Fundamental Materials Research
Series Editor: M. F. Thorpe

[.ocal Structure
from Ditiraction

Edited by
S. kb L. Billinge and M. E. Thorpe



Local Structure
from Diffraction



FUNDAMENTAL MATERIALS RESEARCH

Series Editor: M. F. Thorpe, Michigan State University
East Lansing, Michigan

ACCESS IN NANOPOROUS MATERIALS
Edited by Thomas J. Pinnavaia and M. F. Thorpe

DYNAMICS OF CRYSTAL SURFACES AND INTERFACES
Edited by P. M. Duxbury and T. J. Pence

ELECTRONIC PROPERTIES OF SOLIDS USING CLUSTER METHODS
Edited by T. A. Kaplan and S. D. Mahanti

LOCAL STRUCTURE FROM DIFFRACTION
Edited by S. J. L. Billinge and M. F. Thorpe

A Continuation Order Plan is available for this series. A continuation order will bring delivery of
each new volume immediately upon publication. Volumes are billed only upon actual shipment.
For further information please contact the publisher.



Local Structure
from Diffraction

Edited by
S.J. L. Billinge and M. F. Thorpe

Michigan State University
East Lansing, Michigan

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW



eBook ISBN: 0-306-47077-2
Print ISBN: 0-306-45827-6

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://www.kluweronline.com
and Kluwer's eBookstore at: http://www.ebooks.kluweronline.com



SERIES PREFACE

This series of books, which is published at the rate of about one per year, addresses
fundamental problems in materials science. The contents cover a broad range of topics
from small clusters of atoms to engineering materials and involve chemistry, physics,
materials science and engineering, with length scales ranging from Angstroms up to
millimeters. The emphasis is on basic science rather than on applications. Each book
focuses on a single area of current interest and brings together leading experts to give an
up-to-date discussion of their work and the work of others. Each article contains enough
references that the interested reader can access the relevant literature. Thanks are given to
the Center for Fundamental Materials Research at Michigan State University for supporting
this series.

M.F. Thorpe, Series Editor
E-mail:thorpe @ pa.msu.edu
East Lansing, Michigan



PREFACE

One of the most challenging problems in the study of structure is to characterize the
atomic short-range order in materials. Long-range order can be determined with a high
degree of accuracy by analyzing Bragg peak positions and intensities in data from single
crystals or powders. However, information about short-range order is contained in the
diffuse scattering intensity. This is difficult to analyze because it is low in absolute intensity
(though the integrated intensity may be significant) and widely spread in reciprocal space.

The need to persevere and develop reliable techniques for analyzing diffuse
scattering is becoming increasingly important. This is because many newly emerging
materials, including some with potential technological applications, are quite disordered.
These include materials such as semiconductor alloys, ferroelectric materials and other
transition metal compounds, nanoporous and microporous materials such as zeolites and
pyrolitic graphites, and molecular crystals, as discussed in these proceedings. In order to
obtain a full solution of the structure, it is necessary to analyze both the long-range
crystallographic order and short-range aperiodic deviations from the long-range order.

This workshop on Local Structure from Diffraction was organized to bring together
leading researchers studying local structure using diffraction techniques. Surprisingly, there
are few opportunities for the powder and single crystal diffuse scattering communities to
come together in one place and discuss their common goals of local structure
determination. This intimate and intensive workshop was held at the historic and
picturesque Park Place Hotel in Traverse City, Michigan, USA from 10-14th August, 1997
and aimed at addressing that need. All the attendees were by invitation only; 25 of whom
gave presentations at the meeting. There were also many animated and detailed private
discussions. Seven different countries were represented with people coming from as far
afield as Australia, Korea and Ukraine as well as a strong representation from Europe and
North America.

The invited speakers were asked to produce a manuscript containing a pedagogical
account of their work which would be of lasting value as a text for newcomers to the field
and as a reference for established researchers. There is no other book currently available
which has this scope, and our hope is that this volume fills a gap by bringing into one place
descriptions of the various approaches which are used to collect, analyze and interpret
diffuse scattering data. The authors responded conscientiously to our request, and the result
is this present volume which contains 20 articles by many of the leading researchers in the
field of local structure from diffraction studies.

We would like to thank Michigan State University for financing the meeting and the
Center for Fundamental Materials Research at MSU for contributing to the cost of
producing the proceedings. Also, the efforts of Lorie Neuman and Janet King, who
organized the workshop and proceedings, are deeply appreciated as was the advice and
efforts of the Advisory Committee members: W.LF. David, T. Egami, S.C. Moss and D.L.
Price.

Simon J.L. Billinge

Michael F. Thorpe
East Lansing, Michigan
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PDF ANALYSIS APPLIED TO CRYSTALLINE MATERIALS

Takeshi Egami

Department of Materials Science and Engineering,
and Laboratory for Research on the Structure of Matter
University of Pennsylvania, Philadelphia, PA 19104-6272

INTRODUCTION

The method of atomic pair-density function (PDF) analysis has widely been used in
the study of liquids, glasses and other amorphous materials.'” The PDF describes the dis-
tribution of the atomic distances in the material, and can directly be determined from dif-
fraction experiments. But it has been considered to be a method of last resort, when the
usual crystallographic analysis fails and there is no other option. For this reason, while this
method is beginning to be used for the study of crystalline materials,** it might not be easy
to see the wisdom of applying it for crystals for which the structure can easily be deter-
mined with the aid of the Bragg’s law. However, the PDF obtained by powder diffraction
is simply a Fourier-transform of the structure function, S(Q) (Q = 4msin6/A), and thus the
PDF carries no less information than the powder diffraction pattern. Therefore one can ar-
gue, in principle, that the real-space PDF analysis is at least equivalent to the methods of
crystallographic powder diffraction analysis such as the Rietveld refinement that are carried
out in the reciprocal space.

Moreover, if the material has some disorder in the structure, the shortcomings of the
conventional crystallographic analysis and the advantage of the real-space PDF analysis
become obvious. The crystallographic analysis that presumes periodicity takes only the
Bragg peaks into account and ignores the diffuse scattering. Consequently it gives only a
spatially averaged picture of the structure, and local variations in the structure are not cor-
rectly represented. In particular the information regarding the correlation among the local
variations is lost as soon as the assumption of perfect periodicity is made. For instance if
there are local atomic displacements away from the crystallographic sites, they are reflected
in the crystal structure only in terms of the large thermal, or Debye-Waller, factor, and can-
not be easily separated from the lattice vibration.

Local Structure from Diffraction
Edited by S.J.L Billinge and M.F. Thorpe, Plenum Press, New York, 1998 1



On the other hand, the real-space PDF method, that utilizes diffuse scattering as well
as the Bragg scattering, can describe the disorder more accurately. In particular the corre-
lation among the local variations is correctly represented, albeit in volume average. As
shown in the examples below in many cases the local structure of a solid is different from
the average structure. The PDF is capable of bringing this difference to light.

Strictly speaking few materials are perfectly periodic. Even when the crystal is with-
out any lattice defects, lattice anharmonicity may introduce local collective deviations from
perfect periodicity. Many materials of modern technological interest are complex in the
structure, often containing internal disorder. For instance alloys, solid solutions and mixed
ion crystals are inherently disordered at the atomistic level. The study of such materials
would greatly benefit from the dual-space approach, or the parallel use of the real as well
as reciprocal space analyses which are complementary to each other. In this article we will
outline the real-space PDF method applied to the study of crystalline materials, discuss
when in general the use of such a method is beneficial, summarize some of the recent
studies in which the real-space or the dual-space method has proven their capability, in-
cluding ferroelectric oxides, colossal magnetoresistance (CMR) materials, superconducting
cuprates and MX polymers, and discuss future possibilities.

LIMITATIONS OF CRYSTALLOGRAPHY

The Bragg’s law is the basis of crystallography, as we all know, and is indeed an ex-
tremely powerful law. By using this law it is possible to determine the lattice constant to
an amazing accuracy of 10* A or better. However, since the success of the Bragg’s law is
so pervasive and convincing that we tend to forget its premises and limitations. Let us for
a moment try to extricate ourselves from the spell of the Bragg’s law and see it objectively.

As a starter, it is strange that the lattice constant can be determined with the accuracy
as good as 10 A by using x-rays with the wavelength of 1 A or so. Usually in order to
access such a small lengthscale, because of the uncertainty principle Ax-Ak < 21, one ought
to require a probe of a comparable wavelength, thus of an enormous energy. For instance
y-rays with A = 10 A has the energy of 1.24 TeV. Indeed measurements with such a small
lengthscale and high energy are being made in high energy physics, but not in crystallogra-
phy. The answer is obviously that the crystallographic measurement does not directly
measure the unit cell length a nor the atomic bond length. What is actually measured is the
position of the Bragg peak, Q, with the accuracy of AQ. Now the group of density waves
with the wavevector in the range from Q - AQ/2 to Q + AQ/2 will set up a wavepacket with
the coherence length, ¢ = 2/AQ, and the periodicity of A = 2/Q. When someone deter-
mines a lattice constant through the measurement of the Bragg peak with the Q resolution
AQ, this person is really measuring the coherence length of the density wave, ¢, and only
by assuming perfect periodicity, relating it to a by,

/= Na. ()

The uncertainty in ¢ is of the order of A, thus the accuracy in a is A/N, which can be as
small as 10 A if N is as large as 10*. Thus by utilizing the periodicity as a magnifying
lens the small lengthscale of 10* A can be indirectly accessed in crystallographic analysis
without high energy probes. The critical assumption is the perfect periodicity. But how
good is this assumption ?

We are so much used to thinking that a perfect crystal is perfectly periodic. However,
that is not strictly true because of lattice vibrations, even at T =0 K. Only when the lattice



vibration is perfectly harmonic we can invoke the Debye-Waller approximation, and sal-
vage the perfect periodicity in time average. The assumption of perfect periodicity breaks
down when the structure contains some randomness, or when the lattice dynamics is very
anharmonic. Any aperiodicity will result in the diffuse scattering which is excluded from
the usual crystallographic analysis. Restating the obvious, the crystallographic structural
analysis determines only the long range order of the lattice, the periodic component of the
structure. If a particular property of interest depends on any other aspect of the structure,
the crystal structure may not be able to provide information sufficient to explain that par-
ticular property. More often than not the properties of a material depend on the local
atomic structure, rather than the long range lattice structure.’ This is why a local probe to
determine the local structure is so important.

THE PDF METHOD

The most commonly used local structural probe is the x-ray absorption fine structure
(XAFS) method. By using the virtual photoelectron as the probe the XAFS method can
determine the local distances to the neighboring atoms from the atom emitting the virtual
photoelectron.” This method is credited for bringing in the local viewpoint of the atomic
structure. Using this method new insights have been gained in the local structure in al-
loys,® co-operative phase transition,” and electron-lattice interaction,' just to name a few,
and deeply influenced our views on these phenomena.

However, the method has limitations. The strong Coulomb interaction between the
probe (photoelectron) and the scattering atom produces various complications including the
phase shifts, inelastic scattering and multiple-scattering. These effects are theoretically
corrected, so that the limitations of the theory became the limitations of the method itself.
Also since the energy of the photoelectron is proportional to the square of the wavevector,
the energy range in which the oscillation in the absorption coefficient has to be determined
increases rapidly as the range of Q is increased. Thus in practice it is difficult to obtain
data accurately beyond k = 15 A", or Q = 2k = 30 A™'. For these reasons the PDF of the
XAFS is not reliable beyond the first peak, and even for the first peak the peak width can-
not be accurately determined.

An alternative is the PDF obtained by x-ray or neutron diffraction measurement.'”
Since x-rays and neutrons interact more weakly with the matter than electrons do, their
scattering can be treated kinematically by the Born approximation, making the analysis
simpler and more reliable, compared to that of the XAFS. The PDF is equivalent to the
Patterson correlation function of crystallography. However, in the PDF method the lattice
periodicity is not assumed, or equivalently the size of the unit cell is assumed to be infinite.
Therefore not only the Bragg peaks but the scattering in all the continuous Q-space, in-
cluding the diffuse scattering, is considered. This enables the PDF to describe periodic as
well as aperiodic structure. Indeed the PDF method has been used primarily for the study
of liquids and glasses, while its application on crystals is commencing only recently.

In the case of powder diffraction the structure function S(Q) is determined from the
measured diffraction intensity, I(Q), after a lengthy but straightforward procedure. At first
it is important to measure, in addition to the scattering from the sample, the true back-
ground due to addenda, or anything other than the sample itself, such as the sample con-
tainer and ambient gas (air, or preferably He). In many of the crystallographic methods
such as the Rietveld refinement everything other than the Bragg peaks is treated as the
background, fitted with a curve, and dropped. It thus becomes just another adjustable pa-
rameter in the refinement process. However, this type of “background” contains scattering



coming from the sample such as diffuse scattering. In the PDF method, on the other hand,
the diffuse scattering from the sample must be retained as it carries important information
on disorder and local atomic correlation. Therefore the true background due to addenda
has to be accurately measured, and subtracted from the data. Then the data have to be cor-
rected for absorption, multiple scattering, and inelastic scattering (Compton scattering for
x-rays and Plazcek correction for neutrons) to obtain S(Q)."

To calculate the PDF, S(Q) is then Fourier transformed by

A
po(r)=p,+ 5| [$0Q)  1]sing 0r)QdQ 2)

2
r

where po is the number density of atoms. As an example the PDF of f.c.c. Ni powder at T
= 10 K is shown in Fig. 1. This PDF was determined using pulsed neutron diffraction with
the GLAD spectrometer of the Intense Pulsed Neutron Source (IPNS), the Argonne Na-
tional Laboratory. It is compared with the PDF calculated for the f.c.c. structure. Excellent
agreement of the measured PDF with the expected PDF demonstrates the accuracy of the
technique. The PDF agrees with the model up to 40 A or more."" The primary PDF cal-
culated for the crystallographic structure is made of many §-functions representing the dis-
tances between the atomic sites. In order to include the effect of the lattice vibrations these
d-functions are convoluted with a Gaussian function. The width of the Gaussian function
corresponds to the Debye-Waller factor. In the case above the width (o = 0.064 A) is con-
sistent with the zero-point Debye-Waller factor and the Debye temperature of Ni.

1.0
t experiment
0.8 —— f.c.c. calculated
I — — Fig. 1. Pulsed neutron
o PDF of f.c.c. Ni powder
= at T = 10 K, compared
E o . with the PDF calculated
3 for the -structure (solid
i 3 line). The peak width is
’ ﬁ due to the zero-point lat-
tice vibrations.
0.0
2 3 4 5 6 7 8 9 10
r [A]

ACCURACY OF THE PDF METHOD

The main reason why the PDF method has not been used for crystalline materials for a
long time is the termination error. While the Fourier-transform integral in eq. (2) requires
S(Q) known up to Q infinity, the range of the Q value is limited by the wavelength of the
scattering probe. If the integration is terminated prematurely, spurious oscillations called
the termination errors are observed. If one uses a Mo-target sealed x-ray tube (A = 0.7107



A) the range of Q values is limited to 17 A, far short of a sufficient range, resulting in
significant termination errors. The range of Q-space necessary for accurate Fourier-
transformation depends upon the Debye-Waller factor. If the Debye-Waller envelope,
exp(-Q2<u2>), where u is the amplitude of lattice vibration and <....> represents thermal
average, becomes sufficiently small, and S(Q) converges to unity, it is unnecessary to col-
lect the data beyond such a point.'' For a reasonable amphtude of <u™>'"? = 0.05 A, the 36
of the Debye-Waller envelope is reached only at Q = 42.4 A™'. While this is a very high
value of Q for conventional sources, it can be attained relatively easily using the synchro-
tron based radiation sources such as the spallation pulsed neutron sources (in the U.S. the
IPNS of the Argonne National Laboratory and the LANSCE of the Los Alamos National
Laboratory) and the synchrotron radiation sources (in the U.S. the NSLS of the Brookhaven
National Laboratory, the CHESS of Cornell University, the SSRL of Stanford University
and the APS of the Argonne National Laboratory), which provide high energy scattering
probes. For most materials if a pulsed neutron source is used and S(Q) is determined up to
about 40 A”', the termination error is minimal, as shown in Fig. 1. For some strongly co-
valent bonds, however, termination at much higher Q values is required as we discuss later.
In such a case high energy x-ray scattering and pulsed neutron scattering with a more in-
tense source are the methods to be used.
The error in S(Q) can be propagated to the PDF by, "’

P, Ag(r) = Z[AS )0,d0,sin(0,r)| 3)
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where v indexes the data points, and AS(Qy) is the error in S(Q) for the v-th data point.
Note that since the integration in (3) is only weakly dependent on r, the error actually de-
creases with r as 1/r as demonstrated later. Thus, contrary to the common perception the
PDF is more accurate at large distances. Errors include statistical errors due to discrete
photon counting (4~ error), and errors in corrections such as absorption correction and
multiple-scattering correction. If the error is a slow function of Q, as many systematic er-
rors are, then due to the Fourier-transformation in (2) their effect is contained only to the
small r region, and the main part of the PDF remains accurate. This is why the PDF is re-
markably robust and accurate in many cases. Moreover in the case of comparative studies,
such as the study of changes due to temperature, fields, or sample processing conditions,
the systematic errors are canceled, resulting in a higher accuracy of the measurement.

THE PDF IN HIGHER DIMENSIONS
Three-Dimensional PDF

The Patterson function is a 3-dimensional correlation function. Thus the PDF also
originally is a 3-dimensional function, given by"

plg®)-1]=%= -iQ-r)dQ )

where S(Q) is the structure function determined in the 3-d Q-space, and g(r) is the 3-d den-
sity correlation function,



g(r)=

I
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here V is the sample volume, and p(r) is the single atom density function. In order to ob-
tain this function the structure function S(Q) has to be determined in the continuous 3-
dimensional Q-space, but this is not an easy task. For instance if we use a relatively coarse
mesh of AQ = 0.01 A", in order to scan the entire three-dimensional Q-space of + 40 A,
scattering data have to be collected at as many as 5.12 x 10'! points in the Q-space. This is
not impossible with the aid of a two-dimensional area detector, but it requires a long meas-
urement time and a very large memory space, and has never been done over the size of the
Q-space needed for accurate Fourier-transformation. An attempt to carry out such a meas-
urement will be made in the near future using a pulsed neutron single crystal diffractometer
with an area detector (SCD of LANSCE).

Since such a measurement cannot be normally done, the PDF is usually reduced to
one-dimension by making the measurement on a powder sample and taking the orienta-
tional averaging, thus losing the angular information. This might appear as a very severe
compromise, and one might argue that an accurate 3-dimensional single crystal study cou-
pled with a measurement of the diffuse scattering over a limited Q-space as usually done is
still better than the PDF study when some disorder is present. However, the merit of col-
lecting all the diffuse scattering in the powder scattering should not be underestimated.
Unless one has a very good idea where the diffuse scattering occurs in the 3-d Q-space one
may miss important information in the study of diffuse scattering from a single crystal.
The merit of being able to collect all the diffuse scattering by the powder measurement
usually overweighs the disadvantage of losing angular information.

One-Dimensional PDF and layer correlation function

A mistake commonly made is to assume that if a one-dimensional scan of the single
crystal scattering data is Fourier-transformed it produces the atomic PDF along that direc-
tion. For instance if one collects the scattering intensity from a single crystal along Q, in-
cluding the diffuse scattering and applied the Fourier-transform, what is produced by such
a procedure is not the atomic PDF but the atomic layer-layer correlation function,

] 7 7 7
Luurer(2) = szz(z )p, (2" + 2)dz 6)

where z is parallel to Q, L is the length of the sample in the z-direction, and p»(z) is the
layer-averaged single atom density function,

p.(z)= %Ip(r)dxdy &)

where A is the area of the sample in x-y plane. The layer-layer correlation function (6) is
often confused with the 1-dimensional correlation function averaged over the entire sam-
ple,

1 ’ 7 I
g-.(2)= p()z—VJ p(r")p(r’ +2)dr ®)



Note that in this case the correlation function is volume averaged, while in (6) and (7) the
density function is averaged first, before evaluating the correlation function. In order to
obtain the 1-d correlation function (8), one has to carry out an integration in the Q,-Q,
space,

1
~ (s
5.(2.)=- [s@)dg.do, )

where Aq is the area in the Qx-Qy space over which the integration is carried out, and then
apply the Fourier-transform,

/
8@ =5 [[5.(.) - tlexpl(-i0.2)dg, (10

Thus S(Q) has to be determined over the 3-d space anyway.

An example of this procedure is the one applied to multi-layered films. Normally the
interfacial roughness is evaluated by measuring the specular reflectivity with the Q-vector
along the normal of the surface. This, however, yields the layer-layer correlation as in (6),
thus the effect of atomic diffusion (roughness at the atomic scale) and interfacial roughness
cannot be separated. By measuring the diffuse scattering in the off-specular directions as
shown in Fig. 2 and integrating the intensity in the Q«-Qy plane, these two can be sepa-
rated.'>"® In the case of the Pt/Co multilayered films with the <l 11> orientation the total
thickness of the interface determined from the specular reflectivity is 8.7 A, while the true
local thickness due to diffusion is 6.9 A."> Furthermore from the off-specular diffuse scat-
tering it is possible to determine the interfacial height-height correlation function that char-
acterizes the length scale of the interfacial roughness."



2-dimensional PDF

If the data such as those in Fig. 2 are averaged over the angle in the plane retaining the

radial Q length @, = /07 + 07 .

1
SZ(Q,,QZ)=5,;5 S(Q)dg (1

where @ is the angle in the Q,-Qy plane, the Fourier-transform of this function is the in-
plane 2-d PDF,

l
pog(R.Q.)= 2—,;I[SZ(Q,»Q:)—I]JU(Q,r)Q,dQ, (12)

where Jy(Q;, Q,) is the 0-th order spherical Bessel function. The averaging over the planar
angle can easily be done by rotating the sample around an axis (z-axis) during the meas-
urement."* This technique was successfully applied to the study of a decagonal quasicrys-
tal AlgsCuysCos which is quasiperiodic in the x-y directions, but is periodic in the z-
direction. By using the PDF resolved for / the in-plane atomic structure of this compound
was analyzed.

Partial wave analysis

Another possibility is to use a polar coordinate and decompose S(Q) and PDF into ra-
dial and angular functions,

s@)= gsr(g)n”(g)

. T (13)
U WHOA R
t.m
where Y," (a) are the spherical harmonics. They are connected by
14
l m
g;"(r)z ol jSe (Q)J!(Qr)QZdQ (14)
T Py

where J(x) is the ¢-th order spherical Bessel function. This technique was applied to the
analysis of anisotropic amorphous materials,">'® but it can also be applied to the study of
crystalline materials.

X-RAY VS. NEUTRONS

We now compare the merits and demerits of the x-ray scattering and neutron scatter-
ing as far as the PDF method is concerned.



Q-Dependence of the atomic scattering factor

X-rays are primarily scattered by electrons. Thus the Fourier-transform of the scat-
tered x-ray intensity, 1(Q), will produce the electron-electron correlation function, or the
electronic PDF. This function is composed of broad peaks, reflecting the spatial extension
of the electronic wavefunction. In order to extract the atom-atom correlation, the electronic
PDF has to be deconvoluted by the electron density function. This process corresponds to
dividing [(Q) through the square of the x-ray atomic scattering factor, f(Q). Since the Q
dependence differs slightly among the elements, this division produces small inaccuracy
for multi-element systems.'” The effect of this approximation, however, is usually negli-
gible, and if the differences are large it is possible to carry out the element specific decon-
volution process in the real space.

On the other hand the scattering amplitude (length) of neutron, b, is approximately in-
dependent of Q due to the small size of the atomic nucleus, thus the Fourier-transform of
the neutron scattering intensity, which is the nuclear PDF, is equivalent to the atomic PDF.
This, however, is not true for the magnetic scattering of neutrons. Because of the spatial
extension of the magnetic moment, or the density of the electrons carrying a magnetic mo-
ment, the magnetic form factor decreases rapidly with Q. Thus the direct Fourier-
transform of 1(Q) produces the spin-spin correlation function which is spatially spread.
For this reason it is very difficult to detect the magnetic contribution in the neutron PDF.
In order to determine the atom-atom magnetic correlation, the magnetic component of the
scattering intensity has to be separated, ideally by using spin-polarized neutrons, and then
divided through the magnetic form factor,'’ just the same way as the x-ray intensity is di-
vided through the x-ray scattering factor.

Q-Range

The spallation neutron sources provide high intensity of epithermal neutrons which
are not fully thermalized, and thus have higher energies. The use of these epithermal neu-
trons greatly extends the Q-range. However, the spectrum of epithermal neutrons is nearly
constant of A, so that as a function of Q it decreases quickly as l/Qz. As a result the statis-
tical noise increases as Q, and the contribution of the noise to the integrand of eq. (2) as Q°.
Consequently the Q-range is limited by the noise. For instance the Q-range of the SEPD is
practically limited to 40 A™', even though it is possible to collect the data beyond.

It may appear that it is more difficult to extend the Q-range for x-ray scattering be-
cause of the rapid decrease of £(Q)* with Q. However, with the use of an intense high en-
ergy synchrotron source such as the wiggler beamline of CHESS, Cornell University, it is
relatively easy to obtain sufficiently strong scattering at high values of Q, as shown below.
In fact while the energy of the scattering probe is proportional to Q° for a given scattering
angle for neutrons and electrons, it is proportional to Q for x-rays. Thus it is easier with x-
rays to attain high Q values by escalating the probe energy. Moreover, the Q resolution is
constant of Q for x-ray scattering, while it is proportional to Q for pulsed neutron scatter-
ing, so that x-ray scattering has advantages in obtaining high resolution data at high Q val-
ues.

Element specificity

The element specific PDF, or the PDF from a particular element, can be obtained with
x-ray scattering by using anomalous dispersion near the absorption edge, or with neutrons



by isotope substitution. The x-ray anomalous scattering is useful only when the energy of
the absorption edge is sufficiently high to allow a large Q range, so that it can be applied
only to relatively heavy elements. Isotopes are expensive, and not always available. Thus
it is not always possible to determine the element specific PDF by diffraction methods.
The XAFS method has a clear advantage when it comes to the element specific PDF. On
the other hand, when the structure of the solid is approximately known it is usually possible
to refine the structure without the element specific PDF.

Lattice dynamics

It is often stated that x-rays give a snap-shot picture of the structure, and neutrons
yield the average structure, since at the same wavelength x-rays have a much higher energy
than neutrons. While this is often true it needs more comments. The dynamics of the
measurement is dictated by the energy resolution, not by the energy of the probe itself.
Whether it is x-ray or neutrons, for the scattering process with the momentum transfer Q
and the energy transfer o, the theoretical scattering intensity by an assembly of moving at-
oms is proportional to the dynamic structure factor,'®

(0, w)——j Zexp iQ - [;(0) — 1y (t)] —icor )t (15)

where r;(t) denotes the position of the i-th atom at time t, and N is the number of atoms.
During the actual measurements, however, both Q and ®wcan be specified only within a
non-zero resolution, AQ and Aw. Thus with respect to energy the integration of (4) over
the resolution window, A®,

Aw/2
Aw/2

S.(Q.0,80)=[""" $(0.0)do (16)

gives the actual photon or neutron counts. This integration sets the time scale of observa-
tion. For instance if the energy window is wide open (A®w — o), then the integration re-
moves all the correlation but t = 0, and thus the same time correlation function, or the snap
shot picture, is obtained. On the other hand if Aw =0, all the temporal correlations are in-
cluded, so that the correlation among the average density is obtained. Since a typical en-
ergy resolution of x-ray scattering (~ 10 eV) is much higher in energy than the energy scale
for phonons (~ 0.1 eV), phonons look completely frozen for x-rays. However, by improv-
ing the energy resolution of the x-ray scattering it is possible to observe the inelastic scat-
tering by phonons. In the case of pulsed neutron scattering with the TOF spectrometer,
even though there is no energy discriminator in the system, due to the Placzek shift' the
effective energy window is about 20 meV.** Lattice dynamics slower than this would look
static, while those faster than this would be averaged out.

REAL SPACE MODELING

Since the PDF is a one-dimensional quantity it requires modeling to recover a three-
dimensional structure from the data. Such modeling can be done in the similar way as the
regular structural refinement, but done in the real space rather than in the reciprocal
space.”’ The procedure is the following:
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1. Build a model of the atomic positions.

2. Calculate the distances among the atoms and obtain the PDF made of many §-
functions.

3. Convolute the d-functions with a Gaussian function representing the lattice vi-
brations to obtain pogmod(r).

4. Calculate the agreement (A) factor,

AP
= (17

I:Z dr

where gexp(r) is the experimentally determined PDF. This A-factor is similar to
the R factor in the crystallographic analysis.

5. Improve the model by the Monte-Carlo simulated annealing process to mini-
mize the agreement factor.

For a perfect crystal at low temperatures the real-space modeling and the usual recip-
rocal space modeling such as the Rietveld refinement were shown to produce almost iden-
tical results as shown below. When some disorder is present the advantage of the real-
space method becomes clear. In particular a step-wise local refinement, in which one starts
with modeling the immediate locality, such as the nearest neighbors, and gradually extends
the range of modeling, proved to be a powerful method of modeling the local structure.’'
By this approach the local structure was often found to be quite different from the average
structure, including symmetry, as illustrated in the examples below.

EXAMPLES
Structure of PZ and PZT

Pb(Zr | «Tix )O3 (PZT) is a widely used ferroelectric/piezoelectric oxide system, and its
end member, PbZrO; (PZ), is well known for antiferroelectricity. Nevertheless some con-
troversies remain regarding the structure of both PZ and PZT. Their structure was recently
studied using pulsed neutron diffraction, with the data analyzed both in the reciprocal space
by the Rietveld refinement and in the real space by the PDF method.”> At T = 10 K the
structures refined by the two methods agreed quite well, typically within 0.01 A. The PDF
A-factor (8.11 %) was comparable to the Rietveld R-factor (7.99 %). The experimental
and model PDF’s are compared in Fig. 3. The only notable difference was found in the
thermal factor. The thermal factor refined by the PDF method was appreciably smaller and
closer to what is expected from the Debye temperature, while that obtained by the Rietveld
method was larger and appeared to overestimate the vibrational magnitude.

At higher temperatures anharmonic local displacements of Pb atoms along the c-axis
were better characterized by the PDF method, and the structure of the intermediate phase
(503 - 510 K) was for the first time found to be a different type of antiferroelectric structure
by the real space method. An interesting finding is that the PDF of the ferroelectric phase
just below the Curie temperature and that of the paraelectric phase just above are very
similar, as shown in Fig. 4. This shows that the local structure does not change so much
through T¢, and local lattice distortions already exist above T¢. Similar findings were
made for various ferroelectric solids by the XAFS and PDF studies.”*
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Fig. 3. Pulsed neutron PDF of PbZrO4 at T = 20 K (circles) compared with
the model PDF (solid line) (above), and the difference between the two
(below). The dashed line (below) shows the statistical error, eq. (3) which
decreases with r approximately as >
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Fig. 4. Pulsed neutron PDF of PbZrO3 at T = 473 K (anti-ferroelectric
phase) and at T = 508 K (paraelectric phase), showing little difference
(below, expanded scale) between them in spite of the phase transition,”
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Fig. 6. Pulsed neutron PDF of PZT 90/10 compared with the PDF calcu-
lated for the model structure refined by Rietveld method by Glazer et al®

When a small amount (5 %) of Zr atoms are replaced by Ti atoms the displacive order
changes from antiferroelectric to ferroelectric, and the symmetry changes from tetragonal
to orthorhombic. It is rather strange that such a small amount of Ti can induce such major
changes in the structure. As it happens the local structure described by the PDF again does
not change much in spite of the changes in the crystal structure, as shown in Fig. 5. The
PDF of the rhombohedral phase is significantly different from the one calculated from the
structure refined by the Rietveld method (Fig. 6). The real space refinement shows that the
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local structure is similar to that in the orthorhombic phase, but the axes are randomly ro-
tated around the [111] axis, producing the rhombohedral symmetry in average.**

The common feature in these phase changes is that the phase transition is brought
about not by uniform changes in the structure, but by the rearrangement of the local struc-
tural units which themselves remain little changed through the transition. This is presuma-
bly because the energy scale to change the local atomic bonding (usually of the order of 1
eV) is larger than the energy scale for phase transition (of the order of 0.1 eV). It would be
of great interest to see how generally this conclusion applies.

Local structure of CMR manganites

Manganites such as (La;.xAx)MnOs (A = Ca, Sr, Ba, Pb) that show colossal magne-
toresistance (CMR) represent a spectacular case of the electron-lattice interaction govern-
ing the properties. One of the issues here was whether or not the doped charges form lat-
tice polarons as predicted by Millis ef al.® The PDF studies offered convincing evidence
of polaron formation and their role in phase transitions.*”**

LaMnOs has a distorted perovskite structure, with Mn* ion occupying the center of
MnOs octahedron. Mn** is in d* configuration. The cubic component of the crystal field
splits the d-level into atriplet ty, and doublet e, levels. These 4 d-electrons are spin polar-
ized due to strong Hund’s coupling, and fill up the spin polarized t, level, and singly oc-
cupy the e, level. This leads to the Jahn-Teller (JT) distortion of the MnQOg octahedron
which becomes elongated to accommodate the eg electron in the d,,2 orbital. The PDF of
LaMnOs (Fig. 7) shows a well-split Mn-O first peak into 4 short (about 1.98 A) and two
long (about 2.23 A) Mn-O bonds. This peak is negative because the neutron scattering
length b of Mn is negative. The PDF calculated for the Rietveld refined structure®® shows
excellent agreement.

0.45
——— Model Structure
—+— T=300K
0-30 1 —e- T= 10K
o 0.5

PDF [

r [A]

Fig. 7. Pulsed neutron PDF of LaMnO; at T = 10 K and 300 K, compared to
the PDF of the crystallographic structure.”®
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If LaMnOs is doped with divalent ions (hole doping) the macroscopic JT lattice dis-
tortion decreases quickly and disappears, for instance at 16 % Sr. However, the PDF
clearly shows that locally the JT distortion does not go away so quickly. The local JT dis-
tortion can be detected by the presence of long Mn-O bonds and conversely the reduced
number of short Mn-O bonds. Fig. 8 shows the position of the Mn-O peaks as a function
of Sr concentration. Even though the Mn-O bonds deduced from the crystal structure con-
verge rapidly into one bondlength beyond 16 % Sr, locally the Mn-O bond lengths remain
unchanged, at 1.98 A and 223 A.

T T ™ T —T L —
23 : |
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= A ) -
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1.9 L 152 e L | !
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X % of Sr concentration

Fig. 8. The positions of the PDF Mn-O peaks as a function of the Sr con-
centration, compared to those for the crystal structure (solid lines).®

The number of short Mn-O bonds, Nma.0, can be determined by integrating the first
Mn-O subpeak. For the JT distorted LaMnOs it is four, while in StMnO; the JT distortion
is gone, the MnOy octahedron is undistorted, so that Nma.o is six. At room temperature
Nmn-o changes linearly from 4 to 6 as Sr concentration is increased (Fig. 9), indicating that
the system is made of a mixture of JT distorted Mn’* and undistorted Mn**. In other words
the doped hole is localized on one Mn site, forming a polaronic Mn*" state. This is a direct
demonstration that the lattice polaron related to the JT distortion is formed in this system.

At T = 10 K, the dependence of Ny,.0 on Sr concentration becomes stronger, with the
slope about three times of the room temperature data, as shown in Fig. 9. This implies that
the holes are slightly more delocalized, and spread over three Mn sites. Inside this three-
site polaron the Mn-Mn exchange interaction must be changed from negative to positive
due to the double-exchange interaction within the three-site polaron. Now it is of great in-
terest that Ny,.0 shows no discontinuity across the metal-insulator (M-I) transition at X =
0.17.% Usually once the metallic state is reached polarons disappear because of high di-
electric constant in the metal. However, probably because of the spatial spin-charge sepa-
ration the charges are not uniformly distributed even in the metallic state, and some local
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distortions indicating locally varying charge density and JT distortion remain. It is possible
that the polarons self-organize into stripes, and the charges flow freely inside the
stripes.”®*" This state may strongly resemble that of the superconducting cuprates.®'

Local structure of HTSC cuprates

The pulsed neutron PDF analysis was applied to superconducting oxide immediately
after they were discovered.”> Notable deviations from the crystallographic structure were
found, and it was observed that the local structure remains unchanged through the tetrago-
nal/orthorhombic phase transition. Small local displacements of oxygen ions were found
in all the high-T¢ oxides studied by the PDF method so far.>** In particular strong change
in the dynamics of displacement was detected near Tc for Tl;Ba;CaCu,Og** as shown in
Fig. 10.

It is possible that these local oxygen displacements are related to the dynamic spin-
charge stripes® postulated in these materials. A recent high energy phonon measurement
offers a strong evidence that fragmented dynamic stripes do exist in cuprates.’® The size of
the charge domain, 8 x 20 A, as suggested by the phonon measurement, agrees well with
the size of the polarization domain suggested by the PDF measurement of YBayCusOy."
Details aside the existence of some local structure in the Cu-O plane with the size of 2a x
5a appears to be certain. What implication this observation has to the superconductivity
remains to be seen.’’
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Fig. 10. Anomalous temperature dependence of the PDF peak height at
3.4 A for T1,Ba,CaCu,0s, compared to the expecled dependence calculated
from the phonon density of states (solid curve). The arrow indicates su-
perconducting T.

Charge density wave in the MX chain compounds

High-energy x-ray scattering measurements were recently carried out to determine the
atomic structure of an organic 1-dimensional chain compound, [Pt(en)zlgl[Pt(en)g]3 ClOy),
where en stands for 1,2-diaminoethane, with the incident x-ray energy of 60 keV.”® This
compound is one of the family of the so-called MX chain compounds that show strong
charge density waves (CDW) due to the Peierls distortion.>® Figure 11 shows the integrand
of eq. (2), i(Q) = QIS(Q) - 1], determined at T =30 K. At such high Q values the scatter-
ing intensity is dominated by Compton scattering. By using a solid state Ge detector the
Compton contribution was separated, thus attaining excellent statistical accuracy even at a
such high Q range.

In Fig. 11 it is seen that the oscillations persist at least up to 40 A" and perhaps above,
due to the strong covalent bond between Pt and I. Furthermore the oscillation has a slight
beat, with the node around 22 A™', indicating the presence of two bondlengths. Indeed the
PDF (G(r) = 4mpor{g(r) - 1]) shown in Fig. 12 clearly shows two strong peaks due to Pt-I
correlation, at 2.7 A and 3.1 A, indicating the split of the Pt-I correlation due to the CDW.
This result demonstrates the capability of the high-energy x-ray scattering in determining
S(Q) up to very high values of Q, and obtaining the PDF with a high spatial resolution.
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Fig. 12. PDF, G(r), of the Pt-1 chain compound determined by the high-
energy x-ray scattering, compared with the PDF calculated for the crystal
structure.’



APPLICATION OF THE PDF METHOD IN OTHER FIELDS

Other examples of ordered solids for which the PDF method was applied and proved
effective in determining the local structure and relating it to properties include quasicrys-
tals, 4% fullerenes,*** relaxor ferroelectrics,”*® ferroelectric phase transition,”*’
automotive catalytic support oxides,*”® and semiconductor alloys.”” Other fields the PDF
method potentially can impact are, martensitic transformation including the shape memory
alloys, piezoelectric materials, orientational glasses, surfaces and interfaces (in particular
the use of 2-dimensional PDF), and strong type II superconductors such as the chevrel
phase. With the upcoming LANSCE expansion and the start of the APS operation high
energy radiation sources will become even more readily available. It is hoped that the PDF
method will be practiced by a larger number of researchers, and eventually will be regarded
just as one of the standard methods. In particular the coupled use of both the real-space
and reciprocal-space methods, the dual-space method, may well prove to be the best tool in
characterizing complex materials.

CONCLUSIONS

Crystallographic methods are powerful techniques to determine the atomic structure of
perfect crystals with amazing accuracy. However, if the structure is not perfectly periodic,
due to dynamic or static local deviations, the limitations of the crystallographic methods
become apparent. The PDF analysis is emerging as a most useful and convenient alterna-
tive for such cases. For a perfect crystal the PDF method is essentially equivalent to the
crystallographic powder diffraction methods. When the system is partially disordered, the
PDF method provides a much more accurate picture of the structure than the crystallo-
graphic methods do. While the PDF describes the local atomic correlation, the crystal
structure only signals the presence of disorder. This is because the PDF analysis includes
the diffuse scattering which contains the information regarding the aperiodic atomic corre-
lation, while the diffuse scattering is neglected in the usual crystallographic analysis. By
modeling the PDF in separate ranges of atomic distances, for instance in short, intermedi-
ate, and long ranges, the difference between the local structure and the average structure
can be brought out to light. When they differ, it is most likely that it is the short range
structure that influences the properties the most. The use of the both techniques, the dual-
space method in which refinement is made both in the reciprocal and real spaces, is ideal
when the presence of structural disorder is suspected. This method holds a great promise
for the study of complex materials in general.
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ANOMALOUS X-RAY SCATTERING FROM DISORDERED MATERIALS

David L. Price and Marie-Louise Saboungi

Argonne National Laboratory, Argonne, IL 60439

INTRODUCTION

Many structural issues in disordered systems, such as liquids, polymers and glasses,
are still unresolved and controversial. Part of the problem stems from the fact that a single
diffraction measurement of an n-component system yields a weighted average structure factor
of the n(n+1)/2 separate partial structure factors:

s(Q) = .'%Wa(Q) Wi(Q)S,(Q) "

where W (Q) is the weilghting factor for element a and §,,((2) is the partial structure factor for
the element pair (a,b). For a multicomponent system it is therefore difficult to extract
reliable information about a specific atom pair from a single experiment. However, in recent
years improvements in the radiation sources available have led to the exploitation of
complementary techniques which allow a more detailed investigation of the structure.
Spallation neutron sources and instruments dedicated to amorphous and liquid systems make
it possible to carry out neutron diffraction (ND) measurements with sufficient resolution to
resolve peaks in the radial distribution function from different atom pairs; in favorable cases,
isotope substitution can also be used to vary the weighting factors in Eq. (1).> An especially
important advance has been the advent of high-powered synchrotron x-ray sources which
make it possible to obtain reliable difference measurements near the absorption edge of a
particular element with anomalous x-ray scattering (AXS), varying the weighting factor for
that element in Eq. (1) by changing the x-ray energy.’

In this review we present the formalism of AXS as applied to partial structure analysis
of disordered materials. We give first the theoretical formalism, and then some examples of
how the technique has been applied in specific problems of current interest.

FORMALISM

The primary experimental quantity in an x-ray diffraction measurement may be taken as
the dead-time corrected counts in a detector due to single scattering normalized by the dead-
time corrected counts in a beam monitor. This gives the intensify of single scattering

. do’ n, { 2wpxy dx
I’ = — < AQex ——)
fp dQ n, p\ sinf/ sin6 (2)
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where p is the total number density, do’/dQ2 is the average scattering cross section per atom,
n, and n, are the efficiencies of detector and beam monitor, u the linear attenuation
coefficient in the sample at the incident energy, x the depth of the scattering point in the
sample and 268 the scattering angle. The specific form given above for Eq. (2) assumes a
symmetric reflection geometry and a slab sample, but it may be readily generalized to other
geometries. To obtain Fas given in Eq.(2), it is necessary to correct the measured beam
intensity for fluorescence, resonant Raman scattering, Compton scattering, and attenuation
and multiple scattering in the sample. The form of these corrections depends on the
instrumental configuration; standard procedures are generally available for taking care of
them. For a uniform slab of thickness d, Eq. (2) may be readily integrated to give

A do’
I %T(d)—dg
- 3)

where A = AQn,/n, is the normalization constant, usually determined a posteriori, and T(d)
= [1-exp(-2ud/sin 6)] is a thin sample correction, equal to unity for thick samples.

The scattering cross section is given by a sum of products of scattering factors and
phase factors over all pairs of atoms of the system:

do’ 1

N S (@esd (s - )] o

where f, (Q) is the form factor of atom i evaluated at the scattering vector Q and r, its
instantaneous position. It is convenient to reformulate Eq. (4) as the sum of three terms

which, in the Faber-Ziman formulation®, becomes

do’

o - @+ (r@rF)- (7@ |+ Moo Krcof

5

where the angular brackets represent averages over all atoms in the sample. The first term in
Eq. (5) is the interference scattering which contains the details of the atomic structure, the
second is the Laue diffuse scattering which varies slowly with Q, and the third is the forward
scattering which is singular in the small-angle limit for a homogeneous system. Clearly the
first term is the important one in the present context. In a multicomponent system, it can be
expressed as a weighted sum over element pairs:

[(Q) = Y .,/ AQ)f(Q)S,,(Q)
(6)

where the partial structure factor S ,,Q) representing the structure associated with a given pair
of elements (a,b) is given by

N . N X
SL']'(Q) = W(@Z;Xp{lQ-(n -r )]—-}—V—:‘-O“b +1- NOQ, o

It is often convenient to define an average structure factor S(Q):

1(Q)

$(Q) = -
K@)
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t)
In the Faber-Ziman formalism used here, both S(Q) and §,,(Q) — 1 as O — =.

To obtain real-space information, pair correlation functions are obtained by Fourier
transformation of the appropriate structure factors, e.g. :

| A
8(r)-1= 2= S(Q) - 1]exp(-i Q- ndQ

(9)

where g(r)dr has a direct physical interpretation as the number of atoms in a volume element
dr at a distance r from a reference atom at the origin. Often we are interested in a particular
structural feature, e.g., a shell of atoms at a certain distance from a reference atom at the
origin, that can be associated with a particular region of g(r) — call it g"(r). Then the
integrated volume of this region,

A" = pfg (r)r (10)

is a linear combination of the coordination numbers C,"(b) of b atoms in the shell about an
average a atom:

= . Cb)
E |<f

ab

(1n

where the form factors are evaluated at O = 0.> Normally such a feature is associated with a
single (a,b) pair, in which case the corresponding C,"(b) is given uniquely by Eq. (11).

We now treat the case of special case of anomalous scattering. Suppose that the

incident energy is near an absorption edge for element 4 and we make a small change AF in
the incident energy, which we assume has a significant effect on f, but not on the other /..
From Eq. (6), the corresponding change in /(Q) is given by

ANQ) = &, 36,/ (Q)S,(Q) + e )

In general, and especially near an absorption edge, the form factor contains anomalous
energy-dependent terms as well as the regular term:

J(Q) = /(Q)+ [{(E) +if"(E) (13)

Substitution of Eq. (13) into Eq.( 12) gives, after some rearrangement.

ALQ) = 2¢,Af; 2 (0@ + £)S5 + i85 ]+ 2¢, Af;';j S8 = (Ll Q) + 184 ] "

By analogy with Eq. (8), we can define a difference structure factor for element 4:

25



A(Q)

20,0 S Q)+ [1) + 2, ML)

26,80 3L Q) + IS + 8 ]+ 20036 155 = (Sl @+ £)S4 ]
b b

DL + 1)+ 20 80 s

5.(Q) =

which also - 1 as ( — =. Notice that § (Q) as defined in Eq. (15) implicitly depends on
both E and AE. The AE dependence could be removed by taking the limit of Eq. (15) as AE
— (). However, the error in the measured value of § (Q) obviously becomes very large as

AF is made small. In practice we try to choose a compromise value for AF that is large
enough to reduce this error and small enough so that we can neglect the changes in f,, & = A.

The values of the f, in Eq. (15) are then evaluated at E + 1/2 AE. The choice of the distance
of E from the absorption edge of element 4 is also a compromise between large values for the

anomalous terms in f, versus an accurate knowledge of Af.

Eq. (15) can be simplified with the help of two approximations. First, a good
approximation below the edge of element 4 is

A A (16)

Eg, for Ge at E,-17eV,f. =-6.169, f. "= 0.494; atE,-200 eV, [, = -3.987, ., =
0.504. With this approximation Eq. (15) simplifies to

E(‘b [( fbo(Q) + j;),)s,—;b + fblssl\,b]
5,(Q)=- . .,
: L@@+ ) . (17)

Second, if the incident energies are far removed from the absorption edges of the elements b
= A, a reasonable approximation is

LSy b2 AL (18)

In this case, taking account of the fact that ¥, has to be real, Eq. (17) simplifies finally to

(fbo(Q +fb)
—S,
(@)= @y (19

To obtain the corresponding real-space information, we follow the procedure of Egs. (8-10)
above and obtain the volume of a particular feature in g (r):

AA = png( rdr (20

giving the coordination numbers of the elements associated with this feature about 4 :

fot )
Z(/u/ ey

(2

where the form factors are evaluated at ) = 0. Again, normally only a single (4,b) pair is
involved.
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SPECIFIC EXAMPLES

We now illustrate these principles with some results of AXS measurements earned out
at the X-7A beam line at the National Synchrotron Light Source (NSLS) at Brookhaven
National Laboratory. In all the measurements described here, the monochromator was set to
produce a monochromatic beam of x-rays with energies near the K edges of the elements of
interest. Usually data were collected at two energies, one just below the edge ( typically by

about 20F where 0F is the FWHM energy spread of the incident beam) and one further
below (typically by about 0.02E). AXS measurements are generally made on the low-
energy side of an absorption edge to remove the fluorescence, although a certain degree of
resonant Raman scattering is inevitable, especially in the near-edge measurement.

Data were collected in an energy-dispersive intrinsic Ge detector, with detector and

sample rotated in a (6, 26) mode. A multi-channel analyzer was used to give integrated signal
counts over specific scattered energy ranges. Normally three ranges were selected,

corresponding to elastic scattering, K, resonant Raman scattering and total scattering;
additional ranges were used in some cases where fluorescence from other elements was
involved. Integrated counts in these ranges were recorded independently as a function of

scattering angle 26, making it possible to correct the counts in the elastic scattering channel

for the K resonant Raman scattering contribution (the KK, ratio was determined in a
separate measurement with an x-ray energy above the absorption edge) and dead-time. Air
scattering, appreciable only at small angle, was subtracted. Further, the elastic scattering was
corrected for the effects of multiple scattering and attenuation in the sample to give finally the
single scatteringintensity F defined in Eq. (2). The data at each energy were then reduced to
S(O) [Eq. (8)] and g(r) [Eq. (9] (since these measurements involve isotropic disordered
materials, O and r can be represented by scalar quantities). The normalization constant 4 in

Eq.(2) was determined at each energy from the condition that §(Q) = 1 as Q@ — =,

averaging S(Q) over a suitable region at high Q. Then the difference was taken to derive
S(Q) [Eq.(15)]and g ().

Germania and germanate glasses

While the short-range structure of network glasses is generally well understood,
usually in terms of structural units identified thorough comparison with analogous crystalline
compounds, the intermediate-range structure — the manner in which these units are
organized to form a large random network — remains a controversial issue.® Further, the
modification of such glasses by the addition of metal oxides produces an order on an
extended length scale that is also not well understood.” We have addressed these issues in a
series of combined ND and AXS experiments on experiments on germania and rubidium
germanate glasses.® Germania- rather than silica-based glasses, and rubidium as the modifier
element, were chosen because the energies of the Ge and Rb edges were suitable for AXS at
the X-7A beamline.

The glasses were prepared in solid form and polished to give smooth (~50 p
roughness) flat surfaces toward the x-ray beam. A series of AXS measurements were carried
out at the Ge and Rb K edges using the procedures described above. The Rb edge
measurements in the rubidium germanate glass were complicated by the high level of Ge
fluorescence.

Average structure factors S(Q) for GeO, and (Rb,0), ,(GeO,), , are shown in Fig. 1,
germanium difference factors S (Q) in Fig. 2 and the rubidium différence factor Sep(Q) for
the (Rb,)O)o ,(GeO,), 4 glass in Fig. 3. Putting the appropriate weighting factors into Egs. (8)

and (19), we get for GeO,:
S =0.404S . +0.463S,,+ 0.1335,. (22a)
Ss, =0.6268 . . +0.3738 (22b)
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and for (Rb,0), ,(GeO,)

0.8

§ = 0.077S e + 0.2458 . + 0.1958 . + 0. 1568, + 0.2485, +0.079S ,, (23a)
= 0.284S -+ 0.4205 ;.. +0.2878 (23b)
See=0.2435 0 +0.4838 - +0.2748 4 (23¢)

where the x-ray scattering factors are calculated at Q) = 0.

For GeO,, S(¢) has the same features as S(Q), the main difference being that the
peak at 0, =2.8 A", attributed to Coulomb ordering of Ge and O, is considerably enhanced.
In molecular dynamics (MD) simulations of SiO, glass, S, and S, make positive
contributions to this peak while 5, makes a negative contribution of almost identical
magnitude.’ In all three partials, the peak arises from Coulomb oscillations in the partial pair
correlation functions g,,(r) with period 1., ~2.2 A, in phase with sin(Q,r) for g, and g,
but out of phase for g, . Taking into account the appropriate weighing factors for GeO,,
one would expect this peak to be considerably enhanced in §,,, as indeed observed.
For(szO)O.z(GcOz)Uf,, the intensity of the first peak at Q, = 0.95 A", associated with
extended-range order,” is positively correlated with the scattering amplitude of Ge (Fig. 2),
but negatively correlated with that of Rb (Fig. 3). This behavior can be explained in terms
of a chemical ordering of Rb and Ge with a period L, ~6.6 A, §;,,, and S, being positive
and §,,, negative at (), The second peak at 3, = 2.0 A" is associated with intermediate-
range order. It has a strong positive correlation with both Rb and Ge scattering amplitudes,
consistent with the crucial role of the cation-cation correlations generally found in features
characteristic of intermediate-range order such as the "first sharp diffraction peak" (seen here
as the first peak in the GeO, structure factor at , = 1.54 A™"). In molecular dynamics
simulations'® on the analogous silicate system (Rb,0), ,(SiO,), . the Rb-Rb partial structure
factor shows positive peaks at 1.1 and 1.9 A™', in agreement with this interpretation.
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Fig. 2. Germanium difference structure factor of GeQ, and (Rb,0) 2(GeO,), ¢ glasses.

Nanoclusters in zeolite

Porous structures such as zeolites, which are about 30-50% void space after dehydration,
provide a mechanism for confining materials in a controlled fashion, leading to a wide range
of applications including molecular filters, electronic devices and nuclear waste storage. We
have formed nanoclusters of Se and RbSe and CsSe compounds inside zeolite cages 1.3 nm
wide and investigated the local surroundings of the Se and Rb atoms with AXS.'" This
technique is extremely powerful for solving the structure of nanoclusters contained as a
minority species in a macroscopic host. In contrast to the more traditional semiconductors
(e.g., CdSe, CdTe), the materials studied have not been synthesized in nanocrystalline form.
Furthermore, their melting point is low, they can be readily incorporated in host porous

structures, and their elements have x-ray absorption edges in a favorable energy region for
X-7A.

The semiconducting materials were introduced into the host (Nd-substituted Y zeolite) by
vapor diffusion . TEM measurements revealed a uniform cage structure with a periodicity of
~1 nm, as expected.'? There was no sign of external Se particles, while energy-dispersive
analysis confirmed the presence of Se in the host crystal. Neutron powder diffraction
measurements, analyzed by Rietveld profile refinement, showed that the Nd-exchanged

zeolite has a typical Y-zeolite structure with Nd3+ ions residing in the sodalite cages.”’ These
results indicated that (a) the structure of the zeolite host is preserved upon incorporation of
the semiconducting materials and (b) the incorporated atoms are largely out of registry with
the zeolite host. For the AXS measurements, powder material was loaded into aluminum
holders with slab-shaped cavities sealed with thin kapton foil.

The real-space correlation function T (r) = 4xprig,(r) for the Se-loaded zeolite is shown in
Fig. 4, and those for the Rb-Se loaded zeolite at the Se and Rb K edges in Fig. 5. The first
three peaks are fitted by Gaussians in Fig. 4, and the first four for each edge in Fig. 5. For
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Fig. 4. Selenium difference pair correlation function for Se in Nd-Y zeolite, with fitted Gaussian peaks.
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Selenium and rubidium difference pair correlation functions for RbSe in Nd-Y zeolite, with fitted

Gaussian peaks.

Fig. 5.
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the Se-loaded zeolite, comparison with bulk crystalline and amorphous Se leads to the
assignment of the two peaks at 2.32 and 3.66 A with Se-Se correlations and the third at 4.00
A with Se-host atom correlations. Comparison of these results with data for the various
crystalline, glassy and liquid phases of bulk Se leads to several important conclusions. First,
the nearest-neighbor bond length and coordination number in the Se-loaded zeolite is similar
to those in the bulk phases. Second, the second-neighbor bond length is also similar, while
its coordination number is significantly lower than in bulk crystalline Se. A disordered chain
model for liquid Se (and by implication for amorphous Se) was proposed in which trans- and
cis- configurations are adopted randomly with statistical weights that depend on
temperature.'* The short-range structure observed here points to a similar disordered chain
structure for the Se nanoclusters.

For the alkali-Se loaded zeolite, chemical analysis confirmed the formation of
Rb, ;,S¢, 4 According to the Zintl-Klemm rule in which electron transfer from the alkali
moves the chemical properties of the Group-VI atom into line with those of Group VII,

Sea?" polyanions will be present in the crystal and by analogy with KTe'" are likely to persist
in the disordered state. It is seen immediately from Fig. 5 that the peak at 2.42 A appears
only in 7y(r} and not in Ty,(r), indicating that it is due to Se-Se nearest neighbors. Its
coordination number of about one shows that Sez? Zintl ions are present in the RbSe
clusters, The second peak in 7 (r) — the firstin 7, (r) — is a broad structure between 3
and 4 A, partially resolved from the high-r part of the pair correlation function. The
Gaussian fits to these peaks give unresolved doublets. It is reasonable to associate the first
peak of the doublet in both functions with the Rb-Se nearest-neighbor correlation, and the
second with subsequent correlations involving both Rb and Se atoms for the Se edge
function and Se atoms for the Rb edge function, with distances similar to those observed in
the RbSe crystal. It is evident that the RbSe forms clusters in the zeolite that mimic the
structure of the bulk compound, despite the fact that only a small number of atoms are
involved.

These examples make it clear that AXS is a powerful technique for obtaining partial structure
information in complex disordered materials, and in particular can probe the structure of
minority species in a majority host. With the more powerful sources now available, and a
corresponding development in experimental methods and analysis techniques, we can expect
that before too long full partial structure analysis, with complete derivation of all partial
structure factors, will become routine.
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INTRODUCTION

Crystal structure analysis based on Bragg diffraction data reveals only information
about the average crystal structure, such as atomic positions, temperature factors and site
occupancies. Additional information about static and thermal disorder within the crystal
can be obtained by analysing the diffuse scattering. A number of reviews of diffuse
scattering have appeared in recent years' ™. Unlike the analysis of Bragg data, for which
the same basic methods are applicable for structures containing only a few or as many as
thousands of atoms, the interpretation and analysis of diffuse scattering requires markedly
different treatment according to the complexity of the system. For relatively simple
disordered systems such as alloys or metal oxides, methods have evolved for the
quantitative extraction of correlation parameters which describe the local environment of
the different atomic species in the material. At the other extreme, in systems containing
larger (even relatively modest) numbers of atoms, extraction of the same level of detail is
simply not possible. Here it is often the case that the primary problem is to determine just
what is causing the diffuse scattering. Only ifthe problem can then be simplified in some
way (e.g. by assuming part of the system does not contribute to the diffuse scattering, or
treating groups of atoms as single entities) is it likely that further progress can be made.

Our approach to this general problem of trying to interpret and analyse diffuse
scattering has been to use computer simulation as an aid. We attempt to construct a
computer model, which captures the essential features of the particular disordered system.
The model, based on well established physical and chemical knowledge, can be as detailed
as the computer resources allow. Generally it is preferable to keep the model as simple as
possible and usually it involves only a few parameters which can be iteratively adjusted
until satisfactory agreement with the observed diffraction pattern is obtained. Although
the model that is obtained by this method does not generally give a quantitative fit to the
observed data it is at least physically and chemically plausible, and allows incorrect
possibilities to be readily investigated and rejected. Quite often we find that distinctive
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qualitative features of a diffraction pattern which can be reproduced by a simple model are
more convincing proof of the validity of the model than any quantitative measure of
overall agreement.

In developing a suitable model for any real system an understanding of the basic
diffraction equations and how different terms contribute to the diffraction pattern, is of
paramount importance. Consequently in the following section we give a brief account of
these equations, for later reference. In the next section we outline the experimental
methods we use for recording diffuse scattering patterns in the laboratory, and this is
followed by a description of the specifications necessary to produce diffraction patterns,
of a comparable quality to the experimental ones, from computer simulations . We then
describe the various simulation techniques which may be used to build a model crystal
containing occupational and displacement disorder. Finally we describe in some detail
aspects of our ongoing research into cubic stabilised zirconias (CSZ's) which provide
excellent pedagogical examples of how these various techniques, used in conjunction, can
give meaningful insight into the origins of very complex diffuse diffraction patterns.

THE DIFFRACTION EQUATIONS
A general description of diffuse scattering that allows for both short-range

compositional order and local atomic displacements can be obtained by expanding the
exponential in the kinematic scattering equation in powers of displacement.
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Here I is the scattered intensity and f,, is the scattering factor of the atom m associated
with the lattice site at the location R,, and which is displaced from its site by a small
amountu,, . The scattering vector isk = h;a* + hy b* + hyc*.  Equ. (1) expresses the
fact that the intensity distribution may be written as the sum of component intensities: the
first term being independent of the displacements, the second term dependent on the first
moment of displacements, the third term on the second moment etc. After removal of the
Bragg peak component due to the average structure the remaining diffuse intensity can
similarly be expressed as the sum of corresponding components ,

IDiffuse = IO+II+12 +I3+... 2)

It is usual in analyses of alloys and simple oxides to truncate this Taylor expansion at
second order, although recently we have shown that in some cases the third and higher
order terms are also important. Table 1 summarises the properties of these different
components. Further details can be found in Welberry and Butler’.

The first term I, is the intensity component due to short-range order and is not
dependent on displacements. There is one term in this summation for every different
interatomic vector /mn along which significant correlation may be present. Each term in
the sum involves a short-range order parameter, Othl, defined by,
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where Pﬂm is the conditional probability of finding an atom with label j at the end of a
vector r,, . given that there is an atom with label i at its origin. ¢; is the site occupancy or
concentration of atom type j. I, I and I3, which involve the displacement-parameter
components, X ¥, YU, Z Y, similarly also have terms for every different interatomic vector.
For a simple binary system I; has 6 terms for each interatomic vector, I, has 18 and I has
30 terms. Fitting equations of this form with such large numbers of parameters is a
formidable task even for simple oxide systems, but for systems containing more than one
or two atoms per asymmetric unit it is quite prohibitive.

Table 1. Summary of the properties of the different components of the diffuse intensity
appearing in equation 2.

Term Iy I, I, I,
Description Short-range Warren Huang Scattering 3rd order
order (SRO) term Size-effect Ist order TDS size term
i \2 iy
Lattice averages SRO parameters i i <(X ) > (X ) ’
involved ij <X’ > <Y ! > etc
o iy i\ Ly
<XJY)>etc. (X ) Y el
Type of cosine sine cosine sine
Summation
Symmetry symmetric anti-symmetric symmetric anti-symmetric
Variation in nil linear, i.e. with quadratic, i.e. with cubic, i.e. with
k-space hy, hy etc. hl hhyetc. b hZhyerc.
Dependence on f (f -f )
; " 2 A\Ja—Jg) 2 2 2, 2
Jafptorbinary — (f, —rp) fa(fa-15) Tasfale g Sa-falp g
B\ A B
Number of
components for 1 6 18 30
binary

EXPERIMENTAL MEASUREMENT OF DIFFUSE SCATTERING

In this section we describe briefly our method for recording diffuse X-ray scattering
patterns. Our aim has been to develop a versatile system for measuring large volumes of
reciprocal space for a wide range of materials in a reasonably short time using a
conventional tube source. The apparatus, shown in Fig. la is based on a STOE curved
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position-sensitive wire detector (A), and utilises the flat-cone Weissenberg geometry’.
The detector (PSD) is supported on a semi-circular cradle (B) mounted on one arm of a
two-circle goniometer (D). In the zero-position shown the PSD essentially provides a
read-out of the diffraction angle 26. Mounted on the other arm of D is a goniometer C
which provides the rotation (®) about a pre-aligned crystal rotation axis which is normal to
the plane of the PSD. With the PSD in a stationary position a whole reciprocal lattice
section can be recorded simply by incrementing ®. To obtain non-zero levels of reciprocal
space the two circles of D are rotated together through an angle p. In Fig. 1b we show a
typical section of raw data consisting of 1000 individual PSD scans each of which covers
~50° of26. The counts from 4096 channels of the PSD are binned into 512 data channels
each of which corresponds to 0.1° of 28. The final raw data image thus consists of
1000x512 pixels. A simple geometric transformation is then applied to these data to yield
an undistorted image of the reciprocal section, as shown in Fig. lc. If higher diffraction
angles are required a second set of scans can be made with the PSD moved around the
cradle C and the data merged into the same undistorted image. Typical counting times
used to record data are ~ 1 -3 days per scan, depending on the size of sample.

Every pixel in the raw data is binned into a corresponding pixel of the transformed
image. The size of the latter is usually chosen to be 400x400 pixels, which is close to the
maximum that allows complete coverage by the raw data. Each pixel in the transformed
image is normalised by the number of raw pixels contributing to it, so that the final image
does not require a Lorentz correction. [Note low angle pixels will have several raw data
pixels contributing to them while high-angle pixels will generally have only one or two].
The data may be corrected for polarisation and absorption. To facilitate correction of data
for absorption the samples used are usually prepared to be either cylindrical, with the
cylinder axis coincident with the rotation axis, or spherical. In this way the absorption for
any section is a function of 20 only. Air-scattering is kept to a minimum by having the
collimator aperture very close (<2mm) from the crystal and the beam-stop also as close as
possible behind the sample.

MODEL SYSTEM SPECIFICATIONS FOR COMPUTER SIMULATION

Our aim when performing computer simulations of disordered systems is to be able to
build a computer model from a realisation of which it is possible to compute diffraction
patterns of comparable quality (in terms of resolution and smoothness) to the observed
X-ray diffraction patterns. Into this model we need to introduce occupational and
displacement disorder, but rather than this being specified by the large number of lattice
averages which appear in the terms Iy, Iy, efc. of Equ. (2), we would like instead for this to
be specified by a small number of local interaction parameters which mimic what we
imagine is occurring in the real system. In this section, therefore, we first describe the
steps necessary to obtain suitable quality diffraction patterns.

If the diffraction pattern of a finite model disordered crystal is computed by direct
Fourier transformation of the atomic coordinates, the pattern will in general be very noisy
and have a speckly appearance. The typical length-scale of the speckle is of the order of
I/N where N is the number of unit cells of the model in a given direction. By increasing
the size of the model crystal the speckle grain becomes finer and the overall appearance of
the diffraction pattern becomes smoother. There is a second reason for the smoother
appearance, however. If we consider for example a random mixture of two types of atoms,
all perfectly positioned at the lattice points then the diffraction pattern is obtained from the
Iy term in Equ. (2) as the sum of a large number of cosines. There is a term for each
different inter-site vector ranging from the shortest near-neighbour terms to the longest
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corresponding to vectors of the maximum dimension of the crystal. For a random
distribution all correlations are expected to be zero, with the exception of the self-term
which produces the uniform scattering well-known as the Laue monotonic scattering. For
a finite crystal the correlations (i.e. the average over the whole crystal of the quantities
appearing in Equ. (3)) are not identically equal to zero and the differences from zero will
provide contributions which modulate the Laue monotonic scattering. Since the statistical
variation of such lattice averages generally goes as ~ NM (where M is the number of
lattice sites involved in the averages), as the size of the crystal increases the lattice average
for each correlation will be a better approximation to the expected zero value. The amount
of noise in the diffraction pattern correspondingly decreases. It should be pointed out,
however, that the averages for the very long vectors of dimension near to the crystal
dimension will still only involve relatively few sites and will approximate to the expected
zero rather poorly.

For a model crystal containing say 1000 unit cells the expected accuracy of the lattice
averages will be ~ /1000 /1000 = 0.03 and for 10,000 it will be 0.01. If the model crystal
is a realisation of a short-range order model there may be significant low-order
correlations but since correlations generally decay towards zero at larger distances many of
the higher-order correlations will not be significantly different from zero. Since their
presence detracts from the overall appearance of the pattern a means of eliminating these
terms from the calculation of the diffraction pattern would be an advantage. This
philosophy is taken advantage of in the program DIFFUSE'’. Rather than calculating the
diffraction pattern of a model crystal by Fourier transforming the whole crystal, DIFFUSE
instead calculates the average of the diffraction pattern of many small sample 'lots' taken
from random positions in the crystal. The lot size is chosen to be large enough to contain
all vectors along which significant correlation exists but avoids the many longer-range
vectors which contribute to the unwanted noise. If the number of lots is chosen so that in
the final average the whole of the crystal has been sampled at least once then the resulting
diffraction pattern is the optimum that can be achieved with that size of model crystal.

To demonstrate what these various considerations mean in practice we show in Fig. 2
some example diffraction patterns computed from a model of the Tl cation positions in the
disordered structure of TISbOGeQ,, a non-linear optical material'*'2.  Two different
model crystals have been used with sizes of 32x32x32 unit cells and 10x10x10 unit cells.
Each unit cell contains 8 cation sites. Fig. 2a shows the disposition of those sites
occurring in one half of the unitcell. Those in the other half of the cell are related to those
shown by an n-glide plane normal to a. Each cation site contains a Tl atom in either one or
the other of two slightly displaced positions (shown as grey or black circles), and the sites
are linked by a honeycomb network of inter-site vectors along which we assume
correlations occur. For the example chosen the correlations along the primary vectors A,
B, & C shown in the figure were: A =-0.90; B = +0.30; C=+0.20.

Fig. 2b corresponds to an optimum calculation for a crystal of 32x32x32 unit cells in
which 500 lots of 5x5x5 have been averaged. This a reasonably smooth pattern and shows
a great deal of detailed correlation structure. A comparable calculation using 500 lots of
5x5%S5 from crystal of 10x10x10 unit cells is shown in Fig. 2c. This is considerably
noisier and some correlation features are now difficult to discern. [Using 500 lots for this
crystal corresponds to sampling each part of the crystal ~125 times and in fact this is
mostly a waste of time since the pattern improves very little after the first ~20 lots have
been averaged]. In Figs. 2d,e we show for comparison the patterns that are obtained from
a single lot of 5x5x5 and 10x10x10 unit cells respectively. It is clear that a diffraction
pattern obtained from a crystal with a size as small as either of these single lots would be
quite unsatisfactory for comparing observed patterns. It should be noted that Fig. 2b is the
average of 500 patterns comparable to that in Fig. 2d. The improvement between Fig. 2e
and Fig. 2c largely results from the removal of the high frequency speckle.
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The general conclusion that can be drawn from this example is that to obtain a
calculated diffraction pattern which is comparably smooth and shows a comparable degree
of correlation detail to typical observed X-ray patterns, we need to use a system size of at
least 32x32x32 unit cells or for a 2D model ~180x180 unit cells. Such system sizes have
been close to the maximum that could comfortably be used on the relatively inexpensive
work-stations that have been widely available over the last few years. However, more
recently, with the reduction in cost of computer memory, computers with much larger
memory capacity are becoming commonplace and substantially larger systems can now be
contemplated.

SIMULATION OF OCCUPANCY CORRELATIONS
Monte Carlo Simulation

In order to introduce occupancy correlations into a model system like that of the
TISbOGeO, example described above, we commonly use Monte Carlo (MC) simulation.
If the interactions between atoms or molecules could be specified a priori with sufficient
accuracy then MC could simply be used to determine what correlations would result from
these interactions. This level of prescription is rarely achievable in practice and what is
required instead is the ability to produce realisations of a model with various different
correlation structures so that the importance of different interactions might be assessed.
Our general strategy therefore is to try to set up some general Hamiltonian whose
individual interaction parameters can be adjusted in order to achieve a particular set of
near-neighbour correlation coefficients (or SRO parameters).

To represent the distribution of atomic species we use a set of random variables x;,
where the index i identifies both the particular unit cell and the atomic site within the unit
cell. For a binary system x; may be (0,1) variables where for example x;=1 corresponds to
the site i being occupied by atomic species 4 and x;=0 when it is occupied by B. The site
occupancy for species A is then given by {x; ) where the average is over all unit cells. It is
sometimes more convenient to use Ising spin variables, s; = £1. Clearly s; and x; are
related (s; = 2x; — 1) and choice between these two types of variable is made for
convenience. Using the s; variables the Hamiltonian takes the form,

E:Z a0 S; +Z bnsisi—n +ZZ CnmSiSi-nSi—m telc. “
i n nm

Here s, ,, refers to the spin on the neighbouring site i-n of i. The quantity a, is a single-site
energy which has the effect of an external field in magnetic Ising systems. The quantities
b, are pair interaction energies corresponding to inter-site vectors defined by i & n. The
quantities ¢,,, are three-body interaction energies corresponding to inter-site vectors
defined by i, n & m. Four-body terms or higher may be added if required.

As mentioned above the interaction energies ag, b, & ¢, are generally unknown
quantities. In order to achieve the desired realisations therefore an iterative feed-back
procedure may be used. Suppose we wish to produce a realisation in which the two-body
correlations P,=(x; x; , ), take particular chosen values, while the occupancy, (x;) is also
maintained at a certain chosen value. For the moment we neglect multi-site terms.
Initially ay, b, are setto zero and Monte Carlo simulation is commenced. After a cycle of
iteration (a cycle being that number of individual Monte Carlo steps required to visit each
site once on average), the lattice averages ), {x; x;_,, } are computed and compared to the
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required values. If the computed averages are too low, then the corresponding a,, b,
parameter is decreased by an amount proportional to the difference between the calculated
and required average. Similarly if the computed averages are too high, then the a, b,
parameters are correspondingly increased. Provided that the values required are physically
achievable, after a sufficiently large number of cycles the values of ¢, b, stabilize and the
lattice averages (x;), (x; x;_, ) converge to the required values. It is frequently the case that
the site occupancy (x;) needs to be maintained as a constant. In this case it is often an
advantage to initially set the values of the variables to satisfy the required occupancy and
then perform all subsequent MC steps by interchanging two variables x;, x; on two
different sites, i andj, chosen at random.

It should be noted that even the simplest 2D nearest neighbour Ising model, in which
only a single b, term is active, possesses a phase transition. Use of this kind of feed-back
technique is fraught with difficulties if the system is close to such a phase transition, and
should be avoided. Despite this limitation, we have found the method to have wide
application.

Direct Synthesis of Disordered Distributions

An alternative way of treating diffuse scattering is to consider that the intensity that
occurs at any point in reciprocal space arises from a periodic modulation of the real-space
structure. This idea may be used to synthesise a real-space distribution of atomic scatterers
which will have a given diffraction pattern. In simple terms the real-space lattice is
constructed by applying modulations with wave-vectors corresponding to each elemental
volume in the first Brillouin zone of the diffraction pattern. Each modulation is given an
amplitude which reflects the intensity at that point, and a phase that is chosen at random.
For the case of concentration waves the modulations can be written in the form of a
variation from cell to cell of the atomic scattering factors. If the point in reciprocal space
is infinitesimally small then the modulation wave must extend over the whole of real
space. In practice it is more convenient to consider that a modulation extends over a
limited region in real space and that this contributes to a small (but finite) region of the
diffuse distribution in reciprocal space. Then the atomic scattering factors in real space
may be expressed as a sum of all such modulations:

fu(T) = <fu> 1+ z Aq Cos(an.T + ¢q) X exp[_(t_tc)2/203} )
q

Here T is a real-space lattice vector. f, (T) is the scattering factor of the atom in the site u
of the unit cell with origin T. The amplitude, Aq, of each modulation wave is proportional
to the amplitude of the scattering at the point G+q in reciprocal space, where G is a
reciprocal space lattice vector. ¢ is the phase of the modulation of wave-vector q at the
site 4. The summation is over all wave-vectors in the first Brillouin zone. The final term
is a Gaussian whose standard deviation o, defines the extent of the region in real-space
which is modulated (in practice the modulation is truncated at 2.50). t is a general vector
in real space and t, defines the randomly chosen centre of the region of modulation. The
effect of such a modulation is to contribute to the diffraction pattern a diffuse peak at the
reciprocal point q with a width inversely proportional to g,.

If random phases, ¢4, are used in the synthesis (and this is reasonable, since for an
incommensurate wave the choice of origin is arbitrary) the value of the atomic scattering
factor, f(T), at a given site that will be obtained from Equ. (5) will be a continuous
variable and not just a binary one (representing either atom A or atom B). This is
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overcome in practice by converting the continuous variables representing the scattering
factors into binary ones by comparing the value of f, (T) with a threshold, f;. say. For all
those sites for which [ M >fr a scattering factor f, is assigned and for those at which
fu(T) < fy a scattering factor f is assigned.

The meaning of the different variables in Equ. (5) is illustrated schematically in
Fig. 3a. In this figure the required diffraction pattern is seen to consist of a diffuse locus in
the form of a circle. The wave-vector q defines a single point on the locus and this
corresponds to a modulation in real-space centred at the point t.. In Figs. 3b,c,d we show
various stages of the synthesis of an example real space distribution. These figures show a
region of real space corresponding to 512x512 lattice sites. A given site contains either a
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black or a white atom. In this case the form of the diffuse diffraction pattern is a diffuse
ring centred at the origin with a radius of 0.1 reciprocal lattice units. The value of o, was
chosen to be 16 lattice repeats so that the area of the region covered by the 2.50, limit for
each modulation was ~5026 unit cells, or ~2% of the total area. Fig. 3b shows the
resulting distribution after 30 modulations have been added. Note that for this example the
spacing of the modulation planes is the same in each case but the phases are all different.
Fig. 3c shows the distribution after 300 modulations, and Fig. 3d after 30,000 modulations.
It is clear that Fig. 3c still shows texture relating to the modulation region size, but Fig. 3d
shows a completely homogeneous texture. In this latter case each real space site is subject
to ~600 modulations on average. In Fig. 3e we show a plot of the correlation coefficients
calculated from the distribution shown in Fig. 3d. The correlations are plotted against the
number of lattice repeats, since the correlation field is circularly symmetric, i.e. P[gm
depends only onlIr;, I

SIMULATION OF DISPLACEMENT CORRELATIONS
Monte Carlo Simulation

The Monte Carlo simulation technique described above for producing distributions
containing prescribed occupancy correlations can be carried over quite simply to the case
of displacements. In this case we wish to generate a lattice in which predetermined
correlations exist between the displacements of neighbouring atoms. For simplicity
consider a 2D lattice in which an atom at site i has a displacement, X;, from its average
position. In contrast to the s; variables in Equ. (4) X; is a continuous variable and it is
convenient to assume that it is Gaussian with zero mean and unit variance. Ie.

(x;)=0; (x7)=1 ©

In a comparable way to that for the occupancy variables in Equ. (4) a Hamiltonian can be
written in terms of interaction parameters:

E:ZZBIIXiXi—n 7
i on

Here, as before, the second summation is over all » neighbours of site i. In this
formulation there is no term dependent solely on X, since if it were present it would try
induce a shift in the average value of X; . Similarly there are no higher-order terms such as
X X, X;_,, since for Gaussian variables all moments higher than two are zero.

Simulation, using the same kind of iterative feedback described for the case of binary
variables, is then carried out as follows. First, random values for X;, are assigned using a
Gaussian distributed pseudo-random number generator. Then MC iteration is carried out
using the method in which two sites i and;j are chosen at random and the values of X, and
X, are interchanged. This move is accepted or rejected depending on the change, AE, inE
and the Boltzmann probability P=exp(-AE/T). After a complete cycle of iteration lattice
averages tor the correlations, (X, X; ), are computed and values for the interactions B, are
adjusted as described for the case of binary variables in order to move the system toward
the target correlations. After a sufficient number of cycles and provided that the values
required are physically achievable the values of the B, stabilise and the lattice averages

converge to the required values.
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In general an atomic site will have displacements which require a tensorial
description (thermal ellipsoid), involving up to six components. Any one of the
components for one atom may be correlated with any one for another atom thus making up
to 36 possible correlation parameters just for a single atom-atom interaction. Unless
sufficient approximations or simplifications can be made this method rapidly becomes
unmanageable. One example of a case where the method has been used to good effect is
in a description of the distribution of defect clusters in wiistite, Fe, ,O. In this case the
positions of defect clusters were described in terms of deviations X; , ¥;, (&, Z;) away
from an underlying regular (incommensurate) lattice in the x, y & z crystallographic
directions respectively. It was possible here to assume that the X;, ¥;, (&, Z; ) variables
were independent, i.e. all cross-correlations such as (X, Y; ) were zero. Then a suitable
description was found in which two types of correlation (and corresponding B,, interaction)
were used. These were a transverse nearest-neighbour correlation and a longitudinal
nearest-neighbour correlation. Using a nomenclature where i, j, k refer to a site on the
primitive cubic lattice, these correlations are defined as:

PTransverse — <Xi,j,k Xi,j—l,k > = <Yi,j,k Yi—l.j,k > = <Zi,j,kZi,j-l,k >

= <Xi,j,k X j k-1 > = <Yi,j,k Y k-1 > = <Zi.j,k Zi 1k > )

P Longitudinal = <Xi,j,kXi—l‘j,k > = <Yi,j,k Yi,j—l‘k > = <Zi,j,k Zi,j,k—l >

Transverse correlation means that X variables which are neighbours in the y & z directions
are correlated, while longitudinal correlation means that X variables which are neighbours
in the x direction are correlated. ~This model was used in a recent study'* of the
distribution of defects in the non-stoichiometric oxide wiistite, Fe; ,O. In Fig. 4a we show
an example realisation of the model together with the diffraction pattern, Fig. 4b, obtained
from it. The values for the transverse and longitudinal correlations for this example were
0.8 and 0.935 respectively and the unit variance Gaussian variables were scaled to give a
variance of the defect positions which was 31.5% of the average defect spacing. In
addition we show in Fig. 4c a subsequently obtained diffraction pattern using the same
distribution after lattice relaxation around the defects had been applied, and in Fig. 4d
detail from the corresponding X-ray diffraction pattern for comparison.

Displacements Using Interatomic or Inter-Molecular Forces

A second way in which the method based on Equ. (7) is unsatisfactory is that as it
stands it does not allow for the possibility that displacements will be correlated with
occupancy. In fact in many disordered systems a large fraction of the displacement
disorder results directly from local distortions resulting from relaxation around the
different occupational species. Equ. (7) could be combined with Equ. (4) and cross terms
involving, e.g.s; X;, added but this would further add to the unworkability of the method.

In reality, correlations between the displacements of neighbouring atoms result from
the forces between the atoms, and a more natural way of simulating such displacements is
to create a force-model which mimics the real situation. Ifthere is an interaction between
two atoms their displacements away from their average positions along the line of
interaction will be strongly correlated, while those normal to it will be weakly correlated.
In general the stronger the interaction the stronger the degree of correlation will be. While
such displacements could be modelled using Equ. (7), the method would be very
cumbersome. The method that we have adopted in numerous studies involving quite a
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diverse range of systems is reviewed briefly in this section.

First we assume that we have prior knowledge of the average crystal structure
obtained from Bragg analysis. We then place atoms at these average positions and inter-
link them with Hooke's law (harmonic) springs along all interatomic vectors for which we
expect significant interaction. Each spring has a force constant, k, the strength of which
can be adjusted as a system variable. At zero temperature the springs should maintain all
the atoms in the observed average positions. The force constants, k, represent the
resistance to perturbation away from these equilibrium positions. At an elevated
temperature atoms will deviate away from the mean positions, moving most along the
softest directions so that even without occupational disorder, thermal diffuse scattering
will be generated.

To take account of displacements induced by occupational disorder we adjust the
length of the spring depending on the atom types occupying the two sites joined by the
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spring. If ;1 is the distance between two sites in the average structure, then we specify the
distances for the cases where both sites are occupied by species 4 , one by 4 and one by B

and both by B, as:
dog =dg(14€40)s dpg=dy(l+esg) dpg=dy(l+epy) @)

The small increments €44, £4g. €gp are also quantities which may be adjusted as system
variables but are subject to the constraint,

L=Pyr€44 +2PpEpp + Pyt (10)
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in order to ensure that the average distance is maintained as d,,

Typical values for €44, €45, £gg may be in the range 0-2%. In a 10A cell 2%
corresponds to 0.2A or a B-factor of ~3.0, so that such displacements are at least
comparable in magnitude to thermal displacements.

As an example of the use of this method we show in Fig. 5a a diagram of the force
model used for the intercalated compound urea/dibromodecane. In this 2D simulation
the alkane molecule (in projection) is represented as a dumbbell-shaped molecule with
atomic scattering factors given by an average of those for the superposed atoms in one unit
cell depth of the urea framework. The urea molecules are treated as rigid units which can
rotate and translate. Springs of force constants k, ., and k,, link the centre of mass of the
alkane to the O and N ends of the urea molecules and springs of force constants k., and
kyy mimic the hydrogen-bond network within the urea framework. Fig. 5b shows
schematically how the length of the springs used for the interaction with the urea
molecules is longer when the plane of the alkane backbone is parallel to the contact vector
and shorter when it is normal. Fig. Sc shows a diffraction pattern calculated from a model
realisation which corresponds quite closely to the observed X-ray pattern (Fig. 5d)
recorded at 150K. Prior to the lattice relaxation an occupational model was used to locally
order the orientations of the alkanes in neighbouring channels. The arrows in Fig. 5c
indicate the strong asymmetry that is observed in the intensity across the rows of Bragg
peaks. This results directly from the lattice relaxation around the alkanes which have
assumed different orientations in different channels.

DISORDER IN CUBIC STABILIZED ZIRCOMA

Cubic stabilized zirconias (CSZ's) have extremely simple average structures (the
fluorite CaF, structure) but they exhibit extremely complex diffuse X-ray diffraction
patterns. Despite numerous attempts over the last 30 years to understand the disorder in
these materials these efforts have so far failed to yield a completely statisfactory model for
the local order, although considerable progress has been made in the last few years'®!”.
In this section we use the case of CSZ's as a pedagogical example to show how various of
the simulation methods described above can be used to obtain greater insight into a
complex diffraction problem.

The fluorite structure has 8 oxygen sites per cell and 4 cation sites. The oxygen array
is primitive but in CSZ's contains vacancies, while the cation array is f.c.c. and in CSZ's,
though complete, is disordered. Cubes of oxygens along the three cubic directions are
alternately occupied by a cation, or unoccupied, while along {1 1 0) there exist chains of
cubes all occupied by a cation (see Fig. 6).

In commencing a study of this system it may be noted that in all known fluorite-
related superstructure phases (with the one exception of the C-type rare-earth oxide
structures) all anion vacancies occur in pairs separated by 3 (1 1 1) (in a cube containing a
cation). (1 00)and 3(! 10) vacancy pairs are avoided. These (1 I 1) cation/vacancy-
pair units (see Fig. 6a) may be isolated (as in M,0O,3), in linear chains (as in M,0,,),
linked into zig-zag chains (as in the pyrochlore structure, see Fig. 6b), helical chains (as in
CagHf |4044), or helical clusters (as in CaZrOq, see Fig. 6¢)'".

From a chemical point of view it seems reasonable to suppose that the structure of a
disordered CSZ of a given composition might consist of small domains of one or other of
the known super-lattice phases which occur nearby in the phase diagram. A useful
approach to try to understand the complex diffraction patterns that are observed, therefore,
is to generate model structures in which such small domains of the various known
superstructures occur, and compare the diffraction patterns with the observed patterns. For
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this purpose we use the example of an yttrium-stabilised cubic zirconia, Zry ¢, Y 390y gos»
for which we have recorded numerous sections of X-ray diffraction data. Before
proceeding with this survey of possible models for the oxygen vacancy ordering, however,
it is necessary to consider how the structure relaxes when an oxygen vacancy is
introduced.

