the important point is how to
build the bridge.

Similar to formal methods, formal engineering methods are also aimed at
attacking the problems in specification and verification of computer systems,
but take more practical approaches. In principle, formal engineering methods
should allow the following:

• Adopting specification languages that properly integrate graphical nota­
tion, formal notation, and natural language. The graphical notation is
suitable for describing the overall structure of a specification comprehen­
sibly, while the formal notation can be used to provide precise abstract
definition of the components involved in the graphical representation. The
interpretation of the formal definitions in a natural language helps under­
stand the formal definitions. Many graphical notations have already been
used for requirements analysis and design in practice, such as Data Flow
Diagrams (DFDs) [23, 117], Structure Charts [15], Jackson Structure Dia­
grams [50, 16], and UML (Unified Modeling Language) [30, 18], but most
of them are informal or semi-formal. This is the reality, but not necessarily
a definitive feature of graphical notation. In fact, a graphical notation can
also be treated as formal notation, as long as it is given a precise syntax
and semantics. Compared with textual mathematical notation, a graphi­
cal notation is usually easier to read, but it usually takes more space than
textual notation, and perhaps drawing diagrams is less efficient than typ­
ing in textual notation. Therefore, an appropriate integration can create a
comfortable ground for utilizing the advantages of both graphical notation
and formal notation.

• Employing rigorous but practical techniques for verifying and validating
specifications and programs. Such techniques are usually achieved by in­
tegrating formal proof and commonly used verification techniques, such

12 1 Introduction

as testing [108, 72, 91], reviews [94, 97], and model checking [49, 17]. The
integrated techniques must take a proper approach to make good use of
the strong points of the techniques involved and to avoid their weaknesses.

• Advocating the combination of prototyping and formal methods. A com­
puter system has both dynamic and static features. The dynamic feature is
shown only during the system operation, such as the layout of the graphi­
cal user interface, usability of the interface, and performance. The require­
ments for these aspects of the system are quite difficult to capture without
actually running the system or its prototype. For this reason, prototyping
- the development of an executable model of the system can be effective
in capturing the user requirements for some of the dynamic features in
the early phases of system development. The result of prototyping can
serve as the basis for developing an entire system using formal methods,
focusing on the functional behaviors of the system. Of course, sometimes
prototyping can go along, in parallel, with the development using formal
methods.

• Supporting evolution rather than strict refinement in developing specifi­
cations and programs [57, 109, 82, 73, 7]. Evolution of a specification, at
any level, means a change, and such a change does not necessarily satisfy
the strict refinement rules (of course, it sometimes does). The interesting
point is how to control, support, and verify changes of specification during
software development in a practical manner. Although some of these issues
are still open to be resolved, they have been increasingly paid attention to
by researchers.

• Deploying techniques for constructing, understanding, and modifying spec­
ifications. For example, effective techniques for specification construction
can be achieved by integrating existing requirements engineering tech­
niques with formal specification techniques [77], and techniques in simula­
tion and computer vision can be combined to form visualized simulation
to help specification understanding, and so on.

In summary, formal engineering methods embrace integrated specification,
integrated verification, and all kinds of supporting techniques for specification
construction, transformation, and system verification and validation. They can
be simply described as

FEM = Integrated specification +
Integrated verification +
Supporting techniques

Note that formal engineering methods are a collection of specific methods,
so we should not expect a single formal engineering method to cover all the
features given previously.

1.5 What Is SOFL 13

1.5 What Is SOFL

SOFL, standing for Structured Object-Oriented Formal Language, is a for­
mal engineering method. It provides a formal but comprehensible language
for both requirements and design specifications, and a practical method for
developing software systems. The language is called SOFL specification lan­
guage, while the method is called SOFL method. Unless there is the need of
clear distinction, SOFL is used to mean either the language or the method or
both throughout this book, depending on the context.

SOFL is designed by integrating different notations and techniques on the
basis that they are all needed to work together effectively in a coherent man­
ner for specification constructions and verifications. The SOFL specification
language has the following features:

• It integrates Data Flow Diagrams [23], Petri nets [12], and VDM-SL (Vi­
enna Development Method - Specification Language) [54, 55, 110]. The
graphical notation Data Flow Diagrams are adopted to describe compre­
hensibly the architecture of specifications; Petri nets are primarily used to
provide an operational semantics for the data flow diagrams; and VDM-SL
is employed, with slight modification and extension, to precisely define the
components occurring in the diagrams. A formalized Data Flow Diagram,
resulting from the integration, is called Condition Data Flow Diagram,
or CDFD for short. It is always associated with a module in which its
components, such as processes (describing an operation), data flows (de­
scribing data in motion), and data stores (describing data at rest), are
formally defined. In semantics, the CDFD associated with a module de­
scribes the behavior of the module, while the module is an encapsulation
of data and processes, with an overall behavior represented by its CDFD.
Furthermore, the use of a natural language, such as English, is facilitated
to provide comments on the formal definitions in order to improve the
readability of formal specifications [76,41, 26].

• Condition data flow diagrams and their associated modules are organized
in a hierarchy to help reduce complexity and to achieve modularity of
specifications. Such a hierarchy is formed by decomposition of processes. A
process is decomposed into a lower level CDFD and its associated module
when the details of how to transform its input to output needs to be spelled
out.

• Classes are used to model complicated data flows and stores. A store is
like a file or database in many computer systems; it offers data that can be
accessed by processes in a CDFD or by different CDFD in the hierarchy.
The value of a store can be used and changed by processes. If the changes
are made by processes at different levels, it will be difficult to control the
changes. For this reason, a store can be modeled as an instance of a class. A
class is a specification for its instances or objects that contains definitions
of attributes and methods (similar to processes, but with constraints). Any
change of the attributes of an instance must be made by its own methods.

14 1 Introduction

<I ... S I; module SYSTEM;

! const; type; var; iov; It const; type; var; iov; \. ~ ~
" method Init; ~ "0\, processInit; ~_ _'" ~
: \ '" 4 ~.... ",," ~

Ii ' .. :;2: \: :=; // /-', ";,.,
I' \1 -< I ' \ ' '--------' B2

1,1, ,:\
\ \ / \ r-------, ," Bl

\',,\ " 't // <Is .. S2; ~ \ module A2_Deco~; " B3
\ const; type; var; iov; ~, \ const; type; var; mv; /

'~ method lnit; '\ \ process Init; "

method Q 1; '\ \ process B 1; ,t'
methndQ2;

metbodQ3;

\, .., process B2;

~ processB3;
end __ oIe;

Fig. 1.6. An outline of a specification in SOFL

Modules and classes are similar in their internal structures, but different
in the way used in specifications. A module represents a decomposition
of a high level process and has an overall behavior. No instance can be
derived from a module; therefore, a module cannot be used as a type to
declare variables. On the other hand, objects may be instantiated from a
class that may offer many individual behaviors, as services, and are used
to model a data flow or store in CDFDs.

Figure 1.6 shows an outline of a specification in SOFL. The hierarchy of
CDFDs and modules contains two CDFDs and associated modules. Each small
rectangle in the CDFDs denotes a process, and each directed line represents a
data flow. The CDFD involving processes Al and A2 is the top level CDFD,
corresponding to the module SYSTEM. In this module, the functions of Al
and A2 are formally defined. In addition, process Init is provided for the ini­
tialization of the local data stores (which are not given in this abstract figure)
and necessary declarations are given. For some reason process, A2 is decom­
posed into the CDFD containing processes 81, 82, and 83, and its associated
module, named A2_Decom, provides formal definitions of its processes, data
flows, and so on. For the specification of processes in the hierarchy of CDFDs,
classes SI and S2 are defined; they may be used in both modules, SYSTEM
and Al Decom.

The SOFL method has the following features:

• It integrates structured methods and object-oriented methods for specifica­
tion construction, in order to utilize their advantages and to avoid their
disadvantages. Structured methods are a top-down approach by which the
construction of a specification starts from the top level module, and then

1.5 What Is SOFL 15

proceeds by decomposing high level operations defined in the modules
into low level modules. The structured methods are usually intuitive for
requirements analysis and design, because their way of documentation is
consistent with the way in which people think in developing and organiz­
ing large-scale projects, such as building a bridge, launching a rocket, or
making an aircraft. On the other hand, object-oriented methods are ba­
sically a bottom-up approach to software development. In this approach
the low level classes are first built, and then they are composed to form
more complicated classes. Furthermore, an object-oriented approach is ef­
fective in achieving system properties, such as encapsulation of data and
operations, inheritance, and polymorphism. These properties are very im­
portant in achieving the qualities of information hiding, software reuse,
and maintainability. However, this approach may be less intuitive than
structured methods for requirements analysis and design. The integration
of these two different but related approaches in SOFL offers a way to ef­
fectively support functional decomposition and object composition. The
specifications are easy to be translated into commercially object-oriented
programming languages, such as C++ [61] and Java [22].

• It supports a three-step approach to developing formal specifications. Such
a development is an evolutionary process, starting from an informal spec­
ification, to a semi-formal one, to finally a formal specification. The in­
formal specification, usually written in a natural language, serves as the
basis for deriving the semi-formal specification in which SOFL syntax, to
a certain extent, is enforced. The formal specification is then derived from
the semi-formal specification by formalization of the informal parts in the
semi-formal specification.
By considering the roles of requirements and design specifications, SOFL
advocates the idea that requirements specifications are written in a semi­
formal manner, while design specifications need to be completely formal.
The obvious reason for this is that requirements specifications are often
used for communication between the user and the developer, which re­
quires the comprehensibility of documentation, while the primary role of
design specification is to provide an unambiguous ground for implementa­
tion. Furthermore, the construction of design specification requires study
of requirements given in the requirements specifications, and formalization
can greatly help in this regard.
An evolution of specification is a change, which can be a refinement, exten­
sion, or modification [66]. The evolution approach is suited to developing
design specifications on the basis of semi-formal requirements specifica­
tions, since it usually results in many changes in the specifications. But
for implementation from a design specification, refinement must be en­
forced, since we must make sure that the implementation does exactly
same thing required by the design. For the details of this approach, see
Chapter 14.

16 1 Introduction

• It adopts rigorous review and testing for specification verification and val­
idation. Specification verification aims to detect faults in specifications.
Rigorous review is a technique resulting from the integration of formal
proof and fault tree analysis, a method for safety analysis. The reviews
must be done on a precise ground, and supported by a rigorous mecha­
nism [67][68]. They are usually less formal than formal proof, but easy to
conduct.
Testing can be applied to both specifications and programs. Since some
formal specifications are not executable, the testing needs a special tech­
nique [72]. The test cases used for specification can be reused for black-box
testing of programs [91]. For the detailed discussions of these techniques,
see Chapters 17 and 18.

When building a specific software system, the techniques supported by
SOFL can be used with flexibility, depending on the application domain. For
critical systems, such as safety- and security-critical systems, a profound use
of formal notation, rigorous testing, and rigorous review are recommended.
But for less critical systems, semi-formal notation and reasonably rigorous
verification may be sufficient.

1.6 A Little History of SOFL

The initial development of SOFL was made at the University of Manchester
in the United Kingdom in 1989, when I was studying for a doctoral degree in
formal methods. The motivation was to integrate the most well-known formal
method, VDM at that time, with traditional DFDs to support the applica­
tion of formal methods in industry. I strongly believed, and still do now, that
software development is not a pure mathematical process, although the rela­
tion between specifications and programs can be interpreted mathematically.
It is, in fact, a highly disciplined human activity featured by creativity and
constant changes, although it is likely supported by software tools. If any pow­
erful method wants to be accepted by practitioners at large, it must provide
a user-friendly interface and effective mechanism to facilitate the structuring
of large-scale systems. On the other hand, informal methods that have been
using in practice offer no guarantee for the quality of software systems. It was
my belief that it is necessary to develop a kind of formal method from the
engineer's point of view, and a proper combination of formal, semi-formal,
and informal notations can possibly provide a good solution.

I chose VDM and DFDs for three reasons. One is that both are appro­
priate notations to describe "what to do" rather than "how to do it," but
on different level. In DFDs this feature is reflected by focusing on data flows
among processes (rather than control flows in algorithms), while in VDM it
is featured by using pre- and post conditions for operation specifications. An­
other reason is that VDM lacks an effective and comprehensible structuring

1. 7 Comparison with Related Work 17

mechanism to allow a large specification to be formed by integrating differ­
ent operations. Although the notion module is used to organize operations in
specifications, its expressive power and scale-up ability are limited. In addi­
tion to this weakness, the readability of large-scale specifications may not be
satisfactory. However, it became quite clear to me after a period of study that
VDM and DFDs are complementary in providing rigorous and comprehensible
specifications, and that the notation for operation specification in VDM is well
suited to describing specifications for processes used in DFDs. This provided
the third reason for the integration. The language resulting from this research
was called FGSL, standing for Formal Graphical Structured Language.

FGSL was evolved continuously later on, by combining my experiences
gained from several projects on formal methods and safety-critical systems
at the University of York, RHBNC of London University, Hiroshima City
University, The Queen's University of Belfast, Oxford University, and Hosei
University. It was an important step when FGSL was developed into SOFL by
integrating the structured method and object-oriented method on the project
titled "Formal Methods and Intelligent Software Engineering Environments"
sponsored by the Ministry of Education, Culture, Sports, Science and Tech­
nology of Japan in 1996. It was an international joint project involving the
researchers from several universities in Japan, USA, UK, and Australia. Since
then, SOFL has been improved after being applied to the modeling or de­
velopment of some critical systems and information systems on national and
international projects [74, 75, 78, 62, 71].

1. 7 Comparison with Related Work

It is quite difficult within a section to give a comprehensive comparison of
SOFL with all the existing work on integration of formal methods and informal
or semi-formal methods. To help the reader understand the commonality and
difference between SOFL and other related work, we try to focus on the work
that attempts to integrate model-oriented formal methods (e.g., VDM, Z,
Alloy [48]) and semi-formal methods (e.g., data flow diagrams, UML).

From late 1980s more and more researchers began to realize the impor­
tance of combining formal and informal methods, and proposed several dif­
ferent approaches to integrating formal specification languages with informal
notations (and associated methods). The approach taken by most researchers
for integration is to use the Yourdon or the DeMarco approach to constructing
data flow diagrams and their associated data dictionaries for expressing high
level user requirements, and then to refine the data flow diagrams into formal
specifications by defining data flows, necessary processes, and their integra­
tion with formal notation. The examples of this approach include Semmens
and her colleagues' work on integrating Yourdon's data flow diagrams and Z
[103], Bryant's work on Yourdon's method and Z [14], Plat and his colleagues'
integration of data flow diagrams and VDM [96], and Fraser's work on data

18 1 Introduction

flow diagrams and VDM [80]. In contrast to this approach, SOFL is aimed
at achieving both the improvement of structuring mechanism in the VDM
specification language for modularity and the comprehensibility of the ulti­
mate specifications. This target is realized by incorporating classical data flow
diagram notation into a formal specification language to provide a decompo­
sitional method for structuring system specifications and a graphical view for
the system specifications. In this way, data flow diagrams are treated as part
of formal specifications. Although adopting a rather different data flow model
for describing computer systems, Broy and Stolen's FOCUS formalism [13]
shares the idea of employing visual formal notation in specifications. How­
ever, the major difference between FOCUS and SOFL is that the former tries
to provide a mathematical and logical foundation for the specification and
refinement of interactive systems, while the latter emphasizes the techniques
for incorporating formal specification and verification into the entire software
development process to improve the quality of the software process and to
achieve the practicality of formal methods.

Apart from the integration of formal methods and the structured method
based on the data flow paradigm, much work has also been done in combining
formal notations with the object-oriented paradigm or notation for concur­
rency to improve the rigor of object-oriented development or concurrent de­
velopment. Examples of this approach include VDM++ [27], Object-Oriented
Z [85], TCOZ [81, 25], and OCL [112], the Object Constraint Language of
UML (Unified Modelling Language) [93, 18, 30]. Although SOFL also adopts
object-oriented features, such as class and object, class inheritance, and poly­
morphism, it emphasizes a quite different development paradigm than UML
in that the structured method is mainly used for user requirements analysis
and abstract design specification in order to effectively capture the desired
functions and the overall architecture of the system, while the object-oriented
method is mainly used for detailed design and implementation to achieve
good maintainability and reusability of the system. Another distinct feature of
SOFL is that it emphasizes a balance between and compatibility with graph­
ical notation and formal notation: it advocates the use of both formal and
graphical notations for good readability and efficiency in constructing spec­
ifications, but does not encourage concentration on the use of only one of
them.

Developing practical techniques for verification and validation of software
systems based on formal specification and proof has also been an intensively
researched area. The proposed techniques include specification animation [40,
89], model checking [17, 5], specification-based testing [108, 104, 113, 91, 92]'
and software review, inspection, and analysis [94,87,79,21]. Since we take the
view in SOFL that harmony among methods, tools, and human developers is
the key to the success of software projects, we adopt the most practical tech­
niques, software review and testing, for verification and validation, although
the specific methods for review and testing may be different from traditional
approaches. In our methods, we emphasize utilizing formal specification and

1.8 Exercises 19

proof principle to achieve rigor for the practical review and testing techniques,
as well as their supportability using software tools.

1.8 Exercises

1. Answer the following questions:

a) What is the software life cycle?
b) What is the problem with informal approaches to software develop-

ment?
c) What are formal methods?
d) What are the major features of formal engineering methods?
e) What is SOFL?

2. Explain the role of specification in software development.
3. Give an example of using a principle similar to formal methods to build

other kinds of systems rather than software systems.

2

Propositional Logic

SOFL specifications usually involve both diagrams and formal textual defini­
tions. The underlying languages for writing formal definitions are the classi­
cal propositional and predicate logics. These logics are also used for defining
properties of specifications and for expressing conditions for specification ver­
ification. In this chapter, we introduce the propositional logic, and in the next
chapter we explain predicate logic. Since SOFL adopts slightly different syn­
tax of some logical operators for the sake of readability, the presentations in
this and the next chapter will directly use SOFL syntax to be consistent with
specifications discussed throughout the book.

Propositional logic deals with propositions, including representation, com­
bination, and evaluation of and reasoning about propositions.

2.1 Propositions

A proposition is a statement that must be either true or false, but not both.
A proposition can be represented by either a natural language sentence or a
mathematical expression.

For example, the following statements are propositions:

• A tiger is an animal.
• An apple is a fruit.
• 3 + 5> 10.

The first and second propositions are true, but the third one is false under
the usual interpretation of arithmetic symbols.

In contrast with these statements, the following statements are not propo­
sitions, since their truth values are not decidable.

• Are you happy?
• Let's go swimming.

22 2 Propositional Logic

Table 2.1. Propositional operators

operator read as priority
not not highest
and and
or or

=> implies

<=> is equivalent to lowest

We use bool to represent the boolean type, a set of the truth values: true
and false. That is,

bool = {true, false}.

To facilitate manipulation of propositions, they are usually denoted by sym­
bols. For instance, the propositions given previously are denoted by the sym­
bols:

• P: A tiger is an animal.
• Q: An apple is a fruit.
• R: 3 + 5 > 10.

2.2 Operators

Simple propositions can be combined using propositional operators, which are
sometimes also called logical operators, to form compound propositions. The
propositional operators used in SOFL are given in Table 2.l.

The table gives the operator's symbol, how it is read, and its precedence
when applied to form compound propositions. Using these operators, we can
combine the previously introduced propositions P, Q, and R to form the
compound proposition:

P => Q and R <=> not P or Q and R .

The evaluation of this proposition may start with those of Q and Rand
not P. The results of these two constituent propositions can then be used
for the evaluation of P => Q and R and not P or Q and R. Finally, the
entire proposition is evaluated based on the intermediate results. To explicitly
emphasize the priority of the propositional operators, parentheses can be used.
Thus, this proposition is equivalent to

(P => (Q and R)) <=> ((not P) or (Q and R)) . (1)

2.3 Conjunction 23

For convenience in our discussions, we use the term propositional expres­
sion or expression to mean a single proposition or compound proposition. A
single proposition is also called atomic proposition, because it is the small­
est unit to form propositional expressions. For example, in the expression (1)
given above, P, Q, and R can be atomic propositions, and their compositions
formed by using the propositional operators are compound propositions.

2.3 Conjunction

A conjunction is a propositional expression whose principal operator is and.
For example,

x> 5 and x < 10

shows a conjunction, stating that x is bigger than 5 and smaller than 10. The
general form of a conjunction is:

P and Q,

where P and Q are constituent propositions. The complete interpretation of
this conjunction is given by the truth table:

P Q PandQ
true true true
true false false
false true false
false false false

The first two columns, from the left, give all possible truth values P and Q
can take, and the third column gives the results of the conjunction P and Q.
The conjunction P and Q is true only when both P and Q are true, and
false when one of them is false.

For example, we can easily derive the following from this truth table:

true and true < = > true
false and true < = > false
false and false < = > false

Note that the operator <=> has the same function as the equality symbol =,
but is used only between logical expressions, meaning that both sides have the
same truth value. When appropriate, the symbol = is also used alternatively
to express the equality between logical expressions in SOFL.

24 2 Propositional Logic

2.4 Disjunction

A disjunction is a propositional expression whose principal operator is or.
It is usually intended to represent a condition that holds as long as one of
its constituent propositions holds. For example, suppose x is an integer; the
proposition

x> 5 or x < 3

presents a condition that x is either bigger than 5 or smaller than 3. Let P
and Q be two propositions, the disjunction of P and Q is written as

P or Q.

The meaning of operator or is defined by the truth table:

P Q P or Q
true true true
true false true
false true true
false false false

A disjunction is true when one of its constituent propbsitions is true, and
false when both its constituent propositions are false. As an example, we
derive the following from this truth table:

true or true <=> true
true or false < = > true
false or false <=> false

2.5 Negation

A negation is a propositional expression whose principal operator is not. Let
P be a proposition, the negation built of P is

not P.

The negation not P is true if and only if P is false, as defined by the true
table:

P not P
true false
false true

The negation of a proposition represents an opposite state of the proposition.
For example, if P denotes the condition x > 5, then not P will denotes the
condition: x <= 5, where <= means "less than or equal to."

2.7 Equivalence 25

2.6 Implication

An implication is a propositional expression that uses the operator => to
connect its constituent propositions. Let P and Q be propositions, then the
implication

P=> Q

expresses a statement that P is stronger than Q. P is called antecedent and
Q is called consequent. The complete definition of the implication is given by
the truth table:

P Q P=> Q
true true true
true false false
false true true
false false true

Basically the implication P => Q means that if P is true, it must ensure
that Q is true; if P is false, Q can be either true or false. In other words,
P => Q is true means that the values taken by P and Q are "reasonable."
A daily life related example may help understand this point. Let P denote
the proposition: "John works hard", and Q the proposition "John receives
an award." Suppose we apply common sense that people working hard can
receive an award. Then, the truth of the implication P => Q points to two
situations:

(1) John works hard and John receives an award.
(2) John does not work hard and it does not matter whether John receives

an award or not.

In case (1), it is reasonable that John receives an award as he works hard.
This does not seem to be difficult to understand based on common sense. In
case (2), as John does not work hard, he mayor may not receive an award.
We do not say, in this case, that he will definitely receive no award because he
does not satisfy the precondition: working hard. Rather, we are not interested
in what will happen since the precondition is not true.

2.7 Equivalence

An equivalence is a propositional expression indicating that its constituent
propositions are of the same strength. Let P and Q be propositions. Then, the
equivalence

P <=> Q

26 2 Propositional Logic

means that P and Q are equivalent in the sense that their truth values are the
same. The truth table for the equivalence is

P Q P <=> Q
true true true
true false false
false true false
false false true

Equivalence represents the equality between truth values. As mentioned be­
fore, the symbol = may also be used in SOFL alternatively to express the
equality between truth values, or more generally between logical expressions.

2.8 Tautology, Contradiction, and Contingency

A tautology is a special proposition that evaluates to true in every combination
of the truth values of its constituent propositions. Consider the proposition

P or not P

as an example. No matter what truth values P takes, this proposition always
evaluates to true.

On the other hand, if a proposition evaluates to false in every combination
of its constituent propositions, it is known as contradiction. For example, the
proposition

P and not P

is a contradiction. Apparently, a contradiction is a negation of a tautology.
Tautology and contradiction are important concepts that will be used in for­
mal proof to be introduced later in this chapter.

A proposition that is neither a tautology nor a contradiction is known
as contingency. Regarding tautologies and contradictions as extreme cases,
contingencies are the most common propositions to be used. For example, the
proposition

P => Q and R

is a contingency, because the result of its evaluation depends on the truth
values of P, Q, and R.

2.10 Sequent 27

2.9 Normal Forms

There are two important normal forms: disjunctive normal form and conjunc­
tive normal form. A disjunctive normal form is a special kind of disjunction in
which each constituent propositional expression, usually known as disjunctive
clause, must be a conjunction of atomic propositions or their negations.

Let P _1, P _2, ... , P _n be conjunctions of atomic propositions or their
negations, respectively. Then, the expression

P 1 or P 2 or ... or P n

is a disjunctive normal form. The characteristic of such a disjunctive normal
form is that it evaluates to true as long as one of the disjunctive clauses
evaluates to true.

A conjunctive normal form is a special kind of conjunction in which each
constituent propositional expression, usually called conjunctive clause, is a
disjunction of atomic propositions or their negations. Suppose each of Q_1,
Q_2, ... , Q_m is a disjunction of atomic propositions or their negations, then

is a conjunctive normal form. Such a conjunctive normal form is featured by
the property that it evaluates to false as long as one of its conjunctive clauses
evaluates to false.

2.10 Sequent

A sequent is an assertion that a conclusion can be deduced from hypotheses. A
hypothesis is given as a propositional expression, presenting an assumed prop­
erty or fact. A conclusion is also a propositional expression, which is expected
to be supported by its hypotheses. Let P _1, P _2, ... , P _n be hypotheses and
Q a conclusion. Then a sequent representing that Q is deduced from P _1,
P _2, ... , P _n is written as

P _1, P _2, ... , P _n f- Q

where f- is called a turnstile. For example, the sequent

P and Q f- P

states that the conclusion P can be deduced from the hypothesis P and Q.
Note that the validity of a sequent is not necessarily guaranteed by only

conforming to its syntax. Usually, it needs to be proved in some way. That
is, whether the conclusion of a sequent can be deduced from its hypotheses
needs a formal proof. Without such a proof, we have no evidence to support
the validity of the sequent.

28 2 Propositional Logic

Table 2.2. The truth table for a proof

p Q not P and Q P=> Q
true true false -
true false false -
false true true true
false false false -

2.11 Proof

A proof is a process (or activity or evidence) to show that the conclusion can
be established from its hypotheses in a sequent. Two ways can be adopted
to prove the validity of a sequent. One is by establishing a truth table for
the sequent. Once the hypotheses of the sequent have been evaluated, the
conclusion needs be evaluated only in those rows where the hypotheses are all
true. Consider the sequent

not P and Q f- P => Q

as an example. A truth table for the proof of its validity is given in Table 2.2.
In this truth table four combinations of truth values of P and Q are given,
but there is no need to evaluate the conclusion P => Q for the first two and
the last rows, since the evaluations of the hypothesis not P and Q for those
rows are false.

Using truth table for proof is rather straightforward. However, the diffi­
culty will be increased greatly when the number of constituent propositions
becomes bigger. If a sequent to be proved involves 10 constituent propositions,
then the number of all their combinations will be 210 = 1024. Obviously using
truth table for proof in this case is not convenient and efficient at all.

Another way of doing proof, which is known as natural deduction, can
help reduce this problem. A deduction is a way to derive a conclusion from
the hypotheses by applying appropriate inference rules available in the logic.

2.11.1 Inference Rules

An inference rule is composed of two parts: a list of premises and a conclusion.
A premise is a propositional expression, and so is a conclusion. A rule is usually
written in the form:

premise!, premise2, ... , premisen ~
. name

concluswn

where the name is for reference in a proof; it usually indicates what this rule
is about.

This rule states that the truth of the conclusion is the consequence of
the truth of the premises. In other words, when the premises are true, then

2.11 Proof 29

so is the conclusion. In a formal proof, a rule can be applied only when its
premises are true. Note that the list of premises can be empty, meaning that
the conclusion is a tautology. In this case, the rule is known as axiom, and
can be applied whenever necessary.

To make the introduction of the inference rules clear, we divide them into
groups, each being associated with a specific kind of propositional expres­
sion (e.g., conjunction, disjunction, etc). we first describe the basic rules for
conjunction, disjunction, negation, implication, and equivalence, respectively,
and then introduce the properties of propositional expressions, which can be
proved by applying these basic rules. These properties can also serve as derived
rules for inference.

2.11.2 Rules for Conjunction

Three basic rules for a conjunction are available. These rules ether describe
how to introduce the and operator from its constituent propositions or how to
eliminate the and operator from a conjunction. They are named as and-intro,
and-eliml, and and-elim2, respectively.

P :~~ Q [and-introJ
PandQ

P [and-eliml J

P and Q [d l· 2J Q an -e zm

Suppose P and Q are true; then, we can apply the [and-introJ rule to prove
the truth of P and Q. On the other hand, if P and Q is already known to
be true, the rule [and-elimlJ can be applied to deduce P, and the rule [and­
elim2] applied to deduce Q. It is easy to prove the validity of these rules by
means of truth tables.

2.11.3 Rules for Disjunction

Similarly to the rules for conjunction, there are also three basic rules for
disjunction: [or-introlJ, [or-intro2J, and [or-elimJ.

P; Q [or-introlJ P ~ Q [or-intro2J

P or Q, P f- R, Q f- R [l· J R or-e zm

The [or-introl J and [or-intro2J rules indicate how to introduce the or operator
from its constituent propositions, while the [or-elimJ rule shows how the or
operator is eliminated.

30 2 Propositional Logic

The validity of the [or-intral] and [or-intra2] rules can be easily proved
by means of truth tables, but the [or-elim] rule is a little more complicated.
The reason is that in the list of premises, sequents are involved. To ensure
the validity of the sequents P I-- Rand Q I-- R, subsidiary proofs are necessary.
These proofs are done by deducing R, the conclusion of the rule, from either
P or Q.

2.11.4 Rules for Negation

The basic rules for negation are two, named [not-intra] and [not-elim].

P
not not P [not-intra]

not not P [t t·] p no -e zm

The [not-intra] rules states that if P is true, then its double negation is also
true. The [not-elim] rule shows the case opposite to the [not-intra] rule.

2.11.5 Rules for Implication

There are two basic rules for implication as follows:

P =~ Q [=>-intro] P => Q, P [t.] Q =>-e zm

According to the truth table defining implication, whenever Q is true, no
matter what truth value P takes, the implication P => Q evaluates to true.
This definition leads to the establishment of the rule [= >-intra] . On the other
hand, the rule [=>-elim] shows how to eliminate the operator =>. The reason
for this rule to be valid is that when the antecedent P is true, the only value
for Q to take is true, in order to ensure the truth of the implication P => Q.

2.11.6 Rules for Equivalence

For an equivalence P <=> Q , there are three basic inference rules describing
how to introduce and eliminate the equivalence operator <=>.

P => Q, Q => P
P <=> Q [<=>-intra]

P <=> Q .
P => Q [<=>-elzml]

P <=> Q .
Q => P [<=>-ehm2]

These rules are built based on the fact that P <=> Q is equivalent to the two
implications: P => Q and Q => P.

2.11 Proof 31

2.11.7 Properties of Propositional Expressions

There are many properties about propositional expressions, but we give only
the important ones that are used in this book. Each property is given as a
rule.

Proposition 1. A conjunction, disjunction, or equivalence is commutative.
That is,

(1)

(2)

(3)

Pand Q
:::;;;==~ [and-comm]
Qand P

P or Q
Q or P [or-comm]

P <=> Q
Q P [<=>-comm]

<=>

The rules given in this proposition are bidirectional: the expressions above
and below the double line imply each other. For example, the [and-comm]
rule is equivalent to the following two rules:

PandQ
Q and P [and-comml] and

Qand P
P and Q [and-comm2]

The other two rules can be interpreted similarly.
These properties can be formally proved by applying the basic rules in­

troduced previously. Let us first consider the proof of the commutativity of
conjunction as an example of how a proof is actually constructed. In fact,
proving this property is equivalent to proving the validity of the following
sequents:

(1) P and Q I- Q and P
(2) Q and P I- P and Q

As the proof of (2) is similar to that of (1), we only give the proof for (1). To
provide a comprehensible presentation of the proof, we use a box to enclose
the proof. Such an approach is known as boxed proof The boxed proof for the
sequent (1) is given in Table 2.3.

The keyword from starts a hypothesis, and infer is followed by a con­
clusion deduced by applying appropriate rules whose names are given on the
right of the box. The intermediate results of the proof are marked by numbers,
indicating the number of the steps that have been taken in the proof.

32 2 Propositional Logic

Table 2.3. A proof for commutativity of conjunction

from P and Q
1 P
2 Q
infer Q and P

[and-eliml]
[and-elim2]
[and-into]

Table 2.4. A proof for the commutativity of disjunction

from P or Q
1 from P

infer P or Q
infer Q or P

2 from Q
infer P or Q
infer Q or P

infer Q or P

[or-intral]
[or-comm]

[or-intra2)
[or-comm]
[or-elim](h, 1, 2)

The proof of the commutativity of disjunction is a little more complicated,
because we need to consider two cases: when each of the constituent proposi­
tions is true. As in the case of conjunction, proving this property is equivalent
to proving the following two sequents:

(1) P or Q f- Q or P
(2) Q or P f- P or Q

Again, we only give the proof of (1), and leave the proof of (2) to the reader
for exercise. The boxed proof for (1) is given in Table 2.4.

The proof starts with the hypothesis P or Q. Since the truth of this dis­
junction depends on the truth of one of its constituent propositions, we need
to consider the two cases independently. One is when P is true and the other is
when Q is ture. In both cases we can deduce Q or P, by applying appropriate
rules. Therefore, the disjunction Q or P is established by applying the rule
[or-elim], based on the hypothesis, step 1, and step 2, which is indicated by
the reference [or-elim] (h, 1, 2)].

The proof of the commutativity of equivalence can be done similarly. The
reader can construct the proof as an exercise.

Proposition 2. A conjunction, disjunction, implication, or equivalence is as­
sociative. That is,

P and (Q and R) []
and-ass

(P and Q) and R

P => (Q => R)
(P => Q) => R [=>-ass]

P or (Q or R)
~=~=~ [or-ass]
(P or Q) or R

P <=> (Q <=> R) []
<=>-ass

(P <=> Q) <=> R

2.11 Proof 33

These properties are given in four rules, and their proofs can be done similarly
to those of the properties given in Proposition 1. For brevity, we will omit all
the proofs for the properties to be introduced in this section.

Proposition 3. Conjunctions and disjunctions are distributive over each
other.

P and (Q or R)
~==;=~====~====::::;=;~ [and-or-dist]
(P and Q) or (P and R)

P or (Q and R) .
(P or Q) and (P or R) [or-and-dzst]

The rule [and-or-dist] describes the equivalence between the expressions P
and (Q or R) and (P and Q) or (P and R), while the rule [or-and-dist]
states the equivalence between P or (Q and R) and (P or Q) and (P or R).

Proposition 4. An implication is equivalent to a disjunction, i.e.,

P=> Q
======~ [=>-or-equiv]
not P or Q

This rule provides a way of transformation between an implication and an
equivalent disjunction.

Proposition 5. Negations, conjunctions, and disjunctions satisfy the de Mor­
gan's laws:

not (P and Q)
=~==~ [and-deM]
not P or not Q

not (P or Q)
====;:;====;==~~ [or- deM]
not P and not Q

By the rule [and-deM], the negation of a conjunction can be transformed into
an equivalent disjunction of the negations of the constituent propositional ex­
pressions, and vice visa. The rule [or-deM], on the other hand, allows the
negation of a disjunction to be transformed into an equivalent conjunction
of the negations of the constituent expressions. You will find that de Mor­
gan's laws are necessary in the transformation of propositional expressions
into disjunctive normal forms, which are to be introduced next.

Proposition 6. A propositional expression is equivalent to a disjunctive nor­
mal form or a conjunctive normal form.

34 2 Propositional Logic

In other words, a propositional expression can be transformed into an equiv­
alent disjunctive normal form or a conjunctive normal form. Such a transfor­
mation is done by repeatedly applying distributivity rules [and-or- dist land
[or-and-dist], as well as the de Morgan's laws introduced previously.

For example, the propositional expression

P _1 and not (P _2 and P _3) (1)

can be transformed into a disjunctive normal form by taking the following
steps:

P _1 and not (P _2 and P _3) <=>
P _1 and (not P _2 or not P _3) <=>
(P _1 and not P _2) or (P _1 and not P _3) <=>
P 1 and not P 2 or P 1 and not P 3

The derived disjunctive normal form is composed of the two conjunctions:

(1) P _1 and not P _2
(2) P _1 and not P _3

We can take similar approach to transforming a propositional expression
into an equivalent conjunctive normal form. Since the notion of conjunctive
normal form is not used in this book, we do not explain it further with exam­
ples. The reader can conduct this transformation as an exercise.

2.12 Exercises

1. Explain the notions:
a) proposition
b) conjunction
c) disjunction
d) negation
e) implication
f) equivalence
g) tautology
h) contradiction
i) contingency
j) sequent
k) rule
1) proof

2. Give a truth-table proof for each of the properties:

a) P, Q f- P and Q
b) P and Q f-Q

2.12 Exercises 35

c) P f- P or Q
d) P or Q, P => R, Q => R f- R
e) P f- not not P
f) Q f- P => Q
g) P =>Q, Q => P f- P <=> Q

3. Give a boxed proof for each of the properties:

a) P and (Q and R) f- (P and Q) and R
b) P, Q, Q => R f- P and R
c) not (P or Q) f- not Q
d) P or Q f- not (not P and not Q)

4. Transform each of the following propositional expressions into a disjunc-
tive normal form:

a) P and not (not Q and R)
b) P and (Q => R) <=> W
c) (P or Q) and (R or W)
d) not (P => Q) or (not P and Q)
e) P < = > Q and Q < => R

3

Predicate Logic

Predicate logic is an extension of the propositional logic to deal with the
statements that may apply to many objects. The propositional logic intro­
duced in the preceding chapter allows us to make statements about specific
objects, but it does not allow us to make statements applicable to a collection
of objects. For example, in the propositional logic we can make the statement:
John studies hard, but we cannot make statements like x studies hard, where
x is one of the students John, Michael, Steven, or Paul, since the truth value
of the statement cannot be determined until x is bound to a specific name.
Note that when x is bound to a specific name, the entire statement can be
either true or false. For example, the statement John studies hard can be true
whereas the statement Steven studies hard can be false.

Furthermore, sometimes we may want to describe a property that every
member in a collection of objects must satisfy, such as "every player in the
club is excellent" . These are known as universal statements. Some other times,
we may wish to state that at least one member satisfies a particular property,
without necessarily knowing which member it is (or they are). For example,
"there is an excellent player in the club". Such a statement is known as exis­
tential statement.

In this chapter we introduce the predicate logic by explaining what pred­
icates are, how predicates are combined to form compound predicates, how
proofs can be done on predicates, and how predicates can be used to express
specifications or properties. This logic is also extended to provide a reasonable
treatment of undefined predicates, which may be employed in specifications.

3.1 Predicates

A predicate is a truth-valued function. A function is a mathematical abstrac­
tion of an important concept: mapping between two sets of values. The set of
values to which the function can apply is known as the domain of the func-

38 3 Predicate Logic

Table 3.1. The basic types available in SOFL

I name I symbol I values

natural numbers including zero nato 0,1,2,3, ...
natural numbers nat 1,2,3,4, ...
integers int ... , -2, -1, 0, 1, 2, ...
real numbers real ... , -1.25, ... , 0, ... , 1.25, ...
boolean bool true, false

tion, while the set containing the images of the mapping from the domain is
known as the range of the function.

In SOFL, types are often used as the domain and range of functions. A
type usually means a set of values, possibly with a set of operations. The
name, symbol, and values of the basic types available in SOFL are given in
Table 3.l.

A function is defined by giving its signature and body. The signature is usu­
ally composed of three parts: function name, domain, and range. The function
name is a unique identity, distinguishing it from other functions. The domain
is written in parentheses following the function name, and the range is sepa­
rated from the right parenthesis by a colon. The body of the function is given
after the double equality symbol ==. For example, the function square over
integers is defined as follows:

square (x: int): int
== x * x

In this definition, square is the function name; the int used to declare the
parameter x denotes the domain; and the int on the right is the range. The
body of the function is given as a product of the parameter x. Note that the
name for the parameter of the function can be chosen freely, without changing
the definition of the function. For instance, we can choose y instead of x so
that the square function can be defined as

square (y: int): int
== y * y.

A function may have more than one parameter, so the definition of a
function in general looks like

f(x_I: T _1, x_2: T _2, ... , x_n: T _n): T
== E(x_I, x_2, ... , x_n) ,

where T _i (i=1..n) are types; the domain of the function is the product type:
T _1 * T _2 * ... * T _n; and E(x_I, x_2, ... , x_n) is an expression containing
variables x_I, x_2, ... , x_no

3.1 Predicates 39

For example, a function known as multi is defined as

multi(xl: nat, x2: nat, x3: nat): nat
== xl * x2 * x3

multi(x1, x2, x3) yields the product of the three parameters.
If we restrict the range of a function to the boolean type bool, then the

function is known as a predicate. For example, the function is_big defined
below is a predicate.

is_big(x: int): bool
== x > 2000

As we mentioned in the beginning of this chapter, a predicate is different from
a proposition in that the predicate cannot evaluate to truth values unless its
parameters are bound to specific values in the domain. Therefore, we cannot
say that is_big(x) is true or false, since x is not bound to a specific value in
the domain into However, if we let x take the values 2000, 2004, 2008, 1996,
respectively, we will be able to obtain the following four propositions:

is_big(2000)
is _ big(2004)
is_big(2008)
is_big(1996)

According to the definition of the predicate is_big, it is apparent that
is_big(2000) is false; is_big(2004) is true; is_big(2008) is true; and is_big(1996)
is false. Similarly to functions, predicates may also allow multiple parameters,
so the definition of a predicate in general has the form

P(x_l: T _1, x_2: T _2, ... , x_n: T _n): bool
== E(x_1, x_2, ... , x_n) .

Compound predicates may be formed by using the logical operators and
other defined predicates that may contain function applications. Consider the
predicate compare as an example.

compare(x_l: int, x_2: int): bool
== is_big(x_1) and square(x_1) >= square(x_2)

The predicate is defined in terms of the predicate is_big and the predci­
ate square(x_1) >= square(x_2), in which the function square is applied.
It states that when the parameters x_I and x_2 are bound to values in
the domain of the predicate, and they satisfy the condition is_big(x_1) and

40 3 Predicate Logic

square(x_l) >= square(x_2), the proposition compare(x_l, x_2) will evaluate
as true; otherwise, it will evaluate as false.

Predicates can be combined by using the propositional operators: and,
or, not, =>, and <=>, in the exactly same way as for propositions to form
compound predicates. Thus,

is_big(x_l) and compare(x_l, x_2) => x_I> x_2
is_big(x_l) or compare(x_l, x_2)
not is_big(x_l)
is_big(x_l) => compare(x_l, x_2)
is_big(x_l) <=> is_big(x_2)

are all compound predicates.

3.2 Quantifiers

In the predicate logic we use two quantifiers. One is the universal quantifier
and the other is the existential quantifier.

3.2.1 The Universal Quantifier

A predicate allows us to make a statement that is applicable to a set of objects,
such as is_big defined in the previous section. However, if we wish to make a
statement that requires a set of objects to satisfy a property, using only the
notion of predicate introduced so far may not be sufficient to form concise
predicate expressions. For example, if we want to make the statement that
2004, 2008, 2012, and 2016 all satisfy the condition given by the predicate
is_big, we can write it as

is_big(2004) and is_big(2008) and is_big(2012) and is_big(2016) .

However, this expression is long and cumbersome. To make such an expression
concise, we introduce a notion known as universal quantifier, represented by
the keyword forall. For example, the above predicate expression is written as
follows using the universal quantifier:

forall[x : {2004, 2008, 2012, 2016}] I is_big(x)

This statement states that for any element x in the set {2004, 2008, 2012,
2016}, the proposition is_big(x) evaluates to true. Such a predicate is called
a universally quantified predicate or expression. In SOFL specifications, the
general form of a universally quantified expression is written as

forall[x: X] I P(x) . (1)

3.2 Quantifiers 41

In this expression, forall is the universal quantifier; x is known as the bound
variable; x: X is called a constraint and X is a bound set; and P(x) is known
as the body of the quantified expression, which can be a single predicate, a
compound predicate, or another quantified predicate expression.

The quantified expression states that, for any value x in set X, P(x) is
satisfied. It is true if all the elements in the set X satisfy P(x), and false
otherwise. Note that P(x) may contain other variables, in addition to the
bound variable x. If those variables are not bound variables in any quantified
expression in P(x), we call them free variables. For example, in the expression

forall[x: int] I square(x) > y ,

y is a free variable. This quantified expression cannot evaluate to a truth value
due to the existence of the free variable y, unless y is bound to a specific value
in its type.

In the general form of the universally quantified expression (1), if the body
P(x) does not contain free variables, the expression will become a proposition,
since, in that case, its truth value can be decided. For example, the expression

forall[x: {2004, 2008, 2012, 2016}]I is_big(x)

is actually a proposition. It is true because every element of the set {2004,
2008, 2012, 2016} satisfies the predicate is_big. If, however, we change this
expression to

forall[x: {1996, 2000, 2012, 2016}] I is_big(x) ,

then this expression is false, because both 1996 and 2000 do not satisfy is_big.

3.2.2 The Existential Quantifier

When making a statement that requires at least one element of a set to satisfy
a property, we usually need to use a disjunction. For instance,

is_big(1996) or is_big(2000) or is_big(2004) or is_big(2008)

states that at least one element of the set {1996, 2000, 2004, 2008} satisfies
is_big. By using the existential quantifier, represented by the keyword exists,
this expression is written as

exists[x: {1996, 2000, 2004, 2008}]I is_big(x) .

Such an expression is known as an existentially quantified expression. The
general form of an existentially quantified expression is written as:

42 3 Predicate Logic

exists[x: X] I P(x) , (2)

except that the name of the quantifier in expression (2) is different from that
of the quantifier in the universally quantified expression (1) (all of the other
parts share the same names). The existentially quantified expression is true if
at least one element of set X satisfies the predicate P(x), and false otherwise. As
in a universally quantified expression, if the body P(x) involves free variables,
the existentially quantified expression becomes a predicate, not a proposition.

When constructing formal specifications using predicate logic, as we will
explain later in this chapter, it is sometimes useful to be able to express "there
exists exactly one," rather than "there exists one." This is represented by the
extended existential quantifier exists!. For example, the predicate

exists! [x: int] I x = 0

states that there exists exactly one integer zero.

3.2.3 Quantified Expressions with Multiple Bound Variables

A quantified expression also allows multi'ple bound variables. In general, a
universally quantified expression with n bound variables is written as

If X_I, X_2, ... , X_n are all the same set, then this expression can also be
written as

Likewise, an existentially quantified expression has the form

or

if X_I, X_2, ... , X_n are all the same. For example, the following expressions
are quantified expressions with multiple bound variables:

forall[x_l. x_2, x_3: nat] I multi(x_l, x_2, x_3) >= x_I
exists[x_l: int, x_2: nat] I square(x_l) + x_2 > 10

3.2 Quantifiers 43

3.2.4 Multiple Quantifiers

Multiple quantifiers can be used to express more complicated predicate expres­
sions. To make expressions with multiple quantifiers concise, the quantifiers
can be combined with bound sets. For example, the expressions

forall[x: nat] I forall[y: nat] I P(x, y)
forall[y: nat] I forall[x: nat] I P(x, y)
forall[x: nat, y: nat] I P(x, y)
forall[x, y: nat] I P(x, y)

all mean the same thing. Such a combination is also applicable to the exis­
tentially quantified expressions. However, when both the universal quantifier
and existential quantifier are used in an expression, the combination becomes
more complicated. Let us consider the expression

forall[x: nat] I exists[y: nat] I y > x

as an example. It states that for any natural number, there must exist an­
other greater natural number. This is obviously true. Note that we cannot
simply exchange the universal quantifier and the existential quantifier in this
expression, since the changed expression

exists[y: nat] I forall[x: nat] I y > x

means different thing: there exists a natural number that is greater than every
natural number, which is apparently false.

To reduce the need for parentheses and avoid unnecessary confusion, we
adopt the convention that the body of a quantified expression is considered
to extend as far to the right as possible. So the expression

forall[x: nat] I (x> z and (exists[y: nat] I y > x))

can be written as

forall[x: nat] I x> z and exists[y: nat] I y > x .

3.2.5 de Morgan's Laws

Just as de Morgan's laws for propositions, there are also de Morgan's laws
for quantified expressions. These laws are especially useful for proofs, to be
introduced later in this chapter.

44 3 Predicate Logic

Proposition 7. The quantified expressions satisfy de Morgan's laws. That is,

===fo=r=a=ll[~x:=X:::::;I=1 =P=(x=) ==;=:::;:: [. d M) eXlsts- e
not (exists [x: XII not P(x))

not (forall[x: XII P(x)) [forall-deM)
exists[x: XII not P(x)

These laws are quite straightforward. The law exists-deM implies that the
statement "P(x) holds for every element in X" is equivalent to saying that
"P(x) does not hold for some element in X is false." The law forall-deM states
that the statement "P(x) does not hold for every element in X" is equivalent
to the statement "P(x) does not hold for some element in X."

3.3 Substitution

Substitution is an operation that changes a predicate by substituting a vari­
able or expression for a free variable in the predicate. Such a substitution
allows us to change the subject of the predicate. Let P be a predicate; we use
P[x/yl to denote the predicate obtained by substituting variable x for every
free occurrence of y in P. The following are examples of substitution:

(x > 5 and y > x)[t/x] <=> (t > 5 and y > t)
(10 > 20)[y/xl <=> (10 > 20)
(x < 20 + y)[(2+z)/yl <=> (x < 20 + (2 + z))

In the first case, variable x is substituted by t, and the structure of the pred­
icate and other variables remain unchanged. In the second substitution, the
predicate (an extreme case of predicate) is not changed at all, since x is not
involved in the predicate. The third case shows a substitution of a variable by
an arithmetic expression.

When making a substitution to a predicate involving quantified expres­
sions, we must not substitute any bound variables in the predicate. Consider
the following substitutions:

(1) (forall[x: natll x + 1 > O)[y/x) <=>
(forall[x: natll x + 1 > 0)

(2) (exists[y: natll y > x and y < x + 15)[5/x) <=>
(exists[y: natll y > 5 and y < 5 + 15)

The first case shows that an attempt to substitute a variable for a bound
variable in a predicate has no effect. In other words, such a substitution does
not change the predicate at all. In the second substitution each occurrence of

3.3 Substitution 45

the free variable x is substituted by 5. Note that a substitution must not cause
confusion between free and bound variables. For instance, the substitution

(y > 10 and exists[x: nat] I x > y)[xjy]

results in the following predicate with confusion between the free and bound
variables:

x > 10 and exists[x: nat] I x > x

A contradiction x > x is introduced as the result of this substitution, which
is obviously not what we want. The reason for such a problem is that the
substituting variable shares the same identifier with the bound variable; both
are x. It is the general principle that the substituting variable should be dif­
ferent from any bound variables occurring in the predicate, especially when a
potential confusion may occur.

This conflict problem can be resolved by first changing the identifiers of
the relevant bound variables in the predicate and then performing the substi­
tution. For example, before carrying out the substitution

(y> 10 and exists[x: nat] I x > y)[xjy] ,

we first change the bound variable x to i, and then do the substitution, which
results in the predicate

x > 10 and exists[i: nat] Ii> x .

Substitutions can be done sequentially more than once. We use P[xjy][tjx]
to denote the predicate resulting from first substituting x for occurrences of y

in P and then substituting t for occurrences of x in the predicate P[x/y]. The
following is an example of a sequential substitutions:

(y > 10 and exists[i: nat] Ii> y)[xjy][tjx] <=>
(x > 10 and exists[i: nat] Ii> x)[tjx] <=>
(t > 10 and exists[i: nat] Ii> t)

A single substitution can be extended to allow multiple substitutions. We use
P[xjy, tjz] to denote the predicate resulting from simultaneously substituting
x for occurrences of y and substituting t for occurrences of z. The following
example shows a multiple substitution:

(y > z + 10 and exists[i: nat] Ii> Y + z)[xjy, tjz] <=>
(x > t + 10 and exists[i: nat] Ii> x + t)

Similarly, we can extend this notation to P[x1/yl, x2/y2, ... , xn/yn].

46 3 Predicate Logic

3.4 Proof in Predicate Logic

Since the predicate logic is an extension of the propositional logic, all the
inference rules available in the propositional logic are applicable to predicates.
However, there is no rule in the propositional logic to deal with quantifiers, so
the existing rules are in general not sufficient to handle proofs in the predicate
logic. It is necessary to introduce rules for reasoning about quantifiers in the
predicate logic.

3.4.1 Introduction and Elimination of Existential Quantifiers

The existentially quantified expression exists [x: X] I P(x) states that P(x)
holds for some element x in X. Therefore, if we know that a value, say m, is
a member of X and P(x)[m/x] holds, we will definitely be able to assert that
exists [x: X] I P(x) is true. Based on this observation, the rule for introducing
an existential quantifier is formed as follows:

m inset X, P(x)[m/x] [. t . t]
. t [X] I P() eXlS s-zn ro , eXlS s x: x

where m inset X means that x is a member of X; the membership operator
inset is discussed in detail in Section 8.3.2 of Chapter 8.

On the other hand, if exists[x: X] I P(x) is known to be true, and an
arbitrary value, say m, belongs to X and the expression Q can be induced
from P(x)[m/x], then we can claim that Q holds. This idea is reflected by the
following rule for the elimination of existential quantifiers:

exists[x: X] I P(x), m inset X and P(x)[m/x] I-- Q
Q [exists-elim] ,

m is arbitrary

Note that m must not occur as a free variable in the predicate Q and must be
different from any variables occurring in the earlier proof steps.

3.4.2 Introduction and Elimination of Universal Quantifiers

If we know any arbitrary value, say y, in X such that P(y) holds, then we can
definitely conclude that forall[x: X] I P(x) holds, based on the meaning of the
universally quantified expression. This idea is reflected by the rule

y inset X I-- P(y) .
forall[x: X] I P(x) [forall-mtro] ,

As with the existential quantifier, a rule of eliminating a universal quantifier
is also available:

3.5 Validity and Satisfaction 47

Table 3.2. A boxed proof

from
1
infer

y inset X, not pry Ixl
exists[x: Xl I not P(x)

not (forall[x: Xli P(x»

forall[x: X] I P(x), m inset X [fi 11 l' 1
P(m/x) ora -e zm

exists-intro(h)
forall- deM (1)

This rule defines that if forall[x: X] I P(x) holds and m is a member of X,
then the truth of P(x)[m/x] can be safely claimed.

Now let us look at an example of proof that applies the rules introduced
above. Of course, we may also need other existing inference rules, including de
Morgan's laws, given in Section 3.2.5. The proposition to be proved is given
as the sequent

y inset X, not PlY/x] f- not (forall[x: X] I P(x)) .

The boxed proof of this sequent is given in Table 3.2.

3.5 Validity and Satisfaction

Validity and satisfaction are two important properties of the predicate logic.

Definition 1. A predicate is valid if it evaluates to true for whatever values
of the free variables involved.

For example, let x be a variable over the type into Then the predicate

x> 0 or x <= 0

is valid, because it evaluates to true no matter what integer the variable x
takes. Sometimes we are interested in whether a predicate is true for some
values. If so, we say the predicate is satisfiable.

Definition 2. A predicate is satisfiable if it evaluates to truefor some values
of the free variables involved. Otherwise, the predicate is unsatisfiable.

For instance, let x be a variable over the type int, the predicate

x> 10

is satisfiable, since it evaluates to true for some integers, say 15. On the other
hand, the predicate

48 3 Predicate Logic

x > 10 and x < 10

is unsatisfiable, since it evaluates to false for whatever integers bound to x.
The notions of valid, satisfiable, and unsatisfiable predicates correspond in

fact to those of tautology, contingency, and contradiction in the propositional
logic, respectively. A valid predicate is similar to a tautology; a satisfiable
predicate is similar to a contingency; and an unsatisfiable predicate is similar
to a contradiction.

3.6 Treatment of Partial Predicates

It is possible that a predicate may not yield a truth value for some values
bound to its free variables (arguments). Such a predicate is called partial
predicate. For example, the predicate x / y > 20 involves a division between
two real numbers x and y. If y is not zero, the truth value of this predicate
can be determined. However, if y is equal to zero, the result of division x / y
is undefined, which leads to the entire predicate being undefined.

Furthermore, as the reader will see in Chapters 17 and 18, the predicate
expressions that need to be evaluated for reviews or testing may involve un­
defined variables. In such cases, how to evaluate the expressions will become a
problem: the result should be true, false, or undefined. To deal with this prob­
lem, we need a logical system in which undefinedness is treated as a "special
value" for operations. It is treated as a "value" because it can join operations
as an operand, and it is "special" because it is in fact not a real value, but
represents a situation of no value or a situation when a variable is bound to
a value of the wrong type. Fortunately, VDM has provided a proper logical
system to handle partial predicates by extending the two-valued truth tables
of propositional operators into three-valued truth tables. SOFL also adopts
this extension for interpreting formal specifications.

In the extended truth tables, the absence of value, i.e., undefinedmiss, is
represented by the keyword nil. Since nine cases must be considered now for
each operator, the truth tables are presented in a compact square style. The
extended truth table for conjunction is:

(and) true nil false
true true nil false
nil nil nil false

false false false false

In order to be distinguished from operands, the operator and is in parentheses.
The extension is made in a way that a result is given whenever possible. For
example, the conjunction

nil and false

3.6 Treatment of Partial Predicates 49

yields false, as it is always the result of the evaluation of this conjunction,
no matter what truth value the nil can possibly be. That is, if the position
of nil is true, the result of the evaluation is false, and so is the result of the
evaluation when the position of nil is false. If the evaluation of a conjunction
cannot yield a truth value due to the lack of truth values, reflected by the
involvement of nil, the result of the evaluation must be nil. For example,

nil and true < = > nil
nil and nil <=> nil

The same principle is also applied to extend the truth tables for disjunction,
negation, implication, and equivalence, which are given below.

(or) true nil false
true true true true
nil true nil nil

false true nil false

(not)
true false
nil nil

false true

(=» true nil false
true true nil false
nil true nil nil

false true true true

«=» true nil false
true true nil false
nil nil nil nil

false false nil true

As pointed out by Jones in his book titled Systematic Software Development
Using VDM [55], the extended logical system does not inherit some properties
of the classical logic. For example,

P or not P

is a tautology in the classical logic, but it is not true in extended logic because
it yields no truth value when P is undefined. Therefore, in order to apply all the
rules of the classical logic in proof, one must make sure that every predicate
expression involved is defined. However, if only evaluations of expressions are
required for necessary arguments, they can be performed by applying the
extended truth tables, with no need for using the inference rules. Since proof
is rarely employed in SOFL for verification of systems, this problem is not a
major concern.

50 3 Predicate Logic

3.7 Formal Specification with Predicates

This section explains how the predicate logic can be used to define functional
requirements. As the detail of this technique will be introduced in Chapter 4,
the description in this section is kept simple. The reader is expected to get,
through examples, a preliminary idea about the use of the logic for functional
specifications of software systems.

A predicate is usually used to describe a condition, but its role may be
interpreted in a number of ways in a specification, depending on the way it is
used. Let us consider the predicate

x> 5 and x < 10

as an example. It can be used as a guard condition for determining the subse­
quent action or definition. It can also be used to express a functional require­
ment that the expected operation generates values satisfying this condition.
This is similar to the following statement:

my student finishes his homework.

This proposition can serve as a condition to decide whether my student will
be given a full mark or not, but it may also be used to express a require­
ment to my student for completing his homework. The reader will see more
detailed discussions on this issue in Chapter 4. For the moment, as long as
one understands the point that predicates can be used for writing both guard
conditions and functional requirements, he or she is good to proceed to the
next chapter.

3.8 Exercises

1. Answer the following questions:

a) What is the similarity and difference between a predicate and a func­
tion?

b) What is the difference between a universally quantified expression and
existentially quantified expression?

c) What is a substitution?
d) What is a valid predicate?
e) What is a satisfiable predicate?
f) What is a partial predicate?

2. Which of the following quantified predicate expressions are propositions?

a) forall[x: int] I x > 5 and x < 10
b) exists[x: int] I y > x and y < x + 10
c) forall[x, y: real] I x + y > x - y

3.8 Exercises 51

d) forall[x, y: real]exists[z: real] I x + y > z
e) exists[x: int]forall[y: int] I x * y > z

3. Evaluate the substitutions:

a) (x > y + z => Y < x)[t/x]
b) (forall[x, y: natO] I x < z and z < y => x < y)[m/y, t/z]
c) (exists[x, y, z: nat] I x * y > z => x > z and y > z and b > c)[a/x,

b/y, c/b]
4. Give proofs for the properties (assuming all the involved predicates are

defined):

a) forall[x: X] I P(x) I-- not exists [x: X] I not P(x)
b) x inset X, forall[y: X] I y > 15 I-- exists[z: X] I z > 15, where X is a

subset of natO.
5. Which predicates are true according to the extended truth tables?

a) x > y and y / 0 > 5 <=> false
b) x> y and y > x <=> nil
c) true or nil <=> nil
d) false or nil < = > false
e) false => nil <=> nil
f) true => false <=> nil
g) true => nil <=> false
h) true <=> false <=> nil
i) false <=> nil <=> true

4

The Module

This chapter introduces the most important component of SOFL specifica­
tions: the module. A specification is composed of a set of related modules in a
hierarchical fashion. Each module is a functional abstraction: it has a behavior
represented by a graphical notation, known as condition data flow diagmm,
and a structure to encapsulate data and processes used in the condition data
flow diagram. Each data item is defined with an appropriate type and each
process is defined with a formal, textural notation based on the predicate logic
introduced in chapter 3.

4.1 Module for Abstraction

When building a software system, the essential concern is what function should
in the first place be provided by the system. An effective way to gain the under­
standing of the system function is abstmction and decomposition. Abstraction
is a principle for extracting the most important information from implemen­
tation details. The result of an abstraction is usually a concise specification
of the system, reflecting all the primarily important functions without unnec­
essary details. The understanding of this notion can be helped by studying
the simplified ATM (Automated Teller Machine) example. Suppose an ATM
is required to have the following functions:

(1) Provide the buttons show the balance and withdraw for selection.
(2) Insert a cash card and supply a password.
(3) If show the balance is selected, the current balance is given.
(4) If withdraw is selected, the amount of the money to withdraw is properly

provided.
(5) The requested amount of money must be supplied in cash.

This list gives a functional abstraction of the desired system: it contains only
the functions of interest, described abstractly, and does not focus on the de-

54 4 The Module

tailed issues, such as what the buttons should look like and what the format
of password is, and so on.

In an abstract specification the dependency between required functions
may exist implicitly. For example, to perform function (3), function (1) must
be performed so that the current balance can be provided; to ensure that
function (4) is provided correctly, function (2) must be carried out beforehand
so that only the permitted person can access the account. Sometimes, such a
dependency may need to be defined explicitly. For example, as a requirement,
function (2) may need to be performed before actions (3), (4), and (5). If this
is not the case, the implementation of the system may end up performing
action (4) before performing action (2), something which is obviously unsafe.

Abstraction may have different levels, and the high level abstraction may
contain less information than the low level abstraction. For example, if we
refine action (4) to take the possibility of a password mismatch into account,
the functional specification can be written as follows:

(4') If withdraw is selected and the password is correct, the amount
of the money to withdraw is provided; otherwise, if the password
is wrong, a message for reentering the correct password must
be given.

This may be considered as a concrete version of the abstract specification in
(4), since it provides more detailed information about the required function.
Of course, it may also be regarded as an abstraction of another lower level
specification.

In order to avoid any potential misunderstanding, an abstract specification
of a system must not be ambiguous. However, as we have described in Chapter
1, this problem will inevitably arise if informal languages are used to write the
specification. For example, it is not clear what the phrase password is correct
means in the above functional specification (4'). If we extend this specification
to explain the meaning of phrases like this one, we will probably end up with a
long, and probably more complex, documentation. To deal with this problem,
formal notation can help greatly.

To allow functional abstractions at various levels and to help achieve the
comprehensibility of formal specifications, SOFL employs condition data flow
diagrams for the abstraction of data flow relations between processes perform­
ing specific behaviors, and employs predicate logic-based formal notation for
the abstraction of data items and processes occurring in the diagrams. The
concept of condition data flow diagram, including data flows and processes,
and the formal notation for defining the components of the diagrams, are in­
troduced from the next section in this chapter. Conceptually a module has
the following structure:

ModuleName
condition data flow diagram

4.2 Condition Data Flow Diagrams 55

\ cash-+-

-pass accoUD§2
Show_ balance----+
Balance

Fig. 4.1. The CDFD modeling a simplifed cash dispenser

Specification of the components

The components, and their syntax, of a module are gradually introduced in
this chapter, starting from the next section.

4.2 Condition Data Flow Diagrams

A condition data flow diagram, CDFD for short, is a directed graph that
specifies how processes work together to provide functional behaviors. Before
proceeding to the detail of CDFD, let us try to get a preliminary idea by
looking at the example of modeling the ATM with a CDFD, as shown in
Figure 4.1.

Each box in this diagram denotes a process, such as Receive_Command and
Check_Password, which describes an operation: it takes inputs and produces
outputs. Each directed line with a labeled name denotes a data flow: the name
indicates the nature of the data while the line gives direction of the data flow.
The box with number 1 and the identifier account_file is known as a data
store or store, which represents the data at rest, such as a file or database.

The diagram conveys the functional requirements given in section 4.1 and
the dependency relations between the functions represented by the processes
in the diagram. The selection of balance, denoting the command of show the
balance, or w_draw, denoting the command of withdraw, is handled by the
process Receive_Command. This process then generates a data flow sel to in­
dicate which command has actually been selected, and passes this information
to the process Check_Password. When the requested cash card card_id and
password pass are provided, this process will check whether the provided ac­
count exists in the system account database account_file, and if so, whether

56 4 The Module

Fig. 4.2. A simple process

the password pass is the same as that of the account. If these pieces of in­
formation are confirmed, the process Check_Password will pass the account
information, denoted by accountl and account2, respectively, to either the
process Withdraw or the process Show_Balance, depending upon the value of
data flow sel. If security is, however, not confirmed, an error message pr_meg
will be issued. The process Withdraw updates account_file by reducing the
requested amount from the current balance of accountl if the amount is less
or equal to the current balance. However, if this is not the case, the process
will generate an error message to show that the amount requested is invalid.
The process Show_Balance takes the confirmed account denoted by account2,
which is the same as accountl in content, and displays the current balance of
the account, which is represented by the data flow balance.

In contrast with the informal functional specification given in Section 4.1,
the functional abstraction expressed by the CDFD is obviously more compre­
hensible in modeling the dependency relations among processes. To completely
define the CDFD, however, all the processes, data flows, and stores must be
defined precisely, in a proper manner. To achieve this goal, the predicate logic
is adopted. From the next section, we describe all the possible components of
CDFDs and the techniques for their formal definitions.

4.3 Processes

One of the most essential components is known as process. A process performs
an action, task, or operation that takes input and produces output. To model
the variety of operations, a process can take several different forms. Figure
4.2 shows a simple form of process.

The process A is composed of five parts: name, input port, output port,
precondition, and postcondition. The name A of the process is given in the
center of the box. The input port is denoted by the narrow rectangle on
the left part of the box, which receives the input data flows x and y. The
output port is given on the right part of the box, similar to the input port,
to connect to the output data flows z and w. The upper part of the box, a
narrow rectangle, denotes the precondition, while the lower part of the box
represents the postcondition. The precondition of a process is a condition
which the inputs are required to meet, while the postcondition is a condition
which the outputs are required to satisfy. Before understanding the notions

4.3 Processes 57

of pre and postconditions in detail, it is essential to study how the process
transforms its inputs to outputs operationally.

Briefly speaking this process transforms the input data flows, or inputs for
short, x and y to the output data flows, or outputs for short, z and w. Note
that the identifiers like x, y, z, and ware known as data flow variables, but
when bound to specific values, they will represent the concrete data flows. In
this case, we say that the data flows through variable x and yare available,
or simply data flows x and yare available. We will discuss the notion of data
availability in detail in Section 4.4. But for now this interpretation is sufficient
to help us proceed to an explanation of the operational semantics of a process.

Precisely speaking, the operational semantics of this process is interpreted
by the sequence of activities:

1. when both the input data flows x and y are available, the process is en­
abled, but it will not execute until the output data flows z and w become
unavailable.

2. the execution of the process consumes the input data flows x and y, and
generates the output data flows z and w.

