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NOTE TO INSTRUCTORS

A complete solution manual has been prepared for use by those interested in
using this book as the primary text in a course or for independent study. Inter-
ested persons should please contact the publisher or the author at
http://www.olemiss.edu/~wcdaigle/QueueingText to obtain an electronic copy
of the solution manual as well as other support materials, such as computer
programs that implement many of the computational procedures described in
this book.
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Preface

Soon after Samuel Morse’s telegraphing device led to a deployed electri-
cal telecommunications system in 1843, waiting lines began to form by those
wanting to use the system. At this writing queueing is still a significant factor in
designing and operating communications services, whether they are provided
over the Internet or by other means, such as circuit switched networks.

This book is intended to provide an efficient introduction to the fundamental
concepts and principles underlying the study of queueing systems as they ap-
ply to telecommunications networks and systems. Our objective is to provide
sufficient background to allow our readers to formulate and solve interesting
queueing problems in the telecommunications area. The book contains a se-
lection of material that provides the reader with a sufficient background to read
much of the queueing theory-based literature on telecommunications and net-
working, understand their modeling assumptions and solution procedures, and
assess the quality of their results.

This text is a revision and expansion of an earlier text. It has been used
as a primary text for graduate courses in queueing theory in both Electrical
Engineering and Operations Research departments. There is more than enough
material for a one-semester course, and it can easily be used as the primary text
for a two-semester course if supplemented by a small number of current journal
articles.

Our goals are directed towards the development of an intuitive understand-
ing of how queueing systems work and building the mathematical tools needed
to formulate and solve problems in the most elementary setting possible. Nu-
merous examples are included and exercises are provided with these goals in
mind. These exercises are placed within the text so that they can be discussed
at the appropriate time.

The instructor can easily vary the pace of the course according to the char-
acteristics of individual classes. For example, the instructor can increase the
pace by assigning virtually every exercise as homework, testing often, and cov-
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ering topics from the literature in detail. The pace can be decreased to virtually
any desired level by discussing the solutions to the exercises during the lecture
periods. I have worked mostly with graduate students and have found that we
achieve more in a course when the students work exercises on the blackboard
during the lecture period. This tends to generate discussions that draw the
students in and bring the material to life.

The minimum prerequisite for this course is an understanding of calculus
and linear algebra. However, we have achieved much better results when the
students have had at least an introductory course in probability. The best re-
sults have been obtained when the students have had a traditional electrical
engineering background, including transform theory, an introductory course in
stochastic processes, and a course in computer communications.

We now present an abbreviated summary of the technical content of this
book. In Chapter 1, we introduce some general terminology from queueing
systems and some elementary concepts and terminology from the general the-
ory of stochastic processes, which will be useful in our study of queueing
systems. The waiting time process for a single-server, first-come-first-serve
(FCFS) queueing system, is discussed. We also demonstrate the application
of queueing analysis to the design of wireless communication systems and IP
switches. In the process, we demonstrate the importance of choosing queue-
ing models that are sufficiently rich to capture the important properties of the
problem under study.

In Chapter 2, we review some of the key results from the theory of ran-
dom processes that are needed in the study of queueing systems. In the first
section, we provide a brief review of probability. We begin with a definition
of the elements of a statistical experiment and conclude with a discussion of
computing event probabilities via conditioning. We then discuss random vari-
ables, their distributions, and manipulation of distributions. In the third and
fourth sections, we develop some of the key properties of the exponential dis-
tribution and the Poisson process. In the fifth section, we review discrete-
and continuous-parameter Markov chains defined on the nonnegative integers.
Our goal is to review and reinforce a subset of the ideas and principles from
the theory of stochastic processes that is needed for understanding queueing
systems. As an example, we review in detail the relationship between discrete-
time and discrete-parameter stochastic processes, which is very important to
the understanding of queueing theory but often ignored in courses on stochastic
processes. Similarly, the relationship between frequency-averaged and time-
averaged probabilities is addressed in detail in Chapter 2.

In Chapter 3, we explore the analysis of several queueing models that are
characterized as discrete-valued, continuous-time Markov chains (CTMCs).
That is, the queueing systems examined Chapter 3 have a countable state
space, and the dwell times in each state are drawn from exponential distri-
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butions whose parameters are possibly state-dependent. We begin by examin-
ing the well known M/M/1 queueing system, which has Poisson arrivals and
identically distributed exponential service times. For this model, we consider
both the time-dependent and equilibrium occupancy distributions, the stochas-
tic equilibrium sojourn and waiting time distributions, and the stochastic equi-
librium distribution of the length of the busy period. Several related processes,
including the departure process, are introduced, and these are used to obtain
equilibrium occupancy distributions for simple networks of queues.

After discussing the M/M/1 system, we consider the time-dependent behav-
ior of finite-state general birth-death models. A reasonably complete derivation
based upon classical methods is presented, and the rate of convergence of the
system to stochastic equilibrium is discussed. Additionally, the process of ran-
domization, or equivalently uniformization, is introduced. Randomization is
described in general terms, and an example that illustrates its application is
provided. We also discuss the balance equation approach to formulating equi-
librium state probability equations for birth-death processes and other more
general processes. Elementary traffic engineering models are introduced and
blocking probabilities for these systems are discussed. Finally, we introduce
the probability generating function technique for solving balance equations.

In Chapter 4, we continue our analysis of queueing models that are charac-
terized by CTMCs. We discuss simple networks of exponential service stations
of the feedforward, open, and closed varieties. We discuss the form of the joint
state probability mass functions for such systems, which are of the so-called
product form type. We discuss in detail a novel technique, due to Gordon
[1990], for obtaining the normalizing constant for simple closed queueing net-
works in closed form. This technique makes use of generating functions and
contour integration, which are so familiar to many engineers.

Next, we address the solution of a two-dimensional queueing model in
which both the arrival and service rates are determined by the state of a single
independent CTMC. This type of two-dimensional Markov chain is called a
quasi-birth and death process (QBD), which is a vector version of the scalar
birth-death process discussed previously. A number of techniques for solving
such problems are developed. The first approach discussed uses the probabil-
ity generating function approach. We make extensive use of eigenvector-based
analysis to resolve unknown probabilities. Next, the matrix analytic technique
is introduced and used to solve for the state probabilities. A technique based
on solving eigensystems for finding the rate matrix of the matrix geometric
method, which reveals the entire solution, is discussed next. Finally, a gen-
eralized state space approach, which seems to have been introduced first by
Akar et. al [1998], is developed. We show how this technique can be used
efficiently to obtain the rate matrix, thereby complementing the matrix ana-
lytic approach. We then introduce distributions of the phase (PH) type, and
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we provide the equilibrium occupancy distribution for the M/PH/1 system in
matrix geometric form. We conclude the chapter with a set of supplementary
exercises.

In Chapter 5, we introduce the M/G/1 queueing system. We begin with a
classical development of the Pollaczek-Khintchine transform equation for the
occupancy distribution. We also develop the Laplace-Stieltjes transforms for
the ergodic waiting time, sojourn time, and busy period distributions.

We next address inversion of probability generating functions. Three meth-
ods are discussed. The first method is based upon Fourier analysis, the second
approach is recursive, and the third approach is based on generalized state
space methods, which were used earlier to determine the equilibrium probabil-
ities for QBD processes. A number of practical issues regarding a variety of
approximations are addressed using the generalized state space approach. For
example, in the case of systems having deterministic service time, we obtain
queue length distributions subject to batch arrivals for the cases where batch
sizes are binomially distributed. We explore convergence of the queue length
distribution to that of the M/D/1 system. We also explore the usefulness of the
Pade approximation to deterministic service in a variety of contexts.

We next turn our attention to the direct computation of average waiting and
sojourn times for the M/G/1 queueing system. Our development follows that
for the M/M/1 system to the point at which the consequences of not having the
Markovian property surfaces. At this point, a little renewal theory is introduced
so that the analysis can be completed. Additional insight into the properties of
the M/G/1 system are also introduced at this point. Following completion of
the waiting- and sojourn-time development, we introduce alternating renewal
theory and use a basic result of alternating renewal theory to compute the av-
erage length of the M/G/1 busy period directly. The results of this section play
a key role in the analysis of queueing systems with priority, which we address
in Chapter 6.

We begin Chapter 6 with an analysis of the M/G/1 system having the last
come first serve service discipline. We show that the Pollaczek-Khintchine
transform equations for the waiting and sojourn times can be expressed as ge-
ometrically weighted sums of random variables. Next, we analyze the M/G/1
queueing system with exceptional first service. We begin our development by
deriving the Pollaczek-Khintchine transform equation of the occupancy distri-
bution using the same argument by which Fuhrmann-Cooper decomposition
was derived. This approach avoids the difficulties of writing and solving dif-
ference equations. We then use decomposition techniques liberally in the re-
mainder of the chapter to study the M/G/1 queueing system with externally
assigned priorities and head-of-the-line service. Transform equations are de-
veloped for the occupancy, waiting-time and sojourn-time distributions. Inver-
sion of transform equations to obtain occupancy distribution is then discussed.
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Finally, we develop expressions for the average waiting and sojourn times for
the M/G/1 queueing system under both preemptive and nonpreemptive priority
disciplines.

In Chapter 7 we introduce the G/M/1 and M/G/1 paradigms, which have
been found to be useful in solving practical problems and have been discussed
at length in Neuts’ books. These paradigms are natural extensions of the or-
dinary M/G/1 and G/M/1 systems. In particular, the structure of the one-step
transition probability matrices for the embedded Markov chains for these sys-
tems are simply matrix versions of the one-step transition probability matrices
for the embedded Markov chains of the elementary systems.

In the initial part of the chapter, Markov chains of the M/G/1 and G/M/1
type are defined. The general solution procedure for models of the G/M/1
type and the M/G/1 with simple boundaries are discussed. The application
of M/G/1 paradigm ideas to analysis of statistical multiplexing systems is then
discussed by way of examples. Then, we extend our earlier development of the
generalized state space methods to the case of the Markov chains of the M/G/1
type with complex boundary conditions. The methodology presented there is
relatively new, and we believe our presentation is novel. Because generalized
state-space procedures are relatively new, we attempt to provide a thorough
introduction and reinforce the concepts through an example. Finally, additional
environments where Markov chains of the G/M1 and M/G/1 types surface are
discussed and pointers to descriptions of a variety of techniques are given.

We close in Chapter 8 with a brief discussion of a number of nontraditional
techniques for gaining insights into the behavior of queueing systems. Among
these are asymptotic methods and the statistical envelope approach introduced
by Boorstyn and others.

JOHN N. DAIGLE
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Chapter 1

TERMINOLOGY AND EXAMPLES

Samuel Morse invented a telegraphing mechanism in 1837. He later in-
vented a scheme for encoding messages, and then, under contract with the
Government of the United States of America (USA), built the first telegraph
system in 1843. Immediately, waiting lines began to form by those wanting to
use the system. Thus, queueing problems in telecommunications began virtu-
ally simultaneously with the advent of electrical telecommunications.

The world-wide telecommunications infrastructure of today consists largely
of two interrelated major infrastructures: the telephone network, which is a
circuit-switched network, and the Internet, which is a packet-switched com-
puter communications network. But, the lines are blurred; control of circuit
switched systems has been accomplished using packet switching for almost
three decades, and packet switching systems transport information over lines
derived from circuit switching systems.

Today queueing theory is used extensively to address myriads of questions
about quality of service, which has been a major concern of telecommunica-
tions systems from the beginning. Quality is measured in a variety of ways,
including the delay in gaining access to a system itself, the time required to
gain access to information, the amount of information lost, and the intelligibil-
ity of a voice signal. Usually the quantities in question are random variables
and results are specified in terms of averages or distributions. A fundamental
issue is the resource-quality trade-off; what quantities of resources, measured,
say, in dollars, must be provided in order achieve a desired quality of service?

For at least three decades, there has been a trend towards ubiquitous service
over packet-switched facilities, the primary motivation being cost reduction
resulting from an increased capability to share resources. The primary obstacle
has been the development of mechanisms that assure quality of service at a
competitive costs. Queueing theory is one of the primary tools used to deal
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with questions involving trade-offs between the amount of resources allocated
to provide a telecommunications service and the quality of service that will be
experienced by the subscribers.

This chapter has three sections. In the first section, we present an overview
of the terminology of queueing systems. Mathematical notation will be pre-
sented, but mathematical developments are deferred to later chapters. In the
second section, we discuss a number of applications of queueing theory to
system design. The primary objective is to provide the reader with basic in-
formation that can form the basis of thought about how queuing theory can be
applied to telecommunications problems. The chapter concludes with a brief
summary.

1.1 The Terminology of Queueing Systems
In this section, we introduce the reader to the terminology of queueing theory
and to some definitions from the theory of stochastic processes that are needed
in the study of queueing systems. We introduce some key random processes
involved in queueing analysis, formally introduce the notion of an induced
queueing process, and define some of the major quantities of interest.

In order to introduce notation and some of the dynamics of queueing sys-
tems, we consider the activities surrounding the use of a pay telephone, perhaps
in an airport. Here, the telephone system itself is the server, and the customers
who are waiting to use the telephone form the queue for the system. Figure 1.1
shows a schematic diagram of the queueing system.

Figure 1.1. Schematic diagram of a single-server queueing system.

Assume that at time zero the telephone is idle; that is, no one is using the
phone. Now, suppose that at time the first customer, whom we shall call
arrives at the telephone and places a call. The system is now in a busy state,
and the amount of time required to satisfy the customer’s needs is dependent
upon how many calls the customer makes, how long it takes to set up each call,
and how long it takes the customer to conduct the business at hand. Define
the total amount of time the telephone system is occupied by this customer as
the service-time requirement, or simply the service-time of and denote this
quantity by Then, leaves the system at time
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The waiting time, denoted by for is zero and the total time in the
system for is We denote the total time in the system, which is sometimes
called the sojourn time, by Thus, and Figure 1.2 shows
the sequence of events in this case. 1

Now, suppose (the second customer) arrives at time and has service-
time requirement Then will be ready to depart the system at time

where is the amount of time waits for to finish using the
telephone system; that is, the time between and if any.

Clearly, if departs before then but if departs after then
Thus, we find  If we now

define then we find

Figure 1.2. Sequence of events for first customer.

In general, the waiting time of the st customer, is equal to the
departure time of minus the arrival time of  provided that difference
is greater than zero. But, the departure time of  so,

or, equivalently,

where is called the interarrival time for
Figure 1.3 gives a graphic description of the sequence of events experienced

by the general customer.
We note that and

are all discrete-parameter stochastic processes. The distribution of the random
variables and may be discrete, continuous, or mixed, depending upon
the particular system under study. The complexity of these distributions influ-
ences the difficulty of solving a particular problem. For continuity, we remind
the reader of the following definition.

1Note that random variables are designated by tildes and their values by the same variables without tildes.
For example, denotes a random variable and denotes its value.
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Figure 1.3. Sequence of events for general customer.

DEFINITION 1.1 Stochastic process (Ross [1983]) . A stochastic process
(SP) is a collection of random variables, indexed on

That is, for each is a random variable.

We now turn to a more formal definition of a queueing process. Before
proceeding, we need the definitions for statistical independence and common
distributions.

DEFINITION 1.2  Common distribution. A random variable having a dis-

tribution F means If have a common distribu-
tion F, then

That is, the random variables, all have the same distribution, which
is

DEFINITION 1.3  Statistical independence. A set, of random
variables are said to be statistically independent, or simply independent, if for
all real

A sequence of random variables is said to be an independent
sequence if every finite collection from the sequence is independent. In either
case, the random variables are also said to be mutually independent.
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DEFINITION 1.4 Induced queueing process (Feller [1971], pp. 194-195).
Let be mutually independent random variables with common dis-
tribution F. Then the induced queueing process is the sequence of random
variables defined recursively by and

By analogy with the process defined by (1.1), we see that

Intuitively, one might argue that the difference between the service-time of the
customer and the interarrival time of the st customer induces a

delay for the customers that follow. If the difference is positive, the effect is
to increase the waiting times of the customers that follow; if the difference is
negative, the waiting times of the customers that follow tends to be decreased.

Now, suppose that for every realization of the queueing process and for
every it turns out that Then there would never be any customers
waiting because would have completed service before arrived for
every On the other hand, if for every then the server would
get further behind on every customer. Thus, the waiting time would build to
infinity as time increased beyond bound. But, in the general case, for a given
value of may be negative, zero, or positive, and is a
measure of the elbow room.

We note that it is sometimes, but not usually, convenient to work with (1.1)
when solving a queueing problem for reasons that will be considered later.
The reader is referred to Ackroyd [1980] for a description of a method dealing
directly with (1.1) and to Akar [2004] for a modern treatment. More often than
not, however, initial results are obtained in terms of queue length distributions,
and other results are derived from the results of the queue length analysis. In
Section 1.2, we present examples in which the dynamical equations that are
solved are expressed directly in terms of queue lengths.

We now introduce the concept of unfinished work. This is a continuous-
time, continuous-valued stochastic process that is sometimes extremely useful
in the analysis of queueing systems operating under complicated service disci-
plines such as those employing service priority.

DEFINITION 1.5 Unfinished work. Let  denote the amount of time it
would take the server to empty the system starting at time if no new arrivals
occur after time Then which excludes any arrival that might occur at
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time is called the unfinished work. The unfinished work is, then, a measure
of the server’s backlog at time

Sometimes is called the virtual waiting time because is the length
of time a customer would have to wait in a first-come-first-serve (FCFS) queue-
ing system if the customer arrived at time A typical realization for is
shown in Figure 1.4. Completing Exercise 1.1 will help the reader to under-
stand the concept more fully and to see the relationship between waiting time
and unfinished work.

Figure 1.4. Typical realization for unfinished work.

EXERCISE 1.1 Assume values of  and are drawn from truncated geo-
metric distributions. In particular, let and
except for and let and

for with and

1. Using your favorite programming language or a spreadsheet, generate a
sequence of 100 random variates each for and

2. Plot as a function of  compute from (1.3) and from (1.2) for

3. Compute for and verify that can be obtained from

4. Compute from (1.3) and from (1.2) for and compute
the average waiting times for the 100 customers.

DEFINITION 1.6 Busy period. With reference to Figure 1.4, it is seen that
the unfinished work is 0 prior to and that the level of unfinished work returns
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to zero after customer is served. The period of time between a transition
from zero to a positive level of unfinished work and a transition from a positive
to zero level of unfinished work is called a busy period. The sequence of busy
periods is a stochastic process, which is usually denoted by

EXERCISE 1.2  Assume values of and are drawn from truncated geo-
metric distributions as given in Exercise 1.1.

1 . Using the data obtained in Exercise 1.1, determine the lengths of all busy
periods that occur during the interval.

2. Determine the average length of the busy period.

3. Compare the average length of the busy period obtained in the previous
step to the average waiting time computed in Exercise 1.1. Based on the
results of this comparison, speculate about whether or not the average
length of the busy period and the average waiting time are related.

In general, queueing systems are classified according to their properties.
Some of these properties are now given:

The form of the interarrival distribution where repre-
sents a generic

The form of the service-time distribution where
represents a generic

The number of arrivals in a batch;

The number of servers;

The service discipline - the order in which service is rendered, the manner
in which service is rendered (time shared, etc.), whether the system has
priority;

The number of customers allowed to wait;

The number of customers in the population (usually denoted only if the
population is finite).

A queueing system is usually described using a shorthand notation (due to
D.G. Kendall) of the form In this notation, the first G denotes the
form of the interarrival time distribution, the second G denotes the form of the
service-time distribution, the value of denotes the number of servers, and the
value of K denotes the number of customers allowed to wait. Sometimes the

1.

2.

3.

4.

5.

6.

7.
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notation GI is used in place of G to emphasize independence, as, for example,
in the notation GI/M/l/K to denote the queueing system having general and
independent interarrivals, a single exponential server, and a finite waiting room
of capacity K.2

Remark. The induced queueing process is defined in terms of an indepen-
dent sequence of random variables, In many cases, analysis of
a simple queueing model based on that assumption is sufficient to address a
system design question. But, most often a model that captures some aspects
of dependence among the system’s random variables is needed to gain an un-
derstanding of an issue. Indeed, the objective of an analysis is often to explain
such dependence. A significant portion of this text is devoted to the topic of
developing specialized models that capture key properties of real systems. It
is also true that (1.2) holds whether or not is an independent se-
quence. However, the difficulty of the solving (1.2) or an alternate formulation
is certainly dependent upon whether or not that sequence is independent.

Some of the quantities of interest in the study of queueing systems include
the waiting-time distribution, the system-time distribution, the distribution of
number of customers in the system, the probability that the server is busy (idle),
the distribution of the length of a busy period, the distribution of the number
of customers served during a busy period, averages for waiting-time, time in
system, number in system, and the number served in busy period.

Remark. For a particular problem, all of these quantities are not necessarily
of interest in themselves, but they are useful tools through which other more
interesting quantities can be determined. For example, busy period analysis is
a useful tool in the study of priority queueing systems, as we shall see later.

Remark. It’s easy to state queueing problems that defy analysis, and it’s easy
to mistake one queueing problem for another. The reader is encouraged to
think very carefully and rigorously before settling on assumptions and before
using off-the-shelf results of questionable relevance. It is equally important to
take special care not to define a queueing model that is overly complicated for
a given application; the specific question being addressed should constantly be
kept in mind when the analytical model is defined.

Remark. Usually, it is not feasible, and sometimes it is impossible, to obtain
an accurate description of a system under study. Thus, the specific numerical
results from a queueing analysis, in and of themselves, are not usually very
useful. The useful part of a queueing analysis usually derives from the an-
alysts’ ability to determine trends and sensitivities. For example, “Does the
system degrade gradually or catastrophically as load is increased?” The result

2We note that an exponential random variable has the distribution where is called
the rate parameter. The exponential distribution and its properties will be discussed in detail in Chapter 2.
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is that a substantial factor in the value of a queueing analysis is the care taken
to define the problem.

1.2 Examples of Application to System Design
In this section, we present three examples that illustrate the application of

queueing theory to practical problems in the design of telecommunications sys-
tems. Each example is covered in a subsection. Our examples present only the
problem and its solution, the method of solution being a topic for discussion in
later chapters. Pointers to sections where solution methodologies are discussed
within the text are given in each subsection.

The first example applies concepts from classical traffic engineering to the
problem of designing cellular telephone systems. The specific example given
addresses analog cellular systems, but the same problems exist is both time
division multiple access (TDMA) and code division multiple access (CDMA)
-based cellular systems, and they are addressed in the same way as described
in our example.

The second example is related to the design of modern IP switching systems.
At issue is the impact that correlation in the arrival process has in the backlog
at the output ports of the switch. The backlog is related to the delay that will
be experienced at the output port of the switch, which may be an important
component of the total delay experienced as traffic traverses the switch.

The third example considers the backlog at the intersection of the traditional
Internet and a high data rate cellular data transmission system. The primary
feature considered in this example is the variability in the service capacity of
the forward wireless link, which is due to variation in path loss and fading as
the mobile travels around within the coverage area.

1.2.1 Cellular Telephony
In an analog cellular communication system, there are a total of 832 avail-

able frequencies, or channels. These are typically divided between two service
vendors so that each vendor has 416 channels. Of these 416 channels, 21 are
set aside for signalling. A cellular system is tessellated, meaning that the chan-
nels are shared among a number of cells, typically seven. Thus, each cell has
about 56 channels. In order to get a feel for where cell cites should be placed,
the vendor would like to estimate the call blocking probability as a function of
the total population of customers using the system.

The call blocking probability is defined as follows. Suppose a customer
would like to make a call. The customer enters the number and attempts the
call. If the systems responds that no service is available at the time, then the
call attempt is said to be blocked. The ratio of the total number of call attempts
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blocked to the total number of calls attempted by all customers over a given
period of time is defined as the call blocking ratio or call blocking probability.

DEFINITION 1.7  Frequency-averaged metric. Suppose a probability is de-
fined as the limiting proportion of the number of occurrences of a specific
event to the total number of occurrences of an event of which the former event
is a subset. Then that probability is said to be a frequency-averaged metric or
frequency-averaged probability.

Remark. Blocking probability is a frequency-averaged probability. Under cer-
tain conditions, this frequency-averaged metric is equivalent to a time-averaged
probability. However, too frequently in the literature, a time-averaged met-
ric is incorrectly reported as a blocking probability. Fortunately, it is usually
straightforward to convert to a frequency averaged probability from a time-
averaged probability. Frequency and time-average probabilities are discussed
in Chapter 3.

There are a number of important issues involved in completing the problem
definition. Obvious questions are “How many calls does a typical customer
make?” and “What is the duration of a call?”

Each of these questions might be answered by specifying the distribution of
a random variable, that is, by providing the distribution of the number of calls
made by a typical customer during the busiest hour of the busiest day of the
week and the distribution of the length of a call of a typical user during that
busiest period. From such distributions, elementary parameters of the system
such as the average call generation rate per customer and the average hold-
ing time per call can be estimated. Alternatively, these parameters could be
estimated directly.

Engineering of a system is virtually always based on traffic loads placed on
the system during the busiest times, which is frequently referred to as the busy
hour. Define to be the call generation rate per customer during the busy
hour, to be the average call holding time during the busy hour, and

which quantity represents the utilization per channel per customer
during the busy hour. For example, if a typical customer attempts an average
of two calls per hour during the busy hour and average call holding time is 3
minutes, then

This information, together with a few additional assumptions is sufficient
for obtaining a first cut at the blocking probability. In particular, we assume
that the sequence of interarrival times is a sequence of independent, identically
distributed exponential random variables, and the sequence of holding times is
a sequence of independent, identically distributed random variables having an
arbitrary distribution.
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The results are show in Figure 1.5. Typically, a system is designed so that
the blocking probability meets an objective of 0.01 or less. From the graph,
it is seen that the objective would be met if the population is less than about
430. But, we also notice that the blocking probability increases very quickly
with increased population in the neighborhood of a 0.01 blocking probability.
Indeed, the blocking probability increases to 0.1 with a population increase
to only 560. This raises a number of sensitivity issues, such as the effect of
changes in average call holding time on the blocking probability. Machinery
for dealing with these types of problems will be developed in Chapter 3.

Figure 1.5. Blocking probability as a function of population size at a load of

1.2.2 Multiplexing Packets at a Switch
As data traverses the Internet, it is multiplexed onto and demultiplexed

from data communications lines at a number of switches, the interconnection
of which forms an end-to-end path. Queues form at many points along the
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path, but this example focusses on the queue that forms at the communication
lines that are attached to the output ports of a switch.

In general, a switch has N input and output ports at which input and output
communications lines are connected. Upon arrival to the input processor of a
switch, packets are usually partitioned into fixed-length data blocks, and it is
these data blocks that are actually switched. We wish to determine the effect of
N upon the queue length distribution at a typical output line at a given traffic
load. We also wish to know if the queue length is affected by the form of the
arrival process.

An elementary abstraction of the queueing problem is as follows. We sup-
pose that our system is time-slot oriented, where one time slot is the time re-
quired for one packet to enter or leave the switch on each communication line.
Since the output port of the switch serves N incoming lines, as many as N
packets destined to a particular output port may arrive to the switch during one
time slot. But, only one packet may depart from the switch during any given
time slot. Therefore a queue forms. For the present, we assume an infinite
buffer size so that the queue may grow without bound.

Define to be the number of units in the queue at the end of the slot,
Then, is a discrete valued, discrete parame-

ter stochastic process. Later in the book, it will be shown that time-slot oriented
queueing systems behave according to the following dynamical equation:

where denotes the number of items that arrive (are added to the queue)
during the slot.

The sequence which is the arrival process, is, itself, a
discrete valued, discrete parameter, stochastic process. The degree of difficulty
in solving the queueing equation, in fact, depends upon the complexity of the
arrival process.

Under an appropriate system load, the distribution of the random variable
which we denote by converges to an equilibrium distribution, which we
will denote by that is, We wish to determine

under a given set of conditions.
With respect to the arrival process, we wish to consider two cases. In the first

case, we take the simplest possible assumption for the arrival process; in each
time slot, each incoming line, independent of everything, has a packet destined
for the target output line with a fixed probability This assumption then leads
to the fact that is a sequence of independent, identically
distributed binomial random variables with parameters N and Further, we
set the value of such that, on average, a packet is transmitted on the target
output line in 90% of the time slots. Thus,
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In the second case, we assume the arrival processes due to different lines
are independent, but the arrival steam from any given line is correlated. In
particular, on each given line, packets come in bursts so that there is a run of
slots having packets followed by a run of slots not having packets. Such an
arrival process is called an on-off process. In the simplest case, if the process
is in the on state during a slot, a packet arrives to the system, else no packet
arrives. At the end of each time slot, given that the system is in the on state,
the system transitions back into the on state with probability or into the off
state with probability Similarly, given that the system is in the
off state, the system transitions back into the off state with probability and
into the on state with probability The length of a run then has
the geometric distribution with parameter that is, the probability that the
run length is is

Again, we take the simplest possible nontrivial case wherein the run lengths
on all of the incoming lines have identical geometric distributions. To obtain
the desired utilization, the proportion of slots having packets is set to

as before. In this case, it turns out that the process
is a discrete-valued, discrete parameter Markov chain, which will be discussed
later.

EXERCISE 1.3 For the general case where the packet arrival process has
run lengths, it will be seen that the survivor functions decrease with de-
creasing run lengths. Determine whether or not there exists an average run
length at which the packet arrival process becomes a sequence of indepen-
dent Bernoulli trials. If such a choice is possible, find the value of run length
at which independence occurs. Discuss the result of reducing the run length
below that point. [Hint: A packet arrival occurs whenever the system tran-
sitions into the on state. Thus, if the probability of transitioning into the
on state is independent of the current state, the arrival process becomes a
sequence of independent Bernoulli trials.]

Figure 1.6 shows the survivor functions that result with N = 4, N = 16,
and N = 64 for the case of independent arrivals. From Figure 1.6, it can
be seen that the number of multiplexed lines does have some effect upon the
queue length distribution. For example, the probability that the queue length
exceeds 30 packets is about with N = 64, but only about
with N = 4. From the graph it is also seen that the change in the queue length
distribution decreases as N increases. For example, the change from N = 4 to
N = 16 is much larger than the change from N = 16 to N = 64.

Figure 1.7 shows the effect of changes of average run length on the survivor
function with the number of input lines held constant at 8. From Figure 1.7 it
is readily seen that the queue length distribution is fairly sensitive to run length
even for modest values. In fact, from the data used to plot this figure it can be
found that the probability that the queue length exceeds 40 packets increases
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Figure 1.6. Queue length survivor function for an N-to-1 multiplexing system at a traffic
intensity of 0.9 with N as a parameter and with independent, identically distributed arrivals.

from about for independent arrivals to about at an
average run length of 1.4 to about at an average run length of 2.0.
These increases in the probability of exceeding 40 are factors of 22 and 300 at
run lengths of 1.4 and 2.0, respectively. From this it is clear that the form of the
arrival processes can have a significant effect upon queueing within a system.

We will develop modeling machinery to produce curves such as those shown
in Figures 1.6 and 1.7 in Chapters 5 and 7.

1.2.3 CDMA-Based Cellular Data
High data rate transmission based on frame-oriented time division multi-

plexing has been proposed as a paradigm for forward-link transmission in
CMDA-based cellular systems (Bender [2000]). In such a system, the capac-
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Figure 1.7. Queue length survivor function for an 8-to-1 multiplexing system at a traffic in-
tensity of 0.9 with average run length as a parameter.

ity of a frame depends upon the signal plus noise to interference ratio (SINR)
of the target mobile receiver, which is dependent upon the path losses between
all transmitting cell sites and the target receiver as well as fading conditions.
Available capacities range from one data block of 1024 bits to sixteen data
blocks at 4096 bits, the latter of which is equivalent to 64 blocks at 1024 bits.

Similar to the previous section, define to the number of units in the queue
at the end of the frame, Then, again, is a
discrete valued, discrete parameter stochastic process.

Later in the book, it will be shown that frame-oriented queueing systems
generally behave according to the following dynamical equation:

where denotes the number of items served (removed from the queue) during
the frame and denotes the number of items that arrive (are added to the
queue) during the frame.
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Figure 1.8. Comparison between a system serving a fixed number of 16 units per frame and a
system serving a binomial number of units with an average of 16 at a traffic intensity of 0.9.

One way to begin to understand the queueing behavior of the actual forward
link is to perform an analysis that compares a system that serves a random
number of units per frame to a system that serves a fixed number of units
per frame. As an example, we might compare the case where the random
process is a sequence of independent, identically distributed
binomial random variables with mean 16 to the case where with
probability 1 for all We can think of the system as having bulk
or batch services, where denotes the size of the batch served during frame

As before, we denote the equilibrium queue length distribution by

Figure 1.8 shows survivor functions for the binomially and deterministically
distributed batch sizes. From this figure, it is quite obvious that there is a
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significant difference between the queueing behavior of the two systems. For
example, for the random batch size case, the probability that there will be more
than 75 packets in the queue is approximately while the probability
that the queue size exceeds 75 in the deterministic batch-size case is only about

Thus, it is about 200 times more likely to find a queue length
exceeding 75 in the case of binomially distributed batch sizes with a mean of
16 than it is in the case of a system serving fixed batches of size 16.

1.3 Summary
In this chapter we have provided a brief introduction to the language of

queueing theory, and we have given a number of examples that illustrate the
application of queueing theory to system design. Although we have avoided
mathematical development, we have introduced some key concepts that are
useful in understanding the nature of queueing problems.

From the examples in this chapter, it is quite clear that correlation in the ar-
rival process and variability in the service process can have a significant impact
upon the performance of a system and, consequently, on the quality of service
delivered by a system. Failure to recognize this fact can lead to an erroneous
prediction of the amount of resources required to support a service at a desired
level of quality.

A significant proportion of this text is devoted to developing the machinery
required to develop solid problem definitions, understand the current litera-
ture on applied queueing systems, and formulate new approaches for solving
queueing problems that may arise in the design of real systems.



Chapter 2

REVIEW OF RANDOM PROCESSES

In this chapter, we review some of the key results from the theory of ran-
dom processes that are needed in the study of queueing systems. In the first
section, we provide a brief review of probability. We begin with a definition
of the elements of a statistical experiment and conclude with a discussion of
computing event probabilities via conditioning. In the second section, we dis-
cuss random variables, their distributions, and manipulation of distributions.
In the third and fourth sections, we discuss the exponential distribution and
the Poisson process, respectively, which play a key role in queueing analysis,
and we develop some of their key properties. In the fifth section, we provide
a brief review of discrete and continuous parameter Markov chains defined on
the nonnegative integers.

While the materials presented here are, for the most part, self-contained and
a mastery of the materials presented here would provide an adequate basis for
understanding queueing systems, our experience is that these materials can-
not be used as a substitute for good courses on probability theory and random
processes. Rather, our presentation is intended primarily as review and rein-
forcement of a subset of the ideas and principles from probability theory that
are useful in understanding queueing systems. As as example, in courses on
stochastic processes the distinction between discrete time and discrete param-
eter stochastic processes is often mentioned briefly and then ignored. But, in
the study of queueing systems, this difference is significant, and we reinforce
that fact herein. Similarly, the relationship between frequency-averaged prob-
abilities and time-averaged probabilities is addressed in detail at the end of this
chapter.
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2.1 Statistical Experiments and Probability
Possibly the most difficult aspects of any applied probability problems are

to properly formulate the problem and to properly specify the parameters of
the problem. In the case of queueing problems, this often requires very careful
definitions of statistical experiments and manipulation of the laws of probabil-
ity. In some cases, experiments are very complicated and direct computation of
event probabilities is very difficult. In such cases, it is often helpful to compute
certain event probabilities by conditioning on the occurrence of other events,
which is really a process of breaking the experiment down into a set of more
easily understood sub-experiments. In the first subsection, we discuss statisti-
cal experiments and their properties and in the second subsection we discuss
computation of probabilities via conditioning.

2.1.1 Statistical Experiments
In this section, we define the properties of a statistical experiment, intro-

duce the laws of probability, and show how the laws of probability are used to
compute event probabilities.

DEFINITION 2.1 Statistical experiment A statistical experiment is an exper-
iment whose outcome is not known in advance. A statistical experiment has
three major characteristics:

1. The sample space, which is the set of all possible outcomes of the experi-
ment. The sample space is denoted by

2. The event space, which is the set of all possible subsets of the sample space,
an event being defined as any specific subset of the sample space. The event
space is denoted by

3. The probability measure of the events. In general, to each we
assign a number which represents the probability that the event
occurs.

Note that the sample space of an experiment contains all of its possible
outcomes. Exactly one element of the sample space results whenever the ex-
periment is conducted.

Note also that an event is a set. As such, mathematical operations on events
follow the same rules as mathematical operations on sets. If any set is a subset
of a sample space, then that set is an event; otherwise the subset is not an event.
Since the empty set, denoted by is always a subset of any set, is always an
event; likewise, a set is always a subset of itself so that is an event. An event
that contains exactly one element of the sample space is called an elementary
event, and an event formed by taking unions of elementary events is called a
compound event.
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DEFINITION 2.2 Mutually exclusive events. Two events,  are
said to be mutually exclusive if they have no elements in common; that is,
and are said to be mutually exclusive if

The notion of an event probability is quite abstract, and, indeed, the assign-
ments need not make any sense in the real world. In the world of engineering,
of course, the assignment of probabilities should make sense in the practical
world. In theory, we are at liberty to assign probabilities to events as we please,
but whatever assignment we do make must be consistent with the laws of prob-
ability, which are now defined.

DEFINITION 2.3 Laws of probability. The laws of probability are as fol-
lows:

1.

2. For any

3. Suppose are mutually exclusive. Then

4.

We note that the elementary events are mutually exclusive of each other and
their union is the sample space. Therefore the probabilities of the elementary
events must sum to unity.

EXAMPLE 2.1 Consider choosing a mode of accessing the Internet. Suppose
there are exactly four possible choices: ordinary telephone line denoted by
T; cable modem, denoted by C; satellite, denoted by S; and no access at all,
denoted by N. Suppose further that each individual has made exactly one
of those choices. The experiment is to choose an individual at random and
ascertain that individual’s choice.

The sample space of the experiment is then                           Note that
because    is a set, the order in which its elements are listed is immaterial.

The event space of the experiment has 16 elements. These elements are as
follows, , {N}, {S}, {C}, {T}, {S,N}, {C,N}, {T,N}, {C,S}, {T,S},
{T, C}, {C,S, N}, {T, S, N}, {T, C, N}, {T, C, S}, {T, C, S, N}.

Since we are free to assign the probabilities as we see fit, we assign the
probability of an event to be the proportion of all individuals who selected
each of the four possible choices. We assume we have perfect knowledge of
the choices and the proportions are according to the following: P {T} = 0.11,
P{C} = 0.66, P{S} = 0.19, and P{N} = 0.04. From these assignments,
we may then find the probabilities of the remaining events by following the
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laws of probability. For example, and
Therefore from the second law of probability, P {S, N} = P {S} + P {N}.

Suppose an experiment is conducted and we find that the event occurs.
Since we know that the outcome of any experiment is exactly one element
of the sample space, suppose the actual outcome of the experiment is
Then, the statement occurs means that Alternatively, suppose

Then the statement occurs means that the outcome of
the experiment was either or For example, occurrence of the event
{C, S, N} means that the individual chosen at random for the experiment may
or may not have access to the Internet. If the individual does have internet
access, then it is either by cable modem or satellite.

EXERCISE 2.1 For the experiment described in Example 2.1, specify all
of the event probabilities.

EXERCISE 2.2 For the experiment described in Example 2.1, there are a
total of four possible outcomes and the number of events is 16. Show that it
is always true that card where card denotes the car-
dinality of the set which, in turn, is the number of elements of [Hint:
The events can be put in one-to-one correspondence with the card
binary numbers.]

2.1.2 Conditioning Experiments
In many practical situations, statistical experiments are very complicated. In

some cases, the experiments are so complicated that it is virtually impossible to
understand the entire experiment without breaking the experiment down into a
set of smaller experiments that are more easily understood. The act of breaking
down an experiment into a set of smaller experiments is called conditioning.

First consider the simple experiment of rolling a fair die and observing the
number of dots on the side facing up. The sample space for this experiment
is Suppose we define the events and

to be the events of an odd and an even outcome, respectively. Now
suppose we want to know the probability of rolling 5 given that the event has
occurred. Since we know has occurred, we know that either 2, 4, or 6 was
the outcome of the roll. Therefore, the probability that the event {5} occurred
given that the event has occurred is zero.

Now, suppose we want to know the probability that a 6 was rolled given that
has occurred. We note that has three possible outcomes, each of which

is equally likely to occur. Because the number 6 is one of those three equally
likely possible outcomes, the probability that the event {6} occurred given that
the event has occurred is 1/3. Thus, the unconditional probability of rolling
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a 6 is 1/6 but the conditional probability given an even number was rolled is
1/3.

Similarly, the probability that the event {5,6} occurred given that the event
has occurred is 1/3 since given that the event has occurred, the only way

for the event {5,6} to occur is that the event {6} occurs. Thus we see that
only elementary events that are subsets of contribute to probabilities that are
conditioned on the event

In computing conditional probability of an event, say given that an event,
say has occurred the irrelevant elementary events are eliminated from con-
sideration by taking the intersection of with This intersection operation
yields a new event, Then, either in which case its prob-
ability of occurrence is zero, or is the union of elementary events, in which
case its probability can be calculated using the laws of probability. In order
to complete the computation of the conditional probability of given we
simply divide

The conditional probability of given is denoted by and based
on the arguments of the previous paragraph, we have the following computa-
tional formula:

Basically, there are two approaches to calculating a conditional probability.
Sometimes, it is straightforward to formulate a new experiment, where the
sample space is replaced by the event and then to calculate the conditional
probability directly from that. For example, suppose the experiment is to roll
a fair die until an even number of dots appears, then observe the outcome.
The sample space for this experiment is The probability of
rolling a 2 or a 5 is then obviously the same as rolling a 2 since 5 is not a
possible outcome. Hence, P {2 or 5|even} is the same as P {2} in the current
experiment, which is 1/3.

The second approach is to work directly with the original experiment, and
this approach uses the following steps to find

1.

2.

3.

4.

Find using the laws of probability.

Find

Find using the laws of probability.

Divide by to find

We note that in practice, we never intentionally condition on the null event
because that event can never occur in an actual experiment; that is, the null
event occurs only if the experiment is not conducted. In addition, given the
information that the null event has occurred, we know that no other event can
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occur because the experiment has not been conducted. In addition, condition-
ing on the null event would create a division-by-zero problem with the third
step in the procedure for computing conditional probabilities.

EXAMPLE 2.2 Suppose we are an international company and we offer a to-
tal of 8 options, where each of our customers chooses exactly one option.
Our experiment is to choose a customer at random, consult that customer’s
records and determine which option the customer has chosen. Define

and assume that we provide services in countries A and B
only. In country A we do not offer options or but in country B we
offer options and only. Then, there would be a natural partition of
namely where and
Suppose the elementary events are assigned the probabilities

Define Compute and

Solution. Since is a union of (disjoint) elementary events, we can find
by simply summing the probabilities of its constituent elementary

events. Thus,

1. Find using the laws of probability. Since is specified as a union
of disjoint events, we can determine the probability of the union as the sum
of the event probabilities. Therefore,

2. Find

3. Find using the laws of probability.

4. Divide by to find
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To compute we follow the same procedures to find
and finally

In summary we find that the unconditional probability and the two conditional
probabilities all have different values, which are

EXERCISE 2.3 Repeat the computations of Example 2.2 by constructing
restricted experiments based on and [Hint: The probabilities of the
elementary events in the restricted experiments must be normalized by di-
viding the probabilities of the individual elementary events of the restricted
experiment by the sum of the probabilities of the constituent elementary
events of the restricted experiment.]

DEFINITION 2.4 Joint probability Suppose Then
is called the joint probability of the events and We sometimes express

as or

From (2.1), we readily find that

Now, if denotes the complement of we find Therefore
Also, Therefore by the

second law of probability,

It then follows from (2.2) that

In the previous example, because we can find as follows:

DEFINITION 2.5 Partition. Define to be a set of mutually
disjoint events such that Then is called a
partition of
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If is a partition of and it is readily deduced that
is a collection of mutually disjoint sets such

that Therefore, from the second law of probability and
(2.2), we have

We note that a conditional probability is rarely computed from a joint proba-
bility in practice. The more likely case is that an unconditional probability is
ultimately required, conditioning is used to find a set of joint probabilities, and
then the unconditional probability is computed by using (2.4).

Suppose and are any two sets. Then, it is always true that and
are the same set. Thus, since events are sets, suppose with

and Then from (2.2), we readily find

Upon solving for we find

Equation (2.5) is called Bayes’ rule. Note that the numerator of (2.5) is just
the joint probability of the events and but, as we have said earlier, we
usually compute joint probabilities by first computing a conditional probability
and then using (2.2). Bayes’ rule is useful in cases where an experiment based
on one event may be easy to visualize, but an experiment based on a second
event may be difficult to visualize.

EXAMPLE 2.3 In Example 2.2, we computed the conditional probabilities
that a customer chosen at random has one of three options given that a customer
was selected in each of the countries where we provide service; that is, we
computed and Now, suppose we want to know the
probability that customer chosen at random is from country A given that the
selected customer has one of the three options. We would then find

Notice conducting an experiment on a country-by-country basis makes intu-
itive sense, but conducting an experiment on each of the possible subsets of
the options is harder to visualize.

An alternate form of Bayes’ rule is available for cases where the probability
of an event is obtained from a partition. Suppose is a partition
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of and then

We turn now to a discussion of statistical independence among events.

DEFINITION 2.6 Statistical independence. Suppose and that
Then, the event is said to be statistically independent of the

event if, and only if, That is, is statistically
independent of if, and only if, its unconditional probability of occurrence
and its conditional probability of occurrence given have the same value.

From (2.2), we readily find that if and are statistically independent
events, then, since

That is, if two events, and are statistically independent, then their joint
probability is the product of their individual unconditional probabilities.

