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Preface

During the past 40 years numerical and experimental methods of fluid mechanics were sub-
stantially improved. Nowadays time-dependent three-dimensional flows can be simulated on
high-performance computers, and velocity and pressure distributions and aerodynamic forces
and moments can be measured in modern wind tunnels for flight regimes, until recently not
accessible for research investigations. Despite of this impressive development during the recent
past and even 100 years after Prandtl introduced the boundary-layer theory, the fundamentals
are still the starting point for the solution of flow problems. In the present book the important
branches of fluid mechanics of incompressible and compressible media and the basic laws de-
scribing their characteristic flow behavior will be introduced. Applications of these laws will be
discussed in a way suitable for engineering requirements.

The book is divided into the six chapters: Fluid mechanics I and II, exercises in fluid mechan-
ics, gas dynamics, exercises in gasdynamics, and aerodynamics laboratory. This arrangement
follows the structure of the teaching material in the field, generally accepted and approved for
a long time at German and foreign universities. In fluid mechanics I, after some introductory
statements, incompressible fluid flow is described essentially with the aid of the momentum
and the moment of momentum theorem. In fluid mechanics II the equations of motion of fluid
mechanics, the Navier-Stokes equations, with some of their important asymptotic solutions are
introduced. It is demonstrated, how flows can be classified with the aid of similarity param-
eters, and how specific problems can be identified, formulated and solved. In the chapter on
gasdynamics the influence of variable density on the behavior of subsonic and supersonic flows
is described.

In the exercises on fluid mechanics I and II and on gasdynamics the material described in the
previous chapters is elaborated in over 200 problems, with the solutions presented separately.
It is demonstrated how the fundamental equations of fluid mechanics and gasdynamics can be
simplified for the various problem formulations and how solutions can be constructed. Numer-
ical methods are not employed. It is intended here, to describe the fundamental relationships
in closed form as far as possible, in order to elucidate the intimate connection between the
engineering formulation of fluid-mechanical problems and their solution with the methods of
applied mathematics. In the selection of the problems it was also intended, to exhibit the many
different forms of flows, observed in nature and technical applications.

Because of the special importance of experiments in fluid mechanics, in the last chapter, aero-
dynamics laboratory, experimental techniques are introduced. It is not intended to give a com-
prehensive and complete description of experimental methods, but rather to explain with the
description of experiments, how in wind tunnels and other test facilities experimental data can
be obtained.

A course under the same title has been taught for a long time at the Aerodymisches Institut
of the RWTH Aachen. In the various lectures and exercises the functioning of low-speed and
supersonic wind tunnels and the measuring techniques are explained in experiments, carried
out in the facilities of the laboratory. The experiments comprise measurements of pressure
distributions on a half body and a wing section, of the drag of a sphere in incompressible and
compressible flow, of the aerodynmic forces and their moments acting on a wing section, of
velocity profiles in a flat-plate boundary layer, and of losses in compressible pipe flow. Another
important aspect of the laboratory course is to explain flow analogies, as for example the
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so-called water analogy, according to which a pressure disturbance in a pipe, filled with a
compressible gas, propagates analogously to the pressure disturbance in supercritical shallow
water flow.

This book was stimulated by the friendly encouragement of Dr. M. Feuchte of B.G. Teubner-
Verlag. My thanks go also to Dr. D. Merkle of the Springer-Verlag, who agreed to publish
the English translation of the German text. Grateful acknowledgement is due to my successor
Professor Dr.-Ing. W. Schriéder, who provided personal and material support by the Aerody-
namisches Institut in the preparation of the manuscript. I am indebted to Dr.-Ing. O. Thomer
who was responsible for the preparatory work during the initial phase of the project until he
left the institute. The final manuscript was prepared by cand.-Ing. O. Yilmaz, whom I grate-
fully acknowledge. Dr.-Ing. M. Meinke offered valuable advice in the preparation of some of the
diagrams.

Aachen, July 2004 E. Krause
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1. Fluid Mechanics 1

1.1 Introduction

Fluid mechanics, a special branch of general mechanics, describes the laws of liquid and gas
motion. Flows of liquids and gases play an important role in nature and in technical applications,
as, for example, flows in living organisms, atmospheric circulation, oceanic currents, tidal flows
in rivers, wind- and water loads on buildings and structures, gas motion in flames and explosions,
aero- and hydrodynamic forces acting on airplanes and ships, flows in water and gas turbines,
pumps, engines, pipes, valves, bearings, hydraulic systems, and others.

Liquids and gases, often termed fluids, in contrast to rigid bodies cause only little resistance
when they are slowly deformed, as long as their volume does not change. The resistance is
so much less the slower the deformation is. It can therefore be concluded, that the arising
tangential stresses are small when the deformations are slow and vanish in the state of rest.
Hence, liquids and gases can be defined as bodies, which do not build up tangential stresses
in the state of rest. If the deformations are fast, there results a resistance proportional to the
friction forces in the fluid. The ratio of the inertia to the friction forces is therefore of great
importance for characterizing fluid flows. This ratio is called Reynolds number.

In contrast to gases, liquids can only little be compressed. For example, the relative change in
volume of water is 5-10~° when the pressure is increased by 1 bar, while air changes by a factor
of 5-107! under normal conditions in an isothermal compression. If liquid and gas motion is
to be described, in general, not the motion of single atoms or molecules is described, neither is
their microscopic behavior taken into account; the flowing medium is considered as a continuum.
It is assumed to consist out of very small volume elements, the overall dimensions of which,
however, being much larger than the intermolecular distances. In a continuum the mean free
path between the collisions of two molecules is small compared to the characteristic length of the
changes of the flow quantities. Velocity, pressure and temperature, density, viscosity, thermal
conductivity, and specific heats are described as mean values, only depending on position and
time. In order to be able to define the mean values, it is necessary, that the volume element
is small compared to the total volume of the continuum. This is illustrated in the following
example for the density of air flowing in a channel with a cross-sectional area of 1 cm?. At room
temperature and atmospheric pressure one cubic centimeter of air contains 2.7 - 101 molecules
with a mean free path of about 107*mm. A cube with length of side of 107 mm, — the 10'%th
part of a cubic centimeter — still contains 2.7 - 107 molecules. This number is sufficiently large
such that a mean value of the density can be defined for every point in the flow field.

The basis for the description of flow processes is given by the conservation laws of mass, mo-
mentum, and energy. After the presentation of simplified integral relations in the first chapter
in Fluid Mechanics I these laws will be derived in Fluid Mechanics II for three-dimensional flows
with the aid of balance equations in integral and differential form. Closed-form solutions of these
equations are not available for the majority of flow problems. However, in many instances, ap-
proximate solutions can be constructed with the aid of simplifications and idealizations. It
will be shown, how the magnitude of the various forces per unit volume and of the energy
contributions, appearing in the conservation equations, can be compared with each other by in-
troducing similarity parameters. The small terms can then be identified and dropped, and only
the important, the largest terms are retained, often leading to simplified, solvable conservation
equations, as is true for very slow fluid motion, at times referred to as creeping motion. In this
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case the inertia forces can be neglected in comparison to the friction forces. As an example the
solution of the simplified conservation equations for very slow motion will be derived for the
flow in a friction bearing. If the inertia and pressure forces are dominant, the terms describing
the friction forces per unit volume can be dropped. Inviscid flows can be shown to possess a
potential, and with the aid of the potential theory the surface pressure distribution of exter-
nal flows about rigid bodies can be determined. The potential flow theory forms the basis for
determining the lift of aerodynamically shaped bodies. Several applications will be discussed
with the aid of analytic functions. In the vicinity of rigid walls, in general, the friction forces
cannot be neglected. It will be shown how their influence on the flow can be determined with
Prandtl’s boundary-layer theory, as long as the region, in which the viscous forces act, is thin
compared to length of the body. The similar solution of the boundary-layer equations will be
derived for the case of the flat plate. The importance of a non-vanishing pressure gradient will
be elucidated for the case of separating flows.

In flows of gases at high speeds marked changes of the density occur. They have to be taken
into account in the description of flow fields. The laws governing compressible flows will be
described in the chapter Gasdynamics.

1.2 Hydrostatics

1.2.1 Surface and Volume Forces

A continuum is said to be in equilibrium, if the resultant of the forces, acting on every arbi-
trary part of the volume vanishes. The forces are called surface, volume, and inertia forces, as
their magnitude is proportional to the surface, volume, or mass of the part of the continuum
considered. The surface forces act normal to the surface, as long as the fluid is at rest. The
corresponding stresses (normal force per surface element) are — after Euler (1755) — called fluid
pressure or abbreviated pressure. The equilibrium condition is derived for an arbitrarily chosen
triangular prismatic volume element. For the surface forces to be in equilibium, the sum of the
vertical and horizontal components must be equal to zero. If the forces per unit area, the pres-
sures on the surface, are denoted by py, ps, and ps3, then the forces can be written as products
of the pressures and the areas, on which they act.The following sketch shows the prismatic
element with the surface forces indicated. If another geometric shape of the volume element
would have been chosen, the equilibrium condition would always require the vanishing of the
sum of the vertical and horizontal components of the surface forces.

bd
prad — pscd Cos(a,c)fpgaTz()
p2bd — pscd cos(be) =0
T a = c cos(a,.c)
pbd
2 i b = ccos(be)
b P = pP2=p3=p . (1-1)
1
For ¢ — 0 the volume forces vanish. It follows for

every point in a fluid which is in equilibrium, that the
pressure p does not depend on the direction of the
surface element on which it acts.

p1ad

The equilibrium condition for a cylinder with infinitesimally small cross-sectional area A, and
with its axis normal to the positive direction of the gravitational force, yields the following
relation

pA=pA = pi=p=p . (1.2)
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The axis of the cylinder represents a line of constant
pressure. If the cylinder is turned by 90 degrees, such
that its axis is parallel to the direction of the gravita-

tional force, then the equilibrium of forces gives for the RA T\ P,A
z-direction 71 7 v 7 9
—pgAdz—(p+dp) A+pA=0 . (1.3) A
It follows from this relation, that in a fluid in the state of
rest, the pressure changes in the direction of the acting (p+dplA
volume force according to the differential equation
|
dp |
— = . 1.4 dz| g
5= PY (1.4) . ]GI
After integration the fundamental hydrostatic equation l {-..
for an incompressible fluid (p = const.) and with g =
const. is obtained to PA
p+pgz=const. . (1.5)
If p is determined from the thermal equation of state
P
= 1.6
P=FT (1.6)

for a constant temperature T = T, (isothermal atmosphere) the so-called barometric height
formula is obtained

p=poe i . (1.7)

The differential form of the fundamental hydrostatic equation is valid for arbitrary force fields.
With b designating the acceleration vector, it reads

grad(p) =pb . (1.8)
1.2.2 Applications of the Hydrostatic Equation

Assume, as shown in the sketch, that in a fluid-filled ves-

sel the hatched parts are solidified without any change of 7 %
density. The equilibrium of the fluid remains unchanged / // f
(Principle of solidification, Stevin 1586). By the pro- / 4 / é
cess of solidification communicating vessels are gener- 7777
ated. This principle is, for example, applied in liquid solid fluid

manometers and hydraulic presses.

~e

IR EEN]
o

U-tube manometer Single-stem manometer
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The fundamental hydrostatic equation yields

p—p=pg(—2) . (1.9)
The pressure difference to be measured is proportional to the difference of the heights of the
liquid levels.

Barometer

One stem of the U-tube manometer is closed and evacuated (p; = 0). The atmospheric pres-
sure is

Pa=p1=pg(22—21) . (1.10)

Hydraulic Press

For equal pressure on the lower sides of
the pistons the force Fy is

Ay
A

Communicating vessels can be used for
generating large forces, if Ay >> A;.

Hydrostatic Paradoz (Pascal 1647)

The force acting on the bottom of all vessels is independent of the shape of the vessels and of
the weight of the fluid, as long as the surface area of the bottom A and the height A of the
vessels are constant.

