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to my wife HERMONA 



P R E F A C E  

The nonlinear method in the theory of distributions presented in this work is based on 

embeddings of the distributions in D' 0{ n) into associative and commutative algebras 

whose elements are classes of sequences of smooth functions on R n. The embeddings de- 

fine various distribution multiplications. Positive powers can also be defined for car 

rain distributions, as for instance the Dirac 6 function. 

A framework is in that way obtained for the study of nonlinear partial differential 

equations with weak or distribution solutions as well as for a whole range of irregu- 

lar operations on distributions, encountered for instance in quantum mechanics. 

In chapter i, the general method of constructing the algebras containing the distribu- 

tions and basic properties of these algebras are presented. The way the algebras are 

constructed can be interpreted as a sequential completion of the space of smooth func- 

tions on R n. In chapter 2, based on an analysis of classes of singularities of piece 

wise smooth functions on R n, situated on arbitrary closed subsets of R n with smooth 

boundaries, for instance, locally finite families of smooth surfaces, the so called 

Dirac algebras, which prove to be useful in later applications are introduced. 

Chapter 3 presents a first application. A general class of nonlinear partial differen- 

tial equations, with polynomia~ nonlinearities is considered. These equations include 

among others, the nonlinear hyperbolic equations modelling the shock waves as well as 

well known second order nonlinear wave equations. It is shown that the piece wise 

smooth weak solutions of the general nonlinear equations considered, satisfy the equ- 

ations in the usual algebraic sense, with the multiplication and derivatives in the 

algebras containing the distributions. It follows in particular that the same holds 

for the piece wise smooth shock wave solutions of nonlinear hyperbolic equations. 

A second application is given in chapter 4, where one and three dimensional quantum 

particle motions in potentials arbitrary positive powers of the Dirac 6 function are 

considered. These potentials which are no more measures, present the strongest local 

singularities studied in scattering theory. It is proved that the wave function solu- 

tions obtained within the algebras containing the distributions, possess the scatter- 

ing property of being solutions of the potential free equations on either side of the 

potentials while satisfying special ~unction relations on the support of the potenti- 

als. In chapter 5, relations involving irregular products with Dirac distributions 

are proved to be valid within the algebras containing the distributions. In particu- 

lar, several known relations in quantum mechanics, involving irregular products with 
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Dirac and Heisenberg distributions are valid within the algebras. Chapter 6 presents 

the peculiar effect coordinate scaling has on Dirac distribution derivatives. That 

effect is a consequence of the condition of strong local presence the representations 

of the Dirac distribution satisfy in certain algebras. In chapter 7, local properties 

in the algebras are presented with the help of the notion of support, the local cha- 

racter of the product being one of the important results. Chapter 8 approaches the 

problem of vanishing and local vanishing of the sequences of smooth functions.which 

generate the ideals used in the quotient construction giving the algebras containing 

the distributions. That problem proves to be closely connected with the necessary 

structure of the distribution multiplications. The method of sequential completion 

used in the construction of the algebras containing the distributions establishes a 

connection between the nonlinear theory of distributions presented in this work and 

the theory of algebras of continuous functions. 
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the irregulars ..., in multiplying the distributions ... 

By the way of multiplication: Prof. A. Ben-Israel, a former colleague, noticing the 

series of preprints, papers, etc. resulted from the author's interest in the subject 

and seemingly inspired by one of the basic commandments in the Bible, once quipped: 

"Be fruitful and multiply ... distributions ..." 

E. E. R. 

Haifa, December 1977 
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Chapter 1 

ASSOCIATIVE, COM~TATIVE ALGEBRAS CONTAINING THE DISTRIBUTIONS 

§I. NONLINEAR PROBLEMS 

The theory of distributions has proved to be essential in the study of linear partial 

differential equations. The general results concerning the existence of elementary so- 

lutions, [103], [34], P-convexity as the necessary and sufficient condition for the 

existence of smooth solutions, [103], the algebraic characterization of hypoelliptici- 

ty, [64], etc., are several of the achievements due to the distributional approach, 

[154], [63], [64], [153], [156], [33], [114]. 

In the case of nonlinear partial differential equations certain facts have pointed out 

the useful role a nonlinear theory of distributions could play. For instance, the ap- 

pearance of shock discontinuities in the solutions of nonlinear hyperbolic partial dif- 

ferential equations, even in the case of analytic initial data, [62], [89], [113], [50] 

[70], [51], [24], [25], [26], [31], [32], [52], [58], [71], [79], [84], [90], [91], 

[133], [1493, [163], indicates that in the nonlinear case problems arise starting with 

a rigorous and general definition of the notion of solution. Important cases of nonli- 

near wave equations, [5], [9], [i0], [Ii], [121], prove to possess distribution solu- 

tions of physical interest, provided that 'irregular' operations, e.g. products, with 

distributions are defined. Using suitable procedures, distribution solutions can be as- 

sociated to various nonlinear differential or partial differential equations, [I], [2] 

[30], [42], [43], [45], [80], [92], [94], [117], [118], [119], [120], [122], [138], 

[146], [147], [159], [160], [161]. 

In quantum mechanics, procedures of regularizing divergent expressions containing 'ir- 

regular' operations with distributions, such as products, powers, convolutions, etc., 

have been in use, [6], [7], [12], [13], [15], [19], [20], [21], [29], [54], [55], [56] 

[57], [60], [76], [77], [78], [112], [143], [151], suggesting the utility of enriching 

in a systematic way the vector space structure of the distributions. 

A natural way to start a nonlinear theory of distributions is by supplementing the vec- 

tor space structure of D'(R n) with a suitable distribution multiplication. 

Within this work, a nonlinear method in the theory of distributions is presented, based 

on an associative and commutative multiplication defined for the distributions in 

D'CRn), [125-131]. That multiplication offers the possibility of defining arbitrary po- 



sitive powers for certain distributions, e.g. the Dirac 6 function, [130], [1513. 

The definition of the multiplication rests upon an analysis of classes of singulari- 

ties of piece wise smooth functions on R n, situated on arbitrary closed subsets of 

R n with smooth boundaries, for instance locally finite families of smooth surfaces 

in R n (chap. 2, §3). 

Several applications are presented. 

First, in chapter 3, it is shown that the piece wise smooth weak solutions of a ge- 

neral class of nonlinear partial differential equations satisfy those equations in 

the usual algebraic sense, with the multiplication and derivatives in the algebras 

containing the distributions. As a particular case, it results that the piece wise 

smooth nonlinear shock wave solutions of the equation, [903, [713, [1333, [52], [323 

[1313: 

u t ( x , t  ) + a ( u ( x , t ) )  • U x ( X , t  ) = 0 , x c R 1 , t > 0 , 

u ( x , o )  = U o ( X )  , x c a I , 

where a is an arbitrary polynomial in u , satisfy that equation in the usual al- 

gebraic sense. 

Second, in chapter 4, quantum particle motions in potentials arbitrary positive pow- 

ers of the Dirac d distribution are considered. These potentials present the strong- 

est local singularities studied in recent literature on scattering, [273, [33, [283, 

[115], [1163, [1403. The one dimensional motion has the wave function ~ given by 

~ 2 " ( x )  + ( k - a ( ~ ( x ) ) m ) ~ ( x )  = 0 , x e R I , k,c¢ c R 1 , m ~ CO,~]  

while the three dimensional motion assumed spherically symmetric and with zero angu- 

lar momentum has the radial wave function R given by 

(r2R'(r)) ' + r2(k-~(6(r-a))m)R(r) = 0 , r ~ (0, °°) , k,~ c R 1 , a,m ~ (0, ~) . 

The wave function solutions obtained possess a usual scattering property, namely they 

consist of pairs ~ ,~+ of usual C ~ solutions of the potential free equations, 

each valid on the respective side of the potential while satisfying special junction 

relations on the support of the potentials. 

Third, it is shown in chap. 5, §5, that the following well known relations in quantum 

mechanics, [108], involving the square of the Dirac 6 and Heisenberg 6+,6_ distri- 

butions and other irregular products hold: 



(6)2 _ (llx)2/ 2 = _(i/x2)/ 2 

6 • (I/x) = -D6/2 

[~+)2 = -D6/4~i - (i/x2)/4:2 

(~_)2  = D 6 / 4 ~ i  - ( 1 / x 2 ) / 4 ~  2 

where  6+ = ( 6 + ( 1 / x ) / ~ i ) / 2  , 6_ = ( 6 - ( 1 / x ) / ' r r i ) / 2  . 

§2. MOTIVATION OF THE APPROACH 

The distribution multiplication, defined for any given pair of distributions in D'(Rn), 

could either lead again to a distribution or to a more general entity. Taking into ac- 

count H. Lewy's simple example, [93] (see also [64], [155], [48]), of a first order li- 

near partial differential operator with three independent variables and coefficients 

polynomials of degree at most one with no distribution solutions, the choice of a dis- 

tribution multiplication which could in the case of particularly irregular factors lead 

outside of the distributions, seems worthwhile considering. Such an extension beyond 

the distributions would mean an increase in the 'reservoir' of both data and possible 

solutions of nonlinear partial differential operators, not unlike it happened with the 

introduction of distributions in the study of linear partial differential operators, 

[ i s 4 ] .  

One can obtain a distribution multiplication in line with the above remarks by embed- 
*) 

ding D'(R n) into an algebra A . It would be desirable for a usual Calculus if the 

algebra A were associative, commutative, with the function ~(x) = i , V x ~ R n , 

its unit element and possessing derivative operators satisfying Leibnitz type rules for 

the product derivatives. Certain supplementary properties of the embedding D,(R n) c A 

concerning multiplication, derivative, etc. could also be envisioned. 

There is a particularly convenient classical way to obtain such an algebra A , namely, 

as a sequential completion of D'(R n) or eventually, of a subspace F in D'(R n) . 

The sequential completion, suggested by Cauchy and Bolzano, [158], was employed rigo- 

rously by Cantor, [22], in the construction of R 1 . Within the theory of distributions 

the sequential completion was first employed by J. Mikusinski, [105] (see also [ii0]) 

in order to construct the distributions in D'(R I) from the set of locally integrable 

functions on R 1 , however without aiming at defining a distribution multiplication. 

*) All the algebras in the sequel are considered over the field C 1 of the complex 

numbers. 



Later, in [106], the problem of a whole range of 'irregular' operations - among them, 

multiplication - was formulated within the framework of the sequential completion. 

The method of the sequential completion possesses two important advantages. 

First, there exist various subspaces F in D'(R n) which are in a natural way asso- 

ciative, commutative algebras, with the unit element the function ~(x) = 1 , 

W x ~ R n . Starting with such a subspace F , it is easy to construct a sequential 

completion A which will also be an associative, commutative algebra with unit ele- 

ment. Indeed, the procedure is - from purely algebraic point of view - the following 

one. Denote W = N ÷ F , that is, the set of all sequences with elements in F . 

With the term by term operations on sequences, W is an associative, commutative al- 

gebra with unit element. Choosing a suitable subalgebra A in W and an ideal 

in A , one obtains A = A/I . 

Second, the sequential completion A results in a constructive way. Further, a sim- 

ple characterization of the elements in A is obtained. Indeed, these elements will 

be classes of sequences of 'regular' functions in R n (in this work, F = C~CR n) 

will be considered) much in the spirit of various 'weak solutions' used in the study 

of partial differential equations. 

Within the more general framework of Calculus, the distributional approach - essenti- 

ally a sequential completion of a function space, [105],[110],[4] - can be viewed as 

a stage in a succession of attempts to define the notion of function. Euler's idea of 

function, as an analytic one was extended by Dirichlet's definition accepting any uni- 

valent correspondence from numbers to numbers. That extension although significant - 

encompassing even nonmeasurable functions, provided the Axiom of Choice is assumed, 

[491 - failed to include certain rather simple important cases, as for instance, the 

Dirac 6 function and its derivatives. 

It is worthwhile mentioning that the distributional approach can be paralleled by cer- 

tain approaches in Nonstandard Analysis. In [1341, a nonstandard model of R 1 obtai- 

ned by a sequential completion of the rational numbers was presented. In that nonstan- 

dard R 1 , the Dirac ~ function becomes a usual univalent correspondence from numbers 

(nonstandard) to numbers (nonstandard). 

The notion of the germ of a function at a point which can be regarded as a generali- 

zation of the notion of function, since it represents more than the value of the func- 

tion at the point but less than the function on any given neighbourhood of the point, 

is related both to the distributional approach and Nonstandard Analysis, EI09],[97]. 

The variety of interrelated approaches suggests that the notion of function in Calcu- 

lus is still 'in the making'. The particular success of the distributional approach 



in the theory of linear partial differential equations (especially the constant coef- 

ficient case, otherwise see [93]) is in a good deal traceable to the strong results 

and methods in linear functional analysis and functions of several complex variables. 

In this respect, the distributional approach of nonlinear problems, such as nonlinear 

partial differential equations, can be seen as requiring a return to more basic and 

general methods, as for instance, the sequential completion of convenient function 

spaces, which finds a natural framework in the theory of Algebras of Continuous Func- 

tions (see chap. 8). 

The sequential completion is a common method for both standard and nonstandard meth- 

ods in Calculus and its theoretical importance is supplemented by the fact that it 

synthetizes basic approximation methods used in applications, such as the method of 

'weak solutions'. The nonlinear method in the theory of distributions presented in 

this work is based on the embedding of D'(R n) into associative and commutative al- 

gebras with unit element, constructed by particular sequential completions of C=(Rn), 

resulting from an analysis of classes of singularities of piece wise smooth functions 

on R n , situated on arbitrary closed subsets of R n with smooth boundaries, for in- 

stance locally finite families of smooth surfaces in R n (see chap. 2, §3). 

§3. DISTRIBUTION MULTIPLICATION 

The problem of distribution multiplication appeared early in the theory of distribu- 

tions, [135], [81-83], and generated a literature, [9], [11-21], [35-41], [46], [53- 

57], [61], [66-69], [72-74], [76-78], [85], [106-108], [112], [125-132], [134], [136] 

[137], [148], [151], [162]. L. Schwartz's paper [135], presented a first account of 

the difficulties. Namely, it was shown impossible to embed D'(R I) into an associa- 

tive algebra A under the following conditions: 

a) the function ~(x) = 1 , V x ~ R 1 , is the unit element of the algebra A ; 

b) the multiplication in A of any two of the functions 

1,x,x(ZnlxI-1) ~ c°(R I) 

i s  i d e n t i c a l  w i t h  t h e  u s u a l  m u l t i p l i c a t i o n  i n  O°(R 1) ; 

c) t h e r e  e x i s t s  a l i n e a r  mapping ( g e n e r a l i z e d  d e r i v a t i v e  o p e r a t o r )  D : A ÷ A , 

such t h a t :  

c . 1 )  D s a t i s f i e s  on A t h e  L e i b n i t z  r u l e  o f  p r o d u c t  d e r i v a t i v e :  

D ( a . b )  = (Da) • b + a • (Db) , V a ,b  ~ A ; 

c.2) D applied to the functions 



l,x,x2(~nlx]-l) c CI(R I) 
is identical with the usual derivative in CI(R I) ; 

d) there exists ~ e A , 6 # 0 (corresponding to the Dirac function) such that 

x • ~ = 0 . 

The above negative result was occasionally interpreted as amounting to the impossibi 

lity of a useful distribution multiplication. That could have implied that the dis- 

tributional approach was not suitable for a systematic study of nonlinear problems. 

However, due to applicative interest (see §i) various distribution multiplications 

satisfying on the one side weakened forms of the conditions in [135] but, now and 

then also rather strong and interesting other conditions not considered in [135], 

have been suggested and used as seen in the above mentioned literature. In this res- 

pect, the challenging question keeping up the interest in distribution multiplicati- 

on has been the following one: which sets of strong and interesting properties can 

be realized in a distribution multiplication? 

There has been as well an other source of possible concern, namely, the rather per- 

manent feature of the distribution multiplications suggested, that the product of 

two distributions with significant singularities can contain arbitrary parameters. 

However, a careful study of various applications shows that the parameters can be 

in a way or the other connected with characteristics of the particular nonlinear 

problems considered. The complication brought in by the lack of a unique, so called 

'canonical' product, and the 'branching' the multiplication shows above a certain 

level of singularities can be seen as a rather necessary phenomenon accompanying op- 

erations with singularities. 

The study of the literature on distribution multiplications points out two main ap- 

proaches. One of them tries to define for as many distributions as possible, pro- 

ducts which are again distributions, [9], [11-21], [35-41], [46], [53-57], [61], 

[66-69], [72-74], [78], [106-108], [112], [132], [136], [137], [148], [162]. That 

approach can be viewed as an attempt to construct maximal 'subalgebras' in D' (R n) , 

using various regularization procedures applied to certain linear functionals asso- 

ciated to products of distributions. Sometimes, [9], [ii], [78], the regularization 

procedures are required to satisfy certain axioms considered to be natural. A gene- 

ral characteristic of the approach is a trade-off between the primary aim of keep- 

ing the multiplication within the distributions and the resulting algebraic and to- 

pological properties of the multiplication which prove to be weaker than the ones 

within the usual algebras of functions or operators. The question arising connected 

with that approach is whether the advantage of keeping the product within the dis- 

tributions compensates for the resulting restrictions on operations as well as for 

the lack of properties customary in a good Calculus. 



The other approach, a rather complementary one, aimes first to obtain a rich algebra- 

ic structure with suitable derivative operators, enabling a Calculus with minimal re- 

strictions, [81-83], [76], [771, [851, [125-1311, [134~, [151~. That approach can be 

seen as an attempt to construct embeddings of D'(R n) into algebras. 

The p r e s e n t  work b e l o n g s  t o  t h e  l a t t e r  a p p r o a c k ,  

A more fair comment would perhaps say that within the first approach, one knows what 

he computes with, even if not always how to do it, while within the second approach, 

one easily knows how to compute, even if not always what the result is. However, the 

second approach seems to be more in line with the initial spirit of the Theory of Di- 

stributions, aiming at lifting restrictions, simplifying rules and extending the ran- 

ges of operations in Calculus, even if done by adjoining unusual entities. 

§4. ALGEBRAS OF SEQUENCES OF SMOOTH FUNCTIONS 

The set 

(1) W = N + C~(R n) 

o f  a l l  t h e  s e q u e n c e s  o f  complex v a l u e d  smooth f u n c t i o n s  on R n w i l l  g i v e  in  t h e  s e -  
R n (R n ) quel the general framework. If s • W , v • N , x • , then s(v) • C ~ and 

s ( v )  (x) • C 1 

For ~ ~ 6~°(R n) denote by u(~) the constant sequence with the terms ~ , then 

u(~) • W and u(~)(w) = ~ , V ~ • N . 

With the term by term addition and multiplication of sequences, W is an associati- 

ve, comutative algebra with the unit element u(1) ; the null subspace of W is 

o = { u ( 0 ) }  . 

Denote by S the set of all sequences s • W , weakly convergent in 
o 

by V the kernel of the linear surjection: 
o 

(2) S O ~ s > <s,.> • D' (R n) 

where <s,~> = lira f s(v)(x)~(x)dx , V , • D(R n) . 
v+oo R n 

Then 

(3) So/Vo ~ (S+Vo) > < s , ' >  • D ' ( R  n) 

D ' (R  n) and 

is a vector space isomorphism. 
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Since W is an algebra, one can ask whether it is possible to define a product of any 

two distributions <s,.> , <t,.> ~ D'(R n) by the product of the classes of sequences 

s + V and t + V 
o o 

A simple way to do it would be by constructing diagrams of inclusions: 

I > A > W 

(4) 

V ~S 
o o 

with A subalgebra in W and I ideal in A , satisfying 

( 4 . 1 )  I n S = V 
o o 

which would generate the following linear embedding of D'(R n) 

and commutative algebra with unit element: 

into an associative 

D'(R n) So/V ° A/I 

w w 

< s , ' >  < s+V > s + /  
isom o lin,inj 

However, diagrams of type (4) cannot be constructed, since 

(S) (V o • V o) n S o4 V o 

Indeed, if n = 1 , take v(w)(x) = cos(~+l)x , Vw ¢ N , 

v2 ~ S o and v 2 ~ Vo , since <v2,.> = 1/2 . 

x ~ R 1 , then v £ V 
o 

An other way could be given by diagrams of inclusions: 

(6) 

I >A 

V o > S O 

> W 

with A subalgebra in W and I ideal in A , satisfying 

( 6 . 1 )  V n A = /- 
o 

( 6 . 2 )  g + A = S 
o o 

which would generate the following linear injection of an associative and commutative 

algebra onto D' (R n) : 
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D'(R n) So/V ° A / I  

W W 

<S,'> ~ S+~ ~ < s+l 
isom O lin,inj,sur 

Here the problem arises connected with (6.2). Indeed, it is not possible to construct 

diagrams of type (6) with A containing some of the frequently used '6 sequences', 

[4], [35-41], [53], [68], [69], [105-110], [136], [137], [162], as results from (see 

the proof in §12): 

Lemma 1 

Suppose given 

Then 

i) In case s 

perties are equivalent 

I.I) s • S and <s,.> = 
o 

1.2) lim f s(~)) (x)dx = 1 
'~Rn 

R n s • W such that supp s(~) shrinks to 0 c , when v ~ 

is a sequence of nonnegative functions, the following two pro- 

(the Dirac distrihution) 

2) If s c S and <s,'> = 6 , then s 2 % S 
o o 

The importance of the above type of '6 sequences' is due to the smooth approximations 

they generate for functions f E L 1 (R n) through the convolutions fv = f * s(V) 
Ioc 

~) g N . 

In [125-1313 it was shown (see also Theorem i, §7) that the following, slightly more 

complicated diagrams of inclusions can be constructed: 

I ~ A -> W 

(7) V 

V 
o 

w i t h  A s u b a l g e b r a  i n  W , 

t i s f y i n g  t h e  c o n d i t i o n s :  

( 7 . 1 )  I n S = V 

-> s ~ u(1) 

-> S 
o 

I ideal in A and V , S vector subspaces in So , sa- 
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( 7 . 2 )  V n S = V 
o 

(7.3) V + S = S 
o o 

and thus generating the following linear embedding of 

commutative algebra with unit element: 

D' (R n) into an associative and 

(8) 
D ' ( R  n)  So/V ° S/V A/I  

<s,'> < s+V < s+V > s+l 
isom o isom lin,inj 

The intermediate quotient space S/V has the role of a regularization of the repre- 

sentation of the distributions in D'(R n) by classes of sequences of weakly conver- 

gent smooth functions, given in (3). 

§5. SIMPLER DIAGRAMS OF INCLUSIONS 

In constructing diagrams of inclusions of type (7), the main problem proves to be the 

choice of the regularizing quotient space S/V . One can think of reducing that prob- 

lem to the choice of S only, since V can be obtained from (7.2). However, it will 

be more convenient to consider (see (20.2) and Remark D in ~7): 

(9) s = vGs' 

with S' vector subspace in S and to replace the problem of the choice of S by 
o 

the one of the choice of the pair (V,S') . In that case, the conditions (7.2) and 

(7.3) become 

(lo) s = v ° Q s ,  
o 

Now, the difficult task remains to fulfil (7.1). Obviously, if any ideal I satisfies 

(7.1) then the smallest ideal containing V will still satisfy that relation. In this 

respect, taking in (7) the smallest possible I will be convenient when one constru- 

cts the algebras containing the distributions. The smallest I can easily be obtained 

since u(1) ~ S in (9). Indeed, denoting 

(ii) I(V,A) = the ideal in A generated by V 

one obtains the smallest ideal in A which contains V . Moreover, I(V,A) being the 

vector subspace generated by V • A in A , one obtains a particularly useful insight 

into the structure of the algebra A/I(V,A) containing the distributions. 

Therefore, the diagrams (7) will be considered under the particular form 



I (V,A) 

l 
(12) V 
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A W 

> V(~S' ~ u(1) 

V -> S 
o o 

with 

(12.1) VoQS' = S O 

(12.2) I(V~A) n (VQS') = V 

It will be useful to notice that (12.2) can be written under the equivalent simpler 

form: 

(12.3) 1(v~4) n s, = o 

In the case of the diagrams (121, the embeddings C8) will obtain the particular form 

(13) 
D'(R n) So/V ° V(~S'/V A/I(V,A) 

W W W 

<s,'> < s+V < s+V > s+I(V,A) 
isom o isom lin,inj 

Besides the problem of choosing (V,S') , it apparently remains the problem of choo- 

sing A • However, that latter problem will be solved in §7, in an easy way. There- 

fore the problem of embedding the distributions in D'(R n) into algebras will be re- 

duced to the problem of constructing suitable regularizations (V,S') 

§6. ~MISSIBLE PROPERTIES 

Several properties of the algebras A/I(V,A) , such as the existence of derivative op 

erators on the algebras, the existence of positive powers for certain elements of the 

algebras, etc. will depend on corresponding properties of the algebras A . A uniform 

approach of these properties can be obtained with the help of the following definiti- 

on. A property P , valid for certain subsets H in W is called admissible, only if 

(14.1) W has the property P , 

(14.2) an intersection of subsets in W , each having the property P , 

will also have that property. 
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Suppose, P and Q are admissible properties, then P is called stronger than Q 

and denoted P ~ Q , only if each subset H in W satisfying P will also satisfy 

Q . Obviously, if PI,...,Pm are admissible properties, then their conjunction 

P = (PI and ... and Pm) is also an admissible property and P = max {Pl,...,Pm} 

with the above partial order ~ . 

Denote by P the property of subsets H in W that H = W , then obviously P is 

the strongest admissible property. 

Three of the admissible properties of subsets ~ c W encountered in the sequel are 

defined now. 

(15) ~ is derivative invariant, only if 

( 1 5 . 1 )  DPH c H  , V p ~ hn 

where D p : W ~ W i s  t h e  t e r m  by  t e r m  p - o r d e r  d e r i v a t i v e  o f  t h e  sequences i n  

that is, (DPs) (W) (x) = (DPs(~))(x) , V S c W , ~ ~ N , × ~ R n . 

W , 

(16) ~f is positive power invatiant, only if 

(16.1) V s e ~ : 

*) s(w) (x) -> 0 , V w c N , x e Rn I 

\ 

J **) s ~ ~ W, V~ ~ (0,~) 

where s~(v)(x) = (s(V)(x)) ~ Vw e N x c R n 

: ( s  ~ ~ H , ~ ~ ( 0 , ~ ) )  

(17) ~ is sectional invariant, only if 

(i7.1) V 

A r e i a t e d ,  in  

t 6 W : 

S¢V , ~EN: 

t ( v )  : s(~) 

a way stronger admissible property is defined in : 

(17') H is subsequence invariant, only if any subsequence t of a sequence 

s E H is also belonging to H . 

§7. REGULARIZATIONS AND ALGEBRAS CONTAINING THE DISTRIBUTIONS 

The aim of this section is to define general classes of regularizations and to const- 

ruct the corresponding algebras containing D'(R n) . 

The construction of the algebras is carried out assuming that a certain admissible pro 

petty P was specified in advance. 
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Suppose now, given any admissible porperty Q , such that Q ~ P . 

For (V,S') given in §5, the choice of the subalgebra A needed in the diagram (12) 

in order to obtain the embedding (13), will be 

(18) AQ(v,s ') = the smallest subalgebra in W with the property Q 

and containing V Q S' • 

The notation (see(ll)) 

~ 9 )  I Q ( v , s  ' )  = I(v,AQ(v,s')) 
w i l l  be  u s e f u l .  

In Theorem I, below, it is proved that one can reduce the construction of diagrams 

(12) to the choice of pairs given in the following: 

Definition 

A pair (V,S') of vector subspaces in 

larization, only if 

( 2 0 . 1 )  s o = v o ® s '  

(20.2) g c Y(p) Q S' , 

(20 .3)  I P ( v , s  ' )  n S '  = 0 

where  

Vp ~ ~n *) 

V ° respectively So is called a P-regu- 

(21) U = {U(~) I ~ e C°°(Rn)} 

is the set of constant sequences of smooth functions, and 

(22) V(p) = {v ~ V I V r ~ N n , r _< p : Dry ~ V} , V p c ~n . 

Denote by R(P) the set of all P-regularizations (V,S') • 

If Q is an admissible property and Q ~ P then R(P) c R(Q) , due to (20.3), 

(19) and (18). Therefore, R(P) c R(P) for any admissible property P , since 

is the strongest admissible property (see §6). 

A pair (V,S') e R(P) will be called regularization. Thus, a (V,S') is regula- 

rization, only if it is a P-regularization, for any admissible property P . 

*) ~ = ~ u {=} 
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Remark 1 

l) The above condition (20.1) is identical with (12.1) while (20.3) is equivalent with 

(12.3), assuming that one takes in (12), A = AP(v,s ') . The condition (20.2) is a 

stronger version of the relation u(1) ~ VC)S' in (12) and it is needed in order 

to secure the fact that the multiplication in the algebras containing D' induces 

on 6 ~ the usual multiplication of functions. The presence of V[P~ • wit~ 

p c ~n , in (2o.2) is connected with the family of algebras mentioned in Remark D, 

below, used in order to define proper derivative operators. 

2) If (V,S') is a P-regularization then V ~ V o • Indeed, assume V = V o , then 

(20.1) and (20.3) result in IP(v,s ') n S o a V ° . But (19) implies V o c IP(v,s ') , 

therefore (5) is contradicted. 

Remark D 

It is important to point out the necessary connection between the way the derivative 

operators are defined on the algebras and the validity of certain basic relations in- 

volving important distributions. Indeed, as seen in §Ii, assuming: 

a) the existence of an algebra A = D'(R I) possessing a derivative operator 

D : A ÷ A , and 

b) the validity of the relation x • 6 = 0 , 

one necessarily obtains 82 = 0 , a relation not always in line with the possible in- 

terpretations of 62 (see chap. 4 and [11], [21], [108], [1511) (the relation 

x • 6 = 0 is important in that it gives an upper bound of the order of singularity 

the Dirac ~ function exhibits at 0 c R I) . 

A way out is to embed D'(R n) into a family of algebras Ap , with p ~ A n , possess- 

ing derivative operators (see Theorem 3, §8): 

D q : A > A , V q ~ N n , P ~ ~n 
P+q p 

From here the presence of the vector subspaces V(p) , with p ~ A n , in the condition 

(20.2). However, that method can still lead to the situation in a) above, provided 

that Dqv c V , V q c N n , in which case the algebras Ap with P ~ ~n will be iden- 

tical. 

And now, the basic result in the present chapter. 

Theorem 1 

R(P) is not void. 

Suppose given (V,S') ~ R(P) and an admissible property Q , such that Q ~ P . 



Then, for each P e ~n 

IQ(v(P) ,S') 
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, the diagram of inclusions holds 

> AQ(v(P),S ') "> W 

(23) V(P) V(P) (~S' <" U 

V 0 > S o 

and 

(23.1) IQ(v(p),S ') n (V(p) Qs') = V(p) , 

or, equivalently 

(23.2) IQ(v(p),S ') n S' = 0 

Proof 

R(P) is not void due to Theorem 4 in chap. 2, §6. 

The inclusions in (23) result easily and we shall only prove (23.1). Obviously, 

V(p) c V , hence AQ(v(p),S ') a AQ(v,S ') . Noticing that due to Q ~ P , the inclusion 

AQ(V,S ') c AP(v,s ') holds, one obtains IQ(v(p),S ') a IP(v,s ') . Therefore, 

IQ(v(p),S ') n (V(p) ~)S') c IP(v,s ') n (V(~S') a V ° , the last inclusion resulting 

from (20.3). Now, obviously IQ(v(p),S ') n (V(p) QS') c V ° n (V(p) Qs') = V(p) and 

the inclusion a in (23.1) is proved. The converse inclusion resulting from (23), the 

proof of Theorem 1 is completed VVV 

And now, the definition of the family of associative and commutative algebras with un- 

it element, each containing the distributions in D' (R n) , family associated to any 

given P-regul arization. 

Suppose (V,S') E R(P) and Q is an admissible property, with Q < P . Denote then 

(24) AQ(v,S',p) = AQ(v(p),S')/IQ(v(P),S' ) , with p ~ ~n . 

The algebras AQ(v,s ' ,p) will be called derivative algebras, positive power algebras, 

sectional algebras or subsequence algebras, only if Q is respectively stronger than 

the admissible properties (iS), (16), (17) or (17'). 



18 

§8. PROPERTIES OF THE FAMILIES OF ALGEBRAS CONTAINING D'(R n) 

The next three theorems present the main properties of the embeddings 

D'(R n) c AQ(F,S',p) . 