Model for Relaxation

Since Zr and Y differ in atomic number by only one their X-ray scattering factors are
practically identical. Consequently to a good approximation the terms that occur in the
diffraction Equ. (2) that depend on (fy —f z,), i.e. 1y & 1y, are absent. Although mean-
square atomic displacements for O are somewhat higher than for the cations, their
contibution to the intensity is relatively minor because of their much lower scattering
factor. Consequently the observed diffraction patterns are dominated by the displacements
of the cations and are described by diffraction terms Iy and higher in Equ. (2).

We therefore develop a simple relaxation model which describes the way in which
cations are displaced away from their average position in response to the removal of an
oxygen neighbour. Nearest-neighbour cation pairs are separated by (! 1 0), with a pair
of bridging oxygen sites mid-way between. Our simple relaxation model supposes that if
either of these oxygen sites is vacant then the two cations will move further away from
each other, while if both are occupied they will tend to be slightly closer than average to
compensate. This is shown schematically in Fig. 7a. The vacancy (black circle) near the
centre of the figure results in the cations (grey circles) being displaced as indicated by the
arrows. The effect is transmitted along the [110] row of cations. Fig. 7b shows
schematically the effect of this on the displacements away from the average positions in
sucha[1 1 0] row. The top row of vertical lines indicates the actual position of the cations
(large open circles) as a result of being displaced by the vacancies (black circles). Small
circles indicate the position of bridging oxygens. The lower row of vertical lines indicates
the positions of the average cation lattice, i.e. a lattice of regular spacing with the same
average spacing as the actual lattice. At the bottom of the figure the shift of the actual
lattice relative to the average is indicated by the symbols "-" if the displacement is to the
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left and "+" if it is to the right. This clearly indicates that near-neighbour cations tend to
be shifted in the same direction so that the lattice average (X;X;_) is positive, while for
rather longer vectors the shifts tend to be of opposite sign so that (XX; )is negative.
Fig. 7c shows how the summation of Fourier terms resulting from these correlations gives
a broad diffuse peak resulting from the near-neighbour positive correlations, with a ‘dark
line' at the centre resulting from the more distant negative correlations.
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Figure 7. (a) Distortion model for Y-CSZ. Cations (grey circles) tend to move away from vacancy (black
circle) resulting in the propagation of displacements along [1 1 0]. (b) Shows how the inclusion of
vacancies (black circles) produces displacements away from the average lattice positions (indicated by the
lower vertical lines) which are correlated. Near neighbours tend to be displaced in the same direction,
giving a positive correlation. More distant neighbours tend to be displaced in the opposite direction giving a
negative correlation. (c) Shows how the summation of Fourier terms resulting from these correlations gives
a broad diffuse peak resulting from the near-neighbour positive correlations, witha “dark line’ at the centre
resulting from the more distant negative correlations.
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This same basic distortion model has been used for all subsequent calculations.
Examples of calculated diffraction patterns are shown in Fig. 8 and the characteristic 'dark
line' is seen to be common to all of them, as well as to the X-ray pattern. It should be
stressed that this "dark-line" phenomenon is clearly visible only because of the condition
that fy = f,,. and the Iy & I, diffraction terms are absent. In calcium-stabilised zirconia,
although the diffraction pattterns have many similarities, the effect is much less noticeable.

A second feature of all the diffraction patterns shown in Fig. § is of note. It may be
seen that there is a strong asymmetry in the intensity between the high- and low-angle
sides of the dark lines. Since the I & I; diffraction terms are absent and I, involves only
cosine modulations, this asymmetry must originate from odd-order terms Iy and higher.
This asymmetry only occurs when the magnitude of the distortion is sufficiently high for
these higher order terms to be important. For the distortion model described above this
effect requires a difference in the inter-cation spacing, with and without bridging oxygens,
of ~3%. The same patterns computed with a smaller distortion of ~0.5% shows very little
asymmetry.

Vacancy Ordering via Monte Carlo Simulation of Pair Correlations

To test the effects of intoducing short-range correlations between oxygen vacancies, a
simple pair-interaction model was set up in which a given oxygen site interacts with the
five near-neighbour types of site, as shown in Fig. 6d. These different interactions are
specified by the parameters b,—b5. In addition to the five interactions shown, all symmetry
related vectors are included. Note that by & b, are both 5 (1 1 1) vectors but b is the
diagonal of a cube containing a cation whereas by is the d1agona1 of an empty cube.

Starting with a random distribution of 10% vacancies the effect of adjusting the

different b, can be tested. In Fig. 8 we show the diffraction pattern of the (4 k (.5) section
calculated from different realisations. Fig. 8a shows the observed X-ray pattern for
comparison. For Fig. 8b the distribution of oxygen vacancies was purely random. For
Fig. 8¢ b; & b, were set to large positive values in order to induce large negative
correlations along nearest-neighbour, ({1 0 0)), next-nearest-neighbour, ({1 1 0))
vectors. Note that for a concentration of vacancies of 10% the largest negative correlation
that can be achieved is -0.11, which corresponds to the total avoidance of vacancy pairs.
For Figs. 8d & 8e b, was additionally set to a large pos1t1ve value in order to induce a
large negative correlation alongthird-nearest-neighbour, (3(1 1 1) ). Here we use } to
denote a vector across a cube of oxygens not occupied by a cation. For Fig. 8d, in order to
promote vacancy pairs along 3 (1 1 1) in occupied cubes, a target correlation of 0.35 was

set and b, was adjusted during iteration to ach1eve this, but b5 was zero. For Fig. 8e, the
same target correlation of 0.35 was set for (1 1 1) in occupied cubes and b, adjusted
accordingly, but in addition a target correlation of 0.0 was set for the (1 1 0) vector andb
was adjusted to achieve this.

In Fig. 9 we show parts of the two realisations corresponding to the examples of
Figs. 8d & 8e. In Fig. 9a, corresponding to the diffaction pattern in Fig. 8e, it is seen that
the structure consists of mainly isolated vacancy pairs, while in Fig. 9b, corresponding to
the diffaction pattern in Fig. 8d, the vacancy pairs tend to be linked into longer chains. In
particular the region marked by the heavy line is a crystallite of the pyrochlore structure.

The diffraction pattern in Fig. 8e qualitatively reproduces all the features in the
observed diffraction pattern, although clearly there are quantitative differences. The
pattern of Fig. 8d clearly does not and so this model can be eliminated as a suitable model
for the structure. Together the calculated patterns in Fig. 8 serve to illustrate how a model
can he progressively explored in order to arrive at a structure which gives a calculated
diffraction pattern which agrees with the observed pattern. The model for Fig. 8e is still
relatively simple and appears capable of further refinement. Comparison with the
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observed pattern reveals that the diffuse peaks which are visible either side of the dark
lines differ in their detailed shape. In the X-ray pattern the peaks seem sharper in the
middle but with rather broader wings whereas in the calculated pattern the peaks are rather
less sharp but with most intensity near the peak. Such qualitative differences should
provide guidance on how the model could be developed further, but attempts to do this
using a more elaborate pair-interaction scheme have been unsuccessful.

Multi-Site Correlations

Since the diffraction pattern of any object is the Fourier transform of the pair-
correlation function (see Equ. (1)) it might be argued that a model involving only pair-
interactions should be all that is required to satisfactorily reproduce the observed
diffraction pattern, and terms in the Hamiltonian such as the 3-site terms shown in Equ. (4)
serve no useful purpose. While it is true to say that multi-site correlations do not directly
contribute to the diffraction patterns, their effects are felt indirectly, for example in the
constraints that are imposed on the 2-site correlations and the way in which these decay
with distance. Moreover, multi-site occupational correlations can result in distinctive
diffraction effects when additional relaxation displacements are considered.

In the present case, in studying vacancy correlations in CSZ's, it is important to point
out that consideration of multi-site correlations is necessary in order to generate some of
the known superstructures that occur. For example the CaZr4Og structure contains helical
clusters, shown in Fig. 6c, in an ordered arrangement in which both left-handed and right-
handed helices occur. Since such left- and right-handed arrangements cannot be
distinguished by 2-site correlation parameters it is not possible to generate an ordered
crystal of this phase using only pair interactions. To define the right-handed helix shown
in Fig. 6c, use of the 4-site interaction, s;s;.,5;.,,5;.;» Where i, i-n, i-m, i-l define the four
vacant sites, would be an obvious choice for an interaction term.

Although the inclusion of such multi-site interactions may ultimately prove to be
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necessary for a full description of the CSZ systems it represents a level of complexity, both
conceptually and in terms of implementation in a model, that we would rather avoid if
possible. Consequently we consider whether, by redefining the problem sufficiently, it
may be possible to remain with the consideration of 2-site interactions only.

Considering again the helix in Fig. 6c, we can see that what defines the handedness of
the helix is the dihedral angle between the (1 1 1) vacancy pairs in the left-most and
right-most cubes. Consequently if we consider a vacancy pair as the basic structural unit
then each cube (occupied by a cation) can be considered as having a vacancy pair in one of
4 different orientations, together with the possibility of having no vacancy pair. Thus by
replacing the simple binary variables representing single vacancies with 5-state variables
representing the position and orientation of vacancy-pairs we can again revert to
considering only pair interactions, albeit with a considerable increase in complexity. For
Monte Carlo simulation it is not clear that such a change of variables offers a distinct
advantage. However casting the problem in this new way does allow us to make use of the
modulation wave direct synthesis approach to generating disordered distributions that was
described earlier.

Modulation Wave Direct Synthesis of Vacancy Distributions

One of the seeming paradoxes of diffuse scattering in CSZ's is that while the X-ray
patterns appear complex, electron diffraction patterns appear relatively simple and
moreover appear basically the same in many different systems. The electron diffraction
pattern shown in Fig. 10a is a typical pattern obtained when the vacancy concentration is
~8-10%. This pattern, corresponding to the [1 | 2] zone axis, shows a series of diffuse
circles. These are visible both as clearly defined circles but also as pairs of peaks resulting
from the intersection of the Ewald sphere with circles which are inclined to the projection
axis. All the circles can be shown to occur at positions centred on %{1 1 1} and oriented
normal to (1 1 1) as shown in Fig. 10b. The main reason that the electron diffraction
patterns are so different from the X-ray patterns is that the scattering, being displacive in
origin, has strong azimuthal variation. This azimuthal variation is largely removed in
electron diffraction as multiple scattering results in intensity being transferred from one
region of the pattern to another translated by a whole reciprocal lattice vector. Thus all
reciprocal unit cells in Fig. 10a look essentially the same. On the other hand the pairs of
peaks which straddle the dark lines in Fig. 8a may be recognised as being the same
features as the pairs of peaks in Fig. 10a.

As a result of these comparisons we might suppose that the circular features
observed in the electron diffraction pattern are a reflection of the basic compositional
ordering of defects that occurs in CSZ's and that the X-ray patterns give a detailed picture
of how the atoms relax about these defects. To test this, therefore, we can use the
modulation wave direct synthesis method to generate distributions of defects and the apply
the same relaxation procedure as before to obtain the final calculated diffraction pattern.

A particularly simple model is to suppose that each of the four different orientations
of diffuse ring shown in Fig. 10b is due to the distribution of defects (3 (1 1 1) vacancy
pairs) in the particular { 1 1 1 } plane normal to the {1 1 1) vector which is bisected by the
ring. Le. we consider the plane consisting of the triangular mesh shown in heavy lines in
Fig. 10c, which links all the vacancy pairs drawn as filled circles. Wave-vectors q
corresponding to points on one of the diffuse circles were then used to carry out a direct
synthesis of the distibution of vacancy pairs of the corresponding orientation. Since 10%
vacancies are required in total only 2.5% are required for one orientation, and for the total
synthesis the process is repeated using diffuse circles, planes and vacancy-pair orientations
in each of the other three { 1 1 1 } orientations. One plane from the resulting 3D synthesis
is shown in Fig. 10d. Here the black dots indicate the position of the vacancy pairs and the
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larger circles drawn around most of the vacancies have a diameter corresponding to the
reciprocal of the radius of the diffuse circle.

These four separate syntheses are quite independent, but with such a low
concentration of defects, the chance of more than one vacancy pair occurring in a given
cube of oxygen sites is very low (~0.06%), so that the coordination of the cation site is
only very rarely less than a chemically plausible six. A calculated diffraction pattern for
the (h k 0.5) section obtain from this kind of synthesised distribution is shown in Fig. 8f.
The pattern (and ones calculated for other reciprocal sections, not shown here) is in
excellent (qualitative) agreement with the observed pattern. By adjusting the detailed
distribution of the modulation amplitudes as a function of the radius r it is likely that the
agreement could be further improved, although this has not been attempted. The extreme
simplicity of the model, as described, allows new insight into the origins of the disorder to
be gained, and it is doubtful whether this would be enhanced at this stage by a more
quantitative fit.

Inspection of the distribution of defects in the plane normal to the (1 1 1) shown in
Fig. 10d provides a clue to a possible mechanism for the disorder. Around each defect
(except in a few places where 2 defects occur very close together which we attribute to
approximations inherent in the synthesis method) circles have been drawn with a diameter
equal to the reciprocal of the radius of the diffuse circle used in the synthesis. It is seen
that these circles tend to be predominantly in close contact with each other but with very
little overlap. Le. the figure is very suggestive that around each defect there is a zone of
exclusion where it is energetically unfavourable for another defect to occur, but that at a
larger distance of, ~1/r, it becomes energetically favourable again. The whole plane
appears to consist of two types of region, one defect free and the other consisting of
defects closely packed with a mean separation of ~1/r. It should be noted that, in an
equilibrium situation, if it were simply that defects tended to repel each other we might
expect that the distribution would be more like that of a liquid with a mean inter-defect
spacing defined by the concentration. The tendency for defects to avoid each other may be
understood in terms of the strain field that will exist around the defect, and which will
require a certain distance to dissipate, but the tendency to cluster at a preferred distance of
~1/r is not so easy to understand.

Such phenomena have been explained by Cahn, in the case of alloys, in terms of
spinodal decomposition'®. This occurs when a system is placed in a part of the phase
diagram where a homogeneous single phase mixture is unstable and unmixing tries to
occur. The description requires the solution of a diffusion equation involving
thermodynamic, elastic and interface energy parameters. The outcome however is that
compositional modulations develop and, as a function of time, the distribution of the
wavelengths of these modulations shows a trend towards quite a narrow spread centred
around a dominant wavelength (see Fig. 10e). Although in elastically anisotropic
materials the wavelength may be orientation dependent, for cubic materials such as CSZ's
the wavelength may be expected to be orientation independent, hence producing the
uniform 'ring' of scattering.

CONCLUSION

In this paper we have described the theoretical background, the experimental methods
and the computer modelling techniques that we have used to investigate of a wide range
of disordered materials. The emphasis in our work is on trying to obtain a physical model
which captures the essence of a particular problem so that insight into the mechanism of
the disorder can be obtain. Methods to simulate both occupational and displacement
disorder have been described, with reference made to particular examples where these
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methods have been used. The example of Cubic Stablised Zirconias has been described in
some detail as it represents an excellent pedagogical example of how several of the
different modelling techniques can be used and shows how a simple model can provide
real insight into how the complex diffraction patterns occur.
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INTRODUCTION

The notion of structure in a material which has no intrinsic long range order is often a
difficult concept to grasp. For an army marching in orderly ranks it is easy to see the rows of
soldiers with their uniforms and equipment all exactly the same, all moving to a strict pattern,
all in the same direction. The order is there and obvious to all. For a crowded shopping mall
however, filled with people moving in different directions, with different speeds, dressed in all
manner of different clothes, and carrying a whole range of different ‘equipment’ (bags,
strollers, perhaps a walking stick, and so forth), it would be hard to describe this as orderly.
Indeed this would correctly be described as a highly disordered situation: from a given point
in time and place in the mall it would be hard to predict exactly what was going to happen
next.

Yet even in the disordered system of a crowded shopping mall there is still a degree of
order present. Even in dense crowds with people moving in all directions, people normally try
to avoid collisions with each other. They do this almost unconciously by walking towards
spaces near them which nobody else occupies, but if they do collide then they soon discover
that short range, but strong, repulsive forces come into play that prevent them occupying the
same space! Equally similar kinds of influence determine that people enter shops by going
through doors and not by walking through walls or windows. Thus the repulsive forces
between the people in the mall, and between the people and the walls of the mall, define a sort
of residual structure, one that relates to the fact that no two people can occupy the same
space at the same time, nor can they pass directly through the walls of the mall.

To carry this analogy one step further, the residual structure of the disordered shopping
mall is determined not only by the repulsive forces between people. There are also longer
range interactions. A person seeing their child or a friend in the distance might well move
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towards them and stop and talk to them or hold hands (example of an attractive force). 1f
someone came in brandishing a gun, probably people would rush away and towards the exits
(repulsive force). The distribution of people in the mall is therefore also influenced by these
longer range interactions which may be present.

The atomic-scale structure of a liquid or disordered solid is quite analogous to the
example of the crowded shopping mall. Atoms and molecules are in principle free to occupy
any spot in the material (and in the case of a liquid they are free to move in all directions with
a variety of speeds), but they can only do this subject to the arrangement of neighbouring
atoms and molecules, and to the repulsive and attractive forces which act between them.
Therefore the problem of defining the structure of a liquid or disordered solid is complicated:
on the one hand you really need to know the forces that act between the particles of the
material, on the other you need to know how the particles are arranged. The two factors are
obviously related, but how?

This is one example out of a huge class of problems which are called many body
problems: even if you know the interactions between the particles you cannot predict exactly
their arrangement. Conversely even if you know the arrangement of the particles you cannot
easily determine the forces between them. Perhaps the single most difficult concept to get
across for a disordered system is that even if the forces between the particles arc known,
there still will be no single structure (in the sense of a well defined crystal structure) which is
consistent with those forces. Instead the structure must be characterised in terms of
distribution functions, which measure the extent to which the positions and orientations of the
system are correlated : a high degree of correlation between atoms and molecules indicates a
high degree of structure; conversely weak correlations indicate a weak structure, and of
course in practice there will be a whole spectrum of cases from strongly structured to weakly
structured. Silica glass is an example of a highly structured disordered system: low density
helium gas is an example of a very weakly structured disordered system.

This paper is about ways to measure and characterise the structure of such disordered
systems using radiation diffraction experiments. In recent years there have been huge
developments in the techniques that can be applied to these systems. Diffraction techniques
(which in principle measure directly the radial distribution functions associated with a
particular system) are able to map the structure with unprecedented speed and precision. This
means that structures over a range of thermodynamic state conditions or through a phase
transition are readily obtainable. Data processing techniques, that is the process of reducing
the ‘raw’ data from the diffraction experiment to useful distribution function, have improved
enormously. Perhaps the most important development however relates to the fact that
computer simulation techniques are now being increasingly applied to the problem of
disordered material structure refinement. This technique, which is essentially an approximate
way of solving the many-body problem, allows prior information, such as overlap constraints,
molecular geometry, dispersion forces (where these arc known or can be estimated), inter-
atomic bonding constraints (e.g. hydrogen-bonds), possibly even thermodynamic information,
to be built automatically into the structure refinement process. The picture of structure which
emerges from these new structure refinement tools is therefore correspondingly highly
detailed. It would be fair to claim that the ability to refine the structure of a complicated liquid
or disordered material has now reached the same level of sophistication as was reached nearly
30 years ago for crystalline structures by Rietveld [1]. Indeed, as can be seen from several of
the other papers in this volume, many of these new techniques are now being applied to try to
understand the residual disorder in manycrystalline materials.

In the sections that follow, the notation used to describe the structure factor and
distribution functions of a disordered system is first defined. Then the Minimum Noise
method for extracting reliable radial distribution functions from diffraction data will be
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outlined. Note here that there will be no description of the numerous corrections that need to
be made to diffraction data before this transformation can he made, since these are already
well documented in more specialised texts [2]. The spherical harmonic expansion of the
structure factor is introduced with the idea that the coefficients of this expansion are to be
regarded as the essential “storehouses” of structural information in a system, particularly
when molecules or a well defined local geometry is present. Finally the concept of Empirical
Potential Structure Refinement is described, which introduces the use of computer
simulation to refine the structure. The paper is then finished with some examples of applying
the full range of techniques to diffraction data from liquid water and amorphous silica.

THE STRUCTURE FACTOR OF A DISORDERED SYSTEM
Single Atomic Component

The scattering amplitude of an array of N atoms each with scattering length b is defined
as

F(Q)=2b] expiQ-r, (n,

where Q=k; - kf is the change in the wave vector in the scattering event, |Q|=4z sin6/1

with 26 the scattering angle and A the radiation wavelength, and 1, jg the position of the jth
atom. The scattered intensity, or differential scattering cross-section, per atom of sample is
then defined as

1(Q)—~F(Q)F(Q Zhb expiQ- (r *r,()

(2).
= <I)2>+L2‘(b)2 cxpiQ-(r, -r, )
N j*k
T T
“self” “interterence”

It will be seen from (2) that in the sum over pairs of atoms, the sum can be separated out
into two terms, that for j = k, where the atoms correlate with themselves, the so-called ““self”
term, and that where j # k, the “interference” term, where the atoms are correlated with other
atoms in the system. It is the latter term which provides the useful structural information
about the system in question. For the self term, because this corresponds to an atom
correlating with itself, the scattering level is proportional to the average of the square of the
scattering length, whereas for the interference or distinct terms the scattering level is
proportional to the square of the average scattering length. In general for neutrons the
scattering length depends on both the isotope and spin state of the nucleus, but these states
are not normally correlated with the position of the atom, so the averaging over spin and
isotope states can be done outside the sum over atomic sites. It is the ability to vary b, either
by isotopes with neutrons, or by anomalous dispersion with X-rays, that gives modern
diffraction experiments a significant edge over their earlier counterparts which did not exploit
this capability. (For X-rays of course the scattering length is O dependent, but this
dependence can be estimated to a good degree of accuracy [3].)
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The contact between the structure factor of the system and the distribution function
which represents the arrangement of atoms is made via the density-density autocorrelation
function, G(r) [4], which measures the density of atoms a distance r away from an atom at
the origin. This function includes the self and interference terms as in (2):

G(r)= %J.dr’n(r’)n(r' +r)=8(r)+ pe(r) 3
T

“self” “interference”

where n(r) is the density of atoms at any point r in the system, p is the average number
density of atoms, and g(r) is the well known radial distribution function of the system,
representing the ratio between the local density of atoms a distance r from an atom at the
origin to the average number density of atoms in the system. When written in the form
4mprg(r), this distribution is also sometimes called the pair distribution function (PDF).

The scattering intensity is essentially the 3-dimensional Fourier transform of G(r),
bearing mind however the distinction in scattering amplitude between self and distinct terms:

1(0)=(b*)+ ()’ [S(Q) -1+ N5(Q)] @),

where the structure factor, S(Q) is defined as:

[s(0)-1]= 47zpjrdrg )—1)“';?’ &)

and the 8(Q) function in (4) represents the Q=0 Bragg peak that is present in every diffraction
experiment, but because the system being measured is normally macroscopic it cannot be
observed. Hence this term is normally left out of expressions for the scattering intensity.

Extracting the differential scattering cross-section from a set of diffraction data is
typically a non-trivial process and so details of how this is achieved are left to a more
specialised account [2]. The primary focus in this paper is the structure factor, S(Q), and the
associated radial distribution function,g(r).

Multicomponent Systems

Most systems of interest contain more than one atomic component, and often several of
these. If more than one component is present in the system then equations (1)-(5) need to be
generalised. For example if there are two atomic components, ¢, B, with N, N; atoms of

each, so that N =N, + Ny, and the atomic fractions of each component are defined as
N,/N, ¢y = N/,/N , then the differential scattering cross-section is defined exactly

as before, but the structure factor can now be split into three terms depending on which pair
of atoms are interacting:
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Figure 1. Measured structure factor of silica glass (points), alter removal of the sclf scattering. The line
shows the Minimum Noise {it to these data using the procedure described in section 3. The data were
obtained on the SANDALS diffractometer at 1SIS.
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where, for example, the o} partial structure factor is defined as

sin Qr

r

[Sas(Q)—1]=47p[ rdr(g,,(r)-1) ).
0

Figure 1 shows the measured structure factor for silica glass, which is a weighted sum of
0-0, SiO and SiSi partial structure factors, after removal of the self scattering.

For an M component system there will be M(M+1)/2 such partial structure factors
needed to characterise the structure of the system. Therefore the data from a single diffraction
experiment on the material can be complicated to interpret in terms of the likely atomic
structure: it is very likely there will be overlapping interatomic distances involving different
pairs of components. Hence a technique such as isotope substitution or anomalous dispersion
can be invaluable in sorting out which pairs of component atoms contribute to a particular
feature in the diffraction pattern or radial distribution function.

MINIMUM NOISE RECONSTRUCTION OF THE RADIAL DISTRIBUTION
FUNCTION

The idea of minimum noise reconstruction (MIN) [5,6] originated from the wide
application of Maximum Entropy reconstruction to problems with incomplete and noisy data
[7]. The inversion of structure factor data, which are invariably noisy and are available over
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only a limited range of O, to radial distribution function is a perfect example where such a
procedure might be useful. In fact the experience was that with MaxEnt, residual truncation
oscillations always appeared in the reconstructed distributions, and these oscillations were
(raced to a problem with the functional form of the entropy function itself, which has a
quadratic form with respective deviations from the assumed “reference” distribution. This
quadratic form meant that large peaks carried proportionally a much larger weighting on the
entropy than small ones, so that the larger ones, which might have been real features present
in the data tended to get surpressed, while small features due to truncation “ripples” were left
unaffected since they made virtually no contribution to the entropy [5].

The trick around this difficulty was to define an alternative form of the entropy
functional, this time called the noise functional, in which significant deviations by any
particular trial distribution from the reference distribution made only a linear contribution to
the noise. Thus a peak which was twice as large as another carried a penalty of only twice the
noise value, and not four times the entropy value as in traditional MaxEnt. In addition since
the reference distribution is not known beforehand for any particular case, the reference
distribution was simply a smoother version of the trial distribution.

To understand how this works, suppose there are a set of data, D, (i=/,1) with
uncertainties o;. It is desired to find a model. M, (j=1.J), or set of models which are consistent
with the data. For this there exists atransform 7, ;between model and data which produces a

J 2
fit F; :ZT,; M, . The quality of fit is determined from  ¥° = 2([)2% . If the transform
4 ! t
matrix is set up to correspond to the kernal of equations (5) or (7), then simply minimizing %’
on its own is effectively the same as performing a direct inverse Fourier transform on the
structure factor data, and so there is no gain. However if an additional noise constraint, N,
which measures how noisy a particular model is, is added to y°, andthetotal quality factor.
Q0 =x P+ AN, s minimised, then the model distribution should not only fit the data within

the known uncertainties, but it should also satisfy the specified noise criterion. The factor 2 in
this definition is simply a variable: too small a value of A will correspond to good fits to the
data but noisy model distributions, while too large a value of A will correspond to a very

M (“'Peak”) MJ
+
) M.
+ j+1
+
+
Mj-l + (“Valley”)
| T :
-1 i i+l

Figure 2. Three points in a model distribution, M



smooth model distribution, but a poor fit to the data. No doubt a more sophisticated Bayesian
analysis could be imposed to determine the best value of A [8], but in practice a simple trial-
and-error procedure has worked quite satisfactorily up to now.

The noise function that is used here is based on the idea that the distribution functions of
physical systems are expected to be continuous and have continuous derivatives. This is
difficult to ensure when by definition the model will be defined only at discrete positions.
Nonetheless it is still possible to impose a degree of connectivity between neighbouring
values. Fig. 2 shows three points in a model distribution, j-1, j, and j+1. The noise function

[6] is defined such that it goes to zero when point j is midway (in the vertical direction)
between j-/ and j+/, and initially it grows quadratically as it moves away from this position.
However if j is either above or below either of its neighbours (shown by the horizontal dashed
lines in this figure) to form either a “peak” or a “valley” the noise function then grows linearly
with the deviation [6], The result is that each point in the model distribution has an associated
noise value, N,, with the total noise given by N = ZN/ .
/

In fact the original paper [6] which describes this noise function contained a
typographical error, so for completeness the full noise function is repeated here again. Initially
a reference distribution is defined which is smoother than the trial model distribution:

|
R, :Z[MH +2M, +M ] ().

The deviation of the jth model value from this reference distribution is given by
X, =M, —R,. The noise is then defined as

N, =X/W, (9)
where the weighting function W, is defined as
|

W, = Y

]

wM/,I) if IX,‘S%R/ {(a)

) x| if |X|’>51RI )

j+l

(10)

The weighting W; is introduced here so that, in line with the discussion given above, the noise
values are down weighted in regions where the model curve is changing rapidly with j, or
where a significant peak appears. Cases (a) and (b) above correspond to the situations of
when M, is either (a) between the horizontal dashed lines of Fig. 2, or (b) outside this region.
It is this weighting function which makes Minimum Noise reconstruction significantly
different from standard MaxEnt, and which allows the MIN reconstruction to remove
spurious small truncation peaks while still permitting large real ones. Standard (linearised)
MaxEnt would have set W, = 1.

In order to minimize the quality factor, it is necessary to apply a fluctuation §; to the
model at point j. This causes a change in the fit to the data, Ax’(j) and to the noise value, AN,
due to the fluctuation at j. The change to the quality factor is then given by

AQ, (j):A);z(j)-rﬂAN,:2A,5,+B,6“; (rn
where
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A—L 12
+W (12)

1
B = L+ A — 13).
! ,226z w )

The form of these equations ensures that discontinuities in the second derivative of AQ, do
1 . . .
not occur at ‘X/‘ ZEWI, and it enables a rapid solution to be found for the problem of

minimising equation(11).
Dropping the suffixes in (11) for brevity, it will be noted that because this equation is
exactly quadratic in &, the minimum value of the quality factor will occur at é = —A/B, with

() —
/

a minimum value of AQ ~AJ/B. However simply inserting this deviation into the

model will not necessarily produce a global minimum to (), since neighbouring values of; are
coupled by both the data and the noise function. Hence an iterative method is implied,
adjusting each j value in turn. In practice the solution converges very rapidly, typically
requiring between 5 and 50 iterations to find a global solution.

The form of this equation also prompts the idea of going a step further and attempting to
estimate the uncertainty in performing the inversion. Making the substitutions
AQ; =AQ, + A’/B, and §" =5+ A/B equation (11) becomes

W2

AQ; =B6 (14)

which is precisely the form for the potential energy of a simple harmonic oscillator with force
constant k = 2B. Thus instead of choosing simply the minimum value of &*, a range of
possible values can sampled by choosing randomly (in the Monte Carlo sense) from a
probability distribution of the form

p(&’)~exp[~ B[é') (15)
,

where Ty is a global “temperature” applicable to all j values. Experience with using this
Monte Carlo sampling method indicates that it actually speeds up the process of convergence
quite significantly.

It will now be apparent that the value of B gives a direct indication of the likely
uncertainties in the model distribution function: essentially if B is small for a given j value
there will be weak constraints on the allowed values of &, while if B is large, the values of &
will be strongly constrained.

One final point to be noted is that the effective temperature, Tk, used here is not
necessarily arbitrary. One of the rules about a harmonic oscillator is that its average potential
energy and average kinetic energy are equal. From what was said above the potential energy

of an individual oscillator can be written down as —AQS”""), so the average potential energy

of each of the J oscillators is 7}, = %Z Af/B, . Thus the likely value of the temperature is
!
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Figure 3. Example of a minimum noise fit to a set of (simulated) very noisy data. Note that in the region
where there is apparently a peak the fit has found such a feature, but elsewhere the fit is considerably
smoother than the original data and almost featureless. In the region of the peak some small residual
“spikyness” is seen because the fit is clearly uncertain precisely where the correct curve should go. Ensemble
averaging over a large number of iterations improves this. Increasing A would also produces a smoother fit,
but will also round off the peak more noticeably.

8
7 1 g(r) Si0,

AN AR

0 2 4 6 8 10 12

Figure 4. Minimum Noise Fourier transform of the data shown in Fig. 1. Note the sharp SiO and 0-O peaks
obtained. The area of the first peak corresponds to 3.95+0.21 oxygen atoms around silicon. Note that in
obtaining this transform no smoothing or truncation functions were emplyed, and the transform matrix, T;
included the resolution function of the diffractometer on which the data were obtained. The small SiSi peak
near 3A is clearly visible in the transform, against the backdrop of much larger peaks. h’
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obtained by setting 7y = T,. Hence if the distribution starts a long way from the global
minimum ), the effective temperature has to be re-estimated at each iteration so that the
kinetic energy of the system follows the potential energy. Once equilibrium is established then
sampling fluctuations from the distribution (15) allows some idea of the uncertainties in the
reconstructed distribution function to be generated, and the ensemble average of all the trial
model distributions should coincide with the global minimum of),.

A simple example of applying this procedure is shown in Fig. 3, which is the case of
trying to generate a reasonable and smoother curve through some very noisy data. In this case

1 i=j
the transform matrix is obtained simply by setting7, = {() i
t+]

Application of the MIN procedure to evaluating Fourier transforms works in exactly the
same way as this, but with a transform matrix corresponding to the appropriate kernal (5) or
(7). In this case it is possible to apply additional constraints, such as the fact that g(r) is
expected to be precisely zero below a pre-determined value of r: for values of j corresponding
to these values of r the model is set initially to zero, and no fluctuations are allowed in this
region. The MIN Fourier transform of the data of Fig. 1 is shown in Fig. 4.

THE ORIENTATIONAL PAIR CORRELATION FUNCTION AND ITS
SPHERICAL HARMONIC EXPANSION

For systems containing molecules the site-site partial structure factors of section 2 do
not provide a complete description of the structure of the material. The theory of molecular
fluids [9] indicates that understanding the relative orientation of neighbouring molecules is a
vital element in the theory of molecular systems, and that in these cases the site-site
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distributions measureablc by diffraction are in fact orientational averages over the
orientational pair correlation function, and so contain less information. In the following
section a practical way of estimating this orientational correlation function, given a set of
diffraction data, will be described. Here the intention is to establish the fundamental ideas.

The orientation of a general molecule relative to a set of coordinate axes is
conventionally defined via three Euler angles {0,8,%). [9]. For linear molecules this number
reduces to 2, but otherwise there is little simplification that can be employed. Therefore if we
are to estimate the orientational pair correlation function, g(r,m,,m,), strictly it is a function of
9 variables: 3 Euler angles for the molecule at the origin, ®=($:.6,,)), 3 Euler angles for the
second molecule, m.=(¢:,0,,%2), and 3 coordinates r=(1.8, ¢;) to specify the position of
molecule 2 with respect to molecule 1. In practice for an isotropic system such as an
homogeneous liquid, glass or a powdered crystal these 9 coordinates are not all irreducible,
and for the purposes of describing and plotting the orientational correlation function the
number can be reduced to a unique set of 6 coordinates by rotating the laboratory coordinate
axes to cooincide with those of molecule 1 at the origin. In this case the relative orientation
of molecule 2 to molecule I is define by the Euler angles ¢nm.Bn1.¢m) (see Figure 5).

Attempting to store a function of 6 variables would require an enormous volume of
memory even for one particular system. If we imagine digitizing angles into steps of 5° and
assume 100 radius values are needed then for the case of an arbitrary shaped molecule with
little symmetry the amount of memory required would be 72'x36"x100 =40 Gbytes, assuming
an § bit word is sufficient to store the intensities! With molecular symmetry this number will
be reduced, but even in the case of water the number is only reduced by a factor of 4. This
limitation is no doubt one reason why the orientational pair correlaiton function is rarely
displayed in the literature.

However I have pointed out [6,10] that a tremendous memory saving is achieved by
emptying the spherical harmonic expansion of the orientational pair correlation function. This
was first described by Blum et. al. [11], and has been repeated by several authors since then.
The notation used here follows closely that used by [9] and [10]. Essentially the orientational
pair correlation function is expanded as sum of products of generalised rotational matrices
D! (®). and the object is to determine the radial dependence of the coefficients of this series,

nin

(L, ir):-

grw,w)=Y Y > el lnny o )C( L Em mym)
L g g, k (l())
x Dy, (o)) D, (w,) D,,(w)

o

where C(/,/,/;mm,n) are the Clebsch-Gordan coefficients.

The first term of this series, ((){)();()()), corresponds to the radial distribution function of
molecular centres around the central molecule, after averaging over all orientations: if there
were no orientational correlations this would be the only term needed. Higher order terms
introduce the orientational correlations with increasing precision. In practice it is found that
the number needed depends on the degree of molecular symmetry and the degree of
orientational correlation. Typically the number of coefficients needed to achieve adequate
resolution of the orientational correlation function varies between 50 and 1000 for most
molecular liquids, and assuming these are specified at 100 radius values, the memory
requirement is at most 10 words, which is within easy reach of modern computers. Once the
coefficients are estimated the orientational pair correlation function can be inspected for
particular relative orientations: there is no need to perform a new calculation of coefficients.
Thus they are important “storehouses” of structural information on the material.
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The actual [mn values that need to he stored are determined by the molecular symmetry
of molecules 1 and 2: the coefficients for values that are not compatible with the molecular
symmetry are identically zero and so do not need to he estimated. Hence the molecular
symmetry is built into the expansion by default. This is another reason why the spherical
harmonic expansion is a highly economical way of storing structural information.

To see this point, it is instructive to write the site-site structure factor (which is
measured in the diffraction experiment) in terms of these spherical harmonic coefficients - this
expansion serves to illustrate the connection between measured data and the orientational pair
correlation function:

SOV=YS N b by f (1,1,1)C(11,1:000)4, (O, )i, (Qd )

fhl nny, aff (]7)

X D,f‘o( 0, )[)u u( ‘/I)H(lll.‘/"”'nl;Q)

where

H(LLLnn,; Q) = 47rp_" rre(l L, ) j (O Ydr (18).

4]

Here the position of each atom o in molecule 1 is defined by the vector ((1,,, ,,,)

where d, is the distance of the atom from the centre of the molecule, and @], =(6},.¢/,)

defines the angular position of this atom within the molecular coordinate frame. The product
of the rotation matrices and spherical Bessel functions serves to ensure that only coefficients

with the correct molecular symmetry are accessible by the experiment. The factor f(I,/,/) is

simply a function of its arguments [10].

This expansion also highlights the distinction between neutron scattering and X-ray
scattering from molecular liquids. Hydrogen atoms are largely transparent to X-rays: since
hydrogen atoms tend to sit on the outside of organic molecules they will generally be a
greater distance from the center of the molecule. Thus X-rays will be more sensitive to the
distribution of molecular centres, while neutrons, which are strongly scattered by hydrogen
will be more sensitive to orientational correlations. This is a good example of the
complementarity between X-rays and neutrons.

It will be noted that despite its apparent complexity, equation (17) is a simple linear
transform of the orientational expansion coefficients, and is therefore susceptible to Minimum
Noise analysis. Thus the early work with this expansion used the MIN procedure to estimate
the coefficients [6,10]. Although this usually gave sensible reconstructions, difficulties were
encountered in complex molecular liquids and mixtures in ensuring that the reconstructed
distributions were physically reasonable. That is there was little that could be done to ensure
they did not go strongly negative in some orientations and positions. Therefore an alternative
approach was developed, using computer simulation as the tool, to model distributions of
molecules which were consistent with the diffraction data, but which also satisfied specified
overlap constraints. The result, which can be regarded as an off-shoot of the Reverse Monte
Carlo method [12], is called Empirical Potential Structure Refinement, EPSR [13].

ESTIMATING THE SPHERICAL HARMONIC COEFFICIENTS - EMPIRICAL
POTENTIAL STRUCTURE REFINEMENT (EPSR)

Computer simulation using Monte Carlo (MC) or Molecular Dynamics (MD) can be
regarded as an approximate way of solving the many-body problem alluded to in the
introduction [4], Given a force field for intermolecular interactions molecular assemblies can
be generated which in principle are determined by those force fields. In practice there are a
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couple of approximations involved which may or may not affect the result. Firstly it is realistic
to perform the simulation with a few hundred or perhaps a thousand or more molecules.
Larger systems can be simulated but there is a corresponding increase in computing time.
This means periodic boundary conditions must be imposed whereby if a molecule moves out
of the simulation box it must immediately reappear at the corresponding point on the opposite
side of the box [14]. A more complex correction arises from the fact that the forces between
molecules are often long range and go beyond the size of the box being simulated. The
precise method of correcting for long-range forces can affect the results of the simulation,
particularly if thermodynamic or dynamic information is being calculated. Fortunately for the
calculation of structure the result does not seem to be overly dependent on the precise way
that the long range corrections are dealt with.

The EPSR technique works by initially performing a standard MC simulation [14] of the
system of interest, using an assumed force potential Uy(r), called the reference potential,
between the atoms and molecules of the system. This potential will normally have built into it
all that is known about the atomic overlap, dispersion, and electrostatic forces between
molecules. For molecules it may also have the set of harmonic forces needed to define the
molecule, including constraints on bond angles. For molecules with internal rotational degrees
of freedom about particular bonds, these are treated as free to rotate at the present time,
although there is nothing in principle to stop torsional forces to be included if these are
known. This reference potential is therefore an attempt to build into the structure refinement
at the outset chemical and physical constraints where these are known.

This simulation is brought to equilibrium, and once this is achieved the radial distribution
fucntion(s) of the system can be estimated and compared with those derived from the
diffraction measurements. Almost invariably discrepancies are found. These discrepancies will
be larger or smaller depending on how good the reference potential is. The EPSR method
works by trying to determine a perturbation to the reference potential which when used in the
simulation will produce a radial distribution function closer to what has been measured.

It does this by noting that every radial distribution function has a corresponding potential

of mean force l//,,/](r)= —len(g,,/,(r)). Thus there will be a potential of mean force for the
simulation ¥, (r)= —len(g;p(r)), and one for the data, y,(r)= —len(g(Z,(r)). These

£

two potentials can be used to define the perturbation to the reference potential:
Uap(r)=Ua(r)+ (wan(r) - wis () = U () + ktinfesy () elp ()] (19)

This new potential is now used in the simulation in place of the reference potential, and once
again the simulation is brought to equilibrium with the new potential.

This process of refining the potential is repeated many times, and, if all goes well, at the
end there are set a radial distribution functions derived from a physical distribution of atoms
and molecules which are consistent with a set of diffraction measurements. If, as sometimes
happens, the diffraction data (or at least the radial distribution functions derived from the
diffraction data) contain artifacts due to a systematic error left over from the original data
analysis, then the simulation will show these up by being unable to generate good fits to the
data. Thus the simulation is also a check that the data themselves are sensible, to the extent
that this is possible.

A few additional features need to be addressed. Perhaps the most immediate problem is

the noise in the simulated radial distributionfunctions, g,f/,(r), which arises from the simple
fact that the simulation has only a finite number of particles in it. Thus even if the supplied
radial distribution functions, g, () are smooth, repeated direct application of equation (19)

as it stands would rapidly lead to a very noisy potential, which certainly would not allow the
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simulated system to proceed on a true random walk through phase space. Therefore in
practice it is necessary to first smooth the ratio of radial distribution functions in (19) before
applying it to the old potential function. This is conveniently and rapidly achieved using the
MIN technique described in Section 3, with the weighting A being used to control the final
degree of smoothness in the empirical potential. If this potential is too noisy the system will

fail to proceed on a true random walk through phase space. If it is too smooth then significant
features of the data will not be reproduced.

A second aspect concerns the values of thermodynamic quantities such as the
configurational energy and pressure. Both these quantities can be estimated in this simulation
since the Empirical Potential is a real potential with the units of energy per molecule. In fact it
turns out to be straightforward to control the energy: at each iteration of the simulation a
factor F; is applied to the perturbation potential, and the value of this factor depends on
whether the energy of the simulation is above or below the expected configurational energy
for this system.

To control the pressure it is necessary to add an extra term to the perturbation potential

, R,—r
of the formU{)(r) = F, exp w . where R is a characteristic distance for each radial
c

distribution function, and © is a “hardness” parameter, usually chosen to be wide enough not
to have a strong effect on the simulated structure. The factor F, controls how strongly this
additional term influences the simulation. Because this form has a negative gradient at all r
values it can contribute only a positive contribution to the energy and pressure. The
combination of factors £, and F, are capable of controlling both the pressure and energy of
the simulation, providing of course the reference potential does not produce values for either
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quantity which are vastly different from what is expected. Thus not only does the EPSR
simulation produce a structure consistent with the diffraction data, it will also have a sensible
pressure and energy.

Questions about the validity and uniqueness of the EPSR procedure have been raised in
several conference discussions recently. This is inevitable whenever a new procedure is
introduced. However many of these comments apply to all simulations which use empirical
and effective pairwise-additive potentials. In a sense the absence of a single structure
consistent with the diffraction data is a strength, not a weakness, since it is in accord with all
that is known about the disordered states of matter. There are no unique structures in a
disordered material, and the EPSR techinique is a way of sampling from the ensemble of
possible structures which are consistent with the measured data. In that sense the problem is
quite the opposite to the solution of a structure in crystallography.

As an example of the application of this approach Fig. 6 shows the EPSR fit to the
measured site-site radial distribution functions for water at ambient pressure and temperature.
As can be seen the discrepancies between data and fit a very small. It must be borne in mind
of course that a nearly perfect fit cannot be taken to imply the data are themselves perfect. It
simply means they are consistent with a physical distribution of molecules. Within that
constraint it still might be possible for them to contain systematic errors. Obviously the
requirement to be fit by a physical distribution of molecules is an important boundary
constraint which must be satisfied, but it cannot reveal all the systematic errors in the data.

The reference potential for this particular simulation was the Simple Point Charge
(Extended) model, SPC/E of Berendsen et. al. [15] The derived perturbations to this potential
are shown in Fig. 7. It is found that the required modifications to the SPC/E potential (which
has large Coulomb repulsive and attractive terms) are mostly small. Currently a debate exists
about the validity of this potential as the temperature and pressure of water are raised. Above
the critical point it appears from the experiment that the first peak in the OH radial
distribution function disappears and becomes only a smooth shoulder [15], but computer
simulations with the SPC/E potential and other potentials have failed to reproduce this trend-
they almost always show a distinct peak. It is currently speculated that the discrepency may
arise from the lack of a polarizability term in the SPC/E potential (and others like it)

It was instructive therefore to apply the empirical potential derived for water under
ambient conditions, and apply it to a simulation of water in the supercritical phase, in this case
with no further refinement of the potential. The comparison is shown in Fig. 8, and it can be
seen that this empirical potential does a remarkably good job at reproducing the supercritical
water diffraction data. Thus if polarisability is the clue to understanding water structure at
high temperatures, it appears that the empirical potential is able correct for this polarizability
in an effective sense.

Once the empirical potential has been found the generated molecular ensembles can be
used, by making use of the orthogonality properties of the rotational matrices, to invert
equation (16) and so obtain a set of spherical harmonic expansion coefficients. The simulation
is then run for many more iterations at equilibrium so that ensemble averages of the
coefficients can be built up.

In the next section the methods of this and the preceding sections are combined in the
structural refinement of some neutron diffraction data from amorphous silica.

APPLICATIONS: THE STRUCTURE OF AMORPHOUS SILICA
A Reference Potential for Silica
In the present work the original diffraction data (see Figure 1) were obtained from a

sample of pure silica on the SANDALS diffractometer at ISIS. After making the standard
corrections for attenuation and multiple scattering, they were subject to the MIN procedure
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to obtain the radial distribution function, Figure 4. It is found that the first two peaks are
significantly sharper than what is obtained by conventional Fourier filtering, and the SiO
coordination number is very close to 4.

The model chosen as a reference potential for silica was based on the charge model of
Tsuneyuki et. al. [17]. However instead of the Born-Meyer repulsive potential used by those
authors, an equivalent Lennard-Jones potential with the same dispersion forces as [17] was
formulated to give the correct Si-O and O-O distances. Of course there have been a number
of computer simulations of silica, see for example [18-20], and the RMC method has also
been applied to this system [21]. See also the paper by D. Keen in this volume. The decision
to use the Tsuneyuki ef. al. potential was based on its inherent simplicity and the fact that it
does not contain any three body potentials. However, as will be seen below, for practical
reasons a near-neighbour tetrahedral arrangement atoms was imposed on the EPSR
simulation.

In order to form a model about which to measure orientational correlations, the system
was assumed to consist of an equimolar mixture of SiO, and Si ions, to preserve the
stoichiometry. The SiO, ions were held to be closely tetrahedral by defining appropriate
harmonic forces between Si and O and between O and O. In this model all the silicon atoms
have an electronic charge of +2.4e, while the oxygen atoms have a charge of -1.2¢ [17].
Figure 9 shows a representation of this “molecule”, and the coordinate axis that was defined
for each molecule.

Starting at a very high temperature, 6000K, the simulation was run with the reference
potential alone to allow the atomic configurations to reach equilibrium. Then it was cooled to

1000K and all the subsequent simulations were run at this temperature to ensure sufficient
atomic mobility for the simulation to proceed on a random walk after a reasonable number of
iterations. With the reference potential alone, plus the assumed molecular entities, the result
was a surprisingly good representation of the short range part of the measured radial
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distribution function. However it was not quite so accurate at longer distances. Subsequently
the empirical potential was switched on and Figure 10 shows the quality of the fit from this
procedure.

Comparison of the Fourier transform of this g(r) with the original diffraction data
showed an excellent fit over most of the Q range. The main discrepancy was that the first
diffraction peak was not so sharply reproduced in the EPSR simulation compared to the data.
The reason for this is almost certainly that currently EPSR fits exclusively in r-space and is
affected by the truncation of the empirical potential near half the box length. It would be
perfectly feasible to perform the iteration step (19) in the simulation in O-space, and so help
to emphasize longer range features in the interatomic potential which need to be simulated.

Figure 11 shows a small fragment of the structure obtained in the EPSR simulation. It
can he seen that although the single Si ions were in principle free to move around the
simulation box, in fact they mostly ended up in tctrahedral arrangements with the oxygens of
neighbouring SiQ; tetrahedra.

Bond Angle Distributions

Much discussion has occured about the bond angle distributions in amorphous silica. It is
generally recognized that the O-Si-O inclusive angle is expected to be close to the tetrahedral
value, 109.47°, but the picture is less clear for the Si-O-Si angle, since the position of the Si
Si peak in the radial distribution function would indicate that this angle is less than 180°. As a
result, several computer simulations of amorphous silica [19.20] have introduced somewhat
arbitrary angle dependent terms into their potentials.This brings into question the nature of
the measured radial distribution function, since it is an average over the local structural
arrangement. If pronounced tetrahedral units arc present in the glass it is not clear that peaks
in this distribution function can he used to identify bond angles too precisely

In the present work the bond angle is defined as the exclusive angle. 0, between bond
directions, so that a value of © = 0 corresponds to a linear bond. Thus the bond angle that is

frequently displayed in other work is§2=180°-6.

Figure 12 shows the O-Si-O bond angle distribution found in the EPSR simulation, and
it can be seen that as expected it peaks near cos 8 = 0.333, (2=109.47°) corresponding to the
tetrahedral arrangement of O about Si. To some extent this is not surprising since a degree of
tetrahedrality was imposed at the outset. Note however that this distribution includes all the
free Si ions in the system, so these atoms too are mostly forming into tetrahrdra with the
neighbouring oxygen atoms.

In direct contrast to this case Figure 13 shows the Si-O-Si angle distribution found in the
simulation. Now the distribution peaks strongly at 180°, indicating that the most probable
arrangement is for there to be linear Si-O-Si bonds. Note that this is in spite of the fact that a
perfectly acceptable fit to the radial distribution function, including the small Si-Si peak near
3.0A has been obtained. Therefore there is nothing in the diffraction data to justify the
adoption of non-linear Si-O-Si bonds. However as pointed out in the caption of Figure 13
integrating over this distribution indicates that the average of this angle corresponds to €2 =
146°, which is close to the value often quoted as being derived from the diffraction data.
Hence it is now very clear that simple assignment of peak positions to a particular structural
feature is not always valid in a disordered system.

Three Dimensional Structure

The point of the previous section is also emphasized when reconstructing the three-
dimensional distributions consistent with the diffraction data. From the simulated distributions
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of atoms and molecules two sets of spherical harmonic coefficients were calculated. The first
set corresponded to the distribution of free Si ions around a SiO, tetrahedron at the origin.
These were used to make the three dimensional representation of the free ions shown in
Figure 14. It can be seen that these Si atoms themselves form, on average, a tetrahedral
arrangement around the central SiQ, tetrahedron, although this is not a rigid unit in the
crystallographic sense - quite wide distortions from tetrahedrality will occur. The positions of
these Si ions again suggests that the most likely place for one of these ions is opposite the
apexes of the central tetrahedron, which also implies a linear Si-O-Si bond.

The second set of coefficients corresponded to the distribution of SiO, tetrahedra around
a central one at the origin. In this case note that the positional arrangement is important but
also the relative orientation of the second molecule with respect to the first. This relative
orientation is a much more difficult quantity to visualize, and Figure 15 is an attempt to do
this for two particular aspects of the orientation of the second molecule.

The two examples shown correspond to a second SiO, tetrahedron lying in the y-z plane
of the central tetrahedron, and opposite one of the apexes (oxygen atoms) in this direction,
that is 6y, = 54.7° and ¢;. = 90°.

For case (a) the second molecule rotates about its own z axis with the z axes of the
central and second molecules parallel, that is by varying ¢u. The most pronounced lobes
occur at ¢y = 390°: these are also the positions at which the two tetrahedra are at the greatest
distance apart, and correspond to one of the lower apexes of molecule 2 pointing towards the
upper apex of the central molecule. The lobes which are closer in at ¢y = 0° correspond to
the apex of the central tetrahedron pointing towards a face of the second tetrahedron.

Case (b) corresponds to rotating the z axis of molecule 2 about the laboratory x axis,
with averaging taking place over rotations around the molecule's z axis. In this case the

tendency for the apex of the central tetrahedron to point towards one of the edges of the
neighbouring tetrahedron is found.

Discussion

Clearly the orientational maps presented in the previous section represent only a small
glimpse into what is a complicated structure. It should be emphasized that the model of the
potential used in this simulation, Figure 9, is only one possible representation, chosen for its
simplicity and symmetry, and because the SiO4 tetrahedron is a fundamental building block for
this structure. The simplest alternative would have been to treat the system as consisting
simply of separate Si and O ions, but in that case it is unlikely that a sensible fit would have
been obtained. For example it would likely be found that unphysically short Si-Si distances
occur, or the partial charge ordering that is typically observed in other computer simulations
of silica [18-20] would not be observed here.

Part of the difficulty about structure refinement in silica is the inability of the diffraction
experiment to distinguish the separate Si-Si, Si-O and O-O partial structure factors. To some
extent this could be alleviated by employing an X-ray dataset to refine alongside the neutron
data. This would provide a different weighting on the three structure factors, but would not
of course enable a full separation of the three terms. In any case there will always be systems
where the diffraction information is inadequate, however carefully measured it is. Therefore a
strong message to be delivered from this paper is the idea that as much additional chemical or
physical information as possible should be built into the structure refinement at the outset, and
that information should be contested only once it is shown to be incompatible with the data.
The example here was that of the Si-O-Si bond angle, which some authorities have
maintained should be well defined. In fact as has been seen there is no evidence for this in the
diffraction data: the most probable angle is linear, and there is a broad distribution about this
value.

79



80



81



One feature of the EPSR technique that has not been exploited so far is the fact that for
charge ordered systems, such as the partially charged ions in silica, the contribution to the
configurational energy from like-like pairs should be positive, while that from like-unlike pairs
should be negative. If it is expected that charges occur in the system then requiring that the
site-site interaction energies have the appropriate sign could make an additional constraint on
the choice of potential. This idea has yet to be developed.

CONCLUSION

The foregoing material has hopefully given some indication of the enormous amount of
information that can be extracted from a diffraction experiment on a disordered material.
Conventional computer simulation with assumed forces will go someway to understanding
structure and in a sense is almost essential if proper account of the many body problem is to
be made. In the end however the simulation data has to be confronted with the diffraction
data. The Empirical Potential Structure Refinement technique is a way of testing out the
assumed force potential against the data.
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NEUTRON SCATTERING AND MONTE CARLO STUDIES
OF DISORDER IN OXIDES AND HYDRIDES

W. Schweika and M. Pionke *

Institut fiir Festkorperforschung
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52425 Jilich, Germany

INTRODUCTION

Studies of local order and disorder in materials are essentially dependent on scat-
tering experiments that reveal the more or less structured and typically weak, diffuse
intensities that can he observed between the Bragg peaks. In this kind of a tutorial
review, we shall discuss in particular the importance and possibilities of neutron scat-
tering experiments. Despite the typical low available flux of neutrons compared, for
instance, to the much more intense x-ray radiation from synchrotrons, the selected
examples demonstrate the unique and complementary value of thermal neutrons Cor
studying dynamical and structural problems in condensed matter research.

The discussion of the Monte Carlo methods, which enable us to simulate structures
and establish realistic Hamiltonians, will be of relevance for the analysis of scattering
experiments in general. One important question to answer will be, how well we can
really describe structures of real materials from scattering experiments. One has to
emphasize that only pair correlations can be obtained from the scattering intensities,
at least in the framework of the kinematic theory, which certainly applies to the diffuse
scattering of disordered materials. The purpose of the reverse Monte Carlo method is
a computer simulation of the structure from experimental information about the pair
correlations, while the inverse Monte Carlo method aims at a consistent determination
of effective pair interactions. Both methods, their relationship, and their potential will
be treated and illustrated for model systems and in applications to interesting materials.

The analysis of the diffuse scattering due to disorder in single crystals is reviewed
in another contribution (see Robertson, ibid., and further Refs. [1-3]).

*present address: DEBIS, Aachen
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SOME METHODOLOGICAL ASPECTS FOR USING NEUTRONS

Scattering methods are the typical tools to investigate the structure of materials.
Despite of the increasing share of studies using the intense x-ray radiation from syn-
chrotrons, there are a number of reasons why neutrons remain particularly valuable
even for solving structural problems. Here we shall discuss a few examples which are
related to the local order in metal hydrides and oxides. Structural problems, where light
elements are involved, belong to a typical domain of neutron scattering work because
of the favorable scattering properties. In addition, the hydrogen isotopes H and D have
very different coherent scattering lengths and also incoherent scattering cross-sections.
Often there is a particular interest in the material properties at high temperatures and
how these vary under specific: conditions, e.g. surrounding atmospheres. The typi-
cally low absorption properties of neutrons facilitate such studies which require for a
more complicated surface environment and ensures a measure of the bulk properties.
Particularly at high temperatures, one can benefit from the ideal energy momentum
properties of neutrons, which makes it easy to achieve a sufficient energy resolution to
distinguish between elastic and inelastic scattering. Furthermore, the energy analysis
provides itself important insight into the dynamic properties of the materials, and also
give insight into structural properties. The quasi-elastic broadening due to diffusion or
local jumps of atoms reveals the motion itself and also which sites and atoms, regular
or interstitial, are involved.

Most of the experiments have been performed at the spectrometer DNS at the For-
schungszentrum Jiilich, see Fig. 1. With a large set of detectors around the sample,
such measurements with energy analysis are done by measuring the neutron's time of
flight.

56 *He detectors

analyzer (E, =75 mav)
graphite

double focussing
monochromator
graphite

|-
o === ™

sample
spin polarizer
flipper

disc
chopper

2
polarizer

NL |

Figure 1. Time-of-flight spectrometer DNS in a schematic representation. The high flux
at the expense of modest resolution properties is particular convenient for diffuse scattering
problems. Three options can be used (a) the usual time-of-flight mode, (b) alternatively
energy analysis by graphite crystals (for F/y = 7.5 mneV’), (¢) polarizers preparing the incident
beam and analyzing the scattered neutrons (under development); from Ref. [3].

Compared to triple-axis or four-circle instruments measuring elastic data point by
point, the time-of-flight instrument DNS is advantageous particularly when large regions
of reciprocal space need to be explored and will provide data of higher quality because
of the additional energy-dependent information. Various possible influences can be
clarified that way, e.g. whether the intensities are related to soft modes and enable
one to distinguish and separate multi-phonon contributions which are underneath weak
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diffuse clastic signals (like in Fe,_,0), see Fig. 2. Vanadium hydride has been measured
at the E2 diffractometer at the Hahn Meitner Institut, Berlin. The larger Q-range was
more of interest than the energy resolution. In this particularly favorable case, it was
not essential to separate the thermal diffuse scattering, which was almost negligibly
weak due to the nearly vanishing coherent scattering of the vanadium-host lattice.

The study of water-doped mixed perovskites is a typical neutron application that
clarifies the motion of the hydrogen in the bulk material by measuring the quasi-elastic
broadening of the diffuse incoherent scattering of the hydrogen.

COMMENTS ON THE REVERSE AND INVERSE MONTE CARLO METHOD
About 25 years ago, attempts have been started to use computer simulations to generate
structural models from the measured scattering intensities. One may note the work of
Renniger et al.* for early simulations of liquids and of Gehlen and Cohen’ for simulations
of short-range order in alloy crystals. Both methods have in common that the models
are achieved in an algorithm, which minimizes the (squared) differences between the
observed and modeled pair correlations (or scattering intensities). In particular, the
method of Gehlen and Cohen has typically been applied in most studies of local order
in binary alloys. The interest in such an approach is that it promises a straightforward
method instead of proceeding along a way, which might need good intuition when
constructing models. One may question, however, whether the structures that are
obtained do represent realistic models, and we will discuss in detail such questions
further below.

McGreevy and Pusztai®, for instance, argued that a strict minimization might trap
the model and could make the results depended on the chosen initial state of the model.
In 1988 they presented their reverse Monte Carlo method for modeling structures based
on information from scattering experiments, which made use of a kind of detailed bal-
ance condition — as typical for the standard Metropolis Monte Carlo method. The
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transition probability w = w(initial — final) can be chosen as
w=exp [-(xF ~x))/2] | (1)
with
K= Yot ot

where o denotes the standard deviation and « the short-range order parameters, as an
example for the pair-correlation function. Then, if xj < x? the change is accepted, and
if X'j, > x? the change is accepted with probability w. The refinement of the observables
« can be made with respect to the correlation functions or to measured intensities. In
analogy to the standard MC method this transition probability w replaces the usual
Boltzmann weight w = exp [—(H; — H,)/kyT], where H is the Hamiltonian describing
the configurational energy. This method was originally designed for, and has been
frequently applied to, liquids, molecular liquids and glasses, while more recently their
program has been applied to disorder in crystals as well. With respect to the above
mentioned strict minimization techniques, McGreevy and Pusztai argued that those are
comparable to standard Monte Carlo simulations at 7 = 0, where systems typically do
not behave ergodic in practice. However, the experimental accuracy not only determines
the demands on the accuracy of the correlations in the model but furthermore confines
the possible fluctuations. In particular, ifa measurement has yielded very precise results
for the «, the structural simulation by the reverse MC method starts with almost
only converging moves being accepted, and the equilibrated structure, which will be
found after a long simulation time, could even be frozen in, because any further change
causes too large a fluctuation in Awy. In this case the reverse MC method reduces to
the criticized algorithm of Renniger et al.* or Gehlen and Cohen’ of only convergent
moves. Therefore, different initial states should be tested in the simulations. In case
of dense liquids where moves of atoms are correlated for instance, it may become an
art of simulation to find appropriate Monte Carlo steps for attempted configurational
changes.

Finally, to comment on the analogy of o} and 7, it is not the temperature but
rather the entropy which confines the possible space for fluctuations. Although one
should simply recommend the use of the detailed balance principle (and preferred by
the author), the suspected minimization approach also yields correct results if it is
applied to large models of disordered systems in equilibrium.

Indeed, structural simulations rely on the detailed balance principle and require
that the system under study is at thermal equilibrium. Ifsuch simulations are based on
incomplete knowledge about the correlations in the system, the model will be at least
the most probable based on the given information, although it can be systematically
wrong. This situation is rather typical, for instance, when partial structure factors of
multi-component systems cannot be determined with sufficient contrast from x-ray or
neutron scattering experiments. But even for ideal cases, scattering experiments only
provide us with information about pair correlations between particles (at least within
the first Born approximation) and one may argue that this information may not be suf-
ficient for a unique structure determination. The reader is also referred to the articles
of Welberry et al.,”® who have illustrated, at least for two-dimensional structures, with
impressive pictures, the caveat that (i) because of the restricted information from scat-
tering experiments alone, the determination of the real structure could be impossible in
cases where the structure is governed by many-body correlations, while (ii) even sub-
tleties in the pair-correlation function become apparent in the scattering. This obvious

88



situation in their examples is characterized by completely vanishing pair correlations
at all distances, while other many-body terms are present. Before we discuss this as-
pect further, which seems to invalidate any attempt of structural simulation based on
mere pair-correlation functions, it will be useful to discuss the Ising models and atomic
interactions which may describe the configurational statistics.

The inverse Monte Carlo method, asintroduced by Gerold and Kern, is able to
determine effective pair interactions which are consistent with the simulated structure.
Assuming that the measured and simulated short-range order describes a configuration
of thermal equilibrium, one can apply the principle of detailed balance. Essentially one
has to establish and to solve numerically a set of / nonlinear equations:

Z /A]};‘.[’Il,’k = s (2)
k

where Apy is the change in the number of “bonds” of type [ associated with the
interaction energy Vi, wy(AH(V)) is the attendant transition probability, and

Ay = S i, (3)
]
is the change of the configurational energy for a particular attempted fluctuation k.
Equation (2) only holds for the average over a large number of (virtual) fluctuations.
The fluctuations only test the local minimum of the free energy and are not actually
performed to keep the system in or near equilibrium.

Alternatively to the method of Gerold and Kern, one may use the fluctuations
in the reverse Monte Carlo method (after structural relaxation) to solve the detailed
balance for effective pair interactions, or — as proposed by Livet'® — one may use the
standard Monte Carlo method and adjust the interaction model to fit the measured
pair-correlation function.

In Eq. (2) we have not specified the Hamiltonian and in principle one could try to
solve the system of equations not only for pair interactions but also for many-body in-
teractions. In [11] the question whether this is possible has been analyzed theoretically
in high temperature series expansion and has been checked by precise Monte Carlo
simulations. One result is that (Ising-like) many-body interactions can be mapped onto
effective pair interactions in rapidly converging approximations yielding identical pair
correlations as illustrated in Fig. 3 for an example of interactions proposed for the
Cu—Au system. Hence the inverse Monte Carlo method will only yield pair interac-
tions in an unambiguous manner. If manybody interactions are included the results for
the interactions are strongly correlated. Recently, this ambiguity upon the inclusion
of many-body terms has been rediscovered'? and the usefulness of the inverse Monte
Carlo method has been questioned. However, the essential point is that the results for
the effective pair interactions — which include not only many-body effects but also other
influences like displacements, magnetism etc. — are unique, if the information on the
pair correlations is complete. In [11] it was found that the effective pair interactions
will depend on composition and temperature, and will increase in range if they have to
account for the effects of many-body interactions. When this information is available
from experiments, it reversely enables us to determine the possible many-body inter-
actions. Although the effective pair interactions precisely determine the short-range
order, they are not appropriate to describe the heat of solution in systems which are
dominated by many-body interactions.

The even more striking result of [11] is that the effective pair interactions also de-
scribe accurately the specific many-body correlations in the considered example, see
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Figure 3. Monte Carlo results for correlations obtained from a many-body interaction
model for Cu—-Au (solid squares) and compared to various approximations of effective pair-
interactions (EPI); Triangles: bare pair interactions only. Crosses: concentration-dependent
EPI (exact for T = co). Circles, typically coinciding with solid squares: concentration- and
temperature-dependent EPI. Left: Pair correlations a( R); right: Four-body correlations (frac-
tion of AuzCu cluster) versus T (from Ref. [1]]].

Fig. 3. Because of this we can conclude that even without explicitly determining the
effective pair interactions, the true structure is obtained in reverse Monte Carlo simu-
lations if the information about pair correlations is used. There is no proof that this
will be valid in general. In the way many-body interactions produce significant pair
correlations apart from the related many-body correlations, these will confine also the
many-body correlations. Therefore, the examples discussed by Welberry”® of structures
with significant many-body correlations but completely vanishing pair correlations are
counter examples that demonstrates the impossibility of obtaining the true structure
by reverse Monte Carlo methods in these cases. It would be interesting, whether it is
possible to generate such examples by a real Hamiltonian and at thermal equilibrium.

To further discuss the possibilities of structural determination from pair correlations,
i.e. the essential information available from scattering experiments, we consider another
example in which a triangular lattice is randomly decorated by equi-triangular clusters.
The Hamiltonian is easiest described by a three-body term that has the character of
molecular bonding and is non-Ising-like which is different to the situation which is
analyzed in Ref. [11]. The pair correlations arc very simple. The first short-range
order parameter is equal to 1/3 independent of both temperature and the coverage
of the lattice by these clusters. With only this first short-range order parameter, the
simulated structures have barely any resemblance to the expected triangular objects.
The reason is that, of course, one has to make sure that the simulated structures are
also consistent with the demand of vanishing pair correlations at further distances.
Inclusion of up to 12 short-range order parameters in the simulation yields a significant
increase for clusters of size 3n formed by the basic three-atomic cluster units.

The computational effort, at least for Monte Carlo steps based on pair-wise ex-
changes of atoms, increases dramatically with increasing range considered, and therefore
it could become impractical to obtain the perfectly simulated structure, although the
information given by the pair correlations is in principle unique and sufficient. With in-
creasing coverage of the lattice by clusters, the formation rules on the structure become
less apparent, and not surprisingly, the pair correlations provide a fading significance for
the inherent cluster motif. For a further discussion see Ref. [3]. The examples suggest
that the reverse Monte Carlo method (RMC) in principle leads to the true structure,
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Figure 4. Cluster distributions for RMC simulated structures on a triangular lattice with
only nearest neighbor pair-correlations oy = 1/3. The corresponding true and ideal solution of
the structure would be a random distribution of triangular clusters and therefore, only clusters
of the sizes 3, 6, 9, etc should appear. From top to bottom the coverage increases from 0.01
to 0.05 and 0.1. The comparison shows that information about multi-site correlations is to be
found in the full extent of the pair-correlations (even if these are zero): First (hatched bars),
only e is simulated, second (filled bars), further correlations, ey = 0, for [ > 1,...,12, are
included. See also Ref. [3].

if the underlying many-body interaction imposes any effect on the pair correlations,
although in practice the confinement of a structure relics quantitatively on the error
bars of both the experimental results and the simulation.

APPLICATIONS

Defect Structure of Wiistite

The ferrous oxide FeO (wiistite) has a peculiar range of stability. It is supposed to be
stable only at high temperatures, and because of the mixed valence of the iron cations
(2+,3+) there is an unavoidably large deviation from the ideal stoichiometry. At high
temperatures and under appropriate oxygen partial pressures the homogeneous phase,
having the NaCl structure, exhibits an iron deficit of x = 0.00up to x = 0.17. Although
wiistite is not the ordinary reddish-brown rust, the investigation of the atomistic micro-
structure is of interest for the understanding of the processes of oxidation and corrosion,
e.g. morphology changes such as that from metals with smooth surfaces to possibly
porous ceramics. Here we meet a situation, where, as already known, cations and cation
vacancies constitute the mobile defects. Upon oxidation the iron atoms have to migrate
from the metal through the oxide to the surface, where oxygen deposits from the gaseous
phase. A more subtle problem is that in those cases where the fraction of defects is
not small, as is typical and unavoidable in Fe,_xQ), correlations among the defects
may have an important influence on the ionic transport properties. In fact, there is a
very unusual and only minor change of the cation diffusion coefficient with increasing
deviation from stoichiometry, i.e. with increasing number of cation vacancies. This
example reveals the strong correlations and interactions among the charged defects in
this ionic material which are responsible which provides an explanation for its unusual
transport properties.

There exists a vast literature proposing various kinds of specific defect arrange-
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ments, typically based on measurements of the Bragg intensities'* but also on theoret-
ical calculations'>™'7 of the cluster formation energies. The measurements showed that
the oxygen ions are not involved in any disorder of site occupations, however, the num-
ber of the iron vacancies is higher than expected from the composition due to additional
iron interstitials. The proposed defect clusters have typically one structural element in
common, at least in modified forms, i.e. the so-called 4:1 defect cluster, which means
that all four regular cation sites around a 3+ tetrahedral cation interstitial are vacant
resulting in a net charge of 5— for this unit. Some efforts have been made to investi-
gate the diffuse scattering of this material by x-rays.*"® Studies on quenched samples,
however, cannot represent equilibrium configurations of the high temperature states
because of the high cation mobility; at high temperatures, around 1000°C, the x-ray
measurements suffer from a high background of thermal diffuse scattering.

Neutrons are favorable in such kind of studies, because the phonon contributions can
be easily separated from the elastic scattering (see the time-of-flight spectra in Fig. 2).
In our neutron scattering investigation® we used a special furnace, with CO/CO, gas
mixtures flowing around the sample chamber, to investigate the single crystal specimen
at various temperatures and compositions exploring the wiistite phase field. The diffuse
elastic scattering intensities measured at 1150°C are shown in Fig. 5.

The Brillouin zones of the face-centered cubic cation lattice are displayed in the
figure to facilitate an understanding of the patterns. The apparent lack of translational
symmetry is caused first by additional cation interstitial-vacancy correlations (doubling
of'the reciprocal cell) and second by strong scattering contributions due to displacements
(giving rise to anti-symmetries). Here, we will not discuss the interesting displacement
scattering in detail (see Refs. [3,20]), but a few points will be made further below. Of
importance for the occupational short-range order is the possibility by Fourier analysis
to separate those contributions from those of the displacements. The results, e.g. for
£ = 0.079 shown in Fig. 6 can bo distinguished with respect to the different types
of correlations. For comparisons the physical boundaries (resulting from the actual
composition of vacancies and interstitials) for the short-range order parameters are
also displayed as dotted lines in figure. One can see, for instance that there are only
negligible correlations among the interstitials, however, the interstitials are very likely
surrounded by vacancies, and vacancies tend to form neighbored pairs.
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Figure 6. Short range order coefficients @, for Feg 9O at T' = 1150°C: result of the Fourier |
analysis (filled squares) and simulation (open circles, only one can be seen separately and all
others coincide). Dotted lines denote lower and upper bounds. (a) Correlations on the fcc
sublattices; these are dominated by those among vacancies, while a minor contribution comes
from those among interstitials at the same distances. For example, vacancy neighbors are
favored; (b) the part of correlations on the sc sublattice which is purely among interstitials,
showing only random correlations; (c) interstitial to vacancy correlations: e.g., a very strong
attraction for interstitial vacancy neighbors is found; from [20].

The defect structure has then been simulated in a computer model of of Feg.g0,O. All
measured short-range order parameters were used for this purpose, applying a reverse
Monte Carlo algorithm and a large model containing 153 600 lattice sites. In order to
analyze the modeled defect structure, we searched for all clusters that are formed by
interstitial-vacancy bonds. The probability distribution for these interstitial-vacancy
clusters as a function of the sizes is shown in Fig. 7. One of the remarkable features of
the cluster distribution is that first, a large fraction of the defects, about 40%, are still
unbound vacancies (rn=1) which will play the dominant role for the transport properties
and explains the high cation mobility. Secondly, 4:1 clusters are particularly stable (note
the log-scale), consistent with previous theoretical predictions'>’. Thirdly, larger
vacancy—interstitial aggregates, incorporating the 4:1 motif, are also present. Their
existence appears to be, however, mainly a consequence of the high defect content. One
may further note details like the obvious decrease in the probability to find the next
larger clusters beyond the stable 4:1 cluster. From the negative value of short-range
order parameter for next-nearest neighbored interstitial-vacancy pairs alone, one would
conclude an opposite trend. There is little or no tendency to form large clusters with
well-defined compact shapes. Evidence of this is found from the observation that there
is only very low intensity at small scattering vectors.

The picture we obtained, namely that at high temperatures the equilibrium defect
structure is characterized by a broad but significantly structured distribution of pos-
sible defect arrangements rather than only one specific defect type, is only reasonable
and a remarkable achievement that proves the strength of combining diffuse scattering
experiments with Monte Carlo simulations of structures.
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Finally, a few remarks should he made on the observed displacement scattering (for
detailed discussions see Refs. [3, 20]). The displacements can be analyzed as well and
show a displacement field around a cation vacancy that repels the nearest neighbor
anions and attracts the, second nearest neighbor cations. The displacement fields can
be described in Kanzaki force models, and the diffuse intensity can be calculated by
using the superposition of the displacement fields for 4:1 defects and the dynamical
matrix. This describes nicely the observed pattern, even the change with composition,
which manifest particularly in the formation of the diffuse prepeak near to the 200
Bragg-reflexion, if one includes in the model a screening of the assumed 4:1 cluster by
surrounding this cluster by regular cations for charge compensation in the immediate
neighborhood.

Effective Pair Interactions in Vanadium Hydride

Metal hydrides have attracted both scientific and technical interest because of the
unusually high hydrogen mobility and the high solubility of hydrogen. Although there
are more suitable metal and alloy hydrides, vanadium hydride may be viewed as a model
system for a compact solid hydrogen storage medium and technical applications of
energy storage. At equilibrium the concentration of hydrogen in vanadium is determined
by the temperature and the partial pressure of the surrounding hydrogen gas. With an
increase in the H, pressure the hydrogen concentration in the metal hydride saturates,
all available sites have been filled and almost as much hydrogen has been absorbed as
there are metal atoms. As derived from Bragg diffraction data, most of the hydrogen has
dissolved more or less randomly on the tetrahedral sublattice. Since this sublattice offers
about six times more sites than those used, there are apparently strong correlations and
repulsive interactions between the hydrogen which limit the storage capability of the
material.
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Our studies aimed at a quantitative determination of the effective pair interac-
tions among the hydrogen atoms. At short distances, strong repulsive interactions are
expected because of the limited hydrogen solubility, while at larger distances elastic,
long-range interactions should dominate the correlations. From an experimental point of
view it is a favorable model system, since the vanadium host was almost invisible to the
neutrons (its coherent scattering length is negligible small, by = —0.0382 x 1072 ¢m).
Therefore, the three-dimensional scattering experiments were performed in diffraction
mode using the flat-cone diffractometer E2 at the Hahn—Meitner Institute, Berlin. Cor-
rections due to the small inelastic scattering were done carefully. Deuterium, rather
than the natural hydrogen, was chosen to reduce the high (spin-)incoherent scattering
background and to increase to coherent scattering signal.

Figure 8 shows the diffuse scattering of VD 7« in the (110) plane at room tem-
perature. Diffuse maxima are found near the 200 and 110 reciprocal lattice positions
and equivalent positions which coincide with the Bragg peaks of the host lattice. The
coherent diffuse scattering due to the deuterium short-range order is very low near the
zone centers, which reflects the low compressibility of the deuterium “lattice liquid”
at this high deuterium concentration. The translational symmetry of the tetrahedral
sublattice, as shown in the figure, agrees well with those of the diffuse scattering. Data
were measured in a huge volume of reciprocal space covering in the order of 10° data
points.

The data were analyzed using a Fourier analysis with respect to short-range order
and displacement parameters, based on least-squares methods. Figure 9 shows a strong
blocking tendency on the tetrahedral interstitial sublattice for the first three neighbor-
ing shells of deuterium. The number of short-range order parameters that have been
determined, is as large as 114; the error bars are very small, except for the near neigh-
bors, and do not exceed the symbol size unless it is shown in the figure. These results
are also stable and only little modified if the additional contributions from the octahe-
dral sublattice are also taken into account in a more complex model. Actually, about
10% of the deuterium atoms were observed to be distributed on the octahedral sites.

The inverse Monte Carlo simulations were used to determine the effective pair in-
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teractions from the short-range order parameters. One may note that the mean-field
approach using the Krivoglaz—Clapp—Moss formula to determine the D-D interaction
energies would be completely insufficient, since for the near-neighbor pairs VDfD is not
at all small compared with ky7T but the reverse is true. In addition, there is a break-
down of the usual mean-field prediction that the wave vector of the short-range order
peak corresponds to the minimum of the interaction potential.

Our results obtained by the inverse Monte Carlo method from the diffuse scattering
data (see Fig. 9) typically show that all the interactions determined from the experiment
have a positive sign. This could be attributed to the repulsive part of the interaction
due to the (screened) Coulomb interaction between the protons and shows that the
Coulomb term is dominant within the whole displayed range of interactions. At short
distances the repulsive screened Coulomb interaction between the protons dominates
the elastic contributions.

On the other hand, the elastic interactions displayed for comparison in Fig. 9 are
typically below the inverse MC result, but they are of comparable magnitude and the
variations with R of both data sets reveal much similarity. The elastic interactions were
calculated in a continuum-mechanical approach and took account of the dipole—dipole
interaction. One has to distinguish the possible relative orientations of the dipoles,
for instance in (110) directions the dipoles are oriented alternately perpendicular and
parallel, and further the projections of the dipoles on 1_1", which give for instance two
different results for pairs at distance I = (1,0,0)a. However, the surprising agreement
of the continuum-mechanical calculations with the experimental result at very close
distances seems to be more accidental than really meaningful. The calculations may
give a good approximation for the observed values at larger distances.

Hydrogen Motion in Mixed Perovskites

Perovskites of the type AB()y, such as cerates or zirconates can be ion conduct-
ing if they are doped, substituting the tetravalent B ion by a threevalent one, with
a concentration of several mol%. The extra charge creates oxygen vacancies which
lead to oxygen conduction. Also mixed non-stoichiometric perovskites of the type

"

A(BEIH)/:,B(Z,_I)/:,)();; _s with two different (e.g. divalent and pentavalent) B ions, re-
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veal oxygen vacancies and conduction. Interestingly, some of these perovskites exhibit
also significant protonic conductivity, for example if the material is exposed to moist
air*

The compound Ba(Cay/s1, NI)Q/;;,I)();;,,& (BCNO) has attracted special interest
particularly in view of possible applications for solid fuel cells. From measurements of
the electrical conductivity a low activation energy of 0.54 e} was obtained, though these
measurements might have some difficulties to separate the true bulk properties. The
hydrogen solubility is comparatively good which was determined at lower temperatures
by thermogravimetry® with values up to 19.4 mol%.

By quasi-elastic neutron scattering experiments it is possible to investigate the hy-
drogen motion in this compound on an atomistic scale of several A in a regime of
characteristic times between 10°® and 10~'* s, namely by measurements of the inco-
herent neutron scattering intensity as a function of momentum transfer h(¢) and energy
transfer Aw; typical energy transfers in the region of 1077 to 107 % ¢V are measured by
backscattering spectroscopy, and 107° to 10 * ¢}” with the time-of-flight methods. Of
course, neutron experiments clearly exhibit the bulk properties and due to the sensitiv-
ity to hydrogen, the scattering provides also precise estimates of the hydrogen content
itself at pressures not readily accesible to thermogravimetry.

During the neutron scattering experiments over a wide range of temperatures the
samples were kept in Al containers and exposed to a controlled water vapor atmosphere
with pressures up to 600 mbar. Difference measurements of wet and dried samples
(drying time > 5 hours at 500°C) were performed to subtract the background of the
host material and yield essentially only the hydrogen scattering contribution. One may
note that 2 mol% H was found to remain tightly bound in the samples as seen also
by measurements using the (n,y)-capture method**. From the corrected and calibrated
intensity we could determine the hydrogen concentrations c¢;(7") (between 10 and 18
mol%) within an accuracy of less than 1%, which agreed with the content extrapolated

from thermogravimetry.
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Figure 10. Quasi-elastic neutron scattering of water-doped Ba(Ca; 3., Nby/3_;)O3_sat 664
K shows three characteristic time scales for H-motion. Two slower jump steps are observed
(left) in high resolution spectroscopy with the backscattering spectrometer BSS1 and (right)
a fast local motion with the time-of-flight spectrometer DNS: from [27],

Figure 10 shows the measured quasi-elastic broadening due to to the hydrogen mo-
tion. Compared to the instrumental resolution of 1 — 2 pel” for the back scattering
spectrometer (BSS1) the left figure shows that two Lorentzians are required to fit the
observed intensity. One may suggest a two-state trapping model® to describe the
diffusion process. This model, however, which has been successfully applied to proton
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conducting SrCe(y with dilute Yb doping,® failed in the present case completely. Most
likely there are two groups of lifetimes related to the randomness of the potential in the
lattice of the mixed perovskite.

At higher temperatures the broader component and the faster process dominates.
One may note that there are no significant true elastic contributions due to any slower
hydrogen motions or any parasitic background. It has been found that at lower Q-
values only one Lorentzian was significant and its line width I'(()) has shown a usual
Q-dependence for unbound diffusion I'(()) = D (9%, The diffusion constants D follow
an Arrhenius behavior with Dy ~ 0.7 - 107* ¢m?s™' and an activation energy E, =
(0.394+0.05) ¢V. These results agree fairly with the ionic conductivity using the Nernst-
Fvinstein equation (for a detailed discussion see Ref. [27]).

The right side of Fig. 10 displays the much broader quasi-elastic component as
measured by time-of-flight spectroscopy. Increasing with temperature the width is
about 700 peV at 400°C and this motion corresponds to a characteristic time of 7, =
107'% s, which is a motion much faster than expected from the protonic diffusive step.
From the temperature dependence we estimated an activation energy of 0.10 eV. In
addition, it has been found that the width of this broad component is independent of O,
which confirms that this motion of the hydrogen is localized. Due to this quasi-elastic
contribution, there is a steep decay of the apparent elastic intensity with increasing Q
(see Fig. 11) that cannot be explained by the usual Debye-Waller factor due to lattice
vibrations.
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Figure 11. Filled circles: measured incoherent elastic structure factor of the time-of-flight
spectra versus Q. Line: model calculation for a proton motion on a sphere with R = 0.7 A
Dashed line: Debye-Waller factor with a typical mean square displacement of (u?) =~ 0.01 A’z;
from [27].

The simple model displayed in Fig. 11 results from a rotational motion on a sphere
with a radius of 0.7 A; the remaining small systematic discrepancies indicate that a
slightly larger radius is likely for a more refined model, which could account for a
preferred OH™ reorientations in elementary steps of 60° and 90° and may be coupling
to phonon modes. The results, in summary, are consistent with the Grotthus mechanism
(see Ref. [28]). In this picture, the protons are transferred along the OH--O hydrogen
bridges with a rate of about 1/7 =~ 10! s ' at 700 K. Combined with this transfer,
which is characterized by the observed activation energy of 0.4 eV, there is the rapid
rotation of the OH ™ ion around its center, orienting the hydroxyl ion towards different
neighbors.
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FINAL REMARKS

The combination of diffuse neutron scattering experiments and Monte Carlo sim-
ulations can provide us with very detailed structural information as illustrated in the
study of the defect structure in wiistite, such as many-body correlations that describe
the formation of defect clusters that appear to be “spinel embryos” of the neighbored
phase FesO)4. By analyzing the modeled structure it was possible to understand the
origin of the peculiar transport properties, i.e. the behavior of ionic conductivity as a
function of temperature and defect content.

The effective pair interactions in vanadium hydride have been successfully deter-
mined, demonstrating the capabilities of the inverse Monte Carlo method. One may
add, that the inverse Monte Carlo method has also been applied to liquid systems
(see Ref. [29] and Soper, ibid.). The evidence for possible many-body interaction terms
should be found in the specific temperature and concentration (density) variation of pair
correlations and of the effective pair interactions. It will be interesting and challenging
to examine materials under this perspective.

The dynamical properties like phonon modes and, as seen in (he last example,
relaxational, diffusive steps that lead to quasi-elastic broadening, an; a typical subject
of neutron scattering investigations. Such experiments provide a key to the dynamics
and the structural properties, which in the present case, for instance, supports the
Grotthus mechanism for the hydrogen motion in water-doped perovskites.

One may finally note that besides all of the efforts that are needed, the required
beam-time has been comparatively small, each study of the considered examples only
took a couple of days.
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INTRODUCTION

This chapter will provide a detailed description of the reverse Monte Carlo (RMC)
modelling method. RMC has been established over the last ten years as a general method
for obtaining models of a wide variety of disordered structures, including liquids, glasses,
crystals, polymers and amorphous magnets. Particular emphasis will be given here on how
it may be used to refine the disorder in glassy and crystalline materials. In addition to
explaining the principles and rationale of the RMC method, results from modelling various
polymorphs of silica will be used to demonstrate how the method works in practice. For
the crystalline systems, the RMC models will be compared to diffraction patterns from
powdered samples, since RMC modelling of single crystal diffraction is covered in the
chapter by V. M. Nield in this volume.

