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Preface

THE ROLE OF QUANTITATIVE METHODS IN SUPPLY CHAIN MANAGEMENT

Introduction 

The supply chain of both manufacturing and commercial enterprises comprises a highly distributed envi-
ronment, in which complex processes evolve in a network of companies (see Figure 1).  Such processes 
include materials procurement and storage, production of intermediate and final products, warehousing, 
sales, customer service, and distribution.  The role of the supply chain in a company’s competitiveness 
is critical, since the supply chain affects directly customer satisfaction, inventory and distribution costs, 
and responsiveness to the ever changing markets. This role becomes more critical in today’s distributed 
manufacturing environment, in which companies focus on core competencies and outsource supportive 
tasks, thus creating large supply networks. Within this environment, there are strong interactions of 
multiple entities, processes, and data.  For each process in isolation, it is usually feasible to identify those 
decisions that are locally optimal, especially in a deterministic setting.  However, decision making in 
supply chain systems should consider intrinsic uncertainties, while coordinating the interests and goals 
of the multitude of processes involved.

Operational Research-based Management Science (OR/MS) methods as well as Computational 
Intelligence (i.e. nature inspired techniques), offer effective techniques for modelling, analyzing and 

Figure 1. The flow of materials and information in the supply chain
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optimising operations in the uncertain environment of the supply chain, especially since these techniques 
are capable of handling complex interdependencies.  

Operations Research and Computational Intelligence

The well-known and widely applied area of operational research (Churchman et al., 1957; Hillier & 
Liebermann, 2005) offers powerful tools that enable optimal or near-optimal decision making in complex 
problems. Operational Research (OR) work may be classified into three major focus areas:

1.  Probability, optimization, and dynamical systems theory (Luenberger, 1979; Kelly, 1994; Pinter, 
2005)

2.  Modeling (including construction and mathematical analysis of models, implementation and solu-
tion using computers, validation of models with data), (Jensen & Bard, 2003; Williams, 1999). 

3.  OR Applications in engineering and economics’ disciplines that use models to make a practical 
impact on real-world problems (Thomson, 1982; Pinney & McWilliams, 1987).

Typical problems addressed successfully by OR include, optimal search, critical path analysis or 
project planning, floor planning, network optimization, allocation problems, production planning and 
scheduling, supply chain management, efficient messaging and customer response tactics, automation, 
transportation, distribution, etc.

Computational Intelligence (CI) is a term corresponding to a new generation of algorithmic meth-
odologies in artificial intelligence, which combines elements of learning, adaptation, evolution and 
approximate (fuzzy) reasoning to create programs that -in a way- can be considered intelligent. Vari-
ous editions can be found in modern literature around the fundamentals of CI, such as (Nilsson, 1998; 
Chen, 2000; Zimmermann et al., 2001; Engelbrecht, 2002). CI has emerged as a rapid growing field in 
the past few years. Its variety of intelligent techniques emulate human intelligence and processes found 
in natural systems such as adaptation and learning, planning under large uncertainty, coping with large 
amounts of data, etc. 

Computational intelligence methodologies can be generally classified into three major areas:  

1.  Standard widely acknowledged and applied intelligent techniques, such as neural networks (Haykin, 
1994; Chen & Wang, 2006), fuzzy systems (Zadeh, 1965; Dubois & Prade, 1980), genetic algorithms 
and genetic programming (Holland, 1975; Koza, 1992) and other machine learning algorithms 
(Michalski, et a.,l 1983; Mitchell, 1997). These methods manage to successfully perform associa-
tion, generalization, function approximation, rule induction, etc. in difficult multivariate domains 
of application. 

2.  Hybrid and Adaptive Intelligence (Negoita et al., 2005; Abbod et al., 2002), i.e.  efficient combina-
tions of the above mentioned intelligent techniques, with other intelligent or conventional method-
ologies for handling complex problems. Usually one of the methods combined within a hybrid or 
adaptive scheme, is used either to filter or to fine tune special operations of another methodology.  
Most popular hybrid methodologies are neuro-fuzzy systems, evolving-fuzzy systems, neuro-genetic 
approaches and genetic-fuzzy ones. 

3.  Nature Inspired Intelligence (NII) such as swarm intelligence, ant colony optimization, bee-
algorithms, artificial immune systems etc., (Kannan et al., 2004; Dorigo, 2005). Usually these 



xii  

methodologies represent simultaneous exploration and exploitation of the search space in a smart 
manner (i.e. local and global search), analogously to the way natural systems or societies perform 
similar tasks (e.g. swarm flying or swimming, food search and identification, etc.)  

Recent collections of research papers or textbooks demonstrate the potential of CI methods to address 
applications in transportation (Teodorovic, 2008), production planning (Voß and Woodruff, 2006), and 
supply chain management (Chaib-draa & Müller, 2006).

Scope and Contents of this Volume

This edited volume presents intelligent OR/MS and CI approaches for addressing the significant activities 
along the entire spectrum of the supply chain i.e. from forecasting, planning for production and distri-
bution to actual implementation, including production and inventory control, warehouse management, 
management of transportation, and distribution. Emphasis is given to those methods and techniques 
that provide effective solutions to complex supply chain problems.  The edited volume also includes 
integrated case studies that describe the solution to actual problems of high complexity.  All concepts, 
ideas, methods and techniques, as well as integrated applications, presented in this volume aim in il-
lustrating the significant value of CI and OR in resolving complex supply chain issues and providing 
breakthrough results.  

Figure 2 classifies the contents of the current volume with respect to both the area of supply chain 
management addressed, as well as the type of method used.   The volume contents are grouped in three 
sections:

• Section 1 focuses on the synthesis, or design, of supply chains.
• Section 2 focuses on planning, including forecasting and inventory management, in large supply 

chains.
• Section 3 focuses on supply chain operations, including warehouse management, production 

scheduling, as well as transportation and distribution.

Figure 2.Chapter classification
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Prior to these three sections, Chapter 1 presents a survey of the available literature, regarding the 
use of nature-inspired (NI) methodologies to address supply chain management problems. The chapter 
presents initially the main characteristics and issues in a supply chain. In addition, some NI algorithms as 
well as their underlying natural principles are analyzed followed by findings from the literature review. 
The chapter concludes with a future research agenda in the area of NI in Supply Chain Management. 

As mentioned before, Section 1 focuses on the synthesis, or design, of supply chains in order to ad-
dress market opportunities on both an opportunistic or long-term basis.

Chapter 2 recognizes the significant contribution that e-marketplaces may offer to supply chain 
integration, and especially in areas such as enhanced information sharing among partners, reduction 
of administrative costs, streamlining of transactions, and improvement of transparency.  Building upon 
these strengths, the research addresses the case of coalitions of small and medium-size suppliers, which 
are formed to respond effectively to significant customer requests, and to share the related risk.  Specifi-
cally, the work focuses on key steps of coalition management, including the selection of the partners, 
synthesis of customer proposals, and profit sharing among partners.  To address the latter, the authors 
combine game theory (Sharpley value), simulation experiments and a multi-agent architecture, for 
coalition management and profit sharing among partners in neutral e-marketplaces..  They have also 
developed a simulation environment based on multi agent architecture to test their approach and to sup-
port the competitiveness of SMEs.  The test results show that in this environment, suppliers that form 
coalitions gain more benefits than the customers.

Chapter 3 also addresses aspects of collaboration among independent supply chains in the context of 
co-opetition, in which firms cooperate and compete at the same time.  The researchers investigate sharing 
of production capacity in inter-firm networks.  Specifically they focus on the issue of capacity investments 
under two models:  In the first model there is no sharing of information in the inter-firm network, while 
in the second there is a periodic information exchange among firms concerning production capacity.  
The proposed models have been simulated and tested using a Multi Agent Architecture. The simulation 
results indicate that under the Information Sharing model the capacity investments can be drastically 
reduced, maintaining a high level of profit (at the same level as in the no information sharing model).

Chapter 4 addresses the design of supply chain networks comprising multiproduct production facilities 
with shared production resources, warehouses, distribution centers, and customer zones.  Furthermore, 
demand uncertainty is considered through a number of likely scenarios. The problem is formulated as 
a mixed-integer linear programming problem, which aims to assist senior operations management in 
decision making about production allocation, production capacity per site, purchase of raw materials and 
network configuration.  The proposed model is solved to global optimality using standard branch-and-
bound techniques. The results of a significant case study indicate the value of a model that considers the 
complex interactions of such networks.  Furthermore, the computational cost was found to be relatively 
low, thus making the overall model attractive for the solution of large-scale problems.
Section 2 focuses on planning, including forecasting and inventory management, in large supply chains.

Chapter 5 explores the potential of computational intelligence approaches as forecasting mechanisms 
for end product sales to the customer. It proposes a multivariate forecasting methodology that uses 
advanced training methods (Optimized Levenberg-Marquardt with Adaptive Momentum) in Artificial 
Neural Networks (ANNs), while exploring the potential of the powerful Support Vector Machines theory 
in this area. The proposed approach has been evaluated using public data from the Netflix movie rental 
online DVD store in order to predict the demand for movie rentals during the critical, for sales, Christmas 
holiday season.  All ANNs tested performed quite well, while the winner exhibited reasonable prediction 
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capability. These results illustrate the value of advanced multivariate models in capturing the complex 
interactions that influence SC demand in uncertain environments.

Chapter 6 addresses the problem of developing ordering policies that minimise the overall supply chain 
cost, while mitigating the bullwhip effect, in which demand variance at the customer end is amplified 
along the chain upstream. The researchers extend work in Evolutionary Algorithms and simulation to 
develop effective ordering policies.  The extension comprises of capitalising on the Quantum Inspired 
Genetic Algorithm (QIGA) and on Grammatical Evolution (GE).  Both the standard supply chain of the 
Beer Game, and arborescent supply chains have been investigated under stochastic demand distributions 
and lead times, and capacitated inventory.  The results indicate that GE, with an appropriate grammar, 
can outperform other EA approaches over a range of supply network topologies and constraints. This 
does not appear to hold, in general, for QIGA in its current implementation.   Thus, GE may effectively 
support a decision support system for ordering. 

Chapter 7 overviews recent trends for risk management in extended supply chains. Risk and disrup-
tions of operations are becoming significant issues as supply chains become globalised.  Within this 
context, the chapter focuses on the area of quantifying the impact of supply chain disruptions on optimal 
determination of inventory control policies in a stochastic environment with unreliable sourcing.  Spe-
cifically, single period (newsvendor-type) problems are examined, analyzing typical methodologies for 
systems with multiple unreliable suppliers due to production or distribution disruptions. Several promis-
ing directions for future research are also discussed, including extensions to multiple types of products, 
to more than two suppliers, as well as the explicit inclusion of service level concerns. 

Chapter 8 deals with modelling and solution approaches for both the problem of prepositioning 
emergency supplies prior to a disaster, as well as the problem of their distribution after the disaster onset. 
Initially, some key aspects that are critical to the design and operations of effective relief distribution 
networks are discussed followed by a review of different algorithmic approaches reported in the literature 
of pre-disaster prepositioning of emergency supplies. A non-exhaustive survey of solution approaches for 
the post-disaster distribution of supplies is also presented. Chapter 8 reviews also a series of exact and 
heuristic methods that can be applied to tackle the aforementioned problems. In addition, the advantages 
and limitations of each of these two classes of approaches are discussed. The chapter concludes with a 
methodological framework for addressing the design and operation of relief distribution networks and 
some interesting research avenues.

Section 3 focuses on supply chain operations, including warehouse management, production schedul-
ing, as well as transportation and distribution.

Chapter 9 deals with the development of an analytical parametric model for the order picking pro-deals with the development of an analytical parametric model for the order picking pro-
cess in a modular warehouse. The research attempts to address three distinct, yet relevant, areas: (i) to 
produce a generic and analytical framework to model the order picking process, (ii) to define practical 
performance measures for the order picking process, and (iii) to provide the tools for a warehouse man-
ager to set goals, measure performance and identify areas of improvement in his area of responsibility. 
In addition to these, the Chapter sets the foundations to further expand on other warehouse processes, 
such as loading/unloading, products receipt, etc., that pass the boundaries of order picking. The analysis 
is corroborated by a case study, accompanied by ABC analysis of the warehouse operation and a pre-
sentation of a fair frame to measure workers’ performance. 

Chapter 10 addresses the coordination of internal production supply chains in serial manufacturing 
lines.  The model line examined comprises a set of unreliable machines linked with buffers, and the 
objective is to resolve the trade-off between minimizing holding costs and maintaining a high service 
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rate.  The work analyzes the performance of six important pull production control policies using discrete 
event simulation and setting the control parameters of each policy through a hybrid Genetic Algorithm 
(GA).  Two types of penalty functions have been explored for constraint handling: A “death penalty” 
function and an exponential penalty function, which is synthesized using the results of the GA with the 
“death penalty” function.  The latter exhibits superior results.  Furthermore, the sensitivity analysis of 
significant system parameters offers considerable insight to the underlying mechanics of the JIT control 
policies examined. 

Chapter 11 addresses a problem related to the courier environment in which a fleet of vehicles serves 
a set of customers using a hybrid service policy that includes (a) mandatory and (b) flexible requests 
(calls). The authors propose a new method to perform assignment of service requests (calls) with some 
flexibility taking into account expected routes in a multi-period horizon. The problem is solved on a 
rolling horizon basis in order to address the dynamics of arriving calls. The method is tested through 
several theoretical examples, as well as in an extensive industrial case, and appears to be superior to 
current methods used in practice.

Chapter 12 presents two travel time prediction methods that are embedded in a real-time fleet manage-travel time prediction methods that are embedded in a real-time fleet manage-
ment system applied in fleets that execute urban freight deliveries. The author discusses the prediction 
results generated by the two methods that use historical and real-time data, respectively. The first method 
follows the k-nn model, which relies on the non-parametric regression method, whereas the second one 
relies on an interpolation scheme, which is employed during the transmission of real-time traffic data in 
fixed intervals. The study focuses on exploring the interaction of factors that affect prediction accuracy 
by modelling both prediction methods. The data employed are provided by real-life scenarios of a freight 
carrier and the experiments follow a 2-level full factorial design approach.  

Standard operational research is now a mature and widely recognized field of applied mathematics 
and high-level computation. The ever-growing realm of applications and the computing power explo-
sion of the last two decades are driving related research in new exciting directions, continuing to play 
an important role in modern management engineering. A pioneering position of those real world OR 
applications holds for supply chain management, a fast growing topic combining computing algorithms 
either based on discrete mathematics and heuristics, or related to computational intelligence based on 
evolution, learning and adaptation. To this end, we hope that the present Volume contributes towards 
the advancement of high quality research in CI solutions for real world OR problems.

As a final note to this introduction , the authors would like to express their sincere appreciation to all 
authors, contributors and external reviewers of the papers submitted for this edition.

REFERENCES

Engelbrecht, A. P. (2002). Computational Intelligence: An Introduction. John Wiley & Sons Ltd.

Abbod, M.F., Linkens, D.A., Mahfouf, M., & Dounias, G. (2002). Survey on the use of Smart and Adap-
tive Engineering Systems in Medicine. Artificial Intelligence in Medicine, 26(3), 179-209.

Chaib-Draa, B., & Müller, J. (2006), Multiagent based Supply Chain Management, Studies in Compu-
tational Intelligence, Springer Publications



xvi  

Chen, K., & Wang, L. (2006). Trends in Neural Computation (Studies in Computational Intelligence). 
Springer Publications

Chen, Z. (2000). Computational Intelligence for Decision Support. CRC Press
Churchman, C. W., Ackoff, R. L., & Arnoff,  E. L. (1957). Introduction to Operations Research. New 
York: J. Wiley and Sons.

Dorigo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical Computer Sci-
ence, 344(2-3), 243-278 

Dubois, D., & Prade, H. (1980). Fuzzy Sets and Systems: Theory and Applications. London: Academic 
Press.

Hillier, F. S., & Lieberman, G. J. (2005). Introduction to Operations Research (8th . (International) Ed.). 
Boston: McGraw-Hill.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Cambridge, MA: MIT Press.

Jensen P. A., & Bard, J.F. (2003). Operations Research: Models and Methods. Chichester, UK: Wiley Press.

Kelly, F. P. (1994). Probability, Statistics and Optimization, A Tribute to Peter Whittle. Chichester, UK: 
Wiley Press.

Koza J. R. (1992). Genetic Programming – On the Programming of Computers Means of Natural Selec-
tion. Cambridge, MA: MIT Press,

Luenberger, D. G. (1979). Introduction to dynamic systems. New York: Wiley Press.

Michalski, R.S., Carbonell, J.G., & Mitchell, T.M. (1983). Machine Learning: An Artificial Intelligence 
Approach. Morgan Kaufmann Press

Mitchell, T.M. (1997). Machine Learning. New York: McGraw-Hill.

Negoita, M., Neagu, D., & Palade V. (2005). Computational Intelligence: Engineering of Hybrid Systems. 
Berlin-Heidelberg: Springer-Verlag.

Nilsson, N. (1998). Artificial Intelligence: A New Synthesis. Morgan Kaufmann.

Pinney, W. E., & McWilliams, D. B. (1987). Management Science: An Introduction to Quantitative 
Analysis for Management. Harper & Row Press

Pintér, J. D. (2005) Applied Nonlinear Optimization in Modeling Environments: Using Integrated Mod-
eling and Solver Environments. Boca Raton, FL: CRC Press.

Haykin, S. (1994). Neural Networks: A comprehensive foundation. Prentice Hall

Teodorovic, D. (2008). Swarm intelligence systems for transportation engineering: Principles and ap-
plications. Transportation Research Part C (Vol. 16, pp. 651-667). 

Thompson, G. E. (1982). Management Science: An Introduction to Modern Quantitative Analysis and 
Decision Making. New York: McGraw-Hill.



  xvii

Voß, S., & Woodruff, D.L. (2006). Introduction to Computational Optimization Models for Production 
Planning in a Supply Chain (2nd ed.). Springer 

Williams, H. P. (1999) Model Building in Mathematical Programming (4th ed.). New York: Wiley.

Zadeh, L.A. (1965). Fuzzy Sets. Information Control, 8(3), 338-353

Zimmermann, H-J., Tselentis, G., Van Someren, M., & Dounias, G. (Eds.). Advances in Computational 
Intelligence and Learning: Methods and Applications. Kluwer Academic Publishing. 



xviii  

Acknowledgment

We would like to thank Mr Joel A. Gamon, Development Editor (Editorial Content Department, IGI 
Global) for his assistance and support to the whole edition process during the last two years. In addition, 
our colleagues E. Ferneda (Catholic University of Brasília, Brazil), B. A. Mello (University of Brasília, 
Brazil), J. D. A. S. Diniz, (University of Brasilia, Brazil), and A. S. Figueiredo (Catholic University of 
Brasília, Brazil), are greatly acknowledged for contributing work, reviews and opinions for the current 
edition. Finally, we would like to thank the research staff of the following laboratories of the Depart-
ment of Financial & Management Engineering, University of the Aegean, for providing all necessary 
additional reviews to the papers submitted for this book:

• Management & Decision Engineering Laboratory (MDE-Lab)
• Design Operations & Production Systems Laboratory (DEOPSys) 
• Intelligent Data Exploration & Analysis Laboratory (IDEAL)

Ioannis Minis
University of the Aegean, Greece

Vasileios Zeimpekis
University of the Aegean, Greece

Georgios Dounias
University of the Aegean, Greece

Nicholas Ampazis
University of the Aegean, Greece



1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61520-633-9.ch001

Chapter 1

Nature-Inspired Intelligence in 
Supply Chain Management:

A Review of Selected Methods 
and Applications

Vassilios Vassiliadis
University of the Aegean, Greece

Georgios Dounias
University of the Aegean, Greece

INTRODUCTION

Nowadays, most firms face difficulties in obtaining 
a competitive advantage over other companies due 
to the fact that most of their underlying processes 

have become complex. A remedy to this issue is to 
adopt the organizational scheme of supply-chains: 
an international network of external partners such 
as suppliers, warehouses, distribution centres. 
A starting point of this functional chain can be 
considered the collection of raw materials and an 

ABSTRACT

Supply chain management is a vital process for the competitiveness and profitability of companies. 
Supply chain consists of a large and complex network of components such as suppliers, warehouses, 
customers etc. which are connected in almost every possible way. Companies’ main aim is to optimize 
the components of these complex networks to their benefit. This constitutes a challenging optimization 
problem and often, traditional mathematical approaches fail to overcome complexity and to converge 
to the optimum solution. More robust methods are required sometimes in order to yield to the optimal. 
The field of artificial intelligence offers a great variety of meta-heuristic techniques which specialize 
in solving such complex optimization problems, either accurately, or by obtaining a practically useful 
approximation, even if real time constraints are imposed. The aim of this chapter is to present a survey 
of the available literature, regarding the use of nature-inspired methodologies in supply chain manage-
ment problems. Nature-inspired intelligence is a specific branch of artificial intelligence. Its unique 
characteristic is the algorithmic imitation of real life systems such as ant colonies, flock of birds etc. in 
order to solve complex problems.
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ending point the preparation of the final product 
and the delivery to its final destination (customer 
or any other terminal) (Silva et al. 2002). Logis-
tics is a particular part of this process and deals 
with the planning, handling and control of the 
storage of goods between the manufacturing and 
the consumption point. One crucial challenge 
for decision makers is to satisfy all customers, 
using the available transportation fleet, while at 
the same time minimizing any intermediate costs 
(storage costs, transportation costs, delivery time 
etc.). The above problem can get very complex, 
especially in the case where various real life 
constraints regarding time, cost, availability etc. 
are imposed. A general term that characterizes 
these kinds of problems is the term “scheduling 
problems” (Silva et al. 2002).

A wide range of methodologies has been used 
to solve this optimization problem. However, 
traditional mathematical methods have proven in-
sufficient in tackling the requirements rising from 
the development of market competition (Silva et 
al. 2003). Nature-inspired intelligent techniques 
are considered to be quite efficient in handling 
NP-hard problems (i.e. optimization problems in 
which the optimum cannot be found in polynomial 
time). The main characteristic of these methods 
is the imitation of the way natural systems func-
tion and evolve in order to deal with real-world 
situations (Vassiliadis and Dounias 2009). For 
example, natural ant colonies cooperate so as to 
find high-quality food source, a flock of birds 
implements a scheme of indirect communication 
with the aim of finding the optimal direction, etc. 
Some examples of nature-inspired algorithms are 
the following:

• Ant Colony Optimization (ACO)
• Particle Swarm Optimization (PSO)
• Genetic Algorithms
• Genetic Programming
• Memetic Algorithms
• Artificial Immune Systems
• DNA Computing

All of the above methods have been applied 
to hard optimization problems. However, litera-
ture indicates that only some of them have been 
applied to the optimization of logistic processes.

The main aim of this chapter is to present a 
literature review of the application of nature-
inspired algorithms in supply chain management. 
Specifically, the focus is on certain parts of the 
supply chain, where certain processes need to be 
optimized such as finding the optimal route for 
a fleet. Academic research indicates that the use 
of NI methods is beneficial in dealing with this 
kind of problems. The contribution of this study is 
to collect the majority of academic work regard-
ing the application of NI algorithms in logistic 
processes and to give a clear presentation of the 
usefulness and applicability of these techniques 
for future research projects.

The chapter is organized as follows. In section 
1, an introduction of this chapter is given. In sec-
tion 2, the main characteristics of the supply chain 
management problem are presented. In section 3, 
some NI algorithms as well as their natural prin-
ciples are analyzed. In the next section, findings 
from the literature review are presented. Finally, 
in section 5, the main conclusions steaming from 
the review are summarized.

SUPPLY CHAIN MANAGEMENT 
OPTIMIZATION PROBLEM

Supply chain planning is adopted by more and 
more modern enterprises in order to upgrade 
performance. Their main aim is to organize and 
manage all different partners of this integral pro-
cess in a coordinated manner so as to fulfil the 
customers’ expectation (Silva et al. 2005). What 
is more, these different partners operate under dif-
ferent sets of constraints and objectives. However, 
high interdependency of the various parts of the 
supply chain system implies that optimization of 
one part may influence considerably the perfor-
mance of the remaining parts.
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The supply chain is a distributed system 
comprising of several parallel and independent 
optimization problems and coherence among 
different decision makers can be accomplished 
using a multi-agent based framework, whose 
constituent agents control multiple procedures. 
A typical supply chain has at least two parts. 
The logistic system deals with customers’ orders, 
external supply centres for product components 
and organization of cross-docking centres. The 
distribution system deals with the collection and 
delivery of goods to the final clients.

Due to the way the concept of supply chain 
has been used by various sources, there is a lack 
of universal definition. On the contrary, the con-
cept of supply chain has been considered from 
various points of view. However, an acceptable 
definition can be found in (Croom et al. 2000), 
which thoroughly presents an analytical frame-
work for the supply chain process. So, supply 
chain management deals with materials/supply 
management from the supply of raw materials to 
the formation and delivery of the final product, 
including possible situations of re-use or recycling. 
Supply chain management focuses on how firms 
utilize their suppliers’ processes, technology and 
capability to enhance competitive advantage. It 
can be also considered a management philosophy 
whose aim is to extend traditional intra–enterprise 
processes by bringing trading partners together 
with the common goal of optimization and ef-
ficiency (Croom et al. 2000).

In order to shed some light in the basics of sup-
ply chain management, it is desirable to present 
the main functions of a simplified supply chain 
(Silva et al. 2009). The modelling approach con-
sists of three parts, the logistic, the supplying and 
the distribution system, namely.

• Logistic system: receives orders from cus-
tomers and places orders to the suppliers 
as far as the raw materials are concerned. 
The purchased materials are going to be 
used in the manufacturing process. At this 

stage, the main objective is to minimize the 
tardiness time, i.e. the difference between 
the completion date and the desired deliv-
ery date, regarding the product. However, 
there are two disturbances. Firstly, suppli-
ers might not respect the delivery date of 
raw materials. Secondly, clients might ask 
for delivery dates which are not compat-
ible with the suppliers’ services. The logis-
tic problem can be formulated by using the 
general assignment optimization approach.

• Supplying system: consists of a network of 
different suppliers or manufacturers, each 
one of which deals with producing the re-
quested product component for the logistic 
system. In this case, the minimization of 
the total tardiness time, as defined above, 
can be considered as the objective func-
tion. The supply problem can be thought as 
a scheduling optimization problem.

• Distribution system: delivers the com-
plete products to the corresponding cli-
ents. Clients might be described by their 
geographical location. A simple realistic 
model of the distribution problem is the 
vehicle routing problem (or sometimes 
the travelling salesman problem). This is 
a minimization problem which considers 
the transportation cost of the fleet of avail-
able vehicles. For this kind of problem, a 
common constraint is that each customer 
is visited by one vehicle, and all customers 
have to be satisfied.

Finally, a simplified diagram is presented in 
Figure 1, which shows the overall process of sup-
ply chain (Silva et al. 2009).

In what follows, the general framework of 
nature-inspired methodologies is going to be 
analyzed. Literature indicates that the use of 
certain nature-inspired intelligent techniques, 
namely ant colony optimization algorithm (ACO), 
particle swarm optimization algorithm (PSO) and 
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genetic algorithms, yields quite satisfactory re-
sults.

NATURE-INSPIRED INTELLIGENCE: 
GENERAL FRAMEWORK AND 
CERTAIN TECHNIQUES

Nature-inspired methodologies, which are part 
of the general field of artificial intelligence, are 
based on the way natural systems and biological 
networks function and evolve (Vassiliadis and 
Dounias 2009). Insect colonies, swarm of birds 
and of course basic functionalities of the human 
body have unique characteristics, which are 
applied in real life situations. For example, ant 
colonies have a unique searching ability of the 
space around their nest, a fact of vast importance 
in the process of finding high-quality food sources. 
Moreover, when a flock of birds decides to emi-
grate to a far destination, it has to continuously 
adjust the parameters of direction and speed. For 

each member of the swarm, this is achieved by 
adjusting its position and speed according to the 
best-so-far member of the population.

A special kind of problems which can be 
handled by nature-inspired techniques are opti-
mization problems. The goal of an optimization 
issue is to find the best possible elements x* from 
a space set X according to a set of criteria F = 
{f1, f2,…,fn}. The possible elements x* are called 
decision variables, and the set of criteria F, which 
are usually expressed as mathematical functions, 
are called objective functions (Weise 2009). One 
of the difficult parts of optimization problems is 
the exploration of the solution space. Sometimes, 
the solution space, i.e. the space containing 
values for the decision variables, might be very 
complex. Furthermore, optimization problems 
can get very difficult if complex and ambiguous 
real life constraints are imposed. The supply 
chain management problem, described above, 
can be categorized as a complex optimization 
problem, with many decision variables and real 

Figure 1. A simplified supply chain
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life constraints. Many traditional methodolo-
gies fail to converge to the optimum solution. 
However, nature-inspired algorithms own some 
unique characteristics which can assist them in 
searching the solution space efficiently such as 
parallel exploration ability, exploitation of good 
solutions already found, indirect communication 
between artificial agents and implementation of 
certain search operators in order to converge to 
better quality solutions.

In what follows, an attempt in briefly present-
ing the most commonly used nature-inspired 
algorithms is made. More specifically, the study 
focuses on the main function and unique charac-
teristics of these methods.

ANT COLONY OPTIMIZATION 
(ACO) ALGORITHM

ACO algorithms were first introduced by Dorigo 
in the 1990’s (Dorigo et al. 1996). Their main 
characteristics come from properties of real ant 
colonies:

• Social behavior of real ants
• Foraging behavior of real ants, i.e. how and 

can efficiently explore the space around 
their nest in order to find the shortest path 
towards high-quality food sources.

• Indirect communication pattern between 
ants (stigmergy).

The development of ant colony algorithms was 
inspired by the observation of real ant colonies. 
When searching for food, ants initially explore 
the area surrounding their nest in a random way. 
While they move, they deposit an initial amount 
of pheromone (chemical component), which can 
be detected by other members of the colony. As 
soon as an ant comes up against a food source, 
it evaluates its quality and quantity and carries 
some of it back to the nest. During the return trip, 
based on the evaluation the ant made, it leaves a 

certain amount of pheromone. These pheromone 
trails, formed by the entire colony, will eventually 
guide all ants to the best food source.

Generally, ACO is suitable in solving hard 
optimization problems by iterating the follow-
ing steps:

• Candidate solutions are constructed us-
ing a pheromone model, which is nothing 
more than a parameterized probability dis-
tribution over the solution space (discrete 
or continuous).

• The candidate solutions found are used 
to modify the pheromone values through 
a pheromone update formula, which is 
deemed to bias future sampling towards 
high quality solutions.

• Finally, the pheromone update aims at 
concentrating the search in regions of 
the search space containing high quality 
solutions.

PARTICLE SWARM OPTIMIZATION 
(PSO) ALGORITHM

The first PSO algorithm was proposed by Ken-
nedy and Eberhart in 1995 (Kennedy and Eberhart 
1995). It is considered a biologically inspired 
algorithm which models the social dynamics of 
bird flocking. Some of its basic properties are 
the following:

• Natural metaphor
• Stochastic move
• Adaptivity
• Positive feedback

The main function of a flock of real birds is 
that they fly in large swarms in a synchronous 
manner, change direction suddenly, scatter and 
regroup iteratively, and finally perch on a target. 
The PSO technique facilitates simple rules simulat-
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ing bird flocking and serves as an optimizer tool. 
The general principles of the PSO algorithm are:

• Particle representation: each particle in 
the PSO is a candidate solution to the un-
derlying problem and moves iteratively in 
the solution space.

• Swarm: PSO explores the solution space 
by flying in large number of particles

• Personal best experience and swarm’s best 
experience: one unique characteristic of 
the algorithm, it stores the best position 
visited so far by each particle. Particularly, 
each particle remembers the best position 
among those it has visited and the best po-
sition by its neighbors.

• Particle movement: the swarm of particles 
flies iteratively about the solution space 
until the stopping criterion is met.

• Stopping criterion: the algorithm is termi-
nated with a maximal number of iterations 
or if the best particle position of the entire 
swarm cannot be improved further after a 
sufficiently large number of iterations.

GENETIC ALGORITHMS (GA)

Genetic algorithms were firstly introduced by Hol-
land back in the mid 70’s (Holland 1975). They are 
mainly inspired by the concept of evolution and 
improvement of the descendants in a population. 
The solution to a given problem is represented 
in the form of strings called chromosomes. Each 
string consists of a set of elements called genes, 
which represent the decision variables of the 
optimization process.

The main steps of the genetic algorithm are 
the following:

• A random population of solutions-chromo-
somes is produced.

• The fitness value of each chromosome cor-
responds to its value of objective function.

• To simulate natural survival of the fittest, 
which is the main idea behind the genetic 
algorithms, best chromosomes exchange 
information to produce offspring for the 
next generation. The two operators that 
are used in the information exchange 
among the chromosomes are crossover and 
mutation.

• The offspring solutions are then evaluated 
and used to evolve the population only if 
they provide better solutions.

• The process is continued for a large num-
ber of generations so as to obtain a best-fit 
solution.

GENETIC PROGRAMMING (GP)

The framework of Genetic Programming (GP) 
was introduced by Koza (Koza, 1990). Genetic 
Programming is a domain independent, problem-
solving approach in which computer programs 
are evolved to find solutions to several real-world 
problems. The solution strategy is based on the 
Darwinian principle of “survival of the fittest” 
(Sivanandam & Deepa, 2007). Specifically, GP 
is combining biologically inspired operators like 
mutation and crossover in a quite unique way.

The main characteristics of GP are the follow-
ing (Sivanandam & Deepa, 2007):

• Representation: Genetic Programming 
overtly conducts its search for a solution to 
the given problem in program space.

• Role of point-to-point transformations in 
the search: Genetic programming conducts 
its search by transforming a set of points 
into another set of points.

• Role of hill climbing in the search: Genetic 
Programming allocates a certain number of 
trials, in a principled way, to choices that 
are known to be inferior.
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• Role of determinism in the search: 
Genetic Programming conducts its search 
probabilistically.

DNA COMPUTING

DNA Computing was first introduced by Adleman 
(Adleman 1994) and it is a relatively new com-
puting paradigm that proposes using molecular 
biology tools to solve mathematical problems. 
The key idea is that data can be encoded in DNA 
strands, while molecular biology laboratory tech-
niques that involve manipulation of DNA strands 
in test tubes can be used to imitate arithmetical 
and logical operations.

Some unique characteristics of DNA comput-
ing are the following (Ezziane 2007):

• High memory capacity.
• Massive parallelism.
• Acceptable power requirements.

ARTIFICIAL IMMUNE SYSTEMS (AIS)

Artificial Immune Systems (AIS) were first intro-
duced in 1986 (Farmer et al. 1986). AIS are tech-
niques based on the features of antigen-antibody 
bindings in the immune system. In the natural 
immune system, local binding of immune cells and 
molecules to antigenic peptides is based generally 
on the behavior of surface proteins. Particularly, 
immune cells contain proteins on their receptors, 
and apparently, these proteins play the key role 
both in immune response and recognition process 
(Takaranov & Dasgupta 2000).

AIS use four main properties from natural 
immune systems (Bouckere et al. 2004):

• Detection: recognition of chemical com-
ponents between pathogen fragments and 
receptors on the surface of the lymphocyte 
occurs in an immune system.

• Diversity: detection in the immune system 
is related to non-self elements of the organ-
ism, thus the immune system must have di-
verse receptors to ensure that at least some 
of the lymphocytes will react to the patho-
genic element.

• Learning: the immune system must be 
capable of detecting as quickly as pos-
sible the pathogen and eliminating it. So, 
it includes a principle which allows lym-
phocytes to learn and adapt themselves to 
specific foreign protein structures, and to 
“remember” these structures as soon as 
possible when needed.

• Tolerance: the molecules that mark a cell 
as a self gene are contained in the chro-
mosome sections also known as Major 
Histocompatibility Complex.

So far, the main framework of the nature-
inspired intelligence has been presented. More-
over, some basic algorithms, which are mostly 
used in supply chain management problem, are 
roughly mentioned. In the following section, the 
main results of the literature review are presented 
and analyzed.

BASIC LITERATURE 
REVIEW AND FINDINGS

In this part, the main findings from the literature 
review related to nature –inspired intelligence in 
supply chain, are presented and analyzed. The 
search strategy followed for this literature survey 
is also described.

Search Strategy and Main 
Aim of the Survey

The survey of the literature presented in this chap-
ter might not be considered exhaustive however 
it provides a representative picture of the existing 
trends in the application of NI algorithms in sup-
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ply chain management. The works selected were 
mainly acquired by web databases such as the 
ScienceDirect, the SpringerLink, the IEEE and 
the EmeraldLibrary.

Specifically, the keywords which guided our 
search were the following, matched properly in 
meaningful combinations of two or three, with 
appropriate use of AND/OR logical operators:

{ACO AND Supply AND chain}OR {PSO AND 
supply AND chain}OR

{nature AND inspired AND intelligence AND 
supply AND chain}OR

{ant AND colony AND TSP} OR {particle AND 
swarm AND TSP}OR

{ant AND colony AND VRP}OR {particle AND 
swarm AND VRP}OR {genetic AND algorithm 
AND supply AND chain}OR{genetic AND algo-
rithm AND [TSP OR VRP]}OR{ant AND colony 
AND inventory AND management} OR{particle 
AND swarm AND inventory AND management} 
OR{artificial AND immune AND systems AND 
inventory AND management} OR{genetic AND 
algorithm AND inventory AND management} 
OR{genetic AND algorithm AND bullwhip AND 
effect} OR{genetic AND programming AND sup-
ply AND chain AND management}

The main motives for performing this survey 
were:

• The large number of publications concern-
ing the application of NI algorithms in sup-
ply chain management.

• Supply chain management problems such 
as, TSP, VRP, logistic processes, job sched-
uling etc. are considered as NP-hard opti-
mization problems, especially in the case 
where a lot of constraints are imposed. 
Nature–inspired intelligent algorithms 
have some unique characteristics, which 
can assist them in searching the solution 
space in a fast and efficient manner.

• Nature-inspired intelligent techniques 
seem to perform highly efficient, both in 
computational time and identification of 

the optimal solution, opposed to traditional 
methodologies, e.g. from the field of op-
erational research (mathematical program-
ming methodologies).

BASIC RESULTS AND FINDINGS 
FROM LITERATURE REVIEW

In this part of the study, the basic findings of the 
literature survey are presented. It has to be noticed 
again, that this literature review is by no means 
exhaustive. However, it succeeds in giving a better 
insight in the applicability of NII techniques in 
supply chain management issues, which can prove 
very assisting to the potential researchers of this 
field. The bibliographical results are summarized 
in two tables.

Table 1 summarizes those publications related 
to NII algorithms which are presented in this 
chapter, based on a classification by subject (i.e. 
specific category of NII approaches implemented) 
and date published, while Table 2 is a digest of the 
nature-inspired application papers shown in this 
work classified by subject and task (i.e. specific 
content of research in the domain of supply chain 
management application).

In Table 1, it can be observed that the use of 
NII techniques in supply chain management per-
formed an increase in the last 4-5 years. It seems 
that an increasing number of research groups 
explore further the efficiency and applicability of 
NII algorithms in logistic processes. What is more, 
a large number of works have dealt particularly 
with the application of genetic algorithms and ant 
colony optimization techniques in this problem. 
The searching ability of these algorithms, espe-
cially in the case of discrete solution space prob-
lems, proved to be quite interesting. Another fact 
that is worth mentioning is the increase of the 
number of publications of PSO algorithms in 
2009. Finally, there is a considerable number of 
publications concerning the application of other 
methodologies such as genetic programming, 
evolutionary strategies, artificial immune systems, 
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bee-colony optimization algorithms, grammatical 
programming etc. in the field of supply chain 
management.

Findings from Table 2 indicate a considerable 
interest in applying NII techniques, especially 
ACO, to the traveling salesman (TSP) and vehicle 
routing (VRP) problem. These kinds of problems 
refer to the distribution part of the general supply 
chain management problem, which can be consid-
ered as a complex optimization problem, mainly 
with a discrete solution space (customers and 
other clients). ACO algorithms specialize in such 
routing problems, where the aim lies in finding the 
shortest path. On the other hand methodologies 
such as genetic algorithms, genetic programming, 
evolutionary strategies, artificial immune systems 
etc. are properly applied to other areas of supply 
chain management such as cost minimization/
management, managing the bullwhip effect, in-
ventory control (warehouse management), which 
are mainly optimization problems. However, the 
objective function in these kinds of problems refers 
to other managerial issues other than minimizing 
certain paths in a route.

To sum up the findings of the literature review, 
ACO algorithms have been vastly used to this area 
of expertise, especially in various formulations of 
the TSP problem. Another important methodology 
that has been drawn interest from the academia in 
the last years is genetic algorithm. Other method-
ologies such as PSO, genetic programming etc. 
have been also applied in various domains of the 
supply chain management problem. As far as the 
specific application domain is concerned, traveling 
salesman and vehicle routing problems have been 
dealt by ACO-based techniques, whereas general 
supply chain management problems have been 
tackled by genetic-based methodologies.

APPLICATIONS OF ACO 
ALGORITHMS ON SUPPLY CHAIN 
MANAGEMENT PROBLEMS

Literature survey indicated that many studies 
have been done concerning the application of the 
ACO metaheuristic in supply chain management. 
General supply chain management problems refer 

Table 1. Publications referring to applications of NII in supply chain issues by subject and date 

≤1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 ≥2009 Total

ACO - 1 - 1 - - 2 4 7 5 10 13 8 12 63

PSO - - - - - - - - - - 2 8 10 15 35

GA/MA 3 - 3 2 2 4 7 4 3 7 12 14 14 7 82

Other 1 2 2 - 1 - 4 - 7 4 7 6 11 2 47

Total 4 3 5 3 3 4 13 8 17 16 31 41 43 26

Table 2. Publications related to NII techniques, summarized by subject and task 

TSP VRP System design / 
scheduling

Supply chain
management (general)

Total

ACO 15 27 8 12 62

PSO 5 5 9 16 35

GA / MA 21 17 10 32 80

Other 5 9 10 27 51

Total 46 58 37 87
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to all three components of the supply chain, i.e. 
logistics, supply and distribution. In (Srinivas et al. 
2005), a variation of ACO, namely an evolution-
ary cooperative multi ACO algorithm, is used to 
efficiently solve the balanced allocation problem. 
The aim is to minimize the workload disparities 
among various distribution centers with a goal of 
minimizing the total shipping cost. The proposed 
algorithm performs better than a genetic algorithm. 
In (Wang, H. S. 2009), the study concentrates 
in designing a defective supply chain network 
system, i.e. supply chain system with losses in 
production lines. A germane mathematical model 
is developed for solving this problem. However, 
due to the high complexity of the problem in hand, 
and in order to find a near-optimal solution with 
great speed, ant colony optimization metaheuristic 
is proposed. Results indicate that ant colony algo-
rithm yields satisfactory results comparing to those 
of the proposed mathematical model. In (Silva et 
al. 2005), the application of a distribution-based 
ACO algorithm is presented so as to manage all 
components of a supply chain in an efficiency 
way. Finally, in (Silva et al. 2008) an algorithmic 
solution, based on Ant Systems metaheuristic, is 
proposed for an industrial-inventory problem in 
a steel continuous-casting plant. The aim of this 
problem is to find the most profitable production 
schedule in steel billets. However, two real-time 
constraints are imposed: (a) parameters of the 
finite-capacity of the productive system, (b) the 
make-to-order production environment, which is a 
phase similarly to the maturing in food production. 
Results indicate that the proposed algorithmic ap-
proach may provide good solutions in acceptable 
computation times, thus fulfilling the industrial 
needs. Other findings from this literature show the 
efficiency of ACO algorithm in various problems 
of the supply chain management such as schedul-
ing and system design.

However, the majority of studies concern the 
application of ACO metaheuristic in traveling 
salesman and vehicle routing problems, which can 
be formulated as optimization problems. This com-

ponent of the supply chain is considered central 
both by academia and enterprises because it deals 
with the efficient delivery of goods and services 
to final customers and customer satisfaction. An 
optimized management of the distribution system 
may enhance the profitability of the company. 
What is more, these kinds of problems contain 
many real-time constraints, due to the fact that it 
is related to real–life situations.

In (Li, X. and Tian 2006), an ant colony optimi-
zation algorithm is used for the traveling salesman 
problem. The traveling salesman problem can be 
stated in a simple manner as follows. A salesman 
has to visit n cities (nodes). In a single tour he 
visits one city just once, and finishes up where he 
started. One of his basic aims is to find the optimal 
route in which he visits all cities in a way that 
minimizes the distance travelled. Results indicate 
that the ACO metaheuristic performs very well. 
However, in (Cheng, C. and Mao 2007), a specific 
variation of the TSP problem is studied, i.e. the 
traveling salesman problem with time windows, 
which involves finding the minimum cost tour 
in which all cities are visited exactly once within 
their requested time windows. ACO algorithm is 
used to solve this NP-hard problem. Two local 
heuristic rules are used to manage the time-window 
constraints. The numerical results obtained for a 
series of benchmark problem instances verifies 
the efficiency of ACO. In (Chitty and Hernadez 
2004), the dynamic vehicle routing problem is 
studied. The vehicle routing problem consists in 
the determination of the optimal set of routes to 
serve a given set of customers using a fixed fleet 
of vehicles. In dynamic vehicle routing problem, 
the time needed to traverse each city is uncertain. 
This problem can be expressed as a bi-criterion 
optimization with the mutually exclusive aims 
of minimizing both the total mean transit time 
and the total variance in transit time. A hybrid 
scheme, combining ACO and pareto fronts, is used 
to solve this combinatorial problem. Results are 
quite promising and show that the new technique 
can yield better quality solutions. In (Pellegrini et 
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al. 2007), two variants of the ACO algorithm are 
used to solve the rich vehicle routing problem, 
which is characterized by the presence of multiple 
time windows, the availability of different types 
of vehicles, the requirement of multiple visits to 
some customers and the limitation of the duration 
of each sub-tour. The objective of this problem 
is twofold: the first one is the minimization of 
the number of vehicles used, and the second one 
is the minimization of the total time required 
by the sub-tours. The two variants of the ACO 
meta-heuristic are: the ant colony system and the 
Max-Min system. Result indicate that the two NII 
techniques very efficient and appear satisfactory 
with respect to the ones achieved by the firm.

APPLICATIONS OF GA 
ALGORITHMS ON SUPPLY CHAIN 
MANAGEMENT PROBLEMS

Genetic algorithms are another class of intelligent 
meta-heuristic techniques, which have been vastly 
implemented in supply chain management appli-
cations. As it can be shown from Table 2, above, 
the majority of works refer to the distribution 
part of the supply chain, i.e. TSP and VRP. In 
(Baker and Ayechew 2003), a genetic algorithm 
is applied to the basic vehicle routing problem, 
in which customers of known demand are sup-
plied from a single depot. Vehicles are subject 
to a weight limit and, in some cases, to a limit 
on the distance travelled. Also, only one vehicle 
is allowed to supply each customer. As it can be 
seen from the formulation of the problem, this is 
one of the simplest cases in VRP. Simulations’ 
results from tabu search and simulation annealing 
have been used as benchmark. Results from the 
study indicate that the genetic algorithm is quite 
competitive compared to the benchmark methods 
in terms of solution time and quality. In (Tan, K.C. 
and Chew 2006), a hybrid multi-objective evo-
lutionary algorithm, which incorporates various 

heuristics for local exploitation, is proposed for 
solving a vehicle routing problem with time win-
dows. This approach is featured with specialized 
genetic operators and variable-length chromosome 
representation to accommodate the optimization 
process of the vehicle routing problem. Results 
show that the proposed hybrid scheme improves 
the routing solutions in many aspects, such as 
lower routing cost etc. The proposed algorithmic 
scheme yields better solution compared to those 
published in literature, for a specific data set. In 
(Jeong et al. 2002), a computerized system for 
implementing the forecasting activities required in 
a supply chain management system is presented. 
For building the generic forecasting model, a 
linear causal forecasting model is proposed and 
its coefficients are efficiently determined using 
the proposed genetic algorithms, canonical ge-
netic algorithms and guided genetic algorithms. 
Results obtained from two case studies show that 
the proposed guided genetic algorithm provides 
the best forecasting accuracy and greatly out-
performs the regression analysis and canonical 
genetic algorithm methods. In (Ip et al. 2003) a 
risk-based partner selection problem is described 
and formulated where risk of failure, due date and 
the precedence of sub-project are considered. To 
solve this problem, a rule-based genetic algorithm 
with embedded project scheduling is applied. What 
is more, fuzzy factors-based rules are proposed in 
order to modify the partner selection according 
to different situations.

In (Bontoux et al. 2009), a memetic algorithm 
is used for solving the generalized TSP. In the 
generalized TSP, the set of cities is divided into 
mutually exclusive clusters and the objective 
consists in visiting each cluster exactly once in 
the tour, while minimizing the sum of the routing 
costs. Memetic algorithms are genetic algorithms 
embedded with local search operators. The pro-
posed memetic operator applies a crossover pro-
cedure that uses a large neighborhood search. This 
algorithm is compared with other algorithms on a 
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set of 54 test problems from the literature with a 
complexity of up to 217 clusters and 1084 cities. 
The proposed algorithmic scheme yield better so-
lutions both in terms of quality and computational 
time efficiency. In (Liu, S. et al. 2009), a genetic 
algorithm is used to solve a mix vehicle routing 
problem, in which the fleet is heterogeneous and 
its composition is to be determined. Results from 
simulations on a set of twenty benchmark problems 
show that the algorithmic approach reaches the 
best-known solution in 14 cases and also find one 
new best solution. In (Liu, F. and Zeng 2009), an 
improved genetic algorithm with reinforcement 
mutation is used to solve the TSP. The core of this 
technique lies in the use of heterogeneous pair-
ing selection instead of random pairing selection 
and the construction of a reinforcement learning 
mutation operator. The experimental results on 
small and large size TSP problems have shown 
that the proposed algorithm could almost get 
optimal tour every time in reasonable time and 
thus outperformed the known genetic algorithms 
in the quality of solutions and the running time.

APPLICATIONS OF PSO 
ALGORITHMS ON SUPPLY CHAIN 
MANAGEMENT PROBLEMS

PSO algorithms have not been widely applied in 
supply chain problems, as the literature survey 
indicates. However, an increasing interest seems 
to rise from the academic field regarding the use 
of PSO algorithms for these kinds of problems in 
the last 2-3 years.

In (Guner and Sevkli 2008), a PSO algorithm 
for solving discrete optimization problems is 
employed for the uncapacitated facility location 
problem which is considered as hard combinato-
rial optimization problem. Three metaheuristics, 
namely continuous particle swarm optimization, 
genetic algorithm and evolutionary simulated 
annealing, were used for comparison reasons. All 

algorithms were tested to the same benchmark 
suites collected from OR-library. Results from the 
proposed algorithm were slightly better than the 
benchmark methods. In (Onut et. al. 2008), an in-
terest application concerning warehouse operation 
and management is studied. Generally, warehouse 
layout design models attempt to optimize different 
objectives such as the orientation of storage racks, 
the allocation of space among competitive uses, 
the number of cranes, the overall configuration 
of the facility etc. In this study, a distribution-
type warehouse is considered that various type 
products are collected from different suppliers for 
storing in the warehouse for a determined period 
and for delivery to different customers. The aim 
is to design a multiple-level warehouse self con-
figuration which minimizes the annual carrying 
costs. This is a NP-hard optimization problem. A 
particle swarm optimization algorithm is proposed 
for determining the optimal layout.

In (Bachlaus et al. 2008), the objective is to 
design a multi-echelon supply chain network con-
sidering agility as the key criterion. Specifically, 
five echelons of supply chains are considered 
including suppliers, plants, distribution centers, 
cross-docks and customer zones. This is a multi-
objective optimization problem with the specific 
aim to minimize the cost (fixed and variable) and 
maximize the plant flexibility and volume flex-
ibility. In order to solve this problem, a hybrid 
Taguchi-particle swarm optimization algorithm 
is proposed that incorporates the characteristics 
of statistical design of experiments and random 
search techniques. The main idea is to integrate 
the fundamentals of Taguchi method in the PSO 
meta-heuristic so as to minimize the effect of 
the causes of variations. Results from extensive 
simulations reveal that the proposed solution 
methodology is an effective approach to solve 
the underlying problem. In (Domoto et al. 2007) 
a model of mass customization about production 
and inventory planning is proposed. This model 
can be used when demand quantity is an unknown 
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parameter of the problem. Particle Swarm Opti-
mization algorithm is applied to this problem.

In (Marinakis and Marinaki 2009), a hybrid 
scheme combining a genetic and a particle 
swarm optimization algorithm for the vehicle 
routing problem is proposed. More specifically, 
the evolution of each individual solution of the 
total population, which consists of the parents 
and the offspring, is realized with the use of a 
particle swarm optimizer where each of them has 
to improve its physical movement following the 
basic principles of PSO until the point it obtains 
the requirements to be selected as a parent. This 
idea was applied to two instances of the vehicle 
routing problem and the results were satisfactory. 
In (Tasgetiren et al. 2007), a discrete particle 
swarm optimization algorithm is used to solve 
the generalized traveling salesman problem where 
the set of nodes is divided into clusters and the 
objective is to minimize the total cost of the tour. 
The proposed PSO algorithm is hybridized with a 
local search mechanism, a variable neighborhood 
descend algorithm, to further improve the solu-
tion quality. This algorithmic scheme was tested 
on a set of benchmark instances with symmetric 
distances up to 442 nodes from the literature. 
Computational results are quite promising. In 
(Ai and Kachitvichyanukul 2009), a formulation 
of the vehicle routing problem with simultane-
ously pickup and deliver and a particle swarm 
optimization algorithm to solve it, is proposed. 
The problem formulation is a generalization of 
three existing VRP formulations and the meta-
heuristic technique is base on a PSO algorithm 
with multiple social structures. The test set con-
sists of three benchmark data sets available from 
the literature. Computational results show that 
the proposed method is competitive with other 
published results for solving the same problem. 
What is more, some new best known solutions of 
the benchmark problem are also found.

APPLICATIONS OF OTHER 
NII TECHNIQUES ON SUPPLY 
CHAIN PROBLEMS

Apart from the presented studies, concerning 
the implementation of ACO, PSO and Genetic 
algorithms in supply chain management issues, 
there exist a considerable amount of studies in 
which other NII algorithms such as bee colony 
optimization and artificial immune system are 
applied. In (Masutti and Castro 2008), hybrid 
algorithmic technique combining neural networks 
and artificial immune system is used to solve the 
capacitated vehicle routing problem. The main 
characteristic of this combinatorial optimization 
problem is that each vehicle has a restriction in 
its capacity. Also, the basic characteristics of the 
artificial immune system come from the way 
the human immune system operates in order to 
face a potential hostile organism. The set of tests 
conducted with the proposed approach indicates 
a good performance of the algorithm when com-
pared with similar works from the literature and 
the known best solutions available. In (Lee, J. 
Y. et al. 2004), a DNA encoding method for the 
representation of numerical values and a biased 
molecular algorithm based on the thermodynamic 
properties of DNA is introduced. DNA strands 
are designed to encode real values by variation 
of their melting temperature. The thermodynamic 
properties of DNA are used for effective local 
search of optimal solutions using biochemical 
techniques such as denaturation temperature gra-
dient polymerase chain reaction and temperature 
gradient gel electrophoresis. The proposed scheme 
is applied to the traveling salesman problem. The 
main contribution of this study is to extend the 
capability of DNA computing to solve solving 
numerical optimization problems. In (Phelan and 
McGarraghy 2007) a relatively new evolutionary 
algorithm in computer science, grammatical evo-
lution, is introduced. This method is applied in a 
problem of supply chain dynamics and bullwhip 
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mitigation. As a proof of concept experiments are 
conducted to derive optimal ordering policies for 
agents in multi-tier supply chain. Results indicate 
that the proposed grammatical evolution algorithm 
successfully discovers the optimal ordering poli-
cies similar to the genetic algorithm approach, 
and in some cases outperforms this benchmark. 
In (Fogel 1993), an evolutionary programming 
algorithm is applied to selected travelling sales-
man problems. In three test cases, solutions that 
are equal to or better than previously known best 
routings were discovered. What is more, in a 1000-
city problem, the best evolved routing is about 5% 
longer than the expected optimum. In (Kleinau 
and Thonemann 2004) an alternative approach for 
solving inventory-control problems that is based 
on genetic programming is proposed. Genetic pro-
gramming is an optimization method that applies 
the principles of natural evolution to optimization 
problems. Inventory control determines which 
quantity of a product should be ordered when to 
achieve some objective, such as minimizing cost. 
In (Kumar et al. 2006) a new hybrid evolutionary 
algorithm named endosymbiotic-psychoclonal 
algorithm is proposed to decide what and how 
much to stock as a semi-product in inventory. 
In the proposed theory, the ability of previously 
proposed psychoclonal algorithms to exploit the 
search space has been increased by making anti-
bodies and antigen more co-operative interacting 
species. The efficacy of the proposed algorithm 
has been tested on randomly generated datasets 
and the results compared with other evolutionary 
algorithms such as genetic algorithms (GA) and 
simulated annealing (SA). The comparison of 
ESPC with GA and SA proves the superiority of 
the proposed algorithm both in terms of quality 
of the solution obtained and convergence time 
required to reach the optimal/near optimal value 
of the solution.

CONCLUSION

In this section, basic findings, drawn from the 
literature survey, are briefly summarized. The aim 
of this chapter was to outline the significance of 
NII techniques in the field of supply chain manage-
ment, as well as the applicability of NII algorithms 
in this kind of problems. The unique attributes 
of natural systems can be used to solve difficult 
real-life problems, such as system design issues, 
job scheduling and vehicle routing problems.

Regarding the applicability of NII algorithms 
in supply chain management problems, the fol-
lowing could be stated. Firstly, supply chain 
management problems are divided into three major 
categories: (a) logistic, (b) supply and (c) distribu-
tion problems. Each of these categories has some 
unique real-life characteristics, which make them 
complex. Findings from the literature have shown 
that traditional mathematical techniques as well 
as simple heuristic rules are unable to solve these 
problems, especially in the case where demand-
ing goals and real-life complex constraints are 
imposed. However, NII techniques have shown 
very good performance in dealing with these 
problems. In some cases new best solutions are 
found by these techniques. The nature of these 
metaheuristic algorithms can prove very efficient 
in dealing with complex formulations of supply 
chain management problems, handling in an ef-
fective way multiple objectives and various rigid 
constraints. One clear point from the literature is 
that the application of NII techniques focuses on 
difficult optimization problems such as the TSP 
and VRP. A lot of studies deal with various formu-
lations of these two problems and how intelligent 
algorithms can solve them. Another important 
point is the efficiency of NII methodologies such 
as genetic algorithms, genetic programming and 
other to various supply chain management issues 
like cost and inventory management.

As far as the NII techniques are concerned, 
ACO and GA algorithms are vastly used. The 
main attributes of these intelligent metaheuristics 
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may deal with difficult optimization problems 
very efficiently. Many studies are based on the 
application of these algorithms. However, there 
is an increasing interest, mainly in the last years, 
in using other NII techniques, such as PSO, AIS 
and DNA Computing in solving problems from 
the domain of supply chain management. As 
mentioned above, the main focus of these algo-
rithms is on distribution problems, i.e. finding 
the optimal route, using the available vehicle 
fleet, so as to satisfy all customers under various 
constraints. Finally, there are few studies which 
combine characteristics from two or more intel-
ligent techniques (hybrid schemes) in order to 
solve the aforementioned problems. Results are 
quite promising.

Future research should attempt hybrid intel-
ligent approaches in order to effectively combine 
advantages of different methods in complex supply 
chain management problems. Generally, the use 
of NII algorithms should be encouraged by all 
means, due to the fact that intelligent approaches 
often yield high quality solutions in a reasonable 
time i.e. produce interesting solutions in terms of 
profitability and efficiency.
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INTRODUCTION

The increasing growth of transactions of e-com-
merce leads to focus the interest on e-commerce 
related applications, as the e-marketplaces. 
Especially in Business to Business (B2B) ap-
plications they are the most innovative tools to 

support procurement actions utilizing Internet and, 
more generally, the Web technologies. Among 
the several definitions of e-marketplace, a basic 
definition has been proposed by Grieger (2003): 
“an e-marketplace brings multiple buyers and 
sellers together (in a “virtual” sense) in one 
central market space. If it also enables them to 
buy and sell from each other at a dynamic price 

ABSTRACT

The increase of transactions by electronic commerce (e-commerce) in Business to Business applications 
has a constant trend during last years. Many research reports have focused on negotiation and auction 
mechanisms in this context, but a smaller number of related research attempts, has chosen to develop 
coalition approaches This research attempt tries to overcome this gap by an innovative coalition model 
for a private neutral linear e-marketplace that combines a full integration between customer’s request 
and supplier’s planning activity. The Shapley value approach is proposed to manage the profit sharing 
activity among the coalition participants. The Shapley value is an approach of game theory used to 
share a gain in coalition games. A proper simulation environment has been designed and modeled in 
order to measure the “stay-together economy” achievable within the proposed innovative e-marketplace. 
The simulation results highlight how the proposed approach increases the performance level of the e-
marketplace: specifically the suppliers gain more benefits than the customers through the possibility of 
establishing coalitions.
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which is determined in accordance with the rules 
of exchange, it is called an electronic exchange; 
otherwise it is called a portal”. The benefits of 
implementing an e-procurement approach for both 
buyers and sellers are the following (Yu, 2008):

• it reduces the transaction costs; among sev-
eral researches, Tully (2000) point out that 
e-procurement can achieve gross saving of 
5% to 40%; in particular small firms can 
gain 15-25% reduction in prices in online 
marketplaces compared with those negoti-
ated by the business itself (Ash, 2006);

• it reduces the cycle time of the procure-
ment process; firm that implement an e-
procurement approach are forced to stan-
dardize the process and therefore some 
steps are automated. Moreover, the paper-
work is eliminated and the time to decision 
is reduced;

• it increases the geographical boundary; 
particularly for small firms, e-procurement 
allows to increase the visibility and there-
fore the enterprises contacted. In this way, 
the searching activity of new buyers/sellers 
is faster and cheaper;

• minimize maverick (unplanned) buying; 
the improvement of the information flow 
and process standardized leads to mitigate 
this effect. The same motivations lead to 
reduce human errors in buying or shipping 
process.

During the last decade the role of e-market-
places in supply chain management becomes more 
relevant. Eng (2004) summarized the contributions 
of e-marketplace to Supply Chain Management are 
examined in three dimensions: unit cost reduction, 
increased efficiency, and streamlined operations.

The main processes where Business To Busi-
ness e-marketplaces are important can be the 
following (Murillo, 2001; Khosrow-Pour, 2005):

• the increase of information across the sup-
ply chain partners can improve the deci-
sion making processes;

• bargaining models among customers and 
suppliers can get benefit to the customers 
with reducing the price of transactions;

• the order management such as: placement 
and tracking activities;

• the integration of different logistic activi-
ties such as: warehouse management and 
transport;

• the reduction of costs for the financial 
transactions.

An exploration study (Wang and Archer, 2007) 
on the different collaboration in Supply chains by 
e-markteplace (EM). The study highlighted that 
supply chain collaboration tends to be supported 
more than buying groups by existing EMs, and a 
high percentage of EMs now offers supply chain 
coordination and integration. Among online buy-
ing groups, the exchange-catalogue model is the 
most popular, possibly since it puts fewer burdens 
on members and coordinators.

Min (2009) explored various sub-fields of 
Artificial Intelligence that are most suitable for 
solving practical problems relevant to Supply 
Chain Management. The most popular tools can 
be subdivided in three categories: agent-based 
system, genetic algorithm and expert systems.

The research presented in this chapter regards 
the agent-based negotiation in Business To Busi-
ness applications that are one of the most important 
Artificial Intelligence area of research for Supply 
Chain Management.

Many Small and Medium Enterprises (SMEs) 
handle procurement through an inefficient com-
bination of manual processes, including paper 
records, phone calls, e-mails and faxes. This 
can lead to problems such as limited financial 
reporting, lack of readily accessible management 
information, lower levels of vendor compliance 
and unauthorized spending. The e-procurement 
solutions can address these issues, but most of 
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these tend to be expensive, complex, require 
technical expertise to install and maintain and are 
usually oriented towards larger firms. In justifying 
implementation of e-procurement, cost control is 
generally ranked as the highest motivator, followed 
by competitiveness and supplier requests, with 
strategic decision ranked the lowest. At the same 
time lack of standardization, social barriers and 
managers’ limited understanding of e-procurement 
solutions and vendor offerings leads medium-sized 
firms more favorably disposed than small firms 
to e-procurement. This chapter proposes an inte-
grated approach able to reduce some of these dif-
ficulties for small enterprises, reducing their cost 
burden by considering alliances among them by 
using a coalition support system as a value added 
services in an e-marketplace, together with Multi 
Agent Architecture and simulative performances 
evaluation through simulation. Coalition may be 
a big chance for small and medium suppliers not 
able to respond to the customer request by them-
selves: that means that this approach could be a 
basic topic in a “stay-together” economy, since 
it provides the business reasons to share the risk 
in an e-marketplace. Generally speaking, a coali-
tion is a set of self-interested agents that agree to 
cooperate to execute a task or achieve a goal. Such 
coalitions were thoroughly investigated within 
game theory. There, issues of solution stability, 
fairness and payoff splitting were discussed and 
analyzed. The formal analysis in there provided 
can be used to compute multi-agent coalitions, 
however only in a centralized manner and with 
exponential complexity. Distributed Artificial 
Intelligence (DAI) researchers have adopted some 
of the game theoretical concepts and, upon them, 
developed coalition formation algorithms to be 
used by agents within a multi-agent system. These 
algorithms concentrate on distribution of compu-
tations, complexity reduction, task allocation and 
communication issues. Nevertheless, some of the 
underlying assumptions of the coalition formation 
algorithms, which are essential for their imple-
mentation, do not hold in real-world multi-agent 

systems. In this chapter, we propose an approach 
to manage the phases of coalition: selection of the 
partners, how the coalition formulates the proposal 
to the customer and when the coalition win a 
negotiation how the profit is shared among the 
partners. The main innovative contribution regards 
the application of the shapley value approach to 
share the profit among the partners of the coali-
tion. Moreover, a simulation environment based 
on multi agent architecture has been developed 
to test the proposed approach. This tool can be 
most promising for SMEs that can be competitive 
in an e-marketplace respect the large enterprises. 
The remainder is organized as follows: Section 2 
gives a brief overview on the state of the art on 
the coalition in the e-marketplace environment. 
The research context is described in Section 3. 
Section 4 presents the proposed agent based 
model for negotiation and coalition formation. 
Section 5 presents the coalition approaches, while 
the simulation case study is shown in Section 6. 
The simulative results are discussed in Section 
7, while conclusions and future path research are 
illustrated in Section 8.

LITERATURE OVERVIEW

Many studies have been developed to study game 
theoretic properties of coalitions. The main top-
ics of these works have been coalition stability, 
fairness, payoff distribution, methods for efficient 
formation of coalitions, as well as methods for ma-
nipulating results of coalition processes. However, 
most of these ones have concentrated on theoretical 
aspects of coalitions and thus there is currently 
limited research or system implementation ac-
tivity in the context of concrete seller coalition 
formation. In this chapter, the considered coali-
tion is a set of self-interested agents that agree to 
cooperate to achieve a goal (the agreement) with 
the considered buyer (Peleg 1984, Jeffrey and 
Zlotkin, 1994, Sandholm et al. 1999). A primary 
motivation for players in a game to form coali-
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tions is to improve their surplus. Starting from 
this, three basic problems in coalition formation 
in a given game have to be considered: whether a 
stable coalition exists, how to share profit among 
the participants and who should be in which co-
alition. Among various theoretic developments, 
the core introduced by Gillies (Gillies 1953) is 
the earliest and most well accepted approach for 
coalition formation problems. The core is the set 
of all feasible payoffs to the players that no player 
or group of players could improve upon by acting 
unilaterally. The existence of a nonempty core 
implies that the game will have a stable solution 
and the players will have incentive to form the 
grand coalition. For the detailed discussion on 
the core, refer to Kannai (1992), Peleg (1992), 
Anderson (1992) and Gabszewicz and Shitovitz 
(1992). The literature on core game typically 
considers the stability of the grand coalition in 
a game and does not offer practical solution for 
coalition formation. Lerman and Shehory (2000) 
proposed a new model of coalition formation and 
applied it to coalition formation among buyer 
agents in an e-marketplace. Yamamoto and Sycara 
(2001) describe global behaviour of a set of agents 
from the macroscopic view point by differential 
equations and simulate how buyer coalitions 
evolve and reach the steady state. However, the 
model does not assist individual agents to form a 
coalition nor to negotiate surplus distribution. In 
this work, in order to overcome the above cited 
limitations and to obtain a fair allocation of gains 
obtained by cooperation among agents (Laruelle 
and Valenciano, 2008), we use the Shapley value 
approach From his seminal paper (Shapley, 1953b) 
a copious family of ‘solutions’ for transferable util-
ity (TU) games has grown in different directions 
with many ramifications. Among others, weighted 
Shapley values (Shapley, 1953a), (Weber, 1988), 
probabilistic values (Weber, 1979), semi-values 
(Dubey et al., 1981), weak semi-values and 
weighted weak semi-values (Calvo and Santos, 
2000), as well as non transferable utility (NTU) 
and non-atomic extensions of some of these no-

tions, or their restriction to special sub domains as, 
e.g., simple games. Most of these extensions have 
been born out of axiomatic explorations: dropping 
axioms, finding weaker or more appealing ones, 
recombining already existing ones, etc. This leads 
to heterogeneous families of objects, of which the 
Shapley value is an omnipresent particular case. 
Our study differs from these papers in three main 
aspects. One important difference, as discussed 
above, is that we assist individual agents to form 
a coalition and to negotiate surplus distribution 
using the Shapley value approach. Another main 
difference is that, while other papers primarily in-
vestigate the existence of stable coalition structures 
from theoretical aspects, we are interested in its 
application to concrete cases of e-marketplace in 
which SMEs try to compete with bigger compa-
nies. Finally, our chapter differs from the above 
papers because of the agent based structure, related 
to the production planning of each single agent, 
capable to support the decision making procedure 
and to evaluate different performances in order 
to obtain a quantitative methodologies able to 
appraise different market scenarios.