Fp=(pp—pa)A=pghA (1.12)

Force on a Plane Side Wall

The fluid pressure results in a force acting on the side wall of the vessel:

— ; v v
"o /A(pipa)dA f e e P ——-=
Fo= ["Bpgediepg Bl LS} S o
0 2 1 K 1P dA h
= pgAg (1.13)
B
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The location of the point of application of force follows from the balance of moments

2
s=—h . 1.14
=g (1.14)

1.2.3 Hydrostatic Lift

A body immerged in a fluid of density pr experiences a lift or an apparent loss of weight, being
equal to the weight of the fluid displaced by the body (Archimedes’ principle 250 b. C.)

FS:ng/A(zl—zZ)dA:ngT . (1.15)

7 is the volume of the fluid displaced by the body.
Hence the weight of a body — either immersed in or
floating on a fluid — is equal to the weight of the fluid
displaced by the body. Balloons and ships are examples
for the application of Archimendes’ principle.

1.3 Hydrodynamics

1.3.1 Kinematics of Fluid Flows

Two methods are commonly used for the description of fluid motion, the Lagrangian method
and the Eulerian method.

Lagrangian Method (Fluid Coordinates)

The motion of the fluid particles is described by specifying their coordinates as a function of
time. The line connecting all points a particle is passing through in the course of time is called
path line or Lagrangian particle path.

The path line begins at time ¢ = ¢y at a point defined
by the position vector

ro=tx0+Jyo+kz . (1.16)

The motion of the fluid is completely described, if the
position vector 7 is known as a function of time:

r = F(rot) (1.17)
or in components

= fi(wo0,20,t) ;
y = fa(zo.y0.20:8) (1.18)
z = f3(x0,40,20,)

The velocity is obtained by differentiating the position
vector with respect to time

(1.19)

lim (’l"z - 7‘1) dr
v = =

At —0 At Tdt
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where
z—::i%+j%+k%:iu+_jv+kw . (1.20)

In the last equation u, v, and w are the components of the velocity vector. The components of
the acceleration vector are

b — dPr &y &’z

@ YT arr T ar
For most flow problems the Langrangian method proves to be too laborious. Aside from a few
exceptions, not the path-time dependence of a single particle is of interest, but rather the flow
condition at a certain point at different times.

(1.21)

Eulerian Method (Space Coordinates)
The motion of the fluid is completely determined, if the
velocity v is known as a function of time everywhere in
the flow field

v=glrd) (1.22)

or written in components

u = 91($7y727t) 5
v=go(2,y,2,t) (1.23)
x w = g3(.7/'7y727t)

If the velocity v is independent of time, the flow is called steady. The Eulerian method offers a
better perspicuity than the Lagrangian method and allows a simpler mathematical treatment.

Particle Path and Streamline

Particle paths designate the ways, the single fluid particles follow in the course of time. They
can be determined by integrating the differential equations:

dr ) @7 ) dz

E—u ; dt_v ) E:w (1.24)

The integrals are identical with the functions fi, fs, and f3, given previously in (1.18).

r = /U dt = fl(x07y07207t) )

Yy = /U dt = fo(20,Y0,20,t)
z = /U/' dt = f3(20.y0,%0,t) (1.25)
y4 . i i . .
Streamlines give an instantaneous picture of the flow at
a certain time.
Streamlines are defined by the requirement that in every
) point of the flow field their slope is given by the direction
streamline

of the velocity vector. For plane flows there results

d
tan(a) = d—z = % . (1.26)

In a steady flow particle paths are identical with stream-
lines.

\
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Reference Frame and Form of Motion

Certain unsteady motions can be viewed as steady motions with the aid of a coordinate trans-
formation. For example, the flow about the bow of a ship appears to be unsteady to an observer
standing on land, while the ship is passing by. The observer sees the single particle paths of
the flow. The picture of the streamlines is different for every instant of time. However, for an
observer on board of the ship the flow about the bow appears to be steady. Streamlines and
particle paths are now identical, and the picture of the streamlines does not change in the
course of time.

particle path , ¢
' ' ’

Observer at rest Observer aboard of the ship
(Unsteady motion) (Steady motion)

1.3.2 Stream Tube and Filament
Continuity Equation

Streamlines passing through a closed curve form a stream tube, in which the fluid flows. Since
the velocity vectors are tangent to the superficies, the fluid cannot leave the tube through the
superficies; the same mass is flowing through every cross section.

m=pvA ; puvAi=puA (1.27) p p

v V2

The product v A is the volume rate of flow. A A A
2

stream tube with an infinitesimal cross section is
called stream filament.

Bernoulli’s Equation (Daniel Bernoulli 1738)
It follows from Newton’s law
dv
— =N F, 1.28
my =y (1.29)
that, if pressure, volume, and friction forces act

on a element of a stream filament, the equilibrium
of forces is

pdAds@*—@

T dsdA+pg cosadsdA— R (1.29)
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with
ds cosa = —dz (1.30)
and
R
= 1.31
i dAds (1.31)
there results
dv Op dz ,
R N pua . 1.32
Pt s P9 4s R (1.32)
If the velocity depends on the path s and on the time ¢, then the total differential is
ov ov
dv=—dt+ —ds . 1.
v o + D5 5 (1.33)

With v = ds/dt the substantial acceleration is
dv Qv Qv v 107

at ot " '9s o T2 os

Therein dv/0t is the local and v(9v/9s) the convective acceleration and the differential equation
becomes

(1.34)

. p o Ip

Pot T270s Tas Vs
With the assumption of inviscid (R’ = 0), steady (v = v(s)), and incompressible fluid flow, the
last equation can be integrated to yield the energy equation for the stream filament (Bernoulli’s
equation 1738).

-R . (1.35)

p+g’u2+pgz:const. . (1.36)

According to this equation the sum of the mechanical energies remains constant along a stream
filament. The equilibrium of forces can be formulated for arbitrary force fields, if the acceleration
vector b is known:

o p ot Op ,
s c_ 5 = — 1.
P23 55 + s pb cos(b,s) R (1.37)
1.3.3 Applications of Bernoulli’s Equation
Measurement of the Total Pressure (Pitot Tube)

If in an inviscid flow the velocity vanishes in a point, then this point is called stagnation point.

p— f P
—— . . —_— =p B2
e — stagnation point P B * 3 Y
v p

— Ueo
T Pitot tube

It follows from Bernoulli’s equation that the pressure in the stagnation point (total pressure
po) is equal to the sum of the static pressure p, and of the dynamic pressure p u2 /2 of the
oncoming flow. The total pressure can be determined with the Pitot tube, the opening of which
is positioned in the opposite direction of the flow.
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Measurement of the Static Pressure

The so-called Ser’s disc and a static pressure probe are used to measure the static pressure in
a flow field. In contrast to the Pitot tube relatively large measuring errors result from small
angles of attack.

— —
P
Px P ®
p P, P
o
Ues Ug

Measurement of the Dynamic Pressure (Prandtl’s Static Pressure Tube)

Because of the friction in the fluid the measured dynamic pressure deviates from that of the
inviscid flow. The deviation depends on the Reynolds number and the ratio of the diameters
d/D. Tt can be corrected with the factor given in the diagram above.

£=[|//]

R P

Prandt] tube 10? 10° 10° Re

Prandtl’s static pressure tube combines the static pressure probe and the Pitot probe for the
measurement of the dynamic pressure, which can be determined with Bernoulli’s equation from
the difference of the total and the static pressure.

pgfpoc:ﬁg 2 with ﬁ:ﬁ<Reﬁ%> . (1.38)

[\]

Outflow from a Vessel

The outflow velocity is

2 (pr —
vy = \/1)f+29h+M . (1.39)
p

For A} >> A, and with p, = p; the outflow velocity
becomes vy = /2 g h (Torricelli’s theorem 1644).

The actual outflow velocity is smaller, caused by the friction forces. The cross section of the
stream, in general, is not equal to the geometric cross section of the opening. The stream
experiences a contraction ¥ = A./A, which is called stream contraction; it depends on the
shape of the outflow opening and on the Reynolds number.
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The volume rate of flow is then

Q=UA/29h . (1.40)

Measurement of the Volume Rate of Flow in Pipes

The volume rate of flow of a steady pipe flow can be obtained by measuring a pressure difference.
A sufficiently large pressure difference must be enforced by narrowing the cross section. If
m = Ay/A; designates the area ratio, one obtains for the velocity in the cross section 2

vy = J ( 1 2 (pl —p2) (1‘41)

1 —m?) P

- - and for the volume rate of flow

172
=AM <
P Q=124 . (1.42)

Venturi nozzle In technical applications mainly the Ventury nozzle, the
standard nozzle, and the standard orifice are used for
measuring the volume rate of flow. The influence of the

_LA1 Az friction in the fluid, of the area ratio, and of the shape
of the contraction is taken into account in the discharge

coefficient a.
standard nozzle Q=aA 2 Apy, (1.43)
Vo

J_A1 A, The pressure difference Ap, is called differential

pressure. The dimensions, the positions of the pressure

_ __. T measurements, the directions for installing, the toler-

T Ll | ances, and the discharge coefficients are laid down in
standard orifice the flow-measurement regulations.

1.4 One-Dimensional Unsteady Flow

If the velocity in a stream tube not only changes with the path length s but also with the time
t, then the volume rate of flow also changes with time. Since

Q(t) =v(s,t) A(s) (1.44)
it follows that
0Q v .

[vww.ebook3000.con)
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1.4 One-Dimensional Unsteady Flow 11

Consequently, the interdependence between pressure and velocity is changed. If all other as-
sumptions remain the same as in the derivation of Bernoulli’s equation, one obtains the energy
equation for unsteady flow for a stream filament to

v P2 1
p/ads—&-p-i-iv +pgz=k() . (1.46)

If the integral over the local acceleration is small in comparison to the other terms in the above
equation, the flow is called quasi-steady.

Oscillation of a Fluid Column

A fluid oscillates in a U-tube after displacement from its equi-
librium position by the amount &y, under the influence of grav-
ity. The energy equation for unsteady inviscid flow gives

dv
pgE=—pg&tp 1l . (1.47)

With v = —dx/dt the differential equation describing the os-
cillation is

¢ 2g
—+—=¢£=0 1.48
et =0 (1.48)
and with the initial conditions
v(t=10)=0, {(t=0)=4E (1.49)
the solution is
: 29
E=¢& cos(at) with a= - (1.50)

Therein « is the eigenfrequency of the oscillating fluid column.

Suction process in a plunger pump

The pumping process of a periodically working plunger pump
can be described with the energy equation for unsteady flows
with some simplifying assumptions. In order to avoid cavita-
tion the pressure in the intake pipe should not fall below the
vapor pressure py.

During the suction stroke the pressure attains its lowest value
at the piston-head. If it is assumed, that the velocity only
depends on the time ¢, the pressure at the piston-head ppy is
obtained to

E=Ecos wt

ppr _ Pa—pgh & 1 & 2
DR E T il + [cos(w t) 57 (1—3cos (w f)) . (1.51)
In general the piston stroke & is much smaller than the length of the intake pipe [; with this
assumption the angular velocity wy, at which the pressure at the piston-head reaches the value

of the vapor pressure ppy = py, is

~ [Pa—pgh—pv
VTR 0-6) (1:52)

The mean volume rate of flow is

. 27w .
Q:i/ vAdt = O0=6AY | (1.53)
27 Jrjw m
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1.5 Momentum and Moment of Momentum Theorem

The momentum theorem describes the equilibrium between the time rate of change of momen-
tum and external forces and the moment of momentum theorem the equilibium between their
moments. For steady as well as for time-averaged flows these theorems involve only the flow
conditions on the boundaries of a bounded fluid domain.

1.5.1 Momentum Theorem

According to the momentum theorem of mechanics the time rate of change of the momentum
is equal to the sum of the acting external forces

al

GoLF (1.54)

For a system with n particles with masses m; and velocities v; it follows with

I= mwv; (1.55)
i=1
d n
dt =

If the particles are assumed to form a continuum with density p(z,y,z,t) the sum changes into
a volume integral. The rate of change of momentum is then
dI  d
— = vdr . 1.57
dt  dt Jr@) podar ( )
The volume 7, which always contains the same particles, changes in a time interval from 7(t)
to 7(t + At).

d 1

£ ar = lim — | [ t+ A dr— [ po(t)d 1.58
dt./m)pv T A% A {T(Hm)pv( + A dr T(t)pv() T} (1.58)

0
pv(t+At)=pov(t)+ (gtv) At + .. (1.59)

dI 0 1
=] s vydr+ lm (o [ d 1.60
dt /T(t) ot (pv)dr + A% (At Ar(t)pv T) ( )
The last integral can be changed into a surface integral

over the surface A(t).