The outline of this chapter is as follows. The next section introduces various
background formulae which underpin the ideas of total scattering. Then reverse Monte
Carlo modelling is introduced and described in detail. This is followed by a section which
works through the application of RMC modelling to the structure of glassy silica and the
results are compared with other existing models. The ideas of RMC refinement are then
described and applied to glassy silica. Preliminary results from RMC refinement of
disordered crystalline phases of silica are then described. Finally, conclusions are made
with a discussion of future possibilities for the RMC method.

THEORETICAL FORMALISM
Before describing the modelling method in detail, it is necessary to define various

relevant correlation functions. The data used to constrain the RMC models described in
this chapter are from ‘total scattering’ measurements. The ideal total scattering
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measurement would collect scattering over all momentum transfers O<IQl<eo, integrating at
each IQI over all possible enegy transfers which may take place within the sample. Most
good neutron and X-ray diffraction measurements are a reasonable approximation to this
ideal, albeit with a reduced range of IQI. Total scattering therefore contains both Bragg and
diffuse components from a crystalline material and, as will be shown later, it is vital to
include the diffuse scattering when considering structural disorder. The total structure
factor, F(Q), obtained from careful correction of neutron total scattering data' from an n-
component system, can be defined in terms of Faber-Ziman partial structure factors

A 0)

nooon

F(Q) =, Y cacpbabylA,(Q) - 1] (0

a=1 fi=1

where b, and c, is the coherent neutron scattering length and proportion of atom o
respectively. The formula still holds for X-ray scattering if the neutron scattering lengths
are replaced by X-ray form factors. These partial structure factors are the sine Fourier
transforms of the partial radial distribution functions, g (r)

sin(Qr)

dQ (2)
Qr

R (1) - j T [A ()~ 11722

(2
where p is the number density of atoms. g(r) are defined explicity as

naﬂ(r)

3
4r r2drpﬂ )

gaﬁ(r) =

where n(r) is the number of particles of type [ between distances r and r+dr from a
particle of type o, averaged over all particles . p,is the number density of atom type B. It

is also useful to define a total radial distribution function G(r) in terms of g ,(r)

G (r)= 2.3 ,ybybylg,,(r) —1] )
a=t f=1

such that the total structure factor F(Q) is the sine Fourier transform of G’(r):

F(Q) = pj4 2G’()“"((2Q” a0 (s)

Frequently G(r) is used, which is a normalised total radial distribution function

G(r)=1=G ()] Y c,b, (6)
a=1
such that G(r—ee)=1 and G(r<ro)=0, where ry is the smallest distance two atoms may
approach each other. T(r), another popular form of the real space correlation function, is
then proportional to rG(r).
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n,(r) may be calculated simply from a three-dimensional configuration of atom
positions and from these functions all the above functions may be derived. Similarly F(Q),
the coherent part of the experimental total scattering can be used either directly, or Fourier
transformed to G(r) for comparison with the equivalent functions from the computer
generated models.

REVERSE MONTE CARLO MODELLING
Background

The reverse Monte Carlo modelling technique was developed to create three-
dimensional structural models of liquid and amorphous (or glassy) materials without bias.
Liquids and glasses are, in general, macroscopically isotropic and in a diffraction
measurement the material will scatter isotropically, varying only as a function of the
modulus of the momentum transfer, IQI. Such a one-dimensional scattering function (the
structure factor F(Q) - see Equation 1) can be Fourier transformed to provide information
about atom-atom distances, but vector information is lost.

Modelling of some form or another was one obvious way to attempt a reconstruction
of the three-dimensional local structure of glasses and liquids from the one-dimensional
scattering information. The earliest attempts along these lines were by Kaplow ef al * in
1968 (investigating vitreous selenium) and Renninger et al *in 1974 (on arsenic-selenium
glasses). Both these works used small spherical models and further progress was hampered
by the limitations in computer power. Subsequently the concepts were developed
successfully by McGreevy and Pusztai’ who modelled the structure of liquid argon in 1988,
coined the term ‘reverse Monte Carlo modelling’ and established the basic method which is
used extensively today . McGreevy and Pusztai argued’ that the RMC method’s strength
lay in the fact that no interatomic potentials were imposed on the structural model and
hence the technique was very different from the more familiar Monte Carlo simulation
which uses a set of potentials to constrain the model. In RMC modelling, the model is only
required to agree with the structural data. It was believed that, in principle, the resultant
RMC models could then be used to determine the interatomic potentials which governed
the structure. Instead of working from the potentials to the structure to the structural data,
the structural data were used to determine the structure and hence the potentials. The
Monte Carlo cycle was operated in ‘reverse’. However, because the available structural
data do not necessarily describe a unique structure (see later) and three-body terms (which
are not contained in the structure factor F(Q)) are equally important in determining
structure, in practice it is very difficult to use RMC to determine appropriate potential
functions.

The RMC approach has many advantages over other modelling techniques, principally
because it does not bias the resulting model. If the data do not require a specific structural
feature, then the RMC model is unlikely to show such a feature. This has to some extent
changed the way that disordered structures, and liquid and amorphous structures in
particular, are considered. The local structure of a glass is usually thought of in terms of
small structural units which are found in chemically similar crystalline materials. Models
are then built by joining these semi-rigid structural units, either explicitly or implicitly from
the description of interatomic potential functions. This can result in models which are too
ordered and do not have sufficient flexibility to include other possible structural motifs. In
contrast, no such features are assumed in RMC models and often exactly the opposite type
of structural models are obtained with too much disorder. As will be shown later, this is
because the data do not provide sufficient structural information to define uniquely the
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structure and a disordered structure, although consistent with the data, is more likely to
result from random Monte Carlo moves. For many systems neither extreme is entirely
satisfactory and a middle ground must be established. As a result, although RMC is a very
powerful method, it must be controlled in appropriate ways to yield good, respresentative
structural models. Such control can be achieved by using a constrained RMC refinement of
a carefully constructed structural model which already contains pertinent structural features.
Thus the best features of RMC modelling (lack of bias, structural flexibility, consistency
with experimental data) are combined with an initial model containing structural elements
which RMC modelling may not be good at reproducing, but are nonetheless indisputable.
This is clearly common sense when considering disordered crystals, since the long-range
periodicity and average crystal structure must be maintained throughout the RMC
modelling of the short-range structural disorder. This is analogous to the process of
Rietveld refinement’, where an initial structural model is refined by comparison with a
powder diffraction pattern.

The RMC Modelling Method

1. Generate a three-dimensional configuration of N atoms, which is constrained by
periodic boundary conditions. The configuration is frequently a cube with lengths L
for convenience, but can have different geometries to suit (for example) different
crystal symmetries. The practical effect of periodic boundary conditions is that when
an atom is moved beyond one side of the configuration box, it moves back into the
box at the opposite side. All atoms within the configuration must also satisfy ‘closest
approach’ constraints such that two atom types may only come within a certain
distance of each other. The closest approaches may, with ideal data, be determined
uniquely from the partial radial distribution functions, but they are more likely to be
deduced from a combination of factors, and can be adjusted from examination of how
the modelling progresses. It is important at the outset to make them smaller than may
seem physical, since they act as an infinite hard-core potential.

2. Calculate the function corresponding to the experimentally determined data, such as
the total structure factor F(Q)

3. Calculate the difference between the measured structure factor Fp(Q) and that
determined from the configuration Fey(Q).

n

Hod = 2 Feac(Qola = Faxpt (@) 1 0(Q,)? @

=]
where the sum is over all n experimental data points, each with error 6(Q,).
4.  One atom is selected at random

5. This atom is moved a random amount in a random direction up to a pre-defined limit.
If the atom still satisfies the closest approach constraints, the experimentally
determined data is recalculated (e.g. Feae{@)new). Since only one atom is moved at any
one time, it is only necessary to calculate the change in Fi,(Q) due to the atom’s
move. This involves a calculation of size ~N compared with ~N* for calculating
Fea(Q) from scratch at each iteration.
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6. The experimentally determined data are compared.

I%cw = Z[Fcnlc(Qi)ncw - chpt(Qz)]z /G(Qi)z (%)

1=1

If the new y” is lower than the one determined with the atom in the previous position,
le,cw<xz.,m, the move it accepted and the new configuration becomes the old
configuration. Ifthe new X2 is higher then the move is accepted with probability
P:cxp(—(xl.,cw—xz(,ld)/Z) or else it is rejected. In practice the acceptance is determined
by comparing P with a random number R between 0 and 1 generated by the computer.
The move is accepted when P>R.

7. The algorithm is continued by returning to step 4. Initially %° will decrease until it
reaches an equilibrium value and further moves make little change to %>. The model
is then said to have converged. Moves may then be continued and configurations
collected every ~N accepted moves to collect statistically independent configurations.

As can be seen from the description given above, RMC modelling and the well known
Metropolis Monte Carlo simulation® are very similar. The only difference is that whereas
Monte Carlo simulation samples the potential energy, RMC samples the difference between
calculated and experimental structural data. The attributes that are particularly important in
the Monte Carlo algorithm’ should be replicated in the RMC algorithm. The most
important of which is the use of a Markov chain, so that local minima are avoided and the
final configuration is independent of the starting point.

The definition of %* may be generalised to include comparison with extra data sets
such as X-ray, neutron and EXAFS structure factors. Equally extra terms may be
introduced to constrain the RMC model further such as predefined atom-atom co-
ordinations or nearest neighbour distances. %> may then be written as

m

X =2 NFu Q) = Fo (O, 10, (@) + 2 (S = [ 1 o )
ko=l I

to include comparison with the & structure factors and the m constraints. ™ and £ *™€ are
the required value of the constraint and the value calculated from the RMC generated
configuration respectively. o; is a weighting term which influences the strength of any
particular constraint. In a crude manner co-ordination constraints can be considered as
simple three-body terms restraining the model. In crystalline materials it is particularly
necessary to constrain the model, for example to maintain the integrity of a molecular
fragment or to restrict a molecule to a finite number of possible orientations and these can
simply be included in the definition of %’ (Equation 9). Equally the model may be
constrained by restricting the movements of atoms to specific regions of the configuration,
such as disordering an atom along a specific direction, only allowing atoms to swap etc.
The ability to fit different data sets with the same three-dimensional model is
particularly important in order to separate the contributions from different partial radial
distribution functions. As shown in Equation 1, the total structure factor F(Q) for an n
component system is composed of a weighted sum of Yan(n+1) partial structure factors
A Q). Therefore F(Q) from a two component system is composed of three partial
structure factors or, via Equation 2, three partial radial distribution functions, g.(r). The
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technique of neutron isotopic substitution'® can be used to obtain 8.(r) experimentally,
where, for an n component system, Yz2n(n+1) total structure factors F(Q) composed of
different weightings (obtained by using different isotopes of the same element with
different neutron scattering lengths) of the same partial structure factors, A,f(Q), are
measured. g (r) are then obtained by simultancously solving the set of F(Q) for A Q).
Even given that suitable isotopes exist for the system of interest, the errors in measurement
may mean that the results from such a separation may not provide g,(r) which are self-
consistent. The combination of neutron and X-ray F(Q) may provide partial separation of
A,(Q), but it can never be unambiguous, even for a binary compound. RMC modelling of
the data compensates in part for this loss of information since the g,(r), which come from a
single three-dimensional configuration, must be self-consistent. It should however be
stressed that the better the data, the more constrained the final model will be and to get the
best from RMC modelling, high quality data are required.

MODELLING GLASSY SILICA, SiO;
Previous Models of Glassy Silica

It was realised very early that glassy materials, although highly disordered and
isotropic over large distances, may possess a definite local order. Zachariasen' first
introduced the idea of a continuous random network (CRN) for a glassy structure where the
atoms are bonded locally and form a three-dimensional structure with no periodicity or
symmetry. Based on the CRN model, glassy silica SiO, is thought of as a continuous
network of SiO, units joined at the corners such that each Si is surrounded by four O and
each O has two Si neighbours. Given that in most silicate crystals the SiO4 unit forms an
approximate tetrahedron, then a single Si-O bond length and O-Si-O bond angle of 109.47°
would be expected in the glass. This is supported by the experimental neutron G(r) which
has one strong peak at 1.617A (Si-O) and a second one at 2.626A (0-O) implying a O-Si-O
average angle of 108.6°.> Also NMR experiments find little evidence for the Si co-
ordination to be different from 4 or the O co-ordination to be different from 2. However
the manner in which these SiO4 units are joined is more difficult to obtain directly from
experimental data. Steric constraints prevent face- or edge-sharing tetrahedra so all SiO,
tetrahedra must be corner-sharing, described by three angles, the Si-O-Si bond angle and
two torsional angles which define the orientation of each joined tetrahedra about the Si-O
bonds which meet at the common O atom (see Figure 1). The first (Si-O) and third (Si-Si)
lowest r peaks in G(r) would give an average value of the Si-O-Si bond angle, but the Si-Si
peak is partially overlapped and very weak in the neutron G(r). Synchrotron X-ray data
have been used to deduce a broad Si-O-Si bond angle () distribution, V(o)=V;(a)sino
with V peaking at 143° and V, at 180°."* Longer-range structure is virtually impossible to
extract directly from structural data (apart from the characteristic atom-atom distances). It
is therefore not entirely surprising that modelling has been used to investigate the structure
of silica further, given that direct experimental information about the structure becomes
vague even at distances ~3A and greater and that it is these distances which play the most
important part in glass formation.

One of the earliest three-dimensional models of silica glass was hand-built by Bell and
Dean'. Such models were in reasonable agreement with the then available diffraction data
but were tedious to construct and the density was difficult to control, being critically
dependent on the chosen Si-O-Si bond angles. Subsequent models were all computer
generated, the most comprehensive of which were by Gladden'® who followed a complex
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recipe forjoining SiO4 units to construct 1000 atom clusters. Some of her models had very
good agreement with G(r) and could be used to investigate optimal Si-O-Si bond angle
distributions and longer-range structure. The other method which has been used
extensively is Molecular Dynamics simulation'’. These simulations vary in configuration
size and simulation complexity, but do not, in general, fit the diffraction data as well as the
empirical models.

RMC Models of Glassy Silica

For SiO,, it is not possible to experimentally separate the Si-Si, Si-O and O-O partial
correlation functions, since suitable isotopes for isotopic substitution do not exist and the
two available F(Q) (X-ray and neutron) are not sufficient to obtain three A, (Q). The first
RMC model of silica' used the method in its basic, unconstrained form starting from a
configuration of 2596 atoms randomly placed in a cubic configuration box of length
34.017A. Good agreement was obtained with the X-ray and neutron F(Q) but the partial
radial distribution functions g,,(r) contained some unsatisfactory features which suggested
that the separation of the g (r) was not correct (for example there was a weak peak in
gsio(r) at r values where an Si-O correlation was unlikely and which could instead be
attributed to the strongest peak in go.o(7)). Also, the average Si-O co-ordination was only
3.7 and the average O-Si co-ordination was 1.8 and some of the SiO4 tetrahedral unit were
somewhat distorted. The O-Si-O bond angle distribution peaked sharply at 109.6°, but
contained a significant tail to higher angles. It is perhaps more significant, given the
random starting configuration and lack of any constraints, that any identifiable structural
features were found and in fact the majority of the configuration contained joined and
structurally correct SiO4 units. However, some regions of the configuration did not possess
the required local connected structure and the RMC modelling was not able to completely
connect the structure unaided, since it could find a less-well connected structure with
suitable agreement to the data.
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Subsequent to this model, a constrained RMC model of 3000 atoms was produced'’,
requiring the model to maintain the expected Si-O and O-Si co-ordinations within a defined
near-neighbour distance and still fit the data. The second summation term in Equation (9)
was used whereby there was a penalty in the x* for all non-perfectly co-ordinated atoms.
Again good fits to the F(Q) data were obtained (see Figure 2) and 96.2% of the Si atoms
were co-ordinated to four O atoms and 95.4% of the O atoms were co-ordinated to two Si
atoms. However, the good connectivity of this model was achieved at the expense of the
local order, with, if anything, more distorted SiOqtetrahedra than the unconstrained model
(including a weak peak on the high-r side of the low-r Si-O peak). Although both these
models have considerable merit, they are both flawed in some important respects.
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Figure 2. Structure factors for glassy silica calculated from the RMC model of Wicks'® with co-ordination
constraints (dashed lines) compared with those obtained by experiment - neutron'” and X-rayl" (inset).

REVERSE MONTE CARLO REFINEMENT

The flaws in the RMC models of glassy silica which have been pointed out in the
above section should not be used to discount the RMC modelling method completely. It
should be remembered that it was the intention of RMC modelling at the outset to produce
valid three-dimensional structural models without bias. The RMC models have
demonstrated that the data do indeed suggest that silica glass is composed of ideally
connected edge-sharing SiOy tetrahedra and they have been used to quantify the Si-O-Si
bond angle distribution and further details of the structure. However RMC modelling of
the data alone will not be sufficient to produce a model which displays these structural
characteristics perfectly. RMC modelling tends to produce the most disordered structure
which is consistent with the data and such a model will not produce a glass structure which
is composed of very specific structural units. It is therefore necessary to introduce extra
constraints into the model in a satisfactory manner without unduly prejudicing the final
structure. The constrained model' imposed connectivity at the expense of increased SiO,
tetrahedral distortion.
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The two-stage process of RMC refinement has therefore been developed”. A starting
model is created independent of the data which possesses the characteristics which are
unambiguously known to be correct and the data are then used to refine the model with
RMC. 1t is clearly essential to constrain the RMC refinement in a suitable way so as not to
destroy the essential structural features of the initial model whilst allowing the refinement
sufficient flexibility to fit the data. In the case of a glass structure this would usually mean
that the initial model had the correct local structure and the RMC refined final model was
then used to investigate longer-range structure and amount of distortion. For a disordered
crystal, the initial model would normally be the average crystal structure deduced from the
analysis of the Bragg peaks and the RMC refined model would provide details about the
local deviations from the average structure.

RMC Refinement of Glassy Silica

A form of this method was attempted by Gladden? starting from her existing models
and Bionducci er al * attempted to obtain a model of glassy silica starting from the O-
quartz structure. However neither of these models started with a completely connected
CRN and periodic boundary conditions and during RMC refinement their models were
corrupted such that the atoms in Gladden’s cluster became too close to each other and the
connectivity initially present in a-quartz was partially destroyed.

L I I s s L L L

4.0 H

3.0

1.0

cos(6)

Figure 3. The mlra tetrahedral O-Si-O bond angle distribution from the RMC co- ordlnauun constrained
model of Wicks' (dm;hed line) compared with the initial model used for RMC refinement’’ (full line)
(arbitrary units).

The most recent RMC refinement of glassy silica starts from a model of 3000 atoms
and periodic boundary conditions®'. The initial model and the method of its construction
has already been described”’. This model has a similar connectivity to the model described
by Wicks'’, but has the advantage that the SiOqtetrahedra are not distorted (see Figure 3).
The F(Q) calculated from this starting model are actually in good agreement with the
experimental data except that they do not reproduce the intensity of the peak at lowest O
well. This model was then refined using RMC by slowly increasing the weighting of the
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X-ray and neutron F(Q) with respect to the following constraints designed to maintain the
integrity ofthe SiO, tetrahedra (compare with Equation 9):
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where Rs, o is the ideal Si-O distance (1.61 A) and @¢.si.0 is the ideal tetrahedral angle, with
Gs.0 and Go.s..0 chosen to produce qualitatively the appropriate widths of the two lowest-r
peaks in G(r). The connectivity was also maintained by not allowing atoms to pass past
each other - the CRN could deform but Si-O bonds could not be broken. The model
produced in this way gave excellent agreement with the F(Q)’s, better agreement than the
previous RMC models, with the first structure factor peak fitting well (see Figure 4). There
is not much change in the g (r)’s after RMC refinement, with most of the changes in the
longer-range details (as reflected by the changes in the first structure factor peak). The
most significant difference is found in the Si-O-Si bond angle distribution which becomes
broader on RMC refinement (Figure 5).

This RMC refinement of glassy silica demonstrates that it is possible to use RMC
modelling, suitably constrained, to improve the fit to data without breaking up an existing
structure. The development from the earlier RMC models, which showed that certain
structural units are in the glass structure, to the subsequent RMC refinement of a model
which set out to incorporate such units, with an improved fit to the data, is a powerful and
potentially wide-ranging application of the RMC technique.

STRUCTURAL DISORDER IN CRYSTALLINE SILICAS

Introduction

Glassy silica is only one of many structural forms of SiO, found at ambient pressure®.
As shown in Figure 6, at equilibrium and with decreasing temperature, the silica melt
transforms in the sequence: melt — B-cristobalite — HP-tridymite — B-quartz — o-quartz.
Other phases may be stabilised at room temperature with faster cooling rates: the glass
(from the melt), o-cristobalite (from B-cristobalite) and MC-tridymite (from HP-tridymite,
via various other low-symmetry tridymite modifications). All of these solid phases are
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characterised by SiO, tetrahedra with differing degrees of distortion. The high temperature
phases arc also believed to be significantly disordered. In the case of quartz, the thermally
induced disorder results in the average crystal structure (obtained from Bragg peak intensity
analysis) showing a contraction of the Si-O and O-O bond lengths accompanied by an
increase in the Si-O-Si bond angle towards 180° with increased temperature (see Table 1).
In B-cristobalite, the Si-O bond length is anomalously short and the Si-O-Si bond angle is
180°, with large oxygen displacement parameters normal to the Si-Si bonds®. A similar
picture is obtained for HP-tridymite (see Figure 7). A 180° Si-O-Si bond angle is known to
be unfavourable®®, and various models have been proposed to introduce disorder consistent
with a more probable Si-O-Si bond angle of around 145°. One suggestion is that [3-
cristobalite is composed of domains of the low-temperature «i-cristobalite phase®’.
Alternatively, the oxygen atoms do not lie on their average positions but instead they are
dynamically distributed around this position to give a longer Si-O bond length and a more
physically realistic Si-O-Si bond angle®®. In this manner the oxygen atoms are disordered
around an annulus, which may or may not contain preferred positions®.

In order to distinguish experimentally between possible disorder models the average
structure is inappropriate. Bragg intensities arise from elastic scattering and structures
deduced from them are time- and space-averaged structures. Structural disorder is then
inferred from the variance in the distribution function of instantaneous atom positions that
reflects the thermal motion or the partial occupancy of a number of possible sites. Such a
structure would not distinguish between an average arising from a superposition of static
local domains or from dynamical disorder. In contrast, total scattering directly determines
local disorder. Total scattering contains the Bragg and diffuse scattering and integrates
over all possible energy transfers between the probe and the sample and gives an
instantaneous or ‘snap-shot’ picture of the structure. The G(r) determined from a total
scattering F(Q) will directly determine bond lengths and can be used to distinguish between
different models for structural disorder. This is demonstrated in Figure 8, which shows the
low-r part of rG(r) from B-cristobalite at 300°C,” obtained from a direct Fourier transform
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of F(Q) measured on the LAD neutron time-of-flight diffractometer at the ISIS spallation
neutron source and compared with the positions of the shortest ‘bonds’ obtained from
Rietveld refinement. The three lowest-r peaks in G(r) directly correspond to the Si-O, O-O
and Si-Si bond lengths and can be used to deduce the O-Si-O intra- and Si-O-Si inter-
tetrahedral angles. These are also shown in Table 1. It should be pointed out that time-of-
flight neutron diffraction is unrivalled in this regard. A time-of-flight neutron
diffractometer optimised for the study of disordered materials will measure F(Q) up to Q-
values of at least SOA™ (giving good real space resolution in G(r) of order 27m/Qnay and
will simultaneously determine the Bragg intensities with good (-space resolution for
reliable Rietveld refinement. The data shown in each column of Table 1 are from a single
measurement on LAD.

Table 1. Local structural parameters of various phases of silica. Values which are
not in parentheses are from Rietveld refinement of Bragg intensities. Values which
are italicised and in round brackets are from the positions of the lowest-r peaks in
G(r) obtained from the direct transform of F(Q). p is the number of atoms per A?
Where the Rietveld refinement gives more than one bond length or angle the range of
values are shown [D. A. Keen and M. T. Dove (unpublished)].

Quartz Cristobalite Tridymite Glass
T/°C(phase) 25(or) 500(c) 620() 200(cx) 300(B) 550(HP) 25
p(A?) 0.0795 0.0773 0.0761 0.0692 0.0661  0.0655 0.0657
Si-Si (&) 3.059 3.081 3.093 3.077 3.089 3.068/3.109
(3.06) 3.1 (3.12) (3.08) (3.11)  (3.10) (3.10)
Si-0 (A) 1.609 1.602 1.588 1.597 1.544 1.534/1.555
(1.609) (1.612) (1.613) (1.606) (1.606)  (1.613) (1.617)
0-0(A) 2.616-2.6452.601-2.628 2.565-2.6112.590-2.636 2.522 2.532
(2.632) (2.626) (2.627) (2.623) (2.623)  (2.634) (2.626)
N
0-8i-0 (") 108.7-110.5108.4-110.3 107.8-110.6 108.3-111.2 109.5 108.8/110.1
(109.8) (109.1) (109.0) (109.5) (109.5)  (109.5) (108.6)
N
Si-0-8i (") 1437 148.5 1539 1489 180.0 180.0
(144) (149) (151 (147) (151 (148) (147)

The data from G(r) in Table 1 give a very different picture of the local structure of
these silica phases. There is no contraction of the Si-O and O-O bond lengths and no
anomalous increase in Si-O-Si bond angles towards 180° with increasing temperature. The
local structure is much more physically sensible, and incidentally, much more similar to the
glass.

RMC Refinement of Cristobalite
In order to characterise the structural disorder in these systems further, a structural

model must be determined which is consistent with the local structure (from G(r)) and the
average structure (from Rietveld refinement of Bragg intensities). This is an obvious



application for RMC refinement since a good starting model is available (the average
structure) and RMC modelling will introduce structural disorder into the model in an
unbiased manner. The procedure for refinement is as follows:

1. Use the Rietveld method to refine the Bragg peak intensities to obtain the average
structure.

2. A configuration based on the ideal average structure is constructed. This may be
viewed as a supercell of the crystal unit cell (e.g. 10x10x10 unit cells) and takes no
account of the distribution of atoms implied from the thermal parameters in the
average structure.

3. The atoms are then moved randomly one at a time so as to satisfy the constraints of
Equation 10, without any comparison to F(Q) (i.e. Cgaa=°). Rs.-0 in Equation 10 is
determined from the lowest-r peak in G(r). Os.0 and Opsio are chosen to
approximately reproduce the widths of the two lowest-r peaks in G(r). The atom-atom
connectivity is maintained throughout.

4, The weighting of fit to F(Q) is slowly increased (Ggaa is slowly decreased) with
respect to the constraints until a good fit to the data is obtained.

The constraints are not too strong to dominate the final structure but are necessary to
impose SiQO, tetrahedra on the structure during the RMC refinement. Indeed the final
refined model has broader Si-O and O-O peaks in G(r) and a broader O-Si-O bond angle
distribution than would be expected on the basis of the constraints alone.

The crystalline long-range order must be effectively accounted for in the model. It is
only possible to calculate G(r) from the model out to distances Lyn/2, where Lo is the
shortest dimension of the configuration box. This is equivalent to the perfect long-range
G(r) (O<r<oo) multiplied by a step function m(r) where m(r)=1 if m{r)<Ly/2and m(r)=0
otherwise. The Fourier transform of this section of G(r) is F(Q) convoluted with the
transform of m(r), i.e. M(Q)=sin(QL,n/2)/Q. This has the effect of broadening the sharp
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Bragg peaks and comparison between Feupn(Q) and the calculated Feuo(Q) from the
configuration would be inappropriate. Hence the comparison is made between F.u(Q) and
F (@) convoluted with M(Q), ie. F(Q)"

sin(1Q, - Q,1L/2) sin(IQ, +Q,|L/2)

11
10, -0, 10, + 0, Q (th

1
Fin(©)=— [ Fup Q)

This procedure is not usually necessary for glassy or liquid data where G(r) is flat at
r=L,w/2. The alternative to this is to compare Gue(r)With Gexpfr) where Gexpfr)has been
determined using an inverse method which bypasses the truncation effects of the forward
transform F(Q)—G(r) when F(Q) is not flat at the maximum Q measured. Such techniques
will not be described here, and readers are referred to Soper et al’,
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Figure 9. Structure factor of B-cristobalite at 300°C convoluted with the Fourier transform of an appropriate
sized step function (full line) (see text for details) and compared with the structure factor from the RMC
refined model (dashed line). Note the change of scales between the left-hand (low-Q) and right-hand (high-Q)
panels.

The RMC fit to the F(Q) data from B-cristobalite at 300°C is shown in Figure 9. The
model consisted of 24,000 atoms (10x10x10 unit cells within a cubic box of sides
L=71.351A). The initial model was created by placing the atoms on the positions
determined from Rietveld refinement of the data and then randomly moving atoms to
increase the Si-O distance from the Rietveld determined value of 1.544A to the bond length
determined from the lowest-r peak in G(r) (1.606A) while maintaining the tetrahedral SiOj
arrangement, using constraints described by Equation 10. This starting model was then
refined using the F(Q) data and the RMC method described at the start of this section.
Figure 10 shows the comparison between rG(r) calculated from the RMC model and rG(r)
obtained from the direct transform of F(Q). This shows that very good agreement is also
obtained between the real space correlation functions. The bond-angle distribution
functions are shown in Figure 11 and the partial radial distribution functions in Figure 12.
Three things should be noted. First, as discussed previously®® the G(r) for B-cristobalite is
similar to that of the glass and different from o-cristobalite. This would discount the
suggestion that [B-cristobalite is an average of o-cristobalite domains. Secondly, the
distribution of O around the bond-joining neighbouring Si atoms in [111] directions is
isotropic in @ (the torsional angle around the Si-Si bond) and peaks at ¢~17°(the angle
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rG(r)

r(A)

Figure 10. rG(r) from P-cristobalite at 300°C from the Fourier transform of the experimental F(Q) (dashed
line) compared with the same function from the model produced from RMC refinement (full line).
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Figure 11. Nearest neighbour bond angle distributions for B-cristobalite at 300°C calculated from the RMC
refined model (arbitrary units).

between the Si-O bond and the Si-Si direction). Hence there is no evidence for preferred
oxygen sites on this ring of O density in the RMC model. Thirdly, it is possible to use the
RMC model to calculate the expected diffuse scattering in planes of reciprocal space. This
is equivalent to the scattering which would be measured from a single crystal (if one
existed that were large enough) and the calculation is possible because of the three-
dimensional nature of the RMC model. The diffuse scattering in the (4k0) plane is shown
in Figure 13 and compared with electron diffraction results from a very small single crystal
grain®?. There is very good agreement in the positions of the diffuse scattering lines which
occur principally in 110 and 100 directions in this plane. This shows that the RMC model
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is not only able to reproduce the one dimensional F(Q) but also three-dimensional
scattering data. Further discussion of the results from these models, and similar models of
other phases of crystalline silica will be presented in a later paper”, although some of the
consequences of these models on rigid unit mode theories of silicate minerals are
described in another chapter of this book by M. T. Dove et al.
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Figure 12. Partial radial distribution functions 8,5(7) for P-cristobalite
at 300°C calculated from the RMC refined model.

(a) (b)

Figure 13.‘ Diffuse scattering from B-cristobalite in the hk0 reciprocal lattice plane. (a) measured by electron
diffraction™ and (b) from the RMC refined model.
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CONCLUSIONS

This chapter has described in detail the techniques of RMC modelling and refinement.
Results from glassy silica and the disordered crystalline B-phaseof cristobalite have been
presented. These results show that with careful application of RMC methods, good
representative structures of both locally ordered glasses and locally disordered crystals can
be obtained. These methods are completely general and can be applied successfully to a
wide range of systems which show structural disorder, with careful consideration to the
form of constraints and the construction of appropriate starting models.
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MODELLING SINGLE CRYSTAL DIFFUSE
NEUTRON SCATTERING USING REVERSE
MONTE CARLO

V. M. Nield

School of Physical Sciences
University of Kent
Canterbury

Kent CT2 7NR, UK

INTRODUCTION

Ever since the pioneering work of Bragg, the wealth of structural information avail-
able from crystalline diffraction data has been recognised. Such diffraction data consists
of two components, Bragg and diffuse scattering. The former, which can occur only
at integral reciprocal lattice points, is elastic scattering which contains information
about average structural features. It is analysed in terms of the average positions in
the unit cell which are occupied, fully or partially, by the atoms. The O-dependence of
the Bragg scattering also contains information on thermal displacements. In nearly all
cases these are described in terms of thermal ellipsoids, centred on the average posi-
tions. The ellipsoids describe the volume inside which the corresponding atom is found
with a given probability.

In many crystalline materials there is interest in producing a more accurate descrip-
tion of the static or thermal disorder than is possible using the Bragg scattering alone.
This necessitates the analysis of diffuse scattering. Diffuse scattering can be elastic
or inelastic, and can occur anywhere in reciprocal space, including beneath the Bragg
peaks. It contains information on all deviations from the perfect time-averaged long
range crystal structure i.e. it has information on static and thermal disorder, and espe-
cially on the correlations between the displacements of different atoms. Interpretation
of the diffuse scattering is far less advanced than that of Bragg scattering.

In this chapter the modelling of single crystal diffuse neutron scattering is discussed.
Single crystal, rather than powder, diffraction data is used because of the benefits of
having three dimensional information, i.e. the information from differently oriented
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features in real space occurs in different places in reciprocal space. Neutron diffrac-
tion data is used because much of the author’s interest is in compounds where light
and heavy atoms are of equal importance, and which contain hydrogen. The method
discussed is, however, equally applicable to X-ray data.

In the past single crystal diffuse scattering was largely used to confirm or reject a
static disorder model for a material. Hence a model would be constructed, the scattering
it would lead to calculated, and a visual comparison made with the experimental data
[1]. More recently methods have been developed which allow refinement of the model
to improve the goodness of fit and to allow more information about the disorder to be
determined. For example such refinement was employed in studying cubic stabilised
zirconia, with the displacements of atoms towards oxygen vacancy sites refined [2]. It
was also employed in studying the defect clusters in superionic calcium yttrium fluoride
[3,4]. The method to be discussed here, reverse Monte Carlo (RMC), is more ambitious:
the positions of several thousand atoms are altered to give agreement with the data.
The method was initially pioneered for the study of liquids and amorphous materials
[5,6], but it has also been successfully applied to powder diffraction data [7-12]. In
this chapter we will look in detail at the RMC single crystal algorithm as it stands at
present, with examples from its application to ice, Cgp and AgBr used to illustrate the
problems with the method, and the optimal methods for its use. We will also consider
some of the ways in which the algorithm is being improved and methods for future
development.

Study of Ice Th

Ice is by no means simple in structure, even in the usual ice Ih form studied here.
The complexity results largely from proton disorder within the perfect hexagonal lattice
formed by the oxygens. The oxygens arc tetrahedrally coordinated, and the Bernal-
Fowler rules [13] require each to be covalently bonded to two protons, with one proton on
each O-O bond. The protons thus have a certain freedom as to which sites are occupied
and in ice Th are believed to be randomly disordered whilst obeying these rules [14]. Ice
Th has a hexagonal unit cell, of space group P63/minc, but the equivalent 8 molecule
orthorhombic unit cell was the one used in the RMC modelling work. The aim of our
work was to study the effect of the hydrogen disorder on the local structure, both in
terms of the actual bond lengths and angles, and the way it affects the displacements
of the oxygen atoms [15-18].

Study of Cgy

Allthe Cgp modelling discussed here was to generated data corresponding to the low
temperature phase of Cgy. In this phase the centres-of-mass of the four C4; molecules in
the unit cell are on face centred cubic (fcc) sites, but the four molecules have well defined
rotations of either 98° or 38° about different threefold (111} directions. The ratio of
these two orientations is close to 83%:17% (98°:38°) [19,20]. Attempts were made to
model, independently, both orientational and centre-of-mass vibrational disorder [21],
with the sole aim of tesing the use of RMC in these cases.

Study of AgBr

AgBr has a rock-salt structure, but as the temperature is increased some of the
silver ions move from their usual octahedral sites onto tetrahedral interstitial sites.
Powder diffraction data from AgBr was modelled using RMC [8]. The configurations
so obtained were used to produce the test single crystal diffuse scattering data modelled
here[22].
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SINGLE CRYSTAL REVERSE MONTE CARLO (RMCX) [23]

Reverse Monte Carlo is similar to the better known Metropolis Monte Carlo [24]
except that one moves atoms to minimize the difference between the measured and
calculated structure factors, rather than to minimize the energy of the configuration of
particles. Hence no potential function has to be assumed, allowing the technique to be
readily applied to a wide variety of materials.

For single crystal data the algorithm is based on the definition of the neutron scat-
tering cross-section in the static approximation, which gives:

N
SIQ) = 5 O < bexp(—iQe () exp(~iQry(0)) > (1)

k=1

where b;, b are the scattering lengths for atoms / and k, r;(0) and r(0) are their
positions at + = 0, and < ... > denotes an expectation value averaged over all of the
initial states of the crystal. N is the number of atoms in the material. Note that
the above expression involves an integral over all energies and hence RMCX is used to
model total scattering, rather than elastic scattering (Lovesey contains a more detailed
discussion of this point [25]). The expression gives a ¢ = 0 instantaneous picture, or
‘snap-shot’, of the whole structure.

To perform any calculations using eqn.(1) a configuration, or super-cell, of atoms is
necessary. Periodic boundary conditions are applied, meaning that the configuration is
surrounded by images of itself, and so the contribution from any atom and its image
must be the same. Hence S(Q) can only be calculated at Q points which satisfy

ok v )

Q=2r( (2)

b b
ang bny cn,

for lattice parameters a, b, ¢ and a configuration box with n,, 7y, 7. unit cells in the
three directions. h’,&’,!’ are integers. This means that S(Q) can only be calculated on
a grid of points in reciprocal lattice space, with the positions of the points dependent
on the number of unit cells. Relating this to a more familiar concept, this means that
eqn. (1) can only be used to calculate the scattering at the positions of the super-cell
Bragg peaks. The coherent part of S(Q), denoted by F(Q), can be simplified to

FQ) = 5- N,le exp(QRy)| 3)

where the sum is over all N’ particles within the configuration box.
p g

The aim of RMCX is to use eqn.(3) to find a configuration of atoms which agrees
well with the experimental data. The algorithm is detailed below.

1) Measure and prepare the single crystal diffuse scattering data. As many reciprocal
lattice planes of data as have been measured can be used simultaneously in the fitting
procedure. (Bragg scattering is only included in analysis in some cases, and Bragg
intensities should be extracted following the standard procedure for the instrument in
question.)

2) Produce the initial configuration. Routinely these contain about 4000 particles, ar-
ranged with the correct crystal symmetry, and using any information which has been
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positively determined about their positions in the unit cell. Thus the atoms are nor-
mally placed at the average sites as obtained from refinement of Bragg intensities.
Periodic boundary conditions require an integral number of unit cells in all three direc-

tions. The size of the configuration must be compatible with the spacing of the data
points (eqn.(2)).

3) Calculate the coherent scattering of the starting configuration using eqn.(3). The
point group is supplied by the user and the algorithm automatically calculates the
scattering over the symmetry related directions and averages them.

4) Choose a particle at random and move it a random amount, up to a user specified

maximum, along the three axes of the configuration, hence defining a random direction
for the move. In molecular systems several types of move can be envisaged. The atoms
can be treated individually as described, or the molecule can be kept as a rigid entity,
or the molecule can be treated as a flexible body. Molecular motion consists of both
centre-of-mass translation and rotation about an arbitrarily chosen axis (using a Euler
angle formalism) [16]. In the flexible molecule approach this type of motion is combined
with motion of individual atoms [18].

5) The particle-particle distances are checked, and if any particles are unphysically close
the move is rejected and step 4 is repeated. This prevents any two atoms from moving
too close to one another. The closest approach values are specified by the user, but
erroneously large values can be detected by examining the partial radial distribution
functions calculated from the super-cell once a fit to the data has been achieved. A sharp
spike in the first peak of one of the partial radial distribution functions, sometimes with
a corresponding trough elsewhere, indicates that the corresponding closest approach
value needs to be reduced.

Additional constraints can readily be incorporated at this stage, for instance in a molec-
ular system the intra-molecular distances can be kept within a specified range [26,17].

(6) Eqn.(3) is used to recalculate the coherent scattering for comparison with the data.
In practice this step is made faster by calculating the contribution due to the moved
particle both before and after its move, and taking the difference.

The goodness-of-fit parameter, x?, is defined by:

/\/2 _ ”i (FE(Qm) - FC((Qm))2

W(Q,,)o? )

m=1

where the sum is over all ng data points at positions Q,,. FE(Q..) is the value
of the experimental data for point m and F¢(Qp) its calculated counterpart (the
incoherent scattering is assumed to have a constant flat level and is subtracted from
the experimental data before x? is calculated). VW (Qy,) is a weighting factor, and is
often taken to be 1 for all Q, or chosen to be Fg(Q..) or F ,%(Q,,,,). The standard
deviation, a, is usually taken to be independent of Q and is treated as a parameter of
the modelling. It corresponds to the concept of temperature from simulated annealing
[27], but in our case is not normally altered during a modelling run.

The change in \? resulting from the move is Ax? = x2,,, — Xgld' If:
a) A\% < 0 the fit to the data has improved and the move is accepted.

b) Av? > 0 the fit to the data has worsened and the move is accepted with the
Boltzmann probability exp(—Ay?%/2).
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In most of the studies discussed in this chapter ¢ was taken as 0.01. If extreme
values are used this will obviously affect the calculations significantly. With a very
large value of o the data is ignored (Ax? isalways ~ 0, and so all moves are accepted),
with a very small value the configuration is driven to the local minimum closest to the
starting point (there is a negligible probability of moves which make the fit worse being
accepted).

Soft constraints can be applied if a suitable goodness-of-fit parameter can be defined
for them. In this case the move is accepted or rejected depending on a total goodness-
of-fit, which is the weighted sum of the goodness-of-fit parameters for all constraints
added to the standard x? defined above.

7) The procedure is repeated from step 4 until x2 has converged. In practice complete
convergence, as indicated by oscillation about a certain x?, has rarely been achieved
when modelling to single crystal diffuse scattering. In most cases it has been found
that the number of moves accepted simply becomes so slow that modelling has to be
terminated. No concept of the intrinsic quality of the fit is yet generally applied, except
visual inspection. To enable a more qualitative indication it would be useful to define
a quantity:

X2

2
Xbestfit

QF = (5)

where QF is the quality of the fit (and would be close to 1 for a very good fit) and
Xt fit 18 @ measure of the x* that would be achieved if the model showed perfect
agreement with the data within the errors.

8) With the same starting point several super-cells are collected, using identical mod-
elling conditions, to improve the statistics on derived quantities. Two types of in-
formation are available from the atomic coordinates in the configuration. The model
represents an instantaneous structure of the real crystal and many quantities, often of
specific interest to the problem under study, can be determined from it. For example
in ice the dependence of the displacements of the oxygen atoms on the positions of
the neighbouring deuterons was examined. In all cases pair, triplet and higher order
correlation functions can be extracted. In fact, it is in principle possible to determine
positional probabilities (i.e. the probability that a given atom is in a given position
related to a certain configuration of its neighbours) and hence the potentials.

By using the translation vectors of the unit cell all of the unit cells of the inde-
pendent configurations can be superimposed onto one. All local information is lost,
but the average atom density can be examined, and properties of the spatial average
structure can be obtained. For example the mean site positions, and mean square dis-
placements in general directions, can be calculated. It needs to be borne in mind that
the bond length and angles determined directly from the configuration are not neces-
sarily the same as the distances and angles calculated from the mean site positions,
and comparison can give useful information on local, principally static, disorder.

RMC MODELLING

In this section the details of the modelling performed on the three systems of study,
ice Th, Cgo and AgBr will be reported. Detailed results from these systems can be
found in the cited references. In the present chapter, we will solely be comparing the
differences in results from the use of different RMCX modelling parameters, to try and
elicit the most suitable way to perform single crystal RMC studies.
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Modelling of Ice Th [15-18]

The data used in this modelling work was from a recent investigation of the sin-
gle crystal diffuse neutron scattering from deuterated ice Th [28]. The scattering was
measured on the SXD time-of-flight Laue diffractometer at ISIS (Rutherford Appleton
Laboratory, UK) [29] over a very large volume of reciprocal space. It was corrected
and normalised, and then binned to give a data set consistent with the configuration
size to be used in modelling. Five experimental planes of data were used in the fitting
procedure —the 0 k / and its equivalent 4 / [, the 2 0 | and its equivalent 2 3h 1 and the
h k 0 plane —and the data extended out to a Q of 12A-1. The hexagonal equivalent
planes were used to try and reintroduce the hexagonal symmetry lost by modelling
in an orthorhombic unit cell. The starting configuration consisted of either a 6° or
103 repetition of the unit cell, of dimensions @ = 4.498A, b =2a sin60°,¢c = 7.323A,
with the deuterium atoms disordered within the Bernal-Fowler rules There were 10000
(25000 in the case of the 10® super-cell) data points and so a very low data to parameter
ratio (number of parameters per molecule was 9 for free atom modelling, 6 for rigid
molecule modelling and 15 for flexible molecule modelling).

A variety of starting configurations was used. The intra-molecular geometry was
altered, with O-D lengths and D-O-D angles varied around the values of 0.975A and
107.0°, respectively. There were also different inter-molecular geometries, with either
all oxygen-oxygen distances equal, or all O-O-O angles equal (these are mutually in-
compatibly because of the deviation of the c¢/a ratio in ice from the ideal tetrahedral
value). Different closest approach values were examined, and it was found that, the.
most appropriate values were 2.3, 0.5 and 1.0A for the 0-O, O-D and D-D distances
respectively.

Moves were made in all of the ways discussed previously, i.e. with independent
atoms, rigid or flexible molecules. In general the maximum move size was 0.1A for
translations and 2° for rotations. When modelling with rigid molecules relaxation of
the atom positions in the molecules was allowed at the end of modelling, with the atoms
at this stage moved independently. In nearly all cases ¢ was 0.01.

Modelling of Cg [21]

The Cgo work discussed here involved RMC modelling with rigid molecules, using
computer generated single crystal diffuse scattering data which was based on the low
temperature phase of Cg All configurations had 4° unit cells, i.e. 256 molecules
or 15360 atoms, with the molecule centres in an fcc arrangement. The data used in
modelling was a significant section of the 4kl plane, containing 6120 diffuse points (the
440 Bragg peaks were only used in fitting in some cases). Hence since in all cases
the maximum number of variables per molecule was 3, the data to parameter ratio
was close to 8. The generated data was obtained by averaging over the scattering
calculated from 8 independent configurations, and no errors were added to it. Different
convergence criteria were tested, with all 3 of the suggestions for W(Q,,) used. In the
studies discussed here ¢ was usually taken as 0.01.

In the first set of tests the data was calculated from configurations of rigid molecules
with no centre-of-mass vibrations and with 98°:38° molecular orientations in the ratio
83:17, within sampling statistics. The RMC modelling was used with fixed molecular
centres but with two ways of changing the molecular orientation. Using the standard
method molecular rotations were of random orientation and size, up to a user specified
maximum, and several orientationally different start points were used. In the second
method the RMCX algorithm was adapted so that the orientation of any molecule was
altered by randomly picking one set of Euler angles from an array of the 8 possibilities
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(corresponding to the 98° and 38° orientations of the 4 different molecules in the unit
cell). With this method all molecules were initially given random orientations.

For modelling the centre-of-mass vibrations the super-cells had the molecular ori-
entations fixed at 98°:38° in the ratio 83:17 throughout, but the molecule centres were
free to move. The generated data corresponded to the Cgo molecules having the same
orientational disorder as before but with centre-of-mass Gaussian vibrations arbitrarily
chosen to have a root mean square displacement (rmsd) of 0.1A. Fitting was to the
diffuse scattering only, or to the Bragg and diffuse scattering, and the resulting root
mean square displacements were monitored. In general o was 0.01, the maximum move
size was 0.1A and W{Q,n) was 1. However all of these parameters were varied and the
results monitored.

Modelling of AgBr [22]

The data in this case was calculated by averaging over the scattering from 8 config-
urations produced by RMC modelling to powder diffraction data [8]. In the study to
date, only scattering in the #k0 and hhl planes has been used, giving just over 12300
data points. The super-cell used in modelling consisted of 8% unit cells, and hence 4096
atoms. Thus the data to parameter ratio is close to 1, although the use of symmetry
operations effectively improves this by a factor of 12. In the starting configurations
the atoms are arranged in the rock-salt structure. Modelling has been performed with
different values of o, maximum move, and W(Q,).

Further work is continuing in which different ranges of data, and powder and/or
Bragg scattering are being used in modelling as well as the diffuse scattering.

DETAILED RMCX MODELLING CONSIDERATIONS

In this section we consider in more detail some of the steps mentioned previously. In
particular we will look at the failings of single crystal reverse Monte Carlo at present,
and some of the means of addressing these problems in the future.

Step 1: Measuring and Preparing the Data

Neutron diffraction measurements can be made in two ways. Conventionally single
crystal neutron diffuse scattering studies have been made at reactor sources, where a
monochromatic neutron beam is used, and point-wise surveys of reciprocal space are
performed using triple-axis instruments to select elastic scattering. To obtain the type
of data used in RMC studies these machines are used in two- rather than three-axis
mode, so that the scattering is an average over all energies. There is in general a signif-
icant limitation on the highest Q data accessible. For RMCX purposes the grid of the
measurement fixes the configuration size except for cases where accurate interpolation
of the data is possible. The data is measured at discrete points in reciprocal space,
but the resolution of the instrument means that averaging is occurring over a region of
reciprocal space near the point of interest.

Time-of-flight (tof) Laue diffraction, as implemented on SXD at ISIS [29], is more
flexible and considerably faster. Neutrons of different wavelength (and hence velocity)
arrive at the detector at different times. By measuring the number of arrivals as a
function of time, the intensity as a function of wavelength, and hence |Q|, is obtained.
SXD has a 64 x 64 pixel position sensitive detector, enabling a large volume of reciprocal
space to be surveyed for one sample position, even for samples which are not perfectly
aligned. The angular position of the pixel compared to the axes of the instrument,
together with the |Q| assignment just discussed, allow the data to be assigned to a
particular Q. Continuous coverage of reciprocal space is achieved and so it is possible
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to bin the data to allow any reasonable sized configuration to be chosen as the starting
point for RMCX. The coarseness of the binning determines how closely the scattering
corresponds to that at a discrete point in reciprocal space.

The scattering from either two-axis instruments or time-of-flight Laue diffractome-
ters has to be accurately corrected and normalised. The methods of correction are
very similar to those for treating the scattering from liquid and amorphous materials
[30]. Corrections are made for background and other non-sample scattering, absorp-
tion, multiple scattering and inelasticity. Vanadium scattering is used to normalise for
the incident neutron flux profile (in the tof case) and for the detector efficiency. The
corrections for tof data are the more difficult, because most corrections are wavelength
dependent. On the other hand, with diffraction data from a monochromatic source of
wavelength A, contamination by neutrons of wavelength A/n, where n is an integer, is
difficult to remove completely and can be a considerable nuisance.

The scattering calculated from the model super-cell using eqn.(3) corresponds to
energy integrated total scattering, and assumes that the static approximation is valid.
For the static approximation to be truly valid the energy of the incident particle needs
to be much higher than that of the scattering centres. This is not true for neutron
diffraction, and hence the approximation is not completely valid. The correction for
this is the Placzek correction. One and multiple phonon scattering can also be a
problem, because this is not properly treated. No general evaluation of this problem
has been made, and it is very system specific.

As discussed in the previous section, RMC generated single crystal patterns are
calculated at discrete points in reciprocal space, determined by the size of the config-
uration used in the modelling. However experimentally the data is an average over a
region of Q space, determined by the resolution of the instrument and any subsequent
binning of the data. This difference between calculation and experiment is not believed
to be too serious unless diffuse features which are much sharper than the data bin size
are involved. In this case the value of the binned data is unlikely to be close to the
actual data value for the point at which the calculation is performed.

The range of the data is obviously of crucial importance. High Q data improves the
spatial resolution of models, and ideally data should go out to 30A~! or more. Data in
different regions of reciprocal space contain information on different real space features.
Hence in an ideal case the scattering in all unique regions of reciprocal space would be
used in modelling with both low and high Q data included. Traditional reactor data is
obtained very slowly and has a restricted high Q limit. Laue time-of-flight diffraction
allows the required volumes of reciprocal space to be measured relatively quickly, but
to model these complete volumes would require massive computer memory and CPU.
In all published work to date only planes of reciprocal space have been modelled, and
especially the principal planes (such as #k0 and hhl). However even machines such
as SXD do not measure data to sufficiently high Q. To help with these problems an
algorithm has been developed for modelling single crystal and powder diffraction data
simultaneously. Time-of-flight powder diffraction data not only goes to higher Q, but
its use will also constrain the scattering from the model to the correct 3 dimensional
average — an advantage when single crystal data over complete volumes of reciprocal
space are not being modelled. Testing of this combined approach is now underway for
a variety of systems.

Any refinement study also requires a sufficiently high data to parameter ratio. In the
present case the number of parameters is generally three times the number of atoms,
and in standard Bragg single crystal refinements the preferred data to parameter ratio
is greater than 10. This number is large partly because of the errors in the data.
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The errors in measured diffuse scattering are generally larger (because the scattering is
inherently weaker), which would suggest the need for a greater data to parameter ratio.
However, as discussed in the previous paragraph, there are other equally important
criteria which affect the quality of the model, and all lead to the requirement of a very
large amount of experimental data for accurate RMCX modelling work.

Step 2: Creating the Initial Super-cell

It is important to make the correct choice(s) of initial super-cell, as this can vastly
improve the chances of convergence to a sensible minimum in a reasonable time scale.
In some cases the choice of starting point is obvious, particularly if any disorder is of
relatively small amplitude. For example for AgBr the starting point must be a rock-
salt arrangement of atomic centres, because deviations from this are known to be small.
However if the percentage of silver ion interstitials was larger, it might be sensible to
additionally try a starting point with the silver ions distributed over both octahedral
and tetrahedral sites or just on tetrahedral sites. By modelling with a range of starting
points it is possible to find a range of models which agree with the data. If agreement is
equally good in all cases additional information is needed to decide which of the models
is likely to be the most representative of the real structure. A good example of the
use of multiple starting points is provided by a reverse Monte Carlo powder diffraction
study of Agl [9].

With systems where the amount of structural disorder leads to a poorly defined
average crystal structure from Bragg refinement the best starting configuration is harder
to define. In work on the structure of ice, Beverley and Nield [16,18] tried a variety of
different starting inter- and intra-molecular geometries, spanning the best determined
perfect structure [14] to attempt to test the sensitivity of the result to the start point.
Table 1 shows some results from using two different initial O-D bond lengths. It can be
seen that the final O-D bond length depends strongly on the start point. This means
that the model is not converging to a global minimum, which has many possible causes,
including the limited Q range of the data, the poor optimisation of the goodness of fit
parameter and not modelling the Bragg scattering.

Table 1. Some of the results from modelling ice data with different initial O-D bond
lengths and numbers of unit cells. In all cases atoms were moved rather than molecules.

Number of Initial O-D Final O-D Final O-D Oxygen mean squarc
unit cells lengths (A) parallel to ¢ (A)  oblique to ¢ (A) displacement (A?)
109 0.95 0.97 0.97 0.005

10° 1.00 1.00 1.00 0.005

6% 1.00 0.98 1.02 0.012

The work on ice also showed a dependence on the configuration size, again as seen
in Table 1. It can be seen that on moving from 6> to 10° unit cells there is a significant
change in the resulting bond lengths and mean square displacements. While this might
be partly due to modelling the long range correlated static disorder in ice [15], it was also
contributed to by the way the moves were made. In the larger configuration a smaller
percentage of atoms were moved, so that even when modelling was finished there were
a significant number of unmoved atoms. This is reflected in the small oxygen mean
square displacement in the final model. This suggests that there is a problem with the
way moves were being made, and this is discussed further below.
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If the super-cell is too small the statistics of the calculated scattering will be poor
[31], although this is alleviated to some extent by averaging over symmetry equivalent
directions [23]. The problem is most severe for systems with a great deal of correlated
static disorder, such as ice. In this case smaller configurations did not accurately
sample the static disorder of the molecules. An evaluation of this problem should be
made system by system. Not enough work has yet been done to determine whether
this simply imposes a limit on the quality of fit, or can lead to completely fallacious
results.

Step 4: Making a Move

As more and more tests are performed, it seems that the method and maximum
displacement used in making a move is of crucial importance in obtaining good conver-
gence to a sensible model. There are many ways that moves can be made, some specific
to certain systems, such as picking the new orientation of a molecule from an array of
possibilities [21] or swapping the species of two atoms [32].

Table 2. RMC results on the effect of different maximum move sizes on the rmsd for
test data on Cgp (root mean square displacement should be 0.1A) and AgBr (Ag* root
mean square displacement is given in the table and should be 1.1A).

System Maximum Move o Root mean square
size (A) displacement, (A)

Ceo 0.1 0.01 0.12

Coo 0.1 0.0001 0.12

Coo 0.01 0.01 0.098

ApBr 1 0.1 1.23

AgBr 1 0.01 0.97

AgBr 0.1 0.01 0.23

AgBr 0.01 0.01 0.03

In the most general case the move is made by choosing a random direction and
moving the atom a linearly random amount in that direction, up to a maximum value
as specified by the user. Table 2 shows the results obtained on using different maximum
move sizes and ¢ values. In modelling to data corresponding to 0JA root mean square
centre-of-mass vibrations in Cg it was found that when the maximum move size was
0.1A, with the sizes of the moves chosen randomly up to this maximum, the config-
uration quickly reached an equilibrium in which the rmsd was 0.12A [21]. This was
independent of the form of W{(Q,,) or of a reduction in ¢ to 0.001. With the smaller
move size of 0.0lA modelling took about ten times longer, but the fit to the data was
greatly improved and the final rmsd was 0.098A, very close to the correct value. How-
ever in the modelling of AgBr maximum move sizes of 0.I1A and lower resulted in rmsds
far smaller than they should be when modelling was ended — the actual isotropic root
mean square displacements of our test data are 1.IA for the Ag* and 0.74A for the
Br™. Only with the larger maximum move size of 1A was reasonable agreement to the
rmsd obtained. (It should be noted that the goodness-of-fit is different in all cases, and
is better for the fits with mean square displacements closer to the true value. Hence by
performing modelling with a wide range of maximum move sizes the most appropriate
move size can still be found, but this is computationally prohibitively expensive.) This
clearly shows that the maximum move size should be chosen using the best available
information about the rmsds of the system, i.e. larger for systems with larger rmsds.
Proffen and Welberry achieved this in some of their RMC studies by giving atoms
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initial displacements corresponding to the correct mean square displacement and then
swapping the displacements from different atoms of the same species [32]. This method
has the disadvantage that only displacements initially input can be present in the final
model, which is not ideal for correlated motions.

New work by the author builds on this method, with the atoms in the configuration
initially given displacements of the required magnitude and distribution to give the
correct probability ellipsoid (as determined from standard Bragg analysis). However
moves for atoms which are not believed to exhibit static disorder are made by returning
the atom to its average site position and then using a random Gaussian distribution
of a shape corresponding to the probability ellipsoids to determine the new move. For
atoms with known or suspected static disorder, moves are made either in the standard
way, or by combining linear and Gaussian random moves. These methods are still being
tested [33]. However, giving the atoms an initial displacement off their sites consistent
with the correct mean square displacement avoids the problems noted earlier for ice,
in which different sized starting configurations gave very different final mean square
displacements, and those for Cgy and AgBr, where different move sizes and o values
lead to different rmsds. Hence this method is potentially very promising as a means of
introducing physically sensible constraints.

Extensive studies on ice Th have been performed, looking at how the way moves
are made affects the dependence of the final RMC model on the starting configuration
[16,18]. In separate modelling runs moves were made in three ways, with the molecules
initially rigid but later allowed to relax, with flexible molecules and with individual
atoms. Table 3 compares the D-O-D intra-molecular water angle and the oxygen mean
square displacement from modelling runs which were performed identically except for
the method of making moves. In all cases it was found that there was a strong de-
pendence on starting point, with the greatest dependence when the molecules were
initially kept rigid and the least when atoms were moved individually throughout, as
might be expected. It can also be seen from Table 3 that the constraint of keeping the
molecule rigid lead to a larger amount of local distortions and so to larger mean square
displacements, and badly incorrect inter-molecular bond lengths and angles. It seems
sensible that in cases such as ice, where there is such a large amount of static disorder
that the starting bond lengths and angles are intrinsically uncertain from Bragg anal-
ysis alone, then these parameters be refined initially. This pre-RMC refinement of, for
example, intra- and perhaps inter-molecular bond lengths and angles (including simple
static disorder models) could be performed using the same basic algorithm, but with
all atoms moved at each step. This would perhaps then define the best starting point
for RMC. This presents further convergence problems, but an iterative procedure such
as pre-RMC run then perform RMC, then use information from the RMC to make the
pre-RMC stage more accurate and so on, may be appropriate. If elastic scattering had
been additionally measured for the same system this would enable the pre-RMC step
to be more accurately performed without an iterative procedure being necessary.

Table 3. Some of the results from modelling ice data with ditferent ways of making
moves -- all other factors were identical.

Method of Making D-O-D angle Oxygen mean squarce
Moves displacement (A?)
Start point 109.5 0.0

Rigid molecule then atoms 109.3 0.020

Flexible molecule 108.8 0.014

Atoms 107.4 0.012
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In none of the work so far have orientational and thermal disorder been modelled
simultaneously (in the work on ice the moves did not allow large enough rotations of
the molecule for re-orientation by more than a few degrees). In all the work of Nield
and co-workers, where static and thermal disorder have both been present, they have
been modelled simultaneously. In some work of Proffen and Welberry [32] the system
had both occupational and thermal disorder, and it was found to be most effective
to fit these by modelling first one and then the other and then the first and so on.
Hence, initially a number of moves were made in which the species of some atoms were
swapped (to deal with the occupational disorder) and then a number of moves were
made to model the thermal disorder and then atom swapping was performed again and
so on. In this work it was also found to be appropriate to model different regions of
the data during the different steps.

In some cases it might be best to make a series of moves before looking at the
goodness-of-fit. For examples moves could be made in a way which approximates
phonon modes. In some cases the model might need to make a series of moves of
nearby atoms for any of those moves to be allowed, for example in moving a section of
a molecule that is not being treated as a rigid body. While this is a potentially very
powerful method, no work has yet been done in this area to the author’s knowledge.

Step 6: Acceptance of Moves

A number of factors are involved in the acceptance of moves. These include the
form of x?, the Boltzmann criterion used to accept moves that make the fit worse, and
the value of 7.

The only RMCX study to look at different forms of x?,in this case the different
values of W (Q,,) mentioned previously, was the study on Cey [21], some results from
which are given in Table 4. Here, when modelling the orientational disorder, the prob-
lem immediately encountered was that with W(Qy,) = 1 the modelling would quickly
get driven into a local minimum corresponding to an overly disordered configuration of
molecular orientations. Hence in some regions of reciprocal space the scattering level
was considerably higher than it should be. This occurred even when orientations were
picked from an array of the 8 known possibilities, rather than changes being made at
random. In this case the final ratio of molecules in the 98°:38° orientations was close
to 1. When W(Q,,) = Fg(Qn), the situation was much improved, but still not perfect
(see Table 4; if the model was perfect the numbers should be 256:0). The advantage of
this weighting seemed to be that it increased the importance of the points where there
was very little diffuse scattering, and hence helped to increase the amount of order in
the final model. This weighting was found not to cause any significant difference com-
pared to uniform weighting when modelling centre-of-mass vibrations in Cg. When
the weighting was increased to W(Q,,) = F%(Qm) few moves were accepted and it was
found to be impossible to converge the model with any value of o.

Table 4. RMC results from modelling the orientational disorder of Cgg with differently
weighted x?.

Weighting a Number of molecules
wW(Q.) in 98°:38° orientations
1 0.01 126:130

1 0.001 123:133

Fi{Qm) 0.01 155:101

Fi(Qu) 0.01-5 not converged
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Welberry and Proffen [31] made the very important comment that the present
definition of the goodness-of-fit relates to individual data pixels which correspond to
high spatial frequencies, rather than some broader measure of the agreement. Hence
perhaps a completely new form of x% needs to be developed.

By using the Boltzmann criterion for accepting moves that decrease the quality of
the fit the model can move out of shallow minima, provided & is greater than zero. In
many cases it has been found that adjusting & by a factor of 10 has little effect on the
final model, but this has always involved values of o of 0.01 or smaller. In most work
o has been kept constant during modelling, but in a few cases o has been altered [e.g.
32], although the alteration has never been slow enough for the method to have been a
true simulated annealing procedure [27]. Simulated annealing would be advantageous
in moving the configuration into a global rather than a local minimum, with the main
constraint on the use of this technique the large CPU times involved.

THE USE OF CONSTRAINTS
Constraints on the Average Structure

Most RMCX work has modelled the diffuse scattering alone. However diffuse
scattering does not contain the average information on the system, and this constraint
needs to be fed into the model in some way. One obvious way to do this is to include
the Bragg scattering in the modelling. The difficulty with this is in correctly weighting
the two contributions (Bragg and diffuse) in the goodness-of-fit. Work on this topic is
proceeding [21-23], but at present it seems that there is no ideal way of performing this
weighting.

A different way around the problem is to use the average structure (sites plus
ellipsoids) as a constraint in the modelling. Hence the deviation from each average
atomic site, obtained by averaging over all equivalent atoms in the super-cell, can be
used as an additional term in the goodness-of-fit, and ways, such as those discussed
above under making a move, found to constrain the atoms to have the correct mean
square displacements. This has the disadvantage that, especially in the types of disor-
dered system usually considered in an RMC study, there are often a series of average
structures that fit the Bragg scattering equally well. Some of these may involve split
sites, or deviations from the thermal ellipsoid model of thermal displacements and this
would not be allowed for in the constraints.

It seems that there is no easy solution to allow the inclusion of average information.

CONCLUDING REMARKS

Reverse Monte Carlo modelling to single crystal total (diffuse plus Bragg) scatter-
ing in principle has the ability to produce a super-cell of atomic coordinates that is a
good representation of a many thousand atom section of a crystal at a certain instant in
time. At present the technique is still under development, and very careful evaluation
is required of any results obtained. This is in distinction to the application of RMC to
powder diffraction data which has been performed successfully in many cases [7-12].

The successful application of the single crystal RMC technique requires the data
on which it is to be used to have been carefully measured, with good statistics, and
with the accurate performance of all necessary corrections. In conventional refinement
studies the data to parameter ratio is the most important concept. In the present case
the range of the data is far more important, as even with a high data to parameter
ratio only features which give scattering in the planes which are being modelled will be
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reproduced in the data. High ) data (out to 30A‘1) improves the real space resolution
of the models, but is generally not available in single crystal measurements. The use of
powder plus single crystal data allows higher (J data to be included and ensures that
the model gives the correct 3-dimensionally averaged scattering.

The starting configuration should be a repetition of the time-averaged unit cell
obtained by standard refinement. Where this is inaccurately known because of a large
amount of static disorder it is suggested that some kind of pre-RMC refinement be
performed, ideally on elastic scattering, to obtain the best start point. Where several
starting points can be envisaged, modelling should be performed from each, to improve
the chances of converging into a global minimum solution.

There are many ways in which the movements of atoms or molecules can be made.
These should all lead to the same final configuration, but at present convergence is often
into a local minimum, and so they lead to different results. A new method of great
promise for many situations is to use the Bragg refinement probability ellipsoids to
constrain the thermal displacement component of moves, with standard linear random
moves to give the static disorder. This method also allows average information, which is
missing from the diffuse scattering, to be included. An alternate method of doing this is
to model Bragg and diffuse scattering simultaneously, but optimised relative weightings
of the goodness-of-fit parameters for these two types of scattering are proving difficult
to establish.

It has been found that a weighted goodness-of-fit parameter is better than the form
used initially [21], to give a higher weighting to the regions of reciprocal space where
there is little diffuse scattering, and so stop the models from becoming too disordered.
The use of a completely different form for this parameter that does not just depend
on point by point comparison could improve convergence and merits further work [31].
Similarly a simulated annealing approach would be advantageous in finding the model
global minimum, but is computationally expensive.

The use of reverse Monte Carlo on single crystal diffuse scattering is in its relatively
early stages, and further development is required along the lines discussed above for it
to properly fulfill its potential.

The RMC codes are freeware, and anyone wanting to use the RMCX code is
welcome to obtain it from the author or from the reverse Monte Carlo web pages at:

http://www.studsvik.uu.se.

The RMC version of Proffen and Welberry is available as part of the Discus package
on:

http://rschp2.anu.edu.au:8080/proffen/discus/discus.html.
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INTRODUCTION

One of the most challenging problems in the study of structure is to characterize
atomic short-range order in materials. Long-range order can be determined with a high
degree of accuracy by analysing Bragg peak positions and intensities in data from single
crystals or powders. However, information about short-range order is contained in the
diffuse scattering intensity. This is difficult to analyse because it is low in absolute
intensity (though the integrated intensity may be significant) and widely spread in
reciprocal space.

The need to persevere and develop reliable techniques for analysing diffuse scat-
tering is becoming necessary. This is because many of the newly emerging materials,
including many with potential technological applications, are quite disordered. These
include materials such as semiconductor alloys, ferroelectric materials and other tran-
sition metal compounds, nanoporous and microporous materials such as zeolites and
pyrolitic graphites, and molecular crystals, for example. In order to obtain a full so-
lution of the structure it is necessary to analyze both the long-range crystallographic
order and short-range, aperiodic, deviations from the long-range order.

The diffuse scattering can be studied using two broad approaches: analyzing the
data from powders or single crystals." The former approach has the advantage that the
diffuse scattering is integrated over a solid angle of 47 and so weak diffuse intensities
can still be measured accurately. The experiments and analysis are also straightforward
(in general) allowing many data points to be obtained to search for local structural
dependences on temperature and pressure, for example.” Finally, as we will describe,
the modelling of the data is quite intuitive because it is in real-space coordinates. The
main disadvantage of the powder approach is that directional information, present in
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the single crystal data, is lost in the powder experiment. This directional informa-
tion can often be inferred from the data using three dimensional structural modelling.
However, a good single crystal experiment will always be the final arbiter of which
real-space model is correct.

We will describe an approach for extracting local structural information from pow-
der diffraction data using a full-profile fitting regression technique, where the function
which is fit is the atomic pair distribution function (PDF). The PDF technique has
been described in detail elsewhere.*® The modelling approach we will describe gives
a quantitative solution of the local structure in the form of atomic coordinates, dis-
placement factors (often less accurately called thermal factors) and occupancy factors.
It gives motional-correlation factors’ and can yield correlated short-range ordered dis-
placements where they exist.>*'® Furthermore, because the PDF is fit over a significant
range of » (where the r-coordinate measures the distance separating a pair of atoms),
the probability of the result being biased by random (or systematic) noise in the func-
tion is very small. Structures determined in this way are therefore robust; however, as
is true with all structures obtained from powder data, the structural solutions are not
unique.

In the following Section we describe the atomic pair distribution function, briefly
touching on how it is determined experimentally and how it can be calculated from a
model structure. In the subsequent Section we describe the capabilities and implemen-
tation of the full-profile fitting program named RESPAR. The next Section contains a
number of examples of'its use to solve scientific questions. The mathematical Appendix
lists the equations used in the RESPAR code to calculate the PDF and determine the
least-squares matrices.

PAIR DISTRIBUTION FUNCTION

The atomic pair distribution function, G(r), can be obtained from powder diffrac-
tion data through a sine Fourier transformation:’

G(r) = 4rrlp(r) — ) = = [ QIS(@) ~ 1] sinQr g, W

where p(r) is the microscopic pair density, py is the average number density, S(Q)
is total structure function which is the normalised scattering intensity, and Q is the
magnitude of the scattering vector, @ = |k—Kkg|. For elastic scattering, Q@ = 4w sind/A,
where 26 is the scattering angle and A is the wavelength of the scattering radiation.

The PDF is a measure of the probability of finding an atom at a distance » from an-
other atom. It has been used extensively for characterizing the structure of disordered
materials such as glasses and liquids. However, the same approach can be applied to
study crystalline materials, as discussed elsewhere in this volume.® In the past this
was rarely the method of choice for studying crystalline materials. However, a need to
characterize disorder in new materials, coupled with improved technologies for carry-
ing out the experiments, is now making this approach more interesting. The advent of
powerful synchrotron x-ray and pulsed neutron sources are allowing high quality data
to be routinely collected over wide ranges of O, and modern high speed computing is
allowing efficient data analysis and modelling to be carried out.

The experimental determination of PDFs has been described in detail elsewhere®®
and we will not discuss it here. Of particular importance when partially ordered mate-
rials are to be studied is to collect data over a sufficiently wide range of Q. In neutron
measurements this is done using pulsed neutron sources which have large fluxes of
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epithermal neutrons. With x-rays it is necessary to work at x-ray energies above 25
keV and preferrably as high as 40 keV. This is possible at modern synchrotron sources.
The data are corrected for experimental effects such as beam polarization, background
scattering, sample absorption and multiple scattering, inelasticity effects (this is the
incoherent Compton scattering in x-rays and the Placek correction in neutron mea-
surements — phonon inelastic scattering is accepted in the usual total scattering ex-
periment), and it is normalized by the incident flux and the number of scatterers in
the sample. The data are then divided by the average atomic form factor in an x-ray
determination. This analysis procedure is complicated but straightforward and most of
the corrections are quite well controlled. The resulting normalised scattering function,
S(Q), can then be Fourier transformed according to Eq. 1.

Calculating the PDF from a Structural Model

The radial distribution function (RDF) gives the average atomic density (suitably
weighted by atomic scattering factors) in an annulus of thickness dr at a distance
r from another atom.’ This feature gives a calculational scheme for determining the
RDF, and from that the PDF, for a given structure.

The structure is specified by a series of delta functions at the positions occupied by
atoms in the sample, §(r — r;), where r; is the position of the ith atom with respect to
some coordinate system. The PDF is then given by,

b")’f 5(r = 135), (2)

G(r) + 4nrpy = 4nrp(r) = %ZE ()2

where the sums go over all the atoms in the sample and r;; is the magnitude of the
separation of the ith and jth atoms. The number of atoms in the sample is N, b;is
the scattering length of the ith ion (evaluated at Q = 0) and (b} is the sample average
scattering length. We will refer to the é(r — r;;) as “atomic pair correlations”.

In an experiment it is the ensemble (and temporal) average of a macroscopic sample
which is measured. This presents two complications in our calculation of a model G(r)
to compare with experiment. First, if the sums were taken over every atom in the
sample they would be impractically large, and second, Eq. 2 should be averaged over
different possible configurations of the sample. The first problem is generally addressed
by specifying a sample of a computationally tractable size and applying some boundary
conditions. There are two common approaches to address the second problem. One
can specify a model with a large enough number of atoms that a sample-average of
the model accounts for all of the static and thermal disorder." Alternatively, the delta
functions on each atomic site can be convoluted with a distribution function to account
for this disorder as we do here. It is also possible to combine both approaches.'?

Once G(r) is calculated for the model over some range of r, it can be compared
with an experimentally determined G(r) over the same range. An example is shown in
Fig. 1. Model parameters such as atom positions can then be varied in such a way as
to improve the agreement between the calculated and measured PDFs as we describe
below.

REAL-SPACE RIETVELD PROGRAM

In this section we describe our implementation of the above procedure. As we will
describe, the approach we have taken is highly analogous to the Rietveld refinement
of powder diffraction data. For this reason we have called the method “Real-Space
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Figure 1. Example of a model PDF (solid line) fit to data (dotted line). Below is the difference
curve. The dashed lines indicate the random errors at the level of +1 standard deviation. The data
are from YBasCuz07_; collected on HIPD at MLNSC, Los Alamos at 10 K

Rietveld” where real-space refers to the fact that we are fitting G(r) which is a function
in real- rather than reciprocal-space coordinates.

The program uses a full-matrix least squares approach for the regression analysis
with analytic partial derivatives for all the variables. The mathematical expressions
used in the program are laid out in the Appendix at the end of this article. Param-
eters in the code are varied as desired until the residuals function, which we call the
agreement factor, is minimised. The agreement factor, 4, is a weighted, full profile,
factor similar to the Rietveld weighted agreement factor and defined as,

1 kmaz 02 kmaz (Gdk _ G k)2
A2 = — & ik el 3
N k:kzmm G k=kZ o ©)

min

where the sums go over the N data points from the kp,;,th point at 7, to the kpyeth
data point at 7,,4.; Gax and G, are the values of G(r) from the data and the model
respectively at the kth point; and oy is the estimated random error on the data at the
kth point at the level of one standard deviation.

Sample Dependent Parameters

In analogy with crystallography, the model is specified as atom positions in a unit
cell: the lattice parameters and cell angles are given and atom positions are then
indicated in fractional coordinates. Lattice parameters can be refined; however, in the
current implementation of the program the cell angles cannot. These parameters are
more reliably determined from a conventional crystallographic analysis anyway. The
unit cell could be the crystallographic unit cell. However, in general it is some supercell
which allows aperiodic lattice displacements to be incorporated into the model. The
unit cell need not be orthogonal.
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No space-group symmetry operations are applied to the contents of the unit cell,
though periodic boundary conditions are applied to the cell itself. This is an incon-
venience when setting up the model because of the number of coordinates which have
to be specified; however, it has the advantage that arbitrary distortions (atom dis-
placements) can be introduced into the model without danger of moving off a special
position and generating new atomic positions, or having to find the new symmetry
subgroup appropriate to the intended distortion.

Each atomic pair correlation is convoluted with a gaussian distribution function
to account for thermal and zero-point motion. The width of the gaussian depends
on which atoms contribute to the correlation and its direction in space. The gaus-
sian broadening parameters are specified in the model as site-specific anisotropic dis-
placement (thermal) factors, again, in close analogy with Rietveld refinement. The
broadening of the atomic pair correlation is calculated by projecting these anisotropic
displacement factors along the vector joining the two atoms in the pair, as we describe
in detail later.

In the current implementation of the program, only the diagonal elements of the
anisotropic displacement-parameter matrix can be determined. This means that the
major axes of the thermal ellipsoids are constrained to lie parallel to the lattice vectors.
This is a limitation in the code which can be circumvented somewhat by specifying
rotated unit cells if a prolate or oblate ellipsoid is suspected whose major axis is not
parallel to the original cell axis. This limitation should certainly be taken into account
when interpreting anisotropic thermal factors. For example, a cigar-shaped ellipsoid
pointing in a [110] direction will appear as a pancake shaped ellipsoid to the program.
However, a 45° rotated supercell will recover the correct result.

The width of the gaussian distribution function for the ijth atomic pair correlation
(the correlation between the ith and the jth atoms), oq;,, depends on the pair of atoms
involved and on the direction of the vector joining the ith and the jth atom. In detail,

Tbsy = Ty (00 + 03,) + (o8, + 03,) + 25 (0%, + 07,), (4)

where oy, is the x-component of the displacement factor of the ith ion, xz;, is the
x-component of r;;, and so on.

Again, in analogy with the Rietveld method, site occupancies can be refined. This
means that sites with incomplete occupancies can be determined. It also allows un-
correlated atomic displacements to be introduced in some average sense as partially
occupied split positions. For example, a symmetry lowering soft phonon introduces
correlated displacements which would require a supercell to describe. However, the
displacements can be approximated in the undistorted cell by creating two displaced
positions in the directions of the phonon distortion, and giving each 50% occupancy.
This is a fairly generic way of introducing anharmonicity. It is useful for determining
whether significant atomic displacements exist beyond gaussian disorder, before exten-
sive effort is expended on trying to finding complicated correlated short-range ordered
local displacements models.

Atomic motion in solids is highly correlated: directly bonded neighbors tend to
move in phase with each other. This appears in the PDF as a sharpening of the PDF
peaks at low-r."* The origin of this effect in the data is thermal diffuse scattering (this
can be seen later in Fig. 2(b)). This effect is also discussed in more detail elsewhere in
these proceedings'® where it is being used to extract theoretical potential parameters.
It is important to be able to account for this effect in the calculated G(r). We use an
empirical approximation for the r-dependence of the PDF peak sharpening:
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Oij = Ooij — 720 (5)
ij

where g;; is the corrected broadening for the ijth atomic pair correlation, g5 is the
broadening due to the anisotropic displacement factors of the ith and jth atoms defined
in Eq. 4 and 4§ is a parameter.

Experimental Dependent Parameters

Some refinable parameters are included in the program to account for experimental
artefacts.

The function G(r) is an absolute function. For example, by integrating the intensity
under a peak in the function 4wr?p(r), one recovers the number of atomic neighbours
contributing to that peak. However, in the process of obtaining G(r) from experimental
data it is possible to introduce a scale error. For example, the contribution to the data
from multiple scattering events are subtracted before the data are normalized. If this
subtraction is not done correctly, an incorrect normalization will result as the additive
error is compensated by the multiplicative normalization correction. This will introduce
a scale error into the experimentally determined G(r). To allow for this a scale factor
is refined in the RESPAR model. The final value of the scale factor should be close
to unity and this gives confidence that all of the data corrections were carried out
correctly. However, the scale factor can be varied to account for small deviations from
unity which may be present.

The finite Q resolution of the measurement introduces a gradual fall-off in the
amplitude of G(r) with increasing . This is probably most easily understood by
considering the inverse situation. It is well known that the uncertainty in position of
atoms in r-space due to thermal and zero-point fluctuations causes the intensity of
elastic scattering to fall off with increasing 0. This is the well known Debye-Waller
factor.” Thus, a finite resolution in real-space gives rise to a drop off in intensity
with Q in Q-space. In a similar way, the resolution function of the measurement in Q
is convoluted with the real signal, therefore G(r) should be multiplied by the Fourier
transform of the resolution function. In the RESPAR program a constant Gaussian
form is assumed for the Q-space resolution function and G(r) is therefore multiplied
by a gaussian:'?

(ogn)?

pu(r) = p(r)e” 2 (6)

where oq is the standard deviation of the Q-space resolution function. This is not a
perfect correction since, in general, the instrument resolution function is not Gaussian,
nor is it necessarily constant in Q. However, this correction accounts well for the gross
features of the effect of the finite Q-resolution, especially when the PDF is being fit
over a limited range below ~ 20 A1,

The finite Q range of the data also introduces errors into the experimental G(r)
in the form of termination errors. These are ripples which appear in G(r) around the
base of sharp peaks in the function. The function G(r) is determined from the Fourier
transform shown in Equation 1. However in practice the integral does not go from
0 to 00, but from Qmin t0 Qmar Which are lower and upper bounds to the available
data. The upper bound cutoff can be accounted for by assuming that data to oohave
been multiplied by a step function, W(Q), which is unity for @ < @Q,nezand zero for
Q > Qmaz- From the convolution theorem we get that the resulting Fourier transform,
G.(r) is a convolution of G(r) with the Fourier transform of the step function. Thus,
G(r) should be convoluted with a sinc function according to'’
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The value of Qyq from the data analysis is entered as an input but cannot be refined.
If a value @0 = 0is entered, the program changes Q42 to 100, effectively eliminating
the convolution.

There is currently no account taken in the modelling program for the finite Qmin-
If significant data is missing in the low-Q region, long wavelength oscillations appear
in the difference curve between the calculated and experimental PDFs. This problem
is generally minimized if data are collected to below the first large Bragg peak in the
data. In this case the long-wavelength oscillations in G(r) are not noticable.

Additive artifacts in the data will also contribute to the systematic errors of G(r). In
general, these additive artifacts have a long wavelength in Q since they originate from
inadequacies in multiple scattering, or inelasticity (Plagek) corrections for example.
Such long-wavelength contributions to the scattering will give rise to intensity peaks
in G(r) close to » = 0. Because of the finite Qynqz, these intensity peaks are convoluted
with a sinc function and appear as oscillations in the data which are peaked near » = 0
but which die out with increasing ». At present, no account is taken of these errors in
the modelling program. It is assumed that they penetrate into the data, but they have
some random phase relationship with the real signal. If the data are fitted over a wide
enough range of O so that many correlations are fit at the same time, it is very unlikely
that these artificial oscillations will bias the result of the refinement. For example, a
noise peak could make a PDF peak have a shoulder which could look like evidence of
anharmonic atomic displacements if this single peak is considered alone. However, it is
very unlikely that all other peaks elsewhere in G(7) have a perfectly self-consistent noise
peak associated with them which would fool the program into introducing a spurious
distortion. The presence of these noise peaks will increase the agreement factor and
x?, but should not affect the refined values for variables. This discussion highlights
the danger of attempting to draw conclusions from the appearance of a single peak. It
also underscores the importance of fitting data over a reasonable range of » which is
one of I[?e advantages this technique has over other local structure techniques such as
XAFS.

Difference Modelling

The modelling program has recently been extended in one significant way. It is
now possible to model structural changes such as might occur at a structural phase
transition. In this case, the difference is taken between two data-sets which straddle
the structural transition. The resulting difference curve contains features which come
from the changes that the structure underwent, as well as random noise.” In this case
it can be desirable to fit the difference curve rather than the total PDF, especially if
the structural changes are small. A reference structure is found by refining a model to
the data in the higher symmetry phase and the PDF, G,.s(r),of this model structure
is determined. Atomic distortions are then introduced into the model as desired. The
difference modelling program calculates the new G(r), subtracts it from Gres(r) and
compares the result with the difference curve from the two data-sets. In this way,

*Noise in the data from systematice sources can be largely cancelled out when the difference
is taken between the two data sets, providing the systematic errors are reproduced between
the two measurements
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structural changes are refined. This approach also works if the reference structure is
not known perfectly, since the reference structure cancels out when the difference is
taken in both the data and the model. This difference modelling approach will be
described in more detail elsewhere'®.

EXAMPLES
Indium Arsenide

The compound semiconductor InAs provides an excellent model system for testing
the capabilities of the modelling program. The compound InAs forms in the zinc
blende structure. It is a fully ordered compound and so no disorder is expected and the
crystallographic structure can be directly compared with that obtained from modelling
the PDF. Also, G(r) has been calculated theoretically for this compound using model
potentials and the experimentally measured density of states to account for thermal
effects.'”™* This provides a strict test of how well the modelling program accounts for
the data and the theoretical calculation of G(r). In particular, we will use this example
to test our empirical approach of accounting for correlated thermal motions.

Figure 2(a) shows the experimentally determined G(r) function from InAs. The
data were measured at 300 K using x-rays at beamline X7A at the National Synchroton
Light Source (NSLS), Brookhaven National Laboratory. The data were collected over
a Q-range from 0.074A~! to 22A~! in symmetric reflection geometry. The model is a
best fit to the data; however, no account has been taken of correlated motion in the
material. It is quite clear that the nearest-neighbor peak in the data is significantly
sharper than that in the model. This is because in the solid, near neighbour atoms
tend to move in phase. Since G(r) is a function of atomic pairs it shows the relative
motion of the atoms in the pair and atoms moving in-phase will give rise to narrow
PDF peaks. However, the motion of further neighbors is less correlated and the peaks
are relatively broader. The fit has been optimized to account for the uncorrelated
motion to highlight the effect of the motional correlations.

The information about the motional correlations in the scattering comes from ther-
mal diffuse scattering (TDS).” The high-Q region of the scattering from the same data
set, in the form of i(Q) = Q[S(Q) — 1], is shown in Fig. 2(b) and the TDS is clearly
evident under the peaks. It should be noted that the TDS is not removed from the
data before it is Fourier transformed since it is carrying relevant information about the
sample.