Note that the availability of input data flows is not the only condition for
executing a process. In fact, the execution requires both the availability of
the input data flows and the unavailability of the output data flows. It is
also important to understand the fact that only one of the input data flows x
and y becomes available does not enable the process. Furthermore, after the
execution of the process, all the input data flows are consumed; that is, they
become unavailable.

We must emphasize that only understanding the operational meaning of a
process is not sufficient for understanding the function of the process precisely.
For example, how are the input data flows x and y used to generate the output
data flows z and w? To answer questions like this, we need to provide a textual
specification that describes the relation between the input data flows and
output data flows. Such a specification is mainly composed of a precondition
and a postcondition; both are predicate expressions. The precondition is a
necessary condition that must be met by the input data flows in order for the
process to be executed correctly. In other words, if the precondition is not
satisfied by the input data flows, no correct output data flows are guaranteed.
The postcondition shows a condition that the output data flows must satisfy
after the execution of the process. Usually, in a postcondition the relation
between the input data flows and output data flows are defined. Thus, how
the input data flows are used to generate the output data flows can be seen
clearly.

For example, the process A in Figure 4.2 is specified as:

process A(x: Ti_I, y: Ti_2) z: To_I, w: To_2
pre P(x, y)
post Q(x, y, z, w)
end_process

58 4 The Module

For consistency in documentation, process and end_process are a pair of
keywords to mark the start and end of a process specification, respectively,
and the process name A, and the input and output data flow variables must
be kept the same as they appear in the graphical representation. Every data
flow variable, including input and output data flow variables, must be declared
with a type, such as nat, int, real. The declarations of the input data flow
variables are given within parentheses following the process name A, and the
declarations of the output data flow variables are given after the parentheses.
Each variable declaration has the form

variable: type

and different declarations are separated by a comma. For example, the input
data flow variable x is declared with the type Ti_l and y with Ti_2, and
their declarations are separated by a comma. Likewise, the output data flow
variables z and w are declared with the types To_l and To_2, respectively.

The order of the declarations of data flow variables must be consistent
with the order of their appearances in the corresponding graphical notation:
the top-down order of appearances in the graphical notation corresponds to the
left-right order of declarations in the textual specification. Thus, we can avoid
potential confusions in understanding processes. For example, the specification
of process A in the following form

is illegal because x appears in a higher position than y in the graphical nota­
tion, which is inconsistent with the left-right order in the textual specification.

pre is a keyword indicating the start of the precondition of the process,
and the keyword post indicates the start of the postcondition. P(x, y) is the
precondition of the process A, possibly involving x and y. Q(x, y, z, w) is the
postcondition that possibly involves both the input variables x and y, and
the output variables z and w, since it defines the relation between inputs and
outputs. As an example, let us assume that all the variables x, y, z, and ware
integers, and the process A does addition and subtraction based on x and y.
Then the process A can be specified as

process A(x: int, y: int) z: int, w: int
pre x > 0 and y > 0
post z = x + y and w = x - y
end _process

The precondition states that both x and y must be greater than zero in order to
assure a correct execution of this process. The postcondition requires that the

4.3 Processes 59

output data flow z be equal to the addition of x and y, and w the subtraction
of y from x, after the execution of the process.

The declarations of input or output variables can be grouped together if
they share the same type. For example, both x and yare the variables of type
int, and so are z and w. Therefore, we can group x and y together, and z and
w together in the specification of the process A to adopt the following form:

process A(x, y: int) z, w: int
pre x > 0 and y > 0
post z = x + y and w = x - y
end _process

This form is different from the previous one only in syntax, but not in se­
mantics. A comma must be used to separate different variables in a group.
Note that we must not group any input and output variables together, as
they must be written in different places in the specification: input variables
are given within the parentheses whereas the output variables are given after
the parentheses.

Sometimes we may not want to impose any specific constraint on the input
data flows of a process. That is, any input data flows of their types are legal
inputs to this process. In this case, we let the precondition be the boolean
value true, as in

process A(x, y: int) z, w: int
pre true
post z = x + y and w = x - y
end _process

Likewise, the same thing can be done for the postcondition of the process, as
m

process A(x, y: int) z, w: int
pre x > 0 and y > 0
post true
end_process

According to this, any output data flows, as a result of the execution of the
process, will satisfy the specification.

Sometimes we may not care what exactly a process does. For example,
some university may want to give a special grant to a distinguished researcher
for whatever research he or she wishes to conduct. In such a case, this univer­
sity may require no precondition and postcondition for the researcher's work.
A process of this kind is specified with both pre and postcondition being true,
as in

60 4 The Module

- x =0,-- y

Fig. 4.3. Processes with multiple ports

process A(x, y: int) z, w: int
pre true
post true
end_process

For the sake of simplicity, SOFL allows the omission of the pre and postcon­
dition parts in this special case. Thus, the above process A can be written
as

process A(x, y: int) z, w: int
end _process

Of course, we can omit either the precondition or the postcondition if it is
true, such as in

or

process A(x, y: int) z, w: int
post z = x + y and w = x - y
end_process

process A(x, y: int) z, w: int
pre x > 0 and y > 0
end _process

In other words, the absence of a precondition or a postcondition means that
it is defined as true.

A process may have multiple input ports and/or output ports holding mul­
tiple groups of input and/or output data flows. Figure 4.3 illustrates various

4.3 Processes 61

forms of such a process. The process B has two input ports receiving the data
flows x and y, and one output port holding the data flow z. When either x or
y is available, process B takes x or y, but not both, as input, and produces
z as output. The short horizontal line between the two input ports denotes
an exclusive relation between the two groups of data flows in the sense that
only one of them can be consumed in producing the output data flow. It is
worth noting that this does not preclude situation in which both x and yare
available. In such a situation, process B will choose non-deterministically one
of x and y, say x, as its input for an execution. As the result of this execution,
the data flow x is consumed, but the availability of y remains unchanged, and
z is made available. Since y is still available, process B is enabled again, but
its execution will not start until z is consumed by another process. Once z
is made unavailable, process B will start an execution that consumes y and
generates another z.

The formal specification of process B may be given as

process B(x:Ti_l I y: Ti_2) z: To_l
pre P(x, y)
post Q(x, y, z)
end _process

The vertical line between the declarations of x and y in the textual specifi­
cation corresponds to the horizontal line in the graphical representation of
process B, denoting the exclusive relation between x and y. Since there is a
possibility that either x or y, but not both, is available, and this availabil­
ity will enable process B, we need to give the precondition as a disjunction
of clauses, each involving either x or y but not both, in order to avoid an
unexpected situation in which the precondition of the process can never be
evaluated to true. For example, we can specifically define process B as follows:

process B(x: int I y: int) z: int
pre x > 0 or y > 0
post z = x + 1 or z = y - 1
end _process

Since the output variable z is defined based on one of the input variables x and
y, the postcondition also needs to be a disjunction in this case. Otherwise, the
postcondition may never be satisfied by any output data flows. Let us consider
the following specification, which is derived from the modification of process
B, as an example:

process B(x: int I y: int) z: int
pre x > 0 and y > 0
post z = x + 1 and z = y - 1
end _process

62 4 The Module

Suppose x, but not y, is available and greater than zero; then the precondition
becomes

x> 0 and nil ,

which is equivalent to nil (as explained in Chapter 3). Similarly, the postcon­
dition also evaluates to nil due to the unavailability of y.

However, when no specific constraints are needed for all the possible input
or output data flows, we will just let the precondition or postcondition be the
boolean value true, as in

process B(x: int I y: int) z: int
pre true
post z = x + 1 or z = y - 1
end_process

But, if there is a specific constraint on x but not on y in the precondition,
for example, then we need to adopt a special symbol extended from the truth
value true, to accurately reflect this condition, as illustrated by the process
specification

process B(x: int I y: int) z: int
pre x > 0 or true(y)
post z = x + 1 or z = y - 1
end_process

Where true(y) is a predicate (not a truth value) defined as follows:

true(y) = true if y is available
true(y) = nil if y is unavailable

Thus, when x is available while y is not, the true(y) is nil, and the entire
precondition can still be satisfied by x.

Now let us discuss the other forms of processes given in Figure 4.3. Pro­
cess C takes x as input and produces either z or w, but not both. The short
horizontal line between the two output ports related to z and w denotes an
exclusive relation between z and w. Note that, which of z and w is generated
can be nondeterministic; but it can also be deterministic, depending on how
the process C is formally specified. For example, we can specify process C as

process C(x: int) z: int I w: int
pre x> 0
post z = x + 1 or w = x * 2
end _process

4.3 Processes 63

Upon the availability of input data flow x, this process generates either z that
equals x + 1, or w that doubles x, but indicates no definite condition for
choosing the generation of z or w. Therefore, it describes a nondeterministic
situation. The exclusive relation between the availability of z and w is reflected
using the vertical line between the declarations of z and w, as with the input
data flows described previously.

If the generation of x or w needs to be deterministically defined, specific
conditions must be given. For example, the specification

process C(x: int) z: int I w: int
pre x> 0
post x < 10 and z = x + 1 or x >= 10 and w = x * 2
end _process

defines z when x < 10, and otherwise w when x >= 10.
Since only one of z and w can be generated as a result of executing the

process, the postcondition of process C is given as a disjunction of clauses, each
involving only one of output variables z and w. Note that the postcondition
cannot be a conjunction; otherwise, the semantics of the formal specification of
the process will conflict with its operational semantics. For instance, suppose
the operator or is changed to and in the postcondition of process C, forming

process C(x: int) z: int I w: int
pre x> 0
post z = x + 1 and w = x * 2
end _process

This postcondition will be impossible to satisfy with only one of the output
data flows z and w. Note that only one of z and w is generated as the result
of executing process C.

The process D in Figure 4.3 takes either x or y as input, and generates
either z or w as output. But which input data flow is used to produce which
output data flow is not precisely given by the graphical symbol of the process.
This detailed level definition can be given in the formal specification of the
process. For example, process D is specified as follows:

process D(x: Ti_1 I y: Ti_2) z: To_1 I w: To_2
pre P(x, y)
post x <> nil and Q_1(z, x) or y <> nil and Q_2(y, w)
end_process

When x is available, denoted by the expression x <> nil, output data flow
z should be made available as a result of executing the process. When y is
available, denoted by y <> nil, w should be generated. When both x and y
are available, the generation of z or w is nondeterministic. In general, within

64 4 The Module

x z ---.

Fig. 4.4. A process with a data flow loop

a process specification there is no easy way to define exactly which of the
available input data flows connecting to different ports needs to be consumed
for executing the process. For this reason, the availability of more than one
input data flows going to different input ports of a process should be avoided,
unless it is absolutely necessary.

A process may have a data flow loop: a data flow is both the input and the
output of the process. For instance, process A1 in Figure 4.4 has a data flow
loop formed by data flow y. This process describes a counter. The initial value
of the counter is provided by data flow x with the value O. Then data flow y is
generated as an increment of x, and y keeps increasing until its value reaches
100. In this case, data flow z is generated to take 100 as the final result of this
loop. This process can be specified as follows:

process A1(y: natO I x: natO) y: natO I z: natO
pre x = a or true(y)
post y = x + 1 or

-y < 100 and y = -y + 1 or
-y >= 100 and z = -y

end_process

In the postcondition, the variable -y, decorated with the tiled symbol -, de­
notes the input data flow y, while y denotes the output data flow y. As we
will see in Section 4.5 of this chapter, the same technique will also be used to
represent data stores in the postconditions of processes.

A process may have no input or output data flow. The graphical represen­
tations of such a process is given in Figure 4.5. Process E has no input data
flow; it has only an output data flow z. Such a process is intended to provide
a data flow like z whenever requested by other processes in a CDFD, so its
operational semantics is described as follows: the process is always enabled to
execute; once the output data flows are consumed, the new output data flows
are generated. In other words, the output data flows of such a process are
always available for use. We call this kind of process source process or source.
The formal specification of process E has the form:

4.3 Processes 65

Fig. 4.5. Processes with no input or output

process EO z: To_1
pre P
post Q(z)
end _process

Since there is no input data flow to this process, no input data flow variable
is given in the parentheses; the precondition should involve no input variable
(usually given as true unless the process accesses some data stores), and
the output variable z should not be defined based on any input variable. For
example, we can specifically define process E as follows:

process EO z: natO
pre true
post z > 10
end _process

The output variable z is defined independently of any other variables in the
postcondition. According to this specification, a natural number greater than
10 is produced after the execution of process E. Compared with the relations
between output variables and input variables given in the previously intro­
duced process specifications, the relation z > 10 implies a nondeterministic
output: any natural number greater than 10 could be the output.

Process F in Figure 4.5 has no output data flow, but has an input data
flow. When the process is enabled by the input data flow x, it always starts
execution immediately. The effect of the execution is to consume the input
data flow. As this kind of process generates no output, we call it a sink process
or a sink. The formal specification of such a sink process has the form

process F(x: Ti_1)
pre P(x)
post Q
end_process

66 4 The Module

Fig. 4.6. An illegal process with no input and output

-x~ bd- y ---'

Fig. 4.7. A process with empty input port and output port

The precondition may involve the input variable x, but no output variable
should occur in the postcondition. In this case, the postcondition is usually
specified as true unless the process accesses a data store (see details of store
access by processes in Section 4.5). A specific example given below can help
illustrate the principle of specifying a sink process.

process F(x: natO)
pre x> 5
post true
end _process

Note that processes with neither input data flow nor output data flow are
illegal processes, since they provide no useful functions. For example, the
process G in Figure 4.6 is illegal.

Sometimes we may need an empty input port and/or an empty output
port, together with other non-empty ports. An empty port connects to no
data flows. The process Al in Figure 4.7 includes an empty input port and an
output port. The process may generate y based on input x or independently of
any input data flow. It may also just consume x and produce no output data
flow. However, the situation of producing no output data flow independently
of any input data flow is definitely disallowed, as it denotes the same situation
as process G given in Figure 4.6. As an example, process Al can be specified
as follows:

process AI(x: int I) I y: int
pre true
post x > 0 and y = x + I or

x < = 0 and y = x - I or
x = nil and y = 0

end_process

4.3 Processes 67

~ ~;: xl
A

xn

Fig. 4.8. The general structure of process

The declaration of input variables consists of two parts, separated by the
symbol I. The part on the left hand side of 1 is the declaration of input variable
x, while the part on the right hand side is an empty space denoting the dummy
input port. Similarly, we use the same format to express the combination of
dummy output port and other output variables. Process Al requires that when
x is available and greater than 0, y should be produced and be equal to x +
1; when x is available and less than or equal to zero, y should be generated
and be equal to x - 1. Otherwise, if x is unavailable, y will be generated with
the value zero. Since processes with this kind of structure likely lead to a
complicated specification, they should be avoided if possible.

In summary of all the possible forms described so far, process A in Figure
4.8 shows the general structure of a process. Each xi (i=1...n) or yj (j=1...m)
denotes a group of data flows. When all of the data flows connected to one
port are available, we say that this port is available. This concept applies to
both input ports and output ports. The meaning of this process is interpreted
as the following sequence of actions:

1. when one ofthe input ports is available, the process A is enabled, and will
not be executed until all the output ports become unavailable.

2. the execution of the process consumes all the input data flows connected
to the available input port for activating the execution, and makes exactly
one of the output ports available (and therefore all the output data flows
connected to this port become available).

Note that a port is available if and only if all the data flows connected to it
are available. In other words, if any single data flow of a port is unavailable,
the entire port will be unavailable.

The formal specification of process A in Figure 4.8 is abstracted as

process A(xl_dec 1 x2_dec 1 ... 1 xn_dec)
yl_dec 1 y2_dec 1 ... 1 ym_dec

pre P(xl, x2, ... , xn)
post Q(xl, x2, ... , xn, yl, y2, ... , ym)
end _process

Each xi_dec (i =1...n) is a sequence of input variable declarations separated
by comma, such as

68 4 The Module

xl yl_
y2_

x2 y3_

x3 y4_

x4 H
x5 y5_

y6_

- x6
y7_

Fig. 4.9. An example of process with multiple ports

where xi_I, xi_2, ... , xi_n are the data flow variables connecting to input
port xi, and Ti_l, Ti_2, ... , Ti_n are their types, respectively. Likewise, each
yLdec (j = L.rn) is a sequence of output variable declarations with a form
similar to xi_dec.

For example, Figure 4.9 gives a process with multiple ports. The outline
of its formal specification is

process A(xl: Ti_l, x2: Ti_2 I x3: Ti_3, x4: Ti_ 4, xS: Ti_S I x6: Ti_6)
yl: To_I, y2: To_2, y3: To_3 I y4: To_ 4, yS: To_S I

y6: To_6, y7: To_7
pre P(xl, x2, x3, x4, xS, x6)
post Q(xl,x2, x3, x4, xS, x6, yl, y2, y3, y4, yS, y6, y7)
end _process

where Ti_l, Ti_2, ... , Ti_6 are types for input variables xl, x2, ... , x6, and
To_I, To_2, ... , To_7 are types for output variables yl, y2, ... , y7, respectively.

To avoid confusion in the formal specification of a process, a syntactical
rule must be applied when a process is drawn: all the input or output data
flow variables must be different from each other. Thus, the process given in
Figure 4.10 is an illegal process, as the two input data flows are labeled with
the same name x.

4.4 Data Flows

A data flow represents a data transmission from one process to another, as we
have understood, more or less, from the description of the previous section.

4.4 Data Flows 69

x ----+
X ----+

Q r- y ----+

Fig. 4.10. An illegal process

x •

y ------.
Fig. 4.11. Two kinds of data flows

A data flow has a name, denoted by an identifier, and indicates the direction
in which the data are transmitted. A legal identifier is formed by an English
letter followed by numbers, letters, or their combinations. For the sake of
readability, the underscore symbol "_ " may also be used in identifiers.

There are two kinds of data flows. One is known as active data flow, and the
other is control data flow. Figure 4.11 shows the graphical representations of
these two kinds of data flows. An active data flow is denoted by a solid directed
line like data flow x, while a control data flow is denoted by a dashed directed
line like y. The primary function of an active data flow is to transmit the actual
data that are expected to be used by another process, whereas a control data
flow transmits "special data" that will not be used by another process during
its execution, but its availability can enable the process (thereby playing the
role of controlling the process execution). The control data flow is usually
used when describing the requirement that a process be executed after the
execution of its preceding process without the need for receiving any useful
data flow. For example, Figure 4.12 shows that process B must be executed
after process A, without the need for any "useful" data (but for a "signal" y

supplied by process A), whereas process C, which must also be executed after
process A, needs the actual data z supplied by process A for generating its
output data flow w.

In general, the graphical symbol of a data flow given in Figure 4.11 denotes
a data flow variable, not a specific value like in the classical data flow diagrams.
When a specific value is bound to this variable, the data flow through this
variable is said to become available and the variable is said to be defined; oth­
erwise, the variable is said to be undefined. Since we use a data flow identifier,
say x, as a variable and a specific data flow, alternately from time to time, for
the sake of simplicity we use the following phrases equivalently:

70 4 The Module

Fig. 4.12. An example of using active and control data flows

• data flow x is available.
• data flow variable x is defined.

Likewise for the following notions:

• data flow x is unavailable.
• data flow variable x is undefined.

Thus, we treat x as a data flow variable whenever we talk about whether it is
defined or undefined, and as a data flow whenever we talk about whether it
is available or unavailable.

Every data flow variable must be declared with a type, such as nat, int,
real, so the binding of values to a variable must be restricted to its type. That
is, when the value of its type is bound to the variable, we say this variable is
defined; otherwise, it is undefined. Formally,

Definition 3. Let x be a data flow variable of type T. x
is defined if a value of T
is bound to x. Otherwise, x
is undefined.

This concept is similar to a water pipe system. A data flow variable is like a
water pipe and a specific data flow is like water going through the pipe, as
shown in Figure 4.13. When water comes in the pipe, the pipe is occupied
(defined); when water flows out, the pipe becomes empty (undefined).

We use bound(x) to mean that variable x is defined or data through x is
available. Formally, predicate bound is defined as follows:

bound: X - > bool
bound(x) = true if x is defined, and false if x is undefined

where X is a set of variables.

4.5 Data Stores 71

x

() ()
Fig. 4.13. An illustration of data flow variable and data flow

As we have seen in section 4.3, a declaration of data flow variables uses
the form:

where v_i (i = L.n and n 2': 1) are variables and T is a type. There are
several kinds of types available in SOFL, and they will be introduced in later
chapters. But for now, we use only the basic types given in discussions of the
fundamental concepts at the beginning of Section 3.1 of Chapter 3.

Every control data flow variable must be declared with a special type
known as signal, which is denoted by the symbol sign. This type contains
only one value denoted by the exclamation mark !, serving as a signal to make
the related control data flow variable defined. That is, a data flow variable
of type sign is defined if it is bound to the value !; otherwise, the variable is
undefined. Formally,

sign = { ! }

There is no operator on this type. It is worthy of notice that no active data
flow variable can be declared with type sign.

The availability of control data flows can be represented in different ways.
Let x be a control data flow variable, the following three expressions mean the
same thing: variable x is defined or data flow x is available.

• bound(x)
• x <> nil
• x = !

For the sake of readability of process specifications, the third expression is not
used in this book unless it is really necessary.

4.5 Data Stores

A data store, or store for short, is a variable that holds data in rest. In contrast
with data flows, stores do not actively transmit data to any process; rather

72 4 The Module

I n I sl

Fig. 4.14. A data store

Fig. 4.15. Different stores sharing the same name

they hold data that is always ready to supply to any process when requested.
In fact, the notion of store is not unfamiliar to us, since it is available almost
everywhere in our daily life. For example, a library is a store of books; a
warehouse is a store of products; a child's money box is a store of cashes and
coins; and so on. In a program system, a file or database can be perceived as
a store. But in SOFL specifications, stores are treated more generally: they
are just normal variables holding values ready for use by processes.

A store has a name and number for reference by people who are involved
in the building of the specification. Figure 4.14 shows the general structure of
the graphical representation of a store. The store is named 51, and identifiered
by number n. As there may be many people working on the same large CDFD
and the same name needs to be given to different stores, these stores can be
distinguished from each other by different numbers. Figure 4.15 shows two
different stores with the same name; they are different because they have
different numbers. Thus, we can use the identifier my _file_l to denote the
store on the left hand side and use my _ fi Ie _ 2 to denote the store on the right
hand side in the textual formal specification of the associated module. This
point will be explained in more detail later in this section.

A store can be connected, by directed lines, only to processes. It does not
make any sense to connect a store to a data flow because a data flow has no
role of making requests for data; it can only transmit data from one process
to another.

There are two ways to connect a store to a process, each denoting a dif­
ferent kind of access to the data in the store by the process: read and write.
Figure 4.16 illustrates the different connections between processes and stores.
The connection between store 51 and process A on the left hand side represents
a read from the store by the process during its execution. That is, process A
only uses the data of store 51 in producing its output data flow y1, and 51
stays unchanged before and after the execution of the process. The connec­
tion between store 52 and process B given on the right hand side represents
a writing to or updating 52 by B. This does not exclude the case of reading
data from 52, but must ensure that writing to the store is definitely involved.

4.5 Data Stores 73

~ / yl
y2

- xl---.. A jI B

(1) (2)

Fig. 4.16. Connections between processes and stores

A writing to the store may include the cases of updating part of the data
of s2 or completely replacing the current data of s2 with new data. These
two kinds of connections provide convenient ways to model communications
among processes through stores.

Note that the directed lines connecting stores and processes must not be
drawn from or to the input ports and output ports because they are reserved
for connecting input data flows and output data flows. However, there is no
restriction on where the connection lines can be drawn from or to stores: you
can draw a connection line from or to anywhere on any edge of a store.

We treat a store connected to a process as an external variable of the
process, which is, in fact, a state variable of the associated module whose
CDFD contains the store. We will discuss more about the state of modules in
the next section, but for now let us focus on the connection between stores
and processes.

When writing a formal specification of a process accessing a store, the
method of access must be properly indicated by using the keywords rd or wr.
rd is an abbreviation for "read", and wr is an abbreviation for "write" . A store
variable declared as a rd external variable of a process means that the value,
or part of the value, of the variable will possibly be read by the process, but
not be updated during the execution of the process. A store variable declared
as a wr external variable means that the variable will possibly be updated
during the execution of the process, and it does not eliminate the possibility
of the process reading from the variable. For example, process A in Figure
4.16 can be specified as

process A(x1: int) y1: int
ext rd s1: int
pre xl > 0 and sl > xl
post yl = sl - xl
end _process

74 4 The Module

where the keyword ext is an indication of the external variable declarations.
Each declaration has the form

access variable: type

where access is one of the keywords rd and wr; variable is the variable to be
declared like 51; and type is a type, the values of which can be bound to the
variable. Note that type can be omitted if the corresponding store variable is
declared as a state variable in the var section of the module; see details of the
var section in Section 4.13.

The specification of process A describes a subtraction: if the input data flow
xl is greater than zero and is less than the store value 51, then the subtraction
of xl from 51 will be bound to y1 as the output; otherwise, anything may
happen. Since external variable 51 is not updated during the execution of
process A, the value of 51 before and after the process is the same. Therefore,
51 occurring in both the pre and postcondition denotes the same variable with
the same value before and after process A.

Process B writes data to store 52, so it can be specified as follows:

process B(x2: int) y2: int
ext wr 52: int
pre x2 > 0
post y2 = -52 + x2 and 52 = -52 - x2
end _process

This process produces output y2, which is equal to the addition of input x2
and the initial value of store 52, and updates store 52 by subtracting x2 from
the initial value of 52. The external variable 52 is used in the postcondition
as a two state variable: initial external variable and final external variable.
The initial external variable, denoted by the decorated identifier -52 with the
mark tilde placed before the identifier, represents the value of external variable
52 before the process, while the final external variable, denoted by the same
identifier 52, represents the value of the external variable after the process.

Note that we must not omit the tilde mark - in the equation 52 = -52 - x2
to write it as 52 = 52 - x2 in the postcondition, because it will not define the
52 properly as a result of the process. Actually, the omission of the tilde mark
in this case converts the postcondition into a contradiction, which cannot be
satisfied by any possible values of 52 after process B.

Furthermore, the same store can be connected to multiple processes, and a
process can be connected to multiple stores as well. The connections between
a store to multiple processes mean that the store will be accessed from the
processes in specific ways, indicated by the type of the connections (i.e., read
or write), during their executions. The connections from a process to many
different stores mean that the process will access those stores during its exe­
cutions. For example, Figure 4.17 shows that process A reads data from store

- xl---. A x2

4.5 Data Stores 75

B

I
/'12

Fig. 4.17. Multiple connections between processes and stores

51 and updates store 52, while process B reads data from store 52 and writes
to store 53. Let us take process A as an example to show how to write a formal
specification involving multiple external variables representing stores.

process A(xl: int) yl: int
ext rd 51: int

wr 52: int
pre P(xl, 51)
post Q(xl, yl, 51, -52, 52)
end_process

In the ext part, 51 is declared as a rd variable and 52 as a wr variable.
The general structure of a process specification considering all the possible

situations discussed so far is summarized as:

process A(x_l: Ti_l I x_2: Ti_2 I ... I x_n: Ti_n)
y_l: To_II y-2: To_2 I ... I y-m: To_m

ext acc_l z_l: Te_l
acc 2 z 2: Te 2

acc_q z_q: Te_q
pre
post

P(x_l, x_2, ... , x_n, z_l, z_2, ... , z_q)
Q(x_l, x_2, ... , x_n, y_l, y_2, ... , y-m,
-z_l, -z_2, ... , -z_q, z_l, z_2, ... , z_q)

end_process

Each acc_i (i=l...q) is one of the keywords rd and wr. The precondition may
involve all the input variables and external variables, depending on the type
of their access control. The postcondition may involve all the input variables,
output variables, initial external variables, and final external variables. Note

76 4 The Module

that each declaration given in this general form, such as x_l: Ti_l, can be a
grouped declaration like:

The specification of the process imposes a proof obligation for verifying its
implementation: for any input satisfying the precondition before the execu­
tion of the process, the output of the process must satisfy the postcondition.
Formally,

forall[x_l: Ti_l, ... , x_n: Ti_n, -z_l: Te_l, -z_q: Te_q] I
((P(x_l, nil, ... , nil, -z_l, ... , -z_q) =>

(exists[y_l: To_l, ... , y_m: To_m. z_l: Te_l , z_q: Te_q] I
Q(x_l, nil, ... , nil, y_l, nil, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or
Q(x_l, nil, ... , nil, nil, y_2, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or

or
Q(x_l, nil, ... , nil, nil, nil, ... , y_m. -z_l, -z_q. z_l, ... , z_q)
)

) or

or
(P(nil. nil, ... , x_n, -z_l, ... , -z_q) =>
(exists[y_l: To_l, ... , y_m: To_m, z_l: Te_l , z_q: Te_q] I

)
)

)

Q(nil, nil, ... , x_n, y_l, nil, ... , nil, -z_l, ... , -z_q, z_l, ... , z_q) or
Q(nil, nil , x_no nil, y_2, nil. -z_l -z_q. z_l , z_q) or

or
Q(nil, nil, ... , x_n, nil. nil y_m, -z_l , -z_q, z_l, z_q)

For the sake of simplicity, a grouped expression for bound variable constraints
is adopted. For example, suppose the declaration of xl is interpreted as the
one given previously; then xl: Ti_l is equivalent to the following sequence of
constraints:

Likewise, for other bound variable constraints, such as x2: Ti_2, yl: To_l,
and so on.

According to this proof obligation, for any group of input data flows con­
nected to one port and initial values of the external variables of the process,
if the precondition holds before the process, then there must exist a group of
output data flows connected to one output port and final values of the exter­
nal variables such that the postcondition holds. However, if the precondition

4.5 Data Stores 77

xl -----.
x2 -----. yl -----.

B y2 x3 -----. -----.
y3 -----.

Fig. 4.18. A simple process

is false, then the postcondition can be either true or false, indicating that
the specification is not responsible for such a situation. It is the operation
environment that needs to ensure the truth of the precondition of the process
before its execution.

A simpler case can help illustrate the proof obligation of a process. Con­
sider the process B in Figure 4.18 as an example. The specification of process
B is

process B(x1, x2: int I x3: int) y1: int I y2, y3: int
ext wr st: int
pre xl > 0 and x2 > 0 or x3 > 0
post yl > xl + x2 + -st and st = -st - (xl + x2) or

y2 + y3 >= x3 + -st and st = -st + x3
end _process

Applying the general predicate expression of the proof obligation given pre­
viously, we derive the proof obligation of this process:

forall[xl, x2: int, x3: int, -st: int] I
((xl> 0 and x2 > 0 or nil > 0 =>

(exists[yl: int, st: int] I

)

yl > xl + x2 + -st and st = -st - (xl + x2) or
nil + nil >= nil + -st and st = -st + nil

) or
(nil> 0 and nil > 0 or x3 > 0 =>
(exists[y2, y3: int, st: int] I

)
)

)

nil> nil + nil + -st and st = -st - (nil + nil) or
y2 + y3 >= x3 + -st and st = -st + x3

78 4 The Module

We can simplify further this expression by applying the rules that any
arithmetic operation involving the "undefined" (Le., nil) as an operand yields
nil. Thus we can derive the following simplified expression:

forall[xl, x2: int, x3: int, -st: int] I
«xl> ° and x2 > ° =>

(exists[yl: int, st: int] I
yl > xl + x2 + -st and st = -st - (xl + x2)

)
) or

(x3> ° =>
(exists[y2, y3: int, st: int] I

)
)

)

y2 + y3 >= x3 + -st and st = -st + x3

The proof obligation will not be used until we discuss strategies for spec­
ification construction, reviews, and testing of specifications in Chapters 15,
17, and 18, respectively. The present concern is how we should understand a
process. In other words, what is the semantics of a process. This concept is
essential in understanding the function of processes and in choosing imple­
mentation strategies for processes.

A process describes a relation between initial states and final states of the
process. A relation is a collection of pairs, such as R = {(x_I, y_l), (x_2,
y_2), (x_3, y_3)}. Two elements are said to have relation R if and only if the
pair composed of them belongs to R. For example, x_I and y_l have relation
R, usually represented by x_I R y_l. An initial state is the collection of all the
input data flow variables and the initial external variables, together with their
values, while a final state is the set of all the input data flow variables, initial
external variables, output data flow variables, and final external variables,
together with their values. Thus, a formal definition of the semantics of process
A is

where Sem(A) denotes the semantics of process A; s_o and s_l are the initial
and final states, respectively; and pre_A(s_O) and post_A(s_O, s_l) denote
the pre and postconditions of process A, respectively.

It is worth noting that process A actually associates only those initial states
satisfying the precondition to the final states meeting the postcondition. All
the initial states that do not satisfy the precondition have no precisely defined
final states to be associated with. In other words, the final states corresponding
to the initial states not satisfying the precondition are uncontrollable by the
postcondition.

4.7 Conditional Structures 79

4.6 Convention for Names

The names of processes, data flows, and stores are denoted by identifiers. An
identifier is a string of English letters, digits, and the underscore mark, but the
first character must be a letter. An identifier is case sensitive, so Student_1 is
different from student l.

Syntactically, it is the convention in SOFL that names of processes are
usually written with an upper case letter for the first character of each En­
glish word and lower case letters for the rest of characters, whereas names of
data flows and stores are usually written using lower case letters for all the
characters. If more than one English word is involved in a name, those words
are separated by the underscore mark. Digits can be freely combined with
letters and the underscore mark in names. For example, Receive_Command
and Check_Password in Figure 4.1 denote two processes, respectively, while
card_id, pass, and w_draw are used to name data flows.

To provide good readability of CDFDs, the names of processes, data flows,
and stores should be given appropriately so that they convey the potential
meaning of the corresponding processes, data flows, or stores. Usually, pro­
cess names should indicate the potential functionality or behavior, such as
Receive_Command and Check_Password, while the names of data flows and
data stores should indicate the nature of the data they are carrying or hold­
ing. For example, card_id, pass, and w_draw are sensible names for data flows,
and account_file is an acceptable name for the store in Figure 4.1.

4.7 Conditional Structures

In addition to processes, data flows, and stores, other comp(;ments, known as
structures, are also provided in SOFL for the construction of complex CDFDs.
In this section, conditional structures are introduced, and other structures will
be discussed in the following sections.

There are three kinds of conditional structures: single condition structure,
binary condition structure, and multiple condition structure. These structures
correspond respectively to the if-then- statement, if-then-else- statement, and
case statement available in many programming languages like Pascal, but with
some differences in both syntax and semantics. Each conditional structure
consists of a node, denoted by a diamond or box, input data flow, and output
data flows. Figure 4.19 shows the graphical representations of these three
structures.

The data flow on the left hand side of each node is known as input data
flow, and the data flows on the right hand side of the node are called output
data flows.

The single condition structure means that when input data flow x is avail­
able and satisfies condition C(x), then the data flow will be passed to variable

80 4 The Module

- x -<3>- xl --

Single condition structure

~
Xl--

x C(x)

x2 __

Binary condition structure

Cl(x) xl __

-- x
__ ~ __ ~C~2(~X~)~ x2 __

XD __

xn+~

M ultipJe condition structure

Fig. 4.19. Conditional structures

xl. In fact, the single condition structure is like a process with the following
operational semantics:

1. if x is available and satisfies condition C{x), xl is generated to have the
same value as x, and x is consumed.

2. if x is available and does not satisfy condition C{x), x is just consumed,
without generating xl.

The binary condition structure allows a binary choice in moving data items
between processes, and its semantics is interpreted as follows:

1. if data flow x is available and satisfies condition C{x), then data flow xl
with the same value as x will be made available.

2. otherwise, if C(x) evaluates to false, then data flow x2 with the same value
as x will be made available.

3. in either case above, the input data flow x will be consumed.
4. if C{x) is "undefined," x is just consumed, without producing any of xl

and x2.

Note that the small black circle marks the branch when C{x) evaluates to
false.

The multiple condition structure allows only one data flow to be generated
based on one input data flow under the multiple conditions. Specifically, the
multiple condition structure in Figure 4.19 means that

4.8 Merging and Separating Structures 81

1. if x is available and satisfies condition Ci(x) (i=l...n), the corresponding
data flow xi with the same value as x is made available.

2. otherwise, if Ci(x) evaluates to false, then Ci+1(x) will be tested, and such
tests go on until one of the Ci(x) (i=l...n) evaluates to true.

3. however, if none of C1(x), C2(x), ... , Cn(x) are satisfied by x, then xn+1
with the same value as x is made available as default.

4. in any case above, the generation of the output data flow results in the
consumption of x.

Note that the multiple condition structure is similar to a case statement in
the conventional programming language like Pascal. That is, the conditions of
C1(x), C2(x), ... , Cn(x) are tested in turn, and once one of them evaluates to
true, the corresponding output data flow will be generated. However, if none
of the given conditions is true, the default data flow will be generated. Note
that the default data flow must always be provided as a requirement of the
multiple condition structure. In this way, we ensure that the input data flow
is always transformed to an output data flow of the structure.

In Figure 4.19 we use different variables to name the output data flows,
although they have the same value as the input data flow. However, this is not
required by SOFL syntax. As long as there is no confusion in distinguishing
data flows, the same identifier can be used to denote both the input and the
output data flows of a conditional structure. For example, we can rename
all the output data flows in the multiple condition structure as x; this will
not cause confusion in specification because they are distinguished by their
drawing positions.

Usually the output data flows are connected to different processes: they are
treated as the input data flows of those processes. However, it is not impossible
to have more than one different output data flow of a conditional structure
connecting to the same process. If this is the case, we must make sure that all
of those data flows are named differently, as required by the syntax of process.

4.8 Merging and Separating Structures

The conditional structures given in Figure 4.19 have a common feature: they
all have a single input data flow. That is, the condition C(x) can only apply
to the single input data flow x. However, sometimes we may need to decide
where to transfer more than one data flows based on a condition involving all
of those data flows. Such a case obviously cannot be described by using the
conditional structures introduced so far. One solution to this problem is to
model this case as a process: the multiple data flows are taken by the process
and the output data flows with the same values are generated to transmit
data to the expected destinations. However, the graphical representation of
this process may not be straightforward in conveying sufficient information
about such a conditional decision, because without understanding its formal

82 4 The Module

'" x1 X2VX ---.
x3

/

Merging structure

x1

- x ~X2---'
x3

~

Separating structure

Fig. 4.20. Merging and separating structures

specification written in the textual format, it is difficult to figure out the
behavior of this process. Since this kind of conditional decision may often be
used in complex CDFDs, SOFL provides a pair of straightforward merging
and separating structures to resolve this problem.

Figure 4.20 shows the graphical representations of the merging and sepa­
rating structures. Like the conditional structures, both the merging and sep­
arating structures are composed of three parts: node, input data flows, and
output data flows. The merging structure composes input data flows xl, x2,
and x3 into a single composite data flow x. That is, x is formed as a composite
object with the three fields xl, x2, and x3 as its components. The separating
structure is opposite to the merging structure: it breaks up the composite
data flow x into its components xl, x2, and x3. In fact, most of the time the
merging structure and separating structure are used as a pair to describe the
control of data flows.

Figure 4.21 gives an example illustrating the use of the merging and sep­
arating structures. Data flows xl, x2, and x3 generated by processes AI, A2,
and A3, respectively, are merged into the single composite data flow x. If x
satisfies condition C(x), then x is diverted to the upper level data flow of the
binary condition structure, and then divided into the three data flows xl, x2,
and x3 by the related separating node. These data flows are the same as the
input data flows xl, x2, and x3 of the merging node in both type and value.
On the other hand, if x fails to meet condition C(x), then x is diverted to the
lower level data flow of the binary condition structure, and then separated
into the original component data flows xl, x2, and x3.

4.8 Merging and Separating Structures 83

~I 81 II
xl

r:,~1 B2 II

~I B3 II

Fig. 4.21. An example of merging and separating structures

As we can see from this example, using the merging and separating struc­
tures can help us achieve straightforward CDFD, but it may also require us
to draw more data flows compared to the use of a process. For example, the
CDFD given in Figure 4.21 describes a specification equivalent to the CDFD
shown in Figure 4.22, provided that process A is specified as follows:

process A(xl: Ti_l, x2: Ti_2, x3: Ti_3) yl: Ti_l, y2: Ti_2, y3: Ti_3 I
zl: Ti_l, z2: Ti_2, z3: Ti_3

post (C(xl, x2, x3) => yl = xl and y2 = x2 and y3 = x3) and
(not C(xl, x2, x3) => zl = xl and z2 = x2 and z3 = x3)

end _process

where C(xI, x2, x3) is equivalent to C(x) occurring in the CDFD in Figure
4.21. They may appear to be slightly different due to the difference in the
syntax between using xl, x2, and x3 as the components of a composite object
and as individual variables. For example, C(x) may be something like x.xl >
x.x2 + x.x3, while C(xl, x2, x3) may be something like xl > x2 + x3.

In the case of the CDFD in Figure 4.22, we may not have a clear idea
about what the CDFD describes by just looking at the CDFD itself, without
referring to the textual specification of process A, but the entire CDFD has
a simple structure. On the other hand, the CDFD given in Figure 4.21 pro­
vides a straightforward picture about the behavior of the CDFD, but it has a
relatively complicated structure. Which approach should be chosen is really a
matter of the user's preference, although the complexity of the specific CDFD
may need to be taken into account.

84 4 The Module

/11 II ~
81

YI/II 82 II
xl y2

CJ- ~ Y3~11 83 II
x2 A

/ zl -.j I II 84

x3 z2

EY z3 ~II 85 II
""II II 86

Fig. 4.22. An example of modeling the merging and separating structures using
process

4.9 Diverging Structures

A diverging structure transforms an input data flow to either one of the out­
put data flows or all of the output data flows, depending on the type of
the diverging structure. There are two diverging structures: nondeterministic
structure and broadcasting structure, as shown in Figure 4.23. Again, each
of these structures is composed of three components: input data flow, node,

- x

- x

xl
/

~X2 --.
x3

~

xl
/

~x2 --.

'" x3

~

nondeterministic structure

broadcasting structure

Fig. 4.23. Diverging structures

4.9 Diverging Structures 85

"-
YI~1 Al

xl

- x ~a(x2

X3~~

~
/

y3

Fig. 4.24. An example of applying the nondeterministic structure

and output data flows. The node involved in the nondeterministic structure is
known as nondeterministic node, while the node involved in the broadcasting
structure is called broadcasting node.

In the nondeterministic structure the input data flow x is converted into
exactly one of the output data flow variables xl, x2, and x3 in a nondetermin­
istic manner. Meanwhile, the input data flow x is consumed.

The nondeterministic structure is usually used to describe the situation
when a choice of the processes to which a data item flows needs to be made
without the necessity of knowing exactly which one will be chosen. Let us look
at the CDFD in Figure 4.24. The data in variable x can be converted to one
of xl, x2, and x3, depending on which of the processes Al, A2, and A3 can
be first enabled (not necessarily executed). For instance, when x is available,
and data flow yl is available before y2 and y3 become available, then xl will
be made available in order to enable process AI, and x is consumed. Once the
execution of Al terminates, data flow xl is consumed. However, if all of yl, y2,
and y3 are available before x becomes available, then any of Al, A2, and A3
can be enabled. In this case, the nondeterministic structure cannot tell which
process is enabled. Such a nondeterministic situation provides a freedom for
implementation: the implementer can choose any strategy appropriate to the
specific application to implement this nondeterministic structure.

In the broadcasting structure in Figure 4.23, the input data flow x is
transmitted to all of the output data flows xl, x2, and x3, and x is consumed
after the transmission. If no confusion occurs, output data flows xl, x2, and
x3 can be named the same as input data flow x. This structure is usually used
when a data flow needs to be used as input by several processes. Figure 4.25
shows an example of applying the broadcasting structure in a CDFD. Data

86 4 The Module

c]-x

Fig. 4.25. An example of applying the broadcasting structure

flow x generated by process A is transmitted to processes A2, A3, and A4
through equivalent data flows xl, x2, and x3.

4.10 Renaming Structure

The renaming structure is intended to allow the change of data flow variables
without affecting their data (values of the corresponding types). Figure 4.26
gives the graphical representation of the renaming structure.

This structure changes data flow variable xl to yl, x2 to y2, ... , xn to yn,
without changing their values. That is, each data flow yi (i=1..n) represents
the same data flow as xi, but with a different variable.

The renaming structure is usually used to resolve confusion of data flow
variables when an already defined process is reused in a CDFD. Assume that
we want to draw a CDFD that intends to reuse the behavior of process Al in

xl

x2

- xn

yl -----.

y2 -----.

yn -----.

Fig. 4.26. The renaming structure

4.11 Connecting Structures 87

Fig. 4.27. An application of renaming structures

Figure 4.24, but not necessarily its syntactical structure (e.g., input variables).
Suppose process Al is specified as follows:

process AI(yl: int, xl: int)
pre xl + yl > 0
post true
end_process

Then we reuse process Al in the CDFD given in Figure 4.27. The two renaming
structures in the diagram are used to keep both the same input and the
same output variables of process Al used. Thus, the consistency between
the graphical representation of process Al and its formal specification can
be sustained, which helps to improve the readability of the entire module
specification.

4.11 Connecting Structures

A pair of connecting structures are available; they are used together to es­
tablish a connection of data flows in a complicated CDFD in order to reduce
complexity and potential confusion of data flows. Figure 4.28 shows the two
connecting structures. One is composed of the connecting node, denoted by a
circle with a number n in it, and an input data flow, while the other consists of
a connecting node and an output data flow. Note that the data flow variable
x and the number n in both connecting nodes must be kept same in order to
establish a consistent connection of the data flow x.

When used together in a CDFD, this pair of connecting structures in­
dicates that input data flow x of the connecting node in Figure 4.28(a) is
connected to the node in Figure 4.28(b), and further transferred to the out­
put data flow of this node. Thus, crossing data flows, such as xl and x2 in

88 4 The Module

(a)

(b)

Fig. 4.28. The connecting structures

Al

A3

x2
xl

A2

A4

Fig. 4.29. A CDFD with crossing data flows

Figure 4.29, can be avoided by using the connecting structures. For example,
the CDFD in Figure 4.29 can be changed to the one given in Figure 4.30, which
resolves the confusion of data flows xl and x2. The connecting structures are
especially useful when a big CDFD is drawn on different pages.

4.12 Important Issues on CDFDs

To help build desirable CDFDs using the components introduced so far and to
understand their behaviors as a whole, we need to address some fundamental
issues related to both syntax and semantics of CDFDs. For example, how

4.12 Important Issues on CDFDs 89

/0
~X2

~
A2

xl

A3 r:=lI x2/bd
Cif

Fig. 4.30. An example of applying connecting strucutres

can a CDFD be enabled, executed, and terminated? In order to answer these
important questions, it is essential to introduce necessary concepts, such as
starting process, starting node, terminating process, and terminating node. In
this section, we discuss these concepts in detail step by step.

4.12.1 Starting Processes

Starting processes of a CDFD serve as the starting points for enabling and
executing the CDFD.

Definition 4. A starting process of a CDFD is a process with an empty input
port or an input port whose data flows are not the output data flows of any
other processes and structures in the same CDFD.

In other words, a starting process of a CDFD can be enabled without the need
for executing any other processes in the same CDFD. This includes two cases:
a process with an input port, whose data flows are not connected to any other
processes and structures in the CDFD, and a source process (process with no
input data flow). For example, in Figure 4.31, process AI, which takes input
data flow xl or x2, and A2, which takes no input data flow, are both starting
processes of the CDFD.

90 4 The Module

I~ E-Zl-
yl

y5

y2

GI
y6

z2

~
'" z3

~

F Y3

x~ LY4_G
Fig. 4.31. An example of CDFD

4.12.2 Starting Nodes

A starting node is a more broad notion than starting process.

Definition 5. A starting node is either a starting process or any of the nodes
involved in the conditional structures, merging and separating structures, di­
verging structures, and renaming structures whose input data flows are con­
nected to no processes and nodes in the same CDFD.

In fact, a node involved in the structures available in SOFL can be modeled
as a process. Like a process, when the input data flow of a node becomes
available and all of its output data flows are unavailable, the node is enabled
and executed, and then its output data flows are made available. So, it is
not strange to use the term starting node to mean both starting process and
node involved in those structures whose input data flow is not connected to
any other processes in the same CDFD. For example, the node in the binary
condition structure with input data flow x in Figure 4.31, as well as processes
Al and A2, are all starting nodes of this CDFD.

4.12.3 Terminating Processes

A terminating process of a CDFD represents a terminating point of the CDFD.

Definition 6. A terminating process is a process with an empty output port
or an output port whose data flows are not the input data flows of any other
processes and structures in the same CDFD.

4.12 Important Issues on CDFDs 91

According to this definition, several kinds of processes can be terminating
processes. The following list gives all the possibilities:

• a process with no output data flow (empty output port).
• a process with an output port whose data flows connect to no processes

or structures in the same CDFD.
• a process with one empty output port together with other non-empty

output ports.

For example, process A4 and A5 in Figure 4.31 are terminating processes.

4.12.4 Terminating Nodes

Similar to a starting node, a terminating node is also a more broad notion
than terminating process.

Definition 7. A terminating node is either a terminating process or a node in
the conditional structures, merging and separating structures, diverging struc­
tures, and renaming structures that has no output data flow connecting to
other processes and nodes.

For example, processes A4 and A5, as well as the node in the broadcasting
structure in Figure 4.31, are all terminating nodes of the CDFD.

4.12.5 Enabling and Executing a CDFD

A CDFD can be enabled and executed to provide behaviors like a process,
but the question is how the CDFD is enabled and executed, and under what
condition the termination of the execution can be determined. The answers
to these questions are provided by the definitions given below.

Definition 8. A CDFD is enabled if one of its starting nodes is enabled.

In other words, as long as one of the starting nodes of a CDFD is enabled,
we say that the CDFD is enabled. As we have studied early in this chapter,
enabling a process depends on the availability of its input data flows. There
may be several ways to make the input data flows of a starting node available.
They may be made available by some event that has happened outside the
system under construction; for example, the arrival of a train at a railway
crossing sends a signal, which can be modeled as a data flow, to activate the
process that serves as a crossing controller. Sometimes, the input data flows of
a starting node may be generated by the preceding processes in the high level
CDFD; see more details about this issue in Chapter 5, where the hierarchical
CDFDs are discussed.

Definition 9. A CDFD starts execution if one of its input nodes starts exe­
cution.

92 4 The Module

This means that a CDFD starts an execution by executing one of its input
nodes. Each execution traverses paths from a starting node, through some
intermediate nodes, down to some terminating nodes of the CDFD.

Definition 10. An execution of a CDFD is said to be terminated if the fol­
lowing two conditions are satisfied.

• All the terminating nodes are terminated.
• No process in the CDFD is enabled.

The condition that all the terminating nodes are terminated is important.
However, we must understand that this condition does not necessarily require
that all of the terminating nodes be actually executed, since conditional and
nondeterministic nodes may be involved. For example, the execution of the
CDFD in Figure 4.31 may start from the binary condition node when input
data flow x is available while xl and x2 are not available. If condition x > 5
is true, then data flow y3 is made available, which then enables process A3 to
execute. As a result of the execution, both data flows y5 and y6 are generated.
These two data flows are then taken by process A5 and the broadcasting
node, both of which are terminating nodes, as input to generate their output
data flows zl, z2, and z3. In this execution the terminating process A4 is not
involved, and therefore it stays in the terminated state during this execution
all the time. On the other hand, if condition x > 5 is false, then process A4 is
enabled and executed, whereas the other two terminating nodes, process A5,
and the node in the broadcasting structure remain terminated all the time.

The second condition given in this definition is also essential in determin­
ing the termination of a CDFD. With this condition, we can avoid mistak­
ing the situation for termination of the CDFD: some terminating nodes are
terminated while some processes in the CDFD are still executing that may
eventually result in the execution of some other terminating nodes.

4.12.6 Restriction on Parallel Processes

In a CDFD, parallel execution of processes is allowed, and it can be utilized for
modeling systems in several ways. Firstly, parallel processes in a CDFD can
be perceived as a mechanism to describe nondeterminism in process execu­
tions. Let us take the CDFD in Figure 4.32 as an example to see what exactly
this means. When process Al is executed on the availability of data flow xl,
the two data flows yl and y2 are generated. Since they are the only input
data flows to processes A2 and A3, respectively, A2 and A3 are enabled and
can be executed concurrently. However, when this CDFD is implemented in a
sequential programming language like Pascal or C, the two processes must be
scheduled to perform their executions in a sequential manner, but the order
of the executions does not really matter in this case because they both do not
change the shared store student_files (they only read data from the store). In
other words, the CDFD, as a system specification, presents a nondeterminism

4.12 Important Issues on CDFDs 93

A2

zl

y2 i2

Fig. 4.32. A CDFD involving parallel processes

for its implementation using a sequential programming language. This is in­
deed an advantage because it allows the analyst to concentrate on "what to
do" rather than "how to do it" in the early phases of software development.
It also offers the programmer freedom to choose the most appropriate and
efficient algorithm to implement the specification.

Secondly, parallel processes can be used to model concurrency and parallel
executions in the real world systems, such as railway control systems. Thus,
the CDFD models of the systems may provide the best matching between
the specifications and the real systems, and therefore facilitate communica­
tions between the users and the analysts during the validation of the system
specifications.

Another potential application of CDFD is to model concurrent or parallel
systems, such as network computing. This kind of system may be implemented
using a concurrent programming language like Java (using multi-threading).
However, we must bear in mind that CDFD is not suitable for modeling sys­
tems that require communications between processes during their executions.
The communications between two processes in CDFDs are performed by input
and output data flows, as well as stores, in a sequential manner. That is, after
the termination of the execution of one process, another process can possibly
receive its output data flows as its input, and then executes to provide the
desired behavior. If these two processes, like A2 and A3 in Figure 4.32, access
the same store like student_files, the access must be controlled properly to
avoid the violation of data integrity.

The condition for the restriction on accessing data stores by parallel pro­
cesses is as follows:

94 4 The Module

zl

dO
Fig. 4.33. An illegal CDFD

Condition 1 Any two parallel processes that access the same store in a
CDFD cannot write to the store during their executions.

The reason for this restriction is because two parallel processes accessing the
same store by writing or by reading and writing would possibly cause confusion
in updating and reading the data of the store. Consider the CDFD in Figure
4.33 as an example. Processes 82 and 83 execute in parallel and 82 writes to
the store student_files while 83 reads from the store. In this case, the order
of writing to and reading from the store is nondeterministic. Therefore, the
behavior of the entire CDFD may not be precisely defined.

However, if one really wants to specify that process 82 first write to store
and then process 83 reads from the store, one can use a control data flow, like
col in Figure 4.34, to connect processes 82 and 83. Thus, as the execution
of process 83 needs the availability of data flow col generated by process 82,
82 must be executed before 83. Note that a connecting node is used to avoid
crossing of data flows in the CDFD.

Note that this restriction is obviously not applicable to those parallel pro­
cesses that only read from the same store, such as A2 and A3 in Figure 4.32.
This is because they have no possibility of causing confusion in using the
shared store.

4.12.7 Disconnected CDFDs

When building a complex system, sometimes it may be necessary to draw
a disconnected CDFD, especially when such a CDFD is a decomposition of
a high level process. As process decomposition will be discussed in detail in
Section 5.1 of Chapter 5, let us now concentrate on the notion of disconnected
CDFD rather than how they can possibly be created.

4.12 Important Issues on CDFDs 95

-- COl---~

yl zl

"B
'f2 z2

0-- col ---
B3

Fig. 4.34. A CDFD with no confusion

Fig. 4.35. An example of disconnected CDFD

Definition 11. A disconnected CDFD is a disconnected graph: there exists at
least one process or node, such as a conditional, diverging structure, which is
not reachable through a data flow path (a sequence of data flows) from every
starting process and node in the CDFD.

In this definition, "a sequence of data flows" means an ordered data flows,
disregarding their directions, For example, the CDFD given in Figure 4.35 is
a disconnected CDFD because process A3 is not reachable from the starting
process A2 through any data flow path and A4 is not reachable from Al
through any data flow path.

As we will see in the next chapter, every CDFD, except the top one, is a
decomposition of a high level process in an entire specification. A disconnected
CDFD may be inevitable when it is derived from decomposing a high level
process, with several input and/or output ports connected to different groups

96 4 The Module

- xl Al yl A3 zl---.

- x2 A2 A4 - z2 ---.

Fig. 4.36. A disconnected CDFD involving a store

of data flows, in order to keep logical coherence between the high level process
and the decomposition.

There are three possibilities to start executing the CDFD in Figure 4.35.
One is when data flow xl is available, and another is when data flow x2 is
available. The third possibility is when both xl and x2 are available. It is
not difficult to imagine the execution scenarios according to the rules for
executing CDFDs, but it may not be straightforward to determine how to
start the execution of the CDFD when both xl and x2 are available because
there are two possibilities. One possibility is to enable one of the processes
Al and A2 by the availability of data flow xl or x2, but not both. Another
possibility is that both xl and x2 are used to execute the CDFD in parallel,
which eventually leads to the generation of data flows zl and z2. The way to
execute the CDFD in this case may sound nondeterministic, but since this
CDFD is usually a decomposition of a high level process in a specification, it
may be defined precisely by the high level process.

Note that data stores might be involved during the execution of the pro­
cesses in Figure 4.35, such as in the situation illustrated in Figure 4.36. Al­
though this CDFD looks like a connected CDFD because of the connections
between store sl and all the processes, it is still a disconnected CDFD by
definition. Note that the connections between the store and processes are not
data flows; they are just indications of store accesses by the processes.

4.12.8 External Processes

When modeling a system with a CDFD, we should pay attention not only to
the correctness and preciseness of the CDFD, but also to the readability of the
CDFD. One way to improve the readability of a CDFD is to show explicitly
the entities that provide input data flows to the starting nodes of the CDFD
or that receive output data flows produced by terminating nodes. Such an

,/' Receive_
, Command

baIa1ce ,ll:::::====:::::J
_____ JL___ v. aav. , ,-, , , , , ,
, "
: ClJstcmer :,'
: ' ,
~----------!

4.13 Associating CDFD with a Module 97

Withdraw
cash_

aroun~
~ balance_

Fig. 4.37. The CDFD with an external process

entity may be a person, machine, organization, a group, or any object with
the function of providing useful data information to the system concerned.
Since such entities may not be suitable for being part of the system, we need
to distinguish them from the normal processes used in the system. We call
such entities external processes, because their behavior can be modeled as a
process. An external process is represented graphically by a dashed-line box,
such as the external process customer in the CDFD given in Figure 4.37.

Since external processes are not treated the same as normal processes in
CDFDs, their syntax and semantics do not need to conform to the rules for
normal processes; they are just designed to provide useful information about
the system to help communication between the developer and the user via the
CDFDs. For example, the external process in Figure 4.37 is named customer,
because this information can help us to understand who provides the command
for displaying the balance of or withdrawing cash from the account.

4.13 Associating CDFD with a Module

A graphical notation like CDFD is comprehensible, but may not be capable of
defining all the components precisely for the sake of the space it occupies. As
we have described previously, the components of a CDFD can be formally de­
fined. To organize all the formal definitions related to the CDFD, the concept
of a module is provided.

A module is an encapsulation of data and processes with a behavior rep­
resented by the CDFD it associates with. Generally speaking, a module has
the following structure:

98 4 The Module

module ModuleName / ParentModuleName;
const ConstantDeclaration;
type TypeDeclaration;
var VariableDeclaration;
inv TypeandStatelnvariants;
behav CDFD_no;
InitializationProcess;
Process_1 ;
Process_2;

Process_n;
Function_1 ;
Function_2;

Function_m;
end module

The keyword module indicates the start of a module. ModuleName provides
a distinct identity of the module in the specification. Since the module proba­
bly describes a decomposition of a high level process that is defined in another
module, that module name must be provided as ParentModuleName in order
to build an explicit connection between the high level process and its decom­
position for good traceability of the entire specification. Such a traceability
will facilitate reading and modifying of the specification. Since process decom­
position will be introduced in detail in the next chapter; the reader does not
need to pay much attention to this issue for now.

The keyword const starts the part for constant declarations. A constant
with a special meaning may be frequently used in process specifications, but
it may be subject to change when the specification is modified for whatever
reason (e.g., to fit requirements changes or module version changes for different
systems). ConstantDeclaration may consist of several declarations, separated
by semicolons, as

ConstIdentijier _1 = ConstanC1;
ConstIdentijier _2 = ConstanC2;

ConstIdentijier_q = ConstanCq;

Each ConstI dentijier _ i (i = 1.. q, q ~ 1) is a constant identifier and ConstanC i
is the value of any type available in SOFL. Each equation declares a constant
identifier on the left hand side of the equality symbol = as the constant on
the right hand side of =. For example, we declare a constant identifier age
representing the age of lawfully becoming adult in Japan as follows:

const age = 20;

4.13 Associating CDFD with a Module 99

Thus, age can be used to mean the constant 20 whenever 20 is intended to
be used in process specifications. In the future, if the age of becoming adult
should change to 18 for whatever reason (e.g., change of the law), there would
be no need to change the constant 20 throughout the entire specification, but
only to change it in the age declaration.

The keyword type starts the part of type declarations. TypeDeclaration
is usually a list of several type declarations and its structure is similar to that
of ConstantDeclaration, as shown below:

TypeI dentiJier _1 = Type _1 ;
TypeIdentiJier _2 = Type_2;

TypeIdentiJier_i (i = l..w and w 2 1) are normal identifiers, but it is the
convention to name a type identifier as a sequence of several words, if ap­
plicable, with an upper case letter for the head character of each word. For
example, UniversityStudentFile is a qualified type identifier. Each Type_i is
either another already defined type identifier or a specific type built by apply­
ing the corresponding type constructor available in SOFL. For the basic types
like natO, nat, int, real, and string, their type constructors are the same
as their names. However, as we will see in later chapters, compound types
are also available and their type constructors may vary depending on their
constituent types; see the details in Chapters 8, 9, 10, and 11. An equation
in the type declaration means that the type identifier on the left hand side of
the symbol = is declared as the type given on the right hand side.

For example, the type identifier Address is declared as follows:

Address = string;

Of course, we can use type string itself directly in the specification rather
than declaring Address. However, Address may make better sense than string,
because a string can be used to denote many different things whereas Address
is rather specific. Thus, the use of Address in process specifications may help
to improve the readability of process specifications.

Sometimes there may be a need to declare a type identifier, without indi­
cating what specific type it will represent. In this case, the keyword given is
used to indicate that the declared type identifier represents a given type (sim­
ply a set of unknown values). For instance, a given type Employee is defined
as

Employee = given;

Thus, Employee can only be used as a given type, and nothing can be said
about its values.

100 4 The Module

The keyword var marks the start of variable declarations. In this part,
all the data stores occurring in the associated CDFD of the module must be
declared with some types. Again, like type declarations, the variable declara­
tion part may include a list of individual variable declarations, separated by
semicolons. The structure of VariableDeclaration is:

Variable_l: Type_l;
Variable_2: Type_2;

Variable_ u: Type_ u;

Each Variable_i (i = l..u) is an identifier, usually denoting a data store occur­
ring in the associated CDFD, and Type_i is either a type identifier declared
in the type section of the module or a type formed by a type constructor. For
example, we can declare the store account_file in Figure 4.37 as:

student_files: set of Address;

where Address is a type identifier, presumably already declared in the type
section, and set of is the type constructor for set types to be introduced in
Chapter 8.

If some variables need to be declared with the same type, a shortcut is
to group them together. Suppose we want to declare variables xl, x2, and x3
with the same type int; we can write

xl, x2, x3: int;

All the variables declared in the var section are called store variables, which
represent part of the state of the module. A state of a module is formed
by all the store variables and available data flow variables, contained in the
associated CDFD, with their values.

Note that there may be two kinds of stores in a CDFD. One is local stores
and another is external stores. A local store is local to the module; it is ini­
tialized by the InitializationProcess specified in the same module whenever
the associated CDFD is executed. An external store is global to the current
module; its data are taken from the high level CDFDs (this point can be
difficult to understand before we study the notion of process decomposition,
therefore the reader can skip this part for now and return to it when he or she
has studied process decomposition in the next chapter) or outside the system
under construction (e.g, an existing file or database). Therefore, its data are
not changed by the local initializationProcess. To distinguish the external and
local store variables, we put the keyword ext before an external variable in
the declaration. For example,

var
ext xl, x2 : int;

4.13 Associating CDFD with a Module 101

states that xl and x2 are external store variables of type into It is also use­
ful to distinguish the external stores that are passed over from a high level
CDFD and the external stores that exist independently of the system under
construction, as this would facilitate the verification of specification consis­
tency. To this end, we use the sharp mark # to decorate those store variables
representing existing stores outside the system. For example,

var
ext xl, #x2 : inti

declares that both xl and x2 are external store variables, but xl is taken from
another high level CDFD whereas x2 is an existing store outside the system.
We call the external store variables like x2 existing external variables and the
stores they denote existing external stores.

Another important part of a module is the invariant section Typeand­
Statelnvariants, starting with the keyword iny. This section may include a
list of invariants, separated by semicolons, as illustrated belqw:

InvarianCl ;
InvarianC2;

InvarianCv;

Each InvarianC i (i = 1.. v) is a predicate, mostly a quantified predicate; it
expresses a property of types declared in the type section, variables declared
in the yar section, or data flow variables used in the associated CDFD. These
properties must be sustained throughout the entire specification by related
processes. If a property is applicable to values of a type, it should be defined
as an invariant of the type. If a property is, however, only applicable to specific
variables, it should be defined as an invariant of the specific variables. As an
example, we define the following invariants on type Address and store variable
student_files:

iny
forall[x: Address] I len (x) <= 50;
card(student_files) <= 1000;

The first invariant specifies that every value of type Address must be no longer
than 50 characters. The second invariant requires that the store student_files
holds at most 1000 student files. The operator lenO is defined on string type
and sequence types: it yields the length of the string or sequence (e.g., x).
The operator cardO is defined on set types: it yields the cardinality of the set
provided as the argument (e.g., studenC fi les). The detailed introduction of

102 4 The Module

string and sequence types is given in Chapter 9 and set types are discussed
in Chapter 8.

Note that the invariants specified are supposed to hold through the entire
specification. This means that whenever the variable student_files, for exam­
ple, is used in the related process specifications, the constraint on it, defined
by the invariant card(student_files) <= 1000, must not be violated by the
process specification. Similarly, whenever type Address is used to declare any
variable in the module, for example,

place: Address;

the variable place is assumed to hold the property len(place) <= 50. There­
fore, it is important to ensure that the invariant is not violated by the pre
and postconditions of related process specifications given in the module. In
other words, all process specifications must be kept consistent with the related
invariants.

The most important part in a module is the description of its behavior.
Such a description is given by a CDFD. In order to associate the CDFD
with the module, we use the keyword behav to indicate the section where
the number of CDFD is provided in the format CDFD _no, where no is the
number of the CDFD. For example,

behav CDFD _10;

indicates that the associated CDFD is numbered 10 in the entire specification
(an entire specification may contain many CDFDs in a CDFD hierarchy; see
more details in the next chapter).

The next important part of a module is to specify all the processes occur­
ring in the associated CDFD. Apart from the processes used in the CDFD, an
additional process, called Init, also needs to be defined for initialization of the
local store variables, denoted by InitializationProcess in the module structure
outline given previously. This initialization process has the same structure as
other processes, such as process_i, process_2, etc., but the function is used
to initialize all the local store variables. This initialization process is a little
exceptional because it has neither input data flows nor output data flows. For
a normal process contained in a CDFD, this is disallowed, but as an initial­
ization process of a module, it is a legal process. It is the convention not to
draw the process Init in CDFDs.

As far as the process specification is concerned, we have seen many ways
of specifying various processes, but what has been discussed so far does not
cover all of the aspects of a process specification. The general structure of a
process specification is given as follows:

process ProcessN ame (input) output
ext ExternalVariables

pre PreCondition
post PostCondition

4.13 Associating CDFD with a Module 103

decom Lower LevelM oduleN ame
explicit ExplicitSpecification
comment InformalExplanation
end_process

Since we have been discussing the name, input, output, external variables,
precodition, and postcondition of a process, we assume that the reader is al­
ready familiar with those notions. Therefore, we focus only on the explanation
of the decom, explicit, and comment parts here. The keyword decom in­
dicates that the following name is the name of the lower level module that is
the decomposition of the current process ProcessName. The LowerLevelMod­
uleName is usually composed of two parts, connected by an underscore, such
as

ProcessName decom

The ProcessName is the same as the name ofthis process itself, and decom is a
common suffix that is adopted by every module name in SOFL specifications,
except the very top level module, as you will see in the detailed explanation
about this point in the next chapter. Thus, which module is the decomposition
of which process will be very clear to readers of the specification.

Sometimes, a process may not be suitable to be specified using pre and
postconditions, especially when an object of a class is involved in the input
and output of the process. In this case, the process may be defined by an
explicit specification, which is written following the keyword explicit. Fur­
thermore, explicit specifications are also adopted to describe detailed design.
The detailed discussion of explicit specifications are given in Chapter 6, and
those of object and class are given in Chapter 13.