T(teAt) dt S
. mce

dr = (v-n)dA At (1.61)

it follows that

dI ) ~
E_/T(t)&(pv) dT+/A(t)pv('v-n) dA . (1.62)

A(t+At)

For steady flows the time rate of change of momentum is given by the surface integral of the
last equation. The surface A of the volume 7 considered is called control surface. The external
forces, which are in equilibrium with the time rate of change of momentum, are volume and
surface forces, for example, volume forces due to the gravitational force:
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Fg:/pgdf . (1.63)

The forces which act on the surface are given by the pressure and friction forces. The pressure
force is described by the integral

F, = —/ApndA . (1.64)

The friction forces are given by the surface integral extended over the components of the stress
tensor &’

F;= —./A(Eﬂn) A (1.65)

If a part of the control surface is given by a rigid wall, then a supporting force F', is exerted
by the wall on the fluid. The supporting force is equal to the force the fluid exerts on the wall,
but acts in the opposite direction. The momentum theorem for steady flows then reads

/Apv(v~n)dA:Fg+F,,+Fs+Ff . (1.66)

The difficult part in the construction of the solution of the momentum theorem mainly consists
in the solution of the integrals. If possible, the control surface A has to be chosen in such a way,
that the integrals given in (1.63) to (1.66) can be solved. In order to obtain a unique solution
the control surface A must be a simply connected surface.

1.5.2 Applications of the Momentum Theorem

Force on a Bent Pipe

The flow through a horizontal bent pipe is assumed
to be inviscid and incompressible. Inlet and outlet
cross section, the pressure in the inlet cross section,
the external pressure p,, which also prevails in the
outlet cross section, and the flow deflection angle g
have to be known for the solution of the problem. It is
advantageous, to choose the control surface as indicated
in the sketch by the dashed line.

The velocities in the inlet and outlet cross section are 2 £ pv2A,
determined with Bernoulli’s equation and the continuity >
equation: = ID(PQ‘ ; ‘-’12"“1
v = 2 (1= pa) 12 and vy =11 <é> . (1.67)
T g
From the momentum theorem it follows for the x-direction
—pui® Ai 4 pva® Ay cosf = (11 —pa) At + Foy (1.68)
and for the y-direction
—pvl Ay sinf=F, . (1.69)

The supporting force Fs can be determined from the last two equations.



14 1. Fluid Mechanics I

Jet Impinging on a Wall

A horizontal plane fluid jet impinges on a plate under
the angle 5 and is deflected to both sides without losses.

It follows from Bernoulli’s equation that the velocity at
both ends of the plate is equal to the jet velocity vy, if
it is assumed, that the streams leave the plate parallel
to it. Then the two components of the supporting force
are

F,=—pvib cosf and F,, =0 . (1.70)

The widths of the streams are

1+ sing 1 si
bzzbl% and bS:b1+nﬂ . (L7

Discontinuous Widening of a Pipe

If a pipe is discontinuously widened from the cross-sectional area A; to As, the fluid cannot
fill the entire cross-sectional area A,, when entering the widened part of the pipe. Dead water
regions are formed in the corner, which extract momentum with the aid of internal friction
from the fluid passing by. This loss of momentum results in a pressure loss. The pressure in the
entrance cross section also acts on the frontal area Ay — A; of the widened part of the pipe.

The losses in the flow can be determined with the
continuity equation, Bernoulli’s equations, and the
momentum theorem, if it is assumed, that downstream
from the dead water region the flow properties are
constant in every cross section and that the friction
caused by the walls can be neglected.

The pressure loss is obtained with the control surface shown in the sketch above by the dashed
line to

Apr = po1 — poz = (p1+gvf)* (pz+§v§) ) (1.72)
with
v Al =19 Ay, (1.73)
and
pv? Ay —puvi Ay = (pr—p2) Ay (1.74)
and finally to
Ap, = guf (1 - %)2 . (1.75)

The pressure loss, nondimensionalized with the dynamic pressure, is called pressure loss coef-
ficient.

Ap; A 2 s .
(= ﬁ = <1 - A—Q) Carnot’s equation (1.76)
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Pressure Loss in an Orifice

After what has been said about the flow through the pipe with a discontinuous widening of
the cross section, it can be concluded that the flow through an orifice also must generate a
pressure loss. It again can be determined with Carnot’s equation. During the passage of the
fluid through the orifice the flow contracts and forms a jet, which depends on the shape of the
orifice. (geometric opening ratio m = 2—/) The ratio of the cross section of the bottle neck to
the opening cross section of the orifice is called

contraction ratio ¥ = %‘ The pressure coefficient |2,

of the orifice, referenced to the conditions of the

oncoming flow in the pipe is

2 -
P (M) _ wmy — :

gvl vm

In the following table the pressure loss coefficient of the orifice is given for some characteristic
values of the product ¥ m.

Um|1]2/3]1/2]1/3
G |ol1a] 1 | 4

If the widening of the cross-sectional area is smooth, the losses just discussed can be very
much reduced. Then the pressure rises in the flow direction, since the velocity decreases with
increasing cross-sectional area. If the opening angle, however, becomes too large, then the flow
cannot follow the contour of the widened pipe any longer and a dead-water region similar to
the one mentioned previously is generated.

Resistance of an Installation in a Pipe

For a pipe with constant cross-section area the con-
tinuity equation yields v; = wvy. The resistance of

b3
-—

the body installed results in a pressure drop. The F

control surface is indicated by the dashed line in v, |

the sketch. With the friction forces neglected the p
1

resistance is

'.

—-

F, = (p2—p1) A. (1.78)
Rankine’s Slip-Stream Theory

Performance, thrust, and efficiency of wind-driven rotors and propellers (of ships and airplanes)
can be determined with the momentum theorem for one-dimensional flow under the following
simplifying assumption:

The rotation of the flow in the slip stream does not influence the axial flow velocity; the driving
force is uniformly distributed over the cross section of the slip stream, independent of the
number of vanes (infinite number of vanes); the flow is decelerated and accelerated without
losses.

The following figure shows the flow through a wind-driven rotor. The following relations are
valid for the stream tube with p; = p» = p, (atmospheric pressure far away from the rotor).
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pui Al = pv A =puvy Ay

| 2
SR IR A P P e
— .-‘ v 5012+pa = 5”'1 + P}
— ' I ;) vl +p, = g vh? + ply (1.79)

—F
M
}

BEE3RN

Continuous velocity variation in the slip stream.
Discontinuous pressure change in the cross-sectional
plane of the rotor.

The force F' exerted by the rotor on the flow in the

IIIII..... slip stream is determined from the momentum theorem
X

streamtube’ %

R LS ety i

for the small control volume between the cross section

P i 1" and 2', immediately upstream and downstream from
v the cross-sectional plane of the rotor (dark area).

F=(p-p)4 (1.80)

The force F' can also be obtained for the large control surface,, indicated by the dashed line in
the last figure

F=pv A (vg—v1) . (1.81)

The velocity in the cross-sectional plane of the rotor is obtained with the aid of Bernoulli’s
equation:

o (v + vg)

3 (Froude’s Theorem 1883) (1.82)

The energy, which can be extracted from the slip stream per unit time is

2
Poys (1.0 v
P=tay (1+v—) (1——3) . (1.83)

1 U1

The extracted power P attains a maximum value for the velocity ratio % = % The maximum
extracted power, divided by the cross-sectional area of the rotor, is

Pmaz 8 -
T pvd (1.84)

and the corresponding thrust per unit area is

F 4
=79 pvi . (1.85)

For air with p = 1.25kg/m? the following values are obtained for the maximum extracted power

and the corresponding thrust per unit cross-sectional area and time, computed for the wind
intensities listed.

v [m/s) 1 5 10 [ 15 ] 20 | 25 | 30
Wind intensity [BF] 1 3 6 7 9 10 | 12
Prae/A [kW/m?] 0.00037 | 0.0463 | 0.370 | 1.25 | 2.963 | 5.79 | 10.0

F/AT [N/m7] 0555 | 13.8% | 55.55 | 125 | 222 | 347 | 500
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1.5.3 Flows in Open Channels

Flows in rivers and channels are called open channel flows. They differ from pipe flows by their
free surface, which is exposed to the atmospheric pressure. For a given volume rate of flow and
a given width b of the channel, the depth of the water h can change with the velocity. If inviscid

steady flow is assumed, Bernoulli’s equation yields the specific relation for each streamline
Ly t (1.86)
— z = const. .
29

The sum of the velocity height v2/(2 ¢g) and the depth of water h is called energy height H.
The velocity of the water is assumed to be independent of z.

— With
- S e
K- o = 0
! there results
: bottom .
QQ
H = [ S 1.
h+2gh2b2 (1.88)

If the volume rate of flow and the energy height H are given, (1.88) gives two physically
meaningful solutions for the depth of water h and thereby also for the velocity. These two
different flow conditions can be found with the relation H = H(h) on both sides of the minimum

34 Q2
Hoin. = 5 Y % (189)

The corresponding critical depth of water is

J @

Rerit. = JE (1.90)
and the critical velocity is
Verit. = \/ 9 hcrit. - (191)
H
Hea \ The dimensionless ratio H/H iy, is
15
\ v g 2 h 1 (how)’
== = - . 1.92
10 [ il Hmin. 3 |:hcrit. * 2 < h > :| ( )
05 The quantity ¢ = /g h is the velocity of propagation of
gravitational waves in shallow water, and the ratio v/c
0 05 10 15 mh is called Froude number
r="2 (1.93)
c

The magnitude of the Froude number determines, which of the two flow conditions prevails.

Fr<1 h>hgy v <uvgy subcritical condition
Fr>1 h<hegy v> v supercritical condition

For Fr > 1 small disturbances cannot travel upstream. According to Bernoulli’s equation the
sum of the geodetical elevation of the bed and the energy height is constant. If the geodetical
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bed elevation is sufficiently increased (undulation of ground), a subcritical open channel flow
changes into supercritical motion. If H is the energy height of the channel, the necessary increase
of the geodetical bed elevation is

Zerit. = H — Hypi. (194)

Also the process in the opposite direction is observed. A supercritical motion (b < hgerir.)
changes into a subcritical motion with an almost discontinuous increase of the water level
(hydraulic jump). This jump is associated with fluid mechanical losses. The water level hy after
the jump can be determined with the momentum theorem and the continuity equation. For an
open channel with constant width there results

2 2 hi h3 =
pphy—vil)=pg |5 — 5 (1.95)

and
h1 v = hz Vg . (196)
The ratio of the water levels is

hy

1 20 1
= |-+ =1 =
}Ll 4 _(]hl 2

(1.97)

A decrease of the water level during the jump (hy/hy < 1) is not possible, since then the energy
height would have to be increased. The difference of the energy heights Hy — Ho

b (b (b Y
H -Hy=—[—] |—-1 1.98
! 2 4 (}LQ) (hl ( )
is positive (in the limiting case zero), if hy/h; > 1. The hydraulic jump can only occur in
supercritical motion.