EXERCISE 2.4 Suppose with and
Show that if is statistically independent of then necessarily, is
statistically independent of In other words, show that statistical inde-
pendence between events is a mutual property.

At the other extreme of independence between events is the concept of mu-
tual exclusivity, which we formerly defined and now revisit.

DEFINITION 2.7 Mutually exclusive events (revisited). Suppose
with and Then, the events and are

said to be mutually exclusive if, and only if, (and, therefore,
That is, mutual exclusivity between two events means the

occurrence of one of the events literally excludes the possibility that the other
event occurs.

Some examples of mutually exclusive events are the events of a partition and
the elementary events of any experiment.

2.2 Random Variables
In this section, we first provide a formal definition of the term random vari-

able, and then we discuss distributions of random variables. Next, we discuss
characterization of random variables according to the form of their distribu-

EXERCISE 2.5 Suppose but or
Discuss the concept of independence between and
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tions. We then discuss probability mass functions and probability density
functions for random variables. Next we discuss computation of expectation
of functions of random variables. Finally, we discuss computation of the dis-
tribution of sums of random variables.

DEFINITION 2.8 Random variable. A random variable is a function that
maps a sample space into the real numbers. Let denote the set of real num-
bers, and suppose is a random variable defined on Then, for each

Alternatively stated,

EXAMPLE 2.4 Consider the experiment defined in Example 2.2. Suppose we
want to define a random variable that reflects the monthly cost of a customer's
service. We might then define the random variable to represent the cost
specified in $US. In order to define we would then define a specific function
that maps the elements of into the real numbers. For example, we may have

and

Once a random variable is defined on a sample space, events can be de-
fined in terms of the random variable. For example, we can define an event
such as for the random variable defined in Example 2.4. Upon
consulting our definition of we find that
Thus, if we want to know we can compute

In order to organize computations of event probabilities involving random
variables, a distribution that captures all of the event probabilities function
is defined for each random variable. This distribution function is variously
referred to as the distribution, distribution function, cumulative distribution
function, or probability distribution function, and is defined as follows:

DEFINITION 2.9 Distribution function of a random variable. Let
denote the distribution function of a random variable, Then,

Figure 2.1 shows the distribution function for the random variable defined
in Example 2.4.

All distribution functions share a common set of properties, which are as
follows:

1.

2.

3.

is a nondecreasing function of

and
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Figure 2.1. Distribution function for the random variable defined in Example 2.4.

Random variables are classified as either discrete, continuous, or mixed,
depending on the form of their distribution function. If a random variable’s
distribution function has a derivative of zero except for a countable collection
of points, then the random variable is said to be discrete. That is, a random
variable is said to be discrete if

Further, the set of values of for which is called the support set
of and we usually denote the support set of by

If is continuous at all points then the random variable
is said to be continuous. The set of values of over which is,

as in the case of a discrete random variable, called the support set of
If a random variable is neither discrete nor continuous, then that random

variable is said to be mixed. As an example, from the distribution function
shown in Figure 2.1, it is clear that the random variable is discrete.

With respect to the primary random variables involved in queueing systems,
queue lengths are usually discrete random variables while waiting times are
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usually mixed random variables because they usually have a probability mass
at zero, and the lengths of busy periods are usually continuous.

For any random variable the probability mass at any point can be
computed as follows:

that is, the probability mass at is determined by subtracting the limit of
as from the left from the

right. Clearly, since a continuous random variable has a continuous distribution
function, it is always true that a continuous random variable has no probability
mass anywhere. That is, if is continuous, then

DEFINITION 2.10 Probability mass function. Suppose is discrete. Then
is a countable set, and for all In the case of a

discrete random variable, the discrete function for
is called the probability mass function of

DEFINITION 2.11 Probability density function. If is continuous, then the
function is called the probability density function of

Many operations on the distributions of random variables involve integration
of the product of functions of the random variable and the differential of its
distribution. In order to unify discussion, the differential of the distribution
function of a discrete or mixed random variable can be represented in terms of
Dirac delta functions. The Dirac delta function is defined as follows:

DEFINITION 2.12 Dirac delta function. Let represent any function
that is continuous at A Dirac delta function is defined as a function,
such that

Suppose whether is discrete or mixed, has probability mass at
If we define

we can represent the differential of as follows:

limit of             as                    from the
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We would than have, for example, for any random variable,

The above integral is called a Riemann-Stieltjes integral.

EXERCISE 2.6 Develop the expression for for the random variable
defined in Example 2.4.

DEFINITION 2.13 Expectation of a random variable. The expectation of a
random variable is denoted by and it is defined as

The value of is called the mean of

From the definition of a random variable, we know that a random variable is
simply a function that maps an experiment into a real number. Therefore, any
real function of a random variable is also a random variable. Let denote
an arbitrary real function of a random variable, Then, by definition,

That is, the expectation is about the distribution of the random variable, not the
random variable itself. However, it turns out that the expectation of can
be obtained without first obtaining the distribution of In fact, a compu-
tational formula is as follows:

Sometimes (2.11) is referred to as the law of the unconscious statistician be-
cause the computational formula is used as though it were actually the defini-
tion of which it is not.

Many special forms of have special names. Among these is the fol-
lowing:

DEFINITION 2.14  moment of Let Then, the expectation
is called the moment of Using (2.11) with replaced by

we find

DEFINITION 2.15 Variance of The expectation is called
the variance of and is denoted by
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EXERCISE  2.7 Find and for the random variable defined in
Example 2.4.

In queueing analysis it is often necessary to find the distribution of a ran-
dom variable when the random variable of interest is expressed as a function
of other random variables whose distributions are known. For example, it is
often necessary to compute the probability mass function for the sum of two
nonnegative integer-valued random variables or the probability density func-
tion of the sum of two nonnegative continuous random variables. We first
consider the discrete case. Suppose and are two nonnegative integer-
valued random variables, and suppose we define Then, clearly,

is a nonnegative integer-valued random variable. Suppose we want to know
If then we must have

or Thus,

Now, from (2.2), we know that

Thus,

Similarly, for any integer value, and replacing by we find

If and are independent, then
Thus, in the specific case that and are independent, (2.12) reduces to

The right hand side of (2.13) is readily recognized as the discrete convolu-
tion of and Thus, when and are independent, we have

As an example, in Section 1.2.1, we discussed multiplexing of traffic at the
output of an IP switch. The queue length, as seen at the end of a time slot, was
described as a discrete valued, discrete parameter stochastic process, and its
evolution was described by the dynamical equations
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The random variable on the left hand side, is the sum of two random
variables, and Thus we could compute the probability mass
function for by using (2.12) with and

EXERCISE  2.8 Let and denote the support sets for and
respectively. Specialize (2.12) where and

For the continuous case, the following are computational formulas for com-
puting the probability density function for the sum of two nonnegative contin-
uous random variables:

where is defined as the conditional probability function of
given that Such conditional density functions can be computed in
a manner similar to that demonstrated above for the case of discrete random
variables. The main difference is that we have to define probabilities in limiting
forms. The usual approach is to use expressions such as

make all the probability arguments in terms of probabilities rather
than densities, and then take limits to obtain the desired results.

| EXERCISE  2.9 Derive (2.14) as indicated in the previous paragraph.

If and are independent, then and (2.14)
reduces to

Thus, as in the discrete case, when and are independent, the probabil-
ity density function for their sum is given by the convolution of the density
functions of and

2.3 Exponential Distribution
Certain ideas and concepts from the theory of stochastic processes are basic in
the study of elementary queueing systems. Perhaps the most important of these
are the properties of the exponential distribution and the Poisson process. The
purpose of this and the next section is to discuss these and related concepts.
We begin with a definition of the memoryless property of a random variable
and then relate this to the exponential distribution.

Much of the literature and results in stochastic analysis are based upon the
assumption that the times between events in the stochastic processes under
study are drawn from exponential distributions. These assumptions are nor-
mally made for purposes of analytical tractability; the analyst chooses a sim-
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plified analysis in preference to no analytical results. In this section, we rec-
ognize the importance of making simplifying assumptions, but we introduce
important concepts so that the implications of the assumptions are better un-
derstood.

Exponential distributions have the memoryless property, which is defined as
follows:

DEFINITION 2.16 Memoryless property. A random variable is said to be
memoryless if, and only if, for every

The implication of the memoryless property is that the lifetime of the pro-
cess in question begins all over again at every single point in time. Thus, if for
example, represents the lifetime of a light bulb, and is memoryless, then at
every single point in time, the light bulb is as good as new.

In general, from the definition of conditional probability, we know that

But if is memoryless, then

Thus, for memoryless, we have

DEFINITION 2.17 Exponentially distributed. A random variable is said
to be exponentially distributed if for some finite, positive
for

With regard to the memoryless property, we state the following two lemmas,
the proofs of which are deferred to the exercises.

LEMMA 2.1 If is exponentially distributed, then is memoryless.

EXERCISE 2.10 Prove Lemma 2.1.

LEMMA 2.2 Let be a nonnegative right-continuous function with
for all Then either for or for

some positive
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EXERCISE 2.11 Prove Lemma 2.2. [Hint: Start with rational arguments.
Extend to the real line using a continuity argument. The proof is given
in Feller, [1968] pp. 458 - 460, but it is strongly recommended that the
exercise be attempted without going to the reference.]

From Lemmas 2.1 and 2.2, we have the following theorem.

THEOREM 2.1 A continuous random variable, is exponentially distributed
if and only if, is memoryless. That is, the memoryless property is unique to
the exponential random variable.

Now, from Theorem 2.1 we find that for memoryless,

Thus,

and

The parameter is sometimes called the rate, and we say is exponentially
distributed with rate and we write

EXAMPLE 2.5 An office shared by a number of graduate students has two
telephones. When Alice decides to use a telephone, she sees that Bob and
Charlie are using them, but no one else is waiting. Alice knows she can use the
phone as soon as either Bob or Charlie completes his call. Suppose the holding
time of each call are drawn independently from an exponential distribution
with parameter What is the probability that Alice completes her call before
Charlie?

Solution: Since service is exponential, and therefore memoryless, when Alice
enters, the remaining time for Bob’s and Charlie’s calls are independent expo-
nential random variables with parameter Thus Bob and Charlie are equally
likely to finish last, and P{Bob before Charlie} = 1/2. If Bob completes his
call before Charlie, then from the point when Bob finishes, Charlie and Alice
will use the phones an amount of time drawn independently from an expo-
nential distribution with rate Hence P{Alice before Charlie Bob before
Charlie} = 1/2. Thus, P{Alice before Charlie} = 1/4.

If the holding times in the above example were deterministic rather than
exponential, then the result would have been quite different. Comparison be-
tween exponential and deterministic assumptions are explored later in the text,
but an initial comparison is encouraged in the next exercise.
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EXERCISE 2.12 Repeat Exercise 2.5, assuming all students have a deter-
ministic holding time of one unit. How do the results compare? Would
an exponential assumption on service-time give an adequate explanation of
system performance if the service-time is really deterministic?

Returning to the properties of the exponential distribution, it is interesting to
note that both the mean and the standard deviation of the exponential random
variable are equal to The moments of the exponential random variable
as well as many other random variables are readily determined via Laplace
transform techniques. Towards this end, we define the Laplace transform and
state one of its key properties as a theorem, leaving its proof to the exercises.

DEFINITION 2.18 Laplace-Stieltjes transform. Let be a nonnegative ran-
dom variable with distribution Then

is called the Laplace-Stieltjes transform of or the Laplace-Stieltjes transform
of If is differentiable, the same expression is called the Laplace
transform of

THEOREM 2.2 Let be a nonnegative random variable with distribution
and let the Laplace-Stieltjes transform of Then,

THEOREM 2.3 Let and be nonnegative random variables having Laplace-
Stieltjes transforms and respectively. Then the Laplace-Stieltjes
transform for the random variable is given by the product of
and

EXERCISE 2.15 Let be an exponentially distributed random variable
with parameter Find

EXERCISE 2.16 Let be an exponentially distributed random variable
with parameter Derive expressions for and [Hint:
Use Laplace transforms.]

EXERCISE 2.13 Prove Theorem 2.2.

EXERCISE 2.14 Prove Theorem 2.3.
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EXERCISE 2.17 Let  and be independent exponentially distributed ran-
dom variables with parameters and respectively.

1. Find the distribution of [Hint: Note that
and means and

2. Find

3. Show that the conditional distribution

EXERCISE 2.18 Suppose Albert and Betsy run a race repeatedly. The time
required for Albert to complete the race, is exponentially distributed with
parameter and the time required for Betsy to complete, is exponentially
distributed with parameter Let denote the number of times Betsy wins
before Albert wins his first race. Find for

EXERCISE 2.19  Let be a sequence of exponentially dis-
tributed random variables and let be a geometrically distributed random
variable with parameter independent of Let

Show that has the exponential distribution with parameter

Some interesting properties of the exponential random variables are now
summarized together with a brief discussion of their implications. The proofs
of these properties are deferred to the exercises. Relative to all of the properties,
let and be independent random variables with parameters and respec-
tively. Then, we have the following properties.

Properties of exponential random variables:

1.

2.

3.

4.

The distribution of is exponential with parameter

Two numbers are drawn repeatedly from the distributions for and Let
denote the number of trials required before the number drawn from

is smaller than that drawn from for the first time. Then
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5. Let be a sequence of mutually independent exponen-
tially distributed random variables, and let be a geometrically distributed
random variable with parameter independent of Let

Then has the exponential distribution with parameter

The implication of Property 1 is that if the state of a process changes when-
ever the first of two events occurs, and if the time to occurrence of the events are
drawn independently from exponential distributions, then the time to change of
state is exponentially distributed with parameter equal to the sum of the indi-
vidual rates. Since exponentiality implies memoryless, the times to occurrence
of the individual events start over again whenever either event occurs.

Property 2 states that even if one knows which event caused the change of
state, the time to occurrence of the state change is still exponentially distributed
with parameter equal to the sum of the rates. It is tempting to conclude that if
one knows the state change was caused by the event having its interevent time
drawn from the distribution then the time to state change is exponen-
tially distributed with parameter but this is false. These properties will be
found to be very useful in studying queueing systems in which all interevent
times are exponentially distributed.

EXERCISE 2.20 This exercise is intended to reinforce the meaning of
Property 2 of exponential random variables. Let and denote the two
independent exponential random variables with rates 1 and 2, respectively,
and define Using a spreadsheet (or a computer program-
ming language), generate a sequence of 100 variables for each of the ran-
dom variables. Denote the variate for and by and respectively,
and set for

Let denote the number of values of such that let denote
the such value and define for Compute the
sample averages for the variates; that is compute

and
Compare the results. Is closer to or

Now give an intuitive explanation for the statement, “It is tempting to con-
clude that if one knows the state change was caused by the event having
its interevent time drawn from the distribution then the time to state
change is exponentially distributed with parameter but this is false.”

Property 3 states that the probability that the state change was caused by
completion of an event is simply the rate for divided by the sum of the
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rates, Property 4 states if that the number of state transitions due to
completions before the first  completion is geometrically distributed, the pa-
rameter being the rate for divided by the sum of the rates. By symmetry, the
number of state transitions due to completions before the first   completion
is geometrically distributed, the parameter being the rate for divided by the
sum of the rates.

The implication of Property 5 is that a geometric sum of exponential ran-
dom variables is exponential. For example, if a message contains a geometric
number of packets having independent and identically distributed exponential
transmission times, then the total transmission time of the message is exponen-
tial.

Since the types of operations with exponential distributions described above
yield exponential distributions, the results are easily extended to the case of
rather than 2, exponential random variables. This leads to a great deal of sim-
plification in analyzing queueing systems in which all underlying distributions
are exponential.

2.4 Poisson Process
The characterization of arrival processes for many queueing systems as Pois-
son has a solid physical basis, as was first discovered by A. K. Erlang during
the 1910’s. The Poisson assumption can reduce the analytical complexity of a
problem and lead to easily obtained and useful results, but the same assump-
tion may also render the analysis useless. As seen in the examples presented
in Chapter 1, while the Poisson characterization is often appropriate, there are
many cases in which the Poisson assumption is simply not justifiable, and the
distinction between the two cases is not necessarily obvious. Thus an under-
standing of Poisson processes is enormously important in queueing analysis.
Toward this goal, we will present three definitions of the Poisson process, each
of which presents a different, but equivalent view.

The Poisson process is perhaps the most important and well known member
of a special class of stochastic processes called a counting process. Before
proceeding to our discussion of the Poisson process, we introduce counting
processes and some of their more important properties.

DEFINITION 2.19 Counting process. A stochastic process  is
said to be a counting process (CP) if expresses the number of events that
have occurred by time Thus,

1.

2.

3.

is integer valued,

is nonnegative,

is nondecreasing, and
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4. for is the number of events that occur in the interval

From the above definition, it is clear that a counting process is a process
of counting that evolves over time. Simply put, counting processes count the
occurrence of events; one can imagine the counting process saying, “1, 2, 3,
. . . .”

Counting processes are characterized by the relationships between events
that occur in nonoverlapping intervals of time called increments. In particular,
it is of interest to know how the occurrence of events in one interval of time
affects the probability of occurrence of events in another, nonoverlapping in-
terval of time. Counting processes are characterized on the basis of whether or
not they satisfy the conditions of the following definitions.

DEFINITION 2.20 Independent increments. If the numbers of events oc-
curring in disjoint time intervals are independent, then the counting process is
said to have independent increments.

DEFINITION 2.21 Stationary increments. If the distribution of the number
of events that occur in a time interval depends only upon the length of the
interval - that is, if is independent of - then the
counting process is said to have stationary increments.

EXERCISE 2.21 Define counting processes which you think have the fol-
lowing properties:

1. independent but not stationary increments,

2. stationary but not independent increments,

3. neither stationary nor independent increments, and

4. both stationary and independent increments.

What would you think would be the properties of the process which counts
the number of passengers which arrive to an airport by June 30 of a given
year if time zero is defined to be midnight, December 31 of the previous
year?

We are now ready to consider our first definition of the Poisson process,
which is given in terms of the Poisson distribution.

DEFINITION 2.22 Poisson process (1). The counting process
is said to be a Poisson process with rate if

1.
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2.

3.

has independent increments, and

the number of events which occur in any interval of length is Poisson
distributed with parameter that is

EXERCISE  2.22 Show that if is a
Poisson process with rate

It is important to note that Property 3 of Definition 2.22 implies that the
process has stationary increments; that is, the number of events that occur in an
interval of length is independent of the time at which the observation period
begins. Also, note that it is not enough to verify that the distribution of the
number of events in a fixed-length interval is Poisson distributed; the number
of events counted in all nonoverlapping fixed-length intervals of every length
must also be independent.

It is easy to define a process that is not itself Poisson but that results in a
Poisson number of arrivals in a fixed-length interval. As an extreme example,
suppose arrivals occur in groups every hour on the hour and the group sizes
are drawn independently from a Poisson distribution. Then, if measurements
of the number of arrivals that occur over intervals having a length of one hour
are taken, then the number of arrivals over the measurement period will follow
the Poisson distribution. In addition, the number of arrivals in nonoverlapping
periods will be independent. The process is also stationary. But, the arrival
process is obviously not Poisson; the problem is that if the measurements were
taken over intervals of a different fixed-length, say 15 minutes, then the number
of arrivals would not follow the Poisson distribution.

We could construct other examples, but suffice it to say at this point that
there are many processes wearing Poisson clothing that are not Poisson. Thus,
extreme care must be taken in order to avoid making Poisson assumptions in-
appropriately. More will be said on this topic in Chapter 3; for now, we return
to our alternate definitions of the Poisson process.

In order to state the second definition of the Poisson process, we need the
notion of a special class of functions,  Functions belonging to this class
diminish to zero “faster than linear functions” as their arguments are decreased.
The second definition of the Poisson process basically says that over very short
intervals, the probability of the occurrence of a single event is proportional to
the length of the interval, and the probability of the occurrence of two or more
events over the same interval is Again, increments are stationary and
independent. These ideas are now stated more formally.
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DEFINITION 2.23 o(h) (“little-oh-of-h”). A function is said to be if
has the property

It is easy to show that sums and products of functions are also In
addition, functions themselves must tend to 0 as tends to 0. Exercises
are provided below to allow the reader to develop these and other properties of

functions and to gain a better understanding of the concept.

EXERCISE 2.23 For each of the following functions, determine whether
the function is or not. Your determination should be in the form of a
formal proof.

1.

2.

3.

4.

5.

EXERCISE 2.24 Suppose that and are both Determine
whether each of the following functions is

1.

2.

3.

4.

5.

We are now ready to introduce our second definition of the Poisson process.

DEFINITION 2.24 Poisson process (2). The counting process
is said to be a Poisson process with rate if

1.

2.

3.

4.

has stationary and independent increments,

and
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EXERCISE 2.25 Show that Definition 1 of the Poisson process implies
Definition 2 of the Poisson process.

EXERCISE 2.26 Show that Definition 2 of the Poisson process implies
Definition 1 of the Poisson process. [Hint: After satisfying the first
two properties of Definition 1, establish that where

and then prove the validity of Property 3 of Defini-
tion 1 by induction.]

The Poisson process can also be characterized by its interarrival time which
is defined as follows.

DEFINITION 2.25 Sequence of interarrival times. Let be the time of the
first event from a counting process, and be the time between the
event and the event. Then is called the sequence of interarrival
times. Note that

EXERCISE 2.27 Show that the sequence of interarrival times for a Pois-
son process with rate forms a set of mutually independent, identically
distributed exponential random variables with parameter

We now turn to the third definition of the Poisson process. From Property 3
of the first definition of the Poisson process, it is easy to see that

Thus,

Now, the event that there are no events from the process by time is the same
as the event that the first event from the process occurs after time That is,

Since we see that the first interarrival times from a Poisson process is
exponentially distributed. Now because the second interarrival time begins at
the end of the first interarrival time, and the process has stationary and indepen-
dent increments, the distribution of is the same as the distribution of and
in addition, these random variables are independent. Repeated use of these ar-
guments will reveal that the Poisson process yields a sequence of independent,
identically distributed exponential interarrival times.

DEFINITION 2.26 Poisson process (3). Let be exponential ran-
dom variables with mean Consider a counting process in which the
event occurs at time then such a counting process is a Poisson
process and
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We have argued above that Definition 1 of the Poisson process implies Defi-
nition 3. It is left to the exercises to show that Definitions 1 and 2 of the Poisson
process stated above are equivalent and that Definition 3 implies Definition 1.
Thus all the definitions of the Poisson process given above are equivalent.

EXERCISE 2.28 Show that

[Hint: Start by noting

EXERCISE 2.29 Show that Definition 3 of the Poisson process implies
Definition 1 of the Poisson process.

The following additional properties of the Poisson process, stated without
proof, are useful in studying queueing systems. They should be part of the
working vocabulary of every queueing theorist.

Properties of Poisson processes:

1.

2.

Let and be independent Poisson processes
with rates and respectively. Define Then

is a Poisson process with rate

Events occur according to a Poisson process with rate Suppose each
event, independent of anything else, is recorded with probability Let

be the number of events recorded by time and be the number
of events not recorded by time Then the processes and

are independent Poisson processes with rates and
respectively.

The implications of the above properties of Poisson processes are now dis-
cussed briefly. Suppose there are two independent arrival streams of customers
converging on a service center. Property 1 says that if the arrival processes of
the individual streams are Poisson, then so is the combined stream. This is a
direct result of the facts that interarrival times from Poisson processes are ex-
ponentially distributed and that the minimum of two independent exponential
random variables is also exponential.

The second property covers the following situation. Suppose potential cus-
tomers arrive to a business establishment according to a Poisson process. Each
customer upon approaching the establishment tosses a coin. If “heads” re-
sults, the potential customer enters the store, else the potential customer de-
parts without entering. Property 2 says that the customers who actually enter
the store do so according to a Poisson process, the process counting the poten-
tial customers who choose not to enter is a Poisson process, and furthermore
(surprisingly), the two processes are independent.
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The above properties, which also apply to more than two streams or choices,
are extremely useful in the analysis of networks of exponential queues and in
justifying simplified analysis of system bottlenecks. The first of these aspects
will be explored in the next chapter. The reader is encouraged to complete the
exercises to gain a mastery of these properties.

EXERCISE 2.30 Let and be independent Poisson random variables
with rates and respectively. Define Show that has the
Poisson distribution with rate Using this result, prove Property 1 of
the Poisson process.

EXERCISE 2.31 Suppose an urn contains balls, where is a Poisson
random variable with parameter Suppose the balls are either red or green,
the proportion of red balls being Show that the distribution of the number
of red balls, in the urn is Poisson with parameter the distribution of
green balls, is Poisson with parameter and that and are
independent random variables. Use this result to prove Property 2 of the
Poisson process. [Hint: Condition on the total number of balls in the urn
and use the fact that the number of successes in a sequence of repeated
Bernoulli trials has the binomial distribution with parameters and

EXERCISE 2.32 Events occur at a Poisson rate Suppose all odd num-
bered events and no even numbered events are recorded. Let be the
number of events recorded by time and be the number of events not
recorded by time Do the processes and
each have independent increments? Do they have stationary increments?
Are they Poisson processes?

2.5 Markov Chains
In Section 1.2.2, we discussed multiplexing of traffic at the output of an IP

switch. The queue length, as seen at the end of a time slot, was described as
a discrete valued, discrete parameter stochastic process, and its evolution was
described by the dynamical equations

We examined queue length behavior under two different classes of arrival
processes. In the first case, was assumed to be a sequence
of independent, identically distributed binomial random variables with param-
eters N, and A little thought reveals that if we knew the queue length at
the end of slot then we would be able to determine the distribution of the
queue length at the end of slot For example, if then will
be one plus the number of new arrivals to occur over time slot There-
fore, cannot be zero nor can be more than N + 1 because no more
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than N arrivals can occur. In fact, for

Therefore, for the case where was assumed to be a se-
quence of independent, identically distributed random variables, knowledge of
the queue length at the end of time slot provides complete information about
the state of the queueing system, and, from that information alone, we can de-
termine the future evolution of the queueing system. A stochastic process of
the type just describe is called a discrete valued, discrete parameter Markov
chain, the definition of which we now formally state.

DEFINITION 2.27 Discrete valued, discrete parameter Markov chain. A
stochastic process is said to be a discrete valued, discrete
parameter Markov chain (on the nonnegative integers) if for all integers
and all nonnegative integers

DEFINITION 2.28 State space. The set of all possible values of
is called the state space of the Markov chain.

Basically, the state space of a discrete valued, discrete parameter Markov chain
is the union of the support sets of the random variables

DEFINITION 2.29 One-step transition probability matrix. The probability
is called the one-step transition probability from

state to state and the matrix is called the one-step transition
probability matrix. The matrix is always square, and its dimension is the
same as the cardinality of the state space of the Markov chain, which may be
either countably finite or countably infinite.

EXERCISE 2.33 Determine the one-step transition probability matrix for
the Markov chain of Section 1.2.2 for the case where

is assumed to be a sequence of independent, identically
distributed binomial random variables with parameters N and

Our interest in discrete parameter Markov chains is generally confined to
those having a nonnegative integer-valued state space and the nonnegative in-
tegers as their parameter space. We loosely refer to such Markov chains as
discrete parameter Markov chains (DPMCs).

In general, the state space for a DPMC may be either countably finite or
countably infinite. In either case, if is a DPMC, then we
define to be the vector of the probability masses of that is, is a
discrete random variable whose possible values are the nonnegative integers,
and we define
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From the definition of and we then have

From (2.17), we then have

Therefore, if exists, then also exists, and

If, in addition, is independent of then we define

so that

From (2.18), it is easy to prove that if is independent of then the rows of
must be identical.

EXAMPLE 2.6 Suppose is a Markov chain such that

Then, if is odd and if is even. Thus, if
is odd, and if is even. Suppose,

Then, for all so
But, suppose, Then, for even and

for odd, so does not exist.
The fundamental reason that does not exist is that this Markov

chain is periodic, and, in general, periodic Markov chains do not have limiting
distributions.

EXAMPLE 2.7 Suppose is a Markov chain such that

Then,
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Therefore, exists, and Now, suppose,
for any nonnegative such that Then,

Next, suppose for any
nonnegative such that Then,
In general, if for any nonnegative such that

then

From all of this, it is quite clear that exists, but its value is not
independent of

The fundamental reason that is not independent of is that
this Markov chain has multiple classes. That is, there are two separate sets of
states. If the system ever enters state 0 or state 1, the system will never again
enter state 3 or state 4. Similarly if the system ever enters either state 3 or
state 4, the system will never again enter state 1 or state 2. In general, periodic
Markov chains do not have limiting distributions.

In solving queueing problem of arbitrary difficulty, Markov chains of almost
any form may be encountered. However, in the current text, we are interested
in elementary queueing problems, and our interest lies in those Markov chains
having only a single class for which exists and is independent of If
a DPMC has only one class, has only a finite number of states, and is aperiodic,
then for that DPMC it is always true exists and is independent of
If a DPMC has an infinite number of states, is aperiodic, and has but one class,
then for that DPMC the expected time between successive visits to the same
state must be finite in order that exists and is independent of A
DPMC having these properties is said to be ergodic. For an indepth treatment
of DPMCs, the interested reader is referred to Ross [2003].

EXERCISE  2.34 Staring with (2.18), show that the rows of must
be identical. [Hint: First calculate under the assumption

Next, calculate under the assumption
Continue along these lines.]

Alternatively, if exists, then by taking the limit on both sides
of (2.17), we find In addition, for every is a vector of
probability masses, therefore, the elements of sum to unity. Define e to be
the unit (column) vector conforming to that is,e = [ 1 1 1 . . . ]. Then,

for every and If, in addition, is independent
of then and satisfies
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DEFINITION 2.30 Stationary vector of a DPMC. If  is a
DPMC such that its limiting distribution exists and is independent of its ini-
tial state probability vector, then the solution to (2.19) is called the stationary
vector of

Two different approaches are commonly used to determine the stationary
vector for a DPMC. The first iterates the equation An arbitrary
vector is chosen for Then is computed as is computed as

and so forth. A stopping criteria is established to determine when enough
iterations have taken place so that the result approximates At that point,

is assigned to
The second approach starts with (2.19). Then, the matrix equation

is formed. Next, any column of is replaced by e and the
corresponding element of the zero vector on the right hand side is replaced by
1. The resulting equation is then solved to determine

EXERCISE 2.35 Suppose is a Markov chain such that

Determine the stationary vector of
We now discuss the appropriate interpretation of The value of the

element of reveals the long term proportion of all transitions that are into
state That is, for each there is a state transition. At we start count-
ing the transitions. Suppose that of the K transitions of that
take place over there are transitions into state Then,

We note that in some cases it is possible to solve the equations specified in
(2.19) even if does not exist. In such cases, the interpretation of the
result is the same as that of but the implications are different. For example,
if

then does not exist. Nonetheless, if we form the equations
and and solve, we will find  Because transitions from
state 0 are always into state 1 and vice versa, it is clear that one half of the
transitions are into state 0 and one half are into state 1. But,
because that limit does not exist as shown in Example 2.6.

In the second arrival process considered in Section 1.2.2, packet arrivals on
each input line to the switch follow an on-off process. In each time slot, if the
arrival process on a given input line is in the on state, the system returns to the
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on state in the next time slot with probability or goes to the off state with
probability Similarly, if the arrival process on a given input line is in the
off state, the system returns to the off state in the next time slot with probability

or goes to the on state with probability Since future evolution is based
solely on the present state, we see that this particular on-off process is a Markov
chain. Specifically, suppose the on state is designated by 1 and the off state by

It also turns out that where

is the total number of arrivals from the N lines, is a DPMC chain with state
space {0,1,..., N}.

EXERCISE 2.36 Develop the one-step state probability transition matrix
for the special case for the special case of N = 5.

EXERCISE 2.37 For the example discussed in Section 1.2.2 in the case
where arrivals occur according to an on off process, determine whether or
not is a DPMC. Defend your conclusion mathematically;
that is, show that either does or does not satisfy the defi-
nition of a Markov chain.

In the example of Section 1.2.2, the transition of occurs
at the end of the time slot. Thus, there is a one-to-one relationship between
clock time and the time of the transition times; that is, the elements of the
parameter set represent discrete time. However, in general, for a DPMC, there
is no direct relationship between clock time and the parameter set.

As an example of a case where the parameter set does not represent real
time, consider a digital voice system that is regulated by a token bucket system
as analyzed in Blefari-Melazi et. al. [2003]. Voice is typically modeled as an
on-off process, alternating between periods of talk and silence, each of which
is modeled as a sequence of independent, identically distributed random vari-
ables. Voice symbols are generated only during talk periods. A token bucket
system has a token bucket of capacity, into which tokens flow at rate to-
kens per second. Voice is sampled at some rate, and each voice sample is
converted to an 8-bit symbol. Each voice symbol arrives to the token bucket,
where the system determines whether or not a token is available. If no token is

0, and let denote the number of arrivals from line during
time slot Then, is a DPMC with state space {0, 1}, and
its one-step state transition matrix is
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available, the voice symbol is dropped. If a token is available, then a token is
removed from the leaky bucket, and the voice symbol may be transmitted into
the communication system.

Define to be the number of tokens present at the beginning of the talk
period. The distribution of is an important factor in the quality of service
provided by the system. It is not difficult to establish that
is a DPMC on the state space Also, since the lengths of the talk
and silence periods are random variables, it is also clear that the parameter set
does not have a one-to-one relationship with clock time. In fact, as a practical
matter, the clock time is irrelevant. What is important is the number of tokens
available to service the talk spurt, whatever time it may start.

In the case of the voice system just discussed, the time between transitions
of the DPMC is the sum of the length of a talk period plus
the length of a silent period. Denote the length of the talk and silent periods
by and respectively. Then, the length of time between the and the

transition is
In many cases of practical interest, the times between successive transitions

of a DPMC are exponentially distributed; such a Markov chain is referred to
as a continuous-time Markov chain (CTMC). Although a CTMC can be and
is often analyzed by first embedding a DPMC at points of transition, it is
common to analyze a CTMC directly as a continuous-time process. A formal
definition of the CTMC is now presented.

DEFINITION 2.31 Continuous-time Markov chain. A stochastic process
is said to be a continuous-time Markov chain on the nonnegative

integers (Ross [1983]) if for all and all nonnegative integers
for

The quantity is called the transition probability
from state to state over time

From the three definitions of the Poisson process given above, it can be
seen that the Poisson process is a time-homogeneous, continuous-time Markov
chain on the nonnegative integers.

DEFINITION 2.32 Time-homogeneous CTMC (Ross[1989]). A CTMC is
said to be a time-homogeneous CTMC on the nonnegative integers if

is a CTMC and for all

That is, for a time homogeneous CTMC the transition probability from state
to state over time is independent of for all
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DEFINITION 2.33 Transition probability matrix for CMTC. For a time-
homogeneous define

Then, the matrix is called the transition probability matrix over
(Ross[1989]).

DEFINITION  2.34  Infinitesimal generator for a CTMC(Cohen[1969]). For
a time-homogeneous the matrix satisfies the fol-
lowing (possibly infinite dimensional) matrix differential equation:

with The (possibly infinite dimensional) matrix is called the
infinitesimal generator, or simply the generator, for the

EXERCISE 2.38 Suppose is a time-homogeneous CTMC
having infinitesimal generator      defined as follows:

Show that is a Poisson process. [Hint: Simply solve the
infinite matrix differential equation term by term starting with and
completing each column in turn.]

For a define for
Then, define the vector of probability masses as
Then,

As in the case of the DPMC, it may be that exists and is inde-
pendent of In that case, we find that

and we refer to as the equilibrium probability vector for the CTMC.
Alternatively, we may obtain the following expression from Definition 2.34:

Because we have
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Because is a vector of probability masses, we have for all
In the limit, Therefore, satisfies the following conditions:

From (2.22), we may solve for the equilibrium probability vector
We now discuss the appropriate interpretation of The value of the
element of reveals the long term proportion of all time that

the system spends in state That is, at each time the system is in some state.
Let if the system is in state at time and otherwise. Then,
over the interval (0, T], the total amount of time the system spends in state
over the interval (0, T] is given by the integral of over the interval (0, T].
Thus, the long-term proportion of time spend in state is given by

We then say that is a time-averaged probability.
Defining relationships among time- and frequency-averaged probabilities

of interrelated stochastic process is an important aspect of solving complex
queueing problems. A description of and solution to a queueing problem
whose solution requires definition and solution of many subproblems involv-
ing Markov chains of many kinds is presented in Daigle and Magalhães [2003].
The problem addressed in that reference relates to the design of a cellular sys-
tem in which transmission of data requires both queueing and prior reservation.

It is sometimes convenient to analyze CTMC by first embedding a DPMC
at points of transition, then solving for the stationary vector of the DPMC, and
then calculating the equilibrium probability vector for the CTMC by weighting
the stationary vector of embedded DPMC. In some cases, an example of which
may be found in Abboud and Daigle [1997], such an approach can drastically
reduce the computational complexity of the problem at hand. The transforma-
tions necessary are discussed here and used liberally throughout the text when
needed.

In order to properly define the transition probabilities for the embedded
DPMC, it is necessary only to use the infinitesimal generator and the prop-
erties of the exponential distribution presented earlier in this chapter. Specifi-
cally, reveals the total rate at which the system departs from state Since
we know the time between transitions of a CTMC is exponential, we know
the time spend during each visit to state is exponentially distributed with pa-
rameter Now, this exponentially distributed time spent in state is the
minimum of a number of exponentially distributed random variables. Specifi-
cally, if nothing else were going on in the system, the system would remain in
state before transitioning to state for an exponentially distributed period of
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time with parameter Therefore,

The probability that the system transitions from state to state is then just the
probability that the exponential time required to reach state expires before the
exponential time required to reach any other state, which is simply the ratio of

to as stated in Property 3 of exponential random variables.
Let denote the CTMC of interest, denote the time of the

transition of denote the state of the system just
after the transition, and denote the DPMC embedded at
points of transition of the CTMC. Then

Proceeding in this manner, we can construct for the embedded DPMC,
and then we can solve for the stationary vector by solving and

simultaneously.
Having determined we can now do a proper weighting of the elements of
to obtain We reason as follows. Let denote the time spent during a

visit to state Then, as stated in Property 2 of exponential distributions, the
time spent in state is independent of the state into which the next transition
occurs. Therefore, Now, suppose that a total of N (T) tran-
sitions occur up to time T, and of those, are into state Further, denote
the time spent in state on the visit by and the total time spent in state

up to time T by Then, for large T, for which the quantity is
also large,

But, T itself is the sum of the times spent in all states up to time T. Therefore,

The proportion of time the system spends in state up to time T is given by
the If we divide both the expression for and T by N(T) and
take the limit as we find



Review of Random Processes 55

and the limit of the proportion of time spent in state as Therefore we
have

This result is also presented in Wolff [1989], pp. 215-216.
If the times between transitions are not exponentially distributed, but instead

have general distributions, the parent process of the DPMC embedded at points
of transitions is called a semi-Markov process. It is interesting to note that
the conversion from frequency to time averages follows along basically the
same lines as in the case of the CTMC; that is, conversion is made according
to (2.23). It is also straightforward to develop formulae for conversion from
frequency based probabilities to time averaged probabilities in more general
settings (see Daigle and Magalhães [2003] for an application).

It is also sometimes necessary to compute the stationary vector of the DPMC
embedded the points of transition of a CTMC from the equilibrium probabili-
ties of the CTMC. The appropriate transformation is obtained by simply taking
the ratio of the total number of transitions into state to the total number of
transitions into all states. In order to determine the total numbers of transitions
into each state, we consider a large interval of time, (0, T]. Whenever the sys-
tem is in state there are transitions into state at rate Thus, the total
number of transitions into state is approximately To obtain the
total number of transitions into state we then simply sum over all Then
to obtain the total number of transitions of the system, we sum over all We
then form the ratio of the total number of transitions into state to the total
number of transitions of the system over (0, T] and take the limit as
The result is
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EXERCISE 2.39 Let be a CTMC such that

1. Solve for directly by solving

2. Solve for for the DPMC embedded at points of state transition
(2.24).

using

3. Find for the DPMC embedded at points of state transition.

4. Show that the value of found in part 2 of this problem satisfies
for the found in part 3 of this problem.



Chapter 3

ELEMENTARY CONTINUOUS-TIME
MARKOV CHAIN-BASED QUEUEING MODELS

In this chapter, we explore the analysis of several queueing models that are
characterized as discrete-valued, continuous-time Markov chains (CTMCs).
That is, the queueing systems examined in this chapter will have a countable
state space, and the dwell times in each state will be drawn from exponential
distributions whose parameters are possibly state-dependent.

The most elementary queueing systems in this class are characterized by
one-dimensional birth and death models. The stochastic behavior of these sys-
tems at a particular point in time is completely described by a single number,
which we shall think of as the “occupancy” of the system. The dwell times
for each state are drawn from exponential distributions independently, but, in
general, the parameter of the exponential distribution depends upon the current
state of the system.

We begin by examining the well known M/M/1 queueing system, which has
Poisson arrivals and exponentially distributed service times. For this model,
we will consider both time-dependent and equilibrium behavior, with primary
emphasis on the latter. In particular, we shall consider both the time-dependent
and equilibrium occupancy distributions, the stochastic equilibrium sojourn
and waiting time distributions, and the stochastic equilibrium distribution of
the length of the busy period. Several related processes, including the departure
process, are introduced, and these are used to obtain equilibrium occupancy
distributions for simple networks of queues.

After discussing the M/M/1 system, we briefly discuss formulation of the
dynamical equations for more general birth-death models in Section 3.2. The
time-dependent behavior of finite-state general birth-death models is discussed
in Section 3.3. A reasonably complete derivation based upon classical meth-
ods is presented herein, and the rate of convergence of the system to stochastic
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equilibrium is briefly discussed. Additionally, the notion of randomization, or
equivalently uniformization, is introduced. The basic idea is to study a finite-
state, continuous-time Markov chain by embedding a finite-state, discrete-
time Markov chain whose intertransition times are independent, identically
distributed, exponential random variables. Randomization is described in gen-
eral terms, and an example that illustrates its application is provided.

Section 3.4 presents the balance equation approach to formulating equi-
librium state probability equations for birth-death processes and other more
general processes. Elementary traffic engineering models are introduced and
blocking probabilities for these systems are discussed.

The probability generating function technique for solving balance equations
is introduced in Section 3.5. We conclude the chapter with a set of supplemen-
tary exercises.

3.1 M/M/1 Queueing System
This section comprises three subsections. In Section 3.1.1, we consider the
time-dependent occupancy distribution. We then derive the stochastic equilib-
rium occupancy, sojourn, and waiting time distributions, together with their
means. Along the way, we introduce various related processes, including the
occupancy processes as viewed by departing and arriving customers, respec-
tively, which are needed to obtain these results. We also discuss the departure
process and its role in obtaining occupancy distributions for simple feedfor-
ward networks of queues. In Section 3.1.3, we discuss the dynamics of busy-
period processes and derive an expression for the expected length of the busy
period in stochastic equilibrium. We also discuss other characteristics of the
busy period and briefly discuss the role of busy-period analysis in examining
more complicated systems.

3.1.1 Time-Dependent M/M/1 Occupancy Distribution
As mentioned in the introductory section, the M/M/1 queueing system has
Poisson arrivals and exponentially distributed service. Due to the memoryless
property of both the Poisson process and the exponential distribution, the dy-
namics of the process that counts the total number of arrivals to and departures
from the system over very short periods of time are exactly the same as those
of the Poisson process. If there are customers in the system, then the rate for
this process is the sum of the arrival and service rates. If there are no customers
in service, the rate for the process is simply the arrival rate. Let denote
the system occupancy -the total number of customers in the system, including
the one in service, if any- at time To simplify notation, let
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Clearly, the stochastic process is a continuous-time Markov
chain, and for we find

Let and denote the arrival and service rates, respectively. Then, by
applying Definition 2 of the Poisson process, we find

Upon rearranging the terms of the previous equation, we find

Finally, division of both sides of (3.1) by taking limits, and applying the
definition of leads to the following dynamical equation relating the state
probabilities to each other:

Similarly, we find for

The solution to the system (3.2) and (3.3) depends upon the initial number of
customers, in the system. Then, from L. Takács [1962], pp. 23-26, we find
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where for is the modified Bessel function of order
For

and

For an application of (3.4) to a flow control problem in a computer communi-
cation network, see Stern [1979].

Evaluation of (3.4) would appear to be a formidable task. First of all, the
results are given in the form of an infinite series of modified Bessel functions.
Secondly, each of the modified Bessel functions is itself expressed as an infi-
nite series. Fortunately, as indicated in many references, (3.4) and (3.5) are not
the most efficient starting point for evaluating the time-dependent state proba-
bilities. The most efficient starting point for numerical work appears to be an
integral equation expression. For a discussion of numerical methods for com-
puting these probabilities and other time-dependent quantities of interest, the
reader is referred to two excellent papers: Abate and Whitt [1988] and Abate
and Whitt [1989]. For a treatment of the time-dependent behavior of a more
complicated version of the M/M/1 system, the reader is referred to Daigle and
Magalhães [1989] and the references therein.

3.1.2 Stochastic Equilibrium M/M/1 Distributions
In the previous section, we obtained the time-dependent probability distribu-
tion for the system occupancy. In most cases of practical interest, the time-
dependent probability distribution converges to a unique solution as time in-
creases beyond bound. This solution is called the stochastic equilibrium solu-
tion, stochastic equilibrium meaning that the distribution is no longer changing
as a function of time.

We note in passing that equilibrium is never actually reached, except in
the sense of a limit, unless the initial distribution is chosen as the equilibrium
distribution. On the other hand, for most applications, an understanding of the
stochastic equilibrium behavior of the system is sufficient. In that case, we can
solve (3.2) and (3.3) for the equilibrium probabilities and use those results to
derive the stochastic equilibrium sojourn time and waiting time distributions.