RESEARCH CONTEXT

E-marketplace can be classified, according to 
the buying behavior, in MRO Hubs, Catalogue, 
Yield Managers and Exchange. According to 
whom the buyers are in Horizontal and Verti-
cal e-marketplace and, on the centricity base, 
in Buyer Centric, Seller Centric, Neutral linear 
and Neutral exponential (Greiger, M. 2003 and 
Barratt, 2002). In particular, this chapter is con-
cerned with a private neutral linear e-marketplace 
owned by a third part where a set of registered 
buyers and a set of registered sellers are allowed 
to play procurement actions. Examples of such e-
marketplace are CPGmarket, Tribon Marketplace 
and ChemConnect.

Figure 1 shows the “neutrality” of the e-
marketplace from the centricity point of view. 
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This kind of e-market sites are suitable for context 
in which operate highly fragmented industries. 
In this environment, the knowledge base is the 
same for buyers (also named customers) and 
sellers (also named suppliers); that means that all 
the involved typologies of agents have the same 
market power. Buyers or sellers do not establish 
such marketplaces, which are usually set-up by 
an independent company, such as an ICT provider 
or a bank, whose aim is to put together separate 
group of agents in order to establish a sort of “pro-
curement virtual district”. The exchange owner 
usually gets his income from the transaction fees 
and eventually from some added value service fees 
such as secure transactions or financial services. 
In such e-marketplaces, procurement actions are 
usually order-based (Hoffman, 2002).

MULTI AGENT ARCHITECTURE

One of the methodologies used to develop Value 
Added Services in B2B e-marketplace is the multi 
agent system technology (Turowski, 2002; Kurbel 
and Loutchko, 2005; Louta et al. 2008).

The agent technology is quite useful for e-
marketplace for the following reasons: the agents 
can act in an autonomous manner and proactively; 
agents can analyze the situations and select the 
most appropriate behavior to perform actions; 
the robustness of the architecture based on agents 
allow the system to operate if some agents are in 
failure state; the flexibility of the architecture al-
lows to introduce or remove agents quickly; the 
distribution approach of multi agent architectures 

is able to implement the e-marketplaces that are 
composed by actors distributed physically.

The Multi Agent System supporting the con-
sidered e-marketplace (proposed in Argoneto and 
Renna, 2009), consists of a Customer Negotiation 
Agent (CNA), who is in charge for negotiating 
the parameters of the order with the sellers, and 
a set of agents representing each seller:

• the Supplier Negotiation Agent (SNA), 
who is in charge to negotiate with the 
customer;

• the Supplier Coalition Agent (SCA), who 
is in charge to evaluate the possibility to 
make a coalition with other suppliers;

• the Coalition and Negotiation Agent 
(CoNa), who is in charge to represent the 
suppliers’ coalition during the negotiation.

Finally, the e-marketplace owner provides a 
Scheduler Agent who is in charge for allowing 
communication and coordination among sup-
pliers’ and customers’ agents. The UML activity 
diagram of Figure 2 shows the agents’ interaction 
workflow. As the reader can notice five swim lines, 
corresponding to the above-described agents, have 
been located in the diagram. Very briefly, the 
workflow can be summarized as follows:

• Step 1: The customer submits the order 
through the CNA;

• Step 2: The customer’s order activates the 
Scheduler who selects the negotiation pol-
icy and transmits order data to the SNA;

• Step 3: The SNA is activated; it verifies 
whether the round of negotiation is r=2, 
because coalitions are not allowed in the 
first step; if this condition is verified the 
SNA sends a coalition request to the SCA, 
otherwise it negotiates directly with the 
CNA;

• Step 4: The SCA is activated; it evaluates 
the availability of other suppliers to make 
a coalition as described in Section 4; if a 

Figure 1. A private neutral linear e-marketplace
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coalition is possible the SCA activates the 
CoNA, otherwise it calls again for the SNA 
for a one-to-one negotiation; in any case 
the SCA returns to its initial state;

• Step 5: In case it is impossible to have a co-
alition among sellers, or in case round r=1, 
the SNA starts the negotiation with the 
CNA by preparing a counter-proposal as 
described in Section 4; on the other hand, 
if a coalition is possible, the CoNA forms 
the coalition and it elaborates a counter-
proposal as described in next the section; 
in both cases the counter-proposal is trans-
mitted to the Scheduler;

• Step 6: The Scheduler is activated; it trans-
mits the counter-proposal to the CNA;

• Step 7: The CNA is activated; it evalu-
ates the supplier’s or coalition’s counter-
proposal; if the counter-proposal meets the 
requirements described in next the section, 
the CNA accepts the proposal and it signs 
the contract; on the other hand, if the CNA 
does not find the counter-proposal satisfy-

ing, it evaluates the number of negotiation 
rounds; if round r = rmax, it quits the negoti-
ation, otherwise it asks the SNA for anoth-
er counter-proposal; in any case the CNA 
evaluation is transmitted to the Scheduler;

• Step 8: The Scheduler is activated; it trans-
mits customer’s decision either to the sup-
plier or to the suppliers’ coalition;

• Step 9: Either SNA or CoNA are activated; 
if the negotiation is over, because of an 
agreement or an unsuccessful termination, 
the agents update their negotiation data-
base and they return on their initial state; 
if negotiation continues, they build another 
counter-proposal for the customer and the 
workflow starts again from step 6.

The negotiation process starts with the order 
submission of the customer. The order consists of 
the array (i, V*, dd*, p*), being i the part type, V* 
the required volume, dd* the required due date 
and p* the related price. The generic supplier s 
computes the counter proposal constraints, i.e. 

Figure 2. Agents’ interaction workflow
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a feasible range of the required price (Δp) and 
due date (Δdd). Such constraints are determined 
according to a production planning algorithm 
proposed in Argoneto and Renna (2009). Within 
the given ranges, a collection of potential due 
date (W) and price (Q) values are considered to 
generate a set of alternative counter proposals j 
(j=1, 2, …, W×Q=J), where the alternative j is 
the combination of the ddw and pq (w=1, 2, …, W 
and q = 1, 2, …, Q). Furthermore, the supplier 
computes the minimum level of profit (Prmin), with 
respect to the maximum achievable profit (Prmax), 
that can be considered acceptable (see equation 
1). At each alternative counter proposal, the fol-
lowing two matrixes are associated:

• a profit matrix P ={Prj(ddw, pq )}, whose 
generic element Prj(ddw, pq ) returns the 
profit associated with the j-th counter pro-
posal alternative;

• a volume ratio matrix V ={Vj (ddw, pq )} 
whose generic element Vj (ddw, pq ) returns 
the volume ratio, respect the required V*, 
associated with each combination of of-
fered due date (ddw) and price (pq). Indeed, 
for example, if Vj (ddw, pq ) = 0.9 it means 
that the j-th alternative is able to satisfy the 
90% of the required volume V*.

Among all the possible alternatives, at first 
round r = 1 the supplier offers to the customer the 
most profitable ones. It first builds the set of al-
ternatives J r( )=1 by maximizing the expected 
profit as explained in equation (1):

J r( ) ,=
=

= { } ≡ { }1 Pr max Prmax j 1,..., J j being 

J Jr( ) .= ⊆1     (1)

At this point, within the set of alternatives 
J r( ),=1  the algorithm seeks those alternatives able 
to better satisfying the customer request, that is 

the alternative j J r* ( )∈ =1  minimizing the distance 
from the requested parameters:
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On the other hand, if r>1, the supplier applies 
a profit reduction strategy, depending on the ne-
gotiation round, searching for those alternatives 
whose profit is according to the equation (3):
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Among the possible alternatives that have been 

found, the supplier searches for the alternative j* 
satisfying relation (2) with j∈ J r( ).  The alternative 
j*, both in cases r = 1 and r > 1, determines the 
rth supplier’s counter-proposal: Vs(r), dds(r), ps(r). 
At each round, the customer computes the utility 
function threshold according to the following 
expression (5):
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The above expression shows how the customer 
utility threshold value decreases throughout the 
negotiation process: the customer is more willing 
to accept the supplier proposal when the negotia-
tion proceeds toward its end. Thumin and Thumax 
respectively represent the minimum and maximum 
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threshold values: they are correspondingly used 
when r = rmax and r = 1. The parameter F represents 
the utility function slope and it models the customer 
willingness to find an agreement. Afterwards, the 
customer evaluates its satisfaction by computing 
the counter-proposal utility as follows:

U(r) = U (r) + U (r) + U (r)v dd p  (6)

being U v (r) , Udd(r) , Up(r) respectively the utili-
ties of the volumes, due date and price, computed 
at round r, as showed in the following equations 
7 to 9:
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being Vmin, pmax, ddmin, and ddmax respectively the 
minimum quantity of volume, the maximum price 
and the due date interval that the customer can 
accept (see Table 3). Three cases can occur:

1.  U(r) ≥ Thu(r): the customer accepts the 
counter-proposal of the supplier s and it 
signs the contract. Both agents update their 
database;

2.  U(r) < Thu(r) and r < rmax: the customer asks 
for a new counter-proposal,

3.  U(r) < Thu(r) and r > rmax:the customer rejects 
the proposal and quits the negotiation.

See the following workflow (Figure 2) for a 
deep explanation of the agents’ interaction.

COOPERATIVE GAME THEORY 
AND SHAPLEY APPROACH

Generally speaking, a cooperative game consists 
of two elements: a set of players and a character-
istic function specifying the value created by 
different subsets of the players in the game. For-
mally, let N n= { }1, ..., be the (finite) set of 
players and i is the index of the generic player of 
the set. The characteristic function is a function, 
denoted v, that associates a number denoted v(S) 
to every subset S of N, a number. The number v(S) 
is interpreted as the value created when the mem-
bers of S come together and interact. In sum, a 
cooperative game is a pair (N,v), where N is a 
finite set and v is a function mapping subsets of 
N to numbers. Given a cooperative game (N,v), 
the quantity v(N) specifies the overall amount of 
value created. An important question is how this 
overall value is divided up among the various 
players. A solution is a mapping that assigns a set 
of payoff vectors in v(N) to each characteristic 
function game (N,v). Thus, a solution in general 
prescribes a set, which can be empty or a single-
ton (when it assigns a unique payoff vector as a 
function of the fundamentals of the problem). 
Research on cooperative decision making from a 
cooperative game theory perspective provides 
axiomatic solution concepts for surplus (cost) 
sharing of coalitions. These include the Core, 
Shapley Value and Nucleolus among other con-
cepts (Osborne and Rubinstein, 1994). The stabil-
ity of a coalition requires that the distribution of 
surplus among the coalition members is immune 
to groups of agents refusing to participate and 
forming their own coalition and the core is the 
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most commonly used concept to characterize this 
property. In this section, we discuss an approach 
to determine imputations of the gain attained by 
a coalition, namely, using the game core concept 
and calculating the Shapley vector (Belenky, 
2002).

Coalition Mechanism

As deeply discussed in Tombuş and Bilgiç (2004) 
the coalition formation problem is a set partition-
ing problem. The CA evaluates the possible coali-
tion among the suppliers: since the number of 
variables of possible coalitions grows exponen-
tially with the number of partners, here, the authors 
have considered coalitions with two or maximum 
three suppliers. Moreover, in the considered case, 
the set of partners combination S does not repre-
sent a partition of N; indeed, indicating with SN,2 
and with SN,3 the set of possible suppliers combi-
nation with two and three elements respectively, 
it will be S S S= ∪N N, ,2 3 . Let us indicate with 
(i, j) -or with (i, j, k) in case of three players- the 
generic set sl belonging to S; sl∈S can compete 
for the order acquisition if:

V Vl £
*  (10)

being

• V Vl z
z i j z i j k

=
= =
∑

, / , ,

 the volume that can be 

offered by the considered coalition, and
• V* the volume required by the customer.

Equation (10) expresses that for each combina-
tion of suppliers, the coalition l is created if and 
only if the offered volume (Vl) is smaller minor 
than the volume required by the customer; each 
single supplier is also allowed to compete for 
the order as a particular case of coalition. In the 

subsequent step the CA computes the coalition 
counter proposal through the following steps:

the coalition due date (ddl) is the maximum 
due date among those proposed by the suppliers 
participating at the coalition:

dd ddl z i j z i j k z= { }
= =
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 (11)

2.  the coalition volume is the sum given by 
equation (10);

the coalition offered price is computed as follows: 
first a weighted price (pr_mpl) is computed 
through the following expression:
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then, CA computes an index (dl) measuring the 
distance between the proposed counteroffer and 
the customer request:
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afterwards, an indifference price pr_indl, repre-
senting the price that with ddl and Vl guarantee 
the customer with an offer as good as the best 
one among those generated by suppliers i, j and 
k, is computed as the price satisfying the follow-
ing equation:
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Finally a coalition price pr_coa*l is computed 
as the price satisfying the following expression:

d f
V V
V

pr coa p
p

dd dd
dd t

l s
l l

l

arr
z i j z i

⋅ =
−
+

−

+
−

−
=

= =

*

*

_ * *

*
*

*
min

* , / , jj k zd,
( )

, where 

fs<1.  (15)

pr_coa*l represents a price that with ddl and Vl 
will guarantee to the customer an offer better than 
the best alternative offer among those generated 
by supplier i, j and k. Therefore, it represents the 
added value the coalition l provides the customer 
with. The coalition price pr_coal is computed by 
the following expression:
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pr_coal, as computed in equation (16), assures all 
the coalition participants that at least gainthe same 
profit they would have achieved by competing 
alone; moreover, whether possible, they gain an 
extra profit (pr_coa=pr_indl) and, when the best 
alternative is considered, also the customer gains 
a benefit from the coalition formation (pr_coa 
= pr_coa*l).

4.  The CA collects the coalition and the single 
supplier proposals. Moreover, it evaluates the 
index d of equation (13) for each proposal 
(coalitions and single supplier too).

5.  The CA submits to the customer the proposal 
with minimum value of d.

6.  The customer evaluates the proposal and, 
as explained in the above paragraph, it can 
accept the counter-proposal and signs the 
agreement with the supplier whether the 
related utility is greater than a threshold 

value; afterwards it updates its database with 
the agreement data. Conversely, if the util-
ity associated with the counter-proposal is 
lower than the threshold value, the customer 
evaluates if a negotiation with the supplier 
can be activated; in particular, if more nego-
tiation time is available, the customer asks 
for a new counter-proposal, otherwise -the 
negotiation time is over- the customer rejects 
the proposal and quits the negotiation. In 
case the contract is signed with a coalition, 
then two alternatives are possible:
a.  the price of the coalition is the same of 

the pr_mp; in this case each coalition 
supplier updates its database with the 
price proposed;

the price of the coalition is more than the 
pr_mp; in this case the surplus of 
expression (17) will be shared among 
the coalition suppliers:

extra profit pr coa pr mp Vl l l l− = −( ) ⋅_ _  
(17)

A modified coalition strategy (SVA*) has also 
been set up; in this case the supplier can compete, 
differently from the previous approach, only join-
ing in a coalition or alone: therefore the algorithm 
does not explore all the possible combinations as 
previously showed. The decision to participate in a 
coalition is based on the capability of the supplier 
to provide the volume required by the customer.

Profit Sharing Mechanism

In case of surplus, the Shapley approach is utilised 
to split it among the coalition suppliers. As ex-
plained above, the characteristic function is one 
of the basic concepts in cooperative game theory: 
it is the key to the value based approach and in 
particular to the Shapley value. Therefore, the 
characteristic function has been utilised in this 
chapter to calculate this last value that could be 
interpreted as an average contribution measure 
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that each seller brings to the coalition. For all 
i, j, k, the considered characteristic function is 
build as follows:

v(i) = supplier i profit;

v(i, j) = coalition extra profit;

v(i, j, k) = coalition extra profit;  (18)

Extra profit is computed as reported in equa-
tion (17). In case a coalition reaches an agreement 
with the buyer and in case an utility surplus to 
share among the winning coalition players exists, 
then the proposed mechanism shares this surplus 
proportionally to the Shapley value calculated, for 
each player i, as follows:

Φi
k kn

n k k K K i( )
!

( )!( )! ( ) ( \ )
, , / ,

ν ν ν= − − −



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= =
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being k the magnitude order of coalition with 
seller i and n the seller number.

SIMULATION ENVIRONMENT

In order to test the proposed coalition approach a 
proper test environment of the e-marketplace con-
text has been developed. It consists of a simulation 
environment that can be used to test the functional-
ity of the proposed models and to understand the 
advantages of the added value services. In order 
to cut times and costs for the development of an 
actual e-marketplace environment, the simulation 
environment has been developed directly in open 
source architecture by using Java Development 
Kit (JDK) package. The modeling formalism in 
here adopted is a collection of independent objects 
interacting via messages. This formalism is quite 
suitable for Multi Agent Systems development. 
In particular, each object represents an agent and 

the system evolves through a message-sending 
engine managed by a discrete event scheduler. 
In particular, the following agents have been 
developed the CNA, the SNA, the SCA, the CoNa 
and the Scheduler. Moreover, the CNA and the 
SNA have been provided with a local database 
to manage supplier and customer data. A proper 
interface has been developed to connect the Java 
code to the database. Finally, the SNA has been 
linked with a mathematical interface to solve 
the supplier’s production planning MILP, fully 
described in (Argoneto end Renna, 2009). The 
described simulation environment has been used 
to test the following test-case.

Test Case

An e-marketplace consisting of 9 customers and 
9 suppliers has been considered. Each customer 
can submit an order for 10 different part-types. 
Table 1 reports the 48 orders data that have been 
submitted for the test case. For each order index, o, 
the arrival time, ta, the due date, dd*, the required 
price expressed in monetary units, p*, the required 
volume, V*, the customer identification number, 
Cid, and the part type are reported.

The parameters reported in Table 1 have been 
generated in the following way:

• the order arrival time, ta
o, has been ran-

domly generated to guarantee at least five 
orders within the same re-planning time 
bucket;

• the order due date, dd*o, has been ran-
domly generated, for each order, following 
a uniform distribution with lower bound 
equal to ta

o +3 and the upper bound equal 
to the value of the end of the re-planning 
time bucket;

• the volume of the order, V*o, has been ran-
domly generated by using the following 
expression:
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Table 1. Orders data 

o ta dd* p* V* Cid Part-type

1 2 9 556.690 356 3 2

2 15 20 391.249 276 1 7

3 19 24 100.678 73 5 8

4 25 30 250.819 165 4 9

5 42 51 641.576 446 5 8

6 48 53 50.816 33 9 4

7 55 60 82.577 55 3 5

8 56 60 141.847 94 2 10

9 52 60 123.921 80 2 1

10 63 71 409.207 271 5 8

11 67 89 759.415 562 6 10

12 72 77 262.234 166 9 3

13 78 82 81.574 60 8 10

14 79 88 735.504 475 4 2

15 95 100 228.229 160 6 1

16 98 106 90.266 60 5 6

17 100 117 540.165 336 3 2

18 103 115 699.524 486 6 7

19 111 116 394.020 284 4 1

20 122 128 507.832 312 3 3

21 136 141 256.757 181 1 1

22 137 143 263.635 172 1 7

23 142 148 402.521 282 7 9

24 145 150 115.069 74 7 7

o ta dd* p* V* Cid Part-type

25 157 168 397.363 276 4 2

26 160 172 750.230 542 6 1

27 166 175 383.990 259 4 3

28 169 173 120.418 88 2 9

29 171 177 274.699 170 2 9

30 181 187 209.061 140 3 9

31 184 197 533.574 362 7 1

32 189 200 464.609 327 7 6

33 194 204 520.106 348 1 7

34 201 210 80.650 48 8 5

35 218 236 1.267.693 902 3 2

36 230 238 288.852 181 3 10

37 232 236 183.398 129 8 8

38 233 237 376.985 230 8 9

continued on following page
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being Ord_capj the ordinary production capacity 
of the jth supplier, as reported in Table 2.

The order price, p*o, has been computed according 
to the following expression:
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being:

• CUo,j, the unit ordinary cost for manufac-
turing a single product of order o in the jth 
supplier’s manufacturing system;

• mk_up, the mark up applied for computing 
the price; the mark-up has been obtained 
by a uniform distribution: Unif [1.1, 1.4].

As the reader can notice, the price is computed 
by applying a mark-up strategy to obtain an aver-
age ordinary cost over the supplier set. Supplier 
costs and capacity data are reported in Table 2, 
while Table 3 reports data used by the customer 
in equations (5)-(9) for computing its utility of 
supplier’s counter-proposal.

SIMULATION RESULTS

The test case has been carried out under the fol-
lowing experimental conditions:

• No Coalitions, in this case a Contemporary 
Multi Negotiation policy is considered as 
benchmark with no possibility to make a 
coalition (Argoneto et al., 2004);

• 50%, in this case a Contemporary Multi 
Negotiation policy is considered with the 
possibility to make a coalition composed 
by two suppliers that subdivide the request-
ed volume in equal part. This approach is 
considered as benchmark for all the other 
coalition policies.

• SVA; in this case a Contemporary Multi 
Negotiation policy is chosen together 
with the coa1itional approach based on 
the Shapley value. The supplier that veri-

o ta dd* p* V* Cid Part-type

39 235 240 177.906 108 2 6

40 244 251 316.362 206 7 7

41 246 253 323.239 206 8 7

42 263 268 337.758 224 6 10

43 265 270 273.187 172 4 1

44 271 276 149.202 94 6 9

45 273 283 660.202 411 1 3

46 274 295 1.119.717 728 3 4

47 279 300 1.176.105 728 8 10

48 296 298 170.216 116 4 3

Table 1. continued
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fies the equation (10) can operate in all the 
possible combinations (alone, with a set of 
two and three suppliers) to provide the vol-
ume required by the customer; therefore, 
the generic supplier can act alone, in a co-
alition or in both cases.

• SVA*; the difference from the SVA approach 
lies in the supplier’s possibility to partici-
pate alone at the negotiation. Differently 
from the previous case, whether the equa-
tion (10) is verified, it could participate in 
a coalition of two or three suppliers, but 
not alone. In a certain sense this approach 
is more realistic for a real application be-
cause in here at the generic supplier is not 
allowed the competition, during the ne-
gotiation process, with a coalition that in-
volves himself.

Simulation experiment results have been re-
ported in Table 4, where, for each experimental 
condition, the following performance have been 
reported:

• Customer utility; is the average utility the 
customer reports after having sequenced 
all the orders of Table 1; the utility is com-
puted as reported in Section 3;

• Supplier utility; the suppliers’ cumulative 
profit computed over all the orders has 

been assumed as a measure of the suppli-
er’s utility;

• Refused orders; this reports the number of 
customer orders refused by the suppliers;

• Normalized customer utility; this is the nor-
malized customer utility computed over all 
the customers’ utility reported in the first 
row of Table 4;

• Normalized supplier utility; this is the nor-
malized supplier utility computed over all 
the suppliers’ utility reported in the second 
row of Table 4;

• Total normalized utility; this is sum of the 
normalized customer and supplier utilities.

The normalized values are obtained by the 
ratio of the performance and the best value of 
this performance among the approaches, therefore 
the value of one identifies the best performance.

From the analysis of the simulation results 
reported in the previous Table 4, the following 
issues can be drawn:

Table 2. Suppliers’ data 

Suppliers (s)

1 2 3 4 5 6 7 8 9

Process Plan fixed cost (PP_cost) 300 600 150 300 200 250 450 500 400

Ordinary cost (Ord_cost) per unit of time 30 10 45 15 20 15 20 15 20

Overtime cost (Ov_cost) per unit of time 60 20 70 35 40 50 30 30 35

Outsourcing cost (Out_cost) per unit of time 70 120 60 45 45 90 45 100 70

Ordinary capacity (Ord_cap) 96 288 96 64 48 96 120 144 96

Overtime capacity (Ov_cap) 24 12 36 12 12 32 12 48 24

Outsourcing capacity (Out_cap) 96 32 192 24 24 96 48 24 32

Table 3. Data for the customer’s counter-proposal 
evaluation 

Utility Price Volume Due Date Utility Function 
Slope

Thu-
min=3, 
Thu-
max=1.5

Pmax 
=1,6· 
p*

Vmin = 
0,3·V*

ddmin = 
dd*–5,
ddmax = 
dd*+5

F=2.7



47

Coalitional Added Services in a Linear Neutral e-Marketplace

• the possibility to make a coalition among 
the suppliers, with any opportune strategy 
(50%) does not improve the considered 
performances. As the reader can notice, the 
performance evaluated in case of “50%” 
gets worse than the “no coalition” ap-
proach, for all the measures: the total nor-
malized utility is the lower value among 
the investigated approaches;

• the Shapley value based approaches (both 
SVA and SVA*) lead to an increase the to-
tal normalized utility thanks to the signifi-
cant increment of the suppliers’ profit. That 
means that these approaches could lead to 
a real value added particularly for the sup-
pliers involved in an e-marketplace;

• the SVA approach leads to improve both 
customer and suppliers’ utilities, but at 
the same time it increases the number of 
refused order (specifically, just one more 
than in case of “No coalitions”). Then, this 
approach leads to a very low difference if 
compared with the first case investigated, 
but allows the suppliers to gain more ben-
efits with the same level of utility;

• The SVA* leads to the better 
suppliers’performance: particularly the 
maximum value of profit is reached. The 
reason is the strong reduction of refused 
orders. The same reason leads to a slight 
reduction of the customer’s utility.

In conclusion, the SVA* approach leads to the 
better global performance (total normalized util-
ity); moreover it reduces the number of refused 
orders that is easily considered as a customer’s 
index of satisfaction.

SUMMARY AND CONCLUSION

This chapter deals with Value Added Services in 
linear neutral e-marketplace. In particular, the 
aim of the research was to deeply investigate 
advantages brought by coalition of suppliers in 
e-marketplace and to measure that advantage in 
order to quantify the “stay-together economies” 
approach by using the cooperative game theory. 
Specifically, the coalition formation matches with 
the following items:

• the suppliers that compose the coalition;
• the counter-proposal formulation of the 

coalition;
• how the suppliers of a coalition share 

the profit when the coalition wins the 
negotiation.

In this chapter the authors proposed two dif-
ferent approaches to manage this issue:

• The Shapley approach (SVA), in which the 
coalition is composed by suppliers that 
cannot completely satisfy the whole vol-
ume required by the customer. All the pos-

Table 4. Simulation results 

No Coalitions 50% SVA SVA*

Customer utility 2.48 2.45 2.51 2.43

Supplier utility 12,852,848 11,650,492 14,071,233 15,873,345

Refused Orders 5 10 6 2

Normalized Customer Utility 0.99 0.98 1 0.97

Normalized Supplier Utility 0.81 0.73 0.89 1

Total Normalized Utility 1.80 1.71 1.89 1.97
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sible combinations of players are consid-
ered, but only the ones with at maximum 
three agents are allowed. The profit sharing 
is proportionally computed by using the 
Shapley value.

• The Modified Shapley approach (SVA*); 
in this case, whether equation (10) is veri-
fied, the single supplier cannot participate 
as a single coalition or alone, but only in a 
coalition.

To deeply analyse this approaches, two bench-
mark models have been considered:

• A model with no possibility to make co-
alition among the suppliers: they can only 
participate as a single agent;

• A model with no strategy to make a co-
alition among the suppliers: the coalition 
is composed by two suppliers that share 
exactly 50% the volume required by the 
customer.

A proper simulation environment has been 
developed in open source architecture, in order 
to test the proposed coalition approaches. The 
simulation results showed that coalitions can be 
considered as real advantages for customer and 
suppliers because of their capacity to improve 
the satisfaction of all the involved agents and to 
reduce the number of refused order, generating 
higher profits. Moreover, a proper strategy to 
make coalition is a critical factor to improve the 
customer’s and suppliers’ performance. In fact, if 
coalitions are created in absence of any strategy (as 
in case of the “50%” approach), the performance 
get worse than in case of “No coalition”. These 
important results can be summarized as follows:

• The Shapley value is proposed as a method 
to share the profit surplus: any specific pol-
icy regarding the composition of the coali-
tions, but the volume constraint, has been 
considered. This simple approach has lead 

us to significantly improve the suppliers’ 
performance and to obtain a good compro-
mise between the customer and suppliers’ 
degree of satisfaction.

• The typology of coalition approaches (SVA 
or SVA*) does not significantly improve 
the customer’s utility, but in the SVA* case 
the number of refused orders is drastically 
reduced. This means that the customer sat-
isfaction is anyhow improved because of 
the increment of reached agreements.

• This research allows to understand which 
approach is better to be utilized in an e-
marketplace in which the coalition forma-
tion is allowed. In particular, the Shapley 
policy shows its potentiality to be used in a 
seller-centric marketplace.

Further research will deeply investigate the 
following aspects:

• A proper decision making strategy could 
be provided to each supplier. The supplier 
will use a strategy based on its performance 
in order to make the decision to participate 
in a coalition. The performance could be: 
the profit gained in the past negotiations; 
the potential profit related to the orders re-
quired by the customer; the benefits that 
the supplier could obtain by the possible 
relations with other suppliers.

• The simulations should be extended; the 
benefits highlighted by this research will be 
investigated in different conditions. In par-
ticular, it will be analyzed the performance 
trend in case the number of suppliers is 
variable during the negotiation process, in 
case of stable or turbulent market environ-
ment (depending on the characteristics of 
the orders) and in case the characteristics 
of the suppliers are changing (risk attitude, 
and so on);

• An investigation should take place on how 
the information sharing (among the sup-
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pliers involved in the e-marketplace) can 
change the evaluated performance. This 
study is expected to highlight the benefits 
that each supplier can gain when the quan-
tity of the available information increases. 
Therefore, several levels of sharing will be 
investigated starting from the case in which 
any information is shared to the ones where 
no private information is allowed.
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INTRODUCTION

Market globalization and aggressive economic 
competition have gained a manufacturing ten-
dency toward the adoption of flexibility features 
in order to better react to changes related to 
customer needs, process technologies and gov-
ernment directives. Many research efforts have 
been made in order to really understand which of 

such flexibility features are critical in achieving 
the particular business tasks and how or when to 
implement them. This issue has great relevance 
from an entrepreneur point of view. Investments 
in manufacturing systems including flexibility 
features are perceived as high risk decisions in 
a very uncertain and complex environment. This 
perception is principally due to the following 
reasons: (a) flexible manufacturing systems re-
quire higher investment if compared with other 
manufacturing investments; (b) flexibility enlarges 

ABSTRACT

The cooperation among firms allows them to focus on their core products, improving efficiency and 
competiveness. The emerging paradigm of co-opetition, considering at the same time cooperative and 
competitive aspects, seems to be the most promising approach both in traditional and electronic network. 
This chapter investigates the excess capacity issue for independent plants operating in a co-opetitive 
network. Two models have been proposed: the first without any information exchange, based on clas-
sical real options approach, and the second characterized by a certain degree of information sharing: 
in here the real options methodology is combined with a fuzzy engine. A simulation environment based 
on Multi Agent Architecture has been developed in order to test the proposed models. The simulation 
results show that the innovative combined approach drastically reduces the investment, maintaining a 
high level of profit.



52

Investing in Excess Capacity

the investment scenario making the investment 
uncertainty higher; (c) the competitive scenario 
evolution needs to be also evaluated in order to 
carry out a correct investment planning and tim-
ing. Enormous research efforts have already been 
devoted to the analysis and valuation of invest-
ment projects (De Reyck et al., 2008). Traditional 
financial theory proposes the Net Present Value 
(NPV) concept, using a cost of capital based on 
the inherent project risk. The NPV framework has 
been criticized because it is claimed that it can-
not cope with the potential flexibility that comes 
with investment projects, resulting in changes in 
the original cash flow pattern. Trigeorgis (1996) 
claims that traditional capital budgeting methods 
or discounted cash flow approaches cannot cope 
with the operation flexibility options and other 
strategic aspects of various projects but that the 
application of option techniques results in the 
correct solution. These critiques to the NPV 
methodology, see Brealey and Myers (2000), for 
valuing projects have led to the emergence of Real 
Options Analysis (ROA) for valuing managerial 
flexibility in projects. The contingent claims analy-
sis approach to ROA uses market-priced securities 
to construct a portfolio that replicates the payoffs 
of the project and determines the project value us-
ing a no-arbitrage argument. Moreover, it is well 
known that entrepreneurial firms, characterized 
by a lack of internal resources and other start-up 
handicaps can use external resources through inter-
firm networks to overcome these liabilities. In this 
context, inter-firm networks are considered an 
important model of organization development to 
enable an entrepreneurial firm to grow and survive. 
These strategic networks are composed of inter-
organizational ties that are enduring and include 
strategic alliances, joint ventures, long-term buyer-
supplier partnerships and a host of similar ties. 
When a rapport among firms includes elements 
of both cooperation and competition, i.e. these 
firms can compete and cooperate simultaneously, 
the relationship is called co-opetition. The rising 
question is: how ROA for valuing managerial 

flexibility, particularly considering investments in 
excess capacity, can be influenced by such kind 
of relationship among firms? In this chapter, we 
present an innovative approach to this issue: the 
added value for each firm, deriving from the co-
opetitive network, is evaluated by a fuzzy engine 
and utilised to ponder the results obtained by the 
traditional ROA to overcome the weaknesses of 
the traditional approach. Specifically, the chapter 
is focused on planning the capacity of:

• a set of plants that do not share informa-
tion and

• a set of plant that, differently, share 
information.

Specifically we highlight:

• the applications of the co-opetition para-
digm at an electronic network of plants 
willing to exchange their productive ca-
pacity and, in a defined period (periodic re-
view approach), able to evaluate the oppor-
tunity of expand their productive capacity;

• the estimation of the added value, for each 
firm, in re-modulating the ROA output 
considering the added value coming from 
the co-opetitive network (information 
sharing);

• the schematization and simulation of the 
proposed model by using a Multi Agent 
System.

The chapter is structured as follows. Section 
2 presents the literature overview. Section 3 
describes the research context. The benchmark 
model with a brief introduction to the real options 
approach is reported in Section 4. The proposed 
model is reported in Section 5, while the nego-
tiation mechanism is presented in Section 6. The 
developed simulation environment and results 
are respectively presented in sections 7 and 8. 
Finally, summary and conclusions are withdrawn 
in section 9.
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LITERATURE REVIEW

When dealing with investment decisions, the 
classical method is a simple NPV calculation 
of the different cash flows, in order to select the 
investment that has the highest positive NPV and 
discard the projects with negative NPV. In recent 
years, however, many researchers have shown 
that conventional economic analysis based on 
Discounted Cash Flow (DCF) is not able to cap-
ture the strategic impact of projects. In particular, 
DCF analysis ignores the “operating flexibility” 
that gives project managers options to revise 
decisions in response to changing exogenous 
economic conditions. The importance of such 
operating options becomes critical when the 
environment is highly volatile (extremely chang-
ing market demand and product prices) and the 
technology is flexible, thus allowing managerial 
intervention at a reasonable cost. Many methods 
have been explored to make optimal investment 
decisions, but none of them seems to be able to 
overcome the drawbacks of DCF analysis. Har-
rison and Van Mieghem (1999) have developed a 
theoretical model, solved with multi-dimensional 
newsvendor solution, to determine the optimal 
investment strategies for a manufacturing firm 
employing multiple resources to market several 
products to an uncertain demand. Jain and Nag 
(1996) propose a decision support tool that allows 
identifying successful new ventures, i.e. firms that 
are likely to provide superior long-run operating 
performance. The model integrates information 
from both quantitative and qualitative variables; 
it takes into account decision maker’s judgments 
through an AHP model generator, and provides 
access to statistical models and evaluation tools. 
Mohamed and McCowan (2001) address the issue 
of combining both monetary and non-monetary 
aspects of an investment option; they propose a 
method that utilizes interval math and possibility 
theory to handle the uncertainty associated with 
investment parameters. The model is able to rank 
various options, but it’s specifically developed 

for construction projects. It is now recognized by 
academics and entrepreneurs that DCF techniques 
often undervalue projects with real operating op-
tions and other strategic interactions (Miller and 
Park, 2002). Real Options approach, by explicitly 
capturing the flexibility and its effects on uncer-
tainty, provide for a consistent treatment of risk in 
the valuation of investment in production systems 
(Schwarz, 2001). An option is the right, but not the 
obligation, to take an action in the future. Options 
are valuable when there is uncertainty; this is one 
of the most important shifts in thinking from the 
real options approach: uncertainty creates oppor-
tunities (Amram and Kulatilaka, 1999). However, 
ROA is not a new decision making technique: 
DCF and ROA are two complementary tools. The 
result from the application of both DCF and ROA 
is the Extended Net Present Value (ENPV), which 
is given by the traditional NPV plus the value of 
all the options embedded in the project.

Excess Capacity

Dedicated Manufacturing Lines (DML), Flex-
ible Manufacturing Systems (FMS) and Re-
configurable Manufacturing Systems (RMS) 
are, nowadays, the three production paradigms 
representing three ways of thinking and imple-
menting production systems. Surely, FMS and 
RMS are the two main research responses to the 
previous pointed out flexibility requirements. They 
represent the widely accepted comebacks to the 
DML. In effect, excess capacity would seem to 
be undesirable, since it implies non-utilization 
of valuable productive resources (Smith, 1969). 
Kim (1999) proposed various policies to reduce 
excess capacity, which suggests that it is undesir-
able; in addition, excess capacity seems to invite 
government intervention (Baden-Fuller, 1990) 
and has been blamed for losses or lower profits in 
certain industries. However, in spite of its seem-
ingly negative aspects, persistent excess capac-
ity is widely observed. It would seem natural to 
analyze excess capacity in a real options setting, 
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since excess capacity is essentially a real option 
(to increase the output when market conditions 
improve). Thus, investing in excess capacity is 
equivalent to purchasing this implicit real option. 
The value of this option stems from the asymmetry 
in operational flexibility resulting from excess 
capacity, i.e. the firm has the ability to increase 
the output, but will only do so if market conditions 
improve. There have been a few explanations 
for excess capacity in the literature, e.g. demand 
growth (Aguerrevere, 2003) or rhythmic demand 
(with predictable highs and lows, where building 
peak-load capacity necessarily results in excess 
capacity during off-peak periods). However, in 
both these cases the firm expects to be operating 
at full capacity in the future and any excess ca-
pacity is expected to be short-lived; hence, they 
are unable to justify persistent excess capital. 
Another explanation for excess capacity relies on 
strategic/ game-theoretic considerations (to deter 
new entrants). Julka et al. (2007) discussed the 
state-of-the-art in multi-factor models for capac-
ity expansion of manufacturing plants within a 
corporation. One of the weakness is that the solu-
tion strategy adopted by most authors is almost 
exclusively mathematical. Kogan et al. (2009) 
have focused on the co-investment problem in a 
supply chain infrastructure. Several applications 
and examples were presented and open-loop, as 
well as feedback solutions were found for non-
cooperating firms, long- and short-run investment 
cooperation and non-simultaneous moves (Stack-
elberg) firms. Ahlert et al. (2009) investigated 
a production network that uses the capacity of 
network partners in order to fulfil network orders. 
The network partners are autonomous enterprises, 
therefore an iterative coordination algorithm 
has been designed aiming at balancing both the 
objectives of the network level as well as of the 
corporate level. The central problem of sizing the 
network capacity pool is solved iteratively by a 
decentralised planning process applying the top-
down/bottom-up principle. But how this approach, 
tested quite exclusively for a single firm, could 

modify its impact on managerial decision when 
many firms, facing with this issue, are involved 
in a co-opetitive network?

Co-Opetition

The management literature generally considers 
industries to be collections of firms bound together 
by rivalry, therefore questioning the value of re-
lationships with competitors (Dollinger, 1985). 
Firms can use competitors as subcontractors in 
times where the firm has temporarily reached 
full capacity. This cooperative behavior, espe-
cially with regional competitors, will increase the 
likelihood of the favor being returned. Overall, 
relationships with competitors can give access to 
temporarily needed resources or lead to the tempo-
rary pooling of resources, which should positively 
influence firm performance especially in the 
years after foundation, when sales tend to grow 
discontinuously (Lechner and Dowling, 2003). 
Entrepreneurial firms that view competitors not 
only as pure rivals but also as a potential resource 
should therefore be more successful. Building on 
the theoretical framework of co-opetition, accord-
ing to which both cooperation and competition 
are needed in inter-organizational relationships 
to allow firms to obtain reciprocal advantages 
(Bengtsson and Kock, 2000), it could be useful 
to understand whether (and how) co-opetition 
could be applied in a decision making problem 
using ROA. Christie and Wu (2002) proposed an 
approach to manage the capacity planning in a 
multi-fabs environment. Each fab is modeled as 
a single resource with variable production level. 
Several discrete scenarios are considered in a 
multi-period, multistage and stochastic program-
ming model. The goal is to minimize the expected 
mismatch between planned and actual capacity 
allocation as defined in the scenarios. Chen et 
al. (2008) proposed a model that enables a col-
laborative integration for resource and demand 
sharing. A negotiation algorithm is utilized to 
sharing capacity from factory that sells to factory 
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that requires extra capacity. Each factory applies 
an economic resource planning model based on 
Genetic Algorithm to improve its local objectives. 
The model is tested only between two factories: one 
seller and one buyer. Renna and Argoneto (2008) 
proposed a distributed approach, for a network of 
independent enterprises, to facilitate the resources 
sharing process. The distributed architecture is 
based on Multi Agent Architecture paradigm and 
the coordination mechanism is performed by a 
negotiation protocol. In this work just two per-
formance indices are considered: the total profit 
of the network and the total unsatisfied capacity. 
Anyway, co-opetition concepts from procure-
ment, marketing and R&D can be also adapted 
to this area and, therefore, open many spaces for 
research. To use a sentence from Brandenburger 
and Nalebuff (1996), in any case, the goal of a firm 
is to do well for its self-interest, but, especially 
in a globalized context, to pursue an objective, 
such as new product development, procurement 
cost reduction as well as new market entrance, an 
ally might be necessary. Specifically, in our work 
co-opetition is meant to be utilized in resources 
procurement among competing firms. That is not 
the only form of co-opetition in procurement, but 
it is one of the most common in reality for SME.

Co-Opetiton: Real Cases

In the 90s GM and Ford, the major American car-
makers, established an e-procurement platform for 
procuring basic components. The joint venture 
between Toyota and PSA Citroen-Peugeot, estab-
lished in 2002, is another very relevant example 
of co-opetition in automobile industry. The two 
companies agreed in building a common plant in 
Czech Republic and using common components 
for the production of three new separately-owned 
city cars. In Italy, in 2002, the two biggest mo-
torcycle companies, Aprilia and Piaggio made an 
alliance for joint-procurement, though competing 
in the final market. In ICT industry, the Simian 
joint-venture is among the main mobile wireless 
telephones manufacturers in the world, Nokia, Er-

icsson, Panasonic, Samsung, Siemens AG, and the 
leading company in the mobile digital computing, 
Psion, which, however, has sold its own shares in 
2004. The phenomenon of co-opetition in R&D 
activities and co-promotion is also very common 
in pharmaceutical and biotechnology industry. So 
far the above examples from the industry world 
have concerned worldwide firms’ strategies of 
co-opetition. To conclude this overview, which 
makes clearly understandable how relevant issue 
of co-opetition is and provides justifications to our 
work, we cannot miss to mention some examples 
of co-opetition in medium and small businesses. 
If, most of the time, for big worldwide firms 
co-opetition strategy is a way to get competitive 
advantages and succeed in the global arena, for 
medium and small firms it is a mean to survive to 
competition from big players by maintaining their 
independency. All around the world, industrial 
districts and both local and national consortia 
can be considered examples of co-opetition of 
medium and small businesses in several industries, 
such textile and clothing, agri-food, hardware 
and retailing. Also, in the automotive industry, 
web-based technology opens up opportunity of 
cooperation among small and medium firms. 
For instance, Supply On is a successful provider 
of supply and engineering services founded by 
suppliers competing in the same market (Meder, 
2005). Finally, an interesting empirical research 
from Quintana-Garcia and Benavides-Velasco 
(2004) provides evidence of co-opetition in new 
product development among European small and 
medium firms in biotechnology industry. Through 
cooperation in one or more activities, small firms 
can get same advantages as big companies, how-
ever, because of proximity, they inevitably keep 
competing each others in other activities.

RESEARCH CONTEXT

The research contest consists of a set of inde-
pendent plants that collaborate in a co-opetitive 
network. Each plant works in a market where the 
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customers require products submitting an order 
and knows the following data:

pricep
k : the market price of the kth product, for 
the generic pth plant;

cos t p
k : the production cost of the kth product, for 
the generic pth plant. It is a function of 
productive and managerial costs. It also takes 
into account the efficiency of the plant and 
its relative geographical dispersion. It is 
obtained with by using a mark-up strategy;

Cp
k : the productive capacity of the kth product, 

for the generic pth plant;
Rp
k : the quantity of the kth product required by 

the market, for the generic pth plant.

Each plant at the same periodic fixed time Tp 
(e.g. twelve months), uses the moving average of 
the actual demand of the last Tp in order to obtain 
a forecast for the next period. Then, the plants 
apply the proposed approaches (explained in the 
following two paragraphs) to decide if and how 
much excess capacity it is convenient to acquire.

NO INFORMATION 
SHARING MODEL (NIS)

Traditional NPV, which was initially developed 
to value bonds or stocks, implicitly assumes 
that corporations hold a collection of real assets 
passively. The value of active management, i.e. 
the value of flexibility, is better captured using 
decision tree analysis. Here flexibility is modeled 
through decision nodes allowing future manage-
rial decisions to be made after some uncertainty 
has been resolved and more information has been 
obtained, before proceeding to the next stage. 
The presence of flexibility, however, changes the 
payoff structure and therefore the risk character-
istics of an actively managed asset in a way that 
invalidates the use of a constant discount rate.

Binomial Trees and Real Options

The binomial tree in Figure 1 represents a one-
period project resulting in cash flows c=(c1;c2), 
with probabilities p and 1-p. An investment I is 
required at the start of the project, r denotes the 
risk-free rate and the project is discounted using 
the project’s specific cost of capital j, obtained 
through the market valuation of a security or 
project with exactly the same payoff pattern. The 
present value of the project is:

P c E c
j

p c p c
j

( )
( ) ( )

=
+
=
⋅ + − ⋅

+1
1

1
1 2  (1)

where E(c) denotes the expected value of the 
project’s cash flows. Subtracting the investment 
costs gives the project’s net present value:

NPV c I P c( ) ( )= − +  (2)

In the literature, various types of real options 
are defined: abandon, expand, contract, defer, 
switch, as well as compound options and rainbow 
options relying on multiple underlying projects. 
These real options result in different project cash 
flows, denoted by o=(o1; o2). For instance, a defer-
ral option, where the firm has a license granting 
it the exclusive right to defer undertaking the 

Figure 1. Binomial tree with the cash flow of a 
project
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project for one period, will change the project’s 
cash flows to:

o c I ss s= =max( - ', ), ,0 1 2  (3)

with I’ the investment cost next year. An expand 
option will change the project cash flows to:

o f c e ss s= ⋅ =max( - , ), ,0 1 2  (4)

with f the expand factor and e the cost of the ex-
pansion or the option’s exercise price. Therefore, 
the risk has changed, invalidating the use of the 
discount rate j to compute the NPV of the option’s 
cash flows.

The Benchmark Model

The scenario is based on a production system, for 
each considered plant, able to manufacture k dif-
ferent products. The initial capacity Cp

k
( )0 is based 

on the initial investment I0, therefore we are able 
to produce Cp

k
( )0  items per year of a single prod-

uct and to sell them with a certain contribution 
margin (we assume that the contribution margin 
does not depend on the time). The approach is 
completely based on the traditional ROA: the plant 
computes the moving average demand on the last 
Tp, obtaining q

Tp

k . At this point, the forecast is 

done considering the market uncertainty by the 
parameter u and d (i.e. it can either increase or 
decrease):
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(5)

The excess capacity to acquire (ECk) for con-
sidered product k will be

EC
C if

k
u k

p
k k u k

d k
Tp Tp Tp

Tp

=
− =

+ + +

+

max( ; ),

max( ;

,
( )

,

,

0

0
1 1 1

1

0θ θ θ

θ −− =






 + +

C ifp
k k d k

Tp Tp( )
,),0 1 1

θ θ
 

(6)

The related investments I are computed by 
using the following function:

I ECk= ⋅α  (7)

being α the unitary cost of capacity (no scale 
economy is considered).

The related productive cost is given by:

C EC t ECk
p
k k( ) cos= ⋅  (8)

and, considering the market price ( pricep
k ) inde-

pendent in respect of the produced quantity of kth 
product (perfect market), the gross profit (p ) will 
be given by:

πk p
k

p
k kprice t EC= − ⋅( cos ) .   (9)

The NPV is computed as:

NPV
j

I= −
π ,   (10)

being j
r a

a

W

=
+=

∑ 1
11 ( )

  (11)

r is the risk-less interest rate, by which each 
plant discount the future return and W is the length 
of the project (in years). To evaluate the results we 
used the backward induction model proposed by 
Cox, Ross and Rubinstein for the financial option:
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NPV t
NPV t u p NPV t d p

r

( )

( , ) ( , ) ( )

=
+ ⋅ + + ⋅ −

+
1 1 1

1 , be-
ing: (12) NPV t u( , )+1 the value of the optimal 

strategy in case the market demand will in-
crease and NPV t d( , )+1  the value of the 

optimal strategy in case the market demand will 
decrease.

In formula (12) we find the neutral-risk prob-
ability p and 1-p: in this research is considered 
a neutral risk strategy (i.e. p is fixed to 0.5). The 
effective value of ECk* the generic plant will buy is 
computed by the reverse formula obtained by (12).

INFORMATION SHARING MODEL (IS)

This case is concerning the situation in which each 
plant decides how much to invest in excess capacity 
considering the fact that it can interact with other 
plants of the network to exchange some productive 
capacity (see the Negotiation paragraph for more 
details). What is changing, in confront to what 
reported in the previous paragraph, is the “critical” 
evaluation of the EC* value. Each plant, by using 
a fuzzy engine, computes a reductive factor (RF) 
that takes into account the added value coming 
from the network: the possibility to exchange 
with other plants the productive capacity. We use 
the fuzzy approach because many aspects of this 
interaction cannot be assessed in a quantitative 
form, but rather in a qualitative one (See Appendix 
for more information on Fuzzy Sets.). Whereas 
characteristics of the fuzziness and vagueness are 
inherent in various decision-making problems, 
a proper decision-making approach should be 
capable of dealing with vagueness or ambiguity 
(Yager, 1995). The fuzzy engine developed in 
this chapter is essentially represented in the fol-
lowing Figure 2.

The considered inputs, for each considered 
plant, are:

• ε: the percentage of unutilized capacity of 
the plant pth; this value is computed as av-
erage on the last Tp. It can assume values 
comprised between 0 and 1. The increas-
ing of ε leads to the reduction of EC* by 
increasing the RF;

• γ = −∑ ( ) /AC SC Ck k k

k

, being AC the 

acquired and SC the sold capacity for the 
generic product k on the last Tp. Its value is 
comprised between -1 and 1; a value big-
ger than zero means that the plant satisfies 
its market requests by using a certain 
amount of capacity negotiated with other 
plants. In this case RF increases its value 
because it is convenient for the plant in-
vesting in excess capacity. Differently, if 
the value is lower than zero, the plant has 
satisfied the past request of the market by 
its own capacity, therefore could be not 
profitable to invest in excess capacity: RF 
assume a lower value in order to reduce the 
EC*;

• the last parameter, δ, is computed consider-
ing the number the relations with other 
plants of the network. For example, con-
sidering 4 different plants (p1, p2, p3 and 
p4), the generic plant p2 computes how 
many links (transactions) it has activated 
in the last Tp with each other plant, obtain-

ing the vector 
φ φ φ φ φ

φ φ φ
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Supposing that p1 and p3 have already ac-
tivated the process to evaluate if to invest 
or not in excess capacity (this information 
is available to other plants of the network), 

Figure 2. Fuzzy engine
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δ is computed as: δ =
Nlink
Nlinktot

P

P

* 2

2

, being: 

Nlink P P
P

P
P* 2 1

2
3
2= +φ φ , a value that takes 

into account the amount of links with 
plants that could invest in excess capacity 
and NlinktotP P

P
P
P

P
P

2 1
2

3
2

4
2= + +φ φ φ  the to-

tal amount of activated links by the pth 
plant. It can assume values comprised be-
tween 0 and 1: a high value means that in 
the past the considered plant reached sev-
eral agreements with the plants that have 
decided to acquire excess capacity, there-
fore RF assumes a lower value. Differently, 
a lower value of δ means that the plant had 
difficulties to reach agreements with other 
plants in the past, therefore RF assumes a 
high value because it could be convenient 
to be more independent in the future.

Their membership functions are respectively 
showed in Figure 3, Figure 4 and Figure 5.

The rules of the engine are the following:

1.  If ε is Low then RF is High
2.  If ε is High then RF is Low

3.  If γ is Low then RF is Low
4.  If γ is High then RF is High
5.  If δ is Low then RF is High
6.  If δ is High then RF is Low

The fuzzy engine evaluates the above rules 
by a max-min inferencing method: the RF value 
is computed by the centroid defuzzification 
technique and the membership function of RF is 
showed in Figure 6.

Specifically, the IS decision making process 
is performed as follows:

1.  a ranking of the plants is made consider-
ing the capacity they need: it is realized in 
decreasing order, considering the difference 
between the forecasted demand and the 
capacity they hold;

2.  the first plant of the list is selected. Its EC 
value is computed as explained in the real 
option approach explained in the previous 
paragraph;

3.  the reduction value RF it is computed by the 
fuzzy engine, as explained in the following. 
If the considered plant is the first one of 
the list, the fuzzy engine works with only 

Figure 3. Membership function for the parameter ε Figure 4. Membership function for the parameter γ

Figure 5. Membership function for the parameter δ Figure 6. Membership function for RF
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two inputs (ε and γ), because the input δ is 
evaluated on the plants that already made 
the capacity decision investment;

4.  the plant computes the capacity investment 
EC* ;

5.  the algorithm keeps running until when all 
the plants have made their decision about 
whether and how much invest in excess 
capacity.

NEGOTIATION

After the decision whether to invest or not in 
excess capacity is made by using one of the pre-
vious explained methods, each plant can negoti-
ate with other plants a certain amount of capac-
ity to supply overloaded periods. This is allowed 
in the period of time comprised between one Tp 
to another. The plants are classified in over-
loadedOG i N= { }1, ..., , ..., and underloaded 

UG j M= { }1, ..., , ..., . Afterwards, each of them 
belonging to OG computes the capacity it needs 
to produce a given product k (i.e. RCi

k ) and com-
pete with other plants to obtain it. At the same 
time the plants belonging to the UG set evaluate 
the capacity they can offer for the same product, 
(i.e. OCj

k ). The only variable all agents take into 
account in this phase is the price to pay to obtain 
/make over the capacity. Therefore, the plants 
compete among themselves, but at the same time 
collaborate to satisfy the customer requests. The 
agent architecture in here adopted is the following: 
each plant belonging to OG is represented by a 
Capacity Offering Agent (COA) who is in charge 
for negotiating the capacity with the Requiring 
Capacity Agent (RCA) representing the plants 
that require it, belonging to the UG set. Finally, 
there is a Mediator Agent (MA) who is in charge 
for allowing communication and coordination 
among COAs and RCAs. The coordination is 
obtained by a negotiation mechanism. The UML 

activity diagram of Figure 7 shows the agents’ 
interaction workflow. As the reader can notice 
three swim lines, corresponding to the above 
described agents, have been located in the diagram.

Specifically, for the COA the following ac-
tivities can be highlighted:

• Wait: the agent is in its initial state of wait-
ing for a proposal (from RCA);

Evaluates proposal: the COA evaluates the 
proposal of the RCA in terms of required capac-
ity and offered price. At the first round the COA 
communicates the amount of capacity it is will-
ing to offer (the minimum value between the one 
requested by the RCA and its own unused capac-
ity). Subsequently, the COA communicates to the 
RCA if it accepts or refuses the proposed price to 
exchange the promise amount of capacity. Then 
the COA evaluates the proposal of the RCA by a 
threshold function given by (13):
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being M RC OCij
i j

k k k= min( , )        (14)

Expression (13) is a threshold level starting 
from the market price of the good. During the 
negotiation time (i.e. the value of the round r1 
increases) the threshold level is reduced: it stops 
when the related profit is null. At this point, the 
following expression is checked:

val vali
k r

j
k r, ,1 1³  (15)

If (15) is verified, the jth plant supplies the ith 
plant with the required capacity: they reach an 
agreement and each ones can update their data.
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• Updates threshold level: if the COA re-
fuses the price submitted by the RCA, it 
modifies the threshold level: the value of r1 
in expression (13) is increased. In case the 
algorithm reaches the last round, the COA 
simply quits the negotiation.

• Updates capacity: if the negotiation 
reaches an agreement, the COA updates the 
capacity it owns. In case no more capacity 
resources are available it quits, otherwise it 
goes in its Wait state.

The RCA performs the following activities:
Proposal elaboration: the RCA elaborates a 

proposal, in terms of price and amount of capac-
ity to acquire, and transmits this information to 

the MA. The submitted price is obtained by the 
following expression:
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Expression (16) computed by the RCA starts 
with a value equal to the production costs: in 
this case the profit is the same obtainable when 
the product is produced by itself. This value is 
increased until its market price: in this case the 
obtainable profit is null.

Figure 7. UML Activity Diagram
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• Wait: the RCA waits for counter-proposal 
by the COAs.

• Counter-proposal computation: if the 
COA refuses the proposal and the negotia-
tion is still running, the RCA computes a 
new counter-proposal (the value of r1 in 
expression (16) is increased). Otherwise 
(i.e. we consider the last round of negotia-
tion), the process ends with no agreement.

• Updates capacity: if the negotiation 
reaches an agreement, the RCA updates 
their data; if the acquired capacity is ex-
actly the required one it quits, otherwise it 
computes a new proposal for the residual 
capacity it needs.

The MA performs the coordination activities 
between COA and RCA. In particular it:

• Wait: the MA is in its initial state of wait-
ing for a proposal (from the RCA).

• Computes raking list: the MA computes 
a ranking list among all the plants that re-
quired capacity. The way it does it is de-
pending on several variables; in this re-
search the ranking is done favoring first 
plants with high need of capacity, allow-
ing them to better satisfy the customers’ 
requests.

• Transmits proposal: the MA transmits the 
proposal computed by RCA, at the ranking 
list of COAs.
•	 Wait: the MA is in state of waiting for 

the counter-proposal by all the COAs.
•	 Transmits counter-proposal: the MA 

transmits the counter-proposal of the 
COA to the RCA.

After having uploaded all the necessary data, 
for the generic ith plant that does not reach the 
entire capacity it needs is again inserted in the 
ranking list. At this point the negotiation starts 
again. To avoid a deadlock, the agent that does 
not reach any agreement at the end of the negotia-
tion process is removed by the ranking list. The 
decision of capacity investment is done by using 
a periodic review methodology.

Figure 8 shows the sequence of the activities 
among the models NIS, IS and negotiation.

SIMULATION ENVIRONMENT

We had developed a distributed simulation en-
vironment based on the proposed Multi Agent 
Architecture to simulate the co-opetitive network 
represented in Figure 9.

Figure 8. Sequence of the activities
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It consists of a simulation environment, de-
veloped by using Java development kit package, 
able to test the functionality of the proposed ap-
proaches and to understand the related advan-
tages and/or limits. The modeling formalism in 
here adopted is a collection of independent agents 
interacting via messages. This formalism is quite 
suitable for MAS development. In particular, each 
object represents an agent and the system evolves 
through a message sending engine managed by a 
discrete event scheduler. Specifically, the follow-
ing objects have been developed: the COA, the 
RCA, the MA – deeply described in the previous 
section-, the Scheduler, the Model, option, fuzzy 
engine and co-option agents. The Scheduler agent 
is in charge with the system evolution by manag-
ing the discrete events of the simulation engine. 
Differently, Model agent is in charge with the 
agents’ interaction. The option agent is activated 
when the generic plant has to decide whether and, 

how much capacity to acquire; the co-option agent 
is activated when the generic plant has to decide 
whether and the amount of capacity to acquire, 
but in this case the decision is influenced by in-
formation sharing among plants. To do this the 
plant agent uses the fuzzy engine (described in 
Information sharing model Section). The simula-
tive network supply 48 orders divided in four 
macro-periods; at the end of each macro-period 
the plants decide the amount of capacity to acquire. 
Each macro-period (Tp) consists of 12 orders. In 
order to reduce the computational time, just one 
product typology has been considered (k=1). In 
order to highlight the difference between the 
capacity investment decisions between No shar-
ing information and Sharing information, for each 
plant is generated a fixed stream of demand over 
the 48 orders. The demand is generated by using 
a uniform distribution different for each plant and 
macro-period: Table 1 reports the distribution 

Figure 9. The co-opetitive network

Table 1. Distribution ranges 

Macro period Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6

1 [80-100] [100-120] [90-100] [100-120] [80-100] [70-120]

2 [80-120] [80-120] [100-110] [120-140] [80-100] [70-120]

3 [60-120] [100-140] [110-120] [80-120] [80-100] [70-120]

4 [60-140] [100-160] [120-130] [60-100] [80-100] [70-120]
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ranges. These differences emulate all the possible 
behaviors of the customer’s demand: for example 
the market of plant 1 is very unpredictable because 
of the large ranges, the market demand of plant 

4 before increases (for two macro-periods) then 
decreases (for the last two periods) and so on.

The values obtained by the distributions (see 
Table 1) generate the input order streaming re-
ported in Table 2.

Table 2. Input orders streaming 

Order no. Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6

1 88 105 97 101 87 75

2 92 118 99 100 93 78

3 98 102 97 104 89 107

4 87 101 90 104 94 101

5 92 114 95 118 93 90

6 84 118 93 109 82 76

7 96 111 91 115 95 115

8 95 109 97 112 81 84

9 81 102 93 105 87 80

10 93 109 96 105 98 93

11 99 111 96 107 82 88

12 80 115 97 112 80 108

13 89 90 103 120 93 99

14 116 95 108 124 80 114

15 114 119 109 122 99 76

16 118 95 101 122 97 116

17 107 93 104 127 80 97

18 89 98 104 131 99 95

19 98 97 108 127 89 104

20 111 97 108 136 91 108

21 109 100 101 133 97 103

22 111 99 104 123 93 72

23 101 117 106 126 88 105

24 91 97 104 131 93 110

25 105 120 110 83 84 118

26 105 109 115 84 99 103

27 95 111 119 90 92 78

28 99 121 119 98 90 94

29 64 117 118 80 86 100

30 87 129 119 93 87 81

31 99 133 116 81 98 81

32 97 121 114 92 92 95

continued on following page
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The focus of the simulation is to evaluate the 
differences among the two proposed approaches, 
therefore the following parameters are constant 
and equal for all the plants:

• initial capacity of the plants, Cp
k , at the be-

ginning of the simulation;
• the unitary price of the market, pricep

k ;

• the unitary capacity costs cos t p
k , as a 

mark-up of 20% of pricep
k ;

• the unitary costs to acquire excess capac-
ity, α;

• the parameters u and d;
• the parameter j to compute NPV (see ex-

pression 10).

The values of these parameters are reported 
in the following Table 3.

To compare the proposed strategies, the fol-
lowing performance measures have been consid-
ered:

• the total profit reached by the whole net-
work; it has been computed as the sum of 
the single profit generated by all the plants 
belonging to the network;

• the total unsatisfied demand: it is the dif-
ference existing between the quantity of 
products required by the market and the 

Order no. Plant 1 Plant 2 Plant 3 Plant 4 Plant 5 Plant 6

33 88 133 111 94 96 82

34 70 132 118 97 92 98

35 96 125 115 97 86 93

36 90 130 113 97 85 88

37 126 120 123 94 95 114

38 129 135 121 89 89 117

39 61 110 122 67 89 94

40 89 137 127 93 93 96

41 104 126 121 68 80 109

42 139 120 120 85 82 108

43 119 151 125 77 94 89

44 130 153 128 76 94 111

45 115 129 128 93 87 84

46 80 125 121 61 93 110

47 95 153 120 74 88 108

48 82 141 121 85 99 93

Table 2. continued

Table 3. Plants characteristics 

Parameter Values

Cp
k

100

pricep
k

8

cos t p
k

6.4

α 8

u 0.8

d 1.3

j 0.2
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one the network has been able to satisfy. 
It could be considered as a customer’s 
performance;

• the total unutilized capacity: it is the dif-
ference existing between the whole capac-
ity of the network and the total unallocated 
capacity;

• the number of activated links among plants. 
This performance is an index explaining 
how much could be complicated the logis-
tic management of the network;

• the transactions value. It is the quantity of 
money exchanged among plants, obtained 
as output of the negotiation approach.

• Final capacity of the plants. It is the ca-
pacity each plant holds at the end of the 
simulation.

• Total acquired capacity. It is the amount of 
capacity acquired by the network.

• Investments costs; It is the cost to acquire 
excess capacity by the network.

RESULTS

Table 4 reports the performance measures obtained 
by the simulations. The last column reports the 
percentage difference between the two proposed 
approaches.

The above results highlight the following 
considerations:

• The total profit of the network is the same 
for the two approaches, moreover the dif-
ferences among each plant, from one ap-
proach to another, is very low.

• The NIS approach leads to reduce the un-
satisfied demand of the customers. This 

Table 4. Simulation results 

Performance IS NIS NIS vs IS (%)

Total profit 45,424 45,464 0.09

Unsatisfied demand 25 0 -100.00

Unallocated capacity 2,726 4,465 63.79

Plant 1 (profit) 7,502 7,524 0.30

Plant 2 (profit) 8,944 8,949 0.05

Plant 3 (profit) 8,410 8424 0.17

Plant 4 (profit) 7,760 7,792 0.25

Plant 5 (profit) 6,930 6,928 -0.02

Plant 6 (profit) 5,878 5,859 -0.33

Number of links 74 39 -47.30

Transaction of links 9,387 4,894 -47.86

Final capacity (plant 1) 112 128 14.29

Final capacity (plant 2) 133 156 17.29

Final capacity (plant 3) 137 147 7.30

Final capacity (plant 4) 132 140 6.06

Final capacity (plant 5) 100 115 15.00

Final capacity (plant 6) 100 102 2.00

Total acquired capacity 114 188 64.91

Investments costs 912 1504 64.91
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reduction is considerable, but the network 
doesn’t gain a real advantage in term of 
profit. This because the reduction regards 
the elevated peak of demand that the plants 
obtain by negotiating with other plants: the 
capacity obtained in this way has a low 
profit level.

• The above consideration is also confirmed 
by the number of links activated among the 
plants. In case of NIS, the number of acti-
vated links is reduced (47.30%): the col-
laboration among plants is reduced. This 
is true not only for the number of links, 
but also for the amount of transactions 
exchanged among the plants (reduced of 
47.86%).

• The final capacity of the plants shows that 
the increment in capacity investments (in 
case of NIS) is prevalent for the plants that 
have a low average demand. In particular, 
this can be noticed for plant 5 that operates 
in a market with a demand always minor 
than the plant capacity.

• The NIS approach leads to an increment of 
amount of excess capacity of 64.91% that 
strongly reduces the real profit gained by 
the network. Moreover, this strong incre-
ment of investment increases the risk of 
the plant when a drastic reduction of the 
demand occurs.