1.5.4 Moment of Momentum Theorem

According to the fundamental theorem of mechanics the
time rate of change of the moments of momentum is
equal to the sum of the acting external moments. For
a system of n particles with masses m;, velocities v;,
and the distances r; from a space-bound axis there is
obtained

%Zri x(miv)=> M . (1.99)
i=1

Similar to the derivation of the momentum theorem the transition from the particle system to
the continuum is achieved by substituting the sum on the left-hand side of (1.99) by a volume
integral

AL d

— = dr . 1.1
dt  dt T(t)pTXU T (1.100)

The moment of momentum is designated as L. Its time rate of change is equal to the sum of
the moments of the external forces acting on the fluid considered, referenced to a space bound
axis.
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For steady flows the volume integral can again be replaced by a surface integral

dL

%:/Ap('l‘xv) (v-n)dA . (1.101)

The moment of the external forces results from the moments of the volume forces, the pressure
forces, the friction forces, and the supporting force:

M, = /T(Tng)dT ,

M, = —./Ap(rxn)dA ,
M; = —/r><(5'~n)dA
A
M, = r,xF, (1.102)

1.5.5 Applications of the Moment of Momentum Theorem
Euler’s Turbine Equation (1754)

If a fluid flows through a duct rotating with constant angular velocity from the outside to
the inside in the radial direction (radial turbine),, the moment generated by the flow can be
computed with the moment of momentum theorem. The flow is steady with respect to the duct,
the walls of which form the control volume. The mass flowing through the duct per unit time is

m = puvy Ay sind; = pvg Ag sindy . (1.103)
With the notation given in the sketch the time rate of change of the angular momentum is
/Ap (rxv)(v-n)dA =k [—muvr cosd +1muvyry cosds] . (1.104)
The moment delivered to the turbine shaft is (Moment of reaction)

My =1 [v; 71 cosdy —vg Ty cosd] . (1.105)

This relation is called Euler’s turbine equation.
The power delivered to the turbine is with the re-
lations

wup =ryw and ug = row

P = Myw =1 (v u3 cosdy — vg uy cosds)(1.106)

The largest power output is obtained, when the ab-
solute velocity v, is normal to the circumferential
velocity component us, i. e. if cosds = 0.

Segner’s Water Wheel (1750)

If a fluid flows from a reservoir into a doubly bent pipe, pivoted about its axis, as sketched in
the following drawing, the pipe will start to rotate. The flow generates a moment of rotation,
which can be picked up at the pipe. A certain part of this moment is used to overcome the
bearing friction. If the fluid motion through the pipe is steady, the moment can be determined
with the moment of momentum theorem.
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With the notation given in the sketch below the out-flowing mass is

1 ———
9 _P_
h
B
] zl |
F—R—
| "r‘
|
w

m
M

pv. A Land
m(v, —wR)R . (1.107)

In order to be able to determine the out-flow ve-
locity v,., the flow between the fluid surface in the
reservoir and the exit cross section is assumed to
be loss-free. The energy equation for the system
considered is

4
pa+/pbds=pa+gv3 . (1.108)
1

The integral can be split into two parts

4 2 3
/ pb~ds:/ pgdz+/ pwirdr ;(1.109)
1 1 2

2

therein w? r is the centrifugal acceleration.

After integration the out-flow velocity is obtained to

v =1/2g9gh+w?R? . (1.110)

With the following abbreviations one obtains for M

2gh

and Moy=2pghAR (1.111)

%:\/ng (MH&LE) - (L112)

The quantity M, is the starting moment. If the
dependence of the friction moment on the rota-
tional speed is known, the moment M, delivered
to the rotating pipe can be determined.

1.6 Parallel Flow of Viscous Fluids

When a fluid is deformed a part of the kinetic energy of the flow is converted into heat (internal
friction). For example in pipe flow, the internal friction results in a pressure drop in the flow
direction. From a macroscopic point of view, the fluid flows in layers (lat. lamina), and the
flow is called laminar flow. The velocity changes from layer to layer, and in the limiting case of
infinitesimally thin layers, a continuous velocity profile results. The fluid layers flow past each
other and the molecular momentum exchange between them causes tangential stresses,, which
are closely related to the velocity gradients. They can be described with a phenomenological
ansatz. The form of the ansatz depends on kind of fluid (viscosity law). In the close vicinity
to a rigid wall the molecules of the fluid loose the tangential component of the momentum to
the bounding surface, and as a consequence the fluid adheres to rigid walls (Stokes’ no-slip

condition, 1845):
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1.6.1 Viscosity Laws
Newtonian Fluid

Newtonian fluids are fluids in which the tangential stresses are linearly proportional to the
velocity gradients. This dependence can be illustrated with the following experiment: The space
between two parallel plates is filled with a Newtonian fluid.

If the upper plate is moved with the velocity w,, parallel to the lower plate, as shown in the
following sketch, then the velocity increases linearly in the y-direction, and the particles in the
superjacent layers move with different velocities.

w(y) = Uy % (1.113)
The angle of shear can be determined from their displacement:
w At
y, bt Ay 5 (1.114)
&y The rate of strain is obtained by forming the
¥ differential quotient
% . . Ay Uy
Aty o M
In general, for velocity distributions the rate of strain is
du
y=—— 1.116
= (1.116)

The relation between the rate of strain and the tangential or shear stress is obtained by a
comparison with a shearing test with a rigid body.

Shear Ezxperiment

The shear stress is proportional to the rate of strain. The constant of proportionality is the
dynamic shear viscosity p; it depends on the medium, the pressure, and on the temperature.
The ratio v = % is called kinematic viscosity.

R

Rigid body 7 = f(v); Fluid 7 = f(¥);
~ = shear action 4 = rate of strain
Hooke’s law: 7 = G v Newton’s viscosity law: 7= p 5

The following two diagrams show the temperature dependence of the dynamic and the kinematic
viscosity of water and air at atmospheric pressure.
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Non-Newtonian Fluids

Many fluids (for example high-polymeric fluids and suspensions) do not follow Newton’s vis-
cosity law. In order to be able to describe the different flow processes with simple relations,
numerous empirical model laws were proposed.

The Bingham model describes the flow process of fluids, which below a certain shear stress
behave as a rigid body (tooth paste)

T=pyEt7 . (1.117)
T For |7| < 79 ist 4 = 0. The Ostwald-de Waele

Bingham . .
9 model can describe nonlinear flow processes
Ostwald-de Waele

& T A (1118)
Newton
_du For n = 1 this model is identical with Newton’s
dy

viscosity law. The three models are shown in the
diagram. The deviation of n from unity indicates
the deviation of the fluid from Newtonian behav-
ior. For n < 1, the behavior is called pseudoplastic,
for n > 1 the fluid is called dilatant.

=T

1.6.2 Plane Shear Flow with Pressure Gradient

In the shear experiment described only shear stresses act in the fluid. In the following example
it is shown, how normal stresses together with shear stresses influence the flow. In order to
simplify the derivation it is assumed, that the normal stresses are caused by a pressure change
in the z-direction, and that the shear stresses change only in the y-direction. In this parallel
shear flow between two plates

T=1y) p=pl) (1.119)

the shear stress is assumed to be positive in the z-direction, if the normal of the bounding
surface points in the negative y-direction.

Assume that L is the length in the z-direction, over which the pressure changes from p; to
p2. The equilibrium of forces can then be written down for Newtonian and non-Newtonian
fluids. The velocity distribution is obtained by inserting the viscosity law and integration in
the y-direction. For a Newtonian fluid with

du

—p— 1.120
"y ( )

T =
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there results from the equilibrium of forces

dp dr
=0 . 1.121
dz Ty dy ( )
Integration yields
dt
+ == Y
S W)= -p) T e . (1122)
T p+ c-lgdx : i : :
4y =2 dx The velocity distribution is

P2 —
y . 1.123
I T wn) =B e (112
——— dx ————~

X

The constants of integration ¢} and ¢, are obtained from the boundary conditions.

Z _ 2 Z i 2 } Stokes’ no-slip condition (1.124)
Uy
. P2—h Y Y Y
AP ER =pr=—= <7> w o (1.125
DEPRE e, u(y) 2L [ n) | ey (129

The velocity distribution is determined by the
wall velocity u,, and the pressure difference in the
z-direction p; — po.

@ Uy >0 pp—p2=0
@ Uy =0 p—pa >0
@ Uy >0 pp—p2=0
@ Uy >0 pp—pa <0

The wall shear stresses are obtained by differentiation

h P1— D2 Uy
e U 1.12
y=0 : 7 =—n [L 50 T h (1.126)
h P1— P2 Uy
B _lw 1.12
y Tw = j {L 2 . (1.127)
The volume rate of flow is
Q / PP uwh
= 1.128
2pL 2 (1.128)
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1.6.3 Laminar Pipe Flow

A pipe with circular cross section and radius R is in-
clined at the angle o. Laminar flow flows though it. It is
assumed that the shear stress depends only on the radial
coordinate. The equilibrium of forces yields

dp

. 1d
g TPY sma—;%(Tr)fO . (1.129)

The shear stress is obtained by integration

T:+g [plszrpg sina] . (1.130)
For a Newtonian fluid with 7 = —,u% the velocity distribution for the Stokes’ no-slip condition is
R? — 2
ur) = ¢ [pl . P2 40y sin(a)] {1 - (%) } . (1.131)

The velocity attains its maximum value at the axis of the pipe (r = 0)

R? —
um(nzm {plLPZ +pg sina] . (1.132)
The volume rate of flow through the pipe is
) R R _
Q= / u(r)?wrdrzﬂ— [pl p2+pg sina] (1.133)
Jo 8 L

(Derived by Hagen and Poiseuille about 1840 for av = 0). With the volume rate of flow a mean
velocity u,, can be defined
_Q_ R

Uy = — = —

A 8u

{Pl — D2

T +pg sina] = umTaI . (1.134)

The pressure difference p; — ps is a measure for the wall shear stress, when the gravitational
force can be neglected.

:EM*PQ
2 L

(1.135)

Tw

The pressure difference referenced to the dynamic pressure of the mean velocity is

P1— P2 64l

L2 2
su P Um D

m

(1.136)

In the last equation the dimensionless expression % is the Reynolds number Re,

87, 64
o e (1.137)

The quotient 8 7,,/(p u2,) is called the pipe friction coefficient A. It is proportional to the wall
shear stress, nondimensionalized with the dynamic pressure of the mean velocity.

87y

- 2
p ’U‘TTL

(1.138)
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Flow in the Intake Region of a Pipe

If the velocity depends only on the radial coordinate r, as for example in the Hagen-Poiseuille
law, then the pipe flow is called fully developed. This flow condition is reached only at the end
of the intake length L;, which is approximately

L;=0.029 Re D (1.139)

In the intake region the velocity profiles change as indicated in the following drawing.

== = _____‘%_.___

= —

;l—-— intake length

fully developed flow

L =

In the intake region an additional pressure loss arises, which can be described by a loss coefficient
(¢; ~ 1.16)
P1— D2
gl

m

:)\%+Q (1.140)
In long pipes the intake losses can be neglected, but they have to be taken into account in
viscosity measurements in capillary viscometers.

The viscosity can be determined with the aid of the equation derived by Hagen and Poiseeuille,
(1.133) for aw = 0: The validity of this equation was confirmed with extreme accuracy, so that
it can be used for viscosity measurements. The experimental set up consists of a pipe with a
small diameter and a large diameter-to-length ratio, with the axis positioned horizontally. Then
the gravitational acceleration acts normal to the flow direction, and the pressure drop is solely
proportional to the dynamic shear viscosity p and iversely proportional to the volume rate of
flow. The viscosity can be determined by measuring the pressure drop and the volume rate
of flow. In order to avoid errors, caused by the variation of the velocity profile in the intake
region, the pressure must be measured further downstream. This can be done by computing
the entrance length with (1.139) and comparing it with the distance between the position of
the boreholes for the pressure measurements and the entrance of the pipe.

1.7 Turbulent Pipe Flows

The Hagen-Poiseuille law looses its validity when the
Reynols number exceeds a certain value. Experiments
show, that irregular velocity fluctuations set in, which
cause an intensive intermixing of the various layers in N
the flow. The momentum exchange normal to the axis
of the pipe increases markedly. The profiles of the time-
averaged velocity become fuller, and the wall shear stress
increases. The pressure drop no longer is proportional to
Q, but approximately to Qz_ The flow is then called tur-
bulent. In technical pipe flows the transition from lam- %
inar to turbulent flow in general occurs at a Reynolds 2\
number Re = 2300. Under special experimental condi-
tions pipe flows can be kept laminar up to Reynolds
number Re = 20000 and higher, with the diameter of

L 777

the pipe again used as the reference length. The flow
is then very susceptible to small perturbations and is
difficult to maintain.

»rz

Cldldd

= Uy —

TR 7 P
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1.7.1 Momentum Transport in Turbulent Flows

Following Reynolds (1882) the velocity in turbulent flows can be described with an ansatz,
which contains a time-averaged value and a fluctuating part.