Let denote the queue occupancy at an arbitrary point in time after the
system has reached stochastic equilibrium. We define or
equivalently, We then expect that (although
this is not absolutely necessary from a mathematical point of view) and (3.3)
and (3.2) become (3.5) and (3.6), respectively. That is,
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and

Upon substitution of (3.7) into (3.6) with we find

and solving (3.6) for yields Thus, we find

Repeating this procedure leads to the general expression

Because the probabilities sum to unity, we find that if

Thus, in general, the stochastic equilibrium occupancy probabilities are given
by

Note that E[ number in system at time ] since E[
number of arrivals by time ] and E[ number of service completions by
time ] Thus, if then E[ number in system at time ]
grows beyond bound. So, in order to have an equilibrium solution, we cannot
have that is, the arrival rate cannot exceed the service rate. In fact, for
there to be an equilibrium solution, we actually need To see why this
is true intuitively, we can draw an analogy between the system occupancy and
the position of a random walker on the nonnegative integers.

A random walker steps either to the left or right according to the following
rules. If the walker is at position zero, one step to the right is taken with
probability one. If the walker is not at position zero then before taking a step,
a coin is flipped. If the result is “heads”, the walker steps one step to the
right, else one step to the left is taken. It is easy to see that if the probability of
“heads” exceeds one-half, then the walker tends to drift to the right. The longer
the experiment continues, the further to the right we would expect the walker
to be; no stochastic equilibrium distribution would be reached. On the other
hand, if the probability of “heads” is less than one-half, then the walker tends
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to drift to the left. It would be possible for the walker to roam any distance
to the right through a series of “heads” outcomes, but the positive tendency to
move to the left would tend to return the walker to position zero occasionally.
Thus one would expect a stochastic equilibrium solution to exist.

More formally, the position of the walker, measured in steps to the right
from zero, is the state of an irreducible discrete-time Markov chain having
a countable number of states. From the theory of Markov chains (see, for
example, Wolff [1989]), it is well known that the states are positive recur-
rent if P {heads} < 0.5, null recurrent if P {heads} = 0.5, and transient if
P {heads} > 0.5. An equilibrium solution exists if and only if all states are
positive recurrent.

EXERCISE 3.1 Carefully pursue the analogy between the random walk
and the occupancy of the M/M/1 queueing system. Determine the proba-
bility of an increase in the queue length, and show that this probability is
less than 0.5 if and only if

In the case of single-server queueing systems without state-dependent ar-
rival and service rates, the quantity is called the traffic intensity, and it is
usually designated by that is, Since denotes the number of cus-
tomers in the system at an arbitrary point in time after the system has reached
stochastic equilibrium, and we have

The stability condition for the queueing system is then stated as
From (3.9), we may find the probability that the total number in the system

exceeds In particular,

Graphs of the quantity which is called the survivor function or
complementary distribution for the number of customers in the system, are
shown in Figure 3.1 for several values of traffic intensity. From these graphs
we see that as traffic intensity nears unity, relatively small changes in traffic
intensity result in large changes in the probability that the occupancy exceeds
a given value. For example, at but at

These probabilities are not to be confused with blocking
probabilities, which are discussed in a later section.

We now turn to the computation of averages for the number in the system
and the time spent in the system. In order to compute average values, we make
use of the following theorems, the proofs of which we leave to the exercises.
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Figure 3.1. Survivor function for system occupancy for several values of

THEOREM 3.1 Let be a nonnegative integer-valued random variable. Then

EXERCISE 3.2 Prove Theorem 3.1 and its continuous analog

THEOREM  3.2 Let and be any two nonnegative random variables. Then
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EXERCISE 3.3 Prove Theorem 3.2.

From Theorem 3.1, we find

Substitution of (3.10) into this equation yields

Then, if we assume ergodicity1 and let denote the number of customers
in the system at time for a typical sample path,

That is, for a particular system under study, is the expected number of
customers in the system when averaged over time.

Figure 3.2 shows a graph of the mean occupancy as a function of traffic
intensity. Again we see the effect of increasing occupancy due to increasing
traffic intensity. As and the system nears instability, the mean occu-
pancy grows without bound, as expected.

Another quantity of interest is the sojourn time, the total time customers
spend in the system including both waiting time and service time. Following
our notation of Chapter 2, let denote the stochastic equilibrium value for this
quantity with being its distribution. The set of events
partitions the sample space, so we have

Now, the sojourn time is measured from the time an arbitrary arriving cus-
tomer enters the system, but represents the view of an arbitrary observer.
The following exercise illustrates that these points of view are not necessarily
the same.

1Ergodicity is a very technical concept, but basically it implies that time averages are equal to ensemble
averages. That is, if we collect statistics at a single point in time from a large number of systems that are
operating in stochastic equilibrium, then those measurements will be statistically the same as measurements
taken from a single system over a long period of time.
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Figure 3.2. Schematic diagram of a single-server queueing system.

EXERCISE 3.4 Suppose customers arrive to a system at the end of every
even-numbered second and each customer requires exactly one second of
service. Compute the stochastic equilibrium occupancy distribution, that
is, the time-averaged distribution of the number of customers found in the
system. Compute the occupancy distribution as seen by arriving customers.
Compare the two distributions. Are they the same?

The following exercise shows that for the special case of the M/M/1 queue-
ing system, the limiting distribution of the number of customers seen by a
departing customer is equal to the limiting distribution of the number of cus-
tomers found in the system by arriving customers, and these distributions are
both equal to the stochastic equilibrium distribution. Thus, for the M/M/1
queueing system, the arrivals see the stochastic equilibrium occupancy distri-
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bution as given in (3.8). However, before presenting the exercise, we introduce
some definitions and notation.

Define for to be the number of customers left in the
system by the departing customer, and define

Then, the random process is a discrete parameter Markov
chain defined on the nonnegative integers and is called an embedded Markov
chain. In particular, the process is called the occupancy
process embedded at points immediately following  customer departure. For

the stationary probability vector, exists and
satisfies the system

where is the one-step transition probability matrix (Ross[1989]) for the
embedded Markov chain and e is the column vector in
which each element is unity. For the probability

is called the one-step transition probability from state to state We note
that is simply the probability of having exactly

arrivals during the service time, where
Given the properties of the exponential distribution, we can readily determine
the transition probabilities. For example, for

Similarly, define for to be the number of customers
found in the system by the arriving customer and

Then the random process is called the occupancy pro-
cess embedded at points immediately prior to customer arrival. Again, for

the vector exists and satisfies the system

where is the one-step transition probability matrix for the embedded Markov
chain In this case, is
simply the probability of having exactly service completions during
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the interarrival time for for this
probability is equal to zero.

EXERCISE 3.5 For the ordinary M/M/1 queueing system, determine the
limiting distribution of the system occupancy

1. as seen by departing customers, [Hint: Form the system of equa-
tions and then solve the system as was done to obtain

2. as seen by arriving customers, and [Hint : First form the system of equa-
tions and then try the solution

3. at instants of time at which the occupancy changes. That is, embed a
Markov chain at the instants at which the occupancy changes, defining
the state to be the number of customers in the system immediately fol-
lowing the state change. Define to be the stationary
probability vector and P to be the one-step transition probability matrix
for this embedded Markov chain. Determine and then compute the
stochastic equilibrium distribution for the process accord-
ing to the following well known result from the theory of Markov chains
as discussed in Chapter 2:

where denotes the time the systems spends in state on each visit.

Observe that the results of parts 1, 2, and 3 are identical, and that these are
all equal to the stochastic equilibrium occupancy probabilities determined
previously.

The results of the above exercise have several implications. First, the sta-
tionary departure and arrival distributions are equal. That is, for any the
proportion of departing customers who leave customers in the system must
equal the proportion of arriving customers who find customers in the sys-
tem. A little thought will reveal that this must be the case for systems in which
arrivals and departures occur one by one. Suppose, for example, an arriving
customer finds   customers in the system. This represents a change in system
occupancy from to If there is ever to be another transition in system
occupancy from to then there must be a transition from to in
the interim. This means that the actual number of departures who find in the
system can never differ by more than the number of arrivals that find in the
system. In the limit as time goes to infinity, the two proportions must then be
equal. For a formal proof, see Cooper [1981].
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The second implication is that, in the case of the M/M/1 queue, the sta-
tionary arrival and stochastic equilibrium distributions are equal. This is a
special case of the well known result in queueing theory: Poisson arrivals see
time averages (PASTA) (see Wolff [1970,1982]), where time averages imply
stochastic equilibrium distributions for ergodic systems. The PASTA property
and a more general property, arrivals see time averages (ASTA) and its implica-
tions, are discussed in detail in Melamed and Whitt [1990] and the references
therein. For completeness, the reader is also referred to Green and Melamed
[1990] and Wolff [1990] for discussions of Anti-PASTA, all arrivals do not
see time averages. These articles are of only peripheral interest to our current
discussion, except for the fact that the equivalence between the stochastic equi-
librium behavior of the system and the behavior of the system as viewed by an
arbitrary arrival is highly dependent on the nature of the arrival process and is,
in general, not a system property.

Returning to our discussion of sojourn times, we find that because the ser-
vice times are exponentially distributed with parameter

Upon substituting this expression and (3.8) into (3.12), we find that

From (3.13) we see that the mean sojourn time displays the same kind of ex-
ponential increase as does the mean system occupancy as

Now, from (3.11) and (3.13), we see that

or, equivalently,

The relationship (3.14) is usually written and is called Little’s
result (Little [1961]). Although we obtained this relationship for the M/M/1
queueing system, it is also true for most other complex queueing systems. The
more general statement of Little’s result is now stated as a theorem.

THEOREM 3.3 Little’s result. The expected number of customers in the sys-
tem is equal to the product of the arrival rate of customers entering the system
and the expected amount of time customers spend in the system.

The system need not be an entire service system; for example, the system
can be defined as the server only or the waiting line only. In a network of
queues, the system may include the entire network or all the servers of the
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network. For the purposes of this theorem, the arrival rate is defined as the
average number of entities that arrive to the system per unit of time.

The primary constraint for the applicability of Little’s result is that the no-
tion of a time average for the quantities of interest must make sense in the
system under consideration. This is always true if the stochastic processes of
interest have a stochastic equilibrium distribution. Of course, in order to obtain
correct results, a great deal of care must be taken to assure that L, and W
are all defined properly for exactly the same system.

As an example, let denote the number of customers in the queue (that is,
the number of customers in the system not including the one in service, if any),

denote the waiting time of the customers in the queue, and denote the
arrival rate of the customers to the queue. Then, from Little’s result,

By using Little’s result, we can derive the mean waiting time in the system
in a very straightforward and intuitive manner. It is left as an exercise to show
that the probability that the server is busy is given by the quantity Now, a
customer who has just arrived to the queue has to wait an average of for
each customer in the queue and for the customer in service, if any. Thus

But so

Solving for we find

EXERCISE 3.6 Using Little’s result, show that the probability that the
server is busy at an arbitrary point in time is equal to the quantity

We now provide a proof of Little’s result, which is not altogether rigorous,
but which captures the basic elements of a rigorous proof. For more rigorous
proofs, the reader is referred to the references following this proof.

Proof of Little’s result. Customers accumulate system time linearly while
they are in the system. Let denote the number of customers in the system
at time   for a typical sample path; the total amount of time in the system
accumulated by all customers up to time is given by
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Also, let denote the amount of time the customer spends in the system
up to time and let denote the total number of customers who have
arrived to the system by time Then the total time spent in the system up to
time by all customers is given by

Thus, for any given sample path, it is always true that

Now, so long as we can divide both sides of (3.16) by Also, so long
as we may multiply the numerator and denominator of (3.16) by

It thus follows that

If the system has a stochastic equilibrium, then it is clear that

and

all exist individually. The first limit expression above defines the second
defines and the third defines Thus, Little’s result follows by taking
limits as on both sides of (3.17).

Note that there is no assumption here about the form of the interarrival-time
distribution or the service-time distribution. A somewhat different (heuristic)
proof due to Paul Burke is given in Cooper [1972, 1981], and more formal
proofs are given in Little [1961], Jewell [1967], and Stidham [1974].

We now turn to the derivation of the equilibrium system sojourn time distri-
bution which we shall denote by Consider the sojourn time
of an arbitrary customer, the tagged customer, who arrives to the system at an
arbitrary point in time, after the system has reached stochastic equilibrium.
Now, the arrivals to the system, being Poisson, see the system in stochastic
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equilibrium. Hence the probability that the tagged customer finds  customers
in the system is Also the service times are independently drawn
from a memoryless distribution, and therefore the sojourn time of the tagged
customer, given the tagged customer finds   customers in the system, can be
expressed as the sum of independent service times. In particular,

where denotes the service time of the customer to receive service after
time with the service being that of the tagged customer. 2 Thus
we have

where the equality between the second and third steps results from the fact
that and for are independent random variables, and the
expectation of the product of independent random variables is the product of
the expectations of the individual random variables.

We showed earlier that if is an exponentially distributed random variable
with parameter then

Because the service times are drawn from exponential distributions with pa-
rameter we find so that

2In general, the notation where and are random variables and E is an event, means that
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Thus we find that has the exponential distribution with parameter
and

By following similar arguments, we can determine the distribution of the wait-
ing time to be

This derivation is left as an exercise.

EXERCISE 3.7 Let and denote the length of time an arbitrary cus-
tomer spends in the queue and in the system, respectively, in stochastic
equilibrium. Let and Show that

without resorting to the use of Laplace-Stieltjes transform techniques.

and

Another important stochastic process associated with the M/M/1 queueing
system is its departure process. The characteristics of this process are now
briefly addressed. For a much more detailed treatment, the reader is referred
to Disney and Kiessler [1987]. This process is also discussed in many other
books on probabilistic modeling including Ross [1990] and Bertsakis and Gal-
lagher [1987]. We shall see that the departure process from the M/M/1 system
in stochastic equilibrium is Poisson with the same parameter as the arrival pro-
cess. After presenting a definition and the main result, we provide a brief
discussion of the implications.

DEFINITION 3.1 Departure process. Let denote the time between the
and the departures from a queueing system. Then is called the
interdeparture time for the system. The process is called the
departure process. A typical interdeparture time will be denoted by and the
distribution of will be denoted by

THEOREM 3.4 Burke’s Theorem (Burke [1956]). The sequence of interde-
parture times for the M/M/1 system in stochastic equilibrium is a sequence of
independent, identically distributed exponential random variables with param-
eter identical to that of the arrival process; that is, the departure process from
the M/M/1 queueing system having arrival rate is a Poisson process with
parameter
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EXERCISE 3.8 M/M/1 Departure Process. Show that the distribution of
an arbitrary interdeparture time for the M/M/1 system in stochastic equi-
librium is exponential with the same parameter as the interarrival-time dis-
tribution. Argue that the interdeparture times are independent so that the
departure process for this system is Poisson with the same rate as the arrival
process (Burke [1956]). [Hint: Use the fact that the Poisson arrival sees the
system in stochastic equilibrium. Then condition on whether or not the
departing customer leaves the system empty.]

Proof of Burke’s theorem can be accomplished very simply by using the
concept of reversibility (see Asmussen [2003], pp. 56-58 for a brief introduc-
tion). We now briefly sketch the main ideas. Consider a general stochastic
process for which a stochastic equilibrium distribution exists. To
assure that the system is operating in stochastic equilibrium, assume the dis-
tribution of is the same as the stochastic equilibrium distribution so that
the time derivatives of the occupancy probabilities are all equal to zero. Now
observe the probability structure of the process at a very large point in time,
say If the probability structure of the process looking forward in time from

is identical to the probability structure of the process looking backward in
time from then the process is said to be time-reversible.

Ross [1989], pp. 277-78 provides a simple proof that all birth-death pro-
cesses (which are defined in Section 3.2) are time-reversible. The occupancy
process for the M/M/m system is a special case of a birth-death process, and
is therefore time-reversible. This means that for the M/M/m system, the in-
stants at which the occupancy increases when looking backwards in time have
exactly the same probability structure as the instants at which the occupancy
increases when looking forward in time. Now, the instants at which the oc-
cupancy increases when looking backwards in time are exactly the instants of
customer departure. Because the instants at which the occupancy increases
when looking forward in time are the instants of arrivals from a Poisson pro-
cess, we see that the departure process is also Poisson with the same parameter
as the arrival process.

Remark. It is interesting to note that when a queueing process is reversible,
then the Markov chain embedded just after points of departure is the reverse
process for the Markov chain embedded just prior to points of arrival. The sta-
tionary probabilities of the two embedded chains are then equal as has been
shown in the specific case of the M/M/1 system. The interested reader is
referred to Ross [1989], pp. 173-184 for an elementary treatment of time-
reversibility of Markov chains and to Disney and Kiessler [1987], p. 99 for a
proof of the result given in this remark.

Since all birth-death processes are time reversible, we see that Burke’s theo-
rem applies not only to single-server queueing systems but also to the
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and systems as well. The implications of this theorem in analyzing the
occupancy process for systems having Poisson arrivals and exponential service
are significant. For example, we showed in Chapter 2 that sums of Poisson
processes are Poisson, and randomly split Poisson processes form two inde-
pendent Poisson streams. Because the departure processes are also Poisson,
complex systems of exponential servers can be analyzed by first determining
the average arrival rates to each of the queues, and then analyzing the indi-
vidual queues independently. The results of the independent analyses are then
combined to analyze the system as a whole.

We now provide a simple example, leaving to a later section a more general
treatment of networks of queues.

EXAMPLE 3.1 Consider the system of Figure 3.3. Exogenous arrivals (that
is, from outside the system) occur according to a Poisson process at rate
to an exponential server having service rate Following service, each cus-
tomer decides with probability independently of everything, whether or not
to enter the second service system, which has exponential service with rate
Customers who decide not to enter the second service system proceed immedi-
ately to the third system, which has service rate There, they join the waiting
line along with customers departing the second service system. We wish to de-
termine the joint equilibrium state occupancy distribution for the three queues.

Solution: Because the departure process from the first queue is Poisson with
rate arrivals to the second queue are Poisson with rate The departure
process from the second queue is therefore Poisson with rate and this pro-
cesses is independent of the process due to customers who decide not to enter
the second system. The stream of customers entering the third service sys-
tem is the result of combining independent Poisson streams with rates and

and is therefore Poisson with rate
Stochastic equilibrium exists if and, in that case,

and

where denotes the occupancy at queue The joint queue length distribution
is then the product of the individual occupancy distributions.

It is worth pausing at this point to reflect on the implications of Burke’s
theorem. While Burke’s theorem does state that the interdeparture times are a
sequence of iid exponential random variables, the theorem does not say that
the departure process is independent of the state of the occupancy process.
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In Example 3.1, the fact that the joint probability mass function for the oc-
cupancies of the three servers is given by the product of the marginal mass
probabilities means that the server occupancies are independent random vari-
ables. On the other hand, the waiting times at the servers are not independent
because the interdeparture times from a given server are not independent of the
occupancy of that server, and the waiting time at the server is dependent upon
the occupancy at that node. Finally, sojourn times of customers at different
nodes are not independent.

The result is that joint occupancies, the waiting-time distribution at individ-
ual servers, and average network delays may be computed via elementary anal-
ysis, but higher moments of network delay are more difficult to obtain. Thus
we must exercise extreme care in drawing deep conclusions from elementary
analysis of this form.

The following exercise emphasizes that a knowledge of the ergodic occu-
pancy distribution for even a simple queueing system is insufficient infor-
mation from which to compute the waiting-time distribution. The interested
reader is referred to Disney and Kiessler [1987] for a more thorough discus-
sion. We note that the aggregate arrival process to the queue defined in this
exercise is not a Poisson process (see Disney, McNickle, and Simon [1980]
and Disney and Kiessler [1987], pp. 124-125).

EXERCISE 3.9 M/M/1 with Instantaneous Feedback. A queueing system
has exogenous Poisson arrivals with rate and exponential service with rate

At the instant of service completion, each potentially departing customer
rejoins the service queue, independent of system state, with probability

1 . Determine the distribution of the total amount of service time the server
renders to an arbitrary customer.

2. Compute the distribution of the number of customers in the system in
stochastic equilibrium. How does your solution compare to that of the
M/M/1 queueing system? What explains this behavior? [Hint: Consider
the remaining service time required for each customer in the queue. Sup-
pose customers that required additional increments of service returned
immediately to service rather than joining the tail of the queue. What
would be the effect on the queue occupancy?]

3. Argue that the departure process from the system is a Poisson process
with rate

4. Compute the average sojourn time for this system and comment on com-
putation of the distribution of the sojourn time.
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Figure 3.3. Schematic diagram of a simple network of queues.

3.1.3 Busy Period for M/M/1 Queueing System
Recall that is defined to be the number of customers in the system at time

The system is said to be idle at time if and busy at time if
A busy period begins at any instant in time at which the value of

increases from zero to one and ends at the first instant in time, following
entry into a busy period, at which the value of again reaches zero. An
idle period begins when a given busy period ends and ends when the next
busy period begins. From the perspective of the server, the M/M/1 queueing
system alternates between two distinct types of periods: idle periods and busy
periods, as illustrated in Figure 3.4. These types are descriptive; the busy
periods are periods during which the server is busy servicing customers, and
the idle periods are those during which the server is not servicing customers.
For the ordinary M/M/1 queueing system, the server is never idle when there
is at least one customer in the system.

Figure 3.4. Sequence of busy and idle periods.

Because of the memoryless property of both the exponential distribution and
the Poisson process, the length of an idle period is the same as the length of
time between two successive arrivals from a Poisson process with parameter

The length of a busy period, on the other hand is dependent upon both the
arrival and service processes. The busy period begins upon the arrival of its first
customer, say customer 1, whom we shall denote by During the service



Elementary CTMC-Based Queueing Models 77

time of           the length of which we shall denote by              additional customers
arrive. If we call the customers second-generation customers and
denote them by The service times of these customers
follow that of in their order of arrival. During the service time of
additional customers may arrive; they are denoted by

Additional arrivals that occur during the service times of the second-
generation customer are denoted by and the collec-
tion of all these customers constitute the third generation. Service for third-
generation customers follows completion of service of second-generation cus-
tomers. Arrivals occurring while the customers are receiving
service are classed customers, and their service begins
following completion of servicing. The service and arrival pro-
cesses continue until there are no longer any remaining customers, and at that
point in time the system returns to an idle period. Thus, the length of a busy
period is the total amount of time required to service all of the customers of all
of the generations of the first customer of the busy period. Consequently, we
can think of the busy period as being generated by its first customer. Alterna-
tively, we can view the server as having to work until all of the first customer’s
descendents die out.

We shall denote the length of a generic busy period by the length of a
generic idle period by and the number of customers served during a generic
busy period by The service time of the customer served in a generic busy
period will be denoted by The length of the busy period is then the sum of
the service times, or

The diagram of Figure 3.5 illustrates servicing during the busy period.

Figure 3.5. Sequence of service times during a generic busy period.

The distribution of the length of a busy period is of interest in its own right,
but an understanding of the behavior of busy-period processes is also extremely
helpful in understanding waiting time and queue length behavior in both ordi-
nary and priority queueing systems. An alternate and instructive way to view
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the busy-period process is to separate the busy period into two parts: the part
occurring before the first customer arrival after the busy period has started,
and the part occurring after the first customer arrival after the busy period has
started, if such an arrival occurs.

Let denote the length of the first interarrival time after the busy period
has begun, and let denote the event that the first customer completes service
before the first arrival after the busy period begins; that is, let denote the
event that Further, let

We have shown previously that if and are exponentially distributed
random variables with parameters and respectively, then is an expo-
nentially distributed random variable with parameter We also showed
in an earlier exercise that the random variables and
are also exponentially distributed random variables with parameter that
is; the distribution of is independent of whether or Ad-
ditionally, if then the busy period ends after the initial interval so
that

On the other hand, if then a period of length will have expired, but
due to the memoryless property of the exponential distribution, the remaining
service time of the first customer will be the same as it was initially. Thus,
for all practical purposes, the service time starts over. The remaining time in
the busy period is therefore equivalent to the length of a busy period in which
there are initially two customers present rather than one. We denote the length
of such a period by Thus, we find that

Now, the length of a busy period is independent of the order in which the
customers of the busy period are served. The length of the busy period is
simply the sum of the lengths of the service times of the customers that are
served as shown in (3.22) and Figure 3.5. A little thought will reveal that the
length of the busy period generated by two customers is simply the sum of the
lengths of the sub-busy periods generated by the first and second customers,
respectively. That is,

where and denote the lengths of the sub-busy periods generated by
the first and second customers, respectively. Additionally, and are
independent, and their distributions are the same as that of an ordinary busy
period, Figure 3.6 illustrates the decomposition of the busy period from this
point of view.
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Figure 3.6. Busy period decompositions depending upon interarrival versus service times.

We now turn our attention to the determination of We define as the
complement of Then, upon conditioning on the occurrence or nonoccur-
rence of we find

Upon substituting (3.23), (3.24), and (3.25) into (3.26), we find that

Using the fact that and each have the same distribution as in (3.27)
leads to

We showed earlier that and Substi-
tuting these values into (3.28) leads to
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or equivalently,

The techniques leading to (3.27) are extremely useful in busy-period anal-
ysis, and they can be applied to determine and The arguments
are also useful in studying the behavior of other queueing disciplines, such
as last-come-first-serve (LCFS). Examination of these aspects of busy-period
analysis is left to the exercises.

EXERCISE 3.10 For the M/M/1 queueing system,

1. find      the expected number of customers served in busy period, and

2. find         the Laplace-Stieltjes transform of the distribution
of the length of a busy period. Show that

A Laplace transform pair,

taken from Mathematical Tables from the Handbook of Physics and
Chemistry, will be useful in accomplishing this exercise.

We have previously stated that

Given the formula for the expected length of the busy period, one can read-
ily determine the expected number of customers served during a busy period
through the application of Wald’s equation (Ross[1989]) which states that the
expected value of the sum of a random number, of identically distributed
random variables, is given by the product of the expected
values of and provided that is a stopping time for the sequence of ran-
dom variables For to be a stopping time for the sequence

it is sufficient to show that is independent of 3.

3 It is interesting to note that the last service time of a busy period is stochastically shorter than the other
service times because the last service time contains no arrivals with probability one. However, the are
still drawn independently from a common distribution in exactly the same way as a gambler’s winnings
on the game. The gambler always loses on the last game, but the winnings on the game are drawn
before the game is played. Similarly, the service time is drawn from the common distribution before it
is decided whether or not it is the last service time of the busy period.
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EXERCISE 3.11 For the M/M/1 queueing system, argue that   is a stop-
ping time for the sequence illustrated in Figure 3.5. Find

by using the results given above for in combination with Wald’s
equation.

EXERCISE 3.12 For the M/M/1 queueing system, argue that        the ex-
pected amount of time a customer spends in the system, and the expected
length of a busy period are equal. [Hint: Consider the expected waiting
time of an arbitrary customer in the M/M/1 queueing system under a non-
preemptive LCFS and then use Little’s result.]

EXERCISE 3.13 Let         denote the total amount of time an arbitrary
customer spends in the M/M/1 queueing system under a nonpreemptive
discipline. Determine the Laplace-Stieltjes transform for the distribution of

EXERCISE 3.14 Determine the Laplace-Stieltjes transform for the length
of the busy period for the M/M/2 queueing system, the system having Pois-
son arrivals, exponential service, two parallel servers, and an infinite waiting
room capacity. [Hint: Condition on whether or not an arrival occurs prior to
the completion of the first service of a busy period. Then note that there is a
very close relationship between the time required to reduce the occupancy
from two customers to one customer in the M/M/2 and the length of the
busy period in the ordinary M/M/1 system.]

EXERCISE 3.15 We have shown that the number of arrivals from a Pois-
son process with parameter that occur during an exponentially distributed
service time with parameter is geometrically distributed with parameter

that is, the probability of arrivals during a service time is
given by Determine the mean length of the busy
period by conditioning on the number of arrivals that occur during the first
service time of the busy period. For example, let denote the number of
arrivals that occur during the first service time, and start your solution with
the statement

[Hint: The arrivals segment the service period into a sequence of intervals.]

3.2 Dynamical Equations for General
Birth-Death Process

A variation to the M/M/1 queueing system is a system with exponentially dis-
tributed interarrival times and service times, but having state-dependent arrival
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and service rates. The arrival rate when there are customers in the system is
and the service rate when there are customers in the system is The

occupancy for such a system is modeled by a general birth-death or birth-and-
death process.

Examples of queueing systems for which the occupancy can be modeled by
a birth-death process are numerous. For example, the  queueing sys-
tem is the system having servers, Poisson arrivals at rate and exponential
service at rate In this system, the arrival rate is independent of the current
occupancy, but the service rate is if the occupancy is less than and if
the occupancy equals or exceeds that is, for but

This model is useful in modeling a circuit switching system for a system in
which a large population of users share a relatively small number of lines and
the customers are allowed to join a queue while waiting for a line to become
available. A variation of this system, the Erlang loss system is considered in a
later section.

Another example is the M/M/1/K queueing system. There is a finite popu-
lation, K, of customers, each operating in a constant think-wait-service cycle.
The length of time the customer remains in the think state is drawn from an ex-
ponential distribution with rate independent of everything; a customer may
generate a request for service only while in the think state. Upon departure
from the think state, the customer joins the queue to await service. Upon reach-
ing the head of the queue, the customer receives service, the length of which
is drawn from an exponential distribution with rate For this model, we find

independent of occupancy, but for
The dynamical equations for the general birth-death process are the same

as those for the M/M/1 queueing system except that the arrival and service
rates are replaced by state-dependent arrival and service rates. The resulting
dynamical equations, the development of which are left as an exercise, are as
follows:

We shall consider special cases of birth-death processes when we study the
balance-equation approach to solving elementary queueing systems.
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EXERCISE 3.16 Suppose that the arrival and service time distributions are
memoryless, but that their rates depend upon the number of customers in
the system. Let the arrival rate when there are customers in the system be

and let the service rate when there are customers in the system be
Show that the dynamical equations are as follows:

3.3 Time-Dependent State Probabilities for
Finite-State Systems

In this section, we discuss approaches for obtaining the time-dependent prob-
abilities for the special case in which the queueing system can be modeled
as a continuous-time, finite-state, Markov chain. Our discussion focuses on
the finite-state birth-death process, but extensions to the more general case are
obvious.

Two methods of analysis are discussed: classical eigensystem analysis, and
randomization. The latter is also often referred to in the literature as uni-
formization for reasons stated at the end of this section. Following Grassman
[1990], we adopt the name Jensen’s method, which Grassman argues is more
appropriate.

We limit the maximum queue occupancy to K. For this special case, we find
that for and has an arbitrary value for Under these
conditions, the system (3.31) leads to the following system of (K+1) linear
differential equations:

where is the row vector of state probabilities,

and

is the infinitesimal generator matrix for the (finite) Markov chain
(Cohen, [1969]).
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It is well known and easily shown that the above equation has the general
solution

where P(0) denotes the vector of initial state probabilities. Thus, at least in
principle, we may easily determine the time-dependent state probabilities for
particular values of

Remark. The form (3.33) of the solution to the vector first order differential
equation (3.32) has inspired the development of numerous ways to evaluate
the required matrix exponential. A summary of the most prominent of these is
given in Moler and van Loan [1978]. Matrix exponentiation is not, however,
necessarily the best way to solve for the time-dependent solution to (3.32). In
fact, it may be faster, computationally, to simply solve (3.32) directly using
a standard ordinary differential equations solution package. The reader is re-
ferred to Giffin [1978] for a pedagogical presentation of this subject matter.
Grassman [1990] provides a perspective on computational complexity issues
and on the pros and cons of the various computational approaches. The ex-
pression (3.33) is, nonetheless, very useful in discussing the behavior of the
solution.

3.3.1 Classical Approach
Observation of (3.32) reveals that is a tridiagonal matrix, and the off-diagonal
terms have the same sign. Thus, the matrix is similar to the symmetric matrix

in which the diagonal terms are the same as those of and the off-diagonal
elements are given by

That is,

where

It is readily verified that the matrix is negative semidefinite (Noble and
Daniel [1977]), so the eigenvalues of and therefore of are nonpositive.
In addition, the columns of sum to a null column vector, so one of the eigen-
values of is equal to zero. This means that exists, and the
maximum negative eigenvalue of (the one closest to zero) determines the
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rate at which converges to its limiting value. The inverse of this maxi-
mum negative eigenvalue is sometimes referred to as the relaxation time of the
system (Keilson [1979]).

If the eigenvalues of are distinct, then is similar to a diagonal ma-
trix with the eigenvalues as the diagonal elements. That is, we may write
diag or equivalently,

where is a nonsingular matrix spanning the (K + 1)-dimensional space,
denotes the eigenvalue of and Indeed, the
column of is (proportional to) the eigenvector corresponding to Thus,
we can rewrite (3.33) as

Because the eigenvalues are all nonpositive and we have labeled them in de-
creasing order, we find that determines the rate at which converges to
its equilibrium value P.

For example, suppose K = 1, and Then we have

The eigenvalues of are found to be 0 and and their corresponding
eigenvectors are proportional to and respectively. Thus

The time-dependent state probabilities can be computed from (3.40).
In case the equilibrium probabilities are needed, we find

which is as expected from direct evaluation of the equilibrium probabilities.

we find
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Figure 3.7. Time-dependent state probabilities corresponding to Example 3.1.

EXAMPLE 3.2 Suppose                  and P(0) = [1 0]. Then, (3.40)
and (3.41) reduce to

and

Figure 3.7 shows graphs of and as a function of time. Note that
the limiting values of and are reached to a very high degree of
accuracy by the time which is between six and seven times the quantity
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In the above case, we note that the equilibrium probabilities are proportional
to the left eigenvector of corresponding to the eigenvalue To see
that this is always the case, we consider

That is,

By definition, if is a left eigenvector of corresponding to the eigenvalue
then

But with

Thus, P is proportional to The implication is that the equilibrium prob-
abilities can always be determined by normalizing the left eigenvector of
corresponding to the eigenvalue zero. Thus we find

where e is the column vector in which each element is unity.4

It is sometimes desirable to obtain the left eigenvectors of via hand cal-
culation. With regard to this possibility, we state the following theorems.

THEOREM 3.5 Let    be a (K+1)-dimensional square matrix whose distinct
eigenvalues and their corresponding left eigenvectors are and

respectively. Then is proportional to the rows of the
adjoint of the matrix                  That is,

where are nonzero constants.

THEOREM 3.6 Let      be a (K+1)-dimensional square matrix having distinct
eigenvalues Then the rows of are proportional
to each other, and the columns of                           are proportional to each other.

4We will use this definition for e in the remainder of the text.
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The proofs of these theorems are left as exercises.

EXERCISE 3.17 Prove Theorem 3.5.

EXERCISE 3.18 Prove Theorem 3.6.

EXERCISE 3.19 Let K = 1. Use Definition 2 of the Poisson process to
write an equation of the form

Show that the eigenvalues of the matrix Q are real and nonnegative. Solve
the equation for and show that they converge to the solution
given in Example 3.2 regardless of the values [Hint: First,
do a similarity transformation on the matrix Q, which converts the matrix
to a symmetric matrix Then show that the matrix is negative semi-
definite.]

3.3.2 Jensen’s Method
An alternative method of computing the time-dependent probabilities can be
formulated via the introduction of some additional state transitions into the
dynamics of the system in such a way as to uniformize the amount of time
the system spends in each state. That is, we introduce self transitions into
each state so that the amount of time spent in each state, on each visit, is
exponentially distributed with identical parameter, say  This will allow us
to study the system as though it were a discrete-time Markov chain with the
transition epochs occurring according to a Poisson process with parameter
The latter is referred to as randomization of time.

Mathematically, we proceed as follows. First, we rewrite (3.33) as

Then, because commutes with then so do and
Thus the right hand side of (3.43) can be rewritten as the product of two matri-
ces:

But, since we find that

Expanding the matrix exponential on the right hand side of (3.45) in a Maclau-
rin series, we obtain
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Upon regrouping the terms of (3.46), we find

In terms of our former description, we can view (3.47) as describing the
dynamics of a discrete-time Markov chain having state transition probability
matrix and whose transition epochs are generated according to
a Poisson process with rate  That is, the probability of transitions in a
period of length is given by the transition matrix is

and the initial state probabilities are given by P(0).
For the above interpretation to be valid, we must have  at least as large as

the magnitude of the maximal term on the diagonal of because the diagonal
terms of the matrix must be nonnegative. These terms are simply

where represents the term of the matrix. The term
represents the (exponential) rate at which the system departs state whenever
it is in state while the term represents the probability that the system
will return immediately to state upon its departure. The terms represent
the probability of entering state given a departure from state and denotes
the rate at which the system enters state from state

To illustrate what is happening here, consider the M/M/1 queueing system
with a maximum occupancy of 1, as before. Then, from (3.39), we find

and

Assuming which is not required in this case, let us choose
Then we find

Figure 3.8 illustrates the randomization process. The original state diagram
for the M/M/1 system with finite waiting room of capacity 1 is shown in Figure
3.8(a). In Figure 3.8(b), additional self transitions have been added to each
state such that the total departure rate from each state is  In Figure 3.8(c),
time is scaled so that the mean occupancy time in each state on each visit is
unity. Finally, in Figure 3.8(d),  is chosen to be so that the resulting diagram
corresponds to the above example.

Thus, in the randomized system, the system always returns to state 0 when-
ever it leaves state 1, just as it does in the real system, but, unlike in the real
system, the randomized system also returns immediately to state 0 whenever it
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Figure 3.8. Steps involved in randomization.

departs state 0 with probability The system therefore returns to state 0 a
geometric number of times, with the probability of departure equal to before
entering state 1.

With our choice of            the rate at which the system departs state 0 is
so that the sojourn time in state 0 is exponential with rate Thus, the total
amount of time spent in state 0 before returning to state 1 is the geometric
sum of exponentials at rate where the parameter of the geometric random
variable is We have shown that the latter quantity of time is exponentially
distributed with rate where we have used the fact that the geometric
sum of exponentially distributed random variables is exponentially distributed.
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Thus, in the randomized system, the sojourn time on each visit to each state
is exponential, rate but the total amount of time that the system spends in a
state before it enters a different state is the same as that of the original system.

EXERCISE 3.20 For the specific example given here show that the equi-
librium probabilities for the embedded Markov chain are the same as those
for the continuous-time Markov chain.

Randomization apparently originated with Jensen [1953], but seems to have
been independently developed by Keilson and Wishart [1964]. It has been
described in several books including Keilson [1979] and Ross [1989]. The
technique has been applied to the study of numerous systems in areas rang-
ing from software reliability (Sumita and Shantikumar [1986]) to local area
networks (Beuerman and Coyle [1987]). Grassman [1990], who provides an
historical perspective on randomization, has advocated that this concept should
be referred to as Jensen’s method.

In this section, we presented the basics of Jensen’s method and illustrated
its use in the context of the finite capacity M/M/1 queueing system. Note that
uniformization techniques can be applied to obtain state-dependent probability
distributions for any finite-state continuous-time Markov chain. Readers seri-
ously interested in using Jensen’s method are urged to study Grassman [1990],
where serious issues such as computational complexity and difficulty of use
are addressed in depth.

EXERCISE 3.21 Show that the equilibrium probabilities for the embedded
Markov chain underlying the continuous-time Markov chain are equal to
the equilibrium probabilities for the continuous-time Markov chain.

EXERCISE 3.22 For the special case of the finite capacity M/M/1 queue-
ing system with K = 2, and
determine the time-dependent state probabilities by first solving the dif-
ferential equation (3.32) directly and then using uniformization for

with plotting the results for
and Compare the quality of the results and the relative diffi-

culty of obtaining the numbers.

3.4 Balance Equation Approach for
Systems In Equilibrium

Suppose all interarrival and service time distributions are exponential. Then
from any point in time, the amount of time until the state changes is expo-
nentially distributed. Previously, we wrote differential equations for and
then let Instead, we could write the equations directly.

In equilibrium, the rate of entry into a state must equal the rate of departure
from the same state; that is, the entrance and departure rates must balance.
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Figure 3.9. State diagram for M/M/1 System.

Figure 3.10. State diagram for general birth-death process.

For example, Figure 3.9 shows a state diagram for the M/M/1 system, and
the following table expresses the concept of balance.

In the above, (3.51), (3.52), (3.53), and (3.54) are called “balance equations.”
More generally, we have a similar notion of balance in the case of state-
dependent arrival and service rates, or equivalently, for general birth-death
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processes. That is, we might have

and

Figure 3.10 shows the state diagram for the general birth-death process, and
the following table expresses the concept of balance.

In that case, we find that

with

Then

or
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So, for an equilibrium solution to exist, we must have

Otherwise, and so on.

EXAMPLE 3.3 Suppose that we have for all and for
and for all That is, we have an M/M/1 queueing system

with finite waiting room of size K including the customer in service. Arrivals
that occur while the system is in state K are not allowed to enter the system;
that is, they are blocked. Then, (3.57) becomes

Using this result in (3.55) leads to

When the waiting room’s capacity is finite, customers attempting to enter the
queue may be blocked, and it is of interest to specify the blocking probability.
The blocking probability is defined as the proportion of the customers seeking
admission to the queueing system who are denied. We can readily compute the
blocking probability from the state probabilities.

Assuming a finite waiting room’s of capacity K, the average number of cus-
tomers seeking admission to the system over a long period of time of length
once the system has reached stochastic equilibrium, is given by
Note that does not play a role in determining the equilibrium probabili-
ties since customers arriving while the system is in state K are blocked. On
the other hand, the average number of customers blocked under the same con-
dition is simply Thus the probability that an arbitrary customer is
blocked, which we shall denote by is simply

In the case of the finite-capacity M/M/1 system, the right-hand side of (3.60)
reduces to
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Figure 3.11. State diagram for general birth-death process.

Figure 3.11 shows a graph of as a function of K. From this figure,
we can readily compare to as obtained for the ordinary
M/M/1 system. For example, at and K = 77, while

that is, the probability of exceeding the
given occupancy level in the ordinary M/M/1 system is over 19 times as large
as the probability of blocking for the capacity-limited system.

EXERCISE 3.23 For the special case of the finite-capacity M/M/1 system,
show that for K = 1, 2, . . . ,

where
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EXERCISE 3.24 For the finite-state general birth-death process, show that
for K = 1, 2, . . . ,

where

An important special case of the birth-death process that finds broad appli-
cation in traffic engineering is the Erlang loss system. This system has Poisson
arrivals and exponential servers 5, each serving at rate Customers who
arrive to the system when all servers are busy are cleared from the system; that
is, they are blocked from entry. Thus an important measure of system perfor-
mance is the proportion of customers who are lost. Since arrivals are Poisson,
the proportion of customers who are lost is simply

For the Erlang loss system, we find

Also, potential arrivals to the system while the system is in state are blocked,
and

Then, from (3.58) and (3.55), we find

Since potential customers arrive to the system according to a (state-independent)
Poisson process, the blocking probability is given by Thus, for the Erlang
loss system,

It is customary to express the blocking probability in terms of the offered
load, which is defined as the ratio of the total arrival rate to the service rate
of a single server; that is, the offered load is defined as

5Exponentiality is not required in order that the result hold for this case; that is, in this case, the results are
insensitive to the form of the service-time distribution. There are many cases in which insensitivity holds in
queueing systems; see Kelly [1979].
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The blocking probability is then obtained from (3.62) and (3.63) and, in the
standard notation of traffic engineering, is found to be

This equation is called the Erlang loss formula. Another important term is the
carried load, which is defined as the average number of busy servers for the
system. It is easy to see that

A typical application of the Erlang loss formula is to specify the number
of lines needed to satisfy a certain level of blocking. For example, suppose
a local division of a company knows the rate at which long distance calls are
generated and the average call holding time. Suppose further that the com-
pany wants these long-distance calls to be blocked less than 1% of the time.
Then, the company can use the Erlang loss formula to determine the mini-
mum number of long distance lines that need to be available, provided that
the assumption of Poisson arrivals for the calls is justified. Tables are pro-
vided in traffic engineering books (and some queueing books) for this purpose.
We include a supplementary exercise which examines the difference between
finite-population and infinite-population models of blocking at the end of this
chapter. For a more thorough discussion and an historical perspective, the
reader is referred to Cooper [1981].

Returning to the balance-equation approach, we note in passing that we can
also write the differential equations by inspection by noting that the rate of
change in the probabilities is given by the difference between the rate entering
the state at time and the rate departing the state at time

EXERCISE 3.25 Let K be arbitrary. Use the balance equation approach to
write an equation of the form

where Show that the eigenvalues of
the matrix Q are real and nonpositive.

The above discussion presents the concept of detailed or global balance. It
is sometimes easier to solve balance equations if they are initially written in
terms of boundaries separating sets of states. For example, in Figure 3.12 we
can consider everything to the left of the vertical line as one set of states and
everything to the right as another set. Then, the rate of flow out of the set of
states to the left must equal the rate of flow into the set of states to the right;
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the concept underlying this solution technique is called local balance. This
concept, which has broad application in the analysis of networks of queues,
will be mentioned again later in the text.

Figure 3.12. State diagram illustrating local balance.

EXERCISE 3.26 Using the concept of local balance, write and solve the
balance equations for the general birth-death process shown in Figure 3.12.

3.5 Probability Generating Function Approach to
Solving Equilibrium Equations

The solution of balance equations is not always straightforward. In some in-
stances in which the solutions are not obvious, it is helpful to transform the sys-
tem of equations, solve the transform equations, and then invert the transform
to obtain the equilibrium probabilities. A useful transform is the probability
generating function (PGF).

DEFINITION 3.2 Probability generating function. Let be a nonnegative,

integer-valued random variable. Then is

called the probability generating function for

A thorough treatment of probability generating functions is presented in
Hunter [1983]. Among the properties of the PGF which we shall find useful
are the following:

and
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We note in passing that the latter property follows directly from the uniqueness
of the Maclaurin series expansion of the function which is

and its comparison to the definition of the PGF.

EXERCISE 3.27 Prove (3.66).

EXERCISE 3.28 Prove (3.67).

Recall that for M/M/1, we found from detailed balance that

and from local balance (discussed at the close of Section 3.4) that

In order to illustrate the use of the probability generating function approach to
the solution of balance equations, we solve the system of equations (3.70).