Theorem 2 

(2s) 

Suppose given (V,S') ~ R(P) and an admissible property Q , such that Q <_ P • 

Then 

i) AQ(v,s',p) is an associative, commutative algebra with the unit element 

u(1) + IQ(v(p),S ') , for each P ¢ ~n . 

2) The following linear applications exist for each P ~_ ~n : 
C~p Bp 

S°/Vo < bij V(P) (~S'/V(P) inj > AQ(v's' 'p) 

with ~ ( s + V ( p ) )  = s + V ° 

Bp(S+V(p)) = s + IQ(v(p),S ') 

3) For each p E ~n , the linear injective application (embedding) exists: 

Cp 
D'(R n) "> AQ(v,s ',p) 

-I -I 
with ~p = Bp o ap o ~0 (see (3)) 

oo n 
4) For each P ~ ~n , the multiplication in AQ(v,S',p) induces on C (R) 

usual multiplication of functions. 

the  

s) 

6) 

For each p , q , r  e ~n 

commutative: 

with 

For each 

, p s q ~ r , the diagram of algebra homomorphisms is 

Yr ,p 

AQ(v,s',r) > AQ(v,s',q) 
Yr,q 

y q , p ( s + I Q ( y ( q ) , s ' ) )  = s + IQ(F(p) , s  ' )  , 

E q 

-> AQ(v,s' ,p) 
Yq,p 

etc. 

P,q e ~n • P _< q , the diagram is commutative: 

> AQ(v,s',q) > AQ(v,s ' ,p) < 

S q T Yq'P T Bp 
v(q)  Qs'/v(q) n " v (p )  Qs'/v(p) 

~O~q I q 'P l~O~p 

D'(R n) < id ~ D'(Rn) 

E 
P 

with nq,p(S+V(q)) = s + V(p) 

therefore, yq,p restricted to Eq(D' (Rn)) is injective. 
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Proof 

4) results from (20.2). The rest follows from Theorem 1 WV 

The existence of derivative operators on the algebras as well as their properties are 

established now. 

Theorem 3 

In the case of derivative algebras (see §6], suppose given (V,S') ~ R(~) and an 

admissible property Q , such that Q _< P . Then 

(26 )  

( 2 6 . 1 )  

i) For each p e N n and q ~ A n , the following linear mapping (p-th order de- 

rivative) exists (see Remark: D, §7): 

D p : AQ(v,S',q+p) ÷ AQ(v,s',q) q+p 

with 

D P + p ( s + I Q ( Y ( q + P ) , S ' ) )  = DPs + I Q ( v ( q ) , s ' )  

co n 
and the restriction of D p to C (R) is the usual p-th order derivative q+p 
of functions. 

( 2 7 )  

2) The relation holds 

D p 2  = D p l + p 2  V p l , p  2 e N n ~l n 
D~PI+P 2 q+P2 q+PI+P2 ' , ~ c 

3)  F o r  e a c h  p e N n , q , r  e I~ n , q _ < r , t h e  d i a g r a m  i s  c o m m u t a t i v e :  

(28) 

(28.1) 

4) 

DP 
AQ(v,s ' ,r+p) r+p > AQ(v,s,,r) 

I Yr+p,q+p I Yr,q 

AQ(v,s',q+p) ~ AQ(v,s ' ,q) 
DiP 
q+p 

The mapping D p with p ~ N n A n q+p , , q ~ , satisfies the Leibnitz rule of 

product derivative : 

D~+p (S.T) ~ Yq+p-k,q q+p " Yq+k,~ q+p ' 

keN n 
k~p 

in particular, if [Pl = 1 , the relation holds: 

D~+p(S-T) = D p S • T + S • D p T q+p Yq+p,q Yq+p,q q+p , 

where S,T ~ AQ(v,S',q+p) in both of the above relations. 



Proof 

i) First, we prove (26). Obviously 

(29) DPv(q+p) c V(q) , V p • N n 

Now, we show that 

(30) DPAQ(F(q+p) ,S ' )  c A Q ( F ( q ) , s ' )  , 

I n d e e d ,  (18) r e s u l t s  i n  

DPAQ(v(q+p) ,S ' )  c n DPA 
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, q ~ ¢ .  

gp<N n qe~n 
t 

where the intersection is taken over all subalgerbras A in W which have the proper- 

ty Q and contain V(q+p~)s' . Since we are in the presence of derivative algebras, 

each of the subalgebras A above satisfies the condition DPA ~ A , therefore, one ob- 

tains 

DPA~(7(q+p) ,S  ' )  c ,~, A 

w i t h  t h e  i n t e r s e c t i o n  h a v i n g  t h e  same r a n g e  as  b e f o r e ,  b o t i c i n g  t h a t  V(q+p) c V(q) , 

one o b t a i n s  

DPAt~(V(q+p),s ' )  c n A 

h e r e  t h e  i n t e r s e c t i o n  b e i n g  t a k e n  o v e r  a l l  s u b a l g e b r a s  A in  W which  have  t h e  p r o -  

p e r t y  Q and c o n t a i n  V(q) @ S '  . Taking  now i n t o  a c c o u n t  t h e  d e f i n i t i o n  i n  ( 1 8 ) ,  one 

o b t a i n s  ( 3 0 ) .  

The r e l a t i o n s  

(31) AQ(v(q+p) ,S  ' )  c AQ(v (q ) ,S  ' )  , V p • N n , q ~n 

r e s u l t  e a s i l y  n o t i c i n g  t h a t  V(q+p) c V ( q ) .  

Comparing ( 2 9 ) ,  (30) and ( 3 i ) ,  i t  f o l l o w s  t h a t  

(32) D P I Q ( v ( q + p ) , s ' )  c I Q ( v ( q ) , s ' )  , g p • N n , q e ~n . 

Now, (31) and (32) w i l l  imply  ( 2 6 ) .  

The s e c ond  p a r t  o f  1) r e s u l t s  f rom ( 2 0 . 2 ) .  

2 ) ,  3) and 4) r e s u l t  f rom 1) and Theorems 1 ,2  WV 

Now, positive powers will be defined for certain elements of the algebras. Denote 

*) ~(x) > 0 , V x • R n I n 
C~(Rn) = {~ e C ( R )  **) ~ • c~(R n) g a e (0 ,~ )  

Obviously, if ~ • c~(R n) and ~(x) > 0 , V x e R n , then to ~ C+(R n) . But there ex- 

ist to £ C°°(R n) , t0(x) >_ 0 , V x e R n , such that to 4 C+CR n] , for instance, 

to(X) = x ~ . . . X n  2 , V x = (x 1 , . . . ,  Xn) ~ R n . However ,  d e f i n i n g  
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exp (=(i/x I + .... + i/Xn) ) if x. > 0 V l~i~n 
~(x) = i ' 

0 otherwise 

one obtains ~ ~ C+(R n) . Denote further 

w + :  {s ~w [ s ( v )  ~ C~(R n)  , vv ~ N } 

It follows that, for s e W one can define any positive power s , by 
+ 

(33) sa(V)(x) = (s(V)(x)) a V ~ ~ (0, ~) W e N x ~ R n J , • , 

and one obtains s ~ e W+ 

Now, the condition in (16) for a positive power invariant subset H 

formulated as follows 

(34) V s c H n W+ , a c (0, ~) : s a e H 

Suppose T is a vector subspace in S and denote 
O 

D' (R n) = { <t, "> [ t ¢ T n W } 
T,+ + 

The distributions in D' (R n) will be called T-nonnegative. 
T,+ 

in W can he re- 

Theorem 4 

In the case of positive power algebras, suppose given (V,S') e R(P) and an ad- 

missible porperty Q , such that Q ~ P . If T is a vector subspace in S O , 

satisfying the condition 

(35)  U n W+ c T c S' 

then 

l) 

2) 

(36.1) 

(36.2) 

(36.3) 

3) 

cT(R n) c D~,+ (R n) 

For given p e ~n and any a ~ (0, ~) , one can define a mapping (positive 

power) : 

(R n)  ~ T ~ T m e A Q ( v , s  ' , p )  D~,+ 
w i t h  T = < t , ' >  ÷ Ta = t a + I Q ( v ( p ) , S  ' )  , where t e T n W+ and t h e  r e l a t i  

ons w i l l  r e s u l t :  

T 1 = T 

T (~+8 = T (~ • T 8 , V (z,8 e 09, °o ) 

(T(~) TM = T e'm , V ~ e (0, ~) , m e N\(0} . 

For any p e ~n • the mapping in i) is identical on CT(R n) with the usual 

positive power of functions. 
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4) 

(37) 

Suppose in addition the case of derivative algebras• then the following re 

lations hold in the algebras AQ(v,S',p) , with p e A n : 

D q T ~ = ~ • T -iDq T 
p+q p+q • 

N n v T ¢ D' (R n) ~ ~ ( i , ~ )  q e [ql = i 

3) It re- 

Proof 

i) It follows from (35). 2) It results from (35) and 2) in Theorem 2. 

sults from i) and 2). Finally, 4) is a consequence of (28.1) VVV 

Remark 2 

The condition (35) can be easily fulfilled in case (20.2) is replaced by the stronger 

condition (see (25) in chap. 2, §6): U c S' 

§9. DEFINING NONLINEAR PARTIAL DIFFERENTIAL OPERATORS ON THE ALGEBRAS 

As stated in §i, one of the main aims of the nonlinear method in the theory of distri- 

butions presented in this work is to offer a framework for the study of the nonlinear 

partial differential equations. The embedding of the distributions in D'(R n) into the 

algebras AQ(v,s',p) (see Theorem 2, §8) creates the possibility of studying nonline- 

ar partial differential operators of the general form 

T (D)u(x)  = Z c i ( x  ) 
l~i~h 

with c i smooth and Pij e Nn " 

DPiJu(x) • x e R n , 

l-<j-<k i 

(or x E ~ , ~ c R n ~ $ open) 

In order to define these operators on the algebras containing the distributions, one 

has to take into account the following two features of the distribution multiplication 

presented in this work: 

I) The algebra homomorphisms (see 5) in Theorem 2, §8) 

AQ(v,S ',q) ~ AQ(v,S ',p) 
Yq,p 

need not generate algebra embeddings. 

2) The derivative operators (see pct. 1 in Theorem 3, §8) 

D p : AQ(v,S ' •q+p) + AQ(v•S ' ,q) 
q+p 

act between different algebras in case q c ~n has finite components. 

Suppose, we are in the case of derivative algebras. Given the above operator T(D) , 

define its order by 
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= max { Pij ] l-<i-<h ' l-<j-<ki } 

then, one can define for any q ~ ~n the mapping 

T(D) : AQ(F,S',q+p) + AQ~/,S,,q) 

by 

T(D)u : Z c. I I Yq+P-Pij DPi~ ~ u V u c AQ(v,S',q+p) 
l~i~h i l~jKki ,q q+p ' 

i 

where the additions and multiplications in the right term are effectuated in 

AQ(v,S',q) . The commutativity of the diagrams in 5) in Theorem 2 and 3) in Theorem 3, 

58, grants the consistency of the above definition. Moreover, due to 4) in Theorem 2, 

§3, the above definition of T(D) coincides with the usual one in the case of smooth 

u . 

An important particular case is when T(D) acts upon u ~ D'(R n) . Then, due to 3) 

in Theorem 2, §3, one can consider u belonging to any of the algebras AQ(v,S',r) , 

with r E h~ , r ~ p , and apply the above definition. 

Due to 5) in Theorem 2,§3, the same happens when T(D) acts upon u c AQ(v,s', ~) . 

In chapter 3, the above definition will be used in the study of piece wise smooth weak 

solutions of the so called polynomial nonlinear partial differential operators. The 

nonlinear hyperbolic partial differential equations modelling the shock waves are par- 

ticular cases of polynomial nonlinear partial differential equations. 

§i0. MAXIMALITY AND LOCAL VANISHING 

There exists an applicative interest in constructing the algebras AQ(v,S',p) , p c ~n 

in a way that the ideals IQ(v(p),S ') , p ~ ~n , are large, possibly maximal. Indeed, 

according to (24), the larger these ideals, the more equality relations are obtained 

in the corresponding algebras. 

To construct the aigebras AQ(v,S',p) and the ideals IQ(V(p),S ') means to choose 

P-regularizations (V,S') . According to (ii) and (19), the larger V is, the larger 

the ideals IQ(V(p),S ') , p ~ A n , will be. Therefore, as a first approach in securing 

maximal ideals, the problem of (V,S') ~ R(P) , with maximal V , will be studied in 

the present section. An alternative approach to the problem of maximal ideals 

iQ(v(p),S, ) , P ~ ~n , will be given in chap. 2, §7. 

And now, several results on the structure of R(P) • In addition to the relation 

(38) V (V,S') ~ R(P) : V c V ° 

obtained in 2), Remark i, §7, the following two simple results will be useful. 



Lemma 2 

Suppose (V,S') ~ R(p) . If 

conditions 

(39) v(Ds" : vGs' 

(40) U ¢ V(p)(7)S" , V 

then (V,S") c R(P) . 
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S'' is a vector subspace in S satisfying the 
o 

p e A n (see (20.2)) 

Proof 

Since V c V ° • the relations (39) and (20.i) will obviously imply S O = VoQS" 

Now, it suffices to show that (V,S'') satisfies (20.3). Indeed, taking into account 

(19) and (18), one obtains IP(v,S '') = IP(V,S ') VVV 

Lemma 3 

, , , c ' then ' = ' . Suppose  (V 1 , S i )  (V 2 S½) c R(P) . I f  S 1 S 2 S 1 S 2 

Proof 

It follows easily from the fact that both 

WV 

(V 1 , S~) and (V 2 , S½) s a t i s f y  (20 .1 )  

The relations (ii), (19) and Lemma~2,3 suggest that an appropriate way in enlarging the 

ideals IQ(v(p),S ') , P e ~n , is to enlarge 

(v,s') e R(P) with V maximal. 

Define on R(P) a partial order -< by 

(v  I , s{)  <_ (v 2 ,s½) ~ v  l ~ w  2 

V . From here the interest in finding 

and Si = S½ 

The admissible property P is called regular, only if each chain in (R(P) , ~ ) has 

an upper bound. 

We recall (see §6) that the strongest admissible property, namely the property of sub- 

sets H in W that H = W , was denoted by P . 

Theorem 5 

P is a regular admissible property. 

Proof 

Assume ((V h , S') 1% ~ A) is a chain in (2(P) , ~) - Denote V = u 

p r o v e  t h a t  ( V , S ' )  ~ R ( P ) .  leA 

V X . We shall 
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Obviously, V is a vector subspace in V and (20.1) and (20.2) hold. It remains to 

prove (20.3). First, we notice that AP(F ') = W , since P holds only for A = W . 

Therefore, IP(F,S ') = I(V,W) and the condition (20.3) becomes I(V,W) n S' = O • 

Assume now s e I(F,W) n S' . Then, s e I(V,W) results in 

(41) s = ~ v i • w i , with v. e V w i e W , V l<i<k 
l~i~k 1 . . . .  

Since ((Yl , S') I ~ c A) is a chain, there exists ~oe A such that v i c Vlo , 

V l~i~k . Now, (41) will imply 

s ~ I ( V  l , W) n S '  = 0 
0 

the last equality resulting from the fact that (V h , S') ~ R (P) WV 
O 

Based on Zorn's Lemma, Theorem i, §7 and Theorem 5, one can define for a given regular 

admissible property P the nonvoid set of maximal P-regularizations: 

Rmax(P) = { (V,S') e R(P) I (V,S') maximal in (R(P) , ~) } 

The fact that the strongest admissible property P is regular (see Theorem 5) offers 

the possibility to construct the algebras A Q(V,S',p) , p e ~n , for any admissible pro- 

perty Q , with V maximal. Indeed, since Q ~ P , one can choose (V,S') c Rmax(P) 

and the construction of the algebras will proceed according to (24) and (23). 

The above remark and the relation (38) generate an interest in a possible upper bound 

of V , with ~') c Rmax(P) , which would give an insight into the necessary structu- 

re of the distribution multiplications defined according to the relations (24), (23), 

( 1 8 ) ,  (19)  and ( i i ) .  

The following Theorem 6 gives an upper bound of the mentioned type under the form of a 

local vanishing property which Y has to satisfy. Namely, it is proved for instance, 

that in case V QS' contains '5 sequences' (see Lemma 1 in §4 and [4], [35-41], [53], 

[68], [69], [105-110], [136], [137], [162]) the sequences of smooth functions weakly 

convergent to 0 e D'(R n) which constitute V , have to vanish infinitely many times 

in points arbitrarily near to each point in R n . 

For p c A n , denote by W p the set of all sequences of smooth functions w c W which 

satisfy the local vanishing property: 

V G c R n G # ~ open q ~ N n . . . .  q<-P, ~cN : 

(42) ~ x ¢ G , w ¢ N , w >-P : 

Dq~(v) (x) = 0 

or, written simpler 

V x ~ R n N n , qc , q_<p : 

(42') Dqw(v) (y) = 0 for infinitely many v ~ N 

and Y E R n arbitrarily near to x 



A P-regul arization 

(43)  
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(V,S') is of local type, only if 

V G c R n , G $ ~ , open : 

3 SG~V+S' : 

(43.1) <s G , "> $ 0 ~ D'(R n) 

(43.2) supp SG(~ ) e G , V 

for a certain ~ ¢ N . 

x ~ ¢ N ,  ~ > - ~  , 

Theorem 6 

Suppose given a local type regularization 

sectional invariant. 

Then 

V(p)  c W p , V p ~ ~n . 

(V,S') c R ( P )  s u c h  t h a t  vQs' i s  

Proof 

Taking into account (22) and (42), it suffices to prove the inclusion 

Assume it is false and v ~ V~W ° . Then (42) implies 

@ G c R n I~' , G ~= ~ , o p e n  , ¢ N : 

V x ¢ G , ~ ¢ N , ~ >- ~' : 

v( . )  (x] ~ 0 

Now, d u e  t o  ( 4 3 . 2 ) ,  one  o b t a i n s  

V V ¢ N , ~ -> ~'' : 

supp SG(~ ) c G 

Define w c W by 

0 if x~ G 
w(~) (x) : 

SG(~ ) (x)/v(~) (x) if x E G 

whenever ~ c N , ~ -> ~ = max {~' , ~''} . Then 

(44) v(~) " w(~) = SG(~ ) , V v c N , ~ -> 

therefore 

(45)  v " w c VQS' 

since s G c ~)S' and VQS' is sectional invariant. But 

(46) v • w ¢ I (V ,W)  = I P ( V , S  ' )  

s i n c e  v c V . 

Now, (45)  and (46)  t o g e t h e r  w i t h  ( 2 0 . 3 )  w i l l  i m p l y  v • w £ V 

V c W ° only. 

w h i c h  due t o  (44)  r e -  
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sults in <s G , "> = 0 £ D'(R n) , since V c Fo 

mY 

• Therefore (43.1) was c o n t r a d i c t e d .  

Remark 3 

There exist relevant instances of regularizations (V,S') which meet the conditions 

in Theorem 6 above. Indeed, one can notice that V QS' will be sectional invariant 

whenever Y has that property. Further, the regularizations (V,T(~SI) obtained in 

Theorem 4, chap. 2, §6, can be chosen with V sectional invariant, since any Dirac 

ideal obtained in Proposition 6, chap. 2, §6 is obviously sectional invariant. Final- 

ly, the regularizations (T/,T(~)SI) considered in chap. S, §4, are of local type. 

Indeed, T~ c T where ~ = (s x ] x ~ R n) ~ Z 6 , therefore given G c R n • G # ~ , 

open, one can take in (43) s G = s x , provided that x e G . 

With the method used in the proof of Theorem 6 one obtains the following more general 

result. 

Theorem 7 

Suppose given a regularization (V,S') such that V(~)S' is sectional invari- 

ant. 

Then each v e V satisfies the vanishing condition 

V t ~ V ( ~ S '  , t ~ V ,  p ~ N ; 

~ ~ N , ~ ~ p , x E supp t(v) : 

v ( ~ )  (x)  : o 

Proof 

Assume it is false and 

V ~ E N , 

v ( ~ )  ~ 0 

D e f i n e  w ~ W by  

w ( ~ )  ( x )  = 

v ~ V , t ~ V(~S' , 

"o>_p : 

on supp t (~) 

t ~ V and p ~ N such that 

0 i f  x ~ supp  t ( V )  

t ( V ) ( X ) / V ( V ) ( x )  i f  x E supp t (V)  

whenever 9 E N , ~ a p . Then 

(47)  v ( , )  • w ( , )  = t ( V )  , 

therefore 

( 4 8 )  v • w ~ v C ) s '  

since t £ V~)S' and VQS' is sectional invariant. 
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But  

(49) V " w 

since v e V . 

~_ i ( v , w )  : i P ( v , s  ,)  

The relations (48) and (49) together with (20.3) imply v • w ¢ V . Then (47) will give 

<t,.> = 0 ¢ D'(R n) since V c V . It follows that t ¢ V . l~w, C20.I) will contra- 
o o 

d i c t  t ~ V ~7V 

In the same way, one can prove: 

Theorem 8 

Suppose (V,S') is a regularization, then each 

tion 

V t c V @ $ '  , t ~ V : 

~ c N , x ¢ s u p p  t ( v )  

v (v) (x) = o 

v~ V satisfies the vanishing condi- 

§ii. STRONGER CONDITIONS FOR DERIVATIVES 

It will be shown that even in the one dimensional case n = 1 , the stronger conditions 

on derivatives mentioned in Remark D, §7, lead necessarily to a particular, rather tri- 

vial distribution multiplication. 

Suppose A is an associative and commutative algebra containing the real valued poly- 

nomials on R 1 as well as the distributions in D'(R I) with support a finite number 

of points. 

Suppose also that 

(50) the multiplication in A induces the usual multiplication on the polynomials and 

the polynomial ~(x) = 1 , V x ¢ R 1 , is the unit element in A , 

(51) there exists a linear mapping D : A ÷ A such that 

(51.1) D is identical with the usual derivative when applied to polynomials or 

distributions with support a finite number of points 

(51.2) D satisfies on A the Leibnitz rule of 'product derivative' 

D(a'b) = (Da) • b + a • (Db) , V a,b ¢ A 

a n d  finally 

, c R 1 (52) (X-Xo) " ~x = 0 ~ A V x ° 
o 



2g 

Theorem 9 

Within the algebra A the relations hold: 

(53) (X-xo)P • Dq8 x = 0 c A , V x ° c R 1 , p,q c N , p > q 
o 

+ DP+I6 = 0 c A , ¥ x c R 1 (54)  ( p + l )  • DP8 x (X-Xo) " x o ' P ~ N 
o o 

(X-xo)P • (DP8 x I = 0 A V R 1 (55) q E , x ° ~ , p,q c N , q > 2 
o 

)2 • D8 = 0 6 A , V x c R 1 (56) (~x = ~x x o 
o o o 

Proof 

Applying D to (52) and taking into account (51), one obtains 

C57) 6 + • D6 = 0 E A V x ° ~ R 1 x (X-Xo) x 
o o 

w h i c h  m u l t i p l i e d  by (X-Xo) g i v e s  due t o  (52) t h e  r e l a t i o n  (X-Xo)2 • D8 = 0 e A 
X ' 

O 
R 1 A p p l y i n g  D t o  t h e  l a t t e r  r e l a t i o n  and  t h e n ,  m u l t i p l y i n g  b y  (X-Xo) V X 0 c . 

one obtains in the same way the relation (X-Xo)3 • D28 = 0 ~ A ¥ x c R 1 Re- 
x ' o " 
o 

p e a t i n g  t h e  p r o c e d u r e ,  one  o b t a i n s  ( 5 3 ) .  

The relation (54) results applying repeatedly D to (57). 

Now, multiplying (54) by (X-xo)P , one obtains 

(X-Xo)P + (X-Xo)P+l • DP+I6 = 0 ¢ A , ¥ x ¢ R 1 (p+l) " DP~x x o ' p c N 
o o 

Multiplying that relation by (Dp~ x )q-i and taking into account (53), one obtains 
o 

(ss) .  

= ' (~x)2 ~ R I Applying Taking p = 0 and q 2 in (55) one obtains = 0 c A , ¥ x ° . 
o 

D to that relation, the proof of (56) is completed WV 

§12. APPENDIX 

The proof of Lemma 1 in §4 is given here. 

I) It follows easily. 

R 1 2) For a ~ and ~ ~ N denote 

E ( a , v )  = { x ¢ R n ] s ( V ) ( x )  ~ a ) 
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First, we prove the relation 

(58) lira [ s(~) (x)dx >- 1 
x)-~oo J 

E(a,V) 

, ¥ a ¢  R 1 

Assume i t  i s  f a l s e .  Then 

a e R 1 , ~ > 0 , ~ '  e N : 

~) ~ N , x) _> ~' : 

I s (V) (x )dx  -< 1 - 

E (a ,v )  

But, s ~ S O , <s,'> = ~ and supp s(~) shrinks to 0 e R n , when ~ ÷ ~ . Therefore, 

assuming ~ c D(R n) and ~ = 1 on a neighbourhood of 0 ~ R n , one obtains 

i : ¢ ( 0 )  : f s('O) (x)qJ(x)dx = l im I s ( ' o ) (x )dx  xt+oo 

R n R n 

It follows that 

11' '  ~ N" 

x) ~ N , ~) -> II'' : 
f 

1 - ~/2 -< [ S(~)) (x)dx 

J 

R n 

Now, for c N , the relations hold 

I s(~)(x)dx = I s(~)(x)ax 
R n E(a ,~)  

f 
+ 1 s(v) (x)dx 

J 

supp s(~)\E(a,~) 

I s(9)(x)dx + a J dx 

E(a,9) supp s(v) 

Therefore, one obtains for ~ ~ N , v ~ max {~' , ~''} the inequality 
( 

1 - E/2 ~ 1 - z + a ] dx 

supp s(~) 

which is absurd since supp s(9) shrinks to 0 c R n , and the proof of [58) is comp- 

l e t e d .  
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We prove now that there exist a 

(59) lim a~ = ~ and lim 

¢ [0, ~) , with ~ ¢ N , such that 

f .~(V) (x )dx  z 1 

E(a  v , v )  

Indeed, according to (58), there exist ~ £ N , with ~ ¢ N 

< ~1 < . . .  < x.) < . . .  (60) v ° P 

and 
( 

(61) 1 - l/(p+l) -< J / s ( v v )  (x)dx  , V p ¢ N 

E ( v , v )  

such that 

Define now a v = inf { p ¢ N ] v ~ v } , with 

Then a ~ a + I , V v ¢ N and 

x ) ¢ N  . 

(62) a v = V , V V ¢ N 

due to (60), hence, the first relation in (59) is proved. Taking into account (61), the 

second relation in (59) follows from (62). 

Finally, we prove 

(63) xr+~lim I (s(~)(x))2dx = + ~ 

E(a ,~) 

Indeed, (s(v)) 2 ~ a s(~) on E(a ,~) , 

V ~ ¢ N . Therefore 

I ( s ( v )  ( x ) ) 2 d x  > 
- a M 

E(% ,~) 

V ~ c N , since 

I s (v) (x) , dx 

E (av ,v)  

sO)) >- % a o on E(% ,~)) 

V ~ ¢ N  

The relation (63) will result now from (59). Obviously, (59) implies 

lim I (s (v) (x) ) 2dx = + ~ 

R n 

Then s 2 ~ S s i n c e  supp s2 (~ )  = supp s (~ )  s h r i n k s  t o  0 ¢ R n when 
o 
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Remark 4 

The condition of nonnegativity of the sequence s in i) in Lemma i, §4, can be remo 

red in special cases. For instance, assume s given by 

s(v)(x) = a~ ~(bux) , V ~ c N , x ~ R n , 

where @ ~ D(R n) a v E C 1 b v ~ R 1 and lim I b~ I = + ~ Then, it is easy to 

see that the equivalence between i.I) and 1.2) in the mentioned lemma, will still be 

valid. 



C h a p t e r 2 

DIRAC ALGEBRAS CONTAINING THE~DISTRIBUTIONS 

§i. INTRODUCTION 

In chapter i, diagrams of inclusions of the general type (23) were constructed in or- 

der to obtain the algebras (24) containing the distributions in D'(R n) . The const- 

ruction of diagrams (23) was based on the presumed existence (Theorem I, chap. I, §7] 

of ~regularizations (F,S') , for a given admissible property P . 

In this chapter two results are presented. 

First, specific instances of the diagrams (23), chap. I, §7, are constructed, leading 

to so called Dirac algebras in which nonlinear operations of polynomial type can be 

performed with piece wise smooth functions on R n and their distributional derivati- 

ves. The nonlinear operations considered, cover the ones encountered in the nonlinear 

partial differential operators introduced in chap. i, §9. In that way, the Dirac alge- 

bras prove to be useful in chapter 3, in the study of nonlinear partial differential 

equations with piece wise smooth weak solutions. The class of the piece wise smooth 

functions admitted in the nonlinear operations is rather wide, their singularities be- 

ing situated on arbitrary closed subsets of R n with smooth boundaries, for instance, 

locally finite families of smooth surfaces in R n 

As a second result, based on the existence of Dirac algebras, one can prove the exis- 

tence of the regularizations (V,S') used in chapter I, and therefore validate the 

general method of embedding the distributions into algebras, presented there. For an 

alternative validation, not using Dirac algebras, see §§8 and 9. 

§2. CLASSES OF SINGULARITIES OF PIECE WISE SMOOTH FUNCTIONS 

When performing nonlinear operations with piece wise smooth functions on R n and their 

distributional derivatives, a problem arises in the neighbourhood of the singularities. 

The classes of singularities, concentrated on arbitrary closed subsets of R n with 

smooth boundaries, for instance, locally finite families of smooth surfaces in R n , 

are defined now. 

A set F of mappings y : R n R mY C ~ ÷ , y ~ , with my ~ N is called a singularit X 

generator on R n . The closed subsets in R n 
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m 

Fy = { x ~ R n ] y(x)  = 0 ~ R Y } 

d e f i n e d  by t h e  mappings  y • r w i l l  r e p r e s e n t  t h e  b a s i c  s e t s  o f  p o s s i b l e  s i n g u l a r i t i e s  

The set F F of all FA = u F where A c F and F A is closed, will be called the 
yea Y ' 

class of singularities associated to F . Obviously, if A c F and A is finite or 

more generally, (Fy I Y • A) is locally finite in R n , then F A e F F . Therefore, we 

shall in the sequel be able to consider singularities concentrated on arbitrary locally 

finite families of smooth surfaces in R n . 

Denote then by FF,Io c the set of all F A with A c F and (Fy ] y • ~ locally fi- 

nite in R n . It follows that P F ,locc F F . 

Remark I 

The subsets F can be fairly complicated. For instance, suppose m = 1 and 

Y (_1 /x12)  Y y ( x  I . . . . .  Xn) = exp s i n  ( l / x 1 )  i f  x 1 # 0 , w h i l e  y (x )  = 0 o t h e r w i s e .  

Then F i s  an i n f i n i t e  s e t  o f  h y p e r p l a n e s  i n  R n which  i s  n o t  l o c a l I y  f i n i t e .  How- 
Y 

e v e r ,  o b v i o u s l y  Fy • F F , l o  c . 

The piece wise smooth functions on R n considered will be those in 

6~F(Rn ) = { f : Rn ÷ C 1 [ @ F • F F : f • 6#°(Rn\F) } 

thus, having the singularities concentrated on arbitrary closed subsets of R n 

smooth boundaries, for instance locally finite families of surfaces from F • 

with 

The nonlinear operations on functions in 6~F(Rn ) and their distributional derivatives 

will be of the following polynomial type 

(I) T(f I ..... fm ) = Z c. ] I DPijgij 
l~i~h i l~j~ki 

where c.x • C~(Rn) ' Pij • Nn and gij e {fl , .... fm } c C~(Rn). 

The actual range of the nonlinear operations (I) will be the set of distributions 

(C~fR n) 1 n . n ClocCR ))  + D~CR n) 

where  

D~(R n) = { S • , '  (R n) ] ~ F • f r  : supp s c F } . 

§3. COMPATIBLE IDEALS AND VECTOR SUBSPACES OF SEQUENCES OF SMOOTH FUNCTIONS 

The construction of the Dirac algebras will proceed through §§3-6 in several stages, 

ending with Theorem 4 in §6. 
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Given a regularization (V,S') , one obtains (see Theorem 2, chap. i, §8) the follow- 

ing embeddings of D'(R n) into algebras 

(2) 

D' (R n) So/V o Y(p) C)S'/V(p) AQ (V,S ' ,p) 

< s , ' >  < s+V < S+V(p) > s÷IQ(v(p] ,S ' )  
bij o bij inj 

where Q is any admissible property and P e ~n . 