“4
—

For the fully developed turbulent pipe flow the splitting
of the component in the axial direction yields

u(r,®,z,t) = u(r) + o' (rd,xt) (1.141)

and normal to it

uv

v(r,@,x,t) =0 (r,d,xzt) . (1.142)

cl

The time-averaged value of the velocity is determined
in such a way, that the time-averaged value of the
fluctuations vanishes.

t1¢—T—Jl2

In general the time-averaged mean value of the squares and the product of the two components
(correlation) of the fluctuation velocity do not vanish. When they are multiplied by the density,
they have the dimension of stress. The time-averaged correlation can be interpreted as the
transport of momentum per unit area in the radial direction, while the squares represent normal
stresses.

The turbulent momentum transport is mainly deter-

’ mined by the correlation of the velocity fluctuations
| X 1

T
_.T_.. _____ I’_______ U’U’ZT/O (u't') dt. (1.143)
p
1

= This result is obtained with the momentum theorem,
TIITTITTTTTTTT7TTTTT 7777777777 written for the control surface indicated by the solid
line shown in the drawing above.

0
/Ep'udTnL/pv(v-n)dA:FanFf (1.144)
Jr Ja
With the velocity

v=i(u+u)+50 (1.145)

The time-averaged momentum equation is obtained to

p/u’v’dA:27reru’U’:WTQ(plfpg)fTZTrrL , (1.146)
A
which yields with Newton’s viscosity law
N S 114
(po p1)2L /)1L1)+/Ldr (1.147)

The quantity p /v’ is called the apparent or turbulent shear stress. If the velocity profile u(r)
is to be determined, the correlation u/v” has to be known. Since the apparent stresses cannot
be obtained from (1.147), an additional hypothesis has to be introduced, which constitutes a
relation connecting the velocity correlation with the time-averaged velocity.

Prandtl’s Mixzing-Length Hypothesis

In his hypothesis about the turbulent momentum transport Prandtl assumes, that small ag-
glomerations of fluid particles move relative to the surrounding fluid in the main flow direction
and normal to it and exchange momentum with their surroundings.
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The distance along which the agglomerations loose their
excess momentum is called mixing length [. Normal to
the direction of the main flow the change of velocity
between two layers, by the distance | apart from each
other, is

Av=a(y+1)—uly) ~l— . (1.148)

This velocity difference can be assumed to be equal to
TITITIITITTITTT77 7777 the velocity fluctuation v’

du
u=1— . (1.149)

dy
The fluctuations in the main flow direction cause fluctuations of the normal velocity component
v’, which are of equal order of magnitude. A positive fluctuation v’ most of the time originates

a negative fluctuation v/, as can be reasoned from continuity considerations. Hence
V=—cu (1.150)

where c is a positive constant, which can be included in the mixing length. The turbulent shear
stress 7; then follows as the mean value of the product of both fluctuations u" and v’

du) du (1.151)

— U = pl?
n=put=p

The absolute value of dii/dy is introduced, in order to ensure, that the sign of the turbulent
shear stress changes with the sign of the velocity gradient.

1.7.2 Velocity Distribution and Resistance Law

With the equation for the turbulent shear stress, (1.151), the momentum equation for the
turbulent pipe flow reads with a shift of coordinates to y = R —r

du| du

) au (1.152)
dy| dy

_p2 — D1 2

2L

L
dyp

(R—y)=pn

For y = 0 the right-hand side of (1.152) represents the wall shear stress 7,,. The turbulent shear
stress vanishes at the wall, as the velocity fluctuations have to vanish there because of Stokes’
no-slip condition. The mixing length [ therefore has also to vanish in the vicinity of the wall.
Prandtl assumed, that in the layer nearest to the wall the mixing length is proportional to the
distance from the wall,

I=ky . (1.153)

In the above equation k is a constant. Aside from a very thin layer in the immediate vicinity of
the wall, the turbulent shear stress is much larger than the laminar contribution, and hence the
latter can be neglected in the integration of (1.152). If finally another of Prandtl’s assumptions
is introduced, according to which the turbulent shear stress 7; remains constant and is equal
to the wall shear stress 7, then, after integration of (1.152), the universal law of the wall for
turbulent pipe flow is obtained

1
Tk

lnyu*

Lo . (1.154)

U
U
The quantity u. = /7, /p is called friction velocity The constant & = 0.4 is named after von
Kérman; k& and C' were determined from experiments. For technically smooth pipes C' = 5.5.
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The logarithmic form of the universal law of the wall shows, that it looses its validity in the
immediate vicinity of the wall. Since the mixing length vanishes for y approaching zero, the
shear stress in the viscous sublayer is solely given by p dua/dy.
With 7 = 7, = const., the velocity in the viscous sublayer is
u Y Uy
g (1.155)
Uy v
Although the logarithmic velocity distribution was derived for the region near the wall, the
comparison with experimental data shows, that it is approximately valid over the entire cross
section. By eliminating the constant of integration C, with % = .. (y = R) there is obtained
Umaz — U 1 R

= In— . 1.156
o Py (1.156)

The time-averaged velocity averaged over the cross section is u,,

U _ Umez 375 (1.157)
Use Uy
« R
Yonax |
08 1
154 - |
] A 06 i
0 4 04 ‘
5 ' |
02 |
1 7 T & 0 i
010t Yy 0 02 0& 06 08 | ¥
Universal law of the wall Time-averaged dimensionless radial velocity dis-

tribution of the turbulent pipe flow with % =

1-7.

Experimental data also confirm (1.157), if the constant 3.75 is replaced by the value 4.07.
With the definition of the pipe friction coefficient

8 u,?
A= ) (1.158)
and the universal law of the wall, (1.158) can be cast into the form
1
—= =2.035 log(Re VA) — 0.91 . 1.159
7 8( ) (1.159)
Equation (1.159) agrees with experimental data, if the constants are changed so that
1
—==2.0log(Re V) — 0.8 . 1.160
7 8( ) (1.160)

This law is called the Prandt] universal resistance law. For Reynolds numbers up to Re = 10°
also the simple relation of Blasius (1911) can be used

~0.316
" Re0-25

The pipes for which these laws are valid, have to be hydraulically smooth.

(1.161)
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Rough Pipes
Pipes used in technical applications, in general
are not hydraulically smooth. The roughness

of the wall influences the flow, such that the 1003 M
pipe friction coefficient is no longer given by 7 Ri 15
Prandtl’s law. The friction coefficient then de- s »
pends on the number of roughness elements per \\ 60
unit area, on their shape, and on their distri- 3 X M = -
bution. In order to be able to characterize the 2 AY ] = i
roughness in a simplified manner, a parameter ~L]
k/R (relative roughness) is introduced, which 1

10? 10° 10 —= Re

is coordinated with a more accurately defined
sand roughness ks/R, such that the pipe fric-
tion coefficients agree.

The diagram shows the influence of the relative sand roughness on the pipe friction coefficient.
According to this diagram, above a certain Reynolds number the friction coefficient A depends
only on ks/R. For completely rough pipes the quadratic resistance law is valid and the pipe
friction coefficient can be determined by the following relation.

— 2.0 log (5) 174 (1.162)

1
VA ks

1.7.3 Pipes with Non-circular Cross Section

Experimentally determined resistances of turbulent flows in pipes with non-circular cross sec-
tions agree well with the resistance law for circular pipes, if in the equation for the pressure
loss and in the definition of the Reynolds number the hydraulic diameter dj, is introduced.

4 A
d, = X3 (1.163)
A stands for the cross-sectional area and U for the circumference.
L p_ P U dp,
App=\— @ Rey, = . 1.164
P dy 2 U, C} P ( )

As the following diagram shows, the experimental data A\(Rey,) follow the Blasius law for tur-
bulent flows. The pressure loss of turbulent flows in open channels can be obtained in the same
manner. The hydraulic diameter is then determined from the cross-sectional area of the flow
and the wetted circumference of the channel.

A= CRe by A= 031eRe

Friction coefficient for laminar and turbulent pipe

10 10° 100 —= flow with non-circular cross section



30 1. Fluid Mechanics I

The hydraulic diameter looses its meaning for laminar flows. For laminar flows with non-circular
cross section the pipe friction coefficient is determined from the law A = C/ Re, where the shape
of the cross section is accounted for in the constant C'.
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2.1 Introduction

A flow is completely determined if the velocity vector v and the thermodynamic properties, the
pressure p, the density p, and the temperature 7" are known everywhere in the flow field. These
six quantities, the three velocity components, and the three thermodynamic variables have to be
provided for the description of the flow. This can be done by solving the conservation equations
for mass, momentum, and energy and the thermal equation of state, which connects the thermo-
dynamic variables with each other. If the latter change markedly, the dynamic shear viscosity,
1, the thermal conductivity A, and the specific heat ¢ also have to be prescribed as a function
of pressure and temperature. Liquids can be considered as incompressible and their density p
can be assumed to be constant. This assumption also holds for gases flowing at low speeds.
The conservation laws are presented in the form of partial differential equations ; their solution
requires the prescription of initial and boundary conditions.

2.2 Fundamental Equations of Fluid Mechanics

2.2.1 The Continuity Equation

The mass m of a flowing medium remains constant in a time-dependent volume 7(t), bounded
by the closed surface A(t).

2.1
df @ / 0" 21)
The total time derivative of the mass m can be written as
I dr = tim | / (t+ dtydr— [ plt) (2.2)
had = T — T . .
dt fu)p A5 At T(t+At) P (t) p
With
Ip
p(t+ At) = p(t) + % At+ ... (2.3)
and
dr = (v-n)dAdt (2.4)
there results
d ~ dp g
e dr = / P4 / ‘n)dA . 2.5
dt Jz) per () Ot T A(t)p (v-n) (2:5)

The surface integral over A(t) can be transformed into a volume integral with the aid of the
Gauss divergence theorem, such that the last equation takes on the following form

%/T(t) _/<>{ v (M)} " 20
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The above volume integral can vanish only, if the integrand vanishes identically everywhere in
the flow field. Hence

dp

S+ (pv)=0 . 2.7)

The vanishing of the integral by cancellation of negative with positive parts of the integrand is
not meant here. Instead it is required, that the integrand vanishes throughout the flow field.
The above equation is known as continuity equation. It can be written in a different form by
introducing the total time derivative of the density.

pw+-—[pwldz
2 lpv}dy dp

L p(Vov)= (2.8)

For an incompressible fluid there results V- v = 0. The
continuity equation can also be derived with the aid of
a mass balance for a space-bound volume element. The
change of mass per unit time in the volume element is
equal to the difference between in- and out-flowing mass.

9(pu) pv) d(pw) _9p
{ 5 dr dy dz + —F—= a9 dr dy dz + ——= P dz dy dz 7dedg/dz (2.9)
Again there is obtained
ap .
5 TV (v =0 . (2.10)

The change of mass per unit time in the control volume is expressed by the partial derivative

dt, the mass flow through its surface is given by the expression V - (p v).

2.2.2 The Navier-Stokes Equations

The equilibrium of forces acting on a volume element of fluid can be described with the mo-
mentum theorem. The time rate of change of the momentum of a closed volume is equal to the
sum of the external forces acting on the volume.

d
— dr=>» F 2.11
dt /T(z)pv T Z ( )

The left-hand side of this equation, which is the total time derivative of the volume integral
extended over the momentum pw, can be rearranged similarly to the derivation of the continuity
equation. It follows that

Lo [ |5 v o= [ | T wyear e

The term (vw) is the diadic product of the velocity vector v. The external forces are the volume
force, as, for example, the gravitational force

F, :/ pgdr | (2.13)
7(t)
and the surface forces, which result from the stress tensor &.