For the specific case in which the random variable of interest is the M/M/1
occupancy, we find

After multiplying both sides of (3.70) by we find

Thus

After applying the definition of to the above equation, we find
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Thus

But, from the properties of probability generating functions, so
Finally, we obtain

We note

Thus

But, by definition,

So, by matching coefficients, we find as expected.
We will now work with (3.68) and (3.69) to illustrate how to handle slightly

more complicated problems. To begin, multiply both sides of (3.68) by to
obtain

Now sum both sides of (3.72) from to to obtain

After using the definition of in the above equation, we find
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But, from (3.68), we know that Substituting this equality into
the previous equation and solving for we get

Finally, upon dividing the numerator and denominator of the last equation by
we obtain the same result as before for the probability generating

function. That is,

The remainder of the solution is as before.

EXERCISE 3.29 Use (3.66) to find and

3.6 Supplementary Problems
3-1 Messages arrive to a statistical multiplexing system according to a Poisson

process having rate Message lengths, denoted by are specified in
octets, groups of 8 bits, and are drawn from an exponential distribution
having mean Messages are multiplexed onto a single trunk having a
transmission capacity of C bits per second according to a FCFS discipline.

(a)

(b)

(c)

(d)

(e)

Let denote the time required for transmission of a message over the
trunk. Show that has the exponential distribution with parameter

Let octets and C = 56 kilobits per second (kb/s). Deter-
mine the maximum message-carrying capacity of the trunk.

Let denote the number of messages in the system in stochastic equi-
librium. Under the conditions of part (b), determine
as a function of Determine the maximum value of such that

For the value of determined in part (c), determine the minimum
value of such that where is the total amount
of time a message spends in the system.

Using the value of obtained in part (c), determine the maximum
value of K, the system capacity, such that
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3-2 A finite population, K, of users attached to a statistical multiplexing sys-
tem operate in a continuous cycle of think, wait, service. During the think
phase, the length of which is denoted by the user generates a message.
The message then waits in a queue behind any other messages, if any, that
may be awaiting transmission. Upon reaching the head of the queue, the
user receives service and the corresponding message is transmitted over a
communication channel. Message service times, and think times, are
drawn from exponential distributions with rates and respectively. Let
the state of the system be defined as the total number of users waiting and
in service and be denoted by

(a)

(b)

(c)

(d)

(e)

The first passage time from state to state is the total amount of
time the system spends in all states from the time it first enters state

until it makes its first transition to the state Let denote
the total cumulative time the system spends in state during the first
passage time from state to state Determine the distribution of

Determine the distribution of the number of visits from state to state
during the first passage time from state to

Show that the expected length of a busy period, is given by
the following recursion:

[Hint: Use the distribution found in part (b) in combination with the
result of part (a) as part of the proof.]

Let denote the stochastic equilibrium probability that the com-
munication channel is idle. Determine using ordinary birth-
death process analysis.

Let denote the expected length of the idle period for the com-
munication channel. Verify that is given by the ratio of the
expected length of the idle period to the sum of the expected lengths
of the idle and busy periods; that is,

which can be determined iteratively by

That is, show that computed by the formula just stated is iden-
tical to that obtained in part (d).
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3-3 Traffic engineering with finite population. Ten students in a certain grad-
uate program share an office that has four telephones. The students are
always busy doing one of two activities: doing queueing homework (work
state) or using the telephone (service state); no other activities are allowed
- ever. Each student operates continuously as follows: the student is ini-
tially in the work state for an exponential, rate period of time. The stu-
dent then attempts to use one of the telephones. If all telephones are busy,
then the student is blocked and returns immediately to the work state. If a
telephone is available, the student uses the telephone for a length of time
drawn from an exponential distribution with rate and then returns to the
work state.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Define an appropriate state space for this service system.

Draw a state diagram for this system showing all transition rates.

Write the balance equations for the system.

Specify a method of computing the ergodic blocking probability for
the system - that is the proportion of attempts to join the service sys-
tem that will be blocked - in terms of the system parameters and the
ergodic state probabilities.

Specify a formula to compute the average call generation rate.

Let calls per minute; that is, call holding times have a mean
of three minutes. Compute the call blocking probability as a function
of for

Compare the results of part (f) to those of the Erlang loss system hav-
ing 4 servers and total offered traffic equal to that of part (f). That
is, for each value of there is a total offered traffic rate for the sys-
tem specified in this problem. Use this total offered traffic to obtain a
value of and then obtain the blocking probability that would result
in the Erlang loss system, and plot this result on the same graph as the
results obtained in (f). Then compare the results.

3-4 A company has six employees who use a leased line to access a database.
Each employee has a think time which is exponentially distributed with
parameter Upon completion of the think time, the employee needs
the database and joins a queue along with other employees who may be
waiting for the leased line to access the database. Holding times are ex-
ponentially distributed with parameter When the number of waiting
employees reaches a level 2, use of an auxiliary line is authorized. The
time required for the employee to obtain the authorization is exponentially
distributed with rate If the authorization is completed when there are
less than three employees waiting or if the number of employees waiting
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drops below two at any time while the extra line is in use, the extra line is
immediately disconnected.

(a)

(b)

(c)

(d)

(e)

(f)

Argue that the set where the
numbers indicate the number of employees waiting and in service, the
letter r indicates that authorization has been requested, and the letter
a indicates that the auxiliary line is actually available for service, is a
suitable state space for this process.

The situation in state 4r is that there are employees waiting and in
service and an authorization has been requested. With the process in
state 4r at time list the events that would cause a change in the state
of the process.

Compute the probability that each of the possible events listed in part
(b) would actually cause the change of state, and specify the new state
of the process following the event.

What is the distribution of the amount of time the system spends in
state 4r on each visit? Explain.

Draw the state transition rate diagram.

Write the balance equations for the system.

3-5 Messages arrive to a statistical multiplexer at a Poisson rate for trans-
mission over a communication line having a capacity of C in octets per
second. Message lengths, specified in octets, are exponentially distributed
with parameter When the waiting messages reach a level 3, the capacity
of the transmission line is increased to by adding a dial-up line. The
time required to set up the dial-up line to increase the capacity is exponen-
tially distributed with rate If the connection is completed when there
are less than three messages waiting or if the number of messages waiting
drops below two at any time while the additional capacity is in use, the
extra line is immediately disconnected.

(a)

(b)

(c)

(d)

Define a suitable state space for this queueing system.

Draw the state transition-rate diagram.

Organize the state vector for this system according to level, where the
level corresponds to the number of messages waiting and in service,
and write the vector balance equations for the system.

Determine the infinitesimal generator for the underlying Markov chain
for this system and comment on its structure relative to matrix geo-
metric solutions.
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3-6 Consider the M/M/2 queueing system, the system having Poisson arrivals,
exponential service, 2 parallel servers, and an infinite waiting room capac-
ity.

(a)

(b)

(c)

(d)

(e)

(f)

Determine the expected first passage time from state 2 to state 1.
[Hint: How does this period of time compare to the length of the
busy period for an ordinary M/M/1 queueing system?]

Determine the expected length of the busy period for the ordinary
M/M/2 queueing system by conditioning on whether or not an arrival
occurs before the first service completion of the busy period and by
using the result from part (a).

Define as the length of time between successive entries into busy
periods, that is, as the length of one busy/idle cycle. Determine the
probability that the system is idle at an arbitrary point in time by tak-
ing the ratio of the expected length of an idle period to the expected
length of a cycle.

Determine the total expected amount of time the system spends in
state 1 during a busy period. Determine the probability that there is
exactly one customer in the system by taking the ratio of the expected
amount of time that there is exactly one customer in the system during
a busy period to the expected length of a cycle.

Check the results of (c) and (d) using classical birth-death analysis.

Determine the expected sojourn time, for an arbitrary customer
by conditioning on whether an arbitrary customer finds either zero,
one, or two or more customers present. Consider the nonpreemptive
last-come-first-serve discipline together with Little’s result and the
fact that the distribution of the number of customers in the system is
not affected by order of service.



Chapter 4

ADVANCED CONTINUOUS-TIME
MARKOV CHAIN-BASED QUEUEING MODELS

In this chapter, we continue our analysis of queueing models that are charac-
terized as discrete-valued, continuous-time Markov chains (CTMCs).

In Section 4.1, we discuss simple networks of exponential service stations
of the feedforward, open, and closed varieties. We discuss the form of the joint
state probability mass functions for such systems, which are of the so-called
product form type. We discuss in detail a novel technique, due to Gordon
[1990], for obtaining the normalizing constant for simple closed queueing net-
works in closed form.

In Section 4.2, we address the solution of a two-dimensional queueing model
in which both the arrival and service rates are determined by the state of a sin-
gle independent continuous-time Markov chain. This type of two-dimensional
Markov chain is called a quasi-birth and death process (QBD), which is a vec-
tor version of the scalar birth-death process discussed in Chapter 3. A number
of techniques for solving such problems are developed. The first approach uses
the probability generating function approach, which was introduced in Chap-
ter 3. We make extensive use of eigenvalue/eigenvector analysis to resolve
unknown probabilities. Next, the matrix geometric technique is introduced
and used to solve for the state probabilities of the QBD model. Next, a tech-
nique based on solving eigensystems for finding the rate matrix of the matrix
geometric method, which reveals the entire solution, is discussed. Finally, a
generalized state space approach is developed.

In Section 4.3, we introduce distributions of the phase (PH) type by modi-
fying the class of models discussed in Section 4.2, and we provide the equilib-
rium occupancy distribution for the M/PH/1 system in matrix geometric form.
We conclude the chapter with a set of supplementary exercises.
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4.1 Networks of Single-Server Exponential Service
Stations

In the previous chapter, we showed that the superposition and decomposition
of Poisson processes form other Poisson processes. In addition, we presented
a theorem that states that the output process from the M/M/1 queueing sys-
tem is a Poisson process. It is then apparent that a feedforward network of
exponential servers with exogenous Poisson arrivals behaves as though it were
a collection of independently operating M/M/1 queueing systems provided the
service times of the entities are chosen independently at the various servers in
the network.

Even in cases when the network has feedback, so that the arrival process
to each node is not Poisson, the marginal occupancy distribution at each node
can be computed as though the arrival process were Poisson, and the joint
occupancy distribution for the system is simply the product of the marginal
distributions. This property also carries through to the case of closed networks
of exponential servers under a certain broad class of assumptions. In the case
of closed networks, however, the solution contains an unknown constant that
must be computed by normalizing the joint distribution so that the joint prob-
abilities sum to unity. An interesting aspect of our coverage is that we include
a technique, due to Gordon [1990], for specifying the normalizing constant of
closed networks of single-server queues in closed form.

Simple networks of exponential queues have been used successfully in a
broad variety of modeling environments. Performance evaluation of comput-
ing systems is discussed extensively in Lazowska, Zahorjan, Graham and Sev-
cik [1984], Chandy and Sauer [1981], Trivedi [1982], and Kobayashi [1978].
Kleinrock [1976] and Schwartz [1987] address the application of queueing
networks to design problems in computer communications. All of these books
provide significant coverage of the theory underlying networks of exponential
servers, and provide references for further study.

Single-server networks of this nature will be described in the following sec-
tions. Many of the results presented herein may be modified so that they ap-
ply to networks of multiserver exponential queues as well as queues having
other than exponential service under other service disciplines such as LCFS.
The reader interested in applying the methodology to large problems may also
wish to consult Schwartz [1987], Gelenbe and Pujolle [1987] and, particularly,
the references given there. For an excellent, highly readable, discussion on
the merits of applying queueing network methodology to practical problems
and a discussion of why usable results can be obtained with minimal effort,
the reader is referred to Lazowska, Zahorjan, Graham and Sevcik [1986]. The
reader seriously interested in traffic processes in networks of queues is strongly
encouraged to consult Disney and Kiessler [1987]. Other significant books of
interest in this area include Kelly [1979] and Walrand [1988].
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4.1.1 Feedforward Networks of Single Servers
(Fixed Routing)

Consider an arbitrarily connected network of N sources and destinations, M
exponential servers, and Poisson exogenous arrivals. Assume that routing in
the network is fixed; that is, there is a specific path that all customers having
a particular source/destination pair must follow. Assume further that once a
customer has received service from a particular server, the customer can never
return to the same server; that is, the network allows no feedback.

Define if units going from source to destination traverse
server and otherwise; as the rate units destined for destination

arrive to source as the service rate of server and as the aggregate
unit arrival rate to server For each of the M servers, we have

As in the case of the M/M/1 system, the marginal occupancy density for server
is given by

where and the joint occupancy density is given by

Thus, the expected delay at node is

The average network delay for traffic entering node destined for node is
therefore given by

Note that the logic leading to (4.4) does not apply to any moment of the waiting
time distribution other than the first.

We now turn to the computation of the average delay through the network.
From Little’s result, we know that the average number of customers present at
server is Thus the expected number of customers in the
system is
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or equivalently,

We also know that the total number of customers entering the system per unit
time is

Because we know from Little’s result that it follows that the
total average time spent in the system is given by

where is given by (4.7).
From (4.8), we see that the network delay may be dominated by a single

server if the capacities of the servers are chosen arbitrarily. In the design of
systems, sometimes capacities are assigned to minimize for a given traffic
pattern; this problem is called the capacity assignment problem (Kleinrock
[1976]). An example in which (4.8) was used as a major factor in a network
design algorithm is Gavish and Altinkemer [1990].

4.1.2 Arbitrary Interconnections (Random Routing)
We now turn our attention to the analysis of a network with arbitrary random
routing among M single exponential servers. That is, a customer enters a
particular service station, say station obtains service at station and then
with probability proceeds next to station independent of his past history.
Customers depart the system from node with probability that is,

with equality if and only if customers cannot depart the system from node
Routing among the stations of the network is thus governed by a Markov chain
with an M × M routing matrix We assume exogenous arrivals to
server to be Poisson with parameter and that the service rate for server is

for
The arrival rate at a particular node is the sum of the exogenous arrival

rate and the arrival rate due to customers entering from neighboring service
stations. Thus, the total arrival rate at node is given by
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or, in matrix form,

where and Thus we find that

Although the composite arrival processes at the service stations are not Pois-
son, the marginal occupancy density for server is given by

where and the joint occupancy density is given by

Equivalently,

where

This system is said to have a product-form solution, and the above result is
called Jackson’s theorem (Jackson [1963]).

EXERCISE 4.1 Using Little’s result, determine the average time spent in
the system for an arbitrary customer when the system is in stochastic equi-
librium.

Results similar to the above are available for many networks including those
with finite population and state-dependent servers. For an excellent summary
of the results, the reader is referred to Chapter 3 of Kobayashi [1978].

4.1.3 Closed Networks of Single Servers
(Random Routing)

In a closed network, there is no exogenous traffic arriving to the system nor is
there traffic leaving the system. Instead, we view the network as representing
a system in which a fixed number of jobs continually circulate. Such networks
have a surprising array of applications. For example, they are sometimes used
to analyze flow control behavior in communication networks that limit the total
number of messages present in the system at any given time.
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Closed queueing networks also have product form solutions of the type de-
scribed above (Gordon and Newall [1967]). That is, the joint occupancy prob-
abilities for the network have the form of a product of marginal probabilities.
That is,

where is a normalizing constant. In the case of closed networks, however,
is not determined as simply as it was in the previous two network types. In

fact, in closed networks, the total occupancy of the system is limited to N, so
that we always have Thus, to emphasize the dependence upon
N and M, (4.16) is usually written as:

and is thought of as the normalizing constant.
A peculiarity of closed queueing networks is that the flow balance equation

analogous to (4.10) has the form

so that the vector is the eigenvector of the matrix [I – R] corresponding to its
zero eigenvalue. Thus the vector of traffic intensities can be determined only
to within a multiplicative constant. Obviously, the choice of influences the
computation of the normalizing constant, but not the occupancy probabilities.

EXERCISE 4.2 Argue that the matrix R is stochastic, and that, therefore,
the vector is proportional to the equilibrium probabilities of the Markov
chain for which R is the one-step transition probability matrix.

If the state space of a closed queueing network is large, the determina-
tion of the normalizing constant via brute force would require the addition of

scaled probabilities. Numerous algorithms have been developed to
avoid summing this large number of terms, the major results being summarized
in Kobayashi [1978]. Although very efficient algorithms have been developed,
none seem to have resulted in a closed-form expression for

However, Harrison [1985] found a closed-form expression for
for the special case of single-server systems under discussion here. Gordon
[1990], apparently encouraged by Harrison’s work, reformulated the problem
in an elegant way and derived Harrison’s result, in addition to many other re-
sults that will be mentioned below, via a more direct approach.
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We now turn to our discussion of Gordon’s approach to specifying the nor-
malizing constant for closed queueing networks. Recall that there are always a
total of N customers in the system, so

where is the number of customers at node Define to be the set of
all admissible states, that is,

We therefore have from the law of total probability that

From (4.17) and (4.21), we then have

The key to Gordon’s success is replacement of the finite sum on the right
hand side of (4.22) by an infinite sum. Gordon does this by introducing an
appropriate delta function into the summation. The delta function, a function
of is defined as follows:

where is usually referred to as the location of the delta function. This
function has the following representation as a contour integral on the complex
plane:

where and indicates the integral around the unit circle, a closed
contour, of the complex plane. It is readily verified, by performing the indi-
cated integration using the residue theorem (see Churchill [1960]), that (4.24)
and (4.23) are equivalent.

EXERCISE 4.3 Let denote any integer. Show that

by direct integration.
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From (4.23) and (4.24), we see that

and

Now, if we multiply then this product

will be zero if where stands for the relationship
not in. Therefore, if we perform the above multiplication in (4.22), we find

which is alternately represented in contour integral form by

where, as usual, Upon performing the indicated infinite summa-
tions, which converge for we find

where we have defined
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Now, has been obtained from a finite product of infinite poly-
nomials of the form Therefore, it is clear that itself
can be written in the form

In fact, the expression is the generating function (Hunter [1983])
for a sequence in which Because

is the product of the generating functions for the M sequences
it follows from the properties of sequences (Hunter

[1983]) that the sequence is just the convolution of the sequences

Upon substitution of (4.29) into (4.27), we find

From the residue theorem, it readily follows that

the coefficient of in the expression for Now, if is
viewed as the generating function for the convolution of M sequences, (4.30)
is not very surprising; this is exactly the (unpleasant) message conveyed by
(4.22). The determination of the coefficient via convolution requires the addi-

tion of scaled state probabilities.
However, the form of (4.28) suggests that the determination of this co-

efficient can be carried out in a much more efficient fashion. In particular,
can be rewritten using partial fraction expansions (Hunter [1983]),

and once this is done, the coefficient of will be obvious. For example, for
the special case in which the are distinct, we can rewrite in the
following form:

We then find by expanding in geometric series form that the coef-
ficient of for the partial fraction is simply Thus, upon summing
the values due to the respective partial fractions, we find
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Using elementary calculus, we can readily determine that

Upon substitution of (4.33) into (4.32), we find

which is the result given by Harrison [1985] and Gordon [1990].

EXERCISE 4.4  Suppose that the expression for can be written
as

where That is, there are exactly distinct singular values of
- these are called - and the multiplicity of is

We may rewrite (4.35) as

Show that

EXERCISE 4.5 Define to be the coefficient of in the expansion of
Show that

EXAMPLE 4.1 To illustrate the application of Gordon’s ideas to a problem
not specifically solved in Gordon[1990], we consider a window flow control
technique in a communications network as in Figure 3-36 of Schwartz [1987].
Figure 4.1 shows the diagram for the system. We wish to determine the state
probabilities for the network, which has 5 queues, a maximum occupancy of
four, and a simple routing matrix.
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Figure 4.1. Block diagram for window flow control network.

Solution: From the diagram, we readily see that
Because we can choose
and We thus find from (4.17) that

and from (4.28) that

On the basis of the results of Exercises 3.29 and 3.30, we first find that

and then we find
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Now, in order to assure convergence of the infinite summation required to
obtain in closed form, we required that each be less than
unity. Thus the choice of the and hence affects only the range of
over which the summation converges. For consistency with Schwartz [1987],
we choose We then find that as given in Table 5-5 of
Schwartz [1987]. We then find the joint queue occupancy probabilities to be

The reader should verify that there are a total of 70 possible states and that the
probabilities obtained sum to unity.

EXERCISE 4.6 Verify that the probabilities as specified by (4.39) sum to
unity.

Now that we have specified a procedure to obtain a closed-form expression
for it seems natural to ask whether or not it is possible to specify
(marginal) node occupancy probabilities and moments of the node occupancy
distribution in simple closed forms as well. As we shall see, the answer is
“yes.” In what follows, we shall first obtain simple expressions for the node
occupancy probabilities and then use these results to obtain a simple expression
for the expected node occupancy.

Recall from (4.17), with we have

To obtain the marginal occupancy probability for node we simply sum over
all possible joint occupancy probabilities with Without loss of gen-
erality, we may reorder the nodes so that and consider node M to be
arbitrary. Then, because the set of values over which is given by the
set

we readily find that
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Now, (4.41) is in a reasonably simple form, but it involves terms of the form
and it would be nicer to have all constants in the form

because our normalizing constants are specified in closed forms for each M
with N as a variable. From (4.41) and the law of total probability, we find

so that

where we define for for all and
for all N < 0. Expanding (4.42), we find for N,

But, from (4.42), we recognize the summation of the right-hand side of the
previous equation to be Thus we have

with for and for all as previously
stated.

We note in passing that the recurrence equation (4.43) provides a handy way
of generating the normalizing constants recursively for an arbitrary closed net-
work of single-server queues. Kobayashi [1978] presents the same recursion
for the special case described here.
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The complexity of obtaining for this special case via (4.34) is
not substantially different from that of using (4.43). However, the power in
Gordon’s approach is that it makes it possible to obtain closed-form results
for a variety of more complicated systems. In particular, Gordon easily de-
rives closed-form expressions for single-server queues in the following special
cases: for all Extensions to other special cases of the
single-server class of networks are simply a matter of applying partial fraction
expansion rules to obtain the coefficient of in (4.34).

In addition, Gordon derives a closed-form expression for the case in which
each of the service stations may have a finite number, of servers, and the
fractions are distinct, and he indicates how this method may be extended
to the case in which the fractions are not distinct. These closed-form
expressions and the extensions to more general cases do not seem to have ap-
peared previously in the literature.

It is interesting to observe that the methods discussed by Kobayashi [1978]
in explaining the recursive expressions also depend upon infinite summations
and generating functions of exactly the same form as those used by Gordon.
However, the relationship of the results to contour integration and the resulting
utility of partial fraction expansions in obtaining closed-form results appear to
have originated with Gordon.

Returning to our specification of the marginal occupancy probabilities, we
note that the specification of N in (4.43) is arbitrary. We therefore can substi-
tute for N, and after rearranging, we have

Upon substitution of (4.44) into (4.41), we obtain

We have seen earlier that expectations may be computed by summing com-
plementary distributions; for example,

Clearly, since N is the population size. Thus, we find from
(4.45) that
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By successive substitutions into (4.45), we find

Thus we have

Expressions for higher moments of the occupancy distribution at an arbitrary
node can be derived in a similar fashion.

Given (4.47), the throughput at a given node can be specified exactly via
Little’s result. That is, (4.47) provides us with the average server occupancy,
and we already know the average sojourn time at a server; therefore, Little’s
result can be used to solve for the average arrival rate to the server, which is
the throughput because there is no blocking.

EXERCISE 4.7 Carefully develop the argument leading from (4.43) to
(4.44).

EXERCISE 4.8 Using the recursion of (4.43) together with the initial con-
ditions, verify the expression for for the special case N = 6 numer-
ically for the example presented in this section.

EXERCISE 4.9 Develop an expression for throughput at node M using Lit-
tle’s result and (4.47).

Before closing our discussion of queueing networks, we note that when only
mean occupancies (or mean sojourn times) are desired, it is possible to com-
pute the mean values directly through an iterative technique known as mean-
value analysis. We emphasize that mean-value analysis is an iterative tech-
nique that should not be confused with other approaches that actually yield
closed-form expressions for averages. The technique is described thoroughly
in Schwartz [1987], Galenbe and Pujolle [1987], Leon-Garcia [1989] and nu-
merous other texts and papers. Although this technique has found broad appli-
cation, we will not discuss it further in the volume.

We also note that a technique for solving product form networks based on
potentials(see Çinlar [1975]) is presented in Abboud and Daigle [1997]. This
method has not been fully developed for the general case, but where it has been
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applied, it has been found to be very fast and, in addition, requires little storage
compared to other known methods.

4.2 Models Having Phase-Dependent Arrivals and Service

In Chapter 3, we discussed analyses of systems in which arrival and service
rates may be state-dependent. In this section, we consider analysis of systems
in which the rate at which units arrive to the server and the rate at which the
units are serviced are dependent on the state of a so-called phase process. In
particular, we assume that the phase (see Stern [1983]) of a system,

is a discrete-valued continuous-time finite Markov chain with infinitesimal
generator, (Cohen [1969], Chapter 3). We define to be a
continuous-time Markov chain which takes on integer values between 0 and
K. Thus, the dimension of the is K + 1, and

The state diagram for the phase process is shown in Figure 4.2. As one can
see from this diagram, the birth rate while the phase process is in state

is equal to and the rate at which the process transitions from
state to state is given by

Figure 4.2.   State diagram for phase process.

When is in phase the arrival rate of units to the
server is and the service rate is Figure 4.3 shows a partial state diagram
for a queueing system having phase dependent arrival and service rates. A
typical state for this system is designated by where specifies the current
occupancy and specifies the current phase. The process
is a QBD process (Neuts [1981]) on the state space
Let

In this section, we develop a number of techniques for solving for the state
probabilities of QDB processes. In the first subsection, we develop a vector
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Figure 4.3. State diagram for system having phase-dependent arrival and service rates.

version of the probability generating function approach, the scalar version of
which was introduced in Chapter 3. Extensive use of eigenvalue/eigenvector
analysis is used to resolve the unknown vector of probabilities. In the second
subsection, the matrix geometric technique is introduced and used to solve
for the state probabilities of the QBD model. A technique for finding the rate
matrix of the matrix geometric method, which reveals the entire solution, based
on solving eigensystems is discussed in the third subsection. Finally, in the
fourth subsection, a generalized state space approach is developed.
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4.2.1 Probability Generating Function Approach
From the state diagram shown in Figure 4.3, it is straightforward to write

the balance equations for the system. For a typical state on the interior of the
diagram - that is, with and - we find

From this balance equation, the balance equations for the states not interior
to the state diagram are readily determined. We simply specialize the above
equation to account for the changes due to the QBD boundary conditions .
First, we consider the case and for which there are no transi-
tions from state (0, 0) due to “deaths,” no transitions into state (0, 0) due to
“births,” and no transitions into state (0, 0) due to new arrivals. Thus, we find
the balance equation for state (0, 0) is

Next, we consider the case On this boundary, there are no
transitions from state due to service completions, and no transitions into
state due to new arrivals. Thus we obtain the following set of equations:

Finally, we consider the case and On this boundary, there are
no transitions from state (0, K) due to service completions or “births,” and no
transitions into state (0, K) due to either new arrivals or “deaths.” Thus, the
appropriate equation for this boundary is

Equations (4.50) through (4.52) can be rewritten in more compact form by
using matrix notation. Toward this end, we define

Then, upon rearranging (4.50) - (4.52), we find

where is a diagonal matrix of arrival rates, and
is a diagonal matrix of service rates.
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The matrix equation (4.53) summarizes all of the required information for
the states in which A similar set of equations is required for the states
in which These equations can also be obtained from (4.49). For
we find

Finally, for with by setting in (4.49) and noting that
the birth rate while in state is equal to 0, we find

Upon rewriting (4.49), (4.54) and (4.55) in matrix form, we can readily see
that

where all of the terms have been previously defined.
The matrix equations (4.53) and (4.55) are analogous to the scalar balance

equations derived for the M/M/1 queueing system. Formulating the probabil-
ity generating function is analogous to the scalar case as well. However, the
generating functions so derived will be marginal probability generating func-
tions rather than total probability generating functions; that is, the generating
functions obtained by multiplying both sides of (4.56) by and summing
will generate marginal distributions. These marginal distributions can then be
summed to yield probability generating functions if desired.

Define

or, equivalently,

where

for Then, upon multiplying both sides of (4.56) by and
summing, we find
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After rearranging terms, we get

Upon comparison of the last term on the right hand side of (4.60) to (4.53), we
see that this bracketed term is equal to zero. Thus, (4.60) reduces to

or, equivalently,

To simplify the notation, define

Then, we can rewrite (4.62) as

Upon solving (4.64), we find

Analogous to the M/M/1 case, in which the probability generating function
approach resulted in having to resolve an unknown constant, (4.65) contains an
unknown vector of coefficients. This unknown vector can be determined using
exactly the same principle as that used in the scalar case. We simply observe
that the vector function is a vector of marginal probability generating
functions and is therefore bounded at least for (Hunter [1983]). This
means that if there are zeros in the denominator of the right-hand side of (4.65)
at such that then there is also a zero in the numerator of the right-
hand side of (4.65) at

Because the rows of sum to a zero vector, det and, therefore,
det has a factor, which cancels the factor in the numerator. This
fact, when coupled with the fact that the probabilities must sum to unity, leads
to one equation in the K + 1 unknowns of In addition, a later exercise is to
show that there are exactly K zeros of det in the interval (0, 1) provided
that det These K zeros lead to an additional K linear equations in the
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K +1 unknowns of It turns out that the K +1 linear equations are linearly
independent if det so that this linear system can be used to solve for
the unknown vector

EXERCISE 4.10 Show that det is a polynomial, the order of which
is not greater than 2(K + 1).

More formally, let or in vector notation,
where e is a column vector of 1s. Then, from (4.65), we find

Based on the above discussion, we find corresponding to

To facilitate further discussion, we define to be the set of all such that
det We partition the set into three sets: and
containing those elements of less than and greater than unity, respec-
tively, and a third set that contains only the unity element. Thus,

The elements of are then labeled
the unit element is referred to as and the elements of are labeled

where is the total number of elements in We assume
the elements of are distinct, and for convenience, we order the indexing
such that if

For each we find from (4.66) and the above argument that

Equations (4.67) and (4.68) then form a system of K + 1 linear equations
through which may be determined. The result can then be substituted into
(4.65) to obtain the marginal PGFs or into (4.66) to obtain the total PGF.

Note that we would prefer not to write explicit expressions for adj
and det in order to formulate the linear system of equations. The entire
problem can be formulated in terms of the eigenvalues and eigenvectors of
a matrix, which can be specified directly from inspection of and the
expressions for and and their corresponding probabilities can be
specified in a convenient manner without the need for direct manipulation of

However, before turning to a discussion of more advanced techniques,
we present a simple numerical example.

EXAMPLE  4.2 A computer accesses a transmission line via a statistical mul-
tiplexer or packet switch. The computer acts as a source of traffic; in this
case, arrivals of packets from the computer are analogous to arrivals of cus-
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tomers to a queue. The computer alternates between idle and busy periods,
which have exponential durations with parameters and respectively. Dur-
ing busy periods, the computer generates packets at a Poisson rate The
service times on the transmission line form a sequence of independent, iden-
tically distributed exponential random variables with parameter Compute
the state probabilities and the occupancy distribution for the parameter values

Solution: In referring back to the model, we find
and Thus we find

and

Upon substitution of these definitions into (4.64), we find

and

Thus we find that

and

Substituting these numbers into (4.67) and (4.68), we find that
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Thus we find that

Upon substitution of this result into (4.65), we find after some algebra that

After some additional algebra, this result reduces to

Thus, for we find

The probability generating function for the occupancy distribution can now be
computed from (4.66) or by simply summing and We find

From this probability generating function, we find and

EXERCISE  4.11 Repeat the above numerical example for the parameter
values That is, the proportion of time spent in
each phase is the same and the transition rate between the phases is faster
than in the original example. Compare the results to those of the example
by plotting curves of the respective complementary distributions. Compute
the overall traffic intensity and compare.

EXERCISE   4.12 Suppose we want to use the packet switch and transmis-
sion line of the above numerical example to serve a group of users who
collectively generate packets at a Poisson rate independent of the com-
puter’s activity, in addition to the computer. This is a simple example of
integrated traffic. Assuming that the user packets also require exponential
service with rate show the impact the user traffic has on the occupancy
distribution of the packet switch by plotting curves for the cases of
and
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We now turn our attention to the determination of and the specification
of and by more advanced techniques. We shall show that all of the
computations required to specify these quantities can be accomplished without
actually performing algebraic manipulations. With regard to (4.64), we find
that1

That is, is proportional to the left eigenvector of corresponding to the
eigenvalue 0 of This means that is the vector of ergodic probabilities
of the phase process, a fact which can be readily verified by evaluation of

using (4.57). Now, from Theorems 3.5 and 3.6, we know that the left
eigenvector of corresponding to the eigenvalue zero is proportional to the
rows of adj and consequently, the rows of adj are proportional to each
other. But, because is the infinitesimal generator for the phase process, it
can be shown that not only are the rows of adj proportional to each other,
but they are also equal to each other. Proof of this fact is left as an exercise.
Thus, if we let denote any row of adj we find

EXERCISE 4.13 Let denote the infinitesimal generator for a finite,
discrete-valued, continuous-time Markov chain. Show that the rows of
adj are equal.

It is left as an exercise to show that the sum of the columns of is equal
to the column vector Now, summing the columns of a
matrix is an elementary transformation, and the determinant of a matrix is un-
affected by elementary transformations (Noble and Daniel [1977]). Therefore,

is given by the inner product of the last column of the cofactor matrix of
and But the last column of the cofactor matrix of is exactly
the transpose of the last row of adj which has been defined to be
Therefore,

1We liberally use notation such as and to denote the limits of these functions as approaches 1
without the formality of stating these are limits.

But from (4.63) we find that Thus we have
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Thus, upon substituting (4.71) and (4.72) into (4.66), we find

or, equivalently,

Thus we see that the equation corresponding to can be specified with-
out resorting to algebraic manipulation; we simply find the left eigenvector of

corresponding to zero and normalize this eigenvector so that its components
sum to unity to obtain and then use (4.73) to complete the specification.

EXERCISE 4.15  Show that the sum of the columns of is equal to the
column vector so that det has a (1-z) factor.

Equation (4.73) has an intuitively satisfying interpretation. To see this, we
rearrange (4.73) as follows:

The left side of (4.74) expresses the average rate at which units enter the service
system while the right-hand side expresses the average rate at which units leave
the system. Thus (4.74) is a flow balance equation. A special case of (4.74) is,
for example, the relationship for the M/M/1 system, which can
be solved to obtain

We now turn our attention to the formulation of (4.68) by nonalgebraic tech-
niques. Before proceeding to the details, we introduce some terminology (see
Lancaster [1966]).

DEFINITION 4.1 A is a matrix the elements of which are
polynomials in

DEFINITION  4.2 Null value. Let be a Then a value such
that det is called a null value of For example, is a

and the eigenvalues of A are null values of the

DEFINITION 4.3 Null vector. Let be a and let be a
nontrivial column vector such that Then is called
a null vector of the corresponding to the null value For
example, is a and the eigenvectors of the matrix A are null
vectors of the

EXERCISE  4.14 Obtain (4.73) by starting out with (4.64), differentiating
both sides with respect to postmultiplying both sides by e, and then taking
limits as



132 QUEUEING THEORY FOR TELECOMMUNICATIONS

DEFINITION 4.4 Left null vector. Let be a and let be
a nontrivial row vector such that Then is called a left
null vector of the corresponding to the null value

From the above definitions, we see that is a of degree 2
because each of the elements on the major diagonal is a polynomial of degree
2. In addition, we see that the zeros of det are equivalent to the null
values of It is left as an exercise to show that the null vector of
corresponding to the null value is proportional to
the columns of adj respectively. Consequently,
the column vectors of adj are proportional to each other, and because
the left-hand side of (4.68) is zero, we may replace adj in (4.68) by

where is the null vector of corresponding to This null
vector is, in turn, simply the eigenvector of corresponding to the zero
eigenvector of Thus, if the null values of are known exactly, then
computation of the corresponding null vectors is trivial.

EXERCISE 4.16 Show that the zeros of the determinant of the
are all real and nonnegative. [Hint: First, do a similarity transfor-

mation, transforming into a symmetric matrix, Then, form the
inner product where is the null vector of cor-
responding to Finally, examine the zeros of the resulting quadratic equa-
tion.]

The null values and vectors of can be obtained from standard eigen-
value eigenvector routines. Towards this end, consider the system

where is any null value of and is the corresponding null vector.
Define Then, from the definition of given by (4.63), we find

and, by definition,

EXERCISE 4.17  The traffic intensity for the system is defined as the prob-
ability that the server is busy at an arbitrary point in time.

1. Express the traffic intensity in terms of the system parameters and

2. Determine the average amount of time a customer spends in service us-
ing the results of part 1 and Little’s result.

3. Check the result obtained in part 2 for the special case

EXERCISE 4.18 Show that adj is proportional to the null vector
of corresponding to
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Combining these two systems, we find that

or, equivalently,

From (4.75), we see that the null values of are equivalent to the inverses
of the eigenvalues of the matrix

where we have used the subscript E to denote expanded, and where the null
vectors of are proportional to the upper and lower (K + 1)-subvectors
of the eigenvectors of this same 2(K + 1)-dimensional square matrix. Let

where Then, we find that we can
form the linear system of equations (4.66) and (4.67) as follows:

The system (4.77) may then be solved for
Having solved for we have a formal solution for However, the

form of in its present state is not suitable for manipulation, and algebraic
manipulation of would be required to complete the specification. A rea-
sonable approach at this point would be to expand using partial fraction
expansions. At first glance, this would appear to be a formidable task, but a
little further investigation will show that this is not the case.

As a starting point, we repeat (4.65) putting the factor in the denom-
inator

Now, because is not required to have full rank, the polynomial det may
have degree less than 2(K +1). If so, there will be a corresponding number of
eigenvalues of which have zero values. We therefore find that
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where is the number of eigenvalues of having nonzero values and we
recall that is the set of null values of corresponding to those eigen-
values of Thus we have

But

so that

Upon substituting (4.81) into (4.79), we find

Substitution of (4.82) into (4.78) then yields

We note that the zeros of det in the interval (0, 1) are canceled by the
choice of so that the remaining zeros are the ones in the interval
Recall that denotes the set of null values of in Thus
expressing (4.83) using partial fraction expansions results in

where is a row vector of constants reflecting the fact that the numerator
polynomials may have degree larger than that of the denominator polyno-
mial, and is a row vector representing the residue of corresponding
to
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Upon multiplying both sides of (4.83) and (4.84) by and taking
limits as we find

At this point, it is worthwhile to contemplate the difficulties of computation of
At first glance, this computation may appear difficult because it involves

evaluating adj However, an LU decomposition approach (Press, Flan-
nery, Teukolsky and Vetterling [1988]) which takes into account the fact that

is both tridiagonal and singular, leads to a very simple algorithm for ob-
taining adj as the outer product of two vectors which are easy to obtain.

Now, from (4.84), we find that

Thus, we need not obtain explicitly in order to compute the state probabili-
ties. We readily find that

The marginal probabilities are obtained by summing the joint probabilities. We
find that

where is the equilibrium probability that the occupancy is

EXAMPLE 4.3 In this example, we rework the previous example in which
the parameter values were using the more advanced
techniques.

Solution: From the definition of which is given by (4.76), we find
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Then, from a standard eigenvalue/eigenvector routine, we find the eigenval-
ues of to be {3.414214, 1.0, 0.585786, 0}. Upon taking inverses of those
eigenvalues, we find Following our in-
dexing scheme we have, and

The null vectors of corresponding to and are found by partition-
ing the matrix of eigenvectors of the results are as follows:

and

respectively. From (4.71), we find

Thus, from (4.77), we find

from which we find

Evaluation of yields

from which we find

From (4.85), we find

where the T denotes the matrix transpose operator. Thus, from (4.86), we find
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Upon postmultiplication of the both sides of this expression by e, we readily
find

so that and for as before.

EXAMPLE 4.4  This example provides the solution to Exercise 4.12. As in
Exercise 4.12, we increase the arrival rate in each phase by 0.1 to reflect the
addition of Poisson user traffic at rate 0.1 so that the resulting parameter values
are

Solution: Following the procedure outlined above leads to the following re-
sults:

Upon postmultiplying both sides of the above equation by e, we find

so that and

From the expression for the occupancy probabilities, it is easy to compute the
complementary occupancy distribution. We find

Note that there are two null values of greater than unity. For large values
of only the smaller of these has any significant effect upon the occupancy
probabilities, marginal or otherwise. For example,

The contribution due to the larger null value is only or roughly
three parts in Expressing the results in the form of a geometric sum
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makes it easy to see the effects of each of the null values on the occupancy
probabilities for all

The above results are now specified as a weighted sum of geometric distri-
butions. The solution vector is then “matrix geometric.” In Section 4.2.3 we
describe a more direct approach, due to Neuts, to computing the ergodic prob-
abilities when these probabilities are expressible in matrix geometric form.
Although the approach is more direct from a descriptive point of view, the
computation time for numerical solutions is not necessarily comparable to the
current method, as will be seen later.

EXERCISE  4.19  Show that if the system described by (4.57) and (4.60) is
ergodic, then there are exactly K zeros of det in the interval (0, 1).
[Hint: First show that this is the case if  Then show that it is
not possible for det to be zero for any choice of unless

which implies no equilibrium solution exists. The result is that the
number of zeros in (0, 1) does not change when the change.]

4.2.2 Matrix Geometric Method
Suppose there exists a matrix such that

Then, we find by successive substitutions into (4.79) that

A solution of the form (4.90) is called a matrix geometric solution. The key to
solving a matrix geometric system is to specify the matrix which is called
the rate matrix and which we shall discuss below.

Following our probability generating approach, we find from (4.89) that

so that

EXERCISE  4.20  Beginning with (4.86) through (4.88), develop expres-
sions for the joint and marginal complementary ergodic occupancy distri-
butions.

EXERCISE  4.21 Develop an expression for adj  in terms of the outer
products of two vectors using LU decomposition. [Hint: The term in the
lower right-hand corner, and consequently the last row, of the upper trian-
gular matrix will be zero. What then is true of its adjoint?]
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or

and

Thus

and

Also, we have from (4.56) that

Hence, upon substituting (4.89) into the above equation, we find

so that

Clearly, a sufficient condition for (4.95) to hold is that satisfy

Thus, if one could solve (4.96) for one could then use (4.94) to solve for
having previously computed by normalizing the left eigenvector of

corresponding to its zero eigenvalue, as described in Section 4.2.1. An addi-
tional check on and could be obtained from the boundary condition for
the system of equations as specified in (4.53). The boundary condition states
that

so that

Obtaining a solution for of (4.96) is not necessarily an easy task. One
possibility is to specify a contraction map (Hewitt and Stromberg [1969]) on

based on (4.96), and then use successive approximations to obtain One
way to specify a contraction map is to multiply both sides of (4.65) by some
positive number and then add to both sides of the result. This procedure
yields
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We then set

and iterate on starting with some suitable value for until converges.
One possibility is to set

An alternative contraction map is one specified by Neuts [1981a]. It is ob-
tained by simply solving (4.96) for and then introducing subscripts. The
result is

The idea is to start with and then compute successive approxima-
tions to using (4.100). Neuts [1981a] has shown that is
a monotonically increasing sequence which converges to the minimal nonneg-
ative solution to (4.96), and that this solution is the solution which uniquely
provides the rate matrix which satisfies (4.89).

This approach is called the matrix geometric approach, and it is elegantly
described in Neuts [1981a]. In its most general form, Neuts describes the
(QBD) process as a Markov chain on having an
infinitesimal generator of the form

where and
the matrix is a finite generator.

In Neuts’ terminology, we have

so that our system matches Neuts’ definition of a QBD process.2

Neuts [1981] presents the following theorem relevant to the analysis of such
systems:

2The term quasi-birth death process seems to have been first applied to this type of system by Evans [1967].
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THEOREM 4.1 The process is positive recurrent3 if and only if the minimal
nonnegative solution to the matrix quadratic equation

has all of its eigenvalues inside the unit disk and the finite system of equations

has a unique positive solution
If the matrix is irreducible, then if and

only if  where is the stationary probability vector of A.4

The stationary probability vector of is given by
for

The (equivalent) equalities

hold.

The equation is equivalent to (4.97), and the equation
can be obtained from (4.94) by postmultiplying both sides

by e. The condition  is equivalent to
which states that the maximum average rate at which service may be rendered
must exceed the average arrival rate.

Matrix geometric techniques are very powerful, and their use is not limited
to the analysis of QBD processes. The literature contains many applications
of matrix geometric techniques to the solution of problems. An application
of this method to a non-Markovian queueing system is presented in Daigle
and Langford [1985,1986], and an application of this method to analysis of
Ethernet-based local area networks is presented in Coyle and Liu [1985].

In addition, the results that may be obtained via matrix-geometric tech-
niques are not limited to occupancy distributions. Ramaswami and Lucantoni
[1985] discuss the application of matrix geometric techniques to obtaining sta-
tionary waiting time distributions in QBD and other systems. Additional re-
sults along these lines are given in Daigle and Lucantoni [1990]. More recently,
Latouche and Ramaswami [1999] have provided a comprehensive coverage of
the solution of QBD models using the matrix geometric approach. We note

3The phrase “the process is interpreted as “the process whose infinitesimal generator is
4The expression denotes the spectral radius of the matrix which is defined as the magnitude of
the largest eigenvalue of A plot of as a function of overall traffic intensity is sometimes called
the caudal characteristic curve for the system.
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that it is also possible to obtain such distributions using the PGF approach
described in Section 4.2.1, but the development is more cumbersome.

EXAMPLE  4.5  Provide the solution in matrix geometric form to the problem
solved in Example 4.4.

Solution: Upon substituting the parameters from Example 4.4 into (4.99), we
find

which will be solved iteratively for
We arbitrarily choose and the iteration process yields

We next determine the equilibrium phase probabilities by any of the meth-
ods previously described, all of which are very simple to apply. We find

Substituting this result into (4.94) yields

The solution expressed in matrix geometric form as in (4.90) is then

We see from this example that the behavior of the tail probabilities is some-
what less obvious than they are in the form of the previous example, where the
geometric quantities are expressed in scalar form.