SUMMARY AND CONCLUSIONS

The chapter deals with the capacity investment 
decision for plants that operate in a co-opetitive 
environment.

The methodology proposed allows to support 
a network of enterprises for the capacity invest-
ment decisions. The research suggests how to 
use the information of the network to decide the 
amount of capacity to acquire. The main benefits 
of the proposed methodology are the reduction of 

investment in capacity keeping the same level of 
profit of the network.

In particular, two approaches have been pro-
posed:

• No information sharing: each plant make 
the decision whether invest or not in ex-
cess capacity with any information coming 
from the network;

• Information sharing: each plant use the in-
formation coming from the network, pro-
cessed by a fuzzy engine, in order to decide 
whether invest or not.

A ROA is utilized for the proposed approaches.
The network is supported by Multi Agent ar-

chitecture and the coordination among the plants 
is performed by a negotiation mechanism. Then, a 
simulation environment has been developed using 
a JAVA package in order to evaluate the perfor-
mance of the proposed approaches. The results 
of this research can be summarized as follow:

• the simulation environment allows to in-
vestigate the capacity investment decision 
in a co-opetitive environment, in particular 
how the capacity decision investment in-
fluence the network over its life cycle;

• the IS approach in here proposed leads to 
good performances from the network point 
of view: investments in capacity are minor 
if compared with the NIS case, by keeping 
the same amount of profit. Moreover, the 
IS approach allows to keep an high level of 
collaboration among the plants;

• the IS lead to a disadvantage for the cus-
tomers: there is a reduction of the satisfied 
demand in confront of the NIS case.

Further research will deeply investigate the 
following aspects:

• the proposed approaches will be tested in 
a different environmental condition. The 
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performance will be evaluated when the 
customer behavior change: from steady to 
very dynamic demand;

• the number of plants that can cooperate in 
the network. The models will be investi-
gated when the number of plants change 
during the network lifetime and their char-
acteristics are all different from each other;

• the information processed by the fuzzy 
engine. It will be evaluated if other infor-
mation can be used as input for the fuzzy 
engine and how these information can al-
low to improve the performance of both 
the plant and network.
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APPENDIX

FUZZY SETS

Fuzzy set theory is a very feasible method to handle the imprecise and uncertain information in a real 
world. Especially, it is more suitable for subjective judgment and qualitative assessment in the evalua-
tion processes of decision making than other classical evaluation methods applying crisp values (Lin 
and Chen 2004; Wang and Chuu, 2004). Basic definitions and concepts of fuzzy sets, as fuzzy numbers 
and linguistic variables, are briefly reported. A positive triangular fuzzy number (PTFN) A  can be de-
noted as A a b c = ( , , ) , where a b c£ £  and a > 0, which are illustrated in Figure 2. The membership 
function, m

A
x



( ) , is defined as (Zimmermann, 1991):

µ
A
x

x a b a a x b
x c b c b x c
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 (17)

where x takes its values on the real line. A larger m
A
x



( )means a stronger degree of belongingness for x 
in X. Triangular fuzzy numbers appear as useful means of quantifying the uncertainty in decision mak-
ing due to their intuitive appeal and computationally efficient representation (Karsak and Tolga, 2001; 
Wang, 2009). Another important concept is the one regarding the linguistic variables. A linguistic vari-
able is a variable whose values are expressed in linguistic terms. In other words, variable whose values 
are not numbers but words or sentences in a nature or artificial language. For example, ‘‘important” is 
a linguistic term whose values are very low, low, medium, high, very high, etc. Linguistic values can 
also be represented by fuzzy numbers. It is suitable to represent the degree of subjective judgment in 
qualitative aspect than in crisp value. The concept of linguistic variable is very useful in dealing with 
situations which are too complex or too ill-defined to be reasonably described in conventional quantita-
tive expressions. Many aggregation operators have been developed presently to aggregate information. 
The fuzzy linguistic approach represents qualitative aspects as linguistic values by means of linguistic 
variables (Herrera-Viedma and Peis, 2003; Zadeh,1975).

In the composition sub-process, all of the fuzzy subsets assigned to each output variable are combined 
together to form a single fuzzy subset for each output variable.

Let R be a fuzzy relation in X × Y, and S be a fuzzy relation in Y × Z. The Max-Min composition of 
R (first introduced by Zadeh, 1985) and S, R°S, is a fuzzy relation in X × Z such that

Figure 10. Triangular membership function
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R°S ↔ µRoS(x,z) = ∨ {µR(x,y) ∧ µS(y,z)} = Max. {Min. {µR(x,y), µS(y,z)}}/(x,z)
The defuzzification can be performed by several heuristic methods; one of the most used method 

is to take the center gravity of the fuzzy set. Figure 11 shows an example of max-min inferencing and 
centroid defuzzification for a system with input variables “x” and”y”, and an output variable “n”.

Figure 11. Inferencing example
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INTRODUCTION

The “problem” of supply chain network design is 
very broad and means different things to differ-
ent enterprises. It generally refers to a strategic 
activity that will take one or more of the following 
decisions (Shapiro, 1999):

• Where to locate new facilities (be they pro-
duction, storage, logistics, etc.).

• Significant changes to existing facilities, 
e.g. expansion, contraction or closure.

• Sourcing decisions – what suppliers and 
supply base to use for each facility

• Allocation decisions – e.g. what products 
should be produced at each production fa-

ABSTRACT

This chapter considers a detailed mathematical formulation for the problem of designing supply chain 
networks comprising multiproduct production facilities with shared production resources, warehouses, 
distribution centers and customer zones and operating under time varying demand uncertainty. 
Uncertainty is captured in terms of a number of likely scenarios possible to materialize during the life 
time of the network. The problem is formulated as a mixed-integer linear programming problem and 
solved to global optimality using standard branch-and-bound techniques. A case study concerned with 
the establishment of Europe-wide supply chain is used to illustrate the applicability and efficiency of 
the proposed approach. The results obtained provide a good indication of the value of having a model 
that takes into account the complex interactions that exist in such networks and the effect of inventory 
levels to the design and operation.
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cility; which markets should be served by 
which warehouses, etc.

These decisions aim in some way to increase 
shareholder value. This means that models are 
employed to try to exploit potential trade-offs. 
These may include (Shapiro, 2003):

i.  Differences in regional production costs.
ii.  Distribution costs of raw materials, inter-

mediates and products.
iii.  Differences in regional taxation and duty 

structures.
iv.  Exchange rate variations.
v.  Manufacturing complexity and efficiency 

(related to the number of different products 
being produced at any one site).

vi.  Network complexity (related to the number 
of different possible pathways from raw 
materials to ultimate consumers).

Most companies do not aim to quantify the 
latter two explicitly, but rather employ policies 
(e.g. single-sourcing of customer zones; exclusive 
product-plant allocation) to simplify operation to 
the desired degree.

A relatively rare instance of this class of prob-
lems is the “greenfield” design of a new supply 
chain where no significant assets exist at the time 
of the analysis (e.g. design of a future hydrogen 
infrastructure). A more common instance occurs 
when part of the infrastructure already exists, 
and a retrofit activity is being undertaken, where 
products may be re-allocated between sites, 
manufacturing resources may be restructured, 
the logistics network may be restructured, etc.

Models for the design and operation of supply 
chain networks may be steady-state or dynamic 
and may be deterministic or deal with uncertain-
ties (particularly in product demands). Research 
in this field started very early on, with location-
allocation problems forming part of the early set 
of “classical” operations research problems, see 
e.g. Geoffrion and Graves (1974) who consider the 

problem of distribution system layout and sizing 
and DC-customer allocation. It was recognised 
early on that systematic, optimisation-based ap-
proaches should be used, and that “common-sense” 
heuristics might lead to poor solutions (Geoffrion 
and van Roy, 1979). These early models tended 
to focus on the logistics aspects. Clearly, much 
more benefit could be achieved by simultane-
ously considering the production aspects and 
other issues related to integration of inventory, 
transportation, supplier selection, and investment 
budgeting decisions (Melo, Nickel and Saldanha 
da Gama, 2006).

Almost in the begging of 90’s the concept of 
supply chain began to emerge as one of the most 
popular field of research and study until today. 
Chopra and Meindl (2004) describe the supply 
chain as a dynamic network of collaboration that 
consists of many parties such as suppliers, manu-
facturers, transporters, warehouses, distribution 
centers, retailers, customers etc. and its objective 
is to maximize the overall value generated for all 
the members of supply chain.

Since companies recognized the potential 
competitive advantages, gained through a holistic 
management of their supply chain, the academic 
community has been developing several models 
that describe their design and operation. Flexibil-
ity, supplier selection and coordination of supply 
chain members are the most popular current issues 
in the field.

The role of flexibility in supply design and 
modeling has been discussed in a special issue 
edited by Chandra and Crabis (2009). In this issue, 
flexibility was mainly assessed in terms of product 
flexibility aspects (Francas and Minner, 2009; 
Hallgren and Olhager, 2009; Hasuike and Ishii, 
2009). Supplier selection in the supply chain con-
text was discussed in the work of Cakravastia, Toha 
and Nakamura (2002) and Xu and Nozick (2009). 
Cakravastia et al. (2002) developed a model for 
the selection of suppliers during the design of a 
supply chain. Prices and lead times measured the 
performance of customers’ dissatisfaction whereas 
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the structure of the network was influenced from 
the special characteristics of product and orders 
size. In the same direction, Xu and Nozick (2009) 
presented a two-stage stochastic model for sup-
plier selection that incorporated hedging against 
disruptions such as loss of production capability 
at supplier sites. Finally, there is a substantial lit-
erature contribution on coordination issues among 
suppliers and others members of the supply chain 
network (Petersen, Ragatz and Monczka, 2005). 
Competitive advantage requires the integration 
of all procedures and stages, even tactics with 
common shared information. It was concluded 
that the optimal function of a network depends on 
levels of trust developed among members and the 
quality of common shared information.

Design and Planning of 
Supply Chain Networks under 
Demand Uncertainty

Manufacturing industry companies operate a 
wide variety of assets, with widely varying ages 
and expected lifetimes. At any given time, the 
decisions relating to investment in infrastructure 
include how best to configure assets at existing 
sites and whether to establish new sites. These 
are tied in with production and inventory plan-
ning. The main issue associated with investment 
planning is that capacity-related decisions have 
impacts far beyond the time period over which 
confidence in data exists. Hence, decisions must 
be made in the face of significant uncertainty re-
lating in particular to the economic circumstances 
that will prevail in the future. Uncertainty may 
be caused by external factors, such as demand, 
prices, availability of production resources etc. 
or internal ones like promotion of new products, 
improvement of product quality etc. Demand un-
certainty has been early recognized in the supply 
chain management context as the essential cause 
of the “bullwhip effect”, which is characterized 
by excess volatility in demand (Davis, 1993). In 
order to capture terms of uncertainty in design 

and operating supply chain networks, two math-
ematical formulations developed: a) scenarios 
or multi-period approaches and b) probabilistic 
approaches.

Tsiakis, Shah and Pantelides (2001) show 
how demand uncertainty can be introduced in a 
multiperiod steady-state model. They argue that 
future uncertainties can be captured well through 
a scenario tree, where each scenario represents a 
different discrete future outcome. These should 
correspond to significant future events rather than 
just minor variations in demand. They utilise a 
multipurpose production model where flexible 
production capacity is to be allocated between dif-
ferent products, and determine the optimal layout 
and flow allocations of the distribution network.

Guillèn, Mele, Bagajewicz, Espuña and Puig-
janer (2005) proposed a multi-echelon stochastic 
model for the design of chemical supply chains 
under demand uncertainty. A clever combina-
tion of genetic algorithms and mathematical 
programming was employed for the solution of 
the underlying problems. Applequist, Penky and 
Reklaitis (2000) presented an approach for the 
design chemical supply chains under demand 
uncertainty. They mentioned that in such cases, 
risk appears and management issues become more 
complex and difficult.

Papageorgiou (2009) presents an excellent 
review of the supply chain optimization problem 
for the process industries. He emphasized that sys-
tematic consideration of uncertainty can facilitate 
calculation of expected return and evaluation of 
associated risks based on current status and future 
predictions.

The pharmaceuticals supply chains constitute 
an interesting area in which significant discrete 
uncertainty exist (related to success or failure of 
product tests and clinical trials). The problem of 
testing and capacity planning in this sector has 
been reviewed by Shah (2003).

Al‐Othman, Lababidi, Alatiqi and Al‐Shayji 
(2008) presented a multi-period optimization 
model framework for the optimal design of pe-
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troleum supply chains under uncertainty in both 
product demands and prices. They concluded that 
the design of supply chains in such uncertain and 
unstable economic environments is characterized 
by high levels of danger and risk, since many 
unpredictable factors can be appeared.

Pan and Nagi (2010) considered the design of 
a supply chain for a new market opportunity with 
uncertain customer demands. A robust optimiza-
tion model was proposed where expected total 
costs, cost variability due to demand uncertainty, 
and expected penalty for demand unmet were the 
three components in the objective function. In 
this model uncertainty was captured via scenario 
approach while the objective was to choose one 
partner for each echelon and simultaneously decide 
for each partner the production plan, inventory 
level, and backorder amount.

Gupta, Maranas and McDonald (2000) pre-
sented a mathematical programming framework 
for the mid-term supply chain planning under 
demand uncertainty. Issues relevant to customer 
demand satisfaction and inventory management 
were considered in details. Results illustrated that 
significant improvement in customer services 
levels can be achieved with a small charge in total 
cost. This work was then extended by Gupta and 
Maranas (2003), who modeled the manufacturing 
decisions as “here-and-now” decisions and the 
logistics ones as “wait-and-see decisions”.

You and Grossmann (2008) presented a mixed-
integer optimization approach for the optimal de-
sign of responsive supply chains in the present of 
demand uncertainty. A multi-period mixed-integer 
nonlinear programming model was developed 
for the maximization of net present value and 
minimization of expected lead time. Hua, Li 
and Liang (2006) illustrated how coordination 
between manufactures and retailers can improve 
competitive advantage in supply chain networks. 
Two situations with different market conditions 
were examined. In the first case, wholesale prices 
and orders size were decisions, whereas in the 
second case retailer prices were also taken into 

account. It was concluded that an efficient coor-
dination mechanism can benefit supply chains. 
Chen and Lee (2004) presented a mixed-integer 
non-linear programming problem for the design 
and operation of supply chain under multiple 
objectives and uncertain product demand. Mitra, 
Gudi, Patwardham and Sardar (2008) developed 
a chance constrained programming approach to 
consider uncertainty issues in the multisite mul-
tiproduct supply chain planning problem.

Sabri and Beamon (2000) developed a multi-
objective supply chain model that facilitates 
simultaneous strategic and operational supply 
chain planning. Customer demand, production 
lead time, and supply lead times were sources 
of uncertainty in the proposed model which 
objective was the optimization of a supply chain 
performance vector consisted of total costs, vol-
ume flexibility, customer service level index, and 
delivery flexibility index. The model was com-
prised of a strategic submodel, which optimizes 
the supply chain configuration and flow, and a 
stochastic operational submodel, which optimizes 
production, distribution, and transportation costs.

Alonso-Ayuso, Escudero, Garín, Ortuño and 
Pérez (2003) introduced a two-stage stochastic 
0-1 modeling and a related algorithmic approach 
aiming to formulate strategic and tactical supply 
chain decisions under uncertainty. The objective 
was the maximization of the product net profit over 
the time horizon minus the investment deprecia-
tion and operations costs. The strategic decisions 
were made in the first stage and concerned chain 
topology, product and vendor selection, and 
plant location, sizing and assignment. The tacti-
cal decisions were made in the second stage and 
were related to the better utilization of the supply 
chain along a time horizon with uncertainty in the 
product demand and price, and production and 
raw material costs.

Santoso, Ahmed, Goetschalckx and Shapiro 
(2005) proposed a stochastic programming model 
and a solution algorithm to solve large-scale global 
supply chain network design problems under 
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uncertainty and with an extremely large number 
of scenarios. Uncertainty was captured in terms 
of randomness in costs, capacities, supplies and 
demands. The objective was the minimization of 
the total investment and operational costs. The 
supply chain configuration decisions were made in 
the first stage while at the second stage decisions 
concerned processing and transporting products 
from suppliers to customers in an optimal fashion 
based upon the configuration and the realized 
uncertain scenario.

An excellent review presenting quantitative-
based approaches for supply chain planning under 
uncertainty is presented by Peidro, Mula, Poler and 
Lario (2009). Gümüs and Güneri (2007) provide 
a comprehensive review of the literature relevant 
to multi-echelon inventory management in supply 
chains with uncertain demand and lead times.

In this work we purpose a detailed, dynamic 
model for the problem of designing and operating 
supply chain network, comprising multiproduct 
production facilities with shared production 
resources, warehouses, distribution centers and 
customer zones, in which demands products are 
both uncertain and time-varying. Inventories can 
be kept in different nodes of the network over 
several time periods, whereas uncertainty is ex-
pressed with scenarios approach. The objective 
is the minimization of total annualized expected 
cost of the network, considered all structural and 
operating constraints.

Our model goes beyond the literature described 
above by considering a one-stage multiperiod 
multiscenario model that captures both design 
and operation decision of multi-echelon supply 
chain networks and allows product demands to 
be both uncertain and time varying. More specifi-
cally, product demand is allowed to change from 
one time period to another and in each period 
different demand patterns are realized. These in-
novative features allow a better representation of 
uncertainty and a better inventory management 
in each node of the supply chain.

The remainder of the chapter is organized as 
follow. Section 2 introduces the approach accord-
ing to which demand uncertainty is tackled fol-
lowed by a mathematical programming framework 
in section 3. The applicability of the developed 
model is illustrated in section 4 by using a large-
scale case study, under different levels of safety 
stocks. Finally, concluding remarks are drawn in 
section 5.

REPRESENTATION OF 
UNCERTAINTY

The operation of a supply chain network does not 
normally occur at a steady state. Usually product 
demands vary with time as a result of fluctuations 
in consumption patterns and product life cycles. 
For this reason, companies are forced to predict 
demand variation and to be prepared to face pos-
sible increases or decreases. A dynamic model 
for supply chain operation and design in which 
demands can be both uncertain and time varying 
is presented in this work.

Steady state models are a justified approxima-
tion of the operation of supply chains when we 
are not interested in long term variability. This 
is because short-term fluctuations are captured 
implicitly, to a certain extent, by averaging the 
material flows in the network over a sufficiently 
long period of time. On the other hand, model-
ling of long term variations, such as systematic 
variation of demand with time (e.g. seasonality or 
growing declining markets), necessitates a time 
dependent approach.

Due to the long planning horizon intrinsic in 
these kinds of problems a high level of uncertainty 
is often encountered. The handling of this uncer-
tainty raises many challenges from the choice of 
an appropriate modelling method to the solution 
method selected to attack the problem (Wets, 
1996). In the case of supply chain networks as in 
any production and distribution system we are 
mainly interested in the uncertainty in product 
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demands, prices and costs and availability of 
resources. Dynamic mathematical formulations 
approach uncertainty in two ways (Ierapetritou, 
Pistikopoulos and Floudas; 1996):

• scenario or multi period approaches often 
including discretization applied to a con-
tinuous uncertain parameter space;

• probabilistic approaches using two stage 
stochastic programming.

The scenario-based approach divides the 
planning horizon into a number of stages. The 
boundaries between successive stages reflect 
points in time where important uncertainties 
will be resolved. These often relate to important 
external events (economic or geopolitical etc.) 
or important internal events (launches of new 
products, patent losses on existing products etc.). 
Normally, the number of scenarios is kept small, 
the aim being to capture only the most important 
events. Schoemaker (1993) explains how to con-
struct scenarios.

In the supply chain literature uncertainty in 
time varying demands has received attention 
in the context of the planning and control of 
inventories in multi-echelon networks. Some of 

the mathematical programming models tend to 
require substantial amounts of data and to make 
many restrictive assumptions which renders them 
impractical to some extent (Stenger, 1996). On 
the other hand, heuristic models fail to consider 
the interactions between echelons and frequently 
result in excessive inventories.

The scenario approach to modelling of un-
certainty is particularly well suited to problems 
involving a combination of “wait-and-see” and 
“here-and-now” decisions. The nature of the 
scenarios that need to be postulated depends on 
the existence of “wait-and-see” decisions. If the 
problem under consideration involves no such 
decisions, then each scenario is a distinct profile 
of product demand(s) over time. In this case, all 
decisions are of the “here-and-now” type and 
are determined only on the basis of information 
available at the initial stage.

On the other hand in problems involving a 
combination of “wait-and-see” and “here-and-
now” decisions the postulated scenarios are 
typically of the form shown in Figure 1. Here the 
information pertaining to product demands in a 
given period becomes available at the end of the 
preceding period and this results in each scenario 
branch breaking into multiple branches at these 

Figure 1. Scenarios for problems involving both “here-and-now” and “wait-and-see” decisions
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points (c.f. Figure 1). In many cases there is little 
or no uncertainty regarding the very first period 
this results in a single scenario branch over this 
period as shown in Figure 1.

There are now three important sets of decisions 
associated with each decision-making time pe-
riod and each branch on the tree:

• whether to invest in new capacity and if so, 
how much;

• how much material to produce;
• how much inventory to carry over to the 

next period.

In some decision-making models, the amounts 
produced over each branch are assumed to be 
equal to demand; this effectively removes the 
inventory decisions and the additional flexibility 
of action that is available to the decision maker. 
If maintenance strategy is important, then main-
tenance decisions and their effect on equipment 
availability would be included.

From the mathematical point of view, the 
scenario-based approach results in a mathemati-
cal programming optimisation problem. The 
complexity of the latter depends primarily on:

• the complexity of the underlying process 
model; for example, nonlinear models are 
more complex than linear ones, and mod-
els involving discrete decisions (as is often 
the case with flexible multipurpose plants) 
are even more complex;

• the number of postulated scenarios.

The scenario-based approach determines 
simultaneously:

• the optimal capital investment in new ca-
pacity that must be put in place by the start 
of each planning stage under each and ev-
ery scenario;

• the optimal operating policy (e.g. plant 
throughput) and sales volume throughout 
each planning stage of every scenario;

• the inventory amounts that should be car-
ried over from one stage to the next in each 
branch of the scenario tree;

• where relevant, the maintenance strategies 
for different items of equipment.

Note that, while the (postulated) product 
demand during any particular stage provides an 
upper bound on the (optimal) sales volume, the 
two are not necessarily equal. Moreover, the sales 
volume during a certain stage is not necessarily 
equal to the production rate given the possibility 
of inventory carry-over from earlier stages.

MATHEMATICAL FRAMEWORK

We consider a four stage network of the type 
shown in Figure 2. The locations of the plants and 
customers are assumed to be fixed and known. A 
number of warehouses and distributions centres 
must be selected from a set of possible locations 
(see Figure 2). The notation that is used in the 
mathematical model is given in the end of the 
article.

Due to the importance of binary variables we 
give them in this point in order to be pointed out:

Binary Variables:

Y if warehouse m is to be established
otherwise

m = 












1
0

,

, 

 

Y if distribution center k is to be established
otherwise

k = 
1

0
,

,









 

X
if material is to be transported from
warehouse to distributimk =
1,

oon center k
otherwise0,



















 



80

Optimal Design and Operation of Supply Chain Networks under Demand Uncertainty

X
if material is to be transported from
distribution center k tokl =
1,

ccustomer zone l
otherwise0,

















  

Product demands are assumed to vary as 
piecewise constant functions of time defined over 
a number of time periods of given but not neces-
sarily equal duration. The uncertainty in these 
demands is taken into account by postulating a 
number of scenarios s=1… NS, each with a poten-
tially different set of piecewise constant demand 
functions. Our objective is to design a network 
that can handle any one of these scenarios, should 
it materialize at some point during the lifetime 
of the network, so as to minimise the combined 
operating and capital cost of the network.

In order to arrive at a meaningful objective 
function for the optimisation we assume that the 
probability of scenario s occurring in practice is 
known and is denoted by ψs. These probabilities 
will generally satisfy:

s

NS

sÈ
=
∑ =

1

1  (1)

Our aim is to minimise the expected value of 
the cost of the network taken over all the scenarios 
and during the operation of the network. The 
mathematical model proposed for this problem 
is an MILP as described below.

Constraints

Network Structure Constraints

The link between a warehouse m and a distribu-
tion center k can exist only if warehouse m is 
also established:

X Y m kmk m≤ ∀, ,  (2)

It is sometimes required that certain distribution 
centers be served by a single warehouse (single 
sourcing). This can be enforced via the constraints:

m
mk k

SSX Y k K∑ = ∀ ∈,  (3)

If the distribution centre does not exist then 
its links with warehouses cannot exist either. This 
leads to the constraint:

Figure 2. The supply chain network considered in this study
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X Y m k Kmk k
SS≤ ∀ ∉, ,  (4)

The above is written only for the distribution 
centers that are not single sourced. For the rest 
of the distribution centers constraint (3) already 
suffices.

The link between a distribution centre k and a 
customer zone l will exist only if the distribution 
centre also exists:

X Y k lkl k≤ ∀, ,  (5)

Some customer zones may be subject to a single 
sourcing constraint requiring that they be served 
by exactly one distribution center:

k
kl

SSX l L∑ = ∀ ∈1,  (6)

Logical Constrains for 
Transportation Flows

Flow of material i from plant j to warehouse m 
can take place only if warehouse m exists:

Q Q Y i j m t s NSijmt
s

ijm
s max

m









≤ ∀ =,

, , , , , , ,1  
(7)

The above constraints are enforced over both 
each scenario s and each time period t. Flow 
of material i from warehouse m to distribution 
center k can take place only if the corresponding 
connection exists:

Q Q X i m k t s NSimkt
s

imk
s max

mk









≤ ∀ =,

, , , , , , ,1  
(8)

Flow of material i from distribution center k 
to customer zone l can take place only if the cor-
responding connection exists:

Q Q X i k l t s NSiklt
s

ikl
s max

kl









≤ ∀ =,

, , , , , , ,1  
(9)

Appropriate values for the upper bounds 
appearing on the right hand size of the above 
constraint can be obtained as described in Tsiakis 
et al. (2001).

There is usually a minimum total flow rate of 
material (of whatever type) that is needed to justify 
the establishment of a transportation link between 
two locations in the network. This consideration 
leads to the following constraints:

i
imkt
s

mk
min

mkQ Q X m k t s NS∑



 ≥ ∀ =, , , , , ,1  

(10)

i
iklt
s

kl
min

klQ Q X k l t s NS∑



 ≥ ∀ =, , , , , ,1  

(11)

for the links between a warehouse m and a distri-
bution center k, and between a distribution center 
k and a customer zone l, respectively.

Material Balances

The mathematical model supposes that inventory 
may be kept at different stages in the network. If 
no product inventories were held at the plants loca-
tions, the actual rate of production of product i by 
plant j would equal the total flow of this product 
from plant j to all warehouses m. However, if 
inventory of product i allowed to be held in plant 
j at time t, then the material balance on the plant 
over period t becomes:

I I P Qijt
s

ij t
s

ijt
s

m
ijmt
s





−














= + −




 ∑, 1 






∀ =” T i j t s NSt, , , , , ,1
 (12)
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Constraint (12) states that the available inven-
tory of product i held in plant j at the end of period 
t (left side of equation) is equal to the inventory 
held at the end of period t-1 plus any product 
accumulated in the plant due to the production 
during the period, minus any product transported 
from the plant to warehouses during the same 
period. Since both production and transportation 
are expressed as flows of material over time (e.g. 
te/wk), we calculate the total amount of material 
during period [t-1, t] by multiplying these rates 
by the duration ΔTt of time period t. Typically, the 
durations ΔTt range from a few weeks to several 
months depending on the actual planning proce-
dures of the corporation.

Similarly, we can formulate the following 
constraints for the warehouses and distribution 
centers:

I I Q Qimt
s

im t
s

j
ijmt
s

k
imkt
s





−














= + −




∑ ∑, 1







∀ =” T i m t s NSt, , , , , ,1

 (13)

I I Q Qikt
s

ik t
s

m
imkt
s

l
iklt
s





−














= + −



∑ ∑, 1







∀ =” T i k t s NSt, , , , , ,1
 (14)

Customer zones do not normally hold signifi-
cant amounts of inventory. Consequently, the total 
flow of each product i received by each customer 
zone l from the distribution centers is assumed to 
be equal to the corresponding market demand:

k
iklt
s

ilt
sQ D i l t s NS∑




 = ∀ =[ ], , , , , ,1  (15)

The initial inventories I I and Iij
s

im
s

ik
s

0 0 0














, , are 

assume to be given as part of the specification of 
each distinct scenario s.

Production Resources Constraints

An important issue in the operation of the distribu-
tion network is the ability of the manufacturing 
plants to cover the demands of the customers as 
expressed through the orders received from the 
warehouses. The rate of production of each product 
at any plant cannot exceed certain limits. Thus, 
there is always a minimum production capacity 
for any one product; moreover there is often a 
minimum production rate that must be maintained 
while the plant is operating: All the above are 
expressed through the following constraint which 
is enforced for each and every scenario s and each 
time period t:

P P P i j t s Nijt
s min

ijt
s

ijt
s max













≤ ≤ ∀ =, ,
, , , , , ,1 SS  

(16)

It is common in many manufacturing sites for 
some resources (equipment, utilities, manpower, 
etc.) to be used by several production lines and at 
different stages of the production of each product. 
This share usage limits the availability of the 
resource that can be used for any one purpose as 
expressed by the following constraint:

i
ije ijt

s
jeÁ P R j e t s NS∑




 ≤ ∀ =, , , , , ,1  (17)

The coefficient ρije express the amount of re-
source e used by plant j to produce a unit amount 
of product i, while Rje represents the total rate of 
availability of resource e at plant j.

Capacity of Warehouses and 
Distribution Centers

One of the most significant issues during the 
design and the life time of the network are the 
capacities of warehouses and distribution centers. 
These amounts specify the quantity of products, 
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which can be stored there temporary, before their 
conveyance at the market.

The capacity of a warehouse m generally has 
to lie between given lower and upper bounds, 
W and Wm

min
m
max , provided, of course that the 

warehouse is actually established (i.e. Ym=1):

W Y W W Y mm
min

m m m
max

m≤ ≤ ∀,  (18)

Similar constraints apply to the capacities of 
distribution centers k:

D Y D D Y kk
min

k k k
max

k≤ ≤ ∀,  (19)

The dynamic formulation of this chapter al-
lows an arguably more precise characterization of 
these capacities in terms of the actual inventory 
being held. More specifically, the capacity of a 
warehouse or a distribution center cannot be less 
than the combined inventory to be held there at 
any time period under each scenario. This leads 
to constraints of the form:

W ³ I m t s NSm
i

im imt
s≥ ∀ =∑



 , , , , ,1  (20)

D ³ I k t s NSk
i

ik ikt
s≥ ∀ =∑



 , , , , ,1  (21)

where γim and γik are given coefficients expressing 
the amount of warehousing capacity required to 
hold a unit amount of a particular product i at a 
warehouse m or a distribution center k respectively.

Safety Stock Constraints

Maintaining a safety stock (also known as “buffer 
inventory”) is often desirable, providing a means of 
overcoming unforeseen production disturbances 
or unexpected product demands. In general, the 
higher the level of inventory, the better the cus-

tomer service, with fewer stockouts. On the other 
hand, excess inventory causes higher operating 
costs. Consequently, safety stock is usually only 
as much as is necessary to keep the network 
functioning for a short period of time (e.g. from 
a few days to a week) in case of disruption at one 
or more of its nodes.

The need for safety stock can be expressed by 
the following constraints:

I I i j t s NSijt
s

ijt
s min








≥ ∀ =,
, , , , , ,1  (22)

I I Y i m t s NSimt
s

imt
s min

m









≥ ∀ =,

, , , , , ,1  (23)

I I Y i k t s NSikt
s

ikt
s min

k









≥ ∀ =,

, , , , , ,1  (24)

The above constraints ensure that inventory 
is kept at warehouses or distribution centers only 
if these are established. We also note that the 
minimum inventory handling requirements may 
vary from scenario to scenario and from one time 
period to another. In fact they are often expressed 
as functions (e.g. constant multiples) of the cor-
responding material flows delivered by each plant, 
warehouse or distribution center node to all other 
nodes that are served by it.

Since we assume constant rates of produc-
tion, transportation and demand over each time 
period, inventories vary linearly with time during 
a period. Consequently, it suffices to enforce con-
straints (22) tο (24) at the time period boundaries 
for them to hold at all times during the planning 
time horizon.

As explained above the amount of safety stock 
to be held at each plant, warehouse or distribu-
tion centre node is usually expressed in terms of 
a given number of days’ equivalent of material 
flow delivered by the node to all nodes supplied 
by it. Here we assume that this number of days 
is the same for all nodes of the same type (e.g. 
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plants, warehouses or distribution centres). Thus, 
the safety stock is given by:

I Q i j t s NSijt
s min

P

m
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
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(25)
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(26)

I Q i j k s NSikt
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l
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

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,
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n
7
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(27)

where nP, nW, nDC are the numbers of days equiva-
lent for plants, warehouses and distribution centers 
respectively, and the division by 7 reflects the 
fact that all our material flows are expressed as 
tonnes per week. The right hand sides of equa-
tions (25)–(27) are used to replace the minimum 
inventory quantities appearing in the right hand 
sides of constraints (22)–(24) respectively. Ini-
tial inventories for each product and for each 
production plant are assumed to been known at 
a certain level.

Non-Negativity Constraints

All continuous variables must be non-negative:

P i j t s NSijt
s

 ≥ ∀ =0 1, , , , , ,  (28)

I i j t s NSijt
s

 ≥ ∀ =0 1, , , , , ,  (29)

I i m t s NSimt
s

 ≥ ∀ =0 1, , , , , ,  (30)

I i k t s NSikt
s

 ≥ ∀ =0 1, , , , , ,  (31)

Q i j m t s NSijmt
s

 ≥ ∀ =0 1, , , , , , ,  (32)

Q i m k t s NSimkt
s

 ≥ ∀ =0 1, , , , , , ,  (33)

Q i k l t s NSiklt
s

 ≥ ∀ =0 1, , , , , , ,  (34)

Objective Function

The objective of the optimisation is to minimise the 
overall expected cost of the supply chain network 
over a planning time horizon. This includes both 
(annualised) capital costs and operating costs, and 
lead to an objective function which includes the 
following five terms.

Fixed Infrastructure Cost

The infrastructure costs considered by our for-
mulation are related to the establishment of a 
warehouse or a distribution centre at a candidate 
location. These costs are represented by the fol-
lowing objective function terms:

m
m
W

m
k

k
D

kC Y C Y∑ ∑+  (35)

The annualized fixed cost of establishing a 
warehouse at location m, denoted as Cm

W , is mul-
tiplied by the binary variable Ym. Thus, only if 
the warehouse m is selected, the corresponding 
cost participates in the objective function. We 
assume that the manufacturing plants are already 
established. Therefore, we do not consider the 
capital cost associated with their design and con-
struction. We also ignore any infrastructure cost 
associated with the customer zones.
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Production Cost

The production cost is given by the product of 
the production rate Pijt

s

  of product i in plant j at 

time period t under scenario s, by the unit produc-
tion cost Cij

P . The corresponding term in the ob-
jective function is of the form:

i j
ij
P

ijt
sC P t s NS

,

, , , ,∑



 ∀ = 1  (36)

Material Handling Cost at Warehouses 
and Distribution Centers

Material handling costs such as wages, extra 
packing, insurance contracts, electricity, etc. can 
usually be approximated as linear functions of the 
total throughput. They can be expressed as follows:
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Inventory Holding Cost 
at Different Nodes

Since inventory may be kept at different stages 
in the network, a cost is associated with their 
management. In general, the cost incurred over a 
given time period t is proportional to the average 
amount of inventory held over this period. The 
average inventory is expressed by the arithmetic 
mean of the starting and finishing inventories for 
this period, as inventories vary linearly over each 
time period.
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(38)

Transportation Cost

The total transportation cost for product i during 
time period t under scenario s, is proportional to the 
amount of material transferred between echelons. 
Transportation costs that we include are those be-
tween production plant to distribution centres and 
distribution centres to customers. A more detailed 
modelling approach reflecting economies of scale 
can be found in Tsiakis et al. (2001).
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Objective Function

The final form of the objective function is as 
follows:
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It should be noted that
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• The objective function reflects actual total 
costs incurred over the planning horizon 
rather than rate of expenditure (i.e. it is 
measured in rmu1 instead of rmu/week)

• The annualized capital costs are multiplied 
by the total length of the time horizon un-
der consideration 

t
t” Tå

• The rate of operating expenditure var-
ies from one time period to the next. 
Consequently the operating cost in each 
period t is multiplied by the corresponding 
duration ΔTt

The overall problem of considering the opti-
mal design of multi-echelon supply chains under 
transient demand conditions is formulated as 
a Mixed-Integer Linear Programming (MILP) 
problem and solved to global optimality using 
the ILOG CPLEX 11.2.0 solver incorporated in 
the GAMS tool (Rosenthal, 2008). In all cases an 
integrality gap of 0% was imposed.

Scenario-Dependent Distribution 
Network Structure

The formulation presented above was based on 
the assumption that the structure of the distribu-
tion network (i.e. the transportation links between 
warehouses, distribution centers and customer 
zones) were independent of the scenario. In many 
cases, this is unnecessary since the costs associated 
with the establishment of a transportation link are 
relative small. This is especially the case when 
transportation is outsourced to third parties. In such 
cases, we could allow the network of transporta-
tion links to vary both over time and depending on 
the scenario instead of treating these decisions as 
“here-and-now” variables to be fixed once and for 
all at the design stage. This effectively allows for 
some reconfiguration of the supply chain network 
during operation.

The required changes in the mathematical 
model formulation are minimal. More, specifi-

cally, the binary variables Xmk and Xkl will now 
have a superscript [s] and a subscript [t]to denote 
that they can change for each possible scenario 
and during each time period of the operation of 
the network.

The constraints that need to change are:

X Y m k t s NSmkt
s

m
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(3’)

X Y m k K t s NSmkt
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k
SS[ ] , , , , , ,≤ ∀ ∉ = 1  

(4’)
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k
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k
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This option gives the network an additional 
degree of flexibility. Only the locations of ware-
houses and distribution centers are constant 
through the operation of the system, while the links 
between nodes may be re-allocated in every time 



87

Optimal Design and Operation of Supply Chain Networks under Demand Uncertainty

period and scenario in order to satisfy customer 
demand in the most coast-efficient manner.

CASE STUDY

Problem Description

To consider the applicability of the MILP model 
presented in the previous section we consider a Eu-
ropean wide production and distribution network 
comprising of three manufacturing plants produc-
ing 14 different types of products and located in 
three different European countries, namely the 
United Kingdom, Spain and Italy (see Figure 3).

Product demands are such that Europe can be 
divided into 18 customer zones located in 16 dif-

ferent countries. We consider the establishment 
of a sufficient network of distribution centers 
(DCs) to cover the whole market. The distribution 
centers can be located anywhere in 15 countries, 
and are to be supplied by up to six warehouses, 
the location of which is also to be chosen among 
six candidate places.

Because of the fact that customer demand is 
both uncertain and time-varying, we work with a 
scenario-based approach. Last but not least inven-
tories are held in different stages in the network 
in low or high levels, thus we examine two case 
studies. All data provided in the work of Tsiakis 
et al. (2001).

Manufacturing Plants and 
Production Procedure

The three manufacturing plants are already estab-
lished in specified European countries and produce 
14 types of different products. Each plant pro-
duces several products using a number of shared 
production resources. However, no single plant 
produces the entire range of products. Table 1 
shows the maximum production rate Pijt

s max


,  of 

each manufacturing plant, whereas the correspond-
ing minimum production rate is assumed to be 

zero i e P i jijt
s min

. . , ,
,

 = ∀( )0 .

In Table 2 all columns give the values of the 
ρije coefficient, while the last column represents 
the total availability of resource e in manufactur-
ing plant j (Rje). The unit production cost is indi-
cated in Table 3.

Figure 3. The case study network

Table 1. Maximum production capacity of each manufacturing plant j for each product i 

Plants
Products (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

j1 158 2268 1701 1512 0 812 642 482 320 504 0 661 441 221

j2 0 1411 1058 1328 996 664 664 0 0 0 530 496 330 0

j3 972 778 607 540 0 416 416 312 208 0 403 0 270 0

* There is no difference among several scenarios and time periods
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Warehouses and Distribution Centers

All products after their production go to ware-
houses, where they will be stored and then placed 
at distribution centers. Warehouses will be se-
lected among six candidate locations and distribu-
tion centers among fifteen possible locations. 
Each warehouse and distribution center cannot 
keep more than 14,000 ton/week ( Wm

max ) and 
7,000 ( Dk

max ) ton/week, respectively. On the 
other hand, there are no requirements for minimum 

material handling capacities (  and 
). Despite the fact that capacities are the 

same, fixed infrastructure costs vary for each 
node, whereas material handling costs are the 
same for all products but may differ from place 
to place, as shown in Table 4. The coefficients γim 
and γik, which show the capacity of each warehouse 
m or distribution center k that is required for the 
storage of a product i are equal to one.

Table 4. Fixed infrastructure and material handling costs for candidate warehouse m and distribution 
center k 

Warehouses
Infrastructure cost Material handling cost

(relative money units/week)* (relative money units/ton)*

m1 10,000 4.25

m2 5,000 4.55

m3 4,000 4.98

m4 6,000 4.93

m5 6,500 4.06

m6 4,000 5.28

Distribution Centers
Infrastructure cost Material handling cost

(relative money units/week)* (relative money units/ton)*

k1 10,000 4.25

k2 5,000 4.55

k3 4,000 4.98

k4 6,000 4.93

k5 6,500 4.85

k6 4,000 3.90

k7 6,000 4.06

k8 4,000 3.08

k9 5,000 6.00

k10 3,000 4.85

k11 4,500 4.12

k12 7,000 5.66

k13 9,000 5.28

k14 5,500 4.95

k15 8,500 4.83

* There is no difference among several scenarios and time periods
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Product Demand

We consider a planning horizon comprising 
three four-week time periods (ΔΤ1= ΔΤ2= ΔΤ3=4 
weeks). Product demands over the first period 
are assumed to be known with certainty, and are 
shown in Table 5.

However, there are two distinctly different 
predictions for demands over the second period, 
shown in tables 6 and 7, respectively. Moreover, 
each of these demand predictions for the second 
period leads to two distinct demand predictions 
for the third period (see Tables 8 to 11).

Overall we need to consider four distinct sce-
narios (i.e. s=1, …, 4) organized in a tree structure 
of the type shown in Figure 1. The formulation 
of the previous section is directly applicable to 
this situation, provided:

The operational variables of all four scenarios 
are treated as identical in the first time period, e.g.

P P P P i jij ij ij ij1
1

1
2

1
3

1
4


















= = = ∀, ,

 

The operational variables of scenarios 1 and 2 are 
treated as identical in the second time period, e.g.

P P i jij ij2
1

2
2








= ∀, ,  

The operational variables of scenarios 3 and 4 are 
treated as identical in the second time period, e.g.

Table 5. Demand for product i for customer zone l over the first time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 18 0 0 506 0 452 0 0 43 0 0 0 120 34

l2 0 499 155 203 76 0 30 0 0 0 20 0 0 0

l3 0 155 0 166 0 66 17 0 0 0 0 0 15 0

l4 15 0 126 0 0 0 5 27 0 0 0 25 0 0

l5 0 0 92 0 0 0 0 0 21 0 0 0 50 0

l6 0 0 0 0 0 68 0 0 20 0 0 0 10 10

l7 0 14 0 40 0 0 0 0 34 0 0 0 68 0

l8 0 0 0 45 0 23 0 0 5 0 0 0 0 0

l9 0 0 0 0 0 0 52 0 7 0 0 0 0 0

l10 0 0 0 17 0 0 0 0 5 0 0 0 16 0

l11 0 0 0 31 0 0 0 0 0 0 0 0 15 0

l12 0 31 0 0 0 0 13 0 0 38 0 0 0 0

l13 0 21 0 0 0 0 15 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 7 0 0 0 0 0 0

l15 0 0 0 0 0 0 10 0 0 0 15 0 0 0

l16 15 0 68 0 0 0 5 20 0 0 0 20 0 0

l17 0 103 0 110 0 44 12 0 0 0 0 0 13 0

l18 0 0 0 0 0 0 0 0 0 266 0 0 0 0

* All scenarios
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P P i jij ij2
3

2
4








= ∀, ,  

In practice the above inequalities are used to 
eliminate a priori a large proportion of the problem 
variables. All four scenarios are assumed to be 
equally probable (ψ1= ψ2= ψ3= ψ4=0.25).

4.1.4 Transportation 
Procedure and Cost

The supply chain network cannot transfer between 
two nodes more than 100,000 products per each 
time period. Transportation costs are independent 
from economies of scale and are provided in Tables 
12-14 and expressed in relative money units/ton.

Inventory

The inventory holding cost is shown in Table 15, 
and it is independent of the product being held, 
but varies from one location to another. Initial 
inventories for each product for the manufacturing 
plants are assumed to be known and at a certain 
level. This is equal to the maximum production 
capacity of the plants for a week. Warehouses 
and distribution centers are assume to hold zero 
initial inventories.

We examine two distinct cases with different 
levels of safety stock held in the system. This is 
ensured by the values of parameters nP, nW, nDC, 
as provided in Table 16. In the first version there 
are low safety stock requirements, whereas in 
second version the needs of safety stock quantities 
are high.

Table 6. Demand for product i for customer zone l over the second time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 14 0 0 547 0 412 0 0 46 0 0 0 94 30

l2 0 612 144 248 83 0 33 0 0 0 24 0 0 0

l3 0 117 0 202 0 70 21 0 0 0 0 0 12 0

l4 17 0 157 0 0 0 6 25 0 0 0 27 0 0

l5 0 0 97 0 0 0 0 0 19 0 0 0 56 0

l6 0 0 0 0 0 65 0 0 16 0 0 0 10 11

l7 0 14 0 40 0 0 0 0 42 0 0 0 63 0

l8 0 0 0 51 0 25 0 0 5 0 0 0 0 0

l9 0 0 0 0 0 0 49 0 8 0 0 0 0 0

l10 0 0 0 17 0 0 0 0 5 0 0 0 13 0

l11 0 0 0 33 0 0 0 0 0 0 0 0 11 0

l12 0 26 0 0 0 0 14 0 0 38 0 0 0 0

l13 0 21 0 0 0 0 11 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 8 0 0 0 0 0 0

l15 0 0 0 0 0 0 11 0 0 0 14 0 0 0

l16 11 0 51 0 0 0 5 24 0 0 0 20 0 0

l17 0 124 0 135 0 36 14 0 0 0 0 0 20 0

l18 0 0 0 0 0 0 0 0 0 327 0 0 0 0

* Scenarios 1 and 2
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Table 7. Demand for product i for customer zone l over the second time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 18 0 0 436 0 568 0 0 54 0 0 0 149 31

l2 0 633 154 195 62 0 25 0 0 0 26 0 0 0

l3 0 172 0 189 0 58 16 0 0 0 0 0 15 0

l4 14 0 159 0 0 0 6 33 0 0 0 29 0 0

l5 0 0 74 0 0 0 0 0 17 0 0 0 57 0

l6 0 0 0 0 0 57 0 0 18 0 0 0 11 12

l7 0 16 0 41 0 0 0 0 44 0 0 0 67 0

l8 0 0 0 46 0 19 0 0 6 0 0 0 0 0

l9 0 0 0 0 0 0 54 0 6 0 0 0 0 0

l10 0 0 0 22 0 0 0 0 4 0 0 0 20 0

l11 0 0 0 28 0 0 0 0 0 0 0 0 14 0

l12 0 29 0 0 0 0 12 0 0 45 0 0 0 0

l13 0 20 0 0 0 0 15 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 8 0 0 0 0 0 0

l15 0 0 0 0 0 0 10 0 0 0 19 0 0 0

l16 13 0 62 0 0 0 4 19 0 0 0 21 0 0

l17 0 97 0 122 0 51 13 0 0 0 0 0 16 0

l18 0 0 0 0 0 0 0 0 0 327 0 0 0 0

* Scenarios 3 and 4

Figure 4. Optimal network configuration for low inventories case
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Results for Low Inventories Case

The model was solved using ILOG CPLEX 11.2.0 
solver incorporated in GAMS 22.9 software and 
consisted of 181,104 single equations, 73,692 
single variables, and 381 discrete variables. A 
Pentium M, with 1.6 GHz and 512 RAM, was 
employed for running the model and the solu-
tion was reached in 293 CPU seconds with 0% 
integrality gap.

The optimal network structure for this case is 
shown in Figure 4. The network consists of three 
warehouses, placed in United Kingdom, Spain 
and Italy and three distribution centers located 
in the same countries. The structure is primarily 
a result of the demand patterns considered since 
the three countries which host the manufacturing 
plants are also the biggest customers. However, 
since none of the plants can produce the whole 

range of products, and plant capacity is restricted 
due to production constraints, all plants provide 

Table 8. Demand for product i for customer zone l over the third time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 19 0 0 528 0 559 0 0 50 0 0 0 106 40

l2 0 657 164 279 82 0 42 0 0 0 22 0 0 0

l3 0 113 0 205 0 95 28 0 0 0 0 0 12 0

l4 21 0 196 0 0 0 6 30 0 0 0 33 0 0

l5 0 0 112 0 0 0 0 0 23 0 0 0 65 0

l6 0 0 0 0 0 77 0 0 14 0 0 0 15 16

l7 0 16 0 45 0 0 0 0 46 0 0 0 79 0

l8 0 0 0 70 0 24 0 0 6 0 0 0 0 0

l9 0 0 0 0 0 0 50 0 7 0 0 0 0 0

l10 0 0 0 17 0 0 0 0 6 0 0 0 12 0

l11 0 0 0 44 0 0 0 0 0 0 0 0 13 0

l12 0 30 0 0 0 0 17 0 0 51 0 0 0 0

l13 0 27 0 0 0 0 13 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 11 0 0 0 0 0 0

l15 0 0 0 0 0 0 13 0 0 0 14 0 0 0

l16 14 0 56 0 0 0 5 29 0 0 0 27 0 0

l17 0 160 0 172 0 35 20 0 0 0 0 0 12 0

l18 0 0 0 0 0 0 0 0 0 331 0 0 0 0

* Scenario 1

Figure 5. Inventory levels in plants, warehouses, 
and distribution centers in the low inventories case
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Table 9. Demand for product i for customer zone l over the third time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 18 0 0 761 0 551 0 0 55 0 0 0 125 37

l2 0 706 209 282 104 0 38 0 0 0 34 0 0 0

l3 0 152 0 233 0 88 24 0 0 0 0 0 15 0

l4 19 0 164 0 0 0 7 30 0 0 0 35 0 0

l5 0 0 115 0 0 0 0 0 27 0 0 0 80 0

l6 0 0 0 0 0 81 0 0 16 0 0 0 11 15

l7 0 15 0 42 0 0 0 0 44 0 0 0 82 0

l8 0 0 0 65 0 30 0 0 6 0 0 0 0 0

l9 0 0 0 0 0 0 67 0 8 0 0 0 0 0

l10 0 0 0 21 0 0 0 0 7 0 0 0 15 0

l11 0 0 0 37 0 0 0 0 0 0 0 0 14 0

l12 0 36 0 0 0 0 14 0 0 39 0 0 0 0

l13 0 22 0 0 0 0 16 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 10 0 0 0 0 0 0

l15 0 0 0 0 0 0 16 0 0 0 18 0 0 0

l16 12 0 72 0 0 0 6 33 0 0 0 25 0 0

l17 0 169 0 794 0 35 15 0 0 0 0 0 13 0

l18 0 0 0 0 0 0 0 0 0 329 0 0 0 0

* Scenario 2

Figure 6. Optimal network configuration for the high inventories case
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products to all warehouses. The total expected cost 
of the network comes to 6,031,650 relative money 
units and its breakdown is shown in Table 17. 
Inventories in plants, warehouses, and distribution 
centers are presented in Figure (5). It is noted that 
inventories reduce with the time periods.

Results for High Inventories Case

If we assume that the network needs to hold higher 
levels of inventories in order to minimize the 
probability of not satisfying product demands, the 
optimal structure changes as shown in Figure (6).

Some transportation links between warehouses 
and distribution centers and between distribution 
centers and customer zones are modified compared 
to the low inventories case. More specifically, the 
warehouse of Spain no longer supplies products 

to Italy’s distribution center and begun to supply 
the U.K. distribution center. Furthermore, Italy’s 
warehouse begun to provide products to Spain’s 
distribution center. The changes occurred in 
transportation links between distribution centers 
and customer zones are mainly concern Spain’s 
distribution center which started serving the 
customer zones of North Italy, Switzerland, and 
Austria. Moreover, the U.K. distribution center 
started serving Austria’s customer zone whereas 
Italy’s distribution center interrupted its service 
to Switzerland’s customer zone.

The total cost increases to 6,874,790 relative 
money units. As expected all operating costs of 
the network are increased, as higher volumes of 
products and inventories have to be produced, 
transferred and stored (see Table 18). Regarding 
inventories it should be noted that the profile of 

Table 10. Demand for product i for customer zone l over the third time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 24 0 0 420 0 772 0 0 58 0 0 0 169 40

l2 0 680 175 220 62 0 32 0 0 0 24 0 0 0

l3 0 165 0 191 0 78 22 0 0 0 0 0 16 0

l4 17 0 198 0 0 0 6 41 0 0 0 35 0 0

l5 0 0 85 0 0 0 0 0 21 0 0 0 65 0

l6 0 0 0 0 0 67 0 0 16 0 0 0 15 16

l7 0 18 0 46 0 0 0 0 48 0 0 0 84 0

l8 0 0 0 63 0 18 0 0 8 0 0 0 0 0

l9 0 0 0 0 0 0 55 0 6 0 0 0 0 0

l10 0 0 0 21 0 0 0 0 6 0 0 0 19 0

l11 0 0 0 37 0 0 0 0 0 0 0 0 16 0

l12 0 34 0 0 0 0 15 0 0 60 0 0 0 0

l13 0 25 0 0 0 0 18 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 11 0 0 0 0 0 0

l15 0 0 0 0 0 0 12 0 0 0 19 0 0 0

l16 16 0 68 0 0 0 4 23 0 0 0 27 0 0

l17 0 124 0 155 0 50 18 0 0 0 0 0 16 0

l18 0 0 0 0 0 0 0 0 0 448 0 0 0 0

* Scenario 3
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Table 12. Transportation cost between manufacturing plant j and warehouse m 

Plants
Warehouse (relative money units/ton)*

m1 m2 m3 m4 m5 m6

For products i1-i6 and i10

j1 1.24 58.56 62.30 26.16 17.44 36.13

j2 60.82 1.68 70.96 43.93 70.96 55.76

j3 76.16 79.21 1.52 54.83 68.54 41.12

For products i7-i9

j1 1.35 63.46 67.51 28.35 18.90 39.15

j2 82.70 2.29 96.48 59.72 96.48 75.81

j3 94.90 98.69 1.89 68.32 85.41 51.24

For products i11-i14

j1 1.46 68.88 73.28 30.77 20.51 42.50

j2 79.69 2.21 92.97 57.55 92.97 73.05

j3 92.82 96.53 1.85 66.83 83.54 50.12

* There is no difference among several scenarios and time periods

Table 11. Demand for product i for customer zone l over the third time period 

Customer 
Zone

Product demands (ton/week)*

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14

l1 24 0 0 606 0 760 0 0 64 0 0 0 198 37

l2 0 730 223 222 78 0 29 0 0 0 37 0 0 0

l3 0 222 0 218 0 72 19 0 0 0 0 0 19 0

l4 15 0 165 0 0 0 7 41 0 0 0 37 0 0

l5 0 0 88 0 0 0 0 0 24 0 0 0 80 0

l6 0 0 0 0 0 71 0 0 18 0 0 0 11 16

l7 0 17 0 43 0 0 0 0 45 0 0 0 87 0

l8 0 0 0 59 0 23 0 0 7 0 0 0 0 0

l9 0 0 0 0 0 0 73 0 7 0 0 0 0 0

l10 0 0 0 27 0 0 0 0 6 0 0 0 24 0

l11 0 0 0 30 0 0 0 0 0 0 0 0 18 0

l12 0 41 0 0 0 0 12 0 0 46 0 0 0 0

l13 0 21 0 0 0 0 21 0 0 0 0 0 0 0

l14 0 0 0 0 0 0 0 9 0 0 0 0 0 0

l15 0 0 0 0 0 0 14 0 0 0 24 0 0 0

l16 14 0 87 0 0 0 5 26 0 0 0 25 0 0

l17 0 131 0 174 0 50 14 0 0 0 0 0 18 0

l18 0 0 0 0 0 0 0 0 0 446 0 0 0 0

* Scenario 4
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Table 15. Inventory holding cost in plant j in warehouse m and in distribution center k 

Plants
Inventory holding cost

(relative money units/ton) *

j1 8.25

j2 8.55

j3 8.98

Warehouses
Inventory holding cost

(relative money units/ton) *

m1 8.25

m2 8.55

m3 8.98

m4 8.93

m5 8.06

m6 10.28

Distribution Centers
Inventory holding cost

(relative money units/ton)*

k1 8.25

k2 8.55

k3 8.98

k4 8.93

k5 8.85

k6 6.90

k7 8.06

k8 6.08

k9 12.00

k10 8.85

k11 8.12

k12 10.66

k13 10.28

k14 8.95

k15 8.83

* There is no difference among several scenarios and time periods

Table 16. Minimum inventories requirements in plant j in warehouse m and in distribution center k 

Case

Safety stock held

(in number of days equivalent) *

nP nW nDC

low inventories 1 1 1

high inventories 6 3 2

* There is no difference among several scenarios and time periods
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inventories held in the plants change and tend to 
increase with time as shown in Figure (7).

Parameter Sensitivity Analysis

In this part of our work we test the performance 
of the proposed model in several cases by chang-
ing some of the parameters, which express the 
production, distribution, and material handling 
conditions.

In many business occasions a production de-
crease is a frequent result of activities such as 
labor force strikes, equipment accidents and raw 
materials stock outs. At an aggregate level this 
potential condition could be expressed by decreas-

ing the maximum production capacity of each 
plant ( Pijt

s max


, ).

Figure (8) presents the optimal configuration 
and cost breakdown of the network after a 10% 
decrease in the maximum production capacity. 
The optimal network structure in this case results 
in an additional transportation link between the 
warehouse of Spain and the U.K. distribution 
center, comparing to the base case.

Another interesting business situation that 
requires further investigation is when the total 
transportation flow from one node to other must 
exceeds a minimum requirement in order to be 
placed. In this way fixed costs associated with 
the establishment of a transportation link (fleet 
management expenses, cargo handling equipment 
investments etc.) are covered by the revenues 
earned from this minimum flow. In our case study, 
the zero minimum transportation flow Qmk

min = 0
, Qkl

min = 0 , in many business cases is unrealistic.
Figure (9) illustrates the optimal configura-

tion and cost breakdown of the network when 
the minimum total transportation flow between a 
warehouse and a distribution is set to 1,000 tones/
week. The optimal network in this case, comparing 
to the base case, results in an additional transporta-
tion link between UK’s plant and the warehouse of 
Italy and deleted the transportation link between 
the Spain’s warehouse and the distribution cen-
ter of Italy. Moreover, the distribution center of 
U.K. is now serving the customer zone of Austria 
while the distribution center of Spain is serving 

Table 17. Optimal cost breakdown for low inven-
tories case in relative money units 

Fixed infrastructure cost 456,000

Production cost 3,359,600

Material handling cost 515,770

Transportation cost 1,170,700

Inventory cost 529,580

Total optimal cost 6,031,650

Table 18. Optimal cost breakdown for high inven-
tories case in relative money units 

Fixed infrastructure cost 456,000

Production cost 3,866,900

Material handling cost 529,800

Transportation cost 1,203,200

Inventory cost 818,890

Total optimal cost 6,874,790

Figure 7. Inventory levels in plants, warehouses, 
and distribution centers in the high inventories 
case
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Figure 8. Optimal network configuration with low inventories and for a 10% decrease in the maximum 
production capacity

Figure 9. Optimal network configuration with low inventories and for a minimum total flow between 
warehouses and distribution centers equal to 100
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the customer zones of Switzerland, and Austria. 
Finally, the Italy’s distribution center started 
serving Ireland’s and Finland’s customer zones.

CONCLUSION

This work presents a detailed mathematical 
formulation for the problem of designing supply 
chain networks comprising multiproduct produc-
tion facilities with shared production resources, 
warehouses, distribution centers and customer 
zones and operating under demand uncertainty, 
while inventory may be kept at different stages in 
the network. Uncertainty is captured in terms of a 
number of likely scenarios possible to materialize 
during the life time of the network. The problem is 
formulated as a mixed-integer linear programming 
program (MILP) and solved to global optimality.

A large-scale European wide distribution net-
work has been used to illustrate the applicability 
of the developed model. The results obtained 
provide a good indication of the value of having a 
model that takes into account the complex interac-
tions that exist in such networks and the effect of 
inventory levels to the design and operation. The 
computational cost associated with the problems 
considered here has been found to be relatively 
low, thus making the overall model attractive for 
the solution of large-scale problems.

The proposed MILP model aims to assist 
senior operations management to take decisions 
about production allocation, production capacity 
per site, purchase of raw materials and network 
configuration taking into account transient demand 
conditions. The purpose of the model is to be used 
not as frequent as an Advanced Planning Schedul-
ing (APS) system (daily, weekly or monthly) but 
for longer periods (such as quarterly, six months 
or yearly) to address strategic and tactical supply 
design aspects. Its allocation decisions are set as 
production targets for the APS systems to optimise 
production sequences.

The proposed mathematical programming ap-
proach can provide the basis for future research 
focusing on the following areas:

• The integration of financial statement 
analysis along with supply chain network 
design and operation decisions, to explore 
mutual interactions between financial 
aspects (e.g. leveraging and/or liquid-
ity requirements) and supply chain design 
decisions.

• The incorporation of stochastic uncertainty 
in each time-varying scenario (e.g. by as-
suming that product demands follow a sto-
chastic distribution function).

• The incorporation of stochastic inventory 
control in the overall framework.
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APPENDIX

Notation

Indices
• e production resources (equipment, manpower, utilities, etc.)
• i products
• j plants
• k possible distribution centers
• l customer zones
• m possible warehouses
• s product demand scenario
• t time period
Sets
• KSS set of distribution centers that should be supplied by a single warehouse
• LSS set of customer zones that should be supplied by a single distribution center
Parameters
• Cim

WH  unit handling cost for product i at warehouse m
• Cik

DH  unit handling cost for product i at distribution center k
• Cm

W  annualized fixed cost of establishing warehouse at location m
• Ck

D  annualized fixed cost of establishing distribution center at location k
• Cij

P  unit production cost for product i at plant j

• Cijm
TR  unit transportation cost of product i transferred from plant j to warehouse m

• Cimk
TR  unit transportation cost of product i transferred from warehouse m to distribution center k

• Cikl
TR  unit transportation cost of product i transferred from distribution center k to customer zone l

• Cijt
I  unit inventory cost of product i at plant j during time period t

• Cimt
I  unit inventory cost of product i at warehouse m during time period t

• Cikt
I  unit inventory cost of product i at distribution center k during time period t

• Dk
max  maximum capacity of distribution center k

• Dk
min  minimum capacity of distribution center k

• Dilt
s[ ]  demand for product i from customer zone l during time period t under scenario s

• Iijt
s min


,  minimum inventory of product i held in plant j at the end of time period t under scenario s

• Iimt
s min


,  minimum inventory of product i held in warehouse m at the end of time period t under 

scenario s
• Iikt

s min


,  minimum inventory of product i held in distribution center k at the end of time period t 

under scenario s
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• nDC  minimum inventory held at distribution centers expressed in terms of number of days equiv-
alent of materials handled

• nW  minimum inventory held at warehouses expressed in terms of number of days equivalent of 
materials handled

• nP  minimum inventory held at production plants expressed in terms of number of days equivalent 
of materials handled

NS number of product demand scenarios
• Pijt

s max


,  maximum production capacity of plant j for product i during time period t under scenario 

s
• Pijt

s min


,  minimum production capacity of plant j for product i during time period t under scenario s

• Qmk
min  minimum rate of flow of material that can practically and economically be transferred from 

warehouse m to distribution center k
• Qkl

min  minimum rate of flow of material that can practically and economically be transferred from 
distribution center k to customer zone l

• Qijm
s max


,  maximum rate of flow of product i that can be transferred from plant j to warehouse m 

under scenario s
• Qimk

s max


,  maximum rate of flow of product i that can be transferred from warehouse m to distribution 

center k under scenario s
• Qikl

s max


,  maximum rate of flow of product i that can be transferred from distribution center k to 

customer zone l under scenario s
• R je  total rate of availability of resource e at plant j

• Wm
max  maximum capacity of warehouse m

• Wm
min  minimum capacity of warehouse m

• ” Tt  duration of time period t

Continuous Variables
• Dk capacity of distribution center k

• Iijt
s

 inventory level of product i being held at plant j at the end of time period t under scenario s

• Iimt
s

 inventory level of product i being held at warehouse m at the end of time period t under sce-

nario s
• Iikt

s

 inventory level of product i being held at distribution center k at the end of time period t under 

scenario s
• Pijt

s

 production rate of product i in plant j during time period t under scenario s

• Qijmt
s

 rate of flow of product i transferred from plant j to warehouse m during time period t under 

scenario s
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• Qimkt
s

 rate of flow of product i transferred from warehouse m to distribution center k during time 

period t under scenario s
• Qiklt

s

 rate of flow of product i transferred from distribution center k to customer zone l during time 

period t under scenario s
• Wm

capacity of warehouse m

Binary Variables
• Ym 1 if warehouse m is to be established, 0 otherwise
• Yk 1 if distribution center k is to be established, 0 otherwise
• Xmk 1 if material is to be transported from warehouse m to distribution center k, 0 otherwise
• Xkl 1 if material is to be transported from distribution center k to customer zone l, 0 otherwise

• Xmkt
s

 1 if material is to be transported from warehouse m to distribution center k during time pe-

riod t under scenario s, 0 otherwise
• Xklt

s

 1 if material is to be transported from distribution center k to customer zone l during time 

period t under scenario s, 0 otherwise

Greek Symbols
• ³ im  coefficient relating capacity of warehouse m to inventory of product i held
• ³ ik  coefficient relating capacity of distribution center k to inventory of product i held
• Áije  coefficient of rate of utilization resource e in plant j to produce product i

• Ès  probability of product demand scenario s occurring during the lifetime of the network
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Chapter 5

A Computational Intelligence 
Approach to Supply Chain 

Demand Forecasting
Nicholas Ampazis

University of the Aegean, Greece

INTRODUCTION

The Supply Chain (SC) of both manufacturing 
and commercial enterprises comprises a highly 
distributed environment, in which complex 
processes evolve within a network of interacting 
companies. A typical SC includes different levels 
as shown in the diagram of Figure 1. As shown in 
this figure, and reading the diagram from right to 
left (“Customer Information Flow”), the first level 

of organization is “Sales” where products are sold 
to customers; the second level of organization is 
“Distribution” where products are delivered from 
in-house or 3PL (3rd Party Logistics) warehouses 
to retailers; the third organization level is “Stor-
age” where products are stored in warehouses for 
future distribution; the fourth level of organiza-
tion is “Production” where products are produced 
within plants according to determined production 
and inventory schedules; finally, the fifth organi-
zation level is “Supply” which comprises of the 

ABSTRACT

Estimating customer demand in a multi-level supply chain structure is crucial for companies seeking to 
maintain their competitive advantage within an uncertain business environment. This work explores the 
potential of computational intelligence approaches as forecasting mechanisms for predicting customer 
demand at the first level of organization of a supply chain where products are presented and sold to cus-
tomers. The computational intelligence approaches that we utilize are Artificial Neural Networks (ANNs), 
trained with the OLMAM algorithm (Optimized Levenberg-Marquardt with Adaptive Momentum), and 
Support Vector Machines (SVMs) for regression. The effectiveness of the proposed approach was evalu-
ated using public data from the Netflix movie rental online DVD store in order to predict the demand 
for movie rentals during the critical, for sales, Christmas holiday season.
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suppliers that provide raw materials transported 
to production plants.

The optimization of SC operational procedures 
is crucial for businesses since these operations 
directly affect customer service, inventory and 
distribution costs, and responsiveness to the ever 
changing markets. To this end, decision making 
in supply chain systems should consider intrinsic 
uncertainties, while coordinating the interests and 
goals of the multitude of processes involved. Since 
supply can rarely meet demand at any given pe-
riod, the demand information is distorted as it is 
transmitted up the chain and this can misguide 
upstream members in their inventory and produc-
tion decisions (“bullwhip” effect) (Lee, Padma-
nabhan, & Whang, 1997a), (Lee, Padmanabhan, 
& Whang, 1997b).