To help in the understanding of a process specification, an informal ex­
planation can be very useful. The keyword comment starts the informal
explanation that ends before the keyword end_process in the process spec­
ification. Basically, one can use any character and format to express one's
comment, but it is important to bear in mind that the role of such a comment
is to explain what the formal specification, given in terms of pre and post­
conditions, means. This part can be very helpful for communication between
the specification writer and the end-user of the system, since we should not
expect the end-user to understand the formal notation.

Note that except for the keywords process and end_process, as well as
the process name in a process specification, all the other parts are optional,
depending on the necessity in specific processes.

The final section of a module is function definitions. As many functions
as necessary can be defined in a module. Functions can be applied in predi­
cate expressions wherever they are used, such as in invariants, preconditions,

104 4 The Module

postconditions, and the explicit specifications. As the format of function def­
initions is discussed in detail in Section 4.16, and functions are not involved
in the discussions before that section, so let us ignore this topic for now.

4.14 How to Write Comments

A comment is useful in improving the readability of specifications. An informal
comment can be given as part of a process specification to explain the func­
tionality of the process expressed with the formal notation. In addition, there
is also a need to explain the meanings of defined types, data flow variables,
store variables, or whatever the entities of interest in a module. These data
items are usually defined in several different places in the module; therefore,
it would not be very helpful to explain them in one specific place (because the
explanations far away from the data items may not be effective in helping the
reader understand the data items).

SOFL has adopted another structure for comments similar to that used in
the programming language C. Such a comment is written between a pair of
slash-asterisk symbols 1* ... * /, and it can be written anywhere in a module.
It does not contribute to the semantics of the module, but just provides help
for understanding. For example, in the variable declaration

var
student_files: set of Address;

j*student_files is defined as a collection of home addresses, and each
address is represented by a string. * /

the comment explains the structure of the variable student_file and the po­
tential meaning of the element type Address.

By now we have introduced all the sections constituting a module, although
the detailed discussions of some parts are left for later chapters. However, we
should bear in mind that not necessarily all the sections are defined in a
module, though it is possible. Some modules may have constant and type
declarations, but with no invariants, while some other modules may have
type declarations, but with no variable declarations and invariants. In fact,
except for the module name and process specifications, all the other parts are
optional, depending on the need of specific modules.

4.15 A Module for the ATM

We take the simplified ATM modeled as the CDFD in Figure 4.37 as an
example to show a complete picture of a module. The way to build a module
usually starts from the construction of the CDFD, because it expresses the
potential behavior and the architecture of the module. Then all the data

4.15 A Module for the ATM 105

stores, processes, and data flows used in the CDFD are defined. The module
for the ATM is given as follows:

module SYSTEM_ATM /* This module has no parent module.* /
type
Account = composed of

account_no: nat
password: nat
balance: real
end

var

ext #account_file: set of Account;
/* the account_file is an external store that

exists independently of the ATM system.
It is defined as a set of accounts. * /

inv

forall[x: Account] 11000 <= x.password <= 9999;
/* The password of every account must be a

natural number with four digits. * /

behav CDFD_l;
/*Assume the ATM CDFD in Figure 4.37 is numbered 1.*/

process InitO
end_process;
/* The initialization process does nothing because there is no

local store in the CDFD to initialize. In this case, this process
can be omitted. * /

process Receive_Command{balance: sign I w_draw: sign) sel: bool
post balance <> nil and sel = true or w_draw <> nil and sel = false
comment
This process recognizes the input command show balance or withdraw
cash. The output data flow sel is set to true if the command is showing
balance; otherwise, if the command is withdrawing cash, sel is set to false.

end_process;

process Check_Password{card_id: nat, sel: bool, pass: nat)
account1: Account I pr _meg: string I
account2: Account

ext rd account file /*The type of this variable is omitted because

106 4 The Module

this external variable has been declared in
the var section. * /

post (exists! [x: account_filell

or

x.account no = card id and
x. password = pass and
(sel = false and accountl = x or
sel = true and account2 = x)

not (exists! [x: account_filell x.account_no = card_id and
x.password = pass) and

pr_meg = "Reenter your password or insert the correct card"
comment

If the input card_id and pass are correct with respect to the existing information
in account_file, then if sel is false, the account information is passed to the output
accountl; otherwise, the account information is passed to the ouput account2.
However, if one of card_id and pass is incorrect, a prompt message pr _meg is
produced.

end_process;

process Withdraw(amount: real, accountl: Account)
e_msg: string I cash: real

ext wr account_file
pre accountl inset account_file

!*input accountl must exist in the account_file* /
post (exists [x: account_file] I x = accountl and

x.balance >= amount and
cash = amount)

and
account_file = union(diffe account_file, {accountl}),

{modify(accountl, balance -> account1.balance - amount)})
or

not exists[x: account_filell x = accountl and
x.balance >= amount and
e_meg = "The amount is too big")

comment
The required precondition is that input accountl must belong to account_file. If
the request amount to withdraw is smaller than the balance of the account, the
cash will be withdrawn. On the other hand, if the request amount is bigger than
the balance of the account, an error message "The amount is too big" will be
issued.

end _process;

process Show_Balance(account2: Account) balance: real
post balance = account2.balance;
end _process;
end module;

4.16 Compound Expressions 107

Since there is no local store in the CDFD of this module, the initialization
process Init does not do anything. Some relatively complicated process speci­
fications are explained informally in the comment parts, such as for the pro­
cesses Receive_Command, Check_Password, and Withdraw, but for a simple
process like Show_Balance no comment is provided. There is no need to spec­
ify the external process Customer, because its role is just to help understand
the CDFD.

Note that several operators defined in set types and composite types are
used, such as unionO, diffO, modifyO, etc. Briefly speaking, the operation
union(x, y) is the union of the two sets x and y; diff(x, y) yields the set whose
elements belong to x but not y; and modify(x, f -> vI) yields a new composite
object from the given composite object x by replacing the value of its field f
with vl. The detailed discussion of these operators will be given in Chapters
8 and 10, respectively.

4.16 Compound Expressions

Writing a process specification with the predicate expressions introduced so
far may result in a poor readability of the specification due to their compli­
cated structures. For example, the postcondition of process Check_Password
in module SYSTEM_ATM in the previous section actually defines three ex­
clusive conditions: the requested account exists and sel = true; the account
exists and sel = false; and the account does not exist, but the description
does not seem to be obvious because of the complicated structure of the ex­
pression. To achieve good readability of specifications, more explicit syntax
may provide effective help.

In this section, we introduce several compound expressions for this pur­
pose. These expressions include if-then-else, let, and case expressions.

4.16.1 The if-then-else Expression

An if-then-else expression is a conditional expression that yields a result
based on the value of the guard condition involved in the expression. The
general format is

if B then E I else E 2.

If the guard condition B is true, the result of this conditional expression is E_I;
otherwise, if B is false, the result is E_2. Let result denote the conditional
expression; then the expression is equivalent to the predicate:

B and result = E lor not B and result = E 2

108 4 The Module

For example,

if x > 5 then x + z else z - x

or, the one with better readability,

if x> 5
then x + z
else z - x

4.16.2 The let Expression

The let expression is used to declare some identifiers denoting expressions in
predicate expressions. Two let expressions are designed for this purpose. The
first let expression takes the format

let v_I = E_I, v_2 = E_2, ... , v_n = E_n in P(v_l, v_2, ... , v_n)
where n >=1.

In this expression, each v_i (i=1..n) is an identifier that serves as a pattern
other than a variable (whose value may change), because it has no function
for holding any value; it just denotes the corresponding expression E_i. P is
a predicate expression in which patterns v _ i are involved. Semantically, this
let expression is equivalent to the following expression:

This substituted expression is derived from substituting E_i for v_i (i=1..n)
in expression P. Note that brackets () are used to enclose E_i (i=1..n) if any
ambiguity in interpreting the substituted predicate expression occurs.

Consider the following let expression:

let xl = y + z * * 2, x2 = y - z * 5 in
a* xl ** 2 + b * xl + c > a * x2 ** 2 + b * x2 + c

It is equivalent to the substituted expression:

a * (y + z * * 2) ** 2 + b * (y + z * * 2) + c >
a * (y - z * 5) ** 2 + b * (y - z * 5) + c

Another let expression has the following format:

let x: T I R(x) in P(x)

4.16 Compound Expressions 109

This let expression introduces a pattern x that is bound to a value of set
T (which may also be a type) satisfying condition R(x). Pattern x is usually
involved in P. For example,

let x: nat I x > 5 in y > x + 1

To keep this kind of let expression simple, we do not allow the introduction
of multiple binding, such as xl: Tl, x2: T2. If such a multiple binding is really
needed in an expression, we can use the let expression several times, as

let x_l: T1 I Rl(x_l) in
let x_2: T2 I R2(x_2) in P(x_l, x_2)

Also, condition R(x) may be omitted in a let expression so that pattern x will
be introduced as any value in type T with no constraint. Thus, the following
format can also be used:

let x: T in P(x)

For example,

let x: nat in y > x + 1

describes a different predicate.

4.16.3 The case Expression

A case expression is a multiple conditional expression. Its format is as follows:

case x of
ValueList_l -> E_l;
ValueList_2 -> E_2;

ValueList_n -> E_n;
default -> E n + 1
end case

where each ValueList_i (i=1..n) is a list of concrete values of the same type
as that of x. x can be a variable, a pattern defined in a let expression, or an
expression of any type.

The case expression states that if x is equal to one of the values in Val­
ueList_l, the result of this expression will be E_l; otherwise, if x is one
of the values in ValueList_2, the result of this expression will be E_2; and
so on. However, if x is different from all of the values given in ValueList_l,
ValueList_2, ... , ValueList_n, the result of this expression will be E_n + 1 as

110 4 The Module

default. Note that all of the values in ValueList_1, ValueList_2, ... , ValueList_n
should be disjoint; but even if they are not, the case expression will not involve
ambiguity in obtaining the final result, because ValueList_1, ValueList_2, ... ,
ValueList_n are evaluated in order, and once one of them matches x, the cor­
responding expression E_i (i=1..n) will be taken as the final result of the case
expression. The default clause may not be used if ValueList_1, ValueList_2,
... , ValueList_n cover all of the possible cases. However, having a default
clause is always recommended for it will ensure a defined case expression. For
example,

case x of
1, 2, 3 -> y + 1;
4,5,6 -> Y + 2;
7,8,9-> y + 3;
default -> y + 10
end_case

4.16.4 Reference to Pre and Postconditions

The pre and postconditions of an already defined process, say A, can be
referenced as a predicate expression by another process, say B. Such a reference
may arise when there is a need to write a predicate in the specification of
process B that is exactly the same as the pre or postcondition of process A.
Thus, the specification of B can be made more concise than the one without
such references. However, we must bear in mind that such a reference is purely
syntactical; it does not mean an invocation or execution of process A, but just
the reuse of its pre or postcondition.

The symbols pre_A and post_A denote the pre and postconditions of
process A, respectively. Thus, the specification of process B involving the
references to the pre and postconditions of A is given as follows:

process BO
pre P and pre_A
post Q or post_A
end _process

where P and Q are two predicate expressions.
If one wants to define another process, say C, with the same input and

output data flows, external variables, and the functionality as those of process
A, one can define C as follows:

process C equal A
end _process

The only difference between A and C is that they have different names, and
all of the other parts have the same syntax. However, it is worth noting that

4.17 Function Definitions 111

this does not mean that executing process C is equivalent to executing process
A. It really means that process C has the same syntax as process A, except
for its name. If A is defined in another module, say M, then we need to write
M.A to refer to A. Thus, process C above can be defined as follows:

process C equal M.A
end_process

It is sometimes necessary to directly use process A, which is defined in
module M, in the current CDFD. In this case, process A still needs to be
defined in the associated module of the current CDFD for the consistency be­
tween CDFD and its module and for the readability of the entire specification.
The form of the specification of process A occurring in the current CDFD is

process A equal M.A
end_process

4.17 Function Definitions

A function provides a mapping from its domain to its range. A function differs
from a process in several ways:

• A function does not allow exclusive inputs and outputs, whereas a process
does.

• A function yields only one output, whereas a process allows many outputs.
• A function does not access external variables (like stores in CDFDs),

whereas a process may do so.

4.17.1 Explicit and Implicit Specifications

There are two ways to define a function: explicit specification and implicit
specification. An explicit specification shows how a function can actually be
computed, whereas an implicit specification defines the function using pre and
postconditions.

The format of an explicit specification is

function Name (InputDeclaration) : Type

== E
end function

where Name denotes the function name; InputDeclaration is the parameter
declaration (which can be empty); Type denotes the range of the function;
and E is an expression of any type available in SOFL (e.g., int, real, bool),

112 4 The Module

and is called the body of the function. For example, function add is defined
explicitly as follows:

function add(x, y: int) : int
==x+y
end _function

The format of implicit specification of a function is:

function Name(InputDeclaration) : Type
pre Pre
post Post(Name)
end _function

where Post(Name) is a predicate expression that must involve Name. In fact,
we use Name as the output variable to represent the result of the function.
For example, the add function is defined implicitly as follows:

function add (x, y: int) : int
pre true
post add = x + y
end function

where add is used as a variable to hold the result of the function.
As the reader will see in later chapters, implicit specifications are usually

constructed for abstract designs, and then refined into explicit specifications
during detailed designs. In order to allow the developer to maintain the history
of specification evolution over different development phases, the mixture of the
implicit and explicit specifications in a function definition is allowed. That
is, it is possible for a function to have both pre and postcondition and the
explicit expression. Furthermore, since it is possible for a function to remain
undefined completely in the specification for some reason, a function with only
a signature is also allowed. In this case, how the function is defined will depend
on the developer's decision made at the subsequent development phase. A way
to claim that a function is undefined in the specification is to use the keyword
undefined, like function A:

function A(x, y: int) : int
== undefined
end_function

4.17 Function Definitions 113

4.17.2 Recursive Functions

A recursive function is a function that applies itself during the computation
of its body. When writing a specification for a recursive function, two points
are important:

• the body of the function (for explicit specification) or the postcondition
of the function (for implicit specification) must contain an application of
the function.

• an exit is necessary to ensure that any application of the function termi­
nates.

Let us take the factorial function fact as an example. This function takes a
natural number n and computes its factorial n! = n * (n - 1) * (n - 2) * ... *
3 * 2 * 1. The explicit specification is:

function fact(n: nat) : nat
== if n = 1

then n
else n * fact(n - 1)

end function

In the body of this function fact(n - 1) is an application of the same function,
but to a different argument n - 1. The condition n = 1 provides an exit for
this function.

The implicit specification is:

function fact(n: nat) : nat
post if n = 1

then fact = n
else fact = n * fact(n - 1)

end function

The precondition is true (and therefore omitted). In the postcondition fact =
n is the exit provided by the condition n = 1. The application of fact itself is
involved in the expression fact = n * fact(n - 1), where fact denotes the result
of the function, while fact(n - 1) is an application of the function to argument
n - 1.

114 4 The Module

4.18 Exercises

1. Answer the following questions:
a) What is a process?
b) What is a data flow?
c) What is the difference between active data flows and control data

flows?
d) What is a data store?
e) What is the difference between data stores and data flows?
f) What are the conditional structures for?
g) What are the merging and separating structures for?
h) What are the diverging structures for?
i) What are the connecting structures for?
j) What is a condition data flow diagram (CDFD)?
k) What is a module for?
1) What is the general structure of a module?

m) What is an invariant?
n) What is the general structure of a process?
0) How to make a reference to the precondition or postcondition of a

process?
p) What is a function?
q) What is the difference between a process and a function?
r) What are the general formats of explicit and implicit specifications of

a function?
s) What is a recursive function, and what are the important points in

writing recursive functions?
2. Define a calculator as a module. Assume that reg denotes the register that

is accessed by various operations. The operations include Add, Subtract,
Multiply, and Divide. Each operation is modelled by a process.

3. Write a module defining all the data flows, stores, and processes of the
CDFD in Figure 4.38, assuming all the data flows and stores are integers,
and all the processes perform arithmetic operations.

4. Change the following compound expressions into equivalent predicate ex-
pressions.

a) let a = x + y, b = z + w in a **2 * b + b * y * w
b) if x > 0 then a = x + 1 else a = x + 10
c) a = case x of 1, 2, 3 -> x +1; 4, 5 -> x + 2; 6 -> x * x; default ->

x end

5. Write both the explicit and implicit specifications for the function Fi­
bonacci:

Fibonacci(O) = 0;
Fibonacci(1) = 1;
Fibonacci(n) = Fibonacci(n - 1) + Fibonacci(n - 2)

Where n is a natural number of type natO.

/

---com ---

warning

'"

com: command for checking the total amount of the money in the money-box

arnount: the amount of money to be saved in the money_box

total: the total amount of the money in the money_box

expense: the sufficient amount for purchasing a toy

warning: a warning message for the shortage of the money in the money_box

Fig. 4.38. The CDFD for problem 3 in Exercise 4

5

Hierarchical CDFDs and Modules

When building a specification for a complex system, it is almost impossible to
construct only a one level CDFD and module. A complex system needs many
processes, data flows, and data stores, as well as other structures. If we try to
draw them in one CDFD, the diagram would be too large to manage. Also, the
efficiency of constructing, editing, and reading such a complex CDFD would be
very bad. Furthermore, building a large and complex software system usually
involves many developers, and they need to share the job by taking care of
different parts of the entire system. How to organize a large CDFD so that
all of the developers can cooperate efficiently and responsibly becomes a very
important issue to address. Even if a system is built by a single developer, the
problem of how to reduce the complexity of a one level CDFD and the entire
specification is still a major concern. The solution of SOFL to this problem is
to support the construction of hierarchical CDFDs and the associated modules
by process decomposition.

In this chapter, the reader is expected to study how a process is decom­
posed into a CDFD; what the relation is between a process and its decomposi­
tion; and how hierarchical CDFDs and their associated modules are organized
in a consistent manner, so that we can form supportive connections between
logically related components in the entire CDFD and module hierarchies.

5.1 Process Decomposition

Process decomposition is an activity to break up a process into a lower level
CDFD. The CDFD defines in detail how the input data flows of the process are
transformed into its output data flows through other intermediate processes or
structures. Let us take the process Check_Password in Figure 4.37 in Chapter
4 as an example to explain what process decomposition exactly means. To
facilitate the discussion, and to help us concentrate on this particular process
rather than the entire CDFD given in Figure 4.37, process Check_Password
and the associated store account_file are redrawn in Figure 5.1.

118 5 Hierarchical CDFDs and Modules

-pass

Check_
Password

pcmeg---I.~

Fig. 5.1. Process Check_Password

As defined by its specification in module SYSTEM_ATM given in Chapter
4, this process receives card_id, sel, and pass, and checks whether or not the
requested account exists in store account_file. If it does, and the value of sel
is true, the account information will be supplied as the output data flow
accountl. If this account exists but the value of sel is false, the account
information will be provided as the output data flow account2. However, if
this account is not included in account_file, the prompt message is given
to suggest to the customer what to do next. A refinement of this process
specification is to decompose the process into a lower level CDFD that gives
more algorithmic information about how the functionality of this process is
realized via other intermediate processes. The decomposed CDFD of process
Check_Password is given in Figure 5.2.

In this CDFD, the input data flows card_id and pass are checked by pro­
cess Confirm_Account against store account_file to confirm validity of the
requested account. If this account is a valid one, its information is transferred
to data flow account; otherwise, the prompt message pr_meg is generated.
If account is available, then it will be transferred to data flow account! or
account2 by process Transfer _Account, depending on the truth value of input
data flow sel.

Definition 12. If a process A is decomposed into a CDFD, we call the CDFD
the decomposition of process A, and process A, the high level process of the
CDFD.

Thus, the CDFD in Figure 5.2 is the decomposition of its high level process
Check_Password in Figure 5.1. Such a decomposed CDFD must also be asso­
ciated with a module, in a way that this CDFD represents the behavior of the
module, and all data flows, stores, and processes occurring in this CDFD are

Confirm_
Account

5.1 Process Decomposition

\ I sel

\
accountl

/
Transfer_

/ Account

\ account
account2

\
pcmeg

~
Fig. 5.2. The decomposition of process Check_Password

119

specified in the module. The outline of the module associated with the CDFD
in Figure 5.2 is given as follows:

module Check_Password_decom / SYSTEM_ATM;
type
Account = SYSTEM_ATM.Account;
var
ext account_file: set of SYSTEM_ATM.Address;
behav CDFD _2; 1* Assume the CDFD in Figure 5.2 is numbered 2. * /
process Confirm_Account(card_id: natO, pass: natO)

account: Account I pr _meg: string

end_process;
process Transfer _Account(sel: bool, account: Account)

end_process;
end module;

account1: Account I account2: Account

This module is named Check_Password_decom, and its parent module in
which process Check_Password is defined is SYSTEM_ATM. The type Ac­
count is declared in terms of the already declared type Account in mod­
ule SYSTEM_ATM. We use SYSTEM_ATM.Account to refer to the type
identifier Account declared in module SYSTEM_ATM, and likewise for SYS­
TEM_ATM.Address. As far as the reference of type identifiers and other com­
ponents of a module is concerned, we will elaborate it in Section 5.5. Note

120 5 Hierarchical CDFDs and Modules

that the declared type Account in module Check_Password_decom is refer­
enced whenever it is used within this module. For example, the output data
flow account of process Confirm_Account is declared as a variable of type Ac­
count, and this Account refers to the Account declared in the type section of
this module, not the Account declared in module SYSTEM_ATM; although
they are declared as the same type in this case.

The advantage of the declaration of type Account in this module is that
it makes the data flow variable or store variable declarations concise. For ex­
ample, suppose we want to declare three data flow variables account (out­
put data flow of process Confirm_Account), accountl, and account2 (out­
put data flows of process Transfer_Account) with the type Account defined
in module SYSTEM_ATM, if the direct reference SYSTEM_ATM.Account is
adopted, the process specifications will become much longer, and perhaps
tedious. Of course, if a type declared in another module is only used oc­
casionally, the direct reference of the type may be appropriate to use, like
SYSTEM_ATM.Address, which is used only once to declare the external store
variable account_file.

The outlines of the specifications of processes Confirm_Account and Trans­
fer _Account do not involve any new feature, so the reader is supposed to have
no problem in understanding them and, therefore, the entire module.

In principle any process in the CDFD of Figure 5.2 may be decomposed
again if necessary. If such decompositions continue, the hierarchies of CDFDs
and the associated modules will be created. Figure 5.3 depicts a hierarchy of
three level CDFDs. The top level CDFD, numbered 1, is composed of four
processes AI, A2, A3, A4, and a data store s1. For some reason, process Al is
decomposed into the CDFD 2, while process A3 is decomposed into the CDFD
3. Finally, process A33 in CDFD 3 is decomposed into the lowest level CDFD
4. For each level of the CDFD hierarchy, it is necessary to provide a module to
define the components of the associated CDFD. As the relation between high
level processes and their decompositions are recorded in the process specifica­
tions given in the modules, a hierarchy of the associated modules is actually
also created. Both the CDFD hierarchy and the module hierarchy constitute
the entire specification.

The associated module hierarchy of this CDFD hierarchy is outlined as
follows:

module SYSTEM_Example;

var
sl: Type1;

behav CDFD_l;
process Init;
process Al
decom: Al_decom;

5.1 Process Decomposition 121

·--1

-xl ~ X2~X~X6--$(U x5
/ 'WX7 -

.. -..... /-.................. ~ ,
/ I

/

.- 1. , , ":':
:" .# : :
: xl x2 : : ~ xS_

! ~ AI{20!13 ~x~ ! ! -X3-.[~J(
!~/y ! : z2

! 151 !, ~X7_
~--, --------------------,-----------------

././ 3
./

./
./

./
./

,.¥.

~-z3
dl

-Z2~d2~

~
--.--

Fig. 5.3. The outline of a hierarchy of three level CDFDs

/*Module AI_decom is associated with the decomposition
of AI. */

end_process;
process A2;
process A3
decom: A3_decom;
/*Module A3_decom is associated with the decomposition

of A3. */
end_process;
process A4;
end_module;

module AI_decom;

var
ext sI: TypeI;

behav CDFD _2;
process Init;
process All;

122 5 Hierarchical CDFDs and Modules

process A12;
process A13;
end module;

module A3_decom;

behav CDFD 3;
process Init;
process A31;
process A32;
process A33
decom: A33 decom;
j*Module A33_decom is associated with the

decomposition of A33. * /
end_process;
end module;

module A33_decom;

var
s2: Type2;

behav CDFD 4;
process Init;

process A331;
process A332;
process A333;
end module.

The four modules are separated by semicolons, but the last module ends with
a period, indicating the end of the module definitions in the entire specifi­
cation. In each module are only those processes that are decomposed into
CDFDs provided with more details about the modules associated with their
decompositions, while the rest of the processes are represented simply by their
names. For example, process Al is indicated as having a decomposition associ­
ated with module AI_decom, while process A3 has a decomposition associated
with module A3 decom.

From the viewpoint of operational semantics, a high level process is equiva­
lent to its decomposition. In other words, the execution of a high level process
is actually performed by executing its decomposition. Also, from the functional
semantics point of view, the high level process is defined by its decomposition
in the manner that the decomposition satisfies the specification of the process.
This property is known as correctness of the decomposition against its high
level process specification.

5.2 Handling Stores in Decomposition 123

There are many issues concerned with building the hierarchies of CDFDs
and modules. For example, how stores, and input and output data flows of
a high level process should be handled in the decomposition; how the notion
correctness should be defined so that it can provide a guideline for decom­
posing processes; how the scope of declared data items, such as constants,
types, and store variables, in each module should be defined; and how process
specifications and/or invariants defined in another module should be reused.
We discuss these issues one by one from the next section.

5.2 Handling Stores in Decomposition

When a process is decomposed into a CDFD, the stores connected to the
process must also be consistently accessed by some lower level processes oc­
curring in the decomposition. This problem has two aspects. One is that the
store accessed by the high level process must sink into its decomposition, and
another is that the store should be accessed consistently with the way it is
accessed by the high level process.

For example, process Al in CDFD 1 of Figure 5.3 reads from the store 5l.
When Al is decomposed into CDFD 2, store 51 is passed over to this lower
level CDFD and also read by some lower level processes, like All and A13.

Generally speaking, a store accessed by a high level process must also be
drawn in the decomposition of the process, and must be accessed in the same
way, probably by several processes. On the other hand, all the external stores
(except the existing external stores) occurring in the decomposition of a high
level process must occur in the high level CDFD (the CDFD in which the
high level process is used). That is, all the external stores must be sunk from
the high level CDFD, and all the other stores, if any, must be locally defined
stores. Since this property constitutes part of the structural consistency of
hierarchical CDFDs, it is important to formalize this notion by giving an
appropriate rule.

Let G denote a CDFD. Then we define the following notation that will be
used in the formalization.

Notation:

Store(G) = the set of all the stores occurring in CDFD G.
Store_ext(G) = the set of all the external stores occurring in CDFD G.
Store_loc(G) = the set of all the local stores occurring in CDFD G.
Store_acc(A) = the set of all the stores which process A accesses.
Acc_p(A. 5) inset {rd, wr}, denoting the way of accessing store 5 by

process A.
Acc_d(G. 5) inset {rd, wr}, denoting the way of accessing store 5 by

CDFD G.

124 5 Hierarchical CDFDs and Modules

Obviously, the union of Store_ext(G) and Store_loc(G) must be the same
as Store(G). Furthermore, Acc_d(G. 5) = rd means that store 5 is possibly
read by some process in G, but definitely not updated by any processes in
G; and Acc_d(G. 5) = wr if there is a possibility that 5 is updated by some
process in G, which does not eliminate the possibility of reading from 5 by
some processes in G.

Rule 5.1 Let A be a high level process in CDFD G_h and Store_acc(A)
= {s_l, 5_2 , s_n}. Let CDFD G_d be the decomposition of process A.
Then, the following conditions must hold:

(1) Store_acc(A) is a subset of Store_ext(G_d)
(2) forall[s: Store_ext(G_d)ll Acc_d(G. 5) = Acc_p(A. 5).

Note that we treat all the external stores representing external devices or files,
such as displays, files on disks, printers, and keyboards, as existing external
stores (decorated with the sharp mark # when they are declared in a module),
since they usually exist independently of the software system under construc­
tion. All the existing external stores are considered as global variables to all
the CDFDs in a CDFD hierarchy. In principle, such an existing external store
must occur in every related CDFD (in which it is accessed), but sometimes
you may not want to show its access by a high level process in the high level
CDFD, while there may be a need to show its access by some processes in
the decomposition of the high level process. In that case, one may draw the
existing external store in the decomposition without drawing it in the high
level CDFD. This principle is reflected by condition (1) in Rule 5.1.

For example, the store 52 of CDFD 4 in Figure 5.3 is treated as an existing
external store; it does not occur in CDFD 3, in which the high level process
A33 of CDFD 4 is included.

This way of dealing with existing external stores can benefit the construc­
tion of CDFD hierarchies in two ways. One way is by allowing the specification
writer to concentrate on the most important and necessary issues related to
the high level process and other processes in the high level CDFD, and to put
the existing external stores where they are most properly used. Another way
is by helping avoid the unnecessary drawing of stores.

It is worth noting that Rule 5.1 does not restrict the use of local stores
in the decomposition of a high level process. This implies that as many local
stores as necessary can be declared and used in a CDFD.

5.3 Input and Output Data Flows

Since a high level process is actually represented by its decomposition, the in­
put data flows, and the output data flows of the process and its decomposition
must be kept consistent. If all input and output data flows of the high level
process are the same as input and output data flows of the decomposition,

5.3 Input and Output Data Flows 125

the high level process and its decomposition are said to be consistent in their
input and output data flows.

To define formally this consistency property, we need the following nota­
tion:

Notation:

Port_i(A) = the set of input ports of process A.
Port_o(A) = the set of output ports of process A.
Dataflow_i(A, P) = the set of input data flows connected to the input

port P of process A.
Dataflow_o(A, P) = the set of output data flows connected to the output

port P of process A.
Input_p(A) = the set of the input data flows of process A.
Output_p(A) = the set of the output data flows of process A.
Input_d(G) = the set of all the input data flows of CDFD G.
Output_d(G) = the set of all the output data flows of CDFD G.

Obviously, Input_p(A) is the union of all the data flows connected to all the
input ports of A, and Output_p(A) is the union of all the data flows connected
to all the output ports of A.

Definition 13. Let G be a CDFD; A_1, A_2, ... , A_n be all its starting nodes;
and B_1, B_2, ... , B_m be all its terminating nodes. Then, Input_d(G) =
union (Input_p(A_i), Input_p(A_2)• Input_p(A_n)) and Output_d(G) =
union (Output_p(B_1). Output_p(B_2) • ...• Output_pCB_mY).

where all the starting and terminating nodes include starting and terminating
processes.

This definition states that the input data flows of CDFD G are the same
as those of all the starting nodes of G, and the output data flows are the same
as those of all the terminating nodes of G.

Rule 5.2 Let process A be decomposed into CDFD G. Then, conditions
(1) and (2) given below must be satisfied.

(1) Input_d(G) = Inpucp(A)
(2) Output_d(G) = Output_p(A)

If conditions (1) and (2) are satisfied by process A and its decomposition G,
we say A and G are consistent in their input and output data flows.

Note that this rule only suggests very simple checking on the consistency
of input and output data flows of a high level process and its decomposition.
Since the high level process may have several input or output ports, and the
data flows connected to different ports cannot be used together in executing

126 5 Hierarchical CDFDs and Modules

High level process

yl ___

y2---

The decomposition of process W

Fig. 5.4. An inconsistent decomposition of process W

the process and its decomposition, the rule does not ensure that the high level
process is implemented correctly by its decomposition.

For example, Figure 5.4 shows a decomposition of process W. To execute
W, input data flows xl and x2 must be used exclusively, but in the execution of
its decomposition both xl and x2 are required by process WI. Furthermore, in
process W, output data flows yl and y2 are both generated as the result of its
execution, but only one of yl and y2 can be generated by the decomposition
of process W, due to the exclusive generation of the intermediate data flows
dl and d2.

In fact, such an inconsistency is a semantic problem rather than a syntac­
tical problem, and checking this kind of problem can be done by verifying the
correctness of the decomposition of process W. Before discussing the notion
correctness, we need to define the structural consistency first.

Definition 14. Let process A be decomposed into CDFD G. If A and G satisfy
both Rule 5.1 and 5.2, we say that A and G are structurally consistent.

Definition 15. Let H_g be a hierarchy of CDFDs. If every high level process
and its decomposition are structurally consistent, we say that the hierarchy of
CDFD H_g is structurally consistent.

5.4 The Correctness of Decomposition 127

The structural consistency is a necessary condition for the decomposition of
a high level process to perform what the high level process requires in its
specification, but not a sufficient condition, as we have analyzed previously.

5.4 The Correctness of Decomposition

The decomposition of a high level process can be perceived as an implementa­
tion of the process, in the sense that the decomposition is intended to provide
the functionality of the high level process in a more "executable" style. We
say that the decomposition is correct with respect to its high level process
specification if it does exactly what is required by the high level process. To
allow the verification of such a correctness, we first need to formalize the con­
cept of correctness. To this end, several other concepts concerned with CDFD
are needed.

Definition 16. Let G be a CDFD. Then, a data flow path of G is a sequence
of data flow groups traversed by an execution of G from a starting process to
all the necessary terminating processes of G.

A data flow path of G is not a static concept but a dynamic concept. Thus
a data flow path is always associated with an execution of the CDFD. For
example, in Figure 5.5 possible paths of the decomposition of process Ware:

(1) xl; {dl, d2}; {yl, y2}
(2) x2; {dl, d2}; {yl, y2}

where data flow groups in each data flow path are separated by semicolons. All
the data flows in each group (denoted as a set), like {d 1, d2}, can be executed
in parallel. Also, each data flow in a data flow group may also be another
data flow group or sequence of data flow groups. This would be clearer if one
draws a CDFD with a data flow loop.

To make the discussion of the correctness of CDFDs simple to understand,
we restrict the high level process to one as simple as process W in Figure 5.5.
If one is interested in further investigation, one can extend the formalization
given below to a general process.

Let A be a high level process:

process A (xl: Ti_l I x2: Ti_2) yl: TO_I, y2: To_2
ext wr 5: Ts
pre pre_A
post post_A
end _process

128 5 Hierarchical CDFDs and Modules

- xl
- x2

=Os

- xl yl __

_ x2 W y2 __

High level process

~Yl_ dl1L:Jt
d2 n==:==lI \-.bd- y2 __

The decomposition of process W

Fig. 5.5. An example of process deomposition

Let G denote the decomposition of A. Then, the correctness of G with respect
to A is defined as:

Definition 17. If A and G are structumlly consistent and the following con­
dition holds, we say that G satisfies A, or G is correct with respect to A.

(forall[xl: Ti_l, -5: T51 I pre_A(xl, x2, -5) =>
post_A(xl, x2, G(xl), -5,5))

or
(forall[x2: Ti_2, -5: Tsli pre_A(xl, x2, -5) =>

post_A(xl, x2, G(x2), -5, 5))

We use G(xl) (or G(x2)) to denote a set of the arbitrary output data flows
generated by G (e.g., {yl, y2}), through an execution taking xl (or x2) as
its input. To obtain G(xl) (or G(x2)), we need to find a data flow path in
G that starts with xl (or x2) and ends with {yl, y2}. Note that process A
and its decomposition G are structurally consistent; that is, Rules 5.1 and
5.2 are both satisfied, which is part of the condition for correctness; without
them, only the quantified predicate expression may not be strong enough to
ensure the real semantic consistency between the high level process and its
decomposition. For example, if the pre and postconditions of process A are
both true, and rule 5.1 is not satisfied, then a decomposition of A that does
not access any store connected to the high level process A may still satisfy the

5.5 Scope 129

quantified predicate expression, and therefore may still be treated as a correct
implementation, although it should not be.

How to verify the correctness is an interesting issue. In principle, the cor­
rectness of a CDFD can only be performed by a formal proof. However, since
proofs are usually difficult, even with the use of powerful theorem provers, we
suggest the use of the compromised, but practical and reasonably powerful,
rigorous reviews and testing techniques. These two techniques are introduced
in detail in Chapters 17 and 18.

Applying this definition to the decomposition of process W given in Figure
5.4, we can easily recognize that when xl or x2 is available to process W, it
is impossible to find a path starting from xl or x2 that ends up with output
data flows yl and y2, because the execution of process WI requires both xl
and x2, while process W only requires one of xl and x2.

5.5 Scope

When defining stores or input and output variables, or writing the pre and
postconditions of a process specification in a module, we may need to use
types, constants, or other components, such as functions, preconditions, and
post conditions of processes, declared in another module in a module hierar­
chy (which corresponds to a CDFD hierarchy). How to make references to
those components becomes a very important issue in writing specifications.
SOFL has a simple rule for this. Any constant or type identifier used in a
module refers to the corresponding declaration in the same module if the dec­
laration exists. However, if such a declaration does not exist in the current
module, then it will refer to a possible declaration in its parent module; if
no corresponding declaration is given in its parent module, then it will refer
to a possible declaration in its grandparent module, and so on. However, if a
constant or type identifier declared in a module that has no direct or indirect
decomposition relation with the current module in which the constant or type
identifier is used, the module containing the declaration must be indicated in
the reference.

To formally define the scope of the effectiveness of declarations, we need
the following notions.

Definition 18. Let process A be defined in the module Mi. If A is decomposed
into a CDFD associated with module M2, we say that process A is decomposed
into module M2.

Definition 19. If process A defined in the module Mi is decomposed into
module M2, M2 is called child module of Mi, while Mi is called parent module
ofM2.

130 5 Hierarchical CDFDs and Modules

Fig. 5.6. A hierarchy of modules

Definition 20. Let A_l, A_2, ... , A_n be a sequence of modules where
n > 1. If A_l is a parent module of A_2, and A_2 is a parent module of
A_3, ... , and A_n-l is a parent module of A_n, we call A_l ancestor module
of A_n and A_n descendant module of A_i.

Definition 21. If the module A is neither ancestor module nor descendant
module of module B, A and B are called relative modules.

For example, suppose that the tree given in Figure 5.6 represents a module
hierarchy in which each node denotes a module. In this hierarchy, module M
is an ancestor module of every other module in the tree; M2 is the parent
module of M12, and an ancestor module of M121, M122, and M123. On the
other hand, M121 is an descendant module of M12, M2, and M. Since M3 and
M 1 have no decomposition relation, they are known as relative modules.

From this example, we can easily find that a module like M2 may have
several child and descendant modules; a module like M12 may have several
ancestor modules like M2 and M, but can have only one parent module like
M2.

Having defined the above concepts, we are now able to define the rules for
scopes of declarations of constants and type identifiers and of definitions of
functions and processes.

5.5 Scope 131

Scope rules:

• Let M_c be a type or constant identifier declared in module Ml. Then, the
scope of the effectiveness of this declaration is M I and all its descendant
modules.

• Let M c be declared or defined in both module MI and its ancestor module
M. Then M_c declared or defined in MI has higher priority in its scope
than M.

In other words, if the identifier M_c is used in module M1, it first refers to
the corresponding declaration or definition in MI, if any. If not, it will refer
to the first declaration in the ancestor modules sequence tracing back from
Ml. For example, suppose type identifier Person is used in module MI22 in
Figure 5.6. It first refers to the type declaration of Person in M122. If there is
no such a declaration, it will trace back from MI22 to search the declaration
in M12, M2, and M until the declaration of Person is found. If Person is not
declared in M122, M12, M2, or M, the use of Person in M122 will result in a
type reference error.

However, if type Person is declared in module MI and needs to be used in
module M122, then the following reference expression must be used:

Ml.Person

For example, we can declare a store variable s with type Person as follows:

s: Ml.Person;

In general, if an identifier M_c is declared in module Ml and needs to be
used in a relative module, say M2, of MI, the reference must be written in
the format

Ml.M c

This format is also applicable to functions and processes, including their pre
and postconditions. The following is a list of references to function fact used
in module M2, pre and postconditions of process A, and constant identifier
Age, which are all assumed to have been defined and declared in module Ml:

• Ml.fact{5}
• Ml.pre-A
• Ml.post-A
• Ml.Age

132 5 Hierarchical CDFDs and Modules

5.6 Exercises

1. Answer the questions:
a) What is a hierarchy of CDFDs?
b) What is a hierarchy of modules?
c) What is the relation between module hierarchy and CDFD hierarchy?
d) What is the relation between a CDFD and its high level process in a

CDFD hierarchy?
e) What is the condition for a CDFD to be correct with respect to its

high level process?
f) What does it mean to say that module Ml is an ancestor module of

M2?
g) What does it mean to say that modules Ml and M2 are relative mod­

ules?
h) What is the scope of a variable, type identifier, constant identifier,

invariant, function, and a process?

2. Explain whether the CDFD in Figure 5.5 is structurally consistent with
its high level process W. Is it possible for the CDFD to be correct with
respect to process W? Explain why.

6

Explicit Specifications

As we have learned in Chapter 4, a process specification, given with pre and
postconditions, is usually concise and precise in defining the functionality of
the process. This kind of specification is usually suitable for defining require­
ments and high level design, because it allows the developer to concentrate
on the relation between the inputs and outputs, with no need to think of how
the relation can be implemented. However, when deriving a detailed design
specification from a high level design, an algorithmic solution using sequence,
choice, and iteration usually needs to be provided. Compared with program
code, the detailed design specification may still be expressed in an abstract
manner.

In this chapter, we introduce statements for writing explicit specifications.
A statement performs an operation that may change the state of the pro­
cess. A process specification written using statements is known as an explicit
specification. In SOFL statements are similar to those available in high level
programming languages, like Pascal, Java, and C, but their expressive power
is much greater because of the use of quantified predicate expressions.

Since high level processes in a module hierarchy are defined in terms of
their decompositions, there is no need to write explicit specifications for them,
unless extremely necessary. Explicit specifications are mainly employed for the
lowest level processes in the detailed design.

6.1 The Structure of an Explicit Specification

As we have introduced in Chapter 4, the entire structure of a process is

process ProcessN ame (input) output
ext ExternalVariables
pre PreCondition
post PostCondition
decom LowerLevelModuleName

134 6 Explicit Specifications

explicit ExplicitSpecification
comment InformalExplanation
end_process

The part following the keyword explicit is for explicit specification. The ex­
plicit specification should not coexist with the decomposition part marked by
the keyword decom, because they both actually play the same role: describing
the functionality of the process in detail. However, the explicit specification
can coexist with the implicit specification written with pre and postcondi­
tions, but they may be produced at different development phases: the implicit
specification is usually written in the phase of requirements analysis and/or
high level design, whereas the explicit specification is usually given in detailed
design. A process with only explicit specification is treated the same as that
with both precondition and postcondition being true.

The general format of an explicit specification of a process is:

explicit
VariableDeclarations;
Statement

The VariableDeclarations gives the declarations of local variables within this
process, and their format is the same as for declarations of local store vari­
ables in a module. Statement indicates an operation. Various statements are
available, and they are introduced in the next section.

6.2 Assignment Statement

An assignment statement is composed of a variable and an expression, and
takes the form

v:= PE

The statement assigns the value resulting from the evaluation of the expres­
sion PE to the variable v, provided that the evaluation of the expression
terminates. However, if the evaluation does not terminate, v will become un­
defined and a run time error will occur. Note that the expression PE may
involve local variables, function applications, and method invocations; but as
a method invocation usually changes the current state, the evaluation of the
expression may involve state changes.

For example, the assignment statement

x := x + fact(y) + obj.ml{y)

states that variable x is updated with the result of evaluating the expression
x + fact(y) + obj.ml(y). Note that x occurring in the expression denotes the

6.4 Conditional Statements 135

value of variable x before the execution of this assignment statement. We
also assume that y is an input variable; fact(y) is a function computing the
factorial of y; obj is an object of a class; and ml is its method that yields
a natural number for a given natural number y. The execution of method
ml may change the attributes of obj; therefore, the obj may actually have
been changed after the execution of ml, before completing the evaluation of
the entire expression. See Chapter 13 for detailed discussions about method
invocations.

6.3 Sequential Statements

Sequential statements describe a series of actions, and usually contain more
than one statement. The general structure of sequential statements is

where n >= 1 and 5_i(i = 1..n) are statements.
In these statements, the external variables, input variables, and output

variables of the process can be used, but they should have names different
from those of the local variables declared in the explicit specification.

6.4 Conditional Statements

Two conditional statements are available: if-then and if-then-else. Their
formats are as follows:

(1) if Bl then 5
(2) if B2 then 51 else 52

In the conditional statement (l), if condition Bl evaluates to true, statement 5
is executed; otherwise, no statement is executed. In statement (2), if condition
B2 is true, statement 51 is executed; otherwise, if B2 is false, 52 is executed.
For example,

if x > 10 then x:= 20;

if x > 10 then x := x + 1 else x := x-I;

are two legal conditional statements. The first one states that if x is greater
than 10, the number 20 is assigned to variable x. The second statement states
that if x is greater than 10, then x is increased by one; otherwise, if x is less
than or equal to 10, x is decreased by one.

136 6 Explicit Specifications

6.5 Multiple Choice Statements

Using if-then or if-then-else statements to express a behavior depending
on multiple choice of values of a certain variable may lead to a deeply nested
structure of statements. Such a nested structure is usually complicated and has
poor readability. To resolve this problem, one way is to design a statement with
a simple and clear structure, allowing the expression of behaviors based on
multiple choices. Such a multiple choice statement is known as case statement,
which, in general, has the following form:

case x of
ValueList_1 -> 5_1;
ValueList 2 -> 5 2;

ValueList_n -> 5_n;
default -> 5 n + 1
end case

where each ValueList_i (i=1..n) is a list of concrete values of the same type as
that of x; x can be either a single variable or an expression whose type matches
that of the values given in ValueList_i; and 5~ U=1..n+1) are statements.

The case statement means that if x is equal to one of the values in Val­
ueList_1, statement 5_1 will be executed, and then the case statement will
terminate; otherwise, if x is one of the values in ValueList_2, statement 5_2
will be executed, and then the case statement will terminate; and so on. How­
ever, if x is different from all of the values given in ValueList_l, ValueList_2,
... , ValueList_n, statement 5_n+1 will be executed as default, and then the
case statement will terminate.

Note that the values in ValueList_1, ValueList_2, ... , ValueList_n should
be disjoint, but even if they are not, the case statement will not involve any
ambiguity in selecting one of the statements 5~ U=1..n+1) to execute, be­
cause ValueList_1, ValueList_2, ... , ValueList_n are evaluated in order, and
once one of them matches x, the corresponding statement will be executed,
and then the case statement will terminate. The default clause may not be
used if ValueList_1, ValueList_2, ... , ValueList_n cover all the possible cases.
However, having the default clause is always recommended, for it will avoid
the situation of not choosing any given statement to execute. For example,
consider

case x of
I, 2, 3 -> Y := Y + x + 1;
4,5,6-> Y := Y + x + 2;
7, 8, 9 -> Y := Y + x + 3;
default -> y := y + x +10
end case

6.7 The While Statement 137

Which one of the four assignment statements is executed depends on the value
of variable x. If x is equal to 1, 2, or 3, the assign statement y := y + x +
1 is executed, and then the case statement terminates; if x is different from
any given integer, the statement y := y + x +10 is executed, and the case
statement terminates.

6.6 The Block Statement

A block statement in an explicit specification plays a role similar to paren­
theses in an expression. A block statement is used when several statements
must be treated as one statement, for whatever reason. A block statement
starts with keyword begin and ends with keyword end. For example, the
conditional statement

if x> 1
then
begin
5_1;
5_2;
5 3;

end
else
begin
5 4;
5 5;

end;

involves two block statements: one contains statements 5_1, 5_2, and 5_3,
and another is made up of statements 5_4 and 5_5. When x> 1, the first block
statement is executed; otherwise, the second block statement is executed.
Since each block statement is a sequence of other statements, the execution
of a block statement is actually done by executing the contained statements
sequentially.

6.7 The While Statement

A while statement describes an iteration of executions, and takes the form

while B do
5

138 6 Explicit Specifications

When condition B evaluates to true, S is executed repeatedly until B becomes
false. To ensure the termination of the while statement, there must be some
variables involved in S and B that control the iteration. For example,

f = 1;
n = 10;

while n > 1 do
begin
f = f * n;
n = n - 1;

end;

The while statement computes the factorial of natural number 10, and the
result is held in variable f. The variable n is used to control the termination
of the while statement.

Since the readability and verification of while statements are usually dif­
ficult, and writing them usually involves detailed consideration of algorithms,
one should avoid using them as much as possible in explicit specifications.
Instead, recursive functions should be considered whenever an iteration is
needed. For example, if we make use of function application fact{lO}, where
fact is assumed to have been defined before as a recursive function computing
factorials of a natural number, the while statement given above is simplified
as the following statement:

f = fact{lO};

6.8 Method Invocation

Although the issue of invoking a method of an object should be discussed
after the introduction of "class" and "object," we need to emphasize here
that invoking a method can be part of an explicit specification of a process.
If this topic feels premature, you can skip this section. The material will be
discussed in detail in Chapter 13.

Let obj be an object of the class Obj, which is treated as a user-defined
type, and m1 be a method defined in class Obj. If m1 does not yield any
output value, the method invocation

obj.m10;

can be used as an independent statement in explicit specifications. However,
if m1 returns an output value, it can be used in any place appropriate (e.g.,
the expression involved in an assignment statement); see Chapter 13 for more
details.

6.10 Example 139

6.9 Input and Output Statements

Sometimes it may be necessary to express the idea of either reading values
from outside the system under construction (e.g., input device like keyboard)
or writing values to a device outside the system (e.g., output device like printer
and display). In this case, we need appropriate input and output statements.
Since explicit specifications are still intended to be an abstraction of the ulti­
mate program, the input and output statements are designed to facilitate the
specification of what to input or output, without caring about how the input
and output are done. The format of input and output needs to be decided
during the implementation of the system.

The general form of the input statement is

The read statement reads values from the input device sequentially into vari­
ables x_I, x_2, ... , x_n, respectively. The types of these variables may vary,
but the type of the value to be read must be kept the same as that of the
variable to which the value is read.

The output statement takes the following form:

The write statement writes the results of expressions e_l, e_2, ... , e_m se­
quentially to the output device. The types of these expressions may vary as
well. For example, the statement

read(x, y)

reads two values sequentially from the input device to variables x and y, re­
spectively. While the statement

writeC'The result is" , x + y, '! ')

writes "The result is," the result of x + y, and the character' I,' in turn, to
the output device.

6.10 Example

Let us take the process Check_Password of the ATM specification given in
Chapter 4 as an example to illustrate how to write an explicit specification
for a process. As given before, the implicit specification of the process is as
follows:

140 6 Explicit Specifications

process Check_Password(card_id: nat, sel: bool, pass: nat)
account!: Account I pr_meg: string I
account2: Account

ext rd account_file j*The type of this variable is omitted because
this external variable has been declared in

the var section. * /
post (exists! [x: account_file] I

x.account_no = card_id and
x.password = pass and

or

(sel = false and account! = x or
sel = true and account2 = x)

not (exists![x: account_file] I x.account_no = card_id and
x. password = pass) and

pr _meg = "Reenter your password or insert the correct card"
comment

If the input card_id and pass are correct with respect to the existing information
in account_file, then if sel is false, the account information is passed to the output
account!; otherwise, the account information is passed to the ouput account2.
However, if one of card_id and pass is incorrect, a prompt message pr _meg is
produced.

end_process;

An explicit specification implementing this implicit specification is given
as follows:

process Check_Password(card_id: nat, sel: bool, pass: nat)
account!: Account I pr _meg: string I
account2: Account

ext rd #account_file: set of Account;
explicit
begin

account! := get({x I x: account I x.account_no = card_id and
x.password = pass});

if account! = nil
then pr _meg = "Reenter your pass or insert the correct card"
else if sel = true

then
begin

account2 := account!;
account! := nil;

end
else account2:= nil;

end
comment

end_process;

6.11 Exercises 141

The explicit specification consists of a block statement that contains two state­
ments: an assignment statement followed by a conditional statement. The as­
signment statement is intended to assign the account in account_file whose
number and password are the same as required by the input value to the
variable accountl. If such an account does not exist, that is, account! = nil,
the prompt message pr _meg is given. However, if the account does exist, and
variable sel is equal to true, account2 is updated with account!, and account!
is set as nil; otherwise, account2 is set as nil. In this specification, the op­
erator get defined on set types is applied to obtain an element (no matter
which one) in the set defined by the set comprehension get ({x I x: account I
x.account_no = card_id and x.password = pass}). Detailed discussions on set
comprehension and the operator get are given in Chapter 8.

6.11 Exercises

Write explicit specifications for the following processes of the ATM given in
Chapter 4.

1. a) Receive_Command
b) Withdraw
c) Show_Balance

7

Basic Data Types

Data types are essential for specifications because they provide a notation
for defining data structures used in specifications. From this chapter, through
Chapter 13, we introduce all the data types available in SOFL. Data types are
divided into two categories: built-in types and user-defined types. The built-in
types are further divided into basic types and compound types. The com­
pound types include set types, sequence types, composite types, map types,
product types, and union types. The user-defined types are the types that can
be defined by the specification writers for constructing well-structured, main­
tainable, and reusable specifications. The user-defined type is known as class.
At the end of each chapter, examples are given to show how the introduced
types are used to define data structures for process specifications.

In this chapter, we focus on the basic types, while from the next chap­
ter through Chapter 12, we introduce set types, sequence and string types,
composite types, map types, product types, and union types, in that order.
Classes and their instantiations are discussed in Chapter 13.

The basic types include numeric types, boolean type, character type, and
enumeration types. Since boolean type has been introduced in Chapter 2, we
will just give a brief description of it.

7.1 The Numeric Types

Four numeric types are employed in SOFL; they are natural numbers including
zero, natural numbers, integers, and real numbers. These types are denoted
by the symbols natO, nat, int, and real, respectively, and their values are
already explained in Chapter 3.

Several arithmetic operators and relational operators are provided for com­
puting numeric values. The arithmetic operators and their names, as well as
types, are given in Table 7.1. In the table, product types, such as real * real,
are used in defining the types of the operators. The reader who is not famililar
with the concept of product type can refer to Chapter 10 for details.

144 7 Basic Data Types

Table 7.1. Arithmetic operators

Operator Name Type
- x Unary minus real-> real

abs(x) Absolute value real-> real
floor (x) Floor real-> int
x+y Addition real * real - > real
x-y Subtraction real * real - > real
x*y Multiplication real * real - > real
x/y Division real * real - > real

x div y Integer division int * int -> int
xremy Remainder int * int - > natO
xmody Modulus natO * natO - > natO

x ** y Power real * real - > real

Each operator is a function that yields a single value when applied to its
arguments. It is worth noting that every operator with parameters of "super­
types" can apply to arguments of "subtypes." For example, an operator with
parameters of type real can apply to arguments of types int, nat, and natO;
parameters of int can apply to arguments of nat; and parameters of nat
can apply to arguments of natO. Since most of these operators are commonly
used in fundamental mathematics, there is no need to explain their semantics
formally here. Instead, some examples may be more helpful.

For example, let x = 9, Y = 4.5, z = 3.14, a = - 4, and b = 3. Then, we
apply these operators and get the following results:

- z = - 3.14
abs(a) = 4
fioor(y) = 4
x + z = 12.14
x - Y = 4.5
a * b = - 12
x / y = 2.0
a div b =-1
aremb=l
x mod b = 0
x ** b = 729

The relational operators over numeric types are given in Table 7.2. Each
relational operator is a predicate that takes some arguments and yields a truth
value. Except the less-between and less-equal-between operators, all the other
relational operators have been used in previous chapters, and are supposed to
be familiar to the reader. x < y < z evaluates to true if y is greater than x but
less than z; otherwise, it yields false. x <= y <= z evaluates to true if y is

7.2 The Character Type 145

Table 7.2. Relational operators

Operator Name Type
x < y Less than real * real - > bool
x> y Greater than real * real - > bool

x <= y Less or equal real * real - > bool
x >= y Greater or equal real * real - > bool

x<y<z Less-between real * real * real - > bool
x <= y <= z Less-equal-between real * real * real - > bool

x=y Equal real * real - > bool
x <> y Not equal real * real - > bool

greater than or equal to x, but less than or equal to z; otherwise, it evaluates
to false.

For example, let x = 9, Y = 4.5, and z = 12.5. Then,

x> y <=> true
x < y <=> false
x <= y <=> false
x >= y <=> true
y < x < z <=> true
x < y < z <=> false
y <= Y <= z <=> true
x = x <=> true
x <> z <=> true

In fact, x < y < z is equivalent to the conjunction x < y and y < z, and x <=
y <= z is equivalent to the conjunction x <= y and y <= z.

7.2 The Character Type

Character is the atomic unit for constructing identifiers (for names, variables,
types, constants), operators of types, and delimiters for separating different
parts in a specification. The character type contains all the characters of the
SOFL character set, defined in Table 7.3. The type is denoted by the keyword

char

and each character value is written in the form

'x'

where x is a single element of the SOFL character set. For example, the fol­
lowing is a list of legal characters:

146 7 Basic Data Types

'a'
'8'

'I'
')'
'.'
'@'

'7'

Table 7.3. SOFL character set

English letters:
abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Other characters:
, . : ; * + _ / _ -I \ () [J { } @ ., , & % $ # " ! < > = ?

Newline:
White space:

The only operators available on the type char are the two relational operators
"=" and "<>". Thus, characters can be compared with each other for their
equality. For example,

'a' = 'A' <=> false
'a' = 'a' <=> true
'8' = '=' <=> false

7.3 The Enumeration Types

An enumeration type is a finite set of special values, usually with the feature
of describing a systematic phenomenon. For example, the days of a week can
be modeled as an enumeration type Week:

Week = {<Monday>, <Tuesday>, <Wednesday>, <Thursday>, <Friday>,
<Saturday>, <Sunday>}

Each value in an enumeration type is written in the form:

<x>

where x is a string of SOFL characters.
Although each value of an enumeration type is enclosed by a pair of angle

brackets, the brackets are just part of the syntax to help distinguish values of
enumeration types from normal string values (see Chapter 9 for the detailed

7.4 The Boolean Type 147

discussion of the string type); they do not add any additional meaning to the
values. For example, you should understand <Monday> in the same way as
you understand the notion Monday.

If we declare a variable weekday with the type Week as

weekday: Week;

then the variable can take any value of the type, that is, weekday can take
<Monday>, or <Tuesday>, or <Wednesday>, and so on, as its value.

The only operators over an enumeration type are equality and inequality,
allowing the comparison between values of an enumeration type. For example,
suppose we declare

x, y, z: Week;

and let x = <Monday>, y = <Wednesday>, and z = <Monday>, then:

x = Y <=> false
x = z <=> true
y <> z <=> true
x <> z <=> false

7.4 The Boolean Type

The boolean type is denoted by the symbol: bool, and it contains only two
values: true and false, as we have already learned from the previous chapters.
The only thing we would like to mention about the boolean type here is the
additional operators: "=" and "<>".

If there is no confusion, the equality symbol "=" can be used in the same
way as <=> for boolean values (i.e., truth values). The inequality symbol
"<>" can be applied to check whether two boolean values are not equivalent.
For example, suppose we declare

p, q, r: bool;

and let p = true, q = false, and r = true. Then,

p = r <=> true
p <> q <=> true
p <> r <=> false.

There is a rule on the priority of applying relational operators and logical
operators in predicate expressions: relational operators always have higher
priority than logical operators. For example, when both a relational operator,

148 7 Basic Data Types

= or <>, and the logical operator, <=>, are used for variables (including
boolean variables), the priority of = or < > is always higher than that of
<=>. Thus, when evaluating the expression p = r <=> true, the relation p
= r must evaluate first, followed by the entire expression.

7.5 An Example

Let us specify a simple process, reporting fares of railway tickets for different
kinds of passengers, as an example to illustrate the use of the basic types
in process specifications. Assume that the fare for student is 25 percent less
than the normal fare, and the ticket for the pensioner is 30 percent less than
the normal fare. All the other people are treated as ordinary passengers. The
process is then specified as follows:

type
Passenger = {<STUDENT>, <ORDINARY>, <PENSIONER>};
process Tell_Fare(passenger: Passenger)

fare: real
ext rd normal_fare: real
post fare = case passenger of

<STUDENT> -> normal_fare - 0.25 * normal_fare;
<ORDINARY> -> normal_fare;
<PENSIONER> -> normal_fare - 0.30 * normal_fare
end_case

end_process;

The input of this process is the type of the passenger: student, ordinary pas­
senger, or pensioner. The output is the fare of the ticket the passenger needs
to pay. The normal fare of the ticket is treated as a rd type external variable.
In the postcondition, a case expression is used to define the output fare based
on the input passenger and the railway company's ticket discount policy.

7.6 Exercises

1. Let x = 12, y = 9.8, z = 2, and a = -20. Evaluate the following expressions:

a) - z
b) abs(a)
c) floor(y)
d) x + z
e) x - y
f) a * z
g) x / y
h) a div z

7.6 Exercises 149

i) a rem x
j) x mod z
k) x ** z

2. Let x = 20, Y = 5.5, z = 'd', and a = true. Evaluate the following expres-
sions:

a) a = z
b) ')' <> z
c) x >= y
d) x < y <= Y
e) a = false
f) a <> true

3. Assume that the courses to teach on weekdays are as follows: "Software
Engineering" on Monday, "Program Design" on Tuesday, "Discrete Math­
ematics" on Wednesday, "Programming Language" on Thursday, and
"Formal Engineering Methods" on Friday. Write a formal specification for
the process that gives the corresponding course title for an input weekday.

8

The Set Types

Computation by computer is not limited only to numeric calculations. In fact,
computation has a more broad meaning: manipulation of data or information
by algorithms. Many commercial program systems and those in the public
domain actually have little to do with numeric calculation; their essential
functionalities are closely related to dealing with data structures. For example,
searching for a data item in a file, or sorting students' examination results in
a list, can be regarded as such kinds of programs.

The set types are one of the compound types available in SOFL, and usu­
ally used for the abstraction of data items that have a collection of elements.
A set type contains a collection of set values with the same feature (e.g., their
elements are the values of the same type) and a group of operators. The col­
lection of set values offers a range of set values that can be taken by a variable
of the set type, while the operators are used to manipulate set values.

In this chapter, we first explain the concept of set, and then introduce
the set type constructor, by which a specific set type can be constructed.
Furthermore, all the operators on set types are discussed in Section 8.3, and
examples of applying sets for data abstraction in process specifications are
given to explain how set data structures can be used for data abstraction in
specifications.

8.1 What Is a Set

A set is an unordered collection of distinct objects where each object is known
as an element of the set. Since computers can deal with only finite sets, we
require that any set (value) of a set type be finite (i.e., it contains finite number
of elements). For example, a school class is a set of students; a car park is a
set of cars; a library is a set of books; and so on. Set values are written as
a list of their elements, separated by commas, and enclosed by braces. For
example, the following are some set values:

152 8 The Set Types

(1) {5, 9, 10}
(2) {"John", "Chris", "David", "Jeff"}
(3) {"J ""P sal" "C" "C++" "Fortr n"} ava, a C,' , a

Set (1) is a set of three natural numbers; set (2) denotes a set of four people's
names; and set (3) shows a set of programming languages.

An essential property a set value has is that its elements are unordered,
that is, changing the order of the elements does not change the value of the
set. Thus,

{5, 9, 10} = {9, 5, 10}, and
{" John" , "Chris", "David" , "Jeff"} = {" David" , "Chris" , "Jeff" , "John"}

Another important property of a set is that there is no duplication of its
elements. For example,

{5, 9, 10, 5}

is an illegal set value because element 5 appears twice. It is important to
remember these two properties when using set values to model data items
and when reading a specification involving set values.

8.2 Set Type Declaration

A set type is declared by applying the set type constructor to an element type.
The set type constructor is

set of

Applying this constructor to a specific element type, say T, yields a specific
set type. Let A denote this type, then we can write:

A = set of T

which represents a set type in which each set value is a collection of elements
of type T. Formally, A is a power set of T, i.e.

A = {x I subset (x, T)}.

where subset(x, T) Jlleans that x is a subset of T (this operator is defined in
Section 8.3.2).

For example, let T be the enumeration type:

T = {<STUDENT>, <ORDINARY>, <PENSIONER>}

8.3 Constructors and Operators on Sets 153

Then, a set type ST is declared as

ST = set of T

Thus, ST is a power set of T:

ST = {{ }, {<STUDENT>}, {<ORDINARY>}, {<PENSIONER>},
{<STUDENT>, <ORDINARY>},
{<ORDINARY>, <PENSIONER>},
{<STUDENT>, <PENSIONER>},
{<STUDENT>, <ORDINARY>, <PENSIONER>}}

where { } denotes the empty set.
In a specification, a declaration of variable x with type ST can be given as

x: ST

This allows variable x to take any value of type ST. For instance, x can take
the following set values:

x = {<STUDENT>}
x = {<ORDINARY>, <PENSIONER>}
x = { }
x = {<STUDENT>, <ORDINARY>, <PENSIONER>}

8.3 Constructors and Operators on Sets

Given a specific set type, set values of the type can be constructed in two ways.
One is by using the constructors, and another is by applying the operators to
existing set values. A constructor of the set type is a special operator that
constitutes a set value from the elements of an element type, while a normal
operator is used to generate a set value based on existing set values. Since the
term "set" is the synonym of "set value," we use them alternately as necessary
for the convenience of discussions in this chapter.

8.3.1 Constructors

There are two sets constructors: set enumeration and set comprehension. A
set enumeration has the format

{e_l, e_2, ... , e_n}

where e_i (i=l..n) are the elements of the set {e_l, e_2, ... , e_n}. For example,
a set of integers is

{5, 9, 10, 50}

154 8 The Set Types

A set comprehension defines a set containing all the elements satisfying
some property. The general form of a set comprehension is

{e(x_l, x_2, ... , x_n) I x_I: T _1, x_2: T _2, ... , x_n: T _n &
P(x_l, x_2, ... , x_n)}

where n 2: l.
The set comprehension defines a collection of values resulting from eval­

uating the expression e(x_l, x_2, ... , x_n) (n 2: 1) under the condition that
the involved variables x_I, x_2, ... , x_n take values from sets (or types) T _1,
T _2, ... , T _n, respectively, and satisfy property P(x_l, x_2, ... , x_n). If it is
obvious or unnecessary, the bindings in the set comprehension can be omitted.
Thus, we may use another form of set comprehension:

Some examples are given below to illustrate the use of set comprehensions.

{x I x: nat & 1 < x < 5} = {2, 3, 4}
{y I y: natO & y <= 5} = {D, 1, 2, 3, 4, 5}
{x + y I x: natO, y: natO & 1 < x + y < 8} = {2, 3, 4, 5, 6, 7}
{i I i: natO & 9 < i < 4} = { }
{i I i inset nat and i < 5} = {I, 2, 3, 4}

We can also use the following special notation to represent a set containing
an interval of integers:

{i, ... , k} = {j I j: int & i <= j <= k}

Thus,

{I, ... , 5} = {I, 2, 3, 4, 5}
{-2, ... , 2} = {-2, -1, 0, 1, 2}

8.3.2 Operators

In addition to the set constructors, there are also operators for manipulating
set values. Given the element type T, all the built-in operators on set types
are discussed below one by one.

Membership

The operator for determining whether a value is a member of a set is inset.

8.3 Constructors and Operators on Sets 155

inset: T * set of T -> bool

The expression x inset 5 evaluates to true if x is a member of set 5; otherwise,
it yields false. For example,

7 inset {4, 5, 7, 9} <=> true
3 inset {4, 5, 7, 9} <=> false

Non-membership

The operator for determining if a value is not a member of a set is not in.

notin: T * set of T -> bool

If x is not a member of 5, the expression x notin 5 evaluates to true; otherwise,
it evaluates to false. Note that the non-membership operator is opposite to
the membership operator in determining whether a value is a member of a
set. For example,

7 notin {4, 5, 7, 9} <=> false
3 notin {4, 5, 7, 9} <=> true

Cardinality

The cardinality of a set means the number of the elements in the set. The
cardinality operator is card.

card: set of T -> natO
card(s) == the number of elements in 5

where == means "is defined as," the same as for defining a function introduced
in Chapter 4.

When applying the operator card to a set value, say x, we are required to
use parentheses to enclose the argument. For example,

card({5, 7, 9}) = 3
d({ 'h' , , , , , , "'}) - 5 car ,o,s,e,'-

Equality and inequality

Two sets can be compared to determine if they are identical or not. Set 51 is
equal to 52, that is, they are identical, if they have exactly the same members;
otherwise, they are not identical. The operators for equality and inequality of
sets are = and <>, the same as for numeric values.