EXERCISE  4.22  Solve for the equilibrium state probabilities for Example
4.5 using the matrix geometric approach. Specify the results in terms of the
matrix Determine numerically the range of values of for which (4.98)
converges. Also, verify numerically that the results are the same as those
obtained above.

EXERCISE  4.23  Solve Exercise 3.22 using the matrix geometric approach.
Evaluate the relative difficulty of using the matrix geometric approach to
that of using the probability generating function approach.
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4.2.3 Rate Matrix Computation via Eigenanalysis
We now turn our attention to a discussion of the relationship between the prob-
ability generating function and the matrix geometric approaches discussed in
the previous subsections. To begin our discussion, let be an eigenvalue
of and let be a left eigenvector of corresponding to Then, by the
defining relationship between eigenvalues and eigenvectors, we have

Also, upon premultiplying (4.96) by we find that

Substitution of (4.101) into the previous equation yields

Then, upon substituting into (4.102) and multiplying both sides by
we find

But this latter expression is exactly

This means that if is a left eigenvector of corresponding to then is a
left null vector of corresponding to its null value It is obvious from
(4.90) that, for a stable system, all of the eigenvalues of have magnitudes
less than unity. Therefore, the null values of which are of interest are
those that have magnitudes greater than unity, that is, those in the set
Analogous to the case of Section 4.2.2, these eigenvalues and left eigenvectors
can be found via a standard eigenanalysis of the matrix

where the only difference between (4.76) and (4.105) is that the matrix is
transposed.

Now, the matrix may have zero eigenvalues. In fact, it is easy to show
(Daigle and Lucantoni [1990]) that the number of zero eigenvalues of this ma-
trix is exactly the same as the number of terms that are zero on the major diag-
onal of First we use an elementary transformation to transform into a
symmetric Then, we can write the quadratic form of the transformed
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symmetric which has the same null values as the original matrix, can
be written as

where and are nonnegative, positive, and nonpositive, respectively. The
discriminant of the solution of this quadratic equation is readily found to be

which is always nonnegative. Therefore, all null
values of are real. It is also easy to see that the null values of are
nonnegative. But, as the value of becomes smaller and smaller, the value of
the null value corresponding to becomes larger and larger, and its inverse
becomes smaller and smaller. In the limit, the null value becomes infinity and
its inverse becomes zero. In effect, the matrix has one less null value, but
the inverse of this “null value at infinity” shows up as a zero eigenvalue of

From (4.100), it is easy to see that if for some then the correspond-
ing row of the matrix will be zero; this can be seen by doing successive sub-
stitutions in (4.100) starting with Thus, if we denote the (K + 1) × 1
column vector whose element is 1 with all other elements being 0 by
then it is easy to see that is a left eigenvector of

Now, suppose there are values of for which Then there will be
rows of which will be identically 0. Define to be the elementary transfor-
mation such that is a diagonal matrix in which the 0 values of appear
as the first  diagonal elements. Then, the first  rows of the matrix will
be identically 0, and the row vectors will be left eigenvectors of
this matrix. Next, we denote the matrix formed by the collection of the remain-
ing left eigenvectors of by and partition this matrix into the matrix

where contains the first  columns of Then, we can verify that

where is the diagonal matrix of the nonzero eigenvalues of The form
of (4.106) indicates that if the matrix of left eigenvectors spans the K + 1
dimensional eigenspace, then the matrix is nonsingular. Thus we find

The implication of the above is that a zero-valued eigenvalue of having
multiplicity greater than one simplifies, rather than complicates, computation
of

The computation of the matrix of left eigenvectors of is quite straight-
forward using standard eigenanalysis packages. First, we formulate the matrix

and obtain its eigenvalues and corresponding eigenvectors. We then select
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the set of eigenvalues that are less than unity together with their corresponding
eigenvectors. The last K + 1 elements of the eigenvector of correspond-
ing to each eigenvalue of which is less than unity are then transformed
by to yield the elements of the left eigenvector of corresponding to
the same eigenvalue. If the diagonal matrix whose diagonal elements are the
eigenvalues of is denoted by and the matrix of corresponding left eigen-
vectors is denoted by then we compute from

Once we know we may solve for using (4.94) and then compute
for via (4.90). Note that the computational effort required to compute

via (4.108) and (4.94) is roughly equal to that required to compute via
(4.77). Note also that computation of a particular power of is readily ac-
complished by making use of the identity

We now turn to the computation of the survivor function and the moments
of the occupancy distribution. With regard to the survivor functions, define the
joint (occupancy, phase) survivor function as

Then due to (4.90), we find

Thus we can readily see that the values of the vector for successive values
of can be obtained via a postmultiplication by The marginal survivor
function for the queue occupancy can then be obtained by summing the ele-
ments of or, equivalently, by postmultiplication by e. Also, the terms of
the conditional survivor functions for the queue occupancy can be obtained by
dividing the element of by the element of

By using the final form of (4.110) and the well known result that the ex-
pected value of a nonnegative random variable is given by the integral of its
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survivor function, we find

But, because our technique for computing yields the eigenvalues and
eigenvectors, the expectation can be computed using these quantities. In par-
ticular, by using (4.108) and modest algebraic manipulation, we find

Computational forms for higher factorial moments can be easily derived along
the same lines. The resulting formulae are as follows:

Formulae for the above quantities based on the partial fraction expansion rep-
resentation of the occupancy distribution can be readily developed, the most
complicated operation being the summing of a geometric series.

EXERCISE  4.24  Prove the result given by (4.112) for the factorial
moment of
An alternate matrix geometric approach for solving QBD models, based on

the notion of complete level crossing information, is described by Beuerman
and Coyle [1989]. Beuerman and Coyle first expand the state space so that
the resulting model has complete level crossing information, and then they de-
scribe a technique for obtaining an alternate rate matrix, W, that is completely
specified analytically. In addition, Zhang and Coyle [1989] describe a proce-
dure, based on transform analysis, to determine the time-dependent state prob-
abilities for QBD processes. These results will not be commented upon further
here, but the reader interested in solutions to QBD models is encouraged to
consult the references.

4.2.4 Rate Matrix Computation via Generalized
State-Space Methods

An interesting alternative for determining the rate matrix is the so-called gen-
eralized state-space approach discussed in Akar, and Sohraby [1998].
For the case of a QBD process, we shall see that a natural state vector for
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the system of balance equations is found by concatenating two level proba-
bility vectors. Specifically, we will define in a natural way the state vector

where and are two successive level probability vec-
tors. Again, in a very straightforward manner we will see that successive state
vectors are related through two matrices; specifically, where E
and A are easily specified square matrices. We will then solve for the state
vectors via a process that involves reduction of the pair (A, E) to generalized
Schur form, which is accomplished via the widely available QZ algorithm,
which is discussed in Golub and Van Loan [1996].

Recall from our earlier discussion that the QBD process is a Markov chain
on having an infinitesimal generator of the form

where and
the matrix is a finite generator.

From the generator, we immediately have

From the previous equation, we then have

Then, by making the simple statement and combining this simple
statement with the previous equation, it follows that

If we now define

we find
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In order to solve (4.116) for the state probabilities, we shall first decouple the
matrix equations (4.116) into two sets of equations; those representing stable
modes and those representing unstable modes. We shall accomplish this de-
coupling by reducing the pair (A, E) to generalized Schur form. Before doing
so, we introduce a minimum of terminology and theory from linear algebra.

DEFINITION 4.5 . Generalized eigenvectors, eigenvalues, and spectrum.
A scalar value such that for a non-trivial vector S is called a
generalized eigenvalue of A with respect to E. The vector S is said to be the
generalized eigenvector of A with respect to E corresponding to the general-
ized eigenvalue The set of all generalized eigenvalues is called the spectrum,
and it is denoted by

The following theorem is a composite of various theorems that appear in
Demmel [1997], Golub and Van Loan [1996], and Akar, and Sohraby
[1998] to which the reader is referred for more details.

THEOREM 4.2 Suppose A and E are both real matrices and have spec-
trum Suppose further that is partitioned into two sets, say

and such that Then, there exist
matrices, Q and Z, such that

where all matrices are real, Q and Z are orthogonal, meaning
and and are upper triangular, and and are
block upper triangular, meaning that their diagonal elements are either 1 × 1
or 2 ×  2 blocks, depending upon whether the eigenvalues are real or occur in
complex conjugate pairs. The row dimensions of and and and

are and respectively.

The decomposition indicated in Theorem 4.2 can be accomplished using
the routine dgges() from the LAPACK Users’ Guide [1999] or its C-language
version CLAPACK, the latter of which is broadly distributed in C-language de-
velopment packages. The routine dgges() allows the user to write and specify
a function that determines whether or not a particular generalized eigenvalue
is in the set In our particular case, we define to be the
set of all unstable generalized eigenvalues, by which we mean for all

By default, we then have for all
The set contains the set defined earlier in the context of

very specific assignments for the matrices and Let and
denote the number of elements of and respectively.

Then, as in the special case we considered earlier, for stable
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QBDs. Based on these definitions of and we use dgges( )
to find the corresponding matrices Q and Z as defined in Theorem 4.2.

For each define Then, substitution into (4.116) and
postmultiplication by Z yields

Let and denote the first   and the last elements of so that
Then, by choice of Q and Z, we have the equations

and

From (4.118), the equations for the unstable generalized eigenvalues, we find

But, since for grows without bound if
Therefore, we must choose

On the other hand, for Therefore, may have a
non-zero value. Thus

where This leads to for
To facilitate further exploration of the stable part of the solution, define the

following partitions of Q and

where and are all (K + 1) × (K + 1). Then,

Now, implies Therefore, we have
so that Upon using this result in (4.120), we then

find

But, because (4.121) is equivalent to



150 QUEUEING THEORY FOR TELECOMMUNICATIONS

Thus, from the first matrix equation of (4.122), we have

Upon solving the previous equation for we have

Now define

Then, (4.123) reduces to

so that

which is in standard matrix geometric form.
As before, upon summing the probabilities, we find

But, in the solution to Exercise 4.25 it will be seen that

where is the stationary vector of the stochastic matrix Thus,
we have

We now have a complete specification for the solution of all of the state
probabilities. In summary, the procedure is as follows:

1

2

3

From the problem statement, determine and There is no need
to specify and as the information is already contained in and

Determine the matrices A and E as defined in (4.115).

Perform the decomposition indicated in Theorem 4.2 using the LAPACK
routine dgges() to find    and
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4

5

6

7

Determine R from (4.124).

Determine the stationary vector, of

Compute using (4.126).

Compute the desired level probabilities using (4.125).

EXERCISE 4.25 Beginning with (4.113), show that

[Hint: First, sum the elements of the right hand side of (4.113) from to
This will yield Next,

use the fact that, because is stochastic, the sum of the elements of each
of the rows of must be a zero matrix to show that Then
complete the proof in the obvious way.]

EXAMPLE 4.6 Consider the system of Example 4.4, where the parameter val-
ues are and the QBD matrices
are as follows:

We wish to find the rate matrix, R, and the 0-level probability vector, via
generalized state-space methods.
Solution: From (4.115), we have

Schur decomposition via dgges() then yields:
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From of the Schur decomposition, we can readily extract the following:

and

Note that there is no need to invert to find Q because Q is orthogonal by
construction. We may now use (4.124) to compute R. We find

We preiously had Substitution of R and into
(4.126) yields

We may now compute any desired level probabilities by using (4.125).
We also note that by dividing the diagonal elements of the A matrices by the

diagonal elements of the E matrices of the Schur decomposition, we can read-
ily find the generalized eigenvalues to be {3.489792, 1.0,0.047568, 0.662640}.
Note that the eigenvalues whose moduli are less than 1 are partitioned from
those whose moduli is at least 1.

The example is now complete.

Reduction to generalized Schur form is accomplished via the so-called QZ
algorithm, which is described in detail in Golub and Van Loan [1996]. They
report that the QZ algorithm requires floatingpoint operations, including
computation of and that the the speed of the algorithm is not affected by
any rank deficiency of E.

We shall see later that the type of formulation and the solution methodology
presented here is useful in a much broader context.

4.3 Service-Time Distributions of the Phase Type
and Other Variations

At this point we have just begun to scratch the surface concerning systems hav-
ing matrix geometric solutions. In this section, we make minor modifications
to the model of the preceding section and show how more general service-time
distributions may be considered via matrix geometric methods. In particular,
our modifications serve to introduce distributions of the phase type, a broad
class of distributions which are covered in detail in Neuts [1981a].

The essence of our modification is that we allow both the level and the
phase of the process to change simultaneously. In particular, we express the
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infinitesimal generator of the phase process as

where is a nonsingular (K +1) × (K +1) matrix representing phase changes
within the same level, is a nonnegative (K + 1)-column vector equal to

is a nonnegative (K + 1)-row vector such that and is a
(K + 1) × (K + 1) matrix representing phase changes that result in a level
decrease, that is, a service completion.

Since represents phase changes that are simultaneously level decreases,
the net of effect of the corresponding transitions of this nature is service com-
pletion. Thus we let

In addition, we restrict the arrival process so that the arrival rate is indepen-
dent of the phase so that

Then, substituting (4.127) through (4.129) into (4.53) and (4.56) we get

We now modify the behavior of the system so that the state of the system
following a service completion from level 1 is always (0, 0), and the state of
the system following an arrival from level 0 is (1, with probability

Then, we find that

equations analogous to (4.130) and (4.131) for this special case are

and

Neuts [1981a], pp. 83-86 shows, using very elementary arguments, that the
system of equations (4.131) through (4.134) has the unique solution
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where

and

Note that the matrix is given explicitly, so that the state distribution can
be determined in closed form involving only a matrix inversion. This demon-
strates that it is worthwhile to attempt to find an analytic solution to a problem
even though it may at first appear difficult.

A little thought reveals that the system we have just analyzed is a queueing
system having Poisson arrivals, identically, but not exponentially distributed,
service times, and infinite waiting capacity. In short, the system is a special
case of the M/G/1 queueing system. The special case is the one in which the
service-time distribution is of the phase type.

For service-time distributions of the phase type, each time service is be-
gun the phase of the process is initiated in phase with probability

with Changes in the phase process are then governed by
the infinitesimal generator

where and are defined as above, 0 is a (K + 1)-row vector of zeros, and
1 is a scalar. A transition to phase K + 1 represents absorption of the process,
or, equivalently, the end of the current service time.

In forming our system of equations, we represent absorption by a level
change, or service completion, so that phase (K + 1) is not needed. The col-
umn vector represents the rate at which the process changes levels, and
the vector is the vector of probabilities determining the phase of the process
immediately following a service completion. Equivalently, is the vector of
probabilities determining the phase of the process at the beginning of the ser-
vice time, and consequently, it is needed to specify the phase of the process
following an arrival from the empty state, only one of which is needed since
the joint probability for

EXERCISE 4.26 With defined as in (4.138) and any vector of proba-
bility masses such that show that the matrix is always an
infinitesimal generator.

If the infinitesimal generator matrix is irreducible, then Neuts
[1981a], pp. 48-51 shows that the resulting service-time distribution will be

and the moments of the distribution are readily shown to be given by
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A broad class of distributions can be described by judicious choice of the
terms of For example, these terms can be easily chosen so that the resulting
distribution is exponential, or However, the representation of a given
distribution is not unique. For example, two representations for the exponential
distribution with parameter follow.

First we choose to let be a scalar. Then, and
Second, we choose

where and are any nonnegative constants, and and are any two non-
negative numbers such that The interested reader is urged to con-
sult Neuts [198la] and also the more recent book, Latouche and Ramaswami
[1999], for superb treatment of distributions of the phase type and queueing
systems having interarrival arrival and service time distributions of the phase
type. We also point out that there are readily available software packages on
the World Wide Web that facilitate definition of phase-type distributions from
empirical data.

EXERCISE 4.27 Consider a single-server queueing system having Poisson
arrivals. Suppose upon entering service, each customer initially receives a
type 1 service increment. Each time a customer receives a type 1 service
increment, the customer leaves the system with probability or else
receives a type 2 service increment followed by an additional type 1 service
increment. Suppose type 1 and type 2 service increment times are each
drawn independently from exponential distributions with parameters and

respectively. Define the phase of the system to be 1 if a customer in
service is receiving a type 2 service increment. Otherwise, the system is in
phase 0. Define the state of the system to be the 0 when the system is empty
and by the pair where is the system occupancy and
is the phase of the service process. Define for
and a scalar. Draw the state diagram, and determine the matrix the
infinitesimal generator for the continuous-time Markov chain defining the
occupancy process for this system.

EXERCISE 4.28 Suppose

Find and and identify the form of [Hint:
First solve for then for and then for There is
never a need to do matrix exponentiation.]
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EXERCISE 4.29 Starting with (4.139) as given, prove the validity of
(4.140).

Modifications to the basic model of phase-dependent arrival and service
rates can be made to model both independent, identically distributed arrival
and service times of the phase type; such models are classified as PH/PH/1 .
Neuts [1981a] covers the analysis of PH/PH/1 models, which have matrix
geometric solutions, as well as numerous other models. We defer further cov-
erage of models having the matrix geometric solution to Chapter 7 and turn to
the analysis of other models in the next chapter.

4.4 Supplementary Problems
4-1 Let be an matrix representing the infinitesimal generator

for a continuous-time Markov chain with state space Let

where is an matrix, is an column vector, and the
remaining terms are chosen to conform, be a matrix obtained by replacing
any row of by a row of zeros and then exchanging rows so that the

(a)

(b)

(c)

(d)

(e)

Argue that if is the infinitesimal generator for an irreducible Markov
chain, then the states of the modified chain are all tran-
sient, and state is an absorbing state.

Prove that if is the infinitesimal generator for an irreducible Markov
chain, then the matrix must be nonsingular. [Hint: Solve for
then prove by contradiction. Make use of the fact that if is singular,
then has a zero eigenvalue.]

Show that [Hint: Use the fact that
is the probability that the state of the modified Markov chain

is in the set at time

Let be the time required for the modified Markov chain to reach
state given an initial probability vector that
is, with Argue that that is,

Argue that if is the infinitesimal generator for an irreducible Markov
chain, then the matrix is the infinitesimal generator
for an irreducible Markov chain with state space

final row is a vector of zeros. Let denote the state
probability vector for the Markov chain for which is the infinitesimal
generator, with a row vector of dimension and a scalar.
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4-2 Consider an queueing system having Poisson arrivals. Suppose
upon entering service, each customer initially receives a type 1 service
increment. Each time a customer receives a type 1 service increment, the
customer leaves the system with probability or else receives a
type 2 service increment followed by an additional type 1 service incre-
ment. Suppose type 1 and type 2 service increment times are each drawn
independently from exponential distributions with parameters and
respectively. With the service process defined as in Problem 4-1, suppose
there are servers. Define the phase of the system to be if there are
customers receiving a type 2 service increment, Define
the state of the system to be 0 when the system is empty and by the pair

where is the system occupancy and is the phase of
the service process. Define for
and a scalar.

(a)

(b)

(c)

(d)

(e)

Draw the state transition diagram for the special case of

Write the matrix balance equations for the special case of

Write the matrix balance equations for the case of general values of

Determine the matrix the infinitesimal generator for the continuous-
time Markov chain defining the occupancy process for this system.

Comment on the structure of the matrix relative to that for the
phase-dependent arrival and service rate queueing system and to the
M/PH/1 system. What modifications in the solution procedure would
have to be made to solve this problem? [Hint: See Neuts [1981a], pp.
24-26.]



Chapter 5

THE BASIC M/G/1 QUEUEING SYSTEM

In the previous chapters we made extensive use of the memoryless properties
of the exponential distribution to study the dynamics of the M/M/1 and other
queueing systems, as well as the service-time distributions and interarrival time
distributions, which were exponentially distributed. Due to the memoryless
property of the exponential distribution, the evolution of such systems from
any point in time forward is independent of past history. Thus, the memoryless
property allowed us to specify the state of the system at an arbitrary point in
time and to write equations describing the system dynamics conveniently.

If the service system has service times that are drawn from a general distri-
bution, then the memoryless property is lost, and it is then necessary to choose
observation times carefully in order that the state of the system at the obser-
vation times can be easily specified. That is, if we choose the observation
times carefully, we may be able to specify the state of the system conveniently,
and further, we may succeed in having the evolution of the process from that
point forward be independent of past history. Suppose, for example, that we
choose our observation times as those instants in time when a customer has
just completed service. At those points in time, both the arrival process, which
is memoryless, and the service process, which is not necessarily memoryless,
start over again. Thus, in order to determine the future evolution of the sys-
tem, it is necessary to know only the number of customers left in the system
immediately following customer departures.

Define to be the number of customers left in the system by
the departing customer. Then, according to our previous observations, the
process is Markovian. We call an embedded Markov
chain, which we introduced in Chapter 2. We say that we have “embedded
a Markov chain at the points of customer departure.” Following our notation
of the previous chapters, we denote the number of customers in the system,
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including the one in service, if any, by The process does
not have the Markovian property. That is, unlike the M/M/1 case, the future
evolution of the process depends upon the length of time the system has been
in the present state. However, the process does have the Markov property at
instants of time just after customer departures. Thus, the process
is called a semi-Markov process.

The analytical tools used to study queueing systems of this type are funda-
mentally the same as those used to study Markovian models, but their appli-
cation is quite different. The notion of balance equations in non-Markovian
systems, for example, can still be applied, but the application is much more
difficult (see Daigle and Whitehead [1985]). Thus, different approaches are
used to examine non-Markovian systems. In this chapter, we present basic
tools that are useful in the analysis of non-Markovian systems. Our presenta-
tion is accomplished through the development of many of the classical results
for the M/G/1 system and some of its variants, in addition to presentation of
some nontraditional approaches and results.

In Section 5.1 we begin our study of the M/G/1 queueing system with a clas-
sical development of the Pollaczek-Khintchine transform equation, or proba-
bility generating function, for the occupancy distribution. In the same section,
we develop the Laplace-Stieltjes transforms for the ergodic waiting time, so-
journ time, and busy period distributions.

In Section 5.2, we address inversion of the occupancy distribution’s prob-
ability generating function, which was developed in the first section. Three
methods are presented. The first method is based upon Fourier analysis (Daigle
[1989]), and the second approach, due to Keilson and Servi [1989], is recur-
sive. The second approach appears to be useful when only a few terms of the
distribution are required; while the first appears to be more appropriate when
the entire distribution is desired. The third approach is based on generalized
state space methods, which were used in Chapter 4 to determine the equilib-
rium probabilities for QBD processes. A number of practical issues regarding
a variety of approximations are addressed using the generalized state space ap-
proach. All of the approaches are applicable to systems other than the ordinary
M/G/1.

We next turn our attention to the direct computation of average waiting and
sojourn times for the M/G/1 queueing system. Our development follows that
for the M/M/1 system to the point at which the consequences of not having the
Markovian property surfaces. At this point, a little renewal theory is introduced
so that the analysis can be completed. Additional insight into the properties of
the M/G/1 system are also introduced at this point. Following completion of
the waiting- and sojourn-time development, we introduce alternating renewal
theory and use a basic result of alternating renewal theory to compute the av-
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erage length of the M/G/1 busy period directly. The results of this section play
a key role in the analysis of queueing systems with priority, which we address
in Chapter 6.

We conclude the chapter with a set of supplementary exercises.

5.1 M/G/1 Queueing System Transform Equations
In this section we examine the behavior of the ordinary M/G/1 queueing sys-
tem. We develop the probability generating function for the occupancy distri-
bution, and then we use this result to develop the Laplace-Stieltjes transforms
for the ergodic waiting-time, sojourn-time, and busy-period distributions.

Recall that we have defined to be the number of customers left
in the system by the  departing customer. Now, it is easy to see that the
number of customers left by the departing customer is equal to the
number of customers who arrive during the service plus either zero
or one fewer than the number left by the departing customer, whichever is
greater. Thus, we define to be the number of arrivals that occur during the

customer’s service. Then, we find that

where

We will solve (5.1) by making use of probability generating functions and
Laplace-Stieltjes transforms. In particular, we will develop an expression for
the probability generating functions for the sequence of random variables
and then we will obtain the ergodic probability generating function by taking
limits.

Observation of (5.1) reveals that is the sum of two independent random
variables, and Each of these random variables has a generic
form, which will occur in later analysis. In addition, we will constantly be en-
countering sums of independent random variables. Therefore, before proceed-
ing to the analysis of (5.1), we present the following three theorems, which
will be useful both in the current analysis and later analyses.

THEOREM 5.1 Let  and be two independent, nonnegative, integer-valued
random variables, then

where

Proof The proof follows directly from the fact that and are independent
random variables and consequently
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THEOREM 5.2 Let  denote a random period of time, and let
denote the Laplace-Stieltjes transform of i.e.,
Further, let be a Poisson process with rate and let denote
the number of events from that occur during the period of time

Then, That is, the probability generating function
for the number of events from a Poisson process that occur during a random
period of time is given by the Laplace-Stieltjes transform for the distribution
of the length of the period of time with the transform variable, evaluated at
the point

Proof

But,

Thus we have

That is,

EXERCISE 5.1 With and defined as in Theorem 5.2,
show that

THEOREM 5.3 Let be a nonnegative integer valued random variable with
probability generating function Then
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EXERCISE 5.2 Prove Theorem 5. 3.

We now turn to the analysis of (5.1). As before, we let denote the service
time of the customer and we assume to be a sequence of
independent, identically distributed random variables with mean

where represents a generic Clearly, is independent of be-
cause the number of arrivals during the service time does not depend
on the number of customers left in the system by the departing customer.
Therefore, by Theorem 5.1,

But, according to Theorem 5.2, we find that

and by Theorem 5.3,

Thus we have

In the limit as so

Upon solving (5.4), we find that

It remains to specify the probability that a departing customer
leaves no customers in the system. It is straightforward to determine this un-
known probability by using the facts that and other
properties of the Laplace-Stieltjes transform and probability generating func-
tion that we have previously discussed. By taking limits on both sides of (5.5),
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applying L’Hôpital’s rule, and then using the properties of Laplace transforms
and probability generating functions, we find that

where is the server utilization as defined in Chapter 3. Thus we find
that

EXERCISE 5.3 Starting with (5.5), use the properties of Laplace trans-
forms and probability generating functions to establish (5.6).

EXERCISE 5.4 Establish (5.6) directly by using Little’s result.

Now, in the M/G/1 queueing system, the probability that a departing cus-
tomer leaves customers in the system is the same as the probability that
an arriving customer finds     customers in the system when the system is in
stochastic equilibrium. A little thought will show that this must be true in
order that an equilibrium distribution exist. In addition, we have pointed out
earlier that the Poisson arrival’s view of the system is exactly the same as that
of a random observer. Thus we find that

where is the number of customers found in the system by an arbitrary arrival
when the system is in stochastic equilibrium, and is the number of customers
found in the system by an arbitrary random observer. Thus we find

DEFINITION 5.1 Squared coefficient of variation. For any nonnegative ran-
dom variable, with the squared coefficient of variation for is
defined to be the quantity

EXERCISE 5.5 Batch Arrivals. Suppose arrivals to the system occur in
batches of size and the batches occur according to a Poisson process at
rate Develop an expression equivalent to (5.5) for this case. Be sure to
define each of the variables carefully.
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EXERCISE 5.6 Using the properties of the probability generating function,
show that

[Hint: The algebra will be greatly simplified if (5.8) is first rewritten as

where

and

Then, in order to find

first find the limits as of and and
then substitute these limits into the formula for the derivative of a ratio.
Alternatively, multiply both sides of (5.8) to clear fractions and then differ-
entiate and take limits.]

EXERCISE 5.7 Let if and let if so that
Starting with this equation, find and

Interpret [Hint: To find start off by squaring both sides
of the equation for

5.1.1 Sojourn Time for the M/G/1 System
Recall is the total amount of time spent in system by an arbitrary
customer. Thus

is the Laplace-Stieltjes transform of the distribution of the total amount of
time that an arbitrary customer spends in the system. From Theorem 5.2, we
therefore find that the probability generating function for the number of cus-
tomers that arrive during the time a customer spends in the system is given
by But, for a FCFS system, the number of customers that ar-
rive while a customer is in the system is exactly the same as the number of
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customers left behind by that customer. So

From this we conclude that

Thus, from (5.8), we find that

After a little algebra, (5.13) reduces to the Pollaczek-Khintchine transform
equation for the sojourn time, which is

An alternate presentation of (5.14) which we will find useful later is

In principle, can be inverted to obtain which is the
density of the sojourn time. This can be done fairly easily if is rational
(that is, it is a ratio of polynomials) by using partial fraction expansions. The
above expression can also be differentiated to obtain moments; for example,

EXERCISE 5.8 Using (5.14) and the properties of the Laplace transform,
show that

Combine this result with that of Exercise 5.6 to verify the validity of Little’s
result applied to the M/G/1 queueing system. [Hint: Use (5.15) rather than
(5.14) as a starting point, and use the hint for Exercise 5.6.]
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5.1.2 Waiting Time for the M/G/1 System
Recall that refers to the amount of time a customer spends in the
queue waiting for service to begin. This means that Because
the service time for a customer does not depend upon the amount of time the
customer waits for service to begin, and are independent and consequently,

It therefore follows from (5.14) and (5.15) that

EXERCISE 5.9 Using (5.17) and the properties of the Laplace transform,
show that

Combine this result with the result of Exercise 5.6 to verify the validity
of Little’s result when applied to the waiting line for the M/G/1 queueing
system.
Platzman, Ammons, and Bartholdi [1988] describe an approximate method

for inverting transforms such as those for the waiting and sojourn time. Expe-
rience has shown that this method works quite well, especially for the tail of
the distribution.

5.1.3 Busy Period for the M/G/1 Queueing System
In this section, we will determine the Laplace-Stieltjes transform for the dis-
tribution of the length of the busy period for the M/G/1 queueing system. As
before, we let denote the length of an M/G/1 busy period, and let de-
note the Laplace-Stieltjes transform of the distribution of that is,

Further, denote the length of service time for the first customer in the
busy period by and let denote the number of arrivals during the service
time of this customer. Then

Also,

Now, if customers arrive during then at the end of there will be
customers in the system, none of whom have begun service. Since order of
service does not affect the length of the busy period, the remainder of the busy
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period has length where denotes the length of the
sub-busy period due to the customer who arrived during and
with probability 1. Thus

But, for the are independent, identically distributed random
variables with common distribution so

where we have used the fact that Thus

Substitution of (5.20) into (5.19) then yields

Equation (5.21) is a functional relationship defining This functional
relationship can be used to determine moments for the length of the busy pe-
riod.

EXERCISE 5.10 Using properties of the Laplace transform, show that

We point out in passing that busy-period analysis is an extremely important
tool in the analysis of priority queueing systems. Often delays can be specified
entirely in terms of busy periods, as will be shown later on. One variant of
the M/G/1 system which is useful in analysis of complicated systems is the
M/G/1 with exceptional first service. In this system, the service time for the
first customer in each busy period is drawn from the service-time distribution

and the remaining service times in each busy period are drawn from



The Basic M/G/1 Queueing System 169

the general distribution The length of the busy period for this system is
denoted by It is left as an exercise to show that

where we retain the definition Thus the expected length of the
busy period is proportional to the expected length of the first service time. In
addition, it is easy to see that if then (5.23) reduces to (5.22).

EXERCISE 5.11 For the ordinary M/G/1 queueing system determine
without first solving for [Hint: Condition on the length of the first
customer’s service and the number of customers that arrive during that pe-
riod of time.]

EXERCISE 5.12 M/G/1 with Exceptional First Service. A queueing sys-
tem has Poisson arrivals with rate The service time for the first customer
in each busy period is drawn from the service-time distribution and
the remaining service times in each busy period are drawn from the gen-
eral distribution Let denote the length of the busy period for this
system. Show that

where

EXERCISE 5.13 For the M/G/1 queueing system with exceptional first ser-
vice as defined in the previous exercise, show that

EXERCISE 5.14 Comparison of the formulas for the expected waiting
time for the M/G/1 system and the expected length of a busy period for
the M/G/1 system with the formula for exceptional first service reveals that
they both have the same form; that is, the expected waiting time in an ordi-
nary M/G/1 system is the same as the length of the busy period of an M/G/1
system in which the expected length of the first service is given by

Explain why these formulas have this relationship. What random variable
must represent in this form? [Hint: Consider the operation of the M/G/1
queueing system under a nonpreemptive, LCFS, service discipline and ap-
ply Little’s result, taking into account that an arriving customer may find
the system empty.]
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5.2 Ergodic Occupancy Distribution for M/G/1
We have previously pointed out that the ergodic occupancy distribution can be
calculated by using (5.8) and the properties the probability generating func-
tions. Because this process requires differentiation of fractions and numerous
applications of L’Hôpital’s rule, the process of generating the occupancy dis-
tribution in this manner is tedious at best. In this section, we present three
alternative methods of computing the occupancy distribution. The first method
is based on discrete Fourier transform analysis, and the second approach, due
to Keilson and Servi [1989], is based upon a recursion. The third approach is
based on generalized state-space methods, which are commonly applied in the
control theory area (Akar, and K. Sohraby [1998]).

5.2.1 Discrete Fourier Transform Approach to Ergodic
Occupancy Computation

In this subsection, we describe an approach to inversion of the probability gen-
erating function for the occupancy distribution which is based upon Fourier
analysis (Daigle [1989]). We first show that a tracing of the PGF around the
unit circle describes the characteristic function (Feller [1971]) for the occu-
pancy distribution in the form of a complex Fourier series in which the co-
efficients are the probability masses. Approximate values for these Fourier
coefficients are then expressed via finite Riemann sums, where the resulting
approximations are a finite set of K + 1 discrete Fourier transform (DFT) co-
efficients. It turns out that, if K is properly chosen, then the K +1 DFT coeffi-
cients can be used to obtain approximations for all of the probability masses. A
finite number of coefficients is sufficient because the tail of the occupancy dis-
tribution decreases geometrically; this fact can be used both to convert the DFT
coefficients into probability estimates and to generate the tail probabilities. We
also present an algorithm for choosing an appropriate value of K.

Briefly stated, our objective in this section is as follows. Starting with the
definition of the PGF,

we will develop a simple computational technique based upon DFTs to com-
pute

from The methodology developed here is useful for inversion of PGFs
for a large class of distributions, namely, those having geometrically decreas-
ing tails.
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To begin our development, we define

where and is a real variable. That is, is the Fourier-Stieltjes
integral (Feller [1971]), or characteristic function, of the cumulative distribu-
tion function We note that is always periodic in with period 1,
and that is expressed in (5.25) as a complex Fourier series (Churchill
and Brown [1987]), that is, a Fourier series in which the basis set (Hewitt and
Stromberg [1969]) is where
Indeed, the Fourier coefficients are simply the probability masses.

As usual, the Fourier coefficients are given by the integral, averaged over
one period, of the product of the function in question and the complex conju-
gate of the basis function for the coefficient in question; that is,

where denotes the complex conjugate of To perform the integra-
tion indicated in (5.26) numerically, we partition the interval [0,1] into K + 1
equal subintervals. We denote the approximate value of the integral thus ob-
tained by and we find that

where and The right-hand side of (5.27)
is the inverse discrete Fourier transform (IDFT) (Nussbaumer [1982]) of the
finite sequence It is easily verified by
substituting for that the resulting sequence is periodic
with period K + 1. However, we will think of the as being defined for

only.
The exact relationship between the probability masses, and for

can be obtained by substituting the definition of into (5.27) and
performing the indicated summation. We find that
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The final summation on the right-hand side of (5.28) is the sum of a finite
number of terms from a geometric series. It is easily shown that the sum is
K + 1 if and zero otherwise. Therefore,

Clearly, Thus the sum to unity for each K. As
an example, if we choose K = 255, then

EXERCISE 5.15 Show that the final summation on the right-hand side of
(5.28) is K + 1 if and zero otherwise.

The lack of equality between and in this particular form is called
aliasing, and it is a direct result of approximating the integral (5.25) by a finite
sum. It will be pointed out later in this subsection that tail probabilities in
queueing systems decrease geometrically. Thus it is clear by observation of
(5.29) that the error due to aliasing can be reduced to any desired degree by
increasing K. But this practice results in round-off error, and, in addition, still
does not yield tail probabilities.

We now develop an approach that takes advantage of the fact that the tail
probabilities decay geometrically. This approach simultaneously addresses
aliasing error and round-off error, and, in addition, provides values for for

From (5.8), we find

It can be shown that the denominator of the right-hand side of (5.30) has only
one zero for call this zero Then, the geometric rate at which the
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tail probabilities decrease is given by the inverse of This fact follows di-
rectly from the Laurent series expansion (Churchill [1960]) of about its
singularity at Indeed, the principle part of is given by the quantity

where

Thus the principle part of is given in power series form by the expression

It turns out that for large the values of the coefficients of in the Laurent
series expansion of are dominated by the principle part. Thus the prin-
ciple part can be used to obtain very close estimates of the tail probabilities
as in Woodside and Ho [1987]. Two obvious disadvantages of this method of
computing tail probabilities are that the singularity must usually be found
numerically, and the derivative of must be evaluated at Some-
times neither of these operations is straightforward, but so long as it is possible
to evaluate the denominator of (5.30), it is easy to bound the difference between

and the actual decay rate, as determined by the algorithm defined be-
low.

Remark. Discussions of Laurent series expansions are sometimes quite dif-
ficult to follow. The Laurent series in this particular case may be related to
the Taylor series in the following way. First, define a function such that

Then has no singularities and has a Taylor series.
That is,

where denotes the derivative of evaluated at Now divide
the Taylor series of term by term, by the quantity the result is the
Laurent series for More on Laurent series can be found in Churchill
[1960].

EXERCISE 5.16 Argue the validity of the expression for  in (5.31).
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EXERCISE 5.17 Show that the denominator of the right-hand side of
(5.30) for the probability generating of the occupancy distribution has only
one zero for [Hint: From Theorem 5.2, we know that
is the probability generating function for the number of arrivals during
a service time. Therefore, can be expressed as a power
series in which the coefficients are probabilities and therefore nonnega-
tive. The function and all of its derivatives are therefore nonnegative for
nonnegative and so on. Now compare the functions and

noting that the expression can have poles
neither inside nor on the unit circle (Why?).]

Let denote the occupancy level at and above which the tail probabilities
are geometrically decreasing to within computational accuracy, and let de-
note the geometric rate of decay; that is, Then, with for
each the sequence is geometrically
decreasing at rate Thus, in general,

and, in particular, with

By using (5.32) in (5.29), one can find after a moderate amount of algebraic
manipulation that

and

Finally, from (5.24), we have that

Thus, to the extent that K has been chosen sufficiently large so that the tail
probabilities are actually decaying geometrically, we see that (5.33) through
(5.36) can be used to obtain approximations for in which aliasing
has been removed, and only round-off error affects the results. Having selected
a value of K, we first compute the using either (5.27) or,
more likely, a fast Fourier transform (FFT) algorithm (Nussbaumer [1982]),
then compute using (5.36). Next compute using (5.34). Finally, compute
the probability masses using (5.35) for and (5.33) for

EXERCISE 5.18 Starting with (5.29) and (5.32), establish the validity of
(5.33) through (5.36).



The Basic M/G/1 Queueing System 175

We now turn our attention to specifying a method of choosing K. There
are two conflicting objectives. On the one hand, the larger the value of K,
the more likely it is that the probability masses are geometrically decreasing
at least starting with thus satisfying the assumption leading to (5.35). On
the other hand, the larger the selected value of K, the larger the round-off error
will be in the computations leading to the specifications of the Since the
FFT yields round-off errors of equal magnitude for all coefficients, the most
serious affect of this round-off error will be upon the accuracy of This
will obviously lead to inaccuracies in the computation of which is the key
to the generation of tail probabilities. Thus the appropriate choice of K is the
minimum for which the tail probabilities are geometrically decreasing.

The value for K should be chosen algorithmically so that one may passively
use the computational technique. Towards this end, we note that under the
assumption that the quantity       is large enough so that the tail probabilities are
decreasing, it follows that

That is, in our choice of K, we insist that K be sufficiently large to assure that
the tail probabilities are geometrically decreasing beginning at which is in
turn less than K. If so, then we also have that for all
Thus, from (5.35), it is readily seen that for
We therefore have two ways of computing        first, using (5.35) and second,
taking ratios of successive coefficients. An algorithm for choosing K based on
these observations is as follows:

1.

2.

3.

4.

5.

6.

7.

For a candidate K, let

Compute using (5.27) and using (5.34).

Compute for

Compute

Let

Compute as in (a), (b), (c), and (d).

If then replace by K and repeat (e) and (f), else use the
computations based on the current value of K in the final results.

The values are a measure of the maximum deviation of the calculated ratios
for the last one-fourth of the coefficients from the computed value of the ratio

based on (5.35). Thus, may be viewed as a measure of the accuracy of
the assumption that K is large enough to assure geometrically decreasing tail
probabilities.
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Figure 5.1. Survivor functions with deterministic, Erlang-2, exponential, branching Erlang
and gamma service-time distributions at

We note that the above development was discussed in terms of the M/G/1
queueing system, but that the techniques are applicable to the inversion of any
PGF for which the tail probabilities are geometrically decreasing. Queueing
systems having these properties include the G/G/c system as reported in Tijms
[1986] and many priority queueing systems which we will discuss later. We
also note that once the ergodic occupancy distribution is known for the case of
infinite capacity, it is straightforward to obtain the ergodic occupancy distribu-
tion for the case of finite waiting room by methods outlined in Cooper [1972,
1981] and Keilson and Servi [1989].

The above technique is more fully described and evaluated with respect to
computation of M/G/1 occupancy distributions in Daigle [1989], which shows
that satisfactory results can be obtained with very few coefficients, especially
if traffic intensity is high. An example of the type of results that might be
obtained using the techniques is given below.

DEFINITION 5.2 distribution. The distribution of is said to be
Erlang-k with mean if is the sum of independent exponentially dis-
tributed random variables each of which has mean
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EXAMPLE 5.1 Compare the survivor functions for the occupancy distribution
of the M/G/1 queueing system for the following service-time distributions:

M/D/1, the ordinary M/G/1 queueing system having deterministic, unit, ser-
vice time. The squared coefficient of variation of the service-time distribu-
tion is 0, and the Laplace-Stieltjes transform of the service-time distribution
is

distribution is

M/M/1, the ordinary M/G/1 queueing system having exponential, unit mean,
service time. The squared coefficient of variation of the service-time dis-
tribution is 1.0, and the LST of the service-time distribution is

the ordinary M/G/1 queueing system having a two-phase, unit
mean, branching Erlang, service-time distribution. The particular branch-
ing Erlang distribution used here is the one given in Chandy and Sauer
[1981] for specifying distributions whose squared coefficient of variation is
greater that 1. The LST for that distribution is

where

and is the squared coefficient of variation of the distribution of In
our example, the squared coefficient of variation was chosen to be 1.5.

the ordinary M/G/1 queueing system having service times drawn
from a gamma distribution. The LST for the gamma distribution is

(Hogg and Craig [1978]). In this case, and
so that the parameter values for which the service-time distribution

has unit mean and a squared coefficient of variation of 2, are and

the ordinary M/G/1 queueing system having Erlang-2, unit mean,
service times. The squared coefficient of variation of the service-time distri-
bution is 0.5, and the Laplace-Stieltjes transform (LST) of the service-time
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Figure 5.2. Survivor functions for system occupancy with message lengths drawn from trun-
cated geometric distributions at

Solution: The results are shown in Figure 5.1, which shows the occupancy
probabilities are greatly affected by the form of the service-time distribution.
For example, the probability that the queue length exceeds 60 is about 10 times
as large for the case in which service times are drawn from the gamma distribu-
tion than it is for the case in which service times are drawn from the exponential
distribution.

EXAMPLE 5.2 Message Lengths having Truncated Geometric Distribu-
tion. In analyzing communication systems, it is common to represent the dis-
tribution of message lengths as geometric. For example, the number of char-
acters in a typed line may be represented as having a geometric distribution
with mean 30. It is clear that the distribution cannot actually be geometric be-
cause the number of characters in a typed line on an 80-character screen cannot
exceed 80 characters. Consider a communication system in which messages
are transmitted over a communication line having a capacity of 2400 bits/sec,
or equivalently, 300 characters per second. Suppose the message lengths are



The Basic M/G/1 Queueing System 179

drawn from a geometric distribution having a mean of 30 characters, but trun-
cated at and characters on the lower and upper ends of the distribution,
respectively. That is, message lengths are drawn from a distribution character-
ized as follows:

where is the number of characters in a message and is a normalizing con-
stant. We wish to determine the survivor function for several different values
of and at a traffic utilization of 95%, assuming a transmission capacity of
30 characters/sec.

Solution: Curves showing the desired results and additional results are pre-
sented in Figure 5.2. The pair of numbers shown beside each curve gives the
points at which the geometric distributions is truncated. Note that the survivor
function is an increasing function of the spread between the lower and upper
truncation points. For example, if and then the survivor func-
tion is very nearly that of the M/D/1 system. On the other hand, if and

then the service-time distribution is very nearly geometric, and we
expect the survivor function to approach that of the M/M/1 system.

An important consideration in the design of communication systems is the
blocking probability. As stated in Chapter 3, the blocking probability is de-
fined as the proportion of the customers seeking admission to the queueing
system who are denied admission. We assume a finite waiting room of ca-
pacity K. As in the case of the general birth-death model covered in Chapter
3, ergodicity exists for the finite K model even when it does not exist for the
case of infinite waiting room. For the special case in which ergodicity exists
for the unbounded waiting room case, Keilson and Servi [1989] present a sim-
ple relationship between the ergodic occupancy probabilities and the blocking
probabilities for the finite case. The following is their result, which we state
without proof:

where has the usual definition and Table 5.1
illustrates the drastic difference between and
the blocking probability at Again, the reader is cautioned against
using survivor function and blocking probabilities interchangeably.