In many cases we are not interested in studying the motional correlations and so the
correlation-narrowing is accounted for with the empirical expression shown in Eq. 5.
We would like to know how well this accounts for the correlation-narrowing. The same
data which were shown in Fig. 2(a) are shown in Fig. 3; however, this time the model-
PDF has been calculated incorporating Eq. 5. The improvement in fit is clear. The
correlation-narrowing can be calculated explicitly in this system using the theoretical
model as described above. This has been done assuming a temperature of 300 K. The
widths of each of the PDF peaks is then plotted as a function of ». This is shown
in Fig. 4. Also plotted are the measured r-dependent PDF peak broadenings from
the data. The solid line plotted on top is the empirical relation for the correlation
narrowing given in Eq. 5. It is clear that the form used in Eq. 5 accounts quite well
for the motional correlations.
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Figure 4. PDF peak width, ¢, as a function of pair separation showing the sharpening of peaks at
low-r. Solid symbols: values determined from the experimental PDF shown in Figs. 2 and 3. Open
circles: values obtained from a theoretical calculation (see Ref. 14 for details). Solid line: obtained

using Eq. 5 with oy = 0.0158 nm and ¢ = 0.00063 nm*

Nickel

We have measured nickel at a number of sources to compare the reproducibility of
the PDFs we obtain and the ability to model data from different sources. In Fig. 5(a)
data collected on the Glass, Liquids and Amorphous Diffractometer (GLAD) at the
Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory at 300 K are
shown as a dashed line (Quae = 30 A~!). The data shown in (b) are x-ray data collected
at beamline X7A at the NSLS, Brookhaven National Laboratory at room temperature
(Qmaz = 22 A1), and in (c) from a sealed-tube molybdenum laboratory x-ray source
at Michigan State University, again at room temperature (Qmsz = 16 A‘l). The
data from the sealed-tube source are interesting because the limited Q-range gives rise
to low real-space resolution and large termination ripples. For example, the peak at
3.0 A evident in Fig. 5(c) is entirely spurious as can be seen by comparing with the
data in Figs. 5(a) and (b) where this peak is absent. These well known “termination
errors” have been widely discussed.” Clearly, the best approach to dealing with them
is to measure to sufficiently high O, as is evident in the data in Figs. 5(a) and (b).
However, as Fig. 5(c) shows, the termination errors are incorporated into the modelling
program (the model PDF is shown as a solid line in the figure) which accounts very
well for the spurious peak in the data. It is therefore highly unlikely that the structural
refinement will be biased by the presence of these well controlled errors. It should be
noted that no damping was applied to S(Q) to diminish termination ripples before
Fourier transforming to G(r). It is now our practice to terminate the data at Qmaz
with a sharp step function (no smooth damping) and to apply the simple convolution
procedure to the model-G(r).

The values for the thermal factors obtained from refinements carried out with and
without the convolution turned on are shown in Table 1. The displacement parameters
determined from the x-ray data-sets with the convolution turned on yield very similar
values, despite the fact that the data have very different peak widths, as is evident
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Figure 6. Example of the reproducibility of data and fitting. Alt data are from La;CuO, at 10 K.
Data were collected from the same sample at (a) SEPD at IPNS, Argonne; (b} HIPD at MLNSC,
Los Alamos; and (c) from a different sample of the same material at HIPD. Solid lines are the fits,
difference curves are plotted below the data.

in Figs. 5(b) and (c). The broadening of the PDF peak widths in the lower resolu-
tion (lower Qmaz) measurements is reflected in the values for displacement parameter
determined by the program without the convolution broadening (see Table 1) which
are considerably higher for the sealed-tube x-ray data. For some reason, the neutron
PDF gives a slightly higher value for Uj,,, possibly because the temperature of the
sample (which was not monitored) was a little higher. It is clear that by the time the
data are terminated at Qmaz = 30 A~! the effects of the finite data-range are very
small: both the termination ripples and the PDF peak broadening due to this effect
are insignificant.

LaQCuO4

We have also used La;CuQOy as a model to test the reliability of obtaining data from
different neutron sources. This system also should be quite well ordered since it is a
stoichiometric compound; however, the structure'® is considerably more complex than
InAs or Ni and therefore provides a more stringent test of the reproducibility of the
refinements.

All the data were measured at 10 K at either the High Intensity Powder Diffractome-
ter at the Manuel Lujan, Jr., Neutron Scattering Center (MLNSC) at Los Alamos, or
the Special Environment Powder Diffractometer (SEPD) at IPNS. Precisely the same
sample was measured at each source, and a second sample of the same material was
also measured at MLNSC. The data are shown in Fig. 6. Each data-set has a fully
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Table 2. Local octahedral tilt amplitudes from LayCuO, at 10 K determined from
the O1 displacements (|6]o,) and the O2 displacements (|8lo;) which were refined
using the RESPAR program. Values were refined from 2 samples which were
measured at two different neutrons sources (see text).

Measurement Agreement factor |6lo1 (degrees) |6lo2 (degrees)
sample 1, SEPD (Fig. 6(a)) 0.1495 5.226 5.446
sample 1, HIPD (Fig. 6(b)) 0.1513 4.852 5.457
sample 2, HIPD (Fig. 6(c)) 0.1726 5.110 5.245

converged model-PDF plotted over it and below each one is a difference curve. The
dotted lines associated with the difference curve indicate the expected uncertainties due
to random counting statistics (random errors) but not systematic errors. In each case
there is a satisfactory agreement. There is also good agreement between the values of
parameters refined from the three data sets. For example, one parameter of particular
interest in these materials is the magnitude of the tilt angle of the CuQg octahedra.
The 2-dimensional CuQ, planes in these materials are made up of a network of corner
shared octahedra. This network of octahedra collectively buckles at low temperature
corrugating the CuQOs plane. The magnitude of the tilt angle, |8 can be extracted
from the modelling program independently from the z-displacements of the in-plane
(O1) oxygen ions and from the y-displacements of the apical (O2) ions. The values
determined from each of the three measurements shown in Fig 6 are given in Table 2.
The results show that even subtle parameters such as an octahedral tilt of < 5° can be
reproducibly determined.

Close inspection of the low-r region of these curves indicates that there may be
systematic differences between the model and the data which are reproduced in the
different data-sets.'’ This is currently being investigated.

La,_.(Sr,Ba),CuQ,

The charge state of copper in the compound La;CuO, can be changed by partially
replacing La with a divalent ion such as Sr or Ba. This is known as doping. In the doped
phase, the structural transition from a tetragonal phase at high temperature (HTT),
in which the average CuOsg tilts are zero, to an orthorhombic phase at low temperature
(LTO) in which the tilts are finite and collective, comes down in temperature so that
for x = 0.15 it is at ~ 150K.%° This tilting transition has long been understood in
terms of the soft-mode, displacive picture,”' and indeed zone boundary phonon modes
are observed to soften at the transition.”’** However, our studies using the PDF and
analysing the data using the RESPAR program, show that locally, the tilts do not
disappear in the HTT phase.>’ This is shown in Fig. 7. In this Figure, the behaviour of
the average tilts is evident by tracking the integrated intensity of the [032] superlattice
peak, shown as circles. This is an order parameter for the phase transition and is
proportional to the square of the average tilt angle ({#)%).?' This goes smoothly to
zero at the phase transition temperature of 203 K. However, refinements of the PDF
indicate that finite tilts persist to very high temperature, and indeed the magnitude of
the local tilt does not vary strongly with temperature.

This is an example where the local structure is different from the average crystal
structure and where it is important to study the local structure directly. The full-profile
fitting routines described here yielded a quantitative solution of the local octahedral tilt
structure as a function of temperature which could not be obtained using conventional
Rietveld.
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Figure 7. Evolution of octahedral tilt angles with temperature in Lag_,Sr,CuQ4. The open circles
shows the behavior of the long-range ordered tilt through the [032] superlattice intensity. Solid
triangles and solid squares are the local tilt angle refined from displacements of O1 and O2 ions
respectively

CONCLUSIONS

We have described a full-profile fitting technique for extracting local atomic struc-
ture from the atomic pair distribution function. The implementation described here
uses the least-squares regression technique and gives structural information such as
atomic coordinates, site specific anisotropic displacement parameters and occupancies.
The code is called RESPAR which stands for REal SPAce Rietveld because of its close
analogy with the Rietveld method. However, one significant difference should be em-
phasised. The real-space approach described here yields the local short-range order
and not the average crystal structure which is obtained from a conventional Rietveld
analysis. This approach is straightforward and robust and yields quantitative local
structural information. For a well ordered material, it complements conventional crys-
tallography by giving short-range parameters such as displacement (thermal) factors
with increased accuracy (because of the wide range of Q which is used in the data).
Also, variables in the refinement are differently correlated in real- and reciprocal-space
and so a “dual-space” or joint real- and reciprocal-space refinement can yield more
reliable values when parameter correlation is a problem. However, the strength of the
approach lies in the fact that it goes beyond the approximation of periodicity and
yields aperiodic components of the structure when they exist, as was illustrated in the
examples presented here.

The program is available for use on a non-commercial basis. Information can be
obtained by contacting the author by email (billinge@pa.msu.edu).
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APPENDIX: COMPUTATIONAL DETAILS

The equations used in the modelling program to calculate G(r) are laid out below.
The program uses the least-squares technique for finding the best-fit of the calculated
G(r) to the experimentally determined one. The refinable parameters of the program
are listed in Table 3.

The value of the function G(r) is determined at the position r = 7 by Gy:

Gy = 4mre DS [pr — pol (8)

where Dy is the experimental resolution factor given by Dy = e~°27#/2, 5 is a constant

scale factor, pp = N,,/V,, is the average number density where N, = ¥, P; is the number
of atoms in the unit cell and Vj, is the unit cell volume, V, = abc(1 — cos? a — cos? 5 —
cos® ¥ + 2cosa cos 3 cosv), where «, § and v are the unit cell angles. The sum over
i is a sum over every atomic site in the unit cell and P; is the atomic occupancy of
that site. Finally, the microscopic density at position 7 = 7y, pk,is the sum of the
contributions from all the atomic pair correlations which have significant intensity at
this point. Thus,

Pk = Z Pcks (9)

where the sum over ¢ is a sum over all atomic-pair correlations which contribute in-
tensity at the position 7 = 7. In practice this means all those correlations which lie

Table 3. List of parameters which can be varied in the RESPAR program.

Parameter Symbol
scale factor S
resolution factor ogQ
dynamic correlation factor é

lattice paramters a,b,c
anisotropic thermal factors Tigy Oiy, Oz

fractional atomic coordinates fizy fay, frz
site occupancies F;
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within 5g, of ri, where g, is the gaussian half-width of the cth correlation which is
between the ith and jth ions. The contribution to pg from the cth correlation, pck, is
given by

1
2 Ac Gck- (10)

pck:R

Here A, is the magnitude of the cth correlation and g is the value of the normalised
gaussian, centred at the position of the cth correlation, 7., but computed at the posi-
tion ry:

1 _(r‘-‘—fc)2
Gek = \/ﬁa € G (11)

The value of A, depends on the scattering lengths, b;, and occupancy factors, P;, of
the two atoms involved in the correlation. In detail,

_ BPsbib;

A= —rs
N (b)?

(12)
where (b) is the average scattering length of the whole sample. In the case of x-ray
data, all scattering lengths are those at ¢ = 0; i.e., the number of electrons in the ion.
The position of the cth correlation, r., is given by:

I

r. = [(afm)2 + (bfey)? + (cfez)? + 2abfoy foy cOS Y + 2bCf ey for COS & + 2ac fos fo COS ﬁ] ,
(13)

where f. is the z-compnent of the separation of the ith and jth atom in the cth
correlation, expressed in fractional coordinates, and is given by

fez = fiz = fiz — T (14)

where the number of complete unit cells separating these two atoms is n, and fiz is
the z-coordinate of the ith atom within the unit cell. Thus, f.;is the magnitude of the
z-component of the vector joining the two atoms, expressed in fractional coordinates.

For completeness, we give the equations for the width of the cth correlation in
discrete formalism. These equations can be compared with Equations 4 and 5 given
earlier:

o

1
g; = T‘_ [ 621(12(0'1.2: + 0121) + czybz(g-?y + g]2y) + 3202(0-122 + 0122)] (15)
c
where o) = 0q;; defined in Eq. 4. Finally,
é
0. =0; =0, — ol (16)

c

APPENDIX: PARTIAL DERIVATIVES
The least-squares equations use the partial derivatives of the function being fit [in

this case, G(r; {p})] with respect to each of the variable parameters, {p}, which are
given in Table 3. The efficiency of the refinement depends sensitively on these partials

152



being determined accurately and so we have implemented analytic partial derivatives.
The partials with respect to each of the parameters are calculated at each cycle of the
refinement. The equations for the partial derivative of G, with respect to each variable
parameter are given below.

Scale Factor

G, Gy
kAt 17
a5 S (7
Resolution Factor
oG
E)TQk = —T,%O'Q Gk. (18)

Dynamic Correlation Factor

The Dynamic Correlation Factor, &, appears everywhere that the correlation gaus-
sian broadening, o, appears. Thus,

aGy 3p
—87 = 47TT'kaS 9 5 (19)
Opx _ A. 0gex
96 ZC: 4mri 86 (20)
and
agc Te—Tc I
o = e (ot -1} % (21)
= - e (g -1 (22)
Finally,
8G’k N —DkS Gk (Tk —TC)2
3 rer2 —~ g, a? 1 (23)

Lattice Parameters

Lattice parameters appear in 7., o.and also in the cell volume, V. Consider the a
parameter first.

BG,C _ apk apO
da 4nreDeS [aa Oa ] ’ (24)
where,
Opx pek [ [(rr — 7)? do, (re. — o)) Or,
_— = _— _ - E— ~ - ) = 5
da zc: o, {[ a? ! 50+ o; da |’ (25)
and
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dpo Po
=_ 26
da a (26)

Now,

do, do. 260r
¢ = ¢ - c- 27
da  Oa * r3 Oa @7)

Substituting this back into Eq. 25 we get

Opx pek [ [ (e — r,;)2 9o’ (r,c —ro) 26 ((rk —1.)? or,
9Pk _ g Pk [Tk Te) VeZTe) 200k " Te) 2
B0~ 2 o {[ o2 20 | o Tl Y| B &

with,

do., afl 2
c _ T (2 P} 29
T R )
and
6Tc 1 2
e = r_(afu + bfer foy o8y + Cfer fezc080). (30)

The relationships for » and c are obtained by permuting a, b, cand x, y, z
Anisotropic Thermal Factors

These appear only where o, appears. Thus,

aGk = 47erDkS apk (31)
agi: 1z
where,
Opx Pck (Tk - Tc)2 da,
e ek - 32
00z zc: Oc o? 1 8o |’ (32)
and
do a’fio
£ = —”. 33
00, ol r? (33)
Thus,
aGk PckTiz G (T - TC)Z
aoi: = 47|'7'ka {; 0’ 7‘2 [ 0’3 -1 . (34)

The expression will be the same for %fjt. The expressions in the y and z directions are
recovered by cycling a, b, and ¢ and x, y, and z

Fractional Atomic Coordinates

The fractional coordinates, f,; appear in r.and in o.

oGy Opx
afiz = dn DkS afu:

(35)

where
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apk _ £c£ (Tk — Tc)2 80',; (rk - T‘C) 87'5
T {{ oz 1] 3 T [ o ] Bfn}’ (36)

c c

do. _ 0o, g or,

afiz‘ B 8fu: * 7‘3 6fiz7 (37)
da’, @ fer, 4 9 g, O,
af”; - 027'3 (aiz + sz) - T_cafiz" (38)
and
c 1
Or = ——(a*fey + abf., cosy + acf., cos B). (39)
afiz Tc
The expressions for 3G /df;, are the same except that
Opx Opx
= _ ) 40
afj:l: 6fia: ( )

Site Occupancies

Site occupancy factors appear in gy and in the weights of the correlations, A.. Thus,

oG, 3Pk aPo

where,

Bpo o 1

5P "V (42)
and

6pk 1
Z Pek ( BN ) (43)

Thus,

0Gy,

op, ~ TTeDiS {[Z””" (P 1\11>] _%} (44)

In the case where the parameter F;is not involved in the correlation, it still contributes
to the derivative. In this case, the derivative is given as,

6Gk _ Pck 1

c
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INTRODUCTION

Semiconductor alloys have been studied extensively due to their importance in
applications. These materials have received considerable attention because physical
properties, such as the band gap, mobility and lattice parameter, can be continuously
controlled." Having such continuous controls is of importance in applications such as
electronic devices or optical devices. For example, the energy gap of the pseudobinary
compound Ga, xAlyAs can be varied between 1.4 and 2.2 eV by varying the composition x,
and the wavelength of the solid-state laser made from this material can thus be tuned
accordingly.

Unlike pure crystals, the difference in the bond lengths, associated with different
chemical species in alloys induces internal strain. The structural characterization of alloys
dates back to the work of Vegard® who found that the lattice constants of some alloys
change linearly with the concentration of the constituents. A simplistic explanation of this
phenomenon is the virtual-crystal approximation,® in which all the atoms are located on an
ideal lattice with the lattice constant given by the compositional average of the constituents.
This approximation completely neglects the local deformations which would be expected to
occur. In tetrahedrally coordinated semiconductor compounds, deformation also occurs in
the bond angles. A better understanding of Vegard's law in random alloys was achieved
recently, and the conditions under which Vegard's law is expected to hold was given.’
These studies used a harmonic potential, which accounts for the bond-stretching and the
bond-bending forces. It has been shown that Vegard's law is strictly obeyed when the force
constants for bond-stretching and the bond-bending forces are the same for the end
members from which the alloy is made, and are independent of the composition. In
semiconductor alloys, these simplifications were exploited in a series of recent papers.”®

Local Structure from Diffraction
Edited by S.J.L Billinge and M.F. Thorpe, Plenum Press, New York, 1998 157



Most semiconductor alloys from III-V and II-VI elements follow Vegard's law very
closely.’

The experimental structural characterization of alloys has been accomplished mainly
using Bragg x-ray diffraction, and also using Bragg neutron diffraction. These experiments
measure the structural quantities which are correlated over long distances, such as the
lattice constant. More recently, extended x-ray absorption fine structure (XAFS)
experiments have been used to study semiconductor alloys.” Such experiments investigate
the short range order, such as the mean near-neighbor, and occasionally next nearest
neighbor spacings.

However, the diffuse background in diffraction experiments has not drawn much
attention because it is more difficult to obtain and hard to analyze. Nonetheless, the diffuse
background exists in all experimental data on alloys due to the local displacements. This
information can be analyzed using the pair distribution function (PDF). PDF analysis has
been used mainly in the characterization of atomic arrangements in amorphous materials
such as non-crystalline alloys or liquids.'”'* Although it has long been known that the PDF
method is well suited for analyzing crystalline as well as amorphous materials, it has only
recently been applied to study the local structure of disordered crystalline materials.'®
Because the real-space resolution is inversely proportional to the highest momentum data, it
is essential to have high momentum-transfer scattering data to study local structures. High
momentum-transfer scattering data have become available with the advent of sources such
as synchrotron x-ray sources and spallation neutron sources. These data not only give
information about local structures from the diffusive background but also allow accurate
data normalization and thus reduce systematic errors in the experimentally determined
PDF. Since it has now become rather routine to access high momentum-transfer scattering
data, PDF analysis is becoming a good candidate for characterizing semiconductor alloys.

There are several advantages to using PDF analysis. On the one hand, it covers a wide
range of pair distances. Therefore, it can be used to study local structural characteristics
such as nearest neighbor distances or intermediate-range structures such as clustering. On
the other hand, it gives a complete description of the structure in that not only the average
distance between a pair but the width of the length distribution can also be obtained.
Furthermore, this method is not subject to any arbitrary fitting parameters and the result of
a theoretical calculation can be directly compared with the experimental data.

In this paper, we present a method of calculating the PDF of binary semiconductor
crystals in the zinc-blende structure, AC, and the associated pseudobinary alloys A;B«C.
Calculated PDFs are then compared with experimentally determined PDFs from the same
compounds. We also discuss the advantages and limitations of using the PDF analysis'* in
investigating local structures. To account for the local strain, we use a simple valence bond
model,® which has been successful in describing the local strain in semiconductor alloys.

Since experimental data is always subject to thermal broadening, thermal averaging
should be taken into account also. This is done in this paper by using the proper Bose
factors and also by employing the Debye-Waller theorem. We limit ourselves in our
discussion of the PDF of semiconductor alloys to the zinc-blende structure in the form of
random solid solutions. In particular, we focus on Ga,,InsAs as an important example. But
our method can be easily modified to any crystals and crystalline alloys, with or without
local clustering present.

The reason for choosing Ga;..In,As is that it is one of the largest bond-length
mismatched alloys among III-V and II-VI compounds. Therefore, the effect of bond-length
disorder will be most pronounced. Also it is one of the standard systems and has been
studied quite extensively.®’ One of the experimental advantages is that the two end
members, GaAs and InAs, are completely miscible and form a random solid solution at all
concentrations.
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MODEL

To account for the forces between atoms tetrahedrally coupled by the valence bonding
in zinc-blende structures, we adopt the Kirkwood model."” The potential energy in this
model is given by

(04
1% =(2;7"(LU —L(;)2+Li<z}>&(cos€”, —cosf°)>. ()
i 1

Here, the first term describes the energy due to the bond-stretching force with the force
constant a,; between atoms i and j. The lengths L; and L,j(’ refer to the actual and natural
(unstrained) bond lengths between atoms i andj, respectively. The second term in (1) is due
to the bond-bending force with the force constant 8, between the bonds ij and il. 6,; and &
are the actual and natural (109.5°) angle between the bonds ij and il. L, is the nearest
neighbor distance as given by the virtual crystal approximation. L, is inserted in the second
term to make B have the same dimension as a, The angular brackets under the
summations denote counting each configuration only once to exclude double counting. The
potential (1) has been used extensively in discussing the elastic strain in semiconductor
alloys.”™®

The harmonic approximation can be applied because we expect small positional
changes in the alloy from the virtual crystal, which is used as a reference. There are two
causes for the distortions, the static one from the bond-length mismatch and the dynamic
one from the thermal motion. The change from bond-length mismatch is small since it is
less than 10% of the unstrained bond lengths although Ga,..InsAs is one of the largest
length-mismatched semiconductors. The thermal broadening is also quite small since we
are interested in the low- to room-temperature range. It is therefore reasonable to use a
harmonic approximation for the potential due to the displacements.

Let u; be the displacement vector of atom i from its perfect crystalline position.
Expanding up to linear terms in u;, we have

L=L+F u,, @)

¢

where 7, is a unit vector in the perfect crystal pointing from atom i to its nearest neighbor j,

and u, = u; - u, . Then the potential energy (1) can be expanded to have the form,’

2
(X‘ R N .Bi‘ N N 1 . ~
- <Z>_2i(Lf —L i et L:<27>8”["f U, e '“”)} ' ®
IV UK

We™® have preferred to use the Kirkwood model (3) rather than the Keating model'®
because of the cleaner separation of length and angular displacements. Since the nearest-
neighbor central force alone is not enough to stabilize the zinc-blende structure, this model
is one of the simplest force models for the zinc-blende structure. This model (3) is not good
enough to produce very exact phonon dispersion relations. However, it has been proved to
be accurate enough to describe the local structure quantitatively.® It also provides a clear
picture for the important microscopic forces. Therefore, the model is a good starting point
for our purpose and may be refined later as needed. It appears that this simple model can
capture all the essential features in the PDF.
Equation (3) can be recast into a concise matrix form,
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V=tu'Mu+u'F+F, (G))

where u = (uy, uy,-) is the displacement field vector and M is a matrix derivable from Eq.
(3). The components of the force vector field F = (F|, F,,-+) are defined by

P=-Ya,(L- L), ®)
1)

which expresses the internal strain due to the disorder. The length disorder only appears
through this vector. This form of the potential (4) is useful in that it gives a simple form
from which to find the relaxed equilibrium positions of strained systems, namely,

Mu = —F, (©6)

and also in that the dynamical matrix is defined through the matrix M as discussed in the
next section.

DEFINITIONS

Since different definitions are used in literature,'” we give the definitions we use in this
study. To define the dynamical matrix D (k), we need to distinguish the Bravais lattice and
the basis to which the atom i belongs to. Let us divide N atoms into A Bravais lattice
points, each containing p basis atoms [N = Np]. Let {{)and u(u')be the Bravais lattice and
the basis labels of the atom i(i"), respectively. Denoting the position of the atom i as r, , we
use the following definition of the dynamical matrix;

D, e (k) = (Mu Mu‘)illzz Mi(,,,‘l,vf’ﬂk[r'vr']. @)
"

Here, a and @’ denote three Cartesian coordinates, and hence the dynamical matrix is a
3px3p matrix.

Since different nomenclature has been used for the PDF, we hereby give the
definition.'* For the sake of simplicity, we begin with an arrangement of N identical
atoms.'" Then, the atomic density function p(r) is given by

p(r) 225(r—r,), (8)
and the density-density correlation function C(r) can be written as

I 1
C(r) = W<-[ p(r'+r) p(r' )dr‘> = WZ‘ Z(&(r - )> =p(r)+8(r), 9)

where r, =, - 1, is a vector from atom 7 to j and (--) denotes the statistical average which
implies both configurational and thermal averages. The correlation function C(r) describes
the probability of finding an atom at position r from a chosen atom at the origin. This
probability density is further averaged by taking each atom in turn as the origin. The delta
function &(r) is the probability of an atom itself and appears as a constant background in the
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momentum space of experiments. The function p(r) defines the PDF. Defining p,(r) =
(6(r-ry) ), the PDF can be rewritten as

1
p(r) ZWZ'P,,-(P), (10)

where the prime in the summation means that i =j is excluded.

In this study, the major interest lies in macroscopically isotropic materials, such as pure
randomly-oriented crystallites or random solid solutions. In such materials, p(r)depends
only on the magnitude r. It is convenient to define the radial distribution function (RDF) as
J(r) = 4m r* p(r). Then the probability should be interpreted as per unit length rather than
per unit volume. The average number of atoms in a shell with radius r and thickness dr is
given by J(r) dr.

However, the RDF tends to obscure the correlations between atoms as r gets larger
because it grows rapidly. Hence, it is customary to define the PDF as

G(r):477:"[.0(")_p()]:l[j(r)_47rr2p()] ’ (1)

r

where po is the average number density of the material. Since the average density is
subtracted, G(r) oscillates around zero and shows the correlations more clearly than does
the RDF. Usually, it is this function to which the experimental data are transformed through
the relation

G(r) = Ej““F(q)sin grdgq . (12)
w 0

Here ¢ is the magnitude of the scattering vector and F(g) is the reduced scattering intensity
defined by

1(q)
F(ry=qg|—1-1], 13
(r) q{Nfz } (13)

where f is the atomic form factor and /(g) is the experimentally measured scattering
intensity given by the square of the scattering amplitude;

2

I(q)= (14

X f@e

In the next section, the Kirkwood model of the previous section is utilized to calculate
the PDF and results are given mainly in the form of the PDF which can be directly
compared with experiments.

In case of multicomponent systems, """

the definition of the PDF is generalized to

piry = ):/*Z 2 wijpij(r). (15)

r; l'j
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Here, w, is given by f, f, / f .where £, is the scattering strength of the atom i and f denotes

the arithmetic mean of f; 's in the sample. Here f; is the scattering factor in x-ray scattering,
and the scattering length in neutron scattering. Eq. (15) is exact for neutron diffraction,
where the scattering is from the nucleus which may be considered as a point. For x-ray
scattering (15) is only an approximation as the f;are due to the electron density associated
with each atom, which in reality have different q dependence. Nevertheless we will use this
approximation here so, that the f; are proportional to the atomic charges Z;.

EXPERIMENTAL DETERMINATION OF THE PDF

The experimental determination of PDFs has been described extensively
elsewhere'™"*'®, Data were collected from powders of Ni, InAs and GaysIngsAs.The
nickel and InAs samples were measured at room temperature using synchrotron x-rays at
beamline X-7A at the National Synchrotron Light Source. The nickel was also measured at
room temperature using a molybdenum sealed laboratory x-ray source. In each case the data
were collected in symmetric reflection geometry. Data were corrected for polarization,
absorption, multiple scattering, background and Compton scattering, divided by the average
form factor and normalized for flux and sample volume to obtain S(Q), the total structure
function which was Fourier transformed to obtain G(r). No correction was made for
thermal diffuse scattering since this contains important information about the correlations
of the atomic dynamics.

The Gay sIng sAs sample was prepared by quenching a mixture of InAs and GaAs from
the melt in an evacuated quartz ampoule. The sample was then annealed for a week under
vacuum at 950°C, just below the solidus temperature. This annealing procedure was
repeated twice with an intermediate grinding to obtain complete homogenization of the
sample. Sample homogeneity was checked using x-ray diffraction. The GagsIngsAssample
was measured at 10K with neutrons using the High Intensity Powder Diffractometer
(HIPD) at the Manuel Lujan, Jr., Neutron Scattering Center at Los Alamos National
Laboratory. Approximately 10g of sample were sealed in a vanadium tube in the presence
of He transfer gas. This was cooled using a closed cycle helium refrigerator to 10K. The
data were corrected for absorption, multiple scattering, backgrounds and inelasticity effects,
and normalized to recover S(Q), which was then Fourier transformed to obtain G(r).

CALCULATION OF THE PDF

In this section we evaluate the PDF of crystalline systems in the zinc-blende structure.
The system may be either a pure binary semiconductor such as GaAs and InAs, or a
pseudobinary alloy such as Ga,xInyAs. We first rewrite p;(r) as

p,i(r= i Jdge (). (16)

This function would be a é-function located at ry if all the atoms were stationary in a
perfect crystal. However, this é-function is broadened by the thermal motions since the
atoms move about the equilibrium positions even at zero temperature. Moreover, it is
further broadened by the internal strains due to the bond-length mismatch in the case of
alloys.
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For the thermal motions, the Debye-Waller theorem can be utilized within the harmonic
approximation. As shown in Appendix A, this leads to a Gaussian peak for p,(r) centered
at ry with a width o, given by

o, :<[uij "A'i/]z>l/2' an

Accordingly, the total PDF consists of a series of Gaussians from each pair in the system
with an appropriate weight w,,.

To proceed further, we make use of the quantum mechanical representation of the
displacement. Let us divide N atoms into A Bravais lattice points, each containing p basis
atoms as before. Let p(v) be the basis label of atoms i(j) in a unit cell. Rewriting u,,in terms
of phonon operators, it can be shown that

o=y 1 ((n >+1]
TN Eo,m\ 2

1 leu(k,s)';,,|2 N
2] M M

i v

(18)

A2 ~ ~| ik,
e, (k) 2| | feu (k9 7 e, (ks 7 e

B JMM,

X

where wi(k) is the eigenvalue of the dynamical matrix (7) with the wavevector k in branch
8, nx, 1s the number operator in that mode, and e,(k,s)is the corresponding eigenvector
associated with the basis ¢ and mass M,. In the summation, k runs from 1 to A and s runs
from 1 to 3p. Now, the problem of finding the effect of thermal broadening is reduced to
solving the eigenvalue problem of the dynamical matrix. Solving the eigenvalue problem
analytically for general k with a large supercell has to rely on numerical methods.

Below, we distinguish between the pure and disordered systems. In the former, the only
reason for line broadening is the thermal motion. In the latter, there are two reasons, the
thermal motion and the static internal strains.

Example: Ni

As a example, we first consider powdered crystalline Ni. Crystalline Ni has the fcc
structure and the phonons are well described by a nearest neighbor central force model. The
experimental phonon density of states was found by measuring the phonon dispersion
curves”’ in a single crystal of in the (100), (110) and (111) directions using inelastic
neutron scattering. These dispersion relations wee fit with a model with many parameters,
but the density of states is very close to that obtained with a single nearest neighbor central
force,” and we will use this simple model here.

We compute the eigenvalues and eigenvectors by diagonalising the 3 x 3 dynamical
matrix for Ni, and use the value of the central force constant o =38N/m.'**’The various
o, for each neighbor set is obtained by doing the complete Brillouin Zone integration as

given in Eq. (18) with p=1. There are no adjustable parameters and the result is shown in
Figure 1. We have convoluted this result with the appropriate gum..using Eq. (A6) and the
results are shown for two different values of gma in Figures 2 and 3. It can be seen that the
agreement with experiment is very good, particularly considering that there are no
adjustable parameters.
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Figure 1. Theoretical calculation of the reduced PDF of Ni at room temperature.
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Figure 2. Comparison of theoretical result with experiment in Ni using ¢,,,,=16A" at room temperature
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(with an X-ray source).
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Figure 3. Comparison of theoretical result with experiment in Ni using q,,m:2l/\" at room temperature

(with a synchrotron source).
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Example: InAs

Consider a pure binary semiconductor crystal, AC, with A atoms in one sublattice and
C in the other. As with Ni, there is only one source of peak broadening, the thermal motion,
which is characterized by ¢;in Eq. (18). For a pure crystal, the force constants e,in Eq. (3)
assume the same value « for all bonds and we assume that S, also takes the same value g
for all angles. These parameters can be determined independently from standard
experimental data.’ Since p = 2 in the zinc-blende structure, the dynamical matrix is a 6x6
matrix. It can be calculated analytically in a closed form for general k:*

4 4 1 2

21 1+,v -y_.1
DK :al: 3 T;—k +,B 3 42 Kok ffk l;?’»k

-7, 51 T, =571 S1+3v,v,

4 1 4 4 (19)
+£ T4V V3V T H Y AT T,—27.,1
9 7, 27,1 v iy notiya
Here, 1 is the 3x3 unit matrix, and the scalar yy is given by
— Zeﬂk r

4[ Rl kL (20

cos—=-+1isin kL, sin sin kL,

oo g e isin i N

The vector vk and the tensor 1y are defined to be vk = (iVk/ Le) vk, Tk = (Vi / L) iV / L)
vk , respectively. Using Eq. (19), the eigenvalue problem can be solved numerically, and
the summation in Eq. (18) can be carried out using Monte Carlo integration over the first
Brillouin zone.

There is no internal strain for a pure system as discussed previously. Figure 4 presents
the result for the width o for InAs at different temperatures. We used @ = 80 N/m and g =
10.3 N/m for InAs.® Note that there is a factor of 3 difference in the values of the force
constants used here and previously® due to different definitions. Also note that the values of
a and S are smaller by about 20% from those used in a previous theoretical publication by
Chung and Thorpe.”’ We did adjust @ and Sto get a reasonable fit to the PDF experiments,
and then values of @ and B used previously”' were clearly too large. These previous values
were derived from measurements of the elastic constants and using the Kirkwood model. In
the present set of experiments we have not attempted to optimize « and B3, but rather to get
them to within a few percent of the optimal values. This was done by noticing that the
width of the near neighbor peak is primarily dependent on « alone and so we used this
width to fix a. The value of 8 was then obtained subsequently by fitting the width of the
distant neighbors, which is constant beyond about 10A.

The widths of the peaks are shown in Figure 4 at three separate temperatures. The
symbols at 2.62A depict the width of nearest neighbors, and those at 428A represents that
of the second neighbors, etc. Although the highest temperature 1000K is not realistic
because it is beyond the melting point, still the width o is very much less than the
interatomic spacing. It is to be noted that the width for the nearest neighbors does not vary
as much as the widths for other neighbors as the temperature is increased. This is because
nearest neighbor pairs are connected by the strong bond-stretching force. All other
neighbors are connected by at least one bond-bending force, which is considerably weaker
than the bond-stretching force in covalently-bonded materials. Therefore, further neighbors
connected by bond-bending forces become more sensitive to the thermal agitation, while
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nearest neighbor pairs can remain rather rigid. This has an experimental significance; if one
wants to improve the experimental resolution by lowering the temperature, it does not help
much for the nearest neighbor peak, which might be the most interesting, as it does for the
rest of peaks.

X x"x"&’é’“&*‘&m}
020 x T=1000K ]
r x B
_ 015[ =
o« - 4
~ r . 0 ° 09 60 90 0B 00BN
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Figure 4.  The theoretical width o for pure InAs crystal as a function of the distance from the origin r at
different temperatures (X at 1000K, ¢ at 300K and 1 at 10K). The force constants used are @ =
80 N/m and 8 = 10.3 N/m. The leftmost symbol corresponds to the nearest neighbor. At certain
distances, where two types of neighbors (e.g. In-In and As-As) occur, symbols may overlap.

In calculating the PDF, the symmetry of the system can be made use of in the
summation of Eq. (18). Since the same type of neighbors have the same distance and the
same width, PDF peaks with the same type are simply weighted by the number of
neighbors of that type in addition to the weighting factor w,,. For example, nearest neighbor
by 4, next nearest neighbor by 12, and so on. The PDF G(r) of InAs at 300K are depicted in
Figure 5. The curve at 10K shows much sharper peaks as expected. As the temperature is
raised, however, peak widths are increased and hence peak heights are decreased
substantially due to the effect of the thermal broadening.

10

G(r) (A3

0 5 10 15 20
r(A)
Figure 5.  Temperature dependence of the reduced (x-ray| PDF of pure InAs crystal is plotted as a function

of the distance {rom the ongin r at 300K. The force constants used in the theory are @ = 80 N/m
and # = 10.3 N/m.
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Figure 6.  The reduced [x-ray] PDF of InAs {rom the theoretical calculation is compared with the
cxperiment at 300K. The theoretical curve is convoluted with q,m,,(=22}\‘I at room temperature
(with synchrotron source). The force constants used in the theory are @ = 80 N/m and 8 = 10.3
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Figure 7.  Comparison of theoretical width o with experimentally determined values for InAs, at room
temperature. The force constants used in the theory are @ = 80 N/m and 8= 10.3 N/m.

In figure 6, the PDF at 300K is compared with an x-ray diffraction experiment.”” The
theoretical curve is convoluted with the experimental resolution function as discussed in
the Appendix B. This convolution not only makes small wiggles appear at the bottom of the
curves but also lowers and broadens the peaks. The figure shows that the calculation
reproduces essentially every feature in the experiment. Our calculation gives better
resolution than the experiment, which is not surprising. What is surprising is that our
simple model with no adjustable parameters even allows a quantitative comparison with
experiment. This confirms that the model is adequate to be used for semiconductor alloys.

The PDF peak widths can be extracted directly from the experimental PDF by fitting
Gaussian functions to each peak in the data. This has been done for the InAs data at 300K
shown in Fig. 6. The results are shown in Figure 7 compared to the predicted PDF peak
widths from the theory.
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Example: GagsIngsAs

Consider a pseudobinary semiconductor alloy in the zinc-blende structure, A; (B4C with
A and B atoms in one sublattice and C in the other. Although disorder is introduced only in
one sublattice in this study, it would be straight forward to generalize it to both sublattices.
As mentioned before, there are two reasons for peak broadening, because the internal strain
due to bond-length mismatch between A-C and B-C bonds comes into play as well as the
thermal motion. As in the case of the pure crystal, for simplicity, we take «; = « forall
pairs and B;; = 8 for all angles. We believe that this simplification does not affect the result
much because the values of a's and fB's do not vary much among III-V and II-VI
compounds.® This restriction can easily be relaxed to include more general cases. Note that
even large changes in the force constants produce only small changes in the internal
strains.”

To realize the alloy, we employ the periodic supercell which consists of LXLxL cubic
unit cells of the zinc-blende structure, each containing 8 atoms. The dynamical matrix
becomes a 3px3p matrix where p = 8L*. This method has several advantages over other
methods of calculating o, such as the equation of motion technique.”’ Since this method
simply extends the size of the basis, it is conceptually clear and we can closely follow most
of the arguments about the pure system given above. Another computational merit of taking
a large supercell is that we may sum only over modes at k=0 in Eq. (18). This is because
the zone folding in the reduced-zone scheme enables us to sample enough k-points in the
original Brillouin zone if we use a big enough supercell. It also reduces computational time
since all calculations can be done in real mode rather than in complex mode. For the results
presented in this section, we used L=4 so that we dealt with 512 atoms and hence a
1536x1536 dynamical matrix. The typical error in o is estimated to be less than 1% by
comparison with the Brillouin zone integration scheme for the perfect crystal. A
configurational average is taken over 10 realizations.

The displacement vector u in this case contains the distortion due to the static strain u,
as well as the thermal motion wu, . Since we are interested in the first order correction in the
harmonic approximation, the total u can be written as a simple sum of these two terms. The
static strains u, due to the bond-length mismatch, are found by relaxing the system
according to Eq. (6). The thermal fluctuations u; around the relaxed positions enter into Eq.
(17). The calculational procedure for alloys is as follows: for a given random number seed a
configuration of the system is realized. Then the matrix M in Eq. (4) is constructed and the
system is relaxed using the conjugate gradient method to find the static equilibrium
displacement u, using Eq. (6). From M, dynamical matrix D is numerically constructed
using Eq. (7). The eigenvalue problem for the matrix D is solved numerically. The solution
is used in the integration (18) to obtain or,. This whole procedure is iterated over many
realizations to perform a configurational average and finally Eq. (15) gives the PDF.

Figure 8 shows the PDF G(r) for GagslngsAsat 10K. Every peak basically consists of
many Gaussians as in the pure case. However, due to the internal strains each Gaussian
from a particular neighbor is centered at a different distance given by the relaxed positions
of each realization. The width o also depends on the particular realization. Therefore, we
cannot make use of the symmetry of the system to reduce computational time as in the pure
case. The distribution of the pair distance implies that each peak from a particular type of
neighbor is already broadened even at very low temperature. Therefore, there is no dramatic
change in peak width and height as in the pure system as the temperature is varied.

For a more detailed analysis, the first neighbor peak at 10K is redrawn in Figures 9 and
10 along with the partial bond-length distributions. It is clear that the structure in the first
peak results from two different types of bonds (Ga-As and In-As). The lengths of two types
of bonds are relaxed to new equilibrium lengths (2.47A and 2.60A) from those of pure cases
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Figure 8.  Comparison of theory with experiment for GagsIngsAs, using q,,m=40i\’1 (ncutron data) at
T=10K. The force constants used in the theory are @ = 80 N/m and 8= 10.3 N/m.

(2.45A and 2.62A). This change in the bond-lengths has been studied both experimentally’
and theoretically.®** Our calculation shows that the change in the average length and the
width of the distribution of the nearest-neighbor bond lengths can be measured in a PDF
experiment at a sufficiently low temperature. A quantitative measurement of the width may
not be trivial because the thermal broadening is comparable to the width of the length
distribution itself. However, it is this capability of measuring the width that makes a PDF
analysis potentially superior to other experimental methods. For example, XAFS
experiments only measure the average length of nearest and perhaps also next nearest
neighbor peaks. By contrast, a PDF experiment can give the average length and the width
of the length distribution without any adjustable parameters. The only empirical parameters
in our theoretical analysis are the force constants e, §and the lattice constant [See Eq. (3)].
These can be determined independently by standard experiments such as elasticity
measurements, optical measurements and Bragg x-ray scattering.
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Figure 9.  Comparison of thcory with experiment for the first peak in GagslngsAs, using q,,m,‘:40/&'1
(neutron data) at T=10K. The force constants used in the theory are @ = 80 N/m and 5 = 10.3
N/m..
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Figure 10. Theoretical calculation of partial PDF of GagsIngsAs at T=10K. The partial PDFs are shifted
downward for clarity. The force constants used in the theory are @ = 80 N/m and 8 = 10.3 N/m.
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Figure 11. Theoretical results at T=10K and T=300K Details of the first three peaks of the reduced
|neutron) PDF of Gay sIng sAs are compared with the pure end members, GaAs and InAs, at 10K
and 300K. Solid lines are for the alloy, broken lines for GaAs, and dotted lines for InAs. Note
that the resolution changes substantially with the temperature. The force constants used in the
theory are @ = 80 N/m and 8 = 10.3 N/m.

The first three peaks are plotted again in figure 11 along with those from the pure end
members, GaAs and InAs. The internal structure of the first neighbor peak at 10K clearly
shows that it retains the characteristics of the pure systems, although it is almost
unrecognizable at 300K due to the thermal broadening. This is again because the nearest
neighbors are only connected by the strong bond-stretching force. From the second
neighbors and beyond, however, there can be many different intermediate configurations
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connected by the weak bond-bending forces. Hence each peak appears as a distribution of
Gaussians centered at the length given by the virtual crystal approximation, with the peak
of the alloy tracking the first moment of that peak, which is temperature independent and
goes linearly with the composition x between the two pure crystal limits.

CONCLUSIONS

We have developed a method of calculating the PDF of binary semiconductor crystals
and pseudobinary alloys having the zinc-blende structure. The PDF reveals the local
structure directly and can be compared with experiments. Our approach can be easily
generalized for various crystal structures including fee, diamond and wurtzite structures. To
facilitate the calculation, we have used a harmonic Kirkwood potential model with bond-
stretching and bond-bending forces. Temperature dependence is treated quantum
mechanically using the dynamical matrix and appropriate Bose factors.

The PDF turns out to consist of a series of Gaussians with the weight wj, given by the
type of atoms at site i and j and with width o7, given as a function of phonon properties. In
the case of a pure system, each type of neighbor pair has the same width and are further
weighted by the number of neighbors of that type. However, in the case of the alloy, each
peak from the same type of neighbor is relaxed to a different distance with a different width
by the internal strains.

This method is used to calculate the PDF of a InAs pure crystal and a Ga,.xIn,As alloy,
with x=0.5. The result for the pure crystal agrees well with the neutron diffraction
experiment even though there are no adjustable parameters. The harmonic model we used
describes the behavior of the system adequately. The result for the alloy suggests that two
different types of nearest neighbors can be resolved experimentally at sufficiently low
temperature. The information on the width of the length distribution can be obtained as
well as the average length. The resolution of such an experiment, however, is somewhat
limited by the zero point motions.

This method does not suffer from possible artifacts which may arise from fitting the
experimental data with adjustable parameters, which other methods such as XAFS do.
However, it has some limitations in resolutions due to zero-point motions. This makes it
difficult to resolve different types of bonds beyond the first neighbor peak. One possible
improvement is to explore the partial PDF which measures peaks involving a certain
atom.** But this would require a large experimental effort, involving isotope substitution or
anomalous x-ray scattering techniques.

Despite these limitations, PDF analysis is almost the only method of studying the
intermediate range properties of the semiconductor alloys. Therefore it has been important
to develop a microscopic model to understand the observed behavior microscopically and
provide a clear physical picture. The model and analysis used in this study has proved to be
quite versatile and robust.
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APPENDIX

Derivation of Gaussian Peaks
Let us rewrite Eq. (16) as

1
2n

p,(r)=-=[e"C, (q)dq, (Al)

where C,(q) = <e"’"”>. In the harmonic approximation, the interatomic spacing r; can be

written as

0 ~
rn/ _’1[ +ux/ rx

, (A2)

where 7 is the distance between the atoms i andj in the perfect unstrained lattice. Using
the Debye-Waller theorem, we have

— —

o -0 o g {{u, i)
Clg) =" (e} = emie T () (A3)
Putting this back to Eq. (A1), we have
/ 2
_ 1 m 7(1/2)112(\[u,] f,,] >+u/(r,f r)
P,,(r)—z—”‘[me dg
l _(r‘]“ - r)z /2<[uu i,]z> (A4)

2(fu, )

Therefore, p,(r) is a Gaussian peak centered at r, with the width

A2
c,= <[ll,, ﬁ/] > ’ (A3)
which is Eq. (17).
Modeling Finite Data.
In experiments, data can be collected only over a finite range of the scattering momentum ¢

from 0 tog,,, , although the Fourier transformation in Eq. (12) should be carried out over a
range from 0 to co. We are interested in how the termination affects the PDF. In fact, the
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derivation in this appendix may be applied in broader context of modeling finite data. In
comparing theory and experiment, it is most convenient to incorporate the effects of
truncation into the theory and then compare with the results obtained by Fourier
transforming the experimental data. We substitute directly the theoretically calculated G(r)
to give

(AD)

I p= e ¥ iy
G‘,(r)z——J G(r.)[smqmux(r' ry bmqmﬂx(r‘ r )}/r'
T r—r r+r

where G.(r) is the same quantity that is experimentally. The function in the bracket makes
the ideal G(r) broader and produces ripples around the peaks as shown in the many of the
figures in the text.
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INTRODUCTION

The concepts of order and disorder are fundamental to understanding the many
physical properties exhibited by various materials. Fn general, these concepts are quite
ambiguous, but when applied to a particular circumstance, they often provide needed
insight into the relationship between how the atoms are arranged locally in a material and
its bulk properties such as phase stability, electrical resistance and magnetism. In addition,
the notion of order vs. disorder applies equally to equilibrium and non-equilibrium systems.
It is interesting to note that a chemically disordered material can indeed be the equilibrium
phase over a large range of temperature, pressure and composition. This phenomenon can
be best understood by considering the competition between short-range and long-range
ordering tendencies (which can be incompatible with one another) as well as the constant
rearrangement of the atoms resulting from thermal diffusion (entropy) at elevated
temperatures. Figure 1 shows the binary alloy phase diagram' where the entire phase
field denoted as (aFe,Cr) represents a disordered structure as the equilibrium phase.

In this paper, we will be concerned with local atomic arrangements in crystalline
binary solid solutions and how information about the local order can be obtained from
diffuse x-ray and neutron scattering measurements.” For the purposes of this paper, a
binary solid solution should be thought of as a crystal lattice decorated by two atomic
species, labeled A and B respectively, which occupy the atomic sites in such a way that
there is no long-range order. In other words, there is no overall pattern that determines
which kind of atom, an A atom as opposed to a B atom, will occupy a particular atomic
site. The crystal lattices are assumed to be either simple face-centered cubic (fcc) with four
atoms per unit cell or simple body-centered cubic (bcc) with two atoms per unit cell.
However, the methods presented here can, with some difficulty, be generalized to include
other lattice symmetries.”  These methods can also be applied to extremely complex
crystals in cases where only a small subset of the atomic sites are chemically disordered.

Local Structure from Diffraction
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Figure 1. Alloy phase diagram for the Fe-Cr system.”

In the development that follows the amount of order present in a system is defined
relative to a completely disordered system. In a completely disordered system the
probability distribution describing which atomic species will occupy a particular atomic
site is simply given by the composition. For example, suppose a lattice is composed of half
A atoms and half B atoms. The chance of finding an A atom on a given site is 50% and the
chance of finding a B atom there is also 50%. If the composition had been A,;By,then
there would be a 20% chance for an A atom and a 80% chance for a B atom to occupy a
given atomic site. However, such an ideally disordered state is almost never realized in
real alloys. The type of atom occupying a particular site invariably influences the
distribution of atomic species on neighboring sites due to electronic and/or magnetic
interactions, atomic size mismatch, etc. This of course introduces short-range correlations
in the chemical order — also referred to as concentration fluctuations in the formalism
developed by Krivoglaz.* There are two distinct ordering tendencies that can arise from
these short-range chemical correlations. The first occurs if the probability of finding unlike
pairs of atoms occupying adjacent atomic sites is greater than what would be expected in a
completely random alloy with the same composition. This type of order, if extended to
include longer-range correlations, would ultimately lead to the formation of a supperlattice
structure and is usually referred to as atomic short-range order. If, on the other hand, the
atoms on neighboring atomic sites are more likely to be of the same atomic species, then
the system will tend toward phase separation. This type of concentration fluctuation is
referred to as clustering.

Displacements that arise from the local static, or frozen, deviations of the atoms from
their ideal lattice sites usually accompany the concentration fluctuations found in binary
solid solutions. These displacements violate the lattice symmetry locally but the symmetry
of the lattice as a whole must be preserved. For example, consider the addition of a large
atoms, A, to a lattice of smaller atoms, B. The lattice will be expanded around the A atoms
which increases the lattice parameter from the value for a lattice of only B atoms. This
introduces the concept of the average lattice where every atom in the crystal can be thought
of as being displaced from a perfect lattice site by a small amount relative to the lattice
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parameter. The lattice parameter for the solid solution is then taken to be that of the
average lattice, which turns out to be the value one would get by averaging over all of the
unit cells in the crystal. What this simple picture implies is that AA near neighbor pairs
will have a greater separation than that expected from the lattice parameter and BB near
neighbor pairs will have a lesser separation. In general, a nearly linear response of the
lattice parameter to the concentration (e.g. the addition of A atoms) throughout the
solubility range is observed. This is Vegard’s Law. The variation of the lattice parameter
with concentration in substitutional alloying is a long-range effect and has been well
characterized. The local or near neighbor displacements, however, are not well understood.
The local effect of atomic size is crucial to understanding the behavior of substitutional
alloys since atomic size disparity between the solvent and solute atoms is known to affect
solubility as well as the physical and chemical properties of the alloy. Several theoretical
models have been proposed the explain the linear relationship between the lattice parameter
and concentration.”” While these models reproduce the almost linear change in lattice
parameter with concentration, accurate measurements of the local atomic displacements to
test these models on an atomic scale are almost non-existent.

SCATTERING THEORY

As was mentioned above the diffuse scattering from crystalline solid solutions is
sensitive to both the local concentration fluctuations and static atomic displacements in
crystalline solid solutions. Several methods®'’ have been developed to extract the desired
information from the diffuse scattering data and the development presented here borrows
from all of them. Let us begin with intensity at a given scattering vector Q for a binary

alloy expressed by
Q) =3, 3, ffe™ . (1

p q

Where Q = 4msin(B)/A, f, and f; denote the complex atomic scattering factor for x-rays or
the atomic scattering lengths for neutrons, the indices p and q designate lattice sites such
that each sum runs over every atom in the crystal, and r,and r, are the position vectors for
those sites. For crystals where the Bragg reflections are sharp and the average lattice is
well-defined, the atomic positions can be represented by r = R+6 where R is a lattice
vector of the average lattice and & is the displacement of the atom from that lattice site. The
exponential in Eq. 1 can then be written as

= o QIR R

el()-(r,.—r.‘) = el()-[(Rpﬂi‘,)f(R‘,Hiq " elQ'(Rl,»Rq)Cl()v(f'pfﬁu) (2)

and the exponential involving the displacements, §, can be expanded as

oo (8, —8)) (8, -8 )
e “~’51+iQ-(ap—aq)——[Q ( "2‘ ! +...+i‘—[Q ( - il +.. (3)
. 1

where j is an integer. This series converges rapidly when Q+(8;-8,) issufficientlysmall.
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The total intensity can be separated into the scattering from the average lattice Ipragg
and the scattering arises from the deviations from the average lattice Ippuse. The diffuse
scattering can further be broken down into contributions from the chemical short-range
order and the displacements. Thus by substituting Eqs. 2 and 3 into Eq. 1 we have

Ly = [Bmgg + Lgeo + Ly + Lo 4)

Igragg and Isgo correspond to the first term in the expansion shown in Eq. 3, Iispto the
second term (iQ+*(8y-8y)), and Inor the remaining higher order terms. Following the
treatment of Warren and co-workers®”'""'? these terms can be written, in electron units per
atom, as follows for a crystal with cubic symmetry

Q) e :|CA1VA +Cnfn|zz Z e B, 5)
P dq
[(QI\)ISRO =Ne ACH ItA h fn Iz Z 0"lmne71M‘Dh“”COS[n:(h|{»/ + hlm + hzn),l (6)
lmn
I(()% = NC,‘\Cn If,\ - fl; |2 z Ylmnsin[n(hl(’ + hzln + h]n)] (7)

Imn

Here N is the total number of atoms in thecrystal, ca is the concentration of A atoms, cgis
the concentration of B atoms, ¢mn are the Cartesian coordinates'’ the lattice vector R =
Ya(a;€ + axm + asn) where a is the cubic lattice parameter) in units of the lattice parameter
so that the single sum over #mn replaces the double sum over p and q, and h1, h2, and h3
are the Cartesian coordinates of the reciprocal lattice vector (Q = /2 X (b h| + bzhy + bshs)
where b is the reciprocal space lattice constant). In the case of a purely random alloy
Isro(Q) would be given by

lSR()(()) = CACB‘f/\ - fl!'l (8)

which is often referred to as the Laue monotonic scattering. The cosine series is just the
Fourier decomposition in reciprocal space of the concentration fluctuations in direct space.
The Fourier coefficients Oy, also know as the Warren-Cowley short-range order
parameters,'' are defined to be

phB piA | — pAA [ pbs
a,nm:]—ﬂzl—ﬂzl__ﬂzl_ Jn )
Ca Ca Cyp Ca

where PA? is the conditional probability that there will be a B atom at site ¢mn if there is
an A atom at the origin. Thus the parameters Oum. represent the pairwise occupation
probabilities averaged over all symmetry equivalent pairs separated by the corresponding
direct space lattice vector, Ry, Thus only one parameter is required to describe the
occupation probabilities for each neighborshell, fmn.

Figure 2 illustrates the three possible types of concentration fluctuations and their
contribution to the total scattering. Three separate computer models were generated of an
AsoBsp bee alloy. One with the first nearest neighbor oy, = 0.2 indicating that A atoms are
10% more likely to have A atoms for first nearest neighbors than is expected from the
composition and likewise for B atoms; this is referred to as 10% clustering. One where all
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the oyme = 0.0, which corresponds to a completely random alloy. And finally one where
o1 = -0.2 indicating that A atoms are 10% more likely to have B atoms as first nearest
neighbors and likewise for A atoms as first nearest neighbors of B atoms; this is referred to
as 10% ordering. All three models were produced by a reverse Monte Carlo technique.'*
For the 10% clustering and 10% ordering models the Otmn beyond the first neighbor shell
were unspecified and thus have whatever value they had when convergence was achieved
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on ¢;. The first column in Fig. 2 shows a 110 plane extracted from each model. One
can clearly see the difference between the various types of order. The right hand column
shows the 100 reciprocal space plane for 10% clustering and 10% ordering models. Only
contribution from Igg(Q) is show. The random model is omitted because it is featureless.
The most important feature to notice is that the diffuse scattering peaks at the Bragg peak
positions for clustering systems and at the supperlattice positions for ordering systems.
This fundamental change in the diffraction pattern means that it is usually readily apparent
what type of concentration fluctuations are present. The P2 for the 10% clustering and
10% ordering models are shown in the center of the right had column. Note how the values
for the P fall offrapidly with increasing distance reflecting the short-range nature of the
concentrationfluctuations.

The first order term in the displacements, 1(Q)isp, is often referred to as the “size
effect” scattering. The displacement parameters, yini, are also a pairwise average over all
symmetry equivalent pairs. Each Y, is a linear combination of the species dependent

average pairwise displacements, A" and A", givenby

Imn Imn

Ylmn = Re ‘A - allllll + Cﬂ/\ (IQ : A]/I\H/:I )_ RC . . - almn + SJL lQ : A]’:IEI) (10)
fA_tn Cy Fo —ty Ca

where Re() denotes the real part of the ratio of complex scattering factors, it should be
noted that it is the individual components of the displacements that are averaged of all the
symmetry equivalent pairs in the crystal such that

QA =2 (o, (Axid) + b, (aypd) + by (Azih)) (112)
Hi
and
Q- Al =22 o (axit) + o (aylt )+ (azih) (11b)
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The existence of an average lattice requires that the weighted average of the displacements
for all AA, AB, BA, and BB pairs for each coordination shell must be zero. Thus, given
that A}S =APA  the displacement terms involving AB pairs have been removed from Eq.

10 by applying the average lattice constraint

VAR 7 S Y 7S VTR (12)
2(a,mn-1) Cp Cp

No assumption has been made as to how the displacements are distributed about the
average. This information is contained in Inor(Q). In order to evaluate Inor(Q) we make
the assumption that either the quadratic and higher order terms in the series expansion of
the thermal and static displacements are the same for AA, AB and BB atom pairs or that
the different elements have nearly the same atomic scattering factors."”'® If either of these
assumptions is valid we can write Ior(Q) as

L @=Y {chfA refy 3 (@8 )™ v, i h LY a,.n.,<<Q-6)‘)6“*“"""]- (13)

- lmn * Inin

The first term in Eq. 13 reduces the intensity of the Bragg peaks and distributes this
intensity as thermal and static diffuse scattering. This corresponds to the usual Debye-
Waller factor commonly used by crystallographers. The second term in Eq. 13 reduces the
intensity associated with the chemical ordering. This term has been treated by Walker and
Keating” and is included as a Debye-Waller like factor ¢>™®uin Eq. 6.

EXPERIMENTAL METHODS

In most cases the statistical quality of the data and the presence of systemic the
recovery of any information from Iyor(Q). Thus the usual strategy is to try and separate
the Isro(Q) + I1sp(Q) contribution from Iryw(Q). For diffuse neutron scattering this can be
done when the data are collected by utilizing an energy analyzer to remove all but the
elastic scattering from the diffracted beam. The elastic contribution to the scattering from
Inor(Q) is assumed to be small and is simply ignored.

For diffuse x-ray scattering the situation is more complicated. In the past about all one
could do was to calculate the thermal diffuse scattering and subtract it from the data. More
recently, the availability of x-ray synchrotron sources has made it possible to tune the
incident energy of the x-rays so as to vary the scattering contrast between the two atomic
species. This technique takes advantage of the anomalous dispersion that occurs when the
incident x-ray energy is near an x-ray absorption edge of one of the two atomic species."
The two contributions to Itemi(Q) of interest, Isro(Q)and I1sp(Q).are strongly dependent
on the scattering contrast, Af = fo — fu, see Eq. 6 and 7. Thus, one can measure the diffuse
intensity at two scattering contrasts; one where Af is large and one where Af is small. The
data where Af is small will contain little or no contribution from Isro(Q) or Iisp(Q)so it
can be rescaled to the average scattering per atom at the x-ray energy where Afis large and
then subtracted away leaving only the contrast dependent contribution at that energy."” The
contrast dependent part of Iyor(Q) also remains, but this is taken to be small and is ignored
in much the same way as for diffuse neutron scattering. In both x-ray and neutron
diffraction the Bragg intensity is simply omitted since it only occurs at a few points in
reciprocal space.
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Once Ispo(Q) + [1sp(Q) has been separated from the total scattering, Egs. 6 and 7 can
be fit to the data whether it comes from x-ray or neutron diffraction. Because Isro(Q) has
even symmetry and I;sp(Q) has odd symmetry the least squares problem is well
conditioned so that one should expect little or no interdependence between the Otma’s and
the Yimn’s. This is in spite of the fact that oy, appears explicitly in the expression for Yipq in
Eq. 10. The “coupling factors”, @y, in Eq. 6 can be evaluated using various
approximations for phonon dispersion in the alloy.'"*" The leading term Moo= O for x-ray
diffuse scattering where the instantaneous correlation function is measured but not for
elastic neutron scattering where ®ooy = 1. Typically, the approximation @ = | is also
made for ¢mn #0.*'

With only one data set where the scattering contrast, Af, is large one can only
determine the Yiun’s but not the species dependent atomic displacement parameters, A*> . In
order to extract the species dependent parameters, at least one additional high contrast data
set is required where the scattering contrast is substantially different from the first. If
possible one should attempt to have fa > fg for one contrast and fy > fa for the other. This
can be achieved with x-rays at the synchrotron in exactly the same way as described above
for large and small Af, and by isotopic substitution using neutrons. Quite often at least one
of the atomic species will not have an absorption edge within the accessible x-ray energy
range available at the synchrotron, and there are no isotopes available (often they are
simply too expensive) for use in a neutron diffuse scattering measurement. In this case one
should consider using a combination of x-ray and neutron diffuse scattering data to get the
required change in scattering contrast. Once the two large scattering contrast data sets are
ready, the A and A'® can be obtained directly from the least squares analysis by

Imn Imn >

substituting Eq. 10 into Eq. 7.

EXAMPLE: FeCr

The FeCr binary system” exhibits a bee solid solution (o-FeCr, see Fig. 1) over a wide
temperature and concentration range. At ~1100K, a structural transformation to the ©-
phase, a complex close-packed Frank-Kaspar phase, occurs. According to thermodynamic
evaluations®>**the o-phase decomposes below ~700K into Fe-rich and Cr-rich bec phases.
Since the bee to o transformation is very sluggish, a metastable miscibility gap for a-FeCr
is observed well above this decomposition temperature. One might expect the local order
in the bee phase to reveal a tendency toward phase separation. However, there is also the
alternative possibility that directly above the ©-phase equilibrium boundary the local
atomic arrangements reflect the incipient o©-phase formation through premonitory
fluctuations. In alloy systems such premonitory fluctuations can, for example, include
atomic short-range order as well as local atomic displacements.

A single crystal of FesiCrq; was grown at the Materials Preparation Lab, Ames
Laboratory, Iowa State University by L. L. Jones using a Bridgeman technique. The purity
of the alloying elements was 99.95% and 99.996% for Fe and Cr, respectively, and the Cr
concentration was determined by chemical analysis to be 47.2%. The crystal was roughly
cylindrical in shape with a diameter of 12mm and a length of ~20mm. After a
homogenization anneal at 1600K the crystal was held at 1108K (5K above the o-phase
transition temperature, see Fig. 1) for four days in a sealed quartz tube under a purified
argon atmosphere then water-quenched. Extensive small-angle neutron scattering studies®
of quenched and annealed a-FeCr alloys indicate that such a quench will preserve the high
temperature equilibrium configurational order. Small angle neutron scattering was used to
verify that this was the case for our sample.
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The X-ray scattering experiment'® was performed on the ORNL beamline X-14A% of
the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The
measurements were done using three different energies for the incident x-rays: (i) E=5.969
keV (20eV below the Cr K absorption edge). This energy was chosen to maximize the
scattering contrast between Cr and Fe and thus enhance the contribution from the local
order in the crystal. We refer to it as the “Cr edge”, (ii) E=7.092keV (20eV below the Fe
K absorption edge). At this energy fcr >fr., i.e. Cr becomes a stronger scatterer that Fe and
we shall refer to it as the “Fe edge”. This contrast inversion affects the sign of I;sp(Q),see
Egs. 7 and 10. Therefore, a comparison of the data measured with the “Fe edge” energy
with those measured with the “Cr edge” energy highlights the “size effect” scattering, (iii)
E=7.600keV. This choice minimizes the scattering contrast whereby the Isro(Q) + I;sn(Q)
contribution to the total intensity are small, thus the measured intensity is predominately
due t0 Ipmg(Q) + Inor(Q). Figure 4 shows the range of contrast variation obtained during
the measurement. Note the greatly enhanced IAfI* at the “Cr edge” as compared with IAZI*
= 4 without the anomalous dispersion, and the 1Afl* small for E=7.600keV.
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Figure 4. IAf1” as a function of sin®/A for the three X-ray energies used.
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The results of the least-squares analysis are listed in Tables I and II. The first eleven
Ouun's are positive indicating a preference for like neighbors (Fe-Fe and Cr-Cr pairs), i.e.
this is a clustering system. For example, 011 = 0.16 means that the probability of finding
an Fe atom in the nearest neighbor shell of another Fe atom is 60.5% as compared to 52.8%
(=cre) for a totally random alloy. Given the high concentration of this alloy, the Olymn are
rather small and so the clustering tendency is not very pronounced. According to
anomalous x-ray diffraction studies by Yankel,”® &-FeCr is partially long-range ordered,
i.e. there are sublattices which are preferentially filled with Fe or Cr. For every interatomic
vector connecting points in two different sublattices, the corresponding O4n, must be
negative. Evidently, the positive oy,,’s of the bee solid solution above Tg do not reflect the
local chemical order found in the c-phase.

From Table Il we see that most of the components of A\ are negative. Therefore
most of the average Fe-Fe separations (in particular those for the first three neighbor shells)
are smaller than the corresponding average lattice distances. This is compatible with the
observed decrease of the lattice parameter with increasing Fe concentration. However, the
comparatively large negative value of the nearest neighbor Cr-Cr displacement shows that
the concentration dependence of the lattice parameter is not necessarily reflected in a
simple way in the local atomic distortions, i.e. from Vegard’s Law one would expect the
first nearest neighbor displacements to be positive! Nevertheless, the A{" are on the

Imn
average more positive than the A]".  Thus the data suggest that taken over a sufficiently
large local volume, the Cr atoms are indeed “bigger” than the Fe atoms. The average Cr-Cr
nearest neighbor distance is 0.4% smaller and the average Cr-Cr next nearest neighbor
distance is 0.3% larger than the corresponding average lattice separations. By comparison,
the lattice parameter of pure Cr is 0.6% larger than the lattice parameter of pure Fe. It is
also interesting to note that the root-mean-square static displacement amounts to only about

~3% of the root-mean-square thermal displacement.

Table I. Short-range order parameters Oy,

fon [ fmn Oy
000 1.1806(23) 333 0.0051(8)
111 0.1596(14) 511 (1.0025(6)
200 0.0691(14) 440 -0.006(7)
220 0.0455(1 1) 531 0.0016(4)
RN 0.0217(10) 442 0.0022(5)
222 0.0253(11) 600 -0.0020(8)
400 0.0036(11) 620 0.0009(4)
331 0.0074(8) 533 0.0009¢4)
420 0.0074(7) 622 0.0010(4)
422 0.0043(7) 444 _0.0007(7)

Table I1. Specics dependent displacement parameters Ay = (AXynns Ay, Azinn) in A,
The Fe-Cr displacements can be obtained from Eq. [2.

fmn - Axy, AY Az, AXj, A A

b1 -0.00070 (4)  -0.00070(4) -0.00070(4) -0.0019(5) -0.0019¢5) -0.0019(5)
200 -0.00029(9) 0.00000 0.00000 0.00268(12) 0.00000 0.00000
220 -0.00022(4)  -0.00022(4) (.00000 -0.00050(6) -0.00050(6) 0.00000

3T 000018(5)  -0.000223)  -0.00022(3)  -0.00007(6)  0.00011(4)  0.00011(4)

222 -0.00053(5)  -0.00053(5)  -0.00053(5)  0.00039(6)  0.00039(6)  0.00039(6)

400 0.000099) 0.00000 000000 0.00063(13)  0.00000 0.00000
C330 0 -0.000134)  -0.00013(4)  -0.00005(4)  0.00016(4)  0.00016(4)  -0.00005(6)
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Figure 5 compares the measured intensities in the (h;, ha, 0)plane (after subtracting the
E=7.600keV data) with those reconstructed from the from the parameters in Tables I and II.
The increase in the intensity near the Bragg positions and the details of the intensity in the
zone boundary regions are well reproduced. These modulations are largely due to the “size
effect” scattering as can be inferred from the systematic differences between the “Cr edge”
and the “Fe edge” data. For example, the “dip” near 210 in the “Cr edge” data which
becomes a local maximum in the “Fe edge” data, both of which may be related to a
measurable zone boundary softness in the [100]. phononbranch.27
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Figure 5. Measured and reconstructed intensitics in the (h), hy, 0) planc in electron units for the “Cr edge”
and “Fe edge”.

The measured intensity is compared with the results of the least-squares refinement
along the <hhh> direction in Fig. 6. The intensity minimum around h=0.8 in the “Cr edge”
data and the maximum around h=0.7 in the “Fe edge” data arc caused by the “size effect”
modulation and are related to the dip at 2/3(111) in the [I11]. phonon branch. The
difference in there positions can be explained by considering the Isro(Q)which peaks at
the origin, h=0, and therefore will shift a “size effect”-induced minimum towards a higher
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h value, where as a maximum will be shifted towards lower h. The same arguments apply
to the maximum near 4/3(111) in the “Cr edge” data and the corresponding minimum in the
“Fe edge” data. This peaking of the static diffuse scattering at the 2/3(111) and 4/3(111) is
a direct consequence of the elastic softness of the bec lattice in response to distortions in
these directions as evidenced by the 2/3[111] dip in the [111]. phonon. Since the restoring
force if the lattice to this particular displacement is relatively weak, the atoms are
preferentially displaced in these directions. This is clear evidence for the coupling between

the static displacements and the elastic response of the lattice.

I(e.u.)

I(e.u)

Figure 6. Measured and reconstructed intensitics in the <hhh> direction. (a) "Cr edge”, (b) “Fe edge”.
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CONCLUSION

It has been demonstrated that accurate occupational probabilities and first order static
displacements can be obtained from diffuse scattering measurements. It is quite
remarkable that species dependent atomic displacements on the order of 0.001A and
smaller can be determined from such broad features in the diffraction pattern. The
availability of this information will provide theorists with the means to test their models
and challenge them to include static displacements in their ab initio calculations of phase
stability. In even more general terms, knowledge about the local atomic arrangements will
help us to understand the connection between local structure and bulk properties.
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INTRODUCTION

The subject of the diffuse scattering from binary alloys is quite widely studied
especially if one includes the consideration of oxide and semiconductor alloys, as one must,
since they arc often characterized by species disorder on one or more sublattice. For
reviews, one may consult the papers and references in the present proceedings of which we
mention only a few."

The issues confronting X-ray or neutron scatterers are: 1) the local atomic order
above a phase transition in the (nominally) disordered state; 2) the attendant (static) atomic
displacements associated with a disordered alloy composed of atoms of different sizes; 3) the
statistical mechanics/electronic theory of alloys from which we may, on the one hand, derive
some of the observed effects and, reciprocally, extract information on alloy energies from the
measurement of scattering patterns. Early treatments of the derivation of pair correlations,
their Fourier transforms in the scattering patterns and their relation to the energetics of binary
alloys include the work of Krivoglaz® and Clapp and Moss® (together called KCM), Cook
and de Fontaine”* and Froyen and Herring.” All of these treatments are of the mean-field
variety, neglecting, at least at the outset, fluctuations in the several order parameters, and they
have as their aim the relationship between the pair correlations and the effective pairwise
interaction (EPI's) that govern them and can thus be related to fundamental alloy physics.

More recently, Tokar, Tsatskis (formerly Masanskii) and co-workers have
substantially improved these treatments,'® somewhat in the spirit of the spherical model,
(using a y-expansion method or GEM) and Reinhard and Moss'' have summarized the

situation vis-a-vis experiment and analysis via competing treatments. By competing
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treatments we mean the KCM, the GEM and the use of an inverse Monte Carlo (IMC)
scheme, first proposed by Gerold and Kern'? and successfully implemented some years ago
by Schweika and Haubold."” This procedure for extracting the EPI's from measured diffuse
scattering is often referred to as exact, accepting the utility of the EPI's.

There is, of course, an experimental problem lurking in all of this; namely the
separation of the scattering pattern into the symmetrical short-range-order part, the linear
coupling between short-range order and atomic displacements (referred to often as the "size
effect scattering") and the quadratic size-effect (atomic displacement) contribution. This last
part peaks at the Bragg peaks in the vicinity of which it is called Huang scattering and it has
the same functional dependence on distance Iql from the Bragg peak (Gyy;) as does the first
order thermal diffuse scattering,'™i.e. o q-2. The entire enterprise of separating these
several contributions was first proposed by Borie and Sparks'* and variants on their
analysis, including least-square fits to the several contributions'® and the use of experimental
methods to separate them (three incident wavelengths, 3A's, for binary alloys with

617 "and elastic neutron scattering'®) have been employed. There is also a more

1.19

X-rays
recent, and very complete, treatment of the scattering equations by Dietrich and Fenz

It remains true that the physics of disordered alloys, by which we mean the
underlying electronic structure and the proper application of statistical mechanics (including
Monte Carlo, and cluster variation methods) is the major motivation behind our studies of
diffuse scattering. We also hold - with others - that the disordered state presents us with an
opportunity to extract this physics in an important way: that the diffuse scattering, carefully
analyzed, allows us to make informed statements regarding the electronic structure and
bonding in alloys, ultimately leading to the alloy phase stability and phase diagrams. Perhaps
the most complete presentation of that program of work is contained in the book of
Ducastelle” and in several recent conference proceedings.>'°

We shall here discuss one aspect of the analysis of the diffuse scattering from alloys,
namely the appearance in the scattering pattern of incommensurate features that seem
incontestably due to the contribution of the screening electrons, of wavevector 2K, to the
EPI's that govern the diffuse scattering (kp: is a Fermi surface wavevector). We give below
an abbreviated account of the relevant formalism (it appears elsewhere).**"* We then
concentrate on three alloy systems Cu-Au,2930 Cu-AI30-33and Cu-Pd34on which there has
been recent work and which illustrate the effects clearly.

There still remains some disagreement® regarding the origin of the putative Fermi-
surface effects, especially in their temperature dependence, and it shall also be our intent to
describe them within the context of competing interactions in solids (all electronic in our case)
which have clearly been shown over the years to be responsible for a hierarchy of
incommensurate states. We also wish to discuss these scattering effects not only in q-space
but in real space where, by virtue of the incommensurate (diffuse) peaks, we can infer an
inhomogeneous disordered state - as suggested by Krivoglaz,*® and modeled some years ago

by Hashimoto®’ through a local anti-phase domain model.
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THE PROBLEM

If we confine ourselves solely to the symmetrical short-range order component of the
diffuse scattering the pair correlation function o.oj may be written as

A/B
P )
Ogj =1 P

cp = concentration of B atoms in the alloy

where P(’;/B is the conditional probability that a site j will be occupied by a B atom of a

A/B=O

binary alloy (ca+ cg = 1), given an A atom on the origin site, 0. Of course if o=], Py

and thus age=1. If the alloy is random, P(’?j/B =cg and aoj=0. We also may define a set of

effective pairwise interactions, Vjj for the alloy that must surely depend on the intervening
atoms (concentration) and on the temperature. Nonetheless we use, within an Ising

formalism,>*

H= Ho +1/ 22 OinVij
i

for the Hamiltonian in which the projection operators

g=1 Aoni

=0 Boni
From these we define deviation operators,

O,-CA=CR Aoni

O -CA =-CA Boni
The pair correlation functions can then be written as:
Qgj % <(Tg - CANO; - cA)>

to place the formalism on a familiar basis.
The quantities

AB)

AA BB
Vij =1/2[V1.| +Vij —ZVIJ

(D

are the EPI's for our alloy and we must be careful about both how to use them and how to
interpret them. As noted above, there is in principle nothing amiss with a set of Vjj's, given
by Eq.(1), that depend on the concentration (and temperature); in a real sense they must.
(See the discussion in Schweika and Carlsson.”)

In the scattering pattern, the symmetrical component due solely to short-range order is

given by a Fourier series™” in which the diffuse intensity per atom is,
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Ip
N

l(]'l'_j

=l -faleacp aje )
]

In Eq.(2) we have dropped the origin prefix (o) because rj is by definition a vector from an
origin site to its j! neighbor where all sites are allowed to be origins. [fg-fa] is the scattering
contrast which isslightly Ikl-dependent for X-rays (k is the scattering wavevector; q is the
wavevector of the fluctuation). For neutrons we have [bg-ba]is independent of Ikl. In the

expression in Eq.(2), we may extract
x

a(q) = E aj clq y (3)
B

which is simply the transform of the pair correlation function. Within the mean-field (MF) or
random phase approximation (RPA), this transform is given by:

1
- 3= /KT 4
@) -7 eV @ F 4)
where in Eq.(4)
Vg = 3 vy et ()
i

and is the transform of the EPI's. The choice of 1 (unity) in the numerator of Eq.(4) is
non-trivial but was initially proposed by Krivoglaz’ and later shown by Masanskii et al.*” to
be correct and to yield the most reliable values of Vj;from measured data (see also Ref. 11).
Mostly these EPI's are limited to the first few neighbor interactions. There are two cases,
particularly in metallic alloys, however, in which longer range interactions must be

considered:

1) elastic interactions induced by a "significant" size discrepancy between the atoms;
this is also very important in interstitial solutions;"

2) conduction electronic screening as with Friedel oscillations which introduces a
long-range oscillatory component to the pair potential whose period is given by 2k, where,
2k is a wavevector spanning parallel flats or nesting pieces of the Fermi surface in order to
be observed. The formalism here is rather close to that governing charge-density-wave
instabilities in which an atomic displacement or mass density wave is induced with a period
of 2kgl. In our case, we have, in the disordered state, an enhanced concentration fluctuation

of wavevector 2kp5-27.28 This can easily be seen as follows:

V@) = Vs(q) = V(q)e(q) (6)
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where Vg(q) is the screened EPI and e(q) is the dielectric function which for the spanning
wavevector, i.e. €(2kp), shows a peak whose nature depends on the nesting or flatness of
parallel Fermi surface sections (i.e. the number of screening states contributing to the
singularityat 2kg). The simple formalism™*’ is borrowed from the magnetic case of a spin
density wave'' but it has since been done, in a much more rigorous fashion, initially for
Cu-Pd alloys.*

The peak in e(2kp) gives rise to a reduced Vg(2kp)<V(2ky:) which in turn produces a
peak in a(2kg) and thus in the diffuse scattering. One can then draw the appropriate Kohn
construction,”’ as in Fig. 1.” in which anomaly surfaces intersect giving rise to the observed

diffuse satellites which are the subject of this paper.

120
020 101 220
I
111 qbt
110
2kp 100
010 210
110 170
m Qv
000 200
111 100 117
101

Figure 1. The basic reciprocal space geometry for the observation of diffuse satellites at positions of +qp

about the superlattice points. T'wo equivalent planes of reciprocal space are shown.

That much is old stuff! However, following the initial report of this effect,”’ a series
of observations on disordered alloys using electron diffraction was reported in which the
position of 2k clearly confirmed the simple prediction - in a rigid band scheme - of scaling
directly with the electron/atom (e/a) ratio of the alloy in question. In all cases, the shifts in
the diffuse satellites of Fig. 1 were in the "correct" direction - i.e. as predicted. No other
scheme would seem to be able both to yield the existence of such a long-range feature in Vj;
and to predict its change with e/a. These results were summarized by Moss and Walker.*®
For illustration we show below data from three Cu-Al alloys studied by Scattergood et al.*'
whose Fermi surface dimension in the <110> direction was measured directly from the
position of the satellites along a symmetry axis in Fig.2 [note in b) the enhancement on the
furnace cooling over quenching but without a noticeable shift in position]. Figure 3 presents
values of kp/kgo from diffuse scattering and from positron annihilation. Both indicate a
deviation from free electron behavior where a flatness in <110> is, as in pure Cu,
compensated for by a bulging in <100>. These results all may be understood using Eqs.(4)
and (5) and by the construction in Fig. 1. A good deal of physics was thereby overlooked in
these initial verifications of the basic idea and the calculation of Gyorffy and Stocks,* as
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noted earlier, placed the phenomenon on a firmer theoretical basis; nonetheless neutron
studies of the phonon dispersion in pure Cu® indicated only an anomaly in the derivative
dw(q)/dq at q=2kp. This indicated that the actual Kohn anomaly for phonons is considerably
less dramatic than the analogous effect on the concentration fluctuations.
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Figure 2. Total diffuse intensity, in electron units per atom, along the [h10] direction where h; = h;
(a) Furnace-cooled single crystals containing 5.9, 11.0 and 16.0 at.% Al. (b) Single crystals containing 16.0
at.% Al in the furmace-cooled, quenched and cold-worked conditions.
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Figure 3. The ratio of the measured Fermi wavevector to the calculated <100> zone boundary vector,

kp'kypo, vs. at.% Al. The GW data are from Gaudig and Warlimont and are electron diffraction results.

Positron annihilation results are due to Fujiwara et al. The theoretical variation for a free-electron sphere is
shown by the solid line; broken lines correspond to a simple scaling of the <100> and <110> dimensions of
the Fermi surface of Cu, i.e.: kp<110>/0.743 = n(alloy)1/3; kp<100>/0.841 = n(alloy)!/3, where kg is in

units of 1/a. (See Ref.31 for additional references.)

There remain, as we can see, interesting questions when one explores this
phenomenon in more detail and we shall discuss some of these in the next section.
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RECENT EXPERIMENTS

Given the existence of modulations or splittings in the diffuse scattering associated
with 2KF, it is of interest to explore their dependence on temperature and to extend the
measurements of their composition dependence. A good example of the latter has been done
by Reinhard and co-workers* on fee Cu-Zn alloys using a 65Cuisotope to enhance the
neutron contrast. However here we shall confine ourselves mainly to Cu-Au, Cu-Al and
Cu-Pd alloys. (The fact that the phenomenon seems so largely confined to Cu alloys is, in
itself, an interesting observation.)

a. CuzAu

In CuzAu, Reichert et al.”” examined the temperature dependence of the splittings in a
plane of reciprocal space shown in Fig. 1 using a [110] single crystal to study the scattering
about the 700 position. Scans were made in both the (10¢]and [1k0] directions which are
through the enhanced spots in Fig. 1 and should reveal diffuse peaks at +qp. Scans normal
to this plane through the /00 position are along [0.5+h, 0.5-h, 0]. This work was first
reported in Ref.29 and recently, with Tsatskis, in Ref.30. Figures 4, 5 and 6 are from
Reichert et al.?>*® in which a fundamental issue is addressed, namely the origin of the
temperature-dependent splittings. It is, at first glance, difficult to assign 2k (at a fixed
composition) to a diffuse diffraction feature which changes with T. Certainly 2kF is
essentially constant over the narrow range of ~140K. In addition the mean-field expression
given in Eq4, however successful it is in retrieving Vjjfrom ajj,cannot yield a Vg(2kp)
which is temperature dependent. Hence the only temperature dependence enters in f=1/kT
and this clearly cannot shift the value of qp in Fig. 1. In Ref.30 we discuss the necessary
modification to the mean-field equations required to yield the observed shift. It is shown to
reside in a proper consideration of the alloy self-energy and this amended treatment of the

scattering formalism is given in greater detail by Tsatskis in these proceedings.*

45 A ]
’/\\ T,+127.8K
401 A { To+83.3K
3 5] | To+52.3K
= To+34.1K
2 30+ J
2 . T,+21.2K
251 1 To+12.0K
20 { To+5.6K
15 b To?26K
-06 02 02 08

Adfr.l.uj
Figure 4. Total diffuse intensity versus momentum transfer Aq through the (100) superstructure position

along the line (0.5 + h, 0.5 - h, 0) for a set of temperatures in the disordered phase of CuzAu. The lines are

fits with single Gaussians. T, = ordering temperature. (From Ref.30)
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Figure 5. Total diffuse intensity along the (107) for a set of temperatures in the disordered phase of CuzAu.

The lines are fits with two Gaussians. (From Ref.30)
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Figure 6. Temperature dependence of the separanon aistance Af = 2qy, (the full line is a fit to a power law.)

The inset displays the average separation of domains with the same phase, assuming a correlated anti-phase

domain model for the disordered state. (From Ref.30)

Figure 6 is particularly interesting because it shows both the temperature dependence
of the splitting (A€ = 2qp) and its real-space counterpart d = 2a/A¢. Here we have a real-
space modulation of the local order of ~70A falling to ~40A, whose correlation range in
Fig.4 varies from ~15A near the transition temperature, To,to ~6A at Ty+140K. In other
words, the induced splitting indicates a long-range modulation of the short-range order and
this, in turn, as noted by Krivoglaz,* requires a heterogeneous disordered state of correlated
regions of local order. Hashimoto independently wrote a series of papers’” on a correlated
microdomain model for the disordered state to give the splittings a real-space interpretation.

The "true" value of I2kpl for CuzAu as extracted from these experiments seems
ambiguous. However, at higher temperature, Eq.4 becomes exact and thus the value of 12k;d
can be taken from the asymptotic value of A¢ ~ 0.171in Fig.5 and the construction in Fig.l.
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2. Cu-Al

As noted earlier the Cu-Al system also has shown splittings as in Fig.2 and they have
been used to rationalize Fermi surface dimension as a function of composition in Fig.3. We
return to Cu-Al alloys because they also reveal a temperature dependence of the split peaks as
measured by of Roelofs et al.** and reproduced in Fig.7 from Reichert et al.>® In this case,
however, the original data was on a rapidly quenched crystal. The IMC was used to extract a
set of Vij's which were then used in a Monte Carlo calculation to generate the short-range
order and hence the diffuse scattering at several temperatures. Within large error bars it
would seem that 2qs is leveling off at ~0.55 at ~900K and that would then be an appropriate
number to use in calculating 2kp. Here it is clear that the splitting originates in the energy but
has a value dictated by temperature, i.e. entropy.