F,=— -0)dA 2.14
o= [ o (2.14)
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The term (n - ) is the vector product of the normal nm and the stress tensor . The surface
integral can again be replaced by a volume integral

Fo=—[ (n-3)dA=—] (V-5)dr . 2.1
[ 0) L,V -air (2.15)

The momentum theorem for an arbitrarily closed volume 7 then reads

ov _
— . dr = dr — -o)dr . 2.1
/T(t) p {m + (v V) v} T /T(t) pgdr _/T@)(V g)dr (2.16)

If the three integrals are lumped together into a single integral, again, it can vanish only, if the
integrand vanishes identically:

) {%Hv-vw} g (V-5) (2.17)

The components of this vector equation can be written in arbitrary coordinate systems, suitably
chosen for the problem considered. In Cartesian coordinates the following equations result with

Oze Toy Tz
0= Tye Oyy Tyz (218)
Tew  Tzy Ozz

@ u@u U@u wau _8011_%_8712
ot “or " Vay "oz P

@+ @_{_ @-i- v@v B _8Tym_8ayy_87'yz
o Yar TVay T Ve) T P

(811} ow ow 8w> _ 0Ty 0Ty 00 (2.19)

These equations describe the relations between the velocity components and the local stresses
of the fluid considered. The instantaneous stresses can be related to the velocity field with
the aid of the Stokes hypothesis, carried over from theoretical mechanics. In Hooke’s law the
stresses are assumed to be proportional to the strain, and in fluid mechanics the stresses are
assumed to be proportional to the time rate of change of the strain.

Before these relations are established, it is noted, that the above equations of motion state
that a small volume element moving with the fluid is accelerated or decelerated by the external
forces acting on it. It is seen that the momentum balance is completely equivalent to Newton’s
second law of motion.

It is also noted, that (2.19) is valid for any fluid either Newtonian or non-Newtonian. In order
to use (2.19) for determining the velocity and the pressure, the stresses have to be expressed
in terms of the derivatives of the velocity components and the viscosity of the fluid. This will
be done next for a Newtonian fluid.

Stress-Strain Relations

For the derivation of the relations describing the dependence of the stresses on the time rate of
change of the strain, it is assumed. that the normal stresses 04, 0y, 0., cause elongations and
contractions €, €, €, and the shear stresses 7,,, . . . ,7., cause angular displacements vy, . . . ,7zy-
As indicated in the diagram the components of the time rate of change of the strain are given
by the partial derivatives of the velocity components in the direction of the coordinate axes.
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(e 2dyidt . _Ou . Ov . Ow
Y _ _ _

.= — = — L= — 2.20
Y ‘ ox ‘& y ‘ 0z ( )
av \ d
+ ¥ Gidt

& drdy' o The sum of the components of the time rate of

vt % = T change of the strain yields the relative change in

l oy // v+ Q¥axldt volume, per time interval d¢ (volume dilatation)
s
—ax —-o—lu.%;zdxldl ~ 6 — Ou  Ov  Ow —-V.v. (2.21)
—udt ——~ Ox ('9y 0z
x The angular displacements per time interval dt are
df+da ou v ov  Odw ou  Ow

= N S, = — Yoy = — | — + =— 1] . (2.22
Ty dt <6y+8x> Ty <8z+ 0y> Ty (é)z+ BI) ( )

The normal and tangential stresses are related to the time rate of change of the components of
the strain and the angular displacements in a linear ansatz. In the state of rest, in which the
time rate of change of the strains and the angular displacements vanish, the normal stresses
Oza, Oyy, 0. are independent of the direction, and solely given by the hydrostatic pressure. This
behavior of the flow can be expressed by the following hypothesis, introduced by Stokes

sz:p_2u€x_;\e ’
Oy =P =216 — Né
O=p—2pé—Aée (2.23)
and
Tay = N‘%y ) Tyz = /l%z 5 Tez = M’;/zz . (224)

Since for reasons of symmetry 7, = Ty;,7,; = Ty and 7,, = T,., only three normal and three
tangential stress components of the Stokes stress tensor are unknown. It can therefore be written
as

1 V.o
ag=p 1 -2 Vv —
1 V-v
B (B4 3+
2pu | 3 (G +3) o 3 (345 (2.25)
2o 3GTE) 8

The coefficient A generally is split into the two parts \ = - % 1. The volume viscosity /i takes
into account the molecular degrees of freedom; it vanishes for monatomig gases.
The normal stresses are

ou

Our = p—2/t%—<f—§u> (V-v)

Ty = p—w%—<ﬂ—§u> (V-v)

o = p-20 50 (- 24) (Vo) (2.26)
Their mean value is

o= 1 (Opa+0yy+0.)=p—p(V-v) . (2.27)

3
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For incompressible flows the mean value is simply = p.
If the stress-strain relations are substituted in the momentum equations, the Navier-Stokes
equations are obtained (1823, 1845).

L PYPCCIS ¥0 28] I A | B e |
Pat = "oz "oz | 0w ay " \ay Tar)| T M \a: Tar )| TP
dv dp O [(Ou v 0 o~ 0 dv  OJw
= = LN+ Z 2 X R P ,
o T Tay o M <8y+aw>}+8y[ﬂ8y+ v )}Jraz{“ <8z+8y>}+p‘%
dw dp 0 [ [Ou Ow 19} ov  Jdw d ow  +
= i - - i bt W v .
Pa T To: Taa | <3z+8$>}+8y [” <8z+ 8y>}+8z{ nos PAV ”)}“’9
For incompressible flow with constant dynamic shear viscosity p the above equations reduce to
du  Op 9
P = g TH Viu+pg,
dv Jp 2
pa - _aiy"_,u’v 71’+pg1j )
dv  Op 9
P = —az—&-,uv u+pg, - (2.28)

2.2.3 The Energy Equation

The Bernoulli equation states that the sum of the mechanical energies is constant in incompress-
ible, loss-free, steady flows. In flows with large density and temperature changes in addition to
the change of the mechanical energy also the change of the thermal energy has to be included
in the balance equation.

The energy E in a closed volume consists out of the internal energy p e and the kinetic en-

ergy 1 po’.

E=p (e + %2> (2.29)

According to the first law of thermodynamics, the internal energy of an arbitrary, always the
same mass particles containing volume increases, if the amount of heat, added to the gas through
the bounding surface, is larger than the work done against the acting volume and surface forces.
Internal heat sources are neglected. Since the time rate of change of the various parts of the
energy contributing to the balance is considered, often the notion power P is used. The time
rate of change of the total energy of a fluid contained in a volume bounded by a closed surface is

d v?
E‘/Ta)p <e+7) dr="pP . (2.30)

The work to be done by the fluid against the volume forces is given by the work, done during
the time interval dt by the forces acting along the various particle paths. If the volume force
is given by the gravitational force, the corresponding contribution is described by the inner
product of the gravitational acceleration g and the velocity v.

P, = /T(t) plg - v)dr (2.31)

The work to be done against the surface forces can be determined with the aid of the work
necessary for the displacement of the bounding surface of the volume 7. This contribution is
given by the surface integral extended over the inner vector product of the stress tensor ¢ and
the velocity v
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PA:—/(E-v)~ndA , (2.32)
A
which can again be transformed into a volume integral.
Py = —/( V(G ) (2.33)
T(t

If, as in the derivation of the Navier-Stokes equations, the pressure is separated from the stress
tensor, a second integral results, in which the work of the friction forces per unit volume is
taken into account by the rest of the stress tensor &’ and the velocity vector

—_ . — . =/ .
Py = /T(t)V (pv)dr /T(t)V (¢"-v)dr . (2.34)

The first integral describes the work of the pressure forces, and the second the work of the
friction forces.

The contribution to the energy balance by heat conduction is given by the heat flux through
the bounding surface q.

P, =- /Am(q -m) dA (2.35)
Thermal radiation is not considered here. With Fourier’s law of heat conduction
qg=-\VT (2.36)
there is obtained

P, = / (VT n)dA = /T(t)V-()\VT)dT. (2.37)

The time rate of change of the total energy contained in the volume of fluid can again be written
as a volume integral if the assumptions introduced earlier are retained. Then the energy equation
in integral form is

2

/t){ jt <€+ %)—p(g-vHV (p-v)+V (5'~v)—V-(/\V~T)} dr =0 .(2.38)

The integral form of the energy equation can be replaced by its differential form if the integrand
vanishes identically

p% <6+%2> =p(g-v)=V-(pv)+V-AVT)=V-(0"-v) . (2:39)

2.2.4 Different Forms of the Energy Equation

The energy equation can be written in different forms. The scalar product of the velocity vector
and the Navier-Stokes equations yields the following relation

() =g v (75 (2.40
)l =p (w-q)—v- (V- . .
P gt \ 2 p g o
If this equation is subtracted from the energy equation the time rate of change of the internal
energy is obtained

de pdp

p%_;%+v.()\v’f)+uq§ . (2'41)
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The term () (%) represents the work of compression or expansion of the pressure. The term

1 @ stands as abbreviation for
pb=v-(V-0')=V-(0'-v) . (2.42)

The function @ is called dissipation function. It represents the amount of the mechanical energy,
irreversibly transformed into thermal energy. Another form of the energy equation is obtained
by introducing the enthalpy h:

h=e+? (2.43)
p
With A there results
d v? Op =
- i T -0 - 2.44
P (h+2> ater(g v)+ V- (AV o v) (2.44)

In steady flows the stagnation enthalpy remains constant along streamlines, if volume forces
can be neglected, and if either the heat conduction and the work done by friction forces per unit
volume vanish or if the heat removed by conduction is equal to the work of the friction forces.

02
ho=h+ 5= const. (2.45)

For perfect gases the enthalpy depends only on the temperature. With
dh = ¢, dT (2.46)

the time rate of change of the temperature in the energy equation can be expressed by the time
rate of change of the pressure, the divergence of the heat flux, and the dissipation function.

T d
pev o ﬁ+v AVT)+nd (2.47)

In Cartesisan coordinates the equation reads

C a—T-Ha—T-i- 8T+ or = @—H%—Ha—p—kw@
Polor " "ar "oy " Yaz) T o " ar "oy "V a:

YR AN N AN N
ox ox 0y dy 0z dz

_ ,8u+,@+,8w
Taz gy T gy T 7 g

ou, 0\ (ou o
Tay oy Oz T2 \ 9z " o

ow v

If the components of the Stokes stress tensor are replaced by the relations introduced earlier,
the dissipation function @ becomes, if ji = 0,

ou\*, (00\* (0w 2 (0u ov  ow)?
ox dy dz 3 \0dx Oy 0z

+ %Jrav 2+ a—u+aw 2+ %+@ 2 (2.49)
dy Ox 0z  Ox dy 0z ' ’

b = 2
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The dissipation function is always positive, proving, that an irreversible change of mechanical
energy always causes a heating of the fluid or gas.

The conservation equations for mass, momentum, and energy form a system of five coupled,
nonlinear, partial differential equations, which require initial and boundary conditions for a so-
lution. For constant density, viscosity, heat conductivity, and heat capacity the energy equation
is decoupled from the continuity equation and from the momentum equations, and pressure
and velocity can be determined without the use of the energy equation.

2.3 Similar Flows

In order to describe flow processes it is necessary to intergrate the conservation laws just derived.
Since the integration of these equations in closed form is, in general, not possible because of the
inherent mathematical difficulties, flows are often investigated experimentally. Fluid mechanical
and thermodynamic data are measured with models geometrically similar to the full-scale
configuration, for which the flow is to be determined. However, since in general the models
are smaller in size, the measured data have to be applied to the full-scale configuration with
the rules of the theory of similitude. This theory makes use of similarity parameters, in which
the characteristic quantities with physical dimensions of the flow considered are combined to
dimensionless quantities. Two flows about geometrically similar bodies are called similar, if the
individual similarity parameters have the same value for both flows. The similarity parameters,
that are important for the flow process considered, can either be determined with the method
of dimensional analysis applied to the physical properties of the flow or by nondimensionalizing
the conservation equations.

2.3.1 Derivation of the Similarity Parameters with the Method
of Dimensional Analysis

The method of dimensional analysis aims at deriving similarity parameters, which can be used
to apply data measured with a model configuration to the geometrically similar full-scale con-
figuration. Thereby the number of necessary experiments can be reduced, which depends on the
number the physical quantities influencing the problem. The dimensional analysis also offers
the advantage, that the physical quantities can be combined in such a way, that the results are
independent of the measuring units. The physical quantities are combined in a product such
that dimensionless combinations result. The number of possible combinations is determined by
Buckingham’s IT theorem. According to this theorem m —n dimensionless similarity parameters
can be derived from m influence quantities, if n is the number of the fundamental dimensions,
entering the problem considered.