=: set of T * set of T -> bool

156 8 The Set Types

51 = 52 == forall[x: 51] I x inset 52 and card(51) = card(52)
<>: set of T * set of T -> bool
51 <> 52 == (exists[x: 51] I x notin 52) or (exists[x: 52] I x notin 51)

For example,

{5, 15, 25} = { 5, 15, 25} <=> true
{5, 15, 25} <> {5, 20, 30} <=> true

Subset

A set 51 is said to be a subset of another set 52 if the members of 51 are all
the members of 52. The operator is subset.

subset: set of T * set of T -> bool
subset(51 , 52) == forall[x: 51] I x inset 52

If 51 is a subset of 52, subset(51, 52) evaluates to true; otherwise, it evaluates
to false. Let 51 = {5, 15, 25}, 52 = {5, 10, 15, 20, 25, 30}. Then,

subset(51, 52) <=> true
sUbset(52, 51) <=> false
subset({ }, 51) <=> true
subset(51, 51) <=> true

The third expression shows that the empty set is a subset of 51. In fact, the
empty set is a subset of any set. The fourth expression states that set 51 is a
subset of itself, which is also true of any other set.

Proper subset

The set 51 is a proper subset of the set 52 if the members of 51 are all the
members of 52 and 51 is not equal to 52. The operator for proper subset is
psubset.

psubset: set of T * set of T -> bool
psubset(51 , 52) == subset(51, 52) and 51 <> 52

For example, let 51 = {5, 15, 25} and 52 = {5, 10, 15, 25, 30}. Then,

psubset(51, 52) <=> true
psubset(51, 51) <=> false
psubset(52, 51) <=> false
psubset({ }, 51) <=> true

The empty set { } is a proper subset of any set except the empty set itself.

8.3 Constructors and Operators on Sets 157

Member access

The member access operator is designed for obtaining a member from a set.
The operator is get, and it is defined as follows:

get: set of T -> T
get(5) == if 5 <> { } then x else nil

where x inset 5.
Note that the application of the get operator to a set yields a member

of the set in a nondeterministic manner. If the set is empty, the application
becomes undefined (Le., it yields nil). It is also important to bear in mind
that get(5) returns a member of set 5, but does not change 5. For example,
assume 5 = {5, 15, 25}j then,

get(5) = 5 or
get(5) = 15 or
get(5) = 25

and 5 still remains the same as before: 5 = {5, 15, 25}.

Union

The union of sets is an operation to merge two sets into one, that is, to join
together their members to form another set. The operator is union, and it is
defined as

union: set of T * set of T - > set of T
union(51, 52) == {x I x inset 51 or x inset 52}

Since a set must have no duplication of members, the union of sets must also
be performed in the way that ensures this property. Consider the following
examples:

union({5, 15, 25}, {15, 20, 25, 30}) = {5, 15, 25, 20, 30}
union({IS, 20, 25, 30}, {5, 15, 25}) = {15, 20, 25, 30,S}

A simple way to obtain the result of the operation union(51, 52) is to
include all the members of 51 in the resulting set and then extend it by
adding the members of 52 that do not belong to 51, as shown in the above
examples.

The union operator is commutative. Thus, union(51, 52) = union(52, 51).
It is also associative, that is, union(51, union(52, 53)) = union(union(51,
52), 53). Due to these properties, the operator union can be extended to deal
with more than two sets:

158 8 The Set Types

union: set of T * set of T * ... * set of T - > set of T
union(51, 52, ... , 5n) == {x I x inset 51 or x inset 52 or ... or x inset 5n}

The use of this extended union operator is an effective way to shorten ex­
pressions involving the union operation of many sets. This can be understood
by seeing the following two expressions as equivalent:

union(51, union(52, union(53, ...)))
union(51, 52, ... , 5n)

Intersection

The intersection of two sets yields a set that contains the common members
of the two sets. The operator for intersection of sets is inter, and is defined
as

inter: set of T * set of T - > set of T
inter(51, 52) == {x I x inset 51 and x inset 52}

For example, let 51 = {S, 7, 9}, 52 = {7, 10, 9, IS}, and 53 = {8, 5, 20}. Then,

inter(51, 52) = {7, 9}
inter(51, 53) = {S}
inter(52, 53) = { }

The properties of commutativity and associativity also hold for the inter
operator. That is, inter(51, 52) = inter(52, 51), and inter(51, inter(52, 53))
= inter(inter(51, 52), 53). Taking the same approach as that of extending the
union operator, we extend the inter operator as follows:

inter: set of T * set of T * ... * set of T - > set of T
inter(51, 52, ... , 5n) == {x I x inset 51 and x inset 52 and ... and

x inset 5n}

Difference

The difference between two sets is an operation that yields another set. The
operator for the difference operation is diff, and it is defined as

diff: set of T * set of T -> set of T
diff(51, 52) == {x I x inset 51 and x notin 52}

For example, let 51 = {S, 7, 9}, 52 = {7, 10, 9, IS}, and 53 = {8, 12}. Then,

diff(51, 52) = {S}

diff(51, 53) = {5, 7, 9}
diff(52, 51) = {1O, IS}
diff(51, { }) = 51

Distributed union

8.3 Constructors and Operators on Sets 159

A set can be a set of sets, and the distributed union of such a set is an operation
that obtains the union of all the member sets of the set. The operator for
distributed union operation is dunion. For example, suppose 51 = {{5, 10,
IS}, {5, 10, 15, 25}, {1O, 25, 35}} is a set of the three sets: {5, 10, IS}, {5,
10, 15, 25}, and {10, 25, 35}; then, the distributed union of 51 is

dunion(51) = union({5, 10, IS}, {5, 10, 15, 25}, {1O, 25, 35}}
= {5, 10, 15, 25, 35}

Formally, the distributed union operator is defined as

dunion: set of set of T -> set of T
dunion(5) == union(51, 52, ... , 5n)

where 5 = {51, 52, ... , 5n}.

Distributed intersection

Similarly to the distributed union operator, the distributed intersection op­
erator also applies to a set of sets. The operator is dinter, and it is defined
as

dinter: set of set of T - > set of T
dinter(5) == inter(51, 52, ... , 5n)

where 5 = {51, 52, ... , 5n}.
For example, let 51 = {{5, 10, IS}, {5, 10, 15, 25}, {1O, 25, 35}}. Then,

dinter(51) = inter({5, 10, IS}, {5, 10, 15, 25}, {10, 25, 35}}
= {1O}

Power set

Given a set, we can apply the operator power to yield its power set that
contains all the subsets of the set, including the empty set. The power set
operator is defined as follows:

power: set of T - > set of set of T
power(5) == { 51 I subset(51 , 5)}

For example, let 5 = {5, 15, 25}. Then,

power(s) = {{ }, {5}, {15}, {25}, {5, 15}, {15, 25}, {5, 25}, {5, 15, 25}}

160 8 The Set Types

8.4 Specification with Set Types

The importance of learning the set notation introduced in this chapter is
to understand how it can be used for process modeling and specification. A
process usually deals with data items, and these data items may be defined
as sets. The most interesting question is whether it is appropriate to declare
the data items as sets. To answer this question, we must examine the nature
of the data items to see whether they are intended to represent unordered
collections of distinct objects. If so, choosing sets as the abstraction of the
data items would be a right decision.

In this section, we use the example of an email (electronic mail) address
book to illustrate how the setJlotation is used for process specifications. Usu­
ally, there is no benefit either in recording duplicated email addresses in the
address book or in defining a specific order in which the email addresses are
organized, as long as the addresses can be easily managed (e.g., through find,
add, and delete operations). Therefore, it is sufficient to abstract the email
address book as a set of email addresses. An email address is usually a string
of characters, but for now there is no point to go into that detail. So we declare
Email as a given type:

Email = given;

Based on this type declaration, we declare a state variable email_book and
three processes to manipulate the email addresses contained in the book. The
processes are add, find, and delete. All of these components are defined in the
module Email Address_Book.

module Email_Address_Book;

type

Email = given;

var

email_book: set of Email;

behav: CDFD_8.1;

process Find(e: Email) r: bool

ext rd email_book
post r = (e inset email_book)
end _process;

process Add(e: Email)
ext wr email_book

8.4 Specification with Set Types 161

post email_book = unionC email_book, {e})
end_process;

process Delete(e: Email)
ext wr email_book
post email_book = diffC email_book, {e})
end _process;

The process Find checks whether a given email address e is already included
in email_book. If it is, the process assigns true to the output variable r;
otherwise it assigns false to r. Since the checking can be done for any given
email address, no specific precondition is required by the process.

The process Add takes an email e and adds it to the email address
book email_book. This function is described by using a set union operation:
email_book = unionC email_book, {e}), in the postcondition. Since the oper­
ator union preserves the property of a set to disallow duplication of elements
in the set, element e will not be added to the set -email_book if e does not
belong to the set before the union operation. For this reason, the precondition
of this process is defined as true, imposing no specific constraint on the input
variable e and the external variable email book.

The elimination of an email address from email_book is done by means of
the process Delete. It is specifically defined by an application of the set dif­
ference operator diff in the expression email_book = diffC email_book, {e})
of the postcondition. Since operator diff properly deals with both situations,
when e belongs and does not belong to -email_book, no specific requirement
for e to be a member of -email_book in the precondition is given.

The overall behavior of this module is depicted by the CDFD in Figure
8.1. If the input data flow e of process Find is available, the process is executed
and its output r is generated. If the input e of process Add is available, Add is
executed and the store email_book is updated. Furthermore, if the input e of
process Delete is available, the process is executed and the store email_book
is updated. In the CDFD, it is assumed that the input data flows of the three
processes are exclusively available. Thus, only one of processes Add, Find, and
Delete can be executed at any time.

162 8 The Set Types

e

- e ---. Find ~ Add

- e ---. Delete

Fig. 8.1. The CDFD for the module Email_Address_Book

8.5 Exercises

1. Given a set T = {5. 8. 9}, define a set type based on T, and list all the
possible set values in the type.

2. Let T = {5. 8. 9}. Evaluate the following set comprehensions:

a) {x I x: nat & x < 8}
b) {y I y: natO & y <= 3}
c) {x - y I x: int, y: int & -2 < x < 3 and -1 < y < 2}
d) {i I i: set of T & card{i) < 3 and forall[x. y: i) I x + y <= 13}

3. Let 51 = {5. 15. 25}, 52 = {15. 30. 50}, 53 = {30. 2. 8}, and 5 = {51. 52.
53}. Evaluate the following expressions:
a) card(51)
b) card(5)
c) union{51. 52)
d) diff{52. 53)
e) inter{union{52. 53). 51)
f) dunion(5)
g) dinter(5)
h) inter{union(51. 53). diff(52. union(51. 53)))

4. Write set comprehensions for the following sets:

a) a set of natural numbers whose elements are all smaller than 10.
b) a set of integers whose elements are all greater than 0 and smaller

than 10 and cannot be divided by 3.
c) a set of prime numbers.

8.5 Exercises 163

5. Construct a module to model a telephone book containing a set of tele­
phone numbers. The necessary processes are Add, Find, Delete, and Up­
date. The process Add adds a new telephone number to the book; Find
determines whether a given telephone number is available or not in the
book; Delete eliminates a given telephone number from the book; and
Update replaces an old telephone number with a new number in the book.

6. Write a specification for a process Merge. The process takes two groups of
students, and merges them into one group. Since the merged group will
be lectured by a different professor, the students from both groups may
drop from the merged group (but exactly which students will drop is not
known).

9

The Sequence and String Types

The set types have provided us with a powerful tool for the abstraction of data
items. However, they are not sufficient for modeling data items for various
requirements. Sometimes we may need to clearly emphasize the order of the
elements in a set, such as a list of countries with the number of gold medals
obtained at the 2000 Sydney Olympics. The position of each country in the list
cannot be changed because this would otherwise probably alter the number of
the gold medals obtained by those countries. Some other times we may need to
record duplicate elements in a set, each duplicate element denoting a different
object. For example, it is quite possible that a class of undergraduates has
two or more students with the same name, so defining such a class as a set is
obviously inappropriate. If one wants to represent the ages of all the students
in a class as a set corresponding to the name set of the class, one must be
careful in using a set type, because the class is very likely to have more than
one student with the same age.

To model data items with a set of values whose order is important and
whose duplications are possible, we introduce another kind of data type, se­
quence type, in this chapter. A special kind of sequence type, the string type,
is also discussed.

9.1 What Is a Sequence

A sequence is an ordered collection of objects that allows duplications of ob­
jects. As with sets, the objects are known as elements of the sequence. As
mentioned previously, there are two important differences between sequences
and sets. The order of the elements of a sequence is important whereas the
order of the elements of a set is not significant. Thus, changing the order of
the elements of a sequence usually changes the sequence to a different one,
whereas the change of the order of elements in a set does not change the set.
Another difference is that a sequence allows duplicated elements whereas a set

166 9 The Sequence and String Types

does not. For the same reason as for sets, we only deal with finite sequences
(Le., the sequences containing a finite number of elements).

A sequence value is represented by a list of elements contained within
square brackets, []. The elements are all from the same type, called element
type. For example, the following are some sequences:

(1) [5, 15, 15, 5, 35]
(2) [' I , , 1"' r , , , " , , 1"' 't' , '] U,n,I,V,e,r,S,I, ,y
(3) [20.5, 40.5, 85.5]

Sequence (1) provides a group of natural numbers; sequence (2) is a group of
characters; and sequence (3) gives a list of real numbers. A sequence with no
element is called empty sequence. The empty sequence has the form

[]

Since sequences composed of characters like sequence (2) are often used
to represent names, addresses, and other texts, it would appear more natural
to write them as a string of characters, such as "university", rather than as a
sequence. We classify all the sequences composed of characters into a new type
known as string (but this does not disallow us to use sequence of characters
in sequence notation). A string value is a list of characters in double quotes,
such as:

" university"
.. sofl@yahoo.ac.jp"
"Formal Engineering Methods"

All the operators on sequences, to be introduced in this chapter, are ap­
plicable to string values in the same manner. So, we will just apply those
operators to string values in examples as necessary, without additional expla­
nations.

9.2 Sequence Type Declarations

A sequence type is declared by applying the sequence type constructor

seq of

to a specific element type. For example,

seq of nat

9.3 Constructors and Operators on Sequences 167

forms a sequence type in which each sequence is constituted by a collection
of natural numbers. A new type identifier can be declared using the sequence
type. For example,

Ages = seq of nat

Thus, Ages can be used as the same type as seq of nat, containing all the se­
quence values whose elements are natural numbers. Using this type identifier,
the variable student_ages can then be declared as

student_ages: Ages;

Thus, the variable student_ages may take any value in the type Ages.

9.3 Constructors and Operators on Sequences

As with the set notation, sequences can be created by applying either sequence
constructors or operators. In this section, we discuss all the constructors and
operators on sequence types.

9.3.1 Constructors

A constructor is a special operator that allows us to form sequences from
element types. There are two constructors: sequence enumeration and sequence
comprehension. A sequence enumeration has the format

where a_i (i=1..n) are the elements of the sequence. For example,

[5, 9, 8, 9, 5]

is a sequence of natural numbers. The order and occurrence of the elements
are significant. Thus,

[5, 9] <> [9, 5]

and

[5, 9, 5] <> [5, 9]

When forming a sequence, it is important to ensure that all the elements
are the values of the same type. Thus, we should be careful in constructing
the sequence,

168 9 The Sequence and String Types

[5, 'a', "university" , 20,05]

unless a sequence of union type (to be introduced in Chapter 12) is desired,
A sequence comprehension is similar to a set comprehension, but since

the order of elements is significant and the duplicated occurrences of elements
are possible, sequence comprehensions need to be constructed with caution,
A sequence comprehension takes the format:

[e(x_l, x_2, .. " x_n) I x_I: T _1, x_2: T _2, .. " x_n: T _n &
P(x_1, x_2, .. " x_n)]

A sequence comprehension defines a sequence whose elements are derived from
the evaluation of expression e(x_1, x_2, .. " x_n) under the condition that x_I
takes values from type T _1, x_2 from T _2, .. " x_n from T _n, and all of these
values satisfy property P(x_1, x_2, .. " x_n), If unnecessary, the bindings can
be omitted, Thus we may use another form of sequence comprehension:

Note that all the types T _i (i=l..n) are countable numeric types and the
elements of the sequence must occur in an ascending order, For example,

[i * j I i: nat, j: nat & 1 <= i + j <= 3] = [1, 2, 2]

As with the set notation, we also use the following special notation to
represent a sequence of integer interval from i to j:

[i, .. " j] = [x I x: int & i <= x <= j]

Thus,

[3, .. " 6] = [3, 4, 5, 6]
[-2, .. ,' 2] = [-2, -1, 0, 1, 2]
[0, .. " 4] = [0, 1, 2, 3, 4]

However, if index j is smaller than index i, [i, .. " j] represents the empty
sequence [], For example,

[9, .. " 2] = []

9.3 Constructors and Operators on Sequences 169

9.3.2 Operators

Sequences can be manipulated by sequence operators. Some operators take a
sequence and yield a value related to its elements, while other operators take
several sequences and yield another sequence.

In the discussions of sequence operators below, we assume that T is the
element type for building up sequences. Each operator is explained by giving
both a formal definition and examples to help in the understanding of its
meaning.

Length

The length of a sequence means the number of its elements. The length oper­
ator is denoted by symbol len, and is defined as

len: seq of T -> natO
len(s) == the number of elements in 5

For example, let 51 = [4,9, 10], 52 = [{3, 9}, {6}], 53 = [10, 9, 4, 25], and 54
= .. university" . Then,

len(sl) = 3
len(s2) = 2
len(s3) = 4
len(s4) = 10

Note that 52 is a sequence of set values, so its length is the number of all the
set values occurring in the sequence.

Sequence application

A sequence can apply to an index, a natural number, to yield the element
occurring at the position indicated by the index. Let 5 be a sequence of type
seq of T. Then,s can be regarded as a function from nat to T:

5: nat -> T
s(i) == the ith element of sequence 5

The precondition for applying 5 to an index i is that index i is within the range
of 1 to len(s). Otherwise, if i is beyond this range, the sequence application
s(i) is undefined. For example,

51(1) = 4
51(2) = 9
52(1) = {3, 9}

170 9 The Sequence and String Types

53(4) = 25
54(5) = 'e'

Subsequence

A subsequence of a sequence is part of the sequence. Let 5 be a sequence of
type seq of T, and i and j be two indexes. Then, the subsequence of 5 that
keeps the elements in the same order as they are in 5 is denoted as

s(i. j): nat * nat -> seq of T
s(i. j) == [s(i). s(i + 1) s(j - 1). s(j)]

Thus,

51(2. 3) = [9. 10]
51(1. 3) = 51
53(2. 4) = [9.4, 25]
54(2, 8) = "niversi"

Head

The head of a non-empty sequence is its first element. The head operator is
denoted by symbol hd, and is defined as

hd: seq of T -> T
hd(s) == if len(s) > 0

then 5(1)
else nil

For example,

hd(sl) = 4
hd(s2) = {3. 9}
hd(s3) = 10
hd(s4) = 'u'

It is not difficult to understand the head elements of 51 and 53, but one may
be a little puzzled when looking at the result of hd(s2), because the result
is not a simple number but a set of numbers. In fact, since a sequence can
contain any type of value, the result of an application of the operator can be
either a value of a basic type or a value of a compound type, as long as the
type is the element type of the sequence. Note that if 5 is the empty sequence,
hd(s) is undefined.

Tail

9.3 Constructors and Operators on Sequences 171

The tail of a non-empty sequence is its subsequence resulting from eliminating
its head. The tail operator is denoted by the symbol tI, and is defined as

tl: seq of T -> seq of T
tl(s) == 5(2, len(s))

The application of the operator tI to the empty sequence is undefined, that
is, tl([]) = nil. For example,

tl(sl) = [9, 10]
tl(s2) = [{6}]
tl(s3) = [9, 4, 25]
tl(s4) = "niversity"

Elements

The operator for obtaining the set of all the elements of a sequence is elems:

elems: seq of T - > set of T
elems(s) == {x I x: T & (exists[i: {I, ... , len(s)}]I x = sCi)}

Since the result of elems(s) is a set, not a sequence, duplication of elements
is not allowed in it. Thus,

elems(sl) = {4, 9, 10}
elems(s2) = {{3, 9}, {6}}
elems(s3) = {10, 9, 4, 25}
elems([5, 10, 5, 10, 15]) = {5, 10, IS}

1 (4) {' r r , ,", , , , , " , , '"' 't' , '} eeIllSS = U, n, I, v, e, r, 5, I, ,Y

If 5 is the empty sequence, elems(s) is the empty set, that is,

elems([]) = { }.

Indexes

A sequence corresponds to a set of natural numbers that indicates the posi­
tions of the elements in the sequence. Such a set is known as index set. The
operator for obtaining an index set of a sequence is inds:

inds: seq of T - > set of nat
inds(s) == {i I i: nat & exists[x: elems(s)]I sCi) = x}

It is obvious that the index set of the empty sequence is the empty set. Fur­
thermore, the cardinality of inds(5) is equal to the length of sequence 5, but

172 9 The Sequence and String Types

may be greater than that of the element set elems(s} due to the possibility
of duplicate elements in s. For example, suppose 51 = [4, 9, 10],52 = [{3, 9},
{6}], 53 = [10, 9, 4, 25], and 54 = "university" . Then,

inds(sI} = {I, 2, 3}
inds(s2} = {I, 2}
inds(s3} = {I, 2, 3, 4}
inds(s4} = {I, 2, 3, 4, 5, 6, 7, 8, 9, IO}

The index set is often used when describing a property of a sequence.
Consider the example

exists[i: inds(s}]I s(i} > 5
This quantified expression describes the property of sequence 5: that 5 has at
least one element greater than 5.

Concatenation

Sequences can be concatenated to form another sequence. The operator for
sequence concatenation is cone, and is defined in an implicit manner as

conc(s_I: seq of T, 5_2: seq of T} cs: seq of T
post len(cs} = len(s_I} + len(s_2} and

(forall[i: inds(s_I}]I cs(i) = s_I(i}} and
(forall[i: inds(s_2)] I cs(i + len(s_I}} = s_2(i}}

The concatenation of sequences 5_1 and 5_2 is formed by appending 5_2 to
the end of 5_1. For example,

conc(sI, 53} = [4, 9, 10, 10, 9, 4, 25]
conc(s4, 54} = "universityuniversity"

The concatenation of sequences is not commutative. Thus,

conc(sI, 53} <> conc(s3, 51}

because

conc(s3, 51} = [10, 9, 4, 25, 4, 9, 10]

which is different from conc(sI, 53} given above.
The concatenation operator cone can be extended to deal with more than

two sequences. Thus,

9.3 Constructors and Operators on Sequences 173

conc(s_l, 5_2, ... , s_n) = conc(s_l, conc(s_2, conc(s_3, ...)))

For example, let 51 = [5, 15, 25], 52 = [10, 20, 30, 40], and 53 = [2, 4, 6, 8,
10]. Then,

conc(sl, 52, 53) = [5, 15, 25, 10, 20, 30, 40, 2, 4, 6, 8, 10]

Distributed concatenation

As we have mentioned before, the elements of a sequence can be values of any
type available in SOFL, so it is possible to have sequences whose elements are
again sequences. Such a sequence is called sequence of sequences. Let 5 be a
sequence of sequences:

where s_i (i=1..n) are sequence values of a sequence type. Then, the operator
for the distributed concatenation of 5 is defined as

dconc: seq of seq of T - > seq of T
dconc(5) == conc(s_l, 5_2, ... , s_n)

For example, let 51 = [[5, 15, 25], [10, 20, 30, 40], [2, 4, 6, 8, 10]] and 52 =
[[{2, 3, 4}, {7}, {8, 9}], [{1O, 20}], [{50, 100, ISO}, {30, 60}]]. Then,

dconc(51) = [5, 15, 25, 10, 20, 30, 40, 2, 4, 6, 8, 10]
dconc(52) = [{2, 3, 4}, {7}, {8, 9}, {10, 20}, {50, 100, 150}, {30, 60}]

Since each element of a string value can only be a character, not another
sequence, the distributed concatenation operator dconc cannot be applied to
string values.

Equality and inequality

Sequences can be compared to determine whether they are identical or not.
As in many examples of this chapter, the operators for equality and inequality
are = and <>, respectively:

5_1 = 5_2 <=>
len{s_l) = len(s_2) and forall[i: jnds(s_l)]I s_l(i) = s_2(i)

5_1 <> 5_2 <=>
not 5_1 = 5_2

For example, let 51 = [5, 15, 25], 52 = [10, 20, 30, 40], and s3 = [2, 4, 6, 8,
10]. Then,

51 = 51 <=> true
51 <> 52 <=> true
52 = s3 <=> false

174 9 The Sequence and String Types

9.4 Specifications Using Sequences

In this section, let us look at two examples of specifications with the sequence
notation. The first example describes an input and output module that takes
care of inputting data from an input device (e.g., keyboard, file) and out­
putting data to an output device (e.g., display, file). The second example
models a simplified membership management system of a club using a module
called MembershipManagementSystem. This system is intended to deal with
the registration of members, searching of members, and exchange of members
in the member list.

9.4.1 Input and Output Module

The input and output module is named InputOutput. To model the input and
output processes, we first need to model the input device and output device
using appropriate data types. Since the order of elements in an input and
output device is significant, and there is the possibility of having duplicate
elements on such a device, we model them as sequences of characters. On the
basis of this data modeling, the three processes are provided: Input, Output,
and Delete. The process Input reads a character from the input device whereas
Output outputs a character to the output device. The process Delete removes
the last character from the current output device. The formal specification of
this module is as follows:

module InputOutput;

var

input_device, output_device: seq of char;

process InputO ic: char
ext wr input_device
pre inpuCdevice <> []
post conc([ic], input_device) = ~input_device
comment

The precondition of this process requires that input_device not be empty. The
postcondition describes that the head of input_device before the process is read
and bound to the output variable ic, and that input_device is updated by removing
its head character.

end_process;

process Output(oc: char)
ext wr output_device
post output_device = concCoutput_device, roc])

9.4 Specifications Using Sequences 175

comment
The output of character oc to output_device is defined by a sequence concate­
nation of the initial output_device and the sequence composed of element oc.

end_process;

process DeleteD dc: char
ext wr output_device
pre output_device <> []
post ~output_device = conc(output_device. [dc))
comment

This process removes the last character of output_device. which is reflected by
defining the initial output_device as a concatenation of the final output_device
and the sequence composed of character dc.

end_process;
end_module;

9.4.2 Membership Management System

The first step in modeling this system is to define a data structure recording
all the members in the club. Since the order of joining the club may affect the
right of the members in the club, and it is possible to have members who share
the same name, we model the list of members as a sequence. In addition, three
processes are provided: Register, Search, and Exchange. The process Register
records a new member in the member list; Search provides a set of indexes of
a requested member in the member list; and Exchange makes two members
exchange their positions in the member list. The module is formally specified
as follows:

module MembershipManagementSystem;

type

Member = string; 1* A member is denoted by its name
which is a string of characters * /

var

all_members: seq of Member;

process Register(m: Member)
ext wr all_members
post all_members = concCall_members. [m))

176 9 The Sequence and String Types

comment
The function for recording member m in the member list all_members is specified
by defining the final all_members as a concatenation of the initial all_members
and the sequence composed of member m.

end_process;

process Search(m: Member) pos: set of nat
ext rd all_members
post pos = {i I i: nat & all_members(i) = m}
comment
Finding all the positions of member m in the member list all_members is

modeled by a set comprehension.
end_process;

process Exchange(pos1, pos2: nat)
ext wr all_members
pre pos1 inset inds(all_members) and pos2 inset inds(all_members)
post all_members(pos1) = -all_members(pos2) and

all_members(pos2) = -all_members(pos1) and
forall[i: inds(all_members)] I i <> pos1 and i <> pos2 =>

all_members(i) = -all_members(i)
comment

This process exchanges only the members at position pos1 and pos2, and keeps
the rest of the members unchanged in the list

end_process;
end_module.

9.5 Exercises

1. Given a set T = {I, 2, 5}, define a sequence type based on T, and give
ten possible sequence values in the type.

2. Evaluate the following sequence comprehensions:

a) [x I x: nat & 3 < x < 8]
b) (y I y: natO & y <= 3]
c) [x - y I x: natO, y: natO & 1 < x + y < 3]

3. Let sl = [5, 15, 25]' s2 = [15, 30, 50], s3 = [30, 2, 8}, and s = [sl, s2, s3].
Evaluate the following expressions:

a) hd(sl)
b) hd(s)
c) len(tl(sl)) + len(tl(s2» + len(tl(s3))
d) len(sl) + len(s2) - len(s3}
e) union(elems(sl}, elems(s2))

9.5 Exercises 177

f) inter(union({hd(52)}, elems(53)), elems(51))
g) union(inds(51), inds(52), inds(53))
h) elems(conc(51, 52, 53))
i) dconc(5)

4. Construct a module to model a queue of integers with the processes Ap­
pend, Eliminate, Read, and Count. The process Append adds a new element
to the queue; Eliminate deletes the top element of the queue; Read returns
the top element; and Count yields the number of the elements in the queue.

5. Write a specification for a process Search. The process takes an integer
and searches through a sequence of integers. If the input integer is found
in the sequence, its indexes (there might be more than one occurrences
of the input integer in the sequence) are given as the result. If the input
integer is not found, then the empty set is given as the output. Note that
the sequence of integers must be treated as an external variable of the
process.

10

The Composite and Product Types

It is often the case that an object in the real world has many attributes,
each describing an aspect of the object. For example, a bank account is often
associated with the attributes account name, account number, password, and
balance; a student may be described by a name, identification number, age,
department, and so on. The composite types introduced in this chapter provide
a data structure for modeling such objects.

Sometimes, we may need to represent an object by several data items
as a group in a certain order. For example, a date is characterized by year,
month, and day, that is, a specific day of a year can be described by the three
data items, year, month, and day, in a certain order. The representation of
the date varies depending on countries. For example, Americans adopt the
order month, day, year, whereas the British use the order day, month, year.
Chinese and Japanese express a date in the order of year, month, day. The
common feature of these three different representations is that the order of
the occurrence of several data items in a group is important: changing the
order may change the value of the data item group. The objects with such
characteristics can be modeled by product types discussed in this chapter.

Composite types and product types share the similarity that a value of
both types is composed of several data items. But they are different in the
sense that the data items contained in a value of a composite type is referred
to by name, so the order ofthe occurrences of the data items is not important,
whereas a value of a product type is sensitive to the order of its data items.

In this chapter we first introduce composite types and then discuss product
types.

10.1 Composite Types

10.1.1 Constructing a Composite Type

A composite type is constructed using the type constructor: composed of ...
end. The general format of a composite type is:

180 10 The Composite and Product Types

composed of
C1: T_1
C2: T_2

Cn: T n
end

where Ci (i=l..n) are variables called fields and T _i are their types. Each
field is intended to represent an attribute of a composite object of the type.
We can give a name A for this type in the form

A = composed of
Cl: T_1
C2: T_2

Cn: T n
end

A value of a composite type is called composite object or composite value.
If variable co is declared as

or

co: A;

co: composed of
Cl: T_l
C2: T 2

Cn: T_n
end

then the variable co can hold any values of type A. For example, in Chapter
4 we declare Account as a composite type of three fields:

Account = composed of
account_no: nat!
password: nat!
balance: real

end

With this type, the variable account is declared as

account: Account;

Note that it is not the fields of a composite type like Account that are asso­
ciated with values, but the fields of a composite object like account that are
associated with values.

10.1 Composite Types 181

10.1.2 Fields Inheritance

Fields inheritance provides a convenient mechanism for defining a new com­
posite type based on an already defined one. Suppose we want to declare a
composite type Q containing fields already defined in another existing com­
posite type W; then, we adopt the following form for the type declaration:

Q / W = composed of
b_I: Tb_I
b 2:Tb 2

Where type W is assumed to have been defined before in the form

W = composed of
a 1: Ta 1
a 2: Ta_2

a n: Ta h

end

Thus, type Q is defined as a composite type that contains all the fields a_1,
a_2, ... , a_n of type W, and b_I, b_2, ... , b_m are defined explicitly in type
Q. In this case, we say type Q inherits from type W. However, this kind of
inheritance is syntactical inheritance and there is a strict constraint on the
order of the inherited fields (e.g., a_I, ... , a_n) in the current type (e.g., Q):
the inherited fields are all assumed to be declared before the fields declared
explicitly in the current type (e.g., b_I, ... , b_m). Applying this rule, the
declaration of type Q above is in fact equivalent to the following declaration:

Q = composed of
a_I: Ta_I
a 2: Ta 2

a_n: Ta_n
b_I: Tb_I
b_2:Tb_2

b_m: Tb_m
end

To ensure simplicity and avoid possible confusion in field names, we allow
a composite type to inherit from only one other composite type. Thus, the
following declaration is not allowed:

182 10 The Composite and Product Types

Q / W, A = composed of

end

10.1.3 Constructor

There is only one constructor that is used to generate composite values of
composite types. This constructor is known as make-function, and its general
format is

The make-function yields a composite value of composite type A whose field
values are v_i (i=l..n) that corresponds to fields C1, C2, ... , Cn, respectively.
For example,

mk_Account(1073548, 1234, 5000)

makes a composite value of type Account whose account_no is 1073548, pass­
word is 1234, and balance is 5000. If we write

account = mk_Account(1073548, 1234, 5000)

then the account_no of the variable account is 1073548, password is 1234, and
balance is 5000.

10.1.4 Operators

Two kinds of operators are available to deal with composite values. One is
called field select and the other is called field modification.

Field select

Let co be a variable of composite type A, as defined in Section 10.1.1. Then,
we use

co.C

to represent field Ci (i=l..n) of composite object co. For example,

account. password

refers to the field password of composite value account, and

10.1 Composite Types 183

account. balance

refers to the field balance of account.

Field modification

Given a composite value, say co, of type A, we can apply the field modification
operator modify to create another composite value of the same type, but with
possibly different field values. The format of the operator is

The result of this application of the operator modify to composite value co
and the pairs Cl -> v_I, C2 -> v_2, ... , Cn -> v_n is a composite value
whose values of fields Cl, C2, ... , Cn are v_I, v_2, ... , v_n, respectively.
Let us take composite value account of type Account, given previously as an
example. As defined before,

account = mk_Account(1073548, 1234, 5000)

The application of modify to account and field password yields value

accountl = modify(account, password -> 4321)

Thus, the password field of accountl is 4321 and the other two fields remain
the same as those of account. That is,

accountl = mk_Account(1073548, 4321, 5000)

Applying the modify operator again to accountl, we generate another value
account2:

account2 = modify(accountl, balance -> 10000)

This is equivalent to:

account2 = mk_Account(1073548, 4321, 10000)

Note that the operator modify does not change the current composite
value. For example, after the evaluation of modify(account, password ->
4321), account remains the same as before the evaluation, that is, account
= mk_Account(1073548, 1234, 5000) still holds.

184 10 The Composite and Product Types

10.1.5 Comparison

Two composite values can be compared to determine whether they are iden­
tical or not. Suppose col and co2 are two composite values of type A. Then,

col = co2

means that col and co2 have the same type and all their field values are
exactly the same, respectively. Thus,

mk_Account{1073548. 1234. 5000) = mk_Account{1073548. 1234. 5000)
mk_Account{1073548. 4321. 5000) =

modify{mk_Account{1073548. 1234. 5000). password -> 4321)

If the above condition is not met, the two composite values are not identical.
For example,

mk_Account{1073548. 1234. 5000) <> mk_Account{1073548. 4321. 5000)
mk_Account{1073548. 4321. 5000) <> mk_Account{1073548. 4321. 10000)

10.2 Product Types

A product type defines a set of tuples with a fixed length. A tuple is composed
of a list of values of possibly different types. Let T _1, T _2, ... , T _n be n types.
Then, a product type T is defined as follows:

T=T l*T 2* ... *T n

A value of T is expressed as

mk_T{v_1. v_2 v_n)
where v_I inset T _1. v_2 inset T _2 v_n inset T _no The values v_i
(i=l..n) are called elements of this tuple. For example, suppose type Date is
declared as

Date = natO * natO * natO

Then, the tuples

mk_Date{1999. 7. 25)
mk_Date(2000. 8. 30)
mk_Date(2001. 7. 10)

are all values of type Date, where mk_Date is a make-function for product
type Date. If a variable d is declared with type Date as

10.2 Product Types 185

d: Date

then, we can use the following expressions in specifications:

d = mk_Date(1999, 7, 25)
d = mk_Date(2000, 8, 30)
d = mk_Date(2001, 7, 10)

There are two operations on tuples: tuple application and tuple modification.
A tuple application yields an element of the given position in the tuple, whose
general format is

a(i)

where a is a variable of product type; and i is a natural number indicating
the position of the element referred to in tuple a. The result of a(i) is the ith
value in the tuple a. For example, let

datel = mk_Date(1999, 7, 25)
date2 = mk_Date(2000, 8, 30)

Then, the following results can be derived:

datel{l) = 1999
datel(2) = 7
datel(3) = 25
date2(1) = 2000
date2(2) = 8
date2(3) = 30

Or tuples can be directly used in applications, such as

mk_Date(2000, 8, 30)(2) = 8
mk_Date(2000, 8, 30)(3) = 30

A tuple modification is similar to a composite va~ue modification. The
same operator modify is also used for tuple modification, but with slightly
different syntax:

This operation yields a tuple of the same type based on the given tuple tv, with
the first element being v_I, the second element being v_2, and so on. Unlike
the application of operator modify to composite objects, the indexes of the
elements of a tuple, rather than the field names, are given in the argument
list. The signature of the modify is

186 10 The Composite and Product Types

Table 10.1. A student record table

personal data coursel course2 total
Helen, 0001, A3 2 2 4
Alexis, 0002, A2 0 2 2

...

modify: T * (nat * T _1) * (nat * T _2) * ... * (nat * T _n) -> T

where T is a product type, and T _i(i=1..n, n >= 1) are the element types.
For example,

modify(mk_Date(2000, 8, 30), 1 -> 2001, 3 -> 20) = (2001, 8, 20)
modify(mk_Date(2001, 8, 20), 2 -> 15) = (2001, 15, 20)

As with composite values, tuples can also be compared with each other
to determine whether they are the same or not. Suppose t1 and t2 are two
tuples, then tl = t2 means that t1 and t2 are the values of the same type
and they have exactly the same elements in the same order. However, if this
condition is not satisfied, the two tuples are not identical, that is, t1 <> t2.

Using values of product types together with set values or sequence values,
we can build relations and tables. A relation is a set of pairs that describes an
association between members of its domain and those of its range, but with no
restriction on the type of association. Thus, one element in the domain may
be associated with many members in the range, and vice versa. A table is a
sequence of tuples, such as the truth tables for logical operators and, or, and
not given in Chapter 2. In the next section we give an example to explain how
composite and product types are used for data abstraction in specifications.

10.3 An Example of Specification

Suppose we want to build a table to record students' credits resulting from two
courses, like Table 10.1. Each row of the table corresponds to one student and
has four columns presenting personal data, the credits of the two courses, and
the total credit. The personal data includes name, identification number, and
class to which the student belongs, which are denoted by the fields name, id,
and class, respectively, in the table. Many processes can be built to manipulate
data of the table, but to keep the description as brief and comprehensible as
possible, we only give the two processes Search and Update, which are specified
in the module Students_Record.

module Students_Record;

type

CourseCredit = natO;

TotalCredit = natO;

Personal Data = composed of
name: string
id: natO
class: string

end;

10.3 An Example of Specification 187

OneStudent = PersonalData * CourseCredit * CourseCredit * TotalCredit;

StudentsTable = seq of OneStudent;

var

students_table: StudentsTable;

inv

forall[i, j: inds(students_table)]I
i <> i => students_table(i)(l).id <> students_tableU)(l).id);

process Search(search_id: natO) info: OneStudent
ext rd students_table
pre exists[i: inds(students_table)]I students_table(i)(l).id = search_id
post exists![i: inds(students_table)]I students_table(i)(l).id = search_id

and
info = students_table(i)]

process Update(one_student: OneStudent, credit!, credit2: CourseCredit)
ext wr students_table
pre exists[i: inds(students_table)] I students_table(i) = one_student
post len(students_table) = lenCstudents_table) and

forall[i: indsCstudents_table)] I
Cstudents_table(i) = one_student =>

students_table(i) =
modifyCstudents_table(i), 2 -> creditl, 3 -> credit2,

4 -> credit! + credit2)) and
Cstudents_table(i) <> one_student =>
students_table(i) = -students_table(i))

end_process;

end_module;

188 10 The Composite and Product Types

In this module, several types including CourseCredit, TotalCredit, and Person­
alData are declared in order to declare type OneStudent. The type OneStudent
is declared as a product type composed ofthe three types: Personal Data, Cour­
seCredit, and TotalCredit. Based on type OneStudent, the type StudentsTable
is defined as a sequence type.

The state variable students_table is declared with the type StudentsTable.
This variable must satisfy the invariant given in the inv section, which re­
quires that no different elements representing different students' data share
the same identification number. In this invariant, students_table(i), a sequence
application to index i, denotes a tuple of the product type OneStudent, and
students_table(i){l) is a tuple application representing the first element of the
tuple (i.e., personal data). This first element is a value of composite type Per­
sonalData, so students_table(i)(l).id denotes the identification number field of
the composite value.

The process Search provides the entire data of the student whose identi­
fication number is the same as search_id, provided as the input. To ensure
that this process behaves correctly, the student to be searched must exist in
students table. Since there are no elements in the table that share the same
identification number according to the invariant, we use the quantifier exists!,
rather than exists, in the postcondition.

The function of process Update is to modify the credits of the two courses
of student one_student with the given credits creditl and credit2. To ensure
that the modification can be conducted, the given student one_student must
exist in the table. This requirement is specified as the precondition of the
process. The postcondition is given as a universally quantified expression that
describes the relation between the initial value and the final value of the
state variable students_table by modifying the corresponding attributes of
the student having the same identification number as that of one_student
with the given credits creditl and credit2. The total credit of the student to
be updated is derived by adding up creditl and credit2. Except for this change,
all the other students' data in the sequence students_table remain unchanged.

10.4 Exercises

1. Explain the similarity and difference between a composite type and a
product type.

2. Let a = mk_Account(OlO. 300. 5000), where the type Account is defined
in Section 10.1.1. Evaluate the following expressions:

a) a.account no
b) a. password
c) a.balance
d) modify(a, password -> 250)
e) modify(mk_Account(020, 350, 4050), account no -> 100, balance

-> 6000)

lOA Exercises 189

3. Let x be a variable of the type Date defined in Section 10.2, and x =
mk_Date(2002, 2, 6). Evaluate the following expressions:

a) x(l)
b) x(2)
c) x(3)
d) modify(x, 1 -> 2003)
e) modify(x, 2 -> 5, 3 -> 29)
f) modify(x, 1 -> x(I), 2 -> x(2))

4. Define a composite type Student that has the fields name, data_oCbirth,
college, and grade. Write the specifications for the processes Register,
Change_Name, and Get_Info. Register takes a value of Student and adds
it to an external variable student_list, which is a sequence of students.
Change_Name updates the name of a given student with a given name.
Get_Info provides all the available field values for a given student name
(assuming that the student name is unique).

11

The Map Types

Different level associations between two sets can be defined by different math­
ematical notions. A relation defines a relaxed association by providing a set
of pairs: an element in the domain may be associated with several elements
in the range, and vice versa. A function defines a more restricted association
between elements in its domain and range: an element in the domain can be
associated with only one element in the range. Such an association is often
known as mapping. As we have introduced in Chapter 4, the domain and range
of a function can be infinite sets (e.g., natO, int, real), therefore the function
itself can describe an infinite mapping from its domain to its range. However,
it is often sufficient to use finite mappings in software specifications because
computer software deals with a finite number of data items. For example,
a table describing cars and their makers usually contains a finite number of
pairs with the property that a car is made by only one maker.

In this chapter, we introduce map types by discussing the important issues,
such as the definition of map types, the manipulation of map values, and the
application of map types in process specifications.

11.1 What Is a Map

A map is a finite set of pairs, describing a mapping between two sets. The set
whose elements are to be mapped to another set is known as the domain of
the map, while the set whose elements are to be mapped to from the domain
is called the range of the map. Figure 11.1 illustrates a simple map whose
domain is the set {a, b, c, d} and range is {I, 2, 3}. Both a and b in the
domain are mapped to 2 in the range; c is mapped to 3; and d is mapped
to 1.

A map (or map value) is represented with a notation similar to the set
notation:

192 11 The Map Types

Fig. 11.1. A simple map

Each a_i -> b_i (i=1..n) denotes a pair which is known as mapZet, indicating
that a_i in the domain is mapped to b_i in the range. For example, the map
illustrated in Figure 11.1 is given as follows:

{a -> 2, b -> 2, C -> 3, d -> I}

Since a map is a set of maplets, the order of maplets are not significant,
that is, changing the order of maplets of a map does not change the map itself.
As mentioned in the beginning of this chapter, a map describes a many-to-one
mapping in general: it allows the mapping from many elements in the domain
to the same element in the range, but does not allow the mapping from the
same element in the domain to different elements in the range. The empty
map is given in the form

{->}

It has the same meaning as the empty set, but takes a different syntax from
that of the empty set in order to help type checking of specifications.

11.2 The Type Constructor

The map type constructor is a function that constructs a map type for the
given domain type T1 and range type T2, and the constructed type is written
as

map Tl to T2

The map type provides a maximum mapping from T1 to T2, and any map
value of this type defines a subset of this maximum mapping. Note that T1

11.3 Operators 193

and T2 in the map type may be any kinds of types, including infinite types,
such as nat and int, but all map values of the map type must be finite. For
example, given the type:

map nat to char

the following map values can be constructed:

{1 -> 'a', 2 -> 'b', 3 -> 'c', 4 -> 'd'}
{5 -> 'u', 15 -> 'v', 25 -> 'w'}
{1O -> 'x', 20 -> 'y'}
{50 -> 'r'}
{->}

As with the other types introduced so far, we can also declare map type
identifiers and then use them to declare variables in modules.

11.3 Operators

In this section, we explain all the operators defined on the map types. The
operators include two kinds: constructors and operators. The constructors
provide a way to form a map value from the element types, whereas the other
operators manipulate map values.

11.3.1 Constructors

There are two constructors: map enumeration and map comprehension. A map
enumeration is given as a set of map lets, as we have illustrated in Section 1l.l.
Its general format is:

For example, the following are some maps:

{3 -> 'a', 8 -> 'b', 10 -> 'c'}

{" Hosei University" -> "Japan",
"University of Manchester" -> "U.K.",
"Jiaotong University" -> "China"}

{1 -> s(1), 2 -> s(2), 3 -> s(3)}
where s is a sequence of integers containing three elements.

A map comprehension is similar to a set comprehension, except that the
elements of such a set are maplets. The map comprehension takes the form

194 11 The Map Types

{a -> b I a: Tl, b: T2 & P(a, b)}

This expression defines a map composed of all those maplets whose elements
a and b satisfy the property P(a, b). As with set types, if they are unnecessary
or obvious, the bindings in the map comprehension can be omitted. Thus, the
following form of map comprehension can be possible:

{a -> b I P(a, b)}

It is also essential that such a map comprehension does not violate the
fundamental invariant of map values that one element in the domain can be
mapped to only one element in the range. For example,

, {x -> y I x: {5, 10, 15}, y: {10, 20, 30} & y = 2 * x} =
{5 -> 10, 10 -> 20, 15 -> 30}

defines a legal map, but the following map comprehension defines an illegal
map:

{x -> y I x: {1, 2, 3}, y inset {5, 10, 15, 20} & y > x * 5} =
{1 -> 10, 1 -> 15, 1 -> 20, 2 -> 15, 3 -> 20}

11.3.2 Operators

The operators on map types take some maps as their arguments and yield
other maps. All the operators available on map types are discussed below one
by one.

Map application

Let m be a map:

m: map T1 to T2;

Then, m can be applied to an element in its domain to yield an element in
its range. The map application takes the same syntax as that of the function
application. Thus,

m(a)

denotes an application of map m to element a. For example, let

m1 = {5 -> 10, 10 -> 20, 15 -> 30}

Then,

ml(S) = 10
ml(lO) = 20
ml(lS) = 30

Domain and range

Let m be a map:

m: map Tl to T2;

11.3 Operators 195

Then the domain of m is a subset of Tl and its range is a subset of T2, which
can be obtained by applying the operators dom and rng, respectively. When
applied to a map, the domain operator dom yields the set of the first elements
of all the maplets in the map:

dom: map Tl to T2 - > set of Tl
dom(m) == {a I a: T1 & exists[b: T211 m(a) = b}

For example, by applying dom to the map ml given previously, we derive

dom(ml) = {S, 10, IS}

The range operator rng, when applied to a map, yields the set of the second
elements of all the maplets in the map. This operator is formally defined as
follows:

rng: map Tl to T2 -> set of T2

rng(m) == {m(a) I a inset dom(m)}

Applying rng to the map ml, we get

rng(ml) = {10, 20, 30}

Domain and range restriction to

Given a map and a set, we may sometimes want to obtain the submap of the
map whose domain or range is restricted to the set. Such operations are known
as domain restriction to and range restriction to, respectively. The operator
for domain restriction to is domrt and the operator for range restriction to
is rngrt:

domrt: set of T1 * map T1 to T2 -> map T1 to T2
domrt(s, m) == {a -> b I a inset inter(s, dom(m)) and b = m(a)}
rngrt: map Tl to T2 * set of T2 -> map Tl to T2

196 11 The Map Types

rngrt(m. 5) == {a -> b I a: dom(m) & b = mea) and b inset inter(5.
rng(m))}

For example, let m1 = {5 -> 10. 10 -> 20. 15 -> 30} and 51 = {5. 1O}. Then,

domrt(51. m1) = {5 -> 10. 10 -> 20}
rngrt(m1. 51) = {5 -> 10}

Domain and range restriction by

In contrast with "domain restriction to" and "range restriction to" operations,
we may sometimes want to derive a submap of a map whose domain or range is
the subset of the domain or range of the map that is disjoint with a given set.
Such operations are known as domain restriction by and range restriction by,
respectively. The operators for these two operations are domrb and rngrb,
respectively, and they are defined as follows:

domrb: set of T1 * map T1 to T2 -> map T1 to T2
domrb(5. m) == {a -> b I a inset diff(dom(m). 5) and b = mea)}

rngrb: map Tl to T2 * set of T2 -> map T1 to T2
rngrb(m. 5) == {a -> b I a: dom(m) & b = mea) and b inset

diff(rng(m). 5)}

domrb(5. m) yields a submap of map m whose domain is the subset of
dom(m) disjoint with set 5, while rngrb(m. 5) denotes the submap of m
whose range is the subset of rng(m) disjoint with 5.

For example, the following results are derived by applying these two op­
erators to the map m1 and the set 51 given previously:

domrb(51. m1) = {15 -> 30}
rngrb(m1. 51) = {10 -> 20. 15 -> 30}

In fact, the result of domrb(51. m1) is obtained by eliminating the maplets
from the map m1 whose first element is a member of set 51, while the result
of rngrb(m1. 51) is obtained by removing the maplets whose second element
belongs to set 51.

Override

Overriding is an operation of performing a union of two maps m1 and m2,
denoted by override(m1. m2), with the restriction that if a maplet in map m2
shares the first element with a maplet in m1, the resulting map includes only
the maplet in m2 as its element. Formally, the operator override is defined
as follows:

11.3 Operators 197

override: map T1 to T2 * map T1 to T2 - > map T1 to T2
override(m1, m2) == {a -> b I a: union(dom(m1), dom(m2)) &

a inset dom(m2) => b = m2(a) and
a notin dom(m2) => b = m1(a)}

For example, let m1 = {5 -> 10, 10 -> 20, 15 -> 30}, m2 = {10 -> 5, 15 ->
50, 4 -> 20}. Then,

override(m1, m2) = {1O -> 5, 15 -> 50, 4 -> 20, 5 -> 10}

Such an operation can be done in several different ways, but a simple way to
do it is to first include all the maplets in m2 in the resulting map override(m1,
m2), and then expand it by including those maplets in m1 whose first elements
are not in the domain of m2 (i.e., dom(m2)). Note that override is not
commutative, that is, override(m1, m2) <> override(m2, m1) in general, as
we can see by comparing override(m1, m2) given above and override(m2,
m1) given here

override(m2, m1) = {5 -> 10, 10 -> 20, 15 -> 30, 4 -> 20}

However, if the domains of maps m1 and m2 are disjoint, the overrid­
ing operation is the same as the union of m1 and m2 (regarding these two
maps as sets of maplets). Only under this restriction is the override operator
commutative, that is,

override(m1, m2) = override(m2, m1)

Suppose we change the map m 1 given previously to the map

m1 = {5 -> 10,8 -> 20, 2 -> 30}

Then, the following result can be easily derived:

override(m1, m2) = override(m2, m1)

because

override(m1, m2) = override(m2, m1) =
{5 -> 10, 8 -> 20, 2 -> 30, 10 -> 5, 15 -> 50, 4 -> 20}

Map inverse

Map inverse is an operation that yields a map from a given map by exchanging
the first and second elements of every maplet of the given map. The operator
for the map inverse operation is inverse:

198 11 The Map Types

inverse: map T1 to T2 - > map T2 to T1
inverse(m) == {a -> b I a: rng(m), b: dom(m) & a = m(b)}

For example, by applying the inverse operator to map m1 = {5 -> 10, 8->
20, 2 -> 30} we get another map:

inverse(m1) = {10 -> 5, 20 -> 8, 30 -> 2}

However, we must bear in mind that if the map defines a many-to-one rather
than a one-to-one mapping between its domain and range, application of
the inverse operator is undefined, because it would yield a map violating
the fundamental property of maps that one element in the domain can be
mapped to only one element in the range. Consider the application of the
inverse operator to the map m2 = {10 -> 5,15 -> 5, 4 -> 20} as an example:

inverse(m2) = {5 -> 10, 5 -> 15, 20 -> 4}

This result is no longer a map but a relation, because element 5 is mapped to
two different elements: 10 and 15.

Map composition

By composing two maps, we can construct a more complicated map. To make
such a composition possible, the range of the first map must share the same
type as for the domain of the second map. The operator for map composition
is comp:

comp: map T1 to T2 * map T2 to T3 - > map T1 to T3
comp(m1, m2) == {a -> b I a: dom(m1), b: rng(m2) &

exists [x: rng(m1)] I x inset dom(m2) and
x = m1(a) and b = m2(x)}

For example, suppose m1 = {5 -> 10, 8 -> 20, 2 -> 4}, m2 = {1O -> 5, 15
-> 5, 4 -> 20}j then, the composition of m1 and m2 is:

comp(m1, m2) = {5 -> 5, 2 -> 20}

The composition is derived by considering the facts: m1(5) = 10 and m2(10)
= 5, m1(2) = 4, and m2(4) = 20, and there is no element 8 in the domain of
m2.

Like the override operator, comp is also not commutative. Thus, com­
position comp(m1, m2) is usually different from composition comp(m2, m1).
Sometimes, composition comp(m2, m1) may not make sense because of type
incompatibility (give a specific example as an exercise).

11.4 Specification Using a Map 199

Equality and inequality

As with values of any other types, maps can also be compareo. to determine
whether they are the same or not. We use ml = m2 to mean ml is identical
to m2, and ml <> m2 to mean ml is different from m2. Formally,

ml = m2 <=>
dom(ml) = dom(m2) and rng(ml) = rng(m2) and
forall[a: dom(ml), b: rng(ml)ll b = ml(a) <=> b = m2(a)
ml <> m2 <=> not ml = m2

The map m 1 is identical to m2 if and only if they have exactly the same
maplets. Otherwise, they are not identical.

Note that although a map is a set of maplets, the set operators are not
applicable to maps because maps and sets are objects of different types. SOFL
is a strong typed language that usually does not allow the operators on one
type to be applied to the values of different types, except clearly polymorphic
operators, such as +, =, <>, and modify.

11.4 Specification Using a Map

Let us reconsider the definition of type Account, declared in Section 4.15 of
Chapter 4, with a map type. Since every customer's account number is unique
and it is common to allow one customer to have only one account of the same
kind in the same bank, the customer account can be modeled as a map from
the account number to the account data, including password and balance.
The real system dealing with customer accounts can be much more complex
than the model we are discussing, but the primary purpose of our simplified
example is to show how map types can be used to model data structures. The
principle of this technique can be extended to deal with more complicated
cases.

For brevity, we do not provide a full picture of the module in which the
Account and the related processes are defined; rather, we give only the neces­
sary parts in the module so that the problem can be well focused. First, the
type Account is defined as a map type with the type AccountNumber being its
domain and AccountData being its range:

Account = map AccountNumber to AccountData;
AccountNumber = nat;
AccountData = composed of

password: nat
balance: real

end;

200 11 The Map Types

We then redefine the processes Check_Password, Withdraw, and Show_Balance
by simplifying their interfaces pre and postconditions.

process Check_Password(card_id: AccountNumber, pass: nat)
confirm: bool

ext rd account_file: Account
post card_id inset dom(account_file) and

account_file(card_id).password = pass and confirm = true
or

card_id notin dom(account_file) and confirm = false
comment

If the given account number card_id and password pass are matching with the
account_file, the output confirm will be true; otherwise, it will be false.

end_process;

process Withdraw(card_id: AccountNumber, amount: real) cash: real
ext wr account_file: Account
pre card_id inset dom(account_file) and amount <=

account_file(card_id). balance
post account_file = overrideCaccount_file,

{card_id -> mk_AccountDataCaccount_file(card_id). password ,
-account_file(card_id).balance - amount)}) and

cash = amount
comment

The precondition requires that the provided card_id be registered in the ac­
count_file and the requested amount to withdraw be smaller than or equal to
the current balance. The updating of the current balance of the account with
the account number card_id is expressed by a map overriding operation: the up­
dated balance is the result of subtracting the requested amount from the current
balance.

end_process;

process Show_Balance(card_id) bal: real
ext rd account_file: Account
pre card_id inset dom(account_file)
post bal = account_file(card_id).balance
comment

The account number card id must exist in account_file before the execution of
the process. The output variable bal is equal to the current balance, which is
reflected by a map application in the postcondition.

end_process;

The simplicity of process specifications may be affected by using different
data structures for modeling the data items involved. The process specifica­
tions given in Section 4.15 of Chapter 4 are more complicated than those given

11.5 Exercises 201

just above. Of course, in this particular case the complexity of the process
specifications are due not only to the use of map data structure, but also due
to the simplification of interfaces of the processes.

11.5 Exercises

1. Describe the similarity and difference between a map and a function.
2. Given two sets T1 = {I, 2}, T2 = {la, ll}, construct a map type with

Tl being its domain type and T2 being its range type, and enumerate all
the possible maplets of the map type.

3. Let ml and m2 be two maps of the map type from natO to natO; ml =
{I -> 10, 2 -> 3, 3 -> 30}, m2 = {2 -> 40, 3 -> 1, 4 -> 80}, and s =
{I, 3}. Then, evaluate the following expressions:

a) dom(ml)
b) dom(m2)
c) rng(ml)
d) rng(m2)
e) domrt(s, ml)
f) domrt(s, m2)
g) rngrt(ml, s)
h) rngrt(m2, s)
i) domrb(s, ml)
j) domrb(s, m2)
k) rngrb(ml, s)
1) rngrb(m2, s)

m) override(ml, m2)
n) override(m2, ml)
0) inverse(m 1)
p) inverse(m2)
q) comp(m1, m2)
r) comp(m2, ml)
s) ml = m2
t) m1 <> m2

4. Give a concrete example to explain that comp(ml, m2) is defined, whereas
comp(m2, ml) is undefined.

5. Define BirthdayBook as a map type from the type Person to the type
Birthday, and specify the processes Register, Find, Delete, and Update.
All the processes access or update the external variable birthday _book of
the type BirthdayBook. The process Register adds a person's birthday to
birthday _book; Find returns the birthday of a person in birthday _book;
Delete eliminates the birthday for a person from birthday _book; and Up­
date replaces the wrong birthday existing in birthday _book with a correct
birthday.

12

The Union Types

A compound object may come from different types. For example, a compo­
nent of a World Wide Web home page may contain normal text, pictures,
audio data, and so on, each belonging to a different category. To model such
compound objects using only one of the types introduced so far may not be
sufficient. Types composed of several other types are needed to cope with this
problem.

The union type is a solution to this problem. A union type is a union of
several types: it contains all the elements of all the constituent types, and
each element of the union type belongs to one of its constituent types.

In this chapter, we introduce the union types and the related operators.
An example is given to illustrate the use of the union types.

12.1 Union Type Declaration

Let TI, T2, ... , Tn denote n types. Then, a union type T constituted of these
types is declared in the format

T = T1 I T2 I ... I Tn

Thus, a value of T can come from one of the types TI, T2, ... , Tn. It is possible
that types TI, T2, ... , Tn are not disjoint, but a union type should usually
be formed by disjointed constituent types so that, for any value of type T, it
can be precisely determined, by the is function (to be introduced later in this
chapter), to which constituent type it belongs. For example, the union type
Mixture that is composed of the three types string, char and set of nat is
declared as

Mixture = string I char I set of nat

204 12 The Union Types

Thus, the following values belong to type Mixture:

"Hosei University"
"SOFL"
'b'
'5'
{3, 5, 8}
{10, 20, 100}

Since values of a union type are mixtures of values of different constituent
types, it is difficult to build operators for manipulating them properly; but, as
with the other types introduced so far, values of a union type can be compared
to determine their equality and inequality. For example,

"Hosei University" =" SOFL" <=> false
'b' = 'b' <=> true
'5' <> {3, 5, 8} <=> true
"SOFL" = {10, 20, 100} <=> false

12.2 A Special Union Type

To specify some functions, it may need a union type that contains any possible
value of any possible type in a specific system. For example, we may want a
process to display the value of any possible type (onto an output device), such
as an integer, a character, a string, a sequence of integers, a set of composite
objects, and a set of classes. To allow the function of the process to be specified
on an abstract level, one solution is to define the output device as a sequence
of the values of a special union type that contains any possible value. We
use the keyword universal to denote the special union type. Thus, the type
declaration

A = universal

defines that type A contains any possible value of any possible type, and the
variable declaration

v: A

allows variable v to take any possible value.

12.4 A Specification with a Union Type 205

12.3 Is Function

When writing specifications there may be a situation that requires a precise
type of a given value. Such a type can be determined by applying a built-in
function, known as is function. The format of the is function is

is_ T(x)

The keyword is must be used when forming such a function. This function is
in fact a predicate that yields true when the type of value x is T; otherwise,
it yields false. Consider the function application:

is_string(" Hosei University")

It yields true because value" Hosei University" belongs to type string. Since
this value is also a value of type Mixture, we have the following result as well:

is_Mixture(" Hosei University") <=> true

The is function is applicable to values of any types available in SOFL. Some­
times, a value like 5 can be a value of different types, such as natO, nat, int,
and real; the application of the is function to all the types on value 5 yields
the truth value true. For example,

is_natO(5) <=> true
is_nat(5) <=> true
is_int(5) <=> true
is_real(5) <=> true

12.4 A Specification with a Union Type

We take the identifier of SOFL as an example to illustrate the use of union
types. An identifier is defined as a string of characters, including English
letters, digits, and the underscore mark, but the first character must be an
English letter. The type Identifier, whose values have a structure conforming
to this restriction, is defined as follows:

Identifier = EnglishLetter I EnglishLetter * IdentifierBody
IdentifierBody = EnglishLetter I Digit I Underscore I

IdentifierBody * Identifier Body
EnglishLetter = {<a>. . <c> <X>. <V>. <Z>}
Digit = {<O>. <1>. <2>. <3>. <4>. <5>. <6>. <7>. <8>. <9>}
Underscore = {<_>}

206 12 The Union Types

The union type Identifier is composed of type EnglishLetter and the product
type EnglishLetter * IdentifierBody that is defined in terms of type English­
Letter and IdentifierBody. The type IdentifierBody is then defined recursively
as the union type of EnglishLetter, Digit, Underscore, and the product type
IdentifierBody * IdentifierBody. Types EnglishLetter, Digit, and Underscore are
defined as the enumeration types. Formally, all the 52 English letters (both
lower case and upper case letters) of the enumeration type EnglishLetter need
to be given in the list, but for brevity, we use ... to denote the omitted letters
in the type. As we have explained before, despite a value of an enumeration
type being contained in a pair of angle brackets, the brackets do not add any
additional meaning to the value. For example, we should understand <c> as
letter c rather than the string of the three characters <, c, and >, and <3>
as digit 3 rather than the string of the three characters <, 3, and >.

The values of type Identifier can be derived from this type definition. For
example, the following are possible values of this type:

mk_ldentifier(<a»
mk_ldentifier(, <1»
mk_ldentifier(, mk_ldentifierBody(<2>, <3»)
mk_ldentifier(<X>, mk_ldentifierBody(<_>, <3>))

These values represent the strings of characters, regardless of their syntax. So
they can be more intuitively interpreted as the following strings:

12.5 Exercises

1. Define a union type School with the constituent types ElementarySchool,
JuniorHighSchool, HighSchool, and University, assuming that all the con­
stituent types are given types.

2. Let s1 and s2 be two variables of the type set of Mixture. Let s1 = {" Hosei
University", {3, 5}, 'b'} and s2 = {"SOFL", 'a', 'b', {9}}. Evaluate the
following expressions:

a) card(s1) = card(s2)
b) union(s1, s2)
c) inter(s1, s2)
d) diff(s1, s2)

12.5 Exercises 207

3. Let a, b, c: Identifier. Evaluate the following expressions:

a) is_ldentifier(a)
b) is_Digit(b)
c) is_EnglishLetter(c)

13

Classes

We have discussed all the built-in types so far, such as basic, set, sequence,
composite, product, map, and union types, but these types may not be power­
ful enough for the construction of large scale specifications due to the limited
operators provided in each type. It is often the case that one needs to build
one's own types on the basis of the built-in types to provide more flexible and
powerful operations over the values contained in the types. Such a user-defined
type is known as class.

The aim of this chapter is to introduce class, an fundamental concept in
object-oriented methods for software development [86], and the other related
concepts. These concepts are intended mainly to help construct explicit spec­
ifications in SOFL. We start by defining the concepts of class and object, and
then proceed to discussions of other important issues in object-oriented de­
sign and programming languges [18] [22], such as object identity, access control,
inheritance, polymorphism, and generosity.

13.1 Classes and Objects

A class is a user-defined type, which defines a collection of objects with the
same features. The features of objects include attributes, describing their data
resources, and operations offering the means for manipulating their data re­
sources and providing functional services for other objects. An object is an
instance of a class with a unique identity.

For example, Student is a class that contains a set of specific students, as
illustrated in Figure 13.1. Mike, Jean, and John are three students of the class;
each of them has attributes id (identification number) and dept (department)
he or she belongs to, and can perform the operations Study and Take_exam.
These attributes and operations are defined in class Student, which imposes
a specification requiring that all the objects in the class have these attributes
and operations, but the attributes have no concrete values until an object is
instantiated. For example, object Mike has 001 as its id and CS (Computer

210 13 Classes

Mike

id=OOI

dept=CS

Study

Take_exam

Object I

id

dept

Student

Class

Jean John

id = 005 id = 008

dept=CE dept=EE

Study Study
Take_exam Take3xam

Object 2 Object 3

Fig. 13.1. An illustration of class and objects

Science) as its dept; Jean has 005 as its id and CE (Computer Engineering)
as its dept; and John has 008 as its id and EE (Electronic Engineering) as its
dept.

13.1.1 Class Definition

To use a class as a user-defined type for creating objects, the class must be first
defined. The structure of a class takes a format similar to that of a module,
introduced in Chapter 4, except the following differences:

• The keyword class is used instead of module to make a clear distinction
between the two similar but different concepts.

• The process specification is replaced with method specification, so the
keyword method is used instead of process for consistency with the
convention of terms used in the object-orientation. A method is allowed
to have only one or no output, and to have only one port for both input
and output.

• The behav part in a class is optional: a CDFD can be drawn for improving
the readability of the class, but can be omitted if unnecessary.

• A method can be defined either by an implicit specification or explicit
specification, but cannot be decomposed into another lower level CDFD.
Note that not any method can be defined using implicit specifiction, it may
cause confusion in some cases. In SOFL there is a strict rule for defining
methods using pre and postconditions: only those methods that do not
change objects possibly received from either input or external varaibles of

13.1 Classes and Objects 211

the methods can be defined using pre and postconditions. In other words,
the methods that may change the objects received from input or external
variables must be defined as explicit specifications.