Computational intelligence approaches can 
offer effective tools for both modeling and man-
aging operations in the uncertain environment of 
the supply chain, especially since the associated 
computational techniques are capable of handling 
complex interdependencies. As a result, these 
computational techniques may form the basis 
for the development of optimization methods 
and systems that optimize effectively the various 
objectives of the supply chain (Minis & Ampazis, 
2006). This chapter presents the application of 
computational intelligence methods in supply 
chain demand forecasting. More specifically, we 
focus on the first level of SC which is directly 
related to customer side demand forecasting in an 

uncertain environment. Forecasting the expected 
demand for a certain period of time for one or 
more products is one of the most important targets 
in an enterprise since it directly affects revenue 
as well as customer satisfaction. To this end, we 
utilize Artificial Neural Networks (ANNs) and 
Support Vector Machines (SVMs) as an approach 
for forecasting demand in order to create a supply 
chain framework with dynamic characteristics.

The remainder of this chapter is structured as 
follows: In the next section we present a review 
of previous studies on demand forecasting in SC 
using computational intelligence techniques. After 
that we analytically describe the techniques used in 
the present work, that is, the theoretical principles 
behind ANNs, the OLMAM training algorithm, 
and SVMs. A real-world case study utilizing data 
for the Netflix online DVD rental store is presented 
in Section “Information Sources”. The section 
immediately after that presents the results of the 
computational intelligence techniques. Finally in 
the last section we discuss the conclusions drawn 
from this study.

BACKGROUND

Computational intelligence methods have already 
been used in a variety of SC optimization tasks. 
Especially ANNs, as a new methodology, have 
been used for optimization of transportation man-
agement, resources allocation and scheduling, for 

Figure 1. The multiple levels of a supply chain
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modeling and simulation, and decision support 
(Minis & Ampazis, 2006).

For the task of forecasting SC demand, a va-
riety of computational intelligence methods have 
been used as statistical forecasting models for 
smoothing and classifying noisy data to match the 
relationships between complicated SC operations. 
In general, statistical forecasting models fall into 
two broad categories, univariate and multivariate. 
Univariate methods (also referred to as time-
series methods) work with the past history of the 
variable to be forecasted. They aim to capture 
patterns such as the level, trend, and seasonal 
patterns and extrapolate them forward (Gardner, 
1985), (Armstrong, 2002). Examples of standard 
statistical time-series methods include exponential 
smoothing models, Box-Jenkins models (Box, 
Jenkins, & Reinsel, 1976), and Croston’s demand 
model (Croston, 1972), (Marien, 1999), (Syntetos 
& Boylan, 2001).

A computational intelligence technique for 
univariate SC demand forecasting was investi-
gated in (Liang & Huang, 2006). In this study the 
authors proposed a solution for forecasting orders 
in a multi-echelon supply chain using a genetic 
algorithm (GA). Their results showed that, under 
certain assumptions, their proposed methodology 
could globally optimize the total cost of the SC. 
(Aburto & Weber, 2007) proposed a hybrid intel-
ligent system which combined Autoregressive 
Integrated Moving Average (ARIMA) univariate 
models and ANNs for demand forecasting in a 
replenishment system for a Chilean supermar-
ket. In their study neural networks outperformed 
ARIMA models and the proposed additive hybrid 
approach gave the best results in terms of predic-
tion accuracy. In the study of (Gutierrez, Solis, 
& Mukhopadhyay, 2008), neural networks were 
applied as univariate models for forecasting lumpy 
demand, and was found that they generally perform 
better than traditional methods, for a variety of 
performance measures. The applicability of more 
advanced computational intelligence techniques 
as univariate models was investigated also by 

(Carbonneau, Laframboise, & Vahidov, 2008). 
In their study they included neural networks, 
recurrent neural networks, and support vector 
machines, to forecast distorted demand at the end 
of a supply chain (bullwhip effect). They com-
pared these methods with other, more traditional 
ones, including naïve forecasting, trend, moving 
average, and linear regression in two data sets 
(one obtained from a simulated supply chain, and 
another from actual Canadian Foundries orders). 
Their results indicated that while recurrent neural 
networks and support vector machines showed the 
best performance, their forecasting accuracy was 
not statistically significantly better than that of the 
regression model. (Kimbrough, Wu, & Zhong, 
2002) used artificial agents in order to investigate 
whether they could mitigate the bullwhip effect 
or discover good and effective business strategies 
(in the face of deterministic demand with fixed 
lead-time), and also to examine the potential of 
artificial agents to cooperate across the supply 
chain. A genetic algorithm was also employed 
by (O’donnell, Maguire, McIvor, & Humphreys, 
2006) in order to reduce the bullwhip effect and 
cost, and to determine the optimal ordering policy 
for members of the SC.

Multivariate approaches combine time-series 
approaches with the ability to include additional 
explanatory variables, for example, promotional 
schedules, price information, economic indica-
tors, etc. Multivariate methods usually include 
dynamic regression models, event models, as 
well as computational intelligence methods, 
such as ANNs. Even though ANNs as multivari-
ate forecast approaches have been employed in 
the task of SC demand forecasting, there is still 
a limited number of publications exploring their 
potential. In (Rabelo, Helal, & Lertpattarapong, 
2004), 17 explanatory variables, namely, minimum 
order processing time, time to perceive present 
demand, time to update channel orders, competi-
tors’ attractiveness, and others, were identified 
as independent and used as inputs to a neural 
network. Due to the increasing market complexity 
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and ambiguity, SC demand forecasting has been 
studied with collaborative techniques in order to 
produce more satisfactory results. Combinations 
of neural networks and fuzzy systems are an ex-
ample of such techniques. In (Efendigil, Önüt, & 
Kahraman, 2009) a comparative analysis on the 
use of ANNs and neuro-fuzzy models to forecast 
demand was presented. The effectiveness of their 
approach was demonstrated using real-world data 
from a consumer goods industry in Turkey.

Apart from the few applications of ANNs as 
multivariate SC forecasting models there is no 
evidence that there are any studies applying more 
advanced computational intelligence techniques as 
multivariate SC forecasting models. In addition, 
the training of ANNs in the existing studies is usu-
ally accomplished using very basic variations of 
the backpropagation algorithm (see next section) 
which is known to produce sub-optimal solutions 
in many cases. Thus, this study is a first attempt to 
develop a multivariate forecasting methodology 
using more advanced training methods in ANNs 
as well as exploring the potential of the power-
ful SVMs theory as multivariate SC forecasting 
mechanism. The proposed methodology includ-
ing ANNs trained with the OLMAM (Optimized 
Levenberg-Marquardt with Adaptive Momentum) 
algorithm as well as the SVM regression tech-
niques are explained in the following sections.

ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are computa-
tional systems whose architecture and operation 
are inspired from our knowledge about biological 
neural cells (neurons) in the brain. ANNs can be de-
scribed either as mathematical and computational 
models for non-linear function approximation, 
data classification, clustering and non-parametric 
regression or as simulations of the behavior of 
collections of model biological neurons (Bishop, 
1995). These are not simulations of real neurons 
in the sense that they do not model the biology, 

chemistry, or physics of a real neuron. They do, 
however, model several aspects of the information 
combining and pattern recognition behavior of real 
neurons in a simple yet meaningful way. Neural 
modeling has shown considerable capability for 
emulation, analysis, prediction, and association. 
ANNs can be used in a variety of powerful ways: 
to learn and reproduce rules or operations from 
given examples; to analyze and generalize from 
sample facts and make predictions from these; or 
to memorize characteristics and features of given 
data and to match or make associations from new 
data to the old data.

ANNs are able to solve difficult problems in 
a way that resembles human intelligence. What 
is unique about neural networks is their ability to 
learn by example. Traditional artificial intelligence 
(AI) solutions rely on symbolic processing of the 
data, an approach which requires a priori human 
knowledge about the problem. Also neural net-
works techniques have an advantage over statisti-
cal methods of data classification and regression 
because they are distribution-free and require no 
a priori knowledge about the statistical distribu-
tions of the data sources. Unlike the statistical 
approaches, ANNs are able to solve problems 
without any a priori assumptions. As long as 
sufficient data is available, a neural network will 
extract any regularities and form a solution.

The main operations that can be performed by 
ANNs are the following:

• Classification: An input pattern is present-
ed to the network, and the network produc-
es the representative class at its output

• Comparison-Pattern Matching: An input 
pattern is presented to the network, and the 
network generates the corresponding out-
put pattern

• Pattern Completion: An incomplete pat-
tern is presented to the network, and the 
network produces an output pattern with 
all the missing characteristics of the input 
pattern
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• Noise Cancellation: A noise distorted pat-
tern is presented to the network, and the 
network removes part of the noise (or even 
all the noise) and produces a clean version 
of the input pattern

• Optimization: An input pattern represent-
ing the initial values for an optimization 
problem is presented to the network, and 
the network produces a set of variables that 
represents a solution to the problem

• Control: An input pattern represents the 
current state of a controller and its desired 
response and the output is a suitable com-
mand sequence that will induce the desired 
response

• Function Approximation: The network can 
practically simulate any function within an 
arbitrary degree of accuracy

As ANNs are models of biological neural 
structures, the starting point for any kind of neu-
ral network analysis is a model neuron whose 
behavior follows closely our understanding of 
how real neurons work. This model neuron is 
shown in Figure 2.

The neuron has N input lines and a single 
output. Each input signal is weighted, that is, it 
is multiplied with the weight value of the corre-
sponding input line (by analogy to the synaptic 
strength of the connections of real neurons). The 

neuron will combine these weighted inputs by 
forming their sum and, with reference to a thresh-
old value and activation function, it will determine 
its output. In mathematical terms, we may describe 
the neuron by writing the following pair of equa-
tions:

u w xi i
i

N

=
=
∑

1

 (1)

y=f(u−θ)  (2)

where x1,x2,…xN are the input signals, w1,w2,…
wN are the synaptic weights, u is the net neuron 
input, θ is the threshold, y is the output signal of 
the neuron, and f() is the activation function.

For notational convenience, the above equa-
tions may be reformulated by letting w0=θ and 
setting x0=−1. Then

w x w xi i i i
i
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− =
==
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and
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
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=
∑

0

 (4)

Figure 2. Neuron Model
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The combination of a fixed input and of an 
extra input weight accounts for what is known 
as a bias input. Note that the new notation has 
augmented any input vector XϵRN to the vector 
(−1,X)ϵRN+1 and also the weight vector WϵRN of 
the neuron to the vector (w0,W)ϵRN+1.

The activation function, denoted by f(), defines 
the output of the neuron in terms of the activity 
level at its input. The most common form of activa-
tion function used in the construction of ANNs is 
the sigmoid function. An example of the sigmoid 
is the logistic function, defined by

f u
u

( ) =
+ −( )

1
1 exp α

 (5)

where α is the slope parameter of the sigmoid 
function. By varying the parameter α we can 
obtain sigmoid functions of different slopes. 
In the limit, as the slope parameter approaches 
infinity, the sigmoid function becomes simply a 
threshold function. The threshold function how-
ever, can take only the values 0 or 1, whereas a 
sigmoid function assumes a continuous range of 
values from 0 to 1. Also the sigmoid function is 
differentiable, whereas the threshold function is 
not. Differentiability is an important feature of 
neural network theory since it has a fundamental 
role in the learning process in ANNs.

Learning in ANNs is based on the selection of 
a suitable error function or cost function, whose 
values are determined by the actual and desired 
outputs of the network and which is also dependent 
on the network parameters such as the weights 
and the thresholds. The basic idea is that the cost 
function has a particular surface over the weight 
space and therefore an iterative process such as 
the gradient descent method can be used for its 
minimization.

For a feedforward ANN, such as the one shown 
in Figure 3 (in which signals from neurons propa-
gate in a forward way from the input layer to the 

output layer), with K output units and a set of P 
training patterns, the Mean Square Error (MSE) 
cost function is defined as

E w d yi
p

i
p

i

K

p

P

( ) = −( )( ) ( )

==
∑∑1

2

2

11

 (6)

where yi
p( )  and di

p( )  denote the output activations 
and desired responses respectively, and w is the 
column vector containing all the weights and 
thresholds of the network.

The method of gradient descent is based on the 
fact that, since the gradient of a function always 
points in the direction of maximum increase of the 
function then, by moving to the direction of the 
negative gradient induces a maximal “downhill” 
movement that will eventually reach the minimum 
of the function surface over its parameter space. 
This is a rigorous and well established technique 
for minimization of functions and has probably 
been the main factor behind the success of the 
backpropagation algorithm (Rumelhart, Hinton, 
& Williams, 1986). However this simple method 
does not guarantee that it will always converge 
to the minimum of the error surface as the net-
work can be trapped in various types of minima 

Figure 3. Feedforward Artificial Neural Network



116

A Computational Intelligence Approach to Supply Chain Demand Forecasting

and thus will produce an inferior solution to the 
learning problem.

THE OLMAM ALGORITHM

The Optimized Levenberg Marquardt with Adap-
tive Momentum (OLMAM) algorithm is a very 
efficient second-order algorithm for training 
feedforward neural networks and, in some cases, 
it has been shown to achieve the best training 
results on standard benchmark datasets reported 
in the neural networks literature (Ampazis & 
Perantonis, 2002).

The main idea in the formulation of the algo-
rithm is that while trying to minimize the neural 
network’s cost function of equation (6), a one-
dimensional minimization in the direction dwt−1 
followed by a second minimization in the direction 
dwt does not guarantee that the cost function has 
been minimized on the subspace spanned by both 
of these directions.

This can be achieved by the selection of con-
jugate directions which form the basis of the CG 
method (Gilbert & Nocedal, 1992). Two vectors 
dwt and dwt−1 are non-interfering or mutually 
conjugate with respect to ∇2E(wt) when

dw E w dwt
T

t t∇ ( ) =−
2

1 0  (7)

Therefore, the objective is to reach a minimum 
of the cost function of equation (6) with respect 
to the synaptic weights, and to simultaneously 
maximize the quantity Φt t

T
t tdw E w dw= ∇ ( ) −

2
1  

without compromising the need for a decrease in 
the cost function.

The strategy which we adopt for the solution 
of this constrained optimization problem follows 
the methodology for incorporating additional 
knowledge in the form of constraints in neural 
network training originaly proposed in (Perantonis 
& Karras, 1995). This strategy yields the following 
weight update rule for the neural network

dw J J I E w dwt t
T

t t t t= − +



 ∇ ( )+
−

−

λ
λ

µ
λ2
1

22

1

2
1

 
(8)

where Jt is the Jacobian matrix of first derivatives 
at step t and λ1 and λ2 can be evaluated in terms 
of known quantities. Equation (8) is similar to the 
Levenberg-Marquard (LM) weight update rule 
with the important differences that in equation (8) 
there is an additional adaptive momentum term 
and that the LM step is multiplied with an adap-
tive factor which controls its size. The quantity 
ϵt can be selected as in (Hagan & Menhaj, 1994). 
Further details on the OLMAM algorithm can be 
found in (Ampazis & Perantonis, 2002).

SUPPORT VECTOR MACHINES

Support Vector Machines (SVM) were first 
introduced as a new class of machine learning 
techniques by Vapnik (Vapnik, 1998), (Cortes 
& Vapnik, 1995) and are based on the structural 
risk minimization principle (Cristianini, Nello, 
Shawe-Taylor John, 2000). An SVM seeks a deci-
sion surface to separate the training data points 
into two classes and makes decisions based on 
the support vectors that are selected as the only 
effective elements from the training set (Wang, 
2005). The goal of SVM learning is to find the 
optimal separating hyper-plane (OSH) that has the 
maximal margin to both sides of the data classes 
(Boser, Guyon, & Vapnik, 1992). This can be 
formulated as:

Minimize  1
2
w wT

subject to  y wx bi i +( )≥ 1 (9)
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where yi ∈ [-1 +1] is the decision of SVM for 
pattern xi and b is the bias of the separating hy-
perplane. After the OSH has been determined, 
the SVM makes decisions based on the globally 
optimized separating hyperplane by finding out 
on which side of the OSH the pattern is located, as 
shown in Figure 4 for a two-dimensional example. 
This property makes SVM highly competitive 
with other traditional pattern recognition methods 
in terms of predictive accuracy and efficiency.

Support Vector Machines may also be used 
for regression problems with the following simple 
modification (Vapnik, Golowich, & Smola, 1996):

Minimize 1
2 1

w wCT
i i

i

n

ξ ξ+( )
=
∑

subject to wx b yi i i+( )− ≤ +ε ξ

and  y wx bi i i− +( )≤ +ε ξ  (10)

where xi  is a slack variable introduced for exceed-
ing the target value by more than ε and xi  a slack 
variable for being more than ε below the target 
value (Webb, 2002).

The idea of the Support Vector Machine is to 
find a model which guarantees the lowest clas-
sification or regression error by controlling the 
model complexity (VC-dimension) based on the 
structural risk minimization principle. This avoids 
over-fitting, which is the main problem for other 
learning algorithms.

INFORMATION SOURCES

Our approach was evaluated using public data 
provided by the Netflix movie rental online 
DVD store, namely “Netflix’s Facebook Notes” 
webpages1. In these webpages Netflix reports the 

most rented movies for each period between note 
updates. We used data covering a period from 
March 4, 2009 until December 1st, 2009 and the 
task was to predict the demand for movie rentals 
during the critical, for sales, Christmas holiday 
season (December 2009), as shown in Figure 5.

In our multivariate approach to forecasting SC 
demand, we utilized the following variables as 
important factors that can affect demand, in the 
light of the papers of (Aburto & Weber, 2007) 
and (Efendigil et al.., 2009):

• Past unit sales: Past unit sales is a com-
petitive unit factor indicating customer 
behavior. In this work past unit sales was 
processed as quantitative information by 
taking into account the number of times 
each movie made it into a “Most Rented” 
list during the period under consideration. 
Figure 6 shows the top-10 movie titles that 
appeared most times in “Most Rented” 
lists during this period.

• Product quality: Product quality involves 
the evaluation about product quality ac-
cording to customers’ opinions. Even 
though product quality is a subjective qual-
itative measure, in this study we utilize this 
factor as quantitative information similarly 

Figure 4. Optimal Separating Hyperplane and bias
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to the methodology proposed in (Lathia, 
Amatriain, & Pujol, 2009). We crawled 
two different sources of movie reviews and 
ratings: Rotten Tomatoes2 and Flixster3. 
Based on how ratings are input into each 
of these systems, these sources are labeled 
by (Lathia et al.., 2009) as “Experts” and 
“Enthusiasts” respectively:
a.  Experts: The Rotten Tomatoes web-

site is an aggregator for a number of 
movie reviews utilizing a variety of 
web sources, including newspapers, 
specialized websites, and magazines. 
The critics use different rating scales; 
some range from 1-10 stars, others 1-5, 
and some use a 100-point scale. In this 
work we normalized all ratings in a 
1-5 scale by adopting a simple linear 
transformation to reinterpret ratings 
from one scale to another.

b.  Enthusiasts: Flixster is one of the larg-
est movie oriented social networks, 
and contains ratings given by the site’s 

movie-enthusiast subscribers. We fol-
lowed public review profiles of some 
Flixster’s top-users discussing movies 
within our training set. The Flixster us-
ers rate movies on a 1-5 star scale, but 
there are also two further options avail-
able: “Want to See” (WS), and “Not 
Interested” (NI). In fact, the majority 
of ratings in the data fall into one of 
these two latter categories. WS ratings 
were given a value of 5, whereas NI 
were assigned the value 1.

• Customer interest decay indicator: In ad-
dition to the above explanatory variables, 
we introduced this third parameter in order 
to encapsulate the fact that the interest for 
previous movie releases declines with time 
as new releases appear. In order to quantify 
this information we gave to customer in-
terest decay indicator its maximum value 
whenever a title appeared for the first time 
in a “Most Rented” list and we allowed it 
to diminish exponentially with time.

Figure 5. Netflix’s Facebook Notes for most rented movies in 2009. The first entry (“25 Most Rented 
Movies from Netflix for the Month of December 2009”) was used as the testing dataset to be predicted 
from all the other notes appearing in this figure (source:Facebook)
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As a final note in this section, we should men-
tion that we did not take into account the effect of 
any promotions appearing in the Netflix web site 
during the period spanned by the test set, i.e. the 
impact in demand due to promotions or special 
days (such as Christmas, new year’s day, etc.).

RESULTS

In our experiments we compared the demand 
forecasting performance of ANNs trained with the 
OLMAM algorithm and the SVM for regression. 
For all models the training dataset was randomly 
divided 10 times into train and test data using 60% 
and 40% of the samples respectively each time. 
For each feedforward neural network configura-
tion trained with OLMAM (i.e. for each different 
selection of hidden nodes) we performed a total 
of 100 training trials resulting from training the 
network 10 times for each of the 10 random splits 
of the dataset. Each different training trial was 
performed by initializing the network’s weights 
in the range [-0.1, 0.1]. In each trial the maximum 
number of epochs was set to 500 and training was 
considered successful whenever the training MSE 
of equation (6) was ε≤0.01. All inputs and targets 
were normalized in the range [0, +1] in order to 
avoid saturation of the sigmoid. The best perfor-
mance was achieved with a network configuration 
of a single hidden layer with four hidden nodes. 

All experiments were carried in MATLAB using 
the LMAM/OLMAM Neural Network Toolbox 
(Ampazis, 2002).

For training the SVM we used the SVMlight 
package (Joachims, 2002) compiled with the Intel 
C/C++ Compiler Professional Edition for Linux. 
Training of the SVM was run on a 2.5GHz Quad 
Core Pentium CPU with 4G RAM running Ubuntu 
9.10 desktop x86_64 (Karmic Koala) operating 
system. In our experiments we linearly scaled each 
feature to the range [-1, +1]. Scaling training data 
before applying SVM is very important. The main 
advantage is to avoid attributes in greater numeric 
ranges to dominate those in smaller numeric 
ranges. Another advantage is to avoid numerical 
difficulties during the calculation. Because kernel 
values usually depend on the inner products of 
feature vectors, large attribute values might cause 
numerical problems (Chang & Lin, 2001). With 
the same method, testing data features were scaled 
to the training data ranges before testing. The 
training target outputs were also scaled to [0, +1] 
and the output of the SVM was then transformed 
back from the [0, +1] range to its original target 
value in order to calculate the MSE.

We also evaluated the Mean Absolute Percent-
age Error (MAPE) of the test data set at each 
training trial defined as (Makridakis, Wheelwright, 
& Hyndman, 2008):

Figure 6. 10 most rented movie titles within the period covered in the training set (in parentheses the 
number of times each title appeared in a “Most Rented” list)
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where as in equation (6), d(p) and y(p) denote the 
actual observation and the forecast respectively.

In Table 1 we report the average MSE and 
MAPE values over all 10 random splits of the 
dataset for the OLMAM and SVM regressors, as 
well as the standard deviation over the 10 trials. 
From this table we can observe that in all cases 
the performance of the best OLMAM trained 
neural network with 4 hidden nodes is directly 

Table 1. MSE and MAPE averaged over all the training/test splits, for OLMAM and SVM 

OLMAM SVM

MSE 0.007 ± 0.003 0.005 ± 0.002

MAPE 12.16 ± 1.1 11.70 ± 0.8

Figure 7. 25 most rented movie titles from Netflix for the month of December 2009 (source:Facebook)
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comparable to that of the SVM regressor. In order 
to obtain a more qualitative feeling of the results, 
Figure 7 shows the actual list reported by Netflix 
for the 25 most rented movie titles for the month 
of December 2009. Among these titles there were 
only 15 common movies appearing both in the 
training set and in this list. Figure 8 shows the 
demand predictions for these 15 titles made by 

the best OLMAM trained ANN, while Figure 9 
shows the results obtained by the SVM. From 
these figures we can see that the predictions made 
by both algorithms for the demand of the most 
rented movies are quite accurate since the top 
places are dominated by titles that were indeed in 
the top places of the list reported by Netflix. It is 
interesting to note that within the top predictions 

Figure 8. ANN results for the demand forecasting for the 15 common movie titles appearing both in the 
training set and the December 2009 test set (in parentheses the actual rankings)

Figure 9. SVM results for the demand forecasting for the 15 common movie titles appearing both in the 
training set and the December 2009 test set (in parentheses the actual rankings)
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of both algorithms there is only one title (“Gran 
Torino”) that appeared most of the times within 
the period covered in the training set, as was 
shown in Figure 6. This indicates that the results 
are based on a balanced combination of the input 
explanatory variables, and are not heavily affected 
from the past unit sales quantity alone, as would 
most probably have been the case with a linear 
or nonlinear univariate (time-series) approach.

CONCLUSION

In this chapter, a supply chain risk demand fore-
casting approach based on neural networks and 
support vector machines was presented. Our first 
aim was to explore the potential of more advanced 
computational intelligence algorithms for predict-
ing demand in a SC than those already explored 
in the relevant literature. For this purpose, several 
ANN architectures trained with the OLMAM 
algorithm were tried in a real world SC demand 
forecasting problem, namely predicting the de-
mand for movie rentals during the critical, for sales, 
Christmas holiday season for the Netflix movie 
rental online DVD store. All the OLMAM trained 
ANNs performed quite well, and the winner was 
an ANN with a single hidden layer and 4 hidden 
neurons, which exhibited reasonable prediction 
capability. Its performance was comparable to 
the SVM for regression algorithm which is well 
known for its ability to avoid over-fitting. The 
results obtained also provide a good indication of 
the value of having advanced multivariate models 
that take into account the complex interactions that 
exist among factors that can influence SC demand 
in an uncertain environment. The computational 
intelligence approach presented in this chapter 
was intended to optimally combine the integration 
of data from various sources of information and 
the power of advanced algorithms for lowering 
the uncertainty barrier.
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ABSTRACT

Contributions to a supply chain’s overall cost function (such as the bullwhip effect) are sensitive to the 
different players’ ordering policies. This chapter addresses the problem of developing ordering policies 
which minimise the overall supply chain cost. Evolutionary Algorithms have been used to evolve such 
ordering policies. The authors of this chapter extend existing research in a number of ways. They apply 
two more recent evolutionary algorithms to the problem: Grammatical Evolution (GE), using a standard 
Genetic Algorithm (GA) search engine; and Quantum Inspired Genetic Algorithm (QIGA), used both 
as a standalone algorithm, and as an alternative search engine for GE. The authors benchmark these 
against previous work on the linear Beer Game supply chain, and extend our approaches to arborescent 
supply chains (without gaming), and capacitated inventory. The ordering-policy-generating gram-
mars investigated range from simple — only using the demand presented at that point — to complex 
— which may incorporate lagged demands, forecasting approaches such as Moving Average or Simple 
Exponential Smoothing, conditional statements and other operators. The different grammars and search 
engines are compared for deterministic demand, and various stochastic demand distributions. Overall, 
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INTRODUCTION

Supply chains may be linear, with only one player 
at each tier, or arborescent (tree-like), with mul-
tiple players at each tier. The well-known Beer 
Game (see below) is a linear 4-tier supply chain. 
Supply chains exhibit the bullwhip effect, where 
demand variance at the customer end is amplified 
along the chain upstream. This effect, and the total 
supply chain cost, are sensitive to the players’ 
ordering policies.

An example of an ordering policy is the “one 
for one” policy: the order received from the im-
mediate downstream customer is passed on to the 
immediate upstream supplier.

The problem this research addresses is to 
develop ordering policies which minimise the 
overall cost in the supply chain, and implicitly 
mitigate the bullwhip effect. For supply chains 
of very simple stucture, e.g., two tiers, there exist 
analytical solutions to the optimal order quantity 
problem, such as the Box-Jenkins ARMA/ARIMA 
approach Box & Jenkins (1970). However, for 
more complex supply chains, with multiple tiers, 
branching, capacitation, or other enrichments, 
such approaches may fail or simply not exist. 
Furthermore, such approaches are mathematically 
involved, and not always understood or adopted 
by practitioners. There is a need for an approach 
which is flexible enough to be applicable to a wide 
range of real situations, while being tunable with 
a few parameters (and so lending itself to use by 
practitioners), yet still being accurate enough to 
perform at least as well as current approaches.

The rise in popularity of Evolutionary Algo-
rithms (EAs) has led researchers to investigate 
models of the Beer Game incorporating evolu-

tion — such as the Genetic Algorithm (GA) and 
Genetic Programming (GP) — and simulation. 
These models evolve ordering policies that mini-
mise total supply chain cost. For the supply chain 
problems so far investigated, EAs appear to be 
at least competitive with previous approaches.

Our research extends this existing work in 
several ways. We apply two recent EAs:

• Quantum Inspired Genetic Algorithm 
(QIGA) (the first supply chain use we 
know of); and

• Grammatical Evolution (GE), using as 
search engine either a standard GA (de-
noted GE-GA) or QIGA (denoted GE-
QIGA). GE (O’Neill & Ryan, 2001, 2003; 
Brabazon & O’Neill, 2006) is an EA, more 
specifically, a form of GP using linear ge-
nomes. It can evolve complete programs 
(in our case, ordering policies) in an ar-
bitrary language using a variable-length 
binary string (genome). The binary string 
determines which production rules in a 
Backus-Naur Form (BNF) grammar defi-
nition are used in a genotype-to-phenotype 
mapping process to generate a program.

GE is an intelligent metaheuristic, newly 
introduced to the supply chain domain. A major 
motivation for its use here is the capability of en-
coding the particular supply chain structure in the 
grammar, so meeting the flexibility requirement 
above; it is also tunable; and it holds out the hope 
of being competitive with existing approaches in 
terms of accuracy, as well as being attractive to 
practitioners. By hybridising GE with GA and 

GE outperforms other approaches by discovering more efficient ordering policies. However, its perfor-
mance is sensitive to the choice of grammar: simple grammars do best on deterministic demand, while 
grammars using conditionals, information sharing and forecasting do better on stochastic demand. GE 
with a QIGA search engine has similar performance overall to GE with a standard GA search engine: 
typically QIGA is better if demand follows a Poisson distribution, with GA better for Normal demand.
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QIGA, we hope to extend recent promising results 
of hybrid algorithms.

We benchmark QIGA, GE-GA and GE-QIGA 
against previous work on the Beer Game, and ex-
tend our approaches to arborescent supply chains. 
We investigate stochastic demand distributions, 
and the effects of capacitated inventory (with 
resulting additional cost of stockouts).

Our model is sufficiently general for any supply 
chain configuration that does not involve gaming 
effects among the players (e.g., in the automotive 
industry). We apply it not only to the standard 
Beer Game supply chain (Figure 1) but also to an 
arborescent supply chain with four players (Figure 
2). In each, the manufacturer is merely a source 
of inventory, and places no orders.

The high-level approach is as follows. The GA 
and QIGA use a simple “one for one” ordering 

policy for each player; in the GE setup, each in-
dividual in a population of bit-strings is mapped 
by a grammar to a set of agent ordering policies 
(a policy for each player in the chain). A bespoke-
developed agent-based simulation model of the 
supply chain (with variable agent behaviour and 
awareness of environment) produces a cost which 
measures the individual’s fitness. Fitter individu-
als are given preference in the next generation, 
whether by having a higher probability of repro-
duction (in the standalone GA and GE-GA) or by 
seeding the next generation of a quantum popula-
tion with the best observed from this population 
(in the standalone QIGA and GE-QIGA). Over 
multiple generations, the best individual is found. 
Minimum and mean cost, and other performance 
measures, are recorded.

Figure 1. Beer Game supply chain configuration

Figure 2. Example Arborescent supply chain configuration
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The grammar approach’s flexibility is high-
lighted by the fact that we can investigate the 
effect of allowing agents to develop their order-
ing policies by using, for example, the demand 
presented to them, the demand at other points in 
the chain (information sharing), lagged demands, 
forecasting approaches (e.g., Moving Average, 
Simple Exponential Smoothing), conditional (if) 
statements and other operators.

The different grammars and search engines are 
tested in the settings of (a) deterministic demand 
(the classical Beer Game); and (b) stochastic 
demand. The results are compared to exact re-
sults from an Integer Program (where feasible/
appropriate).

Results compare favourably with existing 
research on generating ordering policies using a 
GA (Kimbrough et al., 2001, 2002; O’Donnell et 
al., 2006): we find the same (optimal) policies as 
the GA in all experimental setups used by these 
authors. In some cases when demand and/or lead 
times are stochastic, GE outperforms other ap-
proaches by discovering more efficient ordering 
policies (in cost reduction terms) for agents in the 
supply chain. However, its performance is sensi-
tive to the choice of grammar: simple grammars do 
best on deterministic data, while grammars using 
conditionals, information sharing and forecasting 
do better on stochastic data. This is evidence of 
the vital rôle grammar selection has in GE’s re-
sults. GE-QIGA has similar performance overall 
to GE-GA, but performs better in certain settings.

The supply chain simulation model is further 
enriched by current research in order to examine 
more complex supply chain networks, incorpo-
rating service level agreements and capacitated 
shipments; along with grammar structures (incor-
porating agent memory) leading to more efficient 
ordering policies.

BACKGROUND

The Beer Game

Researchers and practitioners have used the MIT 
Beer Distribution Game (Jarmain & Fey, 1963; 
Mosekilde & Larsen, 1988; Sterman, 1989) to 
simulate a supply chain with four tiers: Retailer, 
Wholesaler, Distributor and Factory. Its basic 
setup and weekly operation are as in Figure 3.

Shipments arrive from upstream players; orders 
arrive from downstream players; orders are filled 
and shipped where possible, affecting the inven-
tory and backorders of a player; each player decides 
how much to order to replenish inventory; and, 
finally, inventory holding costs and backorder 
costs are calculated for each player every week. 
The only decision a player makes is how much 
to order from his/her upstream supplier.

The Beer Game is used world-wide in academia 
and business to demonstrate a simplified supply 
chain and the difficulty of keeping costs low. A 

Figure 3. The Beer Game
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major contributor to these costs is the Bullwhip 
effect or Forrester effect (see Figure 4).

Forrester (1958, 1961) showed that small 
changes (e.g., in input demand, stockouts in sup-
ply chain execution, etc.) to this naturally oscil-
lating system can have serious impacts on its 
operation. This variance may be minor for any 
one customer, but when it propagates back through 
the supply chain can result in large and costly 
fluctuations at the supplier end. Often, these de-
mand oscillations will lead to a period of over-
production (with the need to acquire more raw 
materials). This can cause vast sums of money to 
be caught up in the supply chain (Cooke, 1993), 
with dramatic inefficiencies affecting all echelons. 
Problems such as excess inventories, quality is-
sues, and higher costs of raw material, overtime 
and shipping are common. In the worst case, 
customer service declines, lead-times increase, 
sales are lost, costs increase and capacity must be 
adjusted. The four main causes of the bullwhip 
effect as identified by Lee et al. (1997a,b) are: 
demand forecast updating; order batching; ration-
ing and shortage gaming; and price variations; 
leading to players’ overreaction to orders.

The Beer Game is complex enough (being an 
intractable 23rd order non-linear difference equa-
tion (Sterman, 1989)) to be used for simulations, 
and employed for research into bullwhip mitiga-
tion techniques. For its use as an active learning 
teaching aid, see (Sparling, 2002; Goodwin & S.G. 

Franklin, 1994; Sterman, 1992; Meadows, 2007; 
Coakley et al., 1998; Nienhaus et al., 2006; Jacobs, 
2000; Chen & Samroengraja, 2000; Teixeira et al., 
2004). Because of the literature’s close study of 
the Beer Game (as a “laboratory” supply chain), 
we use it as one test bed for our approaches.

In Sterman (1989), irrationality in ordering 
patterns is reduced by using a stock management 
heuristic employing the widely used forecasting 
technique, Simple Exponential Smoothing (SES) 
(Gardner, 1985a,b). Kimbrough et al. (2001, 2002) 
suggest that this irrationality while playing the 
Beer Game may be due to lack of incentives for 
information sharing, bounded rationality, or the 
consequence of individually rational behaviour 
that works against the interests of the group. 
Chen (1999) showed that the bullwhip effect can 
be reduced using a base-stock installation policy, 
assuming all players in the supply chain work as 
a team. Base-stock is optimal when facing sto-
chastic demand; but a “one for one” (1—1) policy 
is optimal when facing deterministic demand 
(Kimbrough et al., 2001, 2002). This has led to 
research on artificial agents replacing humans 
in the Beer Game. We will see that, using GAs 
and GE, the overreaction identified by Lee et al. 
(1997a,b) is ameliorated, giving reduced costs 
throughout the supply chain, and more efficient 
ordering and stocking policies.

Figure 4. The Bullwhip Effect - Increasing variability of orders up the supply chain
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Evolutionary Algorithms in 
Supply Chain Management

The last decade has seen much interest in the 
application of biologically inspired algorithms 
to supply chain research, including GAs, GP, 
Artificial Neural Networks and Ant Colony 
Optimisation. A recent special issue of the In-
ternational Journal of Computer Applications in 
Technology (2008) — “Intelligent Techniques 
to Solve Complex Problems in Logistics and 
Supply Chains” — investigates the effectiveness 
of Differential Evolution (Falcone et al., 2008) 
and Particle Swarm Optimisation (Yadav et al., 
2008). Evolutionary algorithms (EA) are a subset 
of biologically inspired algorithms which mimic 
the process of natural selection to evolve solutions 
for a given problem. They borrow terms from 
Biology such as: genotype for the genetic code of 
an organism; and phenotype for the realisation of 
that code in the world, namely, a living creature.

Kimbrough et al. (2001, 2002) and O’Donnell 
et al. (2006) successfully use a GA to evolve an 
“x + y” order quantity for each agent in the Beer 
Game, where x is the demand requested from an 
agent’s immediate downstream customer and 
y is an increment determined by the GA. They 
experiment with various demand and lead time 
values. Here, the genotype is the encoding scheme 
(typically as a bit string) of the ordering policy, 
while the phenotype is the actual policy (or set of 
policies). The fitness of a policy is estimated by 
running a Beer Game simulation using that policy, 
typically for 35—100 time periods. Chan et al. 
(2006) adopt a similar approach to Kimbrough et 
al. (2001, 2002), except that each agent chooses 
an inventory policy from a set of candidate poli-
cies and determines its ordering quantity for each 
period according to the chosen policy. Strozzi 
et al. (2007) employ GAs to evolve parameters 
used in Sterman’s stock management heuristic 
(Sterman, 1989). Moore & DeMaagd (2004) use 
GP to evolve ordering policies while Kleinau & 
Thonemann (2004) evolve both inventory con-

trol policy structures and parameters using GP. 
Chaharsooghi et al. (2008) use an agent-based 
model and reinforcement learning to find effec-
tive ordering policies for the Beer Game. Phelan 
& McGarraghy (2007) introduce Grammatical 
Evolution to supply chain dynamics and bullwhip 
mitigation.

Quantum Inspired 
Genetic Algorithms

Quantum-inspired genetic algorithms (QIGA) aim 
to improve the performance of genetic algorithms 
by emulating properties of Quantum Mechan-
ics, such as the quantum bit and superposition 
of states (Han & Kim, 2002, 2004; Narayanan 
& Moore, 1996; Yang et al., 2004a,b). These 
algorithms run on classical computers; they are 
not quantum algorithms, which run on quantum 
computers. They cannot simulate certain quantum 
effects such as the non-local entanglement ef-
fect: when the wave function (or quantum state) 
of a many-particle system cannot be separated 
into independent wave functions, one for each 
particle. The application of quantum concepts to 
optimisation and business problems is an area of 
active research interest. For example, Fan et al. 
(2008) give a Finance application.

In Quantum Mechanics, a two-state system is 
one where the quantum state ψ is a linear super-
position of just two eigenstates, say |0ϵ and |1ϵ in 
the standard Dirac bra-ket notation; that is,

ψ = α|0ϵ + β|1ϵ.

Here, |0ϵ and |1ϵ are orthogonal basis vectors 
for a 2-dimensional complex Hilbert space, and 
α,β ∈ C, with |α|2 + |β|2 = 1 for ψ normalised. A 
two-state system where the states are normalised 
and orthogonal, as here, is called a quantum bit or 
qubit and written as a pair (α,β) ∈ C2. A system 
of m qubits may be written as a 2 × m matrix of 
complex numbers,
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 α1, α2, …, αm 

β1, β2, …, βm  

where, for each i, αi
2 + βi

2 = 1.
Quantum systems can compactly convey 

information on many possible system states. In 
classical bit strings, a string of length m can rep-
resent 2m possible states; but a quantum system of 
m qubits can simultaneously represent all possible 
bit strings of length 2m, e.g., an 8 qubit system can 
simultaneously encode 256 distinct strings. This 
suggests the possibility of modifying standard 
EAs to work with very few quantum individuals, 
or even just one, rather than a large population.

In EA language, an m-qubit system may be 
called a quantum chromosome. When used in a 
QIGA (Han & Kim, 2002; Narayanan & Moore, 
1996), α and β are usually real numbers, so we 
may view a qubit (also called a Q-bit in QIGAs) 
as lying on the unit circle in R2 (Figure 5).

Algorithm 1 provides an example of a ca-
nonical binary QIGA; see (Han & Kim, 2002).

Initially, the population of n quantum chro-
mosomes (n could be 1) is created as

Q(t) = {q1(t),q2(t),…,qn(t)},

where each member qi(t) = (q1
i(t),…,qm

i(t)) of the 
population consists of a qubit string of length m. 
The α and β values for each qubit are initialised 
to 1/√2, so the states |0ϵ and |1ϵ are equally likely. 
Domain knowledge, e.g, that some states are 
likely to lead to better results, can be used to seed 

Figure 5. A QIGA qubit (ai,bi) on the unit circle 
of R2, rotated by an angle Dθi to (a¢i,b¢i)

Algorithm 1. Binary Quantum-inspired Genetic Algorithm

Set t:= 0; 

Initalise Q(t) (the quantum chromosomes); 

fori:= 1 to ndo 
     Create P

i
(t) by undertaking an observation (sample) of Q(t); 

end  

Evaluate P(t) and select the best solution from this population; 

Store the best solution in B(t); 

whilet < t
max
do 

     t:= t + 1; 

     Create P*(t) by undertaking observations of Q(t - 1); 

     Evaluate the population of solutions P*(t); 

     Compare best solution in P*(t) with that of B(t - 1) and store best 

solution in B(t); 

     Update Q(t) using B(t); 

end 
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the initial quantum chromosome(s). Once Q(t) is 
created, it can be used to create a population P(t) 
= {p1(t),p2(t), …,pn(t)} of binary (solution encod-
ing) strings by performing ‘observations’ on the 
quantum chromosome(s).

Because the observation step is stochastic, the 
QIGA could be implemented using a few (or just 
one) quantum chromosome(s), with each chromo-
some observed (sampled) multiple times in order 
to generate the population P(t).

In the while loop, an update step is performed 
on Q(t), e.g., using rotations (Figure 5). Its pur-
pose is to adjust the quantum chromosome(s) so 
as to increase the chance of generating the best 
solution found so far in the next iteration. As 
the QIGA system approaches an optimum, each 
coefficient of the quantum chromosome will tend 
towards either 0 or 1, corresponding to a high 
probability that the quantum chromosome will 
generate a specific solution vector p = (p1,…,pm) 
when observed.

Grammatical Evolution

Grammatical Evolution (GE) is an EA developed 
by O’Neill & Ryan (2001, 2003) that can evolve 
computer programs, sentences in any language 
or, for the purposes of this research, ordering 
policies. Unlike Koza’s GP, where solutions are 
represented as syntax trees, GE uses a linear 
genome representation together with a grammar. 
Each individual (genotype) is a variable length 
binary string comprising codons (8-bit strings) 
used to select production rules from the gram-

mar (O’Neill & Ryan, 2001, 2003; Brabazon & 
O’Neill, 2006). See Figure 6 (left).

Any search engine that can operate on binary 
or integer strings could employ GE’s mapping 
process to generate a program or policy (Figure 
6 (right)).For example, particle swarm and dif-
ferential evolution engines have been used in 
grammatical swarm and grammatical differential 
evolution algorithms respectively (Brabazon & 
O’Neill, 2006).

The language to be generated is described using 
a Backus-Naur Form (BNF) grammar definition. 
BNF is a notation for expressing the grammar of 
a language (in our case, a set of ordering policies) 
in the form of production rules. BNF grammars 
consist of: terminals, which are fully determined 
elements that can exist in the language, e.g., 
constants; and non-terminals, which can be ex-
panded using the production rules into one or more 
terminals or non-terminals. When using GE on a 
problem, a suitable BNF grammar must first be 
defined. The selection of an appropriate grammar 
is essential for finding efficient solutions (here, 
ordering policies) in GE (Brabazon & O’Neill, 
2006). An example grammar tailored to the Beer 
Game is given later.

METHODOLOGY & 
IMPLEMENTATION

This section describes the application of GE and 
QIGA to discover optimal ordering policies for 
artificial agents, in both the Beer Game and an 

Figure 6. GE process (left) and modular structure (right)
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arborescent supply chain. The simulations used 
to generate the agents’ ordering policies and fit-
ness functions are similar to those of Kimbrough 
et al. (2001, 2002) and O’Donnell et al. (2006), 
with the key difference being the EA employed 
to generate the ordering policies. Kimbrough et 
al. (2001, 2002) use a fixed-length binary string 
and a GA. Our GE method uses various grammar 
definitions representing ordering policy rules, a 
fitness function similar to those of Kimbrough 
et al. (2001, 2002) and O’Donnell et al. (2006), 
and a GA or QIGA search engine. Results show 
how, depending on a chosen grammar, the GE 
can discover more complex ordering policies that 
reduce the agents’ total cost.

Performance Comparison

Traditional analysis of algorithms (involving 
worst-case run times in terms of input-problem 
size) has limited applicability to stochastic search/
optimisation algorithms (or metaheuristics) of the 
type considered here, since the stochastic nature of 
the algorithms is central. Average computational 
effort taken to reach an adequate solution is one 
possible metric, while another that has been used 
is the quality of the best-of-run solution achieved. 
In this work, we use the quality-of-solution metric 
(as recommended for EAs by Luke & Panait (2002) 
and Christensen & Oppacher (2002)), while also 
remarking on computational effort.

Supply Chain Configurations

Three configurations were used, as in Table 1.

Configuration A is the standard Beer Game 
(Figure 1) while Configurations B and C are ar-
borescent with four players (Figure 2). Only 
Configuration C has inventory capacity con-
straints. All four approaches, GA, QIGA, GE-GA 
and GE-QIGA, are applied to each configuration.

Encoding and Fitness Function

As in Kimbrough et al. (2001, 2002) and O’Donnell 
et al. (2006), each human player is replaced by 
an artificial agent (in Configuration A, these are 
Retailer, Wholesaler, Distributor and Factory; in 
Configurations B and C they are three Retailers 
and one Wholesaler). Each agent’s rule is repre-
sented by a 6-bit binary string. The leftmost bit 
represents the sign (‘+’ or ‘-’) and the next five 
bits represent (in base 2) how much to order this 
time period, denoted by y. Let x denote the agent’s 
incoming demand this time period. Each agent’s 
ordering policy is understood to mean max{0,x + 
y} each time period. For example, rule 101001 can 
be interpreted as “x + 9”: if the customer demand 
is x, then the agent will place an order x + 9 with 
his/her supplier.

The fitness of an individual is defined as the 
negative of the total supply chain cost C, where

C Inv HC Back BCAT AT
T

N

A

= × ×
==
∑∑

11

4

 1

with all costs measured in the appropriate currency 
unit, and notation:

A  Agent identifier (four in each model used)
T  Current time period
N  Total number of time periods
InvAT Amount of inventory on hand for agent A 

in time period T
HC  Cost of holding 1 unit of inventory per time 

period

Table 1. Configurations used in experiments 

Name Description Capacitated?

Config. A 4 tier linear supply chain No

Config. B 2 tier tree No

Config. C 2 tier tree Yes
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BackAT Amount of backorders for agent A in time 
period T

BC  Backorder cost for 1 unit of inventory per 
time period

The best ordering policies (phenotypes) after 
playing the game for a number of time periods 
(35—100) are retained for evolving better policies 
in future generations.

Use of Grammars

To apply GE, a BNF grammar is defined, repre-
senting ordering policy choices that an agent can 
have. A grammar can be represented by the 4-tuple 
(N,T,P,S), where N is the set of non-terminals, T 
is the set of terminals, P is a set of production 
rules and S is a start symbol which is a member 
of N. When there are multiple productions that 
can be applied to an element of N, the choices 
are delimited with the ‘|’ symbol. An example of 
a BNF grammar used in finding optimal ordering 
policies is:

N    =    {<agent>, <policy>, 

<op>, <int>, <var>},  

T    =    {x, +, -, 0, 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20},  

S    =    {<agent>}, 

and P can be represented as:

<agent>    ::= <policy><policy><pol

icy><policy>  

<policy>   ::= <var>|<var><op><int>

|<policy><op>(<var><op><int>)  

Example 1.

(A)      <agent>      ::=      <policy><policy><policy><poli

cy>      (0)  

(B)      <policy>      ::=      <var>      (0)  

          |      <var><op><int>      (1)  

          |      <policy><op>(<var><op><int>)      (2)  

(C)      <op>      ::=      +      (0)  

          |      -      (1)  

(D)      <int>      ::=      0      (0)  

          |      1      (1)  

          |      2      (2)  

          :      :      :  

          :      :      :  

          |      19      (19)  

          |      20      (20)  

(E)      <var>      ::=      x      (0) 

Table 2. Summary of production rules and 
number of choices available for each rule. 
e.g., production rule B has 3 possible choices 
(1) <var>, (2) <var><op><int> and (3) 
<policy><op>(<var><op><int>) 

Rule Number of Choices

A 1

B 3

C 2

D 21

E 1



135

Generating Supply Chain Ordering Policies using Quantum Inspired Genetic Algorithms

<op>      ::=      +|-  

<int>     ::= 0|1|2|3|4|5|6|7|8|9| 

   10|11|12|13|14|15|16|17|18|19|20  

<var>     ::= x 

which can be rewritten as in Example 1.
Table 2 shows the production rules and 

choices available for each rule.
S is mapped onto terminals by sequentially 

reading an 8-bit codon from the genotype and 
converting this to an integer value c, from which 
an appropriate production rule is selected by the 
mapping:

Rule:= c (mod r).

Here, r is the number of rule choices for the 
current non-terminal symbol.

During the genotype to phenotype mapping 
process, individuals may run out of codons; in 
this case the wrap operator is applied which re-
uses the codon string, starting with the leftmost 
codon to determine the next rule to be selected. 
Each time the same codon is expressed, the same 
integer value is given; however, depending on the 
current non-terminal to which it is applied, it may 
result in a different production rule. Each time 
a given individual is mapped from its genotype 
to its phenotype, the same output is generated, 
since the same choices are made each time. An 
incomplete mapping can occur even after several 
wrappings; thus, an upper bound is placed on the 
number of wrappings allowed.

Mapping Process Example: 
Beer Game Ordering Policy

Consider the binary string (genotype):

11111000 11110111 00100111 00101111 

10110101 10000101 00010010 (DNA)

Converting this bitstring into an integer codon 
string, where each codon is 8 bits, gives:

248 247 39 47 181 133 18 (RNA)

As there is only one production rule for the start 
symbol <agent>, it is automatically replaced and 
no codons are used. The ordering policy becomes:

<policy><policy><policy><policy>

Taking the leftmost non-terminal <policy> 
(representing the ordering policy for the Retailer 
agent) there are 3 possible replacements:

<var> | <var><op><int> | 

<policy><op>(<var><op><int>)

The codon being read is 248. Now 248 
≡ 2 (mod 3) so 2 is selected from rule B, 
and applying the mapping function gives 
<policy><op>(<var><op><int>). The ordering 
policy becomes:

<policy><op>(<var><op><int>)<policy><

policy><policy>

Again, reading the leftmost non-terminal 
<policy> and reading the next codon to the right, 
247, we have 247 ≡ 1 (mod 3) so 1 is selected 
from rule B. Applying the mapping function gives 
<var><op><int>. The ordering policy becomes:

<var><op><int><op>(<var><op><int>)<po

licy><policy><policy>

The next leftmost non-terminal <var> has only 
one possible choice, x, giving:

x<op><int><op>(<var><op><int>)<policy

><policy><policy>

The next leftmost non-terminal <op> has 2 
possible choices “+”, “-”. The next available co-
don value, 39 ≡ 1 (mod 2) selects 1 from rule C, 
giving “-”. The ordering policy becomes:

x-<int><op>(<var><op><int>)<policy><p

olicy><policy>

The next leftmost non-terminal <int> has 21 
possible choices 0, 1, …, 20. The next available 
codon value, 47 ≡ 5 (mod 21) selects 5 from rule 
D, so the ordering policy becomes:
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x-5<op>(<var><op><int>)<policy><polic

y><policy>

The next leftmost non-terminal, <op>, has 
2 possible choices “+”, “-”. The next available 
codon value, 181 ≡ 1 (mod 2) selects 1 from rule 
C, giving “-”. The ordering policy becomes:

x-5-(<var><op><int>)<policy><policy>

<policy>

Continuing thus, the next (<var><op><int>) 
evaluates to (x-18), giving

x-5-(x-18)<policy><policy><policy>

At this stage, the mapping process has gener-
ated an ordering policy for the Retailer agent; 
all other agents’ policies are generated similarly, 
resulting in the complete phenotype (set of order-
ing policies) in Table 3. By coincidence, all of the 
codon values were used in generating the Retailer 
policy. The wrap operator is applied and the next 
codon used (to start the Wholesaler policy) is the 
leftmost codon, 248.

Once all agents’ policies have been generated, 
the fitness of this individual’s phenotype is esti-
mated, by running a Beer Game simulation with 
these policies (100 times for statistical signifi-
cance) and using Equation (1).

Demand Distributions

Standard demand distributions are used (Chen, 
1999; Chen & Samroengraja, 2000; Kimbrough 

et al., 2002; Sparling, 2002; Kleinau & Thone-
mann, 2004):

• Uniform on [0,15]
• Poisson, mean 10 (slow demand)
• Normal, mean 50, standard deviation 10 

(strong demand)

To better deal with stochastic demand, some 
grammars used provide agents with forecasting 
techniques and the ability to use their own his-
torical demand data when generating ordering 
policies.

Grammars

A significant potential advantage of GE is that 
(in contrast to GA) the structure of the ordering 
policy does not have to be known a priori for 
encoding purposes.

Four grammars, of increasing complexity, were 
used (see Appendix for full Backus-Naur forms):

Grammar 1

x + y rule

Grammar 2

more complex, e.g., x + y - (x + z), etc.

Grammar 3

allows use of

• H(l), historical demand from time periods 
t-l,…,t (current time): the parameter l is the 
time lag

• M(s), Moving Average (MA), with one pa-
rameter s, the smoother

• S(α), Simple Exponential Smoothing 
(SES) with one smoothing parameter, α

Table 3. This ordering policy (phenotype) recom-
mends that 13 units are ordered each time period 
by each agent. This example is not the best policy 
discovered by GE 

Agent Ordering Policy

Retailer x-5-(x-18)

Wholesaler x-5-(x-18)

Distributor x-5-(x-18)

Factory x-5-(x-18)
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Grammar 4

uses if … else statement & selection from 
Grammars 1—3.

Results

Five experiments (0, 1, 2, 3, 4) were conducted to 
determine the efficiency of GE’s ordering policies 
in minimising total supply chain cost. All costs are 
given per unit per time period. Because of lack 
of space, some other experiments conducted are 
not described. Experimental results are compared 
with an Integer Programming (IP) approach using 
branch and bound, where meaningful.

Experiment 0 (split into three parts, 0a, 0b and 
0c) is used to validate the GE approach by com-
paring GE-GA results with the Beer Game results 
of Kimbrough et al. (2001, 2002); O’Donnell et 
al. (2006).

Experiments 1—4 compare GA, QIGA, GE-
GA and GE-QIGA on normally and Poisson 
distributed customer demand and constant lead 
times. The variables over these four experiments 
are the supply chain configuration and/or inven-
tory capacity, and — to an extent — the choice 
of GE grammars used.

Experiment 0a—c Parameter Values

Parameter values are as used by Kimbrough et 
al. (2001, 2002) unless otherwise stated; the ex-
ception is the population size: Kimbrough et al. 
(2001, 2002) used a population of 1000 whereas 
the experiments presented in this section use a 
population size of 500 unless otherwise stated. A 
summary of the parameters for the Beer Game and 
the evolutionary algorithms are given in Table 4.

The initial values for inventory, units on order, 
and units in the pipeline are the same as in the 
Beer Game board game setup (Sterman, 1989); 
see Figure 3. Results are presented in tables with 
headings as in Table 5.

Experiment 0a

Experiment 0a tests if GE-GA can discover the 
optimal “1—1” ordering policy as discovered by 
both the IP and GA, using the classic deterministic 
Beer Game setup (customer demand of 4 units 

Table 4. Beer Game benchmarking: experimental 
parameters 

Beer Game parameters

Number of time periods played 35

Inventory holding cost 1

Backorder cost 2

GE and GA parameters

Number of generations 30

Population size 500

Crossover rate 0.87

Mutation rate 0.03

GE-specific parameters

Pruning rate 0.01

Duplication rate 0.01

Generation gap 0.9

Codon size (bits) 8

Min codons 5

Max codons 10

Max wrappings 10

Table 5. Experimental result table headings 

Heading Meaning

Method Algorithm name (e.g., IP, GA, GE-GA)

Gram-
mar Grammar used (where applicable)

Min Best solution (lowest cost) over all generations

Max Worst solution (highest cost) over all generations

Mean Mean of the best solutions over all generations

Std Dev
Standard deviation of the best solutions over all 
generations

Rate
Occurrence rate of the best solution over all 
generations
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for the first 4 time periods followed by 8 units 
from time period 5 onwards). The GA found the 
optimal “1—1” policy 60% of the time resulting 
in a total supply chain cost of 312.

GE-GA with Grammar 1 is capable of discov-
ering the “x + y” ordering policies described by 
Kimbrough et al. (2001, 2002) and O’Donnell et 
al. (2006). Using Grammar 1, GE-GA found the 
optimal solution in all generations. Table 6 indi-
cates that GE-GA is a more efficient algorithm 
than GA when facing deterministic demand and 
lead times.

The optimal policy discovered by all algorithms 
was an “x + 0” (i.e., “1—1”) policy.

Experiment 0b

In Experiment 0b, customer demand comes from 
a uniform distribution on [0, 15], identical in 
setup and initial conditions to that of Kimbrough 
et al. (2001, 2002) and O’Donnell et al. (2006). 
The best solution found using IP gave an overall 
supply chain cost of 2,816. The GA found a better 
solution of 1,814 in 50% of generations using an 
ordering policy “x + 1” for each agent, i.e., each 
time period, the order placed with the immedi-
ate (upstream) supplier is got by adding 1 to the 

order received from the immediate (downstream) 
customer. See Table 7.

Using Grammar 1, GE-GA was also able to 
find the “x + 1” policy in all generations, indicat-
ing that GE-GA is a more efficient algorithm than 
GA even when demand is stochastic. Using Gram-
mar 2, GE-GA found a more efficient ordering 
policy “x + 9 - (x - 1)” for each agent in 93% of 
the generations with a total cost of 480. This 
policy states that each agent orders 10 units per 
time period regardless of orders received from 
his/her immediate customers. Given that the de-
mand distribution is uniform (stationary data), 
the mean demand is a good predictor of future 
demand (Makridakis et al., 1998). The mean 
customer demand is 8.74 (the nearest integer is 
9). If GE-GA used the mean customer demand of 
9 for all agents, the resulting total cost would be 
900, as opposed to using an order of 10 units each 
time period giving a total of 480: thus GE was 
able to find a better solution.

Experiment 0c

In this experiment, stochastic lead times are also 
used, from a uniform distribution on [0, 4], iden-
tical to that of Kimbrough et al. (2001, 2002). 

Table 6. Experiment 0a results 

Method Grammar Min Max Mean Std Dev Rate

IP 312

GA 312 5607 1590.87 1908.96 60.00%

GE-GA 1 312 312 312.00 0.00 100.00%

Table 7. Experiment 0b results 

Method Grammar Min Max Mean Std Dev Rate

IP 2816

GA 1814 9011 3177.43 2027.68 50.00%

GE-GA 1 1814 1814 1814.00 0.00 100.00%

GE-GA 2 480 1377 523.90 178.42 93.33%
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The best solution found using IP, an overall cost 
of 2,555, was also discovered by GA (37% of 
the time) resulting from an ordering policy of 
“x + 1” for the Retailer, Wholesaler and Factory 
while the Distributor uses an “x + 2” rule. Using 

Grammar 1, GE-GA found the same solution as 
GA and IP in 7% of the generations; however, GE 
using Grammars 2 and 3 with the parameters in 
Table 4 was unable to find a comparable or better 
solution. See Table 8.

Table 8. Experiment 0c results 

Method Grammar Min Max Mean Std Dev Rate

IP 2555

GA 2555 7818 3772.17 1516.19 36.67%

GE-GA 1 2555 3024 2648.93 74.19 6.67%

GE-GA 2 3060 3071 3069.90 3.36 10.00%

GE-GA 3 5560 5945 5641.30 150.69 76.67%

Figure 7. Experiment 1. Poisson: Fixed (top left), Tuned (top right); Normal: Fixed (bottom left), Tuned 
(bottom right)
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Experiments 1—4 Setup and 
Parameter Values

Each experiment is run with customer demand 
drawn from (a) Normal(50, 10) and (b) Pois-
son(10) distribution, rounded to the nearest integer. 
If negative demand occurs, we re-sample to ensure 
positive integer demand. In each experiment, GA, 
QIGA, GE-GA (two grammars) and GE-QIGA 
(two grammars) are compared. Results are given 
in Figures 7—11; in these, sga denotes (Standard) 
GA, and each run of GE gives the search engine 
(sga or qiga) and grammar (1—4) used.

Cost Values Used

Each experiment is run for two choices of sets of 
cost values comprising

• Holding cost (HC);
• Holding cost excess (HC excess), mean-

ingful only in the capacitated inventory 
case (Configuration C) where the need 
arises to use extra more expensive inven-
tory storage; and

• Backorder cost (BC), used in all 
experiments

with values as in Table 9. The sets are referred 
to as Cost IDs 1 and 2.

Parameter Selection

‘Good’ parameter values are selected by cyclic 
coordinate search on a 5-dimensional grid with 
coordinates as in Table 10.

(No more than 50 generations were allowed, 
to keep computational effort to a reasonable 
level.) We optimise along dimensions in the order 
Population size, No. Generations, Crossover 
probability, Mutation probability, No. Time Pe-
riods. This is done separately for each algorithm, 
on each of Configurations A and B, to give the 
best chance of finding good solutions (we use the 
“quality of solution” measure of algorithm per-
formance). These runs are called “Tuned” below.

To aid comparison, runs were also done with 
the same values for each algorithm (called “Fixed” 
below): 30 generations with population size 100.

Layouts

Experimental setups are in Table 11.
Each of the four experiments is run for:

• both “Fixed” and “Tuned” parameter 
values;

• two Cost IDs, 1 and 2;
• two demand distributions, Poisson(10) and 

Normal(50,10); and
• six combinations of EA and/or grammar, 

namely, GA, QIGA, GE-GA, and GE-
QIGA (these last two with the same two 

Table 9. Sets of cost values 

Cost ID HC HC excess BC

1 1 2 5

2 1 5 10

Table 10. Configurations used in experiments 

Generations Pop. size Crossover Prob. Mutation Prob. Time Periods

30 100 0.7 0.005 100

50 500 0.8 0.010 150

1000 0.9 0.100 200
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grammars; standalone GA and QIGA do 
not use grammars).

This gives 4 × 2 × 2 × 2 × 6 = 192 runs, each 
producing up to 50 generations of populations 
of policies. Each policy’s performance is tested 
on 100 supply chain simulations for statistical 
significance.

Parameter Values

The parameters used are given in Table 12.

Experiment 1

Figure 7 (top left) shows Experiment 1 minimum 
and mean costs found for Poisson demand (fixed 
parameters), for CostIDs 1 and 2.

For each CostID, GA and GE-GA have the 
best min; but GE-QIGA has best mean. For each 
algorithm, the min costs found are approximately 
the same for both Cost IDs; whereas, the mean costs 
for Cost ID 2 are somewhat higher (substantially 
higher in the case of GE-GA) than those for Cost 
ID 1. The large difference between min and mean is 
typical of all experiments; thus, means are omitted 
in all subsequent diagrams (bar Experiment 2 for 
Poisson demand). Also, all subsequent diagrams 
show CostIDs 1 and 2 together, for comparison.

Figure 7 (top right) shows minimum costs 
found for Poisson demand (tuned parameters). 
All approaches, bar GE with grammar 2, perform 
more or less equally well. (For CostID 2, GE-GA 
with Grammar 1 also has worse performance.)

Figure 7 (bottom) shows minimum costs found 
for Normal demand.

With fixed parameters: for each CostID, 
all approaches, bar QIGA and GE-QIGA with 
Grammar 2, perform about equally well (GA on 
CostID 2 is also worse than other approaches). 
With tuned parameters, results are more mixed: 
most approaches do equally well, except for GA, 
GE (Grammar 2) on CostID 1; and QIGA, GE-
QIGA (Grammar 2) on CostID 2.

Overall, GE with Grammar 1 always outper-
forms Grammar 2.

Experiment 2

Figure 8 shows Experiment 2 minimum costs 
found for Poisson and Normal demand, both fixed 
and tuned parameters. Means for the Poisson fixed 
parameter case are also shown.

For Poisson demand: as with Experiment 1, 
GE-QIGA (both Grammars 1 and 2) has much 
lower mean values than any other approach. We 
find two instances where Grammar 2 outperforms 
Grammar 1 on min cost (Fixed, GE-QIGA on 
CostID 1; and Tuned, GE-GA on CostID 2) but 
in all other cases, Grammar 1 is superior. For 
tuned parameters, in most cases QIGA and GE-
QIGA are somewhat (5—20%) better than GA 
and GE-GA, respectively.

For Normal demand: performance of all ap-
proaches for all CostIDs is roughly comparable, 
except that for GE, Grammar 1 outperforms 
Grammar 2 in all cases (usually by a large margin). 
QIGA and GE-QIGA are somewhat (5—20%) 
worse than GA and GE-GA, respectively.

Table 11. Layouts of Experiments 1—4 

Expt. Config Layout Capacitated? Cost ID Demand Grammars

1 A Beer Game: Figure 1 No 1 and 2 Poisson, Normal 1 and 2

2 B Tree: Figure 2 No 1 and 2 Poisson, Normal 1 and 2

3 C Tree: Figure 2 Yes: dmd×2 1 and 2 Poisson, Normal 2 and 3

4 C Tree: Figure 2 Yes: dmd×4 1 and 2 Poisson, Normal 3 and 4
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Overall, GE with Grammar 1 outperforms 
Grammar 2, except in the two instances noted 
above; in other respects, all approaches have 
roughly similar performance.

Experiment 3

This had noticeable differences between the Pois-
son and Normal demand cases.

Figure 9 shows minimum costs found for 
Poisson and Normal demands (both fixed and 
tuned parameters).

For Poisson demand: other than the somewhat 
worse performance of QIGA in (Fixed, CostID 
1) and (Tuned, CostID 2), all approaches give 
roughly equal quality solutions.

For Normal demand: GE with Grammar 3 in all 
cases gives a quality of solution between 3 and 10 
times worse than GE with Grammar 2, regardless 
of search engine used, or CostID. Other than this, 
all approaches are of similar quality (bar QIGA 
and GE-QIGA in the Fixed setting).

Experiment 4

The main finding here is an enormous difference 
between the performances of Grammars 3 and 4: 
the ability to use a conditional statement in the 
grammar leads to an order of magnitude improve-
ment in solution quality.

Figure 10 shows minimum costs found for 
Poisson and Normal demand (both fixed and 
tuned parameters).

For Poisson demand: all approaches have 
roughly equal performance, except for GE with 
Grammar 4 (both GA and QIGA search engines), 
which is between 2.5 and 5 times better than all 
the others.

For Normal demand: all approaches have 
roughly equal performance, except for GE with 
Grammar 3 (both GA and QIGA search engines), 
which is between 10 and 17 times worse than all 
the others.

Overall, GE-GA (Grammar 4) was best in all 
Fixed cases, and in Tuned Normal CostID 1; GE-
QIGA (Grammar 4) was best for Tuned parameters 
and Poisson demand; QIGA was best in Tuned 
Normal CostID 2.