In the following the important similarity parameters of the fluid mechanical quantities are
derived. If for a flow problem the characteristic values of its length [, time ¢, velocity v, accel-
eration b, pressure difference Ap, density p, and dynamic shear viscosity p are known, then the
dimensions of these quantities can be described by the three fundamental dimensions length,
time, and mass. Each of them can be combined with the other quantities (reference quantities)
in a product to form a dimensionless similarity parameter. The reference quantities are chosen
to be the length [, the velocity v, and the density p. With the aid of Buckingham’s I theorem
the following four products for the time ¢, the acceleration b, the pressure difference Ap, and
the dynamic shear viscosity p can be formulated

K, = o phym®

Ky = g% promi®

K3 Ap*? p63 V8 1%

Ky = pphrympon (2.50)
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The gravitational acceleration ¢ is used for b. The unknown exponents «,...,0; have to be
determined in such a way, that the similarity parameters K; are dimensionless. One of each of
the exponents can be chosen arbitrarily, for example ay = —1, ap = —0.5, ag = 1, ay = —1.
Then it follows from the equation for K; by comparison of the exponents of the fundamental
dimensions with [K;] = L°T° K°
LengthL : 0=-381+v +4

Time T : 0=—-1—-mp

Mass M : 0=/ . (2.51)
This system of equations has the solution

ﬁl =0. Y1 = —17 (51 =1 . (252)

The similarity parameter K is obtained to
Ki=— . (2.53)

The similarity parameters Ky to K, are determined in similar manner. They are

A l
Ky = 71} K3 = 71)27 Ky= LY (2‘54)
pu ©

The similarity parameters are named after famous scientists.

[
K, = Sr= i Strouhal number,
v
v
Ky = Fr=— Froud b
2 T N roude number,
A
Ky = Fu= —pg Euler number,
pv
pu
Ky = Re=—— Reynolds number.
"

Application of the Method of Dimensional Analysis to the Pipe Flow

As was shown for the pipe flow, its pressure loss Ap depends on the density p, the mean velocity
U, the dynamic shear viscosity p, the length [, the roughness &, and the diameter D.

f(AvaUm:/hl»ka) =0 (255)

The dimensions of these quantities can be expressed by combinations of the three fundamental
dimensions of length, mass, and time. Density, velocity, and length (diameter) are chosen as
reference quantities, such that there result four similarity parameters for the remaining four
quantities Ap, p, [, and k. If the exponents are set a; = 1, then the products can be formulated as

K Ap pPrut DM

K, U pﬁz w2 D%

K, = lpﬂs w D%

Ky = kp*us D% | (2.56)

The similarity parameters K; to K, are obtained as follows

Ap 10 l
K, = , Ky= , Ky=—, Ky=
1 ol 2= D 3 VI
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The function f can now be written as

Ap " [ k
s —, — ] =0 2.58
h (pufn’ pun, D’ D’ D> (2.58)

or

Ap l k
pu?nifz (R& D 5) . (2-59)

The form of the function cannot be determined with the method of dimensional analysis.
However, the number of influence quantities has been reduced from six to three.

2.3.2 The Method of Differential Equations

The similarity parameters can also be determined by nondimensionalizing the variables in the
conservation equations with suitable reference quantities. They are denoted by the subscript 1.
The similarity parameters then appear as constant coefficients in the differential equations. To
keep the derivation simple, the transport properties p, A, and the specific heat ¢, are assumed
to be constant. With

A e p
u=— V= — = — p:
U1 U1 r P1 Apy
_ PGz - 't . oy
== t=— Ir=— = = = — 2.60
Py tq ly 4 b / H ( )

the z-component of the momentum equation for two-dimensional incompressible flow, written
in physical quantities

ou ou ou Op 9
il - ) === 9 2.61
<8t+u0rfc+vay> aerpngruV u (2.61)
is transformed into dimensionless form
ou _Ou _0u op 1 _ 1 5
U4V e = —Bu e 4+ —— o+ — . 2.62
SraEt it s TEE et R VT (262)

This equation contains the similarity parameters S, Eu, F'r, and Re already derived.
Additional similarity parameters are obtained from the energy equation for compressible flows.

or = or . oT\ ) dp Op  Op

e |(28) 1 ()
# 1\ or dy

ou , 0w’
oy Oz

+ u
2, Qe vy (2.63)
3t \ox dy '
With the additional reference quantities
- T
T=7  Ap=pw’ (2.64)
1

the dimensionless form of the energy equation is

[vww.ebook3000.con)
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or _or _oT 1 oy
5 g s ) = T
p<S7 0t+u0fi+bagj> PrRev +
+ (y—1)Md* ST%-&- (ﬁa—ng@%’)}
Ma? A A
o0 {3+ (5)
2 (ou  ov\> [ou Ov)®
- =+ = — + — . 2.65
3(0$+0y>+<8y+01’)} (2.65)
The above equation contains the additional similarity parameters
Pr = % Prandtl number,
1
U1 U1
Ma = —=—nr= Mach number,
a1 /v RT '
Cpi
= = . 2.66
gl o (2.66)

The Mach number is the ratio of the reference velocity to the speed of sound, which for known
isentropic exponent v and known gas constant R depends only on the reference temperature 7.
The dimensionless variables are the same for all corresponding times and corresponding points
of all flow fields which have similar initial and boundary conditions and identical similarity
parameters Sr, Fu, Fr, Re, Pr, Ma, and .

2.3.3 Physical Meaning of the Similarity Parameters

The similarity parameters derived with the method of dimensional analysis and the method of
differential equations can be interpreted from a physical point of view.

The Strouhal number Sr is the ratio of two characteristic times in a time-dependent flow field.
If the characteristic time ¢ is large compared to [/v, i. e. the time, in which a fluid particle
travels the distance [, the flow is called quasi-steady (S << 1). Then the influence of the local
acceleration on the flow can be neglected. For periodic flows, (for example arterial circulation in
the human body, or flows in pumps) instead of the characteristic time ¢ the frequency f is used.
The Froude number F'r is the ratio of the inertia and gravitational forces. It is of importance
for free-surface flows (Gravitational waves, open channel flows).

The Euler number Ewu is given by the ratio of pressure and inertia forces, and the Reynolds
number Re by the ratio of the inertia and friction forces. If the Reynolds number becomes very
large, the friction forces can be neglected. The conservation equations for inviscid flows are
called Euler equations and were first derived in 1755. If the Reynolds number is very small,
the influence of the inertia forces on the flow can be neglected. Very slow flow motion is often
referred to as creeping motion.

The Mach number is a measure for the influence of the compressibility on the flow, which up
to Ma < 0.4 in general can be neglected. For normal conditions this value corresponds to a
velocity of 133m/s or 480 km/h.

The Prandtl number Pr is the ratio of the product of the dynamic shear viscosity p and specific
heat c, and the heat conductivity A. For air and also other gases the Prandtl number is almost
constant, while for liquids it is strongly temperature dependent.

The isentropic exponent « can also be thought of as a similarity parameter. It depends only on
the internal degrees of freedom of the molecules.

It is often difficult in model experiments to satisfy all similarity laws. For example, if in a wind
tunnel the influence of the friction forces on the other flow parameters is to be experimentally de-
termined with a model of an airplane, then in incompressible flow only the Reynolds number has
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to have the same value as the flow about the full-scale configuration of the airplane. If air is used
in the experiment as flow medium, the free-stream velocity of the model is for equal values of the
kinematic viscosity vy, = {v/ly. Since the model has to be much smaller than the main config-
uration, in order to satisfy the Reynolds similarity law it would be necessary that vy, > v. For
very large velocities, however, the flow is compressible and would be influenced correspondingly.
It is even more difficult if not impossible to satisfy several or all similarity laws simultaneously.
If the drag of a ship, which results from friction forces and the generation of waves, is to
be determined experimentally, both Reynolds’ and Froude’s similarity law would have to be
satisfied. If in the experiment the same flow medium is used as for the full-scale configuration,
then the two laws would contradict each other. With the condition Reyp; = Re the length of
lv

the model would have to be l; = ﬁ, while Froude’s similarity law F'ry; = Fr would require

Ly = Lv3;/v?, so that only one of the two laws can be obeyed.

2.4 Creeping Motion

Characteristic feature of very slow flow motion is that the friction forces are much larger than
the inertia forces. With this supposition the conservation equations or equations of motion
can be simplified and a solution be constructed. This is demonstrated with the example of
the hydrodynamically lubricated bearing, in which the gap height h is much smaller than the
length of the gliding part of the shaft. The bearing is idealized and assumed to be given by an

infinitely extended plane wall, which moves with constant ve-

F ; locity us past the gliding part of the shaft, which can also be
Peo assumed to be plane. The lubricant prevents the gliding part
h, Y| hix) Ihz of the shaft from touching the wall and reduces the friction
) gy force.
(S L e For constant temperature the conservation equations for two-
dimensional flow are
ou  Ov
—+= =0
Jdxr Oy
ou N ou Oop N u N *u
U — vV — = ——= - 5 a 5
r ox oy ox K ox?  0y?
v ov Op Pv v
b ) = = —+ — : 2.67
F <u8x+vc9y> 8y+u <8x2+8y2 (2.67)

The equations are nondimensionalized with the reference quantities chosen such that the ve-
locity components and their derivatives are of order unity O(1). Since

-0 (%) <1 , (2.68)

Uco

the normal velocity component is streched by I/hi so that v(z,y) = ;- hil

With Re = %”"l the momentum equations can be solved for the dimensionless pressure gradi-
ents

op 1 1?[o%a h? ([ 0u _0Ou h? 9% u

- = 5 |3 —Rew (U5 +0 = > Ao

oz EuRe h3 |0 9? 2 oz oy 12 012

o 1 0% h? [ ov OV h? 9% v

9 ~ Eufe [aT;fReﬁ )T (2.69)

2
hi

For Re 73 < 1 (Inertia forces < friction forces) it follows that
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R W
0 FEuRe h? 02
op 1 0%

o T Bukeop @70)

By comparing the right-hand sides it can be concluded that

op op

— << ==, 2.71

oy 0z 271)
such that it is justified to assume that the variation of the pressure in the y-direction can be
neglected compared to the variation in the z-direction.
With the boundary conditions

y=0 : u=1uc y=nh(z) : u=
r=0 : p=pw z=I D P =DPeo (2.72)
the integration of the simplified first momentum equation yields
A ( y) dp
=Up (1 —F)——Z (1= )— 2.73
= ( h) 24 h n)de (273)

and the volume rate of flow @ is obtained by integrating the last equation in the y-Richtung.

3
uoohi h @ . (2.74)

@== 12 0 da

Since the volume rate of flow is the same for every cross section, the last equation can be
integrated in the z-direction.

z  dx’ . z dx
p(w):poo+6uuoo/0 Wfle/o W) (2.75)

If it is assumed, that the gap height changes linearly with x, i. e.
h1 — ho

h(z) =hy — T (2.76)
then it follows that
c b
@ = T
l (h1 —h) (h— hy)
) = 1 . 2.
p(x) Poo + 6 11 Ueo W= e (2.77)
The total force resulting from the pressure distribution is
l 61 oo 12 hi 2 (hy — hg):|
Fy= [ o) do = 1 i - 20 R 278
P o p() (hy — hy)? ha (h1 + h2) 2.78)

cle
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The pressure distribution and the xz-component of the velocity

R

are shown in the diagram above for Z—f = 0.559. The y-component of the velocity can be obtained
by inserting u into the continuity equation and integrating it in the y-direction. Equation
(2.79) has to be differentiated with respect to x, since u enters the continuity equation through
its partial derivative. There results a first-order differential equation for v, so that only one
boundary condition can be satisfied for v, e. g.: y = 0 : v = 0. Because of the approximative
nature of the solution, the second boundary condition for y = h(x) cannot be imposed.

2.5 Vortex Theorems

If fluid particles rotate about their axes, the flow is called rotational. Irrotational flows possess
a potential and are called potential flows. The important properties of rotational flows and
their difference to potential flows is explained in the following.