Thus, a class in general has the following structure:

class (jlasslVa~e / Super(jlasslVa~e;
const (jonstantDeclaration;
type TypeDeclaration;
var VariableDeclaration;
inv TypeandStatelnvariants;
behav CDFD_no;
method Init;
~ethod_l;

~ethod_2;

~ethod_n;
function_l ;
function_2;

function_~;

end_class;

A class must have a name, like Student explained in the previous example, and
may have a superclass, denoted by Super(jlasslV a~e; a slash / is used to sepa­
rate the class name and the superclass name. The notion of super class will be
discussed in Section 13.4 in detail. The variables declared in the var section
are known as attribute variables, which will be used to denote attributes of
objects of the class. The method Init is the constructor that has a function
similar to the initialization process Init of a module: to initialize the attribute
variables when an object is instantiated from the class. Since method Init is
supposed to initialize all the attribute variables of the class, the listing of all
the attribute variables as its external variables can be omitted for conciseness.
A method has the same structure as that of a process, except the constraints
given above. In fact, both methods and processes define operations, so they
have no substantial differences. However, since the ways of using processes and
methods are quite different, which reflects different development paradigms,
they are deliberately distinguished by different terms. The principle for adopt­
ing the terms is to be as consistent as possible with the term conventions being
adopted in both the structured method and object-oriented method commu­
nities. Modules and processes are used for constructing a specification in a
model-oriented fashion, while classes and methods are employed to construct
specification components used by other parts of the entire specification in an
object-oriented manner. Both approaches help each other in the construction
of large-scale systems.

212 13 Classes

All the other parts in the outlined structure of a class, such as const,
type, inv, behav, and function, are interpreted in exactly the same way as
those of a module. However, we must bear in mind that the declarations of
constants, types, invariants, CDFD, and functions are directly associated with
the class itself, whereas attributes and methods are associated with specific
objects when they are created. That is, the attributes and methods of objects
must be accessed through the reference of the objects rather than through
the reference of the class from which the objects are instantiated, as we will
discuss in detail in the next section.

Now let us take class Student, given previously as an example, to illustrate
the definition of class.

class Student;

type

Record = string * real; 1* A record a pair: (course title, score). */

var

id: natO;
dept: Dept;
study _records: set of Record;
/* All the records are different becuase of their different id * /

inv

id <= 9999;

method Init 0
post id = 0 and dept = «S> and study_records = { }
end_method;

method Study(course: string)
ext wr study _records;
post study_records = unionCstudy_record, {mk_Record(course, O)})
end_method;

13.1 Classes and Objects 213

method Take_exam(course: string) score: real
ext wr study_records;
post (exists [x: natO] I 0 <= x <= 100 and score = x) and

study_records = union(diffCstudy _records,
{mk_Record(course, O)}), {mk_Record(course, score)})

end_method;

The two attribute variables id and dept of class Student are declared with
types natO and {<CS>, <CE>, <EE>}, an enumeration type, respectively.
The invariant of the class requires that the id of every object be less than
or equal to 9999 for administrative reasons. The constructor Init is a special
method: it initializes the attribute variables of the class when an object is
instantiated. The two methods Study and Take_exam are defined in the class.
Study takes a course as input and registers the course title course, together
with the score 0 (the status before an examination), in the attribute (external)
variable study_records. The method Take_exam takes a course as input and
provides a score as the result of the method. In addition, it also updates the
attribute variable study_record by replacing the pair mk_Record(course, 0)
with the pair (course, score) in study_record.

13.1.2 Objects

An object of a class is instantiated from a class through the operator new.
To hold an object, we need to have a variable of the class declared,

obj: C;

where C is a class, presumably defined somewhere else in the specification,
and obj is a variable of class C. An object to be held by the variable obj is
then instantiated in the form

obj := new C;

The attributes of object obj are initialized by the constructor InitO of class C.
For simplicity, we allow a class to provide only one constructor named Init.
The definition of the constructor InitO cannot be omitted if the class has at
least one attribute variable and can be omitted if there is no attribute variable
defined in the class.

Let us consider the class Student as an example. Suppose we declare

s: Student;

214 13 Classes

then, we derive an object by applying the new operator to the class Student:

s := new Student;

According to the specification of constructor InitO of the class Student given
in the previous section, object s satisfies the following properties:

s.id = 0 and s.dept = <CS> and s.study_records = { }

where s.id, s.dept and s.study_records refer to the attributes id, dept, and
study _records of the object s, respectively.

13.1.3 Identity of Objects

After an object is instantiated, it is assigned to a unique identity distinguishing
it from other objects, and this identity is sustained throughout the "execution"
of the entire specification. This is similar to the situation that a student is
given a unique identification number after he or she enters a university and
the number is kept in use until he or she graduates from the university.

For the people who either write or read a specification, there is no need to
know what exactly the identities of objects are. It would be sufficient to know
that every object created is different, and kept alive until the termination of
the execution of the entire system.

13.2 Reference and Access Control

After an object of a class is created, its attributes and methods can be used
by other objects in their methods or by processes of a CDFD in their speci­
fications. Suppose obj is a variable of the class C in which attribute variables
a_I, a_2, ... , a_n and methods m_l, m_2, ... , m_q are declared and defined.
Formally, obj is declared as

obj: C;

where class C is defined as

class C;

var

a_I: T _1;
a_2: T _2;

13.2 Reference and Access Control 215

m_l(...);
m_2(...);

m_q(...);
end_class;

where T _i (i =1..n) are types or classes. Then we refer to the attributes and
methods of the object in the form

and

obj.m.J(...)

where i = 1..n and j = 1..q.
To achieve information hiding, all the attributes of an object must be

private, that is, the attributes can only be accessed and updated directly by
the methods of the object. Any access or updating of the attributes of an
object by other objects must be done by means of the methods of the object.
When an attribute a_i of an object obj needs to be used for evaluation of
an expression or definition of other variables in another object, in principle a
method whose function is to get the attribute needs to be invoked. However,
to simplify the expression of referring to the attribute and to reduce the effort
of defining methods to get attributes of object obj, we use the expression
obj.a_i as a shortcut for the method invocation whose result is to yield a_i of
object obj. Thus, the reference obj.a_i must not be used on the left hand side
of an assignment operator := in an explicit specification outside the class of
object obj, but it can be used either on the right hand side of an assignment
statement (e.g., obj.a_i may be used in the expression E of the assignment
statement x := E) or in an implicit specification (e.g., in the precondition or
postcondition of a method) to mean the use (or reference) of the attribute
a i.

The form obj.m.J(...) denotes an invocation of the method m.J of the
object obj, with the arguments provided in the parentheses. Such an invoca­
tion may change some of the attributes of object obj due to execution of the
method, and may return some value as output.

If method m.J returns any value as output, it must be used in an appro­
priate expression that uses the output of this method for evaluation. However,
if it does not return any value, the reference of the method obj.m.J(..) must
be used as an independent statement in the explicit specification of a method
or process. Since the invocation obj.m.J(...) may cause the change of the

216 13 Classes

attributes of object obj, such an invocation must not be used in implicit spec­
ifications, either in the pre or postcondition of a process or method; it can
only be used in an explicit specification of a method defined in a class or of a
process defined in a module.

For example, a class A is defined as

class A;

var

s: Student;

method InitO
explicit
s := new Student;

end_method;

method Check_Score(course: string) exam_score: natO
ext wr s
explicit
exam_score := s.Take_exam(course);

end_method;
end_class;

In this class, the attribute variable s is declared with class Student, and a
method Check_Score is defined by an explicit specification. The variable s
is initialized using the new operator in the explicit specification of the con­
structor Init. The execution of the method Check_Score will assign the score,
resulting from the invocation of the method Take_exam of object s, to the
output variable exam_score of the method Check_Score. Note that in order
to ensure that the output variable of a method is defined by its explicit spec­
ification, there must exist at least one assignment statement that assigns an
expression to the output variable, as it does for exam_score in the above
example.

13.3 The Reference of a Current Object

When writing the specification of a method of a class, we may encounter the
situation where some parameters of the method share the same name with
some attribute variables of the class. If both the parameters and the attribute

13.4 Inheritance 217

variables need to be used in the specification of the method, a confusion in
distinguishing the two variables will occur. To solve this problem, we use the
keyword this to denote the current object, and reference the attribute variable
through the current object this. Let us look at a very simple example below.

class A;
var
xl: int;
yl: real;

method Add(xl: int, yl: real)
ext wr this.xl

wr this.yl
explicit
if xl > 5
then this.xl := xl + yl
else this.yl := xl + yl

end_method;

end_class

Class A has two attribute variables, xl and yl, which share the same names
as the two parameters of method Add. In the specification of Add, this.xl and
this.yl refer to the attribute variables xl and yl, respectively, while xl and
yl refer to the two parameters of Add, respectively.

13.4 Inheritance

13.4.1 What Is Inheritance

It is quite possible that many classes share the same characteristics (attributes
and methods), but some classes have fewer attributes and/or methods than
other classes. The classes with fewer attributes and/or methods may be used as
the basis to build the other classes with extended attributes and/or methods.
For example, we can build another class known as Student_with_Scholarship
that has all the attributes defined in class Student discussed previously and
another additional attribute scholarship. Thus, a student with scholarship, an
object of class Student_with_Scholarship, should also be a student (object) of
class Student. In this case, we say class Student_with_Scholarship inherits from
class Student. Thus, inheritance serves as a mechanism for building new classes
based on existing classes, and therefore allows for the reuse of attributes and
behaviors (methods) of some classes by some other classes. For example, we
can define class Student_with_Scholarship as follows:

218 13 Classes

class Student_with_Scholarship / Student;

var

scholarship: int; 1* amount of the money provided by the scholarship * /

method InitO
post scholarship = 0
end method;
end_class;

This definition explicitly indicates that class Student_with_Scholarship inher­
its from class Student by providing the class name Student after the slash sym­
bol /. Apart from the additional attribute scholarship, this class also treats
the attributes, id and dept defined in class Student as its own attributes and
the methods Study and Take_exam as its own methods.

13.4.2 Superclasses and Subclasses

In general, if class B inherits from class A, we define B in the form:

class B / A;

end_class;

Thus, class B inherits all the attributes and methods defined in class A. In fact,
by using this mechanism we are able to construct a class inheritance hierarchy:
all classes lying below a class inherit from the class. As an example, we define
another two classes C and D, both inheriting from class B:

class C / B;

end_class;

class D / B;

end_class;

13.4 Inheritance 219

Fig. 13.2. An inheritance hierarchy

Thus, C inherits all the attributes and methods defined in both Band A. From
the object point of view, an object of class C is also an object of classes Band
A, but not vice versa.

Figure 13.2 illustrates the inheritance hierarchy composed of these four
classes. Since an inheritance hierarchy may include several level classes, we
may want to emphasize the relation between two classes. If a class directly
inherits from another class, we call this class a direct subclass and the class
a direct superclass. For example, class B is a direct subclass of A, while A
is a direct superclass of B. Any class lying below a class in the inheritance
hierarchy is known as a subclass of this class, while this class is known as a
superclass of the class lying below it. For instance, class C is a subclass of A
and A is a superclass of C, but they are not a direct subclass and superclass
of each other, respectively.

Note that SOFL does not support multiple inheritance, that is, we do
not allow a class to inherit from more than one superclass. There are two
reasons for this. One reason is that, by enforcing the single inheritance, we can
avoid the difficulties in dealing with multiple superclasses with homonymous
properties (e.g., the same name for different attribute variables or methods
in different superclasses) and in verifying specifications (e.g., reviewing and
testing specifications). Another reason is that a multiple inheritance can be
converted to a single inheritance through good design. Due to this restriction,
it will not be difficult at all to transform a SOFL specification into a program
of an object-oriented programming language allowing only single inheritance,
like Java.

220 13 Classes

13.4.3 Constructor

An object of a class in an inheritance hierarchy is instantiated by executing
its constructor. If this class inherits from its direct superclass (if any), the
unique constructor Init of its direct superclass is assumed to be automatically
executed at the beginning of the execution of its own constructor. There is no
need to write anything explicitly in the definition of the subclass constructor
to indicate that the constructor of its superclass is invoked. This assumption
is part of the semantics of SOFL; it should not be forgotten when interpreting
a specification involving class hierarchies.

For example, suppose an object of class C is instantiated and held in
variable objl, which is written as

objl: C;
objl := new C;

which invokes the constructor Init of class C. At the beginning of the execution
of this constructor, the constructor Init of class B is assumed to be invoked
in order to initialize all the attributes defined in class B; these initialized
attributes are part of the attributes of the object of class C being created.

13.4.4 Method Overloading

Method overloading is a way to define different methods with the same name.
SOFL allows several methods of the same name to be defined as long as these
methods have different sets of parameters (based on the number of parame­
ters, the types of the parameters, and the order of the parameters). When an
overloaded method is invoked, the number, types, and order of the arguments
of the method in the invocation will be compared to those of the correspond­
ing parameters of the method in its definition, and the completely matched
one will be executed. Method overloading is commonly used to create sev­
eral methods with the same name that perform similar tasks, but on different
data types. For example, in the class Exam we define the overloaded method
square to calculate the square of an integer and the square of a real number,
respectively.

class Exam;

method square(x: int) res: int
post res = x ** 2
end method;

method square{x: real) res: real
post res = x ** 2
end method;
end class;

13.4 Inheritance 221

However, for simplicity, the principle of method overloading is not applica­
ble to the constructor Init of a class, that is, we do not allow two or more
overloaded Init to be defined in the same class. If one wants to initialize some
attribute variables with specific values, one can define a method to update
the initialized attribute variables properly with the specific values.

13.4.5 Method Overriding

Method overriding is a mechanism that allows a subclass to redefine a method
of its superclass while sustaining its interface. Let us take the class hierarchy
given in Figure 13.2 as an example. Let a method ml be defined in class A.
Then it is inherited by class B, as B is a subclass of A. However, for some
reason, the definition of method m 1 may need to be modified. In this case,
the following rules must be followed:

1. The interface of method m 1 must be sustained: the name, input parame­
ters, and output parameters of method ml cannot be changed.

2. Every other part of method ml is subject to change.

Consider the extensions to classes A and B:

class A;

method ml(x: int) y: int
post y ** 2 = x
end method;

method m20

end_method;
end class;

class B / A;

method ml(x: int) y: int
post y ** 2 = x and y > 0
end method;
end_class;

Let b be an object of class B. Then, the invocation of method ml in the
form

222 13 Classes

b.ml{5}

refers to the method m 1 defined in class B instead of the corresponding method
in class A. It is a general principle that a method invocation of any object
refers to the corresponding method definition given in its own class. If the
invoked method is not defined in its own class, however, the invocation will
search for the method definition given in the direct superclass of the current
class, and then another higher level superclass, and so on, until the method
definition is found in the class hierarchy in a bottom-up manner. For example,
the method invocation

b.m20

refers to the definition of method m2 given in class A, although b is an object
of class B, because m2 is not defined in class B, and B is a direct subclass of
class A.

13.4.6 Garbage Collection

Garbage collection is an operation that collects the memory spaces occupied
by lost objects (the objects no longer being used) during the execution of
a program written in an object-oriented programming language (e.g., C++,
Java). Since SOFL is a specification language that does not concern itself
with memory issues, there is no need to address the garbage collection is­
sue in specifications. However, when a specification is implemented using an
object-oriented programming language, the garbage collection issue must be
addressed in order to achieve efficiency in the use of computer memory.

13.5 Polymorphism

Polymorphism is a mechanism by which a single method may be defined in
more than one class and may take on different implementations in each of those
classes. It is usually implemented dynamically on the basis of inheritance of
classes. For example, if a variable of a class is used as an input variable to
a method, then it may be bound to different objects coming from the same
class as that of the variable or from its subclasses. For this reason, the method
may behave differently, because different objects may use different methods
(in terms of their functionality) that may share the same interface.

Let us take classes A and B, declared previously, as an example, where B
is a subclass of A. Suppose method d is defined in class D as follows:

class D;

method d{x: A)
explicit
x.ml(5);

13.5 Polymorphism 223

Then, when method d is invoked, its input variable x can be bound to objects
of either class A or class B. This is because objects of B can be treated as
objects of A due to the inheritance relationship between B and A. However,
if the signature of method d is changed to

method d{x: B)
explicit
x.ml(5);

end_method;

then, since objects of class A are not regarded as objects of class B, invoking
method d with an object of class A will be disallowed. This point is similar
to the situation where a variable of type real can be bound to either real
numbers, integers, or naturals, as both integers and naturals are real numbers,
but not vice versa.

Now, let us look at why method d could behave differently when x is bound
to an object of class A or B. If x is bound to an object, say a, of class A, x.ml(5)
means the invocation of method ml defined in class A. In other words, it is
equivalent to the invocation a.ml(5). However, if x is bound to an object, say
b, of class B, x.ml(5) means the invocation of method ml defined in class B,
that is, it is interpreted as b.ml(5). As the same method ml may be defined
differently in class A and B, the invocation of x.ml(5) in method d may behave
differently, which may result in a different behavior of method d itself.

An operator known as downcast allows us to convert an object of a class
to that of its subclass. Such an operator is given in the form

(className)

where className is the name of the class to be converted to. When applying
this operator to an object, say x given in the previous example, of class B, the
object x is converted into an object of class B. For example,

(B) x;

224 13 Classes

Thus, the invocation of methods defined in class B can be carried out by
means of object x. To avoid any potential confusion in interpreting expressions
involving the downcast operator, we specify that the downcast operator has
the highest priority of application. For example, the method invocation

(B) x.ml(5);

means that the downcast operator (B) is first applied to object x, and then
the method ml of the resulting object is invoked. A clearer expression may
be obtained by using parentheses,

((B) x).ml(5);

The built-in boolean function is-function, introduced in Chapter 12 can
also be applied to determine whether an object belongs to a specified class.
For example,

is_A(a) <=> true
is_B(a) <=> false
is_B((B) a) <=> true
is_A(b) <=> true
is_B(b) <=> true

13.6 Generic Classes

A class is a generic class if it allows type parameters that will be bound
to concrete types (or type identifiers). The parameters are used as types to
declare variables within the class definition, and must be bound to specific
types when variables are declared using the class.

Let A be a generic class with type parameter T. Then, A is declared in the
form

class A[T];

end class;

For example, the type parameter T is used to declare a state variable sl and
the input parameter of method m:

13.6 Generic Classes 225

class A[T];

var

s1: seq of T;

method m(s: set of T)

end method;

end class;

Semantically, a generic class represents a mapping from a set of types to a set
of classes. Consider class A[T] as an example, it is defined as

A[_]: Types -> Classes

where instances of T are members of Types, that is, the collection of all possible
types, and the class of A[T], derived by binding a specific member of Types to
T, is a specific class of Classes denoting the collection of all possible classes.

When a variable x is declared with class A, it is necessary to specify a
concrete type, say real, for T. Thus, a declaration of x can be

x: A[real];

The state variable s1 in class A then becomes a variable of type seq of real,
and the parameter s will be bound to values of type set of real.

Note that type parameter T of class A can also be bound to another class,
but not another generic class because a generic class cannot be treated as
a concrete type. Of course, if a language allows high-order functions, such a
high-order class may be allowed. However, it is the principle of SOFL that
the first order logic be a good balance between the expressive power and the
simplicity for practice.

The principle of generic class described above can be extended to multiple
type parameters of classes. That is, we allow a class, say B, to be declared in
the form

class B[T _1, T _2, ... , T _n];

end class

Thus, a variable y of class B may be declared as follows:

y: B[int, real, set of natO]

226 13 Classes

13.7 An Example of Class Hierarchy

In this section, we describe in detail how to build a class inheritance hierarchy
by discussing an example of building classes Point, Circle, and Cylinder. Since
any object of a point, circle, and cylinder has a center point, class Point is a
sensible generalization of Circle and Cylinder. Therefore, we first define Point
as a class, and then define Circle as a subclass of Point, and Cylinder as a
subclass of Circle.

Since a point consists of coordinates x and y, they should be declared as
the attributes of class Point. To create points at required coordinates x and y,
we define a method known as setPoint. Thus:

class Point;

var

x, y: int;

method InitO
post x = 0 and y = 0
end_method;

method Set_Point(a: int, b: int)
ext wr x, y
post x = a and y = b
end_method;

Now we define Circle as a subclass of Point:

class Circle / Point;

const

PI = 3.14;

var

13.7 An Example of Class Hierarchy 227

radius: real; 1* radius of Circle * /

method InitO
post radius = 0.0
end method;

method Set_Radius(r: real)
ext wr radius: real
pre r >= 0.0
post radius = r
end_method;

method Create_Circle(xl, yl: int, r: real)
ext wr x, y: int

wr radius: real
pre r >= 0.0
explicit

Set_Point(xl, yl);
radius = r;

comment
This method is defined with a mixed specification of implicit and explicit styles.
The precondition requires that parameter r be greater than 0.0, while the explicit
specification defines how to create a circle. Note that attributes x and y inherited
from class Point are accessed through method Set_Point of class Point, while
attribute radius is directly assigned a value because it is defined in the current
class Circle.

end_method;

method Compute_AreaO area: real
ext rd radius
post area = PI * radius ** 2
end method;

end_class;
Since class Circle inherits from class Point, there is no need to carry out ex­
plicitly an initialization of the inherited attributes x and y in the specification
of the constructor Init of class Circle, because it is assumed to be implicitly
done through the Init method of the superclass Point by SOFL semantics.

The method Set_Radius and Compute_Area are simple; the former sets
the attribute radius with a new value r, while the latter computes the area of
the current circle object. In the specification of Compute_Area, the constant

228 13 Classes

PI, which is defined in the const part of the class, is used in the definition of
the area of the circle.

The most interesting method in this class is Create_Circle; it shows a need
for using a mixed specification of implicit and explicit styles. When defining
conditions for variables of the built-in types (e.g., int, real, string, seq of
real), pre and postconditions can be used, but when defining conditions or
functions involving objects (e.g., an object of Point), explicit specification
must be adopted (in this case, precondition can still be defined if it involves
only variables of the built-in types).

When writing an explicit specification for a method, since the primary
concern is how the behavior of the method is provided by means of the invo­
cation of methods of the related objects, we must enforce the principle that
attributes of a class can only be dealt with by means of its methods. For
example, the method SeCPoint(xl, yl) is invoked to change the attributes x
and y of the current object of the class Circle, instead of directly using the
assignments x := xl and y := yl, because both attributes x and y as well as
the method Set_Point are declared in the class Point. In contrast with this,
attribute radius is defined using the assignment statement: radius := r, since
it is an attribute of the current object of the class Circle.

It is possible to provide both an implicit and an explicit specification for
the same process, although there is no need to do so in general. In fact, implicit
specification is designed for abstract design, while explicit specification is for
detailed design. However, this is not a definitive rule for the use of implicit and
explicit specifications; they should be utilized with flexibility, depending on
the concrete application. Sometimes it may be easier to describe the behavior
of a method in an explicit manner, while at other times it may be simpler to
describe the behavior using an implicit specification. The fundamental point
is that an explicit specification is needed if invocations of methods of related
objects are inevitably used; otherwise, an implicit specification may be written.

As a subclass of Circle, the class Cylinder is defined as follows:

class Cylinder / Circle;
var
height: real; /* height of Cylinder * /

method InitO
post height = 0
end_method;
method Set_Height(h: real)
ext wr height
pre h >= 0.0
post height = h
end method;
method Create_Cylinder(xl, yl: int, r, h: real)
ext wr x, y: int

wr radius: real

*/

13.8 Example of Using Objects in Modules 229

wr height
pre r >= 0.0 and h >= 0.0
explicit
begin
Set_Point(xl, y1);
Set_Radius(r);
Set_Height(h)

end
end_method;
method Compute_Surface_AreaO area: real /*surface area of Cylinder

ext rd radius: real
explicit
begin

area := 2 * Compute_AreaO + 2 * Circle.PI * super.radius * height
/*the constant PI defined in the class Circle is used. * /

end
end_method;
method Compute_ VolumeO vol: real /*surface area of Cylinder * /
ext rd height: real
explicit
vol := Computer _AreaO * height;
/* a method of the superclass is invoked. * /

end_method;
end_class;

Since the evaluation of the surface area of cylinder contains the invocation
of the method Compute_Area of the superclass Circle, an explicit specifica­
tion is adopted for defining the method Compute_Volume. Compute_Area is
defined as a public method in class Circle and inherited by class Cylinder;
it is therefore used without referring to the superclass. In the method Com­
pute_Surface_Area, we need to refer to the private attribute variable radius of
the superclass in order to compute the surface area of the cylinder object. We
use super to represent the object of the direct superclass from which the cur­
rent class inherits, and therefore we use super.radius to refer to the attribute
radius of the related object of the direct superclass.

13.8 Example of Using Objects in Modules

The example presented in this section aims to explain how classes, objects,
and their methods are used in building modules, including CDFDs and process
specifications. After building class Cylinder in the previous section, we now
want to build a module whose CDFD describes the behavior of creating an
object of Cylinder and carrying out some interesting evaluations, as illustrated
in Figure 13.3. The center point of the bottom circle of the cylinder is created

230 13 Classes

- x

- y

@C1:c

· · · · , · ,

;~,

Fig. 13.3. A module using objects of classes

eree_

vel _

by process Create_Point based on the input coordinates x and y. Then, store
cylinder, an object of class Cylinder, is created by process Create_Cylinder,
based on the inputs point, r (radius), and h (height). If radius r or height
h is not positive, error message err is produced; otherwise, control data flow
goto is made available. The copies of this data flow, gotol and goto2, are then
used as the inputs of processes Evaluate_Area_ Volume and Draw_Cylinder,
respectively. Process Evaluate_Area_ Volume calculates the surface area and
volume of the cylinder, while Draw_Cylinder draws the cylinder on an output
device (e.g., screen).

The specification of the module whose behavior is described by the CDFD
in Figure 13.3 is given below. For constructing this module, the classes Cylinder
and Poi nt are assumed to have been defined previously. Thus, they can be
directly used in the module.

module Cylinder_Test;
var
cylinder: Cylinder;

j*class Cylinder is assumed to have already been defined. * I
process InitO
explicit
cylinder := new Cylinder

13.8 Example of Using Objects in Modules 231

comment
This process initializes the only store variable, cylinder.
end_process;
process Create_Point(x, y: int) point: Point
explicit
begin

point = new Point;
point = point.SeCPoint(x, y)

end
comment
A point is created by the invocation of method Set_Point of
object point.
end_process;
process Create_Cylinder(point: Point, r, h: real) err: string I goto: sign
ext wr cylinder
explicit

if r >= 0.0 and h >= 0.0
then
begin

cylinder := cylinder.Create_Cylinder(point.x, point.y, r, h);
goto :=!; 1* making goto available * /

end
else

err := "The radius or height of the cylinder is negative"
comment
This process creates an object cylinder of class Cylinder by invoking method
Create_Cylinder of cylinder based on the inputs point, r, and h, if the radius
r and the height h are both positive; otherwise, the error message err is
generated.
end_process;
process Display _Error _Message(err: string)
post Display(err)
comment
The error message err is displayed on an output device by means of the
function application Display(err). The Display function is defined later in this
module.
end_process;
process Evaluate_Area_ Volume(gotol: sign) area: real, vol: real
ext rd cylinder
explicit
begin
area := cylinder.Compute_Surface_AreaO;
vol := cylinder.Compute_ VolumeO

end
comment

232 13 Classes

The surface area and vol are generated by assigning the results of invoking
the methods Compute_Area and Compute_Volume of the object cylinder,
respectively.
end_process;
process Draw_Display(goto2: sign)
ext rd cylinder
post Draw(cylinder)
comment
The drawing of cylinder is done by the function application Draw(cylinder).
The function Draw is defined below.
end_process;
/* Display is intended to display the given error message on an output

device *j
function Display(meg: string): bool
== undefined
end _function;
/* Draw is intended to draw the given cylinder on an output device * j
function Draw(cylinder: Cylinder): bool
== undefined
end_function
end_module.
Since this module is built by applying the knowledge of SOFL we have

introduced before, there is no need to explain this specification further, ex­
cept the point of defining the functions Display and Draw with the keyword
undefined. The functions defined with the keyword undefined indicate that
we do not care in the phase of formal specification how the error message is
displayed and how the cylinder is drawn on an output device, because it is an
implementation problem. However, if this point is a primary concern in either
requirements or design, it should be defined precisely in the specification.

13.9 Exercises

1. Answer the following questions:

a) What is a class?
b) What is an object?
c) What is inheritance?
d) What are superclass and subclass?
e) What is polymorphism?
f) What is a generic class?

2. Define the class Polygon as the superclass of the classes Triangle and Rect­
angle. Define an attribute variable area and a method Compute_Area in
each of the classes, but with different specifications, depending on the
specific shapes.

13.9 Exercises 233

3. Specify a module whose CDFD creates a required shape that can be one
of the objects of the two classes Triangle and Rectangle, and compute its
area.

14

The Software Development Process

The development of a complex software system needs a well-planned process to
ensure its quality. There are already many existing process models, such as the
waterfall model [32], the spiral model [106], the formal methods-based trans­
formation model, and the proto typing model [84], and each model indicates the
necessary activities, resources, relations between activities and resources, and
necessary technologies for carrying out the activities. Although each of these
models has a different emphasis on the way systems are developed, they all
share the commonality of using the waterfall model as the underlying concept.

14.1 Software Process Using SOFL

Developing software systems with SOFL takes a combined approach of the
waterfall and transformation models. The overall process shares the similar­
ity with the waterfall model of emphasizing the activities of requirements
analysis, design, and coding, but differs from the conventional transformation
model in the way that transformations from high level documentation into
low level documentation may not necessarily be strict refinements; it can be
either an evolution or refinement, depending on the phase of the development.
Feedbacks from later phases to early phases are usually inevitable, and such
feedbacks may lead to changes of the documentation produced in early phases.

Figure 14.1 illustrates the SOFL process model. One of the important fea­
tures of this model is to support the three-step approach for building formal
specifications: informal, semi-formal, and formal specification. Each specifi­
cation contains different level information of the requirements and serves a
different role. In this chapter we concentrate on the explanation of the three­
step approach to specification construction, with a simple example, and dis­
cuss briefly the related activities in the process model. The specific techniques
for specification, verification and validation, and transformation from specifi­
cations to programs are described in detail from Chapter 15 to Chapter 19.

236 14 The Software Development Process

Validation Evolution

Semi -formal specification

Validation Evolution

Formal implicit specification
(abstract design)

Verification: Refinement

Formal explicit specification
(detailed design)

Verification Refmement

program

Requirements
analysis

Design

Coding

Fig. 14.1. The software development process using SOFL

14.2 Requirements Analysis

Requirements analysis is an activity to discover, understand, and document
the user's requirements [51]. It is usually the starting point of building a sys­
tem, after the feasibility study of the system is completed with a positive
conclusion. Since intensive communications between the developer and the
end user are frequently involved, the documentation usually has to be written
in a natural language, possibly coupled with other comprehensible notations
(e.g., diagrams) _ If the system to be developed is rather complex and has a
corresponding system in the real world, such as a banking system, the real
world system may first need to be modeled in order to derive accurate and
complete requirements_ Otherwise, the requirements can be documented in­
formally based on communications between the developer and the user. Such
an informal documentation is known as informal specijication_

Trying to use a formal specification language from the very beginning
would cause tremendous difficulties, not only because of the difficulty in com­
munication, but also due to the lack of sufficient knowledge about the require­
ments_ However, this does not mean that the preciseness of the specification is

14.2 Requirements Analysis 237

not important. The point is that we need to strike a good balance between pre­
ciseness and readability of the specification. Such a balanced documentation
is known as semi-formal specification. To achieve this kind of requirements
specification, it is natural to take two steps: from informal to semi-formal
specifications.

14.2.1 The Informal Specification

Informal specifications are often criticized as a cause of faults in software
systems due to the ambiguity in expressions, but in fact the way of writing
informal specifications should take the blame even more. A well organized
specification can make a significant difference in reducing misunderstanding
and complexity of requirements. Although it is difficult to define the concept
of well organized specification, such a specification must clearly and concisely
describe the following items:

• the functions to be implemented
• the resources to be used
• the necessary constraints on both functions and resources

At this stage, there is no need to pay much attention to the relations between
functions, resources, and constraints; these will be the task for the stage of
semi-formal specification. Let us take a simplified hotel reservation system
as an example. An informal specification of this potential system is given as
follows:

1. The required functions:

• Reserve room
• Cancel reservation
• Change reservation
• Check in
• Check out

2. The resources of the hotel to be managed:

• Single rooms: 100
• Twin rooms: 50
• Double rooms: 50

3. The constraints reflecting the policy of the hotel:

• One customer can reserve only one room each time.
• Only customers with reservations can check into the hotel.

238 14 The Software Development Process

1. Tt-e f"rcticrs cf tre s'pstem:

(1) F I
(2) F 2
(3) F 3
(4) F 4

1.1 F 1

(1) F 1 1
(2) F 1 2
(3) F 1 3

1.2 F 2

(1) F 2 1
(2) F 2 2

• • • • • •
2. ReccL.rses:

3. Ccrstrairts:

Fig. 14.2. The outline of an informal specification

This informal specification consists of three parts: the required functions, the
resources of the hotel to be managed, and the constraints reflecting the pol­
icy of the hotel. The functions includes the room reservation, cancellation of
reservations, change of reservations, checking in, and checking out services.
The room resources which the hotel manages include 100 single rooms, 50
twin rooms, and 50 double rooms. The hotel has a policy requiring that a
customer can reserve only one room each time and no customer can check
into the hotel without reservation (e.g., for security reasons).

This example only shows an abstract idea of how to organize an informal
specification. For a more complex system, some of the functions may indicate
a complex task. In that case, those functions may need to be described in
detail, indicating their sub-functions. For this purpose, each function can be
taken as an abstraction of a module in the specification. There is no need to
strictly follow the syntax of the module in this stage, but conceptually each
function being treated as a module will help in the creation of the semi-formal
specification in the next stage. For example, if function Reserve room needs
more detailed description, it can be written as follows:

1.1 Reserve room includes the functions:

• Check the vacancy.
• Register the customer on the reservation list.
• Issue the reservation number.

In a similar way, the other functions in this example can also be decom­
posed into detailed sub-functions, if necessary. Thus, the entire informal spec­
ification may take the form illustrated in Figure 14.2.

14.2 Requirements Analysis 239

An important point about an informal specification is that the specification
needs to cover as many functions, resources, and constraints as necessary. In
primary and critical functions, especially, resources and constraints must not
be missed. In other words, achieving the completeness of requirements in the
specification, in terms of the aspects to cover, is essential. Although there
is no definitive formula to follow in discovering complete requirements, the
field of Requirements Engineering has come up with many techniques to help
analysts. Since this topic is beyond the scope of this book, we do not develop
further along this line.

14.2.2 The Semi-formal Specification

The semi-formal specification derives from the informal specification. Its goal
is to clarify and define all the functions, resources, and constraints, and to de­
termine the relations among those three parts contained in the informal speci­
fication. For example, which resources should be allocated to which functions,
and which constraints should be applied to which functions and/or resources,
and so on. To this end, the formal notation can playa positive role. Since the
semi-formal specification still serves as a vehicle for communication between
the developer and the end user, it should not be fully formal, because the user
should not be expected to understand a specific formalism used for writing
the specification. The most distinct feature of a semi-formal specification is
that the format of the specification obeys the syntax of the specification lan­
guage, but the pre and postconditions of all processes in modules are defined or
described in a natural language in an organized manner. This idea is similar
to pseudocode for program design.

Specifically, the tasks and features of a semi-formal specification should
include:

• Associating data resources, constraints, and functions in modules. That is,
using modules to encapsulate the data resources, related data constraints,
and the related operations that conform to the functional constraints.

• The specification is defined as a set of related modules. Each module de­
fines either a function given in the informal specification or a derived
function resulting from further decomposition of an existing function.

• All the data used in the specification are defined with appropriate data
types precisely in modules, but their constraints, which are usually given
as invariants, are defined in an informal manner. In these definitions, types
are allowed to be defined as given types, if necessary.

• The CDFD for each module can be constructed when it is necessary to
reflect user requirements for the inter relation of processes in the module.
There is no strict restriction of whether CDFDs should be drawn for mod­
ules in semi-formal specifications; it all depends on whether it benefits the
definition of the user requirements.

240 14 The Software Development Process

Fig. 14.3. CDFD __ 1

• All the requirements for operations are defined in terms of processes and
functions in the associated module. Such definitions include the declaration
of input data flows, output data flows, and external variables represent­
ing related stores. They also include the pre and postconditions, but the
contents of the pre and postconditions are usually written in an informal
manner.

These features emphasize the importance of both grouping data resources,
constraints, and operations, and clarifying data structures of all the related
data items by defining formally corresponding data types. This is because
strategies for performing functions often depend on the data structures of the
data items to be processed. Also, by defining the data types the developer
can get help in understanding the business of the real world system and the
potential functional targets.

For example, a semi-formal specification for the hotel reservation system is
constructed. The outline of the specification that helps to explain the features
of the semi-formality is given as follows:

module Reservation_system;
type

FuliName = given;
Customer = composed of

name: FuliName

address: string
tel: natO
pass_no: string
reservation no: natO

end;
Room = composed of

room_no: natO

14.2 Requirements Analysis 241

room_type: {<Single>, <Twin>, <Double>}
status: {<Reserved>, <Check In>, <Check Out>}

end;
ReservationList = map Customer to Room;
Rooms = set of Room;
ReservationRequest = given;
Cancellation Request = given;
ChangeRequest = given;

var

rlist: RservationList;
rooms: Rooms;

inv

(1) every room in rooms is available for reservation;
(2) the status of every customer on the reservation

list rlist must be either <Reserved> or <Check In>;

behav CDFD _1;

process Reserve (res-req: Reservation Req uest)
no-vacancy: string I res_no: natO

ext rlist, rooms
pre the customer is not on the reservation list rlist.
post if there is vacancy

then reserve a room for the customer and
issue a reservation number.

else produce a no_vacancy message.
end _process;

process Cancel(cancel_req: CanceliationRequest)
confirmation: string

ext rlist
pre the customer is on the reservation list rlist
post (1) delete the customer's reservation from rlist.

242 14 The Software Development Process

(2) release the reserved room resource by returning
it to rooms so that it can be used for another
reservation.

end_process;

process Change(chage-req: ChangeRequest)
no-vacancy-mes: string I
confirmation-mes: string

ext rlist, rooms
pre the customer is on the reservation list rlist
post (1) if the requested room is available, cancel the

original reservation and make a new reservation.
(2) if the requested room is not available, generate

a no vacancy message.
end _process;

process Check_ln(customer: Customer)
no_reservation_mes: string I
room no: natO

ext rlist
post (1) if the customer has a reservation recorded on

the reservation list rlist, check in the customer.
(2) if the customer has no reservation, a message

of refusing check in is issued.
end_process;

process Check_Out(room_no: natO)
warning_mes: string I
bill_receipt: string

ext rlist, rooms
post (1) if room_no is associated with a check in customer

on the reservation list rlist, delete the customer's
information and release the room.

(1.1) calculate the cost and print out the bill.
(1.2) receive payment and print out receipt.

(2) if a room to be checked out is associated with no
customer on the reservation list rlist, generate a
warning message.

end_process;
end module;

In the specification, the module Reservation_System is defined. In this module,
seven types are defined: FuliName, Customer, Room, ReservationList, Rooms,
ReservationRequest, CancelRequest, and ChangeRequest. ReservationList defines

14.3 Abstract Design 243

a map type from the composite type Customer to type Room; Rooms is de­
fined as a set type; FuliName, Reservation Req uest, Cancel Request, and Chang­
eRequest are all given types. These types are then used to declare the store
variables rlist and rooms, and the input or output variables for processes Re­
serve, Cancel, Change, Check_In, and Check_Out. In the invariant part, two
invariants are given to impose constraints on the type Rooms and the store
variable rlist, respectively. In the specification of process Reserve, both pre and
postconditions are given basically in English, but combined with an if-then­
else expression for readability. For the other processes, the specifications are
written in English, but possibly in an enumerated manner. Of course, this does
not oppose the use of any useful formal expressions, such as if-then-else and
let expressions, together with informal descriptions.

In the development of critical systems, such as safety-critical, security­
critical, and commerce-critical systems, providing formal specifications for
the critical parts in the phase of requirements analysis may be necessary
and cost-effective. But, in general, semi-formal specifications are sufficient for
documenting user requirements.

14.3 Abstract Design

Abstract design transforms the semi-formal requirements specification into a
formal specification that represents the architecture of the entire system and
functional definitions of its components. There is a substantial difference be­
tween the requirements specification and the design specification: the former
focuses on the description of the user's requirements, while the latter focuses
on the architecture of the system to provide a solution to the problem. There­
fore, such a transformation is not only a formalization, but also involves the
creation of a system structure that fulfils the requirements.

In general, the system architecture is different from the structure of the
requirements specification, but this does not mean that the semi-formal re­
quirements specification cannot be reused in the design. In fact, it is often the
case that during the construction of the system architecture, some of the mod­
ules, types, processes, and functions in the semi-formal specification may be
employed without any change to their interfaces and functionality, but some
others may need to be modified, extended, or combined with others. In ad­
dition to formalizing the existing semi-formal specification, new specification
components are usually created and integrated into the system to support the
functionality of the entire system.

Formalization of abstract design can benefit the system development in
several ways. Firstly, the designer is given a chance to study the requirements
rigorously and to clarify the ambiguity in the semi-formal specification. This
would force the designer to communicate with the analyst who wrote the
semi-formal specification. In the era of globalization in business and commu­
nication, distributed software projects carried out through the Internet are

244 14 The Software Development Process

increasing. Requirements analysis may be conducted in one place, while the
design may be carried out in another remote location. In this situation, formal­
ization of abstract design based on the semi-formal requirements specification
definitely helps the designer to study, clarify, and understand the require­
ments thoroughly. Secondly, the activity of formalization can also stimulate
discussions among the developing team members, and therefore it would help
to improve their understanding of their tasks. Finally, the design specifica­
tion serves as a firm foundation for the detailed design, coding, and testing;
therefore, it can facilitate the transformation from the abstract design to the
detailed design and, further, to the program.

Apart from the criteria imposed to the semi-formal specification, a formal
specification is required to satisfy the following additional criteria:

• All the modules are integrated into a hierarchy of CDFDs.
• All the given types are defined precisely. In other words, no given types

are allowed in the formal specification, because their values are not defined
precisely.

• The pre and postconditions of every process and function in modules are
written in the SOFL language, not in any informal language.

Note that these criteria do not forbid the use of explicit specifications for
processes, but implicit specifications are encouraged because the focus of this
phase is on the architecture of the entire system and the functionality of its
components; the issue of how the components are expressed in an algorithmic
manner should be left to the detailed design.

In principle, in the stage of abstract design, we do not encourage defining
classes and then using their objects in process and function specifications.
The reason is that, in the use of objects, invoking their methods may cause
undesirable changes of the same object, and therefore cause confusion in pre
and postcondition semantics. If methods of an object must be invoked in a
process specification in order to define its behavior, an explicit specification
must be adopted to define the process. In order to avoid undesired side effects,
no object is allowed to be used as a parameter of a function in its specification.

Let us consider the simplified hotel reservation system as an example to
see how to transform a semi-formal specification into a formal specification.
On the basis of our understanding of the semi-formal specification, a top-down
approach is taken to design the formal specification. The top level CDFD in
the specification aims at dealing with various requests, such as reservation,
cancellation, and change of reservation, but takes one at each time. Then,
the request is passed to a specific program component to process. Figure 14.4
illustrates the top level CDFD of this system, and the associated module is
given as follows:

module SYSTEM_Hotel_Reservation;

type

Full Name = string * string * string;
/*first name. middle name. and family name * /
Customer = composed of

name: FullName
address: string
tel: natO
pass_no: string
reservation no: natO

end;
Room = composed of

room_no: natO

14.3 Abstract Design 245

room_type: {<Single>. <Twin>. <Double>}
status: {<Reserved>. <Check In>. <Check Out>}

end;
ReservationList = map Customer to Room;
Rooms = set of Room;
RoomNo = natO;

var

ext #rlist: Reservation List;
ext #rooms: Rooms;

inv

forall[x: RoomNo] I 1 <= x <= 200;
forall[x: rooms] I x.status = <Check Out>;
forall[x: dom(rlist)] I rlist(x).status = <Reserved> or

rlist(x).status = <Check In>;

behav CDFD_Nol;

process Hotel_Reservation(res_req: ReservationRequest I
cancel_req: CancellationRequest I
change_req: ChangeRequest I
check_in_req: Customer I
check_out_req: RoomNo)
no_vacancy: string I res_no: nat I
confirmation: string I
no_vacancy_mes: string I
confirmation_mes: string I
no_reservation_mes: string I
room_no: RoomNo I
warning_mes: string I
bill_receipt: string

246 14 The Software Development Process

Customer

No!

OulpuC
Device

Fig. 14.4. The top level CDFD of the Hotel Reservation System

ext rw rlist
rw rooms

post (bound(res_req) => bound(no_vacancy) or bound(res_no))
and
(bound(cancel_req) => bound(confirmation))

and
(hound(change_req) => bound(no_vacancy_mes) or

bound(confirmation_mes))
and
(bound(check_in_req) => bound(no_reservation_mes) or

bound(room_no))
and
(bound(check_out_req) => bound(warning_mes) or

bound(bill_receipt))
comment
This process specifies only the relation between the input data flows and
output data flows. In other words, it specifies only which input data flows
are consumed to produce which output data flows. The details of how the
input data flows are used to produce the output data flows are spelled out
in its decomposition.
end_process;
end_module;

The top level CDFD, given in Figure 14.4, involves the terminators Cus­
tomer, providing requests, and Output_Device, displaying or printing out re-

14.3 Abstract Design 247

suIts; a process Hotel_Reservation; and two existing external stores rlist and
rooms. Since these two stores are intended to represent independent entities
of this reservation system, we use sharp mark # to indicate this feature of the
store variables when they are declared in the module, as we have explained
in Section 4.13 of Chapter 4. The defined types, variables, and invariants
are derived from the semi-formal specification, with necessary extensions and
modifications. The process Hotel_Reservation is an abstraction of the entire
system; it is intended to describe the overall functionality of the system, with­
out giving details of how the functionality is actually realized; the details are
expected to be spelled out in its decomposition.

According to the postcondition of process Hotel_Reservation, a reserva­
tion request res_req results in the generation of either output data flow
no_vacancy or res_no; a cancellation request cancel_req leads to the gen­
eration of confirmation; a change reservation request change_req results in
the generation of either no_vacancy_mes or confirmation_mes; a check-in re­
quest check_in_req leads to the generation of either no_reservation_mes or
room_no; and a check_out_req results in the generation of. warning_mes or
bill_receipt.

The process Hotel_Reservation is decomposed into the CDFD in Figure
14.5, which is associated with the module Hotel_Reservation_Decom. This
module is a formalization of the corresponding module in the semi-formal
specification. For brevity, we present only the interesting parts in detail, and
give an outline of the other parts.

module Hotel_Reservation_Decom / SYSTEM_Hotel_Reservation;

type

Date = natO * natO * natO;
ReservationRequest = composed of

name: FuliName
address: string
tel: natO
period: Date * Date
room_type: {<Single>. <Twin>. <Double>}
end;

CanceliationRequest = composed of
reservation no: natO
name: Customer.FuliName
end;

ChangeRequest = composed of
reservation no: natO
name: Customer.FuliName
room_type: {<Single>. <Twin>. <Double>}
end;

248 14 The Software Development Process

/ /
h=======;:J confmnation

\
/

Change

--warniD!-mes

No2

Fig. 14.5. The decomposition of the process HoteLReservation

var

ext #rlist: Reservation List;
ext #rooms: Rooms;

behav CDFD_No2;

process Reserve(res_req: ReservationResquest)
no_vacancy: string I res_no: nat

ext wr rlist
wr rooms

pre not exists!c: dom(rlist)] I
c.name = res_req.name and
c.address = res_req.address

decom Reserve_Decom
comment

14.3 Abstract Design 249

This process reserves a room according to the request,
if there is vacancy. Since this process has a decomposition,
the postcondition is given as true, which is omitted in the
specification.
end_process;

process Cancel(cancel_req: Cancel Request)
confirmation: string

ext wr rlist
wr rooms

pre exists[c: dom(rlist)]I
c.reservation_no = cancel_req.reservation_no and
c.name = cancel_req.reservation_no

end_process;

process Change(change_req: ChangeRequest)
no_vacancy_mes: string I
confirmation_mes: string

ext wr rlist
wr rooms

pre pre_Cancel[change_req / cancel_req]

end _process;

process Check_ln(check_in_req: ChecklnRequest)
no_reservation_mes: string I
room no: natO

ext wr rlist

process Check_out(check_out_req: RoomNo)
warning_mes: string I
bill_receipt: string

ext wr rlist
wr rooms

post (exists[c: domCrlist)]I
Crlist(c).room_no = check_out_req and
rlist = domrb({c}, -rlist) and
rooms = union(- rooms,

250 14 The Software Development Process

;t
h=======;:ln>vacancy

Check_
Vacancy

Make_
Reservation

No3

Fig. 14.6. The decomposition of the process Reserve

{modifyCrlist(c), status -> <Check Out» } and
bill_receipt = Print_Bill_Receipt(c))) or

warning_mes = "The room number is wrong."
end_process;

function Print_Bill_Receipt(c: Customer): string
== undefined;

!

1* this function returns a receipt that may be printed out on a printer. * /
end_function

The specification demonstrates a skill in using the SOFL language. For some
reason we want to define the precondition of process Change the same as that
of process Cancel, except that variable cancel_req needs to be substituted by
change_req. This reference is written as pre_ Cancel[change_req / cancel_req]
in the precondition of process Change.

Several processes in the module Hotel_Reservation_Decom are decomposed
into lower level modules and their associated CDFDs. As an example, Figure
14.6 shows the decomposition of process Reserve, and the associated module
is given as follows:

module Reserve_Decom / Hotel_Reservation_Decom;

var

ext rlist: Reservation List;
ext rooms: Rooms;

14.3 Abstract Design 251

behav CDFD_N03;

process Check_ Vacancy(res_req: ReservationRequest)
no _ vaca ncy: string I
res_req: ReservationRequest

ext rd rooms
post (exists[r: rooms] I r.room_type = res_req.room_type) and

res_req = -res_req) or
(not exists[r: rooms] I r.room_type = res_req.room_type) and
no_vacancy = "No vacancy"

comment
No specific precondition is required. If there exists a room whose type is the

same as the required type of the reservation request. pass the reservation request
reCreq to the output of this process. Otherwise. produce a " No vacancy" message
as its output.

end _process;

process Make_Reservation(res_req: ReservationRequest)
cust: Customer

end_process;

process Issue_Reservation_Number(cust: Customer)
res_no: natO

end_process;

end module;

This module involves three processes: Check_Vacancy, Make_Reservation, and
Issue_Reservation_Number. Process Check_Vacancy first checks whether the
requested room is available or not. If it is, nothing is done except transfer­
ring the reservation request res_req to the next process. Otherwise, a "no
vacancy" message is issued. If the available room is confirmed by process
Check_Vacancy, process Make_Reservation will reserve a room for the cus­
tomer, and then activate process Issue_Reservation_Number to issue a reser­
vation number to the customer.

252 14 The Software Development Process

14.4 Evolution

Transformations from informal to semi-formal, and then to formal specifica­
tions, are in general an evolutionary process. An evolution of a specification
can be one of the following three activities:

• Refinement
• Extension
• Modification

Refinement is an activity of improving a specification by resolving non­
determinism. The result of a refinement is a concrete specification or program
that does exactly what is required in the abstract specification. When a speci­
fication (e.g., of a process) is finalized in accordance with the user's agreement,
refinement is usually intended to provide a satisfactory program solution. A
detailed discussion of refinement is given in Section 14.5.

Extension of a specification means the addition of new components to the
specification. A component can be a module, CDFD, process, or even a data
type definition. The extension approach emphasizes the reuse of the existing
specification in the extended specification; it is therefore appropriate if the
existing ideas in the specification need developing. For example, the module
Reservation_system and the associated CDFD in the semi-formal specification
given in Section 14.2.2 are an extension of the informal specification, and
the top level module SYSTEM_Hotel_Reservation in the formal specification
defined in Section 14.3 is new to the semi-formal specification.

Modification of a specification is a change, either in syntax or semantics,
without conformance to any formalized standard. Since requirements analy­
sis and abstract design involves intensive study of the user's requirements,
which may often be changeable in reality, modification is an intrinsic feature
of software development. Although modifications are inevitable, it is always
desirable to have modifications conducted in a well-controlled manner.

In practice, a combination of refinement, extension, and modification may
be employed to develop specifications. The important point is that all of these
activities must be performed in a well-controlled manner to ensure the con­
sistency and correctness of all the specifications produced.

14.5 Detailed Design

Detailed design has two goals. One goal is to transform the implicit specifica­
tions of processes and functions, defined in modules, into explicit specifications
in order for the algorithmic information provided by such explicit specifica­
tions to serve as a foundation for implementation in a specific programming
language. Another goal is to transform the structured abstract design specifi­
cation into an object-oriented detailed design specification in order to achieve

14.5 Detailed Design 253

good quality of final implementation (e.g., encapsulation, information hid­
ing, reusability, and maintainability). Such a specification will facilitate the
implementation using an object-oriented programming language (e.g., Java,
C++).

It is worth mentioning that such a transformation needs to keep the hi­
erarchy of CDFDs in the abstract design specification; thus, we can give as
much freedom as possible to the programmer in deciding the strategy for the
implementation of the specification. For example, the programmer can decide
how to implement each CDFD in the specification based on the programming
language he or she uses for implementation.

14.5.1 Transformation from Implicit to Explicit Specifications

Since a high level process is defined by its decomposition, there is no need to
transform its implicit specification into an explicit one. Only the lowest level
processes (Le., processes with no decompositions) need to be transformed
from the implicit specification into an explicit one. The transformation from
an implicit specification into an explicit specification is in fact a functional
refinement. Refinement is an activity of improving a specification by resolving
non-determinism. In other words, a refined specification must do whatever is
required by the abstract specification, but can make a choice in resolving non­
determinism. Note that during a transformation from an implicit specification
to an explicit specification, there may be a need to adjust or modify the
definitions of some types given in the abstract design, but data refinement
should not be emphasized because this issue will be addressed during the
implementation of design specifications. Thus, it can help to avoid additional
cost, caused possibly by performing strict data refinement in specifications.

Definition 22. Let P and Q be two processes. Q is a refinement of P if and
only if the following two conditions hold:

(1) pre_P => pre_Q
(2) pre_P and post_Q => post_P

Weakening the precondition of P in the refinement allows the refined process
Q to have a bigger capacity to deal with more possible inputs, but such a
weakening of precondition must be done within the constraint of the second
condition on the postcondition: strengthening the postcondition of P in Q.
Such a strengthening of postcondition requires that Q provide exactly the
same functionality expected by process P. For example, suppose we specify
process P as

254 14 The Software Development Process

process PO
ext wr x: int
pre x> 0
post x > -x
end _process

Then, we improve this process into process Q:

process QO
ext wr x: int
pre true
post x = -x + 1
end _process

Obviously, since both conditions required in Definition 22 are met by processes
P and Q, Q is a qualified refinement of P. In this case, we also say that Q
satisfies P.

The notion of refinement can be easily applied to the refinement of an
implicit specification into an explicit specification, as we can treat the implicit
process as P and the explicit process as Q. For example, the process P given
above is extended by adding an explicit specification:

process PO
ext wr x: int
pre x> 0
post x > -x
explicit
x:= x + 1

end_process

To demonstrate that the explicit specification satisfies the implicit specifica­
tion, we first need to derive the weakest precondition of the explicit speci­
fication based on its structure from the postcondition given in the implicit
specification, and then prove that the rules (1) and (2) given in Definition 22
are satisfied by the implicit and explicit specifications. However, this technique
is usually difficult to apply in practice due to the requirement for advanced
skill and effort in conducting formal proofs.

Another definition of refinement that treats a process either in implicit or
explicit style as a relation may be more straightforward in facilitating the ap­
plication of conventional but practical verification techniques, such as testing
and inspection.

Definition 23. Let P and Q be the implicit and explicit specifications of a
process, respectively. Q is an refinement of P if and only if the following con­
dition holds:

14.5 Detailed Design 255

forall[x: dom(P), y: rng(Q)] I pre_P(x) and x Q y => post_P(x, y)

where dom(P) and rng(Q) denote the domain of P and the range of Q,
respectively, and x Q y means that x and y have relation Q.

According to this definition, if any value x in the domain of P satisfies the
precondition of P, and any value y in the range of Q has relation Q with x,
they must satisfy the postcodition of P.

Verification of this refinement obligation can be done by testing, although
this is unable to provide a full justification due to the intrinsic limitation of
testing. Since our focus in this chapter is on the process of software develop­
ment using SOFL, the testing techniques are described in detail in Chapter
18.

14.5.2 Transformation from Structured to Object-Oriented
Specifications

To transform a structured abstract design specification to an object-oriented
detailed design specification, the main task is to build appropriate classes and
their relations, if any, by converting appropriate data types in the specifica­
tion (e.g., composite types) into classes, and to achieve information hiding by
converting all the stores in the CDFDs to appropriate objects. Specifically,
the following points need to be considered for the transformation:

• Convert a composite type into a class definition in the way that the field
variables of the composite type are defined as the attribute variables of the
class, and its methods are formed based on the operations on the values
of the composite type in process specifications.

• Convert a product type into a class definition in a way similar to that for
converting a composite type into a class definition.

• Convert a union type as a class hierarchy in which the union type itself
is converted into a superclass and all the constituent types are converted
into its subclasses.

• If a store in a CDFD is a value of composite, product, or union type, define
an appropriate class and convert the store into an object of the class.

• Create new classes to meet the need for developing the abstract design
specification (e.g., developing the function of a process).

• Transform the implicit specification of each process and function into an
explicit specification in which objects, if any, are manipulated in the way
that the principle of information hiding is not violated (Le., all the at­
tributes of an object are accessed through its methods). To enhance the
robustness of the detailed design specification, the precondition of each
process and function in the implicit specification must be taken into ac­
count in the explicit specification in a way that a proper measure is taken
to deal with the violation of the precondition (e.g., produce an error or
warning message if the precondition is not met by the inputs of the process
or function).

256 14 The Software Development Process

As an example, we transform the process Check_out in the abstract design
given previously into the following explicit specification:

process Check_out(check_out_req: RoomNo)
warning_mes: string I
bill_receipt: string

ext wr rlist
wr rooms

explicit
begin
cus: Customer;

cus := new Customer;
cus := get ({c: dom(rlist) I (rlist(c).room_no = check_out_req};
if cus <> nil
then
begin

rooms := union(rooms, {(rlist(cus)).setStatus(<Check Out>)});
bill_receipt := Print_Bill_Receipt(cus);
rlist := domrb({res}, rlist)

end
else

warning_mes := "The room number is wrong."
end

end_process;

class Customer;

type
FuliName = string * string * string;
j*first name, middle name, and family name * /

var
name: FuliName
address: string
tel: natO
pass_no: string
reservation no: natO

method InitO

class Room;

var
room_no: natO;
room_type: {<Single>. <Twin>. <Double>};
status: {<Reserved>. <Check In>. <Check Out>};

method InitO

14.6 Program 257

method setStatus(st: {<Reserved>. <Check In>. <Check Out>})
explicit

status := st;
end method;

end class;

The explicit specification of process Check_Out is derived based on the un­
derstanding of its implicit specification. Several sub-expressions are reused,
but in combination with other expressions. Both Customer and Room are con­
verted into classes, and their values are treated as objects of those classes
rather than the values of the corresponding composite types as used in the
implicit specification. This leads to an extension of the class Room to include
the new method setStatus, which assigns the given value st of the enumeration
type to the attribute variable status of an object of the class.

14.6 Program

Program is an implementation of the detailed design in a specific program­
ming language. It is desirable to ensure that a program transformed from a
detailed design (an explicit specification) satisfies the specification. However,
in comparison with transforming an implicit specification into an explicit spec­
ification, this process needs to deal with the refinement of abstract data types
defined in the design specification into concrete data types available in the
programming language. In general, four levels of transformations are neces­
sary:

1. Transformation of the abstract data types.
2. Transformation of explicit specifications of processes, methods, and func­

tions.
3. Transformation of modules.
4. Transformation of classes.

Transformation from an abstract data type into a concrete data type should
be a refinement. That is, all the values defined in the abstract data type
must be represented by values of the concrete data type. Thus, the function­
ality required by a process is allowed to be correctly realized by the program.

258 14 The Software Development Process

Formally, let abs and con denote the abstract and concrete data types, respec­
tively; then, con is a refinement of abs if and only if there exists a retrieve
junction, say Retr, such that:

forall[a: abs] exists[c: con] I Retr(c) = a

An explicit specification of a process is usually transformed into a procedure
(in Pascal), function (in C), or a method (in Java). This transformation must
deal with the transformation of all the built-in operators, predicates, and
control statements involved. Since explicit specifications describe deterministic
functional requirements for the implementation, the program generated from
their specifications must have an equivalent functionality or behavior. That is,
given an input, both the explicit specification and the program must produce
the same output.

A module can be transformed into a procedure in Pascal or a class in
Java. Since SOFL has the feature of object-orientation, Java is considered
as the target programming language for the transformation in the following
discussion. A module corresponds naturally to a class in Java: all the variables
declared in the var section of the module are transformed into the instance
variables of the corresponding class, and all the processes of the module usually
correspond to the methods in the class, possibly with some modifications. In
addition, another method needs to be defined in the class to implement the
CDFD associated with the module.

A class in the design specification can be transformed into a class in Java
almost in the same way as when transforming a module, but there is no need
to create a new method in the class of implementation to realize the CDFD of
the class in the design, because the CDFD in a class of the design specification
does not play the role of integrating all the methods defined in the same class
to form an overall functionality of the class; it is just used as "syntactic sugar"
to help illustrate the relation between methods and attribute variables (which
are represented by stores in the CDFD) declared in the var section of the
class for readability. The detailed discussion on transformation from explicit
specifications into Java programs is given in Chapter 19.

14.7 Validation and Verification

Validation and verification of specifications are emphasized in the SOFL
method to ensure the consistency between the specifications and the user's real
requirements and between different level specifications including programs.

Validation of a specification can be done using either specification testing
or face-to-face communication based on static analysis of the specification.
Its primary purpose is to ensure that the written specification reflects the
user's requirements accurately and completely. The benefit of validation of

14.8 Adapting the Process to Specific Applications 259

specifications is to remove faults in the early phase of software development,
and to therefore considerably reduce the cost of development.

Verification of a specification aims to ensure that specifications are in­
ternally consistent, satisfiable, and really met by their implementations (or
programs). An internally consistent specification means that the components
and their relations are defined consistently with the syntax and semantics of
the SOFL language. For example, a process specification must not violate the
invariant of the module in which it is defined. A satisfiable specification en­
sures the existence of a mathematical model, and therefore an implementation
of the system. A specification is met by an implementation if and only if the
refinement rules given in both Definition 22 and Definition 23 are satisfied.

Two techniques are provided for the validation and verification of specifi­
cations. One is known as rigorous review, and another is testing. These two
techniques can be applied to both high level and low level specifications, im­
plicit specifications and explicit specifications. Their extensions, known as
specification-based rigorous review and specification-based testing, can also
help the verification and validation of programs. The detailed introductions
to rigorous review and testing for specifications are given in Chapter 17 and
Chapter 18, respectively.

14.8 Adapting the Process to Specific Applications

We have suggested a software process model for organizing software devel­
opment projects, and emphasized its importance in enhancing the reliability
and other qualities of final software systems, in previous sections. However,
this does not necessarily mean that the process model must always be fully
adopted for any kind of software system development. In fact, taking into
account the complexity of systems as well as the cost and time needed to
develop the systems, the process model can be tailored to properly achieve
the best productivity and reliability for specific development projects. For a
small-scale system with low complexity, the formal detailed design phase may
be omitted, that is, the formal abstract design can be directly transformed
into a program, because the abstract specification may be explicit enough for
direct implementation. For a software system required to be implemented by
a structured programming language, such as Pascal or C, there is no need to
transform the structured abstract design into an object-oriented detailed de­
sign. Instead, the abstract design may be transformed to a structured detailed
design in which more functions may need to be defined to achieve good mod­
ularity. For a large-scale system in the familiar application domain (e.g., the
developer has experience in developing similar systems before) the explicit
object-oriented detailed design specification may be achieved directly from
the semi-formal specification, without going through the phase of abstract
design, because many existing specification components defined in terms of
classes for previous systems may be reused for the design of the present sys-

260 14 The Software Development Process

tem, and process specifications involving invocations of methods of objects
are in general more suitable to be expressed using the explicit specification
language rather than pre and postconditions.

Although the process model can be tailored to adapt to different applica­
tions, the three-step approach to constructing the user requirements and de­
sign specifications is desired to apply to almost all kinds of software projects,
because it is a natural approach to take and it presents a good balance between
comprehensibility in communication with the users and preciseness in design­
ing the systems. It also helps provide a good traceability for system evolution
whenever it is necessary, either during development or maintenance.

14.9 Exercises

1. Give an example to explain the difference between evolution and refine­
ment of processes.

2. Construct a formal design specification of library system by taking the
three steps: informal, semi-formal, and formal specification. The system
is required to provide the services: Borrow, Return, and Search. Each of
these services should be implemented by a process. The process Borrow
registers the data of the borrowed book; Return removes the registered
information about the borrowed book; and Search provides the requested
information of the wanted book, if it is available.

3. Refine the implicit specifications of all three processes in the library system
into explicit specifications.

15

Approaches to Constructing Specifications

In Chapter 14, we have studied the three-step approach to building formal
specifications, but the approach only addresses the issue of how to express
specifications in different formats; the question of how to create the architec­
ture of specifications from scratch still remains unanswered. In this chapter
we focus the discussion on this problem, and introduce two approaches to
constructing specifications: top-down and middle-out. Each approach contains
specific strategies for building specifications, and each strategy has its own
features and may have different effects on the process of specification con­
struction. The SOFL method does not restrict the use of these approaches,
because different approaches can be effective to different problems. Since a
pure bottom-up approach usually does not work well in practice, SOFL is not
intended to support this kind of approach. For this reason, we do not give any
detailed discussion on the bottom-up approach, although the related tech­
niques for synthesizing lower level CDFDs are described when the middle-out
approach is introduced in Section 15.2.

15.1 The Top-Down Approach

The top-down approach is a way to build a specification by first constructing
the top level CDFD, and then developing it into a hierarchy of CDFDs by
repeatedly decomposing processes occurring in some of the CDFDs involved.
The top level CDFD presents an abstraction of the entire system, describing
the processes, data flows, and stores that are necessary to provide the most
interesting information about the system, while the decomposition of processes
helps to develop the abstraction into concrete representations.

There are two strategies for building specifications in this approach; they
are known as CDFD-module-first and CDFD-hierarchy-first strategies. The
first strategy stresses the importance of the mutual effect of CDFDs and
modules in ensuring the quality of the specification, while the second strategy

262 15 Approaches to Constructing Specifications

~::~---------------

8_2 ---~~~'~::

---B ---------- ----
M_3 ' __

'-

CDFD_4

8
~~-~

M_4 _____ _

B -------------
M_5

Fig. 15.1. An illustration of CDFD-module-first strategy

emphasizes the importance of the architecture of the system in providing an
outline for formalization in the modules.

15.1.1 The CDFD-Module-First Strategy

The fundamental idea of this strategy is that after a CDFD is constructed,
its associated module must be defined precisely, before any decomposition of
processes in this CDFD takes place. After both the CDFD and module are
finalized, the decomposition of another process can take place. Such a pro­
cess goes on until no process needs further decomposition. Figure 15.1 depicts
this strategy. CDFD _1 is the top level CDFD of the specification, and its two
processes are decomposed into CDFD_2 and CDFD_3, respectively. Further­
more, two processes of CDFD _2 are decomposed into CDFD _ 4 and CDFD _5,
respectively. Taking the CDFD-module-first strategy, this specification is con­
structed by first drawing CDFD _1, and then defining module M_l. Then, a
process in CDFD _1 is decomposed into CDFD _2, and the associated module
M_2 is defined. This process continues until all the CDFDs and their modules
are defined.

Since a CDFD usually represents only an outline of an idea, formed on the
basis of an initial consideration, it is usually subject to modification when the
precise picture of its components and their relations becomes clear. For this
reason, before taking any further action in decomposing processes, ensuring
desirable components and structure of the current CDFD is important. This
can be achieved by defining the associated module of the CDFD. In addition,
defining the module may also result in the following effects:

15.1 The Top-Down Approach 263

• Improving the understanding of the processes, data flows, and stores in-
volved.

• Improving the structure of the CDFD.
• Identifying processes that need decomposition.

Usually, the meaning and roles of data flows and stores become much clearer
when they are defined with specific data types. This is also true of processes
when they are specified with pre and postconditions, since nothing can usu­
ally be written in the pre and postconditions without a good understanding
of the processes. The clarification in formal definitions is likely to help the de­
veloper improve the understanding of the components of the current CDFD,
and therefore may facilitate modifications of the CDFD. Furthermore, the
formalization of the CDFD also serves as a forceful tool for improving the re­
lations among processes, data flows, and stores, as the current relations may
be recognized to be incorrect during the formalization.