0.651
0.601
0.551

0.504

2gy [a.u]

0.451

0.404

300 400 500 600 700 800 900
T K
Figure 7. Temperature dependence of the separation distance 2qp, for the alloy Cugs Al |4 4 (simulated and
measured values extracted from Ref.32.) The straight line indicates a linear increase with temperature, but we

believe a leveling should obtain at higher I. (l'rom Ref.30)

Cu-Al alloys so clearly demonstrate concentration-dependent splittings, that they were
good candidates for an inelastic neutron scattering study of Kohn anomalies. Chou et al.33
attempted this only to find that there were no 2k singularities eitherin w(q) or in dw(q)/dq
similar to the results on Cu noted earlier.”” Nonetheless we show in Fig.8 the original
Bone-Sparks46 data for our CuggtAlg 16 crystal quenched to room temperature. Included is
the familiar Kohn construction for peak splittings and the fee Brillouin zone structure overlaid
on the data. This data also shows the strong asymmetry in the diffuse scattering induced by
an appreciable atom size disparity. Figure 9 is a set of neutron elastic scattering scans to
confirm that the split diffuse satellites are not of dynamic origin. Finally in Table 1 below we
present measured phonon frequencies and line widths along the line connecting 100 and 110
in Fig.8, through the strong satellite. The frequencies show no abnormality but the line
width of the measured phonons shows an increase at about £{=0.3 which is the satellite
position. Again this has a real space interpretation as the phonons are expected to be damped
more strongly by the locally ordered regions; i.e. when the phonon wavevector matches the
satellite wavevector, lifetime effects reflect enhanced real space fluctuations and a form of

resonant absorption or damping.
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Figure 8. The [001] zone in reciprocal space of a fec lattice schematically showing (a) Kohn construction of

the diffuse satellite positions given kf in the (100) direction and (b) the diffuse scattering as observed by Borie
and Sparks.#6 The asymmetry in the satellite intensity is caused by atomic displacements arising from

unequal atom sizes. (From Ref. 33)
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Figure 9. Elastic diffuse scattering observed in a Cug g4Alg 16 crystal by neutrons confirming the satellite
positions observed by Borie and Sparks. 46 (From Ref33)
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Table 1. Observed phonon frequencies and linewidths along [1,£,0] (linewidthsare
not resolution corrected). (From Ref.33)

€ (in 2n/a) w (THz) I' (THz)
0.0 4.98 0.84
0.1 4.94 0.81
0.2 4.88 0.92
0.3 4.72 0.99
0.4 4.64 0.85
0.5 4.64 0.79

3. Cu-Pd

Cu-Pd alloys show a range of long-period superlattices and disordered states. The
first self-consistent-field KKR CPA calculation of the Fermi surface of disordered Cu-Pd
alloys* showed a distinct Fermi surface with enhanced flat portions normal to <110> which
in turn gave rise to the composition-dependent diffuse maxima observed by Ohshima and
Watanabe.*” Noda et al.,** noting the strong X-ray evidence for the diffuse satellites in
Cu-Pd®8 undertook a neutron experiment similar in intent to Chou et al.>* Figure 10 from
Noda et al.** shows a neutron elastic intensity profile for Cug715Pdp. 285 with the familiar
2kp "logo" as an insert. There are clear satellites in the quenched disordered alloy with an
"m"value(see Fig.1) of 0.095+.01 in good agreement with X-ray data of Saha et al.*® but
somewhat smaller than the estimate of Gyorffy and Stocks.” (Perhaps the equilibrium

value, at temperature, would increase somewhat as in Cu-Al and Cu-Au.)
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Figure 10. One-dimensional intensity distribution in a Cug 7;5Pdg 285 crystal along the [010] direction

from (3, 0.68, 0) to (3, 1.48, 0) where the A/2 component was eliminated. (From Ref.34)
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The temperature dependence of the peak splitting in Cu-Pd is only now being
undertaken in a [110] crystal of Cug702Pdo.208 by Reichert and co-workers.*” Their
preliminary results for this crystal indicate a value of qg ~0.108 and very little, if any
temperature dependence. This value of qp differs from Noda et al.** who found qg ~ 0.130
but this discrepancy may well be due to the fact that Reichert and co-workers are studying the

diffuse satellite in equilibrium at temperature.

THEORETICAL CONSIDERATIONS

Most recently the original result of Reichert et al.’ was criticized both for the
attribution of the basic effect of the peak splitting to electronic energy terms and for
remarking at all on its temperature dependence. This Comment by Ozolins et al.*” has as its
major premise that the ground state of CuzAu (and CuzPd) can be calculated from first
principles and Monte Carlo methods can then be employed to derive the pair correlations
through and above T. Their calculations overestimated the transition substantially and gave
a value for A¢=2qp of 0.09 near To compared with the measured value in Ref.30 of 0.11 and
a (+100K) higher temperature value of 0.12 which both disagree appreciably with the data.
Nonetheless, they did find a temperature-increasing splitting. In Cu-Pd (close to the
measured composition of Reichert et al.*’) they found very little, if any, change with
temperature in agreement with the recent data.* Their splitting value also seems to disagree
with experiment. Inasmuch as the Fermi surface does not explicitly enter their calculations, it
is difficult to compare their splitting values to other calculations.

More important perhaps, is their insistence that the peak splitting as discussed is not
energetic in origin (the ground state is not modulated) but simply arises from the entropy via
Monte Carlo. It is this contention which we would hope to lay to rest, as discussed below.

COMPETING INTERACTIONS

We review briefly the origin of incommensurate modulations in solids which
invariably arise from a set of competing interactions. It is important to note that at T=0 the
ground state may be a simple commensurate ordered structure; it is often only at T>T, that the
competing interactions reveal themselves. Among the many systems for which calculations
have been made are anisotropic magnets, alloys, surface structure of adsorbed species and so
forth.

The model that has been quite successfully employed to treat such systems is the
axial-next-nearest-neighbor-interaction model (ANNNI). We here quote briefly from a very
nice treatment of the 2D ANNNI model in the CVM approximation by Finel and de
Fontaine.’® Figure 11 below shows the basic interaction set where along y the interactions
are ferromagnetic while along x the ferromagnetic rows are antiferromagnetically coupled
with Jo = -Jpand Jo/J1 = K (both antiferromagnetic). A great host of incommensurate phases
have been generated in this way (of course 3D treatments abound with planes replacing rows)
and we show in Fig.12 the phase diagram of this 2D ANNNI model. All structures have a
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shorthand such that <1> refers to pure antiferromagnetic f} 1} while <2> is a doubled phase
131, etc. (See Ref50 for details.) The scales are kgT/J, (temperature) vs. K = Jo/J1. The
competing interactions appear along the x-axis. Disregarding the many complications, we
may note that for K<0.5, the phases become quite simple. The fully ordered antiferromagnet
initially disorders into a commensurate state (diffuse peak at reciprocal lattice point) while
above the dashed line the commensurate disorder becomes incommensurate and splits into
our familiar satellites. Of course temperature (entropy) is the controlling element, but K
(energy ratio) is the determining agent especially as regards the steep "disorder line."

Figures 13 and 14 show results for two values of K (0.4 and 0.3). At K=0.4 a very small
change in temperature produces the splitting which then increases with T: q is actually qxand

is in units of 2m/a. At K=0.3, the diffuse maximum remains at the commensurate position

and then abruptly falls off (the splitting increases) with increasing T as the "disorder line" is
crossed.

"
~__

2 X

Figure 11. The two-dimensional ANNNI model. (From Ref.50)
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Figure 12. Phase diagram of the two-dimensional ANNNI model. Full lines represent the complete phase
diagram with phases <1>, <2>, <21>, <221> and <21221>. The dot-dashed line represents the curve T(K)

and the dashed line the "disorder" line, above the critical temperature, in the disordered phase. (From Ref.50)
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Here then is a clear example of a simple ordered ground state with competing
interactions which, upon increasing the temperature, develops a modulated disordered state.
It is only in the disordered state for K<0.5, that we are aware of the competing interaction
energies. The analogy with our alloys should not be lost; in our case we have local
interactions of the Coulombic variety and longer range interactions dictated by the Fermi
surface with attendant screening. It is often only in the disordered state that the consequence
of these competing interactions appears. But not always, and there are myriad examples of
long-period superlattices in which the ground state is indeed also modulated (as in CugzPd- in

two directions!).

kgT /gl=1.19

15

10

X(q)

0.45 0.50 0.55
q
Figure 13. Temperature dependence of the susceptibility x(q) for K = 0.4; for susceptibility, one may, as

well, read diffuse scattering, a(g). The wavevector q is measured in units of 27t/a and y(q) in arbitrary units.

The arrows indicate the location of the maxima of the susceptibility (diffuse scattering). (From Ref.50)
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Figure 14. Temperature dependence of qpf, the wavevector where the susceptibility is maximum, for

K =0.3; qyq is measured in units of 2n/a. (From Ref.50)
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CONCLUSIONS
We have reviewed here the evidence for Fermi-surface-induced modulated scattering

in disordered alloys and presented the simplest formalism for understanding - at least - its
geometry. We leave for parallel theoretical treatments a more extended discussion that
accounts both for the composition and temperature-dependent EPI's and for their proper
incorporation into the scattering formalism. Certainly Tsatskis* has developed a substantial
modification of the original KCM equation that permits temperature-dependent features and
yet preserves the utility of the EPI's. There is also the very interesting work of Le Bolloc'h
and colleagues at ONERA®"*? on Pt-V alloys in which there seems to be a pronounced
change in the distribution of the diffuse scattering as one goes from PizV to PigV with
interactions (EPI's) that seem nearly concentration independent but show a large nearest-
neighbor interaction, Vj. Their analysis shows how these large changes can be understood
through a large decrease in the influence of V1 as composition and/or temperature decreases.
Their analysis provides a firmer understanding of the meaning and utility of the EPI's and
allows us - as does the work of Tsatskis - to retain many of the useful features of a quasi-
mean-field treatment by understanding clearly how a renormalized set of interactions can still
be employed in handling even highly "unusual" composition or temperature dependencies.
The connection with the ideas of competing interactions presented above is particularly
relevant here. For a 3D ANNNI model the 2D planes, not the (1D) lines, compete; the result
in terms of EPI's is that for fcc lattices, J7, the second neighbor planar interaction includes a
large number of EPI's between atoms in the respective planes with the nearest pair being
between two unit cell origin atoms separated by 2ag. This is the 8th neighbor EPI! Even for
rather short range competing planar interactions we can see that the EPI's extend to distant
neighbors and the competition that stabilizes a modulated state above or below the ordering
transition is therefore invariably of a long range, oscillatory nature.

In short, then, the use of diffuse scattering as a means of revealing, or retrieving, the
basic interactions in alloys seems still to be quite healthy and the parameters one retrieves
reflect the basic physics of the alloy.
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NON-MEAN-FIELD THEORIES OF SHORT RANGE ORDER AND
DIFFUSE SCATTERING ANOMALIES IN DISORDERED ALLOYS

Igor Tsatskis*

Department of Earth Sciences
University of Cambridge
Downing Street

Cambridge CB2 3EQ

United Kingdom

INTRODUCTION

Local, or short-range, order in disordered alloys is an important and exciting phe-
nomenon which is quantified in electron, X-ray and neutron scattering experiments.
It is discussed in many excellent reviews and books,'® as well as in the multitude of
original research papers.

This relatively short review of the subject does not attempt to discuss all aspects of
the problem of local correlations in alloys. In particular, we will not touch such issues
as multiatom (cluster) interactions, static displacements and vibrations of alloy atoms,
partially ordered, multicomponent or amorphous alloys. As a result, we will concentrate
on the Hamiltonian traditional for the considered problem, that of the Ising model on
a rigid ideal lattice with pair, but otherwise arbitrary (i.e., of any range) interatomic
interactions.

The central object of the paper is the pair correlation function of the corresponding
dynamical variables of the model, the occupation numbers or spin variables, the Fourier
transform of which is proportional to the intensity of diffuse scattering caused by atomic
short-range order. The main aim is to show that the expression for this quantity has
certain internal structure analogous, e.g., to that of the averaged Green’s function
used in the electronic theory of disordered alloys. This structure is independent of the
approximation used for the quantitative description of correlations. As will be seen,
this structure alone, without further specification of a particular theory of short-range
order, allows us to see new possibilities in diffuse scattering, some of which have recently

" ..
Former name: 1.V. Masanskii
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been observed experimentally.

The present contribution is organized as follows. First two sections are auxiliary
and serve mainly for reference purposes; the former introduces relation between the
phenomenological Hamiltonian of binary solid solutions and the Ising model, as well
as necessary definitions and formulae, while the latter describes briefly standard ap-
proaches to the theory of electronic structure of disordered alloys. Readers familiar
with the material contained in these sections can skip it and proceed directly to the
third section where the key expression (75) for the diffuse intensity is introduced. In
the fourth section its derivation and relation with alloy thermodynamics are discussed.
Without any doubt, many readers would quickly realize that Eq. (75) is simply one
of the possible forms of the famous Dyson equation. Such readers can then focus on
the two last sections. The fifth section reviews, from the point of view adopted in this
paper, existing theoretical approaches — both traditional and relatively new —to the
problem of calculation of the pair correlation function and the diffuse-scattering inten-
sity. Finally, in the sixth section based on the recent author’s work it is shown how
the internal structure of Eq. (75) leads to understanding existing and predicting new
diffuse-scattering anomalies.

LIST OF ABBREVIATIONS

AE alpha-expansion

ATA average f-matrix approximation
CPA coherent potential approximation
GEM gamma-expansion method

HTE high-temperature expansion
KCM Krivoglaz-Clapp-Moss (approximation)
MC Monte Carlo (simulation)

MFA mean-field approximation

PCF pair correlation function

RPA random-phase approximation

SM spherical model

SRO short-range order

SSA single-site approximation

VGA virtual crystal approximation

DESCRIPTION OF A BINARY ALLOY

We will consider the standard model of a binary alloy used in the statistical theory
of ordering.'™® In this model two sorts of atoms (A and B) are distributed over N sites
of a rigid lattice; there are no vacancies or other lattice defects. For simplicity reasons
the consideration is confined to the case of the lattice with one site per unit cell. All
sites of the lattice are equivalent, i.e., there are no distinct sublattices; this situation
corresponds to disorder or ferromagnetic ordering. A particular alloy configuration is
fully described by the set of occupation numbers pf,

(1)

N { 1, atom of type a at the lattice site 7,
=

0, otherwise.
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The occupation numbers satisfy obvious relations
=1, (2)
Y = N7, (3)
YNt = N, ()

where N® is the total number of atoms of type «, and the last equation holds because
the total number of alloy atoms is equal to the total number of lattice sites. Indices «
and /3 take only two values, A or B. It is assumed that the interatomic interactions are
pairwise; an atom of type « at site i interacts with an atom of type f3 at site j with a
potential V;ﬁ Then the configurational part of the alloy Hamiltonian is

1 of a
H= 522‘@'%{1’?- (5)

i af
The main aim of statistical mechanics is the calculation of the partition function’
Z = Trexp(—fH) , (6)

where 8 = 1/kgT, kg is the Boltzmann constant, 7 the absolute temperature, and
Tr denotes the trace of a matrix. It is convenient to avoid restriction (3) on the total
number of atoms of each type and work in the grand-canonical ensemble, calculating
the grand partition function Z,

7 = Zexp (ﬂz y“N") , (7)

where u® is the chemical potential of atoms «. In this approach the number of atoms is a
function of the corresponding chemical potential, and after having done the calculation
the chemical potential is adjusted to get the required number of atoms. To unify
canonical and grand-canonical treatments, i.e., to get the same formula (6) for Z, an
effective Hamiltonian H is often introduced:

H=H-Y p*N~. (8)
The expression for the effective Hamiltonian is then
~ 1
— aff o O o o
11—§Z§Wj AR DI A (9)
) o i a

As is well-known, the statistical-mechanical problem defined by the Hamiltonian
(9) can be transformed into the equivalent problem of an Ising magnet in a magnetic
field. The occupation numbers are not yet all independent, due to Eq. (2). Dependent
variables can be eliminated by introducing a spin variable s;,

| +1, spin up (atom A) at the site ¢, (10)
%=\ =1, spin down (atom B) at the site 1.
The relations between the occupation numbers and the spin variables are
P o= (4, (1)

pP = —(1-s). (12)

| — | =
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Inserting Eqgs. (11) and (12) into the expression (9) for the effective Hamiltonian f[, we
find that, apart from the configuration-independent term, the Hamiltonian is that of
the Ising model,

H = —%ZJ,'J'S,'SJ‘ - th,- y (13)
i t

where the effective exchange integral J;; and the magnetic field & are given by

1
th = _E‘/;]’ (14)
1 B 1 A BB
h = 5(#"—# )—ZZ(V.? - VPE) (15)
2
1
V. SVt + VIR - viP (16)

and V;; is the pair ordering potential. The second term in Eq. (15) does not, in fact,
depend on the index i because all interatomic potentials are functions of only the
distance between interacting atoms.

For the following we define concentrations ¢* and magnetization m which are statis-
tical averages of the occupation numbers (1) and the spin variables (10), respectively,

< = (), (17)

m = (s, (18)
getting from Egs. (11) and (12)

e=y(l+m), (19)

where ¢ = ¢* = 1 — ¢&. Here the symbol (...) denotes the statistical averaging with
the effective Hamiltonian H, Eq. (9) or (13),

_ Tr[... exp (—ﬂf[)] ‘

(..) : (20)
Trexp (—ﬂH)
We also introduce irreducible PCFs for the occupation numbers,
G = (i) = ()] (21)
and for the spin variables,
Gij = (sisj) — (sa)ls5) - (22)

The notion of irreducibility comes from the diagram technique for the Ising model, in
the framework of which it can be shown that the irreducible PCF does not contain
so-called split diagrams which are present in the expansion for the correlation function
(s,s,).2 Using relations (11) and (12) between the occupation numbers and the spin
variables, it is easy to obtain the correspondence between the PCFs (21) and (22),

1
AA BB AB
Gij = GU = —G,'] = ZGU 9 (23)
and, therefore, there exists only one independent PCF for the occupation numbers. In
the theory of alloys the Warren-Cowley parameters «;;, instead of the PCFs (21), are

traditionally used for the description of SRO. They are defined as

(pp?)

SR I A N
i c(l1—¢)’

(24)
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and, according to Eqs. (17), (19), (21) and (23),
Gy =4c(l = ¢)ay; = (1 — mY)a, - (25)

The diagonal matrix elements of the PCFs (21) and (22) can be expressed in terms
of the averages (17) and (18). Taking into account identities (p¥)? = p® and s? = 1
which follow from the definitions (1) and (10), we have

G = GEB = 8B = (1 -0, (26)
G,‘,‘ = 1- m2 5 (27)
g = 1 . (28)

The last equation leads to the important sum rule in the reciprocal space. Let us
introduce the lattice Fourier transformation,

f(k)

l

%Z fiy exp (¢kry;) (29)

fij

% [k 110 exp (~ikry) (30)

where fi; is an arbitrary lattice function, k the wavevector, rj; = r, — r;, r;the radius-
vector of the site 7, and the integration in Eq. (30) is carried out over the Brillouin zone
of volume Q. Eq. (28) can then be rewritten as

%jdk ak)=1. (31)

Recalling that the Fourier transform a(k) of the SRO parameters «; is the SRO part
of the diffuse-scattering intensity measured in Laue units,> we conclude that the sum
rule (31) expresses the property of conservation of the integrated SRO intensity.

ELECTRONIC THEORY OF DISORDERED ALLOYS

In what follows we will occasionally turn to ideas which were developed in the
theory of electronic structure of disordered alloys.>**™'" With this in mind, we deviate
now from the main theme of this paper and consider briefly (and rather formally,
without discussing the physical meaning of derived formulae) methods of calculating
the Green’s function of electrons averaged over possible alloy configurations. There is
some overlapping of notations used in this section with those in the rest of the paper;
however, the present section is quite isolated from the statistical-mechanical part of the
discussion, and hence this overlapping should not lead to any confusion.

The central role in the one-electron theory of disordered alloys is played by the elec-
tronic Green’s function G which may be defined as a resolvent of the alloy Hamiltonian
H,

G=(E-H)", (32)
where E is the energy of an electron. The Hamiltonian of a disordered binary alloy is
usually assumed to be a sum of two operators,

H=Hy+V. (33)

The first of these two terms, Hy, is translationally invariant, while the second, the ran-
dom one-electron potential V', depends on particular alloy configuration and is usually

211



assumed to he diagonal in the site representation. The operator V' is a sum of individual
potentials V; centred at each site i and acquiring two possible values, VAand V&, in
accordance with the type of atom occupying the considered site.

Propagator expansion

The potential V is often viewed as a perturbation, though not necessarily small, of
the initial unperturbed Hamiltonian {/,. Defining the unperturbed Green’s function,

Go = (E — Ho)', (34)
one can easily construct the Dyson equation,
G = Go+ GoVG . (35)

Iterating this equation and averaging over all possible alloy configurations (the averages
are denoted by brackets), we get the propagator expansion

The averaged Green’s function satisfies another Dyson equation,
(G = Gy + GoX{G) 37)

where the operator ¥ is called the self-energy. The self-energy is, in terms of the
diagrammatic expansion for the averaged Green’sfunction (G) generated by Eq. (36),
the irreducible part of ((7}, i.e., the sum of all graphs for (G} which cannot be separated
into two parts by cutting a single bare-propagator line (G5 From Eq. (37) it follows
that

(G)=(Gg' =0) ' =(E~Hy—%)"", (38)

the second equation comes from Eq. (34).
Locator expansion

There exists another perturbation series, the locator expansion, which is the expan-
sion in powers of the unperturbed Hamiltonian Hyp rather than the potential V. In this
case the unperturbed Green’s function is that of the localized atomic states,

g=(E-V)", (39)
and the corresponding Dyson equation has the form
G=g+gHG . (40)

As in the case of the propagator expansion, we iterate this equation and average over
the ensemble of configurations term by term, obtaining the following expansion:

(G) = (g) + (gHaog) + (9HogHug) + ... . (41)
By introducing the so-called fully renormalized interactor U,

U= Hy+ UGy (42)
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full formal analogy between the propagator (Eq. (36)) and locator expansions is achieved:

The corresponding sum of all irreducible graphs o in the case of the locator expansion
is called the locator; similarly to Eq. (37), we have

((J) = ilg + H(JO’(U) . (‘14)

From Egs. (42) and (44) it immediately follows that in terms of the locator the Dyson
equation and the expression for (() are

(
(

respectively. The relationship between the locator ¢ and the self-energy ¥, according
to Egs. (38) and (46), is

D)

= o+ aHy(G) (45)
= (07! = Ho)™", (46)

kD)

o=(E-%)". (47)

Renormalization of one-electron potential

We now renormalize the potential ' subtracting a configuration-independent, site-
diagonal operator S and adding it to the unperturbed Hamiltonian Hy:

H=Hy+V=(He+S)+(V-8)=H+V. (48)

If one defines the unperturbed Green’s function with respect to the renormalized Hamil-
tonian H, ) 3
G=(E- )", (49)

then the Green’s functions G and G are related by the Dyson equation analogous to
Eq. (39), .
G=G+GVG. (50)

As follows from Egs. (38) and (48),
(G)y=(E~-H-%)", (51)
where ¥ relates to H and V in the same way as % to Hpand V,and
Y=5+%. (52)

The operator S may be regarded as an initial approximation for the exact self-energy X.
The next step is to introduce the total scattering operator 7' and express the exact
Green’s function G and the self-energy % in terms of 7. The total scattering operator
is defined by the relation
T=V+VGT, (53)
which gives

T=WV"'-G)". (54)

Excluding V from Egs. (50) and (54) and averaging the result over realizations of the
random potential, we get the relation between ((G) and (7'):

Gy =G+ GG . (55)
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Taking into account the relation (38) between the averaged Green’s function and the
self-energy and using Eq. (55), we finally obtain

N=S+{T)'+G)t. (56)

Thus, having calculated the averaged total scattering operator (7'} one can determine
the averaged Green’s function ((} and the self-energy ¥ according to Egs. (55) and
(56). The problem of the description of the disordered alloy is therefore reduced to the
problem of finding reasonable approximate expression for the operator (7'). The opera-
tor T can be expressed in terms of operators describing scattering on individual atomic
potentials V;. To do this, it is convenient to decompose the Green’s function G into
two parts which are diagonal and off-diagonal in the site representation, respectively:

G = Gd 4+ God . (57)
Inserting this equation into Eq. (54), we have after some straightforward algebra,
T=(t"~Gu)", (58)

where the operator 3 N
t=(V1' =Gy (59)

is, similarly to the potential V, site-diagonal and represents a sum of individual scat-
tering operators t; corresponding to atomic potentials.

Single-site approximations

At any level of approximation there exist two main approaches to the problem of
calculation of the averaged total scattering operator (T') and, consequently, the averaged
Green’s function (G} and the self-energy ¥. First, it is possible to choose the operator S
from the very beginning, and then calculate these three quantities using Eqs. (54)-(56);
this is the non-self-consistent scheme. In most cases the VGA choice S = (V)}is used.
Second, one can consider S as an operator variable and, noticing that the scattering
operator 7 is a function of S, determine the latter as a solution of the equation

(TS} = 0. (60)
This equation gives, according to Egs. (55) and (56),

@) = G, (61)
r = 9, (62)

and such an approach is called self-consistent. To make the calculation of the av-
eraged total scattering operator practically possible, the following decoupling of the
configurationally-averaged Eq. (58), called the SSA, is usually adopted:

(1) = (7" = Goa)™) 23 () = Goa) ™" (63)
In the framework of the SSA Eq. (56) for the self-energy takes the form
EFA=S+ ()7 + G, (64)

which means that in this approximation the self-energy is diagonal in the site repre-
sentation. Consider now the two approaches in combination with the SSA. The non-
self-consistent one, as is seen from Egs. (59) and (64), gives the self-energy as a sum of
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the operator § and the effective scattering potential VPH corresponding to the average
scattering operator (t),

V= (" + G (65)

accordingly, this method of calculation is known as the ATA. The application of the SSA
to the self-consistent scheme (Eq. (60)) gives the following equation for the evaluation
of the self-energy:

([ =0. (66)

This equation determines the CPA.

EXPRESSION FOR SHORT-RANGE ORDER DIFFUSE INTENSITY

We now derive a formally exact expression for the SRO part a(k) of the diffuse-
scattering intensity. A key observation here is that the spin PCF (22) satisfies the
Dyson equation,®

G=0+0AG, (67)

where A = fJ and, like in the previous section, matrix notations are used. Here o
is again the sum of all irreducible graphs in the diagrammatic expansion for G, but
irreducibility is now defined with respect to the interaction-to-temperature ratio A.
Eq. (67) has the same form as the Dyson equation (45) for the Green’s function of
electrons (32) averaged over alloy configurations. From Eq. (67) it follows that

G=(c'-a)". (68)

This expression for the spin PCF is analogous to Eq. (46).

The irreducible part a of the PCF G is sometimes called the self-energy.® However,
to maintain the analogy with the electronic theory of alloys (i.e., with the terminology of
the previous section) we will refer to this quantity as the locator, and reserve this term
for another object, defining the PCF self-energy ¥ by the relation similar to Eq. (47):

o=-x"". (69)
In terms of ¥ Eq. (68) becomes
G=(-Z-A)". (70)

We also introduce the locator & and the self-energy ¥ for the occupation-number PCFs
G*? (Eq. 21)):

1
5 = g0, (71)
¥ o= 4%, (72)

Then matrices & and ¥ are related by the same Eq. (69),
F=-51, (73)

and we have

G =GBB = _G48 = ¢(1 —c)a= (-2 4+28V). (74)
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Written in k-representation, this equation leads to the following expression for the

diffuse-scattering intensity:'*"?

1
(L - o) [-5(k) + 28V (k)]

ak) = (75)

The central quantity of interest for us here is the PCF self-energy S(k); apart from
the wavevector, it depends also on two other variables, temperature and concentration.
Later on we will be focusing on existing approximations for the PCF self-energy.

SELF-ENERGY AND THERMODYNAMICS

In the last section the Dyson equation (67) and the related expression (70) for the
spin PCF were simply postulated. However, it would be useful to know how Eq. (70)
could be derived and how the self-energy is related to the thermodynamics of the sys-
tem.

Variational formulation of statistical mechanics
As was mentioned before, the main task of the statistical-mechanical treatment is to

calculate the partition function (6) of a system described by the Hamiltonian H. The
Hamiltonian usually is a linear combination,

H=Y zna,, (76)

of some operators a, with coefficients z,. Variables «, conjugated to the parameters
z, are defined as averages (20) of the operators a,,

oF
= n = y 77
G = (an) = 5- ()
where
F=—kgl'lnZ (78)

is the free energy of the system, and the second equation in (77) comes from the
definition (6) and Eq. (76). Our aim now is the calculation of the averages ay and the
free energy F as functions of the parameters z,. This problem can be formulated as a
variational one, if the Legendre transform ['(«) of the free energy F(x) is introduced:'*'?

I'(a) = F(z(a)) = ) anz(a) . (79)

Here the averages «, are the independent variables, and z,(¢) are solutions of Egs. (77).
Differentiating ['(«) with respect to ay, and using Egs. (77), we get
ar 61;' (‘)zm aam azm
- — — — Iy m = —Tyq . 80
oa, Zn: Jz,, Oay, E (aan Zm + O Jday, o (80)

m

Finally, introducing another function ®(z, «),

O(r,a) =T(a) + Z Ty , (81)
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which depends on both «, and &,, we find from Eq. (80) that it is stationary with
respect to variations of «, at fixed x,,:

o

Jda,, -

0. (82)

At the stationary point o, = an(x), where a,(z) are solutions of Egs. (80), &(z,a)
coincides with the free energy F(x):

®(x,a(2)) = F(z) . (83)

Function ®(z,«) is usually called the variational free energy. Noting that the internal
energy is the statistical average (20) of the Hamiltonian, £ = (l), ®(z,«) can be
written in the standard thermodynamic form:

¢(r,0) = FE(x,a)-TS(a), (84)
E(z,a) = Zznan , (85)
S(a) = =pl(a), (86)

where E(z, ) and S(a) are the variational internal energy and configurational entropy,
respectively. Eq. (82) now becomes

as

Do,

T

T . (87)

From Eqgs. (77) and (80) it follows that

ar  9F Oz, O O,
= i R A (88)

~ danday a0z, _2 doy Oz, OTm

Eq. (88) shows that matrices of second derivatives of the free energy F(x) and its Leg-
endre transform ['(a) (or the variational free energy ®(z, ) which differs from I'(a)
only by the bilinear term }_, z,ay,) are mutually inverse up to a sign.

First Legendre transformation for the Ising model

We will now apply the general technique of the Legendre transformations outlined
above to the particular case of the Ising model in the inhomogeneous magnetic field.
The Hamiltonian of the model is a straightforward generalization of Eq. (13):

1
H = —5%: J,‘J'S,Sj - ZI: h,S,‘ . (8())

From comparison of Egs. (76) and (89) it follows that the latter contains two kinds of
operators @, - single spin variables s; and products s;s; of two spin variables. Corre-
sponding parameters Z,, except for sign, are h, and .J;;, and variables «, conjugated
to these parameters are (s;) = m; (Eq. (18)) and (s,s,) = m;m, + G;; (Eq. (22)). In
the general case considered before the Legendre transformation was carried out with
respect to all parameters z,; as a result, all conjugated variables «, were calculated
using the variational principle. Here, however, this approach will be applied only to
the magnetic field h,, and only the magnetization m; will be calculated by means of the
variational procedure. The resulting partial transformation is called the first Legendre
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transformation.'>" In this rase h, plays the role of z,, and comparison with Eq. (76)
shows that a, corresponds to —s,. Eqs. (77), (79)-(83) and (88) now become

L(m,J) = F(h(m),J)+ 3 mihi(m), (90)
®(h,m;J) = F(m,J)—Zn;,-hH (91)
= (92)

:r:.» =0, (94)
®(h,m(h);J) = F(h,J), (95)

> o O Pe_ oF o
& (‘)m,(’)mk BthhJ % 6m.«6mk 6hk6hJ - s

where, in the same manner as earlier, h;(m) and m;(h)are solutions of Egs. (92) and
(93), respectively.

Derivation of the Dyson equation and meaning of the self-energy
First of all, we note that from the definitions of the partition function, the statistical

average, the PCF and the free energy (Egs. (6), (20), (22) and (78)) it follows that for
the Hamiltonian (89)

%ghj = —f0G;; . (97)
Then, combining this equation with Eq. (96), we obtain
e \™
s () 0

This notation means that the real-space matrix element of the PCF is proportional to
the corresponding matrix element of the inverse of the matrix whose matrix elements
are second derivatives 9?®/dm;0m; of the variational free energy with respect to the
corresponding magnetizations.

The variational free energy can always be written as a sum of its mean-field (Bragg-
Williams) part and the non-mean-field correction:

© = OMFA L (99)
QMFA — EMFA'—TSMFA. (100)

The expressions for the mean-field internal energy EMF4

tropy SMF4A are well-known:'®

and the configurational en-

1
GMFEA - _ —§ZJi]1rL,mj—Zh;rn;, (lo1)
1) 3
I+m; 14+m; 1-my, 1—-my
SMEA = _ ( - : ‘1 ) 102
kBZ: s It I (102)
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Substituting Egs. (99)-(102) into Eq. (98) and noticing that
GEEMFA

Om;0m; -

-Ji, (103)

we recover the result (70) for the PCF (and, therefore, the Dyson equation (67)) with
the following expression for the self-energy:

_PSMPA 52 (50)

iy =

by

— . 104
Om;0m; dam;dm, (104)
It is seen that the self-energy is the sum of the second derivatives, with respect to the
magnetizations, of the two terms contributing to the expression for the variational free
energy ®: the mean-field configurational entropy and the non-mean-field part of @.

Noting further that
azSMFA 8:

= — i
Om;0m, 1—m?’ (105)
we finally obtain
bi; 0% (69)
Ty=——"2_— ;
I 1 —m? Om;0m; (106)

The first term in this expression is diagonal in the direct space. This means that,
back to the homogeneous case in which all the lattice sites are equivalent, this term is
k-independent in the reciprocal space, and all the wavevector dependence of the self-
energy comes from the second term, i.e., is the result of the non-mean-field corrections
to the MFA variational free energy.

APPROXIMATIONS FOR THE SELF-ENERGY

In this section our attention will be focused on the formally exact result (75) for the
SRO diffuse intensity a(k), which is the Fourier transform of the Warren-Cowley SRO
parameters a;j (24). Available theories of SRO will now be considered, in the light of
the structure of Eq. (75), as different approximations for the self-energy .

Random-phase (Krivoglaz-Clapp-Moss) approximation

The simplest and by far the most popular theory of SRO is the RPA (or, in the
alloy language, the KCM approximation):>'®"?

RPA _ 1
) = T oAV (107)

Eq. (107) is usually derived using mean-field-like arguments. Comparing Egs. (75) and
(107), we see that

1
B e(l—¢)

The RPA self-energy (108) is thus wavevector- and temperature-independent; it de-
pends only on alloy composition. Returning via Eqgs. (19) and (72) to the magnetic
language used in the previous section, we conclude that the RPA for the self-energy
corresponds precisely to neglecting the second term in the right-hand side of Eq. (106).
The non-mean-field contribution to the self-energy is therefore ignored in the RPA,

LRPA(K) = (108)
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and the self-energy in the direct space is simply the second derivative of the mean-field
configurational entropy with respect to the magnetization:

dm;0m; 1 — m? (109)

52 GMFA g
$1RPA 9°S bij
1

From the point of view of the terminology used in the electronic theory of disordered
alloys, the RPA for the self-energy could be referred to as the SSA; indeed, both the RPA
(Eq. (104)) and the SSA (Eq. (64)) self-energies are diagonal in the site representation.
The RPA resembles the non-self-consistent SSA, i.e., the ATA, in the sense that both
approximations define the corresponding self-energies explicitly.

The RPA reduces to the well-known Ornstein-Zernike description of correlations,’
when only those wavevectors which are close to the position kg of the absolute minimum
of the interaction V(K) are considered (this approximation corresponds to the long-wave
limit in the case of ferromagnetic ordering). Let us expand V(K) in powers of q = k—kg
and retain only the lowest-order (quadratic) term,

1
V(k) = V(ko) + 5 Zgij‘Ii‘Ij ) (110)
ij
where g is the 3 x 3-matrix of second derivatives of V(k) at kg. We will take only the
simplest example of cubic symmetry, when g;; = gé;,; in this case ¥_;; gijqiq; = 94%,
where ¢ = [q[ Substituting the result into Eq. (107), we obtain
kgT

o (k) = ks(T —Tc) + (1 — c)gq?*’ (1

where it is taken into account that the mean-field result for the instability temperature
T, is
T. = 2¢(1 — ¢)|V(ko)|/ k& ; (112)

at the position of the absolute minimum the interaction value is negative, since the
average of the interaction over the Brillouin zone is zero (see Eq. (116) below). In real
space we get asymptotically (i.e., at large distances)

1
f}PA x —'—‘exp(—ikol‘.'j - 7'-‘]/6) ’ (113)

Tij

a
where r,; = |r;|, and the correlation length £ is

c(1—-c)g

&= ke(T—T,) "

(114)
Egs. (111)-(114) represent the Ornstein-Zernike result for the PCF.

However, the RPA expression (107) has a serious disadvantage: it is unable to satisfy
the sum rule (31). Using the identity

1 I 4¢X(1 — ¢)2B8*V(k)
(T = opve — LT 2TV + 1+ 2¢(1 — 0)pV (k)

(115)

it can be shown that the RPA formula (107) always leads to the overestimation of the
value of the integral over the Brillouin zone (31). Since

%/dk V(k)=Vi=0, (116)

220



from Eq. (115) it follows that

1 RPA( (1 - ¢)*p*V3(k)
o [ ko™ 1+Q/ 1+2c1~c)ﬁV(k) (17

and, therefore,
1
ﬁ/dk aRPAK) > | (118)

This integral is close to unity only at sufficiently high temperatures. As temperature
decreases, the deviation from the value prescribed by the sum rule becomes more and
more significant, and the integral finally diverges at, the instability point.?%?!

Spherical model

Another analytical expression for a(k) is given by the SM,5!922-2 3l50 known as

the Onsager cavity field theory,”>*

aSM(k) = ~1 , 119
(k) c(1—c) [-55M 4 28V (k)| (19

where £5M is, at fixed temperature and concentration, a number determined from the
sum rule (31). Therefore, the sum rule is satisfied in the SM by definition, contrary
to the case of the RPA. From the definition of the SM it also follows that the self-
energy depends not only on concentration, like its RPA counterpart (108), but also on
temperature. Nevertheless, the SM self-energy is still wavevector-independent. The

explicit expression for $5M can be derived from the sum rule 31):
RIM = pRPA 46T (120)
- 2
65 = 283 eV = ﬁﬂ/dk a(K)V(K) . (121)
J

Similarly to the RPA, the SM is analogous to the SSA, since the SM self-energy is
diagonal in the direct space. However, the SM is rather the self-consistent SSA, like the
CPA, because the sum rule here plays the role of the CPA self-consistency condition. In
fact, the sum rule is the self-consistency condition: it simply means that the diagonal
matrix elements of the approximate and exact PCFs are the same. More surprisingly, it
was shown?”*® that both the CPA and the SM could be obtained by summation of the
same sets of diagrams in the corresponding perturbation expansions. We can conclude,
therefore, that the SM is the CPA for the Ising model.

Cluster variation method

The CVM? is at present the standard technique for quantitative calculation of
thermodynamic properties of alloys. It is discussed in great detail in almost every book
or review on the subject.'® We do not attempt to do this here; instead, we will
consider only those features of the CVM which are relevant to our discussion, without
going into technical aspects of the method.

The CVM is essentially a procedure which allows us to derive an approximate ex-
pression for the variational configurational entropy S(a) of the system. The CVM
entropy is a function of probabilities of various atomic configurations on lattice clusters
which belong to the so-called basic, or maximal, cluster. A particular CVM approxi-
mation for S(a) is therefore defined by the choice of the basic cluster. Combined with
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the variational internal energy £(x,c), the CVM configurational entropy gives the ex-
pression (84) for the variational free energy ¢(z,«). The operators a, in the alloy
Hamiltonian are products of the spin variables or of the occupation numbers, and the
averages «,, (Eq. (77)) are thus related to, or coincide with, cluster probabilities enter-
ing the expression for the CVM configurational entropy. The variational free energy ¢
is then minimized with respect to all cluster probabilities, taking into account various
self-consistency constraints.

The self-energy obtained in the framework of the CVM depends, in general, on all
three parameters temperature, concentration and wavevector. The problem with the
CVM, however, is that this method is intrinsically numerical and does not lead to an-
alytical approximations for pair correlations. The reason for this is that in most cases
the number of cluster variables used to get a reasonably accurate formula for the con-
figurational entropy is far too large. From the point of view of the general technique of
the Legendre transformations, the CVM corresponds to the high-order transformation
with respect to all coefficients z,, conjugated to cluster variables which are involved in
the expression for the variational configurational entropy S(e«j). Therefore, as far as
SRO is concerned, general Eq. (88) is still valid, as is the Ising model-specific Eq. (97).
However, in practical sense this case is very different from that of the first Legendre
transformation. In the latter, the inversion of the matrix 8%2®/8ade is carried out triv-
ially using the Fourier transformation. In the CVM this object in the reciprocal space
is still a sufficiently large matrix, and in all realistic situations it is necessary to resort
to numerics. Analytical formulae were obtained only for such simple model cases as the
pair (also known as quasichemical, or Fowler-Guggenheim, or Bethe) approximation, or
the square (Kramers-Wannier) approximation for the nearest-neighbour Ising model on
the square lattice.””® Besides, the CVM suffers from the same drawback as the RPA,
though to a lesser extent: the integrated intensity is not conserved, and its behavior
with temperature is similar to the case of the RPA.**°

High-temperature expansion

As we have seen, the RPA and the SM are the analogs of the SSAs in the electronic
theory of disordered alloys and thus fail to take account of the wavevector dependence
of the self-energy. On the other hand, the CVM leads to the k-dependent self-energy,
but loses the simplicity of the former two approximations by not providing analytical
expressions for correlations. At the semiquantitative level of the RPA this problem can
be cured by using the HTE for the self-energy.*

To do this, we return to Eq. (104) which, in combination with Eq. (109), can be
written as

Y = nRPA sy (122)
5 (59)
6%, = —f——2L.
’ ﬂam,amj (123)

It is known that the RPA is exact to first order in 1/T(i.e., in A);?it means that
8¢ and 6% are of order A% It is also known how to construct the first Legendre
transformation T (and, therefore, §®) for the Ising model.'>™" Sorting all contributions
to 8¢ (diagrams) according to the number of lines A, we obtain the HTE; first eight
orders in A are available in the literature.'” For simplicity reasons, the discussion here
is confined to two first orders,

1 1 1
B8 =1 <O 4+ N\ +0mY, (124)
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where a line corresponds to A, and a vertex with n attached lines represents the function
u,(m;). For the diagrams in Eq. (124) n is equal to either 2 or 3:

uz(m,) = 1-m?, (125)
us(m;) = —2m; (l - m?) . (126)

The expressions for the diagonal and off-diagonal parts of 8% thus are, according to

Eq. (123),

6%, = %Q+é@+%\7‘ +O(AY, (127)
6%, = %O +ée+A+O(A“), i# . (128)

Here a vertex with n internal lines and k& external legs corresponds to the kth derivative
of the function u,(m). The corresponding analytical expressions have the form

52,‘,’ = — z(l — mf)A?, - 4m,~ Z m,(l — m?)A?,
{ !
— Z(l - mi)(l - m?)A;kA.‘IAH + O(A") , (129)

ki

2
6% = 2mm;AL + g(l —3m?)(1 - 3m}) A}

+4m.-mJA.-j Z(l — m?)AuAﬂ + O(A4) , 1 75] . (130)
I
In the homogeneous case m, = m for all sites i. Defining constants
ar =30, ax=>_J1, as=) Judadu (131)
i [ ki
and lattice functions

(fis=Jd%, (Fi=do, ()i =452 Jadi, (132)
]

which depend only on the interaction J, one can finally write the expression for 8% in
the k-space:

§%(k) = —(1 —m?)B2a, +2m*B fi(k) — 4m*(1 — m*)B’a,
(1= s + (1 3m?°f(K)
+4m*(1 —m?*)8° fa(k) + O(8*) . (133)
In alloy notations this result reads
§8(k) = —4c(l — )% + 2(1 — 2¢)28%f1(k) + 8c(1 — ¢)(1 — 2¢)* B,
+8c4(1 — ¢)* 8%, — %[1 — 6c(1 — ©))*B% fa(k)
—8c(l — ¢)(1 — 2¢)*8° fa(k) + O(8") (134)
where
@ o= Y Vi, a=3 Vi, as=) VaVua, (135)
, i T
Ny = Vi, (Wa=Ve, (=Y, ;V.M: - (136)
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Alpha- and gamma-expansions

The approximate expressions (133), (134) for the self-energy given by the first orders
of the HTE satisfy almost all requirements: they are analytical, relatively simple and
take into account dependence on all relevant parameters, including the wavevector.
However, the limits of applicability of the HTE are essentially the same as those of the
RPA; the HTE is quantitatively correct only at reasonably high temperatures, as can
be concluded already from the name of the expansion. What is needed, therefore, is
an approximation which would combine all the advantages of the HTE self-energy with
the applicability at moderate temperatures, including the range not far away from the
transition or instability points.

The theory of SRO which will now be discussed'*" is based on the fairly gen-
eral procedure®’ of self-consistent renormalization of the bare propagator A~! in the
functional-integral representation of the generating functional for correlation functions.
The resulting expansion for the matrix elements of the self-energy is in powers of the
matrix elements of the fully dressed propagator, which in the case of the Ising model
coincides with the PCF (70). Two first non-zero orders of this expansion for the off-
diagonal part of the self-energy were calculated,'>"?

S = aGL+bGL+0(GY), i4j, (137)
2m’ 138
a = —
(1 —m2)*° (138)
2[(1 — 3m?)? — 12m?)
b =
30 —mip (139)

in terms of the alloy variables

L, = aal +bal +0(a?), i#7, (140)
5 = (1 —2¢)?
2le(1 =e))? (141)
;o [L=6e(1 — )] — 3(1 — 2¢)*
b = 6/l — P (142)

Eq. (140) is the expansion in powers of the SRO parameters, and is therefore referred
to as the AE,”' though initially it was obtained in the framework of the GEM.'*!
The difference between the AE and GEM is discussed below. In the two calculated
orders the AE preserves the sum rule (31), and the expression for the diagonal part of
the self-energy then comes from Eqgs. (31) and (140), similarly to the case of the SM
(Egs. (120), (121)):

Y = ERPA L%y (143)

28 i Vij — 3 (aad; +bat)) + 0(a®) . (144)
j 2(#9)

>
g
il

Note that the first term in Eq. (144) corresponds to the SM (cf. Eq. (121)) which is
the zero-order approximation for both the AE and the GEM; in the SM the self-energy
is diagonal (& = b = 0).

The difference between the GEM and the AE is in the way of selection of leading
terms in the expansion (140). The GEM, originally proposed by Tokar’’ and further
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developed by Tokar, Grishchenko and the author,'*'*3?7* is based on the assumption

that correlations decrease rapidly with distance, and the GEM expansion parameter is

7 = exp(—1/¢) , (145)

where ¢ is the dimensionless correlation length. The leading terms in the diagrammatic
expansion for the self-energy are selected in the framework of the GEM according to
the total length of all lines in the diagrams, where the line connecting lattice sites i
and j represents «;;. For example, in the case of three Bravais lattices belonging to the
cubic system taking into account several first terms of the perturbation theory leads to
the result'?!?

¥, = &az—l—im‘z, s=1, (146)
L, = aa?, s=2,3, (147)
£.0= 0, 5>3, (148)

where subscript s denotes the matrix elements corresponding to the sth coordination
shell. However, the GEM assumption about the rapid decay of correlations is not always
valid; e.g., it is incorrect in the cases where distant interactions are essential. The AE
abandons this assumption and uses instead the SRO parameters «;, themselves as the
expansion parameters; the leading terms are chosen according to the number of lines
in the diagrams (i.e., the powers of ay;), since all a;; are relatively small. A particular
AE approximation is defined by neglecting higher-order terms and including only finite
number of coordination shells in the AE expression (140) for the off-diagonal part of the
self-energy. The GEM was successfully applied to both the direct and inverse problems
of alloy diffuse scattering,'>'*3°® leading to reliable results everywhere except in the
vicinity of the instability point, while the AE was used in the analysis of some of the

diffuse-scattering anomalies discussed in the next section.’'*

ANOMALIES IN ALLOY DIFFUSE SCATTERING

In this last section we will show how expression (75) for the intensity a(k) and, in
particular, the wavevector dependence of the self-energy (k) lead to straightforward
explanation of recently observed unusual features (anomalies) of diffuse scattering from
disordered alloys and to prediction of some new effects.

Temperature-dependent Fermi surface-induced peak splitting

This curious effect (the temperature dependence of the splitting) was discovered in
1996 by Reichert, Moss and Liang*’ in the first in sifu experiment to resolve the fine
structure of the equilibrium diffuse scattering intensity from the disordered CusAu alloy.
The separation of the split maxima changed reversibly, increasing with temperature.
The same behavior of the splitting was also found*' by analysing results of the MG
simulations for the CupaseAlo.144 alloy.*? The fourfold splitting of the intensity peaks
located at the (110) and equivalent positions (Figure 1) is attributed to the indirect
interaction of atoms via conduction electrons in an alloy whose Fermi surface has flat
portions; the effective interatomic pair interaction V(k) itself has split minima in the
reciprocal space, and their location is determined by the wavevector 2k r spanning these
flat portions of the Fermi surface.>* It is usually assumed that V(k) is temperature-
independent. This assumption isjustified at least as far as positions of the V(k) minima
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are concerned, since the 2k value is unlikely to change over the considered temperature
range. Besides, the MC calculations*” in which the increase of the splitting with tem-
perature was found*' were carried out for the temperature-independent pair interaction
parameters. The standard RPA (KCM) treatment (Eq. (107)) predicts that positions
of the intensity peaks coincide with those of the corresponding minima of V(k), and,
therefore, the splitting does not depend on temperature.

022 ] 222
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Figure 1. 3D reciprocal-space picture of scattering from the FCC alloys discussed in the text. Large
dots represent the Bragg reflections. Characteristic crosses formed by small dots correspond to the

split diffuse intensity peaks.

As will be demonstrated below, this phenomenon can be easily understood by em-
ploying the notion of the k-dependent self-energy.’' Let us consider the a(k) profile
along one of the lines containing split peaks, e.g., the (h10) line, and concentrate on
the two peaks around the (110) position. The peak positions k, (k is the deviation
of the wavevector from the (110) position along the (h10) line) are determined by the
condition da/0k = 0 which gives

(?—v =T QE . (149)
ok ok

Eq. (149) means that the k-dependence of ¥ leads to the shift k = ko — ky of the
peak position with respect to the position kv of the corresponding minimum of V(k)
(the latter is defined by the condition dV/dk = 0). Furthermore, the right-hand side
of Eq. (149) is a function of 7, while its left-hand side is T-independent. The «a(k)
peaks will therefore change their positions with temperature. The “local” temperature
behavior of the splitting is reflected in the sign of the derivative drk;which can be
calculated by expanding the derivatives in Eq. (149) in powers of small changes of T
and &y and retaining only linear terms:

Oke oL 9% % 9*%,
ar [(?9?+T—akaT)/<2W_T5F)]k:ka' (150)

Our aim now is to develop a kind of minimal, i.e., simplest possible, theory which would
be able to describe essential features of the considered effect (and, apropos, two other
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anomalies discussed in this section). Interestingly, the approach formally rather similar
to the Landau theory of second-order phase transitions’ could be used. Indeed, in the
case of not very large splitting the expansion of V(k) and i)(k) in powers of k can
be used. To describe the split minimum of V(k), only the second- and fourth-order
terms are necessary; since the (110) position serves as the origin, the expansions do not
contain odd powers of &. We therefore assume that in the area of the splitting V (k)
and %(k) have the following approximate form,

L 1

V(k) = V(0)+ 5Avlc'” + Zka" , (151)
. . 1 1
N(k) = B(0)+ §Aglc2 + 4—sz4 : (152)

where Ay < 0, By > 0, the signs of Ay and By are arbitrary (there are no apparent
restrictions on the behavior of the self-energy), and k = 0 corresponds to the (110)
position. The resulting inverse intensity a~!(k)has exactly the form of the Landau
free energy functional in the low-symmetry phase where the latter possesses a double
minimum; this implies 2|Ay| + TAg > 0 and 2By — T'Bg > 0. The wavevector k
plays the role of the order parameter. Substituting approximations (151) and (152)
into general Egs. (149) and (150), we get

[21Av]| + T As

—_— 1

* 2By —TBy '’ (153)

10k 1[As+TOAS/OT By +T0By/dT 50
® or 2 2|Avl + T As 2By — T By ’

ka

i

while ky = 44/|Av|/By. It is seen that the shifts of the two peaks and their temper-

ature derivatives have opposite signs and the same absolute values. Eq. (154) clearly
shows two scenarios for the temperature behavior of the splitting, depending on the
sign of its right-hand side which can be either positive or negative. The first one is
the increase of the splitting with temperature discussed above; this takes place when
the right-hand side of Eq. (154) is negative. Apart from that, the theory predicts that
the decrease of the splitting with increasing temperature is also possible. This regime
corresponds to the case of positive right-hand side of Eq. (154), and such temperature
dependence has not yet been observed experimentally. Thus, the behavior of the self-
energy determines whether the splitting increases or decreases with temperature. At
high temperatures the correction 8% to thewavevector-independerit $#°4 (Eq. (122)),
and, therefore, Ay and By, are of order A? (i.e., T~?). From Eq. (153) it then follows
that the absolute value of the shift 6k decreases as 7T~! with temperature, unless the
corresponding coefficient identically vanishes.

Coalescence of Fermi surface-related intensity peaks

The analogy with the Landau theory of phase transitions, though rather formal,
immediately leads to the following question: in the considered case, what would cor-
respond to the transition point? The answer to this question is fairly obvious; there
exists a possibility for the splitting to disappear at some point as temperature decreases,
before the transition to the low-symmetry phase occurs.** This anomaly was neither
observed experimentally nor correctly described theoretically, though the coalescence
of intensity peaks (unrelated to any Fermi surface effects) was found for the exactly
solvable 1D Ising model” and in the CVM calculations for the 2D ANNNI model.*
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As we will show in this subsection, Eq. (75) provides clear understanding of how such
effect takes place.

In the treatment given above it is, in fact, implicitly assumed that the wavevec-
tor dependence of the interaction term 28V (k) in Eq. (75) dominates, at least in the
area of the splitting, i.e., near the (110) position. In this case the shape of the diffuse
intensity closely follows that of F(k); in particular, there exists one-to-one correspon-
dence between the split minima of the interaction and the split intensity peaks. The
variation of the self-energy with k in this part of the reciprocal space is comparatively
weak, though qualitatively important for the description of the temperature-dependent
splitting. This assumption is certainly correct at sufficiently high temperatures, where
the RPA (KCM) approximation in which the self-energy is k-independent works rea-
sonably well. Meanwhile, as temperature starts to decrease, the correction to the RPA
self-energy (oc T'~2) grows faster than the interaction term 28V(k) (< T7'). We can
then encounter a situation when the variations of X(k) and 28V (k) with the wavevector
are of the same order of magnitude. With temperature further decreasing, the wavevec-
tor dependence of the self-energy can even become dominant. In this regime positions
of the diffuse intensity peaks would be determined by the maxima of :(k).

(a) (b)

Intensity
0
—
o
Wavevector

Wavevector Temperature

Figure 2. Schematical temperature dependence of the intensity profile (a) and the peak positions (b)

in the coalescence case.

The behavior of the self-energy in the k-space is, in general, qualitatively different
from that of the interaction. In particular, there is no special reason to expect that the
self-energy would have any extrema away from the special points. Let us assume that
the self-energy does not have such extrema and that the variation of the self-energy in
the reciprocal space becomes more and more important in comparison with the corre-
sponding variation of 23V (k) as temperature decreases. Then the qualitative picture
of the temperature behavior of the splitting is as follows. At high temperatures the
self-energy is almost k-independent, and the intensity peak positions deviate little from
those of the corresponding minima of FV(k). As temperature decreases, the wavevec-
tor dependence of ¥ becomes more pronounced; the peak positions move farther away
from the positions of ¥(k) minima and towards those special points ko at which (k)
has maxima. Eventually, as temperature reaches certain value 7o, the intensity peaks
coalesce at these special points and the splitting disappears (Figure 2).

The coalescence temperature 7; can be found from the condition of vanishing second
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derivative o’ = #*a/dk* of the intensity with respect to the wavevector at kg;the sign
of this derivative controls the presence or absence of the splitting. At the special points
all the first derivatives are equal to zero, and from Eq. (75) we obtain

(ko) = c(1 = c)a (ko) [E" (ko) — 28V"(ko)] - (155)

Therefore, the splitting disappears when the second derivatives, or curvatures, of the
self-energy and of the interaction term 24V(%) at the special point &, compensate each
other, i.e., when
£ (ko) = 2BV" (ko) . (156)
To analyse the behavior of the splitting close to the coalescence point, it is convenient
to use the same Landau-type approach as in the previous case. In this temperature range
the splitting above Tp is small, and expansions (151) and (152) are valid. Substituting
them into Eq. (75), we get

1 1
a‘l(k) = a_l(()) + §Ak2 + ZBk" s {157)
where second-order coefficient
A=c(l —¢c)(—Ag +28Ay) (158)

vanishes at T' = T (see Eq. (156)), while the fourth-order coefficient B remains positive
at that temperature. We can then, at temperatures close to T, regard 4 as linear in
T —To with a negative coefficient and B as temperature-independent. Thus, the inverse
intensity o~ '(k) behaves almost in the same way that the Landau free energy. The only
difference here is that the role of temperature is reversed; «~!(k) has a double minimum
above the coalescence temperature 7, and a single minimum below it. Therefore, at
small positive values of T' — Tg the splitting increases with temperature as (T — T0)1/2.
Contrary to the corresponding result of the genuine Landau theory, obtained bifurcation
exponent is exact, since the intensity is an analytical function of the wavevector and
can legitimately be expanded into the Taylor series. At higher temperatures behavior
of the splitting changes, and sufficiently far away from Ty it starts to approach the value
dictated by the interaction V(k).

“Thermal” splitting of intensity peaks

We have just considered the situation when the double-well profile of the interaction
in the vicinity of a special point is compensated by the wavevector dependence of the
self-energy which has a simple maximum at this position. The competing curvatures
28V"(ko) and £"(ko) are both negative. As a result, the second derivative (155) of the
intensity vanishes at some temperature, and the splitting induced by the Fermi surface
effects disappears.

It is not very difficult to realize that another kind of curvature compensation is pos-
sible; this is the case in which both curvatures are positive.>* This is, perhaps, the most
physically interesting situation: here the interaction with a single minimum produces
the intensity peak with no fine structure at higher temperatures (in full accordance with
the RPA-like considerations), but then, as temperature decreases and the wavevector
dependence of the self-energy becomes more and more significant, the compensation
takes place and the intensity peak splits. This is especially probable when the min-
imum of V(k) is shallow (i.e., V”(ko) is small); in particular, in the limiting case of
vanishing V”(ko) it is the curvature of $(k) that controls the fine structure (single- vs.
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double-peak) of the maximum of a (k). The application of the Landau-type description
gives essentially the same results as before. However, the coefficient in front of 7'—7Tgin
A is now positive; the inverse intensity a~!(k) has a single minimum above the splitting
temperature Ty and a double minimum below this point, and the splitting increases as
(To — T)Y* with decreasing temperature at small negative T — Ty values (Figure 3) .
The bifurcation exponent is again exact, for the reasons mentioned above.

Intensity
.a
i
.a
[e]
Wavevector

Wavevector Temperature

Figure 3. Schematical temperature dependence of the intensity profile (a) and the peak positions (b)

in the case of the “thermal” splitting.

This type of behavior was recently experimentally observed (and subsequently re-
produced in the MC simulations) for the Pt-V alloy system by Le Bolloc’h et al.’’ In
this system the splitting of the (100) intensity peak along the (h00) line occured with
decreasing concentration of vanadium rather then temperature. The explanation of
this anomaly was proposed by the author,’” who also pointed out that similar splitting
should take place when temperature decreases at fixed composition. The predicted
effect was then discovered in the MC simulations by the same group.?” Experimental
confirmation of its existence remains to be seen.
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DEFECTS OF COULOMB DISPLACEMENT FIELD
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INTRODUCTION

Distortions in crystals caused by impurity atoms, point defects, appearing during
radiation, their groups, small dislocation loops, particles of new phase result in the
formation of diffuse scattering. Peculiarities of the diffuse scattering intensity distribution
(isodiffuse surface shape) in the reciprocal lattice space essentially depend on the defect
type, its position in crystal lattice and on the interaction between defects with matrix
atoms. That is why by means of diffuse X-ray or neutron scattering data it is possible to
analyze defect types and there characteristics. This possibility was shown theoretically
[1,2] and observed experimentally in a number of papers [3-6]. The development of new
experimental techniques allows much more than just the investigation of diffuse
scattering.

By analyzing experimental diffuse scattering data in every case, we must simulate
intensity distributions for each defect type in a certain crystal and choose the best one to
fit the experimental results. Therefore it is interesting to simulate isodiffuse surfaces for
typical defects in a number of different crystals and to determine important parameters of
such surfaces near different reciprocal lattice points, depending on the characteristics of
the defects. Comparison of experimental data with simulated diffuse scattering
distributions will enable us to define defects type and parameters. The general analysis of
such changes was made by Krivoglaz [1] in the framework of the kinematical theory of
scattering. According to his defect classification, for the first type of defect the value of
the exponent of static Debye-Waller factor exp(—2M) is finite, and for the second type of
defects 2M is infinite.

The presence of the first type of defects in crystals causes the appearance of diffuse
scattering, besides the usual regular reflections. The positions of both diffuse and regular
intensity maximums are displaced relatively to the ideal positions of intensity maximums
corresponding to the crystal in the absence of defects. The analysis of diffuse scattering in
crystals with the first type of defects is different in two limiting cases of weakly and
strongly distorted crystals. These cases can be distinguished by the value 2M . If 2M <1
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crystals are considered to be weakly distorted, if 2M >> 1, they are strongly distorted.
The value of the parameter 2M depends on the displacement fields U caused at the
point s of the matrix by the defect situated in point ¢, on the defects concentration, and on
the diffraction vector Q.

DIFFUSE SCATTERING BY SOLID SOLUTIONS WITH ISOLATED DEFECTS

Detailed analysis of isodiffuse surfaces types in the vicinity of reciprocal lattice sites
for cubic crystals was carried out in [1,7]. According to it, in principle the defect type is
connected with the directions or planes of zero intensity near reciprocal lattice points
(h00), (hh.0), (hhh). Really it is rather difficult to observe the regions of zero intensity
because of other factors which influence on the diffuse scattering. Therefore, to determine
the defect type and parameters, it will be useful to analyze other, directions in reciprocal
lattice space besides those chosen in [7]. Below we shall describe such computer
simulations for defects of cubic, tetragonal, rombohedron and orthorhombic symmetry in
different cubic crystals. Assume the defect concentration to be not high, so that crystals
can be considered as weakly distorted. The diffuse scattering intensity distribution is
analyzed in the vicinity of reciprocal lattice points. In this case it is influenced mainly by
static distortions at large distances from the defect.

Diffuse Scattering Intensity

According to [1,8] at small defect concentration ¢ (¢ is determined as the ratio of
defect quantity to the number of crystal elementary cells N) diffuse scattering intensity in
the crystals with point defects can be written as

1, =cNjo,[
(D
. sl o ok A
®, = expligR, )[f (e - 1)+(px(Q)].
=1
Here Q is the diffraction vector (O=k —120), k and k .are wave vectors of the scattered
and initial waves; g = O -G, where Gis reciprocal lattice vector nearest to 0, R\. is the
radius vector of the first atom of the s elementary cell for the ideal crystal, &R static

displacement of this atom due to the defect, f is the matrix structure amplitude, (p\(Q) is

the change of structure amplitude in the s elementary cell due to the defect.
Let us introduce Fourier components for static displacements

SR, = 1—2 /ﬂil; exp(ikR )
TN :

. - . (2)
A, =-iy OR exp(ikR),

Equation (1) can be written as
D, =—~fOA, +Af (0): Af (Q) = Ze’“"}’[f(e'w‘ -1 —ié5k,\)+<p.‘(é>]. 3)
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As the static displacement decreases slowly with the distance to the defect, A‘i increase
as I/q as g — 0. At the same time Af(Q) tends to the final limit. That is why in the
vicinity of reciprocal lattice points at relatively small g, we can neglect Af(Q) in (3)
compared with fQAq-. Then the diffuse scattering intensity approximately will coincide

with Xuang scattering /,' given by
1,(Q)=1,(Q) = cNf*(QA,)* 40 )

This intensity increases as g~ with the approach to the reciprocal lattice point. More
accurately /,' can be determined by measuring the sum of the diffuse scattering intensity
in two points being symmetrically situated relatively to the reciprocal lattice point:

1 . -
5(1,(27:1(" +§)+1,27K, - ) = 1 (@ +cNIAf G (4> 0) (5)

If the static displacements in the neighborhood of defect are small (|QU\,‘((I)or

known, the quantity Af(Q) may also be considered to be known. In the case of small

displacements, Af () can be also determined experimentally by defining the intensity in
the vicinity of two points (h k 1) and (2h 2k 21). Below we shall assume that this
additional term is small and already taken into account. So we shall analyze /[,

increasing as g~ with the approach to the point.

Non-cubic defects in cubic crystals usually are oriented in several directions A with
the equal probability 1/A . The resulting intensity in this case will be a sum over different
defects orientations &

I'=cNf? %i(éi«;)z (©6)

3=1

In the macroscopic approximation ( small q) Fourier components for atom static
displacement around é type defects can be determined by the following simple equation
system

M-

5 _ pb
QJA _P«i.

y

1
Qq,/ =G (G, = Cy n

Q;, =(Cy +Cnn, €
qPq? = Cnnll‘fl + Clznl(lgz + lf;})+2C44(nszz +”3L(151) )

Hereni =g /q . Let us introduce force dipole tensor Pf in terms of which system (7) can

be written as following

§ _ &
qF; = F'n,

Pl/'(‘S = A’l][m L‘Ism
R?:Cnljlsl'*‘clz([gz"‘lg]) (8)
P]Z = 2C44L'1§2
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Figure 1, Isodiffuse curves for a — Fe crystals around (00h),(hOh) reciprocal lattice points(a,b),and (Ohh),
(hhh) points (c,d) with different type defects:a,c-cubic (1),tetragonal with 5=0 (2),6=0,5 (3); b.d-
rombohedron defects:b)- point (hOh),6=-0,5 (1), point (00h) ,6=0 (2),point (00h),6=-0,5 (3);d- point (hhh),
5=-0,5 (1).point (Ohh),5=0 (2) point (Ohh),5=-0,5 (3)
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Figure 2. Intensity ratios along different directions in the reciprocal lattice points (o the intensity along
[00h)] direction for crystal with W elastic modulus,
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These equations become simpler for certain defect types. For example for tetragonal
defects with the tetragonal axis along the [001] direction they look like:

Lflzlgzzlf;tl“sﬁ]:l‘z

=P =0 (i#J)

Pl? = Pzi = (Cn +C12)L1 +C,L,

Py =C,L, +2C,L, ©)
qP, =((C,, + C,)L, +C, L, ), (i=12);

‘Ipqi =(C\L, +2C, L),
For orthorhombic defects along [110] direction :

L?l = L‘zsz :%(Ll +L2)

[23=L§
5 1
lez = L‘zsl :'2‘(Ll - Ll)
L;s.x = Lgx =0
; |
Pl? = stz :’,;(Cn +C12)(L| +L2)+C12L1
P} =Cy(L +L)+CL, (10)
By =Bl =Cy(L - L)
Py=P=0

qF, = Bin, +P]i”z

aP,, = Rin, + Pyn,

qP‘h = P]i”i
Here L,,L,,L, define deformations caused by defects along [110], [1T10}, [001]
directions. So for tetragonal or orthorombic defects, isodiffuse surfaces depend not on the
elastic modulus and Lz, but on their ratios: P;=C;2/C;;, P:=Cy4/Cy;, b=L,/L;. Two of

them characterize the crystal and b is the extent of the defect deviation from the cubic
form (for cubic defects it is equal 1). The value of b determines the shape of the
isodiffuse surface and the ratio I;(Q) for different directions. For tetragonal defects
according to (9), these ratios coincide at two different meanings x' and x” of the
parameter x = P/ P2 or for two different values b’, b" of the parameter b :

(142x)([+2x")=9

2+ R+(1+5R)b' 2+ R(1+5R)b"
P +(1+P)b' R+ (l+P)b"

()
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_ 1-Px
(1+P)x-2F

For rombohedron defects along the axis [111]:

1
L= 3 (La+2L))

P.° =(C\\+2C )L’ (i=1,2,3)

|
LS = (L) (12)
P =2CuL’, (i=))

i 2
qP = 3 (Ls+2L )(Cii+2C 2)n + 3 {L3-L)Cas+(n2+n3)

Here (L;, L;) determine deformations along and perpendicular to the [111] direction. In
this case isodiffuse surfaces coincide for the pair ', b"” being connected by the equation:

(4b-1)4b"-1)=9 (13)
Isodiffuse Curves Computer Simulations

For constant intensity value, and using (1)-(13), we can analyze isodiffuse surfaces
shape for different defects types. In Fig.la there are presented the results of computer
simulations of isodiffuse curves in the planes (h00) (or (0h0)) in the vicinity of the (00h)
point for cubic and tetragonal defects. For tetragonal defects, the isodiffuse curves shape
depends essentially on the parameter b value, being the extent of defect tetragonality.
With (-b) increasing, the intensity becomes very small in the direction [00h] (at any b, the
intensity is equal to zero in the plane (00h)). Isodiffuse curves are the same in the vicinity
of the (hoh) point for these defects. Isodiffuse curves shape changes for [111] defects. At
large (-b) there are small lamellae of intensity in the direction [001] near the point (00h).
The isodiffuse curves differ essentially in the vicinity of the point (Ohh). To characterize
the isodiffuse curve shape more briefly depending on the value of parameter b for cubic
(C), tetragonal (T), rombohedron (R) and orthorhombic (O) defects, there were calculated
intensity ratios for different directions around reciprocal lattice points to the intensity
along the direction [00h] (Fig. 2). Numbers near the curves correspond to the following
directions: 1 - [011] near (00h),(hOh) points for (T) defects; 2 - [011] near (00h), 3 - [011]
near (hOh), 4 - [010] near (00h), 5 - [010] near (hOh), 2 - 5 for (R) defects. Intensity
distributions are equal for the pairs of x" and x" or b" and 5". For (T) defects, if x belongs
to the interval -2 <x' <1, then the parameter x" lies in the interval oo > x"> 1 and (-o0 < x"'
< -2). Therefore, it is enough to determine I, only in the above x" intervals . If x”
changes in the intervals [eo,1] and [—ee,—2], then b changes I the interval -1/2 < b < 1. So
it is sufficient to calculate the intensity for the latter interval of h=b" values. Out of this
interval for h=b'intensities /,(b')=I,(b") and b’ is connected with b" by the equation
(11). For (R) defects, the interval —1/2 <b < 1 is also sufficient for intensity calculations,
because h=b" are connected with b” by equation (13) and gives the same intensity. For
some reciprocal lattice directionsintensity /, is equal to zero due to the lattice symmetry.
For (C) defects, in the vicinity of (00h), (Ohh), (hhh) points this takes place in the planes
perpendicular to the directions [001], [011] and [111]. For (T) defects near the point

(00h), zero intensity corresponds to the whole plane (001) and near the point (Ohh) only to
the direction [100]. For (R) defects, zero intensity corresponds only to the directions
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[ 110], or [1 T0] near the point (hh0). For the arbitrary defect type isodiffuse curves in the
vicinity of (h00), (hh0), (hhh) points the directions [100], [110], [111] are symmetry axes.
The parameter b=L,/L; characterizes the influence of the defect force on the crystal with
the subsequent change in the shape of isodiffuse curves. When b~1 defects are almost
cubic and isodiffuse curves for different type defects are very similar. So their type
analysis is very difficult in this case. But for noncubic defects b differs essentially from 1
and is often negative. In this case for (T) and (R) defects, isodiffuse surface shape
strongly differs from the one for cubic defects and depends on the b value. It enables us to
determine the defect type and the b value from the data on diffuse scattering intensity.

To make such analysis reliable, we must use the data on several curves
simultaneously (if we use only one curve for one direction we can obtain the same
intensity values for different defect type corresponding to different » values). Curves
corresponding to different directions will never cause such uncertainty. To avoid this
ambiguity, we also may take into account that in weakly distorted crystals defects result

in the relative displacement of intensity maximums equal to —(c/3)Zl,.f .If crystals contain

simultaneously different types of defects (such as vacancies, interstitial atoms, other point
defects, small dislocation loops) such analysis becomes much more accurate. In the case
of (O) defects, the shape of isodiffuse curves depend not on one, but on two parameters
b\=LyL, and b=Ly/L,. For final defect type analysis it will be useful to restore the whole
isodiffuse surfaces for corresponding b value by means of the above equations and to
compare them with the experimental ones.

DIFFUSE SCATTERING BY CRYSTALS WITH PRECIPITATES
Precipitates with Weak Distortions

In weakly distorted crystals, the Debye-Waller factor connected with distortion
fields around the new particles exp(-2M) is of the order of unity. For simplicity let us

consider the case when similar precipitates are formed in the cubic matrix and correlation
between their positions is not essential. Even in this simple model we can get a large
majority of intensity distributions.

The presence of new phase particles causes local lattice distortions due to the
existence of lattice misfit between matrix and forming phase. These distortions are
described by the law: \U (T )~Cr? (C is the constant that characterizes the strength of
defects; its value being of the order of absolute value of the volume change 1AW caused
by defect). They cause the appearance of intensive X-ray diffuse scattering in the vicinity
of reciprocal lattice points. These intensity distributions may differ essentially for
different materials after different treatment.

If the distortions caused by precipitates are negligible, symmetric intensity
distributions appear around reciprocal lattice points. In previous papers [9-12], the
intensity distributions were analyzed for the case when diffuse scattering is mainly
influenced by distortions. The presence of distortions makes the distributions asymmetric
and results in hyperbolic intensity increase, when we approach the reciprocal lattice
points. There was carried out the general analysis of intensity distributions and computer
simulation of certain intensity distributions in elastically anisotropic crystals. Often the
interference of scattering connected with the difference between structure amplitude and
distortions is very essential. We have analyzed the effects of such mutual influence of
these factors on diffuse scattering for elastically anisotropic crystals. When describing the
formation of precipitates we have to distinguish two of the following cases. The first and
most simple one is a case when precipitate with diffuse boundary is formed in a uniform
matrix. Usually it occurs after relatively large aging time when depletion layers around
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different particles interflow and create almost constant concentration level in the matrix.
In this case it can be described simply by one parameter for example Gauss function and
corresponds to continuous concentration distribution. Usually on the early stages of aging
when diffusion length is much less than the distance between the particles the second case
is realized when the particle of new phase is surrounded by the depletion layer of impurity
atoms. To analyze the influence of depletion layer existence on diffuse scattering we have
analyzed simple model of sphere particles with the same structure as that of matrix and
with diffuse boundaries. In these cases intensity distribution tends to zero in reciprocal
lattice points and often is asymmetric and concentrates on one side of the point being
crescent-shaped. In contrast to the case of homogeneous matrix in the last case isodiffuse
surfaces do not pass through reciprocal lattice points but surround their neighborhood.
The picture may become still more complicated due to the correlation between the
precipitate distribution.

Diffuse Scattering Intensity for Weakly Distorted Crystals

Let us analyze diffuse scattering /; by the crystal containing Np equal particles of
new phase with the same orientation being chaotically distributed in the matrix. If the
particles have sharp boundary with matrix and their structure differs from that of matrix,
then according to [1,9,10,13] intensity /; in the vicinity of matrix reciprocal lattice points
is defined by the equation:

1= N,y laf —fQAq.r]s(q)f. (14)

Here v is unit cell volume; A fis the difference between new phase and matrix structure

amplitudes (if precipitate and matrix have the same structure and are coherent); or A f=-f
if their structures are different; s(g)is the Fourier component of shape function of the

precipitate; A{/ determines Fourier component of displacement field U(F) in the matrix

around the new phase particle. At small ¢ they may be found from the equations of
macroscopic elasticity theory.

The solution of the corresponding system of equations for cubic particles in cubic
matrix has the following form ([1,13])

- 3La,
A=

q
_Cll+2CIZ

" b (l+§nf)(l+§nf)n‘, (15)

where L& is the tensor of self deformation due to the formation of precipitates; Cii, Cia,
C34 - elastic modulus and

D=C, +&(C, + Cu)(nfn‘2 +nnl +r1?ﬁnf)+§z(CH +2C, +Cy)ninin’

— Cn _C12 '2("44

<
C~1 4

H=glq. (16)

In (14) we suppose that the local distortions are small and léﬁ’((l or g<<(LR*Q) ', (R-

effective particle size ). If precipitates have the same structure as matrix has and are
formed as a result of continuous diffusive change8¢(F) in concentration ¢ of atoms 4 in
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binary solution 4-B, then they do not form sharp boundary with matrix. In this case /, can
be again determined by formula (14), if we put:

Af =fa-fg
j& F)exp(igr )dr (7

_lav
v

From (14)-(17), it follows that the intensity distributions around reciprocal lattice points
are influenced by the dependence of gon two factors:
IAf—fQﬁqI2 and IS((})‘Z. The first of them is connected with the displacement field in

elastically anisotropic matrix and the second one describes the influence of concentration
distribution on the diffuse scattering. To analyze the influence of the last factor let us
consider as in [1,13] two simple functions 8¢(r) for precipitates with diffuse boundary.

Precipitates in Homogeneous Matrix. Concentration distributions become the most
simple after relatively large annealing time when depletion layers around the particles
unite and create almost constant concentration level. In this case concentration
distribution around separate spherical particles can be described by, for instance,
Gaussian function

8c(r) = éc, exp(—lr‘)—;j (18)

where &c,, is the maximal change in the concentration, R characteristic radius of the
distribution. According to (17), S(g) is the “form function” for the distribution (18) and

looks like

S(g)= nvexp(—lezqz ]

_ (2m)2 R®

1%

(19)

where 7 is the effective number of atoms in the region where the composition is changed.
According to (14), (19) in this case

1= Klo-"%) exp(-R)
1 4R p q
K=Nn'f’ ( QR) (20)
V(L
m=0/Q
-1
c=4 ('&] . Q210
f OR\vd
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Figure 3. Isodiffuse curves for Cu crystals containing precipitations without (2) and with (b) depletion layer
around reflection (10h) in the plane (100) for different values of parameter C
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The parameter C describes the relative influence of the effects connected with the
difference between atomic scattering factors of the alloy and distortions. Last exponent
factor in (20) restricts the region of intensive diffuse scattering by the condition ¢ < I/R.

For small distortions and not very large particles when ICl >> 1 at ¢ ~ 1/R in the
brackets in (20) we may retain only the term C. In that case isodiffuse surfaces are
spheres and symmetrically surround reciprocal lattice points. Dependence of 7, on ¢ is
bell shaped. By studying the width of this dependence one can determine the size of
particles R. If particle size and misfit between this particle and matrix is large, then /;is
mainly influenced by distortions caused by these particles in the matrix. It is described by
the second term in the brackets in (20). In this case the dependence of I, on ¢ is not bell
shaped but hyperbolic one and isodiffuse surfaces are not spheres, but are stretched along
the diffraction vector. In this case reciprocal lattice points are still the inversion centers
for isodiffuse surfaces.

In the parameter region with 1Cl~1, the interference of scattering is essential on both
the changes in structure amplitude and the distortions, so that both terms in brackets (20)
should be taken into account. In this case isodiffuse surfaces differ essentially from the
two of above-mentioned limiting cases. Reciprocal lattice points are no longer inversion
centers and isodiffuse surfaces become asymmetric. Their intensity is much higher to one
side of the point than to another.

Isodiffuse curves - sections of isodiffuse surfaces by certain planes in the reciprocal
lattice space - were numerically calculated for different values of parameter C in the latter
case according to formulas (15), (18), (20). Elastic moduli of the matrix were set equal to
those of Cu as an example of the crystal with "average" anisotropy. We have analyzed
cross-sections by planes (100) near the points (00h) (Fig.3). The numbers near the curves
show the values of I, /K for the corresponding curves and on the rest of figures they show
o 1, /K (a is shown at each figure). At a relatively small value C = 0.4 the intensity
distribution is mostly influenced by distortions . Asymmetry of the isodiffuse curves is
very weak and can be observed only for the curves corresponding to very small intensity
level. For C = 0 scattering takes place only on the distortions and isodiffuse curves are
strictly symmetric and zero intensity curve coincides with the line [010]. If C differs from
zero, then this curve deviates from straight line and is shown in dash. When C increases
(for C=1, C=2), the curves become essentially asymmetric. But with further increase in C,
asymmetry of the curves decreases again, although the shape of the curves changes. At C
<0 isodiffuse curves have the same shape, but are inversed relatively to reciprocal lattice
point. It means that the asymmetry sign is determined by the signs of Afand ov/dc.
Isodiffuse curves in the plane (100) near the points (hOh) are analogous to those near
(00h). Symmetry axis coincides with [001]. Isodiffuse curves near the points (Ohh) are
similar to those near (hhh). Their symmetry axis coincides with [011]. Such axial
symmetry will be spoilt for arbitrary point not belonging to the high symmetry direction.

Influence of Depletion Layer. At early stages of ageing the effective diffusion length is
essentially less than the particle separation. Around each precipitate there will appear the
depletion layer with less concentration of one of the components. To analyze the
influence of depletion layer we shall consider a simple model of spherical particles
having the same structure with the matrix. We shall suppose that both the increase in
concentration inside the particle and its decrease in the depletion layer can be described
by simple distribution
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&(r)—&m exp[ 2R2] (R’j exp[ 2R'2J
[8e(F 7 =0 (22)

At the same time the total atom concentration near each type of precipitates is constant. If
we determine S(¢ ) using formulas (17), (22) and substitute this expression into (14), we

find that the intensity distribution /, can be written as following

II:K‘C— (;" [exp(—R2q2)—exp(—R’zqz)]z. (23)

In this case S(¢g ) — Oand 1(Q) > 0 at g — 0.1t means that in the reciprocal lattice
points intensity [/, tends to zero. Therefore intensity distributions have minima in the

reciprocal lattice points and are symmetric in the limiting cases when one of the items in
(20) is much larger than another. It results in the spherically symmetrical halo at lc| >>
I, qR ~ 1 and in the appearance of two maxima with almost equal intensity at lcl << 1.
If both items are of the same order of magnitude, then the resulting intensity distribution
is essentially asymmetric and is concentrated mainly on one side of the reciprocal lattice
point having crescent shape. Contrary to the above-considered case of a homogeneous
matrix, isodiffuse surfaces do not pass through the reciprocal lattice points, but surround
them in their vicinity. This crescent shape of isodiffuse surfaces is caused by vanishing of
displacement field due to the mutual compensation of effects from the precipitate and the
depletion layer. Such compensation takes place upon linear dependence v on ¢ (Vegard's

law) and if the condition J&'(F)d?zo is true. The deviations from Vegard's law will

result in the not complete compensation of displacement fields at large distances from the
particle and intensity /;(q—0) being not zero. But still the value of coefficient near q"zin
the expression for 7, will be much less comparing with the case of homogeneous matrix.
Its value will characterize the extent of distortion penetration through the depletion layer
into the matrix. Such transformation of isodiffuse curves for concentration distribution
(9) was illustrated by numerical calculations (Fig. 3) upon the linear dependence of v on ¢
for different meanings of parameter C. Calculations were fulfilled for the case R'= 2R for
crystals with elastic moduli of Cu and NaCl (asymmetry parameter & for Cu and NaCl
has opposite signs). Isodiffuse curves in the plane (100) around the reciprocal lattice
points (00h) for Cu (Fig. 3) differ from the case of homogeneous matrix. Presence of the
depletion layer makes them essentially asymmetric even upon the value C = 0.4(in the
case C = 0 which was considered earlier [8,9] asymmetry disappears). They consist of
different intensity maxima displaced from their reciprocal lattice points the distance
approximately equal to the reverse particles size. The positions of the displaced peaks are

indicated by the cross. Besides those peaks that are displaced along the direction Q=G ,
there exist also weak isolated maxima in the direction at certain angle to G .When C =
1.0 and 2.0 intensity distribution becomes crescent like. In the region of large q isodiffuse
curves tend to the circle. For AgCl precipitates in NaCl crystals isodiffuse curves were
calculated in two different sections (100) and (I 10) near the point (hhh). Section of the
point (hhh) by the plane (100) has axial symmetry. But its section by the plane (1 10) has
no axial symmetry. In this crystal that has &€ > O crescent shape of isodiffuse curves at C =
0.5 and C =2.0 is much more distinct than for Cu crystals. As can be seen from Fig. 2 at C
= 2.0 the edges of isodiffuse curves with lower intensity value unite almost into a circle
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and form asymmetric halo. Computer simulations were compared with interesting
experiments [14, 15] for decomposition in the system NaCl-AgCl. The interference of
scattering due to the distortions and depletion layer gives the same intensity picture as
observed in [14, 15] even without correlation between precipitates.

Correlation between Precipitates. The influence of correlation between particles in the
case of 2M << | and small volume fraction of the particles for equal and eqiaxial
precipitates results in the additional factor in the expression forintensity 7,

=1 —4FL))_101+7 zs()cmqﬁ (24)
p#

dm:«qky{MqR—M—d>

where /' is defined by formulas (14), (20) or (23) and radius vector K determines
possible positions of precipitate centers in different crystals cells ¢, N is the number of
cells. C(R )— 1 if precipitate center is in the point ¢ and C( ) 0 in the opposite case.

E(p) is the correlation parameter of precipitates

divided by vector p; and <..> means averaging over statistical ensemble. So correlation
results in the additional factor <’N{i’h> in the expression for intensity. The above results

correspond to diffuse scattering intensity:

c 2\ T
I ch‘l >] (25)

They can be used if the dependence <\1\7{i\2> on 4 is not too strong. If it is possible to

calculate function< ~4. > using certain model for decomposition kinetics these additional

correlation effects may be simply taken into account by formula (24).
Precipitates Causing Strong Distortions

In strongly distorted crystals defects power C and the average size if new particles
Ry corresponds to the condition QC >> R} . Precipitates of new phase also cause the
appearance of diffuse scattering besides the usual regular reflections. They shift the
positions of both diffuse and regular intensity maxima relatively to their positions for
crystal without defects and also decrease the intensity of regular reflections. The character
of the appearing intensity distribution essentially depends on the defect power C and their
concentration ¢ = nv, where n is a number of particles per unit volume and v is volume of
the matrix unit cell.

In this case, intensity /, is given

- 2 s By
I}(Q) — ’/| Zer(R\ R, )() 1
.\.\'

Function /, depends on displacement fields i, in s" cell by defect in " cell. Defect

iY

function T has the following real and imaginary parts: 7'= 7"+iT"
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1= rlj(lﬁ,(l —cosQﬁ\\, )T = ‘nJ.dI_?, sin Qﬁm
For defects with one orientation and for not large p that is the distance between cells s
and s, we have 7 = nCQp(@+i @")J+idGp; @"=@,"+@,". For strongly distorted
crystals(2M >> 1) with cubic symmetry of matrix being retained after the formation of
new phase particles diffuse scattering intensity L(Q) according to [1, 16, 17] can be
described as following:

I = %|_/'\Zj¢/p explig' p)exp(-nCOp(@'+ig,")) . (26)

un

.o - ! ~ o a0 L - -
J':Qw(}"—é(}‘—Q—(F;nAV )G”:q—znAV(,G“,q:Q—(}O—(SG,

Maximum ¢ o, displacement of the intensity distribution 1,(Q) relatively to the ideal
positions of intensity maxima for crystal without defects, 4, :5(:"+(]'m¢(](‘,)m =6G
essentially differs from the maximum g, displacement of regular peak even after taking
into account the additional term ¢, .Taking into account that ratio lg,"l/@'is very small,
we can simply find the value of maximal intensity [juaxcorresponding to the maximum of
intensity distribution (26) at ¢,"=0 and ¢ '=0.