It follows (see also Theorem 3, chap. l, §8) that the nonlinear operations of type (i) 
co n 

when applied to distributions - in particular, functions in CF(R ) - are effectuated 

within the algebras, according to the relation 

T (<s I ,.> , ... , s m .>) = 
(s) 

= Z c. i ~- DPiJs.. + IQ(F(p),S ') ~ AQ(v,S',p) 
l~i~h i l~j~ki l] 

where sij ~ { s I ,...,s m } c V(p) QS' . One can always assume that s I .... ,s m c S' 

in (3) since V(p) c V ° and in the left term, the distributions <s I ,.>,...,<s m ,.> 

appear only. Therefore, S' has a particularly important role, since the nonlinear 

operations (I) and (3) when observed from S' become the corresponding classical ope- 

rations applied term by term to sequences of smooth functions. The role V will have 

is to generate ideals IQ(V(p),S ') which annihilate within the embeddings (2) the ef- 

fect the singular distributions in D~(R n) cause in the nonlinear operations (i) and 

(3). 

In this respect, the regularizations 

a) 

b} 

(V,S') will be chosen as follows: 

V will be a vector subspace in I n V where I is an ideal in W of sequenc- 
o ' 

es of smooth functions vanishing on certain singularities F c F F , as well as on 

neighbourhoods of points outside of those singularities. 

S' will be split into T QS 1 , where the sequences of weakly convergent smooth 

functions in T represent the distributions in D'(R n) 
1 

The main part of the construction, both theoretical (in this chapter) and applicative 

(in chapters 3, 4 and 5) rests upon tlhe ideals I . 

The final choice of the ideals I and vector subspaces T and S 1 obtained in §6, 

will evolve in several steps. 

It is particularly important to point out that the above way of choosing a regulariza- 

tion (V,S') belongs to a natural, general framework presented in Theorem 1 below, 

where a basic characterization of regularizations is given. That characterization will 

be used throughout the chapters 3-7, when constructing algebras containing the distri- 

butions needed in applications to nonlinear problems or in theoretical developments. 
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An ideal I in W and a vector subspace 

(see Fig. i.): 

(4) I n T = V n T = 0 
o 

(s) z n s o ~ VoG)Tv 

T in S O are called compatible, only if 

Theorem i 

Suppose the ideal I and vector subspace T are compatible. If V is a vector 

subspace in I n V ° and S 1 is a vector subspace in S ° satisfying 

(6) Vo(gr(9s I = S o 

(7) U c V ( p ) ( ~ T O s  1 , V p ~ ~n 

t h e n  ( V , T ( ~ S 1 )  c R(P)  f o r  any a d m i s s i b l e  p r o p e r t y  P . ( see  F ig .  2) 

C o n v e r s e l y ,  any r e g u l a r i z a t i o n  (V,S ' )  can  be w r i t t e n  unde r  t he  above form. 

Proof 

Denote S' = T(~)S 1 . It suffices to show that (see (20.3) in chap. i, §7) 

(s) I (v,w) n s' = o 

First, we notice that I(V,W) c I since V c I and I is an ideal in W . Therefore 

(9) I(V,W) n S' c I n S' 

But 

(i0) I n S' = O 

Indeed, (5) results in 

(Ii) I n S' a (InSo) n S' c (Vo(~T) n (TQSI) a T 

the last inclusion being implied by (6). Now, (i0) follows from (ii) and (4). The re- 

lations (9) and (I0) imply (8). 

Conversely, assume given (V,S') ~ R(P) and denote I = IP(v,s ') . Then, obviously 

I = I[V,W) therefore, I is an ideal in g • But Vo(~S' = S o , due to (20.1). Hen- 

there exists a vector subspace T c S' such that I n S o c VoQT . Obviously, ce~ 

one can choose a vector subspace S 1 in S' so that S' = TC)S 1 . Now, (20.3) will 
~n 

imply I n T c I n S' = 0 while (20.2) will result in U a V (p) +~T~)S 1 , V p E 

The proof is completed, noticing that V c I(V,W) = I , since u(1) ~ W VVV 

Remark 2 

Theorem 1 gives an affirmative answer to the question of the existence of regulariza- 

tions (V,S') provided one can prove the existence of: 
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a) compatible ideals I and vector subspaces T , as well as of 

b) vector subspaces S 1 satisfying (6) and (7). 

These two problems will be solved in Theorem 2, §5, respectively Corollary 2, §6. 

§4. LOCALLY VANISHING IDEALS OF SEQUENCES OF SMOOTH FUNCTIONS 

A first specialization of the ideals I in Theorem i, §3 is given here, under the form 

of locally vanishing ideals. 

For p c ~n denote by W the set of all sequences of smooth functions 
P 

fying the local vanishing property 

V x ~ R n N n • qc , q-<p : 

(12) 
¥ ~c N, ~->~ : 

Dqw(~)) (x) = 0 

or, formulated in a simpler way 

w c W satis- 

(12') Dqw(w)(x) = 0 for each x c R n N n , q c , q -< p , if ~ is big enough 

Obviously Wp, with p c Nn, are ideals in W and Wp c W p , 

§i0) 
p c Nn (_see chap. 1 

An ideal / in W is called locally vanishing, only if 

(13) I c W 
o 

Given a singularity generator r on R n , a class of associated locally vanishing ide- 

als is constructed now. For ~ c F F and P e ~n , denote by IG, p the ideal in W 

generated by all sequences of smooth functions w c W satisfying 

(14) @ G c G : 

(14.1) V q c N n , q -< p : 

~i c N: 

V "~ c N , "o -> ~i : 

Dqw(v) = 0 on C 

(14.2) g x c Rn\G : 

V neighbourhood of 

w(~) = 0 on V 

x,1~2¢ N: 

or, formulated simply: 



40 

(14') @ G ~ G : 

(14'.1) Dqw(w) = 0 on G , for q c N n q ~ p and ~ big enough 

(14'.2) w(w) = 0 on a neighbourhood of each x • Rn\G , if w is big enough 

In case G = {G} , the notation IG,p = IG,p will be used. 

Proposition i 

Ig, p c Wp , therefore IG, p is a locally vanishing ideal. 

Proof 

It suffices to show that w c W whenever w c W satisfies (14). Assume w • W sa- 
P 

tisfies (14) for a certain G ~ G and take x c R n . If x e G then (14.1) will imply 

(12). In case x • Rn\G , (12) will be implied by (14.2) WV 

D e n o t e  b y  J(: p. t h e  s e t  o f  a l l  s e q u e n c e s  o f  s m o o t h  f u n c t i o n  w ¢ W s a t i s f y i n g  ( 1 4 ) .  

O b v i o u s l y ,  iG, p i s  t h e  s e t  o f  a l l  f i n i t e  s u m s  o f  e l e m e n t s  i n  JG,p " 

Two e x a m p l e s  o f  e l e m e n t s  i n  JG,p a n d  t h u s ,  i n  IG, p , a r e  p r e s e n t e d  i n  Lemmas 1 a n d  2 

Suppose w ~ W , y ¢ F, a ¢ O (Rmy) and define wy, a ~ W by 

wy,~(w) (x) = ~((w+l)y(x)) • w(~)(x) , V ~ • N , x • R n 

Lemma 1 

If ~ ¢ D(R n~) and satisfies for a given k ¢ N the condition 

D q ( O )  = O ,  v r ~ NmT, I r I -<k 

gG, p Nn t h e n  w y , e  e , V G c E F , G 9 Fy  , p c , ] p ] -~ k . 

Proof 

It can be seen that w and F • G satisfy (14) WV 
y,a y 

Suppose now y e F , with my = 1 and denote by 6y the Dirac 6 distribution of the 

• > = 6 . For q ~ N n and surface F . Suppose Sy E S o such that <sy , y 

a,B c C~(R ~) define Sy,q c W by 

S y , q ( V ) ( x )  = ~ ( ( v 4 ) X ( x ) )  • 8 ( X ( x ) )  " D q s x ( V ) ( x )  , V w ¢ N , x ¢ R n 

Lemma 2 

If ~ • D(R I) , ~ = 1 in a neighbourhood of 

given k • N the condition 

R 1 0 ~ and B satisfies for a 
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then 

Dr~(o) = 0 , V r E N , r -< k 

~ JG n S V G c F F , G ~ F X , i) Sy,q ,p o ' 

2) Sy,q ¢ Vo provided t ha t  ]ql < k 

p c  ~n 
, I;l k , 

Proof 

i) It can be seen that Sy,q and Fy ~ G satisfy (14), therefore 

e S results easily. The relation Sy,q o 

2) It follows easily VVV 

Sy,q e JG,p " 

An important property of the sequences of smooth functions 

Proposition 2 

Suppose s e IG, p n S o then 

@ G 1 , ... , G h c G : 

supp <s,.> afr G 1 u...u fr G h *) 

Therefore int supp <s,'> = ~ . *) 

s ¢ IG, p n So is given in: 

Proof 

Since s ~ IG, p , there exist Wl ''''' Wh ~ JG,p and G 1 ,..., G h E G such that 

(15) s = w I + ... + w h 

and w.1 , G i , with 1 <- i <- h , satisfy (14). Since 

lations s e S O , (15) and (14.2) imply 

(16) supp <s,'> a G1 u...u G h 

Take now 

Obviously 

G 1 ,..., G h are closed, the re- 

1 -< i -< h and x e int G. and denote 
1 

I = { I _< j _< h l x ~ int G. } , J = { I <- j -< h I x ¢fr G. } , 
3 J 

K = { 1 -< j <- h ] x * G. } 
J 

I n J = I n K = J n K = ~ , I u J u K = ( 1 .... ,h } 

For j c I take V. c G. , Vj neighbourhood of x . For j ~ K take V. c Rn\G. , V. 
J J J J J 

the neighbourhood of x resulting from (14.2). Denote V = n V. . Then (14.1) 
j~IuK J 

*) fr A and int A denote respectively the frontier and interior of a suhset A c R n 
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applied to V. with j c I and (14.2) applied to V. with 3 c K will resNlt 
J J 

through (15) in 

jcJ J 

If J = ~ , the above relation implies x ~ supp <s, "> . Assume J # 6 and j ( J , 

then x Efr Go . Taking now into account (16), the proof is completed WV 
J 

Corollary i 

Suppose G c FF,Io c (see §2), p e ~l and 

A s c F : 

i) (Fy ] y ~ As) locally finite 

2) supp <s, "> c U fr Fy 
YeA s 

s ~ I G n S then 
,p o 

Proof 

For each G i e G in Proposition 2, there exists A.I c F such that 

locally finite and Gi = u Fy , therefore fr G. c u fr Fy . 
yeA. 1 yeA. 

1 1 
Choosing A = A 1 u...u i h , the proof is completed WV 

(Pv [ x ~ a i) 

§5. LOCAL CLASSES AND COMPATIBILITY 

A specialization of the vector spaces T in Theorem i, §3, is given now. 

A vector suhspaee T in S O is called a local class, only if 

{17.1) 

(17.2) 

Tn V =0 
o 

%/ t ET t~O : 

XE Rn : 

V ]/~ N : 

t(V) [x) ~ 0 

Proposition 3 

A locally vanishing ideal 

I n S o c V ° Q T 

f and a local class T are compatible, only if 

Proof 

It suffices to show that f and V satisfy (4). Taking now into account C17.I) it 
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remains to prove that I o T = O . Assume v e I n T , v % 0 . 

Then (17.2) results in 

, ~ ~ : v ( v ) ( x )  ~ o ] x c R n : V ~ < N : ~ w c N V 

But (13) and (12) with q = 0 will imply that 

~ '  c N : V v £ N , v ~ ~ '  : v ( v ) ( x )  = 0 

The  contradiction obtained ends the proof VV 

A basic result, implying the existence of compatible locally vanishing ideals and lo- 

cal classes is given in the following proposition whose proof uses the cardinal equi- 

valence between R 1 and C°(R n) . 

Proposition 4 

n S there exist local classes T such that For any vector subspace J in W e o 

J c So QT . 

Proof 

Assume (e i [ i ~ I) is a Hamel base in the vector space E = J/(J n go) . Then 

e i = s. + (J n %) , where s. ~ J . Assume ~ e C~(R n) such that ~(x) ~ 0 , 
1 1 

V x ~ R n . One can assume the existence of an injective mapping 

deed 

j c w c (N+ C°(Rn)) 

and 

therefore 

c a r  C ° ( R  n )  = c a r  R 1 *) 

car N 
car E ~ car J ~ (car R I) = car R 1 

Now, define v i e So ' with i e I , by the relation 

(18) Vi(~) ) (x) = (a(i))~)~(x) , IV ~) e N , x e R n 

D e n o t e  b y  T t h e  v e c t o r  s u b s p a c e  g e n e r a t e d  i n  S o b y  { s i + v i 

v e  t h a t  T i s  t h e  s o u g h t  a f t e r  l o c a l  c l a s s .  

First, the inclusion J c V + T . Assume s e J 
o 

, C 1 certain J c I J finite and c. c . Hence 
1 

ing t = Z ci(si+v i) it follows that t c T 

ieJ 

since v. c V with i e J . 
i o 

a : I ÷ (-i,I) . In- 

J i c I } . We pro- 

then s + J n V = Z c. e. , for 
o iEJ i i 

s - Z c. s. = v ~ J n V . Denot- 
i 1 o 

icJ 

and s = v - ~ c. v. + t ~ V + T , 
1 i o 

icJ 

*) car X denotes the cardinal number of the set X 
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It only remains to prove that F 

t• Y 
o 

(19) 

where 

since 

gives 

holds for any 

is a local class. First, the relation (17.1). Assume 

n T . The relation t ¢ T implies 

t = Z ci(si+vi ) 
ieJ 

j c I , J finite and c. ~ C 1 . Now, t ~ F results in Z c. s. E F 
i O ieJ i I O ' 

v i e Y ° , with i • J . But E c i s i ¢ J , hence E c i e i = 0 c E , which 
i•J i•J 

c i = 0 , V i ¢ J . Then, (19) will imply t ~ O . We prove now that (17.2) 

t c T , t ~ O and x E R n . Indeed, assume that 

(20) ~ ~ • N : V V ¢ N , ~ -> D : t(V) (x) = 0 

for t given in (19). Since J is finite and s i c J c W ° , with i ¢ j , the rela- 

tion (12) with q = 0 , will imply 

(21) ~ ~' c N : V ~ E N , V ->~' , i • J : si(~)(x) = 0 

The relations (20), (21) and (19) give 

(22) ~ ~'' • N : V v E N , V -> ~'' : E c i vi(V) (0) = 0 
icJ 

Taking into account (18) and the fact that ~(x) # 0 , we obtain from (22) the relati- 

ons 

(23) Z c i(a(i))~ = 0 , V ~ E N , ~ ~ ~'' 
iEJ 

Since a is injective, (23) implies c. = 0 , Y i ¢ j , therefore t ¢ 0 , according 
i 

to (20). The contradiction obtained ends the proof WV 

Now, the answer to the first problem in Remark 2, §3. 

Theorem 2 

For any locally vanishing ideal I there exist compatible local classes T . 

Proof 

Assume Z is a locally vanishing ideal. Denote J = I n S O then J is a vector sub- 

space in W ° n So according to (13). Now, Proposition 4 will imply the existence of a 

local class T such that J c Vo(~T . Taking into account the relation J = Z n S O 

and Proposition 3, the above inclusion is the necessary and sufficient condition for 

the compatibility of I and T . WV 
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Re solution of the second problem in Remark 2, §3, n~ely, the existence of vector 

s~spaces S 1 in S satisfying (6) and (7) is obtained in Corollary 2, below. 
O ~ 

Proposition 5 

Suppose V and 

conditions 

i) V nT=O 
O 

2) u n (vQT) ~ u n (v(p) C)~5 , 

are satisfied. 

Then, there exist vector subspaces S 1 

T are vector subspaces in V ° respectively in S and the 
' O 

v pen n 

in S so that (6) and (7) hold. 
O 

Proof 

Denote U 1 = U n (VoQT) and assume U 2 vector subspace in U such that 

U = UIC)U 2 . Then U 2 n (7oGT 5 = 0 , therefore, there exist vector subspaces 

in So such that VoQTQU2QS 2 = S o . One can take now S 1 = U2QS 2 VVV 

S 2 

A local class T is called Dirac class, only if 

(24) V t c T : int supp <t,'> = 

Corollary 2 

Suppose T is a Dirac class, then there exist vector subspaces 

satisfying (65 and the following stronger version of (7): 

(25) U c S 1 

S 1 in S o , 

Proof 

Due to (17.15 and (24) it follows easily that U n (VoQT 5 = 0 , therefore, the con. 

ditions in Proposition 5 are satisfied. One can choose now S 1 as in the proof of 

the mentioned proposition VVV 

The problem of finding Dirac classes T is solved in Proposition 6, below. 

A locally vanishing ideal I is called Dirac ideal, only if 

(26) V s ~ I n S : int supp <s~-> = 
0 
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For any Dirac ideal I 
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there exist compatible Dirac classes T . 

Proof 

T constructed with J = I n S according to the procedure in the proof of Proposi- 
o 

tion 4, will be a Dirac class. Moreover, due to Proposition 3, I and T will he 

compatible (see the proof of Theorem 2, §5) WV 

The last problem, namely to secure Dirac ideals is solved in 

Proposition 6 

I G is a Dirac ideal, for any G c F F and P ~ ~n . 
,P 

Proof 

It follows from Proposition 2, §4 VW 

Now, one can sum up the previous results and obtain the final answer on the existence 

of P-regularizations (V,S,) for any admissible property P. 

Theorem 4 

For any Dirac ideal I (see Proposition 6) there exists a compatible Dirac 

class T. Further, there exist vector subspaces S 1 in S o , satisfying the 

conditions: 

(27) VoQTQS 1 = S o 
(28) U c S I 

Choosing any vector subspace V in I ~ V o , one obtains (V,TGS I) c R(P) 

for all admissible properties P. 

Proof 

Assume given a Dirac ideal I , for instance, according to the method in Proposition 6 

Then Theorem 3 grants the existence of a compatible Dirac class T . Now, according to 

Corollary 2 , one can obtain a vector subspace S 1 in S o satisfying (27) and (28). 

Taking into account Theorem I, §3, the proof is completed VV? 

The algebras used in the applications presented in chapters 3, 4 and 5 can be defined 

now. 

Suppose given a Dirac ideal I 1 and a compatible Dirac class T 1 . For any ideal I 

in W , I ~ I i , compatible vector subspace T in S O , T = T 1 , vector s~hspace V 
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in I n Vo and vector subspace S I in So satisfying (6) and (7), the algebras (see 

(24) in chap. I): 

AQ(v,T(~S 1 , P) • P 
Nn 

where Q is a given admissible property, will be called Dirac algebras. 

Remark C 

The basic method whithin the present work, in constructing regularizations - and there- 

fore, algebras containing the distributions - has been given in Theorem i, §3. That me- 

thod rests upon the notion of compatibility between an ideal I in W and a vector 

subspace  T in S 
o 

I t  i s  wor thwhi le  ment ion ing  the  b o t t l e n e c k  f e a t u r e  the  n o t i o n  o f  c o m p a t i b i l i t y  e x h i b i t s  

Namely, g iven the  i d e a l  I , t he  compa t ib le  v e c t o r  subspace  T has to  be small  enough 

in order to satisfy (4) but in the same time, big enough in order to satisfy (5). 

In that respect, Theorems 2 and 3 are nontrivial. Both of them are based on Propositi- 

on 4, which rests upon the cardinal equivalence between R 1 and C°(R n) , an essential 

characteristic of the set of real numbers. 

Alternative ways, not depending on Dirac ideals and classes, but still within the fra- 

mework of Theorem 1 in §3 of constructing regularizations will be given in §§8 and 9. 

§7. MAXIMALITY 

Taking into account §I0 in chap. 1 as well as §3 above, it follows that there exists an 

applicative interest in constructing algebras containing the distributions, based on 

large, possibly maximal compatible ideals I and vector subspaces T . 

Denote by C the set of all pairs (I,T) of compatible ideals I in W and vector 

subspaces T in S o satisfying for a certain vector subspace S 1 in S o the condi- 

tions (see Theorem i, §3): 

(29) Vo (9 T (!) Sl : So , 

(30) U c V(p) Q T ( ~  S 1 , V P ¢ ~n 

where V = I n V 
o 

Define a partial order ~ on C by 

(Ii ' TI) ~ (12 ' T2) ~=~ Ii c 12 and T I c T 2 

Lemma 3 

Each chain in (C,~) has an upper bound. 



48 

Proof 

~s= i ~ c A) is a chain in (C,~) and denote I = u I X and 
leA 

T = U T X , then obviously I is an ideal W, T is a vector subspace in S and 
X~A o 

they are compatible. It only remains to show that I and T satisfy (29) and (30). 

Denote 

u = un n (v(p)(~)r) 
o p¢~n 

and assume U 1 is a vector subspaee in U , such that U = Uo@U 1 . If 

(31) ( V o ( ~ T )  n U I = 0 

then, one can choose a vector subspace 

Vo® ®Vl ® $ 2  : s o 

S 2 in S O , such that 

(32) (vo Qr X) n u I # o 

But, ~X ' TX) c C , therefore there exists a vector subspace SIX in S O such that 

(33) V o ( D q  ( D S I x  = S o 

(34) U c V X(P)~T X~)SIX , V p ~ ~n 

where V X = I X n Vo . However, the relations (33) and (34) contradict (32). Indeed, 

d e n o t e  

(35) UoX = U n n 
pc ii  n (VX (p) ~)rk ) 

then, obviously Uo X c U ° , therefore there exists a vector subspace 

such that U = UolQUix and UIX ~ U I . Then, (32) implies 

(w oQTX) n UlX ~ o 

Assume u I ( UIX , u 1% 0 , v ~ V o and t ( T X such that 

(36) u I = V + t 

But, (34) implies 

UIX in U , 

(37) u I = v X + t' + s 1 

where v X E n Vx(p) , t' ¢ T X and s I c SIX . Now, the relations (36), (37) and 
pE~ n 

(33) result in v = v X , t = t' and s I c 0 . Then (37) gives u I = v X + t' which 

together with u I E UIX c U and (35) will imply u I E UoX • Therefore u I ¢ 0 , since 

u I c UIX . The contradiction obtained completes the proof V~7 

Denote S 1 = UI(~S 2 , then (29) and (30) hold obviously. Now, if (31) is false, then 

there exists X E A such that 
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It follows, due to Zorn's lemma, that the set 

Cma x = { (I,T) ~ C I (I,T) maximal in (C,_<) } 

is not void. Moreover, 

V (I,T) EC : 

max 

IcI,Tc~ 

§8. LOCAL ALGEBRAS 

In this section, regularizations (V,S') will be constructed according to the proce- 

dure in Theorem i, §3, for the biggest locally vanishing ideal I = W and for 
o 

V c I n V ° . The resulting algebras however, will not be used in the present work and 

their interest here is only due to the alternative proof they offer for the existence 

of regularizations. 

Proposition 7 

Suppose I = W ° , then there exists a compatible local class 

subspace S 1 in S o satisfying (6) and (25). 

T and a vector 

Proof 

The existence of a compatible local class T results from Propositions 3 and 4 in §5. 

The problem is the existence of a suitable vector subspace S 1 in So . That will be 

obtained through Corollary 2 in §6. 

In this respect, we recall the way T was obtained in the proof of Proposition 4. 

Assume J = Wo n So and (e i I i E I) is a Hamel base in the vector space 

E = J/(J n Vo) . Then e i = s i + Wo n V ° , with s.1 E WO n So . Now, T is obtained 

as the vector subspace generated in S by (si+v i I i E I} where v. are given in 
o i 

(18). 

We shall prove that 

(38) u n (VoQr) = o 

Indeed, assume ~ E C~(R n) , v ~ V ° and t ~ T such that u(~) = v + t . Then, taking 

into account the definition of T and the fact that v i c V o , one obtains 

(39) u(~) = w + Z c. s. 
iEJ z i 

, C 1 where w E V o J c I,J finite and c i E . But s i E W o , Therefore, applying (12) 
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for q = 0 , one obtains from (39) the relation 

V x ~  Rn : 

~ N  : 

w(v) (x) = ~(x)  

which according to Lemma 4 below, gives tO = 0 on 

low, the relation (38) grants the existence of a vector subspace 

that 

Vo®T®u®s 2 = s o 

Taking S 1 = U QS 2 , the proof is completed VW 

R n , thus ending the proof of (38). 

S 2 in So such 

Lemma 4 

Suppose 

ly convergent to 

then ~ = 0 

t~ • C ° ( R  n )  a n d  v 

o ~ D' (R n) 

x~R n : 

]JcN : 

"O ~ N , "~ -> ~t : 

v ( v ) ( x )  = ~(x)  

on R n . 

is a sequence of continuous functions on 

such that 

R n , weak- 

Proof 

Assume, it is false and B c R n is a nonvoid open subset such that ~(x) ~ 0 , 

V x c B . But, according to Lemma 5 below, there exists G c B , G nonvoid, open and 

c N such that 

v(v)(x) = ~Cx) , V x ~ G , v c N , v ~ 

It follows that for any X • D(Rn) with supp X c G , the relation holds 

[n ~(x)x(x)dx = lira fR v(v)(x)X(x)dx = <v,x > = 0 v+oo n 

which contradicts the fact that ~(x) ~ 0 , V x c G WV 

Lemma 5 

Suppose E is a complete metric space and F is a topological space. Suppose 

given the continuous functions f : E ÷ F and f : E ÷ F , with ~ ~ N , such 

that 
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V x ~  E : 

9 ~c N: 

V ~) ¢ N , ~) >- l/ : 

f ~ ( x )  = f ( x )  

T h e n ,  f o r  e a c h  n o n v o i d  c l o s e d  s u b s e t  H c E 

o p e n  s u b s e t  G c H a n d  ~ c N s u c h  t h a t  

f ( x )  = f ( x )  , v x ~ G , v ~ N , 

, there exists a nonvoid relatively 

~ ) > - ] J  . 

Proof 

Given H and p ~ N , denote 

H~={x~H[ f(x) =f(x) , v v~  N ,  ~p} 

The hypothesis implies obviously 

M ~ = H 
~£N 

Now, it is easy to notice that ~ , with ~ c N , are closed in E due to the conti- 

nuity of f and fv " Since H is in itself a complete metric space, the Baire cate- 

gory argument implies the existence of ~o c N such that the relative interior of 

HDo is not void VVV 

The alternative proof for the existence of regularizations, not based on Dirac ideals 

and classes is obtained in 

Theorem 5 

(40)  

(41]  

There exist local classes 

S 1 in S o satisfying 

%®T®s I = s o 

U c S 1 

Choosing any vector subspace 

(v,~ Q s  1) 

T compatible with ~ as well as vector subspaces 

Y in W o n V ° , one obtains a regularization 

Proof 

It follows from Proposition 7 as well as Theorem 1 in §3 WV 

Suppose given an ideal I. in W and I. c W 
o 

For any ideal I in W , I = I. , compatible vector subspaee T in S o , vector sub- 

space V in I n V ° and vector subspace S 1 in S o satisfying (6] and (7), the al- 

gebras 
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Aq(V,eQs I , p) , p 
~n 

where Q is an admissible property, will be called local algebras. Obviously, they 

contain as particular cases the Dirac algebras. 

Remark M 

Theorem 6 in chap. i, §I0, the inclusion W c W ° 
o 

ter rise the question: 

as well as §7 of the present chap- 

Are the local algebras obtained for I = I, = W ° maximal either in the sense that 

V = W ° n V ° is maximal according to chap. I, §i0, or I = W ° is maximal according 

to §7? 

The algebras constructed in the next section give a negative answer. 

§9. FILTER ALGEBRAS 

Given a filter base B on R n , denote by W B 

tions w e W which satisfy the condition 

(42) 

BoB : 

V xc B : 

Vc N : 

V V e N , ~-> p : 

w(~) (x) = o 

or, under a simpler form 

B(B : 
(42') 

w(~))(x) = 0 , ¥ x c B , 

Obviously, W B is an ideal in W . 

If B 1 and B 2 are filter bases on R n 

then obviously WBI c WB2 . 

A filter base B on R n 

in R n for each B ¢ B . 

The following filters on R n 

F v = {R n } 

Ff = { F c Rn I Rn \ F 

F~,f = { F c Rn [ Rn \ F 

~d= { F ~ R n l  R n \ F  

~ £ N ,  

and B 2 

the set of all sequences of smooth func 

big enough 

generates a larger filter than B 1 , 

is called strongly dense, only if 

finite } 

locally finite } 

nowhere dense 

R n \ B is nowhere dense 
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are examples of strongly dense filter bases on R n . Obviously, 

Moreover, if B is a strongly dense filter base on R n , then 

Due to the relation 

F v c Ff c F%f c Fnd . 

B c End . 

w o = 

v 

the algebras constructed in this section will contain as particular cases the local al 

gebras defined in §8. 

And now the important property of the ideals W B . 

Proposition 8 

Suppose B is a strongly dense filter base on R n . Then, there exist vector 

subspaces T in S compatible with the ideal I = W B . Further, there exist 
o 

vector subspaces S 1 in S satisfying (6) and (25). 
o 

Proof 

We shall adapt the proof of Propositions 4 and 7. 

Assume (e i I i c 15 is a Hamel base in the vector space E = (7 n So) / (I n Vo) . 

Then e. = s. + I n V , where s. ~ I n S . Assume ~ • C~(R n) such that 
i i o i o 

~(x) ~ 0 , V x c R n . Finally, assume a : I ÷ (-I,I) injective. Define now 

v i c V ° , with i c I , by the relation 

(43) vi(w )(x) = (a(i)) v ~(x) , V w • N , x ~ R n . 

Denote by T the vector subspace generated in S by {s + v i I i • I} We shall 
o i " 

prove that I and T are compatible. 

The relations I n S c V +T and V n T = 0 
o o o 

proof of Proposition 4, in §5. 

result easily, as can be seen in the 

I t  o n l y  r e m a i n s  t o  p r o v e  t h a t  

(445 I n T = 0 

Assume t c I n T , then t c T implies 

(455 

with 

(46) 

j c I , 

V 

¥ 

In the same time, 

t = Z c i (si+vi) 
iEJ 

J finite and c i • C 1 . Now t • I = W B implies 

B • B  : 

x c B : 

~ c N  : 

W •N, W->!J : 

t(V5 i x )  = 0 

s i • I = W B , with i • J , and the finiteness of J imply 
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B'~B • 

V x ~ B': 

(47) ~ ~' c N : 

V ~) e N , v -> ~' , i E J : 

s i ( V ) ( x )  = 0 

The r e l a t i o n s  ( 4 6 ) ,  (47) and (45) r e s u l t  i n  

B ' '  e B  • 

%; xe B v' " (48) 
~''~ N : 

V 9 e N , 9 -> ~'' • 

(48.1) Z c i vi(~)(x) = 0 
ieJ 

Due to (43), the relation (48.1) can be written as 

(48.2) Z c. (a(i)) ~ = 0 
iEJ i 

since ~(x) ~ 0 , V x E R n , and B'' ~ B implies B'' $ ~ • Further, a is injective, 

therefore (48.2) results in c. = 0 , V i ~ J . Thus (45) will give t ~ 0 , ending the z 

proof of (44) and establishing that I and T are compatible. 

Now, we prove the second part of Proposition 8, namely the existence of suitable vector 

suhspaces S 1 in S o 

First, we prove the relation 

(49) U n (VoQT) = 0 

Assume indeed ~ e C°°(R n) , v e V and t ~ T given by (45) and such that u(~) = v + t 

Then 

(S0) u(~) = w + Z c.s. 
ieJ i i 

with w £ V 
O 

hbw, (50) and (47) will give for a certain B' e B 

V x e B' , ~ e N, ~) -> B' : 

(S l )  
(x) = w(v) (x) 

w i t h  p '  p o s s i b l y  d e p e n d i n g  on x e B' . But 

B' e B  . 

the relation 

R n \ B' is nowhere dense in R n since 

T h e r e f o r e  

(82)  

V G c R n , G ~ ~ , open 

G' c G , G' ~ 0 , open : 

G' c B' 
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Now, (51), (52) and Lemma 5 in §8 imply that ~ = 0 on B' , since w ~ V O in (51). 

One can conclude therefore that ~ = 0 on R n and the proof of (49) is completed. 