EXERCISE 5.19 Approximate the distribution of the service time for the
previous example by an exponential distribution with an appropriate mean.
Plot the survivor function for the corresponding M/M/1 system at 95% uti-
lization. Compare the result to those shown in Figure 5.2.
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In case ergodicity does not exist for the unbounded waiting room case (that
is, the blocking probability is more difficult to compute. The interested
reader is referred to Langford [1990] and also Niu and Cooper [1993] for a
treatment of the more general case.

5.2.2 Recursive Approach to Ergodic Occupancy
Computation

In this section, we present an alternate method of computing the occupancy
distribution that is based on the paper by Keilson and Servi [1989], although
our approach is somewhat different and the results are stated in a slightly dif-
ferent form.

To begin our development, we rewrite (5.14) as follows:

We will show in the next section that the expression

is the Laplace-Stieltjes transform of the distribution of a random variable,
which we will denote by and refer to as the residual life of Therefore, we
define
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From (5.15) and (5.39), we find that the Laplace-Stieltjes transform of the
sojourn time distribution can be written as

In turn, Equation (5.40) can be rewritten as

After some minor algebra, this equation can be rearranged as

Using (5.42) as a starting point, we will specify a convenient method of gener-
ating the occupancy distribution for the M/G/1 system.

We have previously argued that that is, the probabil-
ity generating function for the occupancy distribution is given by the Laplace-
Stieltjes transform for the sojourn-time distribution evaluated at the point

For consistency of notation, we will specify the probability generating
function for the number of arrivals that occur from a Poisson process with rate

 during a random period of time by

Then, from (5.42), we find

or equivalently,

Upon matching the coefficients of in (5.44), we find that

Equation (5.45) may then be solved for We find
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Now, it is straightforward to show that

Substituting (5.47) into (5.46), we find

and for

EXERCISE 5.20 Starting with (5.39), demonstrate the validity of (5.47).

Clearly, can be determined recursively from (5.49). The number of
terms of the form that must be computed is limited to the number of oc-
cupancy probabilities that the analyst is interested in computing for the partic-
ular problem at hand. As we have noted in Section 5.1, is equivalent to

Thus we find

In addition, as we have seen earlier in this subsection, the ratio
converges to a constant as increases for all of practical interest. Thus,
(5.50) offers a practical method for calculating occupancy probabilities so long
as the can be computed readily. In general, the computation of these quan-
tities is straightforward if the Laplace-Stieltjes transform for the service-time
distribution is rational or if the service-time distribution can be adequately ap-
proximated by a discrete distribution. On the other hand, for more general
distributions, this task, in and of itself, is more difficult to accomplish than is
the direct computation of the occupancy distribution using the methods pre-
sented in the previous section.

EXERCISE 5.21 Evaluate for the special case in which has the ex-
ponential distribution with mean Starting with (5.50), show that the
ergodic occupancy distribution for the M/M/1 system is given by

where

EXERCISE 5.22 Evaluate  for the special case in which
Use (5.50) to calculate the occupancy distribution. Compare the comple-

mentary occupancy distribution for this system to that of the
M/M/1 system with
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EXERCISE 5.23 Evaluate for the special case in which
Use (5.50) to calculate the occupancy distribution. Com-

pare the complementary occupancy distribution for this system
to that of the M/M/1 system with

5.2.3 Ergodic Occupancy Distributions via Generalized
State-Space Approach

As discussed in Section 5.1, the process which denotes the
number of customers left in the system by the departing customer, is a
Markov chain embedded at points of customer departure. Our objective is to
present a linear algebra-based approach for obtaining the distribution of the
number of customers left in the system by a departing customer for a variation
of the M/G/1 system. We specifically consider the cases in which the proba-
bility generating function of the number of arrivals that occur during service
periods can be expressed either as a finite polynomial or a ratio of polynomi-
als. Such cases include, but are not limited to, the M/G/1 system whose service
time distribution has a rational Laplace-Stieltjes transform.

Although we take a somewhat different approach to the formulation of the
various problems in this class, our solution takes advantage of the ideas pre-
sented in Akar, and Sohraby [1998], where more complex systems, such
as those discussed in Chapter 7, are considered. Specifically, the problem for-
mulation results in a simple system of finite matrix equations. This system has
both stable and unstable modes, and Schur decomposition is used as a starting
point for decoupling the system into stable and unstable subsystems. The solu-
tions are then expressed in a specialized matrix geometric form, similar to that
for the QDB systems discussed in Chapter 3.

We consider both the cases of simple and multiple boundary conditions.
Although the development itself is somewhat tedious, we show that in the end,
all of the problems in this class can be solved in a uniform way. Furthermore,
all of the steps involved in formulating and solving the problem are easy to
implement on a computer using a combination of routines from LAPACK and
simple program development.

We first address the case in which the probability generating function of the
number of arrivals that occur during service periods is a finite polynomial. We
consider the broader case in which the first service is exceptional. That is,
the first service of the busy period has distribution and all remaining
service times have distribution The finite equations characterizing the
system are developed directly from the equations for the equilibrium departure
probabilities, namely, The solution procedure described
in Akar, Oguz, and Sohraby [1998] is then described and used to solve the
problem.
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Next, we consider the case in which the probability generating functions of
the number of arrivals that occur during exceptional and ordinary service pe-
riods are a rational functions. In this case, the equations that must be solved
are identical in form to those for the more elementary case, but the equations
are specified from the probability generating function of the occupancy distri-
bution as seen by departing customers. The finite polynomial case is then a
special case wherein the denominator is identically 1. In fact, when the finite
case is posed in terms of the rational case, the form of the solution is identical
to that of the less general case.

Finally, the more general case in which there are multiple boundaries and
the probability generating functions of the number of arrivals that occur during
service periods are either finite polynomials or ratios of polynomials is con-
sidered. In particular, there are C boundary probabilities,
Again, in this case, the equations that must be solved and the form of the solu-
tion are identical in form to those for the more elementary cases.

At the end of the section, we discuss the practical issue of implementing the
solution procedures on a computer.

Recall that the recursive equation for the queue upon the departure of the
 customer is as follows:

Therefore,

Upon conditioning on the value of we find

But, is just the probability that there are
arrivals during the service time of the customer; that is,

where the conditional argument is retained to account for the fact that the distri-
bution of the number of arrivals may, in fact, depend upon As an example,
in the case of exceptional first service, which was introduced in Exercise 5.12,
the first service of every busy period has the distribution rather than the
distribution which is common for all other services. Therefore is
computed on the basis of whenever

We now consider the case where the first service of a busy period may be
exceptional but all other service times are drawn from a common distribution.
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For this case, we define

Then, upon combining (5.54) and (5.54), we find

Upon passing to the limit, we have

Upon rewriting (5.57) in matrix form, we find

where and

Any matrix that has the same form as is said to be a matrix of the M/G/1
type.

We now find       in terms of the probability generating functions of the
sequences and Define

Upon multiplying both sides of (5.58) by and summing over from 0 to
or equivalently, upon multiplying both sides of (5.58) by diag
and then postmultiplying by e, we find

The above equation yields the Pollaczek-Khintchine transform equation for the
queue length distribution in an M/G/1 system with exceptional first service.

EXERCISE 5.24 Beginning with (5.59), suppose Show
that (5.59) reduces to the standard Pollaczek-Khintchine transform equation
for the queue length distribution in an ordinary M/G/1 system.
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EXERCISE 5.25 Beginning with (5.59), use the fact that
to show that

We now define a linear algebra-based approach for solving (5.59) to obtain
We first consider the case where and are finite

polynomials, and then we consider the case where and are rational
functions in a more generalized setting, which will be defined below. We will
see that the solution in the former case can be accomplished entirely without
the use of generating functions.

Suppose and are polynomials of degree Then,
represents the probability of arrivals during an ordinary service

time. For stability, we require the average number of arrivals during a service
time to be strictly less than unity. Thus, In addition, we require

so that we actually have a polynomial of degree The coefficients
of are less restricted.

From (5.58), we find

Define Then, upon rearranging (5.61), we find

where and

Because D is nonsingular. Thus, we can solve (5.62) to obtain

But, we have already shown in Exercise 5.25 that
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Therefore, we have a complete specification of

EXERCISE 5.26 Argue rigorously that in order for the M/G/1 queue to be
stable, we must have

EXERCISE 5.27 Verify (5.62).

We turn now to the computation of the remaining probabilities. First, we
note that for any

For example,

Define Then, in matrix form,
this equation becomes

Also, by putting the simple statements for in
matrix form, it is easy to see that the equations become

Combining the previous expression with (5.65), we find

where and
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We note that Therefore, we have al-
ready solved for in terms of Since E is always nonsingular, it is now
possible to solve for

where denotes the column vector in which the element is 1 and the
remaining elements are 0.

EXAMPLE 5.3 Consider a discrete time service system having unit service.
Suppose the number of arrivals during the service period has the binomial dis-
tribution with parameter for all service periods. Determine
the matrices A, E, D, and N.

Since the arrival process is common to all service periods, for all
In addition, for The binomial probabilities are

Given these values, the following results are read-
ily obtained from (5.62) and (5.66):

While (5.67) is correct, it is not in the simplest possible form, and indeed
the form is not suitable for general computations, such as computing moments.
The fundamental reason is that the solution contains unstable modes; that is, all
eigenvalues of the matrix are not strictly less than unity. To address this
problem, we would like to decouple the matrix equations (5.66) into two sets
of equations; those representing stable modes and those representing unstable
modes. Before doing this, however, we introduce the more general class of
problems in which there may be multiple boundaries and where the generating
functions may be ratios of polynomials rather than merely finite polynomials.

Suppose our queueing system has C boundary conditions. One situation
in which this would occur would be in a system that serves a random number
of units in a service period. A specific case of interest is a slotted wireless
transmission system, where the link quality varies from time slot to time slot,
as discussed in Chapter 1. In such a case, the arrival process to the system
might be stationary, but the queue transition probabilities would depend upon
the number of units served. In some cases, the number of units served can
be assumed to be independent from slot to slot, and the number of packets
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transmitted over a time slot may vary between 0 and some maximum number,
say, C. In such cases, the matrix would then have the form

where, again,
We now find       in terms of the probability generating functions of the

sequences and De-
fine

Upon multiplying both sides of (5.58) by diag and then post-
multiplying by e, we find

Now, (5.68) has a vector of unknown probabilities,
we call these boundary probabilities. Once the boundary probabilities are
known, the transform equation is well-defined, and, in principle, all of the
probabilities can be computed.

We now wish to transform (5.68) into an equation that has no boundary
probabilities on its left hand side. By beginning with

and forming iteratively

for it is straightforward to show that (5.68) reduces to
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EXERCISE 5.28 For  show that

EXERCISE 5.29 Define

Starting with (5.68), substitute a function of for then a func-

tion of for and continue step by step until a function of

is substituted for Show that at each step, one element
of

is eliminated, resulting in (5.69).

Now, suppose

Then after replacing and by their ratio forms, we have

EXAMPLE 5.4 Consider the M/M/1 system with exceptional first service.
Then,

Thus, the corresponding probability generating functions for the numbers of
arrivals over periods of exceptional and ordinary service times are

Thus, and
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Now define as the degree of and as
the coefficient of in Similarly, define for

as the maximal degree of over all and as
the coefficient of in Note that some of the coefficients of and

may be zero, but and for at least one value of
Finally, define

By making these substitutions in (5.71), we obtain

where

and

We note also that the definition of assures that the polynomials have
degree at most The coefficients and are then computed as
follows:

Since, as shown in Exercise 5.28,

we can rewrite (5.69) as

Upon reordering the summations of the previous equation, we find
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By matching the coefficients of for on the left and
right sides of (5.75), we obtain the following matrix equation

where

and

EXAMPLE 5.5 Consider a time division multiplexing system having 3 packet
slots per frame. During each frame, suppose the number of packet arrivals that
occur is binomially distributed with parameters Specify
D, N, E, and A.

Solution: So long as there are three or less packets in the system, the number
of packets left at the of a frame will be simply the number of packets that arrive
during the frame. If there are more than 3 packets present at the beginning of
a time slot, then the number of packets remaining at the end of the frame will
be the number that arrive during the frame time plus the number of packets in
excess of three at the beginning of the frame. Thus, and

Since C = 3 and the degrees of and are both 5, and
thus, Thus, D, E, and A are all 6 × 6 matrices and N is a 3 × 6 matrix.
The numerical results are summarized in Table 5.2 From the table, the arrays
D, N, E, and A can be determined. For example,

For the coefficient of  on the right hand side of (5.75) is zero. Thus,
we have, for
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or

If we now define the previous equa-
tion can be written in vector form as

By putting the simple statements for into
the previous equation, we have the following:

where and

Thus, in order to solve for all the probabilities we need only to solve the
system of equations defined by (5.76) and (5.78):
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Note that (5.76) and (5.78) are identical in form to (5.62) and (5.66); the only
difference is that of (5.62) is replaced by of (5.76). But, if C = 1, then

so that the two forms are identical. We therefore choose to solve the
general case first and then do examples for the case C = 1.

EXERCISE 5.30 Suppose and are each polynomials of degree
as discussed in the first part of this section. Define Find D,

N, A, and E using (5.72), (5.73), and (5.78). Compare the results to those
presented in (5.62) and (5.66).

We now turn to the solution procedure based on the generalized state space
approach. We will use generalized Schur decomposition as we did in solving
QBD systems in an earlier chapter. For continuity, we repeat the following
theorem:

THEOREM 5.4 Generalized Schur Decomposition. Suppose A and E are
both real matrices with spectrum and is partitioned into two
sets, say and such that Then,
there exist (non-singular) orthogonal matrices, Q and Z, such that

where all matrices are real, and are upper triangular, and and
are block upper triangular, meaning that their diagonal elements are either

1×1 or 2 × 2 blocks, depending upon whether the eigenvalues are real or occur
in complex conjugate pairs. The row dimensions of and and and

are and respectively.

The generalized Schur decomposition of Theorem 5.4 is carried out efficiently
by using the so-called QZ algorithm, which is described in detail in Golub and
Van Loan [1996]. In turn, the QZ algorithm is implemented in the routine
dgges() of LAPACK (Anderson [1999]).

As in the solution procedure for QBD processes, we first define the par-
titions and as the unstable and stable sets of generalized
eigenvalues of A with respect to E. Next, we define We then
substitute and for and in (5.78) and postmultiply both
sides of the result by Z to obtain

where and represent the unstable and stable parts of respectively,
and whose dimensions are and respectively. As in the QDB case, we
recognize that must be 0 for all in order to have a stable solution. Thus,
(5.79) implies This leads to
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Because for all Therefore, it is conve-
nient to partition so that we may write where is the matrix
containing the last rows of Now substitute for in (5.80)
and then postmultiply the result by to obtain

Equivalently,

where H is defined as the first column of and the second step
of the previous equation results from the fact that Thus, (5.82)
specifies all level probabilities for levels greater than C in terms of while

Thus, to complete the solution, it remains
only to specify

From (5.76), we have

In addition, because Q is orthogonal, implies so that
where is the first    columns of Q. Thus, we must have

We thus have from the previous two equations

We now define

where Equation 5.83 can then be rewritten as

where and are the matrices N and D with their last columns deleted.
Note that (5.85) yields numerical values for and
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In terms of (5.82) becomes

Since the individual probabilities must sum to unity, we then have

or equivalently,

Thus, we can determine from (5.86).
After finding    we can substitute its value into (5.84) to determine and
noting that contains the vectors We can then use

in (5.82) to determine for which results in a complete
solution for the level probabilities.

In summary, the generalized state-space solution to multiple-boundary prob-
lems within the M/G/1 paradigm is as follows:

2.

3.

4.

6.

7.

8.

9.

1.

5.

From the problem statement, determine for
1 and express these polynomials in right polynomial fraction form as in
(5.70).

Compute by using (5.72).

Compute the coefficients of and by using (5.73).

Using the results of previous step, (5.76), and (5.78), determine the matrices
D, N, E, and A.

Perform a generalized Schur decomposition of A with respect to E accord-
ing to Theorem 5.4. The LAPACK routine dgges() may be used for this
purpose. This decomposition yields directly Q, and

Partition Q and to obtain and H.

Formulate the linear system of equations (5.85) and solve to obtain and

Solve for using (5.86).

Find and using (5.84).
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10.

11.

Partition to find

Compute all remaining desired using (5.82).

We now discuss a few examples that illustrate the use of these techniques
for examining the behavior of queueing systems in general.

EXAMPLE 5.6 (Continuation of Example 5.4). From Example5.4, we have
and

Thus, with and
we find so We readily find    and for

from (5.74). The results are shown in the Table 5.3.
From the table and (5.71) and (5.76), we have

Figure 5.3 shows a graph of survivor function that illustrates the effect of
the service rate, for the exceptional first service. From these graphs, we
see that as the service rate decreases, the survivor functions, and therefore the
moments of the occupancy distributions, increase.

EXAMPLE 5.7 (Binomial Approximation of Poisson). In the M/D/1 system
with unit service time, the number of arrivals that occur during a service period
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Figure 5.3. Survivor functions for system having exponential ordinary and exceptional first
service and as a parameter.

is Poisson with parameter It is well known that the binomial distribution
with parameters N and with     fixed converges to the Poisson distribution
with  as Suppose the number of arrivals during the service
period has the binomial distribution with parameter N and We
wish to plot the survivor functions of the occupancy distribution with N as a
parameter in order to see whether or not the survivor function converges to that
for the M/D/1, and if so, how fast.

In this example, C = 1, and Figure 5.4
shows graphs of the survivor function of the occupancy distribution for N =
4,16,64, and, 256. We note that the graph for N = 256 and the graph for the
M/D/1 system shown in Figure 5.1 are visually the same. In addition, we note
that the graphs for N = 64 and N = 256 are virtually indistinguishable. On
the other hand, there is a noticeable difference between the graphs for N = 16
and N = 64, especially at higher occupancy levels.
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Figure 5.4. Survivor functions with unit deterministic service and binomially distributed ar-
rivals with N as a parameter at

EXAMPLE 5.8 (Batch size and queue length). Suppose a system’s service
time distribution is Erlang-K with unit mean and that arrivals to the system are
Poisson with a rate that results in a traffic load of 90%. During each service
interval, the server may serve a batch of up to C units. We wish to examine
the form of the survivor function as the batch size is increased. Determine the
functions and as a function of C and
then determine Find and for K = 4 and C = 3. Obtain plots of
the survivor functions of the occupancy distributions for the cases of K = 10,
C= 1, 2, 4, and 8.

Solution: Since service on the boundaries is not exceptional,
In general, since the Erlang-K random variable is the sum of K

individual exponential random variables of equal rate, the Laplace-Stieltjes
transform of the service time distribution is
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Thus, the PGF of the number of arrivals during the service time is

where In order to have unit service time, we must have
Also, since the system serves batches of size C, the traffic load will be
Hence, for a load of 0.9, we need so that Thus, we
find

Therefore, and

Since the degree of is zero for all the degree of is also zero, and the
degree of is K, For K = 4 and C = 3, Coefficients
of and are given in Table 5.4.

Figure 5.5 shows the required graph of survivor functions. We note that the
survivor functions are increasing functions of the batch size. At the end of
each service period, the server removes up to C units from the queue. If there
are less than C units, the server clears the queue. The curves demonstrate that
backlog increases as batch size increases. This system is closely related to,
but not identical to, a system of C parallel servers. In the case of C parallel
servers, if we hold the service rate constant while increasing C, then we know
the backlog increases. Thus, it is better to have one fast server than C slow
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Figure 5.5. Survivor functions with unit-mean Erlang-10 service and Poisson arrivals with C
as a parameter at a traffic load of 0.9.

ones. Similarly, it would be better to serve items one-at-a-time with a faster
server than in batches with a slower server.

EXERCISE 5.31 Table 5.5 gives numerical values for the survivor function
of the occupancy distributions shown in Figure 5.5. From this table, deter-
mine the probability masses for the first few elements of the distributions
and then compute the mean number of units served during a service time
for C = 1, 2, 4, and 8. Analyze the results of your calculations.

EXAMPLE 5.9 (Erlang-K approximation of deterministic). The determinis-
tic service time is often approximated by the Erlang-K distribution. Consider
the M/D/1 system. We wish to investigate the effect of the choice of K on the
queue length distribution at

From the previous example, we have
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Therefore, and

Since the degree of is zero for all the degree of is also zero, and the
degree of is K , Figure 5.6 shows the resulting survivor functions
for with To avoid clutter and because the
survivor functions decrease with increasing K, the graphs are not individually
labeled. From the graph, we see that the survivor function decreases rapidly as
K is increased, with very little difference between and It
is clear that the choice of K has at least some effect upon the results even for
very large K.

EXAMPLE 5.10 (Pade approximation of deterministic). Consider again the
M/D/1 system. We wish to consider use of the Pade approximation to the
deterministic service time. We will do this by comparing the survivor function
obtained using the Erlang distribution and survivor function obtained from
the Pade approximation.

The idea of the Pade approximation is to approximate the LST of a given
distribution by a ratio of polynomials of degrees and such that the first

moments of the actual service time distribution match with those of the
approximation. In this case, and the Pade approximation has the
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Figure 5.6.  Survivor functions with unit-mean Erlang-K service and Poisson arrivals with K
as a parameter at a traffic load of 0.9.

following closed-form solution [Akar and Arikan [1996]]:

We note in passing that in order to avoid dealing with large numbers, we re-
arrange the above formula by first dividing the numerator and denominator by

We then find

We then have
In terms of and we find
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and

Figure 5.7 shows graphs of survivor functions obtained by using an
approximation to and an Erlang service time distribution at

We note that the curves are indistinguishable on the graph.
In order to investigate more closely, we present some selected values of the

survivor function in the Table 5.6. Note that, except for the Pade(1, 1) case,
the survivor function values for the are always less than the Erlang-

values. Given that the Erlang-K values decrease with K, it appears that
the Pade (2, 2) would be a very good approximation to the deterministic ser-
vice. Note in addition the very small differences between the Pade(2, 2) and
Pade(3, 3) values. We examined a number of addition approxima-
tions and found similar results.

EXAMPLE 5.11 (Pade approximation vs Erlang approximation to determin-
istic). Consider the M/D/16 system. We wish to compare the results that would
be obtained by using Pade and Erlang-K approximations to the deter-
ministic service time for various values of and K.

We do this by comparing the survivor functions obtained using the Erlang-
K distribution and survivor function obtained from the Pade approximation
with
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Figure 5.7. Survivor functions with and Pade(2, 2) service, Poisson arrivals, and a
traffic load of 0.9.

Figures 5.8 and 5.9 show the survivor functions for the queue length dis-
tributions obtained for these approximations. Note that the results are not all
actually survivor functions; some of the probabilities computed are actually
negative for larger values of K. In fact, the Erlang approximation breaks down
at values below K = 64 for this particular computational technique, but in
any event, the approximation to deterministic is not very good over any range
of K where the computational procedure appears to be stable. On the other
hand, the results obtained for the Pade approximations are virtually unaffected
by choice of for values of in the range of 16 to 128.

EXAMPLE 5.12 (Bulk service with random bulk size). Suppose that a system
has poisson arrivals and deterministic service time, but that during each service
period, the server serves a random number of units, say which has support
on the integers in [0, C]. We wish to compare the queue lengths for the special
case where has the binomial distribution with parameters 64 and 0.25 to the
case where is deterministic with C = 16 with a load of
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Figure 5.8. Survivor functions for deterministic (16) batch sizes with
deterministic service and Poisson arrivals at a traffic load of 0.9 for various

choices of

Solution: For the case of general service times, it can then be shown that

and

where, as usual, denotes the probability generating function for the num-
ber of arrivals that occur during a service time and denotes the probabil-
ity generating function for the number of units served during a service interval.

As always, Since we need
Figure 5.10 shows the survivor function for the two cases, where

a Pade (32, 32) approximation to the deterministic service time distribution
has been taken. From this figure, it is quite obvious that there is a significant
difference between the queueing behavior of the two systems. For example,
for the random batch size case, the probability that there will be more than
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Figure 5.9. Survivor functions for deterministic (16) batch sizes with Erlang-K-approximated
deterministic service and Poisson arrivals at a traffic load of 0.9 for various choices of K.

75 packets in the queue is approximately while the probability that
the queue size exceeds 75 in the deterministic batch-size case is only about

Thus, it is about 200 times more likely to find a queue length
exceeding 75 in the case of binomially distributed batch sizes with a mean of
16 than it is in the case of a system serving fixed batches of size 16.

We now briefly discuss computational strategy. There are two major parts
of the computational procedure: specification of the D, N, A, and E matrices,
and solving the remaining equations. The elements of the matrices D, N, A,
and E are expressible in terms of the coefficients of  and as follows:
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Figure 5.10. Survivor functions for binomial (64,0.25) and deterministic (16) batch sizes with
deterministic service approximated by a Pade(32, 32) approximation and Poisson arrivals at a
traffic load of 0.9.

and

where and

Because the and the are always determined by the same formulae,
the computational procedures are identical in all cases once C,
and are known. Therefore, a sensible approach
is to write a procedure that delivers the solution given C, and

and then invoke this procedure from a program
that generates C, and passing this
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information to the solution procedure via a data structure and receiving the
solution via a returned data structure.

As an example, a sensible data structure for the input, in pseudocode, would
appear to be as shown in Table 5.7.

Outputs from the program can also be specified in a uniform way. The so-
lution is completely specified by C, F, and H. Thus, a data structure
that captures these characteristics would be sufficient to return all of the results.
A sensible data structure would be as shown in Table 5.8.

The results desired by the user could then be computed by postprocessing
the output data structure.
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5.3 Expected Values For M/G/1 Via Renewal Theory
In this section, we present methodology for direct computation of expected
waiting and sojourn times as well as busy-period lengths. We begin our pre-
sentation by reviewing our approach to computing the expected waiting time
for the M/M/1 system and showing where this approach fails when applied to
the M/G/1 system. At that point, we introduce renewal processes and present a
few elementary but useful results from renewal theory. These results are then
used to complete the derivation of the expected waiting time for the M/G/1 sys-
tem. Next, we turn to the direct computation of the expected length of the busy
period. At this point, we introduce alternating renewal processes and state a
major result from the theory of alternating renewal processes in the form of a
theorem. The theorem is then used to compute the expected length of the busy
period directly.

5.3.1 Expected Waiting Times and Renewal Theory
We indicated earlier via an exercise that the expected waiting and sojourn times
for the M/M/1 queueing system can be computed directly by applying Little’s
result in combination with the memoryless property of the exponential dis-
tribution. In particular, we suggested that the waiting time is the sum of the
waiting time due to the customers in the queue, and the waiting time due
to the customers in service, if any. That is,

Now, because the service times of the customers in the queue are independent
of the number of customers in the queue,

where denotes the expected number of customers in the queue. Also,

where is the probability that there is a customer in service at an arbitrary
point in time and denotes the remaining service time for the customer in
service, if any. Using in (5.88) and then substituting the
result together with (5.89) into (5.87) leads to

Because of the memoryless property of the exponential distribution,
Thus, for the M/M/1 system, we find
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EXERCISE 5.32 Use a busy period argument to establish the validity of
(5.90). [Hint: Consider the M/G/1 system under the nonpreemptive LCFS
service discipline.]

A little thought reveals that (5.87) through (5.90) are still valid for the M/G/1
queueing system, but that (5.91) is no longer valid. That is, the service-time
distribution is not memoryless so that the distribution of remaining time for the
customer in service, if any, is not equal to the ordinary service-time distribu-
tion.

Since Poisson arrivals see the system in stochastic equilibrium, it is natu-
ral to conjecture that the expected length of time until the customer in service
completes service would be one-half of the expected length of an ordinary ser-
vice interval. But, we know that this quantity is equal to the entire expected
length of a service interval if the service times are exponentially distributed.
Thus there seems to be paradox here. The paradox, called the inspection para-
dox, is resolved by noting that the probability that random observers are more
likely to observe longer intervals is higher than the probability that these longer
intervals occur. The following example illustrates the paradox.

Suppose that and Now suppose we
draw four customers at random without replacement from a group of thousands
of customers and that the lengths of the service times corresponding to these
customers are and So, we have
been lucky: We have drawn the customers such that the proportions of service
times of each length in the sample are in exact proportion to their probabilities
of occurrence. We now string these four intervals out in time and pick an
arbitrary point in time in the interval covered by all four intervals as shown
in Figure 5.11. If the point falls in an interval of length 2, we say that we
“observe an interval of length 2.” Because the total proportion of the line
covered by intervals of length 2 is the probability that the interval observed
has length 2 is If we let denote the length of the observed intervals, we
find that and Thus, while

We see that, in this particular example, that is, the
expected length of the service times of the observed customers is greater than
the expected service time taken over all customers.

Figure 5.11. A sample of service times.
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It turns out that, in the general case, the expected length of the observed
intervals is greater than or equal to the expected length taken over all intervals
with equality holding if and only if the intervals have fixed length.

DEFINITION 5.3 Renewal process.  Let denote a sequence of
independent, identically distributed nonnegative random variables with

so that where denotes a generic Let and
with probability 1, and let Then

the counting process is called a renewal process, is called the
renewal interval, and is called the time of the renewal.

For a general renewal process, it is intuitive that the probability that an in-
terval of a particular length is observed is proportional to both the length in
question and the probability of occurrence of an interval of the given length.
That is,

where denotes the length of the observed interval. Upon integrating both
sides of (5.92), we find that so that

Now, from (5.93), we find that

Since we see that in general,

as we had observed earlier in our special case.

Figure 5.12. An observed interval of a renewal process.

Based on the above definition of the renewal process, we see that is
the number of renewals up to time This means that the time of the last
renewal up to time is given by and the time of the first renewal after

and
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time is given by The interval is the observed interval
as shown in Figure 5.12. Returning to the computation of the expected waiting
time for the M/G/1 system, we note that if we condition on the system being
busy, then the sequence of service times for the M/G/1 queueing system have
the properties needed to form a renewal process. A little thought reveals that
since the Poisson arrival observes the state of the system in exactly the same
way as a random observer, then of and

That is, given that there is a customer in service upon an arbitrary customer’s
arrival, the expected waiting time due to the customer in service is given by
the expected amount of time from the observance time until the customer in
service completes service. One would guess that the expected length of this
interval would be one-half the expected length of the observed interval. After
the following definitions, we will specify the distribution of the length of this
interval, and we will see that this is indeed the case.

DEFINITION 5.4 Forward recurrence time (residual life). The forward re-
currence time or residual life for the renewal process is defined
as the interval If denotes the length of a renewal interval, then
the forward recurrence time for the renewal process will be denoted by

Based upon the above discussion, we see that of (5.90) is equivalent to
the forward recurrence time of the renewal process whose underlying renewal
interval is Thus,

Now, for because the point is selected
at random during the interval Thus, for we find

The density function for is then given by

isDEFINITION 5.5 Backward recurrence time (age). The interval
called the backward recurrence time or age for the renewal process

If denotes the length of a renewal interval, then the backward recurrence
time for the renewal process will be denoted by
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EXERCISE 5.33 Show that the Laplace-Stieltjes transform for the distri-
bution of the residual life for the renewal process having renewal intervals
of length is given by

We note for a nonnegative random variable so
that is indeed a density function. Turning to the computation of the
expected value of the residual service life, we find

Thus,

Comparing (5.96) and (5.99), we see that

as we would expect intuitively.
It is sometimes useful to express in terms of the coefficient of variation

of which we will denote by where
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Since we find that

Then, substituting (5.100) into (5.96) with we find for the M/G/1
system that

It is reasonable to question the general applicability of the theorems and def-
initions stated above. For example, the renewal intervals for a renewal process
must all be drawn independently from the same distribution. One might ask,
“What about processes for which the first renewal interval or the first several
renewal intervals are drawn from a distribution other than the common distri-
bution from which the length of all remaining intervals are drawn? Does this
affect the stochastic equilibrium distribution of the length of observed inter-
vals and backward and forward recurrence times?” The answer is that pro-
cesses that are defective in this way behave the same as nondefective processes
once they reach stochastic equilibrium. In this book, we take these results for
granted, but we proceed carefully. These results may be found in any good text
on stochastic processes (see, for example, Ross[1983]).

EXERCISE 5.34 For an arbitrary nonnegative random variable,    show
that

EXERCISE 5.35 For the M/G/1 system, suppose that                where
and are independent, exponentially distributed random variables with

parameters and respectively. Show that for all such
that

EXERCISE 5.36 Compute the expected waiting time for the M/G/1 system
with unit mean deterministic service times and for the M/G/1 system with
service times drawn from the unit mean Erlang-2 distribution. Plot on the
same graph as a function of for these two distributions and for the
M/M/1 queueing system with on the same graph. Compare the
results.

EXERCISE 5.37 For the M/G/1 system, suppose that   is drawn from the
distribution with probability and from otherwise, where

and are independent, exponentially distributed random variables with
parameters and respectively. Let Show that for
all
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EXERCISE 5.38 With and defined as in Exercise 5.37, let Find
and such that Would it be possible to determine and
uniquely for a given value of Explain.

5.3.2 Busy Periods and Alternating Renewal Theory
We now turn to the direct computation of the expected length of the busy period
for the M/G/1 queueing system. We introduce alternating renewal processes
and a major result from the theory of alternating renewal processes as a tool
for approaching this computation. It will be seen that formulating problems
in terms of alternating renewal processes provides a very powerful conceptual
framework for dealing with important aspects of the behavior of complicated
stochastic processes.

Alternating renewal processes are special types of renewal processes. In
particular, an alternating renewal process is a renewal process in which the re-
newal interval comprises two subintervals. For example, consider the ordinary
M/G/1 queueing system. Periods of time alternate between idle periods and
busy periods. If we define a cycle to be the period of time between succes-
sive entries into idle periods, then the process that counts the number of cycles
completed up to time is an alternating renewal process.

Alternating renewal theory provides a very useful framework through which
to conceptualize the functioning of more advanced queueing systems. In this
subsection, we will present a formal definition of an alternating renewal pro-
cess, state a basic theorem from the theory of alternating renewal processes,
and compute the average length of a busy period by using the basic theorem.
The theorem will not be proved, but an intuitive explanation of why it is true
will be provided.

DEFINITION 5.6  Alternating renewal process. Let and
denote sequences of independent and identically distributed nonnegative

random variables, but with and not necessarily independent. Let and
denote generic random variables for and respectively; and let

and so that and Define
and let denote a generic Further, define and with
probability 1, and let Then the counting
process is called an alternating renewal process, is called the
renewal interval, and is called the time of the renewal.

We envision the alternating renewal process as alternating between
and and we think of each completion of an x-period followed by a
y-period as the completion of a cycle. That is, time evolves as a succession of
intervals as follows: The following is a useful theorem from
the theory of alternating renewal processes.
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THEOREM 5.5 Let  be an alternating renewal process that al-
ternates between x-periods and y-periods as defined above. Then, the proba-
bility that the process is in an x-period at an arbitrary point in time is given
by the ratio of the expected length of the x-period to the expected cycle length.
That is,

where

Similarly,

where

Proof The truth of this theorem follows directly from the theory of Markov
chains. We can define the process to be in state 0 whenever it is in an x-period
and state 1 otherwise. Then, because the system alternates between x-periods
and y-periods, it is clear that the proportion of transitions into each state is one-
half. Then, from the theory of Markov chains, the proportion of time spent in
state 0 is simply

and the proportion of time spent in state 1 is

We will make use of the above theorem extensively in our study of priority
queueing systems. Here, we use this theorem to determine the expected length
of the busy period for the ordinary M/G/1 queueing system. As pointed out
above, if we consider the idle periods as x-periods and the busy periods as y-
periods, then the counting process that counts the number of cycles completed
by time is an alternating renewal process. Thus the probability that the pro-
cess is in a busy period is given simply as the ratio of the expected length of the
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busy period to the expected length of the cycle. But the expected length of the
cycle is simply the sum of the expected lengths of the idle and busy periods.
Therefore,

But, the expected length of the idle period is and the probability that the
server is busy is found to be Thus

Upon solving the above equation for we readily find that

as we previously determined in at least two other ways.
One can begin to appreciate the power of the seemingly trivial Theorem

5.5 by working a slightly more complicated example. The following exercise
provides such an example.

EXERCISE 5.39 (Ross[1989]) Consider an ordinary renewal process with
renewal interval Choose a real number arbitrarily. Now suppose the
renewal process is observed at a random point in time, If the age of the
observed interval is less than define the system to be in an x-period, else
define the system to be in a y-period. Thus, the expected cycle length is

and the expected length of the x-period is Show that

so that

as was shown in the previous subsection.

From the above example, we see that parameters of interest can sometimes
be computed very simply by application of Theorem 5.5. In addition, the proof
of the theorem explains why the expected length of the busy period is not af-
fected by the form of the service-time distribution. The basic reason for this is
simply that the probability that the server is busy is a time-averaged probabil-
ity. For the time period prior to time the proportion of time spent in the busy
period is simply the sum of the amount of time spent in the busy state divided
by So long as there is at least one visit to the busy state, both numerator
and denominator can be divided by the number of visits by time which is
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a random variable. An application of the strong law of large numbers and the
elementary renewal theorem (see Wolff [1989]) then produces the desire result.

EXERCISE 5.40 Formalize the informal discussion of the previous para-
graph.

It should be noted again that the truth of Theorem 5.5 does not depend upon
independence of the length of x-periods and y-periods of the same cycle. The
lengths of the x-periods must be drawn independently of each other from a
common distribution, and the lengths of the y-periods must be drawn indepen-
dently of each other from a common distribution, but there is no requirement
that the lengths of the x-period and y-period of the same cycle be drawn in-
dependently of each other. For this particular example, however, the busy and
idle periods are independent of each other.

As in the case of ordinary renewal process and defective renewal processes,
if the lengths of the initial cycles have a distribution other than that of the
common distribution from which all remaining intervals are chosen, the above
theorem is still valid.

If the lengths of the x-periods and y-periods are drawn independently of
each other, then it does not matter how one thinks of grouping the intervals of
a cycle so long as a cycle consists of an x-period and a y-period. For example,
one can think of a cycle as being then then or then We
will see in the next chapter that this property makes the theory even more
useful in conceptualizing, from a mathematical point of view, the behavior of
complicated systems.

5.4 Supplementary Problems
5-1 Consider a communication system in which messages are transmitted over

a communication line having a capacity of C octets/sec. Suppose the mes-
sages have length (in octets), and the lengths are drawn from a geomet-
ric distribution having a mean of octets, but truncated at and
characters on the lower and upper ends of the distribution, respectively.
That is, message lengths are drawn from a distribution characterized as
follows:

where is the number of characters in a message and is a normalizing
constant.
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(a) Given that

show that

and

(b) Rearrange the expression for given above by solving for to
obtain an equation of the form

and use this expression to obtain a recursive expression for of the
form

(c) Write a simple program to implement the recursive relationship de-
fined in part (b) to solve for in the special case of
and Use as the starting value for the
recursion.

(d) Argue that where C is the transmission capacity
in octets/sec.

(e) Use a computer program to obtain the complementary occupancy dis-
tribution for the transmission system under its actual message length
distribution at a traffic utilization of 95%, assuming a transmission
capacity of 30 characters/sec.

(f) Compare this complementary distribution to one obtained under the
assumption that the message lengths are drawn from an ordinary ge-
ometric distribution. Comment on the suitability of making the geo-
metric assumption.

5-2 Using the properties of the probability generating function, determine a
formula for the second moment of the occupancy distribution for
the ordinary M/G/1 system, in terms of the first three moments of
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the service time distribution. Verify the formula for along the way.
[Hint: The algebra will be greatly simplified if (5.8) is first rewritten as

where

and is the distribution for the forward recurrence time of the ser-
vice time. Then, in order to find

first find the limits as of
and then substitute these limits into the formula

for the second derivative of the ratio.]

5-3 Jobs arrive to a single server system at a Poisson rate Each job con-
sists of a random number of tasks, drawn from a general distribution

independent of everything. Each task requires a service time
drawn from a common distribution, independent of everything.

(a) Determine the Laplace-Stieltjes transform of the job service-time dis-
tribution.

(b) Determine the mean forward recurrence time of the service-time dis-
tribution using the result of part (a) and transform properties.

(c) Determine the stochastic equilibrium mean sojourn time for jobs in
this system.

(d) Determine the mean number of tasks remaining for a job in service at
an arbitrary point in time, if any.

5-4 Consider a queueing system in which ordinary customers have service
times drawn from a general distribution with mean There is a spe-
cial customer who receives immediate service whenever she enters the
system, her service time being drawn, independently on each entry, from
a general distribution, which has mean Upon completion
of service, the special customer departs the system and then returns after
an exponential, rate length of time. Let denote the length of the

interruption of an ordinary customer by the special customer, and let
denote the number of interruptions. Also, let denote the time that elapses
from the instant an ordinary customer enters service until the instant the
ordinary customer departs.
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(a) Suppose that service time for the ordinary customer is chosen once.
Following an interruption, the ordinary customer’s service resumes
from the point of interruption. Determine the con-
ditional probability that the number of interruptions is and
the probability generating function for the number of interruptions
suffered by the ordinary customer.

(b) Determine the Laplace-Stieltjes transform for under this pol-
icy. [Hint: Condition on the the length of the service time of the ordi-
nary customer and the number of service interruptions that occur.]

(c) Compare the results of part (b) with the Laplace-Stieltjes transform
for the length of the M/G/1 busy period. Explain the relationship
between these two results.

(d) Determine and

(e) Determine the probability that the server will be busy at an arbitrary
point in time in stochastic equilibrium, and the stability condition for
this system.

5-5 Consider a queueing system that services customers from a finite popula-
tion of K identical customers. Each customer, while not being served or
waiting, thinks for an exponentially distributed length of time with param-
eter and then joins a FCFS queue to wait for service. Service times are
drawn independently from a general service time distribution

(a) Given the expected length of the busy period for this system, describe
a procedure through which you could obtain the expected waiting
time. [Hint: Use alternating renewal theory.]

(b) Given the expected length of the busy period with K = 2, describe a
procedure for obtaining the expected length of the busy period for the
case of K = 3.

5-6 For the queueing system, it is well known that the stochastic equi-
librium distribution for the number of busy servers is Poisson with param-
eter where is the arrival rate and is the holding time.

(a) Suppose that with probability for with
Determine the equilibrium distribution of the number of

servers that are busy serving jobs of length for and the
distribution of the number of servers that are busy serving all jobs.

(b) Determine the probability that a job selected at random from all of the
jobs in service at an arbitrary point in time in stochastic equilibrium
will have service time
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(c) Calculate the mean length of an arbitrary job that is in service at an
arbitrary point in time in stochastic equilibrium.

(d) Suppose that job service times are drawn from an arbitrary distribu-
tion Repeat part (c).

(e) What can be concluded about the distribution of remaining service
time of a customer in service at an arbitrary point in time in stochastic
equilibrium for the system?



Chapter 6

THE M/G/1 QUEUEING SYSTEM WITH PRIORITY

In Chapter 5, we developed basic tools to analyze non-Markovian systems,
and we used those tools to analyze the basic M/G/1 system. Towards the end
of Chapter 5, we introduced renewal theory and discussed some elementary
properties of M/G/1 systems in the context of renewal theory. In this chap-
ter, we turn our attention to more complicated systems, namely those having
priority.

By using the results of Section 5.3, we will see that the Pollaczek-Khintchine
transform equations for the waiting and sojourn times can be expressed as ge-
ometrically weighted sums of random variables. This characteristic had long
eluded logical explanation, but was finally explained in terms of the unfinished
work for the M/G/1 system under the last-come-first-serve (LCFS) service dis-
cipline. This explanation, due to Kelly [1979] and Cooper and Niu [1986],
is provided in Section 6.1. The material illustrates the analytical advantage
of substituting a seemingly difficult queueing-system question for a relatively
easy one that has the same solution.

In Section 6.2, we analyze the M/G/1 queueing system with exceptional first
service; that is, the service times of all customers except the first customer of
each busy period are chosen independently from a common distribution
whereas the service time of the first customer of each busy period is chosen
independently from the distribution We begin our development by de-
riving the Pollaczek-Khintchine transform equation of the occupancy distribu-
tion using the same argument by which Fuhrmann-Cooper decomposition was
derived (Fuhrmann [1984] and Fuhrmann and Cooper [1985]); this approach
avoids the difficulties of writing and solving difference equations. We then
derive the probability generating function of the occupancy distribution for the
M/G/1 queueing system with exceptional first service, again using the ideas of
Fuhrmann-Cooper decomposition. Finally, we derive the probability generat-
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ing function of the occupancy distribution for the M/G/1 queueing system with
set-up as a variant of the M/G/1 queueing system with exceptional first service.

The techniques explored in the study of the M/G/1 queueing system with
exceptional first service are used in Section 6.3 to study the M/G/1 queueing
system with externally assigned priorities and head-of-the-line service. That
is, the customers arriving belong to a certain priority group, where the arrival
processes of the various classes are Poisson with their parameter dependent
upon their class. There are K classes, and the service times for the class
customers are drawn independently of everything from the distribution

Transform equations are developed for the occupancy, waiting-
time and sojourn-time distributions.

In Section 6.5, we develop expressions for the average waiting and sojourn
times for the M/G/1 queueing system under both preemptive and nonpreemp-
tive priority disciplines. This section is basically an extension of Section 5.3,
and it concludes this chapter.

6.1 M/G/1 Under Last-Come-First-Served,
Preemptive-Resume Discipline

Under the last-come-first-served, preemptive-resume (LCFS-PR) service dis-
cipline, newly arriving customers immediately enter into service. If there is
currently a customer in service, that customer’s service is suspended until ser-
vice for the newly arrived customer and his descendants is completed. Then,
service for the suspended customer is resumed. Clearly, the sojourn time for
a customer has the same distribution as the length of the busy period in an
ordinary (FCFS) M/G/1 system. That is,

where is the sojourn time for the M/G/1 under the LCFS-PR disci-
pline and

EXERCISE 6.1 Argue the validity of (6.1).

EXERCISE 6.2 Derive an expression for the Laplace-Stieltjes transform
of the sojourn-time distribution for the M/G/1 system under the LCFS-PR
discipline conditional on the customer’s service time requirement. [Hint:
See Exercise 5.13].