Diffuse scattering intensitydistribution /,,1in the reciprocal space in radial direction
(IIQ), can be written as following:

- . o
Lidqo)=Iri — J.dp explig,, ) expl—=T(pm)]. 27
2 Y

Expression (27) describes intensity distribution as a function of gy, . For radial direction it
can be also expressed in terms of scattering angle 28. Both of these distributions
correspond to Lorenz function. Integral width of this curve 266 and their maximum
displacement 2(6,, —6,) relatively to the ideal positions of intensity maximums can be
determined for the case of cubic crystal by the expressions

200=2mCq/( th,m )16,

mdG AV Ad
o (i) g6 = — 2 o gl =
nco '’ (i '")}“ ( 3 ] R d

Here Ad/d is the relative change of lattice parameter corresponding to diffuse maximum
displacement. Displacement of regular maximum 2(6, —6;) (or maximum in weakly

distorted crystal) is quite different from (8, —6;) and is equal to

I

Ad

l = l
(9 —9(&)=—71g9=55(1mtg6:—EnAVtgG. (28)

m

It is essential that both half-width and maximum displacement depend on nAVig6
Both regular and diffuse maxima are displaced relatively to their ideal positions but
diffuse maximum displacement is approximately six times less.
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Figure 4. Simulation of diffuse scattering for strongly distorted scrystals with precipitations:

a - real (T'/M), and imaginary (T"’/M) parts of function. T( 3 ); b -intensity distributions in radial directions
for 2M equal -1 (1), -2(2), -3(3),- 4(4), -6 (5); ¢ - dependence of maximums positions gy’ (1-computer
simulation, 2-asymptotic value 0,082M(CQ)™"?, 3-asymptotic value with ceriain additional terms,4-

regular reflection qpo’, 5- asymmetry parameter,6- asymptotic asymmetry parameter; d - diffuse scattering
intensity distribution for small 2M; e - halfwidth intensity dependence in radial direction on 2M: |-

asympiotic value 1,89*2M(CQ) " 2-computer simulation, 3-asymptotic value gqn  with additional
terms, 4-numerically simulated halfwidth; f- computer simulation of n dependence on 2M
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Analytical expressions for half-width and maximum displacements can be used only if
2M >> 1, but much more frequently experimental data correspond to the condition 2M ~
1. In this case we can observe simultaneous existence of both diffuse and regular peaks of
intensity. In the region 2M < 1 analytical analysis of intensity distribution is impossible
and numerical calculations were used to obtain diffuse scattering intensity distributions.
At Fig. 4a there are shown the results of numerical calculations for real 7" and
imaginary 7" parts of the parameter T that is necessary to calculate diffuse scattering
intensity. The results of computer simulations of diffuse scattering intensity distributions
for small 2M values are presented at Fig. 4d for the case AV > 0.1t is displaced from the
ideal position that is shown by a straight line. The value of this displacement depends on
the value of 2M. If V < Othese intensity distributions will be situated on the other side of
ideal peak position. As it can be seen from the Fig.4, at 2M ~ 1 intensity distribution is
essentially asymmetric and does not correspond to Lorenz shape. While 2M increases,
curves asymmetry gradually decreases their shape tending to Lorenz one. Half-width and
maximum displacement also decrease. The positions of quasiline maxima in radial
direction

4'pm and their integral widths qr,=47rl1cos959, half-widths ¢,,,, being defined as the
distance between points qn/ / and q;% —5’% , in which intensity is equal to the half

of maximal values and also asymmetry parameter a—( v~ /) (5;4—5/) were

determined. The results of numerical calculation at 2M = 2...4 differ essentially from the
analytical one. When 2M — 0 (CQ>> R(f) intensity distribution /,,{(gr) becomes
symmetric with parameters q,,,,'=0.315(CQ)'”2; qr1/2=1.525(CQ)'”2; q,,=2.27(CQ)‘”2;
Q=0.38 (2M << 1) which do not depend on the defect density, but only on their power.
Distance between maxima /, and Iy in the crystals with precipitate is equal to

AV
Yrm - ‘I”"U:’]()"CQIA_V‘[ . (29)

Parameter 1, for the region 2M ~ 1 was calculated numerically (Fig. 4f). For large values
of 2M it tends to the constant value 3.515. It makes the distance
4om - q,),,,o to depend only on the product nC. If during the aging this product remains the
same, then the relative difference between maxima gp,, - qn,,,“Will not change. In the
region of not very large 2M < 4 both quasi (diffuse) and regular maxima can be observed
simultaneously and 7, strongly depends on 2M. So when 2M is not large the displacement
of quasi-reflections depends not only on the product nC, but also on » and C separately.

Experimental Diffuse Scattering Analysis. Such intensity redistribution changes with
the increase of defect power were observed experimentally in the region 2M ~ 1 for Ni-
based aging single crystals corresponding to the negative sign AV. X-Ray intensity
distributions were received for the samples after solidification, quenching from the
temperature 1240° C and different time of aging at 900° C [18 ]. Both structure intensity
distributions (002), (004), (111), (222), (220) for 'y-phase and superstructure -(001), (003),
(110) for y-phase in the (110) reciprocal lattice plane were restored. Intensity
distributions were examined both in radial (G ) and azimuth (perpendicular to G)
directions around (222) reflection.. In Fig. 5 there are shown space intensity distributions
around (222) reflections and corresponding isodiffuse curves for different aging time.
This intensity distribution always consists of two maxima. The azimuth section (LG ) of
the reflection is the same for both I, and /, (Fig. 5). Intensity distribution is stretched
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along G and has complicated shape in radial direction. In azimuth direction it is
relatively narrow and does not change along the whole reflection. Parameter 2M depends
on (h2)" (Miller indices).It means that in one sample different reflections may
correspond to different 2M values. It will result in different contribution of /yand [,to the
final intensity distribution. Therefore the resulting intensity distributions for the first
(111) and the second (222) orders of the same diffraction maximum are not similar. The
angle position of Iy and /; depends on the sign of AVbeing the characteristics of volume
change between matrix and precipitates. In our experiments /, was always situated at the
smaller O values relatively to Iy . It corresponds to the negative AV < 0.

Parameter 7)o in the region 2M = | was determined using the results of numerical
calculations (Fig. 4f). In this 2M region it had values 1y = 2...2,2. This allows us to
determine the product nC. Taking into account the dependence of M on AV we
determined the main parameter for dispersively hardened alloys
nAV = pAv/v=—(2-23)-10". The dependence of width and displacement of
reflections on the modulus and orientation of vector () is in good agreement with
theoretical dependences. The ratio 286/tg@ also depends on the direction of () and is
equal to for (420), (331) and (222) reflections: 1.92:1.66:1.22:1. The dependence of
reflection integral width on Q orientation is mainly a result of anisotropy of matrix and
precipitates.. Aging results first of all in the displacement of ideal peak 8; position. This
influences the positions of /; and Iy . That is why aging displaces both regular and diffuse
maxima. Such changes are explained by formulas (16)-(28). Correspondingly, the
effective values of lattice parameters calculated for regular and diffuse peaks will also
differ. It is especially essential when these both maxima are observed simultaneously. The
same type of effective lattice parameters dependences were observed by other authors

[19,20].

CONCLUSIONS

1. The shape of isodiffuse curves for crystals with isolated defects essentially depends
on the defect force parameter 5. For b ~ 1 defects are almost cubic and isodiffuse curves
for different type defects are very similar. For non-cubic defects b differs essentially from
1 and is often negative. It enables us to determine defect type and b value from the data
on diffuse scattering intensity.

2. The presence of precipitates causes local lattice distortions due to the existence of
lattice misfit between matrix and forming phase and the difference of structure
amplitudes between precipitate and matrix. The type of intensity distribution depends on
these mutual effects.

3. In weakly distorted crystals with precipitates (2M << 1) the interference of
scattering caused by the difference of structure amplitudes and distortions for elastically
anisotropic crystals results in the asymmetry of isodiffuse surfaces. The intensity becomes
much higher at one side of reciprocal lattice point and the latter are no longer the
inversion centers for intensity distribution. The extent of asymmetry depends on value
and sign of parameter C.

4. When precipitates in weakly distorted crystals are surrounded with depiction layers
isodiffuse surfaces do not pass through reciprocal lattice points but surround them. The
shape of isodiffuse curves becomes crescent type.

5. In strongly distorted crystals with precipitates belonging to the region
1 <2M both regular and diffuse maxima exist simultaneously. Diffuse scattering intensity
is stretched along the diffraction vector. Positions of regular and diffuse maxima
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relatively to the ideal Bragg position depend on sign and value of volume change due to
the precipitates.

6.

Experimentally reciprocal lattice space was restored around structure matrix and

superstructure Y-phase points. The existence of both diffuse and regular reflections was
observed. Average volume change caused by precipitates was calculated.
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INTRODUCTION

Our purpose in this contribution is to describe a set of ideas we have been developing
in Cambridge which give a number of insights into the structures and stabilities of silicate
phases, and the phase transitions between different structures. The basic theory is called the
“Rigid Unit Mode” (RUM) model, and the key papers can be found in references 1-8. The
RUM model has been used to understand issues of silicate structures such as the existence
of displacive phase transitions,' "' the origin of the transition temperature,">*"* the reason
why these phase transitions are well-described by Landau theory,"™® incommensurate
phase transitions,”'" the role of critical fluctuations,”®'" the nature of high-temperature

hases,*'>'° diffuse scattering in silica polymorphs,”>"!" negative thermal expansion,'™®"
! zeolite catalysis,”** and the excitation spectra of glasses.”*

The RUM model is very simple in its basic ideas. The atomic structures of crystalline
silicates consist of SiO, and AlO, tetrahedral structural units which are linked together at
corners. In many of the important silicates, such as quartz, the feldspar family of minerals,
and the zeolites, these tetrahedra are linked together to form an infinite three-dimensional
network. The energies associated with distortions of the tetrahedra, as indicated by their
vibrational frequencies, are much stiffer than other forces in the crystal structure (e.g. the
forces that come into play when two tetrahedra swing about a common vertex). To an
apparently ‘crude’ first approximation we can model the force constants in the crystal as
having either of two values, namely a very large value for the force constants within the
individual tetrahedra, and zero for all other force constants. Any harmonic phonon in the
crystal will then have a frequency that reflects the extent to which its eigenvector involves
infinitesimal deformations of the tetrahedra, and a phonon that can propagate without any
tetrahedra having to distort will have zero frequency. These zero-frequency phonons are the
“rigid unit modes” whose existence underlies the relevance of the RUM model.

Local Structure from Diffraction
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The relevance of the RUM model for the present workshop is that any large amplitude
deformations of a crystal structure, whether as static or phonon deformations, will be
associated with low-energy modes of distortions: from harmonic phonon theory,” the
square of the amplitude of an atomic displacement is proportional to the square of the
harmonic frequency:

k,T
') =725 ()

These deformations are those that give rise to the strongest diffuse scattering, and as noted
above the RUM model has been used to explain the strong diffuse scattering observed in
the silica polymorphs cristobalite® and tridymite'”*® in terms of the specific RUM
phonons in these systems. Conversely, the RUM model can also give insights into the
possible structural states where diffuse scattering indicates some considerable degree of
structural disorder.

In this article we will review the basic ideas of the RUM model, and give a number of
examples that illustrate the application to the structural disorder and diffuse scattering.

BASICS OF THE RUM MODEL
The existence of RUMs in crystalline silicates

The possibility of having RUM deformations in crystalline silicates has been
recognised for some time.”’' For example, the structural instabilities in quartz” and
feldspars® were analysed in terms of RUMs (although in terms of static deformations
rather than phonon modes) some time ago, and the possible existence of RUM phonons
was subsequently recognised for specific wave vectors in quartz’' and cristobalite**”. The
RUM model was first suggested to us by an analysis of the incommensurate instability in
quartz by Vallade and co-workers,”>>® who demonstrated that RUMs could exist for some
definite ranges of wave vectors. Our own contribution was to generalise these ideas, but
before we describe this we need to discuss some general issues associated with the possible
existence of RUMs.

The RUM model has been developed independently in the context of the excitations in
glasses, where the equivalent zero-frequency modes are called “Floppy Modes”.* In this
context the basic idea is to consider any chemical bond, rather than a structural unit such as
a tetrahedron, to be a rigid entity.*” Each atom has three degrees of freedom, and each bond
enforces a single constraint. In the absence of any other forces, the number of zero-
frequency modes of motion in a glass or crystal is given classically by the difference
between the total number of degrees of freedom in the system, F, and the total number of
constraints, C, given by the chemical bonds, ensuring that proper account is taken of bonds
that give identical constraints. For silica, an SiO, tetrahedron contains 10 bonds (Si-O and
0-0), but only 9 are required to define the rigidity of the tetrahedron. Thus for each SiO,
unit there are 9 constraints and 9 degrees of freedom, and so there will be no zero
frequency modes. In our approach we count in a slightly different way,*’ but the end result
is the same. We associate 6 degrees of freedom with each tetrahedron (rotational and
translational), and 3 constraints with each shared vertex. Thus each tetrahedron has 6
constraints, and we obtain the same result that F — C =0.

This then leads to an apparent contradiction: the simple counting of constraints
suggests that there should be no RUMs in any crystalline silicate with full three-
dimensional connectivity, but we have noted above that the existence of some RUMs in
silica polymorphs had already been demonstrated. It is clear that the contradiction will have
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to be understood as a result of some of the constraints not being independent, and we have
demonstrated elsewhere that symmetry plays an important role in this context.*’ For a
system containing N atoms, and hence 3N normal modes, we have found that in general the
number of RUMs will be of order N or N**, which is a small number compared with

3N, and probably broadly in line with one’s initial expectations.” However, more recently
we have applied the RUM approach to zeolites, and in some of these cases we find that the
number of RUMs is of order N;** which is certainly counter-intuitive.

The calculation of RUMs

Before we discuss the implications of the RUM model, we should outline the methods
we use to determine the number of RUMs for any given system. Any approach must
properly account for the effect of symmetry on the number of independent constraints, and
for crystalline materials it would be useful to be able to determine the wave vectors of the
RUMs. Vallade proposed an analytic method for quartz,’® but we felt that this was not
easily programmed in a general form. Our approach has been to use a molecular lattice
dynamics method”* with perfectly rigid tetrahedra. In order to develop the lattice
dynamics formalism we have introduced the “split-atom” method,”” which is illustrated in
Figure 1. The basic idea is to split the atoms that are shared by two tetrahedra into two
separate atoms, one for each tetrahedron, with an equilibrium separation of zero. A pair of
split atoms are held together by inventing a harmonic force between them, and the force
constant is related to the actual stiffness of the tetrahedra since the separation caused by
relative displacements and rotations of two linked tetrahedra is proportional the distortions
of the tetrahedra that would otherwise occur. The dynamical matrix for this system will give
zero frequencies for any phonon mode that does not cause distortions of the tetrahedra:
these zero-frequency solutions represent the rigid unit modes for the system. These
calculations can be performed for any wave vector. The results can include the eigenvectors
of the RUMs, and the calculation of the neutron scattering intensity for a range of scattering
vectors. The method is not restricted to the use of tetrahedra, and will work for polyhedra
of any shape with any number of neighbours.

The package of programs for the RUM analysis of any material,"" together with
manuals and test data, are freely available for any academic user, and can be accessed using
a WWW browser from http://www.esc.cam.ac.uk/mineral_sciences/crush/. The package
includes the basic rigid unit mode program, which we have called CRUSH, in two forms: a
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Table 1. Numbers of rigid unit modes for symmetry points in the Brillouin zones of some
aluminosilicates, excluding the trivial acoustic modes at £ = 0. The “—" indicates that the wave vector is
not of special symmetry in the particular structure. The numbers in brackets denote the numbers of RUMs
that remain in any lower-symmetry low-temperature phases. (Taken from Reference 5.)

k Quartz  Cristobalite Tridymite  Sanidine Leucite ~ Cordierite
P6,22 Fd3m P63 [ mmc C2im la3d Ccem
0,0,0 1(0) 3(1) 6 0 5(0) 6
0,01 3(1) - 6 1 - 6
£.0,0 2(1) - 3 - - 6
140 1(1) — 1 — - 6
137 L - 2 _ _ 0
1,04 1) — 2 — 4(0) 2
0,1,0 — 2 — 1 — —
1.3.3 — 3(0) — 0 0 -
01,5 — — — 1 — _
0,0, 3(0) 2(0) 6 —_ 0 6
0.£.0 2.(0) 2(2) 3 1 0 6
£,8,0 1(1) 1(0) 1 - 4(0) 6
- — 3(0) — — 0 —
3.0,& 1(0) - 2 - 0 2
EE L 1(1) - 0 - 0 0
$-5.28,0 1(1) — 1 — - 6
1-E82865 1) - 0 - - 0
0.5.5 0(0) - 1 1 - -
E.LE — 1(0) — — 0 —
§,6.0 1 (0) 0 1 — 0 6
£.,0.8 0(0) 0 2 1 0 0
&,1E — 0 - 1 0 —
§,8.8 0(0) 1(0) 0 - 0 0

standard version that has been vectorised to allow it to operate efficiently on a vector
computer, and a parallel version that uses MPI routines to allow calculations to be
performed for a three-dimensional grid of wave vectors. Also included are programs to set
up a CRUSH input file (including the ability to idealise the size and shapes of tetrahedra)
and a number of other ancillary and analysis programs. All programs have been written in
FORTRANT77 in a portable style, but some need to be linked to the NAG library.

RUMs in crystalline silicates

We have determined the number of RUMs in a number of crystalline silicates,” and
some representative examples for some of the simpler systems we have investigated are
given in Table 1. The results of our calculations are restricted to special points, lines and
places of special symmetry in the Brillouin zone. For all these systems there are no RUMs
for a general wave vector; examples where we have to consider the general wave vectors
will be given later in our section on zeolites.

The results of Table 1 show a number of features that appear to be of general
relevance. First, in all these systems there are some RUMs, rather than the zero number
suggested by the simple constraint counting discussed earlier. In all cases there are RUMs
for wave vectors along special lines in reciprocal space, and in some cases there are RUMs
for wave vectors on planes in reciprocal space. Second, in cases where there is a phase
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transition that is easily analysed, the number of RUMs in the lower-symmetry phase is
smaller than in the higher-symmetry phase. This is particularly marked for the planes of
RUMs in the high-symmetry phases of quartz and cristobalite, and in leucite none of the
RUMs survive the phase transition. In the lower-symmetry phases the motions that are
associated with the RUMs now necessitate distortions of the tetrahedra, and therefore have
a non-zero frequency. This result is consistent with our explanation that it is the crystal
symmetry causing some of the constraints in the crystal to be equivalent that allows a non-
zero number of RUMs in any particular case, since the lowering of the symmetry is
accompanied by a decrease in the number of RUMs.

Table 1 does not give all the results for each system. To our surprise we have found
that the RUMs are not restricted to have wave vectors of special symmetry. We will show
an example of this in our section on tridymite. For many systems, including some of the
examples given in Table 1, and specifically noting that quartz is one of these, the RUMs
can exist with wave vectors on curved lines or on the surfaces of exotic shapes in reciprocal
space. This result suggests that it is generally important to search for RUMs for all wave
vectors in the Brillouin zone, rather than for a few representative examples, and this
precludes the use of hand calculations of the form that Vallade attempted for quartz.

It is interesting to ask whether RUMs can also exist in materials containing octahedral
units. For example, it is known from experiment and by intuitive reasoning that there are
lines of RUMs along the edges of the Brillouin zone in the cubic phase of the perovskite
structure. However, we have investigated a number of materials containing octahedra, and
in general we found that unless the octahedra are aligned with the symmetry axes there is
rarely enough symmetry to cause enough of the constraints to become equivalent.” We
therefore conclude that cubic perovskite is a special case, which perhaps is not surprising
since there are not many other ways to pack octahedra together in a way that allows the
orientations of the octahedra to align with symmetry axes. The cases of mixed octahedra
and tetrahedra are no better in this respect, unless, as in the new ceramic ZrW,0, with
negative thermal expansion, some of the vertices of the octahedra or tetrahedra are not
shared with other units so that the topology itself lowers the overall number of
constraints.'**’

CRISTOBALITE
Disorder in the high-temperature phase of cristobalite

The phase transition in the silica polymorph cristobalite has been studied by a number
of workers in recent years. Most of the work has been motivated by the fact that “there is
something wrong” about the crystal structure of the high-temperature f-phase as deduced
by analysis of the Bragg reflections.” The crystal structures of the two phases of
cristobalite are shown in Figure 2.* In the low-temperature a-phase the angle subtended by
the Si-O-Si bond is around 149°, and the length of the Si-O bond is around 1.60 A. These
are typical values for crystalline and amorphous silicates. But in the B-phase, the average
positions of the atoms give an Si-O-Si angle of 180° and an Si-O distance of 1.54 A.
Moreover, the temperature factors of the central oxygen in the Si-O-Si linkage is elongated
in the directions perpendicular to the Si-Si vector.” Of course, it is easy to see the cause of
the problem. The Bragg diffraction gives information only about average positions, and not
about average distances between atoms. This latter information is found in the total
scattering data, and analysis of the total scattering data for f-cristobalite shows that actually
the bond angles and distances are quite different from those suggested by the average
positions and more like the typical values as found in the a-phase."” It might be expected
therefore that the crystal structure of $-cristobalite is disordered, with the Si-O bonds tilted
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away from the Si-Si vector at an angle of around 17°. Quite how this might happen has
been the subject of many of the recent studies.

The RUM model has allowed us to think again about the nature of the disorder in the
B-phase of cristobalite. There have been two previous propositions concerning the actual
structure of this phase,** both of which assume that B-cristobalite is built from domains
of a lower symmetry structure. We mention here the more intuitive model of Ghose and
Hatch, namely that the structure is composed of domains of a-cristobalite.”® This
interpretation of the structure of the B-phase must now be discounted following the analysis
of the total scattering data,”® but it is interesting from one aspect, namely that it provided an
intuitive interpretation of the disorder. It has proved to be very difficult to imagine many
alternative models.

Rigid unit modes and dynamic disorder in cristobalite

The new insights into the nature of the f-phase come from the fact that there are
RUMs with wave vectors lying in planes in reciprocal space. The results of our calculations
are given in Table 1, but these results were predated by measurements of streaks of diffuse
scattering in electron diffraction.”®*’ These streaks were shown to be fully consistent with
the RUMs, and no significant features of diffuse scattering were found that could not be
explained by the existence of RUMs.>* The RUM at the [1,0,0] zone boundary of the
Brillouin zone could provide the instability for the phase transition if it were considered
from the viewpoint of the “soft mode” theory."”"'*"* Another RUM at zero wave vector
provides the instability that would generate the domains of the alternate domain theory of
Wright and Leadbetter.”'>" It is easy to imagine that if all these RUMs are operating with
low frequency, they will all rotate the tetrahedra away from their average orientations with
large amplitude, with the result that the crystal structure will appear to be disordered. The
RUMs are dynamic phonons rather than static displacements, and therefore the disorder
will be dynamic rather than static.

Experimental evidence
We then have to ask how well the RUM interpretation of the disorder of B-cristobalite

stands up to further scrutiny. We have already mentioned one test, namely that the
measurements of the diffuse scattering in electron diffraction are in good agreement with the
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predictions of the RUM model. Further verification of the existence of RUMs is given by
inelastic neutron scattering measurements,'* shown in Figure 3. The data for the inelastic
signal in both phases of cristobalite show that there is a significant enhancement of the
number of low-energy excitations (frequency below 1 THz) in the P-phase, which is
consistent with the calculated changes in the numbers of RUMs in the two phases given in
Table 1. On the other hand, it has been pointed out that the RUM model is strictly only
valid within the harmonic approximation, which implies only infinitesimal RUM rotations
of tetrahedra, and the model cannot assume that when whole planes of RUMs are added
together simultaneously the model will retain its validity.*® Against this objection it might be
argued that the electron diffraction and inelastic neutron scattering data suggest that the
RUM model remains valid even when a large number of RUMs are activated, but these data
cannot rule out the possibility that a small subset of RUMs will dominate over all others. If
this situation should occur, it may well map back onto the domain model.

In order to check this possibility we have performed two types of molecular dynamics
simulations using samples with 4096 unit cells. (As an aside it should be noted that for this
sort of analysis molecular dynamics simulations have to be carried out with large samples,
since a good sampling of reciprocal space is required in order to differentiate between the
situation where phonon modes of a wide range of wave vectors are activated with more-or-
less equal amplitude, and the alternative situation where the behaviour is dominated by only
a few phonon modes.) The first simulations were performed using realistic model
interatomic potentials,'* and these showed that the disorder was not consistent with any
preferred directions of the Si-O bonds as would be suggested by a domain model. The
second simulations were performed using the split-atom method described above,'® using a
fixed volume and Si-O bond length that would require tilting of the tetrahedra by about 17°.
This one-parameter model was investigated in detail to determine whether all RUMs could
be activated equally, or whether a small subset of RUMs would dominate behaviour. The
latter situation would then lead to long correlation lengths. The results of the analysis
showed quite clearly that all RUMs in (-cristobalite were activated more-or-less equally
(some had higher amplitude, but not significantly so) at all temperatures. A snapshot of a
(1,1,1) layer of one configuration is shown in Figure 4a. It can be seen from this figure that
the distortions of the local structure differ in different regions of the crystal, showing that
there is no domain pattern but that there is disorder without distortions of the tetrahedra. It
is important to appreciate one point from this snapshot image. It appears as if the distortions
of the structure are fairly random, but they are not. They are almost completely determined
by the very small subset of normal modes of the system that are RUMs. The picture is
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(b)

Figure 4. Snapshots of single configurations of (111) planes of SiO, tetrahedra in B-cristobalite obtained
from the split-atom molecular dynamics (a) and the RMC analysis of total neutron scattering (b).

reinforced by calculations of the scattering function S(q) in the one-parameter molecular
dynamics simulation for wave vectors along [0,0,1], for which there are two RUMs. The
scattering is indeed dominated by the scattering from the low-frequency RUMs, and in
Figure 5 we show the results from calculations over a whole decade of temperatures (100
1000 K). It is apparent that the intensity of S(q) does not have a significant temperature
dependence, which is exactly as would be expected if the scattering comes from a
disordered state with constant amplitude of disorder rather than from thermally-activated
fluctuations such as harmonic phonons. Indeed, calculations of S(q) for wave vectors with
no RUMs has a normal temperature dependence.

Our final test of the RUM interpretation of the nature of B-cristobalite comes from our
analysis of the total neutron scattering data.'”> In the B-phase there is a considerable amount
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of diffuse scattering from powder samples. This has been analysed using the Reverse
Monte Carlo (RMC) approach with constraints consistent with the pair distribution function
extracted from the data, and the results are described in more detail in the chapter by David
Keen. Here we cite three essential results. The first is that the orientations of the Si-O
bonds are consistent with a model that allows rotational freedom. The second is that a
snapshot of the atom positions of a single configuration, Figure 4b, has a very similar
appearance to that given by the split-atom simulations, with no signs of any domains. The
third is from calculations of the three-dimensional diffuse scattering using the RMC results.
A sample of the results is shown in Figure 6. The streaks of strong diffuse in this section of

reciprocal space are fully consistent with the RUM analysis and the earlier electron
diffraction results.2®*’
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TRIDYMITE
Crystal structure and disorder

The crystal structure of tridymite, another polymorph of silica, is very similar to that
of cristobalite, in that the two materials are made from sheets of tetrahedra linked in a
hexagonal array. In cristobalite these sheets are parallel to the cubic (1,1,1) planes, and are
stacked together in an “ABCABC” manner analogous to the stacking of close-packed layers
in atomic cubic-close-packed structures. In tridymite the stacking is more analogous to an
“ABAB” stacking, and this yields a hexagonal crystal structure with the layers parallel to
the (0,0,1) planes. Tridymite undergoes a relatively large number of phase transitions on
cooling,”” which have been studied by a large number of workers. There are problems in
that some of the phase transitions are affected by the quality of the sample (tridymite
invariably contains a large number of stacking faults), and different workers have identified
a plethora of incommensurate phases with long-period modulations.

The average atomic positions in the high-temperature phase of tridymite as determined
by the analysis of Bragg diffraction data yields the same linear Si-O-Si connectivity as we
have discussed in cristobalite above, and again the RUM picture can explain the dynamic
disorder that allows neighbouring tetrahedra to rotate to more favourable orientations
without destroying the long-range order.” The RUMs in the hexagonal phase of tridymite
are given in Table 1, and as in cristobalite there are planes of RUMs in reciprocal space.
The short-range structure of tridymite has been analysed using total neutron scattering
measurements and RMC (see the chapter by David Keen). In Figure 7 we show a snapshot
of one layer of a configuration generated by the RMC analysis, and this should be
compared with the snapshot of cristobalite in Figure 4 (these are the same basic layers). The
snapshot of tridymite shows a similar disordered arrangement of the orientations of the
tetrahedra, strinkly similar to that of cristobalite (Figure 4).

Diffuse scattering
As in cristobalite, the RUMs in tridymite can be identified in diffuse scattering using

electron diffraction.”® Indeed, the RUMs given in Table I have all been identified this
way.'” However, the electron diffraction data for the high-temperature phase showed a new
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feature. An example section of reciprocal space is shown in Figure 8. As well as containing
lines of diffuse scattering that correspond to planes of RUMs intersecting this section of
reciprocal space, the diffraction pattern also contains a repeated curved feature of diffuse
scattering. We were able to confirm that this feature also arises from RUMs. This was the
first indication that RUMs can exist with wave vectors lying on an exotic surface in
reciprocal space. The full three-dimensional surface has been obtained by performing
calculations with CRUSH using a fine three-dimensional grid in reciprocal space, and
constructing the scattering function in which the summation is over all the phonon modes,
notjust the RUMs:

1
S(q) = 2 m ()

where €2 is a small number whose function is to prevent the divergence of S(q) when
sampling a wave vector containing a RUM with zero frequency. A three dimensional image
can then be obtained by visualising equi-value surfaces of the function S(q). The result for
the high-temperature phase of tridymite is shown in Figure 9, and this object gives exactly
the same curves in the section corresponding to the diffraction pattern in Figure 8. We have
performed a similar analysis for a number of materials, including the examples given in
Table 1, and we have found that curved features (whether lines or surfaces) are surprisingly
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common. It would be interesting to try to observe some of these additional curved RUM
surfaces using electron diffraction. An exotic curved surface of RUMs has also been found
in the ceramic Zrw,0,."%

Incommensurate phase transitions

On cooling tridymite undergoes phase transitions to two other hexagonal phases, a C-
centred orthorhombic phase called OC, an incommensurate phase called OS, and then to a
primitive orthorhombic superlattice structure called OP.** There are additional phase
transitions on further cooling, but the details are dependent on the quality of the samples. A
RUM search was carried out on the OC-phase, and it was found that there is a line
containing one RUM with wave vectors along a*, and the eigenvector of the RUM at the
incommensurate wave vector . along a* will fix the incommensurate structure. "’

An incommensurate structure may be described as the sum of two modulated
distortions imposed on the parent structure:**

Modulated structure = Parent structure + A(Cl cosqc.T - C, sin qlc.r) 3

where C, and C, are two component difference structures with a unit cell equal to that of
the parent phase. Strictly speaking the difference structures involve infinitesimal
displacements and so an amplitude factor 4 is required to give the modulation an
appropriate magnitude. This description is of great use in visualising the incommensurate
structure, and it also has important implications for its symmetry. The symmetries of C,
and C, are uniquely determined by the RUM, and this limits the possible symmetries of the
resulting incommensurate structure. The distortions associated with C, and C,, which were
obtained from the RUM phonon eigenvector, are shown in Figure 10.

The structure of the OS-phase of tridymite can be determined, in principle, for any
incommensurate modulation by using the RUM eigenvectors for the corresponding wave
vector. To test the correctness of this approach we note that calculations using q,- =a* /3
should give the structure of the three-fold lock-in phase OP-tridymite.* The result of this
construction is shown in Figure 11, where we compare the predicted and measured
structures of the OP-phase. The match between the two structures is quite reasonable.
However there are small differences because the structure can relax further within its space
group symmetry. This has the effect firstly of squaring-up the +C, and +C, regions from a
sinusoidal modulation. Secondly it expands the size of the +C, region, although not at the
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expense of the +C, regions but rather overlapping with them as shown in Figure 11. This
overlapping of C, and C, may account for the special stability of the three-fold superlattice
and hence for the discontinuous change in ¢ at the OS / OP phase boundary.

ZEOLITES
Crystal structures and rigid unit modes

The examples of cristobalite and tridymite have shown how RUMs can be superposed
on a crystal structure dynamically, giving a dynamically disordered structure, and we have
shown how this leads to strong one-phonon diffuse scattering. The other major source of
diffuse scattering is from static defects, and in the case of zeolites we have shown that
localised deformations of the crystal structure can arise from superpositions of static RUM
distortions.”*

The crystal structure of one common zeolite, LTA, is shown in Figure 12, where we
highlight the way in which the tetrahedra are linked in such a way to form large cavities in
the structure which may be large enough to hold small molecules. It should be stressed that
the connectivity of tetrahedra is as complete as in the denser silicate phases, and there are no
non-bridging Si-O or Al-O bonds. Another way to view this and other zeolite structures is
by comparison with the crystal structure of sodalite. This material has a cavity that is
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incorporated into the crystal structures of some other basic zeolites, as illustrated in Figure
13. The difference between these structures lie in the topological arrangements of the basic
sodalite cavities and in the channels between the cavities.

The point about highlighting the analogy with sodalite is that we initially found that the
highest-symmetry version of the sodalite structure has one RUM for each wave vector,’ or
put another way, there is a complete band of RUMs in the three-dimensional reciprocal
space. This suggests that the sodalite structure has an increased level of inherent flexibility.
Our calculations then showed that both Zeolite-LTA and Faujasite (Zeolite-Y) have four
RUMs per wave vector (i.e. four bands of RUMs), and we have found a number of other
examples of zeolites that have a large number of RUMs; these are given in Table 2.** Since
in these cases the number of RUMs is a significant fraction of the total number of normal
modes, we give this fraction instead of the actual number of RUMs. In the case of zeolites
the phonon density of states calculated with our CRUSH program shows a continuum of
normal modes at low energies, as shown in Figure 14. The lower-energy modes cause only
minimal distortions of the tetrahedra, and we have called these “Quasi-rigid unit modes”
(QRUMs).” There is not a precise definition of a QRUM, and we simply assign a
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Figure 14. The density of states of Zeolite-LTA calculated using the CRUSH program. Note the
continuum at low frequencies.

reasonable cut-off energy of around 1 THz (following the experimental energy scale for the
RUMs in B-cristobalite as shown above). The fraction of QRUMSs for a number of zeolite
examples is shown in Table 2.

Table 2: Percentage of all normal modes in some selected zeolites that are either RUMs or QRUMs

Zeolite % RUMs % QRUMs
LTA 2.8 6
RHO (Im3m) 1.4 7
RHO (743 m) 0.7 5
Sodalite 2.8 6
Faujasite 1.4 5
UTD-1 0 8
Paulingite 0.6 6
Chabasite 0 6
Natrolite 0 5
ZSM-5 0 4

Zeolite flexibility

It is tempting to imagine that with so many RUMs and QRUMs zeolite structures will
be completely floppy and flexible in an infinite number of ways, but this is not so. The
possible distortions are restricted to those given by the RUM and QRUM eigenvectors, and
these impose fairly strict constraints. The situation reminds us of our comment about the
flexibility ofthe structure of B-cristobalite being restricted to that allowed by the RUMs, but
of course in the zeolites there are many more RUMs that come into play.

In B-cristobalite we interpreted the dynamic disorder as arising from the superposition
of dynamic RUMs as phonon modes. In the zeolites we have tackled this superposition
from an alternative perspective, namely the formation of static superpositions of RUM
deformations.”>* The RUM deformations can be included in these superpositions with
arbitrary amplitude and phase. For example, for a system with one RUM per wave vector,
each RUM deformation Ry of wave vector k can be assigned anamplitude A, and phase
Yk- A spatial deformation pattern L that defines a set of atomic displacements can then be
constructed as a Fourier transform:
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Figure 15. Local deformation in the sodalite structure, showing the distortion on the central ring that does
not propagate to distant neighbours

L- z AR expliry) @)

There is considerable flexibility in the choice of Ay and y,, but this does not allow us to
overcome the restrictions imposed by the limited set of eigenvectors R,. We call the
deformation described by L a “local RUM”, since A, and y, can be chosen to give a
localised deformation.

We have developed a FORTRAN program called LOCALRUM to allow the calculation of
the local RUMs for a given zeolite structure using the eigenvectors R, calculated by
CRUSH. Since the choice of values for A, and y, is arbitrary, the LOCALRUM program can
work with initial random values for the amplitudes and phases of the different RUMs, or
else their values can be specifically tuned to give a resultant local RUM that is close to a trial
deformation.

Calculations of Local RUMs

Our first calculation of a local RUM concerned the location of the Ni site in sodalite,*
which was thought to be a good representation of the basic atomic environment in the
zeolite faujasite. In this case the Ni ion could held in place in the channels by a pinching
action involving oxygen atoms moving towards the cation as the tetrahedra rotate. This is
illustrated in Figure 15, which shows a section of the local RUM distortion. It is clear from
this figure that the distortions of the structure about the Ni cations do not propagate very far
in the structure, i.e. they are localised. These are the same deformations that will bind Ni
within the faujasite structure.

A second calculation, on the new zeolite UTD- which contains 14-membered
rings of tetrahedra, illustrates the way in which the constraints of the RUM eigenvectors
impose limitations on the degree of overall flexibility. A section of the structure is shown in
Figure 16. This figure summarises the main result that only parts of the structure are
flexible, because the RUM eigenvectors involve significant motions of only a subset of all
tetrahedra.

23,50
1,
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CONCLUSIONS

In this chapter we have shown how the RUM model has enabled us to understand the
local deformations in silicate crystals, whether in a dynamic sense as in the high-
temperature phases of cristobalite and tridymite, or in a static sense as in the
incommensurate phase transition in tridymite and the localised deformations in the zeolites.
All these processes should give rise to diffuse scattering. We have noted that some of our
results have been confirmed by measurements of diffuse scattering using electron
diffraction. The other link to experiment is through total scattering measurements, and these
have been performed on the silica polymorphs. This aspect is described in more detail in the
Chapter by David Keen.

In this article we have focused more on applications and insights of the RUM model
than on the details of the model. Many aspects of the RUM model have been confirmed by
experiment, and we have given some of the critical results. However, in its basic sense the
RUM model gives an over-simplified description of real silicates, which do not have
perfectly rigid tetrahedra and completely floppy joints. For the present purposes, attempts
to go beyond this simplification do not alter or add to the physics insights the RUM model
has given. But in our overall model we do take explicit account of the finite stiffness of the
tetrahedra (the split-atom method is formally equivalent to assigning a finite stiffness to the
tetrahedra) and the forces between tetrahedra, and a number of new results follow." ¢3!
The most striking of these is that the transition temperatures for displacive phase transitions
in silicates are proportional to the stiffness of the tetrahedra.*’ The ability of the tetrahedra
to distort also has important implications for the thermodynamics of phase transitions.”'
Moreover, the finite stiffness allows us to use the QRUM extension of the basic model.

Our feeling is that the RUM model provides an intuitive link between two routes to
understanding diffuse scattering in silicates and the structure it suggests, namely between
the use of one’s imagination to visualise atomic structures, and large-scale calculations. Our
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imagination is always limited because disordered crystals can be complex objects. For

example, Hua and co-workers*®*’ were able to visualise the RUM distortions that give rise
to the diffuse scattering at a single wave vector in cristobalite, but it would have been truly

heroic had they been able to deduce all the RUMs in the system by eye. It is because it is

not possible to make this step that domain models of the disorder in B-cristobalite have been
so popular. At the other extreme are the phonon calculations using realistic force constant
models. A good model ought to be able to reproduce the one-phonon diffuse scattering

reasonably accurately (and with molecular dynamics simulations it should be possible to
account for multi-phonon processes also). However, simply reproducing experimental data
means that you may understand the general principles (e.g. phonon theory), but it does not
necessarily follow that you understand the particulars of the case in hand. The RUM model

allows us to isolate the important details and make quantitative predictions, whether in
interpreting the short-range rearrangements of the cristobalite structure or in deducing
potential binding sites in zeolites.
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1. HISTORICAL INTRODUCTION

Josiah Willard Gibbs made the seminal advances in applying thermodynamics to the
study of solids, from which modern materials science was born [1].* In more recent times
there is some perception that the field of thermodynamics is old-fashioned. A more accu-
rate perception, perhaps, is that the contributions of van der Waals, Boltzmann, Kirkwood,
Guggenheim and Nerst have proved impressively durable. Much of our motivation today
for studying the structures of solids is provided by thermodynamics. Without thermody-
namics, many studies of structures of solids would amount to little more than taxonometric
classifications.

To date, thermodynamics and structure have connected in two important ways. One
connection is between electronic structure and local atomic structure. This effort seeks to
understand relationships between the structures of solids and their internal energy, E. The
second connection is between the state of order in solids and the entropy of atom configura-
tions, Sconfig.

Without entropy there could be no thermodynamics. Entropy is, of course, defined as:

S=kgnQ (1)

where € is the number of equivalent configurations available to a macrostate of a system.
The first task in calculating S is to decide which entities are configured. Possibilities
include:

configurations ofatoms on sublattices  Sconfig
instantaneous positions of atoms as they vibrate about lattice sites  Syip
magnetic moments of atoms ~ Syag
electrons in different electronic states  Sg
magnetic moments ofnuclei Sy

* Physical chemists also claim Gibbs as a father figure.
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Because we seek differences in the free energies of solid phases, the issue is not to
identify the size of the entropy, but to identify differences in entropy between different
macrostates or phases of a material. For example, the nuclear spin distribution is typically
random for different structural phases ofa solid. So although the entropy of nuclear spins
is large, it does not change during a structural phase transition, and can therefore be
neglected. Similarly the magnetic entropy of two paramagnetic phases well above their
Curie points may be large but equal, so Smag can be neglected. It is often assumed that Se
is negligible, since the energy widths of bands in solids are on the order of a few eV,
whereas the thermal spread of electron occupancies at 1000 K is about 0.1 eV. With one
outer electron per atom and a bandwidth of 10 eV, the electronic entropy is of order S| =
kg In(10.1/10) = 0.01 kp/atom, which is usually negligible compared to other sources of
entropy. We note that with narrower bands, however, the electronic entropy may not be
negligible for the thermodynamics of solid phases.

For the thermodynamics of chemical order-disorder transitions in alloys, it has been
known for some time that the configurational entropy, Sconfig, plays an important role. In a
typical problem of ordering in an equiatomic binary alloy, the state of order can range from
perfect, where the two species of atoms are arranged precisely onto two distinct sublat-
tices, to random mixing on the two sublattices. Over this range the configurational entropy
changes from Sconfig = 0 t0 Sconfig = kp In2 = 0.69 kp/atom. The configurational entropy is
not so simple when the alloy has a state of order intermediate between these two extremes.
Nevertheless, Gibbs himselfnearly succeeded in developing a statistical mechanics capable
of handling these problems, and Ising [2], Onsager [3], and others [4-7] made key contribu-
tions earlier this century. With the development of the cluster variation method of Kikuchi
[8-10], calculations of Sconfig should now be regarded as a mature.

Even more recently, our understanding of the electronic energy of a solid has grown
significantly owing to the acceptance of the local density approximation for the electron
exchange and correlation energy. With electronic structure calculations for the internal
energy ofa solid, E, and accurate cluster approximation methods for Sconfig, two key pieces
of the free energy are in hand. A number of phase diagrams have been calculated with ab
initio free energies as:

F(T) = E—-T Sconfig - (2)

So then, what is the role for the vibrational entropy, Syip, in solid state phase transi-
tions? This question is not new. In the Jubelband for W. Nerst's 60" birthday, Fritz Lange
published results from a cryogenic calorimetry study on white and gray tin [11]. His
results, which show a difference in vibrational entropy ofa very large 0.8 kp/atom, were
celebrated in the Modern Theory of Solids by Seitz [12]. Slater's book, Introduction to
Chemical Physics has a major section on vibrational entropy [13]. Occasionally theoretical
papers argued that the change in vibrational entropy could be significant [14-20], and could
be comparable to the change in configurational entropy in the order-disorder transition in
brass, for example [15,16,18]. Bakker's group performed analytical calculations for 1-D
alloys, and numerical calculations for 2-D alloys that showed the possibility for a large
ASyip in order-disorder transitions [18,20]. Moraitis and Gautier performed semi-empirical
calculations of ASyjp, for the formation of alloys from pure elements, and argued that ASyjp
was not negligible [17]. Grimvall analyzed calorimetric data to identify significant differ-
ences in vibrational entropies of various pure materials and compounds [21,22].

There has been less experimental evidence for the importance of AS,iy in solid-solid
phase transitions. For example Hawkins and Hultgren reported the results of a detailed
calorimetric study on the difference in vibrational entropy of ordered and disordered
CuiAuy, and found no effect: ASyip = 0.0£0.03 kp/atom [23]. In the 1950's a curious con-
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troversy arose concerning the role of vibrational entropy in the classic disorder - 11, order
transition in Cu3Au. From rather noisy electrical resistivity data taken at cryogenic tem-
peratures, Bowen [24] concluded that the ordering transition in CuzAu involved a change in
vibrational entropy of(0.355 kp/atom. This large value of AS;, is comparable to the entire
entropy of the order-disorder transition in CuzAu, which is about 0.40 kp/atom [25].
Bowen's result was checked in a much more sophisticated experiment by Flinn, McManus
and Rayne [26] who measured elastic constants for ordered and disordered CusAu, and
obtained Debye temperatures of 283.8 K for the ordered alloy, and 281.6 K for the disor-
dered alloy. This is equivalent to a change in vibrational entropy of a mere 0.023 kp/atom.
What is amusing about this early controversy, which was evidently settled against the
importance of vibrational entropy, is that both electrical resistivity data and elastic con-
stants are poor indicators of differences in vibrational entropy. The arbiters of this contro-
versy must be heat capacity data or measurements of the full phonon density of states.
Curiously, these methods have shown recently that Bowen was closer to the truth,
although probably for the wrong reasons [27].

Studies of changes in vibrational entropies of phase transitions began with seriousness
in the 1990's. The present paper focuses primarily on recent studies from our group at
Caltech [27-34]. In addition to the experimental results from Caltech, the Barcelona group
of Planes, Ortin, et al., performed calorimetric measurements of the AS,i, in martensitic
transitions and found ASyip to be on the order of 0.3 kg/atom [35.36]. Results from a num-
ber of theoretical studies have been reported recently. Moruzzi, et al., suggested the use of
the Debye-Griineisen approximation for calculating thermodynamic properties from first
principles interatomic potentials [37]. Sanchez, et al., and Mohri, et al., used the Debye-
Griineisen approximation in alloy phase diagram calculations and found critical tempera-
tures to be changed by typically 20 % [38,39]. Cahn argued for the importance of vibra-
tional entropy in martensitic transitions [40], where the shear processes are deterministic
and do not generate configurational entropy in the alloy. Calculations oriented towards the
vibrational spectra of solids have been performed by Clark and Ackland [41 ] and Garbulsky
and Ceder [42,43]. Very recently, other groups [44,45] have begun to calculate ASy;, for
alloys approximated with embedded atom potentials.

Sections 2 - 4 in this chapter explain the physical meaning of vibrational entropy. The
explanations range from the classical to the quantum statistical mechanical, as the vibra-
tional entropy is related first to the heat capacity of the solid, and later to the phonon den-
sity of states (DOS) of a material. Sections 5 and 6 describe the phonon formalism and
how phonons are measured by inelastic neutron scattering. Sections 7 - 9 present experi-
mental measurements of vibrational entropy and phonon DOS curves. Examples are pro-
vided to show how the vibrational entropy originates with specific features of the phonon
DOS. Harmonic and anharmonic effects are both shown to be important.

2. CLASSICAL THERMODYNAMICS

Heat is, of course, a form of energy, stored in internal coordinates of a material. The
change in entropy of a solid, dS, is related to the heat input, dQ, in a reversible process as
dQ =TdS. The heat input to the material per degree per mole is the heat capacity at con-
stant pressure, Cp(T), or constant volume, Cy(T). Measuring the heat capacity as a func-
tion of temperature is the direct way to obtain the change in entropy over a range in tem-
perature. What is important for phase changes, however, is the difference in entropy
between two states of a material. The direct way to determine differences in entropy at
constant pressure is to measure diffegences in heat capacity of two states of a material over
a range of temperatures, ACy(T) = Cp - Cg‘ . This can be done by differential calorimetry,
and then calculating:
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T

ASPT) = f £L(T—-dT' 3)

Classical thermodynamics says nothing about the nature of the heat (i.e., is the heat a
change in chemical bonds, phonons, electrons, or magnetic moments?). It is often possible
to set up experiments to study one type of internal coordinate, however. Ifthe structural
and magnetic coordinates of a material remain constant during the measurements, calorimet-
ric methods using Eq. 3 may be a good way to obtain AS'/;(T) . In particular, the inte-
grand ACy(T)/T is often largest at low temperatures where there is no significant atomic
diffusion, so there are often no changes in atomic configurations during the measurements.

3. CONCEPT OF VIBRATIONAL ENTROPY

Although classical thermodynamics tells us how to measure the differences in vibra-
tional entropy of two alloy phases, it does little to answer the question, “What is vibra-
tional entropy?” This section provides a conceptual answer, which is developed in more
detail in the next section. This section also shows that in the classical limit, the difference
in vibrational entropies of two solid phases depends only on their phonon spectra.

Assume that two solid phases have the same types and numbers, N, of atoms, each of
mass m;j. Our 3-dimensional solid will have 3N normal modes of vibration. What is impor-
tant for determining €2 in Eq. 1 is the total volume in phase space explored by the two solid
phases at temperature T.* The phase that explores the larger volume in this phase space
will have more distinguishable configurations and a larger vibrational entropy. The number
of distinguishable configurations of a solid phase is directly proportional to the volume of
this phase space, V:

Q=— . ()
0

Suppose the volumes of the phase spaces for the two solid phases, o and B, are Vo and Vp.

For comparing the difference in vibrational entropies of these two solid phases, defined as
AS% = SP-S% constant V, is irrelvant:

V, V,
ASB® — kgin| B kgl Yo |- B
v1b B n[v()j B In v kg In Ve . (5)

The phase space is spanned by momentum coordinates, {p}, and position coordinates, {x}.
Volumes in phase space are products of ranges of excursion in these coordinates as the
atomsvibrate, Ap and Ax. Specifically:

AN 3N
Vg = ]‘0[ Apj ]‘0[ Axj . (6)
= =

In vibrating systems there will be a transfer of energy back and forth from kinetic to
potential, providing the ranges of Ap; and Axj. The range of Ap; is easy to calculate from

* 1 apologize for the use ofthe word “phase” in the two different contexts of “phase space” and “solid
phase.” Inthe term “phase space”, however, the word “phase” is an adjective.
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the kinetic energy. At a temperature T, the maximum of Ap denoted Appay iS Obtained
from:
2
APinax

kgT = ————
B P N

Apmax = VzkaT . (8)

To obtain the range Ax, we invoke the harmonic approximation. A feature of the harmonic
approximation is that the vibrations can be resolved into independent normal coordinates,
Q. In the harmonic approximation the maximum of a spatial normal coordinate, Qmay 18
obtained from the potential energy of a harmonic oscillator of frequency @

1
kpT = 3 m@?Qhay 50 9)

1, et
Qmax - ® m

Figure 1 illustrates our results so far (Eqs. 8 and 10). The important point is that the
momentum coordinates have the same range for different solid phases, whereas the spatial
coordinates scale as @!. Iftwo solid phases have the same types of atoms, then their vol-
umes in phase space cannot differ because of differences in their momentum coordinates.
The difference in phase space volume arises from the difference in their position
coordinates because of the factor @~! for each normal mode of vibration. The physical
interpretation is simple. Ifa solid phase has stiffer springs, it will have vibrations of higher
frequency. For the same thermal energy, the atoms in a stiffer solid will not move so far
from their equilibrium positions, so fewer positional configurations are possible. This stiff
phase has a low vibrational entropy. We can calculate this difference in vibrational entropy
with Egs. 5, 6, 8, and 10:

(10)

[T - fﬁ
2kT

ASPO = kg ln| L0 0 & , (1
2m, k T
I Mo
0, = [2K;T
) ) i
Py Pyyg
A4
4i 383

Figure 1. Ranges of coordinates in the phase space occupied by solids at temperature T.
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where the subscripts i refer the B-phase and j to the a-phase. Since the masses of the
atoms are the same in the two phases:

3NL
ashe = kpln| 50| (12)
I,

and the logarithm of a product is the sum ofthe logarithms:

AS% = kp [iln(mj)— iln(m,)) . (13)

Equation 13 is in fact an exact result in the classical limit and the harmonic approximation.
With 3N phonons in a solid, it is often more practical to work with a phonon spectrum, or
density of states (DOS), g(€). The product g(€)de is the fraction of vibrational modes in the
energy interval de, and € = hw. Transforming Eq. 13 to an integral over a continuum of
states, the difference in classical vibrational entropy (per atom) of two phases, SP — S¢,
depends in a straightforward way on the difference in the phonon DOS ofthe two phases:

SB_ Qo= 3k[;j[ga(e) - g“(e)] Inede (14)

where the difference of the two normalized g(g)avoids problems with the dimensionality of
the argument of the logarithm. In the harmonic approximation, the phonon density of
states is all we need to calculate the vibrational entropy. To understand details of the pho-

nons, however, we may need to know their polarizations and dispersions. (These topics
are discussed in section 5.) A more detailed understanding of individual phonons may allow

us to identify correlations between the atomic structure and the vibrational entropy.

4. VIBRATIONAL ENTROPY IN QUANTUM STATISTICAL MECHANICS

This section derives the phonon part of the heat capacity at constant pressure, Cp(T)
from elementary quantum statistical mechanics. The phonon energy in the lattice, Eph, is
obtained by summing the energies ofall phonons, each ofenergy €. This total energy, Epp,
includes all products of € with the phonon DOS, g(e), and the Bose-Einstein phonon occu-
pancy factor, n(g):

Epn(T) = 3 [ g®enETnde (15)

where the phonon occupancy factor (including the half-occupancy from the zero point
vibration) is:

1
+ . (16)
eE/kT_ 1

| —

n(e,T) =
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At a slightly higher temperature, T2 = Ty + AT, the phonon energy is Epy(T2):

on de on )da ‘ (an

T de
Epn(T2) = 3 T,)+ —AT az on
ph(T2) ! g(E)(e( )+ T j(n(a,T,H e dT AT+aT AT

The change in phonon energy between T and Ty, dE;n/dAT, gives the phonon contribution
to the heat capacity at constant pressure, CH! :

cBhr) = Cy(m) +CPh(T) (18)

where we have separated the harmonic part:

- p)
Cy(Ty) =3 j g(e) sm)ﬁds : (19)
and an anharmonic part:
h t Je T Jde on
cP (T = 3 ! g(e) ﬁn(e,T,) de + 3 ! 2O = = de (20)

and have ignored small terms in AT. The integral in Eq.19 does not involve any changes
with temperature of phonon energies — it includes only the change in phonon occupancy
with temperature. This is as expected for harmonic vibrations, where vibrational frequen-
cies do not change with the amplitudes of thermal vibration. It is assumed that the only
reason why phonon energies undergo a change with temperature is that the volume of the
solid increases a bit, and the interatomic potential is anharmonic. With no change in vol-
ume, no change in phonon energies occurs with increasing temperature. The part of the heat
capacity of Eq.19, which involves no change in phonon energies, is therefore Cy(T), the
heat capacity at constant volume.

The anharmonic contribution of Eq. 20 is proportional to the temperature dependence
of the phonon energy. In the classical limit, where n(e,T) = kgT/g it is not difficult to
show that Ca}?,hl(T) = 0. The classical picture is that as the phonon energies decrease with
temperature, their occupancy factors increase inversely, leading to no net change in the heat
capacity. Actually, even at high temperatures there remains a change in the zero point
energy when 0€/0T # 0, so a small contribution to the heat capacity still remains. This
Cphl(T) is a more significant fraction of the heat capacity at low temperatures, however,
and is positive when 0e/0T < 0, as is typically the case.

Our treatment of anharmonic effects is not yet complete, however. There is an addi-
tional penalty to be paid in internal elastic energy as the crystal expands against its bulk
modulus, B. Ifthe crystal expands linearly with temperature, the elastic energy increases
quadratically:

1 T 2
E(T) = ;Bv( (f) 3T )dT'j , e2))

where 0(T) is the linear coefficient of thermal expansion (one-third the volume coefficient
of thermal expansion), and the specific volume is v. Since E(T) is positive, and the
anharmonic contribution Ca‘;h] (T) is also positive, thermal expansion is energetically unfa-
vorable. We require another physical phenomenon to motivate thermal expansion. This
missing ingredient turns out to be the phonon entropy. As the material expands and the
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phonon frequencies soften (d€/dT < 0) the vibrational entropy of the solid becomes larger
(cf. Eq. 14 for the high temperature limit). The contribution, —TSy;p, to the free energy of
the expanded solid with phonons overcomes the penalty in elastic energy. We can calculate
the equilibrium value ofthe coefficient for thermal expansion of a solid as it is heated from
temperature Ty to To = T + AT by first calculating a free energy with elastic energy and
phonon entropy:

F(T1+AT) = F(T1) = Ey(T) + AT) + E(T)) = T[Svi(T1+AT) - Svin(TD} . (22)

Using Egs. 14 and 21, minimizing Eq. 22 with respect to o, and then taking its derivative
with respect to T, we obtain the following proportionality between the coefficient of ther-
mal expansion, o, and the heat capacity at constant volume, Cy(T)

(23)

In setting up our expression for de/dT, we used a constant ofproportionality, vy, known as
the average Griineisen constant. It is the average (weighted by heat capacity) of the frac-
tional change in energy ofthe phonon modes with the change in volume of the crystal. For
an individual phonon mode, i, we often define a mode Griineisen parameter:

v Bei

j = — . 24
Y . 24

In practice, the Griineisen constant is often assumed to be the same for all phonon modes,
but this assumption is unlikely to survive detailed scrutiny.

In summary, to account for all anharmonic contributions to the heat capacity we have to
consider: 1) the C ](T) of Eq. 20, which is positive when de/dT is negative, 2) the internal
elastic energy needed to expand the crystal, 3) the increase in vibrational entropy as the
crystal expands. Although items 1 and 3 can be obtained from measurements ofthe phonon
DOS at different temperatures, item 2 cannot. While it is possible in principle to obtain
information about the bulk modulus from the low energy tail of the phonon DOS, in prac-
tice this is not so accurate. It is usually more reliable to use the classical relationship
between Cp(T) and Cy(T) to obtain the anharmonic contribution to the entropy:

Cp(T) = CW(T) = 9Bva2T . (25)

Nevertheless, by measuring the phonon DOS at different temperatures it is p0551b1e to
obtain the de/aT needed for the evaluation of Cae\ (T) of Eq. 20. Furthermore, when o is a
constant, it can be shown with Eq. 22 that in equlllbrlum at high temperatures:

T [Cp(T) - Cy(T)] = TASyip (26)

and with Eq. 14 the phonon DOS can provide the change in vibrational entropy, ASyip, over
the range intemperature AT. One type of Griineisen constant, 7, can be measured directly
from the shifts of the phonon using the relation: de/dT = —3yae With more detail, how-
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ever, phonon DOS curves do not provide de/dT directly, but rather provide og/oT and
dg/oe. Figure 2 illustrates the relationship between de/dT, dg/dT and dg/de. Two normal-
ized DOS curves are shown, one for temperature T, and the other shows some phonon

softening at the higher temperature T+AT. What is important for Eq. 20 is how phonons

within a particular energy range reduce their energy with increasing temperature. An exam-
ple is illustrated by the arrow at the bottom of Fig. 2. The slope of the phonon DOS curve,
dg/de, is the negative of the horizontal shift, de/dT, divided by the vertical shift, dg/9T:

%

de. aT

T E @
oe

(In practice, Eq. 27 becomes difficult to use when dg/de is small and AT is not. In this case
it may be helpful to scale g(¢) by its breadth when evaluating dg/dT.)

ds{dT dg/de

Figure 2. The relationship between the slope of the phonon DOS curve, dg/de, its temperature dependence,
0g/dT, and the energy shift with temperature, de/dT.

Substituting Eq. 27 into Eq. 20 gives:

dg
3T d
aagT (n(s,T]) + eﬁ) de , (28)

Je

ch(T) =3 | g
0

Equation 28 can be used with experimental data to identify the effect of phonon softening
on the heat capacity of'the solid. It is a part of the anharmonic contribution to the heat
capacity, but it does not account for the energy required to expand the crystal against its
bulk modulus.

In summary, the phonon DOS readily provides the heat capacity at constant volume,
Cy(T). In practice, most of the vibrational entropy of a solid phase can be obtained from
Cy(T). The change in the heat capacity with temperature, owing to the softening of the
phonon DOS, can also be obtained from measurements of the phonon DOS at different
temperatures. The phonon DOS is less useful for determining the bulk modulus of the
material, and hence the thermal expansion (Eq. 23) and the full anharmonic contribution to
the heat capacity (Eq. 25). With independent measurements of the density and bulk
modulus, however, the phonon DOS can be used to provide all thermodynamic information
on the vibrational entropy.
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5. BORN - VON KARMAN MODEL OF LATTICE DYNAMICS

The most important step in understanding the vibrational entropy is knowing the pho-
non DOS. The Born von - Kdrméan model provides a formalism to calculate and model the
phonon DOS of a periodic solid. This model allows for the calculation of the vibrational
eigenmodes of masses (atomic nuclei) connected together by linear springs to various neigh-
boring masses. This section presents some of the key results and equations of the Born
von - Karman formalism, but many results are presented without derivation. The equations
of motion of the masses are:

i) effiol)

I'k'

]
where ua(k) is the displaclelt;nent vector of the aith Cartesian component (, y, z) for the atom
k in the 1™ unit cell. ¢aB k k' | 1s the force constant involving the displacement of the atom k
and the neighboring atom k'. The coupled set olf linear equations of Eq. 29 has harmonic

solutions, known as “phonon solutions” for u}) }:

L 1
Ua(k) = _\/—— U, (klq) exp(i(q-x()- w(q))) , 30

my
|
where x(1) is the shift of ua(k) from its equilibrium position in a perfect lattice, and q is the
wavevector of the vibrational mode. The frequency for this particular vibrational mode is
uXq), related to the phonon energy as e(q) = Aexq). Substituting Eq. 30 in 29, and rear-

ranging the equations of motion we have:

q
w*(q) U (klq) = )y Daﬁ(kkv) Ug(kla) , where 31)
kB
q 0!/
i

Daﬁ(kk') = _\/ml=mz ¢aB(" ) exp(i(q-x())). (32)
KMk

We have defined the dynamical matrix D in Eq. 32 in terms of the Fourier transzform of the
force constant matrix. Equation 31 provides an eigenvalue equation for the ®°, and these
frequencies are obtained by diagonalizing the dynamical matrix for a particular choice of
phonon wavevector, q:

ID(q) - @*(@) 83| = 0 33)

To obtain the vibrational spectrum ofthe solid, we must diagonalize D for all wavevec-
tors within the first Brillouin zone of the crystal, and collect a histogram of vibrational fre-
quencies. This is the phonon DOS, g(e), The eigenvectors of the dynamical matrix, U(k|q),
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and the phonons themselves, u(k|q), have 3 x k dimensions, where k is the number of atoms
in the unit cell. For example, suppose the crystal has 4 atoms per unit cell. The dynamical
matrix will be 12 x 12, with a structure as follows:

on) on) o3 of)

D(ki') - D(qu) D(;z) "(;s) D(;) ’ (34)
(1) o) o2) o3
() ofn) e() o)

where the individual matrices in Eq. 34 are themselves 3 x 3, for example:

o,(3) o0 ) ouln)
D(qu) - Dyx(2ql) Dyy(2ql) Dyz(2ql) ’ G33)
ANERCENN

and the eigenvectors (transposed as 1 x 12) are ofthe form:

Ukle) = [ U(la) Uy(lig) U,(1la) U,2la) U,2la) U,la) (36)
U,Gla) U,Gl0) U,Gla) U,@éa) Uy4lq) Uda ]

From section 4 we know that the spectrum of eigenvalues, i.e., the phonon DOS, is all
the information about phonons that is used when calculating thermodynamic properties.
Knowledge ofthe eigenvectors of the dynamical matrix, U(klq), is often important for two
reasons, however. First, the experimental method of coherent inelastic scattering requires
knowledge of the U(klq) of the different phonons. The strength of inelastic scattering
depends, for example, on how the motion ofatom 1 in the unit cell is oriented with respect
to the momentum transfer in the experiment (i.e., how the vector [U (llq) U (l|q)
U (l(q)] is oriented with respect to Q). In some cases it is possible to 1nterpret data’from
incoherent inelastic scattering without knowledge of U(k|q). This is not generally true,
however, when the unit cell comprises different species of atoms, and when the symmetry
of the crystal is not cubic. The second reason why the eigenvectors of the dynamical
matrix, U(k|q), are important is that they may provide a better understanding of the rela-
tionships between vibrational entropy and the local atomic structure. Phonon DOS curves
for different alloy phases, such as shown in sections 7-9 below, are often quite different.
It is rarely possible to attribute these differences to a simple shift in energy of all phonons,
and knowledge of the atom motions in the individual phonons, their U(klq), is usually
required in order to understand why the local structure of the solid affects the lattice
dynamics, the phonon DOS, and the vibrational entropy.
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6. INELASTIC NEUTRON SCATTERING

Most of the articles in this book are concerned with the phenomenon of diffraction,
which is a special case of cooperative scattering by a group of atoms. Diffraction requires a
type of scattering called “coherent scattering”, characterized by a precise phase relationship
between the incident and scattered waves. In diffraction, the phase relationships between
scatterings from individual atoms are set by the wavepath across inter-atomic distances.
Diffraction is particularly useful for measuring features of atomic arrangements in materials.
The scattering of a wave by an atom need not involve a precise phase relationship between
the incident and scattered wave, however. This is the case of “incoherent scattering.”

Besides being “coherent” or “incoherent”, scattering processes are “elastic” or
“inelastic” when there is, or is not, an energy change of the wave after scattering. For elec-
tron and x-ray scattering, the usual processes of interest are coherent elastic scattering,
which is useful for diffraction, and incoherent inelastic scattering, which is useful for spec-
troscopy. Two other combinations of the word pairs {coherent, incoherent} and {elastic ,
inelastic} can be formed, however, and both are important for neutron scattering.
“Coherent inelastic” scattering occurs when a material undergoes an internal excitation with
a precise energy-wavevector relationship, such as the excitation of a particular phonon. In
this case there is an energy loss to the material during scattering (inelastic), but the scatter-
ing amplitude depends on the phase relationship between the atom movements in the pho-
non, and the phases of the incident and scattered neutron wavevectors. This process is
therefore coherent. Also, “incoherent elastic” scattering means that the elastic scattering
from different atoms involves imprecise phase relationships between the incident and dif-
fracted waves. This occurs for example in neutron scattering when the nuclei have different
spin orientations. Each spin orientation causes a different phase shift during scattering, so
the phase relationships between incident and scattered waves are not consistent. Some of
the elastic scattering is then incoherent.

Inelastic scattering, especially of neutrons, is the most important experimental method
for determining the phonon DOS of a solid, and for determining energy-wavevector rela-
tionships of individual phonons. Inelastic neutron scattering is a topic that quickly extends
beyond the scope of the present article, so this section presents only a few results in a way
to appeal to the reader’s understanding of diffraction experiments. For further explanations,
the reader is referred to several excellent books and book chapters on the topic [46-48]. In
elastic scattering, the structure of the crystal affects the diffraction pattern through a
“structure factor”, F(Q). The analogs for incoherent or coherent inelastic scattering experi-
ments are the “incoherent dynamical structure factor intensity”, |[Ginc(Q,V)|2 or the
“coherent dynamical structure factor”, Geoh(Q,q,v). Here the phonon frequency is v = E/h
= /27, the experimental momentum transfer is Q, and the phonon wavevector is q.
Missing from our dynamical structure factors are Debye-Waller factors, phonon energies
and occupancy factors, and the normalization of neutron flux owing to a change in neutron
velocity after scattering. The important features included in the dynamical structure factors
are the geometrical efficiencies of how particular phonons will be excited (or de-excited) by
a neutron that is scattered with a particular incident energy and momentum transfer. The
analogy in a diffraction experiment is that F(Q) describes how the geometrical positions of
the atoms in the unit cell affect the phase relationships in coherent elastic scattering.

The dynamical structure factor intensity for incoherent inelastic scattering 1is
|Gine(Q,v)2, which is measured at a particular energy loss, E=hv and momentum transfer,
Q. The amplitude of the scattering depends on the alignment between the momentum
transfer, Q, and the directions of motion or “polarization” of each atom in the unit cell
(described in Egs. 30 and 36 as a 3k-component vector, U (q) , which has x-, y-, and z-
components for each of the k atoms in the unit cell). The dependence on alignment is the
scalar product Q- Uryk(q) . The |Ginc(Q,V)[? receives smaller contributions from atoms with
large mass, My, since they have amplitudes of vibration that are inversely proportional to
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their mass. There is no dependence of |Ginc(Q,V)[? on the alignment of the phonon q and
the momentum transfer, Q. The incoherent dynamical structure factor intensity is:

Ginc,r
G = 2 T}}Z 2 e UL, @F 8(v - vy(@) . (37)
rk Y q

The delta function assures the matching of energies of the phonon and the incident neutron.
(The crystal vibration cannot grow if there is a mismatch of frequencies of the neutron and
phonon waves.) Equation 37 can be evaluated for untextured polycrystals of one atom
species. In this case the crystallographic average of Eq. 37 over the various orientations of

Qis:
GincV. Q)2 = Q° 2 ‘;T:z 2 UL, @F 8(v—vga)) - (38)
rk Y q

Equation 38 is closely related to the phonon density of states, g(e) (included in Eq. 38
as the distribution of the delta functions &(v — vy(q))). It is sometimes possible to use
incoherent inelastic neutron scattering to determine g(e) for a material. In doing so, the
measured data for neutron counts versus energy at a particular value of Q are first corrected
for background, and then divided by the thermal factor, (n(v) — 1)/v :

nv)-1 _ 1
v v [1—exp(-hv/kT)]

; (39)

which is related to the Bose-Einstein phonon occupancy factor. In ideal experiments, this
corrected scattering spectrum will be the phonon density of states of the material. Unfor-
tunately, three problems may vitiate the procedure. First, different species of atoms in the
unit cell may have strongly different incoherent cross sections, Gine. In this case there will
be much weaker scattering from phonons that emphasize motions of the atoms with small
Oinc- In general, correcting for this effect requires a priori knowledge of the UrYk(q) , which
is usually equivalent to knowing the phonon DOS itself. Second, at high temperatures it
may be possible for two or more phonons to be excited by one neutron. This
“multiphonon scattering” causes multiple energy losses (gains, too), and distorts the meas-
ured neutron energy loss spectrum. It is often possible to correct for this multiphonon
scattering, however, and multiphonon scattering is often negligible for small Q (< 5 A-1) at
temperatures of 300 K and below. Third, there may be a significant contribution from
coherent inelastic scattering that must be treated separately.
The dynamical structure factor for coherent inelastic scattering, Geon(Q,q,V) is:

Geon(Q,q,v) = Z l Z Z br, Q- U] (q) ¢iQn§(v-v(q)) (Q-q-g). (40)
rk NMrk ¥ g

Here by is the coherent scattering length of the nucleus at r , which is related to the coher-
ent cross section: Geoh = 47|by/2. Notice the delta function in Eq. 40 that does not appear
in Eq. 37. In addition to the requirement that the frequency of the phonon matches the
frequency of the neutron, 8(v—v(q)), coherent inelastic scattering also requires matching of
the neutron and phonon wavevectors (modulo a reciprocal lattice vector, g), so there is the
additional factor 8(Q-q-g). The idea is that phases of oscillation of the neutron wave must
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match the vibrational motions of all atoms along a phonon. This is a coherent scattering

process, so the scattering amplitudes of the atoms and their motions must cooperate to
scatter the neutron. The orientation of the momentum transfer along the vibrational direc-
tion of an atom is important (as in the previous case of incoherent scattering), hence the

product Q. Ulk(q). For coherent scattering it is also important that Q be in phase with

atom motions over many unit cells. Hence the additional factor of eiQrin Eq. 40.

Coherent inelastic scattering experiments are most effective when single crystals are
available for study. The orientation of the crystalline axes with respect to Q gives control
over the particular phonon that is excited. The experiment is performed by aligning Q along
specific directions ofthe crystal (usually directions ofhigh symmetry such as (111), (110),
(100)). The frequency of the phonon can be measured by scanning the energy loss while
maintaining a constant Q. Individual energy spectra are fit to resonance peaks characteristic
of (damped) harmonic oscillators, and the energy of the oscillator is extracted as a point on
the phonon dispersion curve of € q. Coherent inelastic scattering has been the most impor-
tant method for measuring phonon dispersion curves, which are plots of q(v) for the dif-
ferent branches, v, of phonons in a crystalline solid. For polycrystalline solids, the coher-
ent inelastic scattering is averaged over all orientations of the crystallites, and hence over all
orientations of q. With a good understanding ofthe lattice dynamics of single crystals, it is
possible to calculate the coherent inelastic scattering from polycrystals. Unfortunately, the
inverse problem of going from coherent inelastic scattering spectra of polycrystals to pho-
non dispersion curves (or even to g(€)), is usually impossible.

Coherent inelastic scattering experiments on single crystals with well-defined unit cells
give rigorous phonon dispersion curves. Alloys with chemical disorder have no unique unit
cell with translational periodicity, however, so here the usefulness of dispersion curve
measurements is less clear. In measurements of energy spectra at constant Q, the phonon
energies are broadened in a disordered alloy. It is often possible to extract an average pho-
non energy, and dispersion curves can be obtained for alloys with chemical disorder. The
Born - von Karman model is often used for interpreting these average vibrational energies,
but it is necessary to select an average unit cell in order to make these interpretations. Con-
sider the case of chemically disordered CujAu Interpretations of the individual energy
spectra are performed by assuming an fcc unit cell with all atoms having the same average
mass. This analysis, which assumes an fcc lattice dynamics for the disordered alloy, is
known as a “virtual crystal approximation.” Since the virtual crystal approximation ignores
the details of local chemical environments (which may be Cu-rich or locally ordered, for
example) the phonon DOS obtained from the virtual crystal lattice dynamics may not be
rigorous.

7. VIBRATIONAL ENTROPY AND PHONON DOS OF TRANSITION METAL
ALUMINIDES

Transition metal aluminides, such as NizAl, Fe3Al, and NiAl, have been the subjects of
numerous studies in metallurgy and metals physics over the past decade or so. Their
mechanical properties and corrosion resistance at high temperature have motivated engi-
neering applications as components for jet aircraft engines and as piping and valves for the
processing of fossil fuels. There has also been a significant effort to understand the phase
diagrams of transition metal aluminides. An understanding of the reasons for stability of
the cubic phases of the nickel and iron aluminides could perhaps be used to engineer tita-
nium aluminides with crystal structures of cubic symmetry and acceptable ductility at low
temperatures.

In thermodynamic equilibrium, the alloy Fe3Al assumes an equilibrium state of D03
chemical order. With cooling rates from the melt exceeding 105 K/s however, it is possible
to retain a high degree of chemical disorder in quenched alloys. Alloys of Fe3Alsubjected
to piston-anvil quenching, for example, are nearly disordered solid solutions [49,50]. Van
Dijk [51] and Robertson [52,53] have used inelastic neutron scattering to measure phonon
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dispersion curves along high symmetry directions in single crystals of ordered and disor-
dered Fe3Al. (Their disordered alloy was obtained with an Fe-rich composition.) Using
Robertson's force constants up to fifth neighbors (columns 1 and 3 of Table 4 in [53]), we
used the Born - von Karman model of section 5 to calculate the phonon dispersion curves
and the phonon DOS for disordered and D03-ordered Fe3Al. In these calculations the dis-
ordered state was represented as a bee lattice with a basis of 1 atom having an average mass
ofthe Fe and Al atoms, and the bce-based D03-ordered structure was represented as an fec
lattice with a 4-atom basis. The phonon DOS curves are shown in Fig. 3. The most
prominent change upon ordering in the phonon DOS curves of FejAlare the gap around 9
THz for the ordered alloy, and the optical modes at 10 - 11 THz.
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Figure 3. Phonon DOS curves for ordered (thin curve) and disordered (thick curve) Fe3Al, calculated using
force constants from Robertson [53].

Using the two phonon DOS curves of Fe3Al shown in Fig. 3, the heat capacity at con-
stant volume, Cy/(T), was calculated for the disordered and disordered phases using Eq. 19.
The difference in these two heat capacity curves, ACy(T) =C3® —C%, is shown in Fig.
4. The agreement with the experimental heat capacity, ACp(T), measured by differential
scanning calorimetry, is qualitatively reasonable. The phonon DOS curves and the har-
monic approximation with Eq. 19 are more than able to account for the experimental heat
capacity. The large change in the optical modes at 10-11 THz (which are absent in the
disordered alloy in the virtual crystal approximation) accounts for nearly all of this differ-
ence in Cy. The heat capacity from the phonon DOS curves overestimates the heat capac-
ity by nearly a factor of two, however. We attribute this discrepancy to the use of the
virtual crystal approximation for the lattice dynamics of disordered FesAL A realistic
model of a disordered alloy would include some local environments that resemble the
ordered structure on a local scale. These environments should contribute high energy fea-
tures to the vibrational spectrum of the solid. This high energy may be scattered by the
lack of translational symmetry of the disordered alloy, or may be transferred between the
different regions of local chemical order. Although these high energy vibrations are not
appropriately described as phonons with Eq. 30, these vibrations do indeed account for
thermal energy and must be considered when calculating the heat capacity. Ifthe change in
the vibrational intensities at 10-11 THz is not so large as predicted with the virtual crystal
approximation, the changes in heat capacity and vibrational entropy will also be smaller.
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Figure 4. Pomts measured differential heat capacity of disordered and ordered samples of Fe3Al,
ACp = cP P~ Cg , as a function of T. Curves were calculated using Eq. 19.

To check for the presence of high frequency vibrational modes in disordered transition
metal aluminides, we prepared powdered samples of Ni3sAl by high energy ball milling [32].
These samples had a high degree of chemical disorder. Inelastic neutron scattering from
Ni3Al is dominated by coherent scattering from Ni atoms. Equation 40 for the coherent
dynamlcal structure factor intensity, |Geon(Q.9, V)2, reflects this fact since the ratio le
M A;/b My; = 4.1 for coherent scattering 1nten51ty Although the incoherent scattering is
weaker the ratio of Gjne Ni MAI/Ginc Al MN;j is even larger. Neutron inelastic scattering
spectra were acquired at five values of Q. Since the lattice dynamics of L12-ordered NizAl
were known from previous experiments on single crystals, calculations of the crystallo-
graphic average of Eq. 40 could be performed the different Q. With these calculated spec-
tra, we could choose how to average the experimental spectra to give a reasonable rep-
resentation of the phonon DOS. The energy spectra were corrected for the thermal factor
of Eq. 39, and were then averaged appropriately to give the phonon DOS curve of Fig. 5.
It was not obvious how to correct the data from the disordered sample to account for dif-
ferences in the coherent and incoherent scattering of Ni and Al. Two independent analyses
seemed plausible. Ifthe high frequency “optical modes” were dominated by the motions of
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Figure 5. Phonon DOS of Ni3Al obtained from inelastic neutron scattering spectra at several values of Q
[32]. The curve “L12"” was obtained from the annealed powder with the L12 structure. The two curves,

“Disl"” and “Dis2”, were obtained from the as-milled powder, with two assumptions about the weighting of
the observed intensity at around 40 meV (see text).
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Al atoms in the disordered alloy, then the weight factor used for the ordered alloy would be
appropriate. On the other hand, ifthe Ni and Al atoms were to both contribute to the high
energy modes in the same way as they do for low energy modes, no correction factor would
be required for the high energy modes. Both cases are presented in Fig. 5 as Dis2 and Disl,
respectively. Although there are quantitative differences between the results from the two
methods of data analysis, the two methods have an important qualitative similarity. High
energy modes are present in the disordered alloy, modes that are not predicted by the vir-
tual crystal approximation.

By examining the eigenvectors ofthe dynamical matrix, U(k|q) in Egs. 30 and 36, for the
L17- ordered Ni3Al and for the D03-ordered Fe3Al, we found that the high energy vibrations
were dominated by the motions ofthe Al atoms. Interestingly, the low energy part of the
phonon DOS in these alloys shows little change upon ordering. Furthermore, the elastic
constants of Fe3Al as a function of composition indicate that ordered Fe3Al has weaker
elastic constants than disordered Fe-Al alloys. This would indicate that the origin for the
larger vibrational entropy ofthe disordered alloy is not in the low frequency vibrational
modes. Changes in the high frequency optical modes of the ordered alloy are capable of
explaining the difference in the vibrational entropies of disordered and ordered NizAl and
FezAl. It therefore appears that changes in the local motions of Al atoms are responsible
for the change in vibrational entropy of transition metal aluminides upon chemical ordering.

The vibrational frequencies of the larger Al atoms may be more sensitive to local atomic
arrangements than the smaller Ni atoms. Experimental evidence for this sensitivity of Al
atoms to disorder in the alloy was provided by extended electron energy loss fine structure
(EXELFS) [29], which showed that the mean-squared relative displacements (MSRD) of
the Al atoms were more sensitive to the state of chemical disorder than were the MSRD of
the Ni atoms. A similar trend was found for Fe3Al, where the MSRD of Al atoms was
shown to be more sensitive to chemical disorder than that of Ni atoms. Other evidence of
how disorder in Ni-Al alloys affects vibrational modes was provided by measurements of
Ni and Al thermal factors in a diffraction study by Georgopoulos and Cohen [54]. The
mean-squared displacements of Ni atoms were larger than those of Al atoms, in contrast to
a simple mass effect expected on the basis of Eq. 10, for example. Why should the Al at-
oms have such limited vibrational amplitudes, and why should they be affected more
strongly by chemical ordering than the transition metal (TM) atoms in TM3Al alloys? A
contributing factor may be that the metallic radius of Al is about 143 A, whereas the Ni
atom radius is 1.25 A and the Fe radius is 1.27 A [55]. The stiffness of effective springs to
the larger atoms is perhaps affected more strongly by changes in local atomic structure than
is the stiffness for the smaller atom species.

8. VIBRATIONAL ENTROPY AND PHONON DOS OF ORDERED AND
DISORDERED Cu3zAu

The fcc - L1z transition in the alloy Cu3Au has been an archetype for metallurgical
studies of order-disorder transitions. The free energy and the phase diagram of Au-Cu have
also been topics of numerous theoretical calculations. Some of the earlier work on the dif-
ference in vibrational entropy of ordered and disordered CuzAu was reviewed in section 1.
Following coherent inelastic neutron scattering measurements by Hallman [56], phonon
dispersion curves along high symmetry directions were measured for single crystals of both
disordered and ordered CuzAu by Katano, lizumi and Noda [57]. They fit their results to
calculations with a Born—von Karman model, and published sets of force constants for
ordered and disordered CuzAu.

With differential scanning calorimetry, we measured the difference in heat capacity of
chemically disordered and L13-ordered CuzAu from 70 K - 300 K [27]. Results of these
measurements are presented in Fig. 6. Figure 6 also compares these measured results of
ACp(T) to a differential heat capacity ACv(T) calculated with the Born—von Kérman model
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using the force constants of Katano, et al. [57]. Agreement is qualitatively correct,
although the ACy(T) from the phonon DOS curves lies above the calorimetric data. We
again attribute this discrepancy to deficiencies in how the virtual crystal approximation
accounts for the vibrational spectrum of the disordered alloy. The virtual crystal approxi-
mation overestimates the change in the phonon DOS with disorder in alloy.

Examining the force constants of Katano, et al., for L12-ordered CuzAu[57], we noted
that dominant forces between Au-Cu 1nn pairs are radial. We suggested an intuitive picture
of the lattice dynamics involving the metallic radii of stiff spheres [27]. Upon ordering, the
larger Au atoms serve to separate the more abundant, but smaller Cu atoms. The Inn force
constants involving Cu and Au atoms, CA{‘;S“ and CP}“;(Y:" , are indeed large and consistent
with stiff spheres in contact. The highest frequency modes in the vibrational spectrum of
ordered CuzAu involve opposing movements of Inn Au-Cu pairs, which are controlled by
these large force constants. On the other hand, the 1nn Cu-Cu pairs are not in rigid con-
tact, being spread apart by the larger Au atoms. It is therefore not surprising that the 1nn
Cu-Cu force constants are weaker. The opposing movements of Inn Cu-Cu pairs are
highly constrained by the surrounding arrangement of large Au atoms. We know little
about the vibrational polarizations of the individual atoms in the disordered alloy at high
frequencies, but we suggest that on the average they are more isotropic than in the ordered
alloy. We suggest that with the development of L12 order, the directions of movement of
both Cu and Au atoms are constrained and generally increased in frequency, owing to the
stiff sphere contact between Au and Cu neighbors.

9. ANHARMONIC VIBRATIONS IN Co3V

The classical relationship of Eq. 25 is commonly used to impress students of thermo-
dynamics with the power of formal thermodynamic manipulations. It is therefore surpris-
ing that this relationship has been given so little attention in the analysis of alloy phase
diagrams. The bulk modulus, linear coefficient of thermal expansion, and specific volume
are widely known, or at least are not difficult to measure. Consider a typical set of num-
bers with B = 3x10!! N m2, »= 105 m3 mol-!, and o0 = 2x10-5 K-!. With Eq. 25 we
obtain an anharmonic contribution of Canp(T) = Cp(T) — Cy(T) = Tx10~2 [J (mol K)~!].
Over a temperature interval of 100 K, with Eq. 3 this corresponds to a change in vibrational
entropy of 1 J (mol K)~!, or 1/8 kp/atom. Especially when the thermal expansion of one
phase is greater than another, the anharmonic contribution to the entropy of the phase
change can be significant.
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These anharmonic contributions to the entropy should be reflected in changes in the
phonon DOS, which affects Cy(T) through Eq. 19, and Cp(T) through Eqs. 20 and 26 or
Egs. 23 and 25. Figure 7 shows experimental phonon DOS curves from Co3V at elevated
temperatures, obtained from inelastic neutron scattering measurements. The interpretations
of the data were straightforward, since the scattering is largely incoherent. There was, how-
ever, a modest correction for multiphonon scattering that required an iterative procedure
described in [34]. The phonon DOS curves in Fig. 7 show a softening with temperature,
which although not large is consistent and is well beyond the 0.01 meV energy accuracy of
the triple axis spectrometer used for the measurements. Some of'this softening can be asso-
ciated directly with changes in alloy phase with temperature. The data obtained at 1098 K
and 1223 K were from the same hP24 phase, however.
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Figure 7. Phonon DOS curves of Co3V obtained from inelastic neutron scattering spectra measured at various
temperatures.

Although the vibrational entropy of a solid phase increases significantly with tempera-
ture, what is important for phase stability is the entropies of the different solid phases at
the same temperature. The phonon DOS curves of Fig. 7 were therefore used with Eq. 14
to obtain a difference in harmonic vibrational entropy in the high temperature limit. The
results of this calculation are presented in Fig. 8. There are two interesting aspects of these
data. First, the differences in vibrational entropy of the different phases are provided in the
harmonic approximation. For example, the difference in vibrational entropy between the
hP24 phase at 1223 K and the fcc phase at 1333 K is about 0.09 kg/atom. This is probably
a smaller contribution to the entropy ofthe hP24 - foc phase transition than the configura-
tional entropy of chemical disordering.