The relation (49) implies the existence of a vector subspace 

Vo 2 : s o 

Taking S 1 = U(~S 2 , the proof is completed WV 

S 2 in S such that 
o 

Theorem 6 

(53) 

(s4) 

Given a strongly dense filter base B on R n , there exist vector subspaces T 

i n  S o c o m p a t i b l e  w i t h  W B as  w e l l  a s  v e c t o r  s u b s p a c e s  S 1 i n  S s a t i s f y -  
o 

ing 

v® ®h = s o 

U c S  1 

Choosing any vector subspace 

(V,TQS 1) . 

V in W B n V ° , one obtains a regularization 

Proof 

It follows from Proposition 8 and Theorem 1 in §3 WV 

R n Suppose given a strongly dense filter base B on and an ideal I, in W such 

that I, c W B . 

For any ideal I in W , I ~ I, , compatible vector subspace T in S O , vector sub- 

space V in I n Vo and vector subspace S 1 in So satisfying (6) and (7), the al- 

gebras 

where Q is an admissible property, will be called filter algebras and they are with- 

in the present work the most general instances of algebras given by a specific constr- 

uction. 

The question in Remark M, §8, reformulated for the case of filter algebras obtained 

= = , remains open. from I I, ~W=n d 

§I0. REGULAR ALGEBRAS 

It is worthwhile noticing that the Dirac ideals IG, p (see §4 and Proposition 6 in §6), 

the locally vanishing ideals % (see (12)), the ideals W B (see (42)) as well as the 
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ideals I@ and 15 used in chapters 5, 6 and 7, are all sgbseffuence, invariant (chap 

l ,  §6). 

I t  w i l l  be shown in  t h e  p r e s e n t  s e c t i o n  ( s e e  P r o p o s i t i o n  10) t h a t  s t a r t i n g  w i t h  a r b i -  

t r a r y  s u b s e q u e n c e  i n v a r i a n t  i d e a l s  Z in  W , one can u n d e r  r a t h e r  g e n e r a l  c o n d i t i -  

ons c o n s t r u c t  a l g e b r a s  c o n t a i n i n g  t h e  d i s t r i b u t i o n s .  

An ideal I in W is called regular, only if 

(553 un (v ° +~) = o 

and 

V veln V : 
o 

U ¢  N : 

(56) V ~ ~ N , ~ > U : 

x¢ Rn : 

v(~) (x) = o 

or, shortly, 

if v ~ I n V then v(v) does not vanish in R n 
(56') o 

for at most a finite number of v ¢ N 

Proposition 9 

Suppose I is a regular ideal. Then, there exist compatible vector subspaces 

T in S O and vector subspaces S 1 in S O satisfying (6) and (25). 

Proof 

We shall once more use the method of proof in Propositions 4, 7 and 8. 

Assume (e i I i c I) is a Hamel base in the vector space E = (I n S o ) / (I n V o) • 

Then e. = s. + I n V with s. ¢ I n S . Assume ~ c C~(R n) such that ~b(x) $ 0 , 
i i O i 0 

V x ( Rn . Finally, assume a : I ~ (-i,i) injective and define v i ( V ° , with 

i( I ,by 

(57)  v i ( V ) ( x )  = ( a ( i ) )  v • ~ (x )  , V v ~ N , x ¢ R n 

Denote  by  T t h e  v e c t o r  s u b s p a c e  in  S O g e n e r a t e d  by { s i * v i [ i ¢ I } . We 

s h a l l  p r o v e  t h a t  I and T a re  c o m p a t i b l e  ( s e e  ( 4 ) ,  ( 5 ) ) .  F i r s t  t h e  r e l a t i o n  

(58) V ° n T = 0 

Assume v ¢ V n T , then v c T implies 
O 

(59) v = Z ci(s i + vi) 
icJ 

where J c I , J finite and c i c C 1 . But (59) gives 
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(60) Z c. s. = v - ~ c. v- ~: I n F 

ieJ i i ieJ i l o 

since si • I and v,v i • V ° . Now (60] results in Z c- e. = 0 ~ E hence 
ieJ l l 

c i = 0 , V i • J . Then (59) will give v ~ O , ending the proof of (58). 

Now, the relation 

(61) I n S c Volt 
o 

Assume s • I n S then s + I n V ~ E hence 
o ~ o ' 

(62) s + I n V = Z c. e. 
o ieJ l i 

for certain J c I , J finite and c. e C 1 . But (62) can be written as i 

s - E c. s. = v e I n V 
1 1 o 

icJ 

therefore 

s = E c i ( s i + v i )  + v - Z c i v i c T ~ V _ _  ,, 
ieJ i~J 

since v,v i • F ° and (60) is proved. 

In order to prove that I and T are compatible, it remains to show that 

( 6 3 )  I n T = 0 

Assume t c f n T , then t c T implies 

(64) t = Z c i (si+vi) 
i•J 

C 1 with J c I , J finite and c. e . Hence 
l 

(65) V = E C. V. = t - Z C. s. E I N V o 
ieJ I i ieJ l i 

since v i ~ F o and t,s i ~ I . But (56) applied to v ~ I n V O 

V MeN, M->~ : 

x~Rn : 

v[v) (x) : 0 

gives 

which together with (65) results in 

V ~ ~ N , ~ -> ~ : ~ x e Rn : 

Z C i Vi(~) ) (X) = 0 
icJ 

, R n Now (57) and the fact that ~(X) # 0 V x c , will imply 

Z ci(a(i)) ~ = 0 , V v • N , ~ >- ( 6 6 )  
i • J  
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The well known property of the Vandermonde determinants applied to (66) gives c. = 0 , 
1 

V i e J , hence t ~ 0 due to C64) and the proof of (63] is completed. 

Now, we prove the existence of vector subspaces S 1 in S O satisfying (6) and (25). 

First, we prove 

(67) U n (Vo~)T) = 0 

Obviously T c V ° + I , hence (67) follows from (55). Now, the existence of the requi- 

red S 1 results easily from (67) Vq 

Theorem 7 

Given a regular ideal I in W , there exist vector subspaces T in S 
o 

tible with I as well as vector subspaces S 1 in S o satisfying 

(68) VoQTQs I : s o 

(69) U c S 1 

Choosing any vector subspace V in I n V ° , one obtains a regularization 

(V,TQS 1 ) • 

compa- 

Proof 

It results from Proposition 9 and Theorem 1 in §3 W? 

The existence of regular ideals is granted by: 

Proposition i0 

A subsequence invariant ideal I in W is proper only if it satisfies (56). 

Therefore, a subsequence invariant, proper ideal I in W which satisfies 

(55) is regular. 

Proof 

It suffices to show that (56) holds whenever 

v E I n V such that 
o 

~ ~P : V ~EN : ~ oN, ~ 

Define w E W by w(p) = v(~p) , V p c N . Then 

variant. But obviously i/w ~ W , therefore 

u(1) : w • (l/w) c I • Wc I 

contradicting the fact that I ~ W ~V 
T 

I is proper. Assume it is false and 

v(up) ~ 0 on R n 

w c I , since I is subsequence in- 

It follows that the ideals mentioned at the beginning of this section are regular (in 
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the case of the ideals W B , the additional condition that B is a strongly dense fil- 

ter base on R n is needed]. 

One can easily notice that the set of regular ideals is chain complete, therefore, due 

to Zorn's lemma, there exist maximal regular ideals containing any given regular ideal. 

Suppose given a regular ideal I 1 and an ideal I. in W such that I. c I 1 . 

For any ideal I in W , I z I. , compatible vector subspace T in S O , vector sub- 

space V in I n V and vector subspace S 1 in S o satisfying (6) and (7), the alge- 

bras 

AQ(v,TC)S 1 ,P) , P ¢ hP 

where Q is an admissible property, will be called regular algebras. 

The regular algebras will find an important application in chapter 3, §4, where a gene- 

ral solution scheme is established for a wide class of nonlinear partial differential 

equations. 

Remark 3 

The condition (55) in the definition of a regular ideal is needed in order to secure the 

condition (69) in Theorem 7 (see (7) in Theorem i, §3 and (67) in the proof of Proposi- 

tion 9, as well as (20.2) in chap. I, §7). 

However, due to Proposition 5 in §6, one can replace (55) by the weaker condition 

(70) u n  (v ° + z )  c u n ( V ( p ) ( ~ ) T )  , v p ~ i $  

where V = I o V and T was constructed in the proof of Proposition 9, since in that 
o 

case the relation holds 

V ° QT = V ° + Z n S O 



C h a p t e r 3 

SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

APPLICATION TO NONLINEAR SHOCK WAVES 

§I. INTRODUCTION 

It will be proved in §2 of this chapter that, the piece wise smooth weak solutions of 

nonlinear partial differential equations with polynomial nonlinearities and smooth co- 

efficients, satisfy these equations in the usual algebraic sense, ~Jith the multiplica- 

tion and derivatives defined in the Dirac algebras containing D ,(R n) introduced in 

chapter 2. 

An application to the shock wave solutions of nonlinear hyperbolic partial differenti- 

al equations will be given in §3. 

When dealing with partial differential equations, one has to consider various nonvoid 

open subsets ~ in R n and restrict the functions and distributions to such subsets. It 

is obvious that the construction of the algebras containing the distributions, carried 

out in chapters 1 and 2, remains valid for any ~ c R n , ~ $ ~ , open. 

§2. POLYNOMIAL NONLINEAR PARTIAL DIFFERENTIAL OPERATORS AND SOLUTIONS 

Given ~ c R n , ~ $ ~ , open, a partial differential operator T(D) is called polyno- 

mial nonlinear on ~ ~ only if 

(i) T(D)u(x) = Z Li(D ) T i u(x) , V u E C~(~) , x ~ ~ , 
l~i~h 

where Li(D ) ~hile 

T. are polynomials of the form 
i 

(2) T. u(x) = Z c.. (x)(u(x)) j , V u (C~(~) , x ~ ~ , 
i l~j~k, lj 

i 

with c.. smooth. 
ij 

The polynomial nonlinear partial differential operator T(D) is called homogeneous, 

only if u(x) = 0 , for x c ~ , implies T(D)u(x) = 0 , for x ~ ~ . 

Obviously, the polynomial nonlinear partial differential operators are particular ca- 

ses of the operators in chap. i, §9. 

The nonlinear hyperbolic operators studied in §3 are examples of homogeneous polynomial 

are linear partial differential operators with smooth coefficients, 
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nonlinear partial differential operators. The same is the case of several types of non- 

linear wave operators studied in recent literature, [51, [8-111, [911, [1211, [122], as 

well as other nonlinear partial differential operators, [801. 

A function u : ~ + C 1 is called a piece wise smooth weak solution of the equation 

(3) T (D)u (x )  = 0 , x ¢ 

o n l y  i f  t h e  f o l l o w i n g  c o n d i t i o n s  ( 4 ) ,  ( 5 ) ,  (6) and  (7) a r e  s a t i s f i e d :  

There exists a set A of mappings y : ~ ÷ R mY , with Y e O ~ , my e N , such that 

the set (see chap. 2, §2) F A = ~ x ~ R n ] ~ y E A : y(x) = 0 ¢ R mY } is closed, has 

zero Lebesque measure in R n and 

(4)  u e C (~ \F  A) 

If k = max { k i ] 1sigh } (see (2)) then 

k 
(5) u is locally integrable on 

The weak solution property holds 

(6) J ( Z T i u(x) L* l~i~h i (D)~(x))dx = 0 , 

L* i (D) is the formal adjoint of L i (D) where 

For each 

such that 

(7) 

v ~ ~ D ( ~ )  , 

y e A there exists a bounded and balanced neighbourhood By of 

{ y-l(By) ] y ¢ A } is locally finite in ~ . 

m 

O e  R 

The nonlinear hyperbolic partial differential equations studied in §3, are known, 

[1331, [52], to possess piece wise smooth weak solutions in the above sense. 

The main result of the present chapter is presented in 

Theorem 1 

Given a homogeneous polynomial nonlinear partial differential operator T(D) 

defined on a nonvoid open subset ~ c R n and a piece wise smooth weak solution 

(8) 

u : ~ ÷ C 1 of the equation 

T(D)u(x) = 0 , x e ~ , 

there exist regularizations (V,S') 

sible property Q , one obtains 

I) u ¢ AQ(v,S',p) , V p 

2) 

(see chap. i, §7) such that for any admis- 

in the case of derivative algebras, u satisfies the equation (8) in 

the usual algebraic sense, with the respective multiplication and deri- 
~n 

vatives within the algebras AQ(v,s',p) , p ~ • 
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Proof 

m 
Assume given ~y : R Y + [0,i] , ~y ~ for each y ~ A in such a way that 

ey = 0 on a certain neighbourhood __VY of 0 e R'Y , (9 .1 )  

(9.2) ~y = 1 on R *'~ \ By (see (7)) 

For v • N and x • R n define a regularization of the piece wise smooth weak solution 

u by 

(io) s(v)(x) 
u(x)- -T-F- c~y( (v+i)y (x)) 

],cA 

0 i f  x e FA 

if x • fl\F A 

We prove that 

(ii) s c W(~) 

Assume ~ E N given. If x ~ ~\F A then 

(i2) { y • A I (~+l)y(x) c By } finite. 

(~+l)y(x) c By only if x • y-I (~TBy). Therefore, Indeed, (12) wiii result from 

(7) and the fact that Ry , with y • A , are balanced. But (12) and (9.2) imply that 

the product --~v((v+l)y(x)) in (i0) contains only a finite number of factors i 1 . 
y•A " 

Thus s(v) is well defined on ~ \ F A . Since ~ \ F A is open, one can take a compact 

neighbourhood V of x , V c ~ \ F A . Then, as in (12), one obtaines 

(13) { y ~ A I (v+l)y(V) n By ~ ~ } finite. 

Now, (13) and (i0) imply that s(~) • C ~ in x . 

If x c F A then y(x) = 0 for a certain y ~ A . Take 
1 

such that y(V) c ~ Vy (see (9.1)), then 

(14) s(~) = 0 on V 

according to (9.1) and (i0). Therefore, 

completed. 

Define v e I¢(~) by 

(15) v = T(D)s 

V a neighbourhood of x , 

s(w) e C °O in x and the proof of (Ii) is 

The sequence of smooth functions v is obviously measuring the error in (8) obtained 

by replacing u with its regularization s given in (I0) and it plays the essential 

role in constructing the ideals IQ(v(p),S ') of sequences of smooth functions needed 

in the construction of the algebras AQ(v,S',p) (see (24), chap. I, §7). 
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We p r o v e  t h e  r e l a t i o n s  

(16) 

V K c fi k F A , K c o m p a c t  : 

%/ V c N , x~ -> II : 

s (v )  = u on K 

v())) = 0 on K 

I n d e e d ,  d e n o t e  A K = { y c A ] y (K)  n By $ ~ } , t h e n  A K i s  f i n i t e  due  t o  ( 7 ) .  Deno-  

t e  a = i n f  { [ [ y ( x ) [ [ y  ] y ¢ h K , x e K } *) t h e n  a > 0 , s i n c e  A K i s  f i n i t e  and 

K n F A = ~ , K c o m p a c t .  O b v i o u s l y ,  t h e r e  e x i s t s  ~ e N , s u c h  t h a t  

xy[ - < ~ a ,  V y ~ A  s u p  I I I y 

m 
Then  ( v + l ) y ( K )  c R Y \ By , V y c A , v ¢ N , ~ -> ~ . Now, (16) r e s u l t s  e a s i l y  f r o m  

( 1 0 ) ,  (15) and ( 6 ) .  

An o t h e r  r e l a t i o n  n e e d e d ,  g i v e n  i n  

(17)  
~ c  N , p c  ~n : 

DPs(~)) = DPv(~)) = 0 on F A , 

r e s u l t s  e a s i l y  f rom (14)  and ( 1 5 ) ,  s i n c e  T(D) i s  h o m o g e n e o u s .  

A l a s t  p r o p e r t y  o f t h e  r e g u l a r i z a t i o n  s , g i v e n  i n  

(18)  s c S o ( S  ) and < s , ' >  = u 

f o l l o w s  o b v i o u s l y  f r o m  ( 1 1 ) ,  ( 1 6 ) ,  (4) and ( 5 ) ,  s i n c e  i n  t h e  l a s t  r e l a t i o n  one  can  a s -  

sume k z 1 , o t h e r w i s e  T(D) b e i n g  t r i v i a l .  

The preliminary results above lead to the following essential property of the error se- 

quence v : 

(19) v ~ %(S) and v c IFA ,P , V p ¢ ~n (see chap. 2, §3) 

Indeed, the relation v c IFA ,P , %l p E ~n results from (16), (17). 

It only remains to prove that v e V (~) . Assume ~ c D(~) and ~) ¢ N then (15) and 
o 

(6)  i m p l y  

I I " I v ( - ~ ) ( x ) ¢ ( x ) d x  [ = I Z T.  s ( , ) ( x )  L i ( D ) ¢ ( x ) d x l  = 
l_<i< h 1 

S S 

= [ Z ( T i s ( V ) ( x )  - T i u ( x ) )  i ( D ) 0 ( x ) d x  [ < 
l_<i_<h 

< E J [ T i s ( v l ( x )  - T  i u ( x )  f " [ L* - i ( D ) • ( X )  ] dx 
l<i_<h 

supp  

*) I[ I ]y  i s  a norm on f Y  , w i t h  y ¢ A , so  t h a t  ycAsup xyeBySUp I lxy[ Iy < ~ 
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Therefore, it suffices to prove 

(20) lim I [ Tis(~)(x) - 
V+oo 

K 

Tiu(x) I dx = 0 , V l<_i_<h , K a ~ , K compact 

First, (2) and (I0) imply for x E ~ \ F A the relation 

T.s(~)(x) - Tiu(x ) = Z cij(x)(u(x))J " (--~T-(~. ((~+l)y(x))) j - I) 
(21) 1 l<j<ki yea Y ' 

V l~i~h , V £ N . 

And, due to (9) one obtaines 

(22) r (ay((~+l)y(x))) j - i ] ~ I , V j E N , ~ E n x ~ -7-7- 
yea ' ' 

while taking into account also (7), it follows that 

(23) lim (-7-T-(~v((w+l)y(x)))J - i) = 0 , V j e N x E ~ \ FA V+oo yc£ " 

Now, (21), (22) and (23) together with (5) and the fact (see (4)) that the Lebesque 

measure of F A in R n is zero, will imply (20), completing the proof of (19). 

The above relation (19) offers the possibility of constructing the ideals IQ(v(p),S ') 

upon which the construction of the algebras AQ(v,S',p) is based. 

Denote by I the ideal in W(~) generated by v then 
v 

(24) I v is a Dirac ideal (chap. 2, §5) and 

I v c /FA ,P , V P ~ ~n (chap. 2, §4) 

v E IFA ,P therefore, I v c IFA ,P and Proposition 6, 

I is a Dirac ideal. 
v 

Indeed, according to (19), 

chap. 2, §6, implies that 

Assume now given any Dirac 

(25) I a I 
v 

ideal I , such that 

then, according to Theorem 4, chap. 2, §6, there exists a Dirac class T , compatible 

with Z . Thus, there exists a vector subspace S 1 in So(Q ) , satisfying the condi- 

tions 

(26) Vo(~)(~T(~S 1 = So(Q ) 

(27) U(~) c S 1 

I f  u i s  n o t  smoo th ,  t h e n  S 1 can be c h o s e n  so t h a t  

(28) s ~ S I 

Indeed, in that case s * Vo(~)(~T(~U since u = <s,,> 

is a Dirac class. 

is piece wise smooth and T 

One can choose  a v e c t o r  s u h s p a c e  V in  I n Vo(~ ) such  t h a t  

(29) v c V(p) , V P ~ ~n 
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Indeed, (19) implies that 

Dqv e V 02) , V q ¢ N n 
o 

while (16) and (17) and the fact that ~ \ F A is open, result in 

Dqv ~ IFA ,P , V q e N n , p e ~n 

Denote now 

C3o) S' = TGS 1 

then Theorem 4 in chap. 2, §6, will imply that (V,S') is a Q-regularization for any 

admissible property Q . 

The relation 

(31) u e AQ(v,S',p) , V p c ~n 

results easily from (18) and the fact that D'(~) c AQ(v,S',p) , with p E ~n . 

It only remains to prove that u satisfies (8) in the usual algebraic sense, with the 

respective multiplication and derivatives in the algebras AQ(v,S',p) • 

Due to (28) and (30) one obtains 

(32) u = s + IQ(v(p),S ') E AQ(v,s',p) , V p c ~n 

therefore, taking into account §9 and Theorems 2, 3, §8, chap. I, as well as (i5) and 

(29), one obtaines in the case of derivative algebras, the relations 

(33) T(D)u = T(D)s + IQ(V(p),S ') = v + IQ(v(pO,S') = 0 E AQ(F,S ',p) , V p E ~n 

The relations (32) and (33) end the proof of Theorem 1 WV 

Remark 1 

The regularizations (V,S') whose existence is stated in Theorem I, are obtained in a 

rather simple, constructive way. Obviously, the algebras AQ(V,S',p) obtained are Di- 

rae algebras. 

§3. APPLICATION TO NONLINEAR SHOCK WAVES 

Consider the nonlinear hyperbolic partial differential equation 

R 1 
(34) ut(x,t) + a(u(x,t)) • Ux(X,t) = O , x ~ , t > 0 

(35) u(x,0) = Uo(X) , x ~ R 1 

where a : R 1 ÷ R 1 is a polynomial. 

Obviously, the left part of (34) is a polynomial nonlinear partial differential opera- 

tor on ~ = R 1 x (0,oo) c R 2 and it is homogeneous. 
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Under rather general conditions, for smooth, [133], [52], or even piece wise smooth, 

[32], initial data u ° , the equation (34), (35) possesses shock wave solutions 

u : fl ÷ R 1 , with the properties: 

There exists a finite set A of smooth curves y : fl ÷ R 1 , such that 

(36) u ¢ ~ ( f l  \ FA) 

(37) u locally bounded on fl 

(38) J (u(x,t)~t(x,t) + f(u(x,t)) • ~x(X,t))dx dt = 0 , V ~ ¢ D(~) 

where f is a primitive of a . 

Obviously, such a solution u will be a piece wise smooth weak solution, in the sen- 

se of the definition in §2. 

Therefore, Theorem 1 in §2 results in : 

Theorem 2 

If u : ~ ÷ R 1 is a shock wave solution of (34), (35) which satisfies (36), 

(37) and (38), then, there exist regularizations [V,S') (see chap. I, §7) 

such that for any admissible property Q , one obtains 

i) u c AQ(v,S',p) , V p ¢ Nn 

2) in the case of derivative algebras, u satisfies (34) in the usual al- 

gebraic sense in each of the algebras AQ(v, S',p) , p e ~n , with 

the respective multiplication and derivatives. 

§4. GENERAL SOLUTION SCHEME FOR NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS 

With the help of the regular algebras introduced in chapter 2, §I0, the general result 

on the piece wise smooth weak solutions of homogeneous polynomial nonlinear partial 

differential equations, established in Theorem i, §2, can be seen as a particular case 

of a yet more general solution scheme for a fairly arbitrary class of nonlinear parti- 

al differential equations presented next, in Theorem 4. 

Suppose given a nonlinear partial differential operator (see chap. i, §9) of the gene- 

ral form 

(39) T(D)u(x) = 7 ci(x ) -]-]-- DPiJu(x) , x ¢ ~ , 
1_<i~ K<j_<k i 

where ~ cR n is nonvoid and open, and ci ~ C~(~) ' Pij ¢ Nn " 

A distribution S ~ D' (~) is called a (nontrivial) regular weak solution of the non- 

linear partial differential equation 

(40) T(D)u(x) = 0 , x ¢ ~ , 
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only if there exists a weakly convergent sequence of smooth functions 

tisfying the following three conditions 

(41) S = <s,'> and there exists a nonvoid open subset G c g 

smooth function u ~ ~(G) , such that 

(41.1) 

further 

(42) 

and finally, the ideal 

condition 

(431 [ v 

S = u = s(v) on G , V v ~ N , 

v = T ( D ) s  c Vo(~ ) 

Z g e n e r a t e d  i n  
v 

n (V ° + U + R)  c V ° • 

W(~) by DPv , with 

where R = C 1 • s 

s e S o ( g )  s a -  

and a 

p e N n , satisfies the 

Theorem 3 

A piece wise smooth weak solution of a homogeneous polynomial nonlinear partial 

differential equation is a regular weak solution. 

Proof 

It follows from the relations (18), (19) and (24) in the proof of Theorem 1 in §2 

WV 

Theo rem 4 

(44) 

Given a nonlinear partial differential operator 

regular weak solution S c D'(g) of the equation 

T(D1u(x) = 0 , x e g , 

there exist regularizations (V,S') such that for any admissible property 

one obtains 

i) S e AQ(v,s',p) , V p e A n 

2) 

T(DI of the form in (39) and a 

Q , 

in the case of derivative algebras, S satisfies the equation (44) in the 

usual algebraic sense, with the respective multiplication and derivatives 

within the algebras AQ(v,s, p) , P ~ ~n . 

Proof 

Since S is a regular weak solution of (44), there exists s c So(a) satisfying (41), 

(421 and (43). 

We notice that the ideal Z is regular in the sense of chapter 2, §i0. Indeed, the 
v 

condition (43) above implies (55) in chap. 2, §i0. Further, (41.1) and (42) 
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above  imply 

the re fo re 

v(~) = 0 on G , V v e N , 

V wcI : 
(45)  v 

w(V) = 0 on G , V ~) c N 

which obviously implies (56) in chap. 2, §I0. Therefore, I v is indeed a regular ide- 

al in W(~) . 

Assume now given a regular ideal f in W(~) , such that 

(46) I ~ I 
v 

(47) I n (V ° + U + R) c V ° 

Then,  a c c o r d i n g  t o  P r o p o s i t i o n  9 i n  c h a p .  2,  §10,  t h e r e  e x i s t  v e c t o r  s u b s p a c e s  

S o c o m p a t i b l e  w i t h  I as  w e l l  as  v e c t o r  s u b s p a c e s  S 1 i n  S s a t i s f y i n g  
' o 

(48) V o ( ~ T ( ~ S  1 : S o 

(49) U c S 1 

In  c a s e  S i s  n o t  s m o o t h ,  (47)  i m p l i e s  

(50) s t V + T + U 
o 

s i n c e  V + T c V + I i f  one t a k e s  T as  i n  t h e  p r o o f  o f  P r o p o s i t i o n  9 i n  chap .  2 ,  
o o ' 

§10.  Then ( 4 8 ) ,  (49) and (50)  i m p l y  t h a t  S 1 can  be c h o s e n  s a t i s f y i n g  

(51) s ~ S 1 

T in 

Now, one can choose a vector subspace 

(52) v ~ V(p) , V p ~ A n 

s i n c e  v ¢ Z c Z . D e n o t i n g  
v 

(53) s '  = r Q s  1 

one obtains a regularization (V,S') 

V in I n Vo(~ ) such that 

according to Theorem 7 in chap. 2, §I0. 

Given an admissible property Q , the relation 

(54) S c AQ(v,S',p) , V p ~ A n 

results from (41) and the fact that D'(~) c AQ(v,S,,p) , V p ~ A n . 

It only remains to show that S satisfies (44) in the usual algebraic sense, with the 

respective multiplication and derivatives in the algebras AQ(v,S',p) , p c ~n . 

The relation (51) will give 

= A n (55) S s + IQ(v(p),S ') c AQ(v,s ',p) , W p E 
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Now, §9 and Theorems 2 and 3 in §8, chap. 1 as well as (52) above, imply in the case of 

derivative algebras• the relation 

(56) T(D)S = T(D)s + IQ(v(p),S ') = v + IQ(v(p),s') = 0 E AQ(v,s',p) , V p c A n 

The relations (55) and (56) end the proof of Theorem 4 VW 

Remark 2 

I) The condition (43) in the definition of a regular weak solution can be written un- 

der the following explicit form: 

u(~) = v I + Z w. ~ D  pij r(D)s ~ ~ = 0 on ~ , 
i i j 

where v I ( V (~) w i c W(~) and Pij ~ Nn 
O • 

Taking into account Remark 3 in chap. 2, §i0, the condition (43) above can be re- 

placed by the weaker one given in (70), in the mentioned remark. 

2) The algebras AQ(v,s ' ,p) obtained in Theorem 4, are obviously regular algebras in 

the sense of chapter 2, §I0. 



Chapter 4 

QUANTUM PARTICLE SCATTERING IN POTENTIALS 

POSITIVE POWERS OF THE DIRAC g DISTRIBUTION 

§i. INTRODUCTION 

P o t e n t i a l s  w i t h  s t r o n g  l o c a l  s i n g u l a r i t i e s  h a v e  b e e n  s t u d i e d  i n  s c a t t e r i n g  t h e o r y ,  [ 3 ] ,  

[ 2 7 3 ,  [ 2 8 3 ,  [ i 1 S ] ,  [ 1 1 6 ] ,  [ 1 4 0 ] .  The s t r o n g e s t  l o c a l  s i n g u l a r i t i e s  o f  t h e  p o t e n t i a l s  

c o n s i d e r e d  were  t h o s e  o f  m e a s u r e s  w h i c h  n e e d  n o t  be  a b s o l u t e l y  c o n t i n u o u s  w i t h  r e s p e c t  

t o  t h e  L e b e s q u e  m e a s u r e ,  [ 2 7 3 .  The p o t e n t i a l s  i n  t h i s  c h a p t e r ,  g i v e n  by  a r b i t r a r y  po -  

s i t i v e  power s  (6) m , 0 < m < ~ , o f  t h e  D i r a c  ~ d i s t r i b u t i o n ,  p r e s e n t  o b v i o u s l y  s t r o n -  

g e r  local singularities. 

The wave function solutions obtained possess the scattering property of being given by 

pairs ~_ , ~+ of usual C ~ solutions of the potential free motions, each valid on 

the respective side of the potential and satisfying special junction relations on the 

support of the potentials. In the case of the potential ~6, i.e. m = 1 , the only 

one treated in literature, [44], the junction relation obtained is identical with the 

known one. 

§2.  WAVE FUNCTIONS, JUNCTION RELATIONS 

One and three dimensional motions are considered. 

The one dimensional wave function ~ is given by 

(11 ~ " ( x )  + ( k - U ( x ) ) ~ ( x )  = 0 , x c R 1 ( k  E R 1) 

w i t h  t h e  p o t e n t i a l  

(2) U(x) = ~(6(x)) m , x ~ R I Ca c R I , m ~ (0,~)) 

The solution of (11, (2) is expected to be of the form 

I ~b_(x) i f  x < 0 
(3) (x) 

~+(x) if x > 0 

where ~_ , t~+ c C~(R I) are solutions of 

l ~ ' ' ( x )  + ktp(x) = 0 , x e R 1 , 

satisfying certain initial conditions 

~-(Xo) = Yo ' ~'-(Xo) = Yl 
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¢ + ( x  1) = z o , ~$(x I) = z 1 • 

where _.m ~ Xo ~ 0 ~ x I ~ ~ and Yo ' Yl ' Zo ' Zl c C 1 

izo  
Yl ' Zl 

might be in a certain relation. 

As known, [44], that is the situation in the case of 

the junction relation in x = 0 between ~ and ~ + 

r,01 01 01 ( 4 )  
k*; (o) 1 ~_ (o))  

In the case of an arbitrary positive power 

arise: 

1) 

2) 

3) 

a r e  g i v e n  and t h e  v e c t o r s  

m = 1 and x ° = x I = 0 , when 

is given by 

tO 

to 
to 

m e (0, ~) , the following three problems 

, R 1 define the power (6(x)) TM x E , of the Dirac 8 distribution, 

prove that the hypothesis (3) is correct, and 

obtain a junction relation generalizing (4). 

(see [44] and (4)) 

for W = 0,1,2,... 

, ~ ~ ( - % o )  

{i 0} (5.i) Z(m,cO = , for m E CO,I) , 
1 

(5.2) Z(l,~) = , for ~ e 
1 

I ( -1 )  v 
(5.3) Z(2, - (V~) 2) = [ 0 ] 

o C - l )  v ' 
k / 

[: 01 ( 5 . 4 )  Z(m,c 0 = , f o r  m e (2 ,  ~) 

w i t h  c~ = + 1 and - ~  -< K -< ÷~' a r b i t r a r y .  

(5) / kb+ (0)  ZCm,~) I ~ -  (0) 1 

i,,-(o) ] : 
where 

c ~ E R  1 , 

The first problem is solved in §5, where a special case of the Dirac algebras construc- 

ted in chapter 2 will be employed. The solution of the second problem results from Theo 

rem 4 in §5, and is based on the smooth representation of ~ constructed in §4. The 

third problem will be the one solved first, using a standard 'weak solution' approach 

presented in §3. That approach will also suggest the way the first two problems can be 

solved. 