EXERCISE 6.3 Compare the means and variances of the sojourn times for
the ordinary M/G/1 system and the M/G/1 system under the LCFS-PR dis-
cipline.
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Two other quantities of interest in this system are the unfinished work,
and the occupancy distribution. Clearly the unfinished work for the LCFS-PR
discipline is equivalent to the waiting time for the ordinary M/G/1 system. That
is, the unfinished work in any work-conserving system is independent of order
of service (Wolff [1970]), and because the Poisson arrival sees the system in
stochastic equilibrium, the waiting time for the ordinary M/G/1 system is the
same as the unfinished work for that system. Thus, for the M/G/1 system under
the LCFS-PR discipline, and from (5.41), we find,

The observation represented by (6.2) is attributed to Kelly [1979] in Cooper
and Niu [1986].

We now turn to the computation of the occupancy distribution, for which
purpose we follow Cooper and Niu [1986]. Clearly, the customers left in the
system by any customer are exactly the same as the ones found in the system
by that customer. Thus the distribution of the number of customers seen by a
departing customer is certainly the same as the distribution of the number of
customers found by an arriving customer. Consequently, the distribution of the
number of customers left in the system by an arbitrary departing customer is
the same as the stochastic equilibrium occupancy distribution.

Now, the customers in the queue at an arbitrary point in time have all been
preempted at least once. Indeed, they have been preempted only while in ser-
vice and then only by customers arriving from a Poisson process. Clearly, the
remaining service time for all customers in the queue is independent and iden-
tically distributed. One would suspect that the distribution of the remaining
service time for the customers in the queue is the same as the distribution of
the residual service-life variables because the interrupting (observing) process
is Poisson. Thus, we will denote the remaining service time for the customers
in the queue by

Let customers in the system at an arbitrary point in time}. Then,
clearly, from Littles’sresult, Also, for an arbitrary customer
who arrives at time (call this customer “tagged”) will find customers in the
system if and only if one of the following two conditions holds:

the most recent epoch prior to was an arrival that found customers
in the system, or

the most recent epoch prior to was a departure that left customers is the
system.

1.

2.
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Since we have argued that the arrival, departure, and stochastic equilibrium
occupancy distributions are identical, we find

where is the interarrival time. Thus

or

After collecting terms, we find

or

From the requirement that the probabilities sum to unity, we find that

But, since (6.8) implies

Substitution of (6.9) into (6.8) and the result into (6.7) yields the occupancy
distribution

From (6.10), we see that the occupancy distribution for the M/G/1 under
the LCFS-PR discipline is independent of the service-time distribution and
identical to that of the ordinary M/M/1 system. In addition, we find from (6.9)
that

where Substituting for in (6.11) yields



The M/G/1 Queueing System with Priority 229

This expression holds for for all for which is defined by the analytic
continuity property of regular functions. Since (6.12) and (5.98) are identical,
the remaining service times for the customers in the queue for the M/G/1 hav-
ing the LCFS-PR discipline are indeed given by the residual service time as
conjectured; that is,

Having determined the occupancy distribution and the distribution of the re-
maining service time for the customer in the system, we can readily determine
the distribution for the unfinished work at an arbitrary point in time. We find

where denotes the convolution of with itself, and
Upon taking the Laplace-Stieltjes transform of both sides

of (6.13) and comparing to (6.2), we readily find that as
expected. We note in passing that the result given in (6.13) is valid for any
work-conserving system.

Thus the behavior of the M/G/1 system under the LCFS-PR discipline pro-
vides an intuitive explanation for (6.2) as follows. The waiting-time distribu-
tion for the ordinary M/G/1 system is the same as the unfinished work in the
M/G/1 system under the LCFS-PR discipline. The occupancy distribution un-
der the LCFS-PR discipline is independent of the service-time distribution and
identical to the occupancy distribution for the ordinary M/M/1 system. The
remaining service times for the customers in the system are independent and
identically distributed, and their distribution is the same as that of the residual
service time. The unfinished work is then just the geometrically weighted sum
of the j-fold convolutions of the residual service-time distribution.

6.2 M/G/1 System with Exceptional First Service
In this section, we develop transform equations for the M/G/1 queueing system
with exceptional first service, that is, an M/G/1 system in which the first cus-
tomer served in each busy period has a special service time, and all other
customers have service time The M/G/1 queueing system with exceptional
first service is interesting in its own right, but it is also a very useful tool in
understanding priority queueing systems which are in turn extremely valuable
in examining the behavior of many practical systems.

This section discusses four basic models. First, we present a very simple
method for specifying the PGF for the number of customers left by an arbitrary
departing customer in an ordinary M/G/1 queueing system. Our development
is based upon a decomposition principle similar to that used by Fuhrmann and
Cooper [1985] to examine the M/G/1 queueing system with vacations (which
we will discuss later). This approach is more direct than the method presented
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earlier in this text because it does not require the specification and manipulation
of recursive equations. Next, we use the decomposition principle to develop
the PGF for the occupancy distribution for the M/G/1 queueing system with
exceptional first service; the LSTs for the waiting- and sojourn-time distribu-
tions are left as exercises. We then consider the M/G/1 queueing system with
set-up times, which is a special case of exceptional first service. Finally, we
consider the M/G/1 queueing system with multiple vacations.

We begin our development for the M/G/1 system with exceptional first ser-
vice by presenting an alternate derivation for the PGF of the occupancy distri-
bution of the ordinary M/G/1 system. The development is more direct than that
previously presented in that it does not involve solving recursive equations. In
addition, the alternate development has the advantage of introducing extremely
powerful analysis techniques in a simple setting.

The idea exploited is very simple; namely, the number of customers left in
the queue by an arbitrary departing customer-which we will again refer to as
the tagged customer-is independent of the order of service so long as the order
of service is not based upon the service-time requirement. Thus we arrange the
order of service in a conceptually simple way, and the Pollaczek-Khintchine
transform equation appears as a result.

In a manner parallel to Fuhrmann and Cooper [1985], we organize servicing
in the following way. First, we classify customers as belonging to one of the
following two types:

Type 2 customers are those who arrive during the busy period but after the
expiration of the first service of the busy period.

Type 1 customers are all customers who are not type 2, including those who
arrive when the server is idle and therefore start busy periods.

1.

2.

Let denote the service time of the first service of the busy period. Then
upon expiration of the system contains 0 or more type 1 customers and
no type 2 customers. If there are 0 type 1 customers, the busy period ends.
Otherwise, service of customers during the remainder of the busy period is
organized as a sequence of type 2 sub-busy periods each of which is initiated
by a type 1 customer. That is, following for the remainder of the busy
period we begin service for a type 1 customer only when there are no type 2
customers waiting. Type 2 customers may then arrive and generate a sub-busy
period. Upon expiration of the first sub-busy period we select another type 1
customer, if any are left, and we initiate another sub-busy period, which has
the same statistics as the first sub-busy period. We continue this process until
all type 1 customers have been served. The busy period ends upon expiration
of the sub-busy period of the last type 1 customer.

We note that the dynamics of the system during each of these type 2 sub-
busy periods is identical to that of an ordinary M/G/1 busy period. Thus, the
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PGF for the number of type 2 customers left in the system by an arbitrary
departing customer during the sub-busy period, is the same as that for the
ordinary M/G/1 system;

which we assume to be unknown.
Now, the tagged customer may arrive either during a busy period or not.

Since arrivals are Poisson, the probability that the tagged customer arrives dur-
ing a busy period is given by the probability that the server is busy at an arbi-
trary point in time. By Little’s result, this quantity is readily computed to be

If the tagged customer arrives during the idle period, then the number of
type 2 customers left in the system by the tagged customer is identically zero.
Also, the number of type 1 customers left in the system under this condition is
equal to the number of customers that arrive during the PGF for which is
found to be by Theorem 5.2, because is drawn from

If the tagged customer arrives during the busy period, then the tagged cus-
tomer may leave both type 1 and type 2 customers in the system upon depar-
ture. Because the statistics of the sub-busy period are identical to those of the
ordinary M/G/1 system, the PGF for number of type 2 customers left
in the system by the tagged customer given that the tagged customer arrived
during a busy period–is given by (6.14).

We now consider the number of type 1 customers, left by the tagged
customer given that customer arrived during a busy period. Because only one
type 1 customer is served in any sub-busy period, these customers are exactly
the type 1 customers left behind by the departing type 1 customer who started
the sub-busy period in which the tagged customer is serviced. In turn, these
type 1 customers are exactly the ones who arrived during but after the type
1 customer who started the sub-busy period in which the tagged customer is
serviced.

Now, the sequence of first service times of the busy periods constitutes a
sequence of renewal intervals in a renewal process. Thus the distribution of
the remaining service time that an arbitrary type 1 customer sees is simply the
distribution of the residual life of This quantity is given by and
the PGF for the number of type 1 customers who arrive during this period is
thus given by where denotes the number of type 1
customers left in the system by the tagged customer given that customer arrived
during a busy period.

Since is independent of the PGF for the total number of customers
left in the system by the tagged customer given that the tagged customer arrived
during the busy period is given by
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Therefore, upon conditioning on whether or not the tagged customer arrived
during a busy period, we find

Upon solving this last equation for we find

Of course, (6.16) is also the PGF for the distribution of the number of cus-
tomers found in the system by an arbitrary arriving customer and the stochastic
equilibrium occupancy distribution.

We now turn to the determination of the PGF for the stochastic equilibrium
occupancy distribution for the M/G/1 system with exceptional first service.
Our reasoning is almost identical to that used to obtain (6.15), but there are two
differences. First, the probability that an arriving customer finds the system
busy in stochastic equilibrium is no longer given by our previously defined
and second, the initial service time is drawn from the distribution rather
than from

Let denote the probability that the tagged customer arrives during the
busy period. We then find that the PGF for the total number of customers left
in the system in the case of exceptional first service is given by

We now develop an expression for by using results from alternating
renewal theory. From Takàcs [1962], and also from Exercise 5.12, we know
that the expected length of the busy period in which the expected initial backlog
is is given by

where and the expected length of the idle period is given by
Because the busy and idle periods form an alternating renewal process and the
Poisson arrivals observe the system in stochastic equilibrium, we find that the
probability that an arbitrary arriving customer finds the system busy is given
by the ratio of the expected length of the busy period to the expected length of
the renewal cycle; that is,



The M/G/1 Queueing System with Priority 233

where is defined to be
Substituting (6.18) into (6.17), we find

A special case of exceptional first service is the M/G/1 queueing system
with set-up times, which was studied by Levy and Kleinrock [1986]. For this
system, we assume where represents a set-up time independent
of For this special case, where and (6.19) reduces
to

where is defined to be Because and are independent, we find
that and

The expression (6.22) can be obtained as follows. We consider an alter-
nating renewal process for which the renewal interval is The for-
ward recurrence time for the process can then be obtained by conditioning on
whether a random observer observes the system during an period or dur-
ing an period, the probabilities of which are and

respectively. These probabilities can be rewritten as
and by multiplying numerator and denominator by Now, if the

observer observes an period in progress, then the time until the end of the
cycle is the LST of the distribution of which is given by
On the other hand, if the observer finds the system in an interval, then the
time until the end of the cycle is the residual life of the LST of the
distribution of which is We note that it is natural to think of as
preceding but the distribution of the remaining time in the cycle is the same
as that with preceding

The PGF for the equilibrium occupancy distribution for the M/G/1 queueing
system with set-up times can now be obtained by substituting (6.22) into (6.20).
We find
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which, with a minimum of algebra, can be reduced to

The form of (6.24) suggests that the number of customers left in the system
by an arbitrary departing customer can be obtained as the sum of two indepen-
dent random variables as pointed out by Fuhrmann and Cooper [1985]. We
modify our definition of type 1 and type 2 customers to facilitate the explana-
tion: type 1 customers are those who arrive before the first service of the busy
period begins; all other customers are of type 2. The part of the expres-
sion then corresponds to the number of type 2 customers left in the system.
The grouped term of (6.24) corresponds to the number of type 1 customers and
has a simple interpretation.

Interpretation of the grouped term of (6.24) is as follows. Note that the dis-
tribution of the number of type 1 customers left in the system by an arbitrary
departing customer is the same as the distribution of the number of type 1 cus-
tomers left by an arbitrary departing type 1 customer, there being one type 1
customer for each sub-busy period. Now, if a type 1 customer arrives to find
the system empty, then the number of type 1 customers left by that customer
is exactly the number which arrive during the set-up time. If, on the other
hand, the type 1 customer arrives while the set-up is in progress, because the
type 1 customer arrivals are Poisson, the number of type 1 customers left is
the number who arrive during the forward recurrence time of the renewal pro-
cess in which the underlying renewal interval is The relative probabilities
of these two events are readily obtained by setting up an alternating renewal
process over the intervals of time during which type 1 customers arrive. The
underlying renewal interval is then the length of an idle period plus the length
of the set-up interval. Hence, the probability that a random observer finds the
system in an idle interval is the ratio of the expected length of a idle period to
the expected length of the cycle,

Also, the probability that a random observer finds the system in a set-up inter-
val is the ratio of the expected length of a set-up period to the expected length
of the cycle, which is
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Note that the proportion of type 1 customers that arrive while the system is in
a set-up period is also given by this ratio. Thus the PGF for the number of type
1 customers left in the system by an arbitrary customer is

Alternate forms for the expressions (6.20) and (6.24) that use only the or-
dinary service-time distributions rather than both ordinary distributions and
residual life distributions are now given. Recall that for any nonnegative ran-
dom variable,

In particular,

and

If we substitute (6.26) and (6.27) into (6.20) and (6.24), respectively, the fol-
lowing alternate expressions can be obtained from simple algebra:

and

As we have previously pointed out in our discussions of (6.24), the product of
the first two fractions of (6.29) is the probability generating function for the
number of type 1 customers left in the system by an arbitrary departing cus-
tomer. The third fraction is the familiar Pollaczek-Kintchine transform equa-
tion for the occupancy of the ordinary M/G/1 system, which is in turn, the
probability generating function for the number of type 2 customers left in the
system by an arbitrary departing customer.

An interesting and useful variation of the M/G/1 system with set-up times is
the M/G/1 system with server vacations (Cooper [1972], [1981]). In the sim-
plest version of this system, the server takes a vacation each time the queue
becomes empty. Upon return from each vacation, the server begins a busy
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period if any customers are waiting; otherwise, the server takes another vaca-
tion. This model is called the multiple vacation model as opposed to the single
vacation model, in which the server remains idle once having returned from
vacation if there are no customers present. The duration of each vacation is a
random variable drawn from the distribution

If we now define the type 1 customers as those who arrive during vaca-
tion periods, we can readily see that the distribution of the number of type 1
customers left by an arbitrary departing customer is the same as the distribu-
tion of the number of customers who arrive from the Poisson process during
the residual life of the vacation period. The primary distinction between this
multiple vacation model and the set-up time model is that all of the type 1 cus-
tomers in the vacation model arrive during the server vacation while all type 1
customers except the first arrive during the server set-up time with the first cus-
tomer arriving during the idle period. From (6.24) and (6.25), we find that the
probability generating function for the number of customers left in the system
by an arbitrary departing customer is, therefore,

Vacation models have a number of interesting applications. For example,
consider a variation of the M/G/1 queue in which the server works in the fol-
lowing way (Wortman and Disney [1990]).

The server works on an auxiliary task for a period of time and then checks the system
occupancy. If there are at least K customers waiting, the server serves a batch of K
customers and then returns to the auxiliary task, regardless of the queue length. If there
are less than K customers waiting, the server immediately returns to the auxiliary task.

Note that in the general analysis of vacation systems, the successive vacation
periods are not required to be mutually independent. Some interesting appli-
cations of server vacation models include the study of server breakdowns and
polling systems. The reader is referred to Doshi [1986, 1990], Levy and Sidi
[1990], and Takagi [1986a, 1986b, 1990] for articles that survey the application
of vacation models.

This concludes our discussion of the M/G/1 queueing system with excep-
tional first service and its variants. We will use the ideas presented here later
in the development of the transform equations for priority queueing systems.
It should be noted that and can be readily inverted using the
methods based on discrete Fourier transforms, which were presented earlier in
this chapter to obtain the distributions of and respectively.

6.3 M/G/1 under Head-of-the-Line Priority
We now turn our attention to the analysis of queueing systems having exter-
nally assigned priorities, that is, priorities that are assigned prior to or upon
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entry into the system. We assume that there is an integer number, I, of cus-
tomer classes. Class customers arrive to the system according
to a Poisson process with rate and their service times are drawn indepen-
dently from the distribution Class customers have priority over class

customers if Upon arrival, a customer joins the queue ahead of all cus-
tomers whose priority is lower than that of the arriving customer and behind
all customers whose priority is at least as high as the arriving customer. The
service discipline is illustrated in Figure 6.1.

Figure 6.1. HOL service discipline.

There are two primary variations of this service discipline: nonpreemptive
and preemptive resume. In the nonpreemptive version, denoted by HOL, ser-
vicing of a customer is never interrupted. That is, once servicing of a given
customer begins, the server serves the customer to completion independent of
the arrival process. Upon service completions, the server begins service on
behalf of the customer who is currently at the head of the line.

In the case of preemptive resume, denoted by HOL-PR, an entering cus-
tomer whose priority is higher than the customer currently in service immedi-
ately gains access to the server. Servicing of the preempted customer resumes
from the point at which it was preempted as soon as there are no longer any
customers present in the system whose priority exceeds that of the interrupted
customer. Thus, under the HOL-PR discipline, customers of a given priority
never receive service while any higher priority customers are in the system.
There may be no more than one customer of a given priority preempted at
any given time, and the maximum possible number of preempted customers is
I–1.

We analyze the ordinary HOL system for the special case of I = 2, and
leave extension to the case of arbitrary I and the HOL-PR discipline to the
exercises. We derive probability generating functions for the occupancy distri-
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bution of each customer class, and then use these distributions to specify the
Laplace-Stieltjes transforms for the waiting- and sojourn-time distributions.
Our derivation is based upon a variation of the Fuhrmann-Cooper decomposi-
tion principle discussed earlier in combination with results on alternating re-
newal processes from Section 5.3 and exceptional first service from Section
6.2. Customers with higher and lower priorities are examined in separate sub-
sections in hopes of avoiding confusion about definitions of types and classes
for the different points of view we will take.

6.3.1 Customers with Higher Priority
As we did in the case of the ordinary M/G/1 analysis using the principles of
Fuhrmann-Cooper decomposition, we will obtain the probability generating
function for the ergodic occupancy distribution by computing the probability
generating function for the distribution of the number of customers left in the
system by an arbitrary departing customer in stochastic equilibrium, because
these two distributions are equal. We will designate an arbitrary customer as
the tagged customer. Because arrivals are Poisson, the tagged customer sees
the system in stochastic equilibrium as we stated earlier.

To begin our development, we note that at any given time, the server is in one
of three possible states: idle, busy serving a class 1 customer, or busy serving a
class 2 customer-the respective ergodic probabilities being and

where We separate the class 1 customers into two groups as
follows:

Type 1 customers are those class 1 customers who arrive to the system either
during an idle period or during a period during which a class 2 customer is
being serviced, and

Type 2 customers are those class 1 customers who arrive to the system while
a class 1 customer is being serviced.

1.

2.

As in the case of the ordinary M/G/1 queueing system, we envision all servic-
ing as being organized as a series of sub-busy periods, all of which are started
by type 1 customers, generated by type 2 customers, and are statistically iden-
tical to ordinary M/G/1 busy periods in which the arrival rate is and the
service times are drawn from the distribution

Let and denote the number of type 1 and type 2 customers, respec-
tively, left in the system by an arbitrary departing class 1 customer, and let

Because all class 1 customers depart the system during one
of the sub-busy periods just defined and all of the sub-busy periods are statisti-
cally identical, the distributions of and are the same as the distributions
of the numbers of type 1 and type 2 customers left in the system by an arbitrary
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customer departing during an arbitrary sub-busy period. Thus we can study the
system by studying an arbitrary sub-busy period.

Since type 1 and type 2 customers arrive according to a Poisson process over
nonoverlapping intervals of time, and are statistically independent.
Thus by Theorem 5.1 we see that

We will compute and separately in the following paragraphs
and then combine the result to obtain

From the definitions of type 1 and type 2 customers and the remark fol-
lowing their definition, it is clear that the distribution of the number of type 2
customers left in the system by an arbitrary departing customer is identically
the same as that of an ordinary M/G/1 system in which the arrival rate is and
the service times are drawn from the distribution Thus we find from
the Pollaczek-Khintchine transform equation for the occupancy distribution,

that

It remains to specify We note that the type 1 customers left by
an arbitrary departing customer during a sub-busy period are identically those
type 1 customers left by the first departing customer from the sub-busy period.
But the first departing customer from an arbitrary sub-busy period is simply
an arbitrary type 1 customer. Hence we define the tagged type 1 customer to
be the type 1 customer who started the busy period during which the tagged
customer is served. Then, the distribution of the number of type 1 customers
left by the tagged class 1 customer is the same as the distribution of the number
of type 1 customers left by the tagged type 1 customer. These are, in turn, the
same as the type 1 customers who arrive while an arbitrary type 1 customer is
in the system.

If the tagged type 1 customer arrives while the server is idle, the number of
type 1 customers left by the tagged type 1 customer upon departure is 0 with
probability 1, and the probability generating function for this distribution is
identically 1. This is because the tagged type 1 customer immediately begins
service so that all class 1 customers who arrive during the time the customer is
in the system are of type 2.

If, on the other hand, the tagged type 1 customer arrives while the server is
serving a class 2 customer, then the period of time over which type 1 customers
arrive following the arrival of the tagged type 1 customer is the same as the
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distribution of the forward recurrence time of the renewal process in which
the lengths of the renewal intervals are drawn from the distribution
This is because the tagged type 1 customer is drawn arbitrarily from a Poisson
stream1. Therefore, by Theorem 5.1, the probability generating function for
the number of type 1 customers left by the tagged type 1 customer given that
the tagged type 1 customer arrived during a class 2 service period is given by

where denotes the residual life of
Combining the results of the previous two paragraphs, we find that

where it is easily seen that

is the conditional probability that the server is idle given that the server is either
idle or serving class 2 customers, and

is the conditional probability that the server is serving class 2 customers given
that the server is either idle or serving class 2 customers. Upon combining
(6.31)-(6.33),we find

EXERCISE 6.4 Compare the probability generating function for the class
1 occupancy distributions for the HOL system to that of the M/G/1 system
with set-up times discussed in Section 6.2. Do they have exactly the same
form? Explain why or why not intuitively.
Because the class 1 customers left in the HOL system by the departing class

1 customers are identically the customers which arrive during the class 1 so-
journ time, we find directly from Theorem 5.1 that

1The Class 1 arrival process is Poisson and thus has stationary and independent increments. Thus, if we
observe the arrival process over only those intervals during which class 2 customers are being serviced,
the observed arrival process will still have stationary and independent increments, and the probability of an
arrival over an interval of length will still be hence the arrival process will still be Poisson with rate
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where denotes the Laplace-Stieltjes transform of the class 1 sojourn time.
Similarly,

where denotes the Laplace-Stieltjes transform of the class 1 waiting time.

6.3.2 Customers with Lower Priority
We now turn our attention to the determination of the PGF for the class 2 occu-
pancy distribution and the corresponding class 2 sojourn time. The mathemat-
ics for obtaining the desired probability generating function is quite simple, but
the logic behind it is a little complicated due to the number of concepts which
have to be juggled simultaneously. We will therefore approach the problem in
a roundabout way. First, we will examine the queueing behavior of the system
only during those busy periods which are started by a class 2 customer. We
are then in a position to examine the queueing behavior during all busy periods
during which class 2 customers are served.

Consider the evolution of the service system during busy periods started by
class 2 customers. For reasons which will become clear later, we will refer
to this type of busy period as a type 2 busy period, and we will denote its
length by Initially, the server is idle. Upon arrival of a class 2 customer,
service begins immediately. During servicing of the class 2 customer, class
1 and class 2 customers may arrive. But, in any event, the server will not be
available to service the second class 2 customer until the service of the first
class 2 customer is complete and there are no class 1 customers in the system.
The distribution of the length of time between the start of service of the first
class 2 customer of the busy period and the second class 2 customer of the
same busy period, if any, is identical to the distribution of the length of a class
1 busy period started by a class 2 customer. This period of time is called the
class 2 completion time, and we denote its length by From the results of
our analysis of M/G/1 queueing systems with exceptional first service, we find

where denotes the length of a class 1 busy period started by a class 1 cus-
tomer2, which we will refer to as a “type 1 busy period”, and satisfies
the functional equation

2That is, would be the length of the busy period if the system served only class 1 customers.
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From this discussion, it is clear that the busy period started by a class 2 cus-
tomer evolves as a sequence of class 2 completion times. The waiting time
of a class two customer served in a type 2 busy period therefore has the same
distribution as that of an ordinary M/G/1 queueing system in which the ser-
vice times are drawn from the distribution Consequently, the probability
generating function for the distribution of the number of class 2 customers left
in the system at the time an arbitrary class 2 service is completed is given
by the Laplace-Stieltjes transform of the waiting time distribution evaluated at

In addition, the number of class 2 customers left in the system by a
departing class 2 customer is simply the sum of the number in the system at the
time the customer entered service and the number who arrive while the class 2
customer is in service. The probability generating function for the distribution
of the latter quantity is given by the Laplace-Stieltjes transform of the service-
time distribution evaluated at Thus, if we denote by the number
of class 2 customers left in the system by a departing class 2 customer during
a class 2 busy period started by a class 2 customer, we find

where denotes the residual life of Paralleling our definition of we
define

and upon substituting (6.40) into (6.39), we find

Now consider the evolution of a busy period for class 2 customers started by
a class 1 customer. Initially, the server is idle. Then, upon arrival of a class 1
customer, the busy period starts. First, the server serves an initial busy period
of class 1 customers, the length of which is Just as in the case of the
ordinary M/G/1 system, we can think of the remainder of this busy period as
evolving as a sequence of type 2 sub-busy periods, all of which have the same
distribution as an ordinary type 2 busy period. Thus we see that for any busy
period during which class 2 customers are served, the periods over which class
2 customers are served can be thought of as evolving as a sequence of type 2
busy periods.

Corresponding to our definition of type 1 and type 2 customers above, we
classify type 1 customers as those class 2 customers who arrive prior to the
start of service of the first class 2 customer served in a busy period, and we
classify all other class 2 customers as type 2. Without affecting the distribution
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of the number of class 2 customers left in the system by an arbitrary departing
class 2 customer, we may think of the order of service of the type 1 and type
2 customers as being the same as in Section 6.2. Then each sub-busy period
behaves exactly the same as the type 2 busy period described above. It is then
easy to see that the PGF for the number of type 2 customers left in the system
by an arbitrary departing type 2 customer is given by

The PGF for number of type 1 customers left by the tagged class 2 customer
can be obtained in a manner analogous to the explanation of the bracketed term
of (6.35). To begin with, we consider only that portion of the time line during
which type 1 customers arrive. During that portion of the time line, the system
behaves as though the class 2 customers never enter the system; they are merely
observers. Periods of time under this condition alternate between class 1 idle
periods, the lengths of which are drawn from an exponential distribution with
parameter and ordinary class 1 busy periods, the lengths of which are drawn
from the distribution 3

A random observer who arrives during this portion of the time-line, and who
consequently is an arbitrary type 1 arrival, finds the system idle with probabil-
ity

where we have defined and busy with probability one minus
that quantity.

If the observer finds the server idle during these periods, then the number
of type 1 customers left will be identically zero; otherwise, the number of type
1 class 2 customers left will be equal to the number which arrive during the
residual life of which we denote by Thus the PGF for the distribution
of the number of type 1 customers left in the system by the tagged class 2
customer, is given by

3The validity of this assertion is not necessarily obvious, but it can be reasoned as follows. Due to the
properties of the exponential distribution, the length of each idle period is drawn independently from an
exponential distribution with parameter which is the distribution of the minimum of two indepen-
dent exponential distributions having parameters and respectively. In addition, each idle period is
terminated, independently of its length, by a class 2 customer with probability Thus the total
amount of the idle time observed before an idle period is terminated by a class 1 customer is the geometric,
parameter sum of idle periods whose lengths are drawn independently from an exponen-
tial distribution having parameter The overall length of this idle period is then exponentially
distributed with parameter
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Because we find from (6.41) and (6.42) that

Using the general relationship between the LST of the distribution of random
variable and that of its residual,

in (6.43), we find, after rearranging terms that

Because the class 2 customers left in the system are precisely those who
arrive during the sojourn time of the class 2 customer, it follows from Theorem
5.1 that Thus, from (6.45), we find

EXERCISE 6.5 Derive the expression for for the case of the HOL-
PR discipline with I = 2.

EXERCISE 6.6 Derive expressions for and for the
ordinary HOL discipline with I = 3. Extend the analysis to the case of
arbitrary I.

EXERCISE 6.7 Extend the analysis of the previous case to the case of
HOL-PR.

6.4 Ergodic Occupancy Probabilities for Priority Queues
We now turn to the topic of inversion of (6.34) and (6.45) to obtain the equi-

librium occupancy distributions. These transform equations can be inverted
using the techniques based on discrete Fourier transforms that were discussed
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in Section 5.2. Recall that the techniques presented in Section 5.2 require eval-
uation of the probability generating function at points equally spaced around
the unit circle of the complex plane.

In the case of (6.34), the results presented in Section 5.2 can be applied
directly; no modifications whatsoever are required. However, in the case of
(6.45), the right-hand side contains the terms and

These expressions are defined in 6.37 and 6.38, respectively, and repeated
here for continuity:

and

In order to apply the techniques of Section 5.2, we must first evaluate each of
these expressions at points equally spaced around the unit circle of the complex
plane. Upon evaluating each equation at we find

and

Our technique is to first evaluate at points around the unit circle
of the complex plane, then substitute the result into (6.47) to obtain

and finally to substitute back into (6.45) to obtain the required evaluations.
Define to be any point on the unit circle of the complex plane and define

Upon rewriting (6.48) in terms of we find

We then have the following theorem, which is proved in Daigle and Roughan
[1999].

THEOREM 6.1 The value can always be determined
from the expression by iteration on
starting with That is, if the sequence is defined by the
recursion with where is any
point on the unit circle, then

Remark. We point out that our experience is that the iterative procedure of the
above theorem converges very fast. In fact the number of iterations required to
converge to a high degree of accuracy is usually on the order of ten iterations.

The above theorem may be used to compute the values of
for a set of K + 1 points evenly spaced around
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the unit circle. By following this procedure, we can find for
and then we can apply the techniques discussed in Section

5.2 to determine the ergodic occupancy probabilities.
A number of numerical examples are given in Daigle and Roughan [1999].

In addition, they present modifications to the methods presented in Section 5.2
for the case in which one or both of the service time distributions have long
tails, and in which the tail probabilities of the occupancy distribution are not
necessarily geometrically decreasing.

6.5 Expected Waiting and Sojourn Times
for M/G/1 under HOL Priority

As in Section 6.3, we will compute the average waiting time and average so-
journ time for each customer class under two service disciplines: head of the
line (HOL) and HOL-preemptive resume (HOL-PR). Under the ordinary HOL
discipline, class customers arriving to the system join the service queue ahead
of all customers of lower priority and behind all customers whose priorities are
at least as high. The HOL-PR discipline is similar except that a newly arriving
class customer goes directly into service if the server is serving a customer of
lower priority than the new customer.

We will again compute the delays by examining the system from the point
of view of an arbitrary class customer, whom we will refer to as the “tagged
class customer. Owing to the Poisson arrivals, the tagged class customer
observes the system in stochastic equilibrium, so that the average delay ob-
served by the tagged class customer is the same as that for an arbitrary class

customer.
Suppose the tagged class customer arrives to the system at time The

waiting time in the queue that this customer experiences can then be thought
of as resulting from two basic customer groups: early arrivals and late arrivals.
The early arrivals are those customers who arrived to the system prior to
the late arrivals are those customers who arrive to the system prior to

Let and denote the delay suffered by the tagged class customer
due to early and late class customers, respectively. Then, we find that

where denotes the waiting time for the class customers. Now, the waiting
time due to early arrivals can be further subdivided into the delay due to cus-
tomers in the queue and the delay due to customers whose service has already
begun at time which we will denote as and respectively. Thus,
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(6.50) can be rewritten as

Clearly, under the HOL discipline, if and if
But delays due to customers who may be in service at time depend on

whether or not the service discipline is preemptive. Under HOL-PR,
for but under ordinary HOL, may be nonzero for all Based on
the above discussions, we find

so that

Clearly, for where denotes the number
of class customers in the queue at time Due to Little’s result,

Thus,

As for the late arrivals, the tagged class customer will be delayed in the
queue by any class late arrivals, who arrive while the tagged class
customer is still in the queue. That is, all class customers who arrive
during will delay the tagged class customer in the queue. Since class
arrivals are Poisson with rate and service times are drawn independently of
everything, we find or equivalently,

Since is dependent upon the service discipline, we will defer spec-
ifying a formula for its computation for the time being, and we solve (6.53) for
the general case. Substitution of (6.54) and (6.55) into (6.53) yields

Now, define
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Then we can rewrite (6.56) in the following two versions:

and

Comparing (6.58) and (6.59), we find

where we have defined

and for Thus, we find

6.5.1 HOL Discipline
Recall that is the total delay suffered by the class tagged customer due
to customers whose service is in progress at time This quantity is clearly a
function of the service discipline. Under the ordinary HOL discipline,

for all because customers who are in service remain in service
regardless of the class to which the tagged customer belongs. Thus, for the
HOL discipline, we find by solving (6.62) recursively that

It remains to specify From (6.61) we find

By conditioning on whether or not a class customer is in service at time
we find
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Clearly, the delay a class customer suffers due to a class customer in service
at time is equal to the residual service time for a class customer and the
probability that a class customer is in service is Thus, (6.64) reduces to

or, equivalently,

Upon substituting (6.57) and (6.66) into (6.63), we find

6.5.2 HOL-PR Discipline
Under the HOL-PR discipline, is different for each because class cus-
tomers are delayed by class customers only if Thus, under this disci-
pline,

In addition class customers are preempted by all higher priority customers
who arrive while they are in service. As a result, the time required to complete
service for a class customer is the same as the length of a busy period started
by a customer whose service time is and generated by all traffic having
priority higher than class This period, called a “class completion time”, is

Now, at time a class customer whose service has begun may be ei-
ther preempted or actually in service. In either case, that customer’s remaining
service time is given by Also, the probability that there is a class cus-
tomer either in service or preempted at time is readily computed by applying
Little’s result. We find

denoted by Thus
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or

Applying (6.70) and our remaining service-time observation to (6.68) and con-
ditioning, we find

Substitution of (6.71) into (6.62) yields

or, equivalently,

Solving recursively, we find

Thus we find that for the HOL-PR service discipline,

Comparison of (6.75) to (6.67) reveals that the only difference between the
waiting times for HOL and HOL-PR is accounted for by the difference in per-
ception of the delay due to the customer who may be in service at time
Customers of all classes are relevant in the case of HOL whereas for HOL-PR,
only customers having priority at least as high as that of the customer in ques-
tion appear in the result. This is intuitively satisfying in that the only effect of
preemption for customers who are serviced during the tagged customer’s wait-
ing time is to rearrange the order in which service is rendered. Additionally,
from the tagged customer’s point of view, the customer preempted at time
has a lower priority and for all intents and purposes doesn’t exist.

The sojourn time under the HOL discipline is obtained by simply adding
the service time to the waiting time, whereas that for the HOL-PR system is
obtained by adding the completion time to the waiting time. Thus we find for
the HOL discipline,
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and for the HOL-PR discipline,

EXERCISE 6.8 Suppose that the service time of the customers in an M/G/1
system are drawn from the distribution with probability such that

Determine for this system.

EXERCISE 6.9 Conservation Law (Kleinrock [1976]) Under the condi-
tions of Exercise 6.8, suppose the customers whose service times are drawn
from the distribution are assigned priority and the service discipline
is HOL. Show that where is as determined in
Exercise 5.9. Explain the implications of this result. Does the result imply
that the expected waiting time is independent of the priority assignment?
Why or why not? If not, under what conditions would equality hold?



Chapter 7

VECTOR MARKOV CHAIN ANALYSIS:
THE M/G/1 AND G/M/1 PARADIGMS

In the previous chapter of this book, we discussed the M/G/1 queueing system
and some of its variants. We saw that the occupancy process
is a semi-Markov process, and we analyzed the system by first embedding a
Markov chain, at instants of customer departure. Al-
though we identified the process as a discrete-parameter
Markov chain on the nonnegative integers, we did not explicitly present its
transition probability matrix. In fact, such a specification was unnecessary be-
cause our analysis technique avoided this issue.

In this chapter, we provide a brief introduction to the G/M/1 and M/G/1
paradigms, which are useful in solving practical problems and are discussed at
length in Neuts [1981a] and Neuts [1989], respectively. These paradigms are
natural extensions of the ordinary M/G/1 and G/M/1 systems. In particular,
the structure of the one-step transition probability matrices for the embedded
Markov chains for these systems are simply matrix versions of the one-step
transition probability matrices for the embedded Markov chains of the elemen-
tary systems.

In Section 7.1 we introduce the M/G/1 and G/M/1 paradigms. We first
present a concise development of the one-step transition probability matrix
for the embedded Markov chain of the M/G/1 system. Next, for the G/M/1
system, we define the embedded Markov chain where

denotes the number of customers found in the system by the  arriving
customer, and we specify its one-step transition probability matrix. Markov
chains of the M/G/1 and G/M/1 type are then defined.

The general solution procedure for models of the G/M/1 type is then dis-
cussed in Section 7.2. This presentation is very brief because of the extensive
coverage of similar methodology presented in Chapter 3. In Section 7.3, we
discuss matrix analytic solution procedures for solving models of the M/G/1
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type with simple boundaries. In Section 7.4, application of M/G/1 paradigm
ideas to statistical multiplexing is discussed by way of examples. In Section
7.5, we extend our earlier development of the generalized state space methods
to the case of the Markov chains of the M/G/1 type with complex boundary
conditions. The methodology presented in Section 7.5 is relatively new, and
our experience with this methodology has been very positive. Finally, addi-
tional applications are discussed and conclusions are drawn in Section 7.6.

Entire books are devoted to solution procedures for models of the M/G/1
and G/M/1 types. There is no attempt here to provide complete coverage of
the solution methodologies that have been developed over the last 30 years.
Rather, we satisfy ourselves with a brief presentation of the main ideas and
direct our readers to the appropriate references. On the other hand, generalized
state-space procedures are relatively new, and we attempt to provide a thorough
introduction.

7.1 The M/G/1 and G/M/1 Paradigms
Recall that for the M/G/1 system denotes the number of
customers left in the system by the  departing customer. From (5.1), we
have

where and is defined as the number of arrivals that
occur during the  customer’s service.

As we have pointed out, the process is a discrete-
parameter Markov chain on the nonnegative integers. Recall that for such
Markov chains, the probability of being in state after the state
change given that the system was in state after the state change is called
the one-step transition probability from state to state The matrix of these
transition probabilities, is called the one-step
transition probability matrix.

Upon conditioning on we find

Then, substitution of (7.1) into (7.2) yields

Because is independent of (7.3) is readily reduced to
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Now, departures occur only one at a time. Therefore, the infinite summation
of (7.4) can be replaced by the finite summation

Because the service times are a sequence of independent, identically dis-
tributed random variables with distribution we see that the one-step
transition probability of going from state to state is simply

where is the number of arrivals that occur during a service time, and these are
nonzero for only entries. We define and since arrivals
occur according to a Poisson process with parameter we find

The one-step transition probability matrix for the embedded Markov chain for
the M/G/1 system is then

Where first service times are exceptional, the distribution of the number of
arrivals that occur during the first service time of each busy period is different
from the distribution of the number of arrivals that occur during service times
other than the first. In this case, we define as the probability that arrivals
occur during exceptional first service, and we find

where denotes the length of the exceptional first service. The one-step tran-
sition probability matrix is then
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If we now define and then,
at least in principle, we can obtain by solving the matrix equations

simultaneously. The limiting solution is known to exist so long as the service
rate exceeds the arrival rate. But, as we have already seen in Chapter 5, the so-
lution is not necessarily easily obtained. In addition, the entries of the matrices

must also be calculated; this, in itself, is nontrivial for most distributions
unless a special form such as a weighted sum of exponentials or a collection of
point masses is assumed for the service time distribution.

Remark. We use the notation rather than P for these probabilities to empha-
size that the stationary probability vector is for a discrete-parameter Markov
chain rather than for a continuous-time Markov chain. Therefore, the individ-
ual probabilities represent the proportion of entries to or exits from a given
state rather than the time-averaged probability that the system is in the given
state. For systems having Poisson arrivals, such as the ordinary M/G/1 system,
these probabilities are equal, but they are not equal in the general case.

EXERCISE 7.1 Suppose that that is, the service time is
deterministic with mean 1. Determine as defined by
(7.6).

EXERCISE 7.2 Suppose that is a discrete valued random variable having
support set where K is an integer. Define

for Determine as defined by (7.6).
In order to get started, let where is the
Dirac delta function.

EXERCISE 7.3 Suppose that is an exponential random variable with pa-
rameter Determine as defined by (7.6).

EXERCISE 7.4 Suppose tha t where and are exponen-
tial random variables with parameter and respectively. Determine

as defined by (7.6).

Similar to the case of the M/G/1 system, the G/M/1 system can be analyzed
by embedding a Markov chain at points in time just prior to customer arrivals.
As before, we denote the embedded Markov chain by
The state of this Markov chain is then defined as the number of customers
found in the system by the  arriving customer. It is easy to see that
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where denotes the number of service completions that occur during the
interarrival interval. From (7.10), we can easily determine that

Since arrivals occur only one at a time, this equation can be rewritten as

From (7.11), we see that the one-step transition probability from state to
state is given by Computation of these transition prob-
abilities is slightly more involved than in the M/G/1 case because we have to
distinguish between whether or not all customers present are served prior to the
next arrival-that is, whether the system is left empty or not. If we let denote
the service time of the customer served during the interarrival
time, then we find

where denotes the interarrival time.
We therefore define to be the probability that customers are served dur-

ing the interarrival time if the system is found empty by the
arriving customer and to be the corresponding probability otherwise. Be-
cause service times are exponential and the sum of K+1 independent exponen-
tially distributed random variables has the gamma distribution with parameters
K and or equivalently, the Erlang-(K + 1) distribution, it is easy to see that

Owing to the exponential service times and the properties of the Poisson pro-
cess, it is easy to see that is simply the probability that exactly arrivals
from a Poisson process occur during the interarrival time. Thus,
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The one-step transition probability matrix for the embedded Markov chain
for the G/M/1 system is then

As in the case of the M/G/1 system, if we define
and then we can obtain by solving the matrix equations

simultaneously. Again, the limiting solution is known to exist so long as the
service rate exceeds the arrival rate. Unlike the case of the M/G/1 system,
the solution to the embedded Markov chain for the G/M/1 system has a very
simple form, namely,

where is the unique (real) solution inside the unit circle to the functional
equation

The value of can be obtained iteratively from the mapping

as is shown in Tackacs [1962].
The waiting time for an arbitrary arriving customer, given that there is at

least one customer present, is then simply the geometric sum of independent,
identically distributed exponential variables and is consequently exponential
with parameter Since the probability that an arriving customer finds
at least one customer present is we find

We note in passing that the expression on the right-hand side of (7.17) is,
according to Theorem 5.2, the probability generating function for the number
of arrivals that occur from a Poisson process having rate over a random pe-
riod of time having distribution where the arrival process is independent
of By contrast, in the case of the M/G/1 system, the tail probabilities are
approximately geometrically decreasing with the decay rate where is the
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inverse of the unique (real) solution outside the unit circle, to the functional
equation

The general form of the occupancy distribution for the M/G/1 system is much
more complicated than that of the G/M/1 system seen in Chapter 5.

Markov chains whose one-step transition probability matrices have the struc-
tures of (7.9) and (7.15) are said to be Markov chains of the M/G/1 type and
Markov chains of the G/M/1 type, respectively. The idea has been generalized
by Neuts [1981a] to the cases in which these one-step transition matrices have
block-partitioned structures of similar forms, as follows:

and

In this case, as in the cases covered in Chapter 3, the states of the Markov
chain are denoted by and where denotes the
occupancy (or level) and denotes an abstract auxiliary descriptor that we refer
to as the phase. The states are ordered lexicographically; that is, we define

and The Markov
chains and are then interpreted as
vector-valued Markov chains.

Remark. As has been our practice throughout this book, we avoid inventing
special notation to distinguish between scalar and vector quantities unless there
is a specific gain to be made in the particular problem under consideration. In
this case, there does not appear to be any.

7.2 G/M/1 Solution Methodology
We saw in Chapter 3 that some queueing systems have matrix-geometric so-
lutions. Interestingly, all positive-recurrent Markov chains of the G/M/1 type
have matrix-geometric solutions. That is, the occupancy probabilities have the
form
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or, equivalently

This result is given in the following theorem from Neuts [1981a, pp. 10-11]:

THEOREM 7.1 (Neuts) If the Markov chain is positive recurrent, then

for we have1.

the eigenvalues of lie inside the unit disk of the complex plane,2.

3. the matrix

is stochastic1, and

4. the vector is a positive, left invariant eigenvector of normalized
by

Neuts [198la] focuses on the algorithmic solution of Markov chains of the
G/M/1 type. Neuts shows that the matrix can be obtained by solving the
matrix equation

for its minimal nonnegative solution, and that the minimal nonnegative solution
can be obtained by solving the equation

by successive substitutions starting with Note that (7.24) is simply a
matrix version of (7.18) because

Some researchers have suggested that it is easier to solve the Markov chain
directly by truncating the state space and approximating the probabili-

ties; such an approach certainly has some advantages if the goal of the analysis
is to obtain occupancy distributions only. However, the rate matrix, ob-
tained via the matrix-geometric approach, as we have seen in Chapter 3, is a

1That is, the elements of the matrix are nonnegative and the elements of each row sum to unity.
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fundamental parameter of a given Markov chain. As such, the matrix can be
used to obtain much more than the occupancy distribution. For example, just
as the scalar allows one to determine the FCFS waiting time in the ordinary
G/M/1 system, the matrix allows us to determine the waiting-time distribu-
tion from many points of view for queues of the G/M/1 type as in Ramaswami
and Lucantoni [1985] and Daigle and Lucantoni [1990]. For a recent book that
provides a thorough treatment of matrix analytic solution techniques applied
to Markov chains of the G/M/1 type, the reader is referred to Latouche and
Ramaswami [1999].