Determining which processes in a CDFD need decomposition is always a
difficult, but important, issue to address. Although it is extremely difficult to
give a definitive formula to cope with this problem, the following guidelines
may be useful:

1. If the relation between the input and output data flows of a process cannot
be expressed without further information, the decomposition of this process
should be considered.

2. If the behavior of a process involves a sequence of actions, this process
needs to be decomposed.

3. If the postcondition of a process is too complex to be written in a concise
manner, it may need decomposition.

The guideline 1 describes a situation in which no relation between the input
and output data flows of a process can be defined without further information.
This means that some intermediate data flows, which are possibly generated
by some intermediate processes, are required to bridge the input and output
data flows of the process. The guideline 2 is given because pre and postcondi­
tions of a single process are not suitable for defining a sequence of operations.
A pair of pre and postconditions can comfortably express only one change
of the state, but not many changes. If the postcondition of a process is too
complex, it is likely to involve some sort of structure of several operations,
so guideline 3 is an implicit way to express guideline 2, possibly with some
extension.

15.1.2 The CDFD-Hierarchy-First Strategy

Building a specification using the CDFD-hierarchy-first strategy starts with
the construction of the CDFD hierarchy by means of decomposition of pro­
cesses, and then proceeds to define the modules of the CDFDs involved in the

264 15 Approaches to Constructing Specifications

CDFD hierarchy. For example, taking this strategy to build the specification
illustrated in Figure 15.1, we will first draw the CDFD hierarchy made up
of CDFD_l, CDFD_2, CDFD_3, CDFD_ 4, and CDFD_5, and then complete
their modules M_l, M_2, M_3, M_ 4, and M_5, respectively.

The CDFD-hierarchy-first strategy has an advantage over the CDFD­
module-first strategy: it allows one to create an outline of the entire speci­
fication and the foundation for formalization. Also, the formalization can be
done with a global view so that the consistency between the interfaces of pro­
cesses at different levels can be taken into account during the formalization.
However, there might be a risk of having to carry out a global modification,
when it is found necessary, during the definitions of the modules.

There are two ways to build a CDFD hierarchy. One is the conventional
way: top-down for processes, data flows, and stores. That is, drawing all the
processes, data flows, and stores necessary when creating a new CDFD. How­
ever, this can be difficult sometimes, because the data flows and stores nec­
essary at a high level CDFD may not be known precisely. Rather, this in­
formation is likely to become clear during the construction of the lower level
CDFDs. In this case, another way of building CDFD hierarchies can be ap­
plied: top-down for introducing processes and bottom-up for introducing data
flows and stores. That is, when creating a new CDFD as the decomposition
of a high level process, only necessary processes are drawn, without describ­
ing the relations among processes in terms of data flows and stores. After
the hierarchy of the incomplete CDFDs is formed, the lacking data flows and
stores are then added to processes and CDFDs. The addition of data flows
and stores usually starts from the lowest level CDFDs and moves up toward
the top level CDFD. Of course, there may be changes to be made during the
addition of data flows and stores to ensure the structural and semantic con­
sistency between high level processes and their decompositions. Figure 15.2
depicts this approach.

15.1.3 The Modules and Classes

During the building of CDFD and module hierarchies, it is also important to
pay attention to defining class hierarchies. However, since classes are primarily
treated as user-defined data types, their definitions are attempted whenever
the necessity arises during the construction of the CDFD and module hier­
archies. Of course, this does not mean we disallow the construction of class
hierarchies independently of the CDFD and module hierarchies. If the system
under development is within a familiar application domain, building classes
as components based on previous experiences can be an effective contribution
to the construction of the entire specification. In fact, we can be flexible in
using classes and modules in practice, depending on the application domain.

The top-down approach can also be applied to the building of class hier­
archies, but based on different notions: generalization and specialization. A
high level class is defined to provide common attributes and methods which

15.2 The Middle-out Approach 265

(a) Top-dw OD for processes

(b) Bottom-up for datil flows and stores

Fig. 15.2. An illustration of the CDFD-hierarchy-first strategy

all its subclasses can inherent. Thus, it represents a generalization of a group
of classes. Based on a superclass, subclasses are defined. Such an activity is
different from a functional decomposition, as for a process in a CDFD; it actu­
ally performs a specialization of its superclass by possibly providing additional
attributes and methods.

15.2 The Middle-out Approach

Constructing a specification by the middle-out approach usually starts with
the building of the CDFDs and modules modeling the functions that are most
familiar to the developer and crucial to the system. These CDFDs and modules
are often located somewhere between the top level CDFD and the bottom level
CDFDs of the finalized specification hierarchy. On the one hand, for each of
these CDFDs the top-down approach is taken to define its processes, until
all of the lowest level processes are defined completely and precisely. On the
other hand, these CDFDs are used as available components for building high
level CDFDs by abstraction and integration. That is, each of these CDFDs
is abstracted into a high level process, and then all the high level processes
are integrated to form high level CDFDs. Such actions continue until the top
level CDFD is reached. Figure 15.3 illustrates this approach. CDFD _2 and
CDFD_3 are built first for some reason, and then process A1_3 is decomposed
into CDFD _ 4 to spell out its implementation detail. Finally, CDFD 2 and

266 15 Approaches to Constructing Specifications

- al~ _r.:=n _ bl At a2 ~ a3 ~

1 5

Fig. 15.3. An example of the middle-out approach

CDFD_3 are abstracted into processes Al and A2 in CDFD_l, respectively,
and are integrated into the top level CDFD CDFD_l.

When developing a middle level CDFD by the top-down approach, the
same criteria for decomposing processes proposed in Section 15.1.1 can be
applied. One of the two strategies, the CDFD-module-first and the CDFD­
hierarchy-first strategies, can also be utilized to construct a local hierarchy of
CDFDs. This hierarchy is seen as local because it would be part of the CDFD
hierarchy of the entire specification.

When carrying out integrations of the available CDFDs to build high level
CDFDs, the following criteria can be used as guidelines for abstraction:

1. If there are more than two input data flows to different starting processes
of a CDFD, the CDFD needs to be abstracted into a high level process
that defines precisely the relationship among those input data flows. For
example, processes Al_l and Al_2 in CDFD_2 of Figure 15.3 receive data
flows al and bl, respectively, but at this level the relationship between
these two data flows in terms of their availability is unknown. That is,
whether both of them are required or only one of them is required to
enable the entire CDFD is unknown from this CDFD. Such a relationship
between the input data flows can be defined precisely when this CDFD is
abstracted into a high level process, such as process Al in CDFD_1.

15.3 Comparison of the Approaches 267

2. If two processes in a CDFD access the same store for both reading and
writing, the CDFD needs to be considered for abstraction. Again, let us
look at processes AI_I and AI_2 in CDFD _2; AI_I reads from 5, whereas
AI_2 writes to store s. Since this will cause confusion in accessing and
updating store 5, processes Al_l and AI_2 must not be executed concur­
rently. However, this cannot be ensured at the level of the current CDFD.
It is therefore necessary to abstract this CDFD into the high level pro­
cess AI, which clearly specifies that only one of its input data flows al
and bl can be used to enable and execute the process. This restriction
will prevent the concurrent executions of processes AI_I and AI_2 in its
decomposition CDFD_2.

3. If two CDFDs have relations in terms of data flows, they need to be ab­
stracted into high level processes, and the connections between these pro­
cesses need to be formed in the high level CDFD. Consider process Al_3 in
CDFD_2 and process A2_1 in CDFD_3; the output data flow of AI_3 is
the same as the input data flow of A2_1. This indicates that these two pro­
cesses, belonging to different CDFDs, need communication by data flows.
Therefore, the high level processes representing their abstractions should
be integrated together in a reasonable form to support the construction
of the high level CDFD.

15.3 Comparison of the Approaches

In the previous sections, we have discussed the nature of the top-down and
middle-out approaches for building specifications, but have said little about
where they can be utilized effectively. Before providing any answer to this
problem, we need to get a good understanding of the advantage and weakness
of each approach.

The top-down approach is usually effective and intuitive in providing sub­
goals or sub-tasks to support the current goal or task, and in developing ideas
with little information into ideas with more information. It also provides a
good global view of data flows and stores that may be used across CDFDs
at different levels; thus the consistency in using data flows and stores can be
well managed during the decomposition of high level processes. However, the
difficulty in applying this approach may be caused by frequent modifications
of high level processes, data flows, stores, and even the CDFDs, as with the
progress of decomposition of high level processes. Modifications are necessary
because creating accurate components of a high level CDFD in the first place
is usually challenging, due to the lack of sufficient knowledge about what
data flows and stores will be used or produced by the processes in the lower
level CDFDs. To reduce the effect of this problem, the top-down approach for
introducing processes and the bottom-up approach for introducing data flows
and stores can be helpful.

268 15 Approaches to Constructing Specifications

In contrast to the top-down approach, the middle-out approach may be
more effective and natural, because it always starts with modeling the most
familiar and crucial functions. It also adopts a flexible way to utilizing the top­
down and the bottom-up approaches, and taking the approach which usually
stems from natural demands during the construction of the entire specifica­
tion. However, by using this approach the developer may not find it easy to
take a global view of the specification in the early stages; thus data flows,
stores, and processes created in different CDFDs may overlap or be defined
inconsistently.

Experience suggests that the middle-out approach is effective in require­
ments analysis and requirements specification constructions, especially for
semi-formal cases, because the most familiar and important functional re­
quirements are often focused in the early stages of requirements analysis.
While the top-down approach is suitable for design, because the designer usu­
ally has a fair understanding of the functional requirements after studying
the semi-formal requirements specification, and needs to take a global view in
structuring the entire system.

15.4 Exercises

1. Explain the advantages and weaknesses of the top-down and middle-out
approaches to building specifications.

2. What is the difference between the CDFD-module-first strategy and the
CDFD-hierarchy-first strategy.

3. Build a Personal Expense Management System using both top-down and
middle-out approaches, respectively. The management system provides
the following services: (1) record the expense of an item, (2) search the
expenses for a specific item, (3) search for the expense for a kind of item
(e.g., cloth, book), (4) update the record of the expense for a specific item,
and (5) show the total expense of all the items purchased in a specific
month.

4. Rebuild the same Personal Expense Management System using both
the CDFD-module-first and the CDFD-hierarchy-first approaches, respec­
tively, and compare the advantages and disadvantages of the two different
approaches.

16

A Case Study - Modeling an ATM

The aim of this chapter is to show the entire procedure for developing a formal
detailed design specification by evolution and refinement from the informal
and semi-formal requirements specifications, and then for formal abstract de­
sign specification by describing a systematic case study of modeling an ATM
(Automated Teller Machine). It is also intended to show how the structured
method can help identify desire.d functions and then be transformed into an
object-oriented detailed design. Although a very simple ATM example is given
in Chapter 4, the example is intended to help in the explanation of the module
and formal specification of processes, and is not appropriate for showing the
entire process of building a formal specification.

Basically, the functional requirements of the ATM are obtained from the
informal description of the functionality of the online ATMs of a bank in
Japan, but with necessary simplification to suit the purpose of the case study.
Even so, the entire contents of the case study are still too large to fit into one
chapter of a book. The entire case study contains 69 pages of specifications
and is available as a CIS (Faculty of Computer and Information Sciences)
technical report of Hosei University [62].

The case study starts from the capturing and documenting of informal
requirements, and proceeds to clarify all the operations and data resources
involved by the writing of a semi-formal specification. Following the SOFL
process model, we then transform the semi-formal specification into a formal
abstract design specification to define the architecture and the precise func­
tionality of all the processes and functions involved. Finally, we refine the
abstract design specification into a detailed design specification to provide
more algorithmic expressions of the functionality of the processes and func­
tions defined in modules in order to facilitate implementation of the system.

By studying this chapter, the reader is expected to deepen his or her un­
derstanding of the techniques for the construction of specifications introduced
in Chapters 14 and 15, and form a clear picture for the entire process of build­
ing a formal specification using SOFL. From the next section, the case study
is described in accordance with the SOFL process model step by step.

270 16 A Case Study - Modeling an ATM

16.1 Informal User Requirements Specification

The top-down approach is taken to document the informal user requirements
specification. To ensure good readability, the specification is organized as a
collection of informal modules (Le., informal description of a set of desired
operations suitable for being put into a single module). A module is usually
composed of potential operations, policy on the operations, and data resources
necessary for the operations. Each complex operation in a high level module
is decomposed into a low level module, if necessary, and their connection is
reflected properly for traceability. Note that since the informal specification
is the initial document of the ATM system, the focus is on the potential
operations or functions to be provided by the system rather than on the
correctness of the syntax of modules. Therefore, the clear shape of modules
may not be explicitly seen in the specification. Below is the outline of the
informal specification.

1. The desired functional services: the top-level module:
(1) Operations on current account.
(2) Operations on savings account
(3) Transfer money between accounts
(4) Manage foreign currency account
(5) Change password

2. Decomposition of function (1) in the top-level module
2.1 Operations

(1.1) Deposit 1* put money into the current account * /
(1.2) Withdraw 1* get money out of the current account * /
(1.3) Show balance 1* display the balance of the current account * /
(1.4) Print out transaction records 1* print a list of transactions so far * /

2.2 Policy on operations

(1) Withdraw: (1.1) Maximum amount to be withdrawn each time is
1, 000, 000 JPY. /* JPY = Japanese yen * /

(1.2) Maximum amount to be withdrawn each day is
5, 000, 000 JPY.

(1.3) No overdraw is allowed.
(2) Deposit: at most 1, 000,000 JPY can be deposited each time.
(3) Password is required for all the four operations given above.
(4) Bank-card is required for all the four operations.
(5) Bank-book is required only for operation 1.4: print out transaction records.

16.1 Informal User Requirements Specification 271

2.3 Data resources

(1) Each customer has ONE current account.
(2) It is necessary to record the following data items in the system for each

customer:
(2.1) full name
(2.2) account number
(2.3) password

3. Decomposition of function (2) in the top-level module
3.1 Operations

(2.1) Deposit /* put money into the savings account */
(2.2) Application of withdrawing money from the savings account.

/* withdrawing money from the savings account needs application in
advance */

(2.3) Withdraw /*only after a customer submits an application, can he with­
draw money from the savings account. * /

(2.4) Show balance
(2.5) Print out transaction records

3.2 Data resources

(1) Each customer has ONE savings account.
(2) Each customer needs the following data items to be recorded in the system:

(2.1) full name
(2.2) account number
(2.3) password

3.3 Policy on operations

(1) After every 6 months the customer can withdraw money and
money cannot be withdrawn without application in advance.

(2) The maximum amount to be withdrawn each time is 3, ODD, 000 JPY.
That is, when applying for the withdraw, the customer can
apply for up to 3, ODD, 000 JPY

(3) The maximum amount to deposit is 3,000,000 JPY

272 16 A Case Study - Modeling an ATM

4. Decomposition of function (3) in the top-level module
4.1 Operations

(1) Transfer money between the current and the savings account
using cash-card

4.2 Data resources

(1) The current and savings accounts.

4.3 Policy on operations

(1) The maximum amount of each transfer transaction is 1,000,000 JPY.

5. Decomposition of function (4) in the top-level module
5.1 Operations

(1) Purchase US dollars using the money of the current account.
(2) Sell US dollars to JPY and deposit the money into the current account.
(3) Purchase US dollars using cash and deposit the dollars into the foreign

currency account.
(4) Withdraw JPY from the foreign currency account.

/*The JPY is converted from US dollars * /
(5) Show balance.

5.2 Data resources

(1) Each customer needs a foreign currency account.
(2) Each customer's following data items need to be recorded in the account:

(2.1) full name
(2.2) account number
(2.3) password

6. Decomposition of function (5) in the top-level module
6.1 Operations

(1) Change password for the current account.
(2) Change password for the savings account.
(3) Change password for the foreign currency account.

16.2 Semi-formal Functional Specification 273

16.2 Semi-formal Functional Specification

The goal of writing the semi-formal specification is to clarify the meaning of all
the operations, policies, and data resources that are involved in the informal
specification. During this process, undiscovered potential requirements or new
aspects of the existing requirements are also expected to be uncovered.

In accordance with the guidelines for transformation from informal spec­
ifications to semi-formal ones, given in Section 14.2.2 of Chapter 14, we take
the following specific actions to build the semi-formal specification based on
the informal one:

• Organize the specification as a set of inter related modules conforming to
the SOFL syntax.

• Define all the necessary data types for defining the involved data resources.
• Relate data resources, which are declared as variables of appropriate types,

with operations, which are defined as processes, and organize them prop­
erly in modules.

• Incorporate the policies on operations into either the pre and postcondi­
tions of the corresponding processes or the invariants of the related types
and/or state variables.

• Define each process and function (if any) with pre and postconditions, but
leave the contents of the pre and postconditions informal.

• When it is necessary, draw a CDFD for a module, but the CDFD may not
be a complete one.

• Define composite types in a way the common fields can be reused, that is,
try to build a hierarchy of related composite types.

Since the top-down approach allows us to have a global view in defining con­
stants, types, store variables (state variables), and operations, the specific ac­
tions described above are taken to construct modules in a top-down manner.
However, this does not necessarily mean that the process of building modules
has no feedback and change. On the contrary, it involves a lot of changes in
the high level modules while the low level modules are being written.

The top-level module, named SYSTEM_ATM, is derived from the top-level
module in the informal specification. It declares all the necessary constants,
types, and stores for the descendent modules to use, and the necessary pro­
cesses for functional abstraction. The top-level module is shown below.

module SYSTEM_ATM;
const
maximum_withdraw_once = 1,000,000;
j*The unit is JPY, likewise for the following constants. * /
maximum_withdraw_day = 5,000,000;
maximum_deposit_once = 1,000,000;
maximum_withdraw_application = 3,000,000;
ATM_no = i; j*i is any natural number* /

274 16 A Case Study - Modeling an ATM

type
Customerlnf = composed of

account_no: natO
pass: Password

end;
Password = natO; j*A password is a natural number or zero * /
Accountlnf = composed of

name: string j*The customer's full name * /
balance: natO j*The unit is JPY* /
transaction_history: seq of Transaction

end;
CurrentAccountlnf = Accountlnf;
SavingsAccountlnf / Accountlnf =

composed of
withdraw_application_amount: natO
application_status: bool j*true for yes, false for no * /

end;
ForeignCurrencyAccountlnf / Customerlnf =

composed of
name: string
balance: real j*The unit is US dollar * /

end;
CurrentAccountFile = map Customerlnf to CurrentAccountlnf;
SavingsAccountFile = map Customerlnf to SavingsAccountlnf;
ForeignCurrencyAccountFile =

map Customerlnf to ForeignCurrencyAccountlnf;
ApplicationNotice = composed of

application_amount: natO;
appication_successful: bool;

end;
Transaction = composed of

date: Date
time: Time
payment: natO
deposit: natO
balance: natO
atm no: natO

end;
Date = Day * Month * Year;
Day = natO;
Month = natO;
Year = natO;
var
ext #current_accounts: CurrentAccountFile;
ext #savings_accounts: SavingsAccountFile;

16.2 Semi-formal Functional Specification 275

ext #foreign _ cu rrency _ accou nts: Foreign Cu rrency Accou ntFi Ie;
ext #today: Date;
j*The variable today is assumed to change to reflect

the date of today in calender. * /
ext #current_time: Time;
j*This variable represents a clock telling the current time * /

inv
forall[x: Customerlnf] I not exists[y: Customerlnf] I

x.account_no = y.account_no;
j*Each customer's account is unique * /

forall[x, y: Transaction] I x <> y;
j*AII the transactions are different. * /

process Manage_ Current_Account(current: sign)
end_process;

process Manage_Savings_Account(savings: sign)
end_process;

process Manage_ Transfer(transfer: sign)
end _process;

process Manage_Foreign _ Cu rrency _ Accou nt(foreign _ cu rrency: sign)
end_process;

process Change_Password(change_pass: sign)
end_process;

end _ Illod ule;

Defining data types is one of the most important tasks in writing the semi­
formal specification. Since each customer must have a unique account number
and password for each kind of bank account, and his or her bank data (e.g.,
name, balance) must be associated with the customer's account number and
password, we declare the composite type Customerlnf for the modeling of the
customer's most important information - account number and password - and
then define the type Accountlnf to represent the information related to the
contents of the bank account, including name, balance, and transaction_history.
Since each kind of bank account has its own features in addition to the com­
mon fields, they are defined as a composite type inheriting from Accountlnf,
such as SavingsAccountlnf and ForeignCurrencyAccountlnf.

We need several data stores to represent the collection of the available
current accounts, savings accounts, and foreign currency accounts, and these
stores need to exist independently of the ATM system (i.e., they should be

276 16 A Case Study - Modeling an ATM

available even when the ATM system is not working). For this reason, we de­
clare several existing external stores in the module, such as current_accounts,
savings_accounts, and foreign_currency_accounts, each being a map associat­
ing the customer's key data (account number and password) with the bank
information (e.g., name, balance, and transaction_history) of the correspond­
ing bank account. In addition, we model today and current_time as existing
external stores for being used to record the date and time of each bank trans­
action.

Since each process in the top-level module needs to be decomposed into
the next lower level CDFDs, they are defined by specifying both the pre and
postconditions as true (in this case its pre and postconditions are omitted).
We do not draw the CDFD for this module because it is clear enough to reflect
the requirements at this level.

The process Manage_ Current_Account in the top-module is then decom­
posed into the module Manage_ Current_Account_Decom, as shown below.

module Manage_Current_Account_Decom /SYSTEM_ATM;
type
Notice = composed of

transaction_account: natO
updated_balance: natO

end;
var
ext current_accounts: CurrentAccountFile;

process Current_Authentication(current_inf: Customerlnf)
permission: sign I e_mesgl: string

ext rd current_accounts
post if the input account_no and password match those

of the customer's current account in the store
current_accounts

then generate output permission
else output an error message

end_process;

process Current_Deposit(permission: sign,
current_inf: Customerlnf,
deposit_amount: natO)
notice: Notice I warning: string

ext wr current_accounts;
post if the input deposit_amount is less than or equal

to the maximum_deposit_once
then
(1) add the deposit_amount to current_account
(2) give the customer a notice showing the amount

16.2 Semi-formal Functional Specification 277

of deposit and the updated balance
(3) update the transaction history of the account

else give a warning message to indicate that the
amount is over the limit.

end_process;

process Current_ Withdraw(permission: sign,
current_inf: Customerlnf,
amount: natO)
notice: Notice I warning2: string

ext wr current_accounts
post if the input amount is less than or equal to the

balance of the account and the
maximum withdraw_once

then
(1) output the cash of the requested amount
(2) reduce the withdraw amount from the balance
(3) update the transaction history of the account
(4) give the notice

else
generate the warning message

end _process;

process Current_Show_Balacnce(permission: sign,
current_inf: Customerlnf)
balance: natO I warning3: string

ext rd current_accounts
post if the input account_no and pass match those of the

customer in the store current_accounts
then display the balance of the customer's current account
else issue an error message

end _process;

process Current_Print_ Transaction_Records(permission: sign,
current_inf: Customerlnf,
date: Date)
transaction records: TransactionRecords

ext rd current_accounts
post print out the transaction records since the input date
end _process;

Since all the types declared in the top-level module can be directly used in
the module Manage_ Current_Account_Decom, only do additional types to be

278 16 A Case Study - Modeling an ATM

used in this module, such as the composite type Notice, need to be declared.
However, the store variables which are declared in the top-level module but
used in the current module, such as current_accounts, are declared as ex­
ternal store variables to indicate the fact that the store variables are used
(either be read or updated) in the current module. In the case of variable
current_accounts, it is the convention to omit the sharp mark # declara­
tion for an existing external variable when it is not declared in the specifi­
cation for the first time, so We write ext current_accounts rather than ext
#current_accounts for the declaration of current_accounts in the current mod­
ule.

Since there is no local store variable, the process Init for initialization of
the local store variables is omitted. The other operations listed in the corre­
sponding informal module of the informal specification are defined as processes
in the current module with pre and post conditions whose contents are writ­
ten in an informal manner, such as Current_Deposit, Current_Withdraw, Cur­
rent_Show_Balance, and Current_Print_ Transaction_Records, although their
nameS are slightly different from those in the informal specification. Apart
from these processes, we also define a process known as Current_Authentication
to ensure security in using the customer's current account. In other words, the
functionality of Current_Authentication is to guarantee that only the customer
with the correct account number and password can access his current account.
As the requirements expressed by the module are quite clear even without its
CDFD, it is not given for the module. In fact, there is another important rea­
son why we do not draw the CDFD: the CDFD is usually changed or extended
to properly reflect the architecture of design when the corresponding formal
abstract design specification is constructed.

Compared with the informal modules, the semi-formal modules are much
more precise because all the date structures are well-defined by types and
each process is defined by giving a precise signature and reasonably clear
description of its functionality through pre and postconditions. This provides
a rather firm base for validation against the USer requirements and for further
formalization in abstract design.

For brevity, we give the outline of the remaining part of the semi-formal
specification to help the reader understand the full picture of the specification
without going into tedious details.

module Manage_Savings_Account_Decom / SYSTEM_ATM;
var
ext savings_accounts: SavingsAccountFile;

1* process specifications * /
end_module;

module Manage_Foreign_Currency_Account / SYSTEM_ATM;
type
ExchangeNotice = composed of

16.3 Formal Abstract Design Specification 279

amount_in_yen: natO
current balance: natO
foreign_balance: real
exchange_rate: natO /*US$l = n JPY * /

end;
CashExchangeNotice =

composed of
amount_in_yen: natO
amount in dollar: real
foreign_balance: real

end;
var
ext current_accounts: SavingsAccountFile;
ext foreign _ currency _ accou nts: ForeignCu rrency Accou ntFi Ie;

/* process specifications * /
end_module;

module Change_Password_Decom / SYSTEM_ATM;
var
ext #current_accounts
ext #savings_accounts
ext #foreign _ cu rrency _ accou nts
ext #all_used_passwords: set of Passwords

/* process specifications * /
end module.

16.3 Formal Abstract Design Specification

There are two main goals of the formal abstract design. One is to define the
system architecture using CDFDs in a hierarchical fashion, and the other is
to formally define the functionality of all the involved processes and functions
by formalizing their pre and postconditions. Through these activities, the
designer is expected to gain a precise understanding of the desired functional
and non-functional requirements, to organize all the necessary processes in the
system architecture in a way that they all work together to provide a solution
for the user requirements, and to build a firm foundation for detailed design
and implementation.

The abstract design specification is constructed by gradually working on
all the modules in the semi-formal specification in a top-down manner. For
example, the formal specification of the top-level module SYSTEM_ATM is
produced based on the corresponding semi-formal module, as shown below.
For brevity, we omit all the constant, type, and store variable declarations, as
well as invariants that are the same as those in the corresponding modules in

280 16 A Case Study - Modeling an ATM

the semi-formal specification. Thus, we can focus on the new aspects of the
CDFD and the formalization of the modules in the design specification.

module SYSTEM_ATM;
... /* the same as those in the semi-formal module * /

inv
... /*the same as those in the semi-formal module * /

forall[x, y: {current, savings, transfer, foreign_currency, change_pass}] I
bound(x) and bound(y) = false;

/*Any two of the input control data flows cannot become
available at the same time * /

behav CDFD_Nol;

process Manage _ Cu rrent _ Account(cu rrent: sign)
ext wr current accounts
end _process;

process Manage_Savings_Account(savings: sign)
ext wr savings_accounts
end_process;

process Manage_ Transfer(transfer: sign)
ext wr current accounts

wr savings_accounts
end_process;

process Manage_Foreign_ Currency_Account
(foreign_currency: sign)

ext wr foreign_currency _accounts
end_process;

process Change_Password(change_pass: sign)
ext wr all_used_passwords

wr foreign_currency _accounts
wr savings_accounts
wr current_accounts

end _process;

The CDFD is drawn to represent the design when one of the input data flows of
the starting processes (in fact, all the involved processes are starting processes
in this particular CDFD) becomes available. This design is reasonable because
in reality only one of the bank accounts can be accessed at a time through the
same graphical user interface of an ATM. However, since the idea of allowing

16.3 Formal Abstract Design Specification 281

current

Manage_Savings_
Account

transfer

Fig. 16.1. No1

Manage_Foreign_
Currency_Account

only one of the input data flows to become available at a time is not properly
reflected in the CDFD, we define a new invariant, as a universally quantified
expression given in the inv section, in the module to formalize this idea. The
association of the CDFD, which is named Nol, with the module is reflected
by the expression behav CDFD _Nol. The pre and post conditions of each
process in the module is still kept as true as they were in the semi-formal
module.

The decomposition of process Manage_ Current_Account is formalized as
follows:

module Manage_Current_Account_Decom /SYSTEM_ATM;
type
... 1* omit the same type declarations * /

Output Device = seq of universal;
ServiceColiection = {<I>. <2>. <3>. <4>};
var

... 1* omit the same variable declarations * /
ext #output_device: OutputDevice;
inv
forall[x. y: {deposit. withdraw. s_balance. p_transactions}ll

bound(x) and bound(y) = false;
behav CDFD No2;

process Select_Services(deposit. a: sign

282 16 A Case Study - Modeling an ATM

b, withdraw: sign I
c, s_balance: sign I
d, p _ tra nsactions: sign)
sel: ServiceColiection

post bound(deposit) and sel = <1> or
bound(withdraw) and sel = <2> or
bound(s_balance) and sel = <3> or
bound(p_transactions) and sel = <4>

comment
The output data flow sel takes different value depending
on the availability of the input data flows.
end _process;

process Cu rrent_ Authentication(sel: ServiceCollection,
current_inf: Customerlnf)
current_infl: Customerlnf I
current_inf2: Customerlnf I
current_inf3: Customerlnf I
current_inf4: Customerlnf I
e_mesgl: string

ext rd current_accounts
post if current_inf inset dom(current_accounts)

then case sel of
<1> -> current_infl = current_inf;
<2> -> current_inf2 = current_inf;
<3> -> current_inf3 = current_inf;
<4> -> current_inf4 = current_inf;
end_case

else e_mesgl = "Your password or account number
is incorrect."

comment
If the input account_no and password match those of
the customer's current account in the store current_accounts,

then generate output permission; otherwise, output an error
message.
end _process;

process Current_Deposit(deposit_amount: natO,
current_infl: Customerlnf)
notice1: Notice I

warningl: string
ext wr current accounts;
post if deposit_amount <= maximum_deposit_once

then
current accounts =

16.3 Formal Abstract Design Specification 283

overrideC current_accounts,
{current_infl->

modifyC cu rrent _ accou nts(cu rrent _ i nfl),
balance ->

}

~ current_accounts(current_infl).balance + deposit_amount,
transaction_history ->
concC cu rrent_ accounts(cu rrent_infl). transaction_h istory,
[Get_ Transaction(current_accounts, today,

current_time, 0, deposit_amount, current_infl)]
)

)

) and
notice1 = mk_Notice(deposit_amount,

current_accounts(current_infl).balance))
else warning1 = "Your amount is over 1000000 yen limit."

comment
If the input deposit_amount is less than or equal to the

maximum_deposit_once,
then

else

(1) add the deposit_amount to the current_account
(2) give the customer a notice showing the amount of

deposit and the updated balance
(3) update the transaction history of the account;

give a warning message to indicate that the
amount is over the limit.
end _process;

process Current_ Withdraw(current_inf2: Customerlnf,
amount: natO)
notice2: Notice I

warning2: string
ext wr current_accounts
post if amount <= maximum_withdraw_one and

amount <= ~ current_accounts(current_inf2).balance
then
current_accounts =
overrideC current_accounts,

{current_inf2 ->
modifyC current_accounts(current_inf2),

balance ->
~ current_accounts(current_inf2).balance

- amount,
transaction_history ->

284 16 A Case Study - Modeling an ATM

}

concC current_accounts(current_i nf2). transaction_history,
[Get_ Transaction(current_accounts, today,

current_time, amount, 0, current_inf2)]
)

)

) and
notice2 = mk_Notice(amount,

current_accounts(current_inf2).balance))
else warning2 = "Your withdraw amount is over the limit."

comment
If the input amount is less than or equal to the

balance of the account and the maximum_withdraw_once
then

else

(1) output the cash of the requested amount
(2) reduce the withdraw amount from the balance
(3) update the transaction history of the account
(4) give a notice

generate a warning message
end_process;

process Cu rrent _ Show _ Ba I acnce(cu rrent _ i nf3: Customerl nf)
balance: natO

ext rd current_accounts
post balance = current_accounts(current_inf3).balance
comment
Display the balance of the customer's current account
end_process;

process Current_Print_ Transaction_Records(
current_inf4: Customerlnf, date: Date)
transaction records: TransactionRecords

ext rd current_accounts
post let transactions =

cu rrent _ accou nts(cu rrent _ i nf4). tra nsaction _ history
in let i = get({i I i: inds(transactions) &.

transactions(i).date = date})
in
transaction_records =

transactions(i, ... , len (transactions))
comment
Print out the transaction records since the input date
end_process;

16.3 Formal Abstract Design Specification 285

process Display _Information(noticel: Notice I
notice2: Notice I
balance: natO I
transaction_records:

ext wr output_device
post bound(noticel) and

Tra nsaction Records)

output_device = concCoutput_device, [noticel]) or
bound(notice2) and
output_device = concCoutput_device, [notice2]) or

bound(balance) and
output_device = concC output_device, [balance]) or

bound(transaction_records) and
output_device =

conc(-output_ device, [transactions_records])
comment
Display the input data flows onto the output device
based on their availability.
end_process;

process Display_Message(warningl: string I
warning2: string I
e_mesgl: string)

ext wr output_device
post bound(warningl) and

output_device = concC output_device, [warningl]) or
bound(warning2) and

output_device = concCoutput_device, [warning2]) or
bound(e_mesgl) and

output_device = concCoutput_device, [e_mesgl])
comment
Display the input data flows onto the output device
based on their availability.
end_process;

function Get _ Tra nsaction (cu rrent _accou nts: Cu rrentAccountFile,
to_day: Date,
time: Time,
pay_amount: natO,
deposit_amount: natO,
customer _inf: Customerlnf): Transaction

== mk_ Transaction(to_day, time, pay_amount, deposit_amount,
current_accounts(customer _inf). balance,
ATM_no)

end function
end_module;

286 16 A Case Study - Modeling an ATM

..........

~transactions

Current_
Authorization

CUffe Reinf --
I, I current_accounts I

SelecC
Services

Fig. 16.2. No2

"I

Processes are integrated into the CDFD to define the behavior of the en­
tire module. To ensure that no confusion occurs, which is usually caused by
crossing data flows, several connecting nodes are used in the CDFD to indi­
cate the source and destination of the data flows involved. When drawing the
CDFD for the module, we realized that some necessary data, such as notices
and warning messages, need to be displayed onto an output device. For this
reason, we declare the new type OutputDevice and the new existing external
variable output_device with this type. Since the output device is expected to
accept any type of value produced by the system, we modeled it as a sequence
of universal (a union type containing values of any types). Apart from the
type OutputDevice, another type, ServiceColiection, necessary for modeling the
process Select_Services in the CDFD is also defined.

It is practical to allow only one request from the customer to be provided
to the ATM at a time; therefore, we define a new invariant to restrict the input
control data flows deposit, withdraw, s_balance, and p_transactions from being
concurrently available.

16.4 Formal Detailed Design Specification 287

Each process in the module is formalized by pre and postconditions, either
defining what value is produced for the output data flow variable and/or store
variables depending on the availability of the different input data flows, such
as the processes Select_Services, Display_Information, and Display _Message, or
describing how the output data flows and/or store variables are determined
based on the input data flows, such as processes Current_Authentication, Cur­
rent_Deposit, Current_Withdraw, Current_Show _Balance, and
Current_Print_ Transaction_Records. Since pre and post conditions of each pro­
cess is a formalization of the corresponding informal pre and post conditions,
the informal ones are reused as comments to interpret the formally defined
pre and postconditions in the process specification.

We give for brevity the outline of the remaining part of the entire specifi­
cation below.

end_module;

end module.

16.4 Formal Detailed Design Specification

There are two major tasks in constructing the detailed design specification.
One is to transform the structured design specification resulting from the
abstract design into an object-oriented design specification by converting and
developing all the composite types (as well as product types and union types)
involved into classes. Another task is to refine the implicit specification of each
process into an explicit specification, providing a more algorithmic expression
of the defined behavior of the process. In order to maintain a good traceability
of the specification to show the history of building the current version of
specification, we always try to keep the existing parts of each process. For
example, we still keep the formal expressions of the pre and post conditions for
each process while we add the explicit specification to the process definition.

Note that changing the composite types to classes usually does not cause
any syntactical change in the declarations of variables because the syntax
for declaring a variable with a composite type and a class of the same name
have no difference. However, the type declaration part may need updating;
for example, the composite type declarations are eliminated because they are

288 16 A Case Study - Modeling an ATM

replaced by the corresponding class definitions. Furthermore, in the explicit
specifications of the involved processes, operations concerned with the at­
tribute variables of the classes must be implemented by appropriate method
invocations.

Again, we take the top-down approach to work out the detailed design
specification, as follows:

module SYSTEM_ATM;
... 1* updated declarations, omitted for brevity * /

behav CDFD Nol;

process Manage_ Current_Account(current: sign)
ext wr current accounts
end;

process Manage_Savings_Account(savings: sign)
ext wr savings_accounts
end;

process Manage_ Transfer(transfer: sign)
ext wr current accounts

wr savings_accounts
end;

process Manage_Foreign_ Currency _Account(
foreign_currency: sign)

ext wr foreign_currency_accounts
end;

process Change_Password(change_pass: sign)
ext wr all_used_passwords

wr foreign _ cu rrency _ accou nts
wr savings_accounts
wr current accounts

end;

The top-level module SYSTEM_ATM is almost unchanged, except for the
elimination of the composite types that are converted into the following class
definitions:

class Customerlnf;
var
account_no: natO;

pass: natO;

method InitO
post account_no = 0 and

pass = 0
end_method;
end_class;

class Accountlnf;
var
name: string;
balance: natO;

16.4 Formal Detailed Design Specification 289

transaction_history: seq of Transaction;

method InitO
explicit
begin
name := /*empty string* /
balance := 0;
transaction_history := [1 /*empty sequence * /

end
end_method;

method Increase_Balance(amount: natO)
ext wr balance
post balance = -balance + amount
end_method;

method Decrease_Balance(amount: natO)
ext wr balance
post balance = -balance - amount
end_method;

method Update _ T ra nsaction _ H istory(tra nsaction: Transaction)
ext wr transaction_history
post transaction_history =

conc(- tra nsaction _ history, [tra nsaction 1)
end _ method;

class CurrentAccountlnf / Accountlnf;
end_class;

class SavingsAccountlnf / Accountlnf;

290 16 A Case Study - Modeling an ATM

var
withdraw_application_amount: natO;
application_status: bool;

method InitO
post withdraw_application_amount = 0 and

application_status = true
end_method;

method Set_Application_Amount(amount: natO)
ext wr withdraw_application_amount

wr application_status
post withdraw_application_amount = amount and

application_status = true
end_method;

class ForeignCurrencyAccountlnf / Customerlnf;
var
name: string;
balance: real;

method InitO
post name = "" and

balance = 0.0
end_method;

class ApplicationNotice;
var
application_amount: natO;
appication_successful: bool;

method InitO
post application_amount = 0 and

application_successful = true
end_method;

16.4 Formal Detailed Design Specification 291

class Transaction;
type
CurrentAccountsFile =

SYSTEM_ATM.CurrentAccountsFile;
var
date: Date;
time: Time;
payment: natO;
deposit: natO;
balance: natO;
atm_no: natO;

method InitO
explicit

begin
date := new Date;
time := new Time;
payment = 0;
deposit = 0;
atm_no = 0;

end
end_method;

method Get_ Transaction(

ext wr date
wr time
wr payment
wr deposit
wr balance

explicit
begin
date := date1;

current_accounts: CurrentAccountsFile,
date1: SYSTEM_ATM.Date,
time1: SYSTEM_ATM.Time,
pay1: natO,
deposit1: natO,
balance1: natO,
current_inf: Customerlnf)

time := time1;
payment := pay1;
deposit := deposit1;
balance := current_accounts(current_inf).balance;

end
end method;

292 16 A Case Study - Modeling an ATM

method Get_Savings_ Transaction(
savi ngs _ accou nts: Savi ngsAccou ntsFi Ie,
datel: SYSTEM_ATM.Date,
time1: SYSTEM_ATM.Time,
pay1: natO,
deposit1: natO,
balance1: natO,
customer _inf: Customerlnf)

ext wr date
wr time
wr payment
wr deposit
wr balance

explicit
begin
date := date1;
time := time1;
payment := pay1;
deposit := deposit1;
balance := savings_accounts(customer _inf).balance;

end
end_method;
end_class;

class Date;
var
day: natO;
month: natO;
year: natO;

method InitO
post day = 0 and

month = 0 and
year = 0

end _ method;

class Notice;
var
transaction_amount: natO;
updated_balance: natO;

method InitO
post transaction_amount = 0 and

updated_balance = 0
end_method;

16.4 Formal Detailed Design Specification 293

method Make_Notice(amount: natO, balance: natO)
ext wr transaction_amount

wr updated_balance
explicit
begin
transaction_amount := amount;
updated_balance := balance

end
end_method;
end_class;

class TransferNotice;
var

transaction_amount: natO
from account balance: natO
to account balance: natO

method InitO
post transaction_amount = 0 and

from account balance = 0 and
to_account balance = 0

end_method;

method Make_ TransferNotice(transfer _amount!: natO,
from_balance: natO,
to_balance: natO)

ext wr transaction_amount
wr from account balance
wr to_account_balance

post transaction_amount = transfer _amountl and
from account balance = from balance and
to_account balance = to balance

end method

In principle the methods of the classes are defined using implicit specifications
if all the state variables (i.e., attribute variables of the related class) involved
are basic types (e.g., natO, int, and real) or compound types built based on .
them (e.g., set of natO), and using explicit specifications if some of the state
variables involved are objects and the invocation of their methods is involved.

Compared with the original composite types, these classes provide more
methods to model related operations. The important point is that these meth­
ods are derived from the demand in defining processes in CDFDs. In other

294 16 A Case Study - Modeling an ATM

words, they are formed when they are necessary for contributing to the build­
ing of the entire system. This is much more reasonable than defining classes
with imagined or assumed methods from the beginning of a system develop­
ment.

On the basis of these classes, the module Manage_Current_Account_Decom
is developed into the specification below to represent the detailed design of
the module.

module Manage_Current_Account_Decom /SYSTEM_ATM;
... 1* the declarations are omitted * /

behav CDFD _N02;

process Select_Services(deposit, a: sign I
b, withdraw: sign I
c, s_balance: sign I
d, p_transactions: sign)
sel: ServiceCollection

post bound(deposit) and sel = <1> or
bound(withdraw) and sel = <2> or
bound(s_balance) and sel = <3> or
bound(p_transactions) and sel = <4>

explicit
if bound(deposit)
then sel := <1>
else if bound(withdraw)

then sel := <2>
else if bound(s_balance)

then sel := <3>

comment

else if bound(p_transactions)
then sel := <4>

The output data flow sel takes different value depending
on the availability of the input data flows.
end_process;

process Current_Authentication(sel: ServiceCollection,
current_inf: Customerlnf)
current_inf1: Customerlnf I
current_inf2: Customerlnf I
current_inf3: Customerlnf I
current_inf4: Customerlnf I
e_mesg1: string

ext rd current_accounts
post if current_inf inset dom(current_accounts)

then case sel of

16.4 Formal Detailed Design Specification 295

<1> -> current_infl = current_inf;
<2> -> current_inf2 = current_inf;
<3> -> current_inf3 = current_inf;
<4> -> current_inf4 = current_inf;
end case

else e_mesg1 = "Your password or account
number is incorrect."

explicit
if cu rrent _ i nf inset dom(cu rrent _ accou nts)
then case sel of

<1> -> current_infl := current_inf;
<2> -> current_inf2 := current_inf;
<3> -> current_inf3 := current_inf;
<4> -> current_inf4 := current_inf;
end_case

else e_mesg1 := "Your password or account
number is incorrect."

comment
If the input account_no and password match those

of the customer's current account in the store
cu rrent _ accou nts

then generate output permission
else output an error message.

end_process;

process Current_Deposit(deposit_amount: natO,
current_infl: Customerlnf)
notice1: Notice I

warning1: string
ext wr current_accounts;
post if deposit_amount <= maximum_deposit_once

then
current_accounts =
override(-cu rrent _ accou nts,

{current_infl ->

}

modifyC current_accounts(currenCinfl),
balance ->
- cu rrent _ accou nts(cu rrent _ i nfl). ba la nce + deposit _ amou nt,
transaction_history ->
concC cu rrenC accou nts(cu rrent _ i nfl). tra nsaction _ history,
[Get_ Transaction(current_accounts, today,

current_time, 0, deposit_amount, current_infl)]
)

)

296 16 A Case Study - Modeling an ATM

) and
noticel = mk_Notice(deposit_amount,

current_accounts(current_infl).balance))
else warningl = "Your amount is over 1000000 yen limit."

explicit
accou nt _ i nf: C u rrentAccou ntl nf;
transaction: Transaction;
begin

account_inf := new CurrentAccountlnf;
transaction := new Transaction;
if deposit_amount <= maximum_deposit_once
then
begin
account_inf := current_accounts(current_infl);
account_inf.lncrease_Balance(deposit_amount);
accou nt _ i nf. Update _ T ra nsaction _ H istory(
tra nsaction. Get _ T ra nsaction (cu rrent _ accou nts,

today, current_time,
0, deposit_amount,

current_infl)) ;
current_accounts :=

override(current_accounts,
{current_infl -> account_inf});
noticel := new Notice;
noticel. Make_Notice(deposit_amount,

current_accounts(current_infl).balance)
end

else warningl := "Your amount is over 1000000 yen limit."
end

comment
If the input deposit_amount is less than or equal to the

maximum_deposit_once
then

(1) add the deposit_amount to the current_account
(2) give the customer a notice showing the amount

of deposit and the updated balance
(3) update the transaction history of the account

else give a warning message to indicate that the amount
is over the limit.

end_process;

process Current_ Withdraw(current_inf2: Customerlnf,
amount: natO)
notice2: Notice I

warning2: string

16.4 Formal Detailed Design Specification 297

ext wr current_accounts
post if amount <= maximum_withdraw_one and

amount <= - current_accounts(current_inf2).balance
then
current accounts =
override (- cu rrent _ accou nts,
{current_inf2 ->
modify(- cu rrent _ accou nts(cu rrent _ i nf2),

balance ->
-current_accounts(current_inf2).balance - amount,
transaction_history ->
conc(-current_accounts(current_inf2) .transaction_history,

[Get_ Transaction(current_accounts, today,
current_time, amount, 0, current_inf2)]

}

)
)

) and
notice2 = mk_Notice(amount,

current_accounts(current_inf2). ba lance))
else warning2 = "Your withdraw amount is over the limit."

explicit
account inf: CurrentAccountlnf;
transaction: Transaction;
begin

account_inf := new CurrentAccountlnf;
transaction := new Transaction;
if amount <= maximum_withdraw_once and

amount <= current_accounts(current_inf2).balance
then
begin
account_inf:= current_accounts(current_inf2);
account_inf. Decrease_Balance(amount);
account_inf.Update_ Transaction_History(
transaction.Get_ Transaction(current_accounts,

current accounts:=

today, current_time,
amount, 0, current_inf2));

override(current_accounts,
{current_inf2 -> account_inf});

notice2 := new Notice;
notice2.Make_Notice(amount,

current_accounts(current_inf2) . balance)
end

else warning2 := "Your amount is over 1000000

298 16 A Case Study - Modeling an ATM

yen limit."
end

comment
If the input amount is less than or equal to the

balance of the account and the
maximum withdraw once

then

else

(1) output the cash of the requested amount
(2) reduce the withdraw amount from the balance
(3) update the transaction history of the account
(4) give a notice

generate a warning message
end_process;

process Current_Show _Balance(current_inf3: Customerlnf)
balance: natO

ext rd current_accounts
post balance = current_accounts(current_inf3).balance
explicit
balance := current_accounts(current_inf3).balance
comment
Display the balance of the customer's current account
end_process;

process Current_Print_ Transaction_Records(
current_inf4: Customerlnf, date: Date)
transaction records: TransactionRecords

ext rd current accounts
post let transactions =

current_accounts(cu rrent_inf4) .transaction_history
in let i = get({i I i: inds(transactions) &

transactions(i).date = date})
in
transaction records =

transactions(i, ... , len (transactions))
explicit
transactions: seq of Transaction;
index: natO;
begin
transactions :=

cu rrent _ accou nts(cu rrent_ i nf4). tra nsaction _ history;
index :=

get({i I i: inds(transactions) &
transactions(i).date = date});

16.4 Formal Detailed Design Specification 299

transaction records:=
transactions(index, ... , len (transactions))

end
comment
Print out the transaction records since the input date
end_process;

process Display_lnformation(notice1: Notice I
notice2: Notice I
balance: natO I
transaction_records:

ext wr output_device
post bound(notice1) and

Tra nsaction Records)

output_device = concCoutput_device, [notice 1]) or
bound(notice2) and

output_device = concCoutput_device, [notice2]) or
bound(balance) and

output_device = concCoutput_device, [balance]) or
bound(transaction_records) and

output_device =
conc(-output _device, [tra nsactions _records])

explicit
if bound(notice1)
then output_device := conc(output_device, [notice1])
else if bound(notice2)

then outpuCdevice = conc(output_device, [notice2])
else if bound(balance)

then output_device =
conc(output_device, [balance])

else output_device =
conc(output_device, [transactions_records])

comment
Display the input data flows onto the output device
based on their availability.
end_process;

process Display_Message(warning1: string I
warning2: string I
e_mesg1: string)

ext wr output_device
post bound(warning1) and

output_device = concCoutput_device, [warning1]) or
bound(warning2) and

output_device = concCoutput_device, [warning2]) or

300 16 A Case Study - Modeling an ATM

bound(e_mesgl) and
output_device = concC output_device, [e_mesgl])

explicit
if bound(warningl)
then output_device :=

concC output_device, [warningl])
else if bound(warning2)

then output_device :=
conc(output_device, [warning2])

else output_device :=
conc(output_device, [e_mesgl])

comment
Display the input data flows onto the output device
based on their availability.
end_process;

end_module;

Writing the explicit specification for each process does not involve data refine­
ment in this case study. The essential job, however, is to find out necessary
statements and their correct order for the implementation of the meaning
of the implicit specification. The explicit specification is therefore more al­
gorithmic than the implicit one, but this does not imply that the explicit
specifications is executable like a program, since quantified expressions and
set, sequence, and map comprehensions are likely to have been used. It is
extremely difficult, if not impossible, to come up with a general algorithm
to automatically implement those complicated expressions. Nevertheless, the
explicit specification definitely narrows the gap between the implicit specifi­
cation and its potential program.

16.5 Summary

This case study has demonstrated that SOFL is effective and helpful in three
aspects. One aspect is the effectiveness of the combination of CDFDs and for­
mal definitions of their components in the modules: CDFDs provide graphical
views of the architecture of the modules, while the formalization of their com­
ponents help to precisely define the components and improve the structure
of the CDFDs. Another important point is the good traceability due to the
systematic documentation mechanism in the specifications. This point is espe­
cially useful for specification modification. The final point is the reuse of the
high level specifications in the low level specifications; thus, the gradual way
of developing the formal specification is not a waste of time and effort, but
creates necessary documents for progress toward the final formal specification.
For example, all the data declarations (e.g., types, store variables, invariants)

16.6 Exercises 301

are almost copied to the formal specification, and the informal descriptions of
the pre and postconditions of processes are used as comments in their formal
specifications.

On the other hand, drawing and updating CDFDs may take time and
need great care for internal consistency. However, this problem can be ad­
dressed by a powerful software supporting tool. The issues of software tools
and environments are discussed in Chapter 20.

16.6 Exercises

1. Give a semi-formal specification for the module
Manage_Savings_Account_Decom.

2. Give a formal abstract design specification for the module
Manage_Savings_Account_Decom.

3. Write a formal detailed design specification for the module
Manage_Savings_Account_Decom.

17

Rigorous Review

In order that a specification serve as a trustable contract between the de­
veloper and the user, and a firm foundation for implementation, it must be
ensured that the specification contains no faults or as few faults as possible.
Many studies have shown that detecting faults in specifications help substan­
tially reduce the cost and risk of software projects [10]. In this chapter, we
introduce a technique known as rigorous review for verifying and validating
specifications.

Review is a traditional technique for static analysis of software to detect
faults that undermine its reliability [28]. Basically, software review means
to check through software in an appropriate manner, either by a team or an
individual. Since software means both program and its related documentation,
such as specification, abstract design, and detailed design, a review can be
conducted for every level of documentation. Various review methods have been
proposed and/or applied in practice with different names, such as software
reviews, walk-through, static analysis, and code inspection [95][33][114][60].

When dealing with specifications with no formal semantics, the review
techniques have to be applied intellectually, based on reviewers' experience,
and may not be supported systematically in depth. However, for formal spec­
ifications, more rigorous review techniques can be applied. To make reviews
effective, especially for complex systems, it is important to use a systematic
method that allows the reviewer to focus on a manageable component at each
time, and provides an automatic analysis based on the review results of all
the related components. The rigorous review introduced in this chapter is a
technique developed along this line.

17.1 The Principle of Rigorous Review

The fundamental idea of rigorous review is to improve the rigor and compre­
hensibility of reviews by utilizing the advantages of formal proof and tradi­
tional review techniques as well as appropriate graphical notations. All the

304 17 Rigorous Review

important properties of a specification are expressed as predicate expressions,
and conventional review techniques are used to check the properties. A rigor­
ous review is conducted by following the three steps. First, derive properties
to be reviewed. Second, for each property generate a graphical representation
analyzing the property. Finally, review all the necessary components occur­
ring in the graphical representation. The conclusion of the review for each
property is given based on the review results of all the components.

In order that a specification accuratly reflect the user requirements and
guarantee a program solution, it is essential to ensure the internal consistency,
satisfiability, and validity of the specification.

Definition 24. A specification is said to be internally consistent if and only
if there is no contmdiction with the semantics of the SOFL language in the
specification.

Specifically, the internal consistency of a SOFL specification is divided further
into several aspects: internal consistency of process, invariant-conformance
consistency, and internal consistency of CDFD, each being discussed in detail
in Sections 17.2.1, 17.2.2, and 17.2.4, respectively.

Definition 25. A specification is satisfiable if and only if there exists a math­
ematical model representing the semantics of the specification.

Such a model ensures the existence of an implementation for the specification.

Definition 26. A specification is valid if and only if it satisfies the user's
requirements.

A property is usually represented by a predicate expression, possibly a
quantified predicate expression. It can usually be derived from the formal
specification, based only on the syntactic structure of the specification.

The graphical notation used in the rigorous review technique for analyzing
properties is known as Review Task Tree. The detailed description of this
notation will be given in Section 17.3. Review task tree notation is a simplified
and extended version of the Fault Tree notation that is traditionally used for
the analysis of safety properties of safety-critical systems whose failure may
cause catastrophic disaster to human life and/or important properties [59].
Compared with the fault tree notation, the review task tree notation has
several advantages: (1) it takes less space in drawing, (2) it defines review
tasks clearly, and (3) it shows the dependency relations among review tasks
explicitly.

From the next section, the three steps of rigorous review, mentioned in the
beginning of this section, are introduced in detail.

17.2 Properties 305

17.2 Properties

Let us focus on a single CDFD and the associated module to discuss, respec­
tively, the four important properties: internal consistency of process, invariant­
conformance consistency, satisfiability, and internal consistency of CDFD.

17.2.1 Internal Consistency of a Process

Let M denote a module in which the process P is defined.

module M;

type

U sableInt = int;

inv

I;

process Pea: T _1) b: T_2
ext wr x: T_3

rd y: T _ 4
wrz: T 5

pre 0_1
post 0_2
end _process;

end module;
In this module the invariant 1 and process P are given abstractly, for we intend
to discuss the issue of the internal consistency here in general. To express the
internal consistency of a process, we need the following notation:

Notation:

• Input(P): the set of all input data flow variables of process P.
• Output(P): the set of all output data flow variables of process P.
• WR(P): the set of all writable (wr) external variables (including both

decorated and undecorated variables) of process P.
• RD(P): the set of all readable (rd) external variables of process P.
• Variables(C): the set of all free variables occurring in condition C.

306 17 Rigorous Review

-a

Fig. 17.1. The CDFD of module M

In the definition of internal consistency of a process given below, we assume
that the process does not violate the syntactic and typing rules.

Definition 27. A process P is internally consistent if the following conditions
hold:

(1) forall[v: Output(P)ll v not in Variables(pre_P)
(2) v inset union(Variables(pre_P), Variables(post_P)) =>

v inset union(lnput(P), Output(P), WR(P), RD(P))

The condition (1) requires that no output variable occur in the precondition
of process P, for output variables are only made available as the result of
executing the process P. Therefore, the output variables are required to meet
the postcondition, but not the precondition. The condition (2) states that any
variable used in the pre and postconditions must be one of the input, output,
and external variables of the process. In other words, no variables except the
input, output, and external variables of the process is allowed to be involved
in its pre and postconditions.

For example, let process P be specialized into the following specific process:

process P(a: Usablelnt) b: Usablelnt
ext wr x: Usablelnt

rd y: Usablelnt
wr z: Usablelnt

pre a > 0 and y > 0
post x = a + y and b > x - a and z = -z + a
end _process;

Then,

Input(P) = {a}

17.2 Properties 307

Output(P) = {b}
WR(P) = {x, z, -x, -z}
RD(P) = {y}
Variables(pre_P) = {a, y}
Variables(post_P) = {x, a, y, b, z, -z}

This process is internally consistent, according to Definition 27.

17.2.2 Invariant-Conformance Consistency

The invariant-conformance consistency means that any invariant defined in
a module must not be violated by the pre and post conditions of any process
defined in the specification.

Definition 28. Let a type invariant I be defined as forull [x_1: T _1, x_2:
T _2, ... , x_n: T _nJ I Q(x_1, x_2, ... , x_n) . Then, a process P and invariant
I are consistent if and only if the following two conditions hold.

false

(1) (pre_P(y_1, y_2, ... , y_m) and
(exists[x_2: T _2, ... , x_n: T _nIl

Q(x_1, x_2, ... , x_n)[y_1/x_1]) and
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _nIl

Q(x_1, x_2, x_3, ... , x_n)[y_2/x_2]) and
... and

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-111
Q(x_1, x_2, x_3, ... , x_n-1, x_n)[y_n/x_n])) <> false

(2) (pre_P(L1, L2, ... , y_m) and
post_P(z_l, z_2, ... , z_w) and
(exists[x_2: T _2, ... , x_n: T _nIl

Q(x_1, x_2, ... , x_n)[y_1/x_1]) and
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _nIl

Q(x_1, x_2, x_3, ... , x_n)[y_2/x_2]) and
... and

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-111
Q(x_1, x_2, x_3, ... , x_n-1, x_n)[y_n/x_n])) <>

where n >= 1; we assume that y_1, y_2, ... , y_m are the variables of types
T _1, T _2, ... , T _m (m <= n), respectively; and likewise z_l, z_2, ... , z_w
are the variables of T _1, T _2, ... , T _m (w <= n), respectively (assuming
that the x_i (i =l..n) are all different from the y-.J (j=l..m) and the z_k
(k=l..w)).

308 17 Rigorous Review

In other words, invariant 1 must not be violated by either precondition or
postcondition of process P, for the invariant is part of the overall requirements
documented in the specification and is required to be sustained throughout
the entire system operation. Note that in SOFL an invariant 1 is regarded
as an implicit part of the pre and postcondition of a process. For exam­
ple, the precondition (or postcondition) of process P discussed above is not
only pre_P(y_l, y_2, ... , y_m) (or post_P(z_l, z_2, ... , z_w)), but is in
fact pre_P(y_l, y_2, ... , y_m) and forall[x_l: T _1, x_2: T _2, x_n: T _n]
I Q(x_l, x_2, ... , x_n) (or post_P(z_l, z_2, ... , z_w) and forall[x_l: T _1,
x_2: T _2, ... , x_n: T _n] I Q(x_l, x_2, ... , x_n)). Thus, when module M
described previously is implemented, it is the programmer's obligation to im­
plement process P in a manner that invariant 1 is sustained before and after
the execution of process P.

Let us take module M given previously as an example to illustrate the
conditions for ensuring the consistency between an invariant and a process.
Assuming that invariant 1 given in module M is defined as

forall[i: Usablelnt]I i <= 10000

where the type Usablelnt contains only integers less than or equal to 10000.
Substituting the concrete precondition, postcondition, and the invariant for
the corresponding expressions in the conditions (1) and (2) given in Definition
28, the concrete conditions for process P, given previously to be consistent with
I, become

1. ((a> 0 and y > 0) and a <= 10000 and y <= 10000) <> false
2. ((a> 0 and y > 0) and (x = a + y and b > x - a and z = -z + a) and

a <= 10000 and y <= 10000 and x <= 10000 and b <= 10000 and
z <= 10000 and -z <= 10000) <> false

The review of these conditions to determine whether they hold or not will
be discussed in Section 17.3, as an example of rigorous review based on the
review task tree analysis. At the moment, let us continue to concentrate on
the definitions of properties of interest.

17.2.3 Satisfiability

Before trying to implement a process specification, we must make sure that the
specification is satisfiable. Otherwise, the efforts in the implementation may
be wasted because there may be no program solution to meet the specification.

Definition 29. The satisfiability of process P is defined as:

17.2 Properties 309

forall[a, y, -x, -z: Usablelntll (pre_P(a, yWx/x, -z/zl =>
exists[b, x, z: Usablelntll post_P(a, b, x, -x, y, -z, z))

The satisfiability requires that, for any input, if the precondition evaluates to
true, there must exist an output based on which the postcondition evaluates
to true. Note that an input may be a group of values bound to the corre­
sponding input variables, including input parameters and appropriate exter­
nal variables. The review of this property for verification will be explained in
Section 17.3.

17.2.4 Internal Consistency of CDFD

The internal consistency of a CDFD is an important property necessary for the
correctness of the CDFD with respect to its high level process, if we assume
that the CDFD is a decomposition of the high level process. Specifically, this
concept is defined as follows.

Definition 30. The internal consistency of a CDFD is a property that the
output data flows of the CDFD can be generated based on its input data flows
under the condition that the pre and postconditions of all the processes involved
in the execution of the CDFD evaluate to true.

Obviously, a necessary condition for ensuring the internal consistency is that
the output data flows of the CDFD are reachable from the input data flows
(i.e., there exists a path syntactically from the input data flows to the output
data flows). In addition, we also need to ensure that each process involved
in an execution of the CDFD is consistently defined and the precondition of
each process is guaranteed by the operational environment (e.g., the preceding
processes). A consistent CDFD ensures that all the output data flows of the
CDFD will be produced consistently, but gives no guarantee whatsoever for
the correctness of the CDFD with respect to its high level process, because
this will depend on whether the CDFD and the high level process satisfy the
refinement rules given in Definition 17 of Section 5.4 in Chapter 5. It is very
possible that a CDFD is internally consistent, but not correct with respect to
its high level process (giving an example is left to the reader as a homework).

Let us consider the CDFD in Figure 17.1 as an example. The overall
internal consistency property is expressed as

bound(a) and pre_P => bound(t) and post_P3

The availability of an a that satisfies the precondition of process P must lead
to the availability of a t that satisfies the postcondition of process P3. It is
not difficult to tell that the output data flow t is reachable from the input
data flow a in Figure 17.1. In addition to the reachability, we also need to
ensure that the preconditions of processes PI, P2, and P3 are implied by the
post conditions of their preceding processes. Formally,

310 17 Rigorous Review

(1) post_P => pre_PI
(2) post_PI => pre_P2
(3) post_PI and post_P2 => pre_P3

To facilitate rigorous review of these properties, they are converted into the
following equivalent three expressions:

(1') not post_P or pre_PI
(2') not post_PI or pre_P2
(3') not (post_PI and post_P2) or pre_P3

17.3 Review Task Tree

17.3.1 Review Task Tree Notation

To review a property described above, there may be several different strate­
gies, and each strategy may indicate how the property, as a top-level task,
should be reviewed in order to support a systematic process of rigorous re­
view. Perhaps many notations can be used to represent a review strategy, but
such a representation should be comprehensible, and capable of presenting
task decompositions to support "team reviews" (in which a review process of
a single property may need to be explained to the other team members) and
documentation of the review process (which might be required when the final
program product is certified by an authorized organization or the customer).

In this section, we present a graphical notation for representing review
tasks in a systematic, logical, and hierarchical manner. The notation is known
as review task tree (RTT). It is derived by simplifying the fault tree notation
traditionally used for safety analysis of safety-critical systems [59]. Each node
of a review task tree represents a review task, defining what to do with a prop­
erty, and it may be connected to "child nodes" in different ways, depending
on the type of the node.

Definition 31. Let 5 be a specification and P be a property of s. Then, a
review task related to P is a property about P.

There are two kinds of review tasks. One is "the property involved holds" and
another is "the property involved can hold." The former is represented by a
rectangle node, while the latter represented by a round-edged rectangle node.
Figure 17.2 gives all the possible nodes in each category of the review task tree
notation. To help the drawing of large-scale RTT, some nodes for connecting
different parts of an RTT are needed. Figure 17.3 gives two connecting nodes
used in RTT.

17.3 Review Task Tree 311

8
Property A (or B) can

(A) hold (or holds) if all of

= its child properties hold.

CD
Property A (or B) can hold

(A) (or holds) if one of its

= child properties hold.

8
Property A (or B) can hold

(A) (or holds) if all of its child
v properties hold in the order

from left to ri~ht.

QJ
Property A (or B) can hold (or

(A) holds) if one of its child
properties holds in the order

z::s from left to right

cp c;J
Property A (or B) can

hold (or holds) if its only
child property holds.

8
Property B holds if its right
child property holds under
the assumption that its left

child property holds.

Property A (or B) can hold (or

(A) GJ holds). It is an atomic
property that has no

decomposition.

Fig. 17.2. The major components of RTT

cb
Input connecting node, meaning
the connection will continue to

reach the output connecting node
with the same number.

cp Output connecting node, meaning
it takes the connection from the
input connecting node with the

same number.

Fig. 17.3. The connecting nodes of RTT

Figure 17.4 shows a simple RTT. It represents that property A can hold
if properties B, C, and 0 hold; property B holds if G or F holds; property C
holds if E holds; and property 0 holds if H can hold and then W holds. In
this RTT, the node containing property A presents the overall task for review
and the task is decomposed into three sub-tasks that are represented by the
three nodes containing properties B, C, and D, respectively. Then, each of the

312 17 Rigorous Review

Fig. 17.4. An simple example of RTT

sub-tasks is decomposed further into the smaller tasks: the nodes containing
properties G, F, E, H, and W.

Definition 32. We use can_hold (P) to represent the task that property P
can hold, and hold (P) to mean that P holds.

We will often use these two expressions in our discussions concerned with
review tasks.

17.3.2 Minimal Cut Sets

Given an RTT, it is important to know what combinations of the leaf tasks,
which usually represent the atomic properties for review of the top-level task,
will imply the top-level task. Thus, by reviewing appropriate leaf tasks we can
check whether the top-level task has been reviewed and whether there exist
faults in the related property of the top-level task. For this reason, we need
the concept known as minimal cut sets.

Definition 33. Let T be a review task tree. A minimal cut set of T is a
smallest combination of the leaf tasks that implies the top-level task of T.

By the definition, a minimal cut set is thus a combination of the leaf tasks
sufficient for implying the top-level task. The combination is a "smallest" one
in the sense that reviews of all the tasks in the minimal cut set are needed
for performing the review of the top-level task. If one of the tasks in the
minimal cut set is not reviewed, then the top-level task cannot be considered
to have been reviewed based on this combination. For example, the RTT in
Figure 17.4 has two minimal cut sets {G, E, H, W} and {F, E, H, W}, since
the combination of each set forms the smallest task implying the top-level
task.

17.3 Review Task Tree 313

For an RTT, its minimal cut sets are finite and unique. Let T denote an
RTT, and A its top-level task. Then the minimal cut sets are expressed as
follows:

A=M I+M 2+ ... +M n

where M_i (i = l..n) are minimal cut sets. Each minimal cut set consists of a
set of specific leaf tasks, and is expressed as

Thus, the minimal cut set expression for the top-level task of the review task
tree given in Figure 17.4 is

A = {G. E. H. W} + {F. E. H. W}

17.3.3 Review Evaluation

The review result of the top-level task of an RTT can be evaluated by means
of evaluation of its minimal cut sets. The review result of a task in an RTT has
three possibilities: positive, uncertain, and negative. A positive result means
that no fault in the task under review is detected; an uncertain result provides
no evidence to either support or deny the task (property); and a negative result
indicates that the task contains faults.

Suppose the top-level task A of a review task tree T is expressed in terms
of its minimal cut sets

A=M l+M 2+ ... +M n
and each minimal cut M_i (i = l..n) consists of a set of specific leaf tasks

M_i = {E_l. E_2 E_m}
Then, the way to evaluate the review result of the top-level task based on its
minimal cut sets is given through Definitions 34 and 35.