The ~unction relations in x = 0 between ~ and ~+ , will be: 
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The interpretation of (5) in the case of one dimentional motions (i) in potentials (2) 

results as follows: 

I) For m = 1 , the known, [44] , motion is obtained. 

2) If m = 2 , then for the discrete levels of the potential well 

(6) U(x) = -(v~)2(~(x)) 2 x c R 1 v = 1 3,5,7 , , , ,-.. 

there is motion through the potential, which causes a sign change of the wa- 

ve function, namely ,+(x) = -,_(x) , x c R 1 . 

3) If m ~ (2,~) , there is motion through the potential (2) in the case of a 

potential well only; however, the junction relation (5.4) will not give a 

unique connection in x = 0 between ~_ and ¢+ as the parameters ~ and 

K involved can be arbitrary. 

As known, [44], the problem of the three dimensional spherically symmetric motion with 

no angul~r momentum, and the radial wave function R given by 

(r2R'(r)) ' + r2(k-U(r)) • R(r) = 0 , r c (0, ~) (k ~ R I) 

where the potential concentrated on the sphere of radius a is 

U(r) ~(6 (r-a)) m R 1 = , r c (0, ~) (~ c , m , a c (0,~)) , 

can be reduced to the solution of (i), (2). Therefore, the above interpretation for the 

one dimensional motion will lead to the corresponding interpretation for the three di- 

mensional motion. 

53. WEAK SOLUTION 

The solution (3), (5) of (i)~ (2) will be obtained in two steps. 

First, a convenient nonsmooth representation of ~ will give in Theorem i a weak solu- 

tion of (i), (2). 

The second step, in §4, constructs a smooth representation of 6, needed in the algeb- 

ras containing D'(R I) . That representation gives the same weak solution, which pro- 

ves to be a valid solution of (i), (2) within the mentioned algebras and therefore, in-- 

dependent of the representations used for 6 . 

The nonsmooth representation of ~ , employed for the sake of simpler computation of the 

junction relations, is given in 

(7) 6(x) = lim V(~ v , i/~ , x) , x c R I , ~ ~ N , 
x)-~o 

where 

(8) lim ~ = 0 and my > 0 with v c N , 
v+co 
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while 

K if 0 < x < 
(9) v ( ~ , K , x )  = 

0 if x ~ 0 or 

where ~ > 0 and K e R 1 . 

Given m c (0,~),e,k e R 1 C 1 , x ° < 0 , Yo 'Yl c and 
1 cl @v c C (R \{0,~v}) n (R I) , the unique solution of 

( 1 0 )  ~ ' ' ( x )  + ( k - V ( m  v , ~ / ~ v ) m , x ) ) ~ ( x )  = 0 , 

w i t h  t h e  i n i t i a l  c o n d i t i o n s  

X k~O 

c N , denote by 

R 1 X ¢ 

(ii) $(Xo) = YO ' ~'(Xo) = Yl 

Denote by M(k,Xo) the set of all (m,~) c (0, ~) ×R 1 for which there exists 

(~v I v E N) satisfying (8) and such that 

(12) lim = exists and finite, for any Yo ' Yl c • 
~ ~C%) z I 

Suppose given (m,~) C M(k,Xo) and (~ I ~ c N) satisfying (8) and (12), Then for 

any Yo ' Yl E C I , one can define @ , ~+ c C~(R I) as the unique solutions of 

( 1 3 )  @ ' ' ( x )  + k ~ ( x )  = 0 , x c R I , 

satisfying respectively the initial conditions 

(14) I ~2- (xO) Yo 1 IZl 1 
I ,l , zo 

w h e r e  z ° , z 1 c C 1 i s  o b t a i n e d  t h r o u g h  ( 1 2 ) .  

Theorem i 

Suppose 

functions 

to ~ . 

given in (3) with ~ , ~+ from (13) and (14). Then, the sequence of 

(~v [ ~ E N) resulting from (I0) and (ii) is convergent in D'(R I) 

Proof 

Obviously ~ = ~_ on (-°%0], for every v E N . Thus, it remains to evaluate 

on (0, oo) . The relation (12) and the second relation in (14) imply that 

V a,~ > 0 : ~ p c N : V ~ c N , ~ >- p : 
(iS) 

Now, from the proof of Theorem 2, below, on can obtain that 

~+ - ~) 
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K>0 : WreN : 
(16) 

I 9\> I , I '7,, I -< ~ on [0,~] 
Indeed, according to (19) in the proof of Theorem 2, it follows that 

9 ~ ( x )  = W(k-~/ (c0~)m,x)  - , V ~ • N , x e [0,u0~] . 

L*_' (o)7 
which implies the following two evaluations, respectively for ~ > 0 and ~ < 0 . 

Assume ~ > 0 , then for any o ¢ N and x ~ [0,0~] , one obtaines 

] ¢ v ( x )  - *v(m~) I < ( ]exp(xH¢ - exp  L~l + lexp(-xHv) - e x p ( - L w ) ]  ) " 

(17) • ( I,_(0)l + lg ' (o )  l /s  v ) / 2 < 

_< (exp L v +1) • ( ]9_ (0) 1 + i*_' (0) I/H v ) / 2 

t h e  l a s t  i n e q u a l i t y  r e s u l t i n g  f r o m  t h e  f a c t  t h a t  0 < xHv -< L~ s i n c e  0 -< x < ~ . 

Now, t h e  r e l a t i o n s  (21) and  (22)  i n  t h e  p r o o f  o f  Theorem 2,  t o g e t h e r  w i t h  (17) and  (12) 

will imply (16). 

Assume ~ < 0 , then for any ~ ¢ N and x ¢ [0,~ w] , one obtaines 

(18) I *~(x)  - % ( % )  I ~ I cos ~ - cos  L~ I "  I ,_(o)  I + 
+ I s in  xH~ - s in  L~ ] " I 9 I ( 0 )  I / ~  

Now, the relation (23) in the proof of Theorem 2, together with (18) and (12), will 

again imply (16). The relations (15) and (16) obviously complete the proof ~YV 

According to Theorem i, the function 9 in (3) with 9_ , 9+ from (13), (14) is a weak 

solution of (i), (2) obtained by the respresentation of 6 in (7), (8), (9), provided 

the potential (2) is obtained from (m,~ ¢ M(k,Xo) . The problem of the structure of 

M(k,Xo) is solved new. 

Theorem 2 

< 0 and The set M(k,xo) does not depend on k ¢ R 1 and x o 

M = ( ( 0 , 1 ]  x R  1) o ({2} x { - n 2 , - 4 ~ 2 , - 9 ~  2 . . . .  }) u ( ( 2 , ~ ) x  ( - ~ , 0 ) )  u 

u ((o,~) × {o}) 

Proof 

If u c C~(R I) is the unique solution of 

u''(x) + h u(x) = 0 , x E R 1 , 

with the initial conditions 

u ( a )  = b , u ' ( a )  = c , 

t h e n  

09 )  u(X) = l i ( h , x )  W ( h , - a )  

u '  (x) c 

(h  ~ R 1) 

, x ~ R  1 , 
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where 

Assume (m,~) ~ (0, ~) x R 1 . Applying (19) to the functions ~ , one ohtains 

= W , V V e N  L ¢~(cO'O) ) (k-c~/(tov)m,~ov) W ( k , - X o )  Yl 

Therefore, (m,a) ~ 14(k,Xo) only if 

(20) lim W(k-~/(m~)m,mv) = Z(m,~) v+oo exists and finite. 

It thus remains to make the condition (20) explicit in terms of m and e . 

÷ 0 one can assume k - ~ / (~)m < 0 , therefore First, suppose e > 0 . Since ~v 

1 exp C v + exp (-L,o) ~ . ( e x p  L v - exp (-L,)) 

W(k-c~/(m'°)m'cav) = 2- ttv (exp L v - exp (-L~))) exp I~  + exp ( - I ~ )  ) 

with 

H = (-k+e~/(~o~)m) I/2 , LV = m H 

Obviously 

(21)  

(22) 

limH = + ~ 

0 

lim L,) + 1 / 2  

if m c (0,2) 

if m = 2 

if m e (2,~) 

T h e r e f o r e ,  M(k,Xo)O ( [ 2 , ~ ) x ( 0 , ~ ) )  = ~ • 

Assume now m ¢ ( 0 , 2 )  , t h e n  t h e  t h r e e  t e r m s  i n  

( e x p  L~ - exp ( - L ) )  , h a v e  g o t  a f i n i t e  l i m i t  when 
2 
t e r m ,  one o b t a i n s  

0 i f  

lim ~-~. (exp ~ - exp (-Lv)) = ~ if 

+ ~ if 

m 
W(k-~ / (~V)  '~V ) ' e x c e p t  

÷ ~ . C o n c e r n i n g  t h e  l a t t e r  

m c (0 ,1 )  

m =  1 

m ~ (1,2) 

Thus, one can conclude that M(k,x o) n ((1,2) × (0,~)) = @ and (0,I] x (0, ~) c M(k,Xo) 

Suppose now 

with 

< 0 . Since ~v ÷ 0 , one can assume k - ~ / (~)m > 0 , therefore 

I i___ sin L)] cos L) H) 

W(k-~/[co))m,o~)) = -H v sin L) cos L~) 

H 9 = (k-~l(~))m) I12 , L~ = ~o)H~ 
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Obviously 

(23) lim H = + oo 

lim Lv = 

0 if m c (0,2) 

(-cO I/2 if m = 2 

+oo if m ~ (2, °°) 

ASsume now 

have got a finite limit when 

m e (0,2) , then the three terms in 

~0÷co 

lim (-Hx) sin L)) = 
v+co 

m 
W(k-(z/(~0v) ,to) , except -H sin L~) , 

• Concerning the latter term, one obtains 

0 if m e (0,I) 

if m= l 

-~ if m e (1,2) 

( 2 7 )  l i r a  n ~  = o~ , l im e,o = 0 a n d  n ~  + e~ o > B , ~ "o ¢ N . 
-v,+,o v+oo 

$ h e r e f o r e  M(k ,x  o) n ( ( 1 , 2 )  x ( - ~ , 0 ) )  = ~ and ( 0 , 1 ]  × ( -~ ,0}  c b1(k,Xo) . 

Now, assume m = 2 , t h e n  a g a i n  t h e  t h r e e  t e r m s  i n  W ( k - a / ( ~ ) m , 0 J  ) , e x c e p t  - H  s i n  L 

have got a finite limit when ~ ÷ ~ , while the latter term tends to a limit according 

to 

Lv~J = I] 0 if ~ = _(p~)2 with ~ = 1,2,... 
lira (-H v s i n  
v+~ ÷~ otherwise 

Therefore M(k,x o) n ((2}× (-~,0)) = {2}× {_(~)2 ] B = 1,2 .... ) 

Finally, assume m c (2,~) , then lim H = lim L = +~ thus a necessary condition 

for (20) is 

(24) lim sin Lv = 0 
v->oo 

The condition (24) will indicate the way the sequence (~ I ~ ~ N) satisfying (8) 

has to be chosen in order to secure (20)• Indeed, given k c R 1 , there exist 

A,B e (0, ~) such that k - ~/0~ TM > 0 , V ~ E (0,A) and the function 

O : (0,A) ÷ (B, ~) defined by @(~) = ~(k - ~/ m)i/2 has the properties 

0 is strictly decreasing on (0,A) , 

lira 0(00 = ~ lira O(~) = B . 
c0-~o ' m+ A 

Therefore, the inverse function 0 -I : (B,o) ÷ (O,A) exists, is strictly decreasing 

on (B ,~) and 

(25) lim o-l(y) = 0 
y-~ 

Moreover, O -I e CI(B, ~) and 

(26) lira DO-I(Y) = 0 
y~ 

ASsume now that (n v I ~ c N) is a sequence of positive integers and (ev I ~ £ N) 

is a sequence of nonzero real numbers, such that 
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Define 

(28) co v = o-l(n~ + e) , g ~ e N 

Then (m ] ~ ~ N) satisfies (8), according to (27) and (25). Further, one obtains 

(29) cos L = (-i) n~ cos e v , -H v sin L v = (-i) n~+l H~ sin e~ , V ~ c N 

Now, (29) and (27) imply t h a t  

(30) lim cos L exists 

p r o v i d e d  t h a t  

(31) n ~ w i t h  ~ c N , have  c o n s t a n t  p a r i t y .  

Therefore, (20) will hold only if 

(32) ~lim (-H sin Lv) exists and finite 

But,  due t o  ( 2 9 ) ,  (27) and ( 3 1 ) ,  t he  p r o p e r t y  i n  (32) i s  e q u i v a l e n t  w i t h  

(33) lime H v exists and finite x)-~o 

It is s i m p l e r  to  compute t h e  s q u a r e  o f  t h e  l i m i t  i n  (33) which due to  (28 ) ,  (27) and 

(26) becomes 

lira (eH~ 2 = lira (e~2(k-c~/(@-l(n ~+e )) m) = 
v~oo v+~o 

= ~ lim (e~ 2 / (@-l(n ~+e@)m = 
x~+oo 

= - ~%~oolim ( [e [ 2/m o-l(n ~) + le [ l-2/m Do-l(n ~+~ev)) -m = 

= - ~ lim (e) 2 / (o-l(n ~)) TM 
xk~o 

since ~V ~ (0,i) , V 9 c N g 

But,  due to  (25) and ( 2 7 ) ,  t he  l a s t  l i m i t  can assume any v a l u e  i n  [ 0 , ~ ] ,  depend ing  on 

a proper choice of n~ and ev 

imply that for any ~ E {-i,i} 

fying (8) and such that 

lim v+~ W(k- ~/(m~) m,~v) 

Now, obviously 

• Therefore, (30) and the second relation in (29) will 

and K ~ [-~ , +~] , there exists (~ I ~ c N) satis 

(2 ,~)  x (-~ ' ,0)  c M(k,Xo) and t h e  p r o o f  i s  comple ted  WV 

Remark 1 

The relations (S.l) - (5.4) result easily from the proof of Theorem 2. 
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§4. SMOOTH REPRESENTATIONS FOR 6 

In o r d e r  t o  p rove  t h a t  t h e  weak s o l u t i o n s  (3 ) ,  (5) o f  ( 1 ) ,  (2) o b t a i n e d  i n  §2,  a re  va -  

l i d  w i t h i n  t h e  a l g e b r a s  c o n t a i n i n g  t he  d i s t r i b u t i o n s  and t h e r e f o r e ,  i n d e p e n d e n t  o f  t he  

r e p r e s e n t a t i o n s  ( 7 ) ,  ( 8 ) ,  (9) used f o r  6,  we f i r s t  need to  show t h a t  t he  same weak so-  

l u t i o n s  can be  o b t a i n e d  from c e r t a i n  smooth r e p r e s e n t a t i o n s  o f  6. These r e p r e s e n t a t i o n s  

w i l l  be  o b t a i n e d  by a p p r o p r i a t e l y  ' r o u n d i n g  o f f  t h e  c o r n e r s '  i n  ( 7 ) ,  (81 and (9) .  The 

' r o u n d i n g  o f f '  i s  accompl i shed  w i t h  t h e  h e l p  of  any p a i r  o f  f u n c t i o n s  ~ ,y  • C:(R 1) 

( see  chap.  1, §8) s a t i s f y i n g :  

(34) 

and 

"1 [3 = 0 on (-%-i] 
**) 0 -< 8 < M on ( - 1 , 1 )  

***) ~ = I on [i,°°) 

****) DPB(0) ~ 0 , V p • N 

(ss )  

*) y = 1 on ( - m , - 1 ]  

**) 0 ~ y s 1 on ( -1 ,1 )  

***) y = 0 on [ 1 ,  m) 

The e x i s t e n c e  o f  t h e  f u n c t i o n s  S and y r e s u l t s  from Lemma 1, a t  t h e  end o f  t h i s  

s e c t i o n .  

Given now a sequence (~M [ M • N) s a t i s f y i n g  (8) and two o t h e r  sequences  

(to~ ] M e N) , (L0$ I M • N) such t h a t  

' tO" > 0 V V • N to' CO i t0½ , tom ' M ' ' 0 ' ' "'" 
(36) 

i i m  (to,~ + to~') / % = o , 

are pair wise different and 

s 6 • W by 

s6(M) (x) = ~(x/to~) ¥ ( (x-%)/ to~)  / tom ' 

d e f i n e  

(37) 

then 

supp s6(M) c [-m~ , ~M+ toni and 

V veN, xeR 1 , 

f 
]1 - I sd(~)  ( x ) ~  I S 2((M+l)toO+to~)/to9 , 

i V M~N, 

t h e r e f o r e ,  due t o  (36 ) ,  one o b t a i n s  

(38) s 6 • S O n W+ and <s 6 , .> = 6 

w i t h  t h e  r e l a t i o n  s 6 • W+ (see  chap.  1, §8) i m p l i e d  by (37) and t h e  f a c t  t h a t  

Now, the smooth representation of 6 obtained in (37) will be the one replacing (7], (8) 

and (9). It remains to prove that (37) generates again the weak solution [3), C5) when 

, R 1 used in solving (i), (2). Given (m,e) • M k • , x ° < 0 , (to9 I M • N) satisfying 
,, C 1 

(8) and (12), (to~ I V • NI and (tom I ~ • N) satisfying (36), Yl ' Y2 • and 

M • N , denote by XV • C~(R I) the unique solution of 
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(39) X"(x) + (k-~(s6(~)(x)) m) X (x) = 0 , 

with the initial conditions 

(40) X(Xo) = Yo ' X'(x o) = Yl 

x ¢  R 1 

Theorem 3 

I t  is possible to choose (% I ~ ~ N) and (~ I ~ ~ N) s a t i s f y i n g  ( 3 6 ) ,  and 
such that the sequence of functions (X~ I ~ E N) resulting from (39) and (40) 

is convergent in D'(R I) to ~ given in (3), where ~_ and ~+ are from (13) 

and (14). 

Proof 

A Gronwall inequality argument will be used. First, the equations (i0), (ii) are writ- 

ten under the form 

= A,o(x ) Fv(x) , x c R 1 • F,(Xo) = ] Y o [  F~(x) 
( ) Y l  

where 

5q F~(x) = , A(x) = 

[ , , ,  ,', C~)/ t 
S i m i l a r l y ,  (39 ) ,  (40) can be w r i t t e n  as 

, R 1 G~(x) = B~(x)  G~(x) x c , 

with 

Denote H 

t h e r e f o r e  

I o m 1] 
-k+V(~ , o,/(~ ) ,x) 0 

IK~(x) 1 
%(x) = L ×~(x)) , B ( x )  

= F 9 - G%, , t h e n  

H~(x) = 

[,o] 
GV (x°) = Yl 

I ° 
-k+~Cs 6CV) (x))m 

1} 
0 

X X 

f I RI 
X X 

O O 

Applying the ]] [l~ vector, respectively matrix norms, denoted for simplicity by 

II I[ , one obtains x x 

I[Hv(x) l I _< J IIAv(~)-B (~) l l  • I IF~(~)[I  d~ + I  lIB ( ~ ) [ I . [ [ H ~ ( ~ ) I I  d~ , 
x R 1 

X 0 0 X ~ • 

Now, the Gronwall inequality implies 
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But 

and 

while 

Further 

X X 

x 
o 

x~ R 1 

~v (x) - Xv (x) I -< I I ~  (x) I I , x e R 1 

' ' ~) ~) x) ' 

m%(~)-%(~)im -< I s  I / (co j) TM , ~ ¢ [-co~ , oJ~-I u _l-co.o-~o".~ , co +¢o~] 

m R 1 I B (n)[l -< max { 1 , [ k ] + ] s [ / (co) } , n ~ • 

Therefore, one obtains 

(41) [~b~(x)-x~(x)l < 2f~'~0"] . . ~  ~" Is] • ~. exp(2(~+m~)(l+[k[+[s[/(~ )m))/(co~) TM 

where x c R 1 

% = max { I [ F ~ ( ~ ) J l  I ~ ~ [-co~ , ~x~] u [w .-co~ , co -~.o~'-] } 

! For given v c N F~ depends only on co and not on ~0 or ~" Therefore, ~ is 

decreasing in 0~' and m" That fact, together with (41) imply that for given ~ ~ N ~ • 

> 0 the function ~ can be arbitrarily and in a uniform way on R I appro- and ~ 

ximated by the function Xv • provided m'~ and m~" are chosen small enough. Taking 

into account Theorem i in §3, the proof is completed ~TV 

Lemma i 

1 
There exist functions 8,y ~ C+(R ) satisfying (34) and (35) respectively. 

Proof 

Define n c C+(R I) by 

[ 0 if x -< 0 

n(x) 

I exp (-l/x) if x > 0 

Assume 0 < a , b < 1 and define ~i ' 62 ~ C~(RI) by 

BI(X ) = n(x+l) / (TI(x+I) + n(-x-a)) and ~2(x) = Tl(l-x) / (n(l-x) + n(x-b)) , for 

R 1 x e . Defining 8 e C°°(R I) by (see Fig. 3) B(x) = (~l(X) exp x-l) ~2(x) + i , 

for x c R 1 , ~ will satisfy (34) with M = e . Defining y e C~(R I) by 

y(x) = ~(l-x) / (Q(l-x) + ~(x+l)) , for x ~ R I , y will satisfy (35) V~7 
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§5. WAVE FUNCTION SOLUTIONS IN THE ALGEBRAS CONTAINING THE DISTRIBUTIONS 

It is shown in this section that, given any (m,~) ~ M , the weak solution ~ of (i), 

(2) obtained in §§3, 4 is a solution of (i), (2) in a usual algebraic sense, consi- 

dered in certain algebras containing D'(RI), with the multiplication, derivatives 

and positive powers defined in the algebras. Therefore, the wave function solution 

obtained is independent of the particular representations used for the Dirac $ di- 

stribution. 

Theorem 4 

Suppose given (i), (2) with (m,a) ~ M and let ~ be the weak solution of (i), 

(2) constructed in §§3, 4. 

Suppose ~ is not smooth, that is, ~ or ~t is not continuous in 0 c R 1 . Then, 

there exist regularizations (V,S') (see chap. i, §7) such that for any admis- 

sible property Q , one obtains 

1) ~ c AQ(v,s ' , p )  , V p c 

2) in  the case o f  d e r i v a t i v e  and p o s i t i v e  power a lgebras (see chap. i ,  §7) 

s a t i s f i e s  (1) in  the usual a lgebra ic  sense in  each of the algebras 

AQ(v,S',p), p c N , with the respective multiplication, power and deriva- 

tives. 

Moreover, there exist s ~ S O not depending on Q or p , such that 

3) ~ = <s,'> = s + IQ(V(p),S ') ~ AQ(v,S',p) , V p ~ N • 

Proof 

Since (m,~) E I# , there exists ~v I v ~ ~ satisfying (8) and (12). Assume given 

< 0 and Yo ' Yl c C 1 then according to Theorem 3 in §4, it is possible to choo x O 
se (~ I ~ c N) and •f~"w I v c N) satisfying (36) and so that the sequence of 

smooth functions (Xv I ~ c ~ resulting from (39) and (40) will converge in D'(R I) 

to ~ given through (3), (13), (14). Therefore, defining s ~ W by s(V) = Xv , 

W ~ ~ N , one obtains 

(42) s c S <s,.> = 
o' 

and, due to (39), (40), the relation 

D2s + (k-~(s6)m)s = u(0) ~ O 

/ lye 1 ( 4 4 )  = , V v ~ N . 

Ds (~) (Xo) Yl 

(43) 

and 
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The idea of the proof is to show that (43) is valid in the algebras AQ(v,S',p) , with 

suitably chosen regularizations (V,S') . In this respect it suffices that the regula- 

rization (V,S') satisfies the condition: 

(45) s,s~ e V(p) QS' , V p e N (see (22) in chap. i, §7) 

Indeed, s c V (p)QS' , V p e N and (42) imply (see (25) in chap. I, §8) that 

(46) ~ = s + IQ(v(p),S ') c AQ(v,S',p) , V p ~ 

In the same time, s~ e V(p)QS' , U p e ~ and (38) result in 

(47) ~ = s~ + IQ(V(p),S ') ~ AQ(v,S',p) , V p ~ N . 

~bw, (46), (47), (43), (38) and Theorems 3, 4 in chap. i, §8, will obviously imply 2). 

Further, i) and 3) will result from (46). 

Therefore, it only remains to obtain regularizations (V,S') which fulfil (45). 

We shall use the method given in Theorem i, chap. 2, §3. 

Take J c W such that for each w c J , the relation holds 

(48) supp w(V) either is void for v ¢ N big enough or shrinks to 

{0} c R 1 when v + 

[49) w(w)(0) = 0 , for w ~ N big enough 

and denote by I 1 the ideal in W generated by J 

Denote by T 1 the vector subspace in S generated by 
O 

{s~ , Ds~ , D2s~ .... } 

We prove that I I and T I are compatible. Obviously V n T = 0 
o 1 

I 1 n S O c VoQT 1 . Indeed, assume t c I 1 n S O , then (48) implies 

thus t ~ VoQT 1 , taking into account (38). Finally, we prove that 

Assume indeed t ~ I 1 n T 1 then 

(50) t = Z k i D1s~ 
o~i~p 

C 1 ~. ~ . Now, according to (49) and (37), the above relation (50) im- 
i 

with p c N , 

plies 

0-- t(v)(0) -- z x i DiB(0) / w (w,) i ~) ~) • 

o_<i_<p 

which due to (36) and ****) in (34) results in 

= ... =~ =0 . 
o p 

• Further, 

supp <t, "> c {0} , 

I 1 n T 1 = 0 . 

Now, (50) will give t E O . Recalling the conditions (4) and (5) in chap. 2, 53, it 

follows that I 1 and T 1 are compatible. Obviously, s ~ VoQT 1 and 

(VoQTI) n U = 0 . Moreover, s ~ VoGTIQU , since ¢ is not smooth and <s,.> = 

according to (42). 

f o r  w ~ N b i g  enough 
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Assume Z ~ I 1 , with Z ideal in W and T ~ T_~, with T vector subspace in S o , 

such that I and T are compatible and s ~ VoOTQU__ . It follows that there exist 

vector subspaces S 1 in S o , such that VoQTQS 1 = So and s ~ S 1 , U c S1 . As- 

Sume finally V a vector subspace in Z n V ° . Now, Theorem 1 in chap. 2, §3 will im- 

ply that (V,S') with S' = TQS 1 is a regularization. Obviously, (V,S') satisfies 

(45), since s c S I and s~ ~ T 1 c T WV 

Remark 2 

i) The regularizations (V,S') whose existence is obtained in Theorem 4 result in a 

rather simple, constructive way. Obviously, the algebras AQ(v,S',p) are Dirac 

algebras. 

2) The smooth representation of 6 given by s 6 E S o in (37) has the property 

( s l )  DPs6Cv)(0) # 0 , V ~ c N , p c N 

which was e s s e n t i a l l y  needed in  t he  p r o o f  o f  Theorem 4. That p r o p e r t y  i m p l i e s  in  

p a r t i c u l a r  t h a t  n_~osymmetric r e p r e s e n t a t i o n  of  6 can be used .  

In chapters 5 and 6, a generalization of the relation (Sl) to the n-dimensional case 

will be used for defining important classes of Dirac algebras. 



Chapter S 

PRODUCTS WITH DIRAC DISTRIBUTIONS 

§I. INTRODUCTION 

A class of relations containing products with Dirac distributions encountered in the 

theory of distributions is given in 

(X-xo)r , R n q,r ~ ~I r $ q (i) ° Dq6 x = 0 V x ° ¢ , , 
o 

where 6 is the Dirac ~ distribution concentrated in x 
x o 
o 

The importance of the relations (i) is due to the fact that they give an upper bound 

of the order of singularities the Dirac distributions and their derivatives exhibit. 

It is worthwhile mentioning the role played by relations of type (i) in the way deri- 

vative operators may or may not be defined on the algebras containing the distributi- 

ons (see chap. i, §8, as well as Remark D in §7). 

As a first result, Theorem I, §4, will establish relations of type (i), within a wide 

class of Dirac algebras constructed in the present chapter. In §4, several other types 

of relations involving products with Dirac distributions will be proved valid within 

the mentioned algebras. 

A second result is obtained in Theorem 6, §5, where known formulas in Quantum Mecha- 

nics, involving irregular products with Dirac and Heisenberg distributions are proved 

to be valid within the Dirac algebras constructed in the present chapter. 

These algebras are obtained according to the general procedure given in Theorem i, 

chap. 2, §3, which presumes the existence of compatible pairs Z,T where I is an 

ideal in W and T is a vector subspace in S o . The construction of such compatible 

pairs is given in §§2 and 3. Here the main problem is the construction in §3 of suit- 

able vector subspaces T , whose existence is based on a rather sophisticated algebraic 

argument involving generalized Vandermonde determinants. The present form of the res- 

pective conjecture in Theorem 8, §7, as well as its proof was offered by R.C. King. 

A third result is presented in §8. For a subclass of the Dirac algebras constructed in 

§§2-4, a stronger version of the relations with products given in Theorem i in §4, in- 

volving this time infinite sums of Dirac distribution derivatives, is obtained. 
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§2. THE DIRAC IDEAL I ~ 

Denote by I 6 the set of all sequences of smooth functions 

x ~ R n satisfy the condition 
o 

(2) w(~)(Xo) = 0 , for W c N big enough, 

and for a certain neighbourhood V of x o , the condition 

(3) V n supp w(~) either is void for ~ e N big enough 

or shrinks to {x } when 9 ÷ ~ 
O 

w c W which for any 

Proposition i 

is a Dirac ideal (see chap. 2, §6) 

Proof 

A direct check of the conditions (13) and (26) in chap. 2, will end the proof. However, 

it will be useful to give a second proof, showing that Z 6 is acutally an ideal ZG, ° 

where G = FF~ and F~ is a certain singularity generator on R n (see chap. 2, 

§§2,4). Then, Proposition 6 in chap. 2, §6 will complete the proof. 

~bw, the singularity generator F 6 is chosen as the set of mappings Yx : Rn ÷ R1 ' 

with x ° ~ R n , defined by o 

Yx (x) = ([[X-Xo[[)2 x ¢ R n 
O 

where [[ [[ is the Euclidean norm. Then, obviously Fyx = {x o} , for x o c R n . 

O 

Now, the relation 18 will follow easily, ending the second proof of Proposi- = IG, o 

tion 1 WV 

§3. COMPATIBLE DIRAC CLASSES T x 

First, several auxiliary notions. 

For m c N denote 

P(n,m) = { p = (Pl .... , pn ) c N n [ tp[ = Pl + "'" + Pn 

and by g(n,m) the number of elements in P(n,m) . 

One can see that there exists a linear order --[ on N n such that 

N n = { p ( 1 )  , p ( 2 )  . . . .  } , 

p ( 1 )  - - [  p ( 2 )  - - [  . . . .  

a n d  P ( n , m )  = { p ( 1 )  , . . .  , p ( . % ( n , m ) )  } , V m ¢ N . 

-<m} 
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It is easy to notice that Z(n,m) can be obtained from the recursive relations 

%(l,m) = m + 1 , V m E N , 

and 

Z(n+l,m) = Z i(n,k) , V m 6 N . 
o<k_<m 

To any s e q u e n c e  o f  smooth f u n c t i o n s  w a W, t h e  f o l l o w i n g  Wronsk ian  t y p e  i n f i n i t e  ma t -  

r i x  o f  smooth  f u n c t i o n s  w i l l  be  a s s o c i a t e d  w i t h  t h e  h e l p  o f  t h e  above  l i n e a r  o r d e r  - - I  

on N n "- 

DP (1)w(O) (x) . . . . . . . .  DP(P)w (0) (x)  . . . . . . . .  ~' 

W(w) (x) : DP(1)w(V) (x) ........ DP(V)w(V) (x) ........ ) x ~R n 

A = (IN I V ~ N) Denote by 24 the set of all infinite vectors of complex numbers 

with a finite number of nonzero components Xp . 

An infinite matrix of complex numbers A = (aop [ v,p ~ N) is called column wise non- 

singular, only if 

Y A ~ M : AA ~ I'4~ A = 0 

And now, the definition of an important class of weakly convergent sequences of smooth 

functions representing Dirac 6 distributions. Given x ~ R n , denote by Z x the set 

of all weakly convergent sequences of smooth functions s c S o , satisfying the condi- 

tions 

(4) < s , " > = 
x 

(5) supp s(~)) shrinks to {x} , when ~) ÷ oo • 

(6) W(s) (x) is column wise nonsingular. 

The existence of sequences s e Z x will be proved in §7. 