Table 12. Experimental parameters ad values 

Configuration

Number Of Time 
Periods 100

Initialisation Period 50

Test Period 50

Initial Goods In 
Pipeline 0

Initial Inventory 0

Lead time 2

Number Of Agents
4 (arranged differently according to 

config)

Initial Rand Num Gen 
Seed System time

EA Global: common to GA and QIGA

Number Of Genera-
tions 30 or 50

Population Size 100 or 500

Genome Length 24 bits (6 bits per agent)

Crossover Rate 0.8

Mutation Rate 0.01

EA Specific: GA Only

Selection Method Roulette

Genome Type Fixed

EA Specific: QIGA Only

Initial α 1/√2

Initial β 1/√2

EA Specific: GE Only

Grammar Grammars 1—4

Engine GA, QIGA

Pruning Rate 0

Duplication Rate 0

Codon Size 8

Min no. of Codons 20

Max no. of Codons 30

Max no. of Wrappings 10
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DISCUSSION

Experiment 0

For purposes of benchmarking, Experiment 0 
is identical in setup to those of Kimbrough et 
al. (2001, 2002) and O’Donnell et al. (2006) on 
ordering policy generation in the Beer Game. It 
shows that GE with GA as search engine is capable 
of matching or improving on existing GA results 

for deterministic or uniformly distributed demand, 
and even with uniformly distributed lead times; 
however, in the last case, the choice of grammar 
is very important.

This experiment gives some evidence that we 
should use the simplest possible grammar that 
can find good/best solutions. Experiment 0a, 
using the simplest Grammar 1, always finds the 
optimal 1—1 policy for deterministic demand. 
In Experiment 0b a slightly more complex gram-

Figure 8. Experiment 2. Poisson: Fixed (top left), Tuned (top right); Normal: Fixed (bottom left), Tuned 
(bottom right)
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mar, capable of evolving constants, was able to 
evolve a policy of ordering slightly more than 
mean demand, which had least cost over a finite 
time horizon. In Experiment 0c, even though three 
grammars of varying complexity were tested, the 
simplest (Grammar 1) performed best. The effect 
of stochastic lead times is unclear, and is being 
investigated further.

QIGA and GE-QIGA were also benchmarked 
against existing results, and found to perform 

satisfactorally, but details are not included here 
for reasons of space.

Experiments 1—4

These experiments go beyond benchmarking and 
extend EA approaches to supply chain topolo-
gies and properties not previously considered, 
namely, arborescent supply chains and capacitated 
inventory.

Figure 9. Experiment 3. Poisson: Fixed (top left), Tuned (top right); Normal: Fixed (bottom left), Tuned 
(bottom right)
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Fixed vs. Tuned Parameters

Some results were the same in both these settings 
and lead to certain conclusions, of varying strength.

• On mean cost, GE-QIGA consistently out-
performs other approaches, by a factor of 
2 to 12 (we have only shown this on some 
charts but it holds throughout). Given the 
large dispersion of costs in all approach-

es and that GE-QIGA is competitive or 
sometimes best (provided parameters are 
tuned), it appears that GE-QIGA gives 
faster convergence of the population as a 
whole, while not suffering from premature 
convergence. Thus GE-GIGA may require 
fewer generations to achieve adequate con-
vergence. Further investigation is required.

• Throughout Experiment 1, and in 14 of 16 
cases in Experiment 2, GE with Grammar 

Figure 10. Experiment 4. Poisson: Fixed (top left), Tuned (top right); Normal: Fixed (bottom left), 
Tuned (bottom right)
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1 outperforms Grammar 2. This indicates 
that more complexity in a grammar may 
not lead to better performance, and high-
lights the importance of using a grammar 
suited to the problem.

• There do not seem to be significant dif-
ferences between Experiments 1 and 2 in 
performance pattern of approaches; thus, 
we find no evidence that supply network 
topology has an impact (both networks 
considered have four players). Further in-
vestigation is required on a wider range of 
topologies and other variables, before any 
stronger conclusions can be reached on the 
effect of network configuration.

• In Experiment 3, apart from two isolated 
cases of QIGA, all approaches give about 
equal quality solutions for Poisson de-
mand. However, for Normal demand, GE 
with Grammar 3 in all cases gives a qual-
ity of solution about an order of magnitude 
worse, even though Grammar 3 allows 
use of historical data and forecasting ap-
proaches. This is distinct from the potential 
extra computation effort associated with 
Grammar 3, and — as with Experiments 
1 and 2 above — indicates that more com-
plexity in a grammar may actually be det-
rimental to solution quality.

• Experiment 3’s noticeable differences, 
between the Poisson and Normal demand 
cases, indicate that demand distribution 
should be taken into account when de-
signing an EA approach to order policy 
generation.

• In Experiment 4, the inclusion of condi-
tional tests in Grammar 4 compared to 
Grammar 3 seems to be a crucial abil-
ity, given the large difference in solution 
quality (a factor of between 2.5 and 17) 
of GE using these two grammars (Figures 
11—11).

• Comparison of Grammar 3 to Grammar 2 
(in Experiment 3) and to Grammar 4 (in 

Experiment 4) leads us not to recommend 
Grammar 3 (allowing use of Historical 
Information, SES, and Moving Averages), 
as it may be significantly worse than both 
a simpler grammar (2) and a grammar with 
conditionals (4).

• In Experiments 2—4, we would expect the 
best policies generated for agents 1, 2 and 
3 to be the same, as there is a symmetry 
among these three agents in tier 2 of the 
supply network in Figure 2. However, in 
Experiment 4 (and, to a lesser extent, 2 and 
3), we notice some policy variation: see 
Tables 13 and 14.

A tentative explanation is that possibly many 
policies have approximately equal fitness (the 
fitness check, being a mean over 100 simulation 
runs, is necessarily stochastic). This may indicate 
wide global optima in the search landscape, and 
many acceptable solutions. Also, agents may 
have identical demand distributions, yet experi-
ence different demand in different samples. (We 
would not, a priori, expect similar policies in Beer 
Game layouts, as each agent in a linear supply 
chain experiences qualitatively different inputs.)

However, some results were different and are 
discussed in more detail in the following two 
subsections. Table 13 summarises results for 
fixed parameter values, while Table 14 does the 
same for where GA and QIGA are allowed to use 
(tuned) optimal parameter values. In both tables 
some column headings are shrunk to fit, namely, 
E: Experiment; D: Demand; ID: CostID. The Best 
Policy column gives the (semicolon-separated) 
policies evolved for the four agents, in order left-
right then by top-bottom. If the Best EA is a type 
of GE, then the number(s) after it indicate which 
grammar performed best.

Fixed Parameters

In Experiments 1 and 2, GE-GA (Grammar 1) is 
always (at least joint) best. GA also does well in 
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many cases. In Experiment 3, GE-QIGA (Gram-
mar 3) wins on Poisson demand, while GA wins 
on Normal demand. In Experiment 4, GE-GA 
(Grammar 4) is always best, with GA equally 
good on Normal demand. See Table 13.

On average, with parameters not tuned to best 
performance, QIGA takes about twice as much 
computational effort as GA to reach a solution 
of equal quality, particularly when used in con-
junction with GE. We posit that the QIGA code 

implementation is not as efficient or as tightly 
integrated with GE as is the standard GA search 
engine. Work is underway to streamline the QIGA 
code and GE interface.

Tuned Parameters

Here, QIGA and GE-QIGA perform more strongly 
(particularly on Poisson demand), apparently 
sensitive to parameter choice. The only Poisson 

Table 13. Best policies found and EAs: Fixed parameters 

E D ID Min Best Policy Best EA(s)

1 P 1 10332 x+1;x+1;x+1;x+1; ga, ge-ga 1

N 1 10487 x+2;x+2;x+2;x+2; ga, ge-ga 1

P 2 10332 x+1;x+1;x+1;x+1; ge-ga 1&2

N 2 11597 x+2;x+2;x+2;x+2; ge-ga 1&2, ge-qiga 1

2 P 1 9608 x+1;x+1;x+1;x+1; ga, ge-ga 1

N 1 16964 x+1;x+2;x+2;x+5; ge-ga/qiga 1

P 2 10878 x+1;x+1;x+1;x+1; ga, ge-ga&qiga 1

N 2 17062 x+1;x+2;x+2;x+5; ga, ge-ga 1

3 P 1 13426 M(3);M(5);M(5);M(5); ge-qiga 3

N 1 14270 +2;x+2;x+2;x+5; ga

P 2 26276 M(3);M(5);M(5);M(5); ge-qiga 3

N 2 19834 x+2;x+2;x+2;x+5; ga

4 P 1 3444 if (M(5)≥x) {return M(3)} else {return M(3)}; ge-ga 4

if (M(3)≥S(0.8)) {return H(9)} else {return S(0.4)};

if (M(5)≤M(3)) {return M(3)} else {return H(9)};

if (M(4)≥H(1)) {return M(2)} else {return H(1)};

N 1 11967 if (S(0.4)≤x) {return M(2)} else {return M(5)}; ga, gega 4

if (M(3)<x) {return x} else {return M(2)};

if (x<H(8)) {return S(0.7)} else {return x};

if (x≥M(4)) {return x} else {return H(4)};

P 2 5143 if (S(0.9)≤M(3)) {return x} else {return H(5)}; ge-ga

if (M(3)=M(2)) {return H(6)} else {return S(0.7)};

if (H(8)<M(3)) {return x} else {return M(4)};

if (H(3)≥x) {return H(9)} else {return x};

N 2 18675 if (x≤M(4)) {return S(0.2)} else {return x}; ga, ge-ga 4

if (S(0.9)<H(9)) {return x} else {return S(0.9)};

if (S(0.3)>M(2)) {return H(1)} else {return x};

if (S(0.2)≥x) {return S(0.6)} else {return x};
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case where neither QIGA nor GE-QIGA is the best 
approach is Experiment 2, CostID 2. QIGA also 
is best on Experiment 4, CostID 2, Normal. GA 
and GE-GA also perform strongly, particularly 
on Normal demand. See Table 14.

A pattern here is that, by the “quality of solu-
tion” metric, GA & GE-GA combinations perform 
better with fast moving (Normal) demand, whereas 
QIGA & GE-QIGA work better with slow moving 
(Poisson) demand. However, QIGA is 3—9 times 
slower than GA (including when used with GE), 
due to larger population size chosen during initial 

parameter search. A possible contributory factor to 
this is inefficiency of the QIGA implementation 
and GE-QIGA interface, as mentioned above.

CONCLUSIONS AND FUTURE 
RESEARCH DIRECTIONS

This research addresses the problem of develop-
ing efficient supply chain ordering policies and 
extends the Grammatical Evolution work of 
Phelan & McGarraghy (2007) to the contexts of 

Table 14. Best policies found and EAs: Tuned parameters 

E D ID Min Best Policy Best EA(s)

1 P 1 10332 x+1;x+1;x+1;x+1; ga, qiga,

ge-ga 1, ge-qiga 1

N 1 10487 x+2;x+2;x+2;x+2; qiga, ge-ga, ge-qiga

P 2 10332 x+1;x+1;x+1;x+1; ga, qiga, ge-qiga 1

N 2 11597 x+2;x+2;x+2;x+2; ga, ge-ga 1&2

2 P 1 9608 x+1;x+1;x+1;x+1; ga, qiga, ge-qiga 1

N 1 13577 x+2;x+2;x+2;x+5; ge-ga 1

P 2 10878 x+1;x+1;x+1;x+1; ga, ge-ga 1

N 2 14904 x+2;x+2;x+2;x+6; ga, ge-ga 1

3 P 1 11586 x+4-(x-6);x+(x-9);x;x+1; ge-qiga 2

N 1 14270 x+2;x+2;x+2;x+5; ga

P 2 26276 M(3);M(5);M(5);M(5); ge-qiga 3

N 2 19834 x+2;x+2;x+2;x+5; ga

4 P 1 2985 if (M(4)<H(6)) {return H(5)} else {return M(4)}; ge-qiga 4

if (S(0.7)=H(2)) {return H(8)} else {return M(3)};

if (M(5)=S(0.4)) {return H(9)} else {return M(4)};

if (S(0.8)>S(0.3)) {return x} else {return H(5)};

N 1 11554 if (S(0.6)<x) {return x} else {return H(7)}; ge-ga 4

if (H(7)≤S(0.8)) {return S(0.5)} else {return H(5)};

if (H(3)>S(0.6)) {return H(7)} else {return M(2)};

if (H(6)≤x) {return x} else {return H(3)};

P 2 4519 if (x≤S(0.3)) {return H(4)} else {return M(3)}; ge-qiga 4

if (S(0.3)=S(0.7)) {return M(5)} else {return M(4)};

if (M(3)≤M(2)) {return M(5)} else {return M(4)};

if (M(2)≤S(0.3)) {return H(4)} else {return M(3)};

N 2 23376 x+2;x+3;x+3;x+6; qiga
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stochastic demand and lead times, arborescence 
and capacitated inventory. GE is benchmarked 
against existing GA results (Kimbrough et al., 
2001, 2002; O’Donnell et al., 2006) on the Beer 
Game.

Our results give evidence that GE, with an 
appropriate grammar, can outperform other EA 
approaches over a range of supply network topolo-
gies and constraints such as capacitation. In all 
experiments conducted, except Experiment 3 with 
normal demand, GE discovers equal or more ef-
ficient ordering policies (in cost reduction terms). 
In some configurations, e.g., Experiment 4, the 
improvement is almost an order of magnitude. The 
findings also highlight a significant advantage of 
GE over GA: the ability of GE to construct solu-
tions based on a set of building blocks or rules that 
govern the solutions produced. As noted earlier, 
for purposes of adequate encoding of solutions, 
GE requires from the user less knowledge of the 
solution structure than does a GA.

In summary, the results confirm the high 
efficiency of the GE intelligent metaheuristic. 
However, this is qualified by the observation that 
GE’s ability to produce more efficient policies 
depends on the grammar definition; this depen-
dency underlines the vital rôle grammar selection 
(O’Neill & Ryan, 2003; Brabazon & O’Neill, 
2006) has on the algorithm’s results. An interesting 
finding is that in simple cases, such as the Beer 
Game with deterministic demand where a 1—1 
policy is provably optimal, a grammar that is rich 
enough to capture that policy but no richer is to be 
preferred (Experiment 0). This indicates the value 
of building domain knowledge into the grammar, 
where such knowledge is available.

The relative simplicity and generic nature of 
GE, combined with the possibility of a user being 
able to (at least partially) define a grammar based 
on domain knowledge and available tools, augurs 
well for GE’s ability to support a decision support 
system for ordering.

QIGA and GE-QIGA yield some insightful 
results; notably on Poisson demand when al-

lowed to use parameter values optimised for it; 
but also in some situations of fixed parameters 
and/or Normal demand. However, overall QIGA 
performance is relatively unimpressive compared 
to standard GA. It is hypothesised that this may 
be due to implementation issues, in particular 
its interface with GE: it is clear that this needs 
overhauling, and will be the subject of future 
work. Nevertheless, for mean cost, GE with a 
QIGA search engine consistently outperforms 
other approaches, sometimes by a factor of 10 or 
more. Though not the main focus of our work, 
this gives an interesting angle: the combination 
of these two new approaches seems to give faster 
convergence of the population as a whole, while 
maintaining enough diversity to avoid premature 
convergence. Future research will investigate this 
more closely.

Capacitation of inventory does not — on this 
evidence — greatly affect any approach’s abil-
ity to generate useful policies; it seems to affect 
all equally, with some increase in total cost (as 
expected). No approach seems to outperform any 
other in Experiments 3—4 compared to 1—2. 
More work is needed here.

We have also investigated approaches not 
discussed here because of lack of space. Infor-
mation sharing is a known mitigating factor of 
the Bullwhip effect (Lee et al., 1997a,b), and 
grammars incorporating this — where each agent 
has access to other agents’ historical demand as 
well as its own — have been implemented and 
tested. Also, a recent real-valued QIGA (Cruz et 
al., 2006) and modifications thereof have been 
investigated.The effects of stochastic lead times 
have been studied too.

The supply chain structure examined in this 
chapter, while an improvement on existing models 
in that it incorporates tree structures, capacitated 
inventory and resulting cost, stockout cost and 
other enrichments, is still not truly reflective of 
complex supply chains. The research described 
here is being extended in a number of directions. 
Further enrichment of the supply chain simulation 
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model in order to examine more complex supply 
networks — with stochastic lead times and ad-
ditional constraints such as capacitated shipping, 
additional ordering costs, and service level agree-
ments — is currently under investigation.

GE is ideally suited to examine these prob-
lems, given its grammar based approach. Current 
research includes ongoing development of new 
grammars to allow agents to use existing inven-
tory policy models (e.g., periodic and continuous 
replenishment policies) similar to those of (Chan et 
al., 2006), with the exception that GE determines 
all the model parameters that can be compared 
with deterministic inventory policies. Grammars 
incorporating agent memory are being examined. 
Grammars are also being developed to determine 
what incentives (Chen, 1999) can be given to 
agents in a decentralised supply chain in order 
to minimise the total cost of the supply chain.

Conceivably, any search engine (e.g., particle 
swarm, as in Grammatical Swarm) that can operate 
on binary or integer strings could employ the GE 
mapping process to generate a program or policy; 
this is the subject of ongoing research.

Finally, the flexibility of GE gives hope that 
it may also be useful not only in determining 
inventory policy, but also in developing other 
policies, both strategic and operational, for loca-
tion, production, and distribution. It is intended to 
also investigate these in this research programme.
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KEY TERMS AND DEFINITIONS

Supply Chain: An interconnected network 
of organisations, people and processes which 
together deliver a solution (product, service, or 
combination of these, including any raw materi-
als and intermediate steps) to the end customer. 
It may involve the flow through the network of 
any or all of material, information, money and 
other resources.

Supply Chain Cost: The total cost for all 
players in the supply chain, covering all processes.

Ordering Policy: (of an Agent/Player): The 
approach taken by a given player in the supply 
chain to determining what quantity to order from 
his/her immediate upstream suppliers. This policy 
may be a formula, rule of thumb, or more complex 
program, as used in this work.

Evolutionary Algorithm: (EA): Search and/or 
optimisation approach inspired by the biological 
process of evolution by natural selection; they 
work on successive generations of a population 
and include operators such as selection based on 
fitness, reproduction, mutation and replacement. 
Strictly speaking, they are not algorithms but 
stochastic approaches or metaheuristics.

Genetic Algorithm: (GA): One of the first 
EAs, where individuals in the population are 
represented by linear genomes of fixed length.

Genetic Programming: (GP): An EA where 
the objects being evolved are programs or other 
rule based approaches to solving a problem. Most 
GP approaches, but not all, represent programs 
as trees. A fitness value is assigned to a program 
according to how well it performs on a task.

Grammatical Evolution: (GE): A version of 
GP where the genome is linear and is converted to 
a (derivation) tree using rules encoded in a gram-
mar. It can thus use GA (or any other approach 
that works on linear genomes) as an optimisation 
module, rather than applying reproduction or 
mutation operators directly to trees, as standard 
GP approaches do.

Grammar: In this context, a Backus-Naur 
Form description of the syntactically legal ways 
in which a node in a derivation tree may be ex-
panded, given its form and inputs.

Quantum Inspired Genetic Algorithm: 
(QIGA): An EA inspired by the physical process 
of collapse of a quantum state upon observation. 
A population (possibly very small) of quantum 
individuals is observed (sampled) to produce a 
standard population: the fitter individuals of this 
are used to influence the form of the quantum 
population at the next generation.
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APPENDIX: GRAMMARS USED

Grammar 1

<agent>    ::= <policy>;<policy>;<policy>;<policy>;   <policy>   ::= 

<var><op><int>   <op>       ::= +|-   <int>      ::= 0|1|2|3|4|5|6|7|8|9   <va

r>      ::= x 

Grammar 2

<agent>    ::= <policy>;<policy>;<policy>;<policy>;   <policy>   ::= <var> | 

<var><op><int> | <policy><op>(<var><op><int>)   <op>       ::= +|-   <int>      

::= 0|1|2|3|4|5|6|7|8|9   <var>      ::= x 

Grammar 3

<agent>    ::= <policy>;<policy>;<policy>;<policy>;   <policy>   ::= 

<var>   <var>      ::= x | H(<time>) | M(<smoother>) | S(<alpha>)   <time>     

::= 1|2|3|4|5|6|7|8|9   <smoother> ::= 2|3|4|5   <alpha>    ::= 0.1|0.2|0.3|0.

4|0.5|0.6|0.7|0.8|0.9 

Grammar 4

<agent>    ::= <policy>;<policy>;<policy>;<policy>;   <policy>   ::= 

<expr>   <var>      ::= x | H(<time>) | M(<smoother>) | S(<alpha>)   <expr>     

::= if (<condition>) { return (<statement>); }                   else { 

return (<statement>); }   <condition>::= <var><boolop><var>   <state-

ment>::= <var>   <boolop>   ::= >|>=|<|<=|==   <time>     ::= 

1|2|3|4|5|6|7|8|9   <smoother> ::= 2|3|4|5   <alpha>    ::= 0.1|0.2|0.3|0.4|0.

5|0.6|0.7|0.8|0.9 
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INTRODUCTION

During the last decade globalization has provided 
new challenges for supply chain management and 
the logistics industry. As the practices of offshoring 
and outsourcing force the supply chain networks 
to keep on expanding geographically in the glo-
balized environment, the logistics processes are 
becoming more exposed to risk and are ever more 
prone to disruption. Almost all industries strive 

for making their business processes and supply 
chains either more efficient or more responsive 
by outsourcing many core business activities, 
like transportation, warehousing, research and 
development (R&D), etc. Although these initia-
tives have great potential to make operations 
agile, leaner and more efficient in a low risk and 
variability environment, at the same time they 
tend to increase the vulnerability of supply chains 
to disruptions. However, the traditional decision-
making processes and software tools used most 
often by industry and the methodological models 

ABSTRACT

As the practices of offshoring and outsourcing force the supply chain networks to keep on expanding 
geographically in the globalised environment, the logistics processes are becoming more exposed to risk 
and disruptions. Thus, modern supply chains seem to be more vulnerable than ever. It is clear that efficient 
logistics risk and security management emerges as an issue of pivotal importance in such competitive, 
demanding and stochastic environment and is thus vital for the viability and profitability of a company. 
In this context, this chapter focuses on a set of stochastic quantitative models that study the impact of 
one or more supply chain disruptions on optimal determination of single period inventory control poli-
cies. The purpose of this research is to provide a critical review of state-of-the-art methodologies to be 
used as a starting point for further research efforts.
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and the paradigms covered by academia, in many 
cases, have been proven quite incapable of ad-
dressing satisfactorily many relevant practical 
real-world risk management supply chain and 
logistics issues.

Thus, it is clear that efficient logistics risk and 
security management emerges as an issue of piv-
otal importance in such competitive, demanding 
and stochastic environment and is thus vital for 
the viability and profitability of a company. The 
explosion in long distance sourcing and supply 
is exposing supply chains and shareholder value 
at ever increasing risks. The development of new 
methodologies that would attempt to combine 
acceptable logistics security protection with ac-
ceptable efficiency, while attaining an acceptable 
economic value added would be of great merit. 
Moreover, it is important to consider the entire 
supply chain, across all countries, when selecting 
and implementing risk-management strategies, as 
it is highly possible that an event affecting one 
supply chain entity or process may interrupt the 
operations of other supply chain partners.

Recent trends in managing global supply chain 
risks focus on the development of robust (effective 
performance for a range of operations risks) and 
resilient (quick to recover from disruption) supply 
chain systems. However, there is still a clear lack of 
contingency strategic policies and the appropriate 
analytical methodologies for the determination of 
their optimal parameters, when considering the 
different modes of disruptions in a supply chain. 
Definitely, risk management is a decision making 
process that needs extensive decision analysis in 
order to reach effective and applicable results. In 
fact, sometimes the process is so complicated, that 
not only a single technique but a set of quantitative 
methods is needed for selecting the best course 
of action among several alternatives. Several of 
these methods are widely used and an extensive 
classification according to the type of application, 
industry, problem formulation, desired output, 
perspective, disruption, information, etc. is beyond 
the purposes of this chapter.

In this context, this chapter examines supply 
chain management methodologies that quantify 
the impact of supply disruption on optimal determi-
nation of inventory control policies for stochastic 
environments; thus capturing the trade-off between 
inventory policies and disruption risks for supply 
networks with unreliable sourcing. Specifically, 
this chapter first provides a review and a new 
classification of related literature, combining 
the traditional inventory control policies with the 
new research field of methodologies based on 
game theory. Then, the chapter focuses on single 
period (newsvendor-type) problems and analyzes 
specific typical methodologies for systems with 
multiple unreliable suppliers due to production or 
distribution disruptions. The reason for narrow-
ing down the chapter scope is on one hand that 
single period models can be used for inventory 
decision-making for a wide range of SKUs ranging 
from high tech items (with limited shelf life due 
to obsolescence) to fashion items of limited life 
(“one shot deals” in the retailing business) and 
on the other that is not possible a single chapter 
to cover typical methodologies for all the paper 
appear in the literature review.

Thus, the contribution of this research is two-
fold: first to provide a critical review of general 
state-of-the-art quantitative methodologies in the 
research area under study and then, to demonstrate 
typical models for single period systems that can 
be used as a starting point for further research ef-
forts. Moreover, the discussion of the most popular 
methods for supply chain risk management can 
be a practical guide to mitigate risks.

The chapter content is organized as follows: 
the following Section presents the current envi-
ronment of supply chain risk management, the 
types of interventions for reducing vulnerability 
of supply chains and improving their resilience 
and a review and taxonomy of the up-to-date lit-
erature. Selected single period supply chain risk 
management problems are discussed in Section 
3 together with their solution methodologies. Fi-
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nally, the last Section summarizes the content of 
this work and provides future research directions.

LITERATURE REVIEW 
AND TAXONOMY

Although risk management issues are a constant 
and diachronic problem for the logistics service 
industry and companies have been aware of the 
need for contingency planning, especially after the 
terrorist attacks of September 11 of 2001, risk and 
security issues have moved up in the corporate 
agenda of logistics managers. Supply risks can 
have a significant impact on business results, in-
cluding lost revenues, increased costs, lost assets, 
and decreased market value. While awareness of 
the need for risk management continues to rise, 
the majority of companies are still in the planning 
phase when it comes to supply risk management 
(Khemani, 2007). A survey of 800 supply chain 
executives worldwide (Aberdeen Group, 2007) 
reports that 82% of companies are concerned 
about supply chain resiliency, while the percent-
age of companies that were actively managing this 
risk is only 30% although it has been increased 
from 11% the previous year. Moreover, best-in-
class companies are two times more likely than 
all others to have a formalized supply chain risk 
management initiative.

Business risks originate from a variety of 
sources. Iakovou (2007) presents a classifica-
tion of business risks into four major categories: 
financial, hazard, strategic, and tactical risks. 
Similarly, Sheffi et al. (2003) have identified six 
basic supply chain disruption modes: disruptions 
in supply, transportation, at facilities, freight 
breaches, disruptions in communications and 
disruptions in demand.

Supply chain risk management actions aim at 
reducing a company’s vulnerability to disruption 
and they can be partitioned into two categories; 
the first class includes interventions aiming at 
increasing security and thus reducing the likeli-

hood of intentional disruptions, while the second 
class includes actions aiming at increasing the 
resilience of the supply chain, thus building in 
capabilities for “bouncing back” promptly (Sheffi, 
2005). More specifically:

• Security interventions aim at improv-
ing security and encompass initiatives for 
preventing security breaches, inspections, 
information protection, and compliance to 
international standards, etc.

• Resilience is the ability to resume and 
restore the logistics operations promptly 
after a disruption (Cranfield University, 
2003). Interventions aiming at increasing 
resilience include both the straightforward 
ones that build redundancy (including 
among others additional inventory, capac-
ity and multiple supplies), along with in-
terventions aiming at increasing flexibility 
that can be used to “bounce back” follow-
ing a disruption.

Supply chain disruptions are shown to have 
both short-term and long-term erosion in corporate 
profitability and shareholder value (Hendricks and 
Singhal, 2005). As every enterprise is exposed to 
disruption risks, firms need first to analyze and 
understand these risks and then find solutions to 
limit their effect. According to a study conducted 
by LCP Consulting and the Centre for Logistics 
and Supply Chain Management of Cranfield 
University (2003), supply chain risk and security 
management should seek opportunities and design 
solutions enabling exploiting these opportunities 
at minimum risk. It is clear that the design and 
execution of appropriate methodological ap-
proaches can play a critical role in handling risks 
and disruptions for various operational settings. 
However, only in the last decade the literature 
body dealing with the joint tackling of inventory 
and risk/disruption management appears to grow. 
While the literature on disruption supply chain 
management is still rather limited, it is already 
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quite clear that designing and implementing ap-
propriate methodological approaches may play 
a pivotal role in handling disruptions in various 
operational settings.

Supply chain risk management issues concern 
both business and financial academic journals. 
Moreover, a few books and several book chapters 
discuss related topics. One of the main goals of 
this work is to systematically identify and present 
the major quantitative model contributions that 
appear in the literature. To this end, the following 
two major classes of quantitative models have 
been identified:

• Extensions of inventory control models 
to incorporate risk or disruption issues. 
This class of models concerns mostly re-
searchers with an industrial management 
background. Since there are numerous re-
searchers, all over the world, working on 
inventory control and supply chain man-
agement, most of proposed models belong 
to this class. These research efforts are pre-
sented in the following subsection.

• Models based on game theory principles. 
A background in economics usually char-
acterizes the authors of this second class 
of problems. Although many researchers 
work on game or utility theory, only few 
papers on supply chain risk management 
have been published so far. These research 
efforts are presented just after the follow-
ing subsection.

Inventory Control Models

There is a variety of research methodological 
approaches on risk and disruption management. 
These research papers can be classified in two 
major categories. The first one addresses inven-
tory and production systems where the supply 
or production rate varies. In these systems the 
quantities delivered or produced differ from the 
replenishment or production orders (random 
yield). A second category includes methodologies 
that model the disruption mechanisms. We refer to 
this research area as disruption modeling. In both 
categories we can distinguish methodologies for 
single sourcing or for dual/multiple sources. Table 
1 depicts a classification of the research papers that 
we have included in this review. The literature in 
random yield models is extensive and a compre-
hensive literature review on lot-sizing problems 
with yield uncertainty is not in the scope of this 
chapter. Instead, the reader can find comprehen-
sive literature reviews on quantitatively-oriented 
approaches for determining lot sizes when the 
production or supply yields are random in Yano 
and Lee (1995), Khouja (1999), Tang (2006), and 
Minner (2003).

Production random yield problems with a 
single supplier or production facility have been 
studied by several authors in various forms. Com-
prehensive literature reviews on stochastic 
manufacturing flow control and lot sizing with 
random yields or unreliable manufacturers can 
be found in Haurie (1995), as well as Yano and 
Lee (1995). In addition, Wang and Gerchak (2000) 

Table 1. Classification of inventory control models 

Methodology Single sourcing Dual/multiple sourcing

Random Yield (Haurie, 1995), (Yano and Lee, 1995), (Wang and Gerchak, 
2000), (Henig and Gerchak,1990)

(Agrawal and Nahmias, 1998), (Tomlin and 
Wang, 2005), (Tomlin, 2006), (Federgruen and 
Yang, 2009), (Dada et al., 2007)

Disruption Management (Moinzadeh and Aggarwal, 1997), (Parlar, 1997), (Arreola-
Risa and DeCroix, 1998), (Xia et al., 2004), (Xiao and Qi, 
2008), (Iakovou et al., 2007)

(Parlar and Perry, 1996), (Gurler and Parlar, 
1997), (Golany et al., 2002), (Snyder et al., 2006), 
(Wu et al., 2007), (Wilson (2007), (Tang, 2006)
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consider make-to-order batch manufacturing with 
random yield. In this paper it is proven that the 
optimal policy is of the threshold control type—
stop if and only if the stock is larger than some 
critical value. This critical value is studied for 
different production cases. Moreover, Henig and 
Gerchak (1990) developed a periodic review 
production/inventory model with random supply 
yield.

Agrawal and Nahmias (1998) developed a 
multiple-sourcing deterministic demand model 
to determine the optimal lot sizes and number of 
suppliers, when the supply yield from each sup-
plier is random. The authors consider also the 
fixed costs associated with each supplier. Later 
on, Tomlin and Wang (2005) developed a single 
period dual-sourcing model with yield uncertainty 
(i.e. uncertainty at the time of order placement as 
to the fraction of the order that will be delivered). 
By considering one unreliable and one reliable (and 
thus more expensive) supplier the focus of this pa-
per is on inventory and sourcing mitigation. In the 
same context, Tomlin (2006) developed a Markov 
chain single-product model by considering capac-
ity constraints for both suppliers and order quantity 
flexibility for the reliable vendor (extra capacity 
is available in case of a disruption). It is shown 
that contingent rerouting may constitute a basic 
element of the optimal disruption management 
strategy by reducing a firm’s system-wide costs. 
Furthermore, Federgruen and Yang (2009) and 
Dada et al. (2007) examined the multiple sourcing 
random yield problem and proposed interesting 
analytical and heuristic solutions based on type I 
service level-related constraints.

As far as supply chain disruptions modeling 
in a single-sourcing setting is concerned, Moinza-
deh and Aggarwal (1997) considered the an (s,S) 
inventory policy for a constant production and 
demand rate system with random disruptions in 
a bottleneck production facility, in which supply 
could be randomly disrupted and the disruption 
lasts a random period. Near optimal production 

policies are derived via a heuristic procedure. 
Parlar (1997) considered random supply disrup-
tions with stochastic demand and lead-time in a 
continuous review inventory system, while sup-
plier availability is modeled as a semi-Markov 
process. Next, Arreola-Risa and DeCroix (1998) 
considered a stochastic (s,S) inventory system in 
which supply could be randomly disrupted for 
a random period. This paper considers partial 
backorders – that is scenarios in which some 
customer orders may wait as backorders, while 
others lead to lost sales. Xia et al. (2004) devel-
oped a deterministic EOQ-type inventory model 
for a two-stage supply chain that is susceptible to 
several types of production- and demand-related 
disruptions. In this work, two classes of problems 
are defined: one with fixed setup epochs and an-
other with flexible setup epochs. More recently, 
Xiao and Qi (2008) investigated a supply chain 
with one supplier and two competing retailers 
that experiences a disruption in production cost 
during a single period. Appropriate quantitative 
conditions are derived that indicate when the 
maximum profit can be achieved once a disruption 
in the original production plan occurs. Finally, 
Iakovou et al. (2007) present a risk management 
policy for a single period supply chain with known 
disruption probabilities.

Two significant research works in the field of 
joint disruption inventory management and dual-
sourcing are those of Parlar and Perry (1996) and 
Gurler and Parlar (1997). Both papers consider a 
firm that faces constant demand and sources from 
two identical-cost infinite-capacity suppliers. The 
firm faces a fixed cost of ordering, which is only 
incurred once even if the order is split between 
suppliers. Interfailure and repair times are expo-
nentially distributed for both suppliers in Parlar 
and Perry. The authors propose a suboptimal order-
ing policy that is solved numerically. Gurler and 
Parlar extended the work of Parlar and Perry by 
considering the case of Erlang interfailure times 
and general repair times.
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Investigating other disruption inventory man-
agement approaches, Golany et al. (2002) pro-
posed a general approach, based on a three-level 
lexicographical goal-programming formulation, 
to address various types of disruptions. A penalty 
cost for deviations from the original production 
and inventory plan is accommodated and the 
concept of a disruption recovery time window is 
addressed. Snyder et al. (2006) developed a broad 
range of facility location models for designing 
supply chain networks that are resilient to disrup-
tions. Furthermore, Wu et al. (2007) presented a 
Petri network-based methodology approach to 
determine how disruptions disseminate in supply 
chains (similar to the well-known bullwhip effect) 
and the attributes of their impact. Wilson (2007) 
developed a system dynamics simulation model, 
in order to investigate the impact of a transporta-
tion disruption between two echelons, on supply 
chain performance by comparing a simple supply 
chain with a vendor managed inventory system.

In a noteworthy work, Tang (2006) attempted to 
classify the relevant supply chain risk and disrup-
tion inventory management models. The research 
works that model supply risks are divided into 
those considering disruptions caused by uncertain: 
i) demand, ii) supply yields, iii) lead times, iv) 
supply capacity, and v) supply cost.

Game Theory Models

The growth and realignment of corporate entities 
into strategic, global and market sensitive, sup-
ply chains are altering the conception of opera-
tions modeling. The system complexity and the 
interdependence of decision-makers lead to a 
multi-decision-making framework. The success 
of decisions on supplier selection, ordering or 
outsourcing is based on the supplier or the sub-
contractor self-interest. Even when collaboration 
and coordination of the supply chain activities 
lead to increased total benefits, these collaboration 

benefits should be appropriately split among the 
supply chain partners.

Game theory involves decision-making 
between two or more parties in which an indi-
vidual’s success in making choices depends on 
the choices of others. Economists have long used 
game theory to analyze a wide array of economic 
phenomena, including auctions, bargaining, duo-
polies, fair division, oligopolies, social network 
formation, and voting systems. Although there 
are several research efforts especially in supply 
chain contracts, publications on game theory 
modeling for supply chain risk management ap-
pear only the very last years. Xiao and Yu (2006) 
introduced an indirect evolutionary game model 
with two-vertically integrated channels to study 
stable strategies in the duopoly situation. Their 
model captures the impact of raw material supply 
disruptions on the retailers’ strategies and on the 
average channels’ profits. Tomlin (2009) evaluates 
twelve alternative disruption management strate-
gies for a two-product newsvendor problem. The 
paper investigates the influence of nine attributes 
that include supplier reliability, supplier failure 
correlation, payment responsibility in the event 
of a supply failure, product contribution margin, 
product substitutability, demand uncertainties and 
correlation, and the decision maker’s risk aver-
sion. The risk-averse decision maker is modeled 
through a specific utility function. VanMighem 
(2007) examines through jointed operational and 
financial perspective newsvendor networks and 
how resource allocation can mitigate risk exposure. 
The paper focuses on how risk attitude affects that 
strategic placement of operational resources to 
reduce financial risks. Chen et al. (2009) consider 
a risk-averse newsvendor with stochastic price-
dependent demand. They employ Conditional 
Value at Risk (CVaR) as the decision criterion to 
find optimal pricing and ordering policies. Finally, 
Kogan and Tapiero (2007) provide an extended 
review on supply chain games that also includes 
risk management problems.
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PROBLEMS AND SOLUTION 
METHODOLOGIES

As discussed in the literature review section there 
are two main categories of problems that combine 
inventory and risk management. The first category 
assumes random order yield where the disrup-
tion risk is incorporated in the yield distribution 
function. The second category examines systems 
operating in two states, a state where disruptions 
have occurred and the regular state characterized 
by no disruptions. In this section, two selected 
problems (one from each category) and their solu-
tion methodologies are presented. Both problems 
refer to multiple sourcing supply chains examined 
for a single demand period (newsvendor setting).

Random Yield

Following a setting similar to the approach of 
Yang et al. (2007), we consider a single period 
inventory system consisting of one retailer facing 
random demand X and n suppliers. Let yiQ be the 
random yield of supplier i when Q items are or-
dered from her/him, where yi is a random variable 
between 0 and 1. Also let c Q y cQ c yQ

i i i i i i i i
( , )= ′ + ′′  

be the cost owed to supplier i when Qi items are 
ordered while yiQi items are actually delivered. 
Yang et al. (2007) provide possible interpretations 
for such a cost structure. The first one is that the 
retailer besides having to pay ¢¢c

i
for each unit it 

gets, it has also have to pay upfront ¢c
i

 for each 
unit it orders. The unit selling price is denoted by 
s and it is assumed that s > ci, and the unit salvage 
value by r; it is assumed that r < ci. Moreover, k 
indicates the unit shortage cost.

The retailer’s goal is to maximize her/his ex-
pected profit. The vector of order quantities Q= 
(Q1, ..., Qn) placed before the realization of the 
random demand constitutes the retailer’s deci-
sion variables. The problem is to find the Q that 
maximizes the total profit of the retailer:
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where the four terms of G(Q) correspond, in 
the order that they appear in equation (1), to the 
revenues from selling items, to the income from 
salvaging the unsold items, to the payment to 
the suppliers and to the shortage cost. Since, the 
function G(Q) is easily proven jointly concave, 
the optimal solution is obtained by Karush-Kuhn-
Tucker local optimality conditions using the 
appropriate mathematical software. Yang et al. 
(2007) propose the Active Set Method algorithm 
to reduce the calculation time and provides ex-
tensive numerical results and managerial insights 
for variation of the above problem.

The above newsvendor setting can be expanded 
for examining newsvendor supply networks. 
Keren (2009) studies a two-tier supply chain 
(producer-distributor-end user) with known end 
user demand and stochastic yield of orders placed 
to the distributor and the producer. The paper 
examines both a multiplicative and an additive 
yield effect to model the effect of the random yield 
variable on the order quantities. The problem is 
formulated as a mathematical programming prob-
lem where the optimal solution of the producer 
is a constraint, and it can be solved using any 
available mathematical software.

Stochastic Disruption Management

Iakovou et al. (2010) consider a supply chain of 
one manufacturer and two competing, potentially 
unreliable, suppliers which are both susceptible 
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to supply chain disruptions, such as production- 
transportation- and security-related disruptions. 
They propose a single period inventory system 
where a single ordering decision is to be made 
before the sales period begins (thus, emergency 
replenishment is not allowed), so as to maximize 
expected total profit. Figure 1 presents a typical 
dual sourcing unreliable supply network.

Demand X is assumed to be a positive stochas-
tic random variable with probability density 
function f(x) and cumulative distribution function 
F(x). The unit purchase cost paid to supplier i (i 
= 1, 2) is denoted by ci. The unit selling price is 
denoted by s and it is assumed that s > ci (i = 1, 
2). The surplus stock that remains unsold at the 
end of the period can be sold to a secondary mar-
ket at a unit salvage value r; it is assumed that r 
< ci (i = 1, 2). Moreover, k indicates the ‘loss of 
goodwill’ cost due to the shortage in products/
parts; thus the total lost sales cost is the sum of 
the opportunity cost (s - ci) plus k.

Disruptions may occur only once for each 
of the two suppliers, during the selling period 
with probability pi (i = 1, 2). Moreover, when 
a disruption occurs a constant percentage of the 

order quantity Qi, denoted by yi (i = 1, 2), will 
be available in time to satisfy the demand during 
the selling period (the remaining quantity will 
not be delivered or it will be delivered after the 
end of the selling period). As a result, in case of 
a disruption the available quantity will be yiQi 
(see Figure 1), with yi capturing the ‘severity’ of 
the impact of the supply disruptions. Vlachos and 
Dekker (2003) discuss how yi can be modeled in 
an inventory system with commercial returns. 
The yi variables could model either the case of a 
limited production rate in a previous supply chain 
echelon (disruption in production) or the case of 
delayed delivery (disruption in transportation). In 
the first case, yi models the effective production 
capacity as a result of a production failure, while 
in the second yi corresponds to the part of the order 
quantity that may be utilized, since a specific part 
of the demand of the selling period might be lost 
in the case of late delivery.

Initially, when none of the supply channels 
face a disruption, that occurs with probability 
(1-p1)(1-p2), the expected single period profit 
G0(Q1,Q2) is obtained by the classical newsvendor 
problem analysis:

Figure 1. The dual sourcing unreliable supply chain network under study
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When a disruption occurs only to the first sup-
plier (probability (1-p2)p1) only a fraction of Q1, 
initially ordered to the first supplier (y1Q1), can be 
now used to fill demand along with the order from 
the second supplier. The expected profit G1(Q1,Q2) 
is then expressed by the following equation:

G yQ yQ x
y Q Q

1 1 2 1 1 1 2 2 1 1 2
0

Q ,Q = sx-c -c Q +r +Q -x f dx( ) ( )



 ( )

+

∫
1 1 2

++ +( ) ( )



 ( )

+

∞

∫ s -c -c -k x-y -Q f dx
1 1 1 2 2 1 1 2

yQ Q yQ Q Q x
y Q Q

1 1 2

1 1 2

 

(3)

Similarly, when a disruption occurs to the sec-
ond supplier (probability (1-p1)p2), the expected 
profit G2(Q1,Q2) is expressed by:

G Q Q y Q Q y Q x
Q y Q

2 1 2 1 1 2 2
0
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Moreover, when disruptions occur at the same 
time to both suppliers (probability p1p2), the total 
available quantity to satisfy demand is y1Q1 + y2Q2, 
and the expected profit G12(Q1,Q2) is provided by:

G ,Q = sx-c -c +r -x f dx
12 1 2 1 1 2 2 2

0

Q yQ y Q yQ y Q x
y Q
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Finally, the objective function of the optimiza-
tion model (P) is the total expected profit G(Q1,Q2) 
obtained as the weighted sum of the expected 
profits given in (2), (3), (4) and (5) taking into 

account the probabilities of disruptions on none, 
on the first, on the second and on both supply 
channels respectively.

(P): max G(Q1,Q2)

with

G Q ,Q 1-p 1-p Q ,Q +p 1-p Q ,Q

1-p p
1 2 1 2 0 1 2 1 2 1 1 2

1 2

( ) = ( )( ) ( ) ( ) ( )
+ ( )

G G

G
22 1 2 1 2 12 1 2

Q ,Q +p ,Q( ) ( )p G Q
 

(6)

For model (P) Proposition 1 applies. The proof 
of proposition is provided in (Iakovou et al., 2010).

Proposition 1:
a)  The total expected profit G(Q1,Q2) is 

concave in Q1 and Q2.
The maximum value of G(Q1,Q2) is attained 

for Q1* and Q2* (optimal order lot 
sizes), by solving the system of equa-
tions of the first order conditions:
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(8)

where the parameters U
s c k

s r k1
1=

− +

− +
  and 

U
s c k

s r k2
2=

− +

− +
 are the critical ratios of the 

classical single sourcing newsvendor problem.
The above model (P) corresponds to risk-neu-

tral decision-makers. Model (P) can be extended 
through the consideration of a fill rate (Type II 
service level) constraint, so as to take also into 
account risk-aversion. Fill rate β measures the part 
of the season demand that is satisfied from the 
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delivered quantity. Risk-averse decision-makers 
would prefer higher service levels than risk-neutral 
ones, but with a lower expected pay-off. The 
resulting optimization model, which represents 
the maximization of the total weighted expected 
profit subject to a fill rate constraint, is:

(Pβ): max G(Q1,Q2)

subject to Fill Rate > β0

with

Fill
Expected Shortage

Mean Demand

n Q Q
 Rate - -= =

( )( )
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1 2
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For model (Pβ) Proposition 2 applies. The 
proof of proposition is given in (Xanthopoulos 
et al., 2010).

Proposition 2:
a)  Model (Pβ) is a convex programming 

problem in Q1 and Q2.
The global maximum value for problem (Pβ) 

is attained for Q1* and Q2* (optimal 
order lot sizes) and λβ* (optimal value 
of the Lagrangian multiplier corre-
sponding to the Type ΙI service level 
constraint), by solving the system of 
equations of the following first order 
conditions:
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Gradient search algorithms or any of the com-
mercially available mathematics problem-solving 
software packages can be used for solving the 
system of equations (9) to (11).

Xanthopoulos et al. (2010) present another ex-
tension of the basic model (P) towards risk-averse 
decision-makers considering a Type I service 
level constraint, also discussed by Federgruen 
and Yang (2009) and Dada et al. (2007). Type I 
service level represents the probability α that the 
random demand during the season is no greater 
than the delivered quantity.

Based on the closed form analytical solution 
presented above it is interesting to explore (i) the 
shape of the objective function and the form of the 
optimal solution in the case of unconstrained op-
timization problem (P), and (ii) how a risk-averse 
manager change her ordering decisions and what 
is the impact on system’s total expected profit.

Figure 2 illustrates, indicatively, the effect of 
various combinations of Q1 and Q2 on the total 
weighted expected profit (via contour graphs), for 
various levels of the impact of a potential disrup-
tion. Specifically, Figures 2(a), 2(b) and 2(c) are 
obtained by altering only the level of parameter y1, 
while keeping all the other parameters constant. In 
Figure 2(a) a level of y1 = 0.9 is employed, while 
in 2(b) a level of 0.6, and at 2(c) a level of 0.1. 
Analogous figures are obtained, when altering 
only the supply cost (ci), or the probability that a 
disruption occurs (pi).
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We observe that the profit function G(Q1,Q2) 
is relatively flat for several combinations of the 
decision variables Q1 and Q2 with a close to op-
timal performance. In other words, the proposed 
ordering policy seems to be robust and econom-
ically insensitive to minor changes on the optimal 
values of the decision variables. It is also observed 
that as the impact of a disruption on the first sup-
plier increases, the optimal solution moves from 

a solution that mainly utilizes the first supplier to 
a solution that mainly utilizes the second one. In 
the case of Figure 2(b) both suppliers are equally 
attractive and thus the final decision, on the mix 
of orders from them, could be based on other 
significant business-related issues (e.g. alternative 
ways of sourcing with almost identical profit could 
result in different customer service levels). 
Similar findings also result when keeping constant 
all the parameters and altering only the purchase 
costs (ci) or the probabilities (pi) of a supply dis-
ruption.

Depending on the values of the purchase costs 
(ci), the disruption probabilities (pi), and the ef-
fect of a disruption (yi), one of the suppliers may 
dominate over the other one, and thus it will be 
optimal to order only from him/her. Generally, 
all else being equal the source with the smaller 
purchase cost or disruption probability or with the 
higher yield rate will get more orders.

Nevertheless for certain combinations of the 
values of ci, pi, and yi (i=1, 2), a dual policy out-
performs single sourcing and it is optimal to order 
from both channels (a similar conclusion results 
in the recent work of Veeraraghavan and Scheller-
Wolf (2008)). In such cases, it is optimal to place 
the larger part of the total order to the dominant 
supplier and its lesser part to the second one, so 
as to hedge/mitigate the disruption risks. The risk 
is generally greater when ordering only from one 
unreliable source than ordering from two unreli-
able sources, because in case of a disruption to 
the one supplier, at least a part of the total order 
will be available through the other one. Moreover, 
when placing orders to both channels and when 
the possibility of a disruption and/or the impact 
of a disruption increases (lower yield rates), then 
the total ordering quantity increases as well, while 
the total profit decreases.

Considering now the numerical analysis con-
ducted to the service level-constrained problem 
(Pβ), Figure 3 depicts some illustrative problem 
instances. All the given charts present how the 
ordering policy (Q1 and Q2) and the total profit 

Figure 2. Impact of Q1 and Q2 on the total profit 
for various levels of y1: (a) 0.9; (b) 0.6; (c) 0.1



166

Quantitative Risk Management Models for Newsvendor Supply Chains

G(Q1,Q2) change as β0 increases. In all cases for 
values of β0 from 0% to up to a case-specific per-
cent (that exceeds the 85% limit in all instances) 
the ordering policy remains unchanged. This 
limit corresponds to the fill rate of the optimal 
policy of the unconstrained problem (P). As we 
can see in all problem instances the total profit 
is a decreasing function of β0, when β0 reaches 
the aforementioned case-specific critical value. 
Furthermore, the upper effective bound of β0 is 
the percent that leads to zero profit. This percent 
is certainly lower than the 100% and values of β0 
greater than this bound does not make any sense, 
since they lead to a negative profit.

From Figures 3(a) and 3(b) we observe that 
as fill rate increases, the optimal solution moves 
from a solution that mainly utilizes the cheaper 
but less reliable supplier to a solution that main-
ly utilizes the more reliable and more expensive 
one. A risk-averse decision-maker will certainly 

select the ‘safety’ of higher service levels by 
further utilizing the more reliable supplier, irre-
spectively of the lower expected pay-off. More-
over, for service levels close to 100%, large orders 
should be placed to both suppliers. Similarly, it 
is observed from Figure 3(c) that even if one sup-
plier dominates over the other one (the only ac-
tivated source) but he/she is the more unreliable 
from the two, then as β0 increases it will be opti-
mal for risk-averse decision-makers to place an 
additional order to the second supplier, in order 
to reduce/hedge the disruption risks; the order to 
the second source increases with β0. Of course, 
the less the “reliability gap” is between the 
dominant supplier and the second one, the higher 
the service level will be at which the second more 
reliable supplier will become active. Furthermore, 
Figure 3(d) depicts the case in which the first 
supplier is the dominant one as well as the more 
reliable from the two. In such a case, no matter 

Figure 3. Impact of fill rate on optimal ordering policy
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how high the fill rate will be, orders should be 
placed only to the first supplier and the second 
one should not be activated at all.

CONCLUSION AND 
FUTURE RESEARCH

Risk management has emerged as an issue of criti-
cal importance for supply chain management and 
corporate profitability. An effective disruption-
management strategy that enhances supply chain 
resilience is a necessary component of a firm’s 
overall hedging strategy. Firms that passively ac-
cept the risk of disruptions are susceptible to the 
risk of severe financial and market-share loss. In 
this context, the related literature includes several 
papers that are based either on appropriate modifi-
cations or extensions of inventory control policies 
that incorporate risk issues or on new approaches 
that usually employ methodological tools from 
other disciplines, such as game theory. The most 
significant research works are thoroughly pre-
sented in the literature review section. The paper 
also includes two selected models for multiple 
sourcing newsvendor-type supply chains, which 
outline potential ways to model and analyze such 
systems.

Several promising avenues for future research 
in this field have emerged. For instance, the exten-
sions of the current research efforts for multiple 
types of products, for more than two suppliers or 
for supply chains with more than two echelons, 
as well as the consideration of the correlation 
among orders’ yield and disruptions, and the ex-
plicit inclusion of service level concerns are some 
directions that appear worthwhile to be pursued. 
The development of such models will enhance the 
richness, variety, and applicability of the inven-
tory management methodologies for the design 
of resilient supply chains. Furthermore for the 
newsvendor supply chains, it would be interesting 
a detailed study of how delayed deliveries that re-
sult from disruptions affect the part of demand that 

may be served. Furthermore, the decision-maker 
risk attitude should be incorporated in already 
existing models by employing either service level 
constraints such as in the second model of the 
third section, or using other modeling approaches 
including game theory.
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Chapter 8

Relief Distribution Networks:
Design and Operations

Soumia Ichoua
Johnson C. Smith University, USA

INTRODUCTION

In the past few years, there has been an increased 
interest in the design and operations of relief 
distribution networks. This attention is mainly 
motivated by a worldwide increasing trend in 
natural disaster numbers (see Figure 1) as well 
as the alarming and devastating impacts of these 
disasters on human lives and global economy.

According to the Center for Research on the 
Epidemiology of Disasters (CRED), the number 
of disasters resulting in 100,000 to 999,999 victims 
around the globe doubled during 1987-2006 
(CRED 2006). In 2007, 414 natural disasters were 
reported worldwide killing 16847 persons, affect-
ing more than 211 million others and causing over 
74.9 US$ billion in economic damages (CRED 
2007). On its part, the United States was affected 
by many costly disasters that year. These disasters 
caused more than US$ 9 billion in damage (CRED 
2007). However, with almost US$ 129 billion, 

ABSTRACT

Logistics area is often recognized as one of the key elements in achieving effective disaster preparedness 
and response efforts. This chapter presents modeling and solution approaches for both the problem of 
prepositioning emergency supplies prior to a disaster as well as the problem of their distribution after 
the disaster onset. Depending on whether uncertainty is taken into account or not, work in these areas 
will be classified into two major categories: stochastic or deterministic. A distinction will also be made 
between exact methods and heuristics. In addition, the advantages and limitations of each of these two 
classes of approaches will be discussed. An emphasis will be put on the particularities and characteristics 
of relief distribution networks. More advanced issues in the design and operations of these networks will 
also be discussed as interesting research avenues.
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hurricane Katrina 2005 remains the hydro me-
teorological disaster responsible for the highest 
damages ever reported (CRED 2006). The sever-
ity of disaster impacts is often aggravated by the 
worldwide economy connectivity that helps 
spreading disaster effects far-away from the region 
where they actually occur (Akkihal 2006). This 
was the case of hurricane Katrina in 2005 and 
hurricane Ike in September 2008. Both disasters 
stroked the Gulf region which is a source of fuel 
supply, causing fuel price increases in distant 
regions. Figure 2 illustrates the importance of 
natural disasters economical impacts for the last 
few years.

Despite the importance of disasters economi-
cal effects, mitigating their impacts on human 
lives remains the major concern. This can be 
achieved through an adequate and timely delivery 
of emergency supplies such as tents and medical 
products to affected populations. However, efforts 
dedicated to provide these kinds of supplies after 
a disaster onset are often criticized (GPO 2007, 
OIG-08-11). In fact, disaster preparedness has 
been widely identified as an important strategy 
to insure an effective disaster response. Logistics 
area is indeed often recognized as one of the key 
elements in achieving effective disaster prepared-

ness and response efforts (OIG-08-11, Jenkins 
2007, CRID 2006, OIG-06-32, Kemball-Cook 
and Stephenson 1984, Ardekani and Hobeika 
1988, Larson et al. 2005).

This chapter is aimed at addressing both pre-
disaster preparedness and post-disaster respon-
siveness in a distribution network operated by a 
humanitarian relief organization. In this context, 
different types of emergency supplies must be 
delivered quickly to disaster-affected populations 
in order to mitigate their sufferings. Emergency 
supplies may generally be classified into two 
categories: consumable items such as clothing 
and food; and non-consumable items such as 
shelters and electricity devices. As noticed in Ak-
kihal (2006), non-consumable items are critical 
to a timely disaster-response and must therefore 
be delivered in the early stages of the disaster. 
We are interested in a relief distribution network 
where emergency supplies are first received and 
stored in permanent facilities (logistics centers) 
generally located in large cities. These supplies 
are then shipped to temporary supply units (lo-
cal distribution centers) in theater where they are 
pre-positioned for distribution to people in need. 
Since disasters are generally low probability high 
impact events, demand arrival, size and location 

Figure 1. Natural disasters reported 1900-2008. Source: EM-DAT DATABASE
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are random factors that are hard to forecast. More-
over, demand of each type is characterized by its 
degree of urgency and its targeted response time.

Prior to the disaster onset, design decisions 
including the number and location of local distri-
bution centers needed as well as their inventory 
levels for each type of emergency supply are made. 
This activity is commonly called Pre-positioning 
of emergency supplies and is part of pre-disaster 
preparedness. It intends to enhance the response 
when a disaster strikes (i.e., delivering enough 
supplies to affected populations in a timely man-
ner). Design decisions are typically constrained 
by budget limitations that restrict the number of 
local supply units to establish as well as their 
storage capacity (Balcik and Beamon 2008). 
Moreover, solution quality is typically assessed 
through service-based objective functions that 
often prioritize demand satisfaction and /or risk 
reduction (e.g. maximizing the expected total 
demand covered).

After the disaster onset, the organization 
will use the designed network to conduct daily 
distribution of emergency supplies to affected 
populations over a planning time horizon that 
covers the disaster duration. This activity is part 

of post-disaster responsiveness and is conducted 
under various operational constraints at the pre-
established distribution centers (e.g. limited fleet 
size and limited vehicle capacity). The goal is to 
determine visit schedule at each demand point, the 
quantity of supplies of each type to be delivered 
at each visit and the vehicle route to be used for 
each visit over the planning horizon. Given that 
an emergency scene is a highly dynamic envi-
ronment, these decisions must be made based on 
real-time information about the emergency scene 
(e.g. demand, state of the physical network, inven-
tory levels at distribution centers, etc…). Though 
solution quality typically prioritizes demand 
satisfaction, it may incorporate operational costs 
such as the total inventory costs and/or the total 
distance traveled by the vehicles.

Several researchers have compared humani-
tarian relief chains to their commercial counter-
parts (Oloruntoba and Gray 2006, Thomas 2003, 
Thomas and Kopczak 2005, Van Wassebhove 
2006). An important distinction between these 
two types of distribution chains is the objective 
function. While commercial chains typically focus 
on minimizing costs, humanitarian relief chains 
are more concerned about satisfying demand for 

Figure 2. Estimated damage (US$ billion) caused by reported natural disasters 1975-2008. Source: 
EM-DAT DATABASE
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emergency supplies and saving lives. This task 
is particularly challenging given that emergency 
managers must operate under strict budget re-
strictions. Moreover, humanitarian relief chains 
take place in a highly dynamic disruption-prone 
environment where a timely response is vital and 
resources are scarce. Furthermore, disasters are 
generally low probability high impact events. 
Therefore there is typically not enough historic 
data that can be used to estimate their probabilistic 
distributions in order to better prepare for their 
fatal strikes.

In this chapter, we are interested in modeling 
and solution approaches for both the problem of 
prepositioning emergency supplies prior to a di-
saster as well as the problem of their distribution 
after the disaster onset. The reminder of the chapter 
is as follows. Section 2 discusses some of the key 
aspects that are critical to the design and operations 
of effective relief distribution networks. Section 3 
reviews different algorithmic approaches reported 
in the literature of pre-disaster prepositioning of 
emergency supplies. This section also presents 
a non-exhaustive survey of solution approaches 
for the post-disaster distribution of supplies. 
Depending on whether uncertainty is taken into 
account or no, work in these two areas will be 
classified into two major categories: stochastic 
or deterministic. A distinction will also be made 
between exact methods and heuristics. In addi-
tion, the advantages and limitations of each of 
these two classes of approaches will be discussed. 
Section 4 discusses a methodological framework 
for addressing the design and operation of relief 
distribution networks. Finally, section 5 concludes 
and proposes some interesting research avenues.

HANDLING THE 
PARTICULARITIES OF RELIEF 
DISTRIBUTION NETWORKS

As stated before, because of their particularities 
and characteristics, humanitarian relief chains are 

more complex and more challenging than their 
commercial counterparts. Thus, a better under-
standing of the characteristics and processes that 
govern a real-world disaster scene is the first step 
towards the design and operations of effective re-
lief distribution networks. In fact, the elaboration 
of suitable modeling and solution approaches for 
the problem is inherent to a judicious integration 
of these particularities and characteristics. In the 
following, we roughly discuss some aspects to 
consider in achieving this goal.

Assessing System Performance

Contrary to commercial distribution chains that 
are more interested in maximizing profit and 
minimizing operating costs, their humanitarian 
counterparts primarily focus on saving lives and 
mitigating population sufferings. However these 
goals are unlikely to be fully met due to the strict 
budget and resource restrictions under which hu-
manitarian relief chains typically operate. Thus, 
spreading unsatisfied demand fairly among af-
fected populations is an important issue that must 
be addressed. Therefore, service-based objective 
functions that incorporate equity seem to be more 
appropriate to assess the system performance and 
to achieve a better tradeoff between efficiency and 
fairness. An Example of these objective functions 
can be found in Balcik et al. (2008) where the to-
tal penalty costs for unsatisfied and late-satisfied 
demand are minimized. The authors associate a 
penalty cost factor to each item type at each loca-
tion to help allocating supplies equitably among 
the demand locations. Other examples include 
the minimization of the maximum arrival time 
(minmax) and the minimization of the average 
arrival time (minavg) as proposed in Campbell 
et al. (2008). Equity issues are also discussed 
in Ogryczak (2000) for the location of public 
facilities.
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Modeling Uncertainly

Humanitarian relief chains take place in a highly 
dynamic disruption-prone environment where 
parameters such as travel times, demand arrivals 
and volumes are random variables that are sub-
ject to frequent unpredictable changes. Because 
disasters are generally low probability events, 
there is typically not enough historic data that 
can be used to estimate the probabilistic distribu-
tion of these parameters. Hence, scenario-based 
approaches are often used. In these approaches, 
a set of probabilistic scenarios are generated to 
represent different realizations of the random 
variables. The solution quality increases with the 
number of scenarios used and greatly depends on 
the accuracy of these scenarios. An example of 
scenario-based approaches, namely the Sample 
Average Approximation method (SAA) is dis-
cussed in Ahmed and Shapiro (2002).

Modeling Demand Coverage

Prepositioning emergency supplies is a covering 
type problem where the objective function typi-
cally accounts for total demand covered given that 
each type of emergency supplies is characterized 
by its priority and its response time. Covering 
models have been widely reported in the litera-
ture of facility location. The interested reader is 
referred to Daskin (1995) for a review of these 
models. A basic covering model assumes that a 
demand is either fully covered if the service oc-
curs within its response time, or lost otherwise. 
This assumption does not reflect what is actually 
observed in a real-disaster scene where demand 
of some items may be partially covered within 
a pre-specified coverage interval. An example 
is the demand for non-consumable items such 
as equipments or tents. Satisfying this kind of 
demand fully when it occurs at the beginning of 
the disaster is highly desirable since this leads to 
a total benefit. However, receiving partial deliv-
eries of these items later can still be somewhat 

beneficial as compared to not receiving them at 
all. Berman et al. (2003) introduces the gradual 
covering model which is more suitable in this 
case. In this model, demand is characterized by 
a covering interval. The model assumes a gradual 
coverage decreasing from full coverage at the 
lower bound of the covering interval to no cover-
age at the upper bound of this interval. A similar 
model is proposed in Balcik et al. (2008) for the 
design of a humanitarian relief chain.

Storage and Replenishment Strategy

In the distribution of emergency supplies, routing 
and inventory decisions are made concurrently 
over the planning horizon that covers the disaster 
duration. Inventory decisions include visit sched-
ule for each demand point and the quantity of sup-
plies of each type to be delivered to each demand 
point at each visit. These decisions must take into 
account the particularities of different types of 
supplies (i.e. fully filled vs. backordered demand, 
various storage requirements, etc…). As stated in 
Baclik et al. (2008) demand for non-consumable 
items occurs only in the first period of the planning 
horizon and may be backordered with a penalty 
while demand for daily consumable items such as 
food or medication is considered lost if not fully 
filled on time. Moreover, non-consumable items 
are distributed as they are received and therefore 
do not require storage. Conversely, surplus of 
delivered quantities of consumable items may 
be stored for future use with no or some storage 
limitation. Clearly, these diverse characteristics 
and requirements must be addressed with caution 
to elaborate an appropriate replenishment strategy.

LITERATURE REVIEW

This section reviews different algorithmic ap-
proaches found in the literature of pre-disaster 
prepositioning of emergency supplies. It also 
presents a non-exhaustive survey of solution 
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approaches that have been proposed for the post-
disaster distribution of these supplies. Depending 
on whether uncertainty is taken into account or 
no, work in each of these two areas will be clas-
sified into two major categories: stochastic or 
deterministic.

The Prepositioning Problem in 
Humanitarian Supply Chains

Deterministic Prepositioning

Papers that belong to this category assume that 
all the problem inputs like demand quantities and 
demand locations are known in advance with cer-
tainty. These papers are reviewed in the following.

Iakovou et al. (1996) consider the problem of 
locating clean-up equipments for oil spill response. 
The authors propose a mixed-integer linear pro-
gramming model to determine the locations and 
quantities of equipments to store as well as their 
allocation to affected regions. A relaxation of 
the problem is solved and numerical results are 
presented for two real-world problem instances. 
Akkihal (2006) also presents an integer program-
ming model that identifies optimal locations for 
non-consumable inventories while minimizing 
the average distance from the nearest warehouse 
to a demand point. The model also determines 
the assignment of opened warehouses to demand 
regions. The author uses historical information 
on mean annual homeless resulting from natural 
disasters to estimate demand for non-consumable 
material requirements.

Tzeng et al. (2007) address the design of a 
relief delivery system where a set of transfer de-
pots serve as a bridge between collection points 
and demand points. The authors present a fuzzy 
multi-objective programming method to locate 
transfer depots and to determine the amounts of 
commodities to be transferred to and from these 
depots. Three objectives are considered: mini-
mizing the total cost, minimizing the total travel 
time, and maximizing the minimal satisfaction 

during the planning period. Clark and Culkin 
(2007) propose a mathematical transshipment 
multi-commodity model for a similar problem. 
The model is validated using a small real-life 
problem instance.

Ghanmi and Shaw (2007) focus on analyzing 
and assessing the effectiveness of a variety of 
pre-positioning options. The authors develop a 
Monte Carlo simulation framework to this end. 
In these simulations, historical data drawn from 
previous Canadian Forces deployments provide a 
baseline performance measure against which dif-
ferent pre-positioning alternatives are compared.

Stochastic Prepositioning

Since disasters are generally low probability 
events, uncertainty is an inherent characteristic 
to the pre-disaster pre-positioning problem. 
Therefore, pre-positioning decisions that are 
derived from deterministic approaches are likely 
to be inaccurate in a real-life disaster setting. To 
overcome this problem, efforts have been made 
to develop modeling and solution approaches 
where problem inputs such as demand size and/
or location are prone to random variations over 
time. In the following, we briefly review some of 
the work that belongs to this category.

Jia et al. (2007) propose a general facility loca-
tion model to establish facilities for emergency 
supplies in large-scale emergencies. This general 
model uses a subset of discrete scenarios from a 
set of possible emergency settings to represent 
the likelihood that a certain emergency situation 
affects a given demand point. However, the model 
does not account for inventory decisions. To ac-
commodate the characteristics of each large-scale 
emergency, different models are derived from the 
proposed general formulation (i.e., set covering, 
P-median or P-center models). A review of sto-
chastic facility location models can be found in 
Snyder (2006).