Definition 34. The review result of M_i (i=1..n) is positive only if the review
result of every E-.J(j=l..m) is positive, negative if the review result of one of
all the E-.J(j=1..m) is negative, and uncertain otherwise.

Definition 35. The review result of the top-level task A is positive, negative
only if the review results of all M_i (i=l..n) are negative, and uncertain oth­
erwzse.

Consider the RTT in Figure 17.4 as an example. Since the top-level task
A = {G. E. H. W} + {F. E. H. W}, the review result of A is determined, by
definitions 34 and 35, as follows:

314 17 Rigorous Review

• The review result of A is positive if the review results of G, E, H, and W
are all positive or the review results of F, E, H, and Ware all positive.

• The review result of A is negative if one of the review results of G, E, H,
and W is negative and one of the results of F, E, H, and W is negative.

• The review result of A is uncertain if it is neither positive nor negative.

17.4 Property Review

The review of a specification is done by means of reviewing all the important
properties discussed in section 17.2 that are derived from the specification.
The properties are called review targets. To review a property , we take the
following steps:

Step 1: Construct a review task tree for the property to show the overall
review task and its decomposition.

Step 2: Identify the minimal cut sets of the review task tree.
Step 3: Review all the leaf tasks to determine their truth (remember that a

task in a review task tree is also a property).
Step 4: Determine whether the top-level task holds based on the review re­

sults of the minimal cut sets.

An RTT for a property (a predicate expression) can be built based on the
requirement for and the structure of the property. The requirement for the
property forms the top-level task, and it may be decomposed into sub-tasks
based on the semantics of its logical expression. A strategy for constructing
an RTT for a property is summarized as follows:

• For a compound property (predicate expression), review its constituent
predicates first and then its integration.

• For an atomic predicate (e.g., a relation or a negation of an atomic pred­
icate), review whether the set of values constrained by the predicate is
empty or not. Such a set must be given in form of set comprehension, so
that the types of the involved variables in the predicate will be clearly
indicated.

These guidelines serve as a foundation for building review task trees for various
kinds of properties, such as those described in Section 17.2.

17.4.1 Review of Consistency Between Process and Invariant

Let us take the process P and the related invariant I given in Section 17.2.1 as
an example to show how an RTT can be generated to review the consistency
between the process and the invariant. An RTT for reviewing the consistency
between the invariant and the precondition of the process is formed based on
the review conditions given in Definition 28, as shown in Figure 17.5.

17.4 Property Review 315

a> 0 and y > 0 and a <= 10000 and y <= 10000

inter({a I a: UsableIn! & a > 0], {y I y: UsableIn! & y > 0),
{a I a: UsableIn! & a <= 10000], {y I y: Usablelnt & y <= lOOOO})

<> {}

Fig. 17.5. An example RTT for the review of the consistency between the precon­
dition of a process and an invariant

The top-level task of this RTT is can_hold(a > 0 and y > 0 and a <=
10000 and y <= 10000), which is equivalent to the property: ((a> 0 and y >
0) and a <= 10000 and y <= 10000) <> false. To check whether this top­
level task is true, we need to review all of its sub-tasks, such as can_hold(a >
0), can_hold(y > 0), can_hold(a <= 10000), and can_hold(y <= 10000).
When reviewing a task, say can_hold(a > 0), it will be helpful if the re­
viewer is provided with the type of variable a, because in that way the re­
viewer can understand not only the involved predicate expression (i.e., a >
0), but also the related context. Furthermore, a straightforward way to show
how to determine if can_hold(a > 0) is true would be more instructive to
the reviewer. To meet these two requirements, we convert the review of the
truth of the atomic task can_hold(a > 0) into the review of whether the
model of the predicate, which is a non-empty set of elements satisfying the
predicate (i.e., {a I a: Usablelnt &. a > O}), exists or not (i.e., hold({a I a:
Usablelnt &. a > O} <> { })). Obviously, as long as we can find one element
of the model, we will be able to assert that hold({a I a: Usablel nt &. a > O}
<> { }) is true. The same principle can also be applied to review the other
atomic tasks.

Since only ensuring the truth of each individual sub-task of the top-level
task does not necessarily guarantee the truth of the top-level task, there is a
need to review whether these sub-tasks are true on the same elements. That
is, we need to review whether the task hold(inter({a I a: Usablelnt &. a > O},
{b I b: Usablelnt &. b > O}, {a I a: Usablelnt &. a <= 10000}, {y I y: Usablelnt
&. a <= 10000}) <> { }) is true, as illustrated in the RTT in Figure 17.5.

316 17 Rigorous Review

v inset union(Variables(pre_P), Variables(poscP» =>
v inset union(Input(P), Output(P), WR(P), RD(P»

v inset la, b, x, y, z, -z} =>
v inset I a, b, x, -x, y, z, -z}

Fig. 17.6. A review task tree for process consistency

It is worth noting that the property in each task in an RTT does not
necessarily need to be written in a formal expression, such as a predicate ex­
pression; it may be written in an informal language, as long as it facilitates the
review of desired properties. We will see more examples of such an RTT below
in which the combination of informally and formally described properties are
involved.

17.4.2 Process Consistency Review

The consistency of a process specification is defined in Definition 27 in Sec­
tion 17.2.1. A review task tree for a given process, say P defined in module
M in Section 17.2.1, is derived based on the Definition 27 and the concrete
specification of P. The review task tree is given in Figure 17.6.

The top-level task of the tree is "P is consistent." There are three inter­
mediate sub-tasks that correspond to the three general conditions given in
Definition 27. All the leaf tasks are specialization of their corresponding in­
termediate tasks by taking the specification of process P into account. For
example, the leaf task on the left is a specialization of the intermediate task
on the left. Since the only minimal cut set for this review task tree contains
all the leaf tasks, if all of them are reviewed and confirmed to be true, then
the truth of the top-level task "P is consistent" will be confirmed. In fact, this
can be easily concluded by checking the specification of process P. Since the
internal consistency of a process is defined solely based on the syntax of the
process specification, the derivation of the review task tree and reviews of all
the leaf tasks can be performed automatically.

17.4 Property Review 317

17.4.3 Review of Process Satisfiability

As mentioned in Section 17.2.3, the review target for process satisfiability is
the proof obligation given in Definition 29. Let us take the process P spec­
ified in Section 17.2.1 as an example to explain the technique for building
an RTT. Since the proof obligation for the satisfiability of process P involves
an implication in the body of the universally quantified expression, we sim­
plify the proof obligation by converting the body of the universally quantified
expression into an equivalent disjunction as follows:

forall[a, y, -z: Usablelntl I not pre_P(a, y, z)rx/x, -z/zl or exists[b, x,
z: Usablelntll post_P(a, b, x, -x, y, -z, z))

The RTT built based on this expression is simpler and more comprehensible
than that for the original expression of the proof obligation.

We treat the property "P is satisfiable" as the top-level property in the
top-level task hold(P is satisfiable), and then decompose the task into sub­
tasks, as shown in Figure 17.7. Note that there is no part in the tree directly
corresponding to the universal quantifier, because it is unnecessary to inde­
pendently check anything related to the type Usablelnt for the bindings. The
most important part to review is the body of the universally quantified expres­
sion. Since it is a disjunction of two constituent expressions, we decompose
the top-level task into two sub-tasks, checking hold(not pre_P(a, y, z)rx/x,
-z/z]) and hold(Existentially quantified expression). The first task is decom­
posed into the single task hold({(a, -x, -z) I a, -x, -z: Usablelnt & not a > 0
and y > O} <> { }) and the second task is again divided into the two tasks
hold(Usablelnt <> { }) and hold(post_P(a, b, x, -x, y, -z, z)). Finally, the
latter task is again decomposed into another single sub-task hold({(b, x, z) I
b, x, z: Usablelnt & x = a + y and b > x - a and z = -z + a } <> { }).

When reviewing this tree, we just need to review all the atomic tasks in
the two minimal cut sets {hold({(a, -x, -z) I a, -x, -z: Usablelnt & not a > 0
and y > O} <> { })} and {hold(Usablelnt <> { }), hold({(b, x, z) I b, x, z:
Usablelnt & x = a + y and b > x - a and z = -z + a } <> { })}, and then
evaluate the overall review result based on review results of the two minimal
cut sets.

17.4.4 Review of Internal Consistency of CDFD

As described in Section 17.2.4, an internal consistency review for a CDFD aims
to check whether an output data flow of the CDFD (which can be an output
data flow of a terminating process or node of the CDFD) can be reached from
its input data flows (which can be input data flows of some starting processes
or nodes of the CDFD) syntactically, and whether the pre and post conditions
of all the processes involved in an execution of the CDFD evaluate to true.
For example, to review the internal consistency of the CDFD given in Figure

318 17 Rigorous Review

{(a. -x. - z) I a. -x. -z: Usablelnt
& not a > 0 and y > OJ <> { J

{(b. x. z) I b. x. z: Usablelnt
&x=a+yandb>x-a

and z = -z + a J <> {J

Fig. 17.7. A RTT for reviewing the satisfiability of process P

17.1, it is necessary to check whether the output data flow t can be produced
based on the input data flow a through the CDFD. Such checking is equivalent
to finding a path of data flows from a to t through the CDFD. However, the
existence of such a syntactical path may not necessarily lead to the correct
generation of t semantically. For example, when process PI is not satisfied
by its input data flow b, PI is still executed according to the semantics of
CDFD, but its output data flows dl and d2 may not be correctly produced
under the postcondition of PI, which cannot be expected to eventually result
in a desired output data flow t.

To ensure the internal consistency of the CDFD, we need to ensure every
possible output data flow of the CDFD is consistently produced. In the case of
Figure 17.1, we must make sure that the only output data flow t is produced
consistently based on the input data flow a through the CDFD. In order to
review the consistency of the CDFD, we treat the property hold{The CDFD
of module M is internally consistent) as the top-level task, and build an RTT
as shown in Figure 17.8. The top-level task is ensured by establishing the task
hold{Data flow t is generated consistently). According to the semantics of a
process, the assurance of the consistent generation of t must be based on the
following conditions (tasks):

(1) dl and d3 are generated consistently.
(2) P3 is satisfiable.
(3) t occurs in the postcondition of P3 (i.e., t inset Variables{post_P3)).

17.5 Constructive and Critical Review 319

Fig. 17.8. A RTT for the internal consistency of the CDFD of module M

The truth of each of these three conditions may need a further analysis.
The consistent generation of data flows d1 and d2 can be analyzed in the same
way as that for the analysis of data flow t. The review of the satisfiability of
P3 can be done by following the approach described in Section 17.4.3. The
truth of condition (3) can be easily found out by a review of the process
consistency discussed in Section 17.4.2. For brevity, Figure 17.8 does not give
a complete RTT for the review of the internal consistency of the CDFD. All
the intermediate tasks whose reviews are already discussed in previous sections
in this chapter are connected to an input connecting node, indicating that the
existence of another sub-RTT for reviewing the corresponding intermediate
task is provided somewhere in the review documentation.

17.5 Constructive and Critical Review

By now we have taken the approach to reviewing properties by trying to
establish the properties. That is, suppose we want to ensure property P, we
try to establish the sub-tasks that lead to the assurance of P. We call this
constructive review. However, constructive review is not always possible, due
to the lack of necessary information or to the difficulty in doing it explicitly.
Since the aim of reviewing a specification is to detect potential faults, one
practical way to do it is to review properties by considering the possible
reasons for causing them not to hold. This approach is known as critical review.

Specifically, suppose we want to ensure property P; we treat not P as the
top-level property and hold{not P) as the top-level task of the RTT to review
property P. We then develop the review task tree in the same way as that
used before for constructive review. In fact, the way of doing review in both
constructive and critical approaches are the same: both try to establish the

320 17 Rigorous Review

Dot (a > 0 and y > 0 and a <= 10000 and y <= 10000)

inter({a I a: UsableIn, & not a > OJ, {y I y: UsableIn' & Dot y > O},
(al a: UsableIn, & nota <= l(){)()()}.{y I y: UsableIn, & nuty <= l(){)()()))

<> {}

Fig. 17.9. A RTT for critical review of the consistency between an invariant and
the precondition of a process

top-level task of a CDFD; the only difference between them is at the content
of the top-level property: the top-level property of a constructive review task
tree is the property itself, while the top-level property of a critical review task
tree is the negation of the top-level property of the corresponding constructive
review task tree.

Let us take the RTT in Figure 17.5 as an example to illustrate the critical
approach. By treating the negation of the top-level property a > 0 and y >
a and a <= 10000 and y <= 10000 as the top-level property, we build the
critical review task tree in Figure 17.9.

17.6 Important Points

The review task tree approach to rigorous review of specifications introduced
in this chapter is only a tool for presenting and organizing the review tasks,
and for evaluating the review results; it does not conduct reviews automati­
cally. The reviews have to be done by another means, for example, by reading
through all the atomic tasks manually, or by testing all the atomic tasks,
possibly with some testing tools. While reviews by human reviewers reading
through the atomic tasks are usually effective for validating a formal specifi­
cation, testing can be effective for verifying the consistency properties of the
specification. In the next chapter, we will give a detailed introduction to a
technique for testing formal specifications.

Although deriving a review task tree for a property of a specification does
not ensure that the review of the property will be done satisfactorily, the
review task tree approach offers several potential advantages over traditional
review techniques:

17.7 Exercises 321

• the review task tree can be constructed automatically based on a property
derived from the specification.

• it allows the reviewer to focus on a manageable review task at a time.
• the review results of manageable tasks can be automatically utilized to

determine the result of the overall review.
• the review task tree notation is comprehensible in conveying the ideas of

a review, which will be useful and helpful when a review is explained to
other people, such as the teammates or the managers involved in the same
project.

Since a graphical notation usually occupies more space than texts, skill in
drawing review task trees is important. The input and output connecting
nodes given in Figure 17.3 are usually very helpful in facilitating the organi­
zation of a large review task tree across different pages.

17.7 Exercises

1. Suppose the process P is defined as follows:
process P(a: int) b: set of int
ext wr x: set of int

rd y: int
pre card(x) <> 0
post inter(x, b) = union({a, y}, -x)
end _process
Build a review task tree for reviewing the internal consistency of process
P, and determine whether the process is internally consistent.

2. Build a review task tree for both constructive review and critical review
of the satisfiability of process P given above, and determine if process P
is satisfiable.

3. Construct review task trees for the "library system" required in Exercise
2 of Chapter 14, to review the following properties: internal consistency
of each process involved, the consistency between each process and the in­
variants (if any), satisfiability of each process, and the internal consistency
of all the CDFDs involved in the specification.

18

Specification Testing

Specification testing shares the objective of rigorous reviews, but takes a differ­
ent approach. It aims to verify various consistency properties of specifications,
and to check whether specifications accurately and completely reflect the user
requirements by testing the specifications [72] [89]. The testing technique intro­
duced in this chapter combines the advantages of formal proof and traditional
program testing paradigm, and can be applied to both implicit and explicit
specifications. However, since the testing of explicit specifications, which are
likely executable, can be done in a way similar to that of testing programs,
which have been well researched and studied in the course of software engi­
neering, we focus in this chapter only on the introduction to the technique for
testing implicit specifications. Since testing a software system usually requires
execution of the system, a special skill for testing implicit specifications, which
are usually not executable, is necessary. After studying the process of speci­
fication testing, we will go through the details of the testing techniques step
by step in this chapter.

18.1 The Process of Testing

Testing a specification consists of three steps. First, generate test cases that
may include both input and output values for the specification (e.g., process
specification). This point may sound strange to the reader who is familiar
with the program testing paradigm, in which only input values are required
for executing programs, but it is not a mistake. In fact, this point is actually
the keypoint that distinguishes the specification testing technique from the
traditional program testing paradigm. We will elaborate this point later in
Section 18.2.1. Second, evaluate the specification with the test cases, without
executing any program implemented based on the specification. Third, analyze
test results in order to determine whether faults are detected. This process is
illustrated in Figure 18.1.

324 18 Specification Testing

specification

Fig. 18.1. The process of specification testing

Test results
analysis

Analysis

criteria

The most important task in testing a specification is to create test cases
that help uncover as many faults as possible. Two methods for test case gen­
eration can be used. One is to generate test cases by examining the structure
of the specification itself. This shares the principle of white-box testing for
programs. Such test cases are usually expected to detect faults leading to the
violation of consistency properties of the specification, for example, the sat­
isfiability of a process and the consistency between process specifications and
invariants in a module. Several criteria are given in Section 18.3 for generating
test cases based on specifications. Another way is to generate test cases based
on the user's functional requirements. This method is similar to the black-box
testing for programs, aiming to validate the specification, that is, to ensure
the consistency between the specification and the actual user requirements.

Implicit specifications usually do not indicate algorithms for implemen­
tations; therefore, they are not executable in general. However, since they
are expressed with predicate expressions, such as pre and postconditions for
processes, they can be evaluated if all the variables involved are substituted
with concrete values of their types. The results of such evaluations are truth
values: true or false. Of course, they can also be undefined: nil. For example,
suppose x > y is the precondition of a process; it evaluates to true if x is
bound to 9 and y bound to 5, and to false if x is substituted with 10 and y is
substituted with 15.

The analysis of test results is done by comparing the evaluation results
with the analysis criteria. Usually, the analysis criteria are predicate expres­
sions, representing the properties to be verified. If the evaluation results are
consistent with the predicate expressions, the analysis shows that no faults are
detected by the test. Of course, due to the intrinsic limitation of testing (test

18.2 Unit Testing 325

cases do not usually cover the entire input domain), this does not necessarily
mean that there is no fault existing in the specification.

Testing an entire specification can be conducted at two levels: unit test­
ing and integration testing. Unit testing aims to detect faults in components,
which can be invariants, processes, or methods, in order to ensure their cred­
ibility. The credibility of components must be ensured before they are used
in the testing of the entire specification, because the credibility of the spec­
ification usually relies on that of its components. Integration testing tries to
uncover faults occurring in the integration of the components and to check
whether the interfaces between components are specified consistently. The
testing targets for integration testing are modules, CDFDs, and classes.

18.2 Unit Testing

In this section the testing of processes and invariants are discussed, respec­
tively. To this end, we first need to define the necessary notions.

Definition 36. Let P(x_1, x_2, ... , x_n) be a predicate expression. A test case
for this expression is a group of values v_1, v_2, ... , v_n bound to x_1, x_2,
... , x_n, respectively.

Let us consider the expression x > y and y > z + 1 as an example. To test
its truth, the following three test cases are provided.

(1) x = 15, y = 8, Z = 6
(2) x = 10, y = 9, Z = 5
(3) x = 6, y = 10, Z = 8

Definition 37. A test set for a predicate expression is a set of test cases.

For example, the three test cases given above form a test set for the predicate
expression x > y and y > Z + 1.

Definition 38. A test suite for a predicate expression is a set of pairs {(T _1,
E_1), (T_2, E_2), ... , (T_n, E_n)}, where each T_i (i=1..n) is a test case
and each E_i is an expected result corresponding to the test case.

As a predicate expression always evaluates to either true or false, the ex­
pected results are actually the truth values. These are different from program
testing, where the expected result can be any type of value. This point will
become much clearer as our discussion proceeds.

Definition 39. Let P be a predicate expression and T _5 be a test set. Then,
a test is a set of evaluations of P with all the test cases in the test set T _5.

326 18 Specification Testing

Table 18.1. A test

x y E_r P
-1.0 4 false false
1.0 o true nil
1.5 2 true true

A test for an expression can be represented by a table. For example, consider
the predicate expression P = x> 0 and x < 10/ y. A test for this predicate
expression is given in Table 1B.l, where the column corresponding to E_r
shows the expected results and the one corresponding to P presents the actual
evaluation results. As we will notice later in this chapter, there is no need of
any expected results given explicitly for testing consistency properties. For
this reason, the E_r column may not occur in some tests given as examples
in this chapter.

18.2.1 Process Testing

The objectives of testing a process are twofold. One is to ensure that the
process specification is satisfiable, that is, the specification is possible to im­
plement by a program. Another objective is to ensure that the process speci­
fication is valid against the user requirements.

Satisfiability Testing

As discussed in the preceding chapter, a process is satisfiable if its proof
obligation can be discharged by formal proof. However, since formal proof
may not be cost-effective for large-scale systems in practice, as we mentioned
in Chapter 1, we can use testing rather than formal proof to check the proof
obligation. Although the proof obligation may not be completely discharged
by a test, a rigorous checking of the proof obligation can be performed if the
test is carefully designed.

Let us start by looking at a simple process. Suppose process P is defined
as follows:

process P{x:int) y: int
ext wr z: int
pre x > 0 and z > 0
post z > x + y + -z
end _process

For brevity, this process is represented as

P: [I, 0, pre, post]

18.2 Unit Testing 327

where I denotes the set of input variables, 0 denotes the set of output variables,
and pre and post are the pre and post conditions of the process, respectively.
Specifically, the contents of these components of process Pare

I = {x, -z}
0= {y, z}
pre = x > 0 and z > 0
post = z > x + y + -z

Note that variable z in the precondition is the same as the variable -z in the
postcondition. To distinguish variable z in the postcondition, denoting the
value after the execution of process P, from variable z in the precondition,
denoting the value before the execution, we use -z rather than z in the set of
input variables I.

The proof obligation for the satisfiability of process Pis:

forall[x, -z: int] I
(pre_P(x, zWzjz] => exists[y, z: int] I

post_P(x, -z, y, z)
)

The satisfiability requires that, for any input, if the precondition evaluates to
true, there must exist an output based on which the postcondition evaluates
to true. Note that an input may be a group of values bound to the corre­
sponding input variables if there is more than one input variable. Similarly,
an output may mean a group of values bound to the corresponding output
variables. As we will see later, the proof obligation can be revised to serve as
a test oracle for test result analysis.

Definition 40. A test oracle is a logical expression or mechanism that can
determine whether a test is successful or not.

For example, a test oracle for the satisfiability of process P can be derived
from the proof obligation given previously by limiting the types of input and
output variables to the collections of their values generated in the test

forall[x: T _x, -z: T _ -z] I
(pre_P(x, zWzjz] => exists[y: T _y, z: T _z] I

post_P(x, -z, y, z)
)

where T _x, T _-z, T _y, and T _z denote the set of values generated for variable
x, -z, y, and z in the test, respectively.

To test the satisfiability of a process specification, we need to generate test
cases for both input and output variables, because otherwise the evaluation
of the postcondition of the process would be impossible. Imagine if we have a
program that implements this process specification; the actual output values

328 18 Specification Testing

Table 18.2. A test for process P

x -z zy pre post pre => post
5 6 20 8 true true true
7 8 30 9 true true true
-5 9 8 7 false false true
8 11 13 7 true false false
8 11 40 12 true true true

will be produced as a result of the execution of the program with the test
cases as input. However, for implicit specifications, such executions are usually
impossible.

The primary problem in testing a process specification is how to generate
test cases for both input and output variables. We will see several criteria
for test case generation in Section 18.3. Until then, let us concentrate on the
procedure of testing the satisfiability of the process.

Given test cases for both input and output variables of process P, its pre
and postconditions can be evaluated. Table 18.2 shows a test of process P.
In this table, pre represents the substituted precondition pre_P(x, z)[-z/zj
and post the postcondition post_P(z, -z, y, z). Having this test, we can now
analyze the test results to check whether the satisfiability of the process is
met or not. In fact, the analysis is simple: we only need to check the results
of the implication pre => post for all the test cases. In other words, we can
perform this analysis by checking the test oracle for process P. An algorithm
for such an analysis derived based on the test oracle is given as follows:

Algorithm

1. If the implication pre => post evaluates to true for all the test cases, the
satisfiability of the process is met by the process specification under the
current test.

2. If, for any false evaluation of the implication pre => post there is no true
evaluation of the implication based on the same input values in the current
test, the satisfiability will not hold under the current test. Otherwise, the
satisfiability holds under the current test. By true or false evaluation of
a predicate expression we mean that the expression evaluates to true or
false.

The first step of this algorithm is not difficult to understand, because it is
consistent with the description of the proof obligation for satisfiability. A
little tricky situation is described in the second step. A false evaluation of
the implication pre => post does not necessarily mean that the implication
cannot be met by the same input values, because the result of the evaluation
also depends on the output values. For example, the input values x = 8 and -z
= 11, together with the output values z = 13 and y = 7, makes the evaluation
of the implication false, but makes it true when used together with output

18.2 Unit Testing 329

Table 18.3. Another test for process P

-x z zy pre post pre => post
5 6 20 8 true true true
7 8 30 9 true true true
-5 9 8 7 false false true
8 11 13 7 true false false

values z = 40 and y = 12. Therefore, despite the false evaluation of the
implication, the satisfiability of the process still holds under the current test.

However, we must not over-evaluate the credibility of testing in verifying
the satisfiability of a process. Even if a test has demonstrated the satisfiability
according to the test oracle, this does not necessarily mean that the satisfia­
bility holds for every input of the process, because the test cases in the test
oracle usually do not cover the entire domain and range of the process. The
only benefit resulting from such a demonstration is to gain confidence in the
process specification. This is similar to program testing. By testing we can
only establish the existence of faults, but cannot prove the absence of faults,
in programs and specifications.

Compared with program testing, process specification testing involves
more uncertainties. Even if a test does not meet the proof obligation for the
satisfiability of a process, it still does not give sufficient evidence to support
the fact that the satisfiability of the process does not hold. Consider the test
given in Table 18.2 as an example. If the test case in the bottom row of the
table is eliminated, the test will be changed to the one given in Table 18.3.
Obviously, under this test we cannot demonstrate that the process is satisfi­
able because, for the input x = 8 and -z = 11, there are no output values given
in this test that satisfy the postcondition. However, such an output value may
exist, but just not be provided in the test.

Definition 41. A test that does not violate the satisfiability proof obligation
of a process is called a failed test.

Since the objective of testing is to detect faults, well-designed tests must be
encouraged. If a test does not detect any fault, it may be bacause of the
weakness of the test cases. Of course, there is a possibility of no fault in the
specification, but this is usually hard to know. Therefore, considering a test
showing no fault as a failed test may encourage more tests to be conducted,
which will help improve the confidence in the quality of process specifications.
The test given in Table 18.2 is a failed test.

Definition 42. A test that does not support the satisfiability of a process is
known as an uncertain test.

If a test does not show sufficient evidence to support the satisfiability of a
process, like the one given in Table 18.3, it presents an uncertain situation in

330 18 Specification Testing

verifying the satisfiability of the process: whether the satisfiability holds or
not is unknown.

As we will see in discussions throughout this chapter, these two concepts
may also apply to the testing of other properties. In general, if a property is
shown by a test to hold, the test is said to be a failed test. If a test is unable
to either support or deny the property under testing, the test is called an
uncertain test. Furthermore, if the property is shown not to hold for some
test cases, the test is called a successful test.

Definition 43. If A test uncovers a fault in a property, the test is known as
a successful test of the property.

The success of a test is interpreted as a success in detecting faults. Such a
connotation may help encourage more successful tests to be conducted, and
therefore to improve the quality of specifications.

The results of the discussions above can be easily extended to a more
general process that involves two input and output ports:

process Q(x_1: int I x_2: int) y _1: int I y _2: seq of int
ext wr z: int
pre x_I> 0 and z > 0 or x_2 > 0 and z > 0
post z > x_I + y-I + -z or z > x_2 + hd(y_2) + -z
end _process

The test cases for testing this process can be generated based on the same
criteria, and the test steps are the same. However, one thing is worth noting.
Since inputs x_I and x_2 are exclusive, that is, only one of them is used when
the process is executed, we must include the test cases in which one of the two
input variables is undefined (i.e., the test value for it is nil) when using the
other for testing. For example, if x_I is used for testing process Q, x_2 should
be given as nil. For output variables y _1 and y _2, the same principle must
be applied. Of course, normal values for all the input variables and output
variables, even exclusive ones, can be used in tests. Table 18.4 gives a test of
process Q, where pre = pre_Q(x_l, x_2, zWz/z] and post = post_Q(x_l,
x_2, y_l, y_2, -z, z).

Comparing this result with the test oracle, derived from the proof obliga­
tion for the satisfiability of process Q

forall[x_1: T _x_I, x_2: T _x_2, -z: T _ -z] I
((pre_P(x_I, x_2, zWz/z, nil/x_2] =>

exists[y-I: T _y-l, y_2: T _y_2, z: T _z]1
post_P(x_l, x_2, y_l, y_2, -z, z)[nil/x_2, nil/y-2])

or
(pre_P(x_l, x_2, zWz/z, nil/x_I] =>

exists[y_1: T _y_l, y_2: T _y-2, z: T _z]1
post_P(x_l, x_2, y_l, y-2, -z, z) [nil/x_l , nil/y_l])

18.2 Unit Testing 331

Table 18.4. A test for process Q

x 1 x 2 y-1 y-2 -z z pre post pre => post - -
5 nil 20 nil 4 35 true true true
7 nil 30 nil 2 50 true true true
-5 nil 8 nil 10 45 false true true
nil 11 nil [2,5,8) 5 20 true true true
nil 1 nil [-6, 12) 9 10 true true true
nil 3 nil [9,2) -5 20 false true true
2 4 1 [9) 3 50 true true true

Table 18.5. A test with expected results for process P

x -z z y pre Exp_pre post Exp_post pre => post
5 6 20 8 true true true true true
7 8 30 9 true true true false true
-5 9 8 7 false true false true true
8 11 13 7 true false false true false
8 11 40 12 true true true true true

we can easily show that process Q is satisfiable under the test given in Table
18.4, because for all the input values satisfying the precondition, the postcon­
dition of the process evaluates to true. In the test oracle, T _x_I, T _x_2,
T _ -z, T _y _1, T _y _2, and T _z denote the set of all the test values generated
for variables x_I, x_2, -z, y_I, y_2, and z, respectively.

Validity Testing

Since validity testing aims to check whether a process specification is consis­
tent with the user's conception of requirements, the test cases for both input
and output variables, as well as the expected test results (truth values), need
to be derived from the user's requirements rather than from the process spec­
ification itself as we do in satisfiability testing. Apart from this difference,
the criterion for analyzing test results is also different. In validity testing, the
actual evaluation results of pre and post conditions of a process are compared
with the expected results, rather than with the test oracle derived from the
proof obligation. Of course, a satisfactory process must also be satisfiable,
therefore, satisfiability testing should usually be carried out prior to validity
testing. The point is that satisfiability does not necessarily ensure validity
with respect to the user's requirements. Let us extend the test given in Table
18.2 for process P to include expected results, which include the expected re­
sults of both precondition and postcondition of process P. The extended test
is shown in Table 18.5.

332 18 Specification Testing

In this table, Exp_pre and Exp_post denote the expected results of precon­
dition and postcondition, respectively. Apparently, the truth value of Exp_pre
in the fifth row (false) is different from the actual evaluation result of the pre­
condition pre, and the value of Exp_post in the third row (true) is different
from the actual evaluation result of the postcondition. Although this process
specification is demonstrated to be satisfiable by the current test, it does not
satisfy the user's requirements because the evaluation results of its pre and
post conditions are not exactly the same as the expected results (the expected
results are assumed to be correct).

18.2.2 Invariant Testing

An invariant presents a constraint on either types or state variables that must
be sustained throughout the entire specification. To ensure this property, two
aspects must be checked. One is whether the invariant is feasible, and another
is whether the invariant is not violated by all the related processes. For brevity
in discussions on the testing method in this section, we focus on invariants
involving only a single bound variable in the universally quantified expression.
The same method can be extended to invariants containing multiple bound
variables.

Feasibility Testing

A feasible invariant of a type must ensure that the type is non-empty.

Definition 44. Let I denote the invariant forall [x: OJ I P(x). I is feasible if
and only if there exists a value r in 0 that P(r) holds.

The fact that type D contains some members satisfying property P implies
that the invariant forall[x: Dj I P(x) is possible to satisfy with some val­
ues. Therefore, requiring that all the members of D satisfy the invariant is
meaningful, because an empty type is usually neither interesting nor useful in
specifications.

To test an invariant for the demonstration of its feasibility, test cases can be
generated based on the structure of the invariant, and the following condition

exists[r: T _rj I P(r)

must be used as the test oracle for test results analysis, where T _r is a set of
values generated for variable r in the test, and subset(T _r, D) (Le., T _r is a
subset of D) holds. Let us consider the type Customer:

Customer = composed of
id: natO
name: string

end

18.2 Unit Testing 333

Table 18.6. A test for the feasibility of invariant

x I
(0, "Mark") false
(1, "John") false

(11, "David") true
(350, "Darrell") true

(23, "Chris") true

Assume the type has an invariant

forall[x: Customer] I x.id >= 10 and x.id < 1000 and len(x.name) <= 15

A test oracle derived from this invariant is

exists[r: T _r]1 r.id >= 10 and r.id < 1000 and len(r.name) <= 15

where T _r, a subset of Customer, denotes the set of all test values generated
for the bound variable x occurring in the invariant.

As an example, a test for this invariant is given in Table 18.6, in which
x is a variable over type Customer and I denotes the body of the quantified
expression in the invariant x.id >= 10 and x.id < 1000 and len(x.name) <=
15. Apparently, this test is a failed test because it does not detect any fault
in the invariant as far as the feasibility is concerned. In fact, in this particular
case, the feasibility of the invariant has actually been proved by the test, in the
sense of providing sufficient evidence to support the truth of the feasibility.

Consistency Testing

As defined in Section 17.2.1 of the preceding chapter, an invariant is consistent
with the related process specifications if it is not violated by those processes
before and after executions of the processes. Let P be a process and I be an
invariant. I is consistent with P if and only if the following two conditions
hold:

(1) (pre_P(y_l, y_2, ... , Lm) and
(exists[x_2: T _2, x_n: T _n]1

Q(x_l, x_2, ... , x_n)[y_l/x_l]) and
(exists[x_l: T _1, x_3: T _3, ... , x_n: T _n]1

Q(x_l, x_2, x_3, ... , x_n)[y_2/x_2]) and
... and

(exists[x_l: T _1, x_2: T _3, ... , x_n-l: T _n-l] I
Q(x_l, x_2, x_3, ... , x_n-l, x_n)[y_n/x_n])) <> false

334 18 Specification Testing

(2) (pre_P(y_I, y_2, ... , y_m) and
post_P(z_I, z_2, ... , z_w) and
(exists[x_2: T _2, x_n: T _n] I

Q(x_I, x_2, ... , x_n)[y_I/x_I]) and
(exists[x_I: T _1, x_3: T _3, ... , x_n: T _n] I

Q(x_I, x_2, x_3, ... , x_n)[y_2/x_2]) and
... and

(exists[x_I: T _1, x_2: T _3, ... , x_n-I: T _n-I] I
Q(x_I, x_2, x_3, ... , x_n-I, x_n)[y_n/x_n])) <> false

Condition (1) ensures that the precondition of process P does not violate
invariant I, while condition (2) ensures that the postcondition does not violate
I. Note that if there is no common type or state variable involved in the
specification of process P and invariant I, and I is feasible, then conditions
(1) and (2) will definitely hold, assuming that the precondition of P is not
a contradiction. The reason is obvious: the evaluations of invariant I and the
precondition pre_P do not interfere with each other.

For example, suppose we define a process Change_ld as

process Change_ldO
ext wr cus: Customer
pre cus.id > 50
post cus = modifyCcus, id -> 8)
end _process

This process changes the id of a customer with identification number greater
than 50 to 8. The functionality of this process may not make a good sense,
but it helps our discussion at the moment, because the consistency testing
is done based entirely on logical expressions, without necessarily considering
their meaning.

A test for checking the consistency between the precondition of this process
and the invariant I of type Customer described in Section 18.2.2, and between
the postcondition of this process and the invariant, is given in Tables 18.7
and 18.8, respectively, where conI = pre and I, con2 = post and I, I_bodyl
denotes the evaluation result of the body of invariant I based on the input
-cus, and l_body2 represents the evaluation result of the body of I based on
the output cus.

Since in Table 18.7 the conjunction conI evaluates to true twice, it provides
sufficient evidence to support the claim that the precondition and the invariant
are consistent, according to condition (1) defining consistency above. However,
the situation in Table 18.8 is very different: the conjunction con2 evaluates to
false for all the values of cus. This fact does not support the assertion that the
postcondition and the invariant are consistent, but it is also not sufficient to
deny this assertion, because the given values for cus are limited. So, the test in
Table 18.8 is qualified as an uncertain test. The key point in designing such a

18.3 Criteria for Test Case Generation 335

Table 18.7. A test for checking the consistency.

-cus pre I body1 con!
(0, "Mark") false false false

(11, "David") false true false
(350, "Darrell") true true true

(60, "Chris") true true true

Table 18.8. A test for checking the consistency.

-cus cus pre post l_body2 con2
(0, "Mark") (8, "Mark") false true false false

(11, "David") (8, "David") false true false false
(350, "Darrell") (8, "Darrell") true true false false

(60, "Chris") (20, "Chris") true false true false

test is to try to provide test cases based on which the pre and post conditions
can evaluate to true, and so do their conjunctions with the relevant invariants.

18.3 Criteria for Test Case Generation

To test the specification properties discussed so far, we need a rigorous and
effective method for generating test cases. Except for the validity testing,
test cases are usually generated based on test targets, which are predicate
expressions, such as pre and postconditions of a process. The fundamental
problem is how test cases should be generated so that they can be used most
effectively to detect faults contained in specifications.

One solution to this problem is to provide a set of criteria by which effective
test cases can be generated. In this section, we present several criteria, each
representing a different testing strategy. The primary idea of these criteria is
to provide a framework based on which test cases are generated to meet a
desired standard in terms of test coverage.

The discussions of the test criteria are based on the assumption that the
predicate expression to be tested is in a disjunctive normal form. Since any
predicate expression can be transformed to an equivalent disjunctive normal
form by applying deMorgan's laws and the related rules (e.g., distributivity),
this assumption is not unreasonable.

Let P = P _lor P _2 or ... or P _n be a disjunctive normal form and
P _i = Q_i_1 and Q_i_2 and ... and Q_i_m be a conjunction of relational
expressions Q_U (i = Ln, j = Lm). Let T _d be a test set (a set of test
cases). The test criteria for testing P are described below.

Criterion 1 Evaluate P with T _ d to true and false, respectively.

This criterion is illustrated in Tabel 18.9.

336 18 Specification Testing

Table 18.9. Criterion 1

IT]

Table 18.10. Criterion 2

Ip lip 21p 31···lp nl - - - -
true * * * ...
false * * * ...

* true * * '"

* false * * ...

* * * * ...

* * * ... true

* * * ... false

A test set meeting this criterion is expected to explore the two situations
of predicate P when P evaluates to true and false, respectively. However, it
is worth noting that a tautology is impossible to evaluate to false; therefore,
this criterion must not be used as a strict measure of the qualification of a test
set, but rather as a guideline for the generation of the test set. This principle
is also applicable to the other criteria introduced later.

This criterion is easy to apply, and reasonable when testing is only for an
abstract level checking, but it is not strong enough for detecting faults because
it focuses only on the overall evaluation of the predicate expression: it does
not examine every clause of a disjunctive normal form. A stronger criterion is
given next.

Criterion 2 Evaluate each P _i (i
respectively.

l..n) with T _d to true and false,

The idea of this criterion is illustrated in Table 18.10, in which the asterisk *
denotes a truth value, either true or false.

This criterion requires that, by the test set T _d, each disjunctive clause
P _i (i = l..n) evaluates to true and false, respectively. For example, consider
the predicate Q: x - y < 5 or x + y > 10; the test of Q given in Table 18.11
satisfies this criterion. Note that this criterion may not give an assurance that
each disjunctive clause P _i is tested independently. In other words, a test sat­
isfying this criterion may not allow us to test independently each clause when
its evaluation result dominates the evaluation result of the overall predicate
expression. Let us take the test in Table 18.11 as an example. The case when
clause x + y > 10 evaluates to true while the clause x - y < 5 evaluates to
false is not tested. Thus, potential faults that might occur in this particular
situation may not be detected. The next criterion resolves this weakness.

18.3 Criteria for Test Case Generation 337

Table 18.11. A test meeting criterion 2

Ixlylx -y < six + y > 101
34 true false
l2 true false
69 true true
8 1 false false

Table 18.12. Criterion 3

Ip lip 21p 31· .. lp nl - -
true false false ... false
false ture false ... false
false false true ... false

...
false false false ... true

Criterion 3 Evaluate P _i with T _d to true while all other clauses P _1,
P _2, ... , P _i -1, P _i + 1, ... , P _n evaluate to false, and evaluate P _i to false
while all P _1, P _2, ... , P _i -1, P _i + 1, ... , P _n evaluate to true.

Table 18.12 explains the essential idea of this criterion. Since a true eval­
uation of each clause P _i (i = 1..n) results in a true evaluation of the entire
predicate expression P; even if all the other clauses P _1, P _2, ... , P _ i-I,
P _i + 1, ... , P _n evaluate to false, it is definitely useful to test P _i in such a
situation. However, for some predicate expressions this criterion may not be
applicable. Let us take the predicate expression Ql: x + y > 5 or x + y >
10 as an example to explain this point. When the clause x + y > 10 evaluates
to true with a test case, it is impossible to evaluate the clause x + y > 5 to
false with the same test case. Therefore, this criterion cannot be met by any
test set. In this case, as mentioned before, this criterion can be used only as
a guideline for test case generation, rather than as a strict standard. In fact,
all of these criteria can be used flexibly in practice depending on the testing
target: they can be used in combination or independently.

Criterion 4 When evaluating a disjunctive clause P _i (i = 1..n) with T_d
to false, evaluate each Q~ (j = 1..m) to false at least once, respectively.

Table 18.13 illustrates the idea of this criterion. In this criterion, when
Q~ evaluates to false, there is no specific requirement for the evaluations of
all the other conjunctions Q_l, Q_2, ... , Q~ - 1, Q~ + 1, ... , Q_m. Another
stronger criterion is given next.

338 18 Specification Testing

Table 18.13. Criterion 4

[Q I[Q 2[Q 3[... [Q ml - -

true true true ... true
false * * * ...

* false * * ...

* * false * ...

* * * ... false

Table 18.14. Criterion 5

[Q I[Q 2[Q 3[... IQ ml - - - -
true true true ... true
false true true ... true
true false true ... true
true true false ... true
true true true ... false

Criterion 5 When evaluating a disjunctive clause P _i (i = l..n) with T_d
to false, evaluate each Q~ (j = l..m) to false at least once, respectively, while
all the other disjuncts Q_l, Q_2, ... , Q~ - 1, Q~ + 1, ... , Q_m evaluate to
true.

The idea of this criterion is explained by Table 18.14. It is worth noting
that this criterion may not be applicable completely to some predicate ex­
pressions. For example, to evaluate the expression x > 10 and x > 5 to false,
it is impossible to evaluate x > 10 to true when evaluating x > 5 to false. In
this case, Criterion 4 can be applied instead.

18.4 Integration Testing

Since processes are integrated into a CDFD in specifications, the correctness of
CDFD depends not only on the correctness of each process, but also the consis­
tency between the interfaces of the processes. Therefore, testing only processes
is apparently insufficient in detecting faults existing in CDFDs. Integration
testing aims to uncover faults leading to the violation of the consistency be­
tween processes in CDFDs. Apart from the verification of the consistency
between processes in the same CDFD, it is also important and necessary to
ensure the consistency between a process and its decomposition.

A sensible strategy for integration testing of a CDFD is to test every
construct contained in the CDFD in order to cover all the possible paths,
where a path is a sequence of data flows from a starting node to a terminating
node, as defined in Section 5.3 of Chapter 5. As with the unit testing, the
approach we take in testing a CDFD is first to derive a proof obligation

18.4 Integration Testing 339

Fig. 18.2. A sequential construct

for ensuring the consistency between processes and then to test the proof
obligation.

Basically, there are two kinds of constructs in CDFDs: sequential and con­
ditional constructs. The focus in testing these constructs is on the derivation
of the proof obligations as the testing targets. Verifying the proof obligations
by testing can be done by taking an approach similar to that of unit testing.

18.4.1 Testing Sequential Constructs

Let A_I, A_2, ... , A_n, and B denote processes. Let x_I, x_2, ... , x_n be
output data flows of A_I, A_2, ... , A_n, respectively, and the input data flows
of B as well. Then A_I, A_2, ... , A_n, and B form a sequential construct, as
depicted in Figure 18.2.

According to the semantics of a process, when all of x_I, x_2, ... , x_n
are available, the precondition of B must evaluate to true on these input
data flows, because it is an assumption for the postcondition of the process to
hold after an execution. A condition for the assurance of such a consistency
between A_I, ... , A_n and B is formalized as

(pre_A_I and post_A_I(x_I)) and ... and
(pre_A_n and post_A_n(x_n))
=> pre_B

where each post_A_i(x_i) (i = l..n) is a sub-logical expression of the post­
condition post_A_i of process A_i that contains variable x_i (i = l..n). For
example, let post_A_I denote the predicate expression: x_I> a and x_I <
10 or x_I> a + 10 or y < a, where a is an input constrained by the pre­
condition pre_A_l. Then post_A_I(x_I) = x_I> a and x_I < 10 or x_I

340 18 Specification Testing

> a + 10. Note that pre_B does not necessarily involve all x_i syntactically
(e.g., pre_B = true).

A test oracle is derived from the consistency condition given above:

forall[x_1: T _x_I. x_2: T _x_2 x_n: T _x_n] I
(pre_A_1 and post_A_1(x_l» and ... and
(pre_A_n and post_A_n(x_n» => pre_B (Seq-oracle)

where each T _x_i (i = l..n) denotes the set oftest values generated for variable
x_i in the test.

Let us take the sequential construct in Figure 18.2 as an example to see
how such a construct can be tested by applying the procedure introduced
above. Assume n = 3, and process A_I, A_2, A_3, and B are defined as
follows:

process A_10 x_I: int
post x_I = 5
end _process;

process A_20 x_2: int
post x_2 > 10
end_process;

process A_30 x_3: int
post x_3 = 20
end _process;

process B(x_1. x_2. x_3: int)
pre x_I + x_2 + x_3 < 30
end _process;

A test is given in Table 18.15, where

post_conj = post_A_1 and post_A_2 and post_A_3
imp = post_conj => pre_B

Analyzing this test based on the test oracle (Seq-oracle), we can easily conclude
that this test is a successful test, because of the first three test cases and
their test results. This implies that there is a fault existing in this sequential
construct leading to the violation of the consistency condition.

In comparison with the testing of processes, the test oracle of a sequential
construct is deterministic in deciding its success or failure. That is, we can
definitely determine, by its test oracle, whether a test of a sequential construct
is a successful test or failed test.

18.4 Integration Testing 341

Table 18.15. A test for the sequential construct

x 1 x 2 x 3 post conj pre B imp
5 15 20 true false false
5 11 20 true false false
5 30 20 true false false
4 9 20 false false true
5 9 12 false true true

(a) Single condition structure

-II B 1 II

-II B_2 II
(b) Binary condition structure

C _1 (x) x - 1 -II B 1 II
C _2 (x) x_2 __ II II B_2

C _o(x) x_n~1I B - 0 II
X_D + 1 ----1IB _0+ 111

(c) Multiple condition structure

Fig. 18.3. Three conditional constructs

18.4.2 Testing Conditional Constructs

There are three kinds of conditional constructs in SOFL: single condition
structure, binary condition structure, and multiple condition structure, as
shown in Figure 18.3. Since the testing of these constructs shares the same
procedure as for sequential constructs, we do not repeat the discussion on how
to generate tests and how to analyze the test results. Instead, we only give
the proof obligations for the assurance of the consistency of the constructs,
and the derived test oracles for test results analysis.

Single Condition Structures

A construct of this kind is illustrated by Figure 18.3(a). The proof obligation
for ensuring the consistency of the construct is

342 18 Specification Testing

pre and post(x) and C(x) => pre_B

where pre and post(x) denote the pre and postconditions (in fact, only the
part containing variable x) of the preceding process of the condition node
C(x), respectively, which produces data flow x as its output; pre_B is the
precondition of process B.

A test oracle for determining whether a test of the single condition struc­
ture is successful or has failed is derived from the proof obligation and given
as follows:

forall[x: T _xl I pre and post(x) and C(x) => pre_B

where T _x is the set of values generated for variable x in the test.

Binary Condition Structures

This kind of construct is depicted by Figure 18.3(b). The proof obligation for
ensuring the consistency of the construct includes the following two conditions:

pre and post(x) and C(x) => pre_B_l

pre and post(x) and not C(x) => pre_B_2

If C(x) is true, the pre and post conditions of the preceding process must, in
conjunction with C(x), imply the precondition of process B_1. Otherwise, if
C(x) is false, the conjunction of pre, post(x), and negation of C(x), must imply
the precondition of process B_2.

A test oracle derived from this proof obligation also includes the two con­
ditions

forall[x: T _xli pre and post(x) and C(x) => pre_B_l

forall[x: T _xli pre and post(x) and not C(x) => pre_B_2

where T _x, pre, and post(x) have the same interpretations as those given
previously.

Multiple Condition Structures

A multiple condition structure is depicted by Figure 18.3(c). The proof obli­
gation includes several conditions:

(i = l..n)

pre and post(x) and

18.4 Integration Testing 343

not (C_I(x) or C_2(x) or ... or C_n(x)) =>
pre_B_n + I

The test oracle for testing a multiple condition structure of such a kind is
derived from this proof obligation:

forall[x: T _xli pre and post(x) and C_i(x) => pre_B_i

forall[x: T _xli pre and post(x) and
not (C_I(x) or C_2(x) or ... or C_n(x)) =>
pre_B_n + I

18.4.3 Testing Decompositions

(i = l..n)

As we have discussed in Section 5.4 of Chapter 5, when a process is decom­
posed into a CDFD, it is desirable to ensure the correctness of the decomposi­
tion. That is, for every input of the process, if its precondition holds, then its
postcondition must hold on the outputs generated by its decomposition (i.e.,
the decomposed CDFD). Let P and G denote a process and its decomposition,
respectively. Then the correctness of the decomposition is ensured if and only
if the following conditions are satisfied:

pre_P => pre_G
pre_P and post_G => post_P

where pre_G and post_G denote the pre and post conditions of CDFD G,
respectively.

If we restrict the range of values for the input and output variables of
process P and other related processes contained in G to the test set used in
a test, a test oracle can be derived, as we did for sequential constructs and
conditional constructs in previous sections.

We try to avoid in this section a general discussion on how to test the cor­
rectness of a CDFD against its high level process, because it may be hard for
the reader to understand the important idea. Instead, we explain the method
for testing the correctness of a CDFD with a comprehensible example.

Figure 18.4 gives two CDFDs, where process A in CDFD (a) is decomposed
into CDFD (b). Assume the processes A, AI, A2, A3, and A4 are defined as
follows:

process A(x: seq of natO) y, z: natO
pre len(x) > 0
post Y < len (x) and z < len(x)
decom G
end_process;

344 18 Specification Testing

-'-Dc1 1

B I~'rl c I~ q -

z

(a)

dt~1 Ih A2

x -11 At IK ~ '11 A4 I~ y

d2
"11 A3 I~ z _

(b)

Fig. 18.4. An example of process decomposition

process Al(x: seq of natO) dl, d2: seq of natO
pre len(x) > 0
post forall[a: elems(dl)] a < 60 and

forall[b: elems(d2)] I b >= 60 and
union(elems(dl), elems(d2)) = elems(x)

end _process;

process A2(dl: seq of natO) d3: seq of natO
post dl = [] and d3 = [] or

dl <> [] and subset(elems(d3), elems(dl)) and
forall[e: elems(d3)] I e >= 40

end_process;

process A3(d2: seq of natO) z: natO
post z = len(d2)
end _process;

process A4(d3: seq of natO) y: natO
post y = len(d3)
end_process;

-+

In this particular case, to test the correctness of CDFD (b) with respect to
process A, we are required to show that the following conditions hold under
the test:

18.4 Integration Testing 345

Table 18.16. A test for condition (1)

x pre_A pre Al condition 1
[35, 90, 85, 39] true true true

[35,85,95] true true true
[] false false true

[28,60] true true true

Table 18.17. A test for condition (2)

x dl d2 conjl conj2 condition 2
[35, 90, 85, 39] [35,39,85] [90] false true true

[35,85,95] [35] [85,95] true true true
[] [] [] false true true

[28,60] [28] [60] true true true

Table 18.18. A test for condition (3)

dl d3 pre A2 post A2 pre A4 condition 3
[35,39,85] [85] true true true

[35] [] true true true
[] [] true true true

[28] [] true true true

(1) pre_A => pre_AI
(2) pre_AI and post_AI => pre_A2 and pre_A3
(3) pre_A2 and post_A2 => pre_A4

true
true
true
true

(4) (pre_AI and post_AI) and (pre_A3 and post_A3) and
(pre_A4 and post_A4) => post_A

The testing of these four conditions can be carried out separately, but the
consistency of the test cases used in the tests must be guaranteed in order to
ensure that these four conditions are accurately tested. For example, the test
cases for the input variable x of process A must be the same as those for the
input variable x of process Al in testing condition (1), and the same test cases
must also be used in testing condition (2). The reason for this is that, for the
same input of process A, we want to find out whether there is any fault in
producing its output by its decomposition G.

The tests for testing conditions (1), (2), and (3) are given in Table 18.16,
18.17, and 18.18, respectively. A test for condition (4) is given in Table 18.19
and 18.20. In Table 18.17, conjl and conj2 are defined as

conjl == pre_AI and post_AI
conj2 == pre_A2 and pre_A3

In Table 18.20, conj3, conj4, and conj5 are defined as follows:

346 18 Specification Testing

Table 18.19. The first part of the test for condition (4)

x d1 d2 d3 zy
[35, 90, 85, 39] [35,39,85] [9O] [85] 11

[35,85,95] [35] [35] [] 10
[] [] [] [] 00

[28,60] [28] [28] [] 10

Table 18.20. The second partt of the test for condition (4)

conj3 conj4 conj5
false true true
true true true
false true true
true true true

conj3 = (pre_AI and post_AI)
conj4 = (pre_A3 and post_A3)
conj5 = (pre_A4 and post_A4)

post_A condition 4
true true
true true
false true
true true

Since all the four conditions hold under these tests, no fault is detected. Of
course, to make this claim more trustable, more test cases are needed. How­
ever, with the increase of test cases, the testing process may become more
complicated, and the management of test cases, test targets, and test results
may become a serious problem to be resolved. A possible solution to these
problems is automation of every activity involved in the testing, usually sup­
ported by powerful test tools. Such tools are expected to provide assistance
for test case generation, test case optimization (e.g., selecting only the repre­
sentative test cases from the generated test cases), predicate evaluation, test
results analysis, and the management of tests. A prototype tool for testing
SOFL specifications has already been developed by our research group, but
we need to put more effort for developing it into a useful product.

18.5 Exercises

1. Answer the following questions:

a) What is a test case?
b) What is a test set ?
c) What is a test suite ?
d) What is a test target?
e) What are possible ways of generating test cases ?
f) What are the three steps for testing a specification ?
g) What is a failed test, a successful test, and an uncertain test?
h) Is it possible to have a successful test for a process? If so, give an

example. If not, explain why.

18.5 Exercises 347

2. Generate a test based on Criterion 2 given in Section 18.3 for process
A1 in Figure 18.4.

3. Try to generate a test based on Criterion 3 given in Section 18.3 for the
process A2 in Figure 18.4; Criterion 2 can be used when Criterion 3 is
not applicable.

4. Generate a different test from the one given in Section 18.4.3 for the
verification of consistency between process A and its decomposition (or
the correctness of the decomposition with respect to process A) given in
Figure 18.4.

19

Transformation from Designs to Programs

Transformation from design specifications to programs is an activity of con­
structing programs in a programming language that satisfy the specifications
in a specification language; it does not take only the semantics of both specifi­
cations and programs into account, as the refinement approach usually empha­
sizes, but also considers the syntactical change from one language to another.

Transformation is a very important issue to address, because the ulti­
mate goal of software development is to achieve a satisfactory and executable
program system. In this chapter, we discuss the techniques for transforming
design specifications to programs. As we have learnt in the previous chapters,
a design specification may contain several level components, such as modules
and classes, CDFDs, and processes and methods. A CDFD represents the be­
havior of a module, and may contain other kinds of structures for describing
complex systems, such as conditional and diverging structures. Each process
in a CDFD, as well as each method in a class, is defined with an implicit
specification, which is although not desirable at the end of the design phase,
or with an explicit specification, or with a mixture of both. Apart from these
functional components, data structures defined with various abstract data
types, such as set and sequence types, are also involved in the specifications
to represent data resources necessary for processes or methods to manipulate.
Therefore, transformation from a design specification to a program must take
both data and functional components into account.

Usually, a design specification can be transformed into a functionally
equivalent program in any kind of high level language, such as Pascal, C,
C++, and Java. But, as we mentioned in Chapter 1, object-oriented program­
ming is effective in helping implement good qualities, such as maintainability,
in programs. We choose Java as the target language for the transformation of
design specifications. That is, the discussions in this chapter are all about how
to transform various data and functional components of design specifications
in SOFL into Java programs.

Since design specifications are an abstraction of implementations, they
usually provide freedom to choose an appropriate implementation strategy.

350 19 Thansformation from Designs to Programs

For this reason, there may be more than one way of transformation. The
solution provided in this chapter is only one of them, expected to convey the
general guidelines for transformation, from which the reader may derive his
or her own way of transformation.

19.1 Transformation of Data Types

Transformation from an abstract data type in specification into a concrete
data type in program requires both semantics preservation and syntactic
changes. Let T _a and T _c denote an abstract data type and concrete data
type, respectively. Semantically, when T _a is transformed into T _c, all the
elements of T _a must be represented by the elements of T _c, that is, T_c
should contain sufficient elements to represent all the elements of T _a, for
this will eliminate the possibility of inappropriate data structures causing the
program using T _c not to satisfy the required functions defined in the speci­
fication.

Formally, this means that there must exist a retrieve function from T _ c
to T _a, as explained in Section 14.6 of Chapter 14, which should satisfy the
condition

forall[a: T _a] exists[c: T _c) I Retr(c) = a (data-tran)

Transformation of a data type does not need only to conform to this rule,
but need also to take other related issues into account, such as what the
data type is used for and how easily the related built-in operators can be
implemented, and so on. For example, a sequence of integers, that is, seq of
int, can be transformed into an array of integers, a vector, or a sequential
file in Java; it can also be directly transformed to a list, depending on how
it is used in the program. In general, the choice of the concrete data types
in the transformation will affect somehow the algorithms of the implemented
program using the data types. Therefore, it is essential to strike a balance
between data structures and algorithms.

Under the constraint of the rule (data-tran), A suggested transformations
of all the built-in data types in SOFL are given in Table 19.1.

Java is a powerful language because of its rich data structures, supported
by related classes available in the class libraries. The transformation of most
abstract data types in the table is quite straightforward, because they can be
implemented by similar concrete data types available in Java. The only trans­
formations that may puzzle the reader are those of composite and product
types: both are transformed to proper classes. This is in fact not that difficult
to understand, as long as one makes a comparison between a composite type
or a product type and a class with no methods. For example, consider the
composite type C: .

19.2 Transformation of Modules and Classes 351

Table 19.1. Transformation of data types

Idata type in SOFLldata type in Java
natO
nat
int
real
bool
char
Enumeration
set type
seq type
string
map type
composite type
product type
union type

C = composed of
Cl: T_1
C2: T_2
C3: T 3
end

int
int
int
double
boolean
char
Enumeration or array of String
Set, array, vector, or file
List, array, vector, or file
string
Map, array, vector, or file
class
class
Object class

By transforming each field of the composite type C to an instance variable (or
attribute variable) of the corresponding class in Java, we get

class C {

}

T _1 C1;
T_2 C2;
T_3 C3;

where the types T _1, T _2, and T _3 are assumed to have been transformed
either to a class or to basic types of Java. Note that the syntax of variable
declaration in Java differs from that of variable declaration in SOFL. The
former gives the type prior to the variable, with a space in between, while the
latter lets the variable appear before the type, with a colon separating them.
Of course, methods may be defined in the class C, if necessary.

19.2 Transformation of Modules and Classes

A module or class in specifications, known as source module or class, has a
structure similar to that of a class in Java, known as target class. Therefore,

352 19 Transformation from Designs to Programs

transformation
modulem • class m {

store s • instance variable s

data flows Z,U,v,t,w • attributes Z,U,v,t,w

process Init • constructor m

CDFD • method G

process A • method A

processB • methodB

process C • method C

function F • method F

Fig. 19.1. An illustration of the main ideas of the tranformaqtion guidelines

it is quite natural and convenient to transform a source module or class to a
target class. Although their transformations share the similarity due to their
similar structures, source classes are much more straightforward than modules
to transform to target classes. The reason for this is that source classes share
the same concepts as target classes, whereas source modules have additional
features, such as CDFDs and exclusive inputs and/or outputs, which need
special treatment during transformations.

The underlying guidelines for the transformation of a source module to a
target class are summarized as follows:

• Transform the module name to the class name.
• Transform a constant declaration to a constant declaration (using the key­

word final prior to the constant variable in the declaration).
• Transform a type declaration to either a corresponding basic type or a

proper target class, as described in Table 19.1.
• Transform a store variable declared in the var part to an instance variable

(or field) of the class.
• Transform a source process (a process of the source module) to a target

method (a method of the target class).
• Transform a function, if any, defined in the module to a target method

that does not change the state of the target class.
• When transforming a process or a function, make sure that the invariants

defined in the inv part of the module are not violated.
• Transform the CDFD of the module to a target method of the class in

which all the related methods are integrated through their invocations.

Figure 19.1 illustrates the main ideas of these guidelines.
These guidelines are also applicable to transformations of source classes,

except that superclasses need to be taken into account in the transformations.

19.2 Transformation of Modules and Classes 353

Update --conf~

xl

- x Find

el

Fig. 19.2. The CDFD of module Student __ Management

That is, the class hierarchy in the specification must be transformed to a
proper class hierarchy in the program. Furthermore, there is no need to take
into account the CDFD of a source class, if it is given, in the transformation,
because semantically it does not represent anything additional, but is just
"syntactical sugar" to depict the source methods and their relations with the
state variables of the class.

Consider the transformation of the module Student_Management and the
class Student, given below, as an example. We assume that the module Stu­
dent_Management is a decomposition of a process defined in the high level
module Faculty _System, which is presumably defined somewhere in the speci­
fication. The CDFD given in Figure 19.2 describes the behavior of the module
Student_Management: when a student x is available, the process Find tries to
find x in the store students; If x exists, it is passed to process Update through
x2; otherwise, x is passed to the process Add through variable xl.

Furthermore, a class Student is defined as a subclass of an already defined
class Person, and used for defining the type Students as a set of Student objects.

module Student_Management / Faculty_System;
const
PI = 3.14159;

type
Students = set of Student;

var

354 19 Transformation from Designs to Programs

students: Students;
inv
forall[x: Student] I x.total_credit <= 135;

behav CDFD_el;

process InitO
post students = { }
end_process;

process Find(x: Student) x2: Student I xl: Student
ext rd students
post if (exists[y: students] I x.id = y.id)

then x2 = x
else xl = x

end_process;

process Add(xl: Student)
ext wr students
post students = unionC students, {xl})
end_process;

process Update(x2: Student) confirm: bool
ext wr students
post if x2 inset students

then students = diffCstudents, {x2}) and confirm = true
else students = unionCstudents, {x2}) and confirm = false

end_process;
end_module;

class Student / Person;
var
id: string;
name: string;
total_credit: natO;

method InitO
post id = 0 and name = "" and total_credit = 0
end_method;

method Set_Name(namel: string)
ext wr name
post name = namel
end_metho~;

end_class;

19.2 Transformation of Modules and Classes 355

Applying the guidelines introduced previously, we transform the source mod­
ule Student_Management into the following target class:

public class StudentManagement {
static final double PI = 3.14159;
private Set students;

public Student_ManagementO {
students = new HashSetO;

}

public boolean Find(Student x) {
if (students.contains(x))
return true;
else
return false;

}

public void Add(Student x) {
students.add(x);
}

public boolean Update(Student x2) {
/ /create an array objs containing all the elements of the set students.
Student objs[] = students.toArrayO;
int control = 0;
for (int i = 0; i < objs.length; i++)

if (objs[i].getIDO == x2.getIDO)
{

}

/ /Remove the identified element from the set students
students. remove(objs[i]);

control = 1;
break;

/ / Add the element x2 to the set studnets
if (control == 1) {

students. add (x2);
return false;
}

else return true;
}

/ / A method derived from the CDFD of the module in the specification
public boolean CDFD(Student x) {
if (Find(x))

356 19 Transformation from Designs to Programs

Add{x);
else
return Update(x);

}
}

The class name StudentManagement, conforming to the convention of Java
identifiers, is derived from the source module name Student_Management.
The constant PI is declared in the same way as it is declared in the specifi­
cation. It is quite interesting to see that the type Students defined as a set
of Student in the source module is no longer necessary in the target class; in­
stead, the store variable students in the source module is directly transformed
to the instance variable students declared with the class Set in the target class
StudentManagement. Since the invariant in the module only imposes a con­
straint on the type Students, and therefore on variable students, it does not
correspond to any construct in Java. However, it must be ensured that the
invariant is not violated by the related methods. The constructor Student­
ManagementO, which is required to share the same name as the target class,
is defined based on the process Init in the source module. The methods Find,
Add, and Update are all derived from the corresponding processes in the source
module, but the parameters and types of these target methods may have been
modified to properly fit into the context of the program. The important thing
in the transformation is not to forget to transform the CDFD of the source
module to a method in the target class. In our transformation, the CDFD
of the module is transformed to the method CDFD (of course, the method
can be named differently) of the target class. The body of this method is an
implementation of the CDFD of the source module.

The target class Student used in the class StudentManagement needs to
be defined by transforming the source class Student. Since all the instance
variables of Student are required to be private, methods necessary for accessing
those instance variables, such as getlD, must be defined in the target class.
Thus, the source class Student is transformed into the following target class:

public class Student extends Person {
int id;
string name;
int totalCredit;

public StudentO {
id = 0;

}

name =
totalCredit = 0;

public void SetName{String name!) {
name = name!;

}

public int getlDO {
return id;

}
public String getNameO {
return name;

}
public int getTotalCreditO {
return totalCredit;

}
}

19.3 Transformation of Processes 357

The transformation from the source class Student to the target class with
the same name is quite straightforward: mapping from attribute variables to
instance variables, from the constructor Init to the constructor StudentO, and
from source methods to target methods. To supply necessary functionality,
additional methods may be defined in the target class. The methods getlD,
getName, and getTotalCredit in the class Student are the methods of this kind,
through which the attributes of the objects of the class can be accessed.

19.3 Transformation of Processes

We have seen the transformation of some processes in the module Stu­
dent_Management discussed in the preceding section, which dealt only with
some examples. In fact, a general transformation strategy for processes can be
difficult, because the correctness, efficiency, structure, and conciseness of the
program must be taken into account in a transformation. Since most of these
issues are still under research, and there is no clear solution yet, we will dis­
cuss the transformation only from the correctness point of view. That is, the
guidelines to be given are all for the assurance of the semantic correctness of
the program against its specification, without consideration of other factors.

As mentioned in the underlying guidelines before, a process in a source
module is usually transformed to a method in the target class. However, there
is a difference between a process in a module and a method in a Java class: a
process allows exclusive inputs and outputs, whereas a method does not. How
to resolve this difference in transformation is an important issue to address.
In this section, we first discuss the guidelines for transforming a process with
no exclusive inputs and outputs, and then proceed to explain how to tackle
the exclusive inputs and outputs problem.

19.3.1 Transformation of Single-Port Processes

A single-port process is a process with only one input port and one output
port. For example, the processes Add and Update in Figure 19.2 are both

358 19 Transformation from Designs to Programs

single-port processes, whereas the process Find is not a single-port process
because it has two output ports. In general, a single-port process, say A, has
the form

process A(x_l: Ti_l, x_2: Ti_2, ... , x_n: Ti_n)
y_l: To_I, y_2: To_2, ... , y_m: To_m

pre pre_A
post post_A
end_process

where Ti_k (k = l..n) are types for input variables and To-.J U = l..m) are
types for output variables.

There are two ways to transform this process to a target method. One
is to take the precondition into account, which usually results in a robust
implementation, and the other is to completely ignore the precondition, which
will possibly lead to a non-robust (but correct) implementation.