The second interesting aspect of these measurements on Co3V is the anharmonic
behavior of the hP24 phase. From Eq. 24 we can predict the temperature dependence of
the phonon DOS, and differences between the experimental DOS curves of Fig. 7. In
the simple Griineisen approximation where all phonons have the same mode Griineisen
constant, this difference should be proportional to: g(€) + € dg/de. Figure 9 shows the aver-
age of the phonon DOS curves obtained from the hP24 phase at 1098 and 1223 K. The
calculated difference is presented immediately below it, as is the experimental difference of
the two phonon DOS curves from the hP24 phase. The experimental difference curve has a
qualitatively poor agreement with the calculation from the Griineisen approximation.
Although the calculated curve was scaled to approximately match the experimental differ-
ence at energies from 10 - 20 meV, the two curves agree poorly from 30 - 35 meV. The
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Figure 9. Difference in the phonon DOS curves of the hP24 phase measured at 1098 K and 1223 K. Smooth
curve was calculated based on the usual Grilneisen approximation that all phonon modes change with volume
by the same Griineisen constant.

temperature dependence of the phonon DOS of the hP24 phase does not follow a simple
Griineisen model where the same Griineisen constant applies to all vibrational modes.

From measured values of @, 7, and an estimate of B, the anharmonic contribution to the
vibrational entropy calculated with Eq. 26 is 0.11 kp/atom over a temperature range of 200
K around 1000 K. This is larger than the 0.07 kp/atom over this temperature range pre-
dicted with the data of Fig. 8. This difference could be consistent with the error bars shown
in the figure, however, and better measurements are required to test the detailed relationship

between the temperature-dependence of the phonon DOS and the anharmonic effects in
Co3V.
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10. SUMMARY

There is now widespread evidence that vibrational entropy must be included in an
understanding of solid state phase transitions. While the basic principles are known, the
individual phenomena that contribute to differences in vibrational entropy of solid phases
require much more investigation.

We do not expect all ofthe vibrational modes in a solid to have the same dependence on
local atomic structure. In ordered and disordered transition metal aluminides, for example,
there is a change in the high energy optical modes upon ordering that can account for most
of the difference in vibrational entropy. From other studies performed so far, it seems that
vibrational entropy is sensitive to the packing of atoms of different size.

Although much ofthe vibrational entropy depends on harmonic effects that can be cal-
culated readily with the phonon DOS, anharmonic effects also make important contribu-
tions to the entropies of solid phases. Phonon DOS measurements at different temperatures
will provide information about these anharmonic contributions, which have been shown to
be important for the hP24 phase of Co3V.

The hope is that there will emerge, at least for specific classes of materials, systematic
trends showing how differences in vibrational entropy depend on the local atomic structure
in a material.
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DIFFUSE SCATTERING BY DOMAIN STRUCTURES

Friedrich Frey
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80333 Miinchen, Germany

WHAT IS A DOMAIN STRUCTURE ?

There is no common use of the term "domain structure" in the literature and therefo-
re it is broadly used to specify "coarsened" crystalline structures. Domain formation in a
crystal describes a spatial arrangement of different regions which are related to one another
in some regular way and which are separated by walls. Common crystals made up by
"mosaic" blocks which are separated irregularly by unspecified defects such as dislocations,
small angle boundaries or irregular micro-strain fields (and other defects too) are not
considered to be domain-structured. Along the same line, a specific defect arrangement in
a crystalline structure together with its surrounding strain field, sometimes called "micro-
cluster" or "microdomain", does not form a domain structure irrespective of whether or not
these clusters show a tendency to order.

The term "domain" usually implies either a spatially varying structure forming
separate blocks such as occurring in twin-domain structures (Figure 1), or a spatial varia-
tion of a physical property which may be visualized by different configurations, such as the
orientation of an electric dipole moment in ferroelectric domains. Whereas an electric
dipole moment can again be related to a structural origin viz. the separation of the centre
of gravities of negatively and positively charged atoms or molecules, a magnetic domain
structure refers to ordering of magnetic moments. The array of these moments may exhibit
a domain pattern irrespective of the underlying chemical structure. Structural domains
demand a somewhat more detailed consideration under the chemical aspect: different
domains may be chemically homogeneous, as in the case of twin domain structures, or
chemically heterogeneous, which occurs, for example, in feldspar structures with their
complicated Ca/Na- or Al/Si- rich/poor domains. This aspect can be visualized more easily
by considering a binary alloy consisting of two chemical species A, B. Depending on the
interaction energy between A and B, dissimilar atoms tend to be neighbours or not. Either
we have a tendency for A-B ordering in domains which are embedded in an otherwise
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disordered A/B matrix or a tendency to form A-A-A.. or B-B-B...-type domains (or clu-
sters) in the disordered matrix. Under the action of a driving force, e.g. by variation of the
temperature, the disordered "matrix" structure my become thermodynamically unstable. In
the former case this process may give rise to "out-of-step” domains (see below) or to com-
pletely segregated parts with - somewhat hypothetical- only one residual "domain" bounda-
ry between an A-type and a B-type crystallite. (In this context the fascinating fields of
domain structure formation in polymers or in porous materials should be mentioned. For
example, cylindrically shaped aggregates of block-copolymers with internal "amorphous"
structure, organize themselves to an (ordered, e.g. hcp-) domain-like structure. In zeolite-
type structures or in other host-guest structures with open tunnels, guest molecules may
order in domains which may be related to interesting physical properties. A further discus-
sion is, however, beyond the scope of this paper).

The different aspects which are considered to be essential for the definition of a
domain structure, can be summarized by symmetry arguments. (The order parameter
concept covers basically the same aspects). Individual domains in a domain structured
crystal may be derived from a - possibly hypothetical - higher symmetric "aristophase"
obeying the concept of symmetry groups, and may be related by a symmetry operation
which is either a point group element or a translational element or a "black and white"
symmetry element. The symmetry operation is an element of the point group or the Laue
class or a translational vector of the aristophase, which is not an element of the internal
structure of the daughter (=domain) phase. Black and white (or colour) symmetry has to be
used for magnetic domain structures and may also be used for chemical domain ordering.
While preserving the same lattice, the disordered (usually high temperature) phase which
is specified by "grey color", decomposes into black and white domains, possibly embedded
in the grey matrix (Figure 2). This symmetry approach takes into account the symmetry of
statistically defined structures (mixed crystals, alloys).

Figure 1. Twin domain structures and corresponding reciprocal lattices. From above: twin pair, periodic twins,
non-periodic twinning, periodic twinning with long superperiod.
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Domains can exhibit a new order by themselves (superorder), thus creating new
symmetries of the superstructure. It depends on this superorder whether or not an averaged
structure can be defined meaningfully. If one considers incommensurate structures we have
also to include symmetry elements of the superspace group and if one intends to include
domain-like ordering in quasicrystalline structures, one has to include also non-crystallogra-
phic symmetries.
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Figure 2. Chemical domains: ordered domains (left), coherent precipitations (right)

Apparently the boundaries between the different domains are essential and must be,
in principle, clearly definable. Their existence may even be used for the definition of a
domain. This does not mean that the boundaries or domain-walls are simple atomic planes
rather than extended intermediate structural states which mellow the transition from one
domain to the next one. Occasionally it might be helpful to define an extended domain wall
as a new domain with a "gradient" structure which accomodates those of the neighboured
domains (Figure 3). On the average, this gradient structure matches the structure of the
aristophase. Domain walls "carry" the symmetry change from one to another domain. The
strict symmetry relation between the domains may be violated as a consequence of inter-
growth: misfits at the planes of coincidence may produce straining effects or single dis-
locations destroying an exact symmetry relation. There is a stepwise transition from fully
coherent domains to fully incoherent crystal parts (Figure 4).

oo LTI ]) R

Figure 3. Lamellar domains with structures F,, F; and congruent (left) and incongruent (right) planc of inter-
growth. In latter case the walls are modelled by a gradient structure.
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Figure 4. Coherent, semicoherent, and incoherent intergrowth of domains and corresponding reciprocal
lattices. Note: The term "domain" looses its sense in the latter case.

Possibly best known are twin-domain and antiphase-domain structures. A twin is a
rational intergrowth of congruent or enantiomorphic individuals of the same crystal species
in two or more well-defined orientation states. Twin elements are rotational axes, mirror
planes or centres of inversion. The contact interface (domain boundary) is in most cases a
low-energy boundary with good structural fit. However, no criterion is available to decide
what is a "low-energy" boundary in more complicated structures. Twin-domain structures
are formed during crystal growth, transformation from a higher symmetry phase (aristopha-
se) or under mechanical pressure. In many examples typical morphological features occur,
such as lamellar and polysynthetic twinning (polytypic structures, feldspars, aragonite),
others show no distinct features (e.g. switchable domains in ferroic crystals or quartz). If
the twin element is not a symmetry element of the lattice symmetry, there is a superposi-
tion of differently oriented reciprocal lattices. It depends on the (ir)regularity of the twin-
domain structure whether or not (part of) the individual reciprocal lattices coalesce into
more or less diffuse spots (Figure 1). If the twin element is a (pseudo) symmetry element
of the lattice symmetry, but not of the point group symmetry, the reciprocal lattices
coincide (merohedral or pseudomerohedral twins). If we have an equal volume fraction of
the individuals, the Bragg reflection pattern exhibits a higher symmetry. If the intergrown
twin domains are small, the term domain structure should then perhaps be replaced by the
term "disordered structure" or "super-structure” depending on the degree of a possible
domain ordering.

Anti-phase domains are related to a lost translation of type 1/2t, where t, is a trans-
lational vector of the aristophase. An example is given by a binary alloy which undergoes
a disorder - order transformation by cooling. Accordingly, diffracted waves suffer a phase
shift of  for certain directions. More general types of "out-of-phase" domains are due to
other fractional translational vectors. A particularly interesting type of out-of-phase domains
are responsible for the formation of the so-called shear structures (Figure 5).
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Figure 5. Out-of-phase domains: principle and formation of shear-domain structures

The example of chemical domain ordering gives us a good picture of the occurrence
of real domain structures: the length scale may range from a few unit cells to mm size, i.e.
macroscopic lengths. Therefore, there is no clear cut separation between a domain structure
and a new "structure" on the one side and intergrown crystallites an the other side. With
other words, there is a continuous transition between the terms " (disordered) structure"
"domain-structure" - (segregated) "polycrystal" or "microstructure". The size may be
affected by many factors such as the origin of the formation (e.g. coarse domains if growth
determined), actual temperature (fluctuating sizes close to a phase transformation tempera-
ture), electrostatic influence in polar crystals (minimization of large electrostatic energy of
an untwinned crystal by creation of domain boundaries), energy of the domain boundaries,
stress, internal strain distribution, impurities, and some other factors too. The long-range
interaction of strain-fields are, for example, particularly important because they may govern
the formation of domain structures in ferroelastic materials (Marais et al.'). It is not
intended to discuss the various origins of domain pattern formation further in this article.

Depending on the size scale of the domains, there are various methods to recognize
and investigate domain structures. Apart from macroscopic methods (morphology, etching,
pyro- and piezoelectric probing), optical methods (polarisation microscopy, optical activity),
or topography, transmission electron microscopy (TEM) investigations are particularly
valuable. Sometimes TEM is the best tool to study local features of domain structure, i.e.
domain walls. The method is, however, largely two-dimensional and particularly well suited
to study surface domain patterns (which are out of the scope of this article). On the other
hand, the average and the distribution of domains are not easy to obtain by TEM investiga-
tions, in particular if long-range non-periodic or periodic domain structures and accompa-
nying strain fields are present. Diffraction methods are somewhat complementary in as far
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as the bulk is accessible and the whole diffracting specimen gives an average information
about the domain structure in the bulk as well as an insight into long-range correlations.
Domain structures superimposed on the crystallographic structure give rise to non-conven-
tional diffuse scattering or more or less diffuse "reflections". It should be noted that also
for this type of investigations the "gap" between EM and diffraction investigations becomes
closer with the availability of powerful synchrotron sources (and also high flux reactors):
high-intensity and high-resolution instruments allow for a study of smaller samples, and
weaker and finely structured diffuse phenomena. Particularly neutron methods are helpful
to decide between a static from a dynamic domain behaviour (e.g. domain wall excitations,
critical size fluctuations,..). The aspects of dynamics or kinetics, however, are not covered
in this article. Only some specific experimental X-ray and neutron diffraction methods are
outlined to study static domain structures.

There is no textbook exclusively related to domain scattering. This is partly due to
lack of a general theory. Various aspects are summarized, e.g., by Cowley?, Jagodzinski',
Jagodzinski and Frey', Boysen °, and Frey’. For simple reasons lamellar domains are
frequently observed in real domain structured crystals about which an extensive literature
exists (see below).

The plan of this article is as follows: First a general outline of the mathematical
background is given to describe analytically domain structures and their diffraction patterns.
Then different domain models with increasing complexity are outlined to learn about the
general characteristics of domain-related diffuse scattering. A special section is devoted to
the situation of lamellar domains. This is followed by a short selection of examples taken
from work carried out in the home institute of the author. There is a final section about
some experimental developments to record diffuse X-ray and neutron intensities.

GENERAL DIFFRACTION THEORY

A study of a domain structure means to solve the individual average structures, to
determine the orientation relation between the (twin- and out-of-phase) domains, the size
und shape of a domain, the domain size distribution, the distribution of domains and the
correlation lengths when domains tend to superorder. An even more complicated and
largely unsolved problem concerns the internal "structure" of domain walls, their local
orientations, and their extension. This task is particularly complicated when a domain
boundary has a different chemical composition (e.g. due to enrichment of impurity atoms),
when the congruence between the accompanying domains is lost and when straining and
relaxations are associated with the wall formation.

Diffraction phenomena by domain structures can be described in an analytical way
by use of Fourier transforms. Vectors in real and reciprocal (=Fourier) space are denoted
by r = (x,y,z) and H = (§,n,8), respectively. The coordinates (x,y,z) and (§1,{) refer to
arbitrary values in units of basis vectors in respective space.

A(H)= [a(r)expf2miHr} dr and a(r)= JA(H)exp{-2miHr} dr (la,b)
shortly written as a(r) &> A(H)
We will use the symbols p(r) and F(H) for structure (of a unit cell) and corresponding

structure factor, respectively. For the purpose of this article some useful laws of Fourier
transformation are:
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a(-r) & A(-H) which means, if a(r)=a(-r) then A(H)=A(-H)
a'(r) & A'(-H), a'(-r) &> A’(H), where "™ denotes "complex conjugate" (c.c.)

Complex functions have to be considered if anomalous X-ray scatterers are present in a
structure.

a(N+b(r) & A(H)+B(H)

s a(r) & s A(H) (s = scalar quantity)

a(r-r,) ¢ exp2riHr JA(H) and A(H-H,) <> exp{-2riH rla(r)
a(r)eb(r) & A(H)*B(H)

a(r)*b(r) & A(H)*B(H)

a(D*a*(-r) & IA(HF (Note: IA-H)F # IA(H)F if a(r) is complex)

where the symbol * denotes the operation of convolution:

a(r)*b(r) = fa(rysb(r-r') dr" and A(H)*B(H) = JA(H)B(H-H") dH’ (2a,b)
Whereas the distributive law remains valid

a(r)*Ib(r)+c(r)] = a(r)*b(r) + a(r)*c(r)
the associative law of multiplication is no longer valid if mixed products oocur:

[a(r)*b(r)|=c(r) # a(r)*[b(r)ec(r)]

Particularly important functions and their Fourier transforms are:
(1) Patterson function of a structure p(r):
P(r) = p(r)*p*(-r) (Note: P(r) = P(-r) holds only if a(r) is real !)
P(r) <> IA(H)? ~ [(H) (= "intensity" apart from other factors)
(2) 8- "functions" &(r), 8(H):

For a definition of this functional see, e.g., Cowleyz. We use it here in its "relaxed defini-
tion" &(r)=1 if r=0 and zero elsewhere.

&(r) & 1 (const) and &(H) « 1
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In consequence, sharp phenomena in real space correspond to broad phenomena in reci-
procal (Fourier-) space and vice versa.

&(r-r,)*&(r-r, ) = &(r-rr,)
&(r-r,) <> exp{2miHr,)
(3) Lattice functions:
Finite lattice (basis a,,a,.a;; {,= translational vector= na ;+n,a,+nya; = (n;,n,,0,))
Y8(r-t,)e> Yexpl2miHe,) = {sin(N, h)/sin(rh)} {.N,..} {.N,..}
where the summation over n,, n,, n,extends to N,, N,, N;, respectively.
Infinite lattice:
I(ry = ¥8(r-1,) <> L(H) = C X8(H-H,) (reciprocal lattice)

with H, = reciprocal lattice vector with integer coordinates h,k,1 with respect to a reciprocal
basis a,", a,", a,". The normalizing factor C will be omitted in the following.

(4) Box function:

b(r)=1 for -A<r<+A (A=0a,+Ba,+va, ) and zero elsewhere
(o,B,y are scalar quantities)

b(r) <> B(H) = {sin(mah)/(mh)} {.p.} {..y..}

p(r)= b(r)*b(-r) <> {sin(rah)/(mh)F {sin(repk)/(Bk)? {sin(ryly/(xh)?
Quite generally a domain structure can now be decribed by (cf. Boysen®):

Pu = [P *LEb, *d, ] + [p* 11X, *d5j] + [Py * (X5 *dy ] +... (3)
The 1, b,. and d, describe the individual lattices in domains of type i, the shape of domain
i with size j, and the distribution of domains i with size j, respectively. Clearly the b,
include a possible domain size distribution of a domain of type i. As mentioned above,
domain walls may be included as an own domain type i, if feasible, and may even be split
up into a sequence of "domains" in case of a complicated wall structure.
Fourier transformation gives:

F, = [FILI]*[ZBUDI]J + [Fszl*[ZBz,Dzjl + [Flej*[ZBxanJ +... 4)
and the intensity is therefore given by:

[I) = ZI|[F1LIJ*[Z B D ]2-*-221;4\lFlLﬁJ*[Z B,D ][Fk+Lk+J*[Z|Bk|+DkJ+] (5)

[t | [ )
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A further mathematical treatment of this very general expression seems to be not
feasible, if no additional information is available from crystal chemistry or from experi-
mental observations. Only some qualitative conclusions can be drawn from this general
expression. The first term is usually the leading term, while the second one containing
crossterms, provides, in general, only smaller additional changes. The first term corresponds
to sharp or diffuse reflections which are not only determined by structure factors F,, but
also by (the Fourier transforms of) the shape, size and distribution functions. If the domain
distribution is coherent with the underlying basic lattice, the D, define a set of 8-functions,
(multiplied with the B,), i.e. sharp reflections (equ.(5) term 1), which may be accompanied
by diffuse or satellite scattering. If the domain ordering process is not three dimensional,
the "reflections” may be extended in streaks or planes which are (in another meaning)
"diffuse” in reciprocal space. Ifthe d, are incoherent, the cross terms are averaged out, but
now the first term decribes diffuse phenomena (e.g. by domain size fluctuations). Inter-
ferences between domains of different kinds may be responsible for additional extinction
rules4 of sharp and diffuse reflections. This is discussed in more detail by Jagodzinski and
Frey".

Basic domain structures

Most helpful for an understanding of domain scattering are considerations of
particular domain arrangements. In the following, basic domain problems with increasing
complexity are discussed to learn about the diffraction features of a particular domain
order.

(1) Two domain types with coherent lattices and random domain distribution

Type 1: p,(r), lr)*p,(r); F,(H), L(H)*F (H)
Type 2: py(r), Kr)*p,(n); Fy(H), L(H)*F,(H)

Both domain types occur with same a-priori probability and a random mixture is assumed
Domain structure: p,, = l(r)*p,(n)b(r) + H(r)*p,(r)l 1-b(r)) (6)

average structure: {p)= 1/2 (p,+p,); (F)= 172 (F+F,);
difference structure: Ap= 1/2 (p,-p,); AF= 1/2(F,+F,):

With b’(r)=2b(r)-1 (b> symmetric; b(r)=1/2(1+b’(r)); (I-b(r))=1/2 (1-b’(r)) )
the domain structure can be written as:

p= (l(r)*((p)+Ap)}1/2 (1+b’(r)) + {l(r)*((p)—Ap)}l/2 (1-b’(r)) =
ey () + ry*Ap! b’ (1) (7
Fourier transformation gives:

L(H) (F(H)) + {L(H) AF(H)B’(H); ( B*(H) =2B(H)-3(H) ) (8)
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There are superimposed sharp and diffuse contributions at any reciprocal lattice
point, where the sharp reflections are governed by the average structure factor, the diffuse
ones by the difference structure, and the "diffuseness" is due to convolution with B’ (more
precisely: B*H)). The general appearance depends on the AF/(F)-ratio. If there is no
average structure {p), (F)=0, only diffuse maxima centred at the reciprocal lattice points can
be observed. This latter statement could be violated at some points in reciprocal space: If
the structure factor AF shows, occasionally, a steep gradient at a position close to a
reciprocal lattice point, the convolution product [LAF]*B may have its maximum not
exactly at a lattice point. The diffuse maximum occurs "surprisingly" at an incommensurate
position which has, however, nothing to do with an incommensurate structure. (Note: This
is a quite general aspect of the position of diffuse reflections which should also be taken
into account if "wrong" positions or strange profiles are observed in powder patterns).

(2) Distribution of one domain type in a matrix structure with coherent lattice
In a matrix structure p,(r), domains with a different structure p,(r),but the same coherent
lattice 1(r) are embedded (cf. example (1)). It is assumed that the domains have approxi-
mately equal sizes described again by the shape function b(r). The distribution of the
domains is denoted by (1, = m,a,+m,a,+m,a, are the centres of the domains):

d(ry = X, 8(r-,)

The total structure can be written as:
Per(D= 1(r)*p, (1) - [I(r) b(r)*¥p (ry*d(r) + [I(r) b(r)Fp,(r)*d(r)
= 1(r)*p (1) - [I(r) b(r)Hp,(r)-p,(Nid(r) (9)
shortly: p,(r)=p(r). p,(r)-p (r)=Ap(r), and F(H), AF(H), correspondingly.
F(H) = L(H) F(H) + [L(H*BH)| AF(H) D(H) (10
I(H) — IF(H)F = IL(H)F(H)F+
+ {{LIHF][L(H)*B(H)] AF(H)D(H)} + {cc!
+ [L(HY*B(H)AF(H)D(H)P (1)
Term 1 in equ. (11) denotes sharp reflections governed by the basic structure, terms 2 and
3 denote also contributions to the sharp reflections (multiplication with L(H) !), whereas
term 4 describes diffuse scattering. Backtransformation of term 4 gives with 1(r)=I(-r) and
under the assumption of centrosymmetric domains, b(r)=b(-r), which is realistic in most
cases:
[l(r)b(r)HI(r)b(r)*Ap(r)*Ap(-r)*d(r)*d(-r) (12)
The first convolution product in (12) gives simply 1(r)p(r) (p(r) = b(r)*b(r)). The difference

structure Ap(r) is a non-periodic function. We ignore Ap in the following to study the
influence of d(r) only. With D(r) = d(r)*d(-r) term 4 is written:
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1(r) [p(r)*D(r)] = 1(r)D’(r)
The diffuse intensity distribution is governed by the Patterson function of the distribution.
IL(H)*D’ (H)P

It depends now on the specific distribution d(r) to analyse the problem further. Limiting
cases may be discussed under the assumptions that the domain sizes are more or less well
defined (small fluctuations) and that the perfect lattice extends far beyond the correlation
length of the distribution d(r). Moreover, we know that d(r) cannot be completely random
because the minimum distance between two domains is given by the domain size.

(a) First we assume a periodic domain ordering with a symmetric modulation
function (Figure 6a). This is exemplified for the one-dimensional (1D) case, i.e. there is no
modulation with respect to y,z, and, in consequence, there arise &(k),5(1) functions in
reciprocal space. The period of 1(x) = a;, width of a domain = 2A (in units of a) and
period of d(r) = 4A. D(r) is a pyramid function with period 4A which can be written as the
convolution product of p(x)*D(x).

p(x)=1-x/(2A) for xI<2A and zero elsewhere

D(x)=X3(x-M+4A)

Fourier transformation gives (M=+=[,£2,+3,...)

P(h)sD(H) = sin’(2rAh)/(mth)’ 1/4A Y8(h-M/(4A)) (13a)
This product must be convoluted with L(h)=2 8(h-n)(n in units of a,").There are satellite
reflections around each Bragg reflection. Because the function P(h) has zero points at
positions h=M/2A, only satellites of odd order occur (Figure 6a). The distribution function
shows its characteristic intensity features close to the Bragg points.

(b) If we assume a periodic, but asymmetric distribution function, e.g. a domain
width 1A and a distance of 3A to the next one (period 4A, Figure 6b), we have basically
the same qualitative behaviour. There are, however, more satellites of even and odd order
at positions h=M-1/(4A) due to the asymmetry reflected by p(x)= 1-x/A and the corre-
sponding P(h) which has zero points at h=Me<1/A. If the asymmetry is described by a
general periodic distribution function (1D case)

d(x) = X,,8(x-M#2A)

D(h) = ¥,,8(h-M/2A) (neglecting a normalizing factor)
we can replace b’(x) and B’(h) from example (1) by

b’ (x)= 2b(x)*d(x)-1 and B’’(h)=2B(h)D(h)-8(h)
and the diffuse part writes

AFMI{L(M)*B’ (h)} = AF(h) C/X8(h-n-h") 2{sinmh’ A/(th’)} - §(h’) di’
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which gives the general appearence of the satellites governed by the behaviour of the
Fourier transform of b(r) and weighted by AF:

¥, 2isintM)/(tM) X,,8(h-M/2A) - X 8(h-n) (13b)

Clearly the diffuse intensity of case (1) is now dissolved into satellites. (The subtraction of
a &-like contribution does not play a role). For the case of periodic domain patterns there
exist theories (Korekawa’, Bohm®’) which provide analytical intensity expressions for the
main and satellite reflections. From their intensity characteristics the internal domain
structure can be derived such as displacive or density modulations or combinations of them.
The theories may also be extended to more complicated shape functions b(r), such as
triangular or saw-tooth-like functions.
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Figure 6. Perwodic domamn distribution with symmetric (a) and asymmetric distribution function (b).

(c) If the periodic domain distribution only exists over small distances, we have to
multiply (in direct space) with a box function corresponding to the correlation length of the
domain ordering which means, in Fourier space, another convolution which concerns only
the satellite reflections which become diffuse. In total, we have a modulated diffuse
intensity distribution close to the (sharp) Bragg reflections.
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(3) Domains with same structures and out-of-phase lattices

Assuming a fault vector T, this situation can be described by a modified expression
for the domain structure of example (1) (p,=p,)

{li*p(OH2 (1407 () + {I(r-T)*p(0)} 172 (1-b°(r)) =

U(r)+(-Ty*p/2 + lir)-1(e-TH*p/2) b’ (1) (14)
Fourier transformation gives:

[L(H)(1+expl2ai THHIF(H)/2 + [L(H)(1-exp2niTHHIF(H)/2 * B’(H) (15)
We have again sharp and diffuse peaks. An explicite example for this type is given below.

(4) Strained domains

If straining is present in a domain or a domain wall (which may also be treated as
separate domain), the lattice inside such a domain can be written as (Boysen®)

1(r) = X 8(r-t,-s(n})
where s(n) describes the atomic displacements in the n.th cell. Fourier transformation gives
L(H) = X expl2nit,H} expl2mis(n)H)

For particular cases, such as a harmonic strain modulation s(n), the theory of modulated
crystal structures™®’ can again be applied. This aspect will not be discussed further in
detail. It should only be emphasized here that, in contrast to a domain size effect, the
higher order satellites become important with increasing value of H, or, in the case of
superimposed disorder, the diffuse intensity increases at cost of the accompanying reflec-
tion. Here "disorder" means fluctuations of phase and amplitude of an s-wave, or, in the
case of more complicated strain modulations, the consideration of a Fourier series and
corresponding superimposed sets of satellites. For long wavelengths of the strain modula-
tions, the particular phenomena are observed close to or even within the tails of the Bragg
reflections. An adequate treatment demands then a detailed line profile analysis up to high
H-values. Measurement of the widths of diffuse phenomena along different directions give
an estimate of the anisotropic size of the domains. In practice, however, one has to take
care of other diffuse intensity contributions (e.g. TDS) which may obscure the profiles.

(5) Domains with non-coherent lattices

If there are matching problems at domain boundaries or domain size fluctuations,
the perfect lattice function exists only over short distances. The centres of the domains are
no more defined by one lattice function, i.e. we have a basically non-periodic d(r) function
and a more continuous Patterson function D(r). Fourier transformation yields then a major
contribtion only to the peak I(0), i.e. to the small-angle scattering regime which is, howe-
ver, out of the scope in this article.

Most of the real domain structures are somewhere in between these limiting cases.
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LAMELLAR DOMAINS

A special paragraph is devoted to lamellar, i.e. one-dimensional, domain ordering
because this phenomenon and related stacking fault problems are frequently observed.
Planar domains occur in numerous metallic structures which are made up by stacking of
closed packed atomic layers (e.g. in fcc and hcp metals). Particularly interesting are
polytypic structures with a large variety of stacking periods. Lamellar domain ordering is
also observed in layered structures with a high anisotropy of chemical bonding: stacking
faults may act as nuclei and may also act as boundaries between sequences of differently
stacked layer sequences (lamellar domains). For these problems theories were developed
which use fault probabilities such as a-priori probabilities for the occurrence of certain fault
layers, and a-posteriori probabilities which describe the occurrence of a certain layer if the
preceding one is of a certain type. More probabilities of that kind take into account next-
but-one-interactions and so on. These theories use either the difference equations method
(Wilson'’, Jagodzinski'''?) or the equivalent matrix method (Kakinoki and Komura'®) or the
direct calculation of the Patterson function (Cowley'®) and allow an identification of the
specific type of fault as well as a quantitative determination of the probabilities (frequency
of faults) from the diffuse intensity distribution.

To give an impression of the complex formulae in this type of treatment, the case
of two types of lamellae stacked upon another along a mean a,-direction is shortly outlined
here". The domains have structures p,.p,. latticeconstants a,=(a,)+A(a,,a,,a,) and a coherent
plane of intergrowth (cf. Figure 3). The stacking is determined by the (complex) proba-

blities p,(q) which describe the chance to find a layer of type k (k=1,2) q layers apart from
a reference layer i and includes a phase vector ®@,. p, is the a-priori probablity to find a
layer(i=1,2), o and B describe the probabilities that a layer of type i or k, respectively, is
continued. The intensity distribution for the most simple case of only next nearest neigh-
bours interactions is given by

I = Y A (1, PHr1-2n

m m m nt

kos(2m(L+®,,))+ A, [ -

m

2B A Jesin(2m(Z+D WAL-2IA lcos2m(L+D, )+, ) } (m=1,2) (16)

A, and @, arc determined by A=A lexp(2mid, ) where A, are the solutions of a quadratic
equation A’ - Mot exp(2miHsA) + B exp(-2miH=A)) - | + o + f = 0. The constants A and
B,, can be calculated from the structure factors F,,c.3,®, in a cumbersome way. Each A,
describes areflection: A, = | and 0 describe the limiting situation of a sharp reflection and
a diffuse streak. Depending on the values of o, B, A, different contributions of sharp and
superimposed diffuse reflections may be evaluated. The situation of incoherent planes of
intergrowth (Figure 3) is much more complicated.

Cowleys theory14 is also developed for the general case of different kinds of layers.
Different translational vectors and arbitrary fault vectors may be combined with a change
of scattering density thus defining a planar domain boundary. The general expression for
the total diffracted intensity is (also) rather lengthy and is not reproduced here. It was
successfully applied to Wadsley-type shear domain structures (cf. Figure 5) and close
packed structures.

Another approach is to treat the faulted layer sequences as lamellar domain structu-
re. This approach is more concerned with the observation of planar boundaries and related
domain structures in mixed crystals and inorganic compounds especially in low-symmetric
systems'®. For various reasons superstructures are formed in mixed crystals: the supercell
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is made up from subcells which are structurally very similar. An impurity atom or some
other small defect (vacancy, interstitial) may therefore change the correct sequence of the
subcells. If one kind of defects dominates, there is a chance of a slightly "favourite" subcell
close to this defect. Even in case of small defect concentrations, e.g. a small amount of
impurities, there will be a competition between the correct sequence of the subcells and a
minimum energy of the defect subcell. Depending on the specific structure there is a
chance that these particular "wrong" subcells tend to avoid one another (another case would
be the tendency to form a defect-cluster which is not of interest here). For reason of a
minimum free energy, the wrong subcells prefer to cumulate in planes thus minimizing the
surface energy of the wrong subcell. In consequence, there is a tendency to form planar
boundaries. Moreover, due to the tendency to avoid one another, the "faults" arrange in
more or less equidistantly spaced planes, or, in other words, there is often even a tendency
towards an average periodicity of the lamellar domain stacking which determines the mean
thickness of the domains. If one kind of faulting dominates we have equal domain bounda-
ries with the same type of fault vector.

Basic diffraction features of such a lamellar type of domain ordering can be under-
stood by the following simple consideration'’. Let us define the basic structure by a cell
with lattice a,,a;,a, and a structure p and structure factor F. The cell is now subdivided into
subcells with a’= a/m, where m, are integers. For the sake of simplicity, the fault vector
(out-of-step vector) T is assumed to have two components, one parallel to the (a;,a,)plane
and one perpendicular it, i.e. parallel to a, (cf. Figure 7):

T = s;°a," + s3%a,= s,/m, a, + s:/m; a, (s, integers: 0<s<m,-1)

domain m
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Figure 7. Lamellar domain formation in a structure with superorder where the subcells have similar structures.
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The average domain thickness (measured along a,) is given by a comparably small number
N, as compared to N, and N, , the number of cells parallel to a, and a,, which go to
infinity. The crystal consists of P domains where (P*N,) is of the same order as N, and N,.
ie. P is assumed to be large. The origin of a domain p (p=1,2,...P) can be chosen at

pT + pNya, = pls/a, +H(Ns+s,/my)ay).
With t, = n,a, + n,a, + nya, the scattered amplitude A(H) can now be written as
A(H) = F(H) EXEYexpl2mi(T+t ) H)

where the sums over n,,n,.p,n, run from 0 to N,-1, N,-1, P-1, N,-1,respectively.

A(H) = F(H) Xexpl2nin,a,H} YXexpl2min,a,H}
Yexpl2mipl(s,/m))a,+(N+s/m,)a,JH} Xexpl2rin,a,H} =

= G(§) G() G0 L) (17)

Whereas the first three sums give three sets of dfunctions, the last one gives the Laue-
function of a finite lattice. These 4 conditions have to be obeyed in reciprocal space:

G(&)= X3(E-h); G(n)= X8(n-k) (h.k=integer); L,({) = {sin(nN L)/sin(xl)!

G(E,0)= 228(ls,/m & +(N,+s/m,)ellp) (p=integer)

Apart from the influence of the structure factor we have strong and weak reflections,
depending on the variation of L,(). The weak ones are asymmetrically located around the
positions of the reciprocal lattice belonging to the structure of the domain (Figure 8a). The
special case of a an out-of-step vector with a component only perpendicular to the domain
boundary is shown in Figure 8b : afault-vector a,’=1/2a, was chosen which describes a
(periodic) anti-phase domain structure. If the aristophase has a cubic structure a lamellar
type ordering of this type would lead to a superposition of three variants shown in Figure
8c, and if we have to obey, for example a fcc lattice, a final schematic pattern would look
like that of Figure 8d. A famous example is the lamellar antiphase-domain structure in
Cu,Au perpendicular to a; and with fault vectors (a,+a;)/2. The diffraction pattern is due a
superposition of three variants and shows a characteristic grouping of weak reflections. In
fact, due to domain size fluctuations and restricted correlation lengths, the weak reflections
become broad and may coalesce in one diffuse maximum, while the integrated intensity
remains unaffected (cf., e.g. Warren'®). More complex centred lattices and corresponding
extinction rules are treated by Smith'® in the context of feldspar structures.

By the same simple treatment the qualitative diffraction phenomena of disordered
lamellar domain structures (parallel to a,, a,) with coplanar fault-vectors can be derived'’.
For the sake of simplicity we assume a disorder with respect to only two positions =sa,(s
denotes a fractional value of a;) or aesea, (@ = x1). There is a chance of twin domains,
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or polytypic domains, or any other type of disordered domains. The origin of a domain
which is p periods away from a reference layer is given by

t = seX o oa, + na+nya+pay;  (j sums over the layers)
If there is no further conditional probability, the values of afluctuate randomly from one
layer to the next. The sum X0, is even or odd, if p is even or odd, respectively, which can
be expressed by

Yo, = p+2z, with -p<z,<0.
The scattered amplitude of the domain crystal consisting of P domains can be written as:

A(H) = F(H) XX expi2mi(n,a,+n,a,)H Xexp2nils(p+2z,)a, +pu,H)

A(H) = F(H) XXexpl2mi(n,&+nn)} Xexpl2nmil2sz,1+p(s&+0)D (18)
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The first two sums refer again to sums over dfunctions &(&-h), d(n-k), h,k being integers.
The last sum depends on the value of s. Assuming s=1/4 which is observed in several
compounds, we have

for h=4n (n=0,x1x,2,..): 2szph= integer, sh=integer
Yexpl2nipl) shows peaks for {=integer

for h=4nx2: 2sz h=integer, sh= integer/2 (=m/2)
Yexpi2rip(n/2+4) shows peaks for {=m/2.

for h=odd: no general conclusion is possible because z, is unknown. However, the sum will
vanish only at particlar {-values and diffuse streaking parallel to a, through h=odd occurs
most likely.

An analogous consideration of disordered lamellar domain formation by stacking
hexagonal closed packed planes along a, (usual axes a,,a,,a,in a hexagonal system) with
erratic or more cooperative faulting by vectors +(1/3a,+2/3a,) gives also sharp reflections
for (h+k)=3n (n integer), C=integer and more or less diffuse ones (along {) at (h+k) = 3-
n+l. An example (cobalt) is given in the next section.

A general theory of diffraction by crystals with planar domains was developed by
Adlhart”, Instead of using an increasing number of probabilities to describe increasing
domain sizes, domain size distributions are used which can be described by different
functions. A domain of type k has a structure p, and a lattice defined by a,,,a,,a, Different
domains of same type k may have different sizes a,*A,. These sizes have a distribution
w,(A). Different domain size distributions are assumed to be statistically independent.
There are coherent planes of intergrowth parallel to a,.a, (assumed to be equal in all do-
mains). The diffracted intensity occurs therefore on rods perpendicular to these lamellar
planes. The crystal is made up of a cyclic sequence of K different types of domains. Each
group is counted by I, and the total number of domain groups is L, (not to be confused
with the symbol for a lattice function). The origin of the lattice G, of a particular domain
D,, (of type k in group I) is displaced by an arbitrary fault vector T,. Then the domain
structure can be written as:

Py = 2.2 G, (r-r,,) where the 1,, are the vectors to the origins of each domain

G, (1) = 2. 8(r-va,)
where the sum extends from 0 to A,;, the width of domain k,I. The diffracted intensity is
given by Fourier transformation of the Patterson function of this domain structure. After
some lengthy calculations and averaging processes, the author arrives at an exact result for
the scattering of a domain group:

I(H) = P(H) + 2 Rell/(1-R(H)) » P(H)! (Re = real part of {..}) (19)

P_is the Fourier transform of the average Patterson function of uncorrelated domains:

P(H) = X, (G(H)G (H)FF'
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which governs the sharp contribution,

P(H)=X, X, (G (H)XG(H)F, F, B, (H)*..*B,_,(H)sexp2miH(T +.+T,..)!
where the B, denote average domain sizes: By(r)=(&(r-a,*A,)), and

R(H) = B,(H)B,(H)s...sB,(H) exp{2mtiH(T +T+...+T)!

Bragg scattering occurs if R(H)=1. An example is given below.

EXAMPLES

In this section some examples are presented which are taken either from work of the
author’s group or of colleagues in the home institute of the author.

(1) Lamellar stacking in closed packed structures: cobalt, zincblende

Cobalt is one of the first examples where X-ray diffuse scattering was studied
quantitatively (cf. Wilson'® and references therein). One of the main results was the
observation that only reciprocal lattice rows parallel to the stacking direction of the closed
packed planes, ie. parallel to (111),. or (001),,, through hk with h+k=3nz1, exhibit
diffuse reflections. This is quite understandable from the qualitative arguments given above.
A quantitative study was carried out by means of neutron diffuse scattering’'. Neutron
scattering was used to get rid of surface effects because the near-surface structure might be
quite different from that of the bulk. (It was known from earlier work that small grains of
Co show a quite differing structural behaviour, not to be discussed here further). A quanti-
tative analysis with four terms of the kind given by equ.(16) was carried out to take care
of the coexistence of fcc and hcp domains with different amounts of (stacking) disorder.
This procedure works quite well for temperatures T below T,, (= 700K)which indicates the
phase transformation temperature from the low T hcp into the fcc phase. Fault probabilities
could be extracted quantitatively. Close to and above T, the fitting with this commonly
used formula was not satisfactory. The reason was that in the vicinity of the transformation
temperature very small hcp domains occur which could not be treated in the usual way. Ad-
ding terms of the form''

2K, 20, A (T4A, Dcos(2Tl) + A Y cos(rE(W+1)) -

ni

20,2 cos(2rEW) + A,V cos(2rE(W-1)ls(1-24, cos(2rl)+A, 2)? (20)

a reasonable fit was achieved (W is the thickness of the hcp-type slabs, K, are constants)
(Figure 9), and the widths of the hcp domains were found to be between 25 and 40 closed
packed layers. In other words, close to T,, there are embryonic hcp-domains which have to
be considered in the context of the phase transformation. It is worthwhile to note that the
fcc-phase shows a completely different behaviour.
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Figure 9. Purely clastic neutron diffraction of pure cobalt taken from *': Diffuse scattering along (10.5)

measured at 2 temperature points close to the martensitic hep-fec transformation (~700K) indicate intergrown
hep (peaks at =0 and 1) and fcc ({=2/3 and 4/3) lamellar domains. Fitting with the theory given by equs.

(16) and (20). Note the logarithmic scale.

An even more complex behaviour was found in the case of zincblende??, ZnS, which
is formally related to the closed packed structures by filling one half of the tetrahedral
voids. There is again a cubic (blende) to hexagonal (wurtzite) phase transformation (at ~
1300K) which is, however, absent in almost fault-free zincblende single crystals. The
quantitative analysis of the diffuse streaking from different specimens within the framework
of the same theory (no terms equ.(20)), revealed puzzling results: In crystals with a large
amount of stacking faults there are heavily disordered cubic domains coexisting with
relatively well ordered hexagonal domains. Approaching the transformation temperature
wurtzite domains vanish and recover again above 1400K. Other specimens showed a
complete different behaviour and, in addition, polytypic sequences, other than the basic fcc
or hep domains, occur. An example of the diffuse rods which have to be analysed is shown
in Figure 10. Obviously, the complexity of the domain ordering behaviour is governed by
thermal statistics, and polytypic variants are, most likely, "dead ends" of structural fluctua-
tions. Coexisting fcc, hep and polytypic domains may affect the phase transformation
behaviour and my also affect the properties of ZnS material.
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Figure 10. Intensity profile (10.) of a heavily faulted ZnS crystal fitted with the theory given by equ. (16)
(4 terms). Figure taken from ref.”
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(2) Domain ordering during phase transformation: enstatite

The pyroxenes are chain-silicates and form an important group of rockforming
minerals. Enstatite, MgSiO,, occurs in three basic ambient-pressure polymorphs with
reconstructive phase transformations between them. Orthorhombic protoenstatite (PE) is
stable above 1300 K, while both orthorhombic orthoenstatite (OE) and monoclinic clinoen-
statite (CE) exist at lower temperatures. On cooling from high temperatures (PE phase) a
disordered domain structure of intergrown CE and OE domains develops™. The structures
may be visualized as being composed of two structural layers parallel to the a,-4; plane.
The layers consist of SiO,<hains and bands of MgOgoctahedra which differ mainly in the
orientation of the so-called MI octahedra which will denoted by "+" and "-" symbols. The
different polymorphs differ by different stackings of the layers parallel to the b-c plane with
PE: +-+-+-, CE 4+++ or - (twin domains) and OE ++--++-- (Figure 11). OE may be
understood formally as microtwinned CE on a unit cell scale. Due to slight differences of
equally oriented layers in CE and OE the unit cell of CE contains two such layers: 2acsinf
= 1, (B = monoclinic angle). In the course of the PE - OE/CE transformation OE domains
separated by CE lamellae, i.e. out-of-step domains, are formed with fault vectors T=A;-
401+ Ay This gives rise to diffuse streaking and anisotropic broadening of reflections™”’
(Figure 12). By means of the theory outlined above (equ.(15)) the sharp and diffuse
contributions of the reflections can be written as

I,~(1 + cos(2n(A E+A,L)) (subscripts s and d relate to + and - sign, respectively)

-

Figure 11. Out-of-step domains in orthoenstatite. The domain wall (shaded area) are characterized by a
general (irrational) fault vector (see text). Figure taken from ref.”.

20 T—
| OE (521) ¢ CE(220g OE(321)
‘,!" . T S . * ; 161
HE + " »
RARS s o OE(121) B
i T i T T 4o OE(421)
- b - oy
| E
: . E 81
R (=] ]
- L ’ﬂ':l
B 5 4
e T, t t
' 02 L \ 1 CE(121) CE(121)
! ! i :i' : 0O 20 40 60 80 |
i X 3 O .
i FILM COORDINATE [ARB. U.]

Figure 12. X-Ray photograph of enstatite at 985 K (left). The reflection group (h21) is indicated by an arrow
along which an optical densitometer record was taken (right). The profile was fitted by intergrown OE and
twinned CE domains. Figure taken from ref.”
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It was found in this example that reflections (h21) with h=even have a "sharp" contribution
of only 7%, whereas those with h=odd have a "sharp" contribution of 93%. Measured
profiles were compared with calculated ones (Figure 12b) using A=1/2 and A,=a,,,/ayy,
tang(B-n/2). In other words, the analysis of the diffuse scattering allowed for a determina-
tion of an irrational fault vector. A detailed discussion is given in ref.”.

(3) Lamellar exsolutions: pyroxenes

The case of two types of (lamellar) domains fairly often occurs in the course of
exsolution processes. For this case equ.(!9) is rearranged

I(H) = {(G,(H)G," (H)FF + (G,(H)G,"(H)F}F + 2Rel 1/(1-R(H)e
KG(HYG (H)F,F "eexpmiHT )G, (H)){G(H)F F, eexp(2miHT,)
HG(H))XG (H)IF Feexp2riH(T ,+T,))*B,(H) +
HG,(H)YG o H)YEFeexp2miH(T +T,))B, (H)!! Q21

In the simple case with a;=a,,=T =T, = (a,0,0), there are two domains with the same
lattice, hut different structures and fault vectors T equal to the lattice constant. Then an
average superstructure may be defined and the diffraction pattern shows (diffuse) satellites
where the degree of diffuseness depends on the average size of the domains and the domain
distribution functions w,(A)=Y,v,(A)d(A-n) (v,(A) is an arbitrary distribution function).
Figure 13 shows the calculated diffuse scattering for two types of domains with constant
average superstructure (period M = 10ea,,) and various distribution functions v,(A) (equal
for both types of domains). Note that the positions of the diffuse satellites are generally not
at commensurate positions in reciprocal space which is due to the actual distribution of the
different periods. The satellite positions do not correspond to 1/{M) but (1/M) which is
usually not the same. Note that the domains are fully commensurate on a local scale and
the underlying lattices are also commensurate.

This theory was applied by Adlhart*” to a lunar pyroxene which shows exsolution domains
of Ca-rich (augite "A") and Ca-poor (pigconitc "P") lamellae as observed by X-ray photo-
graphs (Figure 14). The related A - P splitting of characteristic reflection (004) could be
explained by a symmetric distribution function. Additional splittings into (A1/A2/A3) and
(P1/P2/P3) groups along other crystallographic directions indicate other sets of super-
imposed domains which could (partly) be analysed in terms of asymmetric distribution
functions. The parameters of the distributions and the structure factors could be extracted
by a comparison of the experimental pattern with a calculated one.

DIFFUSE X-RAY ANDNEUTRON DIFFRACTION: TECHNIQUES®

There are the well known properties of X-rays and slow neutrons which make either
an X-ray or a neutron diffraction experiment more convenient, and there are many pro-
blems where only the combination of both diffraction methods give access to the solution
of the problem. X-rays probe the charge distribution (electrons) which may differ from the
distribution of the nuclei which interact with neutrons (magnetic interactions are not
considered here). This is the basis of the so-called X-N technique which could also be
exploited for a study of ferroelectric domains not carried out so far (?). Due to the form
factor fall off in X-ray scattering and a likewise constant scattering length of neutrons, the
neutrons have their advantage when a complete interpretation of diffuse scattering up to
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Figure 13. Model calculations of diffuse scattering from a crystal with two types of domains and constant
superstructure of 10a, with various distribution functions. (a) Two equal Gaussians, (b) one Gaussian and one
domain with constant size, (c) two different box functions, (d) two different Gaussians, (e) two exponentials.
Figure taken from ref.”” with kind permission of the author (for details see there).
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Figure 14. X-ray photograph and densitometer scanning (cf.arrow) of the (004) reflection group of a lunar
pyroxene. The diffraction pattern can be understood by intergrown augite (A) and pigeonite (P) domains and
further complex intergrowth of A and B-types domains related to the prior thermal history of the moon. The
calculated profile (bottom) is based on two boxfunctions (A2 and A3 lamellae) with mean sizes 24#a,, and
11%a,,, and size distributions of +5 and +2 units, respectively. Figure taken from ref™ and also from
unpublished results of Jagodzinski and Peterat™ with kind permission of the authors.

high Q-values (Q=2msin®/A) is required. This is generally the case when relatively small
atomic displacement vectors in the domain structure formation are involved or when the
difference structure must be determined from diffuse data only. It is, however, fair to say
that no dedicated neutron diffractometer for diffuse scattering at high Q exists because
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Figure 15. Interfacial diffuse scattering in an albite feldspar with twin domains: contrasting the relative atomic
contributions by use of anomalous scattering (reproduced from ref.”® with kind permission of the authors).

measurements at high Q always suffer from a limited Q-resolution. The scattering power
of X-rays increases with Z° (Z = number of electrons). This makes it more difficult to
detect light elements (e.g. H,0) in the presence of heavy ones with X-rays rather than with

neutrons which are scattered by the atomic nuclei in a somewhat erratical way. The analo-
gous argument holds if trying to discriminate between neighbouring elements (e.g. Al/Si).
The method of anomalous X-ray dispersion allows, however, to contrast and identify certain

elements. Even small concentrations of impurity atoms as low as 10 can be determined by
this method if the impurity atoms are located at specific sites, e.g.in domain boundaries, or

if certain other defect structures exist with characteristic diffuse scattering in reciprocal

space. This (even weak) diffuse scattering can then be contrasted by tuning the wavelength
across a particular absorption edge of the interesting species. This was demonstrated in case
of diffuse streaks due to boundaries between lamellar domains in albite-feldspar®® (Figure

15).

A basic question in all diffuse scattering investigations is, whether the order problem is of
static or dynamic nature. Typical energies of dynamic fluctuations, if any, are of the same
order as those of thermal neutrons, e.g. 35 meV for neutrons with wavelength of 1.5 A,
which is comparable to CuK, radiation (which has an energy of 8keV!). This means that

an energy analysis of scattered neutrons allows for a study of the dynamics. For a decision
between static or dynamic origin, the integral diffuse intensity, as measured with a conven-
tional diffractometer, must be compared with the purely elastic component which can be
recorded by placing an (energy-) analysing crystal in the diffracted beam which is set to
zero energy transfer. It should be noted that with the advent of the X-ray synchrotron
sources it is nowadays possible to measure energy changes down to ~10 meV with modera-
te resolution. However, no X-ray experiment of that type is known in context with disorder
diffuse scattering.

True absorption is generally much weaker in the neutron case. Large samples can
be used which seems to be important for diffraction experiments of bulky materials. Moreo-
ver, the question of sample environment is less serious than in the X-ray case (see below).

General requirements for (optimized) measurements of diffuse scattering, in particu-
lar at a synchrotron source, and necessary considerations of resolution and other data
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corrections, are summarized elsewhere **”**. Only some aspects will be mentioned, where
significant progress has been made recently. Diffuse intensities being spread out in reci-
procal space are usually weaker by several orders of magnitude as compared to Bragg
intensities. High brilliance synchrotron sources promise dramatic progress, but, in the case
of slowly varying diffuse scattering phenomena, the high resolution is often unnecessary,
if not to say disadvantageous! In these cases an experimental set-up at a laboratory rotating
anode is often superior. To obtain as much information as possible, large regions of
reciprocal space need to be explored. To reduce measuring times this requires, besides high
intensities, rapid data collection. This is most easily obtained by linear or area detectors.

Perhaps most important is a very low background. Sample incoherent background
scattering like fluorescence and Compton scattering for X-rays or incoherent scattering for
neutrons deserve special attention and should be reduced as far as possible. Inelastic
scattering from phonons is always present and has to be separated. It varies approximately
proportionally with temperature and this fact may be used for its discrimination. For X-rays
this is the only experimental possibility, whereas with neutrons analysers, time-of-flight
recording or, for very high resolution, backscattering or spin-echo methods can be applied
to reduce the inelastic components. The problem is particularly serious close to Bragg
peaks where the inelastic scattering (TDS) has a peak too. One has to be very careful
therefore when investigating diffuse phenomena in this region. Other sources of contami-
nating spurious background scattering are beam defining elements, sample support and
environment, and air scattering of the primary beam. Under this aspect experimental
improvements are particularly designed collimators such as He-flooded beam pathways,
small vacuum chambers around the sample which can be placed in a large Eulerian cradle,
or, as an optimum, a diffractometer entirely enclosed in a large vacuum chamber. Domain
ordering phenomena may depend on parameters such as temperature, pressure, electric-
field,...That means, a variation of these parameters can help to separate different con-
tributions and to interprete more or less complex diffuse diffraction patterns. Then the
sample environment, e.g. heating and cooling devices, must be particularly carefully
designed to avoid additional spurious scattering as far as possible.

The classical 2D area detector is the photographic film. Perhaps the most important
progress in recording diffuse X-ray data is made by the availability of multiwire detectors,
imaging plates and CCD cameras. For 2D position-sensitive (proportional) counters pro-
blems may arise from inhomogeneities of the wire array as well as the limited dynamic
range when a Bragg reflection is accidentally recorded. Image plate (IP) systems have the
major advantage of a larger dynamic range, 10°-10°, compared to 10°-10 of an X-ray film.
IP’s allow data collection either in plane geometry or in Weissenberg geometry, both with
low and high temperature devices. Clearly CCD detectors are well suited for diffuse scatte-
ring too, a basic prerequisite being a low intrinsic noise which can be achieved by cooling
with liquid nitrogen. With these new detectors extended diffuse data sets can be collected.
The standard technique is the so-called "monochromatic Laue" or "NOROMOSIC" (NOn
ROtating MOnochromatic SIngle CRystal) technique, where the crystal is rotated in small
angular steps and an image is taken at each step. Plane or cylindrical geometry may be
applied. The evaluation of the large amount of data and the reconstruction of the reciprocal
space are quite demanding®.

Neutron diffuse scattering may be recorded at a few dedicated instruments such as
D7 at the ILL/Grenoble, DNS at FZ/Jilich or SXD/ISIS-RAL which are equipped with a
bank of detectors. The single crystal diffractometer D19/ILL, equipped with a multi-wire
area detector is also used for collecting diffuse data. The flat-cone machine E2/HMI-Berlin
is equipped with a linear PSD, has an option to record also higher order layers and can also
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be operated in an "elastic" mode with multi-crystal analyser. The instrument D10/ILL has
only a single detector, but can be operated as a low background two-axes or three-axes
diffractometer. Neutron sensitive image plates are available, and efforts are currently made
towards an applicability for diffuse neutron work®’.
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INTRODUCTION

Rietveld structural refinement with the Bragg scattering from a powder diffraction
pattern provides structural information that is averaged over several hundred angstroms or
more. While this information has been extremely useful in our understanding of materials,
there are systems whose true local structure differs substantially. In these cases, pair
distribution function (PDF) analysis of the same powder data can provide a much more
accurate descrlptlon of important structural changes associated with changes in their
properties. " Examples 1nclude systems that undergo electronic changes that result in local
structural instabilities,”® systems which involve transitions between structures of dlfferent
crystallographic symmetry but whose local structure remain more or less invariant,’ systems
which can actually be described as superpositions of s1mPler structural variants, or
systems where the local order in the structure changes.”’'® Our work on the electronic
oxides, which includes the high transition temperature cuprate superconductors, the
perovskite-like ferroelectrics and the colossal magnetoresistance manganites, has been pub-
lished and will not be discussed further here.

Instead we will emphasize our progress to date on the study of metallic alloys, and
somewhat older but ongoing work on the exploration of the use of differential pair-
distribution-function (DPDF) analysis of more complex structures to greatly reduce the
number of pair correlations that are observed and to simplify the interpretation of the data. So
far, metallic alloys have not been studied much using PDF techniques; but the techniques are
ideally suited for the study of phenomena such as disorder and phase instability and we hope
that our work will represent a small start in what will become an active area. We will describe
our use of isotopic-substitution neutron diffraction for DPDFs about the Cu-sites in
YBa;Cu30¢,5 (YBCO) and near-resonant x-ray diffraction to measure the local structure
about a central heavy atom in systems of biological interest. The work on YBCO is part of a
search for changes in the axial Cu-O bondthrough T, where small changes in this bond may
be obscured by contributions from the more plentiful, nearly equidistant Y-O bonds. The
work on biological systems is motivated by a desire to better understand their structure and
changes in the structure with biological function near a heavy metal site. At very high x-ray
energies, the lighter atoms will only contribute a Compton component, and this technique will
readily yield interatomic distances for multiple metal sites. Near resonance, difference PDFs
will give the radial distribution of atoms about that site, much as in x-ray absorption fine
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structure (XAFS) measurements or high-resolution nuclear magnetic resonance (NMR)
experiments, but extending to larger radial distances.

Although we are developing DPDF techniques out of the necessity to solve these
interesting problems, the use of the contrast provided by the different scattering lengths from
different isotopes in neutron scattering or different x-ray scattering factors near the absorption
edges in x-ray scattering will certainly find more common use, especially as the systems we
study become more complex. The use of neutron scattering with isotopically labeled YBCO
and the use of near-resonant x-ray diffraction to study biological systems represent only the
first step towards exploiting the versatility of the DPDF technique.

CRYSTALANDLOCALSTRUCTUREOF a-PLUTONIUM

Plutonium sits at a boundary in the actinide series that separates 5/ electron localization
and itinerancy. To its left in the periodic table, the f-electrons are delocalized and contribute to
the bonding; to its right, the electrons are localized and do not. One manifestation of this is
the eight valence states plutonium exhibits in its chemistry. These multiple valence states
often lead to the coexistence of different valence states in metallic plutonium so that even pure
plutonium may be thought of as a "self-intermetallic" alloy. Another manifestation is the
extremely rich structural polymorphism and instability which is exemplified by the six
allotropic phases below its melting point at 914 K as it is heated at ambient pressure (as
shown in Figure 1)." All this suggests that the local structure may differ from the average
crystallographic structure. We have embarked on a study of the local structure of the various
phases of plutonium in order to provide a better understanding of bonding in this system and
to gain insight into the forces that drive the many phase transitions.
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Figure 1. Atomic volumes for the various structural phases of plutonium at ambient pressure (Reference 19,
courtesy of the University of California Press). The successive phases (with atoms per unit cell and space
group) are o (16, monoclinic P2 j/m), B (14, body-centered monoclinic 12/m), ¥ (8, face-centered orthorhombic
Fddd), & (4, face-centered cubic Fm gm), &' (2, body-centered tetragonal /4/mmm) and £ (2, body-centered cubic
Im3m).

We begin our studies with a-plutonium because it is stable from 0 to 395 K and is the
most easily accessible from an experimental point of view. It is also the most accessible from
a theoretical point of view because the 5 electrons are delocalized and, unlike the other
phases, band structure calculations have been reasonably successful in predicting its
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properties.”” The complex crystal structure has been determined by Zachariasen and
Ellinger*'": a- plutonium is monoclinic (space groupP2,/m) with eight atom types all located at
either (x,1/4,z) or (-x,3/4,-z) positions, for a total of 16 atoms per unit cell. It has many
unusual properties. It is a hard and brittle metal but it is extremely soft vibrationally, with a
Debye temperature of =200 K,22 and it has one of the largest coefficients of thermal
expansion of any metal. The resistivity exhibits the most anomalous behavior of all
nonmagnetic materials: it is pretty anisotropic and shows a maximum ca. 80 K along the
<100> direction.”® The temperature dependence of the magnetic susceptibility is flat, typical
of a Pauli paramagnet. Hall effect measurements show that the Hall coefficient changes sign a
number of times.**
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Figure 2. Part of the neutron powder diffraction data for a-Pu at 20 and 300 K are shown in panels (a) and
(b), respectively. The points shown by plus (+) marks represent data collected on the +153° detector bank of
HIPD. The continuous line through the data is the calculated profile from Rietveld refinement, assuming the
same isotropic atomic displacement parameter for all atoms. The tick marks below the data indicate the
positions of the allowed reflections for a-Pu in the monoclinic P2 }/m space group. The lower curve in each
panel represents the difference between the observed and calculated profiles. Small unindexed Bragg peaks at d-
spacings of 1.23 and 1.52A are from the vanadium sample tube.

The sample used was enriched to 99.9% 242Pu in order to minimize the absorption
from the broad neutron resonance from the 23%Puisotope at 0.48 eV. Approximately 12.2 gm
of sample in a granular form, was sealed in a double-walled vanadium sample tube with an
Ar/He atmosphere. The sample tube was mounted on the tip of a closed-cycle He refrigerator.
Neutron powder diffraction data were collected using the High Intensity Powder
Diffractometer (HIPD) at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos.
Data were collected to give good statistics at each of the five different temperatures (20, 80,
140, 220 and 300 K). Data were also collected for background and empty container runs, as
well as incident spectrum measurements using a vanadium rod, all to be used in the PDF
analysis. The crystallographic structure analysis was carried out with standard GSAS
Rietveld refinement package.”® The PDF analysis and real-space refinements were carried out
with in-house transformation and refinement packages.
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The diffraction data collected at sample temperatures of 20 and 300 K are shown in
Figure 2. There are a number of notable features in these data: first, the diffraction pattern is
extremely complex consistent with a monoclinic structure; second, the intensity at small d-
spacings drops off quickly with temperature, suggesting a steep dependece of the atomic
displacement parameters on temperature; and finally, there appears to be a fair amount of
diffuse scattering at higher temperatures that most likely results from thermal diffuse
scattering.

Table 1. Structural parameters for a-Pu. The space group at all temperatures is P2;/m, with
all atoms at (x,1/4,z) sites.2

Temperature (K) 20 80 140 220 300

Lattice Parameters:

a 6.11369(21)  6.12139(19)  6.13280(19) 6.15111(17)  6.17477(17)
b 4.76500(15) 4.77264(14) 4.78237(14) 4.79788(13)  4.81758(13)
¢ 10.8731(4)  10.8832(4) ~ 10.8965(4)  10.9176(3) 10.9440(3)
B 101.837(3) 101.829(3)  101.816(3)  101.799(2) 101.776(2)

Cell Volume: 310.016(12) 311.202(12) 312.815(12) 315.396(11) 318.703(11)

Occupancies (f), Atomic Positions (x,1/4,z) and Thermal Parameters (Ujsp):

Pu(1)
X 0.3372(4) 0.3377(4) 0.3366(4) 0.3373(4) 0.3369(5)
z 0.15977(26)  0.15948(26) 1.5889(27) 0.15823(28) 0.1583(3)
Uiso  0.004(11) 0.070(11) 0.149(12) 0.250(14) 0.384(16)
Pu(2)
X 0.7659(5) 0.7670(5) 0.7680(6) 0.7701(6) 0.7725(7)
z 0.16995(27) 0.17001(27) 0.16980(28) 0.1704(3) 0.1708(3)
Pu(3)
X 0.1292(6) 0.1304(5) 0.1317(6) 0.1342(6) 0.1368(6)
z 0.33845(28) 0.33852(27) 0.33894(29) 0.3396(3) 0.3399(4)
Pu(4)
X 0.6576(6) 0.6567(6) 0.6567(6) 0.6571(6) 0.6577(7)
z 0.4579(3) 0.4575(3) 0.4573(3) 0.4563(3) 0.4554(4)
Pu(5)
X 0.0269(4) 0.0267(4) 0.0272(4) 0.0279(4) 0.0285(5)
z 0.61983(29) 0.62019(28)  0.6203(3) 0.6207(3) 0.6214(4)
Pu(6)
X 0.4657(4) 0.4664(4) 0.4661(5) 0.4657(5) 0.4649(5)
z 0.64853(27) 0.64881(26) 0.64905(28) 0.64925(28)  0.6503(3)
Pu(7)
x 0.3220(5) 0.3229(5) 0.3239(5) 0.3252(5) 0.3291(5)
z 0.92709(28) 0.92736(27)  0.92697(29)  0.9267(3) 0.9264(3)
Pu(8)
x 0.8712(4) 0.8708(4) 0.8708(4) 0.8706(5) 0.8705(5)
z 0.89437(26)  0.89439(25) 0.89486(27) 0.89529(28)  0.8949(3)
Rwp/Rexp(%):  1.90/1.22 1.78/1.14 1.80/1.15 1.74/1.09 1.77/1.09
x2red: 2.665 2.926 2.890 3.358 3.601

aUnits for lattice parameters are A and °, units for cell volume are A3. Numbers in

parentheses following refined parameters represent one standard deviation in the last digit(s).
Units for thermal parameters Uiy, (constrained to be the same for all sites) are 100 A2

The structures at each of the temperatures can be refined for lattice constants, atomic
positions, and a single isotropic atomic displacement parameter (it is possible to refine
separate displacement parameters for each atom, but the correlation between parameters
becomes large and the values obtained become less reliable). The results of these refinements
are shown in Table 1. Many of the observed features are already known.” The cell volumes
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increase rapidly in going from 20 to 300 K, with all the lattice parameters increasing by
about 1% (a little more for b and a little less for c¢), and with the monoclinic angle decreasing
by about 0.06%. As pointed out earlier, all atoms lie on sheets b/2 apart aty = 1/4 and 3/4.
This leads to many nearest-neighbor pairs separated by approximately 2.4 A, much smaller
than the nearest-neighbor distance of 3.3 A in thefcc” 8- phase. The isotropic displacement
parameters also increase sharply as has been observed in a previous determination of these
parameters from neutron powder diffraction work.”> The positional parameters change with
temperature generally by about 1% or less. It is interesting to note that the value of x2red for
the refinements increases with temperature: this is almost entirely due to the increase in
diffuse scattering.

The pair distribution function for a-Pu at 20 K shown in Figure 3 is obtained from the
neutron powder scattering data by the transformation

1
272

QO max
pir) = Py + jQ[S(Q) 1] sin(Qr)dQ

after correcting the data for scattering by the sample tube and the background, and dividing by
the incident neutron spectrum as measured from the scattering from a vanadium rod. For this
PDF, as well as all the others for a-Pu, aQmax of 30A-!was used. This value appearstobe
optimal for reducing truncation errors while not losing any resolution in the pair correlations.
Also shown in Figure 3 is a model PDF calculated from the crystallographic structural
parameters listed in Table 1 for 20 K. It is immediately apparent that the measured and model
PDFs agree quite well, especially at larger ». The correlation peaks remain at sharp over the
entire range and this implies that the structure remains well ordered to large distance. Thus the
kind of disorder found by Cox et al.*® from XAFS experiments for the near-neighbor
environment in 3.3 at.%Ga doped Pu alloy in the fcc &phase (see below) is not present in
pure Pu in the a-phase. Deviations in the measured peak heights in the small » region may be
interesting. These arise from correlated motion, and contain information about the forces that
join the near neighbors.

The temperature dependence of the PDFs are shown in Figure 4 where only PDFs for
20, 140 and 300 K are shown. All peaks decrease in intensity as the temperature is increased
as would be expected from the increased atomic vibrational amplitudes at higher temperatures.
Nevertheless, all peaks overlap and this suggests that the increased diffuse scattering at higher
temperatures must be thermal in origin rat%ler than displacive.

More qualitative and quantitative information can be extracted from these data by
modeling the real space structure. However, the complexity of the monoclinic structure
results in a distribution of bonds, each of which may have a different temperature dependence,
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contributing to each correlation peak. Under these conditions, a real space refinement,
without the symmetry constraints imposed on a crystallographic refinement, becomes
difficult. The approach we need to take is to make plausible changes in the model until better
agreement is obtained, but it may be difficult to obtain a unique model in this way. We hope
to start this in the near future.

Little is known about the local structure of the other phases of plutonium. Cox et al.”®
have reported an x-ray absorption fine structure (XAFS) study of the structure of 3.3 at.%Ga
doped plutonium alloy. Gallium enters the lattice substitutionally (up to about 10 at.%) and at
higher concentrations it is known to stabilize the high temperature fccé-phase of plutonium at
lower temperatures. At 3.3 at.% doping, the 8phase is stable at room temperature, but
occasionally converts to the a-phase at lower temperatures. The XAFS studies at the Ga K-
edge showed that its nearest neighbors are well ordered (with a sharp peak), as are atoms in
the second and third coordination shells. The Pu Ljj-edge data showed that the plutonium
environment is substantially less well ordered, with the peaks from the second and third
coordination shells completely absent. This finding is surprising for a substitutional alloy and
it would be interesting to explore this further with neutron PDF techniques to examine the
nature of this disorder.

Since so little is known about the bonding in plutonium, additional information about
the interatomic forces will be useful and may be available. Since the volume changes with
different phases are so large, the bonding and the participation of the directional jfelectrons in
that bonding must also be changing. This will certainly affect the stiffness of the bonds to
stretches and bends, and this should show up in the interatomic correlations that determine the
deviations in the small r peak heights from a Debye model. Hopefully, it may be possible to
use molecular dynamics calculations to estimate the force constants that produce these
interatomic correlations and thereby learn something about the bonding in plutonium.27 In
addition to the issues raised above, the study of 8-phase plutonium alloy would be extremely
interesting. First, the simpler structure may make it easier to derive the interatomic forces.
Second, it is much softer than a-Pu, with a Debye temperature estimated at =130 K.22
Finally, 8-Pu shows evidence of having a soft-mode instability and has the most anisotropic
shear wave elastic constants [Cyaq4 is approximately 7 times greater than C* = 1/2(C;-C13)]
known for any fec metal,” even though its atomic volume (see Figure 1) would suggest that
its 5f electrons are mostly localized. The elastic constants for the other phases are not known,
but the greater participation of the 5f electrons in the bonding suggests that the other phases
may be even more anisotropic, if thefr could be measured. Clearly effects like these should
show up in the force constants as well.

As alluded to earlier, alloying plays an important role in stabilizing the 8-phase of
plutonium. This brings up a whole new range of topics for future study centered on the role
that the substituent plays in this stabilization and in the local structure of these alloys.
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DIFFERENTIAL PAIR DISTRIBUTION FUNCTIONS OF YBa;Cu30¢.45

The crystallography of YBa;Cu3Og.s has been thoroughly studied as a function of
oxygen stoichiometry,?-3° oxygen ordering®”* and temperature.”** One of the first
experiments that clearly showed an anomaly in the structure near T, were the ion channeling
experiments of Sharma ef al.*>® In these experiments, ions channeled along the c-axes of
single crystals of YBa,Cu3Og.5 and ErBa;Cu3Og,5 showed a broader angular width below
T. as the crystal axis is rotated, suggesting an ordering or correlation of the atomic
displacements in the superconducting state. As is often the case, these changes were not
observed in the crystallographic data.”>”* A polarized XAFS study of the temperature
dependence of magnetically aligned powders of YBayCu3Og,5 showed an anomaly near T,
which was interpreted as a split copper-axial oxygen bond length [Cu(1)-O(4)] whose
splitting narrowed, or disappeared, near T¢.37 Others have suggested the possibility of
polaronic or bipolaronic transport. Subsequent work has been somewhat equivocal in the
support of this finding. Stern et al.*® have carried out similar experiments with several
samples with a range of oxygen stoichiometries. They find that only the sample with the
lowest T, was consistent with a split Cu(1)-O(4) bond length; the sample with highest T,
could be fit with either a single site or a split site and there was no dependence on temperature.
Recently, Booth ef al.”® reported careful polarized XAFS study of both single crystals and c-

axis aligned thin films of YBayCu30g4s. The single crystal data can indeed be fit with a split
site between 50 and 100 K but this splitting does not change near T.. The thin film data can
be fit well with a single site model, limiting any possible Cu(1)-O(4) bond length splitting to
<0.09 A. The general conclusion seems to be that samples with a low oxygen concentration
show a Cu(1)-O(4) split bond length and that this splitting may be a static effect. Therefore,
both the physical interpretation of this anomaly and its relationship to the superconductivity
remains controversial.

The failure to provide more definitive evidence either way is disappointing in the
context of other work that clearly established axial oxygen anomalies for other
superconducting systems such as T1-2212," YBC-124,° and Bi-2212,* using pair
distribution function analysis of neutron scattering data or XAFS. One of the problems is that
the peak from the planar copper to axial oxygen [%u(Z)-O(4)] bond ca. 2.29 A is obscured by
peaks from the many Y-O(2) and Y-O(3) bonds at 2.40 and 2.37 A, respectively, and small
changes in the correlations involving axial oxygen bonds are difficult to see.
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Figure 5. Measured GDF for YBayCu30g,§ showing the large number of peaks arising from the complex
structure.

A number of years ago, we had access to relatively large (>10gms.) samples of

YBa;Cu306.5 that had been labeled to >99% with either ®Cu or ®Cu, and we decided to try
a differential PDF (DPDF) study to try to resolve the axial oxygen anomaly. The labeled

329



samples had been made 6-7 years earlier and had been stored in a humid climate. We made a
few attempts to re-anneal the samples under identical conditions, but the T¢'sand oxygen
stoichiometries of the two samples were always somewhat different (89K and 6.90 for the
5Cu sample versus 93K and 6.95, for the *Cu labeled sample). There was also a problem
in that the ®Cu labeled sample also contained a small amounta of Y,BaCuQs. However,
since reprocessing these precious samples was difficult, they were used as re-annealed.

With scattering lengths of 6.43 fm and 10.61 fm for “Cu and ®Cu, respectively, the
contrast is substantial and all correlations between pairs that do not involve Cu should vanish
in a DPDF. We collected neutron scattering data for both samples at four sets of
temperatures, two each above T¢ (97 and 107 K) and two below (87 and 77 K). As in the o-
Pu studies, the data were collected on HIPD, for about 8 hrs at each temperature. Figure 5
shows the GDF for YBayCu3QOe.5 obtained from data collected at 107 K.* Many of the peaks
at larger » contain contributions from a number of bonds and, as has been mentioned, the peak
at =229 A includes contributions from both the Y-O(2) anmd Y-O(3) bonds and the Cu(2)-
O(4) bond.
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Figure 6. Model DPDFs for YBayCu30¢. 5 including only Cu correlations.
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Figure 7. Measured DPDFs for YBapCu30g45 above and below T.. The solid line is the DPDF at 107 K,
while the plus (+) signs denote the DPDF at 77 K.

*For Figures 5 and 10 in this article, we use G(r) instead of p(r), hence GDF instead of PDF, in order to
accentuate the large  correlations. These functions are related by G(r) = r{p(r) - pol. In practice, we use PDFs
and GDFs more or less interchangeably.
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A model DPDF, corresponding to the crystal structure at 107 K is shown in Figure 6.
All correlations that do not involve Cu are now absent. Clearly, the distribution function is
considerably simpler: the peak at =23 A, now consisting of only the Cu(2)-O(4)
contribution, is much smaller and shifted slightly to smaller #; in addition, a number of peaks
at larger r are now absent.

The measured DPDFs for 77 K and 107 K are shown in Figure 7. These DPDFs
resemble the model shown in Figure 6, but major differences exist. Most importantly, the
peak at2.3 A corresponding to the Cu(2)-O(4) bond is essentially absent at both temperatures.
Unfortunately, the noise in the data is large, especially at 107 K. This may mean that the
bond is indeed split and more difficult to see. However, given the quality of the data, this is
probably all that can be said. Several other peaks, such as those at 3.8 and at 4.3 A, are
expected to be much smaller or larger, respectively; also the region between 5 and 6 A, does
not agree well. These deviations are important because the errors are much smaller at larger
values of » and the difference between measurement and model becomes much more
significant.

These initial experiments thus show some promise in giving a clearer view of the
Cu(2)-O(4) correlation. However, both counting statistics and samples need to be improved.
We are now making a new set of samples so that we can repeat these experiments in the near
future.

APPLICATION OF LOCAL STRUCTURE TECHNIQUES TO BIOLOGICAL
STRUCTURES

Traditionally, the structure of large biological molecules has been determined using
x-ray absorption fine structure (XAFS) techniques or high-resolution nuclear magnetic
resonance (NMR) techniques to provide information over relatively short length-scales or by
growing the analogous single crystals and solving the full structure using x-ray
crystallography. By using PDF techniques, we believe that we may be able to provide
information over longer length scales for peptides, enzymes or proteins, without the need to
grow and solve the structure of a single crystal. We can think of three different kinds of
experiments in which these techniques may be applied, but all require that the many
overlapping peaks arising from the complex structures be reduced in number. All of these
should be adaptable to the study of biological molecules in solution.

(1) The first kind of experiment is aimed at the determination of the distance between
heavy metal centers that depend on their proximity and cooperative action for their biological
activity in peptides, enzymes, or proteins. These experiments would be done at very high x-
ray energies so that the lighter atoms contribute only to the Compton scattering, which can be
removed. Thus, we do not need to rely on DPDFs to reduce the number of pair correlations.
This technique has recently been used to study the Peierls distortions in linear Pt-1 chains,
where the I;‘g ions exist in two valence states, and has been described by Billinge,"' Egami*’
and Kycia.

(2) The second kind of experiment is a DPDF technique that takes advantage of the
substantial change in the x-ray scattering factor for a given atom at its absorption edge to give
radial distribution functions about that atom. The only requirement is that there be a heavy
metal center such as Mo, Ru, Ag or Cd, so that the K-edge is at sufficiently high energy.
Since many biological systems of interest have such metal atoms, this is not much of a
restriction. The resulting distribution functions will be much like those provided by XAFS,
but since the scattering does not depend on the scattering of photoelectrons and their multiple
scattering, the range of the technique is much greater than the =5 A typically available. The
DPDF data will be useful in determining the structure at much longer ranges and provide the
complementary information needed for a more complete description of the structure. Thus
this technique can be used to study the medium to long range structure near an active metal site
in a peptide, enzyme or protein and to see how this structure changes with function.

(3) Finally we may be able to determine the tertiary structure of proteins from the local

structure. Since the DPDFs will extend to large enough distances, the known amino acid
sequence and the known covalent bond lengths and bond angles can be used together with an
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efficient stochastic procedure to generate trial DPDFs corresponding to various possible
conformations. These then can be tested against the measured DPDF until the correct tertiary
structure is found. One possible difficulty is that each biological system will have to be
treated separately; another is that in very large systems the bond lengths and angles may not be
so rigidly constrained, especially with packing strains and hydrogen bonding. However, this
technique has a good chance of working for smaller systems and should provide a new and
powerful way to study biological structures in solution!

We now devote the remainder of this article to a description of our progress to date on
experiments which would fit under the second category of experiments. Since Cd has a K-
absorption edge at high enough energies (26.7 keV) to allow the collection of x-ray scattering
data over a large range of momentum transfer, we concentrate our initial efforts on model
compounds of the type Cd(S-cys)y(N-donor)s.x, €.g. cadmium bound to cysteine- and
histidine-like residues, which may serve as analogs to a large number of Zn binding peptides
and proteins, such as the phytochelatins and metallothioneins, and to the major class of "zinc
finger" proteins. A number of model compounds that mimic the near neighbor Cd
environment have recently been synthesized and their structures determined from single
crystal x-ray crystallography.*** We have been studying the compound Cd(S-2,4,6-
Pr14CgH,)2(bpy) and its Se analogue. The structure of this compound is shown in Figure 8.

Figure 8. The structure of Cd(S-2,4,6-PrizCgHy)o(bpy) from single-crystal x-ray diffraction.

In this compound, the central Cd is coordinated to two sulfur ligands from the thiolate
(cysteine-like) residues and two nitrogen ligands from the bipyridine (histidine-like) rt_asidue.
The Cd-S and Cd-N bond lengths for these are approximately 2.46 and 2.28 A respectively.
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Figure 9. The radial distribution function of atoms around the central Cd obtained from Cd K-edge EXAFS
data.
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A radial distribution function obtained from room temperature Cd K-edge XAFS for this
material (courtesy of Jane G. DeWitt of the San Francisco State University) is shown in
Figure 9. The large peak at 2.00 A is from the Cd-S bonds and is shifted down 046 A from
the known values of the Cd-S bond lengths (this "phase shift" is well known and can be
accurately accounted for). The observed satellite peak ca. 1.58 A may result from the Cd-N
bonds; however, it is more likely arise from noise in the transformation which can be removed
by optimizing the fit to the non-XAFS part of the absorption. Many of the peaks at larger
values of  most likely are real, but they are difficult to distinguish from noise peaks in the
same region. Thus in this case, XAFS provides information mostly about the nearest
neighbor bond lengths and coordination, and little information about the structure at larger 7.
X-ray diffraction data for a 50 mg powdered crystalline sample were collected using
the six-circle Huber diffractometer on beam line 7-2 at the Stanford Synchrotron Radiation
Laboratory (SSRL). The synchrotron ring was operating at 3.0 GeV and 100-50 mA and the
wavelength was defined by a Si(220) double monochromator. The sample was mounted in a
2.0 mm thick sample holder with 0.0015" thick self-adhesive kapton windows and 6-26 scans
were carried out in transmission mode. Data were collected at 25 eV and 300 eV below the
Cd K-edge which was taken to be 26711 eV at the midpoint of the absorption edge. Scattered
signals were measured using an energy dispersive intrinsic Ge detector with three SCA
windows set to collect the elastic scattering (including Compton scattering which was later
subtracted), fluorescence, and the total signal; the incident intensity was monitored with a
Nal(Tl) scintillation counter by measuring the scattering from a kapton film inserted upstream
from the sample. We attempted to collect each data set in two scans 0.5<k<2.0 A-!steps and
2.0<k<24.5 A-! rocking the sample +1° about 8 in order to average over particle statistics
(sample rocking was found to be absolutely essential to provide adequate powder averaging).
This resulted in a count time of approximately 17.5 sec per point and excellent statistics in the
signals. In the low k scans, Mo filters were inserted to keep the total count rate low enough
so that there was no need to correct for photomultiplier and Ge detector dead time, even for
the intense Bragg peaks. Separate scans of the empty sample cell (with only kapton
windows) were also made at both energies and used later for background subtraction.
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Figure 10. Measured GDF from data collected 300 eV below the Cd K-edge (see text for details).

A sample GDF obtained from the scan at 300eV below the Cd K-edge is shown in
Figure 10. The first peak at 1.37 A corresponds to a mixture of the C-C single bonds (1.54
Ay and double bonds (1.33 A) in the Cd thiolate. With a little imagination, a break on the high
r side of the peak is visible, corresponding to the two sets of peaks. The second peak
centered at2.45 A corresponds to the Cd-S bonds. Smaller peaks corresponding to the Cd-N
bonds may be hidden in the low r side of the Cd-S peaks. The very small peaks on either side
of the 2.45 A peak probably are noise peaks arising from ringing. Peaks at larger distances
correspond to various Cd-C, S-S, N-N, C-C and C-N correlations. Some of the overlapping
peaks, such as the C-C single and double-bonded peaks and the Cd-S and Cd-N peaks, may
be better resolved at lower sample temperatures where the atomic displacement parameters are
smaller. Thus in relatively simple molecular systems where there are not too many
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overlapping correlations, the PDF technique already offers advantages over XAFS in giving
more accurate bond lengths at longer distances, better coordination numbers, and information
about correlations with more distant neighbors.

In the experiment we performed, the complementary near-edge run (25 eV below the
edge) did not have properly set windows and could not be used. Such as energy comparison
would have been useful. In the meantime, the proper setting of windows and the treatment of
Compton scattering has received much more attention*® and can now be done in much better
fashion. Thus our next attempt to repeat these experiments should work and should provide
the DPDFs that can be compared with the known structure from single crystal x-ray
diffraction.

Another challenge that remains is to carry out these experiments in solution, and
preferably at low temperatures. Presumably in the liquid the intramolecular correlations will
remain intact while the intermolecular correlations will be averaged out. The structure for the
parts of the molecule that are "floppy" will also average out but these portions of the molecule
are probably less important biologically. The interference from intramolecular contributions
from the solvent and the necessary "anti-freeze" will each cancel out when taking differences.
The structure of the Cd thiolate will most likely be somewhat different in solution and it
should be possible to carry out real space refinements to determine the new structure.

In the future, there are many biological systems that contain Cd that would be
interesting to look at. One type that comes to mind are the Cd-binding plant peptides
(phytochelatins) that contain two to nine amino acids. These are found naturally in jimsun
weeds and may be useful in the environmental clean-up of heavy metal contaminants.
Another type consists of the animal analogs to the phytochelatins, the metallothioneins. These
are small proteins that contain about twenty cysteines and their biological function is to bind
and rid the body of heavy metal toxins such as Hg or Cd. There are also many Zn proteins
have Cd analogs: this includes the Zn finger proteins that play an important role in RNA
transcription. If we get away from Cd there are other heavy metals such as Mo which plays
an important role in nitrogenase, and is responsible for nitrogen fixation. The list goes on.
Much remains to be done!

CONCLUSION

Pair distribution function techniques have been extremely successful in revealing
details of the local structure that are important to the behavior of the electronic oxides.
Although we are still actively continuing our study of these systems, we are also beginning to
broaden the scope of our work and apply these techniques to the study of other classes of
materials. We have been very interested in using local structural techniques to study possible
disorder in metallic alloys. As a start, we are studying the local structure of plutonium and its
alloys in order to learn more about bonding in these systems; in particular, we hope to learn
more about the role of the localization and itinerancy of the jfelectrons, about the forces
between atoms, about possible disorder in the structure, and about the many phase transitions
that take place. At the same time, we have also been interested in the extension of PDF
techniques to include differential PDF techniques. We are hopeful that isotopic substitution
neutron scattering or near-resonant x-ray diffraction will become just as useful a technique as
the PDF technique has been and that it will help elucidate the local structure where interfering
bonds obscure the correlations of interest or where the structure becomes so complex that the
pair distribution function becomes too complicated for analysis. When the DPDF experiments
gescribed here are completed, we hope that they will serve as good examples of what can be

one.
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STUDIES OF LOCAL STRUCTURE IN POLYMERS
USING X-RAY SCATTERING

Michael J. Winokur

Department of Physics
University of Wisconsin
Madison WI 53706

INTRODUCTION

The study of the intrachain and interchain structure in polymeric materials has
been an exceedingly important research topic and techniques which can resolve these
attributes remain one of the central research pillars used to characterize systems com-
posed of these chain-like molecules. The enormous anisotropy intrinsic to the polymer
chain structure is the defining materials property and, as a result, one is interested in
structure and structural phase behavior at a large number of length scales. For investi-
gations at the largest microscopic distances, ranging from 50 to 10,000 A, small-angle
neutron and x-ray scattering and light scattering techniques[1, 2] are often employed
and these studies can yield a vast amount of detailed data. At shorter length-scales
wide-angle x-ray, neutron and electron diffraction techniques all provide complementary
information about crystalline, semi-crystalline and amorphous hosts[3, 4, 5].