The condition (6) can be called, [1283, strong local presence of the sequence s in 

x ° , due to its meaning in the following particular case. Suppose, we are in the one 

dimensional case n = 1 and ~ e D(R I) such that ~i ~(x)dx = 1 . Define s@ e W 

by 

(7) s~(9)(x) = (v+l)~(x/(~+l)) , V ~ ~ N , x ~ R I 

Then, s~ obviously satisfies (4) and (5), with x ° = 0 £ R I . Now, one can see that 

s~) will satisfy (6), only if 
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(8) DP@(0) $ 0 , V p • N , 

i n  p a r t i c u l a r ,  @ mus t  be  n o n s y m m e t r i c  ( s e e  (37)  and  ****)  i n  (34)  i n  c h a p .  4) 

Deno t e  

g 6 = ~ gx 

and for ~ = (s x [ x • R n) ¢ Z~ 

by  {DPs x [ x e R n , p E N n} . 

denote by T~ the vector subspace in S generated 
o 

Proposition 2 

For each Z e Z 6 , T Z is a Dirac class which is compatible with the Dirac ide 

al I ~ (see chap. 2, §§3,6). 

Proof 

First, we prove that 21 is a Dirac class, that is, it satisfies (17.1), (17.2) and 

(24) in chap. 2. Indeed, the conditions (17.1) and (24) result easily. Assume now 

t E T~ , t ~ 0 , then 

(9) t = Z Z 1 Dqs 
xeX q~N n xq x 

q-<Px 

where X c R n , X finite, nonvoid, 

eX, qoeN n (10) ~ x ° 

We show that (17.2) is satisfied for 

Px c N n and lxq e C 1 . Moreover 

qo ~ Px : 1 ~ 0 
o Xoqo 

x o given in (i0). Assume it is false and 

(11) 

then (9) gives 

(12) X 
xeX 

~ ¢ N : V ~) ¢ N , l) -> II : t(~)) (Xo) = 0 

Z ~ Dqsx(V)(x o) = 0 V V ~ N v ~ 
qeN n xq ' ' 

q~Px 

But, due to (5) and the fact that 

lies 

X is finite, one can take ~ such that (12) imp- 

(13) E X Dqs (v)_ _(x o) = 0 , V v E N , v -> 
qeN n Xoq x o 

q~Px 
o 

D e f i n e  now t h e  i n f i n i t e  v e c t o r  o f  comp l ex  n u m b e r s  A = ()t~ I IJ e N) 

IXoP(~+l) if p(~+l) _< Px 
(14) I' = o 

0 otherwise 

where 

then, obviously A c M and (13) is equivalent to 



89 

W(s x ) C x o )  A ~ M 
o 

T h e r e f o r e ,  (6) w i l l  imply A = 0 

p r o o f  o f  (17 .2 )  i n  chap.  2. 

I t  r emains  t o  p rove  t h a t  TE and 

(S) in chap. 2, ~3, are satisfied. The relation (5) follows easily since I ~ 

rac ideal. In order to prove (4) it suffices to show that 

(15) I ~ n TE = O 

since V O n T Z = 0 , as it was noticed above. Assume therefore t E I ~ n T Z , t % O , 

then (9) and (i0) hold again, since t E TZ . But, t E 16 and (2) will again give (ii) 

thus the reasoning above, contradicting (I0) will end the proof of (IS) W? 

which through (14) will contradict (i0), ending the 

16 are compatible, that is, the relations (4) and 

is a Di- 

§4. PRODUCTS WITH DIRAC DISTRIBUTIONS 

Based on the compatibility of the Dirac ideal I ~ with the Dirac classes T E , for 

~ Z 6 , we shall follow the procedure in Theorem i, chap. 2, §3, and construct the Di- 

rac algebras used in the present chapter. 

Suppose given E e Z~ . 

For any ideal I in W , I = I ~ 

if V is a vector subspace in 

that 

(16) 

(i7) 

then 

perty 

(18) AQ(v,T(~)S I _  , p) , p 
~n 

and compatible vector subspace T in S O , T D T E , 

I n V ° and S I is a vector subspace in S O such 

QTQS = S , Vo o 

u~ VCp)(2)~Qs I , v p ~ ~ , 

(V,TQSI) is a regularization, therefore one can define for any admissible pro- 

Q the Dirac algebras 

which for the sake of simplicity will be denoted within the present chapter by Ap , 

with p e ~n . 

Properties of type (i) concerning products with Dirac distributions are given in: 

Theorem 1 

(19)  

In case 

I6nV cV 
o 

any q - t h  o r d e r  (q E N n) d e r i v a t i v e  

x ~ R n has  t h e  p r o p e r t i e s :  
o 

i) Dq6 I 0 E A V p c N n 
X 0 P " 

Dq~ x 
o 

of the Dirac delta distribution in 
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(20)  

@ ( x - x  o)  = 0 c Ap , V P < ~n , 2) • Dq6xo 

f o r  e v e r y  @ ¢ C~(R n)  w h i c h  s a t i s f i e s  

D r y ( 0 )  = 0 , ¥ r ¢ A ~ , r ~ p o r  r ~ q 

in particulax 

3) ( X - x o ) r  • Dq6xo = 0 ¢ A p  , V p ¢ N n , r ¢ N n , r $ p and  r ~ q 

Proof 

l) Assume 

holds 

E = (s x I x c R n) . According to 3) in Theorem 2, chap. i, §8, the relation 

: Dqs x + IQ(V(p) , 2C)SI) E Ap 
Dq6xo o 

= 0 e ~ , only if Dqs e IQ(V(p),TQSI) . But, obviously therefore, Dq6xo Xo 

DqSxo E T Z . Thus Dq6 x° = 0 ~ Ap implies DqSxoe T Z n IQ(v(p),TQSI) c T n I = 0 

and the relation Dqs ( 0 is absurd due to (4). 
X 
O 

2) According again to 3) in Theorem 2, chap. i, §8, the relation holds 

(21) ~(X-Xo) • Dq6 x : ~(X-Xo) • Dqsxo + IQ(v(p),TQS I) E 
o 

Define v e W by 

v(~)(x) = ~(X-Xo) • Dqs x (~)(x) , ¥ ~ ~ N , x E R n , 
O 

then (21) becomes 

(22) ~(X-Xo) • Dq6 x = v + IQ(V(p),TQSI) e Ap 
O 

We shall prove that 

(23) v c IQ(V(p),TQS1) 

and then, due to (22), the proof of 2) in Theorem i will be completed. First we no- 

tice that v c S since ~ ~ C~(R n) and (4). Actually, v c V since r < q in 
O O 

( 2 0 ) .  Thus  

(24)  Dry ~ V V r c N n 
O ' 

, , i 6  Assume now r ~ N n r < p then (20) and (S) will imply that Dry e which to- 

gether with (24) and (19) will give 

Dry c 16 n V c V Y r c N n 
o ' , r~p 

That relation implies v c V(p) and the proof of (23) is completed. 

3) It results from 2) choosing ~(x) = x r , V x e R n VW 
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Remark 1 

The relations in 3) in Theorem I, describing the productswithin the algebras contain- 

ing the distributions between polynomials and derivatives of the Dirac ~ distribution 

are identical with the usual formulas (I) within D'(R n) , except when r ~ p . Howev- 

er, even in that case, the relations proved in the algebras are also valid in D'(Rn). 

For instance, in the one dimensional case n = ] , the relations in 3) in Theorem I, 

imply for any p E N and x e R 1 : 
o 

(X_xo)P+l . = (X_xo)P+l ~ = . .p+l DP-16 = 0 e A (25) ~x D~x "'" = [X-XoJ " x p ' 
o o o 

(X-xo)q+l" Dq6xo = 0 e Ap , V q e N , q a p (26) 

The nontriviality of the powers of Dirac distribution derivatives is given in: 

Theorem 2 

In case 

(27) V c I ~ n V 
o 

the relations hold 

Dq~ x Ap R n N n ( )k ~ 0 e , V p e ~n , x ° c , q ~ , k ~ N , k 1 
o 

Proof 

As sume 

holds 

X = (s x I x ¢ R n) . According to 3) in Theorem 2, chap. I, §8, the relation 

(Dq~ x )k = (Dqs x )k + IQ(v(p),TQS1) c Ap 
o o 

therefore, defining v ~ Y by v = (Dqs x )k , the theorem is valid, only if 

v ~ I Q ( v ( p ) , T Q S  1) . o 

Assume, i t  i s  f a l s e ,  t h e n  (27) and (2) imply f o r  a c e r t a i n  P ~ N the  r e l a t i o n  

v(~)(Xo) = 0 , V ~ ~ N , V ~ p 

which due to the definition of v , will result in 

Dqs x (V)(Xo) = 0 , V v c N , v ~ p o 

o 

However, that relation obviously contradicts (6) ~7V 

The nontriviality of the product of Dirac distribution derivatives concentrated in the 

same point of R n can be obtained in special cases: 

Theorem 3 

In case (271 in Theorem 2 is valid, there exist Z ~ Z~ such that in the corre- 
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sponding algebras Ap , p • A n , the relations hold 

Dq°~ Dqk6x R n Xo " ' "  " o # 0 • Ap , V p e ~ n  , Xo • , k c N , 

q o  ' " ' "  ' q k  ¢ Nn 

Proof 

Assume 

to 3) in Theorem 2, chap. i, §8, the relation holds 

E = (s x I x • R n) with s x given in the proof of Corollary I, §7. According 

= Dqos ... Dqks 
x x 
o o 

( 2 8 )  D q ° 8  . . .  • Dqk8 
x x 

o o 

Define v • W by 

( 2 9 )  v = D q ° s  • . . .  D q k s  
x x 

o o 

+ IQ(v~),r + s 1) • Ap 

then, due to (28), the theorem holds only if v ~ IQ(v(p),TQSI) . 

v c IQ(V(p),TQSI) , then (27) and (2) imply for a certain ~ c N 

Assume 

the relation 

v(v)(x o) = 0 , v v • N , v ~ 

Now, (29) gives 

Dq°sx (~)(x o) " ... Dqksx (~)(x o) = 0 , V V • N , ~ ~ 
o o 

which implies the existence of 0 ~ i ~ k such that Dqisx (v) (Xo) vanishes for infi 

nitely many values of ~ • N . o 

However, that contradicts the fact that DP~(0) = 1 / K > 0 , ¥ p c N n , established 

in the proof of Corollary i, §7 VV 

An expected property of the product of two Dirac distribution derivatives concentrated 

in different points in R n , is given in: 

Theorem 4 

In case (19) in Theorem 1 is valid, one obtains the relations 

D q6 " Dr6 = 0 c A V p c A n x,y • R n x ~ y , q,r c N n 
x y p ' ' , 

Proof 

Assume 

holds 

(30) 

E = (s x I x c R n) . According to 3) in Theorem 2, chap. i, §8, the relation 

Dq~ x • Dr~y = Dqs x • Drsy + IQ(v(p),TQSI) c Ap 

Denoting v = Dqs • Drs x Y , the relation (5) together with x # y implies 

Dhv • I ~ n V o , ¥ h ~ N n. Therefore v ~ V~) c IQ(v(p),TQSI] and the relation 

(30) will end the proof ?V? 
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In the case of derivative algebras, the relations in 3) in Theorem 1 - see also (25) 

and (26) in Remark 1 - will be supplemented in Theorem 5. For the sake of simplicity, 

the one dimensional case n = 1 is considered only. 

Theorem 5 

In case (19) in Theorem 1 is valid, one obtains the relations 

(X_Xo) q . (Dq6 x )k = 0 c A , V p ~ N , x c R 1 , q ~ N , 
o P o 

q e p+l , k ~ N , k e 2 

Proof 

Assume 

tion 

E = (s x I x e R I) . According to i) and 4) in Theorem 3, chap. i, §8, the rela- 

1 q+l 
Dp+l((X_Xo ) . (Dr~x)k) = (q+l)(X_xo)q • (Dr~x)k + 

(31) o o 

. .q+l )k-i Dr+16x + LX-Xo) • k • (Dr6x 
O O 

holds in Ap , for any q,r,k c N . Now, due to 3) in Theorem i, one obtains 

• = 0 6 A , V q,r c N , q ~ p , q ~ r (32) (X-xo)q+l Dr~xo P 

Therefore, (31) and (32) imply in Ap the relation 

1 q+l 
(33) Dp+l((X-X°) " (Dr~xo)k) = (q+l(X_Xo) q . (Dr~xo)k , 

V q,r,k c N , q -> p , q >- r , k -> 2 

But, the product in the left side of (33) is computed in Ap+ 1 and according to 3) in 

Theorem i, one obtains 

(34) (X-xo)q+l • Dr6x = 0 c A , V q,r c N , q e p+l , q e r 
o p+l 

Taking r = q , the relations (33) and (34) will end the proof WV 

An example for the application of Theorem 1 is given in: 

Proposition 3 

The Riccati differential equation 

y, x q+r y (y+l) + Dr+l~(x) with x c R I q,r c N 

has in the algebras Ap , p ~ r , the general solution 

y(x) = 1 / (c exp (-x q+r+l / (q+r+l))-l) + Dr~(x) , x c R 1 , 

provided that (19) is fulfiled. 

q_>l , 

c ~ ( - p % 0 ]  , 
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Proof 

Assume c • R 1 and define ~ ~ C~(R I) by 

~(x) = c exp (-xq+r+i/(q+r+l)) - 1 , x • R 1 , 

then 1 / ~ • C~(R I) , for c c (-~,0] . Therefore 

T = 1 / ~ + Dr6 E D'(R I) c Ap , V p c N , c ~ (-~,0] . 

Since ~ , with p e N • are associative, commutative and with the unit element 

1 • C~(R I) , one obtains in these algebras the relation 

x q+r • T • (T+I) = x q+r • (Dr6) 2 + 2 x q+r • (Dr6) • (I/~) + 

+ x q+r " - --[i/~) 2 + x q+r " - -(Drd) + x q+r " (I/~) 

provided that c e (-~,0] . But, due to 3) in Theorem i, one obtains in A , with 
P 

p ~ r , the relation 

x q+r • Dr6 = 0 • A 
P 

since q + r > r , as q ~ 1 . Therefore, one obtains in the algebras Ap , with 

p ~ r , the relation 

x q+r • T • (T+I) = x q+r • (i/~) • (i/~+i) , V c • (-~,0] , 

which means that T is a solution of the considered Riccati equation VVV 

§5. FORMULAS IN QUANTUM MECHANICS 

In the one dimensional case n = 1 , the Dirac 6 distribution and the Heisenberg dist 

ributions 

6+ = (~ + ( l / x )  / "rri) / 2 

6 = Ca - (l/x) / ~ i )  / 2 

satisfy the formulas, [108], given in: 

Theorem 6 

There exist Z ~ Z 6 and regularizations (V,TQSI) (see the beginning of §4) 

such that within the corresponding algebras Ap , p e N , the relations are va- 

lid: 

(35) (6)2 _ (l/x) 2 / 2 = _(i/x 2) / z2 

(36) (6+) 2 = -D6 / 4~i - (I/x 2] / 4z 2 

(37) (6_) 2 = D~ / 4~i - (i/x 2) / 4~ 2 

(38) 6 • (l/x) = -D6 [ 2 
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P r o o f  

Assume '~ ~ D(R I)  w i t h  f ~ ( x ) d x  = i and  s a t i s f y i n g  ( 8 ) ,  t h e n  s~ g i v e n  by  (7)  w i l l  
R I 

b e l o n g  t o  Z 
o 

D e n o t i n g  Mq = s u p  { [Dq~(x)  l [ x ~ R 1 } , f o r  q e N , and  a s s u m i n g  t h a t  

s u p p  ~ c [ - L , L ]  , f o r  a c e r t a i n  L > 0 , one  o b t a i n s  

R 1 • • L q V q , ~  ~ N , x E , [ x q+l Dqs~ (W) (x) I <- Mq , 

therefore, s~ is a '6 sequence' according to [106], [108]. 

Assume I = (s x I x c R 1) e Z 6 such that s o = s~ . Define the sequence of smooth func- 

tions t £ W by the convolutions t(~) = s~(w) * (i/x) , with w ~ N . Then, obviously 

t ~ S and < t , " > = i/x 
o 

Denote by Pt the vector subspace in S O generated by { Dqt I q ~ N } , then 

(Vo®UQT Z) n h : o 

according to Lemmas I and 2, below. Therefore, one can choose a vector subspace S I in 

S which satisfies 
o 

(39) v ° QT~ Qs I : s o 

(40) UQp t c S I 

Taking now T = T Z , the relations (59) and (40) will imply (16) and (17), therefore 

(V,T + $1) will be a regularization. 

Since s$ ( T l = T and t ~ Pt c S I , one obtains according to 3) in Theorem 2, chap. 

I, §8, the relations 

(41) 6+ = (s~+t/~i) / 2 + IQ(v(p),TQS I) ~ Ap 

(42) 6_ = (s~-t/~i) / 2 + IQ(v(p),TGS I) ~ Ap 

(43) 6 • (l/x) = s~ • t + IQ(v(p),TQSI) ~ Ap 

Define the sequences of smooth functions t I , t 2 , t 3 c W by 

(44) t I = (s~+t/wi) 2 , t 2 = (s~-t/~ri) 2 , t 3 = s~ • t 

It was proved in [108] that t I , t 2 , t 3 ( S o and 

( 4 5 )  < t I , " > = -D6 / z i  - ( 1 / x  2)  / 72 

(46) < t 2 , " > = D6 / ~i - (i/x 2) / ~2 

(47) < t 3 " > = -D6 / 2 

The relations (41-43) and (45-47) will give through (44), the required relations (36- 

38). It only remains to prove (35). From the definition of 6+ it follows that in each 

algebra Ap , with p E N , the relation holds 

(6+) 2 = (@+(i/x)/~i) 2 / 4 = (6) 2 / 4 - (i/x) 2 / 4~ 2 + 6 • (l/x) / 2~i 
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which compared with (36) and (38) will give (35) WV 

And now, the two lemmas concerning distributions in D'(R I) needed in the proof of 

Theorem 6. 

Denote by D~(R I) the set of all distributions in D'(R I) with support a finite sub- 

set of R 1 . Denote by S 6 the set of all weakly convergent sequences of smooth func 

tiens s e S o which generate distributions <s,.> in D~(R I) . Finally, denote by 

D~(R I) the set of all distributions T ¢ D'(R I) such that E %rDrT ¢ D~(R I) for 

C 1 hq ~ 0 . o~r~q certain q ~ N , %r ¢ , 

Lemma i 

For t ¢ S ° denote by P t  

{ Dqt  ] q ¢ N } . I f  t ~ 0 

the vector subspace in S generated by 
O 

• then (UQS~) n Pt = O ¢=~<t,'> ~ C~(R I) + D~(R I) 

Proof 

The implication ~. Assume, it is false and let 

t i O . Then 

s ¢ (UQS 6) n Pt be such that 

(48) s = u(~) + t I = )2 % Drt 
r 

o_<r~_q 

for certain ~ ¢ C°°(RI) , t I c S~ , q ¢ N , 

Denote P(D) = Z X D r . Let X ¢ C~(RI) 
r 

o<_r~_q 

(49) t 2 = t - u(x) ¢ S o , < t 2 , • > ~ D'(R I) 

since P(D)t 2 = t I , due to (48), while t I ¢ S~ . But (49) implies 

(R I) '(R I) contradicting the hypothesis. <t,'> = X + <t 2 , '> ~ C°° + D O 

h r ~ C 1 , %q $ 0 

be such that P(D)x = ~ . Then 

Now, the implication ~ . Assume, it is false and <t,'> ¢ C=(R I) + D~(R I) . "Cnen 

<t," >=~+<t I ,. > 

such that s = P(D)t I e $6 !~erefore, <P(D)t,'> = with ~ e C~(R I) and t I ¢ S o 

= P(D)~ + <s,'> , hence P(D)t = u(~) + s + v , for certain v e V . It follows that 
O 

P(D)t e UQS~ . Now, if P(D)t ~ O then (UQSd) n Pt D P(D)t ~ O contradicting 

the hypothesis. On the other side, if P(D)t ~ O then P(D) <t, "> = <P(D)t,'> = 

= 0 ¢ D'(R I) , hence <t,.> ¢ C~(R I) , therefore t c UQS6 , since 7/0 c S~ . One 

obtains finally (UQS~) n Pt D t 40 again contradicting the hypothesis WV 

Lemma 2 

(i/x m) ~ C~(R I) + D'(R I) , ~ m ¢ N , m -> 1 . 
u 
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Proof 

Assume, it is false. Then 

(50) 

for  c e r t a i n  

(51) 

for certain 

that 

i/x m = @ + T 

tp ~ C°~(R1) and T e D' (R 1) Hence 0 

T t =X RI\ { 0} 

X e C°°(RI \ {0} )  . But,  accord ing  to  the d e f i n i t i o n  o f  D ' (R I) it follows 

(52) S = ~ %tOrT ¢ D~(R 1) 
o~r~-q 

for certain q c N ~r ~ C1 % ~ 0 . Then. , , q 

S 1 = S ] ¢ D~(R I \ { 0 } )  (53) RI\{0} I 

Now, (51-53) imply 

(54) S 1 = P(D)x e C#°(RI\{0}) 

where P(D) = E X D r . As 6 ¢~ n D~ = {0} the relations (53) (54) result in 
r ~ o~r~q 

S I = 0 which together with (50-52) gives 

P(D)(1/x TM) = P(D)~ on RI\{0} 

Computing the derivative in the left side, one obtains 

(m+r-l)! = xm+q Z ( -1 ) r  ( m - l ~  X x q - r  P(D)~(x) 
! r o~r~q 

Taking the  l i m i t  fo r  x + 0 , one o b t a i n s  

g x ¢ RI\{0} 

(m+q-l)! X = 0 
( -1)q (m- l ) :  q 

contradicting the assumption that l # 0 VVV 
q 

§6. A PROPERTY OF THE DERIVATIVE IN THE ALGEBRAS 

In the present section, the case of derivative algebras containing 

sidered. 

According to the general result in I) in Theorem 3, chap. 1 

ings within the algebras 

D qp+q : Ap+q ÷ Ap , p ~ N , q e N 

coincide on C~(R I) with the usual derivatives 

will be strengthened in Theorem 7. 

D'(R I) will be con 

, §8, the derivative mapp- 

Dq of smooth functions. That result 
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First, we notice that due to the inclusion T Z c T , the same I) in Theorem 3, chap. i, 

§ 8, implies that the derivative mappings within the algebras coincide on 

C~(RI)QD~(R I) with the usual distribution derivatives. 

Theorem 7 

oo 1 
G iven  any  d i s t r i b u t i o n  T • D ' ( R  1) \ (C ( R ) + D ~ ( R 1 ) )  t h e r e  e x i s t  r e g u l a r i z a t i o n s  

(V,TQS1) s u c h  t h a t  w i t h i n  t h e  c o r r e s p o n d i n g  a l g e b r a s  Ap , p ~ N , t h e  d e r i v a -  

t i v e  mappings coincide on C~(R I) + D~ (R I) + M T with the usual distribution de- 

rivatives, where M T is the vector subspace in D' (R I) generated by 

{ T , DT , D2T .... } . 

P r o o f  

A s s u m e  T = < t , . >  f o r  a c e r t a i n  t e S . T h e n ,  a c c o r d i n g  t o  Lemma l ,  §5 ,  
o 

(UQS~) n P t  = 0 . But, obviously S~ = VoQT z , for any Z ¢ Z~ • Therefore, given 

Z ~ g~ , one can choose a vector subspace S I in S o such that 

(55) VoQ~ZQs I = s o 

(s6) uGp t c s I 

Taking T : T~ , the relations (55), (56) will imply (16) and (17), therefore 

(V,TQSI) will be a regularization. Noticing that 

H T:{<s,'> I s ~pt } 

and taking into account i) in Theorem 3, chap. i, §8, the proof is completed ~V 

§7. THE EXISTENCE OF THE SEQUENCES IN Z 
o 

In  o r d e r  t o  p r o v e  t h a t  ( s e e  §3) 

z * ~ , v x ~R n , 
x o 
o 

it is obviously sufficient to show that Z ~ ~ . In this respect, a class of sequen- 
o 

ces s belonging to Z ° will be constructed by a proper generalization to n > 1 

dimensions of the method in (7) and (8). 

Suppose ~ e D(R n) such that ~n ~(x)dx = I and define so • W by 

(57) s~(V) (x) = UI(V) " . . .  " ~n (~)  • ~ ( l ~ l ( u ) x  I . . . . .  Un(U)x n)  , 

V V c N , x = (x I ,..., x n) ~ R n 

where the mapping 

(58) N ~ ÷ U(~) = ( U I 0 ) ) , - - . , U n ( U ) )  c N n 



is constructed in (59-62). 

First, define 

( 59 )  

D e f i n e  a l s o  

(60) 

D e f i n e  now 

( 61 )  
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N ~ V ÷ k(~) e N , by (see §3): 

k(0) = 0 and k(v+l) = k(v) + £(n,v+l) ~ V 9 E N . 

N By ÷ h(v) E N , by 

h(0) = 0 and h(v+l) = h(v) + ~ + 1 , V ~ E N . 

N ~ ~ ÷ e(v) E N n , by 

e ( V )  = ( h ( v )  . . . .  , h ( v ) ) )  , V V e N . 

Finally, define (58), by 

( 6 2 . 1 )  ~ ( 0 )  = ( 1 , . . . , 1 )  c N n 

( 6 2 . 2 )  { p ( k ( v ) + l )  . . . .  , # ( k ( V + l ) )  } = P ( n , v + l )  + e ( v + l )  , V v e N . 

The mapping (58) is illustrated in Fig. 4) in the case of n = 2 . There, the set de- 

noted by M 4 can be written in terms of (62.2), as 

M 4 = { p ( k ( 3 ) + l )  , . . .  , p ( k ( 4 ) )  } = P ( 2 , 4 )  + e ( 4 )  

Lemma 3 

s~ satisfies (4) and (5). 

Proof 

It follows from the fact that 

lim pi(~__ = + J k~,oo 
V l_<i_<n VVV 

The basic property of the sequences s~ defined in (57-62) is given in: 

Proposition 4 

The following three conditions are equivalent: 

*) s~ ~ Z ° 

**) W(s~)(0) is column wise nonsingular 

***) D P ~ ( o )  ~ 0 , v p ~ N n ( s e e ( 8 ) )  

Proof 

Taking into account the definition of Z in §3 as well as Lemma 3, the conditions *) 
o 

and **) are obviously equivalent. It only remains to establish the equivalence between 

**) and ***). First) we compute W(s~) (0) . The relation (57) will give easily 

Dqs~(v)(0) = (p(~))q+e D%(0) , V q ¢ N n ~ ¢ N j ) 
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where 

(63)  

w h e r e  

e = ( 1 , . . . , 1 )  ~ N n . T h e r e f o r e  

W(s~)  (0) : A • B 

A = ( (1J(~>))P(CY)+e I x;,cY c N ) 

while B is a diagonal matrix with the diagonal elements 

(64)  DP(V)~b(O) , V ~ N 

Now, according to Theorem 8, below, A is columnwise nonsingular. Indeed, due to Lem- 

ma 4, below, it suffices to show that A satisfies (65). Assume given ~ E N . We 

choose m ~ N , such that a = £(n,m+l) - 1 ~ q and k(m) ~ ~ . Now, we choose 

Vo = k(m) + 1 ..... ~q = k(m+l) 

Then, the conditions *) and **) in (65) are obviously satisfied, while (62.2) and The- 

orem 8, will directly imply ***) in (65). Therefore A is column wise nonsingular. 

Now, the relations (63), (641 and Lemma 4, imply that W(s~)(0) is column wise nonsin- 

gular, only if DP(~)~(0) ~ 0 , V v c N WV 

And now, the main result of the present section 

Corollary 1 

Z x ~ 0 , V x o ~ R n 
o 

Proof 

According to Proposition 4, it suffices to show the existence of ~ ¢ D(R n) such that 

f ~(x)dx = 1 and DP~(0) ~ 0 , V p ¢ N n • 

Rn 

Define a : R n ÷ R 1 by ~(x I , ... ,x n) = exp (x I +...+ x n) and assume S c D(R n) 

such that B ~ 0 and ~ = 1 in a certain neighbourhood of 0 ¢ R n . Then 

K = [~ ~(x)S(x)dx > 0 

Defining ~ = ~ • S / K , one obtains the required function, since DP~(0) = I/K > 0 

V p ¢ N n WV 

In case arbitrary positive powers of the Dirac ~ distributions are to be defined with- 

in the algebras constructed in the present chapter (see Theorem 4, chap. i, g8 and 

chap. 4) one needs the result given in: 

Corollary 2 

Z x n W+ ~ ~ , V x ° ~ R n 
O 
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Proof 

Choosing 8 c C~(R n) 

fore st~ E Z ° n W+ 

in the proof of Corollary i, one obtains 

VVV 

oo n 
@ ~ C+(R ) and there- 

Lemma  4 

(65) 

T h e  infinite matrix of c o m p l e x  n u m b e r s  

singular, only if 

V ~,#cN: 

o c N , Vo ,..., Vo ~ N : 

* * )  6 -<v < . . .  < v 
o 

***) % o ............ % o 
o o 

a M o  0 . . . . . . . . . . . .  a.ooG 

A = ( a u o  [ V 0 E N) 

, o 

is column wise non- 

Proof 

I t follows easily from the definition in §3 VVV 

And now, the theorem on generalized Vandermonde determinants (for notations, see §3), 

whose present form, as well as proof was offered by R.C. King. 

Theorem 8 

Suppose given 

Then, for each 

tion holds 

w h e r e  

n c  N ,  n >  1 . 

a c N n , a > e : ( 1  . . . . .  1 )  ~ N n a n d  

( a + p ( 1 ) )  p ( 1 )  . . . . . . . . . . . . . . .  ( a + p ( 1 ) )  p ( ~ )  

(a+p ( £ ) )  pC1) . . . . . . . . . . . . . . .  ( a + p ( ~ ) )  p ( £ )  

p ( j )  = ( p l ( j ) , . . . , p n ( j ) )  , f o r  1 < j < .% . 

£ ~ N , .% > 1 , t h e  r e l a -  

=--~-- --~--~ (pi(j))! > 0 
l~i~n l~j~i 
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Remark 

The Value of the determinant depends only on n,R,p(l),...,p(R) and does not depend 

on a . 

Proof 

Let US consider the determinant 

A, = det ((a+p(o))P(')) , where 15 u , T < R 

For 1 S T S R , the r-th column in Al is 

(a +P (1)) 
P,(T) p,(r) 

11 
x . . . x (a,+p,Ul I 

if a = (al ,..., an) . 

For Is-cQ, , consider the column 

p(l)p(r) 

I $&)P(r) 

where 0' = 1 whenever it occurs. 

We obtain then 
P(T) 

(66) C,(T) = Cl CT) + i ( ) (-a)p(T)-p(x) C 
P(X) 

1 (p(X)) 3 y l<TSR, 

where the sum i is taken for all 1 2 X 5 R such that ip(x)I < Ip( . 

Introducting the determinant 

A2 = det (pi) , where 1 2 o,~ 5 9. , 

it follows from (66) that A2 = Al , since C,(T) is the -r-th column in A2 . 

We shall now simplify A2 with the help of the function F : N xN + N defined by 

1 if k=O 
F(h,k) = 

h(h-l)...(h-k+l) if kxl 

which obviously satisfies the conditions 
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(67)  

(68) 

Now, for 

F ( h , k )  = 0 ~=~h  - k + 1 _< 0 * = * h  < k 

F ( h , h )  = h ! 