Taking the precondition into account, we transform process A into method
A in the target class Transformationi

class Transformationi {
To_1 y_l;
To_2 y_2;

public void A(Ti_I x_I, Ti_2 x_2, ... , Ti_n x_n) {
if (pre_A)
{

Tran(post_A)
}

}

where Tran(post_A) denotes the program segment generated from post_A.
The variables y_l, y_2, ... , y_m that are originally declared as the out­

put variables of the process A are declared as the instance variables of the
target class, because a method in a Java class does not allow more than one
output. The reason that this transformation is robust is that the precondition
of process A is always checked before the execution of the program segment
resulting from the transformation of post_A. If the precondition is false, then
no program code (or, alternatively, the code segment for generating error mes­
sages) is executed, which satisfies the requirement of the process specification.
If pre_A is a more complex predicate expression, it may first need to be trans­
formed into a proper program code, evaluating it to a truth value, and then

19.3 Transformation of Processes 359

the result is used in the conditional statement. If process A is given in an
explicit form, such as

process A(x_l: Ti_l. x_2: Ti_2 x_n: Ti_n)
y_l: To_I. y_2: To_2• y_m: To_m

pre pre_A
explicit
5

end_process

then, by taking the same strategy, we transform it into method A of the target
class Transformation2:

class Transformation2 {
To_1 y_l;
To_2 y_2;

public void A(Ti_1 x_I. Ti_2 x_2 Ti_n x_n) {
if (pre_A)
{

Tran(S)
}

}

The only difference between this transformation and the previous one is the
use of Tran(S), the program segment produced from the explicit specification
5, to replace Tran(post_A).

Another transformation strategy is to take only the postcondition of the
process into account. The reason we can ignore the precondition of the process
is that the precondition is only an assumption for the postcondition to hold
after the execution of the process. That is, the precondition is assumed to be
ensured by the environment before available input data flows are sent to the
process, and the process is responsible for providing outputs satisfying the
postconditions only for those inputs satisfying the precondition.

Let us consider the implicit specification of process A again as an example.
It is transformed into the method A in the target class Transformation3:

class Transformation3 {
To_1 y_l;
To_2 y_2;

360 19 Transformation from Designs to Programs

A(Ti_l x_I, Ti_2 x_2, ... , Ti_n x_n) {
Tran(post_A)

}

}

Although this transformation generates a correct method A in the sense that it
satisfies its process specification, the method is less robust than the one result­
ing from transforming the process A taking its precondition into account. The
reason for this is that method A is not capable of dealing with the exceptional
cases when the inputs do not satisfy the precondition; it may cause abnormal
termination of the program or undesirable results. This is especially possible
when the method directly takes inputs from a graphical user interface, where
it is usually difficult to ensure that the inputs satisfy the required precondi­
tion. Therefore, the transformation involving the precondition given before is
usually a better choice, although it may sacrifice a little time efficiency due
to the necessity of evaluating the precondition in the program.

19.3.2 Transformation of Multiple-Port Processes

A process with multiple input or output ports allows exclusive input or output
data flows. In order to focus on the issue of how to deal with the multiple­
ports problem in process transformation, rather than on the issue of dealing
with the number of ports, we take the process B with two input and output
ports, respectively, as an example to explain the transformation strategy.

Let B be defined as

process B(x_l: Ti_l I x_2: Ti_2) y_l: To_l I y_2: To_2
pre pre_B
post post_B
end_process

Assume that output y_l is generated based on input x_I, and y_2 is based on
input x_2. A simple way to transform this process is to define two methods in
the target class, for example, Bl and B2. The method Bl takes x_I as input
and generates y_l as output, while B2 takes x_2 and produces y_2. Thus, we
get the target class AnotherTransformation:

class AnotherTransformation {

public To_l Bl(Ti_l x_I) {
if (pre_B(x_l»
Tran(post_B(y_l»

}

public To_2 B2(Ti_2 x_2) {
if (pre_B(x_2))
Tran(post_B(y _2))

}

}

19.3 Transformation of Processes 361

In this transformation, pre_B(x_l) denotes the subexpression of the pre­
condition of process B that is intended to constrain x_I but not x_2, while
pre_B(x_2) is another subexpression of the precondition constraining x_2
but not x_I. For example, suppose pre_B = x_I > 0 and x_2 > 0, then
pre_B(x_l) = x_I> 0 and pre_B(x_2) = x_2 > O. Likewise, post_B(y_l)
and post_B(y_2) can be interpreted similarly, but within the context of the
postcondition of process B. Thus, when x_I is supplied, method B_1 will be
invoked to provide the required functionality, whereas when x_2 is supplied,
B 2 will be invoked.

Another possible transformation strategy is to implement process B as a
class, say ProcessCiass, in which the two methods Bl and B2 are defined. Then,
in class AnotherTransfromation, an object of class ProcessCiass, say processOBJ,
is instantiated to allow possible invocations of the methods Bl and B2 through
processOBJ in the method implementing the corresponding CDFD in class
AnotherTransformation. As the result, we may produce the following classes:

class AnotherTransformation {

public void CDFD(...) {
ProcessCiass processOBJ = new ProcessCiassO;

processOBJ.B1(x_1); / /invoke method B1 of the object processOBJ

processOBJ.B2(x2); / /invoke method B2 of the object processOBJ

}

}

class ProcessCiass {

public To_l Bl(Ti_l x_I) {
if (pre_B(x_l))
Tran(post_B(y _1))

}
. public To_2 B2(Ti_2 x_2) {

if (pre_B(x_2))
Tran(post_B(y _2))

362 19 Transformation from Designs to Programs

}

}

It is important to keep in mind that a process in a CDFD is usually trans­
formed to a method invocation (or method call) in the corresponding method
implementing the CDFD of the target class. A simple example of transfor­
mation will help the reader understand the principle of this transformation
strategy.

19.4 Transformation of CDFD

We have mentioned that the CDFD of a module needs to be transformed
into a target method of the target class in which all the related methods are
integrated according to their invocations. However, we have not systemati­
cally discussed anything about the transformation strategy for CDFDs. In
this section, we address this problem.

To help the reader focus on the main idea of transformation rather than
struggle to understand complicated formal expressions dealing with general
cases, we take the approach of using examples, as we did before, to explain
the transformation strategy.

A CDFD may contain the the following structures: sequential, conditional,
nondeterministic, broadcasting, parallel structures. There are three kinds of
conditional structures: single condition structure, binary condition structure,
and multiple condition structure. We discuss the transformation of these struc­
tures by giving the corresponding guidelines. Before proceeding to introduce
the guidelines, we need a function from CDFD structures to algorithms to
help in the description of the guidelines.

Definition 45. Let Scdjd denote the set of all possible CDFD structures and
Ajava the set of all possible algorithms in Java. Then, we let Tc denote the
function mapping from Scdjd to Ajava , that is,

Guideline 1 Let 5 denote the sequential structure in Figure 19.3. Then,
Tc(S) == TY _1 y1;

TY _2 y;
TY _35;
y1 = A1(x, 5); Iitake x and 5 to produce

Ilyl and update 5, which is implemented
I lin the definition of Al

y = A2(yl, 5); Iitake y1 and 5 to produce
Ily and update 5, which is implemented

I lin the definition of A2

19.4 Transformation of CDFD 363

Fig. 19.3. A sequential structure

where we use == to mean "is defined as" and = to mean assignment in Java.
The fundamental idea of the guideline is to treat each process in the CDFD

as a method invocation in the corresponding Java program. This underlying
idea is shared by the other guidelines to be introduced below. For example,
process Al is invoked first with the actual parameters x and s, and then its
result serves as the actual parameter of process A2 when it is invoked. An
interesting point is the way of handling store s in the transformation. Since s
is accessed by two processes in turn, it is treated as a global variable in the
method invocations. The reference variable s provides the initial values for
methods Al and A2, and holds the final values after the invocations of the
methods.

Guideline 2 Let 5 denote the conditional structure in Figure 19.4. Then,
Tc(S) == TY _1 s; / /store s is treated as a global variable

/ / other related variable declarations
if (P(y))
{ yl = y;

wI = B(yl);
}

else
{ y2 = y;

w2 = C(y2);
}

The resulting program reflects the semantics of the conditional structure. If
condition P(y) evaluates to true, data flow y is passed to yl, process B is
executed, and output data flow wI is produced based on yl and s. However,
if P(y) evaluates to false, data flow y is passed to y2, process C is executed,
and data flow w2 is generated based on y2 and 5, and 5 is possibly updated
as well.

364 19 Transformation from Designs to Programs

wl---.

yl

-Y~
Y2l . rr====n
~w2---'

Fig. 19.4. A binary condition structure

-y-4- Yi B

Fig. 19.5. A single condition structure

Guideline 3 Let 5 denote the single condition structure in Figure 19.5.
Then,

Tc(S) == TY _1 5; / /store 5 is declared as a global variable

if (P(y))
{ y1 = y;

w = B(y1, 5);

}

The generated program implements the semantics of the single condition
structure. If condition P(y) evaluates to true, y is passed to y1, and pro­
cess B is executed to produce w based on y1 and 5, and to possibly change
the value of global variable 5. However, if P(y) is false, y1 is just consumed,
without executing any process (that is, the execution of the current structure
terminates). In the program, variable w can be treated either as a global vari­
able or as a reference variable of the corresponding method of the structure,
for it may hold the final result of the execution.

~y]

Y~Y2
y3

19.4 Transformation of CDFD 365

w]--

w2_

w3_

Fig. 19.6. A Multiple condition structure

Guideline 4 Let 5 denote the CDFD containing a multiple condition
structure given in Figure 19.6. Then,

Tc(S) == TY _1 s; / /declaring s as a global variable

if (P1(y))
{ y1 = y;

wI = B(yl, s);
}

else if (P2(y))
{ y2 = y;

w2 = C(y2, s);
}

else if (!(PI(y)IIP2(y)))
{y3 = y;

w3 = D(y3, s);
}

When one of the conditions PI(y) and P2(y) is true, the corresponding pro­
cess B or C is executed. If both conditions are false, the default process D is
executed. In fact, the best program construct for implementing the multiple
condition structure may be a case statement, but since a similar statement
known as switch in Java allows decision expressions to be only integral ex­
pressions, it is not sufficient to deal with possibly complicated decisions in the
multiple condition structure. Therefore, in general if-then-else statement can
be used to implement the multiple condition structure.

366 19 Transformation from Designs to Programs

xl

~
x--E9_ x2

~
x3

Fig. 19.7. A nondeterministic structure

Guideline 5 Let 5 denote the CDFD of Figure 19.7 that involves a non­
deterministic structure. Then,

Tc(S) == TY _1 s; / /treating store s as a global variable

if (P(x))
{xl = x;

yl = B(xl, s);
}
else if (P1(x))
{x2 = x;

y2 = C(x2, s);
}
else if (P2(x))
{x3 = x;

y3 = D(x3, s);
}

When x is available, it will be transmitted through xl, x2, or x3 to only one of
processes B, C, and D in a nondeterministic manner. In the nondeterministic
structure, the specific conditions for determining which of processes B, C,
and D needs to be executed is not given explicitly; therefore, they need to
be given in the program resulting from transformation of the CDFD, such as
P(x), Pl(x), and P2(x). The conditions must be given in a way that ensures
the smooth execution of the CDFD (that is, no deadlock of executions should
be created in the program due to the transformation of the nondeterministic
structure) .

19.4 'fransformation of CDFD 367

yl--

xl

~
x--<!)_ x2

~ y2_

x3

y3-

Fig. 19.8. A broadcasting structure

Guideline 6 Let 5 denote the broadcasting structure in Figure 19.8. Then,

Tc(S) == TY _1 5; I Is is declared as a global variable

xl = Xj

x2 =Xj

x3 =Xj

y1 = B(x1,s)j
y2 = C(x2,s)j
y3 = D(x3,s)j

The broadcasting structure is opposite to the nondeterministic structure:
when x is available, it will be transmitted to all the processes B, C, and D.
Since there is no direct connection between any two of the three processes B,
C, and D, and all of them only read data from store 5, executions of the three
processes do not depend on each other. Therefore, the broadcasting structure
can be implemented by a sequence of method invocations in any order. In
the guideline, one choice of such a sequence is provided, that is, first invoke
method B, then C, and finally D.

Guideline 7 Let 5 denote the iteration structure in Figure 19.9. Then,

Tc(S) == TY _1 Sj Iideclare s as a global variable

y = E(x)j
while (P(y)) {

y = E1(y)j
}
y1 = E2(x, y)j

368 19 Transformation from Designs to Programs

[ff-Y
A

-x yl-.

Fig. 19.9. An iteration structure

The transformation of the iteration structure tries to implement its seman­
tics: when x is available, either y or y1 is generated, depending on the related
guard condition given in the postcondition of process A; if y is generated,
the loop starts until the guard condition becomes false and y1 is produced.
This transformation is less straightforward than other transformations given
in the previous rules, because the production of data flow y or y1 is actu­
ally dependant on the pre and post conditions of process A. Therefore, the
resulting program given in the guideline shows only an outline of the trans­
formation, in the sense that the specific expressions E, E1, E2, and condition
P(y) are not given precisely; they must be formed by taking the specific pre
and post conditions of process A into account.

Guideline 8 Let 5 denote the parallel structure in Figure 19.10, where
the executions of process A and B are independent of each other. Then,

Tc(S) == TY _1 s; / /store s is treated as a global variable

y1 = A(x1, s);
y2 = B(x2, s);

Since the executions of processes A and B are independent of each other,
although they read data from the same data store s, it is correct to transform
the parallel structure into a sequential structure in the program. Of course,
the order of invoking methods A and B (corresponding to processes A and B
in the CDFD) can be altered due to their independence in execution.

By now we have discussed the guidelines for transforming all the funda­
mental CDFD structures. The important thing is that we should not treat the
introduced guidelines as precise rules for the transformation of CDFDs, be­
cause they may not cover all the possible cases in each structure category. In
fact, since there are numerous ways to combine the fundamental structures in
CDFDs, providing rules to cover general cases can be extremely difficult, if not
impossible. Readers who are interested in the transformation of CDFDs are

19.5 Exercises 369

-Xl_0 Yl-

- x2_ B -y2-

Fig. 19.10. A parallel structure

encouraged to study this issue further to see whether there is any possibility
of coming up with general rules for transformation of CDFDs.

19.5 Exercises

1. Give another way of transforming a source module and class that differs
from that of the one given in Section 19.2.

2. Give a transformation of process A that is different from the one given in
Section 19.3.1 in the sense that the target method A produces an error
message when the precondition is not satisfied by the inputs.

3. Give another different transformation of process B, whose format is given
in Section 19.3.2, with two input and output ports.

4. Suppose process A is decomposed into a CDFD. Give a transformation of
A that utilizes the CDFD in defining the body of the target method.

20

Intelligent Software Engineering Environment

To help people enjoy the benefit of using the SOFL formal engineering method,
software support tools are extremely important. The combination of condition
data flow diagrams and the textual language for defining their components in
the associated modules provides good comprehensibility of the entire specifica­
tion and allows people at different levels of software projects to work together
smoothly, but drawing condition data flow diagrams can be time consuming,
especially when the diagrams need frequent changes during the construction
of specifications. Furthermore, all the activities involved in the SOFL process,
including the capturing of informal user requirements, transformation from
informal to semi-formal and then to formal specifications, verification and
validation of various level specifications and programs, and process manage­
ment usually take time and effort and may result in high cost. To resolve these
problems, a quality software engineering environment for SOFL is necessary
and useful. In this chapter, we discuss the issues concerned with the building
of software engineering environments.

20.1 Software Engineering Environment

Software Engineering Environment refers to integrated software toolkits in
which different tools work together to fulfill software engineering tasks [83].
They are an effective way to enhance the productivity and reliability of soft­
ware development due to the high speed and large memory capacity of modern
computers. Ideally, such an environment should contain software tools sup­
porting every activity in every phase of software engineering, such as require­
ments analysis, design, transformation, verification, and maintenance, but due
to the difficulty and complexity of building such a powerful environment, most
of the existing environments concentrate on the support for specific activities.
For example, the IFAD VDM-SL Toolbox supports the construction and test­
ing of formal specifications using VDM-SL (Vienna Development Method -
Specification Language) [110]; Rational Rose supports system analysis and

372 20 Intelligent Software Engineering Environment

documencl, documenC2, ... , documenCn

Software
product

Fig. 20.1. An illustration of production line for software development

design using UML (Unified Modelling Language) [47J; and JBuilder supports
the building of program systems using Java [46J.

Ideally, a software engineering environment should have the capability of
enforcing a production line for software development, as illustrated in Figure
20.1, to achieve the harmony of software tools, development methods, and
human developers, since such harmony will eventually contribute to high pro­
ductivity and reliability of the final software product. However, such a rigorous
production line still seems impossible under the support of existing software
engineering environments for many reasons, including

• The languages for specifications and designs are mainly informal, which
imposes a difficulty for high automation in construction, transformation,
and verification of specifications.

• The environments are implemented in a way that human developers need
to make decisions on selecting software tools and activities in software
process. This may create the risk of developers avoiding some necessary
activities (e.g., specification review) and/or not meeting the required stan­
dards (e.g., not updating the high level specifications after the low level
specifications are changed).

• The languages and methods for writing documents at different levels may
not be coherent; therefore, a powerful support environment is difficult to
build.

However, since SOFL has properly combined natural language, graphical
notation, and formal textual notation to form a single coherent language with

20.2 Intelligent Software Engineering Environment 373

precise syntax and semantics, a more intelligent software engineering environ­
ment for SOFL can be built to overcome the weakness of the present software
environments.

20.2 Intelligent Software Engineering Environment

Intelligent Software Engineering Environment, ISEE for short, is a further
development of the present software engineering environments toward pro­
viding more intelligence in supporting software engineering activities [65J. By
intelligence we usually mean the power of perceiving, learning, understand­
ing, and knowing things of interest. Traditionally, intelligence is regarded as
the quality which only human beings can posses. The typical way to make
a computer intelligent is to write programs that have the knowledge of solv­
ing problems of interest, that can conduct reasoning based on the existing
knowledge, and that can learn new knowledge from experience. However, since
software development itself is an intelligent process involving intelligence in
documentation, understanding, communication, creation of system architec­
ture and algorithms, and so on, it seems difficult to realize all the qualities of
intelligence in supporting software development. In this section, we intend to
discuss potential features of intelligent software engineering environments in
general, and possible ways to build them, especially the ones for SOFL. Al­
though the theory and technology for building intelligent software engineering
environments are far from mature, we hope the discussions in this section will
inspire more researchers, students, and tool builders to develop their interests
and technologies in this area.

In fact, a realistic intelligent software engineering environment does not
need to be very ambitious. It should focus on the issue of how to help human
(developers) provide their best intellectual inputs (e.g., formal specification
of a process) necessary for system development, which for the computer is ex­
tremely difficult or impossible to provide. The intelligent environment should
treat a human being as a special "software tool," and automate all the de­
velopment and management operations necessary for software projects. The
role of a human "software tool" differs from that of other software tools in
the sense that human beings provide intellectual inputs that are impossible
to obtain in any other way, whereas other software tools provide functionality
based on the stored data and algorithms implemented in advance. The dis­
tinctive feature of an intelligent environment is that human beings must be
controlled and guided by the environment in developing their systems. This
point is quite different from the traditional software engineering environments
in the sense that a traditional environment provides only a collection of re­
lated software tools that can be freely used by human beings to fulfill their
software development tasks. Furthermore, to facilitate the interaction between
the computer and human developers, an intelligent environment must provide

374 20 Intelligent Software Engineering Environment

a user-friendly interface, allowing developers to input their information by
speaking, drawing on the screen, and typing on the keyboard, and so on.

In summary, an intelligent software engineering environment should pro­
vide the following functions:

• Human developers are treated as "software tools," and managed by the
environment.

• Human developers are guided by the environment to fulfill their tasks, and
to proceed from one phase to another.

• Faults in documents are prevented during the construction of documents,
rather than detected after the construction of documents.

• All the project management operations are automated by the environment.
• A user-friendly interface is provided to help human developers input their

information by speaking, drawing, and typing.

To build an intelligent environment, we need the environment to embody nec­
essary knowledge in a knowledge base, which indicates what is to be done
under what conditions. Also, the knowledge base should be expanded au­
tomatically by learning from human inputs and past experience in building
similar software systems. The important role of the knowledge base is to en­
able the software environment to present guidance to human developers, to
instruct them what to do next, and to automate management operations, such
as linking different parts of a specification, or the corresponding parts in both
specifications and programs.

From the internal structure point of view, an intelligent software engineer­
ing environment should provide the following mechanisms:

• A knowledge base storing all the necessary knowledge for software systems
development.

• A control program that interacts with both the human developer and the
knowledge base, and carries out effective search and application of the rele­
vant rules in the knowledge base to provide accurate and efficient guidance
to human developers.

• A learning program that automatically collects and builds knowledge from
the documentation of previous software projects and the human inputs
during the development process.

The knowledge for software development can basically be divided into two
categories: domain-based knowledge and method-based knowledge. The domain­
based knowledge is domain specific, encompassing all the necessary knowledge
about a specific domain, for example, a banking system, the common archi­
tecture of the software systems solving the problems in the domain, the tech­
niques to build specific software systems in the domain based on the common
architecture and the knowledge of previous systems, and so on.

The method-based knowledge is method specific, containing all the nec­
essary knowledge about the documentation techniques, the process of pro­
ceeding from one stage to another, the software tools and their applications

20.3 Ways to Build an ISEE 375

available in the environment of a specific development method, such as SOFL,
and other related operations required by the specific method.

20.3 Ways to Build an ISEE

There are three ways to build an intelligent software engineering environment,
based on the two kinds of knowledge about software development discussed
in the preceding section, domain-driven, method-driven, and the combination
of both.

20.3.1 Domain-Driven Approach

The domain-driven approach to building an ISEE makes use of domain-based
knowledge to support the construction of software systems in a specific do­
main. The key issue in this approach is how to build the knowledge base
that contains sufficient knowledge about the domain and provides efficient
knowledge retrieving capability.

Since software systems in the same domain usually share common features
while each specific system differs from the others, the common features should
be captured and expressed as knowledge in a knowledge base. When a spe­
cific system in the domain is built, the common features must be properly
adopted and the system-specific features must be obtained by both tailoring
the common features and using the developer's inputs.

Apart from expressing the common features, the domain-based knowledge
base should also contain knowledge about the rules for checking the con­
sistency and completeness of systems, transformation from specifications to
designs and programs, and verification and validation of the programs pro­
duced.

20.3.2 Method-Driven Approach

The method-driven approach to building an ISEE is based on the construc­
tion of a method-based knowledge base. The knowledge base should contain
sufficient knowledge about the development method itself, including the syn­
tax and semantics of the language concerned, rules for using the language,
and the steps to take to ensure the consistency and validity of documentation
at all the possible levels. The most distinctive feature of this approach from
the domain-driven approach is that the knowledge base usually contains no
knowledge about specific domains, but only the one about the specific method.

Two levels of knowledge can be supported by this kind of ISEE:

• Language-level knowledge
• Method-level knowledge

376 20 Intelligent Software Engineering Environment

Language-level knowledge expresses the rules of the syntax and semantics of
the language used in the specific method, and the rules for meeting various
properties of documentation written using the language, such as consistency,
satisfiability, and completeness. Thus, the knowledge can be applied to sup­
port the automation of documentation construction and verification, and can
possibly provide an effective way to prevent faults during documentation (e.g.,
specification, design).

Method-level knowledge records all the knowledge related to the method
the ISEE is expected to support, and is usually used to guide human develop­
ers in applying the method to develop software systems. Techniques such as
help panels, checklists, context-dependent menus, and checking mechanisms
are used to prompt the developer in the proper use of the method. Such an
ISEE is able to provide context-dependent advice about how to get a soft­
ware project started, what to do next, what the inputs and outputs are of
each step of the method, and how to check the properties of the system under
development.

To provide useful knowledge about a specific software development method,
the language used in the method must have a formal syntax and semantics,
and the rules for developing systems provided by the method must be precise
enough to allow for their formal expression in the knowledge base. In this
regard, formal engineering methods have obvious advantages over informal
methods.

20.3.3 Combination of Both

Since each of the domain-driven and method-driven approaches focuses only
on the support for one kind of knowledge, its effectiveness in supporting soft­
ware development may be limited when it is applied individually, because a
development usually needs both domain-based knowledge and method-based
knowledge; lacking either of them would affect the productivity and the reli­
ability of software projects.

The combination of both approaches provides greater potential for improv­
ing the performance of each kind of ISEE. Since a combined ISEE supports
both domain-based and method-based knowledge, it needs to keep both kinds
of knowledge consistent in providing guidance and checking documentation.
Perhaps an integrated knowledge base, in which each rule reflects a proper
combination of domain-based and method-based knowledge, is a better solu­
tion to resolve the consistency problem.

20.4 ISEE and Formalization

It has become apparent that knowledge is necessary in order to provide in­
telligence in an ISEE. However, the most challenging problem in obtaining
knowledge is how to easily extract, form, and express the knowledge about the

20.5 ISEE for SOFL 377

domain and the software development method, if a realistic ISEE is desired.
In our view, formalization of both documentation produced during software
development and the software development methods are necessary conditions
for achieving an ISEE.

The formalized documentation, such as formal specification, has precise
syntax and semantics; therefore, there is a high possibility of building a soft­
ware tool to analyze the documentation. The capability of analysis may lead
to the possibility of the presentation of appropriate guidance to the devel­
oper and/or of a high degree of automation in specification verification and
validation.

The formalization in software development methods means that all the
rules for specifications construction, evolution, refinement, transformation,
verification, and validation are well-defined. Thus, the rules can be properly
incorporated into knowledge about software development methods to provide
a method-based intelligent software engineering environment.

In fact, compared with informal languages and methods, formal engineer­
ing methods have many more advantages. It is hard to imagine that we
can build an efficient and reliable ISEE based on informal documentation
and informal development methods, because that would require an incredible
amount of time, and intelligence in understanding, analyzing, and manipu­
lating informal languages that have neither well-defined syntax nor formal
semantics. On the other hand, with the support of ISEE, the usability and
accessibility of formal engineering methods will likely be improved, and the
productivity and reliability of the software products developed will likely be
enhanced.

20.5 ISEE for SOFL

Since the domain-driven approach to building an ISEE for SOFL needs the
involvement of specific domains which are, in general, difficult to describe, this
section focuses on the description of the method-driven approach. In other
words, we are interested only in the issue of building an ISEE to support the
SOFL specification language and method for developing software systems at
large.

An ISEE for SOFL is expected to support requirements analysis, spec­
ification construction, design, refinement, transformation, rigorous reviews,
testing, documentation, system modification, and process management.

20.5.1 Support for Requirements Analysis

The ISEE supports an interactive approach to requirements analysis by fol­
lowing the method for building a specification. Once the ISEE is started, the
user, the developer of the desirable software system, of the environment is

378 20 Intelligent Software Engineering Environment

requested to input the overall goal, possibly in a natural language like En­
glish, and will be guided by the ISEE to develop the informal specification
by following the "abstraction and decomposition" principle to define mod­
ules in an informal manner. The interaction under the guidance of the ISEE
goes on until the input of all the necessary requirements, at an abstract level,
terminates.

The ISEE then produces a well-formed informal requirements specification
that is consistent with SOFL syntax, and tries to instruct the user to carry
out the next step's task: transforming the informal specification into a semi­
formal specification. Again, the process is interactive, but the ISEE gives
heuristic suggestions in declaring data types, store variables, invariants, data
flows, the CDFDs, and in defining processes and functions of modules. In
such an interactive way, the user is guided to explore all the possible aspects
of the requirements. After the interaction terminates, the ISEE automatically
checks the consistency and validity of the semi-formal specification produced,
and helps perform a modification of the specification.

20.5.2 Support for Abstract Design

The ISEE takes the semi-formal specification as input and instructs the user
to start constructing a design specification accordingly. The top level mod­
ule is formed automatically and the associated CDFD is drawn. Then, the
ISEE takes an interactive approach to guide the user to complete the de­
sign specification in a top-down or middle-out manner. During the process of
specification construction, the user is usually required to input the informa­
tion that is impossible for the ISEE to understand, such as new CDFDs and
pre and post conditions of processes. What the ISEE does is to raise questions
and request necessary information from the user on the basis of its analysis
of the consistency, satisfiability, and completeness of the current specification.
For example, the ISEE may request from the user the definitions of addi­
tional classes and data types, existing given types, and processes that need
to produce the open input and/or consume the output data flows of CDFDs
in order to complete the design specification. Also, the ISEE assists the user
in drawing CDFDs, and automatically creates the associated module outlines
to help the user to concentrate on providing inputs for specific components of
the module (e.g., pre and postcondition of a process).

20.5.3 Support for Refinement

After an abstract design specification is constructed, the ISEE takes an in­
terleave approach to aiding the user refine the abstract design specification of
each process and function, usually in an implicit form, into an explicit speci­
fication. To start the refinement process, the ISEE takes initiative in refining
the implicit specification of each process. If the specification cannot be refined

20.5 ISEE for SOFL 379

completely into an explicit one, the unrefined parts in the implicit specifica­
tion will be highlighted to signal the user to refine those parts manually. The
ISEE is able to accept the user's inputs of the explicit specifications and sub­
stitute them for the unrefined parts in the explicit specification generated by
the ISEE. This interleave process continues until an explicit specification is
completely achieved.

20.5.4 Support for Verification and Validation

The design specifications, both implicit and explicit ones, need to be verified
and validated before they are implemented. The ISEE guides the user in con­
ducting rigorous reviews, and in the testing of the specifications for verification
and validation. The support includes automatic derivation of various proper­
ties from the specifications concerned, automatic construction of review task
trees and generation of test cases, and interactive reviewing of the properties
or evaluating of the test results. Also, the ISEE issues appropriate advice,
whenever necessary, to the user to conduct more but essential reviews or test­
ing. Furthermore, to help in the understanding of design specifications, the
ISEE also conducts automatic simulation based on specifications to demon­
strate how systems will behave when the programs implementing them are
executed.

20.5.5 Support for Transformation

The ISEE provides aids for transformation from design specifications into Java
programs in two ways: data transformation and functional transformation.
The ISEE usually takes a top-down approach to work on the transformation
starting from the top-level module, and then proceeding to its decompositions
and to the related classes. For each abstract data type defined in the specifi­
cation, the ISEE gives the corresponding target data type in the program. For
each module, class, process, method, and function, the ISEE usually suggests
an outline for the target programs, and requests the user to fill in the contents.
Of course, the ISEE tries to do as much as possible in the transformation.

20.5.6 Support for Program Testing

To validate the ultimate program system against the user requirements, the
ultimate program produced by transformation of the design specification must
be tested under the guidance of the ISEE. Both functional and structural
testing are supported. In this process, the test cases generated for testing
the design specification can be reused for functional testing of its program.
However, the new test cases for structural testing also need to be generated,
under the ISEE's guidance, aiming at detecting faults that occurred during
the implementation phase. The ISEE supports both interactive and batch
testing, and takes care of test case management and program debugging.

380 20 Intelligent Software Engineering Environment

20.5.7 Support for System Modification

Modification of documentation is an intrinsic feature of software development;
it may be conducted throughout the development process when abstract speci­
fications are evolved or refined into concrete specifications. The ISEE provides
several levels of support for documentation modification. When a specifica­
tion, at any level, is modified, the ISEE highlights automatically all the related
parts in the specification to draw attention from the user for possible modi­
fications of the those parts. When an abstract specification is refined into a
concrete specification, if any additional modification is made to the concrete
specification that leads to the violation of the refinement rules, the corre­
sponding parts of the abstract specification will be marked automatically to
indicate the necessity of modification at those parts in order to sustain the
refinement rules. Another level of modification may occur when an abstract
specification is modified to meet new requirements. In this case, the ISEE will
highlight automatically the corresponding parts to be modified in the concrete
specification.

20.5.8 Support for Process Management

The software development process is an important element affecting the qual­
ity of software products. In the ISEE, software development process is decided
by the software environment based on the application domain and the existing
knowledge of SOFL software process. The management activities supported
may include (1) planning and defining the software process, (2) producing
documentation, (3) analyzing project risks, (4) controlling the progress of the
software process, and (5) handling exceptional incidents (e.g., over budget or
behind schedule). All the activities must be organized in a manner to facilitate
systematic development and maintenance of software products.

It is worthy of mention at the end of this chapter that, although the
functional features of the ISEE for SOFL described above are not a reality
yet, they show the goals for building an ISEE for SOFL in the future. We have
so far implemented several prototype tools for SOFL, including a graphical
user interface for building specifications and tools to support for specification
testing and rigorous reviews, and will continue to make efforts to develop
them into a prototype software engineering environment for SOFL. Readers
who are interested in this environment and its further development can pay
attention to my homepage at http://wwwcis.k.hosei.ac.jpFsliu/ for timing
information. The current version of the software engineering environment for
SOFL is intended to evolve into a more intelligent one in the future.

20.6 Exercises 381

20.6 Exercises

1. Describe the major differences between a traditional software engineering
environment and an intelligent software engineering environment.

2. Give some ideas about building an intelligent office environment by sim­
ulating the idea of an intelligent software engineering environment.

3. Explain why it is important that human developers be treated as a "soft­
ware tool" in an intelligent software engineering environment.

4. Draw a diagram to depict an intelligent software engineering environment
for SOFL that provides all the functions presented in Section 20.5. Those
functions need to be arranged logically in the diagram to show support
for the entire software development process using SOFL.

References

1. Software Engineering, Report on a Conference. NATO Scientific Affairs Divi­
sion, Garmisch, 1968.

2. Software Engineering Techniques, Report on a Conference. NATO Scientific
Affairs Division, Rome, 1969.

3. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni­
versity Press, 1996.

4. K. Arnold and J. Gosling. The Java Programming Language. Sun Microsys­
terns, Inc., 1996.

5. J. M. Atlee and J. Gannon. State-based model checking of event-driven sys­
tem requirements. IEEE Transactions on Software Engineering, 19(1):24-40,
January 1993.

6. R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag, 1998.

7. R. Banach. Maximally abstract retrenchments. In S. Liu, J. McDermid, and
M. Hinchey, editors, Proceedings of the Third International Conference on For­
mal Engineering Methods (ICFEM2000) , York, UK. IEEE Computer Society
Press.

8. D. Bell. Software Engineering. Third Edition, Addison-Wesley, 2000.
9. G. Bernot, M. C. Gaudel, and B. Marre. Software testing based on formal

specifications: a theory and a tool. Software Engineering Journal, pages 387-
405, November 1991.

10. B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
11. B. W. Boehm. A spiral model of software development and enhancement.

IEEE Computer, pages 61-72, May 1988.
12. W. Brauer, G. Rozenberg, and A. Salomaa. Petri Nets: An Introduction.

Springer-Verlag, Berlin Heidelberg, 1985.
13. M. Broy and K. Stolen. Specification and Development of Interactive Systems:

Focus on Streams, Interfaces, and Refinement. Springer-Verlag, 2001.
14. A. Bryant. Structured methodologies and formal notations: developing a frame­

work for synthesis and investigation. In Proceedings of Z User Workshop. Ox­
ford 1989, Springer-Verlag, 1991.

15. D. Budgen. Software Design. Addison-Wesley, 1994.
16. J. R. Cameron. JSP and JSD: the Jackson Approach to Software Development.

IEEE Computer Society, 1989.

384 References

17. E. M. Clarke, O. Grumber, and D. Peled. Model Checking. MIT Press, 2000.
18. L. L. Constantine. Fundamentals of Object-Oriented Design In UML. Addison­

Wesley, 2000.
19. D. Craigen, S. Gerhart, and T. Ralston. Industrial Applications of Formal

Methods to Model, Design and Analyze Computer Systems: an International
Survey. Noyes Data Corporation, USA, 1995.

20. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial In­
troduction to PVS. In WIFT '95: Workshop on Industrial-Strength Formal
Specification Techniques, Boca Raton, Florida, April 1995.

21. I. S. Daniel Jackson and I. Shlyakhter. Alcoa: the Alloy constraint analyzer. In
Proceedings of the International Conference on Software Engineering, Limerick,
Ireland, June 2000. IEEE Computer Society Press.

22. H. M. Deitel and P. J. Deitel. Java How to Program. Fifth Edition, Prentice
Hall, 2002.

23. T. DeMarco. Structured Analysis and System Specification. Yourdon Inc., New
York,1978.

24. E. Dijkstra and C. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, 1990.

25. J. Dong and B. Mahony. Active objects in TCOZ. In J. Staples, M. Hinchey,
and S. Liu, editors, 2nd IEEE International Conference on Formal Engineering
Methods (ICFEM'98), pages 16-25. IEEE Computer Society Press, December
1998.

26. J. S. Dong and S. Liu. An object semantic model of SOFL. In K. Araki,
A. Galloway, and K. Taguchi, editors, Integrated Formal Methods 1999, pages
189-208, York, UK, June 28-29 1999. Springer-Verlag.

27. E. Durr and J. Katwijk. VDM++ - a formal specification language for object
oriented designs. In the International Conference on Technology of Object­
Oriented Languages and Systems (TOOLS'Europe92) , pages 63-78. Prentice
Hall, 1992.

28. M. E. Fagan. Design and code inspections to reduce errors in program devel­
opment. IBM Systems Journal, 15(3):182-211, 1976.

29. J. Fitzgerald and P. G. Larsen. Modelling Systems. Cambridge University
Press, 1998.

30. M. Fowler and K. Scott. UML Distilled: a Brief Guide to the Standard Object
Modeling Language (2nd Edition). Addison-Wesley, 2002.

31. K. Futatsugi and A. Nakagawa. An overview of CAFE specification environ­
ment: an algebraic approach for creating, verifying, and maintaining formal
specifications over networks. In Proceedings of the First International Confer­
ence on Formal Engineering Methods, pages 170-181. IEEE Computer Society
Press, November 12-14, 1997.

32. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engi­
neering. Prentice Hall, 2nd edition, 2002.

33. T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.
34. J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT

Press, 1996.
35. M. Gordon. HOL: a proof generating system for high order logic. In

G. BIRTWISTLE and P. SUBRAMANYAM, editors, VLSI Specification, Ver­
ification and Synthesis, pages 73-128. Kluwer, 1988.

References 385

36. M. Gordon and A. Pitts. The HOL logic and system. In J. Bowen, editor, To­
wards Verified Systems, volume 2 of Real- Time Safety Critical Systems series.
Elsevier, 1994.

37. B. S. Gottfried. Programming with Pascal. McGraw-Hill, 1994.
38. T. R. L. Group. The RAISE Specification Language. The BCS Practitioner

Series. Prentice Hall, 1992.
39. J. V. Guttag and J. J. Horning. LARCH: Language and Tools for Formal

Specification. Springer-Verlag, New York, 1993.
40. D. Hazel, P. Strooper, and O. Traynor. Possum: an animator for the SUM

specification language. In 1997 Asia-Pacific Software Engineering Conference
and International Computer Science Conference, pages 42-51. IEEE Computer
Society Press, 1997.

41. C. Ho-Stuart and S. Liu. A formal operational semantics for SOFL. In Proceed­
ings of the 1997 Asia-Pacific Software Engineering Conference, pages 52-61,
Hong Kong, December 1997. IEEE Computer Society Press.

42. C. Hoare. An axiomatic basis of computer programming. Comm. ACM,
(12):576-580,583, 1969.

43. C. Hoare and H. Jifeng. Unifying Theories of Programming. Prentice Hall
Europe, 1998.

44. J. Hoare, J. Dick, D. Neilson, and I. H. S(Ilrensen. Applying the B technologies
to CICS. pages 74-84.

45. W. E. Howden. A functional approach to program testing and analysis. IEEE
Transactions on Software Engineering, SE-13(1O):997-1005, October 1986.

46. http://www.borland.com/jbuilderj.
47. http://www.rational.com/products/rose/index.jsp.
48. D. Jackson. Alloy: a lightweight object Modelling notation. Technical Report

797, MIT Laboratory for Computer Science, Cambridge, MA, February.
49. D. Jackson. Abstract model checking of infinite specifications. In M. Naf­

talin, T. Denvir, and M. Bertran, editors, FME'94: Industrial Benefit of For­
mal Methods, Proceedings of Second International Symposium, pages 519--531,
Barcelona, Spain, October 1994. Formal Methods Europe, Lecture Notes in
Computer Science 873, Springer-Verlag.

50. M. Jackson. System Development. Prentice Hall, 1983.
51. M. Jackson. Software Requirements and Specifications: a Lexicon of Practice,

Principles, and Prejudices. Addison-Wesley, 1995.
52. M. Jackson. Problem Frames: Analyzing and Structuring Software Development

Problems. Addison-Wesley, 2001.
53. C. B. Jones. Specification, verification and testing in software development. In

Software Requirement, Specification and Testing, pages 1-13. Blackwell Scien­
tific, 1985.

54. C. B. Jones. Systematic Software Development Using VDM. 1st edition, Pren­
tice Hall, 1986.

55. C. B. Jones. Systematic Software Development Using VDM. 2nd edition,
Prentice Hall, 1990.

56. P. Juliff. Program Design. Prentice Hall, 1990.
57. T. Katayama. A theoretical framework of software evolution. In Proceedings

of International Workshop on Software Evolution (IWPSE98) , 1998.
58. B. W. Kernighan and D. M. Ritchie. The C Programming Language. AT&T

Bell Laboratories, 1988.

386 References

59. N. G. Leveson. Safeware: System Safety and Computers. Addison-Wesley,
1995.

60. R. C. Linger and C. J. Trammell. Cleanroom software engineering: theory
and practice. In M. G. Hinchey and J. P. Bowen, editors, Industrial-Strength
Formal Methods in Pmctice, pages 351-372. Springer-Verlag, 1999.

61. S. Lippman. C++ Primer. AT&T Bell Laboratories, 1991.
62. S. Liu. A case study of modeling an ATM using SOFL. Technical report

H CIS-2003-01.
63. S. Liu. General Chair's Message. In M. Hinchey and S. Liu, editors, Pro­

ceedings of the First International Conference on Formal Engineering Methods
(ICFEM'97), page ix, Hiroshima, Japan, November 12-14 1997. IEEE Com­
puter Society Press.

64. S. Liu. An evolution approach for software development using SOFL method­
ology. In Proceedings of International Workshop on Principles of Software
Evolution, 1998.

65. S. Liu. Formal methods and intelligent software engineering environments.
Information: An International Journal, (Vol. 1, No.1}:83-102, 1998.

66. S. Liu. Software development by evolution. In Proceedings of Second Interna­
tional Workshop on Principles of Software Evolution (IWPSE99), pages 12-16,
Fukuoka City, Japan, July 16-17 1999.

67. S. Liu. Verifying formal specifications using fault tree analysis. In Proceedings
of International Symposium on Principle of Software Evolution, pages 271-280,
Kanazawa, Japan, November 1-2 2000. IEEE Computer Society Press.

68. S. Liu. A rigorous approach to reviewing formal specifications. In Proceedings
of 27th Annual IEEE/NASA International Software Engineering Workshop,
pages 75-81, Greenbelt, Maryland, USA, December 4-6, 2002. IEEE Computer
Society Press.

69. S. Liu. Capturing complete and accurate requirements by refinement. In
Proceedings of 8th IEEE International Conference on Engineering of Complex
Computer Systems, pages 57-67, Greenbelt, Maryland, USA, December 2-4,
2002. IEEE Computer Society Press.

70. S. Liu. Developing quality software systems using the SOFL formal engineering
method. In Proceedings of 4th International Conference on Formal Engineering
Methods (ICFEM2002), LNCS 2495, pages 3-19, Shanghai, China, October
21-25, 2002. Springer-Verlag.

71. S. Liu. A formal specification of Shaoying Liu's lab research award policy for
students. Technical report HCIS-2003-02, Faculty of Computer and Informa­
tion Sciences, Hosei University, Koganei-shi, Tokyo, Japan, 2003.

72. S. Liu. Verifying consistency and validity of formal specifications by testing.
In J. M. Wing, J. Woodcock, and J. Davies, editors, Proceedings of the World
Congress on Formal Methods in the Development of Computing Systems, Lec­
ture Notes in Computer Science, pages 896-914, Toulouse, France, September
1999. Springer-Verlag.

73. S. Liu. Evolution: a more practical approach than refinement for software devel­
opment. In Proceedings of Third IEEE International Conference on Engineer­
ing of Complex Computing Systems, pages 142-151, Como, Italy, September
8-12, 1997. IEEE Computer Society Press.

74. S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. An approach to specifying
and verifying safety-critical systems with practical formal method SOFL. In

References 387

Proceedings of the Fourth IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS'98), pages 100-114, Monterey, Califor­
nia, USA, August 10-14, 1998. IEEE Computer Society Press.

75. S. Liu, M. Asuka, K. Komaya, and Y. Nakamura. Applying SOFL to specify
a railway crossing controller for industry. In Proceedings of 1998 IEEE Work­
shop on Industrial-Strength Formal Specification Techniques (WIFT'98), Boca
Raton, Florida USA, October 20-23, 1998. IEEE Computer Society Press.

76. S. Liu, A. J. Offutt, C. Ho-Stuart, Y. Sun, and M. Ohba. SOFL: a formal
engineering methodology for industrial applications. IEEE Transactions on
Software Engineering, 24(1):337-344, January 1998. Special Issue on Formal
Methods.

77. S. Liu, J. Offutt, M. Ohba, and K. Araki. The SOFL approach: an improved
principle for requirements analysis. Transactions of Information Processing
Society of Japan, 39(6):1973-1989, 1998.

78. S. Liu, M. Shibata, and R. Sat. Applying SOFL to develop a university in­
formation system. In Proceedings of 1999 Asia-Pacific Software Engineering
Conference (APSEC'99), pages 404-411, Takamatsu, Japan, December 6-10,
1999. IEEE Computer Society Press.

79. S. Liu and J. Woodcock. Supporting rigorous reviews of formal specifica­
tions using fault trees. In Proceedings of Conference on Software: Theory and
Practice, 16th World Computer Congress 2000, pages 459-470, Beijing, China,
August 21-25, 2000. Publishing House of Electronics Industry.

80. K. K. M. D. Fraser and V. K. Vaishnavi. Informal and formal requirements
specification languages : bridging the gap. IEEE Transactions on Software
Engineering, 17(5):454-466, May 1991.

81. B. Mahony and J. Dong. Timed communicating object Z. IEEE Transactions
on Software Engineering, 26(2), February 2000.

82. H. Masuhara and A. Yonezawa. A reflective approach to support software
evolution. In Prooceedings of International Workshop on Principles of Software
Evolution (IWPSE'98), pages 135-139, Kyoto, Japan, April 1998.

83. C. Mcclure. Case Is Software Automation. Prentice Hall, 1989.
84. J. A. McDermid. Software Engineer's Reference Book. Butterworth-

Heinemann, 1991.
85. S. R. L. Meira and A. L. C. Cavalcanti. Modular object-oriented Z specifica­

tions. In C. J. van Rijsbergen, editor, Workshop on Computing Series, Lecture
Notes in Computer Science, pages 173-192, Oxford, UK, 1990. Springer-Verlag.

86. B. Meyer. Object-oriented software construction. Prentice Hall International
Series in Computer Science, 1988.

87. E. A. Meyers and J. C. Knight. An improved inspection technique. Commu­
nications of the ACM, 36(11):50-61, 1993.

88. Michael G. Hinchey and Jonathan P. Bowen (editors). Industrial-Strength
Formal Methods in Practice. Springer-Verlag, 1999.

89. T. Miller and P. Strooper. Model-based specification animation using test­
graphs. In C. George and H. Miao, editors, Proceedings of 4th International
Conference on Formal Engineering Methods, Lecture Notes in Computer Sci­
ence, pages 192-203. Springer-Verlag, October 2002.

90. C. Morgan. Programming from Specifications. Prentice Hall, 1990.
91. A. J. Offutt and S. Liu. Generating Test Data from SOFL Specifications.

Journal of Systems and Software, 49(1):49-62, December 1999.

388 References

92. T. J. Ostrand, R. Sigal, and E. J. Weyuker. Design for a tool to manage
specification-based testing. In Proceedings of the Workshop on Software Test­
ing, pages 41~50, Banff, Alberta, July 1986. IEEE Computer Society Press.

93. M. Page-Jones. Fundamentals of Object-Oriented Design in UML. Dorset
House Publishing, 2000.

94. D. L. Parnas and D. M. Weiss. Active design reviews: principles and practices.
In Proceedings of the 8th International Conference on Software Engineering,
pages 215~222, August 1985.

95. D. L. Parnas and D. M. Weiss. Active design reviews: principles and practices.
Journal of Systems and Software, (7):259~265, 1987.

96. N. Plat, J. van Katwijk, and K. Pronk. A case for structured analysis/formal
design. In Proceedings of VDM'91, Lecture Notes in Computer Science, volume
551, pages 81~105, Berlin, 1991. Springer-Verlag.

97. A. Porter, H. Siy, and L. G. Votta. A review of software inspections. In
M. Zelkowitz, editor, Software Process, volume 42 of Advances in Computers.
Academic Press, 1995.

98. R. S. Pressman. Software Engineering: a Practitioner's Approach. McGraw­
Hill, 2001.

99. H. Qian, E. B. Fernandez, and J. Wu. A combined functional and object­
oriented approach to software design. In Proceedings of First IEEE Interna­
tional Conference on Engineering of Complex Computing Systems, pages 167~
178, Fort. Lauderdale, Florida, November 6-10, 1995. IEEE Computer Society
Press.

100. D. Rann, J. Turner, and J. Whitworth. Z: a Beginner's Guide. International
Thomson Computer Press, 1995.

101. J. M. Rushby and F. von Henke. Formal verification of algorithms for critical
systems. IEEE Transactions on Software Engineering, 19(1):13~23, January,
1993.

102. S. Schneider. B-Method. Palgrave, 2001.
103. 1. Semmens, R. France, and T. Docker. Integrated structured analysis and

formal specification techniques. The Computer Journal, 35(6), 1992.
104. H. Singh, M. Conrad, and S. Sadeghipour. Test case design based on Z and

the classification-tree method. In M. G. Hinchey and S. Liu, editors, First
IEEE International Conference on Formal Engineering Methods, pages 81~90,
Hiroshima, Japan, November 12-14, 1997.

105. G. Smith. The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic, 2000.

106. I. Sommerville. Software Engineering. Addison-Wesley, 2001.
107. J. Spivey. The Z Notation: a Reference Manual. Prentice Hall, 1989.
108. P. Stocks and D. Carrington. A framework for specification-based testing.

IEEE Transactions on Software Engineering, 22(11):777~793, November 1996.
109. T. Tarnai and Y. Torimitsu. Software lifetime and its evolution process over

generations. In Proceedings of Conference on Software Maintenance, pages
63~69. IEEE Computer Society Press, November 1992.

110. The VDM-SL Tool Group. Users Manual for the IFAD VDM-SL tools. The
Institute of Applied Computer Science, February 1994.

111. H. V. Vliet. Software Engineering: Principles and Practice. Wiley, 2000.
112. J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modelling

with UML. Object Technology Series. Addison-Wesley, 1999.

References 389

113. E. Weyuker, T. Goradia, and A. Singh. Automatically generating test data
from a boolean specification. IEEE Transactions on Software Engineering,
20(5):353-363, May 1994.

114. D. A. Wheeler, B. Brykczynski, and R. N. Meeson. Software Inspection - an
Industry Best Pmctice. IEEE Computer Society Press, 1996.

115. L. J. White. Software Testing and Verification, volume 26 of Advances in
Computers. Academic Press, 1987.

116. J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
Prentice Hall, 1996.

117. E. Yourdon. Modern Structured Analysis. Prentice Hall, 1989.

A

Syntax of SOFL

This appendix contains a complete definition of the syntax of the SOFL spec­
ification language introduced in this book. Although all the keywords, such
as pre, post, card, and len, are presented in bold font to draw the attention
of the readers, they are all given in plain text in the formal definitions of the
language. Each definition is given in a context-free grammar in which we use
the following conventional symbols:

Meta identifier non-terminal symbols are written in upper case letters

underline

{ }

[J
()

for the first letter and lower case letters for the other
parts (possibly including a dash mark)
each terminal symbol is underlined, e.g., process
define symbol
encloses syntactic items that may occur zero or more
times
definition separator symbol (with lower
precedence than the concatenate symbol)
used to describe a range of terminal symbols,
e.g., ~ .. ~
encloses optional syntactic items
encloses the choice of syntactic items

A.1 Specifications

Specification ::= Modules !-I Modules; Classes !-
Modules ::= Top-module{; Module}
Classes ::= Class{; Class}

392 A Syntax of SOFL

A.2 Modules

Top-module ::= module SYSTEMJ:dentifier;.
Module-body endJIlodule

Module ::= module Identifier [L Identifier]i.
Module-body endJIlodule

Module-body ::= [Const-declaration;] [Type-declaration;]
[Var-declaration;] [Inv-definition;] -
[Behaviori.] - -
Process-function-specifications

Const-declaration ::= const Identifier = Constant
{; Identifier = Constant}

Type-declaration ::= type Identifier =- Type
{i. Identifier =- Type}

Var-declaration ::= var Variable~ Type

Inv-definition

Behavior

fi. Variable~ Type}
::= inv Predicate-expression

{; Predicate-expression}
::= behav (CDFD.-Number
I CDFDJ:dentifier)

Variable ::= ext Identifier
I ext #Identifier
I Identifier

Process-function-specifications ::= Processesfi. Function}

A.3 Processes

Processes ::= Initialization-process{; Process}
Initialization-process ::= process InitO Process':body

end_process
Process ::= process Identifier([Dataflow-declarations])

[Dataflow-declarations]
Process-body end_process

Dataflow-declarations::= Parameter-declarations [I
{Parameter-declarations I}
[[I {Parameter-declarations I}]
Parameter-declarations]] -
I Parameter-declarations
{lParameter-declarations}

Process-body ::= [ext Ext-variables] [Precondition]
[Postcondition] [Decomposition]
[Explicit-specification] [Comment]

Ext-variables ::= External-variable[~ Type]
{External-variable[~ Type]}

External-variable ::= (rd I wr) Identifier

Precondition ::= pre Predicate-expression
I pre_Referenced-variable

Postcondition ::= post Predicate-expression
I posLReferenced-variable

Decomposition ::= decom Identifier decom

::= explicit Explicit-body

A.3 Processes 393

Explicit-specification
Explicit-body ::= Local-variable-declaration;

Statement
Local-variable-declaration ::= Identifier: Type{; Identifier: Type}
Statement ::= Sequential-statement

Other-statement

Block-statement
Assignment-statement
Sequential-statement
Conditional-statements

While-statement
Method-invocation

I Other-statement
::= Assignment-statement
I Block-statement
I Conditional-statements
I While-statement
I Method-invocation
I Multiple-selection-statement

::= begin Statement end
::= Identifier := Expression
::= Statement{i Statement}
::= if Predicate-expression then Statement
I if Predicate-expression

then Statement
else Statement

::= while Predicate-expression do Statement
::= Referenced-method-name

([Arguments])
- -

I Method-invocation~Method-invocation
Referenced-method-name ::= IdentifiertIdentifier}

I this.Identifier
Arguments ::= Expression {~ Expression}

394 A Syntax of SOFL

Multiple-selection-statement ::= case Expression of Case-alternatives

Case-alternatives
Case-alternative
Case-patterns
Default-expression

[; Default-expression] end case
::= Case-alternativet Case-alternative}
::= Case-patterns -> Statement
::= Expression{, Expression}
::= default -> Statement

Comment ::= comment Text

A.4 Functions

Function ::= function Identifier
([Parameter-declarations]): Type
[Precondition] [Postcondition]
[==- Expression] end.1unction

Parameter-declarations ::= Identifier{, Identifier L Type
I Parameter-:'declarations~

Parameter-declarations

A.5 Classes

Class ::= class Identifier [L Identifier]i.
Class-body end class

Class-body ::= [Const-declaration;] [Type-declaration;]
[Var-declaration;] [Inv-definition;] -
[Behaviori.] Method -function-specifications

Method-function-specifications ::= Methods {; Function}
Methods ::= Constructort Method}
Constructor ::= method Init

([Parameter-declarations])
Process-body end method

Method ::= method Identifier
([Parameter-declarations])
[Identifier~ Type]
Process-body end method

A.6 Types

Type ::= Type-identifier
I Basic-type
I Set-type
I Sequence-type
I Composite-type
I Product-type
I Map-type
I Union-type
I Special-type

Type-identifier ::= IdentifierUdentifier}
I Class-name

Class-name ::= Identifier

Basic-type ::= natO

I nat

I int

I real

I char

I bool

I Enumeration
Enumeration ::= {Enumeration-value

{2 Enumeration-value} 1
Enumeration-value ::= <String-of-characters>
String-of-characters ::= Character { Character}

Set-type :: = set of Type

Sequence-type ::= seq of Type

Composite-type ::= composed of Field-list end
Field-list ::= Identifier: Type

{Identifier: Type}

Product-type ::= Type {* Type}

Map-type ::= map Type to Type

Union-type ::= universal
I Type {I Type}

Special-type ::= sign

A.6 Types 395

396 A Syntax of SOFL

A.7 Expressions

Expression ::= Ordinary-expression
I iExpressionl

A.8 Ordinary Expressions

Ordinary-expression ::= Compound-expression
I Unary-expression
I Binary-expression
I Apply-expression

I
I
I
I
I
I

Basic-expression
Set-expression
Sequence-expression
Map-expression
Composite-expression
Product-expression

A.S.l Compound Expressions

Compound-expression ::= If-expression
I Let-expression
I Case-expression

If-expression ::= if Predicate-expression

Let-expression

then (Expression I Predicate-expression)
else (Expression I Predicate-expression)

::= let Pattern-definition
in (Expression I Predicate-expression)

Pattern-definition ::= Pattern-equal-definition-list
I Pattern-binding

Pattern-equal-definition-list ::= Identifier =- (Expression I
Predicate-expression)
{, Identifier =- (Expression I
Predicate-expression) }

Pattern-binding ::= Identifier.;. (Type I Expression)

A.8 Ordinary Expressions 397

Case-expression ::= case (Expression I Predicate-expression) of
Case-alternatives
[; Default-expression] end case

Case-alternatives ::= Case-alternative{; Case-alternative}
Case-alternative ::= Case-patterns ->- (Expression I

Predicate-expression)
Case-patterns ::= (Expression I Predicate-expression)

{, (Expression I Predicate-expression)}
Default-expression ::= default -> (Expression I Predicate-expression)

A.8.2 Unary Expressions

Unary-expression ::= Unary-operator Expression
Unary-operator .. -:

A.8.3 Binary Expressions

Binary-expression ::= Expression Binary-operator Expression
Binary-operator ::= +

I
I *
I L
I div
I rem
I mod

I **

A.8.4 Apply Expressions

Apply-expression ::= Method-apply
I Function-apply
I Composite-apply
I Product-apply
I Operator-apply

Method-apply ::= Function-apply
I Function-apply.:.Simple-variable
I Function-applY.:.Method-apply

Function-apply ::= Referenced-variable~ [Arguments II
Composite-apply ::= Field-select I Modify-expression
Field-select ::= IdentifierUdentifier}
Modify-expression ::= modify(Identifier, Modifying-field-list)
Modifying-field-list ::= Identifier -> (Expression I Predicate-expression)

{, Identifier - > (Expression I
Predicate-expression) }

398 A Syntax of SOFL

Product-apply ::= modify(Identifier, Modifying-value-list)
Modifying-value-list ::= Index -> (Expre~sion I -

Predicate-expression)
{, Index - > (Expression I
Predicate-expression) }

Index :: = Number

Operator-apply ::= Operator-name(Arguments)
I Boolean-type-apply -

Operator-name ::= abs
bound
floor
get
card
union
inter
diff
dunion
dinter
power
hd
jJ
len
elems
inds
cone
dconc
Sequence-name
dom
rng
domrt
rngrt
domdl
rngdl
inverse
override
comp
Map-name

Sequence-name ::= Identifier
Map-name ::= Identifier
Boolean-type-apply ::= subset(Arguments)

I psubset(Argument~)

A.8.5 Basic Expressions

Basic-expression ::= Constant

A.8.6 Constants

I Simple-variable
I Special-keywords
I Function-apply

Constant ::= Basic-type-constant
I Set-type-constant
I Sequence-type-constant
I Map-type-constant
I Composite-type-constant
I Product-type-constant

Basic-type-constant ::= Sign-type-value

A.8 Ordinary Expressions 399

I Constant-identifier
I Number

Sign-type-value
Constant-identifier
Number

Integer

Real-number

Negative-number
Digits

Digit ::= Q
1
2
~
.4
Q
Q
1
~
~

I Character-value
I Enumeration-value
::= 1
::= Identifier {Jdentifier }
::= Integer
I Real-number
::= Negative-number
I Digits
::= Integer
I Integer~Digits
::=:. Digits
::= Digit{Digit}

Character-value ::= ~Character~

400 A Syntax of SOFL

Set-type-constant :: = 1[Expression-List II
Expression-List ::= (Expression I Predicate-expression)

{! (Expression I Predicate-expression)}

Sequence-type-constant ::= l[Expression-Listll

Map-type-constant ::= { -> }
I {(Expression I Predicate-expression) - >

(Expression I Predicate-expression)
{,(Expression I Predicate-expression) - >
(Expression I Predicate-expression)} 1

Composite-type-constant ::= mk-Referenced-variable
(Expression-List)
- -

Product-type-constant ::= mkJ:dentifieriExpressiont Expression}2

A.8.7 Simple Variables

Simple-variable ::= Identifier I ':::'Identifier
I Referenced-variable

Referenced-variable ::= IdentifierUdentifier}

A.8.8 Special Keywords

Special-keywords ::= nil
I undefined

A.8.9 Set Expressions

Set-expression ::= {Expression IParameter-declarations &
Predicate-expression}
{Expression I Predicate-expression}
Set-type-constant -
{Integer! .:.::.! Integer 1

A.8.l0 Sequence Expressions

Sequence-expression ::= [Expression I Parameter-declarations &.
Predicate-e~pression]
[Expression I Predicate-expression]
Sequence-type-constant -
lInteger! .:.::.! Integerl

A.9 Predicate Expressions 401

A.S.ll Map Expressions

Map-expression ::= {Identifier -> Identifier I
[Parameter-declarations &]
Predicate-expression 1
Map-type-constant

A.S.12 Composite Expressions

Composite-expression ::= Composite-type-constant

A.S.13 Product Expressions

Product-expression ::= Product-type-constant

A.9 Predicate Expressions

Predicate-expression ::= true
false
nil
Boolean-variable
Relational-expression
Conjunction
Disjunction
Implication
Equivalence
Negation
Quantified-expression
iPredicate-expressionl

A.9.1 Boolean Variables

Boolean-variable ::= Simple-variable
I Method-apply

A.9.2 Relational Expressions

Relational-expression ::= Expression Relational-operator
Expression
Expression Relational-operator
Expression Relational-operator
Expression
is_Type-identifier((Expression I
Predicate-expression) 1
Boolean-type-apply

402 A Syntax of SOFL

Relational-operator ::= =-

A.9.3 Conjunction

I <>
I <
I <=
I >
I >=
I inset
I notin

Conjunction ::= Predicate-expression and
Predicate-expression

A.9.4 Disjunction

Disjunction ::= Predicate-expression or
Predicate-expression

A.9.5 Implication

Implication ::= Predicate-expression =>
Predicate-expression

A.9.6 Equivalence

Equivalence ::= Predicate-expression <=>
Predicate-expression

A.9.7 Negation

Negation ::= not Predicate-expression

A.9.S Quantified Expressions

Quantified-expression ::= Quantifier-list I Predicate-expression
Quantifier-list ::= forall[Binding-list 1 {Quantifier-list}

I exists [ll1Binding-llst H Quantifier-list}

Binding-list ::= Identifier-list~ (Type I Expression)
{, Identifier-list~ (Type I Expression)}

Identifier-list ::= Identifier{! Identifier}

A.I0 Identifiers

Identifier ::= Letter{(Letter I Digit I =)}
Letter ::= 2, .. £

A .. Z

A.II Character

Character ::= Letter
Digit
New-line
White-space
Other-characters

Other-characters ::= ~ I , I ; I 2 I ~ I + I : I / I \
I 11:1~1(1)1[lllfln@
I ~ I ~ I & 1-%-1 fl #= I-~ III I

A.12 Comments

Brief-comment ::= /* Text * /
- -

Text ::= String-of-characters

A.12 Comments 403

Index

<=>,22
=>,22

abstract design, 243
and, 22
assignment statement, 134
attribute variables, 211

basic types, 143
behav,210
binary condition structure, 79
block statement, 137
bool, 22, 38
boolean type, 147
broadcasting structure, 84

card, 155
cardinality, 155
case expression, 109
case statement, 136
CDFD,55
CDFD-hierarchy-first, 261
CDFD-module-first, 261
char, 145
character, 145
class, 209, 210
comment, 104
comp, 198
composite object, 180
composite types, 179
composite value, 180
compound expressions, 107
compound types, 143
conc, 172

concatenation, 172
conclusion, 27
condional statements, 135
condition data flow diagrams, 55
conditional expression, 107
conditional structures, 79
conjunction, 23
conjunctive normal form, 27
connecting structure, 87
consistency testing, 333
const, 98
constructor, 220
contingency, 26
contradiction, 26
control program, 374
correctness of decomposition, 127
criteria, 335

data flow, 68
data store, 71
dconc, 173
de Morgan's laws, 43
decom,134
Deliver and maintenance, 3
Design, 2
detailed design, 252
diamond,79
diff, 158
difference, 158
dinter, 159
direct subclass, 219
direct superclass, 219
disjunction, 24
disjunctive normal form, 27

406 Index

distributed concatenation, 173
distributed intersection, 159
distributed union, 159
diverging structure, 84
dom, 195
domain, 195
domain restriction by, 196
domain restriction to, 195
domain-based knowledge, 374
domain-driven approach, 375
domdl,196
domrt, 195
dunion, 159

elements, 171
elems, 171
empty sequence, 166
end process, 58
enumeration type, 146
equivalence, 25
evolution, 235
existential quantifier, 41
explicit, 134
explicit specification, 111, 133
ext, 74
extension, 252
external processes, 97

false, 22
fault tree, 304
feasibility testing, 332
field modification, 182
field select, 182
fields, 180
Formal engineering methods, 10
Formal methods, 5
formal specification, 235

get, 157
given, 99, 160

hd,170
head,170
hypothesis, 27

if-then-else, 107
Implementation, 3
implication, 25
implicit specification, 111

index set, 171
inds, 171
inference rules, 28
informal specification, 235
inheritance, 217
input data flow, 79
inset, 154
int, 38
integration testing, 325
intelligent software engineering

environments, 373
inter, 158
internal consistency, 304
intersection, 158
invariant testing, 332
inverse, 197
is function, 205
ISEE, 373
ISEE for SOFL, 377

knowledge base, 374

language-level knowledge, 375
learning program, 374
len, 169
length, 169
let expression, 108

make-function, 182
map, 191
map application, 194
map composition, 198
map comprehension, 193
map enumeration, 193
map inverse, 197
map type constructor, 192
maplet, 192
member access, 157
membership, 154
merging structure, 82
method,210
method invocation, 138
method overriding, 221
method-based knowledge, 374
method-driven approach, 375
method-level knowledge, 375
middle-out, 261
minimal cut set, 312
modification, 252
modify, 183, 185

module, 53, 98
module transformation, 352
multiple condition structure, 79
multiple inheritance, 219
multiple quantifiers, 43
multiple-ports processes, 360

nat, 38
natO, 38
negation, 24
nil, 48
non-membership, 155
nondeterministic structure, 84
not, 22
notin, 155
numeric types, 143

object, 209
object identity, 214
one-port process, 357
or, 22
output data flows, 79
override, 196
overriding, 196

polymorphism, 222
post, 58
power, 159
power set, 159
pre, 58
predicate, 37
predicate logic, 37
process, 56, 58
process decomposition, 117
process testing, 326
process transformation, 357
product type, 184
proof, 28, 47
proper subset, 156
proposition, 21
psubset, 156

range, 195
range restriction by, 196
range restriction to, 195
rd,73
real, 38
recursive function, 113
refinement, 252

Index 407

renaming structure, 86
Requirements analysis, 236
Requirements analysis and specification,

2
requirements specification, 2
rigorous reviews, 303
rng,195
rngdl, 196
rngrt, 195

satisfaction, 47
satisfiability, 304
satisfiability testing, 326
semi-formal specification, 235
separting structure, 82
sequence, 165
sequence application, 169
sequence comprehension, 167
sequence enumeration, 167
sequence of statements, 135
sequence type constructor, 166
sequent, 27
set, 151
set comprehension, 153
set enumeration, 153
set type constructor, 152
set types, 151
single condition structure, 79
SOFL,13
software engineering, 1
software engineering environments, 371
software tools, 373
source class, 351
source module, 351
specification testing, 323
starting nodes, 91
starting processes, 89
store, 71
string, 99
subsequence, 170
subset, 156
substitution, 44
superclass, 211

tail, 171
target class, 351
tautology, 26
terminating node, 91
terminating processes, 90

408 Index

test case generation, 335
test cases, 335
Testing, 3
three-step approach, 235
tl, 171
top-down, 261
top-down approach, 244
transformation, 349
transformation of data types, 350
true, 22
tuples, 184
type, 99

union, 157
unit testing, 325
universal quantifier, 40

validation, 258
validity, 47
validity testing, 331
var, 100
verification, 258

waterfall model, 2
while statement, 137
wr,73

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFA1B:2005
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF000d004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