Ukkusuri and Yushimoto (2008) model the 
pre-positioning of supplies for disasters as a 
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location-transportation problem. The authors do 
not consider capacity constraints associated to 
the facilities or to the vehicles. Moreover, the 
only source of uncertainty considered is disrup-
tion in the transportation network where some 
pre-selected links have a probability of failure. 
The authors propose an Integer Programming 
formulation that determines the pre-positioning of 
facilities after evaluating the most reliable paths 
in the network.

Other researchers consider the problem of 
locating emergency supplies under stochastic 
demand and capacity constraints on facilities 
(Baclik and Beamon 2008, Chang et al. 2007, 
Mete and Zabinsky 2009, Duran et al. 2009). In 
these papers, decision variables include facility 
locations, the amount of supplies to hold as well 
as their allocation to demand points. In Chang et 
al. (2007), the location of demand points is also 
stochastic. The authors propose two stochastic 
programming models to formulate the problem of 
flood emergency logistics preparation. The objec-
tive is to minimize the expected shipping distance 
of rescue equipment under a set of possible flood 
scenarios. The proposed models are solved using 
a sample average approximation scheme. Mete 
and Zabinsky (2009) use a similar approach for 
the location and distribution of medical supplies 
where the objective is to minimize the expected 
sum of location costs, transportation costs and a 
penalty of unsatisfied demand. The proposed ap-
proach is tested on a small problem based on two 
earthquake scenarios in the Seattle area. Balcik 
and Beamon (2008) address a related problem 
and assume that demand for relief supplies can be 
met from suppliers and warehouses. The authors 
propose a variant of the maximal covering location 
model where the objective is to maximize covered 
demand under pre-disaster and post-disaster bud-
get constraints. However, in their mixed-integer 
linear programming model a scenario consists of 
a single event (i.e., a single demand location and 
amount). Thus, it is assumed that shortage never 
occur at distribution centers. This assumption is 

not realistic since replenishment time is typically 
not negligible.

Duran et al. (2009) address a similar problem 
in collaboration with CARE International (one 
of the largest humanitarian organizations). How-
ever, their model account for multiple demand 
points and assume that demand for relief supplies 
can be fully satisfied from both pre-established 
warehouses and suppliers. They propose a mixed 
integer programming model that minimizes the 
expected average response time assuming a maxi-
mal number of warehouses to open. The authors 
also assume a maximal total inventory allocated 
to all warehouses and require that demand at 
each region is fully satisfied. Since humanitarian 
organizations typically have restricted budgets, 
satisfying all demand is not realistic. Moreover, 
an aggregate capacity constraint over all distribu-
tion centers does not reflect real-life conditions.

To the best of our knowledge, all papers found 
in the literature of pre-disaster prepositioning of 
emergency supplies propose exact methods. Un-
fortunately, these methods are unable to handle 
the large scale computing issues that are inherent 
to the problem. Thus, they are typically tested on 
small sized instances only.

Post-Disaster Distribution 
of Emergency Supplies

This problem generally aims at effectively using 
a fleet of vehicles to distribute different types 
of emergency supplies stored in pre-established 
warehouses to a set of demand points. An objec-
tive function that accounts for minimizing disas-
ter impacts is typically optimized under a set of 
capacity and operational constraints. Different 
variants have been addressed in the literature 
to reflect different emergency situations. These 
variants account for different constraints and 
objective functions.

It is worth noticing that the problem of dis-
tributing emergency supplies can be viewed as a 
variant of the Inventory Routing Problem (IRP). 
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In this problem, a fleet of vehicles is used to 
deliver various items to a set of customers over 
a finite planning time horizon. Decisions include 
visit schedule of each customer, the quantity of 
supplies of each type to be delivered at each visit 
and the vehicle route to be used for each visit. 
While demand satisfaction and equitable service 
are prioritized in the distribution of emergency 
supplies, the objective function in the IRP typi-
cally minimizes total transportation and inventory 
costs. A review of the IRP can be found in Baita 
et al. (1998) and Campbell et al. (2001).

Deterministic Post-Disaster 
Distribution of Emergency Supplies

Solution approaches reported in the literature 
of this problem can be classified into two major 
categories. They are reported in the following.

i.  Exact Methods

These methods are based on mathematical for-
mulations of the problem that are solved using 
some commercial optimization software like 
Cplex. Ray (1987) presents one of the earliest 
works in this category. The author addresses the 
distribution of food-aid. He proposes a single-
commodity multi-modal network flow model on a 
capacitated network over a multi-period planning 
horizon. The objective is to minimize the sum of 
total transportation and inventory costs incurred 
during the planning horizon.

Knott (1987) develops a linear programming 
model for food delivery from a single distribution 
center to a set of camps using a homogonous fleet 
of vehicles. Two objective functions are consid-
ered: maximizing the total quantity to deliver and 
minimizing total transportation while satisfying 
demand. However, routing is not addressed 
since the model assumes that loads cannot be 
consolidated. Angelis et al. (2007) also address 
an emergency food distribution problem where 
routing is not considered. Multiple depots are used 

and planes are required to deliver full load to a 
visited demand point. The authors develop a linear 
integer programming model that maximizes the 
total satisfied demand. Computational results are 
reported for small real-world problem instances.

Balcik et al. (2008) address the problem of 
delivering consumable and non-consumable emer-
gency supplies from a local distribution center to 
disaster-affected populations. The authors propose 
a mixed integer programming model that accounts 
for capacity and delivery time restrictions. The 
objective is to minimize the sum of routing costs 
and penalty costs for lost and backordered demand. 
Mete and Zabinsky (2009) also propose a mixed 
integer programming model for delivering medi-
cal supplies after a disaster onset. The proposed 
model is tested on a small real-world problem 
instance based on two earthquake scenarios in 
the Seattle area.

Other researchers focus on equity and fairness 
in humanitarian supply chains. For example, Desai 
et al. (2004) address these issues in the dispatch 
of emergency response resources to mitigate risks 
attributable to natural or man-made disasters. The 
authors develop a non-convex program which 
determines the number of emergency responders 
to allocate to each of the affected regions while 
assuring risk equity across these regions. A linear 
programming relaxation is derived for the pro-
posed model which is solved using a branch and 
bound procedure. A hypothetical case scenario is 
used to assess the effectiveness of the proposed 
solution approach.

ii.  Heuristics and Other Approaches

Since comprehensive mathematical formula-
tions are hard to derive for real-life emergency 
situations, heuristics and simulation based ap-
proaches have been proposed in the literature. 
Knott (1988) proposes heuristics inspired from 
artificial intelligence to vehicle scheduling for 
supplying bulk relief of food to a disaster area. 
Brown and Vassiliou (1993) develop a real-time 
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decision support system which uses optimization 
methods, simulation, and the decision maker’s 
judgment for operational assignment of units to 
tasks and for tactical allocation of units to task 
requirements. The proposed decision system is 
tested on a hypothetical scenario where major 
damages to public works are repaired following 
a major earthquake.

Other researchers model the problem of emer-
gency logistics as a multi-period multi-commodity 
network flow where routing is also considered 
(Haghani and Oh 1996, Oh and Haghani 1997, 
Ozdamar et al. 2004, Ozdamar and Yi 2008). 
Haghani and Oh (1996) and Oh and Haghani 
(1997) develop a large-scale mixed-integer linear 
programming that minimizes total operational 
costs. The proposed formulation is based on the 
concept of a time-space network where time-
varying movements of commodities and personnel 
are represented by three types of links, including 
routing, transfer, and supply/demand carry-over 
links. Two heuristics are proposed. One is based 
on Lagrangian relaxation and the other is an in-
teractive fix-and-run procedure. Ozdamar et al. 
(2004) consider a dynamic version of the problem 
with pick-up and delivery where new plans are 
generated to account for new events such as new 
demand requests and new supplies. The objective 
is to minimize the total unsatisfied demand. The 
authors propose a greedy heuristic and a lagrangian 
relaxation algorithm. Ozdamar and Yi (2008) pro-
pose a constructive greedy heuristic for a similar 
problem where the objective is to minimize total 
service delay. The devised heuristic is based on 
a greedy l-neighborhood search technique that 
extends the definition of neighborhood to account 
for the problem special needs.

Barbarosoglu et al. (2002) develop a multi-
objective mathematical model for helicopter 
mission planning during a disaster. The authors 
propose a bi-level hierarchical decomposition 
approach and an iterative coordination heuristic 
to solve the proposed model. The top-level of this 
mathematical model deals with tactical decisions 

such as crew missions and the assignment of he-
licopters from the air force bases to the operation 
base. The base-level of the model tackles the cor-
responding operational decisions such as routing, 
rescue plans and re-fueling schedules.

Campbell et al (2008) address equity issues 
in the distribution of emergency supplies. The 
authors discuss two alternatives to the use of 
operating cost-based objective functions typically 
found in commercial TSP and VRP. The first one 
minimizes the maximum arrival time (minmax) 
while the second one minimizes the average ar-
rival time (minavg). The authors argue that these 
objective functions represent equity in relief 
distribution networks. Solution approaches that 
are based on local search techniques and simple 
insertion procedures are presented for these new 
variants. Worst case performance analysis is also 
conducted for optimal TSP and VRP solutions that 
account for these alternate objectives. Computa-
tional results are reported on randomly generated 
problem instances where 31 to 79 customers are 
uniformly distributed and where the depot is not 
necessarily in the center.

Stochastic Post-Disaster Distribution 
of Emergency Supplies

The stochastic distribution of emergency supplies 
has been seldom addressed. In the following, 
we review the few papers that we found in the 
literature of this problem.

Barbarosoglu and Arda (2004) propose a two-
stage stochastic programming model to plan the 
distribution of first-aid commodities. The model 
is a multi-commodity multi-model network flow 
formulation where demand, arc capacities and 
supply amounts at nodes are represented as 
random variables. The objective is to minimize 
the expected sum of total costs and the penalty 
of unsatisfied demand. The authors propose a 
scenario-based exact approach which is tested 
on small real-case problems.
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Shen et al. (2005) address a stochastic vehicle 
routing problem in response to large-scale emer-
gencies. The problem is decomposed into two 
stages where pre-planned routes are designed in 
the first stage and adjustments to these routes are 
made in the second stage. A chance constrained 
model is proposed for the planning stage and is 
solved using a tabu search heuristic. On the other 
hand, three different recourse strategies are de-

veloped for the operational stage and are solved 
using exact and heuristic methods. Simulations 
are conducted to assess the effectiveness of the 
proposed modeling and solution approaches.

The literature discussed in this section on the 
prepositioning problem in humanitarian Supply 
Chains and the post-disaster distribution of emer-
gency supplies is summarized in Table 1.

Table 1. Summary of previous and current research 

Author(s) Pre-Disaster Prepositioning 
Problem

Post-Disaster Distribution 
Problem

Deterministic Stochastic

Iakovou et al. (1996)      ✓      ✓

Akkihal (2006)      ✓      ✓

Tzeng et al. (2007)      ✓      ✓

Clark and Culkin (2007)      ✓      ✓

Ghanmi and Shaw (2007)      ✓      ✓

Jia et al. (2007)      ✓      ✓

Snyder (2006)      ✓      ✓

Ukkusuri and Yushimoto (2008)      ✓      ✓

Baclik and Beamon (2008)      ✓      ✓

Chang et al. (2007)      ✓      ✓

Mete and Zabinsky (2009)      ✓      ✓      ✓      ✓

Duran et al. 2009      ✓      ✓

Chang et al. (2007)      ✓      ✓

Knott (1987)      ✓      ✓

Knott (1988)      ✓     ✓

Angelis et al. (2007)      ✓      ✓

Balcik et al. (2008)      ✓      ✓

Desai et al. (2004)      ✓      ✓

Brown and Vassiliou (1993)     ✓     ✓

Haghani and Oh (1996)      ✓      ✓

Oh and Haghani (1997)      ✓      ✓

Ozdamar et al. (2004)      ✓      ✓

Ozdamar and Yi (2008)      ✓      ✓

Barbarosoglu et al. (2002)      ✓      ✓

Campbell et al (2008)     ✓      ✓

Barbarosoglu and Arda (2004)     ✓      ✓

Shen et al. (2005)      ✓      ✓
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METHODOLOGICAL FRAMEWORK

Prepositioning emergency supplies is a strategic 
decision aimed at designing the relief distribu-
tion network away before the disaster strikes. 
The designed distribution network is used latter 
to conduct daily operations aimed at delivering 
emergency supplies to disaster-affected popula-
tions. Thus, pre-positioning of emergency supplies 
and their distribution is a typical decision time 
hierarchy situation as defined in Schneeweiss 
(2003). In the following, we discuss a method-
ological framework for the design and operations 
of relief distribution networks using the concep-
tual approach proposed in Schneeweiss (2003). 
A similar framework has been used to tackle the 
Stochastic Multi-Period Location-Routing Prob-
lem (Klibi et al. 2009).

Design decisions including the number of 
local distribution centers, their locations and 
quantities of supplies to hold in them are made 
at the strategic-level at an instant t0. The designed 
distribution network is used afterward at the 
operational-level starting at some instant t1> t0, 
for the disaster duration, to daily determine when 
and how much to deliver to each demand point 
and which route to use. Clearly, design decisions 
and daily operational decisions have a significant 
mutual impact on each other. Thus, a judicious 
integration of these two decision processes is es-
sential to enhance the relief network performance. 
A major issue in achieving this integration is that 
the two decision processes take place at different 
points of time relying on different information 
status. Strategic decisions are made at instant 
t0 based on vague information available at that 
time (e.g. estimate demand of each type over the 
disaster duration, estimate traveling costs, etc…). 
Operational decisions on the other hand rely on 
more recent and precise information (e.g. actual 
demand of each type per period, explicit available 
routes, more accurate traveling times, etc...). To 
overcome this problem, strategic and operational 
decisions can be integrated using a distributed 

decision process as proposed in Schneeweiss 
(2003). At the strategic level, design decisions 
are made based on information available at instant 
t0 such as feasible locations for the distribution 
centers and the matrix of distances between these 
locations. These strategic decisions minimize 
the expected cost of establishing the distribution 
centers while taking into account an anticipation 
of the operational level. The latter represents 
operational decisions that optimize an estimate 
of some operational criterion under approximate 
operational information available at instant t0. For 
example, the operational level anticipation may 
minimize total transportation and inventory costs 
and/or maximize total satisfied demand based 
on forecasted demand of each type at each time 
period, estimate resources available at each time 
period, etc…

It is worth noticing that the operational-level 
anticipation used in the distributed decision pro-
cess described above is an approximate way of 
taking into account the effect of the network design 
on its future use. Thus the accuracy of the result-
ing design is inherent to the precision of models 
used to accomplish this approximation. Clearly, 
the more details we include in the approximation 
models, the better the anticipation is. A possible 
anticipation can be obtained using an estimate 
unit cost of transporting an item type from a 
distribution center to a demand point instead of 
actual routing costs. Demand of each type can also 
be aggregated over the disaster duration. These 
estimated parameters can be obtained using a set 
of probabilistic scenarios. A better anticipation 
would consider the actual traveling costs which 
depend on the explicit routes used. The result-
ing problem would be a Stochastic Multi-Period 
Location-Inventory-Routing Problem. Klibi et al. 
(2009) propose a similar approach for the Stochas-
tic Multi-Period Location-Routing Problem. This 
problem naturally leads to complex models that 
are hard to solve. The integration of inventory 
decisions brings additional concerns that must 
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be addressed with caution. Section 2 discusses 
some of these issues.

Having anticipated the operational-level, the 
strategic-level selects the best design decisions to 
implement. The implemented design will be used 
later for the distribution of emergency supplies 
during a disaster of duration T. Hence, at each 
time period t ∈ T actual operational information 
is used to determine the schedule of visits for 
each demand point, quantities to deliver of each 
product type and vehicle routes.

CONCLUSION

In the past few years, there has been an increased 
interest in the design and operations of relief 
distribution networks. This attention is mainly 
motivated by a worldwide increasing trend in 
natural and man-made disaster numbers as well 
as the alarming and devastating impacts of these 
disasters on human lives and global economy. 
Researchers have focused on developing effective 
modeling and solution approaches to enhance the 
performance of relief distribution networks. How-
ever, this research line has not reached maturity 
yet and many related challenging issues still need 
to be investigated. Some of these new research 
directions are presented in the following.

• Modeling approaches for the Prepositioning 
Problem in Humanitarian Supply Chains 
typically lead to large-scale mixed integer 
programs. These models are commonly 
tackled in the literature using exact meth-
ods. Unfortunately, these methods require 
an extensive computing time and can there-
fore be applied to small sized instances 
only. Thus, the elaboration of heuristic ap-
proaches that can tackle realistic relief dis-
tribution networks must be investigated. In 
addition to large-scale computing issues, 
these heuristics should handle the com-
plexity and particularities of humanitarian 

supply chains accurately. A key element to 
the success of these efforts is to account 
for uncertainty while integrating long-term 
and tactical decisions. To address these is-
sues, innovative ways need to be devised.

• Recent advances in communication and 
information technologies now afford op-
portunities for using real-time information 
in the distribution of emergency supplies 
after a disaster onset. However there is still 
a lack of solution approaches that integrate 
real-time information while effectively 
coping with time pressure which is inher-
ent to a disaster scene. An interesting av-
enue to explore would be the elaboration 
of meta-heuristics that effectively combine 
fast on-line strategies and neighborhood 
search procedures. Fast on-line strate-
gies would handle dynamic changes while 
neighborhood search procedures would be 
used to improve the solution quality. In 
this process, the integration of routing and 
inventory decisions under the particular 
storage and replenishment requirements of 
relief distribution networks should be ad-
dressed with caution.

• The distribution of emergency supplies af-
ter a disaster onset takes place in a highly 
dynamic stochastic setting. In this envi-
ronment, decision makers are faced with 
the urgency of making vital decisions in 
limited time based on limited a priori in-
formation. To cope with these challenging 
issues, novel solution approaches need to 
be developed.

• In the literature, uncertainty is often as-
sociated with predictable events for which 
probability distributions can be derived 
from historical data (e.g. changes in travel 
times during peak hours, demand arrival 
and quantity in stable markets, etc…). 
However an emergency scene is character-
ized by a high disruption level where un-
predictable events often arise. Examples 
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of these events include sudden changes in 
travel times due to severe damages in the 
transportation network, unavailability of 
supplies due to unexpected shutdown of 
some affected distribution centers, etc… 
Since these events are associated with 
scarce and low quality a priori informa-
tion, planning in advance for solution ap-
proaches that account for them seems to 
be challenging. At the best, one can only 
hope being able to mitigate their impacts 
when they happen. This can be achieved 
through the elaboration of judicious re-
course strategies that allow a quick and 
effective restoration of the pre-planned 
solution whenever an unpredictable event 
occurs. Taxonomy of such events need to 
be developed to help identifying appropri-
ate responses.

• Time pressure is a major challenge in hu-
manitarian distribution networks because 
of the urgency to supply affected popula-
tions with what is needed when it is ex-
actly needed. Thus the elaboration of fast 
solution approaches that lead to quick de-
cision making is essential to the system ef-
fectiveness. Recent developments in paral-
lel computing techniques offer a powerful 
tool that can be used to this end. However, 
as pointed out in Ichoua et al. (2007), the 
literature of parallel optimization algo-
rithms for dynamic distribution networks 
is very limited.

• Major natural or man-made disasters typi-
cally require the involvement of different 
organizations including local, state and fed-
eral agencies. In such distributed settings, 
managing the coordination of all these par-
ties effectively is essential to a successful 
emergency response. Specific distributed 
algorithms for the dispatch and manage-
ment of resources must be developed. A 
successful implementation of these algo-
rithms is inherent to a judicious manage-

ment of the flow of real-time information 
that unfolds in this complex environment. 
Issues related to effectively communicat-
ing and sharing information as well as rap-
idly integrating and processing the shared 
information need to be addressed carefully.
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ABSTRACT

One of the most important, complicated and expensive processes in a warehouse is order-picking. The 
cost associated with order preparation and picking typically varies between 40% and 60% of the total 
cost of all the processes in a warehouse; therefore, improving the productivity in order picking would 
result directly in cost reduction. In any attempt to reduce costs in order picking, one has to take into 
account: (i) the design of the warehouse so that the pickers’ work may be controlled at all instances, (ii) 
the existence of standards on the pickers’ work so that performance measurements may be compared 
and contrasted reliably, and (iii) the analysis of the phases of the picking process so that the pickers’ 
productivity may be measured and maximized. Such a series of concerns and parameters leads to the 
necessity of developing a mathematical parametric model which may serve as a useful tool for the 
warehouse manager in his efforts to not only measure productivity but also to intervene in the process 
and proceed to improvements. The present work deals with the development of such an analytical para-
metric model for the order picking process in a modular warehouse. The research attempts to address 
and solve three distinct, yet relevant, areas of focus: (i) to produce a generic and analytical framework 
to model the order picking process, (ii) to define practical and easy to adopt performance measures for 
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INTRODUCTION

The increased competition among 3PL firms has 
led them to make efforts to provide the highest 
service level and, at the same time, to decrease the 
cost. The latter may be achieved in several ways, 
among which is the improvement in the personnel 
productivity and the increase in the correctness 
of order execution.

One of the most important, complicate and 
expensive processes in a warehouse is order-
picking, and is a key process for cost reduction. 
The cost associated with order preparation and 
picking typically varies between 40% and 60% of 
the total cost of all the processes in a warehouse; 
therefore, improving the productivity in order 
picking would result directly in cost reduction. 
Some common immediate concerns that arise 
when trying to achieve this goal are: How can 
we improve the order-picking productivity? How 
can we set realistic goals and monitor everyday 
performance? How can personnel and resources 
utilization be maximized? How can the produc-
tivity of each picker be tracked? How can we 
define the warehouse capacity with respect to 
order execution?

At the same time, one has to take into ac-
count the following parameters: (i) the design of 
the warehouse so that the pickers’ work may be 
controlled at all instances, (ii) the existence of 
standards on the pickers’ work so that performance 
measurements may be compared and contrasted 
reliably, and (iii) the analysis of the phases of the 
picking process so that the pickers’ productivity 
may be measured and maximized. Such a series 
of concerns and parameters leads to the necessity 

of developing a mathematical parametric model, 
aiming to monitor accurately the order-picking 
process and improve productivity. This model may 
serve as a useful tool for the warehouse manager 
in his efforts to not only measure productivity 
but also to intervene in the process and proceed 
to improvements.

The present work deals with the development 
of an analytical parametric model for the order 
picking process in a modular warehouse. The 
modules of the warehouse are considered to be 
the distinct sections where operations reside; typi-
cally, each operation corresponds to one customer. 
This research attempts to address and solve three 
distinct, yet relevant, areas of focus: (i) to produce 
a generic and analytical framework to model the 
order picking process, (ii) to define practical and 
easy to adopt performance measures for the order 
picking process, and (iii) to provide the tools 
for a warehouse manager to set goals, measure 
performance and identify areas of improvement 
in his areas of responsibility. In addition to these, 
the research sets the foundations to further expand 
on other warehouse processes, such as loading/
unloading, products receipt, etc., that supersede 
the boundaries of order picking.

This article is structure as follows. We provide 
a brief literature review on performance measure-
ment in the supply chain and in order picking, 
in particular. Then, we describe the parameters 
that compose the model and overview the steps 
towards the model development. We also record 
and classify the elementary movements involved 
in any picking process, we provide the definitions 
for basic, normal and standard times for picking 
movements, and explain how these result from 

the order picking process, and (iii) to provide the tools for a warehouse manager to set goals, measure 
performance and identify areas of improvement in his areas of responsibility. In addition to these, the 
research sets the foundations to further expand on other warehouse processes, such as loading/unload-
ing, products receipt, etc., that supersede the boundaries of order picking. The analysis is corroborated 
by a real case study, among the many monitored in a pragmatic setup, accompanied by ABC analysis of 
the warehouse operation and a presentation of a fair frame to measure workers’ performance.
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observation and sampling. In the next section, 
we study the issue of performance measurements 
and show how these can be extracted in a modular 
warehouse environment; then, we illustrate how 
the parametric model is implemented, by first 
calculating the total standard times per profile, 
then by setting the targets per profile and finally, 
by setting the total target for the operation (ware-
house module). Our analysis is enriched with a real 
case study, among the many we have monitored 
in a pragmatic setup. Then, we present the results 
of our analysis and demonstrate our findings on 
the ABC analysis of the warehouse operation; 
furthermore, we indicate how performance can 
be improved and we set a fair frame to measure 
workers’ performance. Finally, we summarize 
our contributions and set the guidelines for future 
research.

BRIEF LITERATURE REVIEW

The problem of determining supply chain costs 
has been recognized since the 1930s (Heckert, 
1940).The analysis of distribution costs appears 
to have paralleled the evolution of the integrated 
logistics management concept. Distribution costs 
remained largely a “dark continent” through the 
early 1960s. Mentzer and Konrad (1991) first 
presented a set of indices to measure the logistics 
performance using an analytical approach. They 
divided the logistics operation into the areas of 
transportation, warehousing, inventory control, 
order processing and logistics administration and 
proposed a set of performance criteria for each 
of these areas. The criteria were, in turn, classi-
fied in terms of their areas of measurement into 
labor, cost, time, utilization, equipment, energy, 
and transit time measures and in each class a set 
of distinct measures was attributed. Issues in 
supply chain costing with respect to supply chain 
performance have been investigated by Lalonde 
and Pohlen (1996). They examined the available 

tools for effectively costing an extended supply 
chain and evaluated the methods in terms of 
their cost-effectiveness; they also investigated 
how these cost measures apply to profitability 
and performance over time. One of the methods 
to measure performance is ABC analysis, which 
emerged during the 80s as a means to assign costs 
within an organization (Cooper, (1989)). Over the 
years, ABC has gained considerable attention as 
a potential tool for evaluating supply chain per-
formance. General concerns and characteristics 
of supply chain performance measurements were 
investigated by Lapide and Happen (2000). They 
addressed questions, such as, why is performance 
measurement important, what approaches exist to 
measure supply chains, what methods exist for 
setting performance targets, etc.

In this context, several literature reviews about 
supply chain modeling as a whole have been pre-
sented, which gathered the knowledge presented at 
that time on models and methods. Beamon (1998) 
focused on the literature review in multi-stage 
supply chain modeling and in particular, in the 
performance, design and analysis of the supply 
chain as a whole. Min and Zhou (2002) synthesized 
past supply chain modeling efforts and identified 
key challenges and opportunities associated with 
supply chain modeling; furthermore, they provided 
various guidelines for the successful development 
and implementation of supply chain models. Meix-
ell and Gargeya (2005) reviewed decision support 
models for the design of global supply chains and 
assessed the fit between the research literature in 
the area and the practical issues of global supply 
chain design. Their classification scheme included 
four review dimensions, among which was that 
of the performance metrics including works for 
order picking. Most recently, Gu et al. (2007) 
performed an extensive review on warehouse 
operation planning problems and classified them 
according to the basic warehouse functions, i.e., 
receiving, storage, order picking, and shipping. 
The literature in each category was summarized 
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with an emphasis on the characteristics of various 
decision support models and solution algorithms. 
At the same time, de Koster et al. (2007) gave a 
literature overview (140 papers) on typical deci-
sion problems in design and control of manual 
order-picking processes and focus on the optimal 
(internal) layout design, storage assignment meth-
ods, routing methods, order batching and zoning. 
They recommended promising research directions 
among which is the performance measurement 
and the order picking objectives.

Parallel to the general research on supply 
chain modeling, extensive research efforts have 
been targeted to the development of metrics for 
the performance measurement in various aspects 
of a warehouse operation. Performance measure-
ment in distribution centers has been addressed, 
among others, by Kuo et al. (1999). They selected 
five distribution centers in the Pacific Northwest 
and discussed their characteristics and their 
measurement systems. One of the processes they 
examined was order-picking, where they identi-
fied the performance measurements used which 
were expressed either in volume processed per 
time unit, or percent of orders completed daily, 
or as hours worked over hours planned. They 
did not proceed into further detail and examined 
order picking as a whole rather as aggregation 
of primitive movements. Holmberg (2000) used 
IKEA as an example to introduce a performance 
model, used to reflect the systemic structure of the 
underlying supply chain and a potential integrator. 
He emphasized the importance of his systemic ap-
proach as an adequate one to reveal relationships 
not only among operations in a warehouse but 
also among processes and performance indices.

During the last decade, Lambert and Pohlen 
(2001) provided a framework for developing sup-
ply chain metrics which translated performance 
into shareholder value. The framework focused 
on managing the interfacing customer relationship 
management and supplier relationship manage-
ment processes at each link in the supply chain. 

Gunasekaran et al. (2001) developed a framework 
for measuring the strategic, tactical and operational 
level performance in a supply chain and presented 
a list of key performance metrics. In developing 
these metrics, they made an effort to align and 
relate them to customer satisfaction. Faber et al. 
(2002) focused on warehouse operations and, 
among other observations, they concluded that 
the number of order lines to be processed per day 
and the number of stock-keeping units are the two 
main observable aspects of warehouse complexity. 
Although this is a valid statement, it reveals the 
lack of insight that many firms have into the inner 
mechanisms and factors that affect performance 
and should be measured. Chan and Qi (2003), pro-
posed a process-based approach to mapping and 
analyzing the particularly complex supply chain 
network. Through this approach, they proposed 
a performance measurement system, in which a 
method called performance of activity was used 
to identify the performance measures and metrics. 
Dekker et al. (2004) experimented on a warehouse 
of a wholesaler of tools and garden equipment 
and aimed in determining a good combination 
of policies for storage assignment and routing. 
They adapted existing solution techniques and 
managed to reduce the average route length in the 
order-picking operation by 31% and the number 
of order pickers by 25%. Hwang and Cho (2006) 
studied the problem of developing a performance 
evaluation model for the order picking facility in 
a supply center by reducing the travel distance of 
transporters. They incorporated important aspects 
of warehouse design and operational parameters 
such as, warehouse size, rack size, number of 
transporters, etc., and developed both mathemati-
cal and simulation modes considering probabilistic 
demand and picking frequency. Finally, Manzini 
et al. (2007) introduced an analytical model and 
a multi-parametric dynamic model to quickly 
estimate the traveled distance during a picking 
cycle and performed a factorial analysis of several 
what-if scenarios that revealed which factors and 
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combinations of factors are the most critical in 
affecting the picking system’s response.

Apart of performance metrics and performance 
evaluation, special interest has been targeted on 
picking processes and warehouse layout design 
to optimize order picking. One such study was 
presented by Brynzer at al. (1994). They adapted 
a methodology previously applied for assembly 
production systems and enumerated the elemen-
tary processes involved in order-picking. They 
further classified the latter into direct supporting 
activities, related activities and disturbances. A 
distinct contribution of their work was that they 
identified the loss-generating processes during 
order-picking. Van der Vorst (2006) investigated 
performance measurement in agri-food supply-
chain networks. He also recognized that operations 
are composed of processes which are further bro-
ken down into a directed and connected network 
of (sub-)processes/ activities. The latter should be 
measured and their individual performance affects 
the entire supply-chain performance. A systemic 
and technical solution for the measurement of 
performance in order picking was presented by 
Chow et al. (2006). They designed a RFID-based 
Resource Management System (RFID-RMS) to 
help users select the most suitable resource usage 
packages for handling warehouse operation orders 
by retrieving and analyzing useful knowledge 
from a case-based data warehouse for solutions 
in both time saving and cost effective manner. 
They incorporated a customized route optimizing 
programming model, using real-time data of an 
RFID tag to solve the order picking problems of 
material handling equipment.

Most recently, Hsich and Tsai (2006) con-
sidered the effects on the order picking system 
for factors such as quantity and layout type of 
cross aisles in a warehouse system, storage as-
signment policy, picking route, average picking 
density inside an aisle, and order combination 
type. Le-Duc and de Koster (2007) investigated 
the order batching problem (OBP), that is, the 

problem of determining the number of orders to 
be picked together in one picking tour, by set-
ting as objective the minimization of the average 
throughput time of a random order. Following 
this work, Nieuwenhuyse and de Koster (2009) 
studied the impact of order batching policy, the 
capacity of picking and sorting operations, and 
the picking policy used, on the average customer 
order throughput time, and extended the results 
of the previous research to warehouses with time 
window batching and separate picking and sorting 
functions. Almost at the same time, Roodbergen 
et al. (2008) presented a model that minimizes 
travel distances in the picking area by identify-
ing an appropriate layout structure consisting of 
one or more blocks on parallel aisles. The model 
was developed for one commonly used routing 
policy, but was shown to be fairly accurate for 
other routing policies.

ANALYSIS OF THE 
PARAMETRIC MODEL

In this section, we present the methodology that 
was followed for the production of the parametric 
model. The basic variables that affect the model, 
are: (i) the nature of the product, (ii) the character-
istics of the order (boxes - codes), (iii) the spatial 
characteristics of storage, and (iv) the methods 
and strategies of order preparation and picking. 
Each of these variables corresponds to a discrete 
step of the model development.

The Nature of the Product

Products are characterized subject to their nature 
with respect to three main criteria that formulate 
respective categories. The first category classifies 
the products based on their particular storage con-
ditions (normal, cool and frost). Storage conditions 
affect a picker’s work, productivity and quality of 
picking. Picking in frost conditions, for example, 
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typically exhibits lower productivity than pick-
ing in room temperature conditions. The second 
category classifies the products based on their 
logistics data, that is, the weight and volume of 
the product. These characteristics affect product 
collection and handling and are related to the time 
needed for order preparation. Handling of prod-
ucts with large volume or weight is more difficult 
and often involves use of special equipment, thus 
increasing the duration of order preparation. The 
third category classifies the products based on 
their value and texture. Products of higher value 
typically require more complex and demanding 
picking processes, to ensure proper handling and 
minimization of failures and errors. Figure 1 il-
lustrates how the order picking process is affected 
subject to the above characteristics.

The Characteristics of the Order

This second stage classifies orders based on their 
characteristics, which are the number of codes 
(lines) that it includes, the respective quantities 
and the number of boxes (cubes) prepared. The 
aim of this stage is to create standardized order 
profiles that will be used to measure productivity. 

The standardized order profiles require the use of 
a large number of data over a long period of time, 
so as to calculate the average number of codes, 
quantities and boxes prepared per order. Order 
profiles may change quite often subject to market 
demand or seasonality; even in the same warehouse 
sector several different order profiles may exist. 
As a result, it is essential to update such profiles 
quite frequently. An example of categorization 
based on characteristics of the order is shown in 
Figure 2 (adapted from Frazelle (2002)).

The Spatial Characteristics of 
Storage

The third stage of the model development deals 
with mapping the space within which the picker 
moves, since a large (if not, the largest) portion of 
time consumed by a picker corresponds to travel-
ing to and from the picking positions, the place 
where picking lists exit, the packing space, or the 
loading area; therefore, decreasing distances is a 
direct, efficient and rather simple way to increase 
productivity. This stage also deals with the way 
products are stored, that is, whether products are 
in pallets, boxes, carousels, drawers or simple 
bins, and whether they are on the ground or at a 
higher level (thus requiring a lifting machine or 
a clark). Obviously, the way products are stored 
affects the picking time.

Figure 1. Relationship between difficulty of picking 
process and the product characteristics

Figure 2. Lines and cubes per order and percent-
age of order profiles for a product
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The Methods and Strategies of 
Order Preparation and Picking

The fourth stage deals with the methods and strat-
egies of order preparation and picking. The four 
most common methods for order preparation are:

• Pick by list, where the order is placed in 
a list describing in order the positions that 
the picker has to visit, the codes that must 
be picked along with their description, 
the expiration date of the product, and the 
quantities for each code. The main advan-
tage of this method is its low computer sup-
port cost and the low risk, while the main 
disadvantage is the large preparation time.

• Pick by light, where microcomputers with 
a light indicator are attached in picking po-
sitions. The picker collects the quantity re-
ferred in the computer of each lighted posi-
tion. Only one order may be executed at a 
time. The main advantage of this method is 
the high rate of order execution, while the 
main disadvantage is the high cost of the 
equipment.

• Voice picking, where the picker performs 
his work under guidance by voice com-
mands. The main advantages are the free-
dom of motion of the picker, the acceptable 
level of accuracy and the satisfactory pro-
ductivity level, while the main disadvan-
tage is the rather high cost of equipment.

• RF picking, where the picker performs his 
work using a Jenny (handheld computer-
scanner). The picker proceeds to the pick-
ing place instructed by his computer and 
confirms the picking quantity using the 
barcode scanner. This method is most suit-
able for products where product traceabil-
ity is required. The main advantages are 
the high level of accuracy and the ability to 
collect products using their serial numbers, 
while the main disadvantage is often the 
low rate of order execution.

The order picking strategies aim primarily in 
the minimization of moves by assigning the order 
execution to more than one pickers, however 
increasing the time and effort needed to verify 
the order integrity and completeness. The most 
common order picking strategies are:

• Single order picking, where each picker 
is assigned only one order at a time and 
undertakes the execution of the entire or-
der and the collection of the entire quan-
tity. The main advantage of this strategy 
is that it ensures order integrity; however, 
the picker may be obliged to travel long 
distances, especially for small orders. This 
strategy is therefore more suitable for large 
orders with several codes, so that the time 
of travel per code is decreased.

• Batch picking, where each picker is as-
signed a group (batch) of orders and col-
lects all the quantities for all the orders in 
a single travel. The main advantage of this 
strategy is that distances traveled are mini-
mized, and so does the average time per 
code; however, the time required to place 
products correctly per order is increased 
and the risk of wrong order execution is 
higher. This strategy is recommended for 
order profiles with less than five codes.

• Zone picking, where the picker collects 
only products in the zone that has been as-
signed to him, either per order or per batch. 
The main advantages are the minimization 
of travel time and the acquaintance of the 
picker with his area; however, same as in 
batch picking, the time required to place 
products correctly per order is increased 
and the risk of wrong order execution is 
higher.

CLASSIFICATION OF MOVEMENTS 
IN THE ORDER PICKING PROCESS

This section examines all the movements that are 
encountered during order picking, for each order 
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type and for each method and strategy of order 
picking. These movements have been observed and 
analyzed for a large number of different pickers 
and for a long period of time. A typical example 
of the moves recorded for a simple picking opera-
tion using hand-held scanner is described as: “The 
picker moves to the area where the picking lists 
and the carton labels lie. After obtaining these, 
logs in the scanner with the order data and moves 
to the empty cartons area where he/she selects 
and prepares the cartons to be used based on the 
order data. Subsequently, he/she moves to the 
first picking place and picks the first code at the 
appropriate quantity and scans the barcodes of 
the collected objects. Before moving to the next 
place, he/she verifies the collection and scans the 
final position which is the carton label. Once all 
the quantities are picked, he/she closes the cartons 
and moves to the wrap machine area and seals 
them. The order picking is completed by placing 
the boxes (cartons) in the loading area”.

The movements that generally occur at least 
once during order picking for different storage 
conditions, warehouse layout, picking strategy, 
order preparation method, type of product, etc., 
are classified in the following categories:

• Set up management, which includes 
movements that set up the picking process, 
such as, placing the pallet in the truck, log-
ging in the scanner, etc.

• Traveling management, which includes 
movements that occur during order prepa-
ration, such as, moving from the area of 
picking lists to the area of empty pallets, 
moving from the area of stretch wrap to the 
area of prepared orders, etc.

• Searching and documentation man-
agement, which includes the movements 
needed for finding the order and handling 
the documentation, such as, scanning the 
serial number of each picking unit, scan-
ning the weight of the picking unit, etc.

• Reaching and handling management, 
which includes the movements needed to 

collect the items in the picking list, such as, 
putting the picking unit in the pallet, using 
the stairs to reach the second level, etc.

• Marking and labeling management, 
which includes the movements needed to 
identify the collected units, such as, writ-
ing the loading series, sticking the order 
label on the carton, etc.

• Packaging and palletization manage-
ment, which includes the movements that 
are needed to handle the packaging equip-
ment, such as, creating an empty carton, 
loading the pallet, etc.

• Missing and re-handling management, 
which includes the movements not sup-
posed to occur, but occur because of miss-
ing products or failures (e.g., create a new 
carton, wait replenishments, etc.)

Table 1 summarizes these categories and the 
respective movements.

ELEMENTS OF SPECIAL MODELS

The movements described above constitute the 
so-called General Model, which does not take 
into account any parameterization. This model 
will then be used to generate Special Models 
that will be adapted to the parameters that affect 
the order-picking process, namely, the picking 
methods, the picking strategies, the orders’ clas-
sification and the warehouse operations (layout, 
storage conditions, families of products, work 
requirements, etc.). The elements of the Special 
Model are presented in Figure 3.

BASIC, NORMAL AND STANDARD 
TIMES

The finalization of the parametric mathematical 
model requires measuring the durations for each 
movement. These measurements have to be statis-
tically robust; therefore, a large number of samples 
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Table 1. General model of movements 

Picking System Mgmt. 
(PSM) Group of Movements

Set up Management

Take picking lists

Find the essential equipment (e.x. handle truck pallet)

Log in to Scanner

Log in to Order

Travelling Management

Move from area of picking lists to the area of empty pallets

Move from the area of empty pallets to the start of picking circuit

Move from the area of empty pallets to the area of empty cartons

Move from the area of empty cartons to the start of picking circuit

Move along picking circuit

Move from the end of picking circuit to the area of shrink wrap machine

Move from the area of shrink wrap machine to stretch wrap machine

Move from the end of picking circuit to the area of stretch wrap machine

Move from the area of stretch wrap machine to the area of prepared orders

Stand in / out of electric powered pallet

Ride on /off electric powered pallet

Searching & Documenta-
tion Management

Search of position

Recognition of code

Documentation of movement on picking list

Scan the postion

Scan the barcode of picking unit

Scan the serial number of each picking unit

Scan the weight of picking unit

Scan the sscc of pallet

Scan the label of carton

Manual input of data in scanner

Count of quantity

Reaching & Handling 
Management

Reach in the 2nd level of rack

Pick up units

Put picking unit in carton

Put picking unit on pallet

Open a carton to take the picking unit

Open and close drawer

Use of stair to reach the 2nd level

Use of high lift pallet truck

Marking & Labeling 
Management

Write the series of loading

Write the number of order

Stick the label of order on carton

Stick the packing list on carton
continued on following page
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is needed. In our approach, we have measured 
the duration of each movement as performed 
by different pickers, in various times of the day, 
in different instances of the picker’s shift, since 
productivity is higher at the beginning of the shift 
and drops as the shift progresses. The sampling 

has been performed in a percentage of 80% of the 
personnel, in random days of the week, and has 
included experienced and novice employees, in 
days of varying workload and working with or 
without supervision. The sampling period was six 
months and over forty-five thousand samples have 

Figure 3. Elements of special models for order picking

Packaging & Palletiza-
tion Management

Creat an empty carton

Close the picked carton

Shrink the carton

Band the carton

Load pallet

Unload pallet

Wrap pallet

Unwrap pallet

Block stack pallet

Missing & Re-Handling 
Management

Move to the area of replenishments and back to picking circuit

Wrong Case Selection move back to area of empty cartons

Create a new empty carton

Re-Handling picking units

Re-Handling cases of pallet

Waiting for replenishments

Table 1. continued
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been gathered and processed. Once the measure-
ments have been completed, we have extracted 
the basic, normal and standard times for each 
movement. In particular:

The basic time is the direct outcome of measure-
ments performed with visual inspection. It is the 
average of the measurements ti (i=1,...,N) for N 
repetitions of the movement:
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The normal time is attributed to a specific picker 
and is equal to the basic time divided by the per-
formance ratio r of the picker. It expresses the 

deviation between the basic time for the specific 
movement and the average of times for the specific 
picker for the specific movement. If, for example, 
the basic time for a movement is 1,5 secs but a 
picker executes this movement in 1,2 secs, then 
his performance ratio is 1,5/1,2=1,25 or 125%. 
The normal time is thus given by:
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The standard time is equal to the normal time 
augmented by the non-productive time that cor-
responds to general conditions and particularities 
of the work and the needs of each picker:

T T
S N
= +( )1 l  

where λ expresses the ratio of non-productive time 
compared to the normal time, and is also referred 
to as relaxation allowance.

PERFORMANCE MEASUREMENTS

The parametric model aims in extracting a feasible 
target, which can be interpreted in several forms, 

Figure 4. The database of the parametric model

Figure 5. Warehouse layout
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such as, cartons/hr, scans/hr, codes/day, pallets/hr, 
etc. This target corresponds to the performance 
measurement index for each operation. This 
model may also be used to measure performance 
in the entire spectrum of picking system manage-
ment (PSM) processes, for any order type of an 
operation. The synthesis of the parametric model 
follows three steps, which are: (i) the database 
development, (ii) the processing mechanisms, 
and (iii) the results.

Data Collection and 
Database Development

The database of the parametric model contains 
data for distance traveled, orders, movements 
and time measurements (Figure 4). In the sequel, 
each of these types is addressed in turn. To better 
understand the methodology, the present section 
is corroborated by a real example for a sector of 
the warehouse (Figure 5) with three order profiles. 
The products are simple and belong to the same 
family, the storage conditions are normal and the 
weight and volume of the products are of average 
difficulty.

Data of Distance Traveled

The movements that a picker performs during order 
picking are separated into those within the picking 
circuit and those out of it. The distance covered 
within the picking circuit, can be calculated either 
practically or theoretically. Practical calculation 
requires the actual measurement of the distance. 
The theoretical calculation of the distance results 
from the following formula:
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where α is the number of picking positions, l is 
the number of levels of the picking circuit, w is 
the mixed width of the picking position, n is the 
number of corridors, d is the distance between 
corridors and x is equal to 1 for picking only in 
one direction and 2 for picking in two directions. 
In our example, the operation in Figure 5 consists 
of α=120 picking positions, all at the same level 
(l=1), the mixed width of each position is w=0,95m, 
there are two corridors distanced at d=5,80m, and 
the picker travels each corridor twice and picks 

Table 2. Calculation of distances for positions outside the picking circuit 

From / To
Area 
of pre-
pared 
orders

Area of 
empty 
pallets

Area of 
picking 
lists

Area of 
stretch 
wrap 
ma-
chine

Area of 
shrink 
wrap 
ma-
chine

Area of 
empty 
cartons

Area of 
replen-
ish-
ments

Start of 
picking 
circuit

End of 
picking 
circuit

Area of prepared orders 15,6 16,2 20,4 24,2 22,4 31,3 20,8 24,7

Area of empty pallets 15,6 2,4 7,5 11,3 9,8 40,8 8,6 12,6

Area of picking lists 16,2 2,4 5,1 8,9 7,8 38,4 6,2 10,5

Area of stretch wrap machine 20,4 7,5 5,1 3,8 3,3 34,9 2,7 5,6

Area of shrink wrap machine 24,2 11,3 8,9 3,8 2,8 36,6 4,4 3,3

Area of empty cartons 22,4 9,8 7,8 3,3 2,8 33,8 1,6 3,1

Area of replenishments 31,3 40,8 38,4 34,9 36,6 33,8 32,2 32,2

Start of picking circuit 20,8 8,6 6,2 2,7 4,4 1,6 32,2 5,8

End of picking circuit 24,7 12,9 10,5 5,6 3,3 3,1 32,2 5,8
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products only from the right hand side (therefore, 
x=2). Using these data, the theoretical distance 
D traveled is 119,8m. The distance covered for 
movements outside the picking circuit requires 
the recording of the potential points visited and 
physical measurement of the distances between 
them. These data for the warehouse layout in 
Figure 5 are tabulated in Table 2.

Data of Orders

In this step, the number of different order profiles 
is determined and subsequently, the following data 
are extracted for each order profile:

• Average lines/order
• Average of total units/line (the term units 

may refer to cartons, items, pallets, etc.)

• Average of total units/order
• Average of cartons/order
• Average of pallets/order
• Average of pallets/platform (that cor-

responds to the floor area that an order 
occupies)

Once the above data are recorded for each 
order profile, the same data are recorded for dif-
ferent products only in the case that there exist 
different products with the same order profile. An 
example of a common difference in this case is 
the number of scans. In our example, we deal with 
three different order profiles for the same product. 
The first profile refers to small orders where the 
collected unit is one item and serves door-to-door 
customers. The second profile refers to large orders 
where the collected unit is a box, while the third 

Table 3. Data of orders 

Orders 
Cluster % Products Clus-

ter Lines / Order Units / Line
Units / Or-
der

Cartons/ Or-
der

Pallets / Or-
der

Pallets / Plat-
form

Type 1 83% A 10,66 3,23 34,43 7,35 0,95 0,95

Type 2 6% A 9,90 20,60 203,94 9,90 3,30

Type 3 11% A 7,68 12,40 95,23 1,65 1,65

Total 100% 28,24 36,23 333,60 7,35 12,50 5,90

Table 4. Data of times for different equipment types 

Equipment \ Action Speed (sec 
/m)

Load Pallet 
(sec)

Unload Pallet 
(sec)

Ride on /off 
(sec)

Stand in / 
out (sec)

Ε1_Hand small trolley 0,96 0,00 0,00 0,00 0,00

Ε2_Hand stock trolley 1,65 0,00 0,00 0,00 0,00

Ε3_Hand low lifting pallet truck 1,42 18,00 5,00 0,00 0,00

Ε4_Hand high lifting pallet truck 1,42 18,00 5,00 0,00 0,00

Ε5_Walk - with electric pallet truck 0,85 9,00 4,00 0,00 0,00

Ε6_Ride - on electric pallet truck 0,60 7,00 4,00 3,00 0,00

Ε7_Stand - in electric pallet truck 0,45 7,00 4,00 0,00 4,00

Ε8_Walk - with powered pallet stackers 0,75 9,00 4,00 0,00 0,00

Ε9_Ride - on electric powered pallet stackers 0,60 7,00 4,00 3,00 0,00

Ε10_Standin electric powered pallet stackers 0,45 7,00 4,00 0,00 4,00

Ε11_Pedestrian (On foot) 0,85 0,00 0,00 0,00 0,00



201

An Analytical Model to Estimate the Optimum Production Rate of Picking Processes

profile refers to large orders where the collected 
unit is a box but serves door-to-door customers. 
The respective data are shown in Table 3. It is 
noticed that for types 2 and 3 the cartons/order 
data is null, since the picking unit is the carton.

Data of Time Measurements

The third element to complete the database con-
cerns the data of basic times. These data should 
take into account those factors apart of the human-
related ones that affect the execution times. Such 
factors are mostly related to equipment, such 
as small or stock trolley, pallet trucks, etc., or 
even handheld or wrist attached scanners. Table 
4 presents a collection of times recorded over a 
large number of samples, for movements where 
mechanical equipment is used. These data will be 
used in calculating the expected performance for 
the picking process.

Data of Movements

At this stage, for each order profile, we record the 
specific movements that are needed to perform 
the entire picking process. In other words, we 
derive the special model of movements for each 
order profile. A large number of movements is 
common in all profiles; nevertheless, there also 
exist movements that are order-specific. Apart 
of the necessary movements, we also record the 
movements that may delay the picker, thus adding 
extra time in the order execution. The method and 
strategy of order preparation may also seriously 
affect the movements and the performance. The 
typical movements for our case study are shown 
in Table 5.

Model Mechanisms

The model mechanism aims to extract the final 
result and provide the optimum target for an op-
eration or a set of operations in a warehouse. This 
is performed in three steps (Figure 6).

The first step calculates the total standard times 
for each order profile. This calculation passes 
through the determination of basic and normal 
times. The total basic time for a movement is:

Total basic time = (Total number of units) x 
(basic time per unit) x (frequency of movement)

For example, if the basic time for the move-
ment “Pick up units” is 3 seconds per unit and 
the frequency of movement is 100% (that is, 
the movement is performed for every picking 
unit of the order), then the total basic time for 
this movement to execute an order of 25 units is 
25x3x100%=75 secs. For any order profile, of the 
parametric model, the total basic time is given by 
the equation:
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Where:

TBj: the total basic time for the order profile j

o: the parameter of the operation, o=1,…,x

m: the parameter of the picking method, m=1,…,y

s: the parameter of the picking strategy, s=1,…,z

i: the parameter of the movements, i=1,…,w

uj,omsi: the units of movement omsi for order profile 
j with uj,omsi≥1

tBj,omsi: the basic time for movement omsi for order 
profile j

fj,omsi: the frequency of movement omsi for order 
profile j

The total TNj normal time for the order profile 
j for a picker with performance ratio r results as:
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Table 5. Data of movements 

Warehouse - OPERATION 1

Picking Methods: Pick by List - Picking Strategies: Single Order Picking

PSM O r d e r s ’  C l a s s i f i c a t i o n
Group of Movements Type 1 Type 2 Type 3

SUM
Take picking lists √ √ √

Find the essential equipment √ √ √

TM

Move from area of picking lists to the area of empty pallets √ √ √

Move from the area of prepared orders to the area of empty pallets √ √

Move from the area of empty pallets to the start of picking circuit √ √

Move from the area of empty pallets to the area of empty cartons √

Move from the area of empty cartons to the start of picking circuit √

Move along picking circuit √ √ √

Move from the end of picking circuit to the area of shrink wrap machine √

Move from the area of shrink wrap machine to stretch wrap machine √

Move from the end of picking circuit to the area of stretch wrap machine √ √

Move from the area of stretch wrap machine to the area of prepared orders √ √ √

Stand in / out of electric powered pallet √ √ √

Ride on /off electric powered pallet √ √ √

SDM

Search of position √ √ √

Recognition of code √ √ √

Documentation of movement on picking list √ √ √

Count of quantity √ √ √

RHM

Pick up units √ √ √

Put picking unit in carton √

Put picking unit on pallet √ √

Open a carton to take the picking unit √

MLM

Write the series of loading √ √ √

Write the number of order √ √ √

Stick the label of order on carton √

Stick the label of order on pallet √ √ √

PPM

Create an empty carton √

Close the picked carton √

Load pallet √ √ √

Unload pallet √ √ √

Band the carton √

Wrap pallet √ √ √

Unwrap pallet √ √ √

Block stack pallet √

continued on following page
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T T r
Nj Bj

= /  

Taking into account a relaxation factor λ, the 
total standard time TSj for order profile j is:

T T
Sj Nj
= +( )1 l  

For the case study we examine in this article, 
the above time are shown in Table 6.

The targets for each order profile, result in the 
second step of the model mechanism, and depend 
on the unit for measurement of the target (e.g, 
lines/hour, cases/hour, pallets/hour, etc.). The 
target Qj for order profile j with Uj units is then 
given by:

Q
U

Tj

j

Sj

=  

In the case study examined, the respective 
targets are shown in Table 7.

In the final step of the model mechanism, we 
calculate the total time QTotal of the operation 
(warehouse section) or the entire warehouse. This 
is calculated as:

Q pQ
Total

j

P

j j
=

=
∑
1

 

Where:

P: the total number of order profiles

Figure 6. The steps of the model mechanism

Table 6. Total times (in secs) for the case study 

Profile 1 Profile 2 Profile 3

Total TB per profile 993,21 1756,98 969,28

r = 100% Total TN per profile 1045,48 1849,46 1020,29

λ = 10% Total TS per profile 1092,53 1932,68 1066,21

MRM

Move to the area of replenishments and back to picking circuit √ √ √

Wrong Case Selection move back to area of empty cartons √

Create a new empty carton √

Re-Handling of picking units √

Re-Handling cases √ √ √

Waiting for replenishments √ √ √

Table 5. continued
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j: the number of order profile, j=1,..,P

pj: the percentage of the order profile j in the 
operation

Qj: the target for order profile j

For the case examined, these results are sum-
marized in Table 8.

It should be emphasized that the above results 
are based on order data for three months, while 
the percentages were based on order data of one 
month; furthermore, the pickers that were involved 
were asked to record the delays they confronted 
during the picking process, so that the movements 
of the MRM group and their frequency could be 
calculated.

RESULTS AND DISCUSSION

The results of the parametric model are of im-
portance to warehouse managers, as they enable 
them to:

• Monitor and plan the order picking process
• Manage and evaluate the pickers
• Improve the order picking performance

• Decide on the equipment which is most 
suitable for picking

• Estimate the cost of picking
• Obtain an insight and calculate the times 

of the Picking System Management (PSM)
• Decide on the method and strategy for or-

der picking

In the sequel, some of the most critical aspects 
of usability of the parametric model are discussed.

ABC Analysis of the PSM

The parametric model enables the categorization 
of movements in the PSM based on their total 
time so as to extract their contribution on the 
performance and the cost of the picking process. 
The use of ABC analysis, allows us to:

• Calculate more accurately and rationally 
the time needed for each movement and 
group of movements

• Compare and contrast the total times for 
each PSM group of movements

• Monitor and focus on the most time-con-
suming and expensive groups of the PSM

• Support the decision-making on how to ex-
ecute orders

Table 7. Targets for order profiles of the case study 

Profile 1 Profile 2 Profile 3

Total Picking Units 34,43 203,94 95,23

Total TS 1.092,53 1.932,68 1.066,21

Q: Target Per Profile (picking units/hr) 113,46 379,88 321,55

Table 8. Total target for the operation 

Profile 1 Profile 2 Profile 3

Q: Target Per Profile (picking units/hr) 113,46 379,88 321,55

Percentage 83% 6% 11%

QTotal 152 (picking units / hr)
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Table 9. ABC analysis for all the movements per order profile and for the entire operation 

Orders’ Classification Profile 1 83% Profile 2 6% Profile 3 11% Total

Group of Movements Total 
Time

Per-
cent-
age

Clus-
ter

Total 
Time

Per-
cent-
age

Clus-
ter

Total 
Time

Per-
cent-
age

Clus-
ter

Total 
Time

Per-
centage

Clus-
ter

Close the picked carton 28,1 2,9% A 0,0 0,0% C 0,0 0,0% C 23,3 2,3% A

Wrap pallet 20,8 2,1% B 75,9 4,3% A 38,0 3,8% B 26,0 2,5% A

Put picking unit on pallet 0,0 0,0% C 216,7 12,3% A 119,0 12,0% A 26,1 2,5% A

Count of quantity 24,1 2,4% B 107,1 6,1% A 56,7 5,7% A 32,7 3,2% A

Recognition of code 34,1 3,5% A 31,7 1,8% B 24,6 2,5% B 32,9 3,2% A

Open a carton to take the 
picking unit 42,3 4,3% A 0,0 0,0% C 0,0 0,0% C 35,1 3,4% A

Find the essential equip-
ment 40,0 4,1% A 40,0 2,3% B 40,0 4,0% A 40,0 3,9% A

Move along picking circuit 39,4 4,0% A 51,2 2,9% B 48,0 4,8% A 41,0 4,0% A

Band the carton 51,3 5,2% A 0,0 0,0% C 0,0 0,0% C 42,6 4,1% A

Unwrap pallet 50,4 5,1% A 120,3 6,8% A 88,1 8,9% A 58,7 5,7% A

Put picking unit in carton 82,6 8,4% A 0,0 0,0% C 0,0 0,0% C 68,6 6,6% A

Pick up units 51,6 5,2% A 260,0 14,7% A 142,8 14,4% A 74,2 7,2% A

Create an empty carton 118,7 12,1% A 0,0 0,0% C 0,0 0,0% C 98,5 9,5% A

Stand in / out of electric 
powered pallet 99,3 10,1% A 163,4 9,2% A 94,0 9,5% A 102,5 9,9% A

Waiting for replenish-
ments 115,1 11,7% A 249,5 14,1% A 152,1 15,3% A 127,3 12,3% A

Move from the area of 
shrink wrap/band machine 
to stretch wrap machine

1,6 0,2% C 0,0 0,0% C 0,0 0,0% C 1,3 0,1% B

Move from the area of 
empty pallets to the start 
of picking circuit

0,0 0,0% C 12,8 0,7% B 6,4 0,6% C 1,5 0,1% B

Move from the area of 
prepared orders to the area 
of empty pallets

0,0 0,0% C 16,1 0,9% B 4,6 0,5% C 1,5 0,1% B

Wrong Case Selection 
move back to area of empty 
cartons

2,5 0,3% C 0,0 0,0% C 0,0 0,0% C 2,1 0,2% B

Move from the area of 
empty pallets to the area 
of empty cartons

4,2 0,4% C 0,0 0,0% C 0,0 0,0% C 3,5 0,3% B

Unload pallet 3,6 0,4% C 13,2 0,7% B 6,6 0,7% B 4,5 0,4% B

Block stack pallet 0,0 0,0% C 99,0 5,6% A 0,0 0,0% C 5,9 0,6% B

Write the number of order 8,1 0,8% B 0,0 0,0% C 0,0 0,0% C 6,7 0,7% B

Write the series of loading 10,5 1,1% B 0,0 0,0% C 0,0 0,0% C 8,7 0,8% B

Move to the area of re-
plenishments and back to 
picking circuit

3,3 0,3% C 51,6 2,9% B 27,8 2,8% B 8,9 0,9% B

Stick the label of order 
on carton 11,2 1,1% B 0,0 0,0% C 0,0 0,0% C 9,3 0,9% B

continued on following page
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Take picking lists 10,0 1,0% B 10,0 0,6% B 10,0 1,0% B 10,0 1,0% B

Load pallet 6,3 0,6% B 69,3 3,9% A 11,6 1,2% B 10,7 1,0% B

Move from the area of 
stretch wrap machine to 
the area of prepared orders

8,7 0,9% B 30,3 1,7% B 15,1 1,5% B 10,7 1,0% B

Re-Handling cases 5,1 0,5% B 40,0 2,3% B 42,7 4,3% A 11,4 1,1% B

Create a new empty carton 20,9 2,1% B 0,0 0,0% C 0,0 0,0% C 17,4 1,7% B

Search of position 21,3 2,2% B 19,8 1,1% B 15,4 1,5% B 20,6 2,0% B

Documentation of move-
ment on picking list 21,3 2,2% B 19,8 1,1% B 15,4 1,5% B 20,6 2,0% B

Stick the label of order 
on pallet 17,1 1,7% B 59,4 3,4% A 29,7 3,0% B 21,0 2,0% B

Re-Handling of picking 
units 27,5 2,8% A 0,0 0,0% C 0,0 0,0% C 22,8 2,2% B

Ride on /off electric pow-
ered pallet 0,0 0,0% C 0,0 0,0% C 0,0 0,0% C 0,0 0,0% C

Move from the area of 
empty cartons to the start 
of picking circuit

0,7 0,1% C 0,0 0,0% C 0,0 0,0% C 0,6 0,1% C

Move from the end of 
picking circuit to the area 
of stretch wrap machine

0,0 0,0% C 8,3 0,5% B 4,2 0,4% C 1,0 0,1% C

Move from area of picking 
lists to the area of empty 
pallets

1,0 0,1% C 1,1 0,1% B 1,1 0,1% C 1,0 0,1% C

Move from the end of pick-
ing circuit to the area of 
shrink wrap /band machine

1,4 0,1% C 0,0 0,0% C 0,0 0,0% C 1,2 0,1% C

Total 984,27 100% 1766,41 100% 993,60 100% 1032,2 100,0%

The movements are first categorized in three 
groups for each order profile, as follows:

• Group A contains movements that corre-
spond to approximately 80% of the total 
time

• Group B contains movements that corre-
spond to approximately 19% of the total 
time

• Group C contains movements that cor-
respond to approximately 1% of the total 
time

The categorization of movements is different 
for each order profile. Out of forty (40) move-

ments in total, only four (4) of them belong to 
all three order profiles. In order to categorize 
the movements for the entire operation, that is, 
for all order profiles jointly, one has to take into 
account the weight (i.e., the percentage) of each 
order profile. The total time for a movement n is 
thus obtained as:

T p u t f
Bn

o

x

m

y

s

z

j

P

n omsj n omsj Bn omsj n omsj
=

= = = =
∑∑∑∑

1 1 1 1
, , , ,

 

Where:

TBj: the total basic time for the order profile j

Table 9. continued
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pn,omsj: the frequency of movement n for order omsj

un,omsj: the units of movement n for order omsj 
with un,omsj≥1

tBn,omsj: the basic time of movement n for order omsj

fn,omsj: the frequency of movement n for order omsj

Based on the above equation and the results 
of the parametric model, the ABC analysis for the 
case study we examine is summarized in Table 
9. Similarly, we can calculate the respective 
percentage for each group of movements in the 
PSM. These results are tabulated in Table 10 and 
depicted as charts in Figure 7.

Performance Optimization

The parametric model also serves the purpose of 
helping improve the order picking performance. 
The model is compliant to the time compression 
philosophy expressed by Gregory and Rawling 
(1997) which states that: “Time compression is 
not about making people faster; it is about mak-
ing a product move faster through a factory or 
office, or making new design move faster through 
the new product process”. The parametric model 
aims to improve the order picking performance 
by watching current system failures and missing 

and trying to correct or delete them. The amount 
of necessary improvement could be calculated as 
the quantified desirable performance minus the 
current performance.

The first step towards performance improve-
ment is thus to categorize movements and re-
spective times into value adding and non-value 
adding. The first category contains the required 
movements to complete an order picking process, 
while the second category covers the movements 
that should not exist in a perfect system without 
failures. The value adding movements are all the 
movements of the PSM except of those belong-
ing in the Missing & Re-Handling Management 
(MRM) category, which are non-value adding 
movements. Minimizing the MRM movements 
would thus lead to performance improvement. 
Table 11 summarizes the effect of MRM mini-
mization to the overall performance.

For the case study we examine, it is noted that 
a 30% decrease in the non-value adding MRM 
time, would improve overall performance by 6%, 
while for a 100% decrease of MRM time (as in a 
perfect system), the overall performance would 
be improved by 24%. Apart of the relative per-
centages that can be observed, the crisp numbers 
for total productivity provide the range between 
actual, feasible and optimum targets. As can be 
observed in Table 11, the optimum picking per-
formance could be as much as 188 picking units/

Table 10. ABC analysis for each group of movements per order profile and entire operation 

Profile 1 Profile 2 Profile 3 Total

PSM Tb % Tb % Tb % Tb %

SUM 50,00 5% 50,00 3% 50,00 5% 50,0 5%

TM 156,28 16% 283,17 16% 173,27 17% 165,8 16%

SDM 100,85 10% 178,35 10% 111,96 11% 106,7 10%

RHM 176,55 18% 476,71 27% 261,89 26% 203,9 20%

MLM 46,94 5% 59,40 3% 29,70 3% 45,8 4%

PPM 279,14 28% 377,69 21% 144,23 15% 270,2 26%

MRM 174,51 18% 341,09 19% 222,55 22% 189,8 18%

Total 984,27 100% 1766,41 100% 993,60 100% 1032,23 100%
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hour, for the specific order profiles and percent-
ages, methods and strategies for picking and 
equipment used.

Workers’ Monitoring and Evaluation

A final contribution of the parametric model is that 
it enables the fair and in-depth evaluation of pick-

ers. This is because the model provides the feasible 
targets of performance, based on long-term data 
and evaluates pickers not based on units picked but 
rather compared to a target depending on the order 
mix, order profile characteristics, equipment, etc. 
Assume, for example, that in our case study, there 
exist two pickers, A and B. Picker A has managed 
to pick 735 picking units in 7,5 hours (or 98 pick-

Figure 7. Charted results of ABC analysis for each group of movements per order profile and the entire 
operation

Table 11. Effect of decrease of non-value adding times to the overall picking productivity 

Percentage 
of MRM 
Decrease

Profile 1 Profile 2 Profile 3 Total

MRM Target 
(Q1)

% of Q1 
Increase

MRM Target 
(Q2)

% of Q2 
Increase

MRM Target 
(Q3)

% of Q3 
Increase

MRM Target  
(QTotal)

% of 
QTotal 
Increase

0% 174,51 114,49 0% 341,1 377,9 0% 222,5 313,7 0% 189,8 152 0%

10% 157,06 116,55 2% 307,0 385,3 2% 200,3 320,9 2% 170,8 155 2%

20% 139,61 118,70 4% 272,9 393,0 4% 178,0 328,4 5% 151,8 158 4%

30% 122,16 120,92 6% 238,8 401,1 6% 155,8 336,3 7% 132,9 161 6%

40% 104,71 123,23 8% 204,7 409,5 8% 133,5 344,5 10% 113,9 165 8%

50% 87,25 125,62 10% 170,5 418,2 11% 111,3 353,2 13% 94,9 168 11%

60% 69,80 128,12 12% 136,4 427,4 13% 89,0 362,4 16% 75,9 172 13%

70% 52,35 130,71 14% 102,3 436,9 16% 66,8 372,0 19% 56,9 176 15%

80% 34,90 133,41 17% 68,2 446,9 18% 44,5 382,2 22% 38,0 180 18%

90% 17,45 136,22 19% 34,1 457,3 21% 22,3 392,9 25% 19,0 184 21%

100% 0,00 139,16 22% 0,0 468,3 24% 0,0 404,2 29% 0,0 188 24%
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ing units/hour), while picker B has managed to 
pick 1.155 picking units in the same time (or 154 
picking unit/hour). The examination of these two 
numbers only, would lead to the result that picker 
B is far more productive than A; however, if we 
take into account that picker A deals with orders 
of Profile 1 and picker B with orders of Profile 
2 (see Table 3), then a more correct measure of 
picking performance would be the one described 
by the following formula:

P
Q

Q
Actual

P

=  

Where:

P: it the performance quotient or productivity

QActual: the actual productivity per working hour

QP: the target for performance for order profile P

Table 12 summarizes the results for the two 
pickers. It is noted that the performance quotient 
(or relative performance) of picker A is 86%, 
while for picker B it is only 75%! The parametric 
model, therefore, provides the true productivity 
for each picker based on the picking conditions, 
and is significantly more objective than the pick-
ing rate itself.