In large part the most quantitatively accessible features are those generated by
crystalline and semi-crystalline materials. In this case the elastic Bragg scattering, at
wave vectors ¢ > 0.1 A~! (as obtained from ¢ = 47/Asinfwhere Xis the scatterer
wavelength and 28 is the angle between the incident beam and the scattered beam),
provides direct information about the placement of the polymer chains within a peri-
odic unit cell. Since the chain chemical architecture is generally a known attribute, it
is often possible to ascertain the average geometric construction of the polymer host.
Still it is important to emphasize that, even in the best-case scenario, this analysis is
most sensitive to the interchain packing of the polymer chains and, in general, the unit
cell contains a large amount of static and and dynamic disorder. Hence all of the Bragg
scattering undergoes a rapid exponential falloff with increasing ¢ so that by 4 A~ or so
this scattering signal is no longer resolvable. Moreover most crystalline polymers con-
tain a considerable fraction of amorphous material which generates a secondary diffuse
scattering background. In semi-crystalline hosts the proportion of diffuse scattering
signal is increased. Finally I note that many polymeric materials, including those in
the melt state, exhibit only diffuse scattering signatures and thus are essentially amor-
phous or liquid-like. Obviously, in these cases, there can be no analysis of the Bragg
scattering yet an understanding the atomic-length-scale structural organization is still
desirable.

Local Structurefrom Diffraction
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This diffuse scattering signal also contains a superposition of information concern-
ing both the local interchain and intrachain structure of the polymer and, in many
instances, it is this local structure which is the most relevant feature for understand-
ing the physical properties of the polymer host. The recent and rapid development
of molecular level materials engineering and new light sources[6] in combination with
computer generated atomistic simulations of polymeric materials[7, 8, 9] has initiated a
resurgence of interest in direct techniques which can adequately resolve the local chain
structure. Simulations which do not accurately describe the local structure, may not
be expected to faithfully reproduce physical properties at larger length scales. More-
over there are a number of novel materials which are extraordinarily sensitive to the
nature of the local structure. In conducting polymer hosts electronic charge transport
requires motion of charge both along the backbone and between chains to create a
three-dimensional conducting matrix. In these materials subtle variations in both the
intra- and inter- chain organization can generate profound changes in the measured
transport properties[10, 11, 12].

To adequately reconstruct structure at length scales ranging from 1 to 10 A it is
often possible to employ radial- (or pair-) distribution-function analysis (RDF or PDF
respectively) techniques. PDF analysis can be successfully used to elucidate struc-
ture in a variety of structural “settings” ranging from crystalline to amorphous[13].
These techniques can even be exploited in polymer samples containing appreciable two
phase mixtures of crystalline and amorphous components[14]. A number of excellent
reviews of radial (or pair) distribution function analysis have appeared in the literature
[3, 15, 16] and some these are even specific to polymers[17]. The overall goals in the
text that follows are to briefly review a few of the most recent PDF studies of poly-
meric materials, to highlight the unique attributes of PDF analysis in polymers, and
finally, to describe in modest detail some of the specialized difficulties and solutions for
obtaining quantitative analysis of the local chain structure when using refinement of
X-ray scattering data.

BASIC THEORY

PDF studies require data analysis and reduction techniques which are considerably
different than those typically employed for analyses restricted to only the Bragg-like
scattering features. In general it is necessary to acquire all scattering data, from mod-
erately low to relatively high wave vector (or ¢), correct the experimental data for
a variety of systematic effects[15] (e.g., geometry, absorption, multiple scattering[18],
x-ray Compton scattering[19], backgrounds, etc.) and then perform a properly normal-
ized Fourier transform. In theory this new spectrum contains a weighted distributional
average over all atomic pairs. Because of the fundamental complexity in deciphering
the superposition of all these distributions it is necessary to choose host system care-
fully so as to take best advantage of the resultant data. For polymeric materials it is
desirable to choose model compounds containing a very limited number of monomer
base units [e.g., polyethylene or poly(propylene)] or anomalous scattering scattering
centers (e.g., large-Z cations or anion species in polyelectrolytes). In the latter case it
then becomes necessary to employ differential anomalous scattering[20] methods,

A common starting point for this analysis is the Debye formula

Icoh Z Z fil@)f} (g Sm(‘]"'t]) (1)

i=1 j=1

which describes the general form of the total coherent scattering intensity from a powder
averaged system of N atomswhere g(= #*sinf) is the scattered photon momentum
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transfer, ry; is i-j pair spacing and f; is the ith atom scattering factor. With neutrons
the atom scattering factors are essentially g-independent so that the coherent scattering
signal remains strong even at high g. This expression must be recast as

(#4) o :
1) = N 3 WP + & 50550 T, 2
ij
and then normalized to give
icoh zif; |2+_1_(§J:) F@ Sln(Qﬁj)’ (3)
qrij
and rewritten in terms of the structure functlon
'C()h__r 2 i »mn
i@ = S S fo @ @) @
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with (f?) representing the self-scattering term, (f) a mean scatterer, ¢y an element
specific fractional concentration (and n or m are the number of elemental constituents)
and ey (q) is an element specific partial structure function. Comprehensive discussions
are given elsewhere for both conventional and anomalous scattering methods. Equation
(4) may be rewritten in terms of a pair of Fourier transforms:

G(r)=1+ /oo gH({q) sin{gr)dg and

2mrpg Jo

/ amripo|Glr) — 1]—22£ sm(qr ——dr + / 4rmr? -Siligg—r—)dr (6)

where G(r) is the total weighted pair correlat10n function and ppis the average scatterer
number density. The last integral term represents scattering from the entire sample hav-
ing a uniform density and is experimentally unobservable. Beyond this point everything
becomes problem specific so that one must invoke experiment or model specific details.
With x-rays the atom scattering factors are both strongly g and atom dependent[21)
so that if one wishes to evaluate the [ ... dgintegral expression (in order to obtain the
total G() from various partial ey ;(g)’s) one must use the approximation that all atom
types, fi(q), can be replaced by a single average scatterer {f(g)). Is it important to
note that atomistic simulations avoid this difficultly since the second term in Eqn. 3
may be evaluated directly. Anomalous differential[20] and compositional difference[22]
measurements require significantly more extensive treatments.

POLYMER SPECIFIC ISSUES

The central goal is to develop quantitative methods for resolving both the interchain
and intrachain structure in polymeric compounds using either x-ray or neutron based
scattering methods. Because there exists an enormous difference between these two
structural components, polymer PDF profiles manifest a rather unique line profile. In
the case of amorphous polyaniline[23], a relatively rigid rod-like polymer given by

([(-CeH4—NH-CsH4—NH-);_;] {(-CeH4-N=CeH;=N-), ])n
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with 0 € z < 1, the short-range intrachain pair correlations are extremely well-defined
and superimposed on a nearly featureless interchain G(r)[24]. Figure 1 shows a repre-
sentative calculation of the various components in real space. This also has implications
for the scattering data in momentum (or g). space. Figure 2 shows a single-chain ¢H(q)
model calculation in superposition with experimental data. At low ¢ (under 4 A™)
the scattering is dominated by interchain pair correlations while at higher wave vectors
the oscillatory behavior of the structure function is primarily derived from intrachain
pair correlations. If an accurate single chain model is available, then the calculated
difference curve, given by subtracting the model gH(q) from the experimental profile,
yields a profile containing a superposition of the residual experimental errors and the
interchain structure function. From this profile it then is possible to independently re-
construct the interchain G(r}. In the case of more flexible polymers (e.g., polyethylene)
the interchain/intrachain segregation is markedly less pronounced but still significant.
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Figure 1: A representative example of a polymer (i.e. polyaniline) G(r)
profile explicitly identifying the interchain and intrachain contributions using
a nominal crystal structure depicted in the three inset panels assuming a
~ 10 times larger root-mean-square displacement of the interchain atom
pairs. Reprinted with permission from ref. [24]. Copyright © 1995 American
Chemical Society.

In all situations scattering data out to very high momentum transfer is a pre-
requisite for a comprehensive analysis. For neutrons, with their ¢ independent atom
scattering factors, this does not present an undue complication. X-rays are more prob-
lematic. By 20 A~! the carbon* structure function has diminished by almost 95% and
is now superimposed on a Compton scattering background almost nine times larger.
A typical intensity spectrum highlighting this loss of scattering intensity is shown in
Fig. 3. Moreover the intrachain scattering is only a small fraction of the total coherent
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scattering signal. Ideally a large aperture detector (to increase the effective count rate)
combined with exceptional energy resolution (to fully isolate the coherent scattering)
would be best. The limited energy resolution of current detector technologies allows
for only a partial separation although, as the inset of Fig. 3 shows, the Compton pro-
file can be adequately resolved at higher g-values. The actual shapes of the both the
elastic and Compton scattering profiles can be ascertained so that one only need vary
the intensities of the two constituents. By fitting all energy dispersive profiles at the
higher g-values the ratio of these two components can be experimentally deduced. To
reduce the v/N statistical noise still present in the extracted Compton profiles this
data is typically passed through a low-pass Fourier filter[25]. At some intermediate ¢
value the coherent scattering profile must then be suitably spliced to the existing low-¢
experimental data. In this way quantitative x-ray data is obtained out to reasonably
high ¢ values. For x-ray studies, as compared to those using neutrons, there is an
addition advantage in that the hydrogen atom scattering is essentially negligible at ¢
values beyond 10 A~! so that the structure function is dominated by only the major
skeletal atomic constituents.

An absolute measure of the coherent/Compton ratio has an additional benefit
which is of some consequence. Often the sample geometry (i.e., reflection, transmis-
sion) in combination with absorption effects requires pronounced corrections of the
profile shape function. These corrections can be very sensitive to sample alignment
and measurements of the absorption coefficient. Moreover polymer samples are often
macroscopically inhomogeneous; a property which further impacts these corrections.
By obtaining this direct measurement of the relative coherent and Compton fractions
one can, after appropriately scaling the experimental ratio to match the theoretical
curve, immediately execute a Krough-Moe normalization[26] of the data without re-
sorting to many of these aforementioned corrections.

Even after a rigorous attempt is made to apply all of the generally accepted curve
correction schemes[15], these extended ¢ profiles can still display small systematic de-
viations which both hamper direct refinements of the structure function and create
unphysical artifacts at low ». Although a thorough investigation establishing the true
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Figure 3: An example of the various contributions to the x-ray scattering intensity for a

typical polymer sample. Inset: Two representative MCA curves obtained at high- and low-q.

origin of these discrepancies has not been attempted it may well be that the derivations
of the theoretical atomic scattering curves themselves are not sufficiently accurate. De-
spite these limitations there are a few ad hoc procedures which can “correct” the data
without imparting significant new systemic errors in the spectral regions of interest.
One correction scheme is to identify nodes of the structure function (where H(g) = 0)
from a representative model and perform a series of Krough-Moe normalizations. This
information is then used to generate a correction curve to the nominal full-range nor-
malization procedure. To supplement this approach it is also possible to effect a low
r (typically at 12 A and less) correction of G(r) by simply using the known profile
as generated by a representative model and replace the low r portion of G(r). This is
then Fourier back transformed to yield an additionally modified H(g). Figure 4 depicts
the sequential variations in the structure function as each indicated modification is
implemented.

There is also the ubiquitous problem of artifacts generated in the Fourier transform
procedure itself. As Fig. 2 clearly demonstrates, significant oscillatory behavior exists
in the structure function well beyond the highest g-values accessed. As such, a simple
transform of data is expected to produce a variety of truncation effects including a
broadening of the G(r) peaks and the so-called “ringing” artifacts (which arise from
the Fourier transform of a step function). One seemingly effective solution, proposed
by Mitchell and Lovell[27], is to execute a ‘sampled transform’ in which a series of
fast Fourier transforms are overlaid using the same H(g) data set having fewer and
fewer high g data points. In the way the ringing occurs at different frequencies so that,
on average, this undesirable feature is minimized. Moreover, the low ¢ data, which
typically has less statistical error, is weighted more heavily. The Fig. 4 inset shows a
typical real space profile that is obtained after this scheme has been employed. Other
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Figure 4: Variations in H(g) as various corrections to the data are made to data from a
poly(alkylsilane) sample. Inset: The final real space profile.

procedures, such as artificial damping and/or extension of the H(¢)[28], have also been
applied with varying degrees of success.

EXPERIMENTAL DATA AND MODELING

Ultimately the experimentally derived correlation functions and structure func-
tions need to be rigorously compared against a physically realistic model. Since the
actual chemical organization is predetermined, this gives a well-defined starting point
for undertaking these comparisons. Still there is a formidable number of pair cor-
relations even in the most basic of polymer model compounds [e.g., polyethylene or
poly(tetrafluoroethylene)]. In the simplest setting, only the nearest-neighbor, next
nearest-neighbor and greater distances are used assuming a nearly isotropic root-mean-
square (rms) distribution of the atomic positions and a fixed chain geometry[28]. In
this case the e;;(g) term in Eqn. 5 is approximated by

:i(q) = wi; exp(~£2, 2/2)““” (7)

where r is the i-j atom separation, £;; is the rms deviation and w;; is the relative
number of i,j atom pairs. For polymer chains, which are locally linked by strong
chemical bonds, this is clearly only a first-order approximation because there are highly
correlated motions of neighboring atoms.

Detailed knowledge of the local pair, bond-angle, and torsion-angle potentials en-
ables a far more sophisticated modeling approach. Since these atomistic models contain
all atom locations, including disorder, the need for employing the exponential term in
Eqn. 5 becomes unnecessary for evaluating gH(q). In the case of hydrocarbons and
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fluorocarbons a number of full-fledged molecular simulations, using either molecular
dynamics or molecular mechanics, have been performed and the computationally gen-
erated curve profiles compared to experimental data[29, 30, 31]. As the recent work
of Londono et al.[31] in Fig. 5 shows there is relatively good agreement between x-ray
experiments and theory for a “simple” hydrocarbon system, in this case for isotactic
poly(propylene) in the melt. Neutron based experiments, which allow for much higher
g ranges, of polyethylene and poly(tetrafluoroethylene) melts have also demonstrated
the utility of this approach.
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Figure 5: A comparison of the total g (g) for isotactic polypropylene with results from the
integral equation theory, PRISM . Reprinted with permission from ref. [31]. Copyright ©
1997 John Wiley & Sons, Inc.

An alternate scheme, also appearing in ref. [29], is to employ a reverse Monte Carlo
algorithm. In this approach the atoms forming the polymer backbone are simply moved
at random so that all configurations which generate acceptable structure functions
are sampled. In this case the Monte Carlo partition is governed by the chi-square
error function arising from the differences between the experimental and model-derived
structure functions. For polyethylene the best-fit torsion-angle distributions generated
by RMC compare very favorably with those obtained from molecular simulations.

While there is considerable merit in all these approaches, continued progress re-
quires implementation of more tightly nested modeling schemes. For a true refinement
of the experimental data an indirect comparison with molecular simulation has its lim-
itations. Often there is an incomplete knowledge of the molecular force-fields, particu-
larly with respect to torsion potentials. Ideally the potentials used by an appropriate
simulation could be modified in an iterative process using direct and immediate com-
parisons to the experimental PDF data. In this way the simulation algorithms could be
optimized by integrating them into a comprehensive refinement scheme. Moreover it is
important to recognize that there still exists an extensive range of polymeric materials
which are not easily mimicked using the current generation of computer simulations.
In particular there is considerable difficulty in obtaining physically correct solutions
for polymers having shallow minima in their torsional potentials (e.g., the polysilanes),
extensive w-conjugation along the backbone (as in the case of conducting polymers), or
polymer hosts having ionic interactions (as in the of polyelectrolytes). Semi-crystalline
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and liquid crystalline polymers are also problematic because of the intrinsically slow
kinetics and the subtle competing interactions which often exist at the shorter length
scales.

An unrestricted RMC approach may be problematical as well. Since, a priori,
no atom interactions are used, unphysical and energetically unfavorable configurations
may be extensively sampled and thus leading to a maximal set of potential solutions. In
many instances the local correlated motions of nearest-neighbors are well understood.
A hybrid scheme in which these known attributes are incorporated into the RMC would
then lead to a more tightly constrained set of solutions. -

The choice of which data representation to use is also an important consideration.
As is the case for other classes of materials, a combined real-space and momentum
space refinement of the data can be advantageous since the two representations em-
phasize different attributes. As noted previous, the G(r) profiles derived from x-ray
scattering often contain unphysical artifacts at low ». These artifacts appear across
the entire S(q) profiles and complicate refinements which utilize the structure function.
By weighting the refinement towards G(r) data points at larger »’s one can minimize
their impact. On the other hand, the intrachain G(r) is necessarily superimposed on
the interchain G(r) and refinement of this data requires a prior knowledge of the in-
terchain pair correlation function. In contrast this interchain feature is limited to the
low ¢ range of the structure function so that restricting a refinement to the higher ¢’s
guarantees that only intrachain components are used when optimizing an intrachain
model. Thus a carefully orchestrated refinement of both sets of data can lead to a more
rapid convergence towards a physically appropriate model. In many instances local
chain polymers structures can be found which work well in either r-space or g-space
but not both.

A MODEL HOST POLYMER FAMILY

As amodel test system, we have recently begun a series of experiments to ascertain
the local intrachain and interchain structure in various polysilane derivatives. Polysi-
lanes are well-known polymers ([-SiRR'’-],) comprised of only o-bonded silicon atoms
along the polymer backbone and short alkyl and/or alkoxy segments as the side-chains.
From a structural perspective there is an intriguing UV absorption feature[32, 33], due
to a o —o* transition along the Si-atom backbone, which has been shown to be extremely
sensitive to the choice of side chain constituents, sample temperature and processing
history. In the limiting case of an all-frans main-chain conformation, typically seen in
some symmetric alkylsilane samples[34, 35] such as poly(di-hexylsilane), the peak in the
UV absorption is centered near 370 nm. Helical and other, at present, unknown chain
conformations exhibit transitions which are “blue”-shifted to shorter wavelengths. One
long-standing question is simply how small changes in the local main-chain and side-
chain conformations influence the nature of this transition. A proper interpretation
requires a quantitative assessment of the local main-chain and side-chain structure in a
variety of settings. Direct molecular simulations are of limited use at present because
ab initio calculations of the Si-Si-Si-Si torsion potential obtain only slight energy differ-
ences between trans, gauche and various intermediate conformations[36]. Hence there
is a strong impetus to use direct probes of local structure to gain further insight.

From the perspective of technique development, the polysilane polymer family also
appears to have a significant advantage over conventional polymeric materials. The
presence of an all-silicon backbone significantly enhances the strength of the x-ray
scattering signal as compared to lower Z hosts. Thus the PDF profile will be strongly
dominated by scattering from the well-defined (CH,-Si-CH,) core units. Moreover
the nearest-neighbor Si-Si pair distance of 2.4 A is well separated from the nominal
19 A and 1.5 A pair distances of C-Si and C-C, respectively, so that at intermediate
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length scales (from 2 to 5 A) the pertinent information is better differentiated. For
refinements against the structure function, H(g), the larger repeat unit also guarantees
that more relevant scattering features are concentrated in the 20-25 A~! g-range now
easily accessible with existing light sources and instrumentation.

The smallest poly(alkyl) derivatives exhibiting thermochromism are the symmetric
poly(di-ethylsilane) (PdeS) and the asymmetric poly(methy-n-propylsilane) (PmpS).
At room temperature PdeS is crystalline with an all#wrs Si-backbone conformation
while PmpS is found to be semi-crystalline with a monoclinic approximate having lat-
tice parameters of a=8.38 A, b=10.13 A, ¢c=3.92 A and y=66° where c is along the
Si backbone direction[37]. Nominally an all-#arzs conformation is consistent with the
Bragg scattering analysis but the UV absorption maximum is near 320 nm which is
much more suggestive of a non-planar arrangement. Slightly longer methyl-n-alkyl
polysilanes exhibit a somewhat different thermal behavior (with thermochromism oc-
curring at reduced temperatures) and with chain conformations which are, at present,
unknown. To be entirely fair there are some drawbacks. For instances,existing syn-

. thetic routes produce materials which are atactic so that isotactic and syndiotactic

dyads occur at random and in equal proportions. Modeling of an atactic system is,
necessarily, more complicated than for more regular chain structures. Polysilanes are
also found to be radiation sensitive. Exposure to the x-ray beam for over 24 hours
caused no discernible differences in the scattering profiles despite a certain drop in the
molecular weights.

Our present modeling approach employs a direct refinement of the various bond
angles, bond lengths and dihedral angles within a single “atactic” eight Si unit oligomer
model having periodic boundary conditions. Hard core packing constraints prevent
overlap of neighboring atoms. This scheme represents an attempt to find a single
conformational setting which adequately reproduces the scattering data. As such it is
quite limited but it is still illustrative for demonstrating the sensitivity of PDF analysis
in studies of local polymer structure. Figure 6 compares a g-weighted H(q) from a
room temperature PmpS sample and a model restricted to a trans-planar configuration
with refinement of only the alkyl side chains. As denoted by the arrows, a fixed planar
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backbone structure is clearly an unphysical description of the local chain structure.
An equally as poor G(r) comparison is also obtained (not shown). By allowing for
variations in both the Si-Si-Si bond angles and the Si-Si-Si-Si dihedral angles substantial
improvements are obtained. The current “best-fit” model is shown in Fig. 7 using both
g- and r-space representations. On average there appears to be a 20° deviation from
planarity although it can exceed 40° across at least one of the eight Si-Si-Si-Si linkages.
The presences of these large twists, in combination with random disorder, is consistent
with the shorter wavelength UV absorption maximum found experimentally. At present
there also appears to be strong cross-correlations between the local Si bond and dihedral
angles. With continued improvements in the modeling algorithms it may be possible
to quantitatively specify this behavior.
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Figure 7: A comparison between G(r) and qH(q) profiles obtained experimentally and those
generated by a poly(methyl-n-propylsilane) model in which all Si bond angles and dihedral

angles are allowed to fluctuate independently.

Finally, in Figure 8, preliminary G(r) (as r[G(r) — 1]) profiles are shown for a
poly(methyl-n-hexylsilane) sample observed at temperatures clearly above and below
the reported thermo-chromic transition point. The actual UV absorption spectra ex-
hibit a clear isosbestic point and are indicative of a distinct two-phase coexistence over
the transition region. The two displayed G(r) profiles exhibit a number of differences
suggestive of distinct changes in the chain structure. Inthe 3 to 5 A region the peaks
and valleys appear measurably sharper in the low temperature profile. In addition,
pair correlation peaks centered near 5.9 A and 7.8 A become more pronounced in the
low temperature curve. These two latter features may be tentatively assigned to the
Si-Si-Si-Si and Si-Si-Si-Si-Si pair distances and, if this is valid, then imply a transition
to a more planar main chain conformation. Once again improvement modeling will be
required before a proper assessment of this structural transformation can be reached.
Despite the tentative nature of the polysilane data and the various interpretations,
these spectra hopefully demonstrate the structural information which can be extracted

from PDF analysis of polymer systems.

347



4l poly(methyl-n-hexylsilane) at 225°K

s 2 .
2 L N
0 -
7 b & poly(methyl-n-hexylsilane) at 300°K

g b -

1 1 1 1 1 1 L 1 1

1 2 3 + 5 6 7 8 9 10

r(A)

Figure 8: A comparison of two rescaled G(r) profiles from a poly(methyl-n-hexylsilane)
sample at temperatures above and below the thermo-chromic transition region.

CONCLUSIONS

Existing polymer PDF studies have, on the whole, only touched upon a few of
the possible host systems which could benefit from this methodology. The continuing
development of computer modeling algoritms will rapidly advance the quantitative
analysis capabilities of the technique. With the ongoing development of dedicated x-ray
and neutron spectrometers, an even larger range of structural studies will be available in
the future. The high-¢g ranges now becoming accessible should motivate a reevaluation
of the theoretical elastic and Compton scattering profiles. Better knowledge of these
attributes will reduce the guess work now required to appropriately scale experimental
spectra.

It is important to note that PDF studies of oriented polymer samples are also pos-
sible. This would allow the anisotropy in the local structure to be better reconstructed
thus yielding less uncertainty in the structures obtained during the refinement process.
However this would significantly increase the number of calculations necessary for these
refinements.

In addition to the conventional x-ray scattering results briefly reviewed here, there
also are an expanding number of polymer PDF studies employing anomalous scattering
techniques. These include NiBr-doped polyelectrolytes[38, 39], HBr-doped polyaniline[40]
and, most recently, Lig and Li; substitutions in polyethylene oxide[41]. These studies
are potentially more powerful than the much more commonly used EXAFS technique
because anomalous PDF methods can resolve structural features beyond 5 A and, in
the case of neutron scattering, investigate a large number of low Z materials.

There are many avenues for the application of PDF techniques in the study of local
structure in polymeric materials.
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INTRODUCTION

Neutron and X-ray reflectometry were initially conceived as tools for studying the
average structure of materials in a direction perpendicular to planar surfaces or interfaces.
As such, they probed the variation of the intensity of specular scattering at grazing
incidence as the momentum transfer perpendicular to the surface was changed. Any off-
specular or diffuse scattering observed in these experiments was regarded as a nuisance,
i.e. background that simply had to be subtracted to obtain reliable values for the specular
reflectivity. More recently, both neutrons and X-rays have been used to study diffuse
scattering from surfaces and interfaces in order to learn about lateral inhomogeneities
within the reflecting surface. A variety of phenomena ranging from capillary waves on
liquids to roughness correlations in the growth of thin films have been studied in this way.
Because diffuse scattering is generally weak, the intense beams of X-rays available from
modern synchrotron sources have been more widely used in the study of diffuse surface
scattering than neutrons. Nevertheless, in certain cases, such as the study of magnetic
systems or certain polymer problems, neutrons still have a role to play.

In all cases, diffuse scattering observed in reflectometry experiments arises from
inhomogeneities in the reflecting medium, and by far the most common cause of such
inhomogeneity is surface roughness. Rough surfaces give rise to diffuse scattering when
waves (i.e. neutrons or x-rays) scattered from “valleys” and “peaks” of the surface are
significantly out of phase with one another. A calculation of the difference in path length
for such waves quickly leads to the conclusion' that a surface will appear smooth when

Local Structure from Diffraction
Edited by S.J.L Billinge and M.F. Thorpe, Plenum Press, New York, 1998
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q.C << 1, where q, is the wavevector transfer of the radiation perpendicular to the

surface (the z direction) and ¢ is a measure of the amplitude of surface roughness. This
so-called Rayleigh criterion is easy to violate in reflectometry experiments: a value of g, ~
0.02 A ! corresponds to a typical critical wavevector (i.e. the wavevector below which
the smooth surfaces of materials reflect completely), and almost all experiments probe

values of q, out to at least 0.1 A ™', In such situations, roughness amplitudes of a few
Angstroms can give rise to easily measurable diffuse scattering,

Although investigations of surface roughness using neutrons and X-rays have only
become common recently, there is a considerable literature from the past 50 years or so in
which the scattering of radio waves by rough surfaces has been studied in connection with
phenomena such as “sea clutter” in radar images or tropospheric scatter of radio waves'.
This literature makes it clear that exact calculations of scattering by rough surfaces are
possible only in a few well-defined situations. In general, approximations have to be
made, and the most appropriate of these depend on the surface morphology. For
example, ifa surface is comprised of smooth, misoriented facets each larger than a Fresnel
zone, scattering from the surface can be calculated, by summing specular scattering from
each ofthe facets. In this case, provided one ignores multiple scattering and shadowing of
one facet by another, the total reflectivity of the surface is given by the expression

R = R, exp(-g}c’) (1.1)

if the height (z) distribution of the surface is a Gaussian of standard deviationo and R, is
the reflectivity of an ideal smooth surface. In the case of X-ray or neutron scattering from
a surface, the longitudinal dimension of the first Fresnel zone is of order of a few
microns, so Eq. (1.1) only applies if surface facets of this size scale or larger are present.
In many interesting cases, the lateral scale of surface roughness - ie. the distance over
which a surface departs from flatness - is much smaller than this.

X-ray specular reflectivity and off-specular diffuse scattering experiments are
usually carried-out with a monochromatic beam incident on a sample surface mounted on
a 2-axis or 4-axis x-ray diffractometer programmed to carry out the scans in reciprocal
space indicated in Fig. 1. (In the case ofliquid surfaces, a special liquid diffractometer has

qz

Fig. 1 Schematic for X-ray surface scattering , ko,k; are the incident and scattered wavevectors respectively,
making grazing angles o, P respectively with average surface. q =k; -k,. Scans A & B represent
transverse and longitudinal diffuse scans respectively.
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to be used which tilts the incident beam down onto the liquid surface and which allows
the scattered beam to be detected emerging at an upward angle from the surface in the
plane of scattering, or in the case of grazing incidence scattering geometry by rotating the
sample detector plane out ofthe plane of scattering,). To measure the "true" specular
reflectivity for a surface, often the diffuse scattering close to the specular and reciprocal
space is subtracted off point by point, by carrying-out "longitudinal diffuse" scattering
scans parallel to but slightly offset from the specular ridge (scans “B” in Fig. 1).
Sometimes, for high resolution, an analyzer crystal is employed in front of the detector.
Specular reflectivity measurements from solid surfaces can usually be carried out on tube
x-ray sources, whereas measurements of the much weaker diffuse scattering is usually
carried out using rotating anode or synchrotron radiation sources. Specular reflectivities
have often been measured in this way down to values as low as 10®or 10

Neutron reflection experiments can be done in two different ways: either by using
a monochromatic beam and varying the angle of incidence or by using a pulsed,
polychromatic beam and recording neutron time of flight at constant incident angle. Since
the former method is very similar to that used with x-rays we will not describe it
separately here. Reflectometers installed at pulsed spallation neutron sources are among
those spectrometers that compete well with similar instruments at reactor sources,
because the inherently large dynamic range which they offer is often useful. The natural
coordinates in which to plot data obtained with a time-of-flight reflectometer are neutron
wavelength and scattering angle from the surface, as shown in Figure 2. Although this
space is not the most natural one in which to describe the physics ofthe reflecting sample
it does have some important uses. For example, loci of points at which the outgoing beam
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emerges at the critical angle for that wavelength, where the Fresnel transmission function
has a sharp cusp are straight lines through the origin in lambda-theta space. Furthermore,
the resolution of the spectrometer needs to be understood and deconvoluted in this space,
before a transformation can be made to the more physical g - q, space.

Because neutron sources are much weaker than modern synchrotrons (the most
powerful CW neutron sources provide about the same flux as a rotating anode), neutron
reflectometers, designed primarily to measure specular scattering, attempt to overcome
their flux disadvantage by using incident beams with a relatively large incident divergence.
A position sensitive neutron detector defines the scattered angle with an accuracy of
better than 1 mrad, and the fact that incident and scattered angles are equal for specular
scattering can then be used to identify the angle of incidence of each neutron with the
same accuracy. Of course, this exact correlation between incident and scattered angle does
not apply to diffuse scattering from surfaces, so neutron reflectometers generally have
poor resolution for such scattering. Until now, no real attempt has been made to
deconvolute resolution from diffuse scattering data obtained at a pulsed spallation source,
so there are no quantitative results available.

Before leaving this section, it is useful to establish magnitudes of lateral correlation
lengths that can be probed by surface diffuse x-ray or neutron scattering. The wavevector
resolution in the direction parallel to the surface in the plane of scattering is given (around
the specular position) by roughly (q,Aa) where q, is the wavevector transfer normal to
the surface and Aa the in-plane angular divergence contribution from the incident and
outgoing beams. Since both q, and Ao are small quantities, this typically yields a value
of~ 10 A”! corresponding to an accessible length scale of ~ 10 microns! The resolution
parallel to the surface but normal to this scattering plane on the other hand is of order
(ko,APB) where AP is the out-of-plane angular divergence and k, is the incident wavevector
of this radiation, and is much larger. However, the accessible range of wavevectors is
greatly increased in this direction.

ROUGHNESS AT A SINGLE INTERFACE

Let us consider a surface centered on the plane z = 0, but with fluctuations 8z(x.y)
as a function of the lateral coordinates (x,y). Such fluctuations may often have a
statistical distribution which is Gaussian, which we shall assume to be the case here. (The
case of non-Gaussian roughness will be discussed later). An important quantity is the
mean-square height-deviation function g(R) (R= x,y), defined by

g(R) = <[82(i") - 82(? + R)]2> @.1)

representing a statistical average over position T on the surface. A surface which is self-
affine has the property that

g(R) ~ R 2.2)

where h (known as the roughness exponent) has a value between 0 and 1. The
morphology of the roughness depends sensitively on h. For small h, the surface is sharp
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and jagged, while as h approaches 1, the surface becomes more gently rounded. h=1/2
corresponds to the case of random-walk fluctuations. In order to be realistic at large
values of R, we may introduce a cut-off length for the roughness x which makes g(R)
saturate as R —eo, i.e., we write’

g(R) = 202(1— e‘“"‘)m‘)
23)

Since <[8z(f)] > B Gz, Egs. (2.1) and (2.3) imply that

C[R) = (Be(r)oe(r)) = o7 /" @)

C(R) is referred to as the height-height correlation function. The justification of Eqs (2.3)
and (2.4) may to some extent be found in the equations which govern the growth of
deposited films, such as the Kardar-Parisi-Zhang (KPZ) theory.* For such surfaces, the
height function H(r,t) as a function of r and time is governed by an equation of the form

oH _ YW2H + % (VH)” + (%, t)

ot (2.5)

where y,A are constants and 1 (r,t) is a white-noise random function. Analysis of the
solutions of this equation, either numerically or using renormalization group methods,
reveal that the corresponding width function,) obeys the following scaling form

gR,t)=R™G(t/R?) (2.6)

where G(x) is a scaling function, and h,z are scaling exponents. The scaling function G(x)
must have the properties that

G(x) = constant for x>>1
G(x)—x* for x<<1 @7

A function which satisfies these conditions is

_ 1)”"
Gx) = Clxzﬂ(l—e (" J

(2.8)

where C, is a constant. Substituting Eq. (2.8) into Eq. (2.6), it may be verified that we
recover the form of Eq. (2.3) if

o= (% Cl)tz“
2.9)

E=t (2.10)
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where B, h, and z satisfy the relation
z=h/p (2.11)

Thus, we conclude that a self-affine surface with a finite cut-off length for the
roughness is consistent with growth models if we assume that it corresponds to the
surface which results after finite growth time. Eqgs. (2.9) and (2.10) are specific
predictions for such growth models. Regardless of the validity of growth models for
surfaces, Eq. (2.4) seems to work remarkably well in describing a wide variety of rough
surfaces encountered in nature, as deduced from both scattering experiments and direct
imagingprobes used to profile the surface. Its convenience is that it characterizes the
surface roughness mathematically in terms of three parameters, the root-mean-square
roughness (), the roughness exponent (h) and the roughness cutoff length (£). Other
forms have been proposed for the height-height correlation function (see for instance
Palasantzas and Krim in Ref. 5), but most ofthem do not show any preferred advantages.
One slightly modified form which does have certain advantages was first proposed by
Church® and later discussed by Palasantzas’ and de Boer® is

o) = 2ho” [r*/z_thh(“/z_hj
rA+h){ 2¢ £

(2.12)

where I'(x) is the Gamma function, and Ky(x) is the modified Bessel function of non-
integral order. This has the advantage that it does yield an analytic expression for the
Fourier transform of C(R) which is simply the noise spectral function { 8z(q) P ), i.e., it
yields

A 0,252
(2n)5 (1+ ungz)h—h

o)

(2.13)

where A, u are constants, and q is a two-dimensional wavevector in the (x,y) plane. Egs.
(2.12) and (2.13) also have the advantage that they show that C(R) ~ InR as h—0, making
this a special case ofthe general form. (A logarithmic height-height correlation function is
characteristic of liquid surfaces having capillary wave fluctuations’, or a surface
undergoing a roughening transition'® and will be discussed in more detail below).

SCATTERING BY A SINGLE INTERFACE

Let us assume, for the moment, that the surface represents an interface between
two media with uniform scattering length densities pi, and p2. Let Ap=(p1—p2). (For X-
ray scattering, p, is simply the Compton scattering length (e* /mc?) times the electron
number density, while for neutrons it is a weighted average of the coherent nuclear
scattering length times the nuclear number density, averaged over all types of nuclei). For
scattering experiments, (see Fig. 1) where the magnitude of the wavevector transfer q
(defined as k;-ko, where Ko,k are the incident and scattered wavevectors of the radiation,
making grazing angles a, P respectively with the average surface) is small compared to the
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inverse of the interatomic distances, we may neglect the crystallinity of each medium.
For experiments at small grazing angles, we may also neglect polarization effects in the x-
ray scattering and consider for simplicity the case of TE polarization so that we may use
a scalar wave equation. Then the Born approximation for scattering yields

S@) = (ap) || drdf €907
3.1)

where the integral is over the volume on one side of the surface. (We may use periodic
boundary conditions and a small absorption in the lower medium to ignore all surfaces
except the one shown in Fig. 1, such as the surface at Z — °°, etc.except the one shown in
Fig. 1).

The integration over the z-coordinates may then be carried out in the above
integral,yielding

_ =M Cy i[q,(az(x,y)—az(x',y'))] i[qx[,_,')my(y_y')]
RS e (3.2)

Since &z is a Gaussian random variable, carrying out a statistical average yields an

integrand which depends only on the relative separation (X,Y) of the coordinates (x,y),
(x', y'), and we obtain:

S(@) = A( IdXdY 291 Ky Y)
3.3

where g(R) is defined by Eq. (2.1), and A is the surface area. Eq. (3.3) may also be
rewritten by using the relation between g(R) and the height-height correlation function
(Eq. 2.3) as

2
S(@) = (ALZ)Ae'q%"2 HdXdqu%C(R)e‘i(qu+qu)
i ’ (3.4)

Since C(R) — 0 as R—eo the integral in Eq. (3.4) contains a delta function which yields
the specular reflectivity and we may write

S(a) = S,,(a) +Sair (4) (3.5)
where
(@) = 16774 122 e 22" 5(q,)3(a,

q,’ (3.6)
and

2

2
Surr(@) = A (4p) e_q%"2 ” dXdY[CQ%C(R) - l:le—i(qxxmyY)
q,

(3.7)
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The specular part may be converted into an expression for the specular reflectivity by
integrating over the detector solid angle and dividing by the incident beam intensity (see
Ref. 2 for details) to yield

242
R(q,) = Re(q, )e (.8)

where Rg(q,) is identical to the limiting case of the Fresnel Reflectivity from a smooth
surface at large gy,

Rp(qz) = 161‘2(Ap)2 /qz‘ (3.9)

and Eq. (3.8) modifies it with a Debye-Waller-like factor due to the roughness "smearing"
of the average surface. Eq. (3.7) yields the off-specular or diffuse scattering in this
appr0x1mat10n which can only be written down as an analytical function of q for special
cases’, but may be calculated quite generally if the height-height correlation function is
known. If sufficiently accurate data can be taken over a wide enough range of qy, ¢y (e.g.
with a linear or 2D position-sensitive detector) it may be possible to Fourier transform
Sdlff(q) and thus invertEq. (3.7) to yield g(R) directly. Such experiments have been done
recently'’ and the g(R) obtained is consistent with the self-affine form given in Eq. (2.3).
In other cases, forms such as given by Egs. (2.3) or (2.4) have been used to fit scattering
data, and compared with the corresponding statistical quantities derived by digitizing
STM or AFM data taken on the same surfaces. These methods are now yielding
consistent results.”

The Born approximation results are only valid ifthe scattering is weak, which will be the
case when a or § (Fig. 1) are small or close to the critical angle for total reflection. A
slightly better approximation in this case is to use the so-called distorted wave Born
approximation (DWBA). In this case, instead of using plane waves to calculate the matrix
elements of the scattering as in the Born approximation, one uses the actual wave
functions, which closely approximate the actual system, i.., one may use the true wave
functions for reflection and transmission at the correspondmg smooth surface. In this
case, the main effect on Sgr(q) as given by Eq. (3.7) is to modify it to '

+qz 2 qz R —-i(qxX+qyY
Sdiff(‘_])='T(a)'2|T(B)(2 (2;)) (qz ) HdXle:e] 2lec )—l]e (@xX+ayY)

z

(3.10)
where T(a) is the Fresnel transmission coefficient of the average interface for grazing
angle of incidence a, and g, is the z-component ofthe wave vector transfer in the medium
under the surface (which may be complex or even purely imaginary for evanescent waves
in the case of total external reflection). The main effect ofthis is to produce side-peaks in
the transverse diffuse scans (rocking curves) when a or B is equal to the critical angle,
since at that point T(a) reaches a maximum value of 2, the incident and specularly
reflected waves being in phase so that the field at the surface is at a maximum. Such side-
peaks are known as "Yoneda wings""” (see Fig. 3). For large o, B, and hence large ,,
Eq. (3.7), is a good approximation, and we may neglect the difference between g, and q,.
For large q, but with g, = q, = 0, it may be shown that Sghas the asymptotic form?
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—-(2+2/h)

Sur(@® =q, (3.11)

so that the exponent h may be found from such asymptotic power laws. For many
experiments, the instrumental resolution in the direction of q out ofthe scattering plane is
kept rather loose, i.e., qyis effectively integrated over (if the plane of scattering is defined
as the x-z plane). Then Eq. (3.7) shows that what is measured is:

2 2 ,
19,4, = 2na 22 ez jdx[eqz2c<")—1]e““xx (3.12)
q,

i.e., a one-dimensional, rather than a two-dimensional Fourier transform. For isotropic
rough surfaces, this yields the same information but may be misleading if the surface is
anisotropic (e.g., miscut single crystal surfaces with steps). The asymptotic form in this
case which corresponds to Eq. (3.11), is

I(q, ~0,q,) ~q,” """ (3.13)
The specular reflectivity is also modified in the DWBA from the simple expression Eg.
(3.8) and is replaced by the form™>'?

)
R(q,) = Rp(q,)e ¥2%%° (3.149)

which was first derived by Nevot and Croce."* The reflectivity deduced from the DWBA
may be checked against the exact solution for a surface whose density profile follows a
hyperbolic tangent function. In this case the DWBA gives a value for the reflectance
which differs from the exact answer only by a phase factor, so the reflectivity given by
the approximation (3.14) is the same as the exact result.

Another approximation made in the DWBA is that replacing the x-ray or neutron
wave function across the rough surface by an analytic continuation of the wave function
below the surface. If the amplitude of the surface roughness is too large this
approximation breaks down. In practice this limits the DWBA to values of 6<10 A.

The conditions under which the DWBA is expected to be applicable have been
carefully analyzed by de Boer. His analysis shows that if (k,2E/k,) <1 (where k,, k, are
respectively the magnitude and the z-component ofthe incident wavevector in free space,
and & is the roughness correlation length) then the DWBA is applicable and the Nevot-
Croce formula for the specular reflectivity (givenby Eq. 3.14) applies. If on the other
hand, (k;%£/ko) >>1, then the DWBA breaks down, and the specular reflectivity is better
given by the Rayleigh formula (Eq. 3.8). This limits the applicability ofthe DWBA to
accurately describe diffuse scattering to cases where & is less than 10 microns or so.

LIQUID SURFACES

In the case of liquid surfaces, surface roughness is due to capillary wave
fluctuations. There are some problems in connection with a truly first-principle
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Fig. 3 Typical transverse diffuse scan for Ag deposited on Si, showing the specular peak, diffuse scattering
and Yoneda wings referred to in the text.

calculation of such fluctuations (for a recent discussion, see Ref. 15), but one may write
down at least a phenomenological expression for the surface free energy of the liquid and
derive from it the spectral function for surface height fluctuations in the form:

kT
v(a® +x°) (4.1)

(o) =
where v is the surface (or interface) tension, and k is the inverse of the capillary length
defined by x'=(Apo)g/, Apo being the mass-density difference between the fluids on
either side ofthe interface. For bulk liquids x is typically of the order of 10cm™'. Fourier
transformation of Eq. (4.1) leads to a form for the height-height correlation function

Clr)=- %BKo(lcr) 4.2)
where

and Ky(x) is the modified Bessel function. At length scales <<x™! (which are, in practice,
those relevant for scattering experiments), the Bessel function may be replaced by a
logarithm, and, to prevent short (molecular) length scale problems, we may also introduce
a lower length scale cutoff.'® Thus, we finally write

1
C(r) = ——l-Bln[K(rz +1.} )5]
2 (44)
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where 1, is defined to give the correct lateral surface roughness given by the integral of Eq.
(4.1) (r, turns out to be the inverse of the upper q cutoff for the capillary waves, q,
defined below).

From Eq. (4.1) we see by integration over q that the true mean square roughness due to
surface capillary waves is given by

1
o* = ZBln[(qf, +x2)/6?|+0? 4.5)

where 6, is an “intrinsic roughness” due to the size ofthe molecules at the surface, and q,
is an upper cut-off for the capillary wavevectors introduced to make the integral converge.
It is (1/r,) where r, is the cut-off introduced in Eq. (4.4). Since k is in general << g,, Eq
(4.5) may be written as

2 1 2
¢ ==BlIn(q, /K)+0,
2 (4.6)

Substituting this in Eq. (3.10), we may calculate the scattering in the DWBA after
folding with the resolution function. Ifthe latter is approximated by a Gaussian, Sanyal
et al'’, have derived the form for the scattered intensity at q, q, (with q, integrated over
as before)

@7
4 2712
dc 1 1 5 o 1 [1—11] 1-n 1 9xL N
I=1,—S—| — |exp(-q20%;)—T F i~ T(P|T
°16 q2£2kOSinaj plaiod ) 2T 5 )R 7 v [T TR

where I, is the incident beam intensity, k, the incident wave vector, q. the wave vector
corresponding to the critical angle of incidence, I (x) is the gamma function, {F; (x;y;z) is
the Kummer function,

1
n=-Bq;
2 4.8)
and
ol =0+ l(0.5772)13 -3 BIn(2m/xL)
2 (4.9)

L is the coherence length of the beam along the surface or the inverse of the resolution
width in gy space. For qy < the resolution function width, this saturates and merges into
the nominal "specular” reflectivity. For larger q, this has the asymptotic form

1(q,.q,) ~ q;(l—n(qz)) 4.10)

This is analogous to the algebraic decay q“™ of S(q) in a 2D crystal for which the
displacement correlations possess logarithmic correlation functions (q being the lateral
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component of wavevector transfer, and the (1-n) rather than (2-n) arises in Eq. (4.10)
from integrating over qy). In this sense the diffuse scattering around the “specular ridge”
in the case of surface scattering is the analogue of the diffuse scattering around the Bragg
rods in a 2D crystal. However, in the present case, the exponent n is a continuous
function of q,, being given by Eq. (4.8), which can be calculated knowing the surface
tension. Experiments carried out with X-ray synchrotron radiation on the surface of
liquid ethanol show excellent agreement with the above predictions.” (See Figs. 4,5).
By Egs. (4.6 and 4.9) the effective roughness G measured in a reflectivity

experiment is given by

2 1 2
G.¢ = —Bln(q,/Aq)+ 0,
) ’ (4.11)

Al

where Aq is the instrumental resolution width (2n/L)'®,  The so-called "specular’
reflectivity from a liquid will be governed by the Debye-Waller-like factor exp (-q,> %)
rather than exp (-q;> 0. The fact that the effective roughness measured for a liquid

surface by scattering is less than the true roughness has been known for some time'® and
is due to the unavoidable inclusion of some capillary-wave diffuse scattering inside the
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resolution broadening ofthe specular peak. A measurement of 62 from specular x-ray
reflectivity measurements on liquid alkanes of different chain lengths at different
temperatures by Ocko et al"® (see Figs. 6) yields consistent values for q, , which appears
to scale inversely with the chain length. This leads to the reasonable speculation that the
short wavelength cut-off for capillary waves is at a length scale corresponding to the
intermolecular spacing, as in the Debye cut-off for phonons in crystals, although a
rigorous proof is lacking. Mode-coupling theory yields such a cut-off naturally by
introducing a q* term in the denominator of Eq. (4.1), which yields an effective cut-off
which is of the same order of magnitude as measured from experiments. We note that
such a q* term in the denominator of Eq. (4.1) also occurs naturally from a curvature-
resisting term in the surface free energy as for a surfactant-covered surface and has been
used to fit x-ray scattering from such surfaces.?’

For thin liquid films, the Van-der-Waals interaction with the substrate can
enormously increase the value of x defined in Eq. (4.1), which is now given by

K’ = Afdmyd’ @.12)
where A is the Hamaker constant for the Van der Waals interaction and d is the film

thickness. In such cases, k may actually become largerthen the resolution-width Aq and
a distinct shoulder is seen in the capillary wave diffuse scattering at a value of q,~ x. This
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is seen in Fig. 7, which shows diffuse scattering (transverse diffuse scans as a function of
qx) from a thin polystyrene film on a silicon substrate.”

SCATTERING BY MULTIPLE INTERFACES

When one has a thin film on a substrate or a multilayer, the roughness at the
various interfaces may be correlated. This is indicated in Fig. 8, which shows clearly in a
sectioned TEM micrograph of a multilayer how interface fluctuations propagate from the
substrate to each deposited interface. The roughness is said to be "conformal" in such
cases. We may discuss the scattering from such interfaces in terms of the height-height
correlation function between different interfaces, i.e. we generalize Eq. (2.4) to define

C;(R) = (&,(r)8z,(r + R)) 5.0)

zi(1r), zj(r+R) are now height fluctuations of the i-th and j-th interfaces. The generalization

of Eq. (3.7) for the diffuse scattering in the Born approximation is '>*%
N —lQZ2 °i2+°'j2+52|_i‘jJ iqz(zj-zj
Sdiff(q) = (A/qZZ)Ze 2 ( )AplAPJe QZ( 1 J)Elj((‘i)
i,j=1 (5.2)

where

E, (@)= H dXdYI:e el 1}—:(‘1;X+qyy)
(5.3)

364



100 ¢ d = 108.7 A~
L X E
— x 1
o -1
- 1077 %o, -3
E E o"% x o 3
X X Xx
R T
- — x —]
= 10 E DDg o0 )(X,S(x ?
o- 00 ooooo% Xxxxx,s;
'g - q% °oo°0 35
-3
_%l 10 L o . 3 o°<><> 3
0n %0,
g F ° ° D':‘:‘?DDDmn:vc,:tlt 0.30 ]
S 104 % | .
£ E Pa 3
> : ° R
= L ° 8] |
2 5 o
® 0' — o [eYe) 0 20 3
€ 2 °
£ o OCOO
s L q,=0.15 A
E R L,
108 104 103 102
ax(A-1)

Fig. 7 Transverse diffuse scans measured for a 108.7 A film of polystyrene on a silicon substrate for different
values of g, showing the finite thicksness cut-off outside of the instrument resolution which is the width of
the specular peak.

and o; is the rms roughness of the i-th interface, Ap;is the scattering length density

contrast across it, z; is its average height, and & is the rms deposition error in the layer

spacing, which is cumulative from layer to layer. Ifthere is no correlation between the
interfaces , C; (R)=0 for i #j and Eq. (5.2) reduces to the sum of the diffuse scattering

from the individual interfaces. However, in general CyR) # 0, and the phase factors
exp(iq-zi-Z;)) in Eq. (5.2) will cause the diffuse scattering to peak in ridges of constant g,
at the q, values corresponding to the maxima in the specular reflectivity, i.e. at the
Kiessig-fringe maxima in the case of a thin film on a substrate, or at the positions of the

multilayer Bragg peaks in the case of multilayers.”>*® This is illustrated in Figs. 9(a) and
9(b) for a single thin film of water wetting a glass substrate,”’ and for a multilayer film,
respectively.” The fringes and peaks due to conformal roughness between the interfaces
is quite evident. In the case of the multilayer, an excellent fit was obtained to the data
using the expression in Eq. (5.2) and assuming perfect conformality between all the

interfaces, i.e. Cj(R) independent of i, j.2* Most thin films, unless extremely rough, show
a degree of conformality with the substrate over often surprisingly large thicknesses. For
multilayers, Spiller et al.** have developed a theoretical model for the propagation of
conformal height fluctuations through a multilayer. They approach it from the noise
spectral function, or the Fourier transform of C(R), since the conformality is obviously a
function of the lateral Fourier component of the fluctuations, i.e. large q (rapid)
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fluctuations will be more likely to be uncorrelated than small q (long wavelength)
fluctuations.

For the case of liquid films wetting a rough substrate, Robbins et al.” have
calculated theoretically the amplitude of the fluctuations of the upper surface ofthe liquid
film in terms of those of the substrate and shown that the coefficient of proportionality
depends on the lateral wavevector q of the fluctuation, the liquid/vapor surface tension,
and the interaction between the liquid and the substrate. Recent X-ray scattering
experiments on thin liquid®® and polymer®' films have been used to check the predictions
of these types of theories, with on the whole satisfactory results. The substrates used
were patterned as in a one dimensional grating with the grating being of order 1 micron.
On this structure polymer films of various thicknesses were deposited, which were
subsequently annealed in the molten state. Analysis of the modulations along q, on the
specular rod and also the rods at multiples of the lateral wavevector corresponding to the
grating periodicity yielded the degree of the conformality between the grating’s height-
profile and that of the overlying film. Very similiar experiments have recently been
carried-out with neutron scattering by A. Mayes and her collaborators.”” This experiment
illustrates a potential strength of the neutron scattering method as it is applied at pulsed
spallation sources, where data are naturally obtained simultaneously for a range of values
of gx and q,. The data obtained in this case are shown in Figure 2, which is a gray-scale
intensity plot in the space of detector pixel versus neutron time of flight. The former is

1.29
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multilayer showing conformal roughness, as evidenced by the “quasi-Bragg” peaks. The solid line is a fit
to the data assuming perfect conformal roughness. (From Ref, [26])

simply a direct measure of the scattering angle from the surface B, while the latter is
proportional to neutron wavelength. To obtain the data in Figure 2, Mayes and her
collaborators used a silicon substrate which had on its surface a square array of silicon
oxide cylinders about 1500 A in diameter and 300 A tall. The spacing between adjacent
cylinders was about 4000 A. The patterned silicon wafer was coated by a film of
deuterated poly (methyl methacrylate) about 2000 A thick. During their experiment,
Mayes et al used various thicknesses of polymer and repeated their measurements with
polymers of different molecular weight.

The data in Figure 2 show a number of qualitative features that are expected.
Firstly, the polymer film gives rise to modulated specular scattering that appears in the
figure as a series of diagonal "blobs" at a constant value of the scattering angle beta (at
around pixel number 120), equal to the incident angle of the neutron beam. In addition,
the Figure shows streaks of diffuse scattering that result from the lateral periodicity ofthe
surface; these are the same fringes, (or rods of scattering as discussed above) at regular
intervals in qy, that one would observe in scattering from an optical grating. They are
present even in the absence of the polymer film although, in that case, there is no
intensity modulation along each fringe. In the Figure, the intensities of the diffuse fringes
are modulated along their length in a way that reflects the thickness of the polymer film.
To the extent that the air/polymer interface is conformal with the patterned substrate, one
would expect the maxima of these modulations to appear at the same value of q, along
each constant-qy fringe, as discussed elsewhere in this article. From a series of
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experiments and an analysis of the way in which the intensity of the modulated fringes
changes, one should be able to learn about the ability of various polymers to smooth out
surface irregularities of the size scale of the islands etched on the silicon wafer.
Unfortunately, the analysis of the data displayed in Figure 2 has proved to be less
straightforward as one might have hoped - even the deconvolution of the instrumental
resolution has not yet been done satisfactorily. Nevertheless, one hopes that, when the
analysis is complete, a new tool for studying surface roughness using neutron scattering
will emerge.

For multiple interfaces, going beyond the Born approximation becomes very
complicated™>. We cannot go into the details here, but simply point out that in the
vicinity of the critical angles for total reflection, as well as angles of incidence for
multilayer Bragg reflections, the use ofthe DWBA, or the "dynamical theory" (where one
uses the true eigenfunctions)™ yields additional sharp structure in the diffuse scattering
due to multiple wave interferences. These are the generalizations of the "Yoneda wings"
seen for single interfaces and discussed previously. A detailed discussion of diffuse
X-ray scattering from multilayers is presented in this volume in the article by R. Paniago.

SCATTERING BY NON-GAUSSIAN SURFACE FLUCTUATIONS

Many kinds of surfaces have specific surface features that cannot be discussed
within the random Gaussian Self-Affine model of roughness discussed in Section 2.
Examples are surfaces with islands of fixed or variable heights above the reference surface,
surfaces with pits (as in the case of corrosion), surfaces with steps, etc. In order to
discuss the scattering from such surfaces in the Born Approximation, we must go back to
the basic formula for S(q) given in Eq. (3.2). Let us for the moment imagine that the
height function z(x,y) for the interface has a bimodal distribution, being 0 with probability
P1(x,y) and A with probability Pa(x,y)=1 - Pi(x,y). (This corresponds to islands of fixed
height A across the interface). Then Eq. (3.2) may be written as

S(q) =

—ig_A

A(ap)? ffdxdy [PL0.00P, (x.)+ P 0.0, (x.1)]+ P 0.0Py(x e 2" | —ita,x+a )

== .
z +P2(0,0)P1(x,y)elqu

(6.1)

Writing ¢ for the fractional coverage of islands, we may express the above in terms ofthe
two-dimensional analogue Ys(x,y) of the Debye correlation function related to the
probability of crossing over from no island to an island within a relative separation of
(%,y), and obtain

S(q) = Sspec(q) + Sdiﬁ(q) (62)
where
4t (Ap)
S pec(@) = A—’;(z—")S(qx)S(q,)[l — 49(1- )Sin*(q,A/2]
. (6.3)
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and

? —ifqxx+
sdiff(q)=A(qu) 6(1-9)8in*(q,A/2)| [ dxdyyo(x,y)e (axx+ayy) o

Note that the longitudinal diffuse scattering (q«qy = 0) has a modulation along q. with
period (2/A) which is exactly out of phase with a similar modulation in the specular
reflectivity. This is in contrast to the case of conformal roughness, where the Kiessig
fringes in the specular and the diffuse are in phase. The above theory can be easily
generalizedto the case of a film with islands deposited on a substrate, and to include
roughness fluctuations as well. The expression for the specular reflectivity may be
written as

16 2 —_g.2g,2 . —~g.2g,2
R(g,)= q'f {pie ' [1-49(1-9)sin’(g,A12)] + (0, - p)2e """
z

—az2(012+02

+2p,(py - p2 )2 2)[¢C05(qz(t +A)+(1- ¢)C°s(qzt)]} (6.5)

where t is the total film thickness, p; is the film electron density, p, that of the substrate
and oy, 0, are respectively the roughness values at the film/air and film/substrate
interfaces. This reflectivity expression yields both the rapid Kiessig fringes, as well as
modulations due to the islands on the surface. Fig. 10 shows the specular reflectivity and
longitudinal diffuse scattering from a polymer film decorated with such islands, where

both the Kiessig fringes (which appear in phase in the specular and the diffuse scattering
due to conformal roughness of the film and substrate) and the "island modulations"

369



(which are out of phase in the specular and in the diffuse) are observed.* Fig. 11 shows
transverse diffuse scans (rocking curves) obtained for another system studied, namely a
copper film in contact with an electrolyte in an electrochemical cell to which a negative
(oxidizing) voltage is applied, as a function of the time for the applied voltage. It may
be seen that side peaks grow in the diffuse scattering on either side of the specular
reflection. These are a consequence of the pit correlations, which are reflected in a peak in
the Fourier transform ofthe 7, (x,y) function.

Steps on a surface can result from a miscut of a single crystal surface relative to
high symmetry crystallographic planes, or facets, and such steps lead to a roughness
which is very anisotropic. The steps can be quasi-periodic and of uniform height,
resulting in satellite peaks about the specular position®, or they can meander in a
disordered way and give rise to a characteristic diffuse scattering which has been
discussed elsewhere™. At the so-called “roughening transition”"’, the height-height
correlation function between the steps become logarithmic, as for a liquid surface with
capillary wave fluctuations and results in power-law tails in the transverse diffuse scans.

CONCLUSION

In conclusion, we have seen that, with the rapid growth of both experiments and
theoretical analyses, surface diffuse scattering, which was first simply a nuisance in the
measurement of specular scattering has become a popular tool for the study of lateral
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defects and fluctuations at surfaces and interfaces. While not providing real space images
as in complementary tools such as AFM and STM, these types of experiments provide
global statistical information about the whole surface “in one shot,” and have the

additional advantage ofbeing able to probe buried interfaces. While X-rays are currently

the probe of choice for surface diffuse scattering rather than neutrons, owing to the much
higher brightness available from synchrotron sources, we may anticipate increasing
neutron scattering studies of diffuse scattering from magnetic and polymeric interfaces in
the future.
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INTRODUCTION

The field of surface roughening during growth has been extremely active in the past
years, due to its clear importance for artificially grown thin films'>. The most important
consequence of the fluctuation of the height of the surface (due to the build-up of
roughness during deposition) is its influence on the thickness of the film. Some of the
properties of thin films are intrinsically related to their thickness. Furthermore, in the case
of multilayers, any surface roughness present during growth results in a smearing of the
interfaces between the two components of the films, and this may change some of their
properties. In the case of giant magneto-resistive metallic multilayers, it has been know for
a few years that roughness plays a positive role in increasing the scattering of polarized
electrons at the interfaces®” , which in turn increases the magneto-resistance. However,
although the presence of interfacial roughness is crucial for the performance of these films,
in case the height fluctuations are too large, they may induce a change in the thickness of
the individual bilayers, especially if the roughness is not conformal. This may result in
changes in the interaction between neighboring magnetic layers, which is essential to the
performance ofthe metallic thin film as a magnetoresistive device®.

In this review, we show how X-ray non-specular reflectivity can provide us with a
comprehensive picture of the interfacial morphology of metallic multilayers. It is our
objective here to determine how roughness increases as a function of length scale and time,
and to relate this behavior to a specific growth model. The dynamic information about the
physical mechanisms present during growth is usually lost after the film deposition, but it
may be retrieved from the contrast of the interfaces of the multilayers. A combination of
the static and dynamic properties of these films allows us to predict what is the shape ofthe
growth front, after the film has reached a stationary mode of growth. A number of excellent
reviews on surface roughening of simple thin films is already available'”, and here we will
only focus on metallic multilayers. We will show how one can determine the lineshape of
the correlation functions associated with the roughness, and how more subtle interfacial
parameters (for instance, the roughness cutoff length) can be determined from this
lineshape. We will also determine some ofthe dynamic scaling properties of these films.

*Present Address

Local Structure from Diffraction
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SURFACE ROUGHNESS FORMALISM

Our objective here is to determine the type of growth of metallic multilayers by
comparing the roughness exponents’, obtained by using X-ray diffuse scattering, to the
available local models of growth®. In reality, several different physical mechanisms may be
present at the same time during growth. For example, atomic adsorption, surface migration
(lateral diffusion), desorption, lattice incorporation of atoms to an existing layer, nucleation
of two or more atoms, shadowing of regions of the surface by neighboring hills and
deposition noise are typical processes that occur during the film formation. However, some
of these processes are not easily modeled by an equation of growth, since they are usually
non-local phenomena, which involve several atomic sites at the same time. A simpler
approach is to relate the increase of the surface to its local morphology. However, only
effects that can be related to a local model can be identified using the following roughness
formalism.

Roughness exponents allow us to classify the growth of a surface according to a
specific universality class’. They describe the evolution of a surface as a function of time
and length scale. In figure 1 we show the length scales associated with the growth of a thin
film, as well as a typical shape of this surface for several times of deposition. The
quantities shown here help us to describe the evolution of the morphology of the surface,
which ultimately should be associated with one particular model of growth. This occurs
since, although several physical mechanisms may be present during the growth, usually
only a few of them are important for the final shape ofthe surface.

We start by describing the height of the surface by a variable H(x,t), which is
the deviation of the surface from its average. The most important parameter is
the interfacial width o(R.t), which is equivalent to the height difference function

Surface profile H(x,t)

Figure 1. Schematic representation of the relevant parameters during surface growth. The interfacial profile
is described by H(x.t). The interfacial width o(R) is a function of the in-plane length R, the in-plane cutoff
length £,(1) is a measure of the length for which the interfacial width ceases to increase (equivalent to the
lateral distance between one valley and one peak in the figure). Both parameters are expected to increase as a
function of time. The out-of-plane correlation length £, (R) is proportional to the saturation time of replication
of interfacial features of size R (see text).
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o(R.t) ={<[H(x,t)-H(0,)*>r}**, where <>g denotes an average over the length R. The
interfacial width is therefore a function of the microscopic length scale R with which one
examines the surface and is also a function ofthe time of deposition t. In case the surface is
self-affine, its width is expected to scale according to’

o(R,t)=R" f(#), with f(y)e y* (1)

where a, B and z are different roughness exponents. As a result of this scaling property,
the interfacial width is expected to increase as a function of length scale R following
o(R) = R* until it saturates (6(R) = Omax) for R >> £, where &, is the in-plane cutoff
length’. The interfacial width (or height difference function) must therefore be modelled by
a function that exhibits these two asymptotic regimesg, e.g., <[HR)-HO)]>> =
20ma [1-exp(-(R/E/)**]. In an X-ray scattering measurement we usually determine the
height-height correlation function <H(R)H(0)>, and this can be related to the height
difference function using <[H(R)-H(0))*> = 2 Omax’ - 2 <H(R)H(0)>.

The maximum interfacial width also increases as a function of time according to
Gmax(t) oc t*, until it becomes saturated. Although not explicitly seen in equation (1) the
cutoff length & increases as a function of time following & o t2. The roughness
exponents are related to each other (z = a/B), and it is therefore not necessary to determine
all three exponents. One must, however, obtain at least two of them, and especially the
static exponent a. Other scaling properties can also be associated with equation (1). For
instance, the saturation time scales according 0 tw(R) oc R*. The saturation time tu(R) is
the time it takes for a feature of size R to disappear during growth. This scaling law reveals
that larger features tend to be better replicated than smaller ones. The small features usually
disappear faster, either due to the action of interfacial tension (which favours the
predominance of larger wavelengths) or the deposition noise, which is usually uncorrelated
and is added to the local roughness height fluctuations.

In case the deposition rate is constant during film growth, this saturation time can
be translated into a correlation length £.(R). This correlation length, therefore, also scales
according to' E;(R) oc R* It turns out that in homoepitaxy the roughness is hidden after
new layers are deposited, and usually one does not have access to £,.In the case of
multilayers, however, this becomes possible due to the contrast of the interfaces, as will be
shown later.

GROWTH MODELS

Local growth models determine the variation of height ofa surface against time as a
function of its local morphology. Therefore, only physical effects that can be associated
with some function (or derivative) of the surface profile may be modelled. The final
identification of the type of growth is performed by a comparison between the roughness
exponents predicted by these models with the measurements of the interfacial roughness
using, for instance, X-ray diffuse scattering. These terms of the growth models, however,
must obey some simple basic symmetry rules : invariance under translation in time and
space (both parallel and perpendicular to the growth direction), as well as rotation and
inversion about the axis to the surface. In the case of the growth of crystalline structure,
rotation symmetry may not be imposed. The replication of roughness, for instance, may be
dependent on the crystallographic direction.

One can then describe the variation ofthe local height of the surface SH(x,t)/6t as a
function of several derivatives of the surface profile. The most general equation that
respects all symmetries is
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ﬂ{;_’) =F+vV H-KV*H+A/2JVH] +c,V " H+d, V"H(VH)" +7(x,1) Q)

where we separated the terms that can be directly identified with one mechanism. F is the
net flux of atoms that are deposited on the surface and vW?H can be related the local
surface tension'>. The surface tension is responsible for the smoothing of the surface for
v > 0 (see figure 2) and counteracts the action of the deposition noise (which is mainly
responsible for the increase ofthe interfacial width). The interfacial tension is proportional
to the local curvature of the surface. The term (M2)[VH]2 is the result of the assumption
that the growth is locally normal to the surface!® with a speed A, yielding a sideways
component in the direction of growth. The term -KV*H can be associated with the presence
of surface lateral diffusion, which is driven by a gradient of the local chemical potential.
Finally m(x,t) is an uncorrelated (non-conservative) noise term, where <n(x,t) n(x't')> =
2D 5(x-x") 8(t-t").

One of the important factors that must be taken into account is that usually only the
lower order terms determine the final morphology ofthe surface. For instance, in case both
lateral diffusion (-KV*H) and interfacial tension (vV?H) are present, the lowest term
(vV*H) is predominant and the roughness exponents ofa growth model including these two
terms would correspond to the values predicted by an equation of growth with only the
interfacial tension.

Only these simple mechanisms that may exist during film deposition can be
modelled, and several other mechanisms are unfortunately left out. For instance, in figure 2
we show the effect of shadowing, where a region of the surface is not exposed to the
deposited atoms, in case the angle of incidence of the atoms is too shallow. In order to
include these local models one must take into account the effect of several neighbouring
sites ofthe position where the growth is studied'*.
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Table 1. Local models of growth with their respective roughness exponents for 2-dimensional surfaces. The
variation of the height of the surface is a function of the local morphology. In the last set of equation the two
variables refer to the height of the surface and the width of the surfactant layer.

o« R* g t? £y o t%; g o< R®
Edward —Wilkinson'
=0 =0 zZ=2
ﬂ=VV2h+77(x,t) * P
at o « In(R) o o In(t)
Kardar-Parizi-Zhang'"®
=0.385 =0.240 Z=161
g’ —vV e 412V 41 0) * P
Diffusion in controlled growth (linear)
=1 =14 Z=4
Ok kY hin(xr) * P
é’t
Diffusion (non-linear)
- _— Z=1013
Ok KV R+ AV +1(c) =23 Pl
Surfactant-Mediated Growth'®
O s A UVHE +5(WF +1 () x<0 z=233
at (flat surface) -
A AACAR o LR

The most general and physically motivated growth models are shown in Table 1.
They incorporate the s1mp1est mechanism. The exponents for the Kardar-Parisi-Zhang
(KPZ) model were obtained using growth simulations'®. We also include in Table 1 a more
sophisticated model of growth, which assumes that the evolution ofthe surface is mediated
by a segregated layer on top ofthe surface'. This model predicts a value for the roughness
exponent of a < 0, meaning that the interfacial width does not increase as a function of R.
Thus local growth models may also predict that surfaces can be completely flat. This is not
surprising, since a segregated layer is usually well spread on top of the film surface,
naturally resulting in a flat interface. This effect is particularly important in case one of the
two components of a multilayer segregates during the film growth, and this must be taken
into account.

For instance, this effect is very important for the growth of Fe/Au multilayers. It is
well known that Au acts as a surfactant during the growth of one Fe monolayer"”. This
could lead to the segregation of Au during the initial stages of deposition of Fe on Au,
inducing the formation of flat interfaces. However, it is not completely clear if this may
occur, since surface lateral diffusion of Fe (allowing the atoms to move freely on Au) is
also an important factor for the formation of the Au/Fe interface. This atomic mobility is
present only during the growth ofthe first monolayer of Fe on Au, however, and it is not a
factor for the growth of subsequent layers of Fe, as well as during the growth of Au. Fe/Au
multilayers do exhibit a change in the roughness replication as a function of temperature'®.
It has been shown that the interdiffusion of Fe and Au starting at 300°C leads to a very poor
replication of the roughness, in contrast with lower temperatures, where the features are
very well reproduced from layer to layer.

379



X-RAY SCATTERING FROM ROUGH INTERFACES

X-ray diffuse scattering provides us the Fourier transform of the height-height
correlation between the interfaces of a multilayer. The initial observation of diffuse
intensity coming from rough surfaces was usually done using rocking scans’, in which both
specular as well as diffuse intensity were observed. This scan was performed in the plane
of specular scattering, and it had inherently a very good momentum resolution. The
momentum transfer associated with the angles in this geometry is qy = (2n/A) (cos a; - cos
ay), where o and a are the incident and exit angles ofthe X-ray beam with respect to the
surface of the sample. This geometry, however, restricted the achievable momentum
transfer to very small values. It was particularly useful in the case of semiconductor films,
where the cutoff length is usually very large, and a very good momentum resolution is
needed.

More recently, an alternative geometry of scattering has been introduced', in which
the sample is kept fixed and is illuminated by a highly collimated (both in the scattering
plane as well as out-of-plane) X-ray beam at a grazing angle aiwith respect to the surface.
As seen in figure 3, the X-ray scattering is then collected by an image detector
and recorded as a function of three momentum coordinates; qx = (27/A) sin 20 cos oy,
qy = (27/X) (cos a; - cos o) andq, = (2/A) (sinr o; + sinr o), where sinr o = (sin’a. - 28 +
2iB)">. n=1-8 + ip is the average index of refraction of the sample. Except for a; = of
and 20, = 0 (specular reflected beam), all collected intensity is due to the diffuse scattering
coming from the interfaces. The measured pattern is therefore essentially a reciprocal space
mapping of the diffuse intensity as a function of one out-of-plane (g.) and one in-plane (qx)
momentum coordinate (with respect to the sample surface). Although providing a poorer
momentum resolution, this geometry allows us to achieve a much higher momentum
transfer. Another advantage is that all diffuse intensity is collected for the same incident
and exit angles a; and oy Therefore, there is no influence of the Fresnel transmission
function (discussed below) on the diffuse profile'?’.

We also show in figure 4 an alternative geometry, using a Position-Sensitive
Detector (PSD), placed parallel to the surface of the sample. The geometry using image
plates suffers from a distortion in the qydirection, corresponding to the or-scanalso shown
in the figure. A scan using the PSD in a straight line, parallel to the g.-axis, with a fixed
non-zero value for gy (avoiding the specular truncation rod), would avoid this distortion.
Although not presented here, the results obtained from such a corrected geometry would
provide us with a perfect mapping of the diffuse sheets. In case the cutoff length is short
(meaning that the diffuse sheets are sharp), the higher order satellites are not collected by
the image plate (see dashed line). This occurs since the value of qyexceeds 2m/4€,,and
thus the image plate leaves the region of intense diffuse scattering. a-scans, therefore, do
not completely allow us to determine the interfacial roughness parameters associated with
the direction of growth.

The X-ray diffuse intensity obtained from such an experiment can be modelled by

the2 B%storted-Wave Born Approximation, in which the diffuse scattering intensity is given
by

I Ak4 T(al : T\e : -gta? e 1q.2,-2
I(qxqz)z 0471_2 | xq|z ( f] € * Z(JJH _51 X§k+| _Jk)e‘h( ! ’)Sj'k(qxqu) (3)
z J.k=0

where k = 27/, A is the area of the sample surface, T(ct) the Fresnel transmission function,
z; the average height of interface j and N the total number of bilayers. Here we have
simplified the correct expression and taken into account only the Fresnel transmission
function for the whole multilayer.
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The roughness structure factor

S,44..9.)= I[e"’z (H, (O] _ 1j|-]0 (g,R)RAR @

0

contains the information about the replication of roughness for two interfaces (through the
in-plane height-height correlation function <H;j(R)Hx(0)> of interfaces j and k) as well as
the in-plane correlation of the roughness. We may assume a perfect roughness replication
from layer to layer, i.e., <Hj(R)H(0)> = <H(R)H(0)> (conformal roughness), which is
appropriate only in the small qx (large R) regime. The comparison between such a
simulation using the model given by equations (3-4) with an o -scan thus determines the
deviation ofthe interfacial roughness from conformal behavior®.

In figure 4 we present a typical diffuse pattern obtained with the image plate for a
Fe/Au multilayer. We observe a series of extended diffuse satellites starting at q, = 0.32A°",
showing that the roughness is very correlated from one interface to another. The diffuse
satellites are parallel to the surface of the multilayer. One may notice, however, that the
center of the satellites is shifted to one side, especially for higher order satellites. As
pointed out recently?, the direction of replication of roughness does not necessarily
coincide with the direction of growth, and this results in a significant shift of the satellites,
as a function ofthe momentum q.. Assuming that the direction of replication of roughness
makes an angle y with q,, one may rewrite the correlation function <H;(R)Hy(0)>as

<HJ. (R)H,, (0)> = <H,, [R - (:,, -z, )tan 1]H,, (0)> = <H[R - (z,, - z,.)tan 1]H(0)> %)
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This model simply assumes that a roughness feature at a position R of interface j
will be displaced by a lateral distance [(zx — z) tany] at interface k, corresponding to the
displacement associated with the direction of replication. This assumption leads to a
modified form for the diffuse profile™

I Ak4 T(ai ! T\a : —gla? & i(g,— 1,-1
I(q,,q,)= 047;'2 | ]qll( f] e Z(§J+l -5,X5m _5/:)3 (0. -a e, ')S(‘Ix,‘h) ©
z 1.k=0

As a result of this transverse component of the replication of roughness, the intensity
maxima of the diffuse satellites lie on a line making an angle x with the q axis. The
analysis of the diffuse peaks from figure 4 yielded that the angle between the direction of
replication and the surface normal is ¥ = 0.7. The last satellite seen in the mapping,
however, seems to deviate even more than this angle of0.7°. We also point out that we did
not know the direction of replication of roughness in the q«-qy plane. Thus the value of
obtained here is simply the angle between the surface normal and the projection of the
roughness replication vector in the g direction defined by the experiment.

INTERFACIAL MORPHOLOGY OF METALLIC MULTILAYERS
We turn now to the determination of the correlation functions of a series of metallic
multilayers. In our experiments several metallic thin films were grown by sputtering by

S.S.P. Parkin at the IBM-Almaden Research Center at different substrate temperatures and
a 3.0-5.0 mTorr argon pressure. The deposition rate was typically ~2.0A/s, considerably
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faster than in MBE techniques. The growth mode of the film is presumably affected by the
sputtering deposition, particularly in view of the very short time for accommodation of
each atomic layer.

The samples were taken to the Australian National Beamline Facility (ANBF) at the
Photon Factory in Tsukuba, Japan. This facility is a synchrotron X-ray scattering station
optimised for both 2-circle diffractometry and small angle scattering. The beamline optics
consist of a Ge(111) double crystal monochromator. To increase the signal to noise ratio,
the diffractometer and the detector are enclosed in a cylindrical low vacuum chamber. This
is particular important to avoid the contribution from air scattering, which would introduce
a very high background level in the forward direction.

In figure 5 we present o -scans (o = 2.8°%) of the diffuse intensity coming from
Nio g1Feo.1s [45.2A] /Au[10.3A] multilayers with 50 bilayers®. We observe a series of very
strong diffuse satellites up to the ninth order, showing that the interfacial roughness of
these metallic multilayers is very correlated. The simulation was performed using the
formalism given in eq. (2), assuming perfect conformal roughness and using the interfacial
parameters determined by the specular reflectivity. This shows that the smearing of the
interfaces of these samples is completely related to interfacial roughening, and not
interdiffusion.
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The real importance of the out-of-plane scattering geometry can be understood from
figure 6 We show here the diffuse scattering parallel to the surface of the same films, and
we clearly observe two regimes of scattering. Starting at large momentum transfers, the
diffuse intensity exhibits an asymptotic decay, following"  1(q,) = qy*?®. For g, < 0.084"
however, the diffuse intensity starts to levels off. This lineshape is simply the result of the
Fourier transformation ofthe height-height correlation function, which also has shows two
regimes of scaling. A fit of the diffuse profile using the model function <H(R)H(0)> =
o’ [exp(-(R/E,))*] yielded the roughness parameters” &, = 32-36A and o = 0.90-0.92.

This plot is a clear example where the determination ofthe cutoff length would only
be possible using such a scattering geometry. For the incident angle used here of ¢, = 2.8°
the maximum achievable momentum transfer in a rocking scan would be 25/A(1 - cos a;) =
43 x 10°A" (corresponding to a length scale of ~1500A) and this clearly would not be
enough to determine & This out-of-plane geometry was necessary to achieve the very
large momentum transfer corresponding to gy > 2n/4€, = 0.05A™.and also to observe the
asymptotic decay which occurs at even larger momentum transfers.

The surface diffusion growth models’, which yield values for ¢ in between 0.66 and
1.0 (see Table 1), seem to be appropriate for the type of growth of these NiFe/Au
multilayers This would be supported by the high substrate temperature (T = 500°C) during
the deposition of the film. However, it was not possible for these multilayers to determine a
dynamic roughness exponent, since the growth correlation length was limited to the total
thickness of the film (50 bilayers). The mosaic quality of these samples was also

considerably poor {about 3-5%) and this raised questions about the influence of the lattice
mismatch on the interfacial formation

10% F———rr v Vet ——
o rr Ni_, Fe, ,/Au (100)
T 4 { Ni_,Fe, /Au (111)
c
b 1 3
2. .
s 10°F
2
w 2
50T
I
10' r
100 PP PP | — . N PP

-2
1 0 qx[A-1]

Figurg 6. Diffuse scattering parallel to the surface sample for Nipg Feo 1o multilayers. The fits to the profiles
according to a self-afine roughness model yields very short cutoff length of ~ 30A. This diffuse profile is a

typi;al example where only the out-of-plane geometry provides us with the correct interfacial parameters, in
particular the cutoff length. From ref |20).
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Another set of Fe[15A)/Au[21A] multilayers grown at T = 200°C, with a much
better crystalline quality, was also examined, and here a much more comprehensive
understanding was achieved”. The measurements of X-ray diffuse scattering were
performed in a similar way as with the other multilayers.

In figure 7 we present the diffuse profiles of three Fe/Au multilayers of increasing
thickness, which were fitted using a different height correlation function®® <H(R)H(0)> =
02{1-[1-exp(-(R/§//)2)]°‘}. The fits yielded an increasing cutoff length as a function of film
thickness. We obtained o = 0.36 + 0.02 and &, = 160.0 + 20.0 A for one Fe/Au bilayer
(95A), o = 0.49 + 0.02and &, = 320.0 £ 10.0 A for 40 bilayers (1400A) and o = 0.45 +
0.02 and &, = 500.0 + 10.0 A for 100 bilayers (3500A). The values of &, could also be
determined approximately from the position of the characteristic “knee” of the in-plane
diffuse scattering (see arrow in fig.7).

These “knees” correspond to points where the roughness correlation has an
insignificant effect on the diffuse intensity®, i.e., approximately at qx = 2%/4&,.We clearly
observe that the positions ofthe knees (where the diffuse intensity levels off) are shifted to
lower momentum transfer for thicker films, meaning longer cutoff lengths, and they agree
with the values we have obtained for &,. The increase of €, for thicker films indicates that
the evolution of roughness is established through the predominance of longer features over
the shorter ones. In other words, the length at which the in-plane roughness is correlated
increases as a function oftime, as should be expected from the power-law &, oc t"*. Notice
also that all films exhibit the same asymptotic decay for higher momentum transfer,
yielding similar values of the static exponent a. As an average value for all films we
obtained o = 0.43 + 0.05. The values of the static roughness exponent are all in the range of
a = 0.38 predicted for the KPZ equation®.
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Figurg 7. Diffuse profile for Fe/Au films of increasing thickness. Note the shift of the point where the diffuse
intensity starts to decay, corresponding to longer cutoff lengths for thicker films. The asymptotic decay of the

diffuse intensity for q. > 2r/4%, follows I(q,) « ¢*** and for these films it yields values of o predicted by the
Kardar-Parisi-Zhang model. From ref [23].
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These static results suggest that the Kardar-Parisi-Zhang model of growth should be
appropriate to describe the growth of these multilayers. On must, however, determine also
the dynamic scaling properties of growth. In the case of multilayers it is possible to
determine the roughness exponent z from the diffuse X-ray pattern. This can be done using
the scaling law t,, oc £, (R) oc R% One must first translate the relationship &1(R) < R¥into a
reciprocal space language appropriate for X-ray scattering. In reciprocal space the width of
the diffuse satellite sheets along the growth direction qz corresponds to Agz €. The in-
plane momentum transfer gy can be associated to the feature size R by gx = 27/R.One then
obtains a direct relationship between the width Ag; and the in-plane momentum transfer qx
ie.,Aqz oc a_L_l o R* o qu.

Thus one may determine the growth correlation length &1(R) as well as the length
scale R = 27t/qy associated with it from one single diffuse satellite obtained with the image
plate''. In the data analysis, however, one must also consider the effect of the resolution
function in the q, direction. We have observed that the diffuse satellites from Fe/Au
multilayers are Lorentzian-shaped, and they were convoluted by a Lorentzian resolution
function. In this case, the width of the observed convoluted peaks is given by the linear
sum of the width ofthe resolution function and the width ofthe diffuse satellite (Aqz)-

In figure 8 we present the increase of &i(R)as a function of R, taken from the
second diffuse satellite from a Fe/Au multilayer with 100 bilayers grown at T = 40°C. A fit
of this curve to the power-law £ oc R* yieldedz = 1.61 + 0.14, in very good agreement
with the value of z = 1.58-1.61 predicted by the KPZ equation. To our knowledge, this is
the first example where a measurement of both static and dynamic roughness exponents,
yields values in agreement with the KPZ equation®™.
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It is also possible to verify, at least qualitatively, the prediction that sputtered Fe/Au
multilayers grow according to the KPZ model. We start with the noiseless KPZ equation,
where the noise term m(x,t) is set to zero. Although this equation is not completely realistic
(it predicts that the interfacial width decreases as a function of deposition time), it contains
the basic physical mechanisms present during growth. The result of an integration of'this
equation should provide us with the shape ofthe growth front.

In the deterministic (or noiseless) KPZ model the height profile H(x,t) is solely
determined by the initial profile Ho(x) = H(x,0) and the constants vand A.This equation is
exactly solvable, and therefore one can predict what is the shape of the surface. What is
most important for the surface profile, however, is the format of the interfaces after long
deposition times. After the initial (uncorrelated) height fluctuations due to the substrate are
smoothed out, the growing surface is composed of a number of paraboloids. The
asymptotic form of one of these paraboloids is given by H(x,t) = C — (x* + y?)/(2At),
where A is the speed of growth normal to the local surface, as given before. The
paraboloids tend to coalesce and increase in lateral size, and their radii correspond exactly
to the 18in-plane cutoff length &, (which increases as a function of time as described
above) .

This prediction may be analyzed with a surface imaging technique. For instance, in
figures 9-10 we show a comparison between the growth front, obtained from the
deterministic KPZ equation, to an Atomic Force Microscopy scan of the surface of 3500A
thick Fe/Au multilayer. As is seen in figure 10, the surface ofthe multilayer is composed of
a numPSer of paraboloid “hills", which suggests that this asymptotic form should be
correct .
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We observe, however, a much higher fluctuation in the heights of the paraboloids,
in comparison with the growth front obtained analytically. The uniformity of the
paraboloids in the simulation is probably due to the “well behaved” rough substrate, in
which the initial fluctuations where assumed to be completely uncorrelated, and their
distribution corresponded to a normal function. Nevertheless, we observe in figure 10 that
all hills have about the same radii, and this radius is equivalent to the cutoff length &, =
500A, determined from the fit ofthe upper curve of figure 8.

This model seems therefore to be quite realistic in describing the growth of
sputtered Fe/Au multilayers. We point out that, although surface tension (present in the
KPZ equation) seems to be the most important factor for the surface formation, our results
do not exclude the possibility of the presence of lateral diffusion. They only show that
lateral diffusion is not the dominant factor for the interfacial morphology. Furthermore, at
this time it is not clear if a similar structure grown by a different technique (for example,
Molecular Beam Epitaxy) would yield similar results. As is known, the deposition rate of
MBE is considerably slower, and a layer-by-layer growth is much more likely to occur.
The very short time for accommodation of the atoms in sputter-deposition, due to the fast
deposition rate (~1 monolayer/second), is an important factor in the build-up of roughness
in our multilayers.

This same structural roughness formalism may be used to study magnetic
roughness. This is a crucial information for the understanding of scattering of conduction
electrons at the interfaces. In fact, recent results’ show that magnetic correlation lengths
are slightly longer than their structural counterpart, meaning that the interfacial
magnetization varies more smoothly that the interfaces themselves.
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In conclusion, in this review we have shown how X-ray diffuse scattering can
provide us with a comprehensive understanding of the interfacial morphology of metallic
multilayers. The determination of the very short cutoff lengths of these films was only
possible using a geometry where the diffuse intensity is collected out of the plane of the
specular reflected beam, and in the plane of the film. The comparison of the obtained
interfacial roughness exponents with several growth models showed that, at least in one
case, the growth is compatible with one ofthe most general and physically sensible growth
models (KPZ). A subsequent comparison between a simulation of a growth front, predicted
by the noiseless KPZ equation, with Atomic Force Microscopy results showed that the
interfaces are composed of a number or paraboloids, with a radius corresponding to the
cutofflength. These paraboloids tend to increase in lateral size (following the cutoff length)
and coalesce, forming even larger structures. Further research should be performed trying
to relate the structural roughness studied here with the magnetic roughness, which is
essential for the understanding ofthe magnetoresistance of metallic multilayers.
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