1 -< T <- ~ , we define the column 

(Pl(1) • pl(T)) .... × .F(Pn(1) , pn(T)) 

c 3 0 )  = 

F(P l (~ )  , P I G ) )  x . . .  × F(pn(~,) , p n U )  ) 

T h e n ,  it f o l l o w s  t h a t  

(69)  C3(T ) = C2('r  ) + Z ( - W ~ - - ( - j ) )  
jcJ 

w h e r e  

p ( 1 ) q  (~) 

( £ ) q ( ~ )  

, V 1 < T  < £  

( 6 9 o ! )  t h e  sum ~ i s  t a k e n  f o r  a l l  J = J1  u . . .  o J n  @ ~ 

w i t h  J i  c { 1 , 2 , . . . , p i ( ~ ) - l }  • f o r  1 <_ i -< n , 

(69.2) q (T)  = p ( Z )  - ( I J 1 E , . . . , i J n ] )  , w i t h  I J i [  d e n o t i n g  

t h e  n u m b e r  o f  e l e m e n t s  i n  J .  . 
1 

2]~e relation (69) can obviously be written under the form 

( 7 0 )  C3(T ) = C2(T ) + Z ( - - [ ~ - - ( - j ) )  C 2 ( X ( T , J  1 , . . . ,  J n )  ) , 
j e J  

w h e r e  ( 6 9 . 1 )  and  ( 6 9 . 2 )  a r e  s t i l l  v a l i d  a n d  X ( T , J  1 , . . . ,  J n )  e N 

b y  

p ( X ( z , J  1 , . . . ,  J n )  ) = p ( z )  - ( E J l l  . . . . .  I J n [ )  

therefore 

V 1 -< T-< ~ , 

is uniquely defined 

1 <- X ( T , J  1 . . . .  , J n )  -< ~ a n d  / X ( T , J  1 , . . . ,  J n )  l < l p ( z ) l  

Denoting by A 3 the determinant with the columns C3(I ),...,C3(£ ) , the relation (70) 

implies A 3 = A 2 and thus 

(71)  A 3 = A 1 

Now, the relation (67) gives for any 1 -< ~,T <- £ the equivalences 

--I [-- F(Pi(O) , pi(T)) -- 0 ~=* (3 l-<i-<n : pi(o) < Pi(T)) ~=* p(r) $ p(O) 
l_<i_<n 

]herefore, taking into account (68) and the form of the colturms C3(T ) , with I-<z-<Z , 

the relation (71) will end the proof VW 
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§8. STRONGER RELATIONS CONTAINING PRODUCTS WITH DIRAC DISTRIBUTIONS 

The stronger version of t he relations in 2) and 3) in Theorem i, §4, obtained in the 

present section is of the following type: Given a locally finite subset X c R n , a 

family of Dirac distribution derivatives (Dqa~ a I a c X) , with qa c N ~ , and a fa- 

mily (Ca I a ~ X) of functions Ca c C~(R n) whose derivatives up to a sufficiently 

high order vanish in 0 ¢ R n , one obtains within a subclass of the Dirac algebras 

constructed in§§2-4, the relations: 

(72) Z ~a(X-a) • Dqa6a(X) = 0 , x e R n . 

aeX 

~le mentioned Dirac algebras are constructed through a particularization of the proce- 

dure in §§2-4. Nkmely, the family of Dirac classes Z Z , with Z c Z 6 , defined in §3, 

will be replaced by a smaller family which possesses stronger properties. 

First, we restrict the representatians of the Dirac 6 distributions given by 

§3. 

Denote by g ~ 

(73) 

(73.1) 

(73.2) 

Z~ in 

the set of all Z = (s x I x c R n) e Z~ 

V X c R n , X locally finite: 

(supp Sx(V) I x c X) is locally finite, V v c N , 

V x E R n : 
o 

V neighbourhood of x ° , ~ ~ N : 

V ~ c N , ~ ~ p : 

Vn l__l supp Sx(~) = 
xcX\{x o} 

satisfying the condition 

The analog of Corollaries i and 2 in 7 is obtained in: 

Proposition S 

g~ ~ ~ and there exist Z = (s x I x ~ R n) c g ~ such that s x c ~/+ VxcR n 

Proof 

It results from the proof of Corollary 2, §7 

= Z ~ Now, for Z (s x I x c R n) e , denote by 

ted by all the sums 

Z Z X Dqs 
x~X qcN n xq x 

q4P x 

where X c R n , X locally finite, Px c N n 

WV 

T E the vector subspace in S O genera- 

and ~ c C I . One can notice that due 
xq 
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to (73.1), the definition of T E is correct. 

And now, the analog of Proposition 2 in §3: 

Proposition 6 

For each E • Z g , T Z is a Dirac class which is compatible with the Dirac 

ideal I ~ 

Proof 

First, we prove that ~ is a Dirac class, that is, it satisfies (17.1), (17.2) and 

(24) in chap. 2. Indeed, the conditions (17.1) and (24) result easily. Assume now 

t • T Z , t % O , then 

(74) t = E E ~ Dqs 
x•X qcN n xq x 

q<-Px 

where X c R n , X locally finite, nonvoid, Px ¢ Nn and lxq ~ CI" Moreover 

• X qo ~ Nn ' qo -< Px : ~ :~ 0 (75)  ~ x °  ' o Xoqo 

We show that (17.2) is satisfied for x given in (75). Assume, it is false and 
o 

(76) ~ p c N : V ~ • N , ~ -> P : t(~)(x o) = 0 

then (74) gives 

(77)  E 
x¢ X 

qEEN n %xqDqsx(U)(Xo) = 0 , ¥ ~ e N , v >- 

q-<Px 

Now, the condition (73.2) implies that one can take P such that (77) will result in 

(78) E h Dqs (U)(Xo) = 0 , %; ~ • N , u >- 
q•N n Xoq x o 

q-<Px 
o 

Using the same argument as in the proof of Proposition 2, §3, the relation (78) will 

contradict (75) ending the proof of the fact that T E is a Dirac class. It remains to 

show that T E and Z ~ are compatible. Since, obviously T E c T E and 16 , T E are 

compatible according to Proposition 2, §3, it suffices to prove that 

(79) I ~ n T E = O . 

Assume therefore t • I ~ n T 7' , t % 0 , then (74) and [75] hold again, since t • T Z . 

But t • I ~ and [2) will again give (76), thus the reasoning above, contradicting (75), 

will end the proof of (79) VVV 

Based on the above result we proceed to construct the Dirac algebras in which relations 

of type (72) are valid. 
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Suppose given E ~ Z ~ . 

16 T ~ T E For any ideal I in W , I ~ , compatible vector subspace T in S O , 

vector subspace V in I n V and vector subspace S 1 in S satisfying (16) and 
o o 

(17), one obtains a regularization (V,TQSI) . Then, for any admissible property Q, 

one can define Dirac algebras according to (18). 

The analog of Theorem 1 in §4, stating the validity of (72) within the algebras defi- 

ned above is obtained in Theorem 9. 

First, we shall specify within the algebras the meaning of expressions as in (72), or 

more general, of the form 

(80) E ~a(X-a) • ( E h 
a~X qcN n aq Dq~a) 

q~Pa 

whe re  X c R n , X l o c a l l y  f i n i t e ,  ~ a  ¢ C~(Rn) ' Pa  c N n and  Xaq ¢ C 1 

S u p p o s e  H = (h  a [ a e X) i s  a f a m i l y  o f  f u n c t i o n s  h a ¢ D(R n)  s u c h  t h a t  

(81) Y a c X : 

c R n V neighbourhood of ] Va ' a 

h = 1 on V a a 

(82) V a,b c X , a $ b : 

supp h a o supp h b = 

a : 

The existence of such families H results from the fact that X is locally finite. 

O b v i o u s l y ,  one  can  d e f i n e  

~ ( x )  = E h a ( X  ) • ~ a ( X - a )  , 
aeX 

and t h e n  ~ e C~(R n) . D e f i n e  W ¢ D , ( R  n)  

(83) T = Z Z l Dq~ 
aCX qCN n aq a 

q<Pa 

xE R 1 

by 

Lemma 5 

W i t h i n  t h e  a l g e b r a s  Ap , p ~ ~n 

p r o v i d e d  t h a t  (19)  i s  v a l i d .  

, the product ~-T does not depend on H , 

Proof 

Assume H' = (h a I a ¢ X) is an other family satisfying (81) and (82) and define 

~' ¢ c~(R n) by 

, R 1 ~ '  (X) = Y: ha (X ) • ~Pa(X-a) x 
x£X 
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We shall prOve that 

(84) ~b' • T = @ • T 

holds within the algebras 

relation (83) above, the inclusion 

T= E 
a¢X 

since t = E E 
acX q¢N n 

q-<Pa 

Therefore, 

Z X Dqs 
qCN n aq a 

q~Pa 

Dqs c 7 E aq a 

% • P ¢ ~n . I n d e e d ,  a s s u m e  E = (s  x ] x ¢ R n)  , t h e n  t h e  

T E c T and  3) i n  Theorem 2,  c h a p .  1 ,  §8,  g i v e s  

+ IQ(v(p),T(~SI)e % 

and T = <t,'> 

to • T = u(to) • t + I Q ( v ( p ) , T Q S 1 ) ¢  Ap 

4 ' '  T = u ( @ ' ) "  t + IQ(v(p),TQS1)E % 
hence 

(85) tO" T - ~ • T = u(to'-to) • t + IQ(v(p),T(~SI) c Ap 

But, due to (73.2), t satisfies the condition 

¥ x ERn\X: 
O 

(86) ~ V neighbourhood of x o , ~ c N : 

V x) ~ N , ~) _> p : 

V n supp t(~) = 

while, due to (81), u(to'-to).t satisfies the condition 

V X o C X :  

(87) ~ U neighbourhood of x : 
O 

(l~'-to) • t(v) = 0 on U , V ~) c N 

Now, the relations (86) and (87) will imply 

Dr(u(to'-to)-t) ¢ f 6 o V ° , V r ¢ h ~ 

therefore, (19) and (85) will give (84) VVV 

Lemma 6 

W i t h i n  t h e  a l g e b r a s  % , P ¢ ~n , t h e  r e l a t i o n s  h o l d  

( E h a ( X ) ' t o a ( X - a ) )  • ( E E X Dq6a) = E t o a ( X - a ) (  E 
aCY aeY qcN n aq acY qeN n 

q~Pa q~Pa 

for any y c X , Y finite, provided that (19) is valid. 

~aq Dq6a) 

P r o o f  

Assume a , b  ¢ Y , a + b and  q ¢ N n , t h e n  
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(88) ha(X)  " ~ a ( X - a )  • DC~b = 0 e A 
P 

I n d e e d ,  a s s u m e  ~ = (s  I x c R n)  , t h e n ,  a c c o r d i n g  t o  3) i n  Theorem 2,  c h a p .  1 §8 ,  =< 
and  t h e  i n c l u s i o n  Z c T , one  o b t a i n s  

(89) ha(X)  • ~0a(X-a) • Dq6 b = U(ha)  • U ( ~ a ( ' - a ) )  Dqs b + IQ(V(p),TQ)S1) • Ap 

B u t ,  (81)  and (82) i m p l y  t h a t  b $ s u p p  h , t h e r e f o r e ,  one  o b t a i n s  
a 

(90) D r ( u ( h a )  • u ( t P a ( - - a ) )  DqSb) • ira n V ° , ¥ r • N n 

t a k i n g  i n t o  a c c o u n t  t h a t  s b e Z b . Now, t h e  r e l a t i o n s  (19)  and  (90)  t o g e t h e r  w i t h  (89)  

will imply (88) 777 

Ap • p c ~n the following definition The Lemmas 5 and 6 suggest within the algebras 

of the expressions in (80) 

Z ~a(X-a) • ( Z ~ Dq~a) = ( 2 -~a(X-a)) • ( Z Z X Dq~a) 
(91) a•X qcN n aq ha(X)  aeX a•X q•N n aq 

q~Pa q~Pa 

whe re  H = (h a ] a • X) i s  any  f a m i l y  o f  f u n c t i o n s  h a ¢ D(R n)  s a t i s f y i n g  (81)  and 

(82). 

Theorem 9 

(92)  

In case (19) is valid, the following relations hold in the algebras Ap , with 
pe ~n : 

I) 2 ~a(X-a) • Dqa~a(X) = 0 • A 
a•X P ' 

f o r  e a c h  X c R n , X l o c a l l y  f i n i t e ,  qa  ~ Nn and ~ a  e ~ ( R  n)  

satisfying the condition 

Dr~a(0) 0 • %/ a e X • r • N n = , r < p o r  r -< qa  " 

In particular• if p • N n then 

r Dqa~ 2) Z (x-a) a . (x) = 0 • A 
a•X a p " 

for eack X c R n X locally finite• 

ra ~ qa " 

ra • qa • Nn • ra ~ p and 

Proof 

2 = (s x I x e Rn) and H = (h a I a c X) is a family of functions i) Assume 

h • D(R n) satisfying (81) and (82). Then, according to (91) 
a 

(93) Z ~a(X_a). Dqa~a(X ) = (Z ha(X)-~a(X_a)). ( Z Dqa~a(X)) 
aeX a•X aeX 
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We shall prove that the right side of the above relation,denoted by S , vanishes 

in A . Indeed, S ~ D' (R n) , thus, taking into account 3) in Theorem 2, chap. I, 
P 

§8, and denoting 

v = u ( Z h • ~a(--a)) • Z Dqas 
a£ X a ae X a 

one obtains 

( 94 )  S = v + I Q ( V ( p ) , T C ) S l )  E Ap , 

since Z Dqasa • ~ c T . 

a•X 

But v • V due to the fact that (92) holds for r • ~ , r -< _ qa " Therefore 
o 

(95) Dry • V ° , V r ~ N ~ . 

Assume now r ~ N n , r < p , then (90) and (5) imply that Dry ~ /o which toge- 

ther with (95) and (19) will give 

Dry ¢ / n Vo c V , ¥ r • N n , r < p  . 

T h a t  r e l a t i o n  i m p l i e s  v • V(p )  , h e n c e  d u e  t o  ( 9 4 )  t h e  e x p r e s s i o n  i n  ( 9 3 )  v a n i -  

s h e s  i n  A 
P 

T 
follows from I) taking ~ . ~barX~ = x a , %/ a • X , x • R n WV 2) It 



C h a p t e r 6 

LINEAR INDEP£NDENT FAMILIES OF DIRAC DISTRIBUTIONS 

§i. INTRODUCTION 

The representations of the Dirac ~ distribution used in chapters 4 and 5, were given 

by weakly convergent sequences of smooth functions satisfying a condition of strong 

local presence (see (6) in chap. 5, §3). A first consequence of that condition was 

the nonsymmetry of these representations• implying that the Dirac distribution deri- 

vatives D°~ of any order q e N n , are not invariant within the algebras under the 

transformation of coordinates 

R n 9  x + a • x c  R n , a = - 1  , 

{ s e e  p c t .  2 i n  Remark 2,  c h a p .  5 ,  § 5 ) .  

In the present chapter the following stronger result is proved within the algebras 

containing the distributions in D' (R n) : Applying to any given derivative D q~ , 

q ~ N n, of the Dirac distribution the transformations of coordinates 

R n B x ÷ a " x c R n R 1 , a c  \ { 0 }  , 

• . , c R I \ { 0 }  , l i n e a r  i n d e p e n d e n t  one o b t a i n e s  f o r  p a i r  w i s e  d i f f e r e n t  a ° . . a m 

Dq6 ( a  o x )  . . . .  , Dq6 ( a m X )  . 

In  §4 ,  t h a t  r e s u l t  i s  e x t e n d e d  t o  i n c l u d e  a l s o  g e n e r a l i z e d  D i r a c  e l e m e n t s  o f  t h e  fo rm 

l i m  n ~  ( a x )  
a->Co 

The above  p r o b l e m s  a r e  a p p r o a c h e d  w i t h i n  a g e n e r a l  f r a m e w o r k  e s t a b l i s h e d  i n  §2,  where  

a r b i t r a r y  c o o r d i n a t e  t r a n s f o r m a t i o n s  w i t h i n  t h e  a l g e b r a s  a r e  s t u d i e d .  

§2. COMPATIBLE ALGEBRAS AND TRANSFORMATIONS 

Suppose  g i v e n  Z ~ Z 6 {see  c h a p .  S, § § 2 - 4 ) .  

G iven  an i d e a l  I i n  W , I = I ~ , a c o m p a t i b l e  v e c t o r  s u b s p a c e  

a v e c t o r  s u b s p a c e  V i n  I n Y and a v e c t o r  s u b s p a c e  S 1 i n  
o 

(i) VoQTQS 1 = S O 

(2) U c V(p) QTQS 1 , V p c ~n • 

it follows that 

T in S o , T = T Z , 

S such that 
o 

(V,TQSI) is a regularization, therefore, one can define for any ad 
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missible property Q the Dirac algebras 

(3) AQ(v, TQS 1 , p) , p 
~n 

denoted for the sake of simplicity by A 
P 

It will be assumed throughout §§2 and 3 that 

(4) v = f 6 n v 
0 

Given a mapping e : R n ÷ R n • a e C ~ called transformation, we define ~ : W ÷ W 

by 

( ~ ) ( ~ ) ( x )  = s ( ~ ) ( ~ ( x ) )  , v s ~ w ,  ~ ~ N  • x ~ R 1 , 

obtaining thus a homomorphism of the algebra W . 

An algebra A and the transformation ~ are called compatible, only if 
P 

IQ(v(p),T +(~SI )A and AQ(v(p),T +(~SI)~ are invariant of ~ : W ÷ W . 

In that case, one can define the algebra homomorphism ~ : A ÷ A given by 
P P 

~(s+IQ(v(p),TGSI) ) = ~(s) + IQ(v(p),TGS I) , V s ~ AQ(v(p),TQSI) 

A transformation ~ : R n ÷ R n a e C ~ is called invertible, only if 

-I R n E C ~ : R n ÷ exists and -I 

Proposition i 

An algebra A 

AQ (V (p),TQS~) 

and an invertible transformation ~ are compatible• only if 

is an invariant of a : W ÷ W . 

Proof 

The necessity is obvious. Now, the sufficiency. One needs only to show that 

IQ(v(p),T~SI)~ is an invariant of ~ : W ÷ W . But, IQ(V(p),TGS I) is the ideal in 

AQ(v(p),TGSI) generated by V(p) , therefore, due to Lemma 1 below, it is an invari 

ant of a : W ÷ W WV 

Lemma 1 

If ~ is an invertible transformation, then 

of ~ : W ÷ W . 

V ( p )  , w i t h  p E ~n , are invariant 

Proof 

Since ~ is invertible• one obtains easily 

(s) ~ ( v  o) c V ° 

The relation 
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(6) a(I ~) c I ~ 

is also valid. Indeed, assume w c I ~ and x c R n given. We have to show that aw 
o 

satisfies in x ° the conditions (2) and (3) in chap. S, §2. Denote x I = a(Xo) . 

Then w and x I satisfy (2) in chap. 5, §2, thus (aw)(~)(x o) = w(~)(Xl) = 0 , for 

V e N big enough. 

But w and x I also satisfy (3) in chap. S, §2, for a certain neighbourhood V 1 of 

x I . Assume V is a neighbourhood of x ° such that a(V) c V 1 . Now, if 

V 1 n supp w(~) = ~ for v c N big enough, then also V n supp (~w)(~) = ~ for 

e N big enough. On the other side, assume that V 1 n supp w(v) shrinks to {x I} , 

when ~ ÷ ~ . Now, due to the continuity of ~-i it will follow that V n supp(~w)(v) 

shrinks to {x o} , when v ÷ ~ , and the proof of (6) is completed. The relations (5) 

and (6) will obviously imply ~(V) c V , since (4) was assumed valid, lhen, it is ea- 

sy to see that ~(V(p)) c V(p) , V p ~ A n WV 

The result in Proposition 1 above, justifies the following definitions. 

Suppose M is a set of invertible transformations. We shall say that a subalgebra A 

in W has the property PM ' only if A is an invariant of each ~ : W ÷ W , with 

~ ~ M . 

Obviously, PM is an admissible property (see chap. I, §6). 

The algebras (3) will be called M-transform algebras, only if Q is stronger than 

PM " 

Corollary 1 

An M-transform algebra A and a transformation 
P 

c M are compatible. 

Proof 

The subalgebra AQ(v(p),T + SI) 

form algebra and e c M WV 

is invariant of ~ : W ÷ W since A is an N-trans- 
P 

§3. LINEAR INDEPENDENT FAMILIES OF DIRAC DISTRIBUTIONS 

Denote by M the set of invertible transformations 

, R n defined by aa(X) = ax V x e . 

: R n ÷ R n 
a , with a ~ RI\{0} , 

T h e o r e m  1 

The Dirac distribution derivative transforms Dq~(aoX),... ,DqG (amX) with given 

Ap A n q ~ N n , are linear independent within the Mo-transform algebras , p ~ , 
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- ¢ RI\{0} are pair wise different. provided that m < Ipl and a ° ,..., a m 

Proof 

,.. C I Assume• it is false and k ° ., k m c are such that 

(7) koDq6(aoX) + ... + kmDq@(amX) = 0 ~ A 
P 

(8) ] 0 ~ i ~ m : k. $ 0 
i 

Assume E = (s x I x ¢ R n) then 3) in Theorem 2, chap. I, §8, and the inclusion 

T Z c T give 

= + IQ(v(p),TQSI) ( A Dq6 Dqs ° p ' 

therefore 

kiDq@ + IQ(V(p),TGSI) ¢ % , ¥ 0 < i < m , (9) (aix) = ki~ai Dqs ° _ _ 

since A is an M -transform algebra. Denote 
p o 

(i0) v = E k.~ Dqs 
o~i<_m • a i o 

(7) and (9) imply v c IQ(v(p),TQSI) hence then 

(ii) v = ~ v. • w. 
o~j~h J J 

vj ¢ V(p) and wj ~ AQ(v(p),TGSI) . with 

Taking into account (4) above, as well as condition (2) in the definition of 16 

chap. S, §2, one obtains from (II) the relation 

V re N n , r<p : 

u e N  : 
(12) 

V ~¢ N, ~)>U : 

Drv(~) (0) = 0 

in 

Z therefore But s o o ) 

V re N n , oe N: 

(14) @ V ¢ N , V >- g : 

Drs (V)(0) ~ 0 
O 

since the matrix W(s o) 60] is column wise nonsingular (see chap. 5, §3). 

Now, the relations (13) and (14) result in 

Since m-< Ipl , the relations (i0) and (12) will give 

I E ki(ai )Irl] D q+r (13) L o<i< m So(V)(0) = 0 , V r e N n , r < p , 

Irl _< m ~ e N , ~ > U' • - ) 

for a suitable U' e N . 
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ki(ai )£ = 0 , V Z c N , Z ~ ]pl 
o~i~m 

Since m ~ Ipl and a ° ,..., a m are pair wise different, the known property of the 

Vandermonde determinant will imply k ° = ... = k m = 0 , contradicting (8) W? 

Corollary 2 

The family (Dq6 (ax) I a c RI\{0}) of Dirac distribution derivative transforms 

with given q e N n , is linear independent within the Mo-transform algebras 

§4. GENERALIZED DIRAC ELEMENTS 

Within D' (R n) , the operation 

(15) lim an~ S 
a_+O o a 

has a meaning for certain distributions S . For instance, if S = f c LI(R n) and 

K = D/n f(x)dx , then (iS) gives K~ . In case S = ~ , one obtains anea S = S 

thus (15) will give S = ~ . 

Within the M-transform algebras Ap , p c ~n , Ipl = ~ , the problem of the limit 

n R n (16) lira a ~ = lira an~(ax) , x c , 
a+oo a a_>=o 

becomes nontrivial due to Corollary 2 in §3. 

A class of algebras, similar to the ones used in §§2 and 3 will be constructed in this 

section and it will be shown in Theorem 2 that within those algebras, the limit in 

(16) exists and it is different of an6(ax) , with a e RI\{0} . 

The mentioned algebras are constructed by replacing the ideal I ~ defined in chap. S 

§2, with the smaller one I~ , consisting of all the sequences of smooth functions 

w c I ~ which satisfy the additional condition 

(17) w(~) vanishes outside of a bounded subset of R n , provided that 

~) e N is big enough. 

It is easy to see that 16 is indeed an ideal in W , actually a Dirac ideal. 

PropOsition 2 

For each E e Z6 , the Dirac class T E and the Dirac ideal I~ are compatible. 

Proof 

It follows from the inclusion I~ c 16 and Proposition 2 in chap. 5, §3 VW 
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Suppose now given Z ~ Z 6 . 

Given an ideal I in W , I = 16 , a compatible vector subspace T in S o , T = T E , 

a vector subspace V in I n V ° and a vector subspace S 1 in S o such that 

(IS) VoQTGs 1 : S O 

(19) U c V ( p ) Q T Q S  1 V p c A n 

it follows that (V,TQSI) is a regularization, thus, one can define for any admissi 

ble property Q the Dirac algebras 

(20) AQ(v,TQS 1 ,p] , p c ~n , 

denoted for simplicity by A 
P 

We shall assume in the sequel that 

(21) V = I~ n V ° 

Within the above algebras ~ , p c ~n , the limit in (16) will be obtained as given 

by a relation 

(22) lim an6(ax) = t + IQ(v(p),T(~SI)~ c PA 

with t c W , t(v) (b) n (b R n and = s(v) x) , V w ~ N , x ~ , where s c go 

b > 0 , limb = 

The entities of type (22) will be called generalized Dirac elements. 

Using a proof similar to the ones in Proposition 1 and Lemma 1 in §2, one obtains: 

Proposition 3 

An algebra A 

AQ(v (p) ,T QS~) 

and an invertible transformation ~ are compatible, only if 

is an invariant of a : W + W • 

b c RI\{0} • Then, one can define the algebra Suppose given b = (b v I v c N) , with w 

homomorphism ~b : W + W , where 

(c~w) (v) (x) = Ibvl n w(v)(b x) , V w ~ W , ~ ~ N , x ~ R n . 

We shall only be interested in the case when 

(23) lim b~ = + 

Since in the definition of compatibility between an algebra A and a transformation 
P 

a : R n ÷ R n given in §2, the transformation appears only through the generated algeb- 

ra homomorphism ~ : W ÷ W , it follows that the compatibility has actually been defi- 

ned between the algebras A and algebra homomorphisms of W . In the same way, the 
P 

definition of M-transform algebras given in §2, will still be correct if M contains 

besides transformations also algebra homomorphisms of W . 
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Proposition 4 

The algebra A 

AQ (Y(p )  , T Q S 1  p 

and the algebra homomorphism 

is an invariant of 0% . 

c~ a r e  compatible, only if 

Proof 

S e e  the proof of Proposition i, §2 and the following: 

Lemma 2 

Nn 
V(p) , with p E , are invariant of ~b " 

Proof 

Assume  

(24) lim by = + = 
12+oo 

First we prove 

(25) %4%) c f 6 

R n Indeed, assume w E I~ and x ° E given. First, we notice that due to (24), the se 

quence of smooth functions ~b w will obviously satisfy (17), since w E f~ satisfies 

that condition. We shall now show that ~b w satisfies in x o the conditions (2) and 

(3) in chap. S, §2. Indeed, in case x ° ~ 0 , the two conditions result easily from 

(24), while for x ° = 0 they are obvious. 

Now, we prove that 

( 2 6 )  ~b4V) c V 

A s s u m e ,  i n d e e d  v E V , t h e n  v ~ I 6  n V o t h e r e f o r e ,  d u e  t o  4 2 5 ) ,  i t  w i l l  s u f f i c e  t o  

show t h a t  ~b v E V ° , w h i c h  i s  e q u i v a l e n t  t o  p r o v i n g  

(27) lira [ v4~)4x)~(x/bv)dx = 0 , V ~ E D(R n) 

First, we notice that 

428) s u p p  v ( ~ )  c K , V v E N , V >- 

f o r  s u i t a b l e  K c R n , K b o u n d e d  and  ~ E N , s i n c e  v ¢ I ~  . A s s u m e  now X ~ D(R n )  

s u c h  t h a t  X = 1 on K . Due t o  ( 2 8 ) ,  t h e  r e l a t i o n  427)  w i l l  h o l d  o n l y  i f  

429) lira [ v(v)(x)x(x)~(x/b )dx = 0 , V ~ E D(R n) 
%~+0o 

But, for any ~ ¢ D(R n) , the sequence (~ I v E N) with ~(x) = X(X) ° ~4x/bv) , 

R n V x E , is convergent in D(R n) to ~(0) X • Therefore, (29) holds, since 

c y hence, the sequence (v(~)) [ ~ ¢ N) converges in N'(R n) to 0 vEY=f~nVo o 
Thus, the relation (26) is proved. It follows then easily that 
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~b(V(p))c V(p) , V p ( ~n . 

The c a s e  when lira b = -~ is similar WV 
k>+¢o 

Suppose given b = (b~ ] ~ c N) , with by c RI\{0} , satisfying (23) and denote 

= M o u {~b } where M o was defined in §3. 

As noticed above, one can define Mb-transform algebras A with p c ~n . According p • 

to Propositions 3 and 4, these algebras will be compatible with any B ~ M b • 

And now, the result concerning generalized Dirac elements. 

Theorem 2 

The Dirac distribution derivative transforms Dq6(aoX),...,Dq6(a~nX) and the ge 

neralized Dirac element derivative Dq~b6(X) , with given q E Nn • are linear 

independent within the Mb-transform algebras Ap , p c ~n , provided that 

R 1 c \ {0} are pair wise different. m ~ Ip] and a ° ,..., a m 

Proof 

• k m , k c C I are such that Assume, it is false and k ° ,. ., 

(30) koDq~(aoX) + -.- + kmDq~(amX) + k~bDq6(x) = 0 ~ Ap 

(31) k = 0 ~ ~ 0 ~ i ~ m : k i $ 0 

Assume Z = (s x l x c R n) then 3) in Theorem 2, chap. I, §8, and the inclusion 

TZ c T imply 

Dq8 = Dqs ° + IQ(v(p),TQSI) ~ Ap 

Since Ap is an ~b-transform algebra, it follows that 

(32) kiDqS(aix) = ki~a. Dqs ° + IQ(v(p),TQSI) c Ap , V 0 ~ i ~ m , 
i 

(33) kDq~bs(X) = k • t + IQ(v(p),TQS I) ~ Ap 

where 

(34) t(~)(x) = Lb~l n Dqso(~)(b~x) , V ~ ~ N , x ~ R n • 

D e n o t e  

(35) v = Z k.~ Dqs + k • t 
1 a .  o 

o_<i<m i 

then (30), (32) and (33) imply v c IQ(v(p),TQS I) 

(36) v = Z v. • w. 
o<j <h J J 

with vj. ~ V(p) and w.j c AQ(v(p),TQSI) • 

thus 
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Taking into account (21) above as well as condition (2) 

chap. 5, §2, the relation (36) will result in 

V r ~  N n , r < p  : 

(37) 
V ~ e  N ~>-~ : 

Dry(v) (0) = 0 

in the definition of I ~ in 

But m ~ Ip[ , therefore (35) and (37) will give 

I r l  k lbv[  n + l r l )  Dq+rso (V) (O) 0 
Z ki(ai) + = 

(38) o~i~m 

V r e # , r ~ p , I r l  ~ m , 

for a suitable ~' ~ N . 

~)c N, O->~ ' , 

Now, according to (14) in the proof of Theorem 1 in §3, the relation (38) results in 

(39) Z ki(ai )~ + klb~ I n+£ = 0 , V £ ~ N , % - < m 
o~i~m 

where for any given o c N , one can find suitable ~o ''''' ~E e N , ~o ''''' ~ ~ o 

But k ° ,..., k m , k , a ° ,..., a m are constant in (39). Therefore, (23) will imply 

t h a t  k must v a n i s h  s i n c e  ~ above can be a r b i t r a r y .  Then,  (39) becomes 

Z ki(ai )~ 0 , V £ e N , ~ < m = _ . 

o~i~m 

Since a ° ,..., a m are pair wise different, the known property of the Vandermonde de- 

terminants will imply k ° = ... = k m = 0 which together with k = 0 obtained above, 

will contradict (31) VVV 

Corollary 3 

The family (Dq6(ax) I a e RI\{0}) of Dirac distribution derivative transforms 

together with the generalized Dirac element derivative ~b Dq (x) with given 

q e N n , are linear independent within the Mb-transform algebras Alp , 

p e N n , ]pL = ~ 



C h a p t e r 7 

SUPPORT, LOCAL PROPERTIES 

§i. INTRODUCTION 

An important property of the distribution multiplication, namely its local character, 

[II], [61], [66-69], [783, which can be formulated as follows 

V S,S',T,T' ¢ D'(R n) , E c R n • E # ~ , open : 

• ) S • T , S' • T' exist in D'CRn) ] ~ S • T = S' • T' on E 

• *) S = S' , T = T' on E J 
will be proved valid for the multiplication within the algebras containing the distri- 

butions. An extension of the notion of support of a distribution is used in establish- 

ing the above, as well as several other local properties of the elements in the algeb- 

ras. 

§2. THE EXTENDED NOTION OF SUPPORT 

for a certain 

The support of 

Suppose P is an admissible property, (V,S') is a P-regularization, Q is an admis- 

sible property, such that Q -< P and p ~ NP . 

Given S c AQ(v,S ',p) and E c R n , we say that 

s c A Q ( v ( p ) , S ' )  : 

(I) *) S = s + IQ(v(p),S ') 

**) s(x)) = 0 on E , with v ~ N , 

~eN . 

S will be the closed subset 

S vanishes on E , only if 

~) >-I/ , 

supp S = R n \ {x c R n I S vanishes on a neighbourhood of x} . (2)  

Proposition ! 