CONCLUSION

The present work has dealt with the development 
of an analytical parametric model for the order 

picking process in a modular warehouse. In Section 
2, we have described the parameters that compose 
the model and overviewed the steps towards the 
model development. We have also recorded the 
elementary movements involved in any picking 
process and classified them in seven major cat-
egories. Following that, we have provided the 
definitions for basic, normal and standard times 
for picking movements, and explained how these 
result from observation and sampling. In Sec-
tion 3, we have studied the issue of performance 
measurements and showed how these can be 
extracted in a modular warehouse environment; 
then, we have illustrated how the parametric 
model is implemented, by first calculating the 
total standard times per profile, then by setting the 
targets per profile and finally, by setting the total 
target for the operation (warehouse module). We 
have corroborated our analysis with a real case 
study, among the many we have monitored in a 
pragmatic setup. In Section 4, we have presented 
the results of our analysis and demonstrated our 
findings on the ABC analysis of the warehouse 
operation. We have, furthermore, indicated how 
performance can be improved and we set a fair 
frame to measure workers’ performance.

The contributions of our approach are three-
fold: (i) we have produced a generic and analytical 
framework to model the order picking process in 
a modular warehouse, (ii) we have defined practi-
cal and easy to adopt performance measures, and 
(iii) we have provided the tools for a warehouse 
manager to set goals, measure performance and 
identify areas of improvement in his areas of 
responsibility. In the future, our approach can be 
expanded to include other warehouse processes, 
such as loading/unloading, products receipt, etc., 

Table 12. Performance ratios for different pickers 

Picker QActual QP P

A 98 units/hr 114,5 units/hr 86%

B 154 units/hr 204 units/hr 75%
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and to set global performance targets that super-
sede the boundaries of order picking.

REFERENCES

Beamon, B. M. (1998). Supply Chain Design and 
Analysis: Models and Methods. International 
Journal of Production Economics, 55(3), 281–294. 
doi:10.1016/S0925-5273(98)00079-6

Brynzer, H., Johansson, M. I., & Medbo, L. 
(1994). A Methodology for Order Picking Sys-
tems as a Base for System Design and Managerial 
Decisions. International Journal of Operations 
& Production Management, 14(3), 126–139. 
doi:10.1108/01443579410058595

Chan, F. T. S., & Qi, H. J. (2003). Feasibility of 
Performance Measurement System for Supply 
Chain: A Process-Based Approach and Mea-
sures. Integrated Manufacturing Systems, 14(3), 
179–190. doi:10.1108/09576060310463145

Chow, H. K. H., Choy, K. L., Lee, W. B., & Lau, K. 
C. (2006). Design of a RFID Case-Based Resource 
Management System for Warehouse Operations. 
Expert Systems with Applications, 30, 561–576. 
doi:10.1016/j.eswa.2005.07.023

Cooper, R. (1989). The Rise of Activity-Based 
Costing – Part Three: How Many Cost Drivers 
Do You Need and How Do You Select Them? 
Journal of Cost Management, 34-46.

De Koster, R., Le-Duc, T., & Roodbergen, K. J. 
(2007). Design and Control of Warehouse Order 
Picking: A Literature Review. European Jour-
nal of Operational Research, 182(2), 481–501. 
doi:10.1016/j.ejor.2006.07.009

Dekker, R., de Koster, M. B. M., Roodbergen, 
K. J., & van Kalleveen, H. (2004). Improving 
Order-Picking Response Time at Ankor’s Ware-
house. Interfaces, 34(4), 303–313. doi:10.1287/
inte.1040.0083

Faber, N., de Koster, R., & Van de Velde, S. (2002). 
Linking Warehouse Complexity to Warehouse Plan-
ning and Control Structure. International Journal of 
Physical Distribution and Logistics Management, 
32(5), 381–395. doi:10.1108/09600030210434161

Frazelle, E. H. (2002). World- Class Warehousing 
& Material Handling. New York: McGraw Hill.

Gu, J., Goetschakckx, M., & McGinnis, L. F. 
(2007). Research on Warehouse Operation: A 
Comprehensive Review. European Journal of 
Operational Research, 177, 1–121. doi:10.1016/j.
ejor.2006.02.025

Gunasekaran, A., Patel, C., & Tirtiroglu, E. (2001). 
Performance Measures and Metrics in a Supply 
Chain Environment. International Journal of 
Operations & Production Management, 21(1/2), 
71–87. doi:10.1108/01443570110358468

Heckert, J. B. (1940). The Analysis and Control 
of Distribution Costs. New York: Ronald Press 
Company.

Holmberg, S. (2000). A Systems Perspec-
tive on Supply Chain Measurements. Inter-
national Journal of Physical Distribution 
and Logistics Management, 30(10), 847–868. 
doi:10.1108/09600030010351246

Hsich, L.-F., & Tsai, L. (2006). The Optimum 
Design of a Warehouse System on Order Picking 
Efficiency. International Journal of Advanced Man-
ufacturing Technology, 28, 626–637. doi:10.1007/
s00170-004-2404-0

Hwang, H. S., & Cho, G. S. (2006). A Performance 
Evaluation Model for Order Picking Warehouse 
Design. Computers & Industrial Engineering, 51, 
335–342. doi:10.1016/j.cie.2005.10.002

Kuo, C.-H., Dunn, K. D., & Randhawa, S. U. 
(1999). A Case Study Assessment of Performance 
Measurement in Distribution Centers. Indus-
trial Management & Data Systems, 99(2), 54–63. 
doi:10.1108/02635579910261068



211

An Analytical Model to Estimate the Optimum Production Rate of Picking Processes

LaLonde, B. J., & Pohlen, T. L. (1996). Issues 
in Supply Chain Costing. The International 
Journal of Logistics Management, 7(1), 1–12. 
doi:10.1108/09574099610805395

Lambert, D. M., & Pohlen, T. L. (2001). Sup-
ply Chain Metrics. The International Jour-
nal of Logistics Management, 12(1), 1–19. 
doi:10.1108/09574090110806190

Lapide, L., & Happen, I. (2000). What About 
Measuring Supply Chain Performance? Achieving 
Supply Chain Excellence Through Technology. 
Retrieved from http://lapide.ASCET.com

Le-Duc, T., & de Koster, R. M. B. M. (2007). 
Travel Time Estimation and Order Batching in 
a 2-Block Warehouse. European Journal of Op-
erational Research, 176, 374–388. doi:10.1016/j.
ejor.2005.03.052

Manzini, R., Gamberi, M., Persona, A., & Regat-
tieri, A. (2007). Design of a Class Based Storage 
Picker to Product Order Picking System. Inter-
national Journal of Advanced Manufacturing 
Technology, 32, 811–821. doi:10.1007/s00170-
005-0377-2

Meixell, M. J., & Gargeya, V. B. (2005). Global 
Supply Chain Design: A Literature Review and 
Critique. Transportation Research Part E, Lo-
gistics and Transportation Review, 41, 531–550. 
doi:10.1016/j.tre.2005.06.003

Mentzer, J. T., & Konrad, B. P. (1991). An Ef-
ficiency/Effectiveness Approach to Logistics 
Performance Analysis. Journal of Business Lo-
gistics, 12(1), 33–61.

Min, H., & Zhou, G. (2002). Supply Chain Mod-
eling: Past, Present and Future. Computers & 
Industrial Engineering, 43, 231–249. doi:10.1016/
S0360-8352(02)00066-9

Nieuwenhuyse, I. V., & de Koster, R. B. M. (2009). 
Evaluating Order Throughput Time in 2-Block 
Warehouses with Time Window Batching. Inter-
national Journal of Production Economics, 121, 
654–664. doi:10.1016/j.ijpe.2009.01.013

Roodbergen, K. J., Sharp, G. P., & Vis, I. F. 
A. (2008). Designing the Layout Structure 
of Manual Order Picking Areas in Ware-
house. IIE Transactions, 40(11), 1032–1045. 
doi:10.1080/07408170802167639

Van der Vorst, J. G. A. J. (2006). Performance Mea-
surement in Agri-Food Supply Chain Networks. 
In Ondersteijn, C. J. M. (Eds.), Quantifying the 
Agrifood Supply Chain (pp. 15–26). The Neth-
erlands: Springer. doi:10.1007/1-4020-4693-6_2



212

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-61520-633-9.ch010

Chapter 10

Constrained Optimization of 
JIT Manufacturing Systems with 

Hybrid Genetic Algorithm
Alexandros Xanthopoulos

Democritus University of Thrace, Greece

Dimitrios E. Koulouriotis
Democritus University of Thrace, Greece

INTRODUCTION

This chapter addresses the problem of production 
coordination in serial manufacturing lines which 
consist of a number of unreliable machines linked 
with intermediate buffers. Production coordination 
in systems of this type is essentially the control 
of the material flow that takes place within the 
system in order to resolve the trade-off between 

minimizing the holding costs and maintaining a 
high service rate. A time-honored approach to 
modeling serial manufacturing lines is to treat 
them as Markov Processes (Gershwin, 1994, 
Veatch and Wein, 1992) and then solve the related 
MarkovDecisionProblem, (MDP), by using stan-
dard iterative algorithms such as policy iteration, 
(Howard, 1960), value iteration, (Bellman, 1957) 
etc. However the classic dynamic programming, 
(DP), approach entails two major drawbacks: 
Bellman’s curse of dimensionality, i.e. the com-

ABSTRACT

This research explores the use of a hybrid genetic algorithm in a constrained optimization problem 
with stochastic objective function. The underlying problem is the optimization of a class of JIT manu-
facturing systems. The approach investigated here is to interface a simulation model of the system with 
a hybrid optimization technique which combines a genetic algorithm with a local search procedure. 
As a constraint handling technique we use penalty functions, namely a “death penalty” function and 
an exponential penalty function. The performance of the proposed optimization scheme is illustrated 
via a simulation scenario involving a stochastic demand process satisfied by a five–stage production/
inventory system with unreliable workstations and stochastic service times. The chapter concludes with 
a discussion on the sensitivity of the objective function in respect of the arrival rate, the service rates 
and the decision variable vector.
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putational explosion that takes place with the 
increase of the system state space, and the need 
for a complete mathematical model of the underly-
ing problem. The limitations of the DP approach 
gave rise to the development of sub-optimal yet 
efficient production control mechanisms.

A class of production control mechanisms that 
implement the JIT (JustInTime) manufacturing 
philosophy known as pull type control policies/
mechanisms has come to be widely recognized 
as capable of achieving quite satisfactory results 
in serial manufacturing line management. Pull 
type control policies coordinate the production 
activities in a serial line based only on actual oc-
currences of demand rather than demand forecasts 
and production plans as is the case in MRP-based 
systems. In this chapter, six important pull con-
trol policies are examined, namely Kanban and 
Base Stock (Buzacott and Shanthikumar, 1993), 
Generalised Kanban (see Buzacott and Shanthi-
kumar (1992), for example), Extended Kanban 
(Dallery and Liberopoulos, 2000), CONWIP 
(Spearman et al., 1990) and CONWIP/Kanban 
Hybrid (Paternina-Arboleda and Das, 2001). Pull 
production control policies are heuristics charac-
terised by a small number of control parameters 
that assume integer values. Parameter selection 
significantly affects the performance of a system 
operating under a certain pull control policy and 
is therefore a fundamental issue in the design of 
a pull-type manufacturing system. In this chapter 
the performance of JIT manufacturing systems is 
evaluated by means of discrete-event simulation 
(Law and Kelton, 1991). In order to optimize the 
control parameters of the system the simulation 
model is interfaced with a hybrid optimization 
technique which combines a genetic algorithm 
with a local search procedure.

The application of simulation together with 
optimization meta-heuristics for the modeling and 
design of manufacturing systems is an approach 
that has attracted considerable attention over the 
past years. In Dengiz and Alabas (2000) simula-
tion is used in conjunction with tabu search in 

order to determine the optimum parameters of a 
manufacturing system while Bowden et al. (1996) 
utilize evolutionary programming techniques for 
the same task. Alabas et al. (2002) develop the 
simulation model of a Kanban system and explore 
the use of genetic algorithm, simulated anneal-
ing and tabu search to determine the number of 
kanbans. Simulated annealing for optimizing the 
simulation model of a manufacturing system con-
trolled with kanbans is applied in Shahabudeen et 
al. (2002), whereas Hurrion (1997) constructs a 
neural network meta-model of a Kanban system 
using data provided by simulation. Koulouriotis et 
al. (2008) apply Reinforcement Learning methods 
to derive near-optimal production control policies 
in a serial manufacturing system and compare the 
proposed approach to existing pull type policies. 
Some indicative applications of genetic algorithms 
(GAs) in manufacturing problems can be found in 
Yang et al. (2007), Yamamoto et al (2008), Smith 
and Smith (2002), Shahabudeen and Krishnaiah 
(1999) and Koulouriotis et al. (2010). Panayiotou 
and Cassandrass (1999) develop a simulation-
based algorithm for optimizing the number of 
kanbans and carry out a sensitivity investigation 
by using finite perturbation analysis. It has been 
suggested in the literature that the results of a 
genetic algorithm can be enhanced by conduct-
ing a local search around the best solutions found 
by the GA, (for related work see Yuan, He and 
Leng, 2008 and Vivo-Truyols, Torres-Lapasio and 
Garcıa-Alvarez-Coque, 2001). On that basis, this 
hybrid optimization scheme has been adopted in 
the present study.

The main contributions of this work are the fol-
lowing. The performance of six important pull pro-
duction control policies in a hypothetical scenario 
is investigated using discrete event simulation. In 
order to determine the control parameters of each 
policy the proposed hybrid GA is employed. The 
objective function to be optimized is a weighted 
sum of the mean WorkInProcess, (WIP), inven-
tories subject to the constraint of maintaining the 
service level, (SL), above a specified target. Due to 
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the fact that the objective function is stochastic we 
use resampling, i.e., performing multiple evalua-
tions of the same parameter vector and using the 
mean of these evaluations as the fitness measure-
ment of this individual, a practice discussed by 
Fitzpatrick and Grefenstette, (1988) and Hammel 
and Bäck, (1994). As a constraint handling tech-
nique two types of penalty functions are explored; 
a “death penalty” function and an exponential 
penalty function. The exponential penalty func-
tion is designed according to an empirical method 
which is based on locating points which lie on 
the boundaries between feasible and infeasible 
region from the output of the genetic algorithm 
with the “death penalty” function. Our numerical 
results support the intuitive perception that the 
“death penalty” approach most of the times will 
yield worse results than the exponential penalty 
function which penalizes solutions according to 
the level of the constraint violation. The chapter 
concludes with a discussion on how the objective 
function behaves for different levels of arrival 
rate and service rates as well as on its sensitivity 
to the decision variable vector.

The remaining material of this chapter is 
structured as follows. Sections “Base Stock 
Control Policy” to “CONWIP/Kanban Hybrid 
Control Policy” give a brief description of six 
important pull production control policies for 
serial manufacturing lines. In sections “Optimiza-
tion Problem: Objective Function” and “Hybrid 
Genetic Algorithm” we discuss the main aspects 
of the simulation optimization methodology that 
we followed and namely, the formal definition 
of the parameter optimization problem and is-
sues concerning the genetic algorithm and local 
search procedure that was used. We report our 
findings from the simulation experiments that 
we conducted for one serial line starting from 
section “Experimental Results: Simulation Case” 
and thereafter. Finally, in the last section we state 
our concluding remarks and point to possible 
directions for future research.

SYSTEM DESCRIPTION: JIT 
PRODUCTION CONTROL POLICIES

We examined manufacturing serial lines that pro-
duce a single product type and consist of a number 
of workstations/machines with intermediate buf-
fers. We assume that the first machine is never 
starved. Customer demands arrive at random time 
intervals and request the release of one finished 
part from the finished goods buffer. Demands 
are satisfied immediately from the finished parts 
inventory while in the case where there are no parts 
available in the last buffer the demand is backor-
dered. We do not consider customer impatience 
in our model, so no demand is ultimately lost 
to the system. Manufacturing facilities have the 
ability to work on only one part at a time during a 
manufacturing cycle. All machines have random 
production time, time between failures and repair 
time. As soon as a stage i part is manufactured, 
it is placed in the output buffer of that station. 
A control policy coordinates the release of parts 
from the output buffer of that station to the next 
machine. The unreliability of the manufacturing 
operations along with the stochastic demand for 
final products dictates the use of safety buffers of 
intermediate and finished parts in order to attain 
the target service rate. However the use of safety 
stocks incurs significant holding costs that could 
bring the manufacturer to a position of competi-
tive disadvantage, and therefore, it is essential to 
balance the trade-off between minimizing WIP 
inventories and maintaining a high service level. 
Figure 1 shows a manufacturing system with three 
stations in tandem.

Figure 1. A three station manufacturing line
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The following sections briefly explain the way 
that the Kanban, Base Stock, CONWIP, CONWIP/
Kanban Hybrid, Extended Kanban and General-
ized Kanban control policies for serial lines oper-
ate.

BASE STOCK CONTROL POLICY

A Base Stock, (see Buzacott and Shanthikumar, 
1993), manufacturing line is completely described 
by N parameters, the base stock levels Si of each 
production station, i N= 1 2, ,...,  where N is the 
number of the system’s workstations. The Si pa-
rameters correspond to the number of parts that 
exist in the system’s buffers at the time the system 
is in its initial state that is before any demands 
have arrived to the system. This control policy 
operates as follows. When a demand arrives to 
the system it is immediately transmitted to every 
manufacturing station, authorizing it to start work-
ing on a new station i part. Base Stock has the 
advantage of reacting rapidly to incoming demand, 
with the drawback of providing no control at all 
on the system’s inventories.

KANBAN CONTROL POLICY

The Kanban control policy that was originally 
developed by the Toyota Motor industry and 
became the topic of considerable research there-
after, (Sugimori et al, 1977, Buzacott and Shan-
thikumar, 1993, Berkley, 1992, Karaesmen and 
Dallery, 2000). A Kanban manufacturing line’s 
control parameters are the production authoriza-
tions Ki of each station, i N= 1 2, ,..., . The Ki 
parameter corresponds to the maximum number 
of parts that are allowed in station i (manufactur-
ing facility – output buffer). Workstation i is 
authorized to start working on a new part as soon 
as a finished station i part is released from its 
output buffer. The information of a demand ar-
rival is transmitted from the last manufacturing 
station to the first one station – by – station. If 

there is a buffer with no parts in it then this trans-
mission is interrupted. The Kanban policy offers 
very tight synchronization between the various 
production stations of the system at the expense 
of the relatively slow response to demand fluc-
tuations.

CONWIP CONTROL POLICY

CONWIP is an abbreviation for CONstand Work 
In Process (Spearman et al, 1990). According to 
this policy the total number of parts that exist in 
the system, (Work In Process), can never exceed 
a certain level, which is the C control parameter 
of the policy. Parameter C is equal to the sum of 
the system’s base stocks Si, i N= 1 2, ,..., . All 
machines in a CONWIP line are authorized to 
produce whenever they have this ability, (they are 
operational and have a raw part to work on), 
except the first one. The first machine of the 
system is authorized to start working on a new 
part as soon as a unit from the finished parts buf-
fer is released to a customer.

GENERALIZED KANBAN 
AND EXTENDED KANBAN 
CONTROL POLICIES

These two control policies combine the merits 
of Base Stock and Kanban as they react rapidly 
to the arrival of demands and effectively control 
the WIP at the same time. They are described by 
two parameters per station, the base stocks Si and 
the production authorizations Ki,(Ki ≥ Si), which 
are borrowed from the Base Stock and Kanban 
policies respectively. The finite number of produc-
tion authorizations guarantees that the system’s 
inventories will not exceed the pre – defined 
levels, but the station coordination here is not 
as tight as in Kanban. A station can be granted 
a production authorization even if a part is not 
released from its output buffer. For a detailed 
description of the way Generalized Kanban and 
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Extended Kanban operate the reader is referred 
to Liberopoulos and Dallery (2000) and Buzacott 
and Shanthikumar (1992).

CONWIP/KANBAN HYBRID 
CONTROL POLICY

A CONWIP/Kanban Hybrid system (see Pater-
nina – Arboleda and Das (2001) for example), as 
implied, operates under a combination of the 
CONWIP and Kanban control policies. Departure 
of a finished part from the system authorizes the 
first station to allow a new raw part to enter the 
system. All workstations except the last one have 
a finite number of production authorizations Ki, 
i N= −1 2 1, ,..., . Station production authoriza-
tions Ki, the base stock SN of the last workstation 
and the total WIP, (parameter C), that is allowed 
in the system are CONWIP/Kanban Hybrid’s 
control parameters.

OPTIMIZATION PROBLEM: 
OBJECTIVE FUNCTION

The mathematical formulation of the parameter 
optimization problem for serial lines controlled 
by pull production control policies is given below. 
Let x = [x

1
x
2
 .... x

n
], x

i
ÎZ, be the control 

parameter vector of some pull production control 
policy, i.e. the station i production authorizations 
(kanbans) in a Kanban system, or the initial buf-
fer levels in a Base Stock system etc. The objec-
tive is to find the control parameter values x  that 
maximize the expected value of the stochastic 
objective function f ( , )x w , subject to the con-
straint of maintaining the service level (SL) equal 
to or above a specified target t.

maximize: E f x,w( )



 , xi ÎZ, i n= 1 2, ,....,  

(1)

subject to: E SL x,w( )



 ³ t (2)

ω is used to denote the stochastic nature of f, and 
SL. SL is an unknown function of x  and t ∈ ℜ+

. The evaluation of functions f and SL is the result 
of a simulation experiment. The value of SL is 
the number of demands satisfied by on-hand in-
ventory divided by the number of total demands 
which arrived to the system. The value of f is a 
weighted sum of the mean WorkInProcess inven-
tories and is calculated according to 3.

f h H
i i

i

N

= −
=
∑
1

 (3)

where hi stands for the cost of storing one item in 
output buffer i per time unit, and H

i
 is the aver-

age inventory level in buffer i We know that the 
optimal solution in this type of problems is lo-
cated very close to the boundaries between fea-
sible and infeasible region. Additional difficulty 
in obtaining the optimal solution emanates from 
the fact that fitness measurements contain random 
“noise” caused by the simulation model.

HYBRID GENETIC ALGORITHM

In order to solve the optimization problem stated 
in the previous section we propose a hybrid op-
timization technique which combines a genetic 
algorithm with a local search procedure. The 
genetic algorithm evolves a population of candi-
date solutions (individuals), where each solution 
is evaluated with the use of a simulation model, 
and the individual with the highest fitness value 
found by the GA is used to initialize the local 
search procedure. The fitness v x( )  of each indi-
vidual is represented by Equation (4).
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v
m

f p SL
i

m
x x x( ) = + ( )



=∑

1
1

( , ) ( , )w w  (4)

where f ( , )x w  is calculated according to (3), p x( )  
is a properly defined penalty function of the ser-
vice level, and m is a positive integer (sample 
size). The parameters of the GA are the chromo-
some length l, the population size s, the sample 
size m , a positive integer e called elite count, the 
crossover probability P

cross
, the mutation prob-

ability P
mut

 and the max number of generations 
g. The individuals which constitute the genetic 
algorithm population are encoded as binary bit-
strings, therefore parameter l controls the size of 
the search space. Parameter e determines the 
number of individuals that pass deterministically 
to the next generation. The local search procedure 
is characterized by a single parameter d ∈ ℜ+ . 
Let x

cur
 be the current solution of the local search 

algorithm, v
cur

 its fitness value and v
best

 the best 
fitness value found so far. If we denote the search 
space by S  and a distance function, (e.g. Euclid-
ean distance), by dist(), then the neighborhood 
o f  x

cur
 i s  w r i t t e n  a s 

N S dist
cur
x y x y( ) = ∈ ≤{ }: ( , ) d . The pseudo-

code of the hybrid genetic algorithm is presented 
below.

1.  Input GA parameters: chromosome length 
l, population size s, sample size m , elite 
count e, crossover probability P

cross
, muta-

tion probability P
mut

, max number of gen-
erations g

2.  Initialize population randomly, set genera-
tion_counter¬ 0

3.  WHILE(generation_counter< g )
a.  E v a l u a t e  p o p u l a t i o n .  s e t 

generation counter generation counter_ _← + 1
b.  Scale fitness values proportionally to 

raw fitness measurements

c.  Apply selection operator
 ▪ Select e individuals with highest 

fitness values
 ▪ Select the remaining s e-  indi-

viduals using stochastic uniform 
selection

d.  Apply crossover operator
e.  Apply mutation operator

4.  Return individual x
best

 with highest 
fitness

5.  Initialize local search algorithm: x x
cur best

¬
, define neighborhood parameter δ

6.  E v a l u a t e  x
cur

.  S e t  v v
best cur

¬ , 
flag TRUE¬

7.  WHILE( flag TRUE= )
a.  Evaluate all points in N

cur
( )x

b.  Select x x
new cur

NÎ ( )  with best fitness 
value v

new

c.  IF(v v
new best

> ) THEN set
  v v

best new
¬ , x x

cur new
¬  ELSE THEN 

flag FALSE¬
8.  Return x

cur
. Terminate

The selection operator (Step 3.c) determines 
which individuals will be chosen to create the 
next generation. The first e individuals in terms 
of fitness value pass to the next generation by 
default. The remaining s - e individuals are se-
lected with the use of a stochastic uniform selec-
tion routine. This technique can be visualized as 
a line in which each individual corresponds to a 
section of the line of length proportional to its 
scaled fitness value. The algorithm moves along 
the line in equal-sized steps. At each step, the 
algorithm selects an individual from the corre-
sponding section it finds itself on. In the crossover 
stage (Step 3.d), pairs of individuals are selected 
at random with probability P

cross
Î ( , )0 1  in order 

to be recombined. In the implementations of the 

GA for the one-parameter-per-workstation 
manufacturing systems we used the single-point 
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crossover method. For the remaining systems, 
(Extended and Generalized Kanban) uniform 
crossover was used. According to this technique, 
two individuals exchange bits on the basis of a 
randomly generated binary vector of equal length 
called crossover mask. The mutation operator 
(Step 3.e) modifies the value of a bit in the popu-
lation with probability P

mut
Î ( , )0 1 . The genetic 

algorithm terminates when it completes a pre-
defined number of iterations g and returns the 
individual with the highest fitness value which is 
used to initialize the local search algorithm. The 
complexity of the hill-climbing procedure is 
O t k×( ) , where t is the number of iterations and 
k the neighborhood size. The complexity of the 
genetic algorithm depends on the number of 
generations, the size of the population and the 
genetic operators/parameters used.

EXPERIMENTAL RESULTS: 
SIMULATION CASE

We examined a five-machine manufacturing line 
with equal operation times. The base simulation 
scenario consists of the following parameters: 
Machines operate with service rates which are 
normally distributed random variables with mean 
1.1 parts/time unit and st.d. 0.01. Repair to failure 
times are exponentially distributed with mean 
1000 time units. Failures are operation dependent. 
Repair times are also assumed exponential with 
a MeanTimeToRepair of 10 time units. Times 
between two successive customer arrivals are 
exponential random variables with mean 1.11 
time units, i.e. the arrival rate is R

a
= 0 9. . Since 

the service rates are all equal to 1.1 parts/ time 
unit and the machines are failure-prone, the 
maximum attainable throughput rate under any 
control policy will be T

max
.< 1 1 . Consequently, 

the arrival rate set to 0.9 parts/time unit corre-
sponds to a heavy loading conditions simulation 
case. The inventory costs for storing one part per 

time unit in buffer i are h = [h
1
h
2
 .... h

5
] = [1.0 

1.2 1.44 1.73 2.07]. Note that the holding costs 
increase at a rate of 20% when moving downstream 
from buffer to buffer. This increase is due to the 
value which is added to a part as it is progres-
sively converted into a final product. The system 
operates under a complete backordering policy, 
which means that no customer demand is ulti-
mately lost to the system. The justification for 
selecting the aforementioned probability distribu-
tions in order to model the arrival process, the 
service rates etc. can be found in queueing theo-
ry and in manufacturing systems literature. Some 
indicative references, among others, are the in-
fluential works of Law and Kelton (2000) and 
Bhat (2008). The input parameters of the simula-
tion model were selected in a manner to mimic a 
situation where the system is under heavy loading 
conditions. This is a case of primary interest since 
the differences in performance between the vari-
ous pull type control policies are most clearly 
illustrated when the manufacturing line is pushed 
towards its maximum throughput rate. In order 
to investigate the sensitivity of the production/
inventory system under examination for different 
levels of arrival rates and service rates as well as 
the robustness of the solutions obtained by the 
proposed optimization methodology, four variants 
of the base simulation scenario are also considered. 
In the first two variants, all inputs to the simula-
tion model are kept constant except for the ar-
rival rates which are set to R

a
= 1 0.  and R

a
= 0 8.  

respectively, i.e. we examine the system’s behav-
iour for increased/decreased demand for final 
products. In the remaining two variants of the 
base simulation case we vary the standard devia-
tion of the service rates. In one case the system’s 
performance is evaluated for service rates that 
vary significantly around the mean (st.d. = 0.1) 
and in the other case we examine what would 
happen if the “randomness” of the service rates 
decreased (st.d. = 0.001). The system configura-
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tion for the five simulation cases is presented in 
Table 1.

The goal is to maximize the expected value of 
the weighted sum of the mean WorkInProcess 

inventories f h H
i i

i

N

= −
=
∑

1

, i = 1 2 5, ,.., , subject 

to the constraint of E SL( ) . %x



 ≥ 90 0 .

HYBRID GENETIC ALGORITHM 
PARAMETERS

The dimensions of the related optimization prob-
lem for the Kanban, Base Stock, CONWIP and 
Kanban/CONWIP Hybrid systems are dim = 5. 
For the Extended and Generalized Kanban systems 
the dimensionality of the problem rises to dim’ = 
10. The authors conducted a series of pilot ex-
periments in order to come up with the most 
suitable hybrid genetic algorithm parameters for 
this particular problem. An important issue was 
to resolve the trade-off between quality of final 
solution and computational cost as the evaluation 
of the fitness value of the candidate solutions is 
computationally expensive. We experimented 
with population sizes in the range 20 50,


 , cross-

over probabilities in the range 0 3 0 8. , .



  and 

mutation probabilities in the range 0 001 0 1. , .



 . 

For the one-parameter-per stage policies the 
single-point crossover operator was implemented 
whereas for the two-parameter-per-stage policies 
we applied uniform crossover. The reason for 
making this distinction is that offspring produced 
with the latter crossover technique are generally 

more diverse compared to their parents than off-
spring generated by single-point crossover. This 
is a desirable property due to the fact that the 
search space for the two-parameter-per-stage 
policies is by orders of magnitude larger that the 
search space for the one-parameter-per-stage 
policies and therefore an intense exploration 
strategy is required. The neighborhood of the 
local search algorithm was set to include all data 
points around the current point x with Euclidean 
d i s t ance  equa l  to  o r  l e s s  than  1 : 

N S x y
i i

i

n

x y( ) = ∈ −( ) ≤












=

∑:
2

1

1 . Given 

that the decision variables are integers this is 
obviously the minimum neighborhood size one 
could select but since the major part of the search 
is carried out by the genetic algorithm and the 
local search procedure is used merely to fine-tune 
the already obtained solutions, it is acceptable to 
use a small neighborhood. Admittedly, the param-
eters of the optimization algorithm were initialized 
heuristically and one cannot discard the possibil-
ity that different values for the parameters could 
yield better results but a full factorial experiment 
for the design of the optimization scheme would 
fall beyond the scope of this chapter. The genetic 
algorithm’s parameters that were ultimately se-
lected are: population size = 30, crossover and 
mutation probabilities, P

cross
= 0 5.  and 

P
mut

= 0 05.  respectively. The individual which 
scored the highest fitness value passes to the next 
generation with probability 1, i.e. the elite count 
parameter was set to 1. Each individual was 

Table 1. Simulation scenarios parameters 

Ra Rp st.d. MTBF MTTR inventory costs

base case 0.9 1.1 0.01 1000 10 h

variant 1 1.0 1.1 0.01 1000 10 h

variant 2 0.8 1.1 0.01 1000 10 h

variant 3 0.9 1.1 0.1 1000 10 h

variant 4 0.9 1.1 0.001 1000 10 h



220

Constrained Optimization of JIT Manufacturing Systems with Hybrid Genetic Algorithm

evaluated 50 times, m = 50, where each replicate 
was executed for 80,000 time units. The GA 
produced 100 generations for the problems with 
dimensionality dim = 5, (optimizing Kanban, 
Base Stock, CONWIP, CONWIP/Kanban Hybrid 
systems). For the problems with dimensionality 
dim’ = 10, (optimization of Extended Kanban and 
Generalized Kanban systems) the GA produced 
240 generations of individuals.

COMPUTATIONAL COST

The simulators for the six pull type manufactur-
ing systems as well as the proposed optimization 
algorithm were coded in C++ and the experiments 
were conducted on a PC with AMD Athlon pro-
cessor at 1.8 GHz and 512 MB RAM. The factor 
that primarily affects the execution time of the 
hybrid GA is the control parameter evaluation, 
i.e. the computational cost of the simulation 
model. Every solution evaluation, that is 50 in-
dependently seeded executions of the simulation 
model, lasts approximately 5 seconds and therefore 
the evaluation of a generation of candidate solu-
tions (30 individuals) takes about 2.5 minutes to 
complete. The execution of the hybrid GA for a 
one-parameter-per-stage policy (100 generations) 
lasts approximately 4.7 hours, of which 4.2 hours 
are consumed by the simulation model. On the 
other hand, the execution of the hybrid GA for a 
two-parameter-per-stage policy (240 generations) 
lasts approximately 11 hours, where 10 hours are 
devoted to the solution evaluation phase.

DEATH PENALTY RESULTS

For the implementation of the hybrid genetic 
algorithm with “death” penalty we used the fol-
lowing penalty function.

p
if E SL

if E SL
x

x

x
( ) =





 ≥

− 



 <

0 0 90 0

1000 0 90 0

. , ( ) . %

. , ( ) . %






 

(5)

We reiterate that the expected value E SL( )x



  

is the arithmetic mean of m measurements of SL. 
This is a very straight-forward implementation. 
Every individual that does not satisfy the service 
level constraint is penalized heavily and will be 
probably discarded in the next iteration of the 
algorithm. The results from the hybrid genetic 
algorithm runs for each control policy are dis-
played in Table 2. The rows containing the results 
of the standard genetic algorithm, (without the 
local search component), are labeled with the 
initials GA followed by the control policy’s name, 
while the results of the hybrid algorithm are labeled 
with the initials GAL and the control policy’s 
name. We made this distinction in order to clari-
fy whether the local search offers some significant 
improvement or not. The last column of Table 2 
contains the fitness values calculated according 
to Equation (4) of the corresponding parameter 
sets.

The CONWIP system scored the highest fitness 
value v

b
= −25 29.  followed by the Generalized 

Kanban, the Extended Kanban, the Hybrid CON-
WIP/Kanban, the Kanban and the Base Stock 
systems in decreasing fitness value order. With 
the exception of the CONWIP system, the local 
search algorithm enhanced the best fitness values 
found by the standard genetic algorithm in a range 
from 1.35% to 9.34%. It is important to stress 
here that this improvement refers to the fitness 
values and not the actual objective function values 
of the optimization problem. In the case of the 
Generalized Kanban system the local search al-
gorithm appears to have “repaired” the infeasible 
solution found by the standard genetic algorithm. 
The average percentage of infeasible solutions in 
the final generations of the genetic algorithm runs 
was equal to 7.2%. Table 3 contains the objective 
function values E f ( )x


 * and service levels 

E SL( )x



 * % with 95% confidence bounds of 

the best parameters found by both the standard 
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genetic algorithm and the hybrid genetic algorithm 
with the “death” penalty function.

These data were produced by running 50 rep-
licates of each of the six simulation models for 
t
sim

= 1 500 000 0, , .  time units and then averaging 

the corresponding variables. This is a 18.75 times 
longer simulation than that used to evaluate the 
fitness of the individuals in the genetic algorithm. 
By using exhaustively long simulation times we 
can compute far more accurate estimators, (indi-

Table 2. Best parameter sets and fitness values for “death” penalty function (n.i. stands for “no im-
provement”) 

Policies x1(/x1’) x2(/x2’) x3(/x3’) X4(/x4’) x5(/x5’) C v(x)

GA_Kanban (Ki) 2 2 1 8 13 - -32.11

GAL_Kanban (Ki) 1 2 1 8 12 - -29.12

GA_BaseStock (Si) 2 7 2 0 14 - -31.70

GAL_BaseStock (Si) 1 6 2 0 14 - -29.49

GA_CONWIP (Si, C) 0 5 3 5 6 19 -25.29

GAL_CONWIP (Si, C) n.i. n.i. n.i. n.i. n.i. n.i. n.i.

GA_Hybrid (Ki,  i=1,2,3,4,
B5, C)

1 1 3 7 10 22 -28.75

GAL_Hybrid(Ki,i=1,2,3,4,
S5, C)

1 1 2 7 10 21 -26.71

GA_E. Kanban (Ki/Si) 10/0 11/2 9/1 2/2 23/15 - -26.54

GAL_E. Kanban (Ki/Si) 6/0 11/2 6/1 2/2 23/15 - -26.18

GA_G. Kanban (Ki/Si) 8/4 2/0 15/3 16/2 14/14 - -1028.14

GAL_G.Kanban (Ki/Si) 6/2 2/0 15/3 15/2 14/14 - -26.15

Table 3. Objective function values E f ( )x

 * and % service levels E SL( )x



 * % for best parameter sets 

found by standard GA and hybrid GA with “death penalty” (95% confidence). (K stands for Kanban, 
BS for Base Stock etc. n.i. stands for “no improvement”) 

GA results Hybrid GA (with local search)

Policies E SL( )x



 * % E f ( )x


 * Policies E SL( )x



 * % E f ( )x


 *

K 91.17 ±  0.09 -32.07 ±  0.04 K 90.08 ±  0.09 -29.13 ±  0.03

BS 90.37 ±  0.09 -31.73 ±  0.02 BS 90.03 ±  0.11 -29.53 ±  0.02

C 89.87 ±  0.08 -25.26 ±  0.01 C n.i. n.i.

C/K H 91.34 ±  0.08 -28.83 ±  0.03 C/K H 90.43 ±  0.11 -26.79 ±  0.04

EK 90.29 ±  0.07 -26.57 ±  0.0 EK 90.21 ±  0.09 -26.23 ±  0.03

GK 90.23 ±  0.09 -28.18 ±  0.02 GK 89.91 ±  0.01 -26.12 ±  0.02
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cated by the superscript *), which can be consid-
ered to approximate the true expected values of 
these performance measures. This way, rela-
tively safe conclusions can be drawn regarding 
both the quality of the solutions found by the 
hybrid genetic algorithms and the performance 
of each of the competing pull type control policies. 
Of course, by increasing the simulation time and/
or the resampling, the optimization algorithm is 
less likely to be mislead by “lucky” candidate 
solutions which score well once by chance but 
the consequent computational cost is prohibitive 
of doing so. Apart from that, we are interested in 
establishing whether the algorithm is capable of 
locating good and hopefully optimal solutions in 
the presence of a relatively low signal-to-“noise” 
ratio. By observing the data in Table 3 we see that 
the local search algorithm produced actual im-
provements in the objective function values while 
preserving the feasibility of the solutions in all 
cases except the CONWIP and Generalized Kan-
ban systems. The results regarding the Generalized 
Kanban system are somehow contradicting. In 
Table 2 the local search algorithm appears to have 
repaired the infeasible solution, while in Table 3 
the original solution is now found to be actually 
feasible and the local search solution is the one 
which violates the constraint. Actually, these re-

sults merely demonstrate an inherent weakness 
of search algorithms that generate a single point 
per iteration when compared to genetic algorithms 
in “noisy” environments. A hill-climbing method, 
like the one used here, compares candidate solu-
tions in each iteration only with best solution 
found so far, and therefore, it is easy to be mislead 
by a “lucky” solution. In genetic algorithms, on 
the contrary, for a solution to be maintained it 
must outweigh an entire collection of solutions 
and not just a previously best one. As an overall 
assessment, we could argue that the results pre-
sented in this section support the conclusion that 
even with this simple static penalty function a 
genetic algorithm can produce quite good solu-
tions. Two typical plots of the best solution found 
by the genetic algorithm with the “death” pen-
alty function versus the number of generations 
can be found in Figure 2.

These two plots exhibit a somehow similar 
pattern. For illustration purposes we use a time 
window of 140 generations and divide the plot 
areas in two regions with a perpendicular dotted 
line. Notice that in the left side of the plots, if we 
disregard random fluctuations caused by the 
simulation model, the two curves are increasing 
almost monotonically. In this area, the best solu-
tion found by the algorithm is not lying somewhere 

Figure 2. Typical plots of best fitness value found by GA with “death” penalty function versus number 
of iterations (140 iterations window)
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near the boundaries between feasible and infea-
sible region. In the intersection point of the curve 
with the dotted perpendicular line the curve sud-
denly “dives”. This is indicative that the cur-
rently best individual is marginally feasible, (or 
infeasible), and that it failed to satisfy the constraint 
in this evaluation. As a consequence, it was penal-
ized heavily and substituted by another individ-
ual which happened to have a lower fitness value. 
From this point on, the curve displays similar 
abrupt fluctuations, indicating that the population 
evolves towards the boundaries between feasible 
and infeasible region and the optimal solution.

DESIGNING EXPONENTIAL 
PENALTY FUNCTION

Intuitively, the “death” penalty approach, as at-
tractive as it can be due to its simplicity, does not 
seem to be the best approach to handle constraints. 
Even the slightest violation of the imposed con-
straints results in penalizing heavily a good solu-
tion. This way an individual which scores excel-
lently for a series of consecutive generations may 
be discarded by the algorithm. This is an undesired 
property in the kind of optimization problem that 
we are dealing with, where fitness measurements 
are distorted by random fluctuations caused by 
the stochasticity of the simulation model. An-
other weakness of this approach is that it dam-
ages the diversity of the population, as the major-
ity of the individuals are crowded in the feasible 
region. Given that the optimal solution lies on the 
feasibility boundaries, the search would probably 
be more efficient if the population evolved towards 
the boundaries from both feasible and infeasible 
regions. For example, it is unclear why a slightly 
infeasible individual which is located very close 
to the optimal solution should be assigned a worse 
fitness value than a feasible individual that scores 
poorly. For all of the above mentioned reasons, 
the idea of penalizing infeasible solutions accord-
ing to the level of the constraint violation seems 

more appealing, (see Venkatraman and Yen (2005) 
for guidelines on designing penalty functions). 
The problem that needs to be addressed now is 
how to design such a “soft-limit” penalty function. 
A reasonable choice is to use an exponential 
penalty function p cu( ) ,x =  where c const= ∈ ℜ  
and u t SL= −  is the difference between the 
target service level and E SL( )x



  the measured 

expected service level. The intuitive, minimal 
penalty rule, (Le Riche et al. 1995), suggests that 
the penalty for infeasible individuals should be 
just above the threshold below which infeasible 
solutions score better than their feasible, possibly 
optimal, neighbors. In practice, however, it is 
quite difficult to achieve this. The procedure we 
followed in order to implement, at least to some 
extent, this intuition, is the following. Using the 
output of the executions of the genetic algorithm 
with the “death” penalty function we created plots 
like the ones in Figure 2. By examining these 
plots it was easy to locate solutions that were very 
close to the feasibility boundaries, (these points 
are indicated by the characteristic “dive” of the 
curve). The next step was to examine the neigh-
borhood of such a point in order to determine how 
a small change in parameters affected the service 
level SL as well as the objective function f ( )x . 
The value of SL is affected primarily by the con-
trol parameters of the last three machines so we 
could limit ourselves to a relatively small neigh-
borhood. Having collected this data, we were able 
to select the parameter c of the penalty function 
p cu( ) ,x =  in the spirit of the “minimal penalty 
rule”. This is an empirical technique that may not 
be easy or even possible to apply to other problems, 
nevertheless it provides the means to design a 
penalty function that will work well and outper-
form most of the times the “death” penalty ap-
proach as supported by our experimental results 
presented in the following section.
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EXPONENTIAL PENALTY 
FUNCTION RESULTS

After following the procedure outlined in the 
previous section we were able to construct the 
following penalty function (6).

p

u

u

u

u( )

. , .

. , . .

. , .

x =
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< <

≤




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
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9 0 3 03
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where u t= − E SL( )x



  is the difference be-

tween the target service level t = 90.0% and the 
measured service level E SL( )x



 . Note that for 

service levels equal to or lower than 87.0% we 
ground the penalty to a constant value. The reason 
we do this is that we want the raw fitness values 
v( )x  to be within a range for the selection op-
erator of the genetic algorithm to work properly. 
We reiterate that in our implementation the values 

of the individuals are scaled proportionally to 
their raw fitness measurements prior to selection.

The results from the hybrid genetic algorithm 
runs for each control policy are displayed in Table 
4. The rows containing the results of the standard 
genetic algorithm, (without the local search com-
ponent), are labeled with the initials GA followed 
by the control policy’s name, while the results of 
the hybrid algorithm are labeled with the initials 
GAL and the control policy’s name. The last 
column of Table 4 contains the fitness values of 
the corresponding parameter sets. The CONWIP 
system scored the highest fitness value 
v
b
= −25 31.  followed by the Extended Kanban, 

the Hybrid CONWIP/Kanban, the Generalized 
Kanban, the Base Stock and the Kanban systems 
in decreasing fitness value order. The hybrid 
optimization algorithm outperformed the standard 
genetic algorithm in the cases of the Base Stock, 
the Extended Kanban and the Generalized Kanban 
systems. For the three remaining systems the lo-
cal search failed to offer an improvement in 
minimizing v x( ) . Table 5 contains the objective 

function values E f ( )x

 * and service levels 

Table 4. Best parameter sets and fitness values for exponential penalty function (n.i. stands for “no 
improvement”) 

Policies x1(/x1’) x2(/x2’) x3(/x3’) x4(/x4’) x5(/x5’) C v(x)

GA_Kanban (Ki) 1 1 1 7 13 - -28.05

GAL_Kanban (Ki) n.i. n.i. n.i. n.i. n.i. - n.i.

GA_BaseStock (Si) 0 3 0 0 17 - -27.19

GAL_BaseStock (Si) 0 2 0 0 17 - -25.95

GA_CONWIP (Si, C) 0 6 1 6 6 19 -25.31

GAL_CONWIP (Si, C) n.i. n.i. n.i. n.i. n.i. n.i. n.i.

GA_Hybr id  (Ki ,  i=1 ,2 ,3 ,4 , 
B5, C)

1 4 5 9 1 20 -25.92

GAL_Hybrid(Ki,i=1,2,3,4, 
S5, C)

n.i. n.i. n.i. n.i. n.i. n.i. n.i.

GA_E. Kanban (Ki/Si) 4/1 10/0 2/2 4/2 22/15 - -25.82

GAL_E. Kanban (Ki/Si) 3 /1 10/0 2/2 4/2 22/15 - -25.72

GA_G. Kanban (Ki/Si) 12/5 7/0 14/4 13/1 16/14 - -29.34

GAL_G.Kanban (Ki/Si) 9/2 3/0 13/4 13/1 15/14 - -25.95
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E SL( )x



 * % with 95% confidence bounds of 

the best parameters found by both the standard 
genetic algorithm and the hybrid genetic algorithm 
with the exponential penalty function. These data 
were produced by running 50 replicates of each 
of the six simulation models for t

sim
= 1 500 000 0, , .  

time units and then averaging the corresponding 
variables.

All three solutions found by the local search 
algorithm when initialized with the solutions of 
the genetic algorithm were marginally infeasible. 
The local search algorithm falsely interpreted the 
effect of random noise as an actual improvement 
and thus substituted the feasible solutions by 
infeasible ones. Of course, we cannot rule out that 
this was caused in part by the penalty function 
itself. However, we must mention that the amount 
of the constraint violation was rather trivial. The 
average percentage of infeasible solutions in the 
final generations of the genetic algorithm runs 
with the exponential penalty function was equal 
to 8.5%.

DISCUSSION ON THE 
PERFORMANCE OF THE TWO 
PENALTY FUNCTIONS

By comparing the data in Tables 3 and 5 we notice 
that the standard genetic algorithm with the ex-
ponential penalty function outperforms both the 
standard genetic algorithm and the hybrid algo-
rithm with the “death penalty” function for all 
systems except the CONWIP and the Generalized 
Kanban. In terms of objective function value, the 
use of the exponential penalty function rather than 
the “death penalty” improved the solution by 
3.84% for the Kanban system, by 7.89% for the 
Base Stock system and by 3.43% for the CONWIP/
Kanban Hybrid system. For the Extended Kanban 
system we monitored a 1.5% lower value of 
E f ( )x


 *, while for the CONWIP system the 

results were practically the same. Only for the 
Generalized Kanban system the “death” penalty 
approach succeeded in producing a 4% better 
solution than the exponential penalty approach. 
The superiority of the exponential penalty function 
over the “death” penalty function can be explained 

Table 5. Objective function values E f ( )x

 * and % service levels E SL( )x



 * % for best parameter sets 

found by standard GA and hybrid GA with “exponential penalty” (95% confidence). (K stands for Kan-
ban, BS for Base Stock etc. n.i. stands for “no improvement”) 

GA results Hybrid GA (with local search)

Policies E SL( )x



 * % E f ( )x


 * Policies E SL( )x



 * % E f ( )x


 *

K 90.10 ±  0.08 -28.01 ±  0.03 K n.i. n.i.

BS 90.34 ±  0.12 -27.20 ±  0.03 BS 89.95 ±  0.13 -25.97 ±  0.03

C 89.94 ±  0.10 -25.27 ±  0.02 C n.i. n.i.

C/K H 90.21 ±  0.09 -25.87 ±  0.02 C/K H n.i. n.i.

EK 90.07 ±  0.11 -25.84 ±  0.02 EK 89.98 ±  0.10 -25.71 ±  0.02

GK 90.31 ±  0.09 -29.34 ±  0.02 GK 89.73 ±  0.09 -25.89 ±  0.02
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qualitatively as follows: Figure 3 shows typical 
plots of the genetic algorithm’s convergence with 
the “death” penalty and the exponential penalty 
function. Notice that at some point near the 60th 
generation both curves have approximately the 
same height. The best solutions found by the two 
implementations of the algorithm in these points 
probably belong to the same level set and are ly-
ing somewhere close to the feasibility boundaries. 
In some subsequent iteration of the algorithm with 
the “death” penalty, this solution apparently vio-
lates the constraint and is therefore discarded. The 
height of the curve shows that the individual which 
replaced it has a significantly lower fitness value. 
This is not the case in the algorithm with the 
exponential penalty where the properly designed 
penalty function prevents the good solution to be 
discarded, at least not from a much worse candi-
date solution. Concluding the discussion on the 
performance of the hybrid GA we state summarize 
our major findings: i) the incorporation of a local 
search element can enhance the genetic algorithm’s 
performance with the disadvantage of that the 
local search algorithm is more susceptible to 
falsely interpreting random noise as actual objec-
tive function improvements than the genetic al-
gorithm, ii) the “death penalty” approach most of 
the times will yield worse results than a function 
which penalizes solutions according to the level 

of the constraint violation like the exponential 
penalty function used here.

COMPARISON OF PULL TYPE 
PRODUCTION CONTROL POLICIES-
SENSITIVITY ANALYSIS

Table 6 presents the objective function values and 
the corresponding service levels for the six JIT 
control policies with the best parameters found 
by the proposed optimization strategy. Note that 
the Base stock, CONWIP and Extended Kanban 
solutions attain a service level below 90% but 
since the constraint is within the 95% confidence 
halfwidth we consider them to be feasible. The 
CONWIP policy ranks first followed in close 
distance by the Extended Kanban, Hybrid and 
Base Stock policies. The Kanban and Generalized 
Kanban policies occupy the last two positions of 
the objective function value ranking. Since in this 
simulation scenario the demand process pushes 
the manufacturing system towards its maximum 
throughput rate, the poor performance of the Kan-
ban mechanism is anticipated since this policy of-
fers tight coordination between the manufacturing 
stages but does not respond rapidly to incoming 
orders. On the other hand the performance of the 
Generalized Kanban system is somewhat unex-
pected since it is supposed to be an enhancement 

Figure 3. Typical plots of best fitness value found by GA with “death” and exponential penalty functions 
versus number of iterations
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of the original Kanban policy. However, this is 
not the case for the control policy that is mostly 
related to Generalized Kanban, the Extended 
Kanban mechanism, which ranks second. The 
main characteristic of the Base Stock policy, 
that is fast reaction to demand, is supported by 
the experimental output. Finally, the fact that in 
a CONWIP or CONWIP/Kanban Hybrid system 
the WIP tends to accumulate to the last buffer al-
lows this two policies to achieve a high service 
level while operating a lean manufacturing mode.

Table 7 shows the statistics of the system’s 
performance measures for the four variants of the 
basic simulation case. In the case where the de-
mand rate increases (first column of Table 7) we 
notice that the service level as well as the average 
WIP decreases for all policies, but some control 

mechanisms are more sensitive to this change 
than others. Specifically, the service rate in the 
Kanban and Hybrid systems decreases dramati-
cally, whereas the Base Stock and Generalized 
Kanban policies seem to be more robust regarding 
the increase of the demand rate. In the second 
variant (decreased arrival rate) of the basic simu-
lation case one can see that all six control policies 
practically achieve the same service level. This 
is an indication that when the demand can be 
easily satisfied by the manufacturing system the 
role of the production control policy diminishes. 
In this case the distribution of the objective func-
tion values over the control mechanisms also tends 
to level out.

The increase of the standard deviation of the 
processing times (variant 3) has an effect similar 

Table 6. Objective function values – service levels of pull control policies with best parameters for base 
simulation case 

Kanban Base Stock CONWIP CONWIP/Kan-
ban Hybrid

Extended Kanban Generalized Kan-
ban

E f ( )x


∗ -28.01 

± 0.03
-25.97 

± 0.03
-25.27 

± 0.02
-25.87 

± 0.02
-25.71 

± 0.02
-28.18 

± 0.02

E SL( )x




∗

90.10 ±  0.08 89.95 ±  0.13 89.94 ±  0.10 90.21 ±  0.09 89.98 ±  0.10 90.23 ±  0.09

Table 7. Objective function values – service levels of pull control policies with best parameters for vari-
ants of base simulation case 

Ra=1.0 Ra=0.8 st.d.=0.1 st.d.=0.001

E f ( )x


∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗

K -15.21 55.61 -32.77 96.52 -20.92 76.2 -28.32 90.43

BS -23.75 64.2 -28.57 96.05 -25.48 88 -26.01 90.07

C -19.15 62.89 -28.68 96.18 -24.54 87.91 -25.33 90.12

H -14.71 57.91 -30.06 96.38 -21.23 79.43 -26.03 90.42

EK -18.05 61.89 -29.33 96.21 -24.96 88.05 -25.74 90.07

GK -20.57 62.92 -31.74 96.29 -27.56 88.72 -28.17 90.27
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to that of the increase of the demand rate. The 
reasons for that can be attributed to the resulting 
decreased coordination among the various produc-
tion stages which increases the frequency with 
which machine starvation or blockage events oc-
cur. Again, the Kanban mechanism is mostly 
affected by this parameter due to its tight produc-
tion coordination scheme, while the Generalized 
Kanban mechanism seems to react rather ro-
bustly. Finally, the decrease of the standard de-
viation of the processing times (variant 4) seems 
to have a negligible effect on the system’s behav-
ior as indicated by the experimental data pre-
sented in the last column of Table 7. Tables 8 and 
9 contain data regarding the sensitivity of the 
system’s behavior in respect to the parameters of 
the controlling policy. For example, in Table 8, 
the cells in the i-th row that belong to the columns 
labeled as “Base Stock” show the objective func-
tion value and service level that result when the 
i-th component (parameter Si) of the correspond-
ing decision variable vector is increased by the 
minimum possible value, i.e. by one. In general, 
the service level (objective function) is an increas-
ing (decreasing) function of the control parameters. 
However, the rate with which the service level/
objective function changes depends on the type 
of the control policy and the index (position) of 
the parameter in the parameter vector. For instance, 

in the five-station Kanban system, adding an ad-
ditional kanban in the last stage will result in a 
larger decrease of the objective function value 
than adding an extra kanban in any of the upstream 
stages. It is interesting to observe the cases of the 
CONWIP and CONWIP/Kanban Hybrid systems 
where the unitary increase of a control parameter 
in any of the stages 2,3,4,5 seems to have the same 
effect.This can be explained by the fact that since 
the last workstation is authorized to produce 
whenever it has this ability all parts in upstream 
buffers are continuously “pushed” towards the 
finished goods buffer, and therefore WIP in in-
termediate stages is scarce. By increasing the 
initial stock in the first buffer the average WIP in 
intermediate stages increases and thus this change 
has greater impact to the objective value and 
service level. Generalized Kanban and Extended 
Kanban are characterized by two parameters per 
stage and therefore the sensitivity analysis must 
consider both of these parameters. The systems’ 
performance for a unitary change in the base stock 
of the i-th stage is shown in the columns labeled 
as “base stocks” whereas the cells under the label 
“free kanbans” contain system performance in-
formation when the total number of kanbans of 
the i-th stage is increased by one but the base 
stock remains unaltered.

Table 8. Objective function value – service level sensitivity to parameter vector (Kanban, Base Stock, 
CONWIP, Hybrid) 

Kanban Base Stock CONWIP CONWIP/Kanban Hybrid

E f ( )x


∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗
E f ( )x



∗
E SL( )x




∗

1 -29.1 90.32 -27.15 90.35 -27.53 90.92 -28.03 91.13

2 -29.34 90.51 -27.19 90.26 -27.24 90.82 -27.84 91.02

3 -29.52 90.65 -27.77 90.80 -27.24 90.77 -27.83 91.02

4 -29.61 90.51 -27.83 90.74 -27.24 90.81 -27.79 91.0

5 -29.86 90.94 -27.86 90.78 -27.24 90.83 -27.76 90.99
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The effect of adding an extra base stock to a 
stage of a Generalized/Extended Kanban system 
is similar to that of adding a kanban to a stage of 
a Kanban system. The mean WIP is also an in-
creasing function of the control parameters (Ki - Si) 
but as one can see from Table 9 rather large 
changes in the number of free kanbans are 
needed for a significant change in the objective 
function value to occur.

CONCLUSION AND 
FUTURE RESEARCH

We implemented a hybrid optimization technique 
which combines a genetic algorithm with a lo-
cal search procedure to find optimal decision 
variables for a family of JIT manufacturing 
systems. The goal was to maximize a weighted 
sum of the mean WorkInProcess inventories 
subject to the constraint of maintaining a target 
service level. Our numerical results indicate that 
the performance of a genetic algorithm can be 
easily enhanced by incorporating a local search 
component, however, the local search algorithm 
is more susceptible to falsely interpreting random 
noise as actual objective function improvements 
than the genetic algorithm. Moreover, our results 
support the intuitive perception that penalizing 

candidate solutions according to the level of 
constraint violation will yield better results than 
the “death penalty” approach most of the times. 
The performance of the JIT control policies with 
optimized parameters is presented analytically 
and commented upon. Finally, we conduct a sen-
sitivity analysis in respect to the variation of the 
demand rate, the standard deviation of the service 
rates and the control parameter vector. The results 
of the analysis offer considerable insight to the 
underlying mechanics of the JIT control policies 
under consideration. Constraint handling and 
“noisy” or dynamic environments in the context 
of genetic optimization of manufacturing systems 
are currently active research fields. Indicatively, a 
relatively recent and interesting direction is to use 
evolutionary multi-objective techniques to handle 
constraints as additional objectives.
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INTRODUCTION

The problem addressed in this chapter is related to 
environments in which a fleet of vehicles serves a 
set of customers using a hybrid service policy that 
includes (a) mandatory and (b) flexible requests 
(calls). The mandatory requests must be served 
strictly within the current period of service (pe-

riod 1) and the flexible requests must be served 
within a certain number of subsequent periods 
(e.g. periods 1, 2, …, P).

This is a practical planning problem that may 
be encountered in many supply chains, and is, 
at the same time, of significant theoretical inter-
est. In particular, the multi-period nature of the 
problem has not been given much attention, by 
the vehicle routing literature. However, addressing 
this characteristic properly may lead to significant 

ABSTRACT

Appointment-based logistics systems, such as special courier services, or repair / maintenance services, 
face ever increasing competitive pressures for efficiency and on-time performance. For example, in 
addition to typical (core) operations, courier service providers lately deal with micrologistics activi-
ties, such as bulk product deliveries. The promise dates of such deliveries have some flexibility within 
a pre-specified service level. In this hybrid environment, bulk deliveries are typically planned on an ad 
hoc basis, without taking explicitly into account the workload for core operations, a practice that may 
lead to inefficiencies. This chapter proposes a new method to perform assignment of service requests 
(calls) with some flexibility taking into account expected routes in a multi-period horizon. The problem 
is solved on a rolling horizon basis in order to address the dynamics of arriving calls. The method is 
tested through several theoretical examples, as well as in an extensive industrial case, and appears to 
be superior to current methods used in practice.
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enhancements both in efficiency and service 
quality. To this effect intelligent computational 
methods may be used to allocate the flexible ser-
vice requirements (calls) within the multi-period 
horizon in a way that minimizes overall routing 
costs, respecting all service level requirements.

Typical operational environments that feature 
these characteristics are, among others, courier 
services as well as on-site (home or other) main-
tenance and repair services. The courier environ-
ment has been the application area of this work. A 
typical courier network consists of several service 
centers, which are responsible for the distribu-
tion and collection of parcels and letters using a 
dedicated fleet. The main tasks of a service center 
can be summarized in (a) deliveries, (b) pickups, 
and (c) bulk product deliveries. Tasks (a) and (b) 
are the mandatory tasks, the requests of which 
arrive usually during the night or early morning 
prior to the beginning of the service period. Tasks 
(c) are flexible, arrive daily but should be served 
within the next P periods (days) after arrival. For 
these tasks, the customers to be served should be 
informed at least one period prior to the actual 
service delivery. A mixture of 80% mandatory 
calls and 20% flexible calls is typical in many 
courier operations.

Note that there is no flexibility in planning 
the “mandatory” calls, since they must be served 
within the designated period. However, there is 
flexibility in planning the “flexible” calls, i.e. in 
selecting the most convenient period within the 
designated horizon of P periods to serve these calls. 
A significant issue in allocating the flexible calls, 
i.e. selecting those to serve during each period of 
operations, is that their assignment depends on 
the attributes of the mandatory calls.

Another operational environment of relevance 
to the service call allocation problem is mainte-
nance/ repair services that are delivered on-site. 
In this environment, a group of repair persons 
provide services on location (e.g. appliance, or 
home equipment, maintenance). Mandatory calls 
typically are the repair tasks that need immediate 

attention (e.g. breakdowns), while flexible calls 
are the ones that concern preventive maintenance. 
In this case, customer service is typically prob-
lematic, forcing customers to wait for unspecified 
time within the promise day of service delivery. 
The main reason for this difficulty is that service 
planners have no prior knowledge of the total 
picture of the pending tasks, as well as of the 
dependencies among them (priorities, adjoined 
requests, etc.). The decisions are mostly based 
on experience and typically each day is taken as 
independent from the others, without taking into 
account the characteristics of the demand.

The overall problem addressed in this chapter 
falls into the category of vehicle routing problems 
(VRPs). A comprehensive survey is presented by 
Toth & Vigo (2002), while the latest advances 
regarding the most known VRP variations are 
presented in Golden et al. (2008). Below we focus 
on the literature related to the two major parts of 
the problem under consideration: (a) the creation 
of expected routes and (b) the allocation of flexible 
service calls. The former part concerns the devel-
opment of expected (typical) routes the vehicles 
follow to serve the mandatory calls. These typical 
routes are used by the second part to allocate the 
flexible calls throughout the (multiple) periods 
of the planning horizon (part b).

Creation of Expected Routes

Several researchers have utilized historical data 
to determine periodical patterns of customer re-
quests (location, demand, etc) in a VRP setting. 
Christofides (1971) and Beasley (1984) investi-
gated the Fixed Routes Problem, in which routes 
remain unchanged for several periods within a 
certain time horizon. These authors proposed the 
use of historical data or a sample distribution of 
the customer demands. Additionally, Beasley & 
Christofides (1997) emphasize the value of his-
torical data for estimating the expected number 
of customers and the workload of the vehicles 
in certain geographical regions of the area under 
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investigation. Furthermore, in environments in 
which customers are characterized by dynamism, 
future events regarding the expected location of 
customers or the expected time of service within 
a day can be “predicted” by using historical data. 
Ichoua et al. (2006) discuss the “exploitation of 
knowledge about future customer requests” in a 
dynamic vehicle routing case, in which custom-
ers are characterized by known probabilistic 
distributions.

Allocation of Flexible Calls

The allocation of flexible calls in a multi-period 
environment is related to periodic routing prob-
lems. The most common periodic problems in 
the literature include: (a) the Inventory Routing 
Problem (IRP), in which each customer consumes 
a product/ commodity at a certain rate, and the 
fleet has to serve all customers efficiently without 
allowing stock outs; and (b) the Periodic Vehicle 
Routing Problem (PVRP), in which customers re-
quire a certain service frequency and can be served 
in predefined periodical patterns. IRP (Dror et al., 
1985; Campbell & Savelsbergh, 2004) combines 
inventory management with vehicle routing in a 
multi-period environment. Extended reviews can 
be found in Campbell et al. (1998) and Bertazzi 
et al. (2008). PVRP was introduced by Beltrami 
& Bodin (1974). Francis et al. (2008) provide a 
comprehensive review on the problem, its varia-
tions, the solution methods and future research 
opportunities.

Another area of periodic routing concerns 
multi-period routing problems. Generally, these 
problems do not share the characteristics of the 
IRP or PVRP but feature a dynamic arrival of 
customer requests, and thus, they are related to 
the present problem more closely.

Teng et al. (2006) solved a single-vehicle 
multi-period routing problem that is based on 
the travelling salesman subset-tour problem 
(Mittenhal & Noon, 1992). In this case, custom-
ers are to be serviced within certain predefined 

time periods. An additional profit is associated if 
service occurs within this time period. A column 
generation procedure is proposed and its efficiency 
is compared against heuristic methods. Andreatta 
& Lulli (2008) also considered a single-vehicle 
multi-period routing problem, in which the cus-
tomer demand is random and service is provided 
either the next day after the arrival of the request 
(urgent service) or the following day (regular ser-
vice). The problem was formulated as a Markov 
decision process. The authors suggest the solution 
using the method proposed by Howard (1960) for 
Markov processes using rewards and an aggregate 
Markov model. Angelelli et al. (2005; 2007) pres-
ent a similar single-vehicle multi-period problem 
and minimize the cumulative distance (cost). In 
their setting, customer requests arrive at the be-
ginning of each period, and can be serviced in the 
next two consecutive periods. Different strategies 
for the allocation of customers (i.e., as soon as 
possible, as late as possible and more intelligent 
combinations) are proposed and benchmarked.

Angelelli et al. (2009) and Wen et al. (2010) 
expanded their research in multiple-vehicle 
multi-period routing problems. Since customer 
requests arrive during route execution, Angelelli 
et al. (2009) used re-optimization while en-route. 
Several different objective functions were pre-
sented, including distance minimization, customer 
satisfaction and/ or workload balancing. Both, 
Angelelli et al. (2009) and Wen et al. (2010) have 
based their solutions on variable neighborhood 
search techniques (Mladenovic & Hansen, 1997).

Tricoire (2006; 2007) and Bostel (2008) have 
studied a special multi-period vehicle routing 
problem, in which customer requests are served 
over a certain horizon of P periods. Each customer 
requests service within a certain period-window 
(in the following P-period horizon). The requests 
are served by a limited fleet of vehicles using 
multiple depots. Vehicle capacity has not been 
considered, but several operational constraints 
have (break intervals, maximum route length). 
The problem is addressed both with a metaheuris-
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tic (memetic) algorithm and an exact approach 
(column generation).