7.3 M/G/1 Solution Methodology
We turn now to the M/G/1 system. Analogous to our discussion of the ordinary
M/G/1 system, we define the vector generating function

Then, based on (7.21), it is easy to show that

where and are defined as

The scalar version of (7.27) is given in (4.94) and is

where the correspondence between the terms of (7.27) and (7.29) are obvious.
Just as in the case of the scalar version of the M/G/1 system, there are two

difficulties: solving for the unknown constant (vector) and inverting the
transform. Both of these operations are somewhat more involved than in the
scalar case. A brief sketch of the techniques developed by Lucantoni, Neuts,
and Ramaswami is given below. The reader is referred to Neuts [1989] for
a thorough pedagogical presentation and to Lucantoni [1993] for a thorough
reformulation of the solution methodology and some additional results.

We first discuss computation of and then present Ramaswami’s tech-
nique for determining for for the general case of the M/G/1
paradigm. We then consider a special case in which simplified algorithms can
be developed. The special case has application to statistical multiplexing sys-
tems and the results of this section are used as a starting point in the next
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section, which discusses an application. The issue of stability is deferred for
the time being, but is discussed in Section 7.5.

Determination of the vector is accomplished through the clever appli-
cation of elementary Markov chain theory. Towards this end, let denote
the phase of the system at the instant of the return to level 0. Then,
due to the memoryless property of the arrival process, the stochastic pro-
cess is a discrete-parameter Markov chain on the space
{0, 1,..., K}. Let denote the one-step transition probability matrix for
this embedded Markov chain, and let denote its stationary probability vector.

From elementary Markov chain theory, it is well known that the propor-
tion of transitions into level 0 is simply the inverse of the expected number
of transitions between entries to level 0. Let denote the expected number
of transitions between entries to level 0 given that the system enters level 0 in
phase and let denote the column vector Then, it is
readily seen that

It remains to specify and Towards this end, we begin by consider-
ing the first passage time between successive entries to level 0 of the Markov
chain in stochastic equilibrium. In the first transition from level 0, the
Markov chain transitions to level with probability Having entered level

the system cannot return to level 0 without having first passed through each
level between and 0.

Observation of the matrix reveals that the number of transitions re-
quired to decrease the level from to is independent of Thus the
number of transitions required in the first passage time from level to level
0 is simply the sum of independent, identically distributed discrete-valued
random variables. Define to be the (matrix) generating function for the
first passage time from level 1 to level 0.2 The (matrix) generating function for
the first passage time from level to level 0 is then

Remark. We distinguish between generating functions and probability gen-
erating functions. The idea of a generating function is to represent an arbi-
trary sequence of numbers finite or infinite, by a power series,

which may or may not be expressible in closed form. In the case
of a probability generating function, the sequence in question is a probabil-

2That is, the number of transitions of the Markov chain in the first passage time from phase of level
1 to level 0 is a discrete random variable. If the probability masses for this discrete random variable are
partitioned according to the phase entered upon entry to level 0, and then the generating function is taken on
the set of partitioned probability masses, then the result is a matrix of generating functions. If the elements
of any row of the resulting matrix are summed, the result is a probability generating function in the ordinary
sense.
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ity mass function; that is, the are probability masses for a discrete random
variable.

By conditioning on the outcome of the first transition from level 1, we read-
ily find that

Also, let denote the (matrix) generating function for the number of tran-
sitions between successive entries to level 0. Then, by conditioning on the
outcome of the first transition from level 0, we find that

We then find that is the one-step transition probability matrix for the
Markov chain defined above; that is,

where G = G(l) is the unique stochastic matrix solution to the equation

which is obtained by substituting into (7.31). For consistency with
Neuts’s notation, from now on we will refer to as We emphasize
that G is the unique stochastic solution to (7.34) because, in general, (7.34)
does not have a unique solution. For example, recall that in the scalar case,
(7.34) has exactly the form We have already seen that this
functional equation has a solution which is a 1 × 1 stochastic matrix,
and an additional real-valued solution, the inverse of which determines the
rate at which the tail of the occupancy distribution decreases.

In addition, using standard properties of probability generating functions,
we readily find that

The desired solution for G can be obtained by solving (7.34) by successive
substitutions, starting with G = 0. The transition matrix can then be
obtained from (7.32), and then can be obtained by any of a number of tech-
niques such as those described in Chapter 3. A normalizing constant is
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needed to compute in (7.30). The usual technique for obtaining this nor-
malizing constant is to differentiate (7.31) and (7.32) directly and then take
advantage of the special structure of the problem at hand to obtain a reason-
able computational formula. This involves a certain level of creativity on the
part of the analyst, as may be seen from some of the published literature and
our discussion here.

Ramaswami [1988a, 1988b] has devoted substantial energy to developing
workable algorithms to solve for the stationary probability vector P of the
Markov chain A primary theorem resulting from his work is quoted
below for continuity, but the interested reader is encouraged to consult Ra-
maswami [1988b].

THEOREM 7.2 (Ramaswami) For

where and

The key to finding the unknown probabilities in this approach is to determine
the matrix G, and then to find the unknown vector of probabilities Be-
ginning with Ramaswami’s algorithm can be applied to find the remaining
probabilities. Although Ramaswami has shown that a computational algorithm
based on Theorem 7.2 is numerically stable, Lucantoni [1991] has pointed out
that in practice it has not been feasible to implement the algorithm in its full
generality.

Lucantoni [1993] considered a special case of considerable interest called
the BMAP/G/1 queueing system, where BMAP stands for batch Markovian
arrival process. He has developed new algorithms that allow for general im-
plementation in terms of canned computer programs. The BMAP includes
all the models discussed in this section. A general discussion of Lucantoni’s
methodology is beyond the scope of the current text, but the reader is urged to
consult that reference, despite its age, for an up-to-date treatment of queueing
systems in this class.

There are basically two steps in computing the level probabilities for Markov
chains of the M/G/1 type: resolving the boundary probabilities and finding the
level probabilities given the boundary probabilities. An interesting approach
to the second step is discussed in Meini [1997], where an algorithm based on
FFTs is presented for performing the computations specified in 7.2.

The matrix analytical approach can be readily modified to solve problems
having complex or multiple boundary conditions in which case the one-step
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transition probability matrix has the form

The approach is to group the level probabilities into groups of C blocks and
group the matrices into blocks of C × C submatrices such that the resulting
form is that of the standard M/G/1:

This approach was first described in Neuts [1981b], but will not be commented
upon further. Rather, an alternate approach to solving the complex boundary
case will be discussed in a later section. Before moving to that discussion,
however, we present an application of the techniques discussed in this section
to statistical multiplexing.

7.4 An Application to Statistical Multiplexing
A significant issue in the design of computer communication systems is the
analysis of the occupancy distribution in statistical multiplexing systems. In
particular, we envision a collection of individual users whose traffic is multi-
plexed onto a single high-capacity trunk. Traffic from individual users arrives
to the statistical multiplexer over access lines, which can have lower capacity
than the trunk. The users tend to transmit messages, whereas the statistical
multiplexers tend to transfer data as fixed length packets. This gives rise to
a high degree of correlation in the packet-arrival process of individual users.
This correlation of packet interarrival times among the packets of individual
users and the arrival process as a whole can be captured to a very high degree
through the introduction of a discrete-time Markov chain, called the phase pro-
cess, that characterizes the state of the arrival process. The distribution of the
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number of packets that arrive during a time slot is then dependent solely on the
phase of the arrival process and the distribution of the number of arrivals per
slot given the phase.

Under these conditions, the matrices and of (7.27) are equal and
have the form where is the one-step transition probability matrix
for the phase process and is a diagonal matrix in which the diagonal
element is a probability generating function. For this special case, it is possible
to obtain a simplified algorithm for obtaining results.

We begin by making the substitutions in (7.27) to obtain

Then differentiating on both sides, premultiplying by e, and taking limits as
leads to

We then note that (7.31) and (7.32) are identical under the restricted case. This
means that G(1) and are equal. Thus we can solve for by solving
the fixed-point matrix equation

Once is determined, we can solve for its stationary probability vector,
which is denoted by

EXERCISE 7.5 Show that the quantity corresponds to the stationary
probability vector for the phase process.

EXERCISE 7.6 Derive equation (7.38).

Now, the implication of (7.30) is that is proportional to But we know
the value of from (7.38), so that we can readily determine the constant of
proportionality. That is, we have

where is an unknown constant. Thus

where the final equality of the previous equation follows because is a station-
ary probability vector. Therefore, we have
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An interesting special case is the one in which there are N statistically in-
dependent users, each of whose arrival process is governed by a phase pro-
cess having M phases. In this case, the specifications of and are
not unique. It is easy to show that if we take and to be the
Kronecker products of and respectively, then the resulting arrival
process correctly characterizes the system. However, the description would
contain redundant phases. For a system having N independent sources, each of
which has M phases, it is relatively straightforward to show that the minimum
dimension of the combined phase process is whereas a straightfor-
ward Kronecker product formulation would lead to having a dimension
of

As an example, if M = 3, then the minimum dimension for the phase
process is (N + 2)(N + 1)/2, and the dimension of the phase process, not
taking redundancies into account, is To put this in perspective, if N = 5,
then and (N + 2)(N + l)/2 = 21. If N = 50, then
and (N + 2)(N + 1)/2 = 1326.

EXERCISE 7.7 Suppose there are N identical traffic sources, each of
which has an arrival process that is governed by an M -state Markov chain.
Suppose the state of the combined phase process is defined by an M-vector
in which the element is the number of sources currently in phase First,
argue that this state description completely characterizes the phase of the
arrival process. Next, show that the number of states of the phase process is

given by

To illustrate the power of this approach, we present the analysis of a prob-
lem that has received much attention, but for which exact results do not seem
to have been presented as of this time. Specifically, we show how to obtain
the matrices and for the special case where there are N identical
individual users, each of whom has an access line that has exactly one-half
the capacity of the trunk line onto which it is being statistically multiplexed.
Following Example 7.1, we discuss the solution of the resulting model.

EXAMPLE 7.1 Consider a collection of N identical and independently oper-
ating sources. Suppose that each source alternates between active and inactive
periods. During an active period, the source generates a packet every second
time slot, and the number of packets generated during an active period is geo-
metrically distributed with mean The lengths of the inactive periods,
in time slots, are geometrically distributed with mean We wish to
specify and
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Solution: We find that the Markov chain governing the phase process of each
source is

and the probability generating function for the number of arrivals in each slot
is

Clearly, the arrival process can be described in the form

and the methods described above can be used to obtain the unknown probabil-
ity vector and then the occupancy distribution.

As mentioned above, the total number of phases required to characterize
the phase of the combined process is For the special case under
discussion, M = 3 so that (N + 2)(N + 1)/2 phases are required. For
example, if N = 2, we define the six required phases as shown in Table 7.1.

For the given phase definitions, This indi-
cates that in the first three phases of the aggregate process, no packets would
arrive; during the fourth and fifth phases, one packet would arrive; and in the
sixth phase, two packets would arrive. It is straightforward to generate an al-
gorithm to define the minimum set of phases for arbitrary M and N.

Given the state definitions as described in Table 7.1, the resulting one-step
probability transition matrix for the phase process, is given by

This completes the basic description of the model.

EXERCISE 7.8 Define the matrices  and for the model defined in
Example 7.1 for the special case of N = 3, where the states of the phase
process have the interpretations shown in Table 7.2. In the table, if the phase
vector is then there are sources in phase 0, sources in phase 1, and

sources in phase 2.

In consideration of the form of and the process through which
is obtained using (7.32), it is easy to see that column of is nonzero if
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and only if the diagonal element of is equal to 1. This fact is also
made obvious by considering that is the one-step transition matrix for
the Markov chain whose state is the phase of the arrival process upon entries
of the queueing process to level 0. Level 0 can be entered only if there are
no arrivals to the system during a slot. Because the condition for no arrivals
during a slot is that the number of arrivals is equal to unity with probability 1,
the generating function for the number of arrivals during the slot is equal to 1.
Thus, an efficient algorithm can be devised to compute From this, can
be determined and then the result normalized as in (7.41).
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EXERCISE 7.9 In the previous example, we specified and From
these specifications, we have

Therefore,

with

and

Now, suppose we compute iteratively; that is, we use the formula

with Prove that the final three columns of are zero
columns for all
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EXERCISE 7.10 Suppose has the form

where is a square matrix. Bearing in mind that is stochastic, prove
that is also stochastic and that has the form where is the
stationary probability vector for

THEOREM 7.3 Consider the algorithm

Suppose that any stochastic matrix is chosen for Then is
stochastic, is stochastic for every and  is stochastic for
every

EXERCISE 7.11 Prove Theorem 7.3.

The implication of Theorem 7.3 and Exercises 7.9, 7.10, and 7.11 is that the
initial condition for the recursion

need not necessarily be chosen to be 0. In fact, experience has shown that
convergence is especially slow when 0 is chosen as the initial condition. As an
example, in working with the system discussed above, we defined in the
following way:

1. each row of is exactly the same as the rows of when the corre-
sponding row of is not zero, and

2. each row of has a 1 in its first column when the corresponding row
of is a row of zeros.

As an example, with N = 2, we chose as
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For the case of N = 4, when was chosen according to the above pro-
cedure, the iterative algorithm converged to an acceptable level of accuracy in
roughly 300 iterations; the same algorithm required more than 1700 iterations
to converge when was chosen to be 0. The algorithm, of course, con-
verged to the same values in either case. However, this illustrates that when
multiple runs are to be made, it is worthwhile to experiment with the initial
conditions.

An alternate approach to obtaining the level probabilities, is to first ob-
tain as described above first, and then to use the discrete Fourier transform
approach described in Chapter 5. Specifically, once is known, we can use
(7.27) or (7.37) directly to solve for the value of at points around the
unit circle of the complex plane and then use the IDFT to obtain the marginal
or joint level probabilities. This procedure, of course, involves solving the
complex linear system

where for where for some
integer-values

EXAMPLE 7.2 (Example 7.1 continued) Consider the statistical multiplexing
system described in Example 7.1. Suppose it is known that the mean message
length of the individual users is eight packets. We wish to determine the prob-
ability that the system occupancy will exceed a certain number of packets at a
traffic load of during an arbitrary slot in stochastic equilibrium as a
function of the number of individual users served.

Solution: Each source operates according to an alternating renewal process,
so the proportion of time each source spends in the active period is given by
the ratio of the expected length of the active period to the expected length of
the cycle. Because a source delivers a geometric number of packets with mean

during an active period, and because packets arrive only in alternate
slots beginning with the second, the expected length of an active period, in
slots, is Similarly, the expected length of the idle period is
Therefore the proportion of time each source spends in the active period is
given by

Because packets are generated at rate 0.5 during active periods by each source
and the service time of a packet is one slot, the traffic intensity is
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Figure 7.1.   Survivor functions for occupancy distributions for statistical multiplexing system
with 0.5 to 1.0 speed conversion at

For fixed and we can then solve for

The average message length is eight packets, so This, then,
completely specifies the parameters for the model.

The recursion of (7.42) with as defined in (7.45) is then used to de-
termine and its stationary probability vector, is determined by solving
the system Then, is determined by solving the
system Next, (7.41) is used to obtain Fi-
nally, (7.46) and the IDFT procedure described in Chapter 5 are used to obtain
the occupancy distribution. Numerical results are presented in Figure 7.1 and
Table 7.3.

With reference to Figure 7.1, we see that the survivor function is an increas-
ing function of the number of independent sources that generate traffic to the
statistical multiplexer. This demonstrates that the often-cited claim that traffic
arriving from a large number of sources can be treated as a Poisson arrival pro-
cess must be carefully examined. In fact, often, as in the current case, exactly
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the opposite is true–a larger number of sources delivers traffic that is more
bursty than that delivered by an ordinary Poisson process. This can be seen
by observation of Figure 7.1, where the survivor function for the occupancy
distribution for the M/D/1 system at a traffic intensity of 0.9 is also presented.
Obviously, an M/D/1 approximation for the current system would miss the
mark considerably.

Table 7.3 presents the mean and second moment of the occupancy distribu-
tion for several values of N. As a check on the accuracy of the PGF inversion
routine, the mean values computed on the basis of the occupancy distribution
were compared to the mean values computed analytically. The percent differ-
ence between the results of the two calculations is presented in the table. The
table shows that the PGF inversion process works quite well. The general for-
mula for the mean occupancy, derived in Daigle, Lee, and Magalhães [1990]
following the parallel development in Lucantoni, Meier-Hellstern, and Neuts
[1990], is

The development is rather involved and is deferred to the Supplemental
Problems. We consider here only one aspect of the formula shown in (7.47).
Note that is contained in the right-hand side of (7.47).
This expression is called the fundamental equation for the Markov chain whose
one-step transition probability matrix is (see Hunter [1983]). For irreducible
Markov chains, the fundamental matrix is always nonsingular. In addition,
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the proof of which is deferred to Exer-
cise 7.12.

EXERCISE 7.12 Suppose that is the one-step transition probability ma-
trix for an irreducible discrete-valued, discrete-parameter Markov chain.
Define to be the stationary probability vector for the Markov chain. Prove
that and that, therefore,

Further simplification of the computational technique for is readily ob-
tained if the traffic arrival process for the multiplexing system under study has
only one phase during which 0 packets can arrive. That is, the distribution of
the number of packets that arrive during a slot is dependent on the phase of
the arrival process, The phase is, in turn, governed by a discrete-time Markov
chain. Now, suppose that the probability generating function for the number
of arrivals during a slot, given the phase, is arbitrary except that the number of
packets delivered during a time slot can be zero if and only if the phase of the
arrival process is zero. Under that condition, the unknown probability vector,

is trivially computed as described in the following paragraph.
In (7.38), the quantity corresponds to the stationary vector for the

phase process, as is readily seen by taking limits on both sides of (7.37) as
Now But represents the probability

that the phase process is in phase and zero packets are present at the end of

the slot. Hence except for Thus,
As in Example 7.2, such an arrival process is useful in modeling the traffic

arising from a collection of independently operating sources in an integrated
services environment. This is shown in Example 7.3.

EXAMPLE 7.3 Consider a collection of N identical and independently oper-
ating sources. Suppose that each source alternates between inactive and active
periods. During an active period, the source generates a packet every time slot,
and the number of packets generated during an active period is geometrically
distributed with mean The lengths of the inactive periods, in time
slots, are geometrically distributed with mean We wish to specify

and and to determine the occupancy distribution for the statistical
multiplexing system as a function of N with and

Solution: The solution is similar to that of Example 7.1. We find that the
Markov chain governing the phase of each source and the probability generat-
ing function for the number of arrivals in each time slot are as follows:

respectively. Clearly, the arrival process can be described in the form
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and the methods described above can be used to obtain the unknown probabil-
ity vector and then the occupancy distribution.

Packets arrive during every time slot when a source is active, so the state of
the phase process can be defined simply as the number of sources in the active
state. Thus the total number of phases required to characterize the phase of the
combined arrival process is N + 1.

It is relatively easy to show that the phase transition probabilities are ob-
tained from the expression

For the given phase definitions, This indi-
cates that in the first phase of the aggregate process, no packets would arrive.
This completes the basic description of the model.

By following the development of Example 7.2, we can readily find that the
proportion of time each source spends in the active period is given by

and that the traffic intensity is given by

For fixed and we can then solve for

Because the average message length is eight packets, This,
then, completely specifies the parameters for the model.

We could obtain by solving the system
1. However, because each of the sources operates according to an alternat-
ing renewal process, we can readily see that the equilibrium number of active
sources has a binomial distribution with parameters N and Thus, is
simply the vector of equilibrium probabilities. Also, is trivially determined
as Thus it remains only to use (7.46) and the IDFT procedure
described in Chapter 5 to obtain the occupancy distribution. Numerical results
are presented in Figure 7.2 and Table 7.4.

As in Example 7.2, we can see from Figure 7.2 that the survivor function is
an increasing function of N. In fact, the departure from the survivor function
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Figure 7.2. Survivor functions for occupancy distributions for statistical multiplexing system
with equal line and trunk capacities at

for the M/D/1 system having equal traffic intensity is even more pronounced
than in Example 7.2. This is because the line speeds of the individual sources
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Figure 7.3. Survivor functions for occupancy distributions for statistical multiplexing system
with and without line-speed conversion at

are higher than in Example 7.2, thus giving rise to more bursty traffic. The
differences among the M/D/1, the N -source model with transmission-speed
conversion, and the N -source model without transmission-speed conversion
are highlighted in Figure 7.3, where numerical results are presented for the
special case of N = 8.

7.5 Generalized State Space Approach: Complex
Boundaries

In a more general case, a queueing system may have C boundary conditions.
A specific case of interest is a frame-based wireless transmission system in
which the quality of the wireless link may vary from time slot to time slot. The
number of units that can be served is dependent upon the wireless link quality.
One possible approach is to model the link quality as a Markov chain in which
the state of the chain determines the number of units that can be served during
a frame. If we assume the maximum number of units that may be served during
a frame is limited to say, C, then the system of state equations for the Markov
chain in equilibrium would have multiple boundaries and the one-step state
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transition probability matrix, would have the form

If we assume that the number of units arriving to the service system during a
frame is a sequence of independent, identically distributed random variables,
then the dimension of the level probability vectors would be the same as the
dimension of the Markov chain governing the service process, which we define
to be K + 1. In that case, the matrices and all have dimension (K +
1) × (K + 1).

In this section, we discuss solution of the system of equations
via the generalized state-space approach described in Akar, and Sohraby
[1998]. Our formulation of the problem is more direct than theirs, but our
solution approach follows more or less along the same lines.

As in Section 7.3, we define to be the stationary vector of the Markov
chain so that to be the level probability vector for level and
the vector generating function as

Further, the matrix generating functions of the sequences
and are defined to be

It is then straightforward to show that

By examination of (7.49) it is readily seen that in order to completely spec-
ify we must find the probability vector from level 0 to level C–1. Thus,
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we refer to the level probability vectors from level 0 to level C – 1 as bound-
ary probability vectors. Once the boundary probability vectors are known, in
principle, the remaining level probability vectors can be determined. Alter-
native methods of determining the remaining level probability vectors include
the FFT methods described earlier in the context of the ordinary and priority
M/G/1 queues and a straightforward extension to the classical matrix analytic
method.

In this section, we discuss an alternative method of finding both the bound-
ary level probabilities and the remaining level probability vectors. The method
presented here is a straightforward extension to the method presented earlier
for the scalar M/G/1 queue and QBD processes. We show that the solution to
(7.49) can always be expressed in terms of the boundary level probabilities, a
vector and matrices F and H as follows:

where the vector is expressible in terms of the boundary probabilities.
As in the scalar case discussed in a Chapter 5, we begin our development

with conversion of (7.49) to a form whose left-hand side does not involve the
boundary level probabilities; that is, we wish to transform (7.49) such that the
level probability vectors appear only on the right-hand side.
To this end, we define

and form iteratively

for As in the scalar case, it is then straightforward to show
that (7.49) reduces to
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EXERCISE 7.13 Define

Starting with (7.49), substitute a function of for then a func-

tion of for and continue step by step until a function of

is substituted for Show that at each step, one element
of

is eliminated, resulting in (7.51).

Now, suppose that and are all left multiples
of the (K + 1)-square matrix  that is, we can write and
in right polynomial fraction form (Chen [1999]) as

Then, upon substituting (7.51) can be rewritten as follows:

After post multiplying both sides of the previous equation by we then
find

Now define as the degree of and
as the coefficient of in Similarly, define
for as the maximal degree of over all and
and as the coefficient of in Note that some of the coefficients
of and may be zero, but and for at least one
value of Finally, define

Upon substituting the expressions defined in the previous paragraph into
(7.53), the following equation results:
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The coefficients of and are given by

In review, we note the following:

is a function of level vectors at or above level C only;

It is always true that and

The degrees of the polynomials in within the matrix are
all less than or equal to and at least one of the coefficients has degree
equal to If we can augment the coefficients of with
zero-valued coefficients so that we can write

The degrees of the polynomials in within the matrices
for are all less than or equal to and at least one of
the coefficients has degree equal to Therefore has degree at
most, and If we can augment the coefficients of

with zero-valued coefficients so that we can write

Given the forms of and just listed, we can rewrite
(7.55) in terms of powers of so that (7.55) becomes

Upon reordering the summations of the previous equation, we find
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By matching coefficients of the powers of in (7.57) for
we obtain

where

and
The coefficient of on the right-hand side of (7.57) is zero for

Thus, by setting the coefficient of to zero for we have from (7.57)

or, equivalently,

If we now augment the previous equation with the simple equations
for we obtain the system of equations

where
and

To solve (7.59), we now apply generalized Schur decomposition, as we
did previously in solving for the equilibrium probabilities for QBD and scalar
M/G/1 systems. To begin, we repeat the following theorem for continuity:
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THEOREM 7.4 Generalized Schur Decomposition. Suppose A and E are
both real matrices with spectrum and is partitioned into two
sets, say and such that Then,
there exist (non-singular) orthogonal matrices, Q and Z, such that

where all matrices are real, and are upper triangular, and and
are block upper triangular, meaning that their diagonal elements are either

1 × 1 or 2 × 2 blocks, depending upon whether the eigenvalues are real or occur
in complex conjugate pairs. The row dimensions of and and and

are and respectively.

The generalized Schur decomposition of Theorem 7.4 is carried out effi-
ciently by using the so-called QZ algorithm, which is described in detail in
Golub and Van Loan [1996]. In turn, the QZ algorithm is implemented in the
LAPACK routine dgges() (see Anderson [1999]).

As in the solution procedure for QBD processes, we first define the par-
titions and as the unstable and stable sets of generalized
eigenvalues of A with respect to E. We then define We then
substitute and for and in (7.59) and postmultiply both
sides of the result by Z to obtain

where and represent the unstable and stable parts of respectively,
and whose dimensions are and respectively. We recognize that
must be 0 for all in order to have a stable solution. Thus, (7.60) implies

This leads to

Because for all Therefore, it is con-
venient to partition so that we may write where is the
matrix containing the last rows of Now substitute for
into (7.61) and then postmultiply the result by to obtain

Equivalently,
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where H is defined as the first K + 1 columns of and the
second step of the previous equation results from the fact that
Thus, (7.63) specifies all of the level probabilities for levels greater than C in
terms of while Thus, to complete
the solution, it remains only to specify

From (7.58), we have

In addition, because Q is orthogonal, implies so that
where is the first columns of Q. Thus, we must have

We thus have from the previous two equations

We now define

where Equation 7.64 can then be rewritten as

where and are the matrices N and D with their last columns deleted.
Note that (7.66) yields numerical values for and

In terms of (7.63) becomes

Since the individual probabilities must sum to unity, we then have

or equivalently,



286 QUEUEING THEORY FOR TELECOMMUNICATIONS

Thus, we may determine from (7.67).
After finding we may substitute its value into (7.65) to determine

and noting that contains the vectors We may then use
in (7.63) to determine for which results in a complete

solution for the level probabilities.
In summary, the generalized state-space solution to multiple-boundary prob-

lems within the M/G/1 paradigm is as follows:

From the problem statement, determine for
and express these polynomials in right polynomial fractional form as in
(7.52).

Compute using (7.54).

Compute the coefficients of and using (7.56).

Using the results of the previous step, (7.58), and (7.59), determine the
matrices D, N, E, and A.

Perform a generalized Schur decomposition of A with respect to E accord-
ing to Theorem 7.4. The LAPACK routine dgges() may be used for this
purpose. This decomposition yields directly Q, and

Partition Q and to obtain , and H.

Formulate the linear system of equations (7.66) and solve to obtain and

Solve for using (7.67).

Find and using (7.65).

Partition to find

Compute all remaining desired using (7.63).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Once the boundary probabilities are found and the remaining level proba-
bilities are expressed in the form given in (7.63),

can be written in the following alternative form:
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The factorial moments of the queue length distribution can then be determined
by applying the standard rules to that is, we differentiate with
respect to and evaluate the result in the limit as

EXERCISE 7.14 Beginning with (7.68), develop an expression for the first
and second moments of the queue length distribution.

We turn now to a brief discussion of stability; when does the system
have an equilibrium distribution? We note that is the one-step

transition probability matrix for a particular type of discrete parameter Markov
chain, namely one where a concept of levels makes sense. The matrix

represents the probability that the level will increase by be-
tween two consecutive epochs whenever the level at the first epoch is at least
C. If then it is clear that the system can drop by up to C levels be-
tween two successive epochs. For example, if C = 1, then we would find that

so that represents the probability of dropping from
level 1 to level 0 between two successive epochs. In a queueing system this
probability would be then interpreted as the probability of having zero arrivals
during a service interval. Similarly, would represent the probability of hav-
ing arrivals during a service interval. Intuitively, we would conclude that if
the average number of arrivals during a service interval is less than 1, then the
system would be stable.

For general values of C, the interpretation of the would be the same;
would represent the probability of having arrivals during a service interval.
Since it is possible for the system to drop by up to C levels during a service
interval, we would conclude that if the average number of arrivals during a
service interval were less than C, then the system would be stable.

In general, we would expect the matrix

to be stochastic because some number of arrivals must occur and the matrix
A(1) reflects all possible numbers of arrivals. In fact, the matrix A(1) is the
one-step probability transition matrix for the phase of the arrival process; that
is, its element is the probability that the phase of the arrival process is at
the epoch given that the phase at the epoch was

Similarly,

would represent, in some sense, the average number of arrivals during a ser-
vice interval. Again, intuitively, we would expect that the expected number of
arrivals that occur during an interval would also depend upon the phase of the
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process during the interval. In fact, the average number of arrivals that occur
during an interval is given by

where is the stationary vector of and is the traffic intensity.

EXERCISE 7.15 Suppose C = 2. Define

and to be the stationary vector of Suppose

Show that

(a)

(b)

where is the stationary vector of

EXAMPLE 7.4 Consider the queueing behavior of a frame-oriented cellular
transmission system. Suppose that files are to be transferred to mobile units
from the network and that the file lengths are drawn from a geometric distribu-
tion with a mean of 150 packets.

Assume that the packet arrival process to the cell site is governed by a two-
state Markov chain. During the on phase, the distribution of the number of
packets that arrive is binomial with parameters and where and are
a function of the length of the on period and the prescribed traffic intensity.
Specifically, we first choose the desired traffic intensity. Then we choose the
average length of the on period in frames. We then choose and such
that the average packet arrival rate over all time divided by is equal to
150 packets. We arbitrarily then choose to be the smallest integer such that

For the wireless link, suppose the number of packets transmitted during
a frame depends upon the state of a Markov chain, at the
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beginning of the frame. Denote the state of at the beginning
of an arbitrary frame by the transmission capability by and the transition
probability from state to state by Assume further that transitions are
possible only to adjacent states and the transmission capabilities and the state
transition probabilities are as given in Table 7.5:

We wish to examine the impact of the length of the on period, which is a
proxy for the speed of the network, on the queue length at the boundary be-
tween the cell site and the wireless link at a fixed overall packet arrival rate. In
the process, we wish to observe the degrees of polynomials and the dimensions
of various matrices involved in the queue length calculations.
Solution: First, we determine the average service capability by taking the sum
of the service rate capacity weighted by the stationary vector of the service
process; the resulting service rate is approximately 4.277 packets per frame.
We then arbitrarily choose an overall arrival rate of 60% of 4.277.

Table 7.6 shows some of the major characteristics of the solution process as
well as the mean queue length obtained from the analysis.

From the table, we see that the number of unstable eigenvalues remains
constant as the length of the on time is decreased. On the other hand, the fact
that the file is delivered to the cell site from the network over a shorter period
of time means that the average number of packet arrivals per frame must be
increased. Thus, the potential for larger increases in level must be taken into
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account. This potential for larger increases in level is reflected in the increase
in from 6 to 8 to 16 as the length of the on period is decreased. In addition,
this potential is reflected in the increase in from 144 to 192 to 384 as the
length of the on period is decreased.

The above table also lists computation times required for our rough program
executing on a 600 MHz Power PC platform. These are not based on any
scientific study; they are presented solely for the purpose of giving the reader
a feel for the execution times required for a fairly large problem.

The mean queue length, which was computed as

does not increase dramatically as the length of the on time is decreased.
Figure 7.4 shows graphs of the survivor function for the three choices of on

time. It is seen from the graphs that the queue length distributions do not vary
dramatically with on time. On the other hand buffer overflows are substantially
greater than would be expected for a system having constant service rate and
Poisson arrivals.

7.6 Summary
In this chapter, we have presented a brief description of M/G/1 and G/M/1

paradigms and the solution techniques of Lucantoni,Neuts, and Ramaswami.
Again, the interested reader is referred to the two excellent books by Neuts the
papers by Ramaswami. For a treatment of the M/G/1 model extended to the
M/G/1 with vacations and a broad class of interarrival time distributions, the
reader is referred to Lucantoni, Meier-Hellstern, and Neuts [1990]. Latouche
and Ramaswami [1999] provide a thorough treatment of the types of systems
that can be modeled using the G/M/1 paradigm as well as computational tech-
niques.

Additionally, in this chapter we have presented the use of generalized state
space techniques of Akar, and Sohraby [1998] in solving the complex
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Figure 7.4. Survivor functions for occupancy distributions for wireless communication link
with on time as a parameter.

boundary version of queueing problems in the M/G/1 class. We have seen
that solving for the stationary probabilities of Markov chains of the M/G/1
type is substantially more complicated than solving QBD models when matrix-
analytic techniques are applied. However, when generalized state space tech-
niques are applied, we require only the use of generalized Schur decompo-
sition, and the solution is delivered in matrix-geometric form. We have pre-
sented numerical examples to illustrate applications of these techniques. Our
own experience is that computational time required to solve complex bound-
ary problems of the M/G/1 type using the generalized state space approach is
faster than using matrix-analytic techniques. However, we have not done a
thorough investigation into this issue and recommend that readers experiment
with a variety of techniques to find the best one for any given situation. The
TELPACK queueing analysis package (see Akar, and Sohraby [1998b]),
the development of which is an ongoing project, implements numerous alter-
native computational approaches. This package is client-server based, can be
accessed over the internet, and provides a graphical interface.
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The phase-dependent arrival and service model of Chapter 3, which is a
QBD model, is a special case in which the model is of both the M/G1 and
G/M/1 type. As we have seen earlier, when models have a special structure,
we can develop special techniques to solve the model efficiently.

It is worth mentioning that sometimes one may obtain a model of the QBD
type that approximates the behavior of a system that is naturally modeled by
a Markov chain of the M/G/1 type. An example of an analysis based on such
an approximation is given in Chipalkatti, Kurose, and Towsley [1989] and the
references therein.

We have shown that the methodology described in this chapter is useful in
analyzing many types of queueing problems related to computer communica-
tions. There are many other applications in addition to the ones described in
Sections 7.4 and 7.5. We now discuss some of those briefly.

One rather unusual application that uses M/G/1 matrix-analytic techniques
is given in Chandramouli, Neuts, and Ramaswami [1989]. In that paper, the
authors analyze a meteor-burst packet-communication system. In meteor-burst
communications, successful message transmission is dependent on the level
of ionization in the upper atmosphere. The quality of the channel during a
given slot is modeled as a discrete-parameter, discrete-valued Markov chain,
and the probability of successful message transmission depends on the state of
the Markov chain, thus giving rise to a Markov chain of the M/G/1 type.

Li [1990] presents an analysis of a special case in which the arrival process
is as described in Daigle, Lee, and Magalhães [1990], but there are multiple
servers and there is a one-to-one correspondence between the phase of the ar-
rival process and the number of packets that arrive during a slot; that is, each
active source generates one packet during a slot. Li presents mean occupan-
cies for a variety of parameter sets. Although Li’s analysis could have been
carried out using the methods described here, Li chose to approach the prob-
lem by spectral decomposition instead. His methods are quite interesting, and
the reader is encouraged to investigate his approach.

Other work of interest along the same lines as presented here are Stavrakakis
[1990] and van Arem [1990]. Both consider discrete time queues. Stavrakakis
considers a single-server system having an arrival process similar to that of
Li’s, and van Arem’s arrival process has the same form for but an arbi-
trary form for Both present mean values only.

Daigle and Tang [1991] consider the queueing system in which
has a general form and has the same form as Li [1990]; that is,

Using eigenanalysis along the same lines as presented
in Chapter 3, they develop the queue length distribution in terms of partial
fraction expansions. Extensions of that work to the case of more general
are published in Tang [1995].
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Daigle and Moose [1993] and Daigle and Moose [1996] obtain a Markov
chain of the M/G/1 type for an ATM multiplexing system where the number of
units served during a frame is a random process. The model is similar to that
of the example given in Section 7.4, but their solution approach was virtually
identical to that of Neuts [1981a].

Since the early 1990s, Li et. al. (see Lau and Li [1993], Sheng and Li
[1993], and Li and Hwang [1993]) have developed a spectral analysis approach
to understanding queueing systems. The objectives are to develop insights into
the behavior of queueing systems by studying their spectral properties, that
is the characteristics of the behavior of the power spectral densities. They
have developed sets of tools to facilitate queueing analysis in general settings
and in more recent years in a network environment (Li and Hwang [1997]
and Li, Park, and Arifler [1998]). In Kim and Li [1999], the authors report
measurement-based techniques for modeling characteristics of wireless chan-
nels as a Markov modulated process, where the service rate of the channel is
dependent upon the state of a continuous-time Markov chain. They find that
their Markov-chain based modeling techniques yield excellent results when
compared to a trace-based analysis. They further show that the dynamics, not
just the average statistics, of the propagation environment have a serious effect
on the queueing behavior of the system.

More recently, Tunn and Zorzi [2002] have analyzed the queue length for a
wireless communications system wherein the state of the channel–either good
or bad–is modeled as a hidden Markov chain, which turns out to be the special
case of either 0 or 1 servers, reminiscent of Towsley’s work (Towsley [1980]).
Packet arrivals are modeled as on-off processes and queue length distributions
are derived. They offer alternative solution techniques for Markov chains of
this type.

We point out that some researchers have suggested that the stationary prob-
abilities for the embedded Markov chains could be obtained more efficiently
by solving for these probabilities directly; that is, one could simply solve the
matrix equations numerically without regard for the struc-
ture of Related to this topic, a state-of-the-art workshop on the numerical
solution of Markov chains was held in January of 1990. The papers presented
during the workshop contain many interesting ideas and form the chapters of
Stewart [1991]. Additional workshops along the same lines have taken place in
1995 and 1999 (see Stewart [1995] and Stewart [1999]). The papers presented
in these publications appear to provide a balanced coverage of the methods
available for solving Markov chains of all types.
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7.7 Supplementary Problems
7-1 Consider a slotted time, single server queueing system having unit service

rate. Suppose the arrival process to the system is a Poisson process mod-
ulated by a discrete time Markov chain on {0, 1} that has the following
one-step transition probability matrix:

While the arrival process is in phase arrivals to the system occur accord-
ing to a Poisson process with rate

1.

2.

Argue that for this system.

Show that

3.

4.

Determine for all

Suppose that at the end of a time slot, the system occupancy level is
zero and the phase of the arrival process is Determine the
probability that the system occupancy level at the end of the following
time slot will be for and the phase of the arrival
process will be

5. Suppose that at the end of a time slot, the system occupancy level is
and the phase of the arrival process is Determine the

probability that the system occupancy level at the end of the following
time slot will be and the phase of the arrival
process will be

6. Let and Determine the equi-
librium probability vector for the phase process and for the system.

7. Write a computer program to determine for the parameters given
in part (f), and then determine the equilibrium probability vector for
the Markov chain for which is the one-step transition probability
matrix.

8. Compute the expected number of packets in the system at the
end of an arbitrary time slot. Compare the result to the equivalent
mean value for the system in which as computed in
part (f). What can be said about the effect of burstiness on the average
system occupancy?
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7-2 The objective of this problem is to develop a closed-form expression for
the mean queue length, for the slotted M/D/1 system having phase-
dependent arrivals and unit service times. Our point of departure is the
expression for the generating function of the occupancy distribution as
given in (7.37), which is now repeated for continuity:

1. Differentiate both sides of (7.69) to obtain

2. Take limits of both sides of (7.70) as 1 to obtain

3. Define to be the marginal probability that the system is not empty at
the end of a slot. Postmultiply both sides of (7.71) by e, and show that

4. Add to both sides of (7.71), solve for and then

postmultiply by to obtain

Use the fact that as shown in
Exercise 7.12 in Section7.3.

5. Differentiate both sides of (7.70) with respect to postmultiply both
sides by e, take limits on both sides as and then rearrange terms
to find
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6. Equate right-hand sides of (7.72) and (7.73), and then solve for
to obtain



Chapter 8

CLOSING REMARKS

Queueing theory is a vast topic and one can hope to accomplish only a brief
introduction in a graduate-level course. As the need arose during the previous
chapters, we have suggested reference material to help the reader develop a
better understanding of the concepts presented and to obtain a better feel for
how the concepts could be used in solving practical problems.

Throughout, our approach has been directed towards the development of
an intuitive understanding of how queueing systems work. In most cases, we
have carried our discussion far enough so that the reader can obtain numerical
results. Our thrust has been to provide the reader with sufficient background to
be able to appreciate the major papers currently appearing in the applications
literature. In this chapter, we discuss a few additional topics of immediate
interest.

An important aspect of defining any queueing problem is the description of
its arrival process. A discussion of a very general arrival process, the batch
Markovian arrival process (BMAP), is described in detail in the excellent tuto-
rial by Lucantoni (see Lucantoni [1993]). In that tutorial, Lucantoni discusses
both the formulation and the solution of the BMAP/G/1 queueing system, ad-
dressing lengths of busy periods, virtual waiting times, and both stationary and
transient queue length distributions. In Lucantoni [1998] additional transient
results concerning the BMAP/G/1 queue are provided. Detailed procedures
for obtaining numerical results are not given in those references, but pointers
to appropriate references are given.

In recent years, there has been much discussion on whether or not Poisson
modeling, or for that matter, any queueing modeling based on Markov chain
modeling is useful. Having solved numerous significant problems in the course
of my own work, I find the discussion somewhat rhetorical, but useful. Begin-
ning in Chapter 1, we have seen examples of practical systems where very
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elementary arrival or service processes are simply not sufficient to provide the
insights needed for system design. Simply put, use of the wrong models will
not yield useful insights into system behavior.

In short, failure to put forth sufficient effort to understand the system under
study will almost surely result in modeling efforts that do not yield useful in-
sights. However, when significant thought is put into the understanding of the
problem it is sometimes possible to obtain useful results with simple models.

Along these lines, in recent years there have been a number of studies that
address formulation of models that are appropriate for analyzing behavior of
queueing points within IP-based communication networks. One such study is
Cao and Ramanan [2002]. In that reference, the authors examine a queueing
system where the input consists of the superposition of a large number, of
long-range dependent sources and the speed of the server is proportional to
They demonstrate that for is well approximated
by a system having Poisson arrivals whenever the level of multiplexing is high.
We saw in an example in Chapter 1 that burst length has a significant effect
upon queue length distribution. But, in our example, we increased the number
of users by spreading their burst out. In other words, our line speed was not
increased in proportion to the number of users.

Another example of an analysis of a system having an high level of multi-
plexing is given in Eun and Shroff [2003]. The authors consider a case where
large numbers of flow-controlled sources are multiplexed onto communica-
tion lines and outputs from those lines are fed into other communications lines
and multiplexed. They show that, as the number of multiplexed sources is in-
creased, the queue length distribution at downstream links behaves more and
more like a queueing system in which the upstream queues are transparent.
That is, the queueing behavior at the downstream nodes is very much like a
queue that is fed directly by the regulated sources, without the interference
from the upstream queues. Their analysis is supported by numerous simu-
lations and suggests that it may be possible to gain significant insights from
simplified bottleneck analysis in networks.

Significant research has been in progress concerning the behavior of queues
whose input is self-similar since the work of Leland, Taqqu, Willinger and Wil-
son first began to appear in the IEEE INFOCOM conference series and other
conferences in the early 1990s (see Leland et. al. [1994]). Much research has
been directed towards understanding the queueing behavior of systems that
multiplex large numbers of streams where each stream has self-similar traffic.
In his book published in 2002, Whitt develops a large number of results that
describe the queueing behavior of systems under heavy traffic loads, and con-
sequently, offers insights into the behavior at lower loads. Whitt’s book offers
materials for beginners as well as experts.
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Beginning in the early 1990s, researchers began to use a network calculus
(see Cruz [1995] and LeBoudec and Thiran [2001]) to explore the behavior
of queueing systems that allocate resources in order to serve regulated flows.
The main ideas are that each flow is described by a deterministic arrival curve,
which specifies the maximum amount of traffic that may arrive over any period
of time. In addition, a service curve that guarantees a minimum amount of
service to each flow is specified. Under a broad set of conditions, each flow is
guaranteed that its delay will not exceed a given level. A probabilistic version
of this is given in Boorstyn et. al. [2000]. The net result of the stochastic
version is that the probability that a given flow’s delay exceeds a certain level
is guaranteed to be below some threshold. These techniques have been used
in Duan and Daigle [2004a] and Duan and Daigle [2004b] to address resource
allocation in a high speed IP switch having credit-based flow controls.

What should be abundantly clear from the contents of this book is that the
tools needed to solve a particular queueing problem will be heavily dependent
upon the particular problem under consideration. It is hoped that the limited
material provided in this book will provide the reader with sufficient back-
ground to be able to solve many interesting problems. In case the coverage is
inadequate to solve a particular problem, it is hoped that the reader will be able
to select and understand books and articles that will contribute to its solution.
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