For functions in 

usual one. 

C°~(Rn ) the above notion of support is identical with the 

Proof 

It results from (20.2) in §7 and Theorem 2 in §8, chap. i WV 



121 

The local character of the multiplication and addition within the algebras containing 

the distributions is established in the following two theorems. 

Theorem 1 

If S,T c AQ(v,S',p) , then 

I) supp (S + T) c supp S u supp T 

2) supp (S • T) c supp S n supp T 

Proof 

It follows from a direct verification of the definitions WV 

Given S,S' c AQ(v,S',p) and E c R n S' S' , we say that S = on E , only if S - 

vanishes on E . 

Theorem 2 

Suppose S,S',T,T' E AQ(v,S',p) and Ec R n . If S = S' on E and T = T 

on E , then 

I) S + T = S' + T' on E 

2) S • T = S' • T' on E 

Proof 

It follows directly form the definitions WV 

An important feature of the above notion of support is pointed out in the case of the 

algebras where the Dirac ~ function is represented by weakly convergent sequences of 

smooth functions satisfying the condition of strong local presence (see chap. 5, §3 

and also chap. 4, §6). 

Theorem 3 

In the case of the algebras constructed in chapter 5, the derivatives 

any order q ~ N n of the Dirac ~ distribution, possess the properties: 

l) 

2) 

3) 

Dq6 of 

supp Dq~ = (0} 

Dq~ v a n i s h e s  on any E c R n such  t h a t  0 + c l  E *) 

Dq6 does n o t  v a n i s h  on Rn\(o} , p r o v i d e d  t h a t  t h e  c o n d i t i o n  (19) i n  

chap.  5,  §4 i s  v a l i d .  

*) cl E is the topological closure of E c R n 
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4) Dq6 does not vanish on {0} , provided that the condition (27) in 

chap. 5, §4 is valid. 

Proof 

Assume Z = (s x [ x ~ R n) , then 3) in Theorem 2, chap. I, §8, and the inclusion 

T Z c T gives for Dq6 the following representation 

(3) Dq6 = Dqs o + IQ(v(P),TQS I) • AQ(v,2~)S 1 ,Pl • p c ~n 

Then i) and 2) result easily from (5) in chap. 5, §3. 

3) We notice that in any representation 

C4) D q6  = t + IQ(v(p),TQS1) c AQ(v,T(~S 1 , p )  , 

t w i l l  b e  a s e q u e n c e  o f  s m o o t h  f u n c t i o n s .  T h e r e f o r e ,  i f  

t h e n  

p • y~n , 

Dq6 v a n i s h e s  on R n \ { 0 }  , 

(5) t(V) = 0 on R n V ~) c N V > 

for certain U • N . But (5) obviously implies Drt e 16 n V V r e N n Thus, due 
O ' 

to (191 in chap. 5, §4, one obtains t • Y(p) , V p ~ ~n . Now, (4) will imply 

Dq6 = 0 • AQ(v,TQS 1 ,p) , V p • ~n , contradicting 11 in Theorem i, chap. 5, §4. 

4) Assume, it is false and there exists a representation (4) with 

t • AQ(v(p),TQS I) such that 

( 6 )  t ( ~ ) ( o )  = o , v ~ c N , v > ~' 

for certain U' e N . Denote 

(7) v = t - Dqs 
O 

then (3) and (4) imply v • IQ(v(p),TQS I) therefore 

v = Z v. • w. 
o_<j<_m J 3 

with vi • V(p I , w i • AQ(v(p),TQSI) . Now, the condition (27) in chap. 5, §4, will 

give 

v. c V(p) c V c 16 , V 0 _< j -< m 
] 

which together with (2) in chap. 5, §2 results in 

(8) vj(~)(0) = 0 , V 0 -< j -< m , ~ • N , 

for certain U" ~ N . 

v > U" 

Now, (6), (81 and (71 imply 

(91 Dqso(~)(0) = 0 , V 9 c N , ~ >- 

• Z while C9) ohviously contradicts the con with 11 ~ N suitably chosen. But, s o o ' 

dition (61 in chap. 5, §3 WV 
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Remark 1 

The p r o p e r t y  i n  4 ) ,  Theorem 3, t h a t  t h e  D i r ac  d i s t r i b u t i o n  d e r i v a t i v e s  Dq~ , w i t h  
X 

R n N n do not vanish {x o} x ° c , q ¢ , on is a consequence of the con__tion°o_g~# 

strong local presence and it is proper for the algebras used in chapters 4, 5 and 6. 

The 'delta s e q u e n c e s '  g e n e r a l l y  u sed ,  [ 4 ] ,  [ 3 5 - 4 1 ] ,  [ 5 3 ] ,  [ 6 8 - 6 9 ] ,  [ 1 0 5 - 1 1 0 ] ,  [136-  

137] ,  [ 1 6 2 ] ,  do no t  n e c e s s a r i l y  p r e v e n t  t h e  v a n i s h i n g  of  Dq6 on {x } . 
X O 

O 

A characterization of the support of the elements in algebras in terms of the supports 

of the representing sequences of smooth functions is presented in: 

Theorem 4 

Suppose S ~ AQ(v,S',p) then 

supp S = n cl lim supp s(v) 

where the intersection is taken over all the representations 

(10) S = s + IQ (V (p ) ,S  ' )  AQ(F,S ' , p )  w i t h  s e AQ[v (p ) ,S  ' )  

Proof 

R n The inclusion c . Assume s given in (i0) and x e \ cl lim supp s(V) . Then 
v+oo 

V n supp s(V) = ~ , V ~ c N , v ~ ~ , 

for a certain neighbourhood V of x and ~ ~ N . Now, obviously x % supp S . 

Conversely, assume x e Rn\supp S , then there exists an open neighbourhood V of x , 

such that S vanishes on V . Hence, one can obtain a representation (i0), such that 

V n lim supp s(v) = ~ WV 
v+oo 

In the case of the algebras constructed in chap. 6, §4, an additional result on the 

support can be obtained. 

Theorem 5 

Suppose given S e AQ(v,TQS 1 ,p) and two representations 

S = s I + IQ(v(p),TQS I) = s 2 + IQ(v(p),TQS I) e AQ(v,TQS 1 ,P) • 

Then, the subsets in R n 

lim supp Sl(~) , ~ supp s2(~) 

differ in at most a finite number of points, provided that V c 16 n V ° . 

Proof 

Obviously s I - s 2 e IQ(F(p),TQS I) , hence 
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(8) S I - S 2 = ~ V. " w. 
o~j~m ~ J 

with vj c V(p) , wj ~ AQ(v(p),TQSI) . Now, (27) in chap. S, §4 implies 

vj ~ V(p) c V c I~ , V 0 ~ j ~ m 

therefore vj , with 0 ~ j ~ m , satisfy (3) in chap. 5, §2 and (17) in chap. 6, §4. 

Then, due to (8), Sl - ~2 will also satisfy those two conditions VVV 

Corollary I 

Under the conditions in Theorem 5, if 

Sin= AQ(v ,TQS 1 , P) 0 

for certain m e N , m e i , then supp S is a finite subset of points in R n . 

Proof 

Assume given a representation 

S = s + IQ(V(p),T~SI)~_~ , with s c AQ(V(p),T~SI),~ 

then 

S m = s m + IQ(v(p),TQSI) = 0 c AQ(v,TQS 1 , p) 

therefore s m ~ IQ(v(p),TQSI) . 

Using an argument similam to the one in the proof of Theorem 5, it follows that 
m 

s ~ I~ therefore lim supp sm(w) is a finite subset of points in R n Finally, 
v+oo 

supp s(w) = supp sm(~) , V v ~ N VVV 

Remark 2 

In the case of the algebras constructed in chap. 5, the results in Theorem 5 and Corol- 

lary 1 will still be valid, provided that finite is replaced by locally finite. 

§3. LOCALIZATION 

Given S ~ AQ(v,S',p) denote by E S the set of all open subsets E c R n such that 

S vanishes on E . 

The relation 

~-J E = R n \ supp S 

EcE S 

is obvious. In case S e D'(R n) and the usual notions of vanishing and support for di- 

stributions are used, the corresponding set E$ has the known property that any union 
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of sets in E S is again a set in E S . 

In particular 

R n \ supp S = ~ J  E e E S 
E•E S 

A first problem approached in the present section is the extension of the above proper 

ty to the algebras containing the distributions. In this respect, several results on 

the structure of E S will be given. 

Theorem 6 

Suppose  S • AQ(v,S',p) 

E 1 u E 2 • E S . 

and E I , E~ • E S . I f  d (E lkE 2 , E2\E 1) > 0 *) t h e n  

Proof 

s I • s 2 • AQ(V(p),S ') Assume such that 

(9) S = s i + IQ(v(p),S ') • AQ(v,s',p) , V 1 < i -< 2 , 

(i0) si(v ) = 0 on E i , V 1 < i < 2 , v ~ N , ~ _> ~ , 

for certain > • N . Denote v = s I - s 2 , then (9) implies 

(n)  

Further, one obtains 

(12) v(V) (x) = 

v • IQ(v(p),S ') 

for ~ • N , ~ -> 

Sl(X; ) ( x )  - s 2 ( ,  ) ( x )  

s 1 (v) (x) 

- s2(V ) (x) 

0 

According to Lemma 1 below, there exists 

if x • R n \ (~ u E 2) 

if x • E 2 \ E 1 

if x • E 1 \ E 2 

if x • E 1 n E 2 

e C=(R n) , such that 

and ~ = 1/2 on ~/E 2 . Denote w = u(~) • v , then (ii) implies 

thus denoting s = (Sl+S2)/2 + w , the relation (9) will give 

(13) S = s + IQ(v(p),S '3 • AQ(v,S',p) , s ~ AQ(v,S',p) 

But, due to (12), it follows obviously that 

(14) s(~) = 0 on E 1 u E 2 , V ~ ~ N , ~ ~ 

Now, (13) and (14) will imply E 1 u E 2 • E S VVV 

= -1/2 on E2\E 1 

w c IQ(v(p),S ') , 

*) d( , ) is the Euclidian distance on R n and R n 
d(E,F) = inf {d(x,y) [ x • E , y 6 F) for E,F c 
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Suppose F c G c R n 

with the properties 
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s u c h  t h a t  d(F ,Rn~G)  > 0 , 

I) 0 ~ ~ ~ 1 on R n 

2) ~ = 1 on F 

3) ~ = 0 on Rn\G 

4) @ ~ D(R n) if F bounded 

then there exists t~ e U°°(Rn) 

Proof 

Define X : Rn x (0,~) ÷ R I by 

K " exp (e2/(iixll2-e2)) 
×(x,s) = 

0 

where K s = 1 / exp (c2/(llx[12-e2))dx 

llxl <~ 

Assume 0 < E < d(F,Rn\G)/2 and define ~ : R n + R I 

~(x) = J X(X-y,e)dy 

F(~) 

w h e r e  F(¢)  = {y ¢ R n [ d ( y , F )  ~ e} 

I t  c a n  e a s i l y  be  s e e n  t h a t  ~ i s  t h e  r e q u i r e d  f u n c t i o n  

if llxl] < e 

if llxll ~ ¢ 

by 

WV 

Corollary 2 

Suppose S c AQ(v,S',p) 

i) cl E n cl F = 

2) F bounded 

then E u F c E S 

and E,F E E S . If 

PrOof 

The sets E and F satisfy the conditions in Theorem 6 VW 

Theorem 7 

S u p p o s e  S ~ AQ(V,S',p) 
t h e n  E[ u E 2 ~ E S . 

and E 1 , E 2 E E S . If E~ c E 1 and d ( E i  , Rn\E1 ) > 0 
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Proof 

We shall use the notations in the proof of Theorem 6. 

According to Lemma I, there exists ~ e Cm[R n] such that ~ = -1/2 on 

= 1/2 on E i . Then, it can be seen that the relation (14) becomes 

(15) s(~) = 0 on E i u E 2 , V ~ ~ N , ~ a p , 

therefore, the relation (13) will imply E i u E 2 e E S VW 

E 2 / E  1 and 

Corollary 3 

Suppose S c AQ(v,S',p) 

i) cl E n supp S = 

2) E bounded 

then E ~ E S 

and  E c R n \ s u p p  S , E o p e n .  I f  

Proof 

Assume K c R n \ supp S , K compact, K = E . It follows from (2) that 

> 0 : B ( x ,  c E S *) V x ~ K : ~ ex ex ) 

Assume x ° .... , x m ¢ K pair wise different, such that 

(16) K c [ J B(xi , ¢x./2) 
o~i~m i 

If m = 0 then E c K c B(Xo , gx /2) and the proof is completed. 
o 

Assume m = 1 . Denote 

E1 = B(Xl  ' gXl ) ' E2 = B ( x °  ' gXo ) , E i = B(x  1 , eXl / 2 )  

then E 1 , E 2 and E~ fulfil the conditions in Theorem 7, therefore ~ o E 2 e E S 

and due to (16) the proof is again completed. 

Assume  m = 2 . D e n o t e  

E 1 = B(x  2 , ex2  ) , E 2 = B ( x  ° , eXo ) u B(x  1 , eXl  / 2 )  , 

E~ = B ( x  2 , ¢x2 / 2 )  

t h e n  S v a n i s h e s  on  E 1 a n d  a s  s e e n  a b o v e ,  a l s o  on  E 2 . M o r e o v e r ,  E 1 , E 2 and  E~ 

fulfil the conditions in Theorem 7, therefore E i u E 2 ~ E S and due to (16) the proof 

is completed again. 

The a b o v e  p r o c e d u r e  c a n  b e  u s e d  f o r  a n y  m ¢ N , m > 3 VW 

*) B ( x , e )  = {y  ~ R n I ] [ y - x l [  < e} f o r  x ~ R n , e > 0 



Corollary 4 

Suppose S ~ AQ(_v,s ' ,p] 

V K c  R n \  H , K 

(17) ~ E £ E S : 

KcE 
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and Hc R n then supp S c H only if 

compact: 

Proof 

Assume (17) and x c Rn\H then, x c E for a certain E c E S . Therefore 

x % supp S since E is open. The converse results directly from Corollary 3 taking 

into account that supp S is closed W7 

Corollary 5 

Suppose S c AQ(v,S',p) , then supp S = $ , only if 

V E c R n , E open, bounded: 

E e E S 

Proof 

It follows directly from Corollary 3 VW 

Theorem 8 

Suppose S c AQ(v,s ' ,p) and F c R n , F closed. Then 

,[ V $ E D(Rn\F) n: ] 
supp S c F 

$ .  s :  o ~ A~(V,S ' ,p)  

In the case of sectional algebras (see chap. i, §6) the converse implication is 

also valid. 

Proof 

Assume x ( Rn\F • Since F is closed, it follows that there exists $ (D(RnXF) 

and a neighbourhood V of x such that @ = 1 on V . Then, due to the hypothesis 

$ • S = 0 (AQ(v,S',p) , therefore, given any representation 

(18)  S = s + I Q ( v ( p ) , S  ' )  ( A Q ( v , s ' , p )  • w i t h  s c A Q ( v ( p ) , S  ' )  

o n e  o b t a i n s  

(193 u($) • s c IQ(v(p),S ') 

But~ (18) and (19) imply 

(203 S = 11(1-$) • s + IQ(v(p),S') c AQ(v,S',p) 
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Denoting t = u(1-~) • s , it follows that t(v) = 0 on V , W ~ ¢ N . Then (20) will 

imply x ~ supp S and the first part of Theorem 8 is proved. 

Assume now, in the case of sectional algebras the inclusion supp S c F and 

• D(Rn\F) . Since supp ~ is compact, Corollary 4 implies the existence of E ¢ E S 

such that 

(21) supp ~ c E 

Due to the fact that S vanishes on E , one can assume that s in (18) satisfies the 

condition 

(22) s(w) = 0 on E , V w ¢ N , ~ m P , 

for certain p e N . Now, the presence of sectional algebras makes" it possible to assu- 

me ~ = 0 in (22). Then, (21) and (22) will result in u(~) • s c 0 hence (18) will 

imply ~ • S = 0 • AQ(v,S',p) VW 

Two d e c o m p o s i t i o n  r u l e s  f o r  t h e  e l e m e n t s  o f  t h e  a l g e b r a s ,  c o r r e s p o n d i n g  to  components  

o f  t h e i r  s u p p o r t s  a r e  g i v e n  now. 

Theorem 9 

In t h e  c a s e  o f  s e c t i o n a l  a l g e b r a s  s u p p o s e  S e A Q ( v , S ' , p )  . I f  supp  S = F u K 

w i t h  F c l o s e d ,  K compact  and F n K = ~ , t h e n  t h e  d e c o m p o s i t i o n  h o l d s  

S = S F + S K 

for certain S F , S K ¢ AQ(v,S',p) satisfying the conditions 

I) supp S F n supp S K = 

2) K n supp S F = 

3) F n supp  S K = ~ and supp  S K compact  

Proof 

Assume G1 , G2 , G3 , G4 c R n such that K c GI , cl G 1 c G 2 • cl G 2 a G 3 , 

cl G 3 c G4 • cl G 4 n F = ~ and G 4 is bounded. Denote K 1 = (cl G4) \ G 1 , then 

K 1 is compact and K 1 n supp S = ¢ . According to Corollary 4, there exists 

such that K1 c E . Then, for a certain representation 

S = s + I Q ( V ( p ) , S  ' )  e A Q ( v , S ' , p )  , w i t h  s e A Q ( v ( p ) , S  ' )  , 

one obtains 

E e E  S 

s(v) = 0 on E , V ~ ¢ N , ~ >- p 

with suitably chosen ~ ¢ N . But the case of sectional algebras allows the choice of 

H = 0 . Now, Lemma 1 g r a n t s  t h e  e x i s t e n c e  o f  ~F ~ C~(Rn) and ~K ~ D(Rn) such  t h a t  

~F -- 1 on Rn\G4 ) ~F = 0 on c l  G 3 , ~K = 1 on c l  G 1 and OK = 0 on Rn\G2 • 
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Then, obviously u(~ F + ~K ) • s = s . Defining S F 

S K : U(~K) • s + IQ[v(p),S') , one obtains S = S F 

and 3) will be satisfied VVV 

= U(@F) • s + IQ(v(p),S ') and 

+ S K and the properties i), 2) 

In the one dimensional case n = 1 , a stronger decomposition can be obtained. 

First, a notion of sepamation for pairs of subsets in R 1 . Two subsets F , L c R 1 

are called finitely separated, only if there exists a finite number of intervals co- 

vering F u L 

( - ~  , C O ) • ( C  O , C 1 ) . . . . .  ( c  m , ~ ) , 

such that no interval contains elements of both 

vals do not contain elements of the same set F 

Theorem 10 

In the case of sectional algebras suppose 

with F , L 

holds 

S = S F + S L 

for certain S F , S L ~ AQ(v,S',p) 

I) supp S F n supp S L = 

2) L n supp S F = F n supp S L = 

F and 

or L . 

me N, 

L while successive inter- 

S ~ AQ(v,S',p) . If supp S : F u L 

disjoint, closed and finitely separated, then the decomposition 

satisfying the conditions 

Proof 

Since 

Denote 

F , L are closed, there exists g > 0 such that 

F u L c (-~,Co-e) u (Co+e,Cl-e) u ... u (Cm+e,~) 

such that 

s(V) = 0 on E , V ~ c N , ~ -> 

for certain D e N . But, one can assume D = 0 , due to the presence of sectional al- 

gebras. Further, Lemma 1 implies the existence of ~o ''" "' ~m+l c C°°(RI) such that 

~o = 1 on (-oO,Co-e/21 , ~i = 1 on [ci+~/2,c2-e/21, ... 

.... ~el : 1 on [c +e/2, °~] 

K = ~ J [ci-~,ci+e] 
o_<" <z~m 

then K compact and K c R 1 \ supp S . According to Corollary 4, there exists E E E S 

such that K c E . Assume a representation 

S = s + IQ(v(p),S ') ~ AQ(v,s',p) , with s e AQ(v(p),S ') 
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and 

~o 

D e n o t e  

J 
o 

and define 

= 0 on [c o-~/3,+ m) ' ~i = on (-~, Cl+E/3] o [c2-~/3 , m) , ... 

. . . .  ~m+l  = 0 o n  ( - ~ ,  C m + ~ / 3 ]  

= ( - ~ '  Co]  ' J1  = [Co ' C l ]  . . . . .  J m + l  = [Cm ' ~ )  

I t  c a n  e a s i l y  b e  s e e n  t h a t  

~F = Z ~i ' ~L = Z ~i 
ogi~m+l l~i~n+l 
FnJ.= ~ LnJ.= 

I i 

u(~ F + ~L)S = s • Defining S F = U(~F) • s + IQ(v(p),S ') 

S L = U(~L) • s + IQ(v(p),S ') , the required properties will follow easily WV and 

§4. THE EQUIVALENCE BETWEEN S = 0 AND supp s =~ 

supp S = ~ . A result on the converse impli- 

S e AQ(v,s ',p) . If 

If S = 0 c AQ(v,S',p) then, obviously 

cation is given in: 

Cor011ary 6 

In the case of sectional algebras suppose 

i) supp S = 

2) S vanishes outside of a bounded subset of R n , 

then S = 0 e AQ(v,S',p) . 

Proof 

Assume B a R n , B bounded, such that S 

representation 

S = s + IQ(v(p),S t] c AQ(v,s ',p) , 

such that 

vanishes on R n \ B . Then, there exists a 

with s ~ AQ(v(p),S ') , 

s ( ~ )  = 0 o n  R n \ B , V ~ ~ N , v e ~ , 

for a certain p c N . Due to the presence of sectional algebras, one can assume P = 0 

Assume ~ ~ D(R n) such that ~ = 1 on B , then obviously u(~) • s = s , that is 

(23) ~ • S = S E AQ(v,S',p) 

But supp ~ n supp S = ~ and supp S is closed, therefore Theorem 8 will imply 

• S = 0 e A Q • The relation (23) completes the proof WV 



Chapter 8 

NECESSARY STRUCTURE OF THE DISTRIBUTION MULTIPLICATIONS 

§i. INTRODUCTION 

The algebras containing the distributions in D'(R n) were constructed as sequential 

completions of the smooth functions on R n and resulted as quotients A/I , where 

A is a subalgebra in W = N ÷ C~{R n) , while I is an ideal in A . 

That construction can naturally be placed within the framework of the theory of alge- 

bras of continuous functions, noti<ing that W itself is a subalgebra in 

C°(N ×R n , C I) . As known in that context, an essential feature of the ideals I is 

their connection with certain zero-filters generated by subsets of N ×R n on which 

the functions in I vanish. 

In the present chapter, specific connections between ideals and zero-filters will be 

established in the case of the quotient constructions giving the algebras containing 

the distributions. In that way, an information on the necessary structure of the di- 

stribution multiplications will be obtained. 

§2. ZERO SETS AND FAMILIES 

For a sequence of smooth functions w 6 W denote 

Z(w) = { (~,x) £ N x R n I w(~)(x) = 0 } 

and call it the zero set of w . 

For a set of sequences of smooth functions H c W denote 

Z(H) = { Z<t) ] t ~H } 

and call it the zero family of H . 

A standard argument in algebras of functions gives: 

Theorem 1 

Suppose (V,S') is a regularization and denote by I the ideal in W genera- 

ted by V . Then Z(1) and in particular, Z(V) are filter generators on 

N x R  n . 
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Proof 

First we prove the relation 

( 1 )  Z ( v )  ~ ~ , v v ~ z = I ( V # )  

A s s u m e  i t  i s  f a l s e ,  t h e n  v ( v ) ( x )  $ 0 , V v ¢ N , x ~ R n , t h e r e f o r e ,  o n e  c a n  d e f i n e  

w ¢ W b y  w ( w ) ( x )  = 1 / v ( w ) ( x )  , g v ~ N , x ~ R n . T h u s  u ( 1 )  = v • w ¢ I(V,W) 
w h i c h  r e s u l t s  i n  I (V ,W)  = W . T h e n  ( 2 0 . 3 )  and  ( 2 0 . 1 )  i n  c h a p .  1 ,  w i l l  c o n t r a d i c t  

each other. 

Now, we can prove 

( 2 )  Z(Vo) n . . .  n Z(Vh)  ~ ~ , 

Indeed, define w ¢ W by w = v . v 
o o 

jugate of v i . Then, obviously 

( 3 )  Z(w) = Z(Vo) n . . .  n Z(Vh) 

B u t ,  

VVV 

V v ° ,..., v h (I(V,W) 

* V* + ... + v h • v h where i is the complex con- 

w c I(V,W) , since v ° ,..., v h (I(V,W) . Therefore, (3) and (i) will imply (2) 

The following three theorems reformulate in terms of zero sets the results in Theorems 

6, 7 and 8 in chap. i, §i0. 

Theorem 2 

Suppose given a local type regularization (V,S') , with VQS' sectional in- 

variant. Then 

Z(v) n ({~,U+I,...} ×G) is infinite 

for any v ( V , U c N and G c R n , G $ ~ , open. 

Theorem 3 

Suppose given a regularization 

ant. Then, the zero set Z(v) of each v c V 

Z(v) n [ J ((v} x supp t(w)) infinite, 
I/_<~) <oo 

Theorem 4 

Suppose (V,S') is a regularization. Then, 

has the property: 

Z ( v )  n U ({x~} × s u p p  t ( , ) )  ~ ~ , 
~(N 

(V,S') such that VQS' is sectional invari- 

has the property: 

t ~ V(~S' , V t~V, U(N 

the zero set Z(v) of each v ~ V 

W t ~ VQS' , t ~ V 
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§3 ZERO SETS AND FAMILIES AT A POINT 

The results in Theorems I, 2, 3, and 4 in §2, will be strengthened in the present sec- 

tion. 

Given w ~ W , H c W and x c R n , call 

Zx(W ) = { , c N [ w ( , ) ( X )  = 0 } 

t h e  z e r o  s e t  o f  w a t  x and c a l l  

Z x ~ )  = { Z x ( t )  I t ¢H } 

the zero family of H at x . 

It will be shown in Corollaries i, 2 and 3 that for a large class of P-regularizations 

(V,S') , the zero families Zx( ~ of V at any x c R n are filter generators on N 

First, s e v e r a l  notations. 

Suppose E is a set of subsets in R n 

WE={W{W 

Call E hereditary, only if 

%/ x E E c E : 

and denote 

%/ E ~ E :  t x c E  : 

f 

E \ { x }  [ ~ ~ E \ {x}  c E 

Denote by Ef and E the set of all nonvoid and finite, respectively countable sub- 
c 

sets in R n . O b v i o u s l y  E f  and E c a r e  h e r e d i t a r y .  

Theorem 5 

Suppose given a vector subspace 

the condition 

v c ~  

Then ,  f o r  any  v o , . . . ,  v h e V 

If 

V in W , satisfying for a certain E c E c 

the property holds 

%/ E~E : 

xcE : 

Zx(Vo) n . . .  n Zx(V h) # 

E i s  h e r e d i t a r y ,  t h e n  t h e  s t r o n g e r  p r o p e r t y  r e s u l t s  

%/ E ~E: 

@ E'c E : 

I) car E' = car E 

2) Zx(Vo) n . . .  n Zx(Vh) ~ ~ , V x c E' 
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Proof 

It follows from Len~aa 1 below WV 

Corollary 1 

Suppose the P-regularization 

(4 )  Z x ( V )  @ ~ , v v E v 

Then,  t h e  ze ro  f a m i l y  Zx(Y ) 

on N . 

(V,S') satisfies the condition 

, x c R n 

of g at any x c R n is a filter generator 

Proof 

It is easy to notice that (4] is equivalent with 

Corollary 2 

If under the conditions in Corollary i, Y 

zero family Zx(V ) of V at any x c R n 

subsets of N . 

V c W~ VVV 

f 

is sectional invariant, then the 

, generates a filter of infinite 

Proof 

Assume it is false and x ~ R n , v ° ,..., v h ~ Y and 

(s) Zx(V o) n ... n Zx(V h) ~ {0 ..... ~} 

Define v' o ,..., v ~ W by 

1 
(6) v~(~] (y) = 

vi(v)  (y) 

Then v: ¢ V , since v. ~ V and V 
i i 

(7) Zx(V o) n . . .  n Zx(V ~) ~ 0 

due to  C o r o l l a r y  1. 

But, (5) implies that 

¥ v ~ N , ~ -> p + i : 

i~ ¢ {0,...,h} : 

vi (~))(x) ~ 0 

which together with (6) is contradicting (7) VVV 

P c N such that 

if v -<p 

if ~_>p+l 

is sectional invariant. Therefore 

Call a subset M of N sectional, only if 

{~+I , ~+2 , ...} c M 

for a certain p ~ N . 
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Corollary 3 

If under the conditions in Corollary i, 

i, §6), then the zero family Zx(V ) of 

ter of sectional subsets of N . 

V is subsequence invariant (see chap. 

R n V at any x e , generates a fil- 

Proof 

It suffices to show that the sets Zx(V ) , with v c V 

nal in N . Assume it is false and v • V and x ~ R n 

tional in N . Then, there exists an infinite subset M 

(8)  Zx(V) n M = 

Assume M = {Po ' Pl " ' ' }  and d e f i n e  v '  c W by 

• , R n (9) v ' ( v ) ( y )  = v(~  v) (y) g v c N y e 

Then v '  ~ V , s ince  v • V and V i s  subsequence i n v a r i a n t .  There fore  

(10) Zx(V' ) # 

due to Corollary I. 

But, (8) implies that 

V ~ c N : 

v(pv)  (x) * 0 

which t o g e t h e r  wi th  (9) i s  c o n t r a d i c t i n g  (10) VW 

and x • R n are all sectio- 

such that Zx(V ) is not sec- 

of N , such that 

And now, a lemma of a general interest, used in the'proof of Theorem 5, is presented. 

Given a nonvoid set X , denote by W the set of all functions w : N x X + C 1 

For w c W and x c X denote 

Zx(W ) = { v • N [ w(v,x) = 0 } 

For a set Y of nonvoid and countable subsets in X , denote 

g Y • Y  : t Wy = { w ~ W ~ y c Y 

Zy(W) ~ 

Lemma 1 

Suppose V is a vector subspace in 

v ° ,..., v h ~ V , the relation holds 

V Y~y : 

(II) ~ y c Y : 

Zy(Vo] n ... n Zy(Vh) # 

W and V c ~ . Then, for any 
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(12) 

If Y is hereditary, then (ii) obtains the stronger form 

V Y ~ Y  : 

y ' c  y : 

( 1 2 . 1 )  c a r  Y '  = c a r  Y 

( 1 2 . 2 )  Zy(Vo)  n . . .  n Zy(Vh)  $ ~ , V y ~ Y'  

Proof 

First, we prove (ii). Assume it is false and 

Zy(Vo) n ... n Zy(Vh) = ~ , V 

Then 

(13) 

Define 

and  

V ~c N, ye Y : 

i~,y c {O,...,h} : 

v. ( ~ , y )  ~ o 
1 

~ , y  

Y c Y such that 

ycY 

R h+l ~ X = (~o ''''' Xh) + v% = ~oVo + ... + XhV h E V 

N x y ~ ( ~ , y )  + A v , y  = { X c R h + l  I vX(V,Y)  = 0 } 

I t  i s  e a s y  t o  n o t i c e  t h a t  k v , y  , w i t h  ( v , y )  c N x y , a r e  v e c t o r  s u b s p a c e s  i n  R h + l .  

Moreover 

(14) A v , y  ~ R h + l  , V ( V , y )  e N x y 

I n d e e d ,  d e n o t i n g  X = (0 . . . .  , 0 , 1 , 0 , . . . , 0 )  e R h + l  , w i t h  

tion, one obtains X ~ k ,y due to (13). 

Now, (14) and the Baire category argument will give 

U a , y  ~ a h+l 
>cN 
ycY 

s i n c e  Y i s  c o u n t a b l e .  

Assume  t h e r e f o r e  

% c R h+l \ [__J A 
~6N v'Y 

y~Y 

1 in the iv,y+l -th posi- 

then 

(is) 

But 

vx(V,y) $ 0 , V V c N , y ~ Y 

v~ c V ¢ ~ therefore (15) is contradicted and (ii) is proved. 

Assume Y is hereditary and take Y c Y • Then (ii) implies the existence of y c Y 

such that Zy(Vo) n ... n Zy(vh) ¢ ~ . Denote Y1 = Y \ {y} " If Y1 = ~ then taking 
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Y' = Y , the proof is completed. If Y1 ~ ~ then 

hereditary. Now, (ii) can be applied to Y] , etc. 

Y1 EY 
VW 

due to the fact that Y is 
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