The current chapter investigates an interest-
ing practical case that is partially related with 
the general multi-period routing problem, but, 
to our knowledge, has yet to be addressed by 
the literature; the multi-period routing problem 
with predefined fixed routes. A novel approach is 
proposed to address this problem. As mentioned 
earlier, typical (expected) routes are initially cre-
ated to form the basis for serving the expected 
mandatory calls. Subsequently, the flexible calls 
are allocated using these expected routes and 
respecting the service level requirements.

The remainder of this Chapter is organized 
as follows. Section “Main Concept” defines the 
call assignment problem. Section “Model for 
Allocating Flexible Service Calls to Expected 
Routes” presents the proposed mathematical 
model. Section “Proposed Methods” presents the 
proposed solution methods. Section “Test Results 
– Allocation of Flexible Calls” compares the pro-
posed methods with empirical methods typically 
employed in practice, in various test instances. 
Section “Case Study” presents a case study in 
the courier sector. Finally, Section “Conclusions” 
summarizes our key findings and results.

MAIN CONCEPT

There are significant operational parameters to be 
considered in the environment under investiga-

tion, which make the problem both interesting and 
complex. These include the following:

• Assignment of flexible calls: According 
to the service level norms, flexible calls 
should be assigned in such a way that the 
customer is notified one period (day) in ad-
vance of the service visit. This operational 
constraint implies that the flexible calls 
are assigned without prior knowledge of 
the actual mandatory calls to be serviced. 
Note that the demand of the latter becomes 
known a few hours prior to the start of dai-
ly operations, and, thus, after the custom-
ers of the flexible calls have been notified.

• Process of arriving requests for flexible 
calls: A flexible call that arrives in the cur-
rent period, say pc, may be served in the in-
terval [pc – 1, pc + P] where P is the length 
of the planning horizon. This implies that 
not all flexible calls that may be served in 
period p: [pc – 1 < p ≤ P] are known in the 
current period pc. However, all calls to be 
served in the period pc - 1 are known in 
period pc.

The main concept of our proposed approach 
is illustrated in Figure 1, and it is outlined below.

Determination of expected (typical) routes

In an environment as the one previously 
discussed, many vehicles serve and operate in 

Figure 1. Solution approach and implementation timings
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specific geographical areas with high customer 
density (e.g. business centres, residential areas 
multi-unit apartment buildings). Although the 
customers to be served each day may change, 
vehicles are typically required to visit/ pass by the 
same high density areas. Thus, the vehicle routes 
to be implemented each day are oftentimes similar 
with limited alterations that reflect the specific 
customer sites.

This observation allows us to determine “ex-
pected” customer locations (in the high density 
areas) and design “expected” vehicle routes that 
are likely to be implemented each day. In order 
to obtain these expected customer locations, to be 
visited in a daily routine, as well as their character-
istics, information regarding customers (location, 
service time, etc.) is collected for adequately long 
time horizon.

Such typical routes may vary within e.g. a week, 
reflecting each workday’s different characteristics.

Assignment of flexible calls

Using the expected routes, calls are assigned 
over the next P periods [pc – 1, pc + P]. Note that 
this assignment is performed without taking into 
account the actual mandatory calls, which are not 
known at this time.

The objective of the process is to assign the 
flexible calls in the most cost effective manner. A 
significant constraint is to assign in period pc – 1 
(at least) all flexible calls, for which period pc – 1 
is the last allowable period (expiration period). 
All other flexible calls with expiration period p 
> pc – 1 should be assigned in periods in the in-
terval [pc – 1, p]. An additional constraint is the 
maximum number of flexible service calls to be 
served per day.

Having assigned all known flexible calls within 
the planning horizon [pc – 1, pc + P], the calls in the 
first period in this horizon, pc – 1, are selected for 
service. These calls, together with the mandatory 
calls for period pc – 1 which arrive by the end of 
the current period P are provided as inputs to a 

commercial routing software in order to develop 
the integrated routes for the (next) period pc – 1.

MODEL FOR ALLOCATING 
FLEXIBLE SERVICE CALLS 
TO EXPECTED ROUTES

In this formulation, for simplicity but without 
loss of generality, the expected (typical) routes 
are assumed to be the same for each day in the 
planning horizon. This is not unreasonable in 
cases where certain dense urban areas are served 
repeatedly every day.

Let’s define the current period pc = 0 and let us 
consider a planning horizon of P periods. Then, 
following the discussion in the previous Section, 
flexible calls that arrive within period 0 should 
be served in periods 1, |, P. Based on this remark, 
the notation and the mathematical formulation of 
the problem are presented in Table 1.

Objective Function

min( )
{ , }

z c x
ijpk ijpk

i j Wk Kp

P

p

=
∈∈=
∑∑∑

1

 (1)

Constraints

As shown in Table 2, the objective function 
(1) expresses the total routing cost over the entire 
planning horizon. Constraint (2) specifies that 
each flexible customer will be visited by only one 
route and during a period within the correspond-
ing allowable interval for that customer. Constraint 
(3) specifies that each typical customer should be 
serviced once per period (day) of the time horizon; 
this is because we have assumed invariant typical 
routes within the time horizon. Constraints (4-6) 
are the flow conservation constraints for every 
route. Constraint (7) is the well known subtour 
elimination constraint. Constraint (8) respects 
capacity for flexible customers per period of the 
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time horizon (i.e. not more than Cp flexible calls 
can be assigned in period p). In order to adhere 
to the service level, Constraint (9) forces any 
flexible call (ni) to be scheduled no later than its 
expiring period. For example, consider customer 
a that must be served by period 3 (at the latest), 
that is Sa = 3. If customer a is considered for route 
2 in period 4 (i.e. xaj42 = 1) and given that Sa = 3 
< p = 4, then constraint (9) will not allow this 

assignment since ( )x p
ajpk

j Wk Kp

P

p

× =
∈∈=
∑∑∑ 4

1

 

which is greater than. Finally, constraint (10) 
forces the flow variables to binary values (0,1).

PROPOSED METHODS

In this Section the proposed method for solving 
the overall problem is presented. Initially, the 

first phase of the solution process is described 
(Subsection “Definition of Expected Routes for 
Mandatory Customers”), in which the expected 
routes are defined. In Subsection “Allocation 
of Flexible Calls in a Multi-Period Horizon 
Framework”, the solution methods for solving 
the problem of allocating the flexible calls to the 
expected routes are presented.

Definition of Expected Routes 
for Mandatory Customers

Historical data are collected over a time horizon 
of P periods (H>>P) taking into account the 
demand characteristics, including seasonality. 
The necessary information per served customer 
comprises (a) spatial coordinates, (b) date of 
service, (c) start time of service, (d) end time of 
service, (e) type of service and (f) demand (in an 

Table 1.

   p = 1,…, P    Periods of planning horizon of length |P|

   N = {n1,…nN}    Set of known flexible nodes – customers; i.e., the related requests 
have arrived prior to period 0, but the last allowable period of service 
is in the horizon [1, P – 1]

   F = {f1,…,fN}    Set of expected mandatory nodes-customers. These nodes belong 
to the typical routes

   Node 0    Node representing the depot

   W = N ∪ F ∪ {0}    Set of all customers (incl. depot)

   W = N ∪ F    Set of all customers (excl. depot)

   A = {(i, j):i, j ∈ W}    Set of arcs connecting all nodes in W

   cij    Cost or travel time to traverse arc (i, j), {i, j ∈ W} 

   Kp    Set of available routes per each period. Initially, these routes include 
all the mandatory customers.

Sni Sni    State of node ni, (remaining periods to service node ni)

   Cp    Maximum number of flexible customers to be served in period p

x
ijpk
=














1

0

If route k of period p traverses arc (i, j)

Otherwise
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appropriate unit of measure). Note that much of 
the data required for this stage can be collected 
through commercial fleet management systems 
(based on GPS/ GPRS technology). The analysis 
of the historical data is as follows.

Firstly, the total geographical area is divided 
by imposing a grid that comprises of rectangular 
or square cells of appropriate refinement, based 
on the characteristics of the area considered and 
on the customer distribution within this area. All 
customers (throughout the macro horizon H) that 
fall in the same cell are treated as a group and are 
analyzed together.

Subsequently, the analysis of the customer data 
per grid cell is performed. Let’s consider cell Zi 

(ith geographical grid) and subset Ai of historical 
customers, where Ai are all customers that fall 
within cell Zi. Let represent the total number of 
customers collected over the H-period horizon that 
belong to cell Zi. The operational characteristics 
of each element of Ai are: The related spatial co-
ordinates, (service time), and (demand), where. 
Based on this notation we define the following 
parameters for each cell Zi:

Expected number of mandatory calls per 
period:

A
M
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i=  (11)
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Expected service time per call:

S
S
Mi

i
m

m

M

i

i

= =∑ 1  (12)

Expected demand per call:

D
D
Mi

i
m

m

M

i

i

= =∑ 1  (13)

In order to obtain the expected (mandatory) 
customers, a clustering procedure is used, as fol-
lows: For each cell Zi the cluster centers belonging 
to this cell are calculated based on the k-means 
clustering algorithm (Kaufman & Rousseeuw, 
1990) and are defined as the expected customers. 
Thus, the number of clusters to be created in cell 
Zi is set equal to, which is the expected (average) 
number of customers per period. Each expected 
customer is characterized by the expected service 
time and the expected parameters defined above.

Figure 2 illustrates the results of this procedure 
based on data collected for the industrial case of 
Section “Case Study”. The nodes shown in Fig-
ure 2(a) are the historical customers. Figure 2(b) 

zeroes-in a specific cell of the grid around the 
depot (green square). The nodes shown are the 
historical customers, while the red crosses show 
the expected (mandatory) customers.

Having obtained the expected (mandatory) 
customers, expected routes are defined. The re-
quired routing procedure can be performed by 
any efficient routing software or any routing al-
gorithm, by respecting all necessary operational 
constraints.

Allocation of Flexible Calls in a 
Multi-Period Horizon Framework

Allocation is a periodic task that is implemented 
each period (day) of operations. Previous (unal-
located) flexible customers are combined with 
newly arrived customers and are all allocated to 
the expected routes over the multi-period horizon. 
Then, the flexible customers allocated in the first 
period of the multi-period horizon are selected 
for service for this period, while the rest become 
the unallocated customers for the next scheduling 
period. This procedure is illustrated in Figure 3.

The heuristic described here is based on the 
idea of seeding the typical routes with selected 
flexible service calls. This mechanism resembles 

Figure 2. Historical data analysis: Definition of expected (or typical) customers. (a) Historical custom-
ers, (b) Typical customers (+)
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production planning methods where selected tasks 
(typically with long processing times) are sched-
uled first in the available work-center time, and 
are used to attract other tasks.

The approach comprises three main phases. 
The first two phases of the method produce the 
initial solution allocating the service calls to the P 
periods of the time horizon, while the third phase 
improves this initial solution.

Phase 1. Flexible calls expiring during period 1 
are treated with priority due to the related 
constraints (state of customers). These expir-
ing flexible calls (Si = 1, i ∈ N) are allocated 
to the routes of the first period using a classic 
insertion technique (Toth & Vigo, 2002); that 
is, initially the call that is furthest from the 
depot is selected, along with the minimum 
cost insertion position (route, arc), and is 
inserted in the corresponding route and arc. 
The method proceeds to the next expiring 
flexible call until all calls have been inserted. 
It is clear that this is a greedy insertion pro-
cedure, which deals with the allocation of all 
the expiring flexible calls before considering 
all the remaining flexible calls.

Phase 2 addresses the allocation of the remain-
ing flexible calls in the P-period horizon 
and comprises 3 main steps: (2a) selection 

of seeds, (2b) allocation of seeds, and (2c) 
allocation of calls.

Step 2a: For each remaining flexible call 
(excluding the expiring calls already routed in 
period 1) the following are computed, for the 
best insertion point: Cost, relevant arc, route 
and period, considering every arc of all routes in 
every permissible period of the horizon P. This 
information is stored in a list of descending cost. 
Note that the first period’s calls have already been 
allocated and, thus, they are not included in the list.

Step 2b concerns the allocation of the seeds in 
the relevant routes. Starting from the top of the 
list (largest cost), flexible calls are selected as 
seeds and allocated to the relevant arc, route and 
appropriate day. Three alternative methods (M1, 
M2 and M3) are used to determine the appropriate 
seeding pattern (see Table 3). After each insertion, 
each route that has been altered is characterized 
as not available for further insertion of seeds. Ad-
ditionally, for all other periods in the horizon P 
the routes that correspond to the altered one also 
become not available (since, in our case the initial 
routes are identical for all periods).

Step 2c concerns the allocation of the remain-
ing flexible calls. Initially, the original routes are 
altered to include the seeds, as appropriate, and 
the insertion costs are updated. Subsequently, the 
remaining flexible calls are allocated in the result-

Figure 3. Rolling horizon scheme
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ing routes one-by-one with a best insertion first 
technique, i.e. the customer that results to the 
lowest increase of the total routing cost is in-
serted in the relevant route and the procedure 
repeats for the other remaining customers. It is 
clear that this is a greedy procedure that leads to 
a suboptimal solution.

Phase 3 attempts to address the greedy aspect 
of steps 1 and 2c by improving the initial 
solution. This is performed by service call 
permutation between routes (including 
movements among the same and different 
periods) based on total cost improvement. 
The procedure moves first the customer 
resulting in the maximum cost reduction; 
that is, the maximum value of the difference 
between the total routing costs before and 
after moving the customer. The procedure 
continues until no more customer moves can 
be performed, and by respecting the capac-
ity of the allowed flexible calls per period.

With the termination of the third phase, each 
flexible customer has been allocated to a period. 
As mentioned above, only flexible customers 
allocated in period p = pc −1 will be selected for 
routing. Flexible customers routed in p ∈ [pc −2, 
pc + P] are re-evaluated in the next scheduling 
period, along with the new customers to arrive 
in pc −1.

TEST RESULTS: ALLOCATION 
OF FLEXIBLE CALLS

In order to test the effectiveness of the flexible 
call allocation method, we compared it against a 
simple scheduling procedure (S1) used in actual 
operations of courier companies. Typically, such 
procedures focus on one period at a time and 
allocate the flexible calls in the most effective 
manner, while ensuring that all expiring calls are 
allocated. Thus, S1 examines the routes of the 
upcoming period without considering the other 
P−1 periods. All flexible calls that have not yet 
been serviced are considered for allocation: Ini-
tially, expiring flexible calls are allocated using 
the procedure of Phase 1 (see Section “Proposed 
Methods”). Subsequently, the other remaining 
flexible calls are considered for allocation using 
the same procedure. Note that, in this fashion, not 
all flexible calls are scheduled for service. The 
unallocated flexible calls are stored and considered 
in the next period.

The tests were constructed as follows: The 
number of periods (P) in the planning horizon 
was set equal to 5; thus, all flexible service calls 
had to be serviced within 5 periods (days) from 
their receipt. A rolling horizon framework of 40 
consecutive days has been employed to compare 
all multi period heuristic alternatives (M1 to M3) 
against the single period (S1) method.

As the basis of the tests, 35 typical customers 
were considered. Their locations were uniformly 
distributed at random in a [0, 1000]2 square and the 
depot was set to the center of the square. Four typi-

Table 3. Alternative methods for allocating seeds 

   Method    Description

   M1    Allocation of seeds is performed by inserting the seeds in the first available route starting from period 2, i.e. a seed that 
expires in period 3 can be inserted in any available route of period 2 to 3.

   M2    Allocation of seeds is allowed considering only the routes belonging to the expiring period of each seed, i.e. a seed that 
expires in period 3 can be inserted as a seed only in third period’s routes.

   M3    Method M3 differentiates from the M1 and M2 methods by allocating all available flexible customers in their respective 
expiration periods. Thus, steps 2a, 2b and 2c are not relevant in this case, but the procedure of Phase 1 is used for periods 2,…,P.
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cal routes were constructed (see Table 4) through 
an insertion algorithm and were improved through 
well-known techniques of node exchange, 2-opt 
and crossover (Toth & Vigo, 2002).

Furthermore, three sets of flexible customer 
were created with random (R), clustered (C) and 
mixed (RC) geographical distribution. The first 
set includes customers that are uniformly distrib-

uted in the [0, 1000]2 square; the second includes 
customers distributed uniformly in four clusters 
as shown in Figure 4. The RC customer set includes 
customers from the two previous sets.

For each customer set, three different arrival 
patterns were considered over the horizon of 
periods -4 to 40 (see Table 5). Periods -4 to 0 are 
the warm-up periods. Customers to be included 

Table 4. Expected route characteristics 

   # of expected customers    # of routes    Cost

   35    4    6,602.24

Figure 4. Indicative allocation of clustered (C) flexible customers

Table 5. Number of service calls per period (day): Small, medium and large case 

   Warm-up Period    Period

   Test Instance    -4    -3    -2    -1    0    1 to 40

   #  o f 
   Serv ice 
   ca l l s  / 
   period

   Small (S)    1    2    3    4    5    5

   Medium (M)    6    7    8    9    10    10

   Large (L)    12    14    16    18    20    20
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in each period were randomly selected by the pool 
of random, clustered and mixed customers.

Note that for scheduling period i the subset of 
expiring service calls derive from the service calls 
of period i−P; e.g., for the medium pattern, the 
six service calls received in period -4 comprise 
the expiring service calls of period 1. For all 
other planning periods, the number of expiring 
flexible service calls is derived based on the al-
locations of the previous periods. The maximum 
allowable number of flexible customers per route 
equals 6, 12 and 20 customers for the small, me-
dium and large test instances, respectively.

The warm-up horizon of 5 periods was used 
as transition time in order to allow the system to 
reach a steady state. In this warm-up horizon, the 
number of unallocated service calls increase as 
shown in Table 3.

The performance measure used to evaluate all 
methods is defined as follows: Let Ci be the dif-
ferential routing cost, derived by inserting the 
flexible service calls of period i and ∏

i
 be the 

number of flexible service calls allocated in pe-
riod i. Then, the performance measure is the aver-
age cumulative excess cost per service call, up to 
period t.

E
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t
ii

t

ii
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=

∑
∑

1

1
Π
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Figures 5 to 13 show the evolution of Et  
within the time horizon (1, …, 40), for test cases 
R, C and RC and for the three instances [small 
(S), medium (M) and large (L)] per case, respec-
tively. The methods were tested on a 1,83GHz 
PC system running Windows® XP and using the 
Matlab® 7 software.

Table 6 summarizes the results obtained. The 
last two columns of Table 6 list: (a) the % im-
provement between the single period method and 
the average performance of the three multi-peri-
od heuristic alternatives, and (b) the performance 
of the best multi-period alternative (M3) vs. the 
single period method.

From these results, it is clear that all multi-
period methods result in overall cost reduction. 
Furthermore, M3 yields consistently the best 
results. As far as the geographical dispersion of 
customers is concerned, multi-period methods 
appear to be more efficient in cases, in which the 
flexible customers are clustered (C) or semi-
clustered (RC). Additionally, in the medium and 
large instances the reduction compared to the 
single method reached 59% (M3 method for C-
Large case).

Figure 5. Rolling horizon results (Problem R-S)
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Figure 6. Rolling horizon results (Problem C-S)

Figure 7. Rolling horizon results (Problem RC-S)

Figure 8. Rolling horizon results (Problem R-M)



245

Multi-Period Routing in Hybrid Courier Operations

Figure 9. Rolling horizon results (Problem C-M)

Figure 10. Rolling horizon results (Problem RC-M)

Figure 11. Rolling horizon results (Problem R-L)
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Figure 13. Rolling horizon results (Problem RC-L)

Figure 12. Rolling horizon results (Problem C-L)

Table 6. Average excess cost per service call over the 40-day horizon (for E
40

) 

   Problem    Single 
Period

   Multi Period    Improvement (%)

   S1    M1    M2    M3    Average (M1, 
M2 & M3)

   Average (M1, 
M2 & M3)

   M3

   Small    R    44.35    37.80    38.19    34.97    36.99    17%    21%

   C    35.05    24.40    27.61    19.20    23.74    32%    45%

   RC    41.21    35.60    36.86    31.62    34.69    16%    23%

   Medium    R    47.05    37.28    38.87    31.82    35.99    24%    32%

   C    36.42    22.15    26.90    17.51    22.19    39%    52%

   RC    42.99    30.97    35.36    27.51    31.28    27%    36%

   Large    R    42.88    28.93    32.18    26.24    29.12    32%    39%

   C    33.95    18.39    24.58    13.90    18.95    44%    59%

   RC    42.68    26.10    28.48    22.55    25.71    40%    47%
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CASE STUDY

The proposed approach has been tested using 
actual data obtained from ELTA Courier, a sub-
sidiary of the Greek Postal Service (ELTA), which 
serves the third largest market share among all 
couriers operating in Greece. In addition to its 
own network, ELTA Courier uses the extended 
distribution network of the Greek Postal Service. 
The case study focused in a major distribution 
centre serving the Northern Athens area.

Generation of Typical Routes

Historical data were collected from a 36-day 
period of operation in a total geographical area 
of 696.25 km2. This area was divided in a 20x20 
grid. The clustering procedure resulted in 120 
expected customers (nodes). The relatively low 
number of nodes was due to the fact that some of 
the areas served by this center were not densely 
populated. The initial dispersion of the historical 
data along with the typical customers can be seen 
in Figure 2.

A well-known algorithm [sweep procedure 
(Gillett & Miller, 1974)] was used for the con-
struction of the typical routes. The total allowable 
length of each route was set to 480 min and the 
maximum number of typical customers per route 

was set to 30. Euclidean distances were used, and 
an average speed of 10 km/h was assumed in order 
to approximate realistic travel conditions. Table 7 
presents the expected customers per route along 
with the relevant route cost in minutes. Note that 
these are the expected routes to be implemented 
daily and constitute the basis for the allocation 
of flexible calls. Note also that the expected 
customers represent poles of demand and, thus, 
their number is much smaller with respect to the 
typical number of daily customers.

Allocation of Flexible Service Calls

Service calls were randomly generated following 
the spatial pattern of the historical data customers 
as follows: First, a number of service calls was 
uniformly generated around each typical cus-
tomer. Subsequently, from this set of customers 
the required number of service calls was selected 
randomly. The numbers of flexible calls per period, 
including the warm-up period, follow the arrival 
pattern of Table 8. A 40-period horizon was used 
augmented by a 5-period warm-up horizon. The 
maximum allowable number of flexible customers 
per route set equal to 15 customers.

Figure 14 shows the average excess cost per 
service call (Equation 14). Table 9 summarizes 
the results obtained. The last two columns of 

Table 7. Expected Routes of Case Study 

   Route

   1    2    3    4    5    6    7    8    9

   Customers    16    16    14    17    11    9    11    14    12

   Cost (min)    432.32    400.78    414.12    415.32    358.55    323.80    429.71    361.32    272.72

Table 8. Number of service calls per period (day) 

   Start-up Period    Period

   -4    -3    -2    -1    0    1 to 40

   # of service calls / period    8    9    10    11    12    12
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Table 7 list (a) the % improvement between the 
average performance of all three multi-period 
methods vs. the single period method; and (b) the 
performance of the best multi-period method (M3) 
vs. the single period method. M3 exhibits again 
the most efficient results. Also, while the multi 
period heuristics succeed in better overall cost 
reduction, the improvement resulting from M1 
and M2 is somehow limited. On the other hand, 
M3 results in a total improvement of 32% and the 
difference is evident after period 14.

Table 10 presents the average run time of the 
algorithms per period (in sec), in which M3 pres-
ents the longest computational times. This is due 

to the extensive improvements that are necessary 
in Phase 3.

CONCLUSION

In order to plan operations in a hybrid courier 
environment we have proposed the decomposi-
tion of the problem in two stages: (a) Initially, we 
define expected (or typical) routes by using histori-
cal demand data; and (b) based on these typical 
routes, we perform allocation of flexible service 
calls on a rolling horizon basis in order to deal 
with the dynamics of arriving calls. The proposed 

Figure 14. Rolling horizon results (Case Study)

Table 9. Average excess cost per flexible call over the 40-day horizon (for) 

   Problem    Single 
Period

   Multi Period    Improvement (%)

   S1    M1    M2    M3    Average (M1, 
M2 & M3)

   Average (M1, 
M2 & M3)

   M3

   3.16    2.71    2.74    2.16    2.53    20%    32%

Table 10. Average running time of algorithms per period (in sec) 

   Single Period    Multi Period

   S1    M1    M2    M3

   0.31    179.03    209.54    712.04
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method targets improved overall performance, 
since service calls are allocated considering the 
overall multi-period horizon, and not following 
a myopic period-by-period way. Assuming the 
first period of the horizon, the allocated flexible 
service calls combined with the actual mandatory 
customers of this period form the input to any 
commercial routing software to determine the 
precise plan for that particular period.

The effectiveness of the approach in compari-
son to typical single-period approaches used in 
practice was tested by solving various test cases 
in a rolling horizon environment. The test results 
indicate a significant improvement (from 16% to 
59%) of the average cost per flexible customer. 
Similar results were obtained from a case study 
involving a courier company in Greece. It has been 
observed that the single-period approach exhibits 
a steady increase of the average excess cost per 
flexible customer. This can be justified due to the 
greedy and myopic nature of the single-period 
method, which does not group together adjacent 
customer calls which arrive art different periods. 
Instead, it greedily tries to fit as many customers in 
the routes of a period. Additionally, the efficiency 
of M3 against M1 and M2 can be justified by the 
fact that although M3 starts from a worst initial 
solution, it improves this solution significantly 
by the employed improvement techniques. In 
comparison, M1 and M2 may start from a better 
initial solution but it appears that they are quickly 
trapped in local minima. This observation can be 
further supported by the significant difference 
in computational time among the methods. Fi-
nally, multi-period methods are more efficient in 
clustered and/ or semi-clustered (mixed) flexible 
customer patterns since more effective customer 
grouping can be performed.

Classical deliveries and service requests, both 
mandatory and flexible, may have time windows 
within which the service should be provided; 
i.e., a flexible call may be serviced only within 
a pre-specified time interval (time window) of 
each period and / or within a subhorizon (period 

window) of the P-period horizon. In this case the 
proposed model should be further enhanced by 
including time windows for each customer and 
by including various levels of service quality.
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Chapter 12

Dynamic Travel Time Estimation 
Techniques for Urban Freight 

Transportation Networks Using 
Historical and Real-Time Data

Vasileios Zeimpekis
University of the Aegean, Greece

INTRODUCTION

Distribution arguably accounts for a significant 
percentage of the total logistics execution cost 
(Ballou, 2004). Urban freight distribution in 
particular is more susceptible to unexpected costs 
and delays that arise during the execution of the 
delivery plans due to unforeseen adverse delivery 
conditions, such as vehicle breakdown, traffic 

delays, road works, customer depot overload, and 
so on (Rego and Roucairol, 1995; Savelsbergh 
and Sol, 1998; Psaraftis, 1995).

Techniques to minimize distribution costs 
typically focus on the creation of a near-optimal 
a priori distribution plan. Lately, freight carriers 
have adopted the use of automated vehicle routing 
systems in order to create such plans. However, 
the use of an initial distribution plan, although 
necessary, is by no means sufficient to address 
events that are likely to occur during delivery 

ABSTRACT

Effective travel time prediction is of great importance for efficient real-time management of freight deliv-
eries, especially in urban networks. This is due to the need for dynamic handling of unexpected events, 
which is an important factor for successful completion of a delivery schedule in a predefined time period. 
This chapter discusses the prediction results generated by two travel time estimation methods that use 
historical and real-time data respectively. The first method follows the k-nn model, which relies on the 
non-parametric regression method, whereas the second one relies on an interpolation scheme which is 
employed during the transmission of real-time traffic data in fixed intervals. The study focuses on ex-
ploring the interaction of factors that affect prediction accuracy by modelling both prediction methods. 
The data employed are provided by real-life scenarios of a freight carrier and the experiments follow a 
2-level full factorial design approach.
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execution and may have adverse effects on de-
livery performance. In such cases, typical in an 
urban distribution setting, a priori solutions may 
no longer be relevant and the distribution plan 
needs to be adjusted in real-time as a function of 
the dynamic system state.

Latest technologies such as real-time fleet 
management systems, give the ability to freight 
carriers to monitor the execution of the daily 
delivery schedules and handle some of the afore-
mentioned issues. However, in order to cope with 
unforeseen events and manage possible deviations 
from the initial plan, there is a need for accurate 
travel time prediction. Indeed, estimation of arrival 
is critical in urban freight distributions in order 
to predict in advance possible delays and time 
window violations in the remaining customers.

The ability to accurately predict future link 
travel times in transportation networks is a criti-
cal component for many intelligent transporta-
tion systems (ITS) applications, such as fleet 
management systems (FMS), in-vehicle route 
guidance systems (RGS) and advanced traffic 
management systems (ATMS). Travel time in 
an urban traffic environment is highly stochastic 
and time-dependant due to random fluctuations 
in travel demands, interruptions caused by traffic 
control devices, incidents, and weather conditions. 
It has been increasingly recognized that for many 
transportation applications, estimates of the mean 
and variance of travel times significantly affect the 
accuracy of prediction (Chien & Kuchipudi, 2003).

To this end, this chapter presents and evaluates 
two travel time estimation techniques for urban 
freight transportation networks using historical 
and real-time data. The first method follows the 
k-nn model, which relies on the non-parametric 
regression method, whereas the second one relies 
on an interpolation scheme which is employed 
during the transmission of real-time traffic data 
in fixed intervals. The study focuses on exploring 
the interaction of factors that affect prediction ac-
curacy by modelling both prediction methods. The 
data employed are provided by real-life scenarios 

of a freight carrier and the experiments follow a 
2-level full factorial design approach.

The chapter is organized as follows. Section 2 
reviews current techniques and methods for travel 
time prediction and traffic forecasting models. 
Section 3 describes the characteristics of the two 
proposed methods whereas Section 4 presents the 
evaluation of both techniques. Section 5 discusses 
the experimental results and the chapter concludes 
with Section 6 where important ascertainments are 
outlined together with a future research agenda.

BACKGROUND

Travel time can be defined as the total time required 
for a vehicle to travel from one point to another 
over a specified route under prevailing conditions. 
Its calculation depends on vehicle speed, traffic 
flow and occupancy, which are highly sensitive 
to weather conditions and traffic incidents (Park 
et al., 1998). Nonetheless, daily, weekly and 
seasonal patterns can be still observed at large 
scale. For instance, daily patterns distinguish 
rush hour and late night traffic, weekly patterns 
distinguish weekday and weekend traffic, while 
seasonal patterns distinguish winter and summer 
traffic. It has been increasingly recognized (Smith 
and Demetsky, 1996; Park et al., 1998; Chien 
& Kuchipudi, 2003; Stathopoulos & Karlaftis 
2003) that for many transportation applications, 
estimates of the mean and variance of travel times 
affect the accuracy of prediction significantly.

Travel time data can be obtained through vari-
ous surveillance devices, such as loop detectors, 
microwave detectors, and radars, though it is not 
realistic to have the road network completely 
covered by detectors. With the development of 
mobile and positioning technologies, the data can 
be more reliably collected and transmitted. More 
importantly, these devices can be set up on vehicles 
with minimal hardware using non-sophisticated 
communication and installation. However, travel 
time estimation is not so straightforward because 
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it depends not only from the surveillance devices, 
but also on the prediction technique that is being 
used for data processing. Figure 1, presents the 
basic components for travel time estimation.

Indeed, one of the major issues in travel time 
prediction and traffic forecasting is the selection 
of the appropriate modeling approach. Current 
practice involves two separate modeling ap-
proaches: parametric and non-parametric tech-
niques (Vlahogianni et al., 2004). In the vast 
category of statistical parametric techniques, 
several forms of algorithms have been applied 
with greater weight to historical average algo-
rithms (Smith and Demetsky, 1996) and smooth-
ing techniques (Smith and Demetsky, 1997; 
Williams et al., 1998). In the early 1990s, autore-
gressive linear processes, such as the auto-regres-
sive integrated moving average (ARIMA) family 
of models, which were first introduced in traffic 
forecasting by Ahmed and Cook (1979) and Levin 
and Tsao (1980), provided an alternative approach 
based on the stochastic nature of traffic. Davis et 
al. (1991) applied a single auto-regressive inte-
grated moving average (ARIMA) model to fore-
cast the bottleneck formulation in a freeway. 
Later, Hamed et al. (1995) applied an ARIMA 
model to forecast urban traffic volume.

Research has also used state-space models that 
belong to the multivariate family of time series 
models. The main reason is that they provide 
a good basis for modeling transportation data, 
due both to their multivariate nature and also to 
their ability of modeling simpler univariate time 

series. Generally, the term ‘state-space’ refers 
to the model and the term ‘Kalman filter’ refers 
to the estimation of the state. The advantage of 
the Kalman filter algorithm is that it allows the 
selected state variable to be updated continuously. 
The potential of this was first demonstrated by 
Okutani and Stephanedes (1984) who used Kal-
man filtering in urban traffic volume prediction 
and then developed an extended Kalman filter 
to predict traffic diversion in freeway entrance 
ramp areas. Whittaker et al. (1997) demonstrated 
the potential of this method in a multivariate set-
ting. Both Chen and Chien (2001) and Chien and 
Kuchipudi (2003) then used Kalman filtering for 
travel time prediction. Stathopoulos and Karlaftis 
(2003) demonstrated its superiority over a simple 
ARIMA formulation when modelling traffic data 
from different periods of the day.

Recent advances in object-oriented program-
ming, as well as, in real-time collecting, storing 
and managing large databases from several points 
of an extended transportation network, have 
given the opportunity to explore the robustness 
of non-parametric techniques in traffic and travel 
time forecasting. Non-parametric techniques do 
not assume any specific functional form for the 
dependent and independent variables. Frequently, 
these models are data driven, implying that their 
successful implementation is strongly related to 
the quality of the available data. The general idea 
behind these techniques is that they analyze the 
characteristic of interest of, say, a time series by 
allowing it to have a general form which is gradu-

Figure 1. Basic components for travel time estimation
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ally approximated with a certain precision using 
a growing data set. Two distinct forms of non-
parametric techniques, namely non-parametric 
regression and neural networks, have gained a 
great portion of short-term traffic forecasting 
research interest over the last decade.

Non-parametric regression is based on the 
principles of pattern recognition (Smith et al., 
2002). Smith et al. (2002) suggested that traffic 
conditions near congestion can be modeled by 
non-parametric regression. The main purpose is 
to identify clusters of data with behavior similar to 
current traffic state at a certain forecasting interval. 
Non-parametric regression possesses a number of 
advantages such as its intuitive formulation, the 
lack of a need for assumption on the transition 
of traffic states from one period to another, and, 
finally, the simplicity in modeling multivariate 
settings (Clark, 2003).

In general, the literature shows promising re-
sults when using non-parametric regression. First, 
Smith and Demetsky (1996) tested the perfor-
mance of nearest neighbor non-parametric regres-
sion compared with neural networks, a historical 
average and the ARIMA model and concluded that 
the first was superior in the field of transferability 
and robustness compared with different data sets. 
Smith et al. (2000) used kernel neighborhoods and 
suggested that the method produced predictions 
with an accuracy comparable with that of the 
seasonal version of an ARIMA model. Finally, 
Smith et al. (2002) tested the performance of 
non-parametric regression based on heuristically 
improved forecast generation methods and found 
that this approach did not produce better predic-
tions than seasonal ARIMA. Nevertheless, they 
supported the fact that a combined model could 
be used in cases where the requirements of the 
seasonal ARIMA could not be met. More recently, 
Clark (2003) found that non-parametric regres-
sion was more accurate when predicting flow in 
motorways than speed.

Neural network applications to short-term traf-
fic forecasting extend from the simple multilayer 

perceptrons (MLP) (Clark et al., 1993; Kwon 
and Stephanedes, 1994; Smith and Demetsky, 
1994; Zhang, 2000) to more complex structures 
such as time-delayed recurrent neural networks 
(Yun et al., 1998; Abdulhai et al., 1999; Lingras 
and Mountford, 2001), finite impulse response 
networks (Yun et al., 1998), multirecurrent neural 
networks (Ulbricht, 1994), a spectral basis neural 
network (Park et al., 1999), and dynamic neural 
networks (Ishak and Alescandru, 2003).

The merit of neural networks is not only their 
proven ability to provide good predictions, but 
also their overall performance and robustness in 
modeling traffic data sets. Some of their advan-
tages can be summarized as follows: a) they can 
produce accurate multiple step-ahead forecasts 
with less effort, b) they have been tested with 
significant success in modeling the complex 
temporal and spatial relationships lying in many 
transportation data sets, and c) they are capable 
of modelling highly non-linear relationships in a 
multivariate setting (Zhang et al., 1998).

Vlachogiani et al., (2004) has summarized vari-
ous characteristics in modeling using parametric 
and non-parametric methods. This classification 
is shown in Table 1. These characteristics concern 
the data requirements in terms of quantity, the 
results regarding the difficulty or the straightfor-
ward nature in extracting qualitative results, and 
the nature of predictions provided (recursive, 
static or dynamic). Finally, the last two rows give 
a short description of the main advantages and 
disadvantages of the method regarding the efforts 
made in modeling traffic data.

In general, the estimation and prediction of 
travel times in an urban road network are critical 
for many Intelligent Transportation System ap-
plications (ITS), such as Route Guidance Systems 
(RGSs), Advanced Traveller Information Systems 
(ATIS), Fleet Management Systems (FMSs) and 
Advanced Traffic Management Systems (ATMSs). 
The common objective of these systems is to 
provide information necessary to help individual 
drivers or control centers to identify optimal routes 
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based on real-time information on current traffic 
conditions or handle unexpected incidents that 
take place.

According to the literature, travel time fore-
casting is strongly connected to the availability of 
appropriate data. In the case where the available 
traffic surveillance network supports advanced 
sensing as well as vehicle identification techniques 
that provide a way of direct travel time data col-
lection, travel time forecasting is made directly 
from these travel time measurements (Park et al., 
1998, Chien and Kuchipudi, 2003).

There exists a clear relation between the traf-
fic parameter to predict (i.e. flow, speed) and the 
type of implementation to develop (traffic control, 
incident handling), as well as the area of imple-
mentation (i.e. urban arterial, highway). Predicting 
travel time or speed is conceptually more useful 
in ATIS and FMS applications, whereas traffic 
flow and occupancy predictions could be more 
valuable in traffic control applications.

Both parametric and non-parametric methods 
are used for travel time prediction. Nevertheless, 
a number of researchers (Smith and Demetsky, 
1997; Clark et al. 1993) argue that the use of 
non-parametric techniques in urban networks is 
more efficient due to their ability to cope with 
the fluctuating nature of the observed traffic pa-
rameters such as flow, occupancy, speed and so 

on. Based on these findings, one of the proposed 
methods follows the non-parametric approach for 
travel time prediction.

However, as discussed previously, non para-
metric methods embrace two distinct methods 
namely non-parametric regression and neural 
networks. In order to reveal which method is the 
most suitable for real-time travel time prediction, 
another important factor of freight distributions 
must be taken into account, namely the manner in 
which urban delivery schedules are planned. Usu-
ally, freight carriers and operators use predefined 
schedules with a specific number of customers that 
each truck must visit and which are repeated usu-
ally in a weekly manner. This means that historical 
data of travel times between theses customers 
could be used as a basis for more accurate travel 
time predictions.

The non-parametric regression method relies 
on historical data. More specifically, the basic 
approach of non-parametric regression is heav-
ily influenced by its roots in pattern recognition 
(Karlsson and Yakowitz, 1987). In essence, the 
approach locates the state of the system in a 
“neighborhood” of past or similar states. Once 
this neighborhood has been established, the past 
cases in the neighborhood are used to estimate 
the remaining travel time. Clearly, this approach 
assumes that the bulk of the knowledge about the 

Table 1. Characteristics of travel time prediction and traffic forecasting methods (Vlachogianni et al., 
2004) 

Characteristics
Parametric modeling Non-parametric modeling

Smoothing ARIMA Kalman Filtering Non-parametric 
regression Neural networks

Quantity of data short series extensive extensive extensive extensive

Accuracy low low but acceptable medium high high

Nature of predictions static recursive static dynamic dynamic

Main advantages short series needed
well-established 
theoretical back-
ground

multivariate nature simple model 
structure

wide mapping 
capabilities

Main disadvantages relatively low ac-
curacy

low accuracy, 
relative slow data 
processing

Gaussian hypoth-
esis intensive data

intensive data, 
complex internal 
structure
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relationship lies in the data rather than the person 
developing the model (Eubank, 1988). Of course, 
the quality of the database, particularly in storing 
past cases that represent the breath of all possible 
future conditions, dictates the effectiveness of a 
non-parametric regression model. To put it simply, 
if similar cases are not presented in the database, 
an accurate forecast is difficult to be generated 
(Smith et al., 2002). However, the use of AVL 
systems gives the opportunity to create a rich 
database with historical data.

The choice of non-parametric regression 
method is also supported by Smith and Demetsky 
(1996), which tested the performance of nearest 
neighbor non-parametric regression compared 
with neural networks and concluded that the first 
was superior in the field of transferability and 
robustness compared with different data sets. 
Indeed, the non-parametric methods have been 
proven (Yun et al., 1998; Vlahogiani et al., 2003; 
Clark, 2003) to give accurate predictions due to 
their ability to cope with time-dependent param-
eters such as speed and flow. The aforementioned 
authors have used mainly AVI or loop detectors for 
data collection. By taking into account that AVL 
provides more accurate data, the non-parametric 
regression method has been adopted so as to have 
the best possible travel time estimation.

TRAVEL TIME PREDICTION 
METHODS

This section discusses the prediction results gener-
ated by two travel time estimation methods that 
use historical and real-time data respectively. The 
first method follows the k-nn model, which relies 
on the non-parametric regression method, whereas 
the second one relies on an interpolation scheme 
which is employed during the transmission of 
real-time traffic data in fixed intervals.

Travel Time Prediction 
Using Historical Data

The proposed travel time estimation method uses 
historical data in order to predict the arrival time 
of a delivery vehicle to a customer. This histori-
cal data is retrieved from a database that stores 
information concerning the time that takes to a 
vehicle to travel from one point to another and 
provides mean travel times from any point of 
interest to any other.

Let us assume a route between two points of 
interest A and B and a vehicle travelling towards 
point B (Figure 2). The distance between these 
points is noted as DAB. The vehicle has already 
travelled a certain distance, say DAC. When the 
vehicle is travelling towards point B, the travelling 
time (tCB) from point C to point B is estimated by:

t
D D

D
T

CB
AB AC

AB
AB

=
−

×  (1)

,where DAB and DAC are the total and travelled 
distance respectively and TAB is the mean histori-
cal travel time between these two customers which 
is revealed from the database that stores data for 
each delivery schedule.

As it can be seen, the predictions made by this 
method depend on how accurate the calculation of 
TAB and on the homogeneity of the historical data.

As mentioned above, TAB is derived from pre-
vious travel times between points A and B that 
the vehicle has carried out. However, the main 
problem is that when historical data concerning 
travel times between these two points are extracted, 
the latter include not only one arc which is direct 
from point A to point B but a sequence of arcs 
where other points are inserted between points A 
and B (Figure 3).

The latter causes inaccuracies to travel time 
prediction as the mean travel time TAB is increased. 
In order to determine which historical travel times 
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should be considered for deriving the mean time 
TAB, we apply an outlier removal method (1st stage) 
where a selection of historical data is made based 
on time and the k-nn algorithm (2nd stage) where 
a refinement a data is made based on distance. 
Here is a step by step technique on how to iden-
tify from the database the routes with certain 
travel times:

1.  Determine from the database the link that 
the vehicle has followed in order to travel 
from point A to point B with minimum travel 
time.

2.  Identify whether the vehicle has used the 
same link previously more than once.
a.  If there is no such case, use only the 

specific data (i.e. historical travel times 
retrieved from this single trip) in order 
to estimate the arrival in the following 
customer

b.  If other delivery schedules are identi-
fied where the vehicle has used more 
than once the specific link, then:
i.  Identify these travel times
ii.  Remove outliers (i.e. travel times 

that are more than a certain per-
centage of the minimum travel 
time)

3.  Determine parameter K (i.e. number of near-
est neighbours)

4.  Calculate the distance between the query-
instance and all the training samples

5.  Sort the distance and determine nearest 
neighbours based on the K-th minimum 
distance

6.  Use their arithmetic mean in order to calcu-
late TAB

It must be mentioned though that we have 
assumed that the minimum historical travel time 
represents a direct route between the two custom-

Figure 3. Three different links of getting from point A to point B

Figure 2. Travel time prediction using historical data
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ers (i.e. not including any intermediate stops). The 
probability of this being the case is dependent on 
the availability of historical data between the two 
customers in our database. In other words, the 
more historical data we have the more likely it 
is that the minimum travel time contained in this 
data will represent a direct link between any two 
customers. In our tests, we have chosen customer 
pairs that represent consecutive customers in the 
route and we have visually inspected the resulting 
route in the map to verify that no intermediate 
stops are included. Further to the aforementioned 
tests, we have chosen randomly, 100 cases from 
the database in order to investigate the percentage 
of cases where the minimum historical travel times 
represented a direct route between two customers. 
The results were very encouraging as in 97 cases 
out of 100 a direct route was observed.

Travel Time Prediction 
Using Real-Time Data

The first method can give very accurate results 
when traffic patterns at the moment of travel 
time prediction are similar to the historical ones 
retrieved from the database. However, the dif-
ficulty is that in urban environments the speed 
varies over time and depend on when a vehicle is 
traversing a particular segment. Indeed, accord-
ing to Chung et al. (2004), patterns of travel time 
prediction in urban environments are not easy to 
quantify because:

• Travel demand changes everyday due to 
different activities and different departure 
times, and this result to travel time fluctua-
tions and road congestion.

• Trip time is affected by incidents, traffic 
conditions and the weather.

• Urban road networks are complex and an 
adjacent congested route can affect the 
subject route.

In order to cope with such cases, we propose 
a second travel prediction method that uses real-
time data to compute the network travel time in 
a dynamic manner. As the vehicle is travelling 
towards its destination, travel time is predicted 
sequentially by summing the travel time derived 
from speed measurements at different sections 
of the road.

Let us assume the same example used previ-
ously. A vehicle is travelling towards point B 
and in this case a data collection mechanism that 
records the actual velocity and the geographical 
position of the vehicle, is used in consecutive time 
slots (Figure 4).

When the vehicle is in point C and is travelling 
towards point B, the remaining travelling time 
(tCB) can be calculated by subtracting the distance 
between client A and B (DAB), which is known 
from historical data, from the distance travelled 
by the vehicle from client A until the point of data 
collection (DAC), over the actual mean velocity 
(Vm) of the vehicle.

Figure 4. Travel time prediction with real-time data
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t
D D
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where,

EVALUATION OF TRAVEL TIME 
PREDICTION METHODS

The aforementioned travel time prediction meth-
ods use different techniques for predicting the 
arrival time to a point of interest (e.g. customer). 
The main aim is to evaluate both methods and 
identify which method gives the best accuracy 
according to traffic conditions or unexpected 
events that may occur during delivery execution.

In order to test and comparatively evaluate 
the prediction methods presented above, real-life 
travel time data were collected from a distribution 
company that makes use of a fleet of trucks for 
urban freight distributions. The following sections 
present the methodology followed to collect and 
process the data.

Data Collection

Data collection has been organized in two steps: 
a) raw data collection (i.e. information concerning 
a large number of data from past delivery trips) 
have been collected for a period of five months 
to create a database with historical information 
and b) cluster data collection (i.e. information 
from certain executed delivery schedules), which 
are a subset of the above raw information, were 

used to assess the accuracy of the two travel time 
prediction methods.

Raw Data Collection

Data were collected by using the fleet management 
system of a third party logistics (3PL) company. 
The system embraced three main modules: a) 
a back-end module (client-server architecture), 
which consisted of a fleet monitoring applica-
tion with vector maps, b) a front-end module that 
included the telematic equipment that was respon-
sible for acquiring, processing and transmitting 
various field information to the back-end, and c) 
a wireless communication module that allowed 
a two-way connection between the back-end and 
the front-end module.

The trucks that were equipped with this system 
were conducting deliveries in various points of 
interest (e.g. supermarkets, warehouses) that were 
located in Athens, Piraeus and in local suburbs. 
The data were captured and processed in the 
micro-controller of the telematic equipment and 
then transmitted via a modem wirelessly (in a 
consecutive time manner) to the back-end mod-
ule through a terrestrial mobile network. Typical 
information transmitted included truck coordi-
nates, its travelling time, arrival time to customers 
and field data (such as load temperature). This 
data was coupled with further information (i.e. 
customer coordinates, date of delivery) so as to 

Figure 5. Vehicle track player of a vehicle
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create a rich database, which was a prerequisite 
for the effectiveness of the proposed travel time 
prediction methods.

Cluster Data Collection

Having obtained historical data for a period of 
six months, so as to support the travel prediction 
methods effectively, a vehicle track player (Figure 
5) was built to retrieve in detail all the information 
that was acquired during the execution of past 
deliveries (i.e. the route followed by each truck) 
and measure the performance of the travel time 
prediction methods.

For each test scenario (i.e. historical delivery 
schedule) a number of customers were chosen. 
As the actual arrival time in each client was known, 
it was possible to monitor the estimated arrival 
time in every client and thus calculate the predic-
tion error as a step function (i.e. every time data 
were transmitted from the truck). A snapshot of 
this procedure is depicted in Figure 6.

All the data concerning prediction errors were 
stored in a log file that also included the informa-

tion shown in Table 2. The first column of the 
table identifies the customer ID whereas the sec-
ond and the third column show the geographical 
coordinates of the customer. The fourth and the 
fifth column show the vehicle’s geographical 
coordinates in each data collection step. Then, the 
date where the delivery trip conducted is de-
picted, followed by the actual and the estimated 
arrival time of the vehicle. The last two columns 
provide details concerning the remaining distance 
to the customer and the velocity of the vehicle in 
each step.

Data Processing and Filtering of 
Biased Data

Each log file that was created from the vehicle 
track player was processed to be able to assess 
the travel time prediction methods. It must be 
mentioned that in each setting both methods (i.e. 
using historical or real-time data) were tested. A 
typical processing of data is presented in table 3. 
In this case the use of the prediction method with 
historical data gives more accurate estimation. 

Figure 6. Actual versus predicted travel time

Table 2. Format of collected data for vehicle’s trip towards customer A2 

Customer 
ID

Customer X 
coordinate

Customer Y 
coordinate

Truck X 
coord.

Truck 
Y 
coord.

Date Actual ar-
rival time

Estimated 
arrival time

Distance 
left (m)

Instant 
velocity 
(Km)

A2 481980 4215740 478710 4213070 2/2/2005 15:45:00 15:44:20 1437 20

A2 481980 4215740 478740 4213130 2/2/2005 15:45:00 15:44:30 1320 18

A2 481980 4215740 478830 4213170 2/2/2005 15:45:00 15:44:55 1218 21

A2 481980 4215740 478840 4213200 2/2/2005 15:45:00 15:45:20 1211 23

A2 481980 4215740 478870 4213240 2/2/2005 15:45:00 15:45:05 1109 19
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As it can be seen in the time divergence column, 
measurements can either show that a vehicle is 
delayed (-) or is going ahead schedule (+).

A range of conventional metrics were used to 
evaluate the comparative accuracy of the proposed 
travel time prediction methods. Defining the 
absolute error as e T T

i a p
= −  where Ta is the 

actual travel time and Tp is the estimated travel 
time, and n as the number of samples, three mea-
sures were used:

Mean absolute error (MAE) = 

e

n

i
i

n

=
∑
1
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1 2
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e
i
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n
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n

e
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∑            (5)

A typical graph that shows the performance 
of the proposed methods (normalized results) by 
using either historical or real-time data is presented 
in Figure 7. For comparison reasons, the graph 
also includes a method that uses a constant ve-
locity of 20 Km/h throughout the route for travel 
time prediction. This value has been chosen as 

most researchers that design routing algorithms 
or systems for freight deliveries use the specific 
velocity when they assume constant travel times 
throughout the day (Ichoua, 2003).

Both proposed methods (either by using his-
torical or real-time) data outperform the prediction 
mechanism that uses a steady velocity. This issue 
has also been mentioned by other researchers 
(Malandraki & Daskin, 1992; Ichoua, 2003; 
Fleischmann, 2004), who argued that time depen-
dent information is critical for accurate predictions 
in dynamic incident handling.

However, both approaches (historical and real-
time) experience a relatively high error (almost 
15%-20%) at the starting point of the route, which 
becomes lower as the truck is approaching the 
delivery point. This initial error is very crucial as 
it may result in wrong decision making; that is, a 
false violation of a time window that can lead to 
an undesirable truck rerouting. For that reason, it 
was decided to filter a number of biased predic-
tions until the system reached its steady-state.

In order to reach the steady-state condition, a 
number of different filtering methods can be 
implemented (Law & Kelton, 1991). For the 
purpose of travel-time prediction, the moving 
average method has been selected in order to act 
as a low-pass filter. Studying the convergence of 
a moving average of output data to determine a 
possible end of the initial transient period is at-
tributable according to Gordon (1969) and Em-

Table 3. Processing of data 

Customer 
ID

Truck X 
coord.

Truck 
Y 
coord.

Actual ar-
rival time

Estimated 
arrival time 
(Method with 
historical 
data)

Estimated 
arrival time 
(Method with 
real time 
data)

Time Diver-
gence (sec) 
(historical 
data)

Time Diver-
gence (sec) 
(real time 
data)

Distance 
left (m)

A2 478710 4213070 15:45:00 15:44:20 15:48:15 - 40 + 195 1437

A2 478740 4213130 15:45:00 15:44:30 15:49:34 - 30 + 274 1320

A2 478830 4213170 15:45:00 15:44:55 15:47:29 - 05 + 149 1218

A2 478840 4213200 15:45:00 15:45:20 15:50:12 + 20 + 312 1211

A2 478870 4213240 15:45:00 15:45:05 15:49:23 + 05 + 263 1109
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shoff & Sisson (1970). A typical way is to find 
an instant of time at which the running mean 
X n( )  approaches a constant level with a given 
accuracy d , d > 0.

The latter is given by:

X n
x

n
i

i

n

( )=
=
∑

1

 (6)

Thus, according to Pawlikowski (1990) we 
can assume that in a time series of observations 
x x x

i1 2
, , ..., , ... the initial transient period is over 

after n
0
 observations if k  consecutive values of 

the running mean X i( )  recorded after the ob-

servation n
0
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0
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+( )− ( )
+( )
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In our case d  was 0.95 (i.e. 95% accuracy) 
and we had a time series of 10 observations. 
Every prediction generated by the proposed 
methods was ignored prior to the average reach-

ing a steady state. A typical output of a log file 
that shows the filtering session of the first pre-
dicted results is shown in Table 4.

The estimations show that at the beginning of 
the route, there is a high fluctuation in the esti-
mated arrival time and for that reason each predic-
tion result is ignored. A graphical representation 
of that case is also depicted in Figure 8. In this 
case, the biased prediction results are filtered 
(filtered area) and only the remaining values 
(after the system reaches its steady-state) are 
taken into account.

DESIGN OF EXPERIMENTS

The objective of this study was to investigate 
under what circumstances the use of real-time and 
historical data result in the minimum travel time 
estimation error. In order to do that, a series of 
experiments are performed by varying a number 
of factors. Lorenzen & Anderson (1993) define 
an experiment as a test or series of tests in which 
purposeful changes are made to the input factors 
of a process or system so that we may observe 
and identify the reasons for changes that may be 
observed in the output response. The basic aim 
in this case is to develop a robust process; that is 

Figure 7. Error of travel time prediction methods
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a process affected minimally by external sources 
of variability through a factorial experiment.

In order to choose, which method gives the 
best possible accuracy, a number of factors have 
been used for conducting a series of experiments. 
According to Chien & Kuchipudi (2003), the fac-
tors that can act as inputs to the experiment are 
(see also Figure 9):

• The method that is used for travel time pre-
diction, (i.e. the travel prediction method 

can use either historical data or real-time 
data),

• The mean velocity variance (σ2V ) of a ve-
hicle in a route that connects two points of 
interest (customers) and,

• The difference (ΔV ) between the actual 
mean velocity of the vehicle (calculated in 
each route) and the mean velocity for the 
same route that has been calculated with 
historical data from the database.

Table 4. Processing of data (with low-pass filtering) 

Customer ID Truck X 
coord.

Truck 
Y 
coord.

Customer X 
coordinate

Customer Y 
coordinate

Actual ar-
rival time

Estimated ar-
rival time Prediction

A2 465710 4362070 466980 4375740 15:45:00 15:25:20 IGNORE

A2 465740 4362130 466980 4375740 15:45:00 15:18:30 IGNORE

A2 465830 4362170 466980 4375740 15:45:00 15:35:55 IGNORE

A2 465840 4362200 466980 4375740 15:45:00 15:55:20 IGNORE

A2 465870 4362240 466980 4375740 15:45:00 15:40:05 IGNORE

A2 ..... ….. ..... ..... ..... ..... .....

A2 ..... ..... ..... ..... ..... ..... .....

A2 465980 4362350 466980 4375740 15:45:00 15:43:15 ACCEPT

A2 466020 4362390 466980 4375740 15:45:00 15:44:20 ACCEPT

A2 466080 4362450 466980 4375740 15:45:00 15:44:55 ACCEPT

A2 466110 4362480 466980 4375740 15:45:00 15:43:25 ACCEPT

Figure 8. Error of travel time prediction methods (with low-pass filtering)
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The output of the experiment is the estimation 
error that is produced by each travel prediction 
method and comprises the main element to evalu-
ate their performance.

As mentioned above, the historical data are 
retrieved from identical routes (i.e. trips where the 
vehicle has traveled towards the same customers) 
that the vehicle has followed in previous delivery 
executions. That means that in order for a previ-
ous route to be considered in the historical data 
pool, it is assumed that the vehicle was departed 
from the same point, travelling towards the same 
customer, having the same time constraints.

Having that information in mind, we can 
classify which method can be used in each case 
according to: a) the type of area (city centre or 
suburbs), b) the day (weekends, normal days) 
as well as c) the time of travel (peak or off-peak 
hours). In that way, we will be able to use a certain 
travel-time prediction method as a default, when 
the movement of the vehicle follows the predefined 
patterns, or change to the other method in case of 
unexpected traffic patterns (e.g. congestion). For 
instance, if the experimental results show that in 
a certain scenario (suburbs, weekends, off-peak 
hours) the best accuracy is given by the method 
that uses historical data, and the moment of de-
livery execution a traffic accident takes place that 
changes the traffic flow, then we would use the 
prediction method that makes use of real-time data.

The model presented in Figure 10, is a factorial 
design that has three factors at two levels (High 
and Low) (Montgomery, 2001) and all possible 
combinations of the three factors across their levels 

are used in the design. The assumptions that are 
taken into considerations according to Anderson 
& McLean (1974) are:

1.  The factors are fixed: A factor is fixed if 
its levels are purposely designed (or set) by 
the experimenter and not selected at random. 
In our case there are 3 factors (ΔV, σ2V, and 
the prediction method) with two levels (High 
& Low)

2.  The designs are completely randomized: 
This assumption is required as the experi-
ment must be performed in random order 
so that the environment in which the treat-
ments are applied is as uniform as possible. 
In our case randomization has been ensured 
through our Design of Experiments and the 
statistical processing of data in MiniTAB.

3.  The normality assumptions are satisfied: 
If we want to calculate confidence intervals 
for our predictions we need to know the 
probability distribution of the errors – in 
other words, how likely is it that errors 
will be big or small. For simplicity it is 
usually assumed that errors have a Normal 
distribution with mean zero and variance s2. 
This means that if repeat measurements of 
y are taken for a particular value of x then 
most of them are expected to fall close to 
the regression line and very few to fall a 
long way from the line. In our case we have 
checked the normality assumption through 
the Kolmogorov-Smirnov test.

Figure 9. Model for travel-time prediction
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The design that will be used is called a 23 full 
factorial design and the eight treatment combina-
tions can be displayed geometrically as a cube as 
shown in Figure 10.

Using the “+” and “-“notation to represent 
the low and high levels of the factors, the eight 
runs in the 23 design may be listed as in Table 5. 
This is called the design matrix. The treatment 
combinations can be written in standard order as 
(1), a, b, ab, c, ac, bc and, abc. These symbols 
also represent the total of all n observations taken 
at that particular treatment combination.

There are seven degrees of freedom between 
eight treatment combinations in the 23 design. 
Three degrees of freedom are associated with the 
main effects of a, b, and c. Four degrees of free-
dom are associated with interactions, one each 
with ab, ac and bc and one with abc.

In order to define the Low & High levels of 
each factor we collected data concerning ΔV and 
σ2V from 100 different delivery trips retrieved 
from a database with real-life delivery schedules. 
According to Montgomery (2001), we identified 
two representative values from the dataset that 
were not close, so as to be able to group all data 

Table 5. The design matrix 

Run ΔV σ2V Method

1 Low Low Low

2 High Low Low

3 Low High Low

4 High High Low

5 Low Low High

6 High Low High

7 Low High High

8 High High High

Figure 10. Geometric view
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in two levels (Low & High). The values that we 
used are presented in Table 6.

Based on the design matrix above we can 
distinguish 8 scenarios according to the area, day 
and hour of each case, (Table 7) that can be used 
in order to define which could be the proposed 
travel prediction method that would be used by 
the incident handling mechanism.

As mentioned above the three main factors 
are: a) the travel time prediction method, b) the 

mean velocity variance (σ2V ) and c) the differ-
ence (ΔV ) between the actual mean velocity of 
the vehicle (calculated in each route) and the mean 
velocity for the same route that has been calcu-
lated with historical data from the database.

In order to analyze the velocity characteristics 
of each scenario, and identify the “Low” and 
“High” levels of each factor (i.e. ΔV and σ2V ), 
we have performed the following test. Initially 
we identified from a database with historical data 

Table 7. Scenarios 

Scenario Area Day Hour

I City centre Busy Peak

II City centre Busy Off-Peak

III City centre Non-busy Peak

IV City centre Non-busy Off-Peak

V Suburbs Busy Peak

VI Suburbs Busy Off-Peak

VII Suburbs Non-busy Peak

VIII Suburbs Non-busy Off-Peak

Table 8. Experimental scenarios 

Scenario Area Day Hour ΔV σ2V

I City centre Busy Peak 17 1.69

II City centre Busy Off-Peak 15.4 4.92

III City centre Non-busy Peak 16.7 4.67

IV City centre Non-busy Off-Peak 18.1 1.72

V Suburbs Busy Peak 8.7 4.12

VI Suburbs Busy Off-Peak 7.9 1.52

VII Suburbs Non-busy Peak 9.3 4.37

VIII Suburbs Non-busy Off-Peak 8.1 1.44

Table 6. Definition of Low & High levels 

Low High

ΔV 8 17

σ2V 1.5 4.5

Method Method with historical data Method with real-time data
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of urban freight deliveries, 10 delivery trips for 
each scenario. Then we calculated ΔV and σ2V  
for each case and lastly we find out the mean 
value for each factor. Table 8 presents the results 
from the aforementioned test.

EXPERIMENTAL RESULTS

Figures 11 and 12 present plots of the three main 
effects and their interactions. The main effect 
plots are graphs of the marginal response aver-

ages at the levels of the three factors. Notice that 
in Figure 11 the “Variance” and the “Method”, 
have positive main effects; that is, increasing the 
factor increases the mean of error. On the contrary 
the “ΔV ” factor has a negative effect as when is 
increased it moves the mean of error downward.

The performance of travel prediction methods 
can be determined accurately in the interaction 
plot depicted in Figure 12. Indeed, the interaction 
between “ΔV ” and the method shows that when 
the actual mean velocity of a vehicle is “Low” 
(i.e. near the mean historical one), the approach 

Figure 11. Main effects plot

Figure 12. Interaction plot
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that uses historic data provides more accurate 
travel time predictions. On the contrary, in cases 
where the actual mean velocity of a vehicle is 
“High” (i.e. has a significant difference from the 
mean historical one), the approach that uses real-
time data provides more accurate travel time 
predictions. As far as the interaction between “Δ
V ” and “Variance” is concerned, it is shown than 
the minimum error is achieved in both cases when 
there is a small variance of the velocity of a ve-
hicle. Last but not least, there is no interaction 
between Variance and Method as shown by the 
similar shape of the two curves in Figure 12.

From the statistical analysis of data it is con-
cluded that when the actual mean velocity of a 
vehicle is near the mean historical one (i.e. ΔV
is small), the approach that uses historic data 
provides more accurate travel time predictions 
due to smaller travel-time variance and larger 
sample size. If we consider the three main param-
eters “Area”, “Day” and “Hour”, this case is met 
usually when the vehicle is travelling in suburbs, 
in non-busy days and off-peak hours.

In cases where the actual mean velocity of a 
vehicle has a significant difference from the mean 
historical one (i.e. ΔV is high), the approach that 
uses real-time data provides more accurate travel 
time predictions. This is usually the case of city 
centre environments, in busy-days and peak hours 
where a number of unpredicted events (usually 
traffic congestion) may occur, thus leading in 
large deviations from the mean historical veloc-
ity of a road link.

In order to confirm the results of the statistical 
analysis of the data, a range of conventional mea-
sures (Mean Absolute Error, Root Mean Square 
Error and Mean Absolute Relative Error) were 
used for each scenario and are presented in Table 9.

A t-test has been performed for identifying 
statistical difference (* p<0.05, ** p<0.01)

According to the aforementioned results the 
method that gave the best travel-time estimation 
for each scenario is presented in Table 10. Travel 
time prediction with historical data is reliable only 
when uniform traffic conditions prevail through 
the road network. Congestion or an accident would 

Table 9. Prediction Errors for the eight scenarios (in seconds) 

Scenarios Method MAE RMSE MARE

I
Real-time data 43,143** 161,425** 0,242*

Historical data 65,929 246,682 0,366

II
Real-time data 63,000 178,190 0,131

Historical data 54,000* 152,735* 0,109*

III
Real-time data 52,043** 249,591** 0,070*

Historical data 81,460 390,672 0,113

IV
Real-time data 115,776 1009,314 0,047

Historical data 71,743** 625,444** 0,029**

V
Real-time data 35,333** 86,548** 0,084**

Historical data 79,833 195,550 0,190

VI
Real-time data 107,620 854,212 0.051

Historical data 97,226* 771,700** 0,046*

VII
Real-time data 157,535 833,632 0,238

Historical data 113,607** 601,152** 0,172*

VIII
Real-time data 161,600 808,000 0.207

Historical data 106,160* 530,800** 0,136*
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affect the accuracy of the travel-time estimation 
using historical data, as it takes longer time for 
a vehicle to complete its trip. Thus, the sample 
size of the historical-based travel times is reduced 
depending on the degree of the congestion. On the 
other hand, travel time estimation using real-time 
data is more sensitive to respond to travel time 
spikes of a link with congestion or an accident.

Based on the results presented above, the real-
time fleet management system may use the pro-
posed methods of each scenario, however if an 
unexpected event occurs then the incident handling 
mechanism should incorporate the method that 
gives the best possible accuracy in the current 
moment.

CONCLUSION

The basic aim of this chapter was the design and 
evaluation of two travel time prediction methods 
that may be used by a real-time fleet management 
system in order to predict the arrival time to the 
remaining customers. These methods used his-
torical and real-time data respectively for travel 
time estimation. The study focuses on exploring 
the interaction of factors that affect prediction 
accuracy by modeling both approaches. The em-
ployed real-time and historical data are provided 
by real-life scenarios of a freight carrier and the 
experiment follows a 2-level full factorial design 

approach. Results revealed that when the actual 
mean velocity of a vehicle is near the mean his-
torical one, the approach that uses historic data 
provides more accurate travel time predictions due 
to smaller travel-time variance and larger sample 
size. In cases where the actual mean velocity of a 
vehicle has a significant difference from the mean 
historical one, the approach that uses real-time data 
provides more accurate travel time predictions. 
These results together with conventional measures 
have been taken into consideration in order to 
propose the best method for eight scenarios that 
reflect typical cases of a vehicle’s travel between 
two points of interest. The results obtained are very 
encouraging showing that these methods can give 
a pretty good travel time prediction when applied 
in a real-time fleet management system.
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Table 10. Proposed method for each scenario 

Scenario Area Day Hour Prediction method

I City centre Busy Peak Real-time data

II City centre Busy Off-Peak Historical data

III City centre Non-busy Peak Real-time data

IV City centre Non-busy Off-Peak Historical data

V Suburbs Busy Peak Real-time data

VI Suburbs Busy Off-Peak Historical data

VII Suburbs Non-busy Peak Historical data

VIII Suburbs Non-busy Off-Peak Historical data
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