2.5.1 Rotation and Circulation

The rotation of a fluid element is described by its mean an-
gular velocity. With the notation given in the sketch the dif-

ferential angular changes are y
d 0 4 m =
o = —
> Uy Y\ |ap
u
g = ——dt , 2.80
f dy ' (280) da
u ! X
and the mean angular velocity is
v v+:—:dx

1 (ov Ou
(=3 (% - (’Ty> . (2.81)

Generalization of the last equation to three space coordinates leads to the vector of rotation or
vorticity

1
w:i§+j77+kC:§va . (2.82)

Analogously to the stream tube and streamline a vortex tube and a vortex line can be defined.
In every point of the flow field the direction of a vortex line is given by the direction of the
vorticity vector.

ar _dy_ e 259
& n <
If the vorticity vector is defined everywhere in the flow field, (2.83) can be integrated, from a
certain initial point on, to yield a vortex line, of which there are infinitely many. If a closed
curve, not a vortex line, is chosen in the flow field, the vortex lines passing through it form a
vortex tube, reducing to a vortex filament, when the cross section of the tube tends to zero. The
vortex tube is of fundamental importance for measuring the strength of a vortex. An example
is shown in the following sketch, where first the flux of vorticity is introduced.
The flux of vorticity {2 through a surface A is

Q:/Aw-ndA 4 (2.84)
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The flux of vorticity is closely related to the circulation I", be-
— ing defined as the line integral extended over the scalar prod-
o uct of the velocity and the line element of a closed curve C.

vortex tube,

A r= % v-ds (2.85)
Je
In order to elucidate the interrelation between I and {2 the
circulation I is computed for an element of a plane surface.
> yortex lines It is
Jdv  Ou
dl=|———=— | dedy=2(dxd . 2.86
(&C 8y>ry (dx dy (2.86)

Generalized to the three coordinate directions, there results
dI' = 2[¢ (dy dz) +n (dz dz) + ¢ (dz dy)] . (2.87)

Integration of the last equation yields

F:/w~ndA:2(2 (2.88)
Ja
or
?{v-ds:/(va)-ndA . (2.89)
y c A
- [dx— The circulation is equal to twice the value of the flux of vortic-
U*ggdy T ity through the surface spanned over a closed curve (Stokes’
dy theorem).
u 1 In an incompressible, inviscid flow the circulation does not
x change, if the volume forces possess a potential U. To prove
v el this statement, the total time derivative of the circulation I’
™ is formed
ar - dv v?
& —.ds+74d 2, 2.90
dt cdt c < 2 ) ’ (2.90)
and the Navier-Stokes equations
dv 1
—=g—-Vp+v Vv 2.91
g9Vt (2.91)

are introduced with the volume forces assumed to possess a potential g = V U. There results

(2—1; :%d (Ufgjtv;) +uﬁ (V2 'u) -ds . (2.92)

For an inviscid flow (v = 0) it follows that 2= = 0. If I'(t = 0) = 0, then the flow is irrotational
for all times (Thomson’s theorem).

2.5.2 Vorticity Transport Equation

For incompressible flow the components of the vorticity vector w can easily be introduced in the
conservation equations for mass and momentum. There results the vorticity transport equation,
which describes the change of the vorticity vector in the flow field. With the aid of a particular
integral of the vorticity transport equation a simple ansatz for solutions of the momentum
equations for incompressible inviscid flows can be found, without having to solve the nonlinear
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momentum equations. The vorticity transport equation is obtained from the Navier-Stokes
equations in the following way:

du 1 0p

. = = = 2

7 pax+gz+1/V u

dv 1 0p

R — VZ

I pa +g9yt+v

dw 1 0p 9

= - _-Z£ 2.
p paz—&—gz—&-VVw (2.93)

The vorticity component ( is introduced by partially differentiating the first equation with
respect to y and the second with respect to  and by subtracting the resulting equations from

each other.
% — aﬂ Ow el 2 1 % _ Oga:
dt—( 5z T ay+( )+ VC+ 5 (ax oy (2.94)

The equations for the other two components n and £ are

d v v 1 (99, 0g.
/g <§a—;+ L+<—>+uv2n+7<g“— g>

dt 2 \ 0z ox
s ou 5 9. B %
i (§7+,7 +<7) V£+7(8y 62) . (2.95)

If the volume forces can be represented by a potential the second bracketed terms on the right-
hand side of the equations drop out. The vorticity transport equation, written in vector form
reads as follows

dw

e =(w-V)v+rvVie . (2.96)

For plane flows the term (w - V) v vanishes. The rigid body rotation w = const. is a solution
of this equation. If in addition the flow is inviscid and steady, the vorticity transport equation
reduces to

(v-V)w=0 . (2.97)

This equation shows that w is constant along streamlines, it can change only in the direction
normal to the streamlines.

As the vorticity transport equation is only a different form of the momentum equations, it can
be concluded, that the latter are always satisfied by the condition w = 0. This solution is only
possible, if the flow is inviscid. The potential theory of fluid mechanics rests on this assumption.

2.6 Potential Flows of Incompressible Fluids

2.6.1 Potential and Stream Function

The condition w = 0 is identically satisfied, if the velocity vector can be expressed by a poten-
tial @. The potential is defined by v = V @. Instead of the velocity now the potential has to be
determined with the conservation equations. Since the momentum equations are already satis-
fied by the condition of irrotationality w = 0, only the continuity equation can be employed for
the determination of @. If the definition of @ is inserted in the continuity equation, there results

Vi =0 . (2.98)



2.6 Potential Flows of Incompressible Fluids 47

In Cartesian coordinates the corresponding equation read
oP oP od
= V= — i
ox dy 0z
02 n 2o n P
dx?  Jy* 02?2
As only inviscid flow is considered, the Stokes no-slip condition cannot be satisfied on rigid
impermeable walls. In potential flows as in all inviscid flows only the velocity component v,
vanishes in the direction of the local surface normal n (Kinematic flow condition).
=5 =
In contrast to the Euler equations the potential equation is linear, and solutions can be super-
posed. If @; and @, satisfy the potential equation, then

b= Cq 451 + o @2 +c3 (2102)

u w

(2.99)

=0 . (2.100)

Up, 0 (2.101)

is also a solution, the quantities ¢, ¢z, and c3 are arbitrary constants.

For two-dimensional flows, instead of the potential a scalar function ¥, the stream function,
can be introduced. It satisfies the continuity equation identically. It has to be determined with
the condition of irrotationality.

With
o o
= V= — 2.103
u 9y v o ( )
the continuity equation
ou  Ov
Iy 2.104
ox + oy ( )
is satisfied. The condition of irrotationality
v Ou
2= 2.105
ox Oy ( )
leads to the Laplace equation for the stream function.
ViU =0 (2.106)
The differential equation for the streamline follows from the total differential
o o
av = %dl’wLa—ydy: —vdr +udy (2.107)
with ¥ = const.
d
(i’) =7 (2.108)
dz W=konst u

Hence streamlines are given by lines ¥(z,y) = const. and d¥ is the fluid volume flowing between
two infinitesimally neighboring streamlines. The boundary condition along a rigid wall is

¥(z,y) = const. . (2.109)
Streamlines (¥ = const.) and equipotential lines (¢ = const.) are orthogonal to each other.
From d® = udx + v dy it follows that
d ;
<—y> =2 (2.110)
da D=const v

The orthogonality is expressed through the Cauchy-Riemann differential equations.
ob v b ov
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2.6.2 Determination of the Pressure

If the potential is known, the pressure distribution can be determined with the Euler equations
for the entire flow field. With the identity

2

('v‘V)v:V%—vx(va) (2.112)
the Euler equations can be written as
0 21
a;:wLV%Jr;fovx(va):g . (2.113)
With v = V@ and g = V U there results
oP
\Y at-&—p——i—p pU| =0 . (2.114)
Integration yields
oP -
P + p — +p pU = c(t) (Lagrange’s integral) . (2.115)

For steady flows the above relation reduces to Bernoulli’s equation.

2

p%+p—pUzconst. . (2.116)

In potential flows the constant in the Bernoulli equation has one and the same value for the
entire flow field and on its boundary. In general the pressure is described in form of a dimen-
sionless pressure coefficient c,. Referenced to free-stream conditions it is defined for vanishing
volume forces as

P — Poo u? + v+ w?

=1 - (2.117)
3P U ud,

2.6.3 The Complex Stream Function

The real and the imaginary part of an analytic function satisfy the Laplace equation. The
complex stream function F(z) is defined in such a way, that the potential represents the real
part and the stream function the imaginary part.

F(z) = Flzx+iy) = D(x,y) + 1 ¥(z,y) (2.118)

Repeated partial differentiation of F(z) with respect to « and y gives

»P?F O*'F
— =0 2.119
0 x? + 0 y? ( )
or
’2o 0 v v
—+t-5+ti|lm+55|=0 2.120
8m2+8g/2 (8x2+3y2> ( )
The velocity components follow from the total differential
0P o op oV
dF = dx d
(ayﬁ oz > ”(a o ay> v
= (u—1) (dz +idy)
= wdz , (2.121)

Therein w = % is the conjugate of the complex velocity w = u + iv.
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2.6.4 Examples for Plane Incompressible Potential Flows

In the following several analytic functions are introduced and their corresponding potential flows
are discussed. The other possibility, to describe a flow field by solving the Laplace equation for
a given body contour, will not be followed here, as it requires mathematical solution tools, too
laborious for an introduction.

Parallel Flows

For the analytic function F(z) = (us — @ V) 2 the potential and the stream funktion are
D =Uo T+ Vo Y U=V +Usply - (2.122)
The streamlines (¥ = const.) are straight lines with the slope

y - : -
. ¢icons‘t. .‘V— ‘consf. d
YW _ Y% _ const. . (2.123)

dr  Us

The conjugate of the complex velocity

dF

w = ;i;'—f Uso —1 Voo (2.124)

is constant in the entire flow field.

Flow in the Vicinity of a Stagnation Point

The analytic function F'(2) = az? (a real) represents a plane flow in the vicinity of a stagnation
point. The potential, the stream function, and the equipotential lines are

& =a(2? —y?) U=2azxzy , (2.125)

W = const. y

v

=+ . (2.126)

e

The velocity components are

u=2ar v=-2ay . (2.127)

The streamlines are the hyperbolas

C
— 2.12
y= (2.128)

Source Flow

The analytic function F(z) =
the complex velocity given by

TEW describes the flow of a plane source with the conjugate of

Ex FEy
0 = —1 2.129
v 27 (22 4+ y?) 227r(a:2+y2) ( )
Potential and stream function read in polar coordinates with z = 7 (cosf + i sin )
E E
d=_—Inr W (2.130)

2w :ﬁ
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The radial and the azimuthal velocity components are
===k, 0= const
= = cons E
W= const. v, =
27r

1
~

=0 . (2.131)

The constant E is the volume of fluid flowing through
the circle with radius r. If E is positive, the flow
represents a source, if it is negative, the flow is a sink.
The point of origin of coordinates is a singular point in
the flow field, since the velocity approaches infinity for
r=0.

Potential Vortex

If stream function and potential of the plane source flow are exchanged, a potential vortex is
obtained. The stream function is

F(z) = = Inz . (2.132)

The real constant I' is the circulation of the vortex.
There result

r r
@7ﬁ0 Wf—ﬁ Inv (2.133)
r
=0 = 2.134
v ve 2mr ( )

The streamlines of the potential vortex are circles
around the point of origin of coordinates r = const..
The equipotential lines are radial lines.

Flow Given by a Dipole

If a source with volume flow E and a sink of equal volume flow are positioned on the z-axis
and if with decreasing distance h between them FE increases in such a way that the product
E h = M remains constant, there results for the limiting case of h — 0 the analytic function
M In(z+h)—Inz M

F@) =57 h “oas o (21

The quantity M is called the dipole moment and the
line, along which source and sink approach each other,
is called dipole axis. Potential and stream function are

M x My
p= 2t g Y 2.1
27 r? 2w 2 (2.136)

and the velocity components

M M
u=—5—3 cos26 v= 5.2 sin26 . (2.137)

The streamlines are circles, tangent to the z-axis in the point of origin of coordinates, with the
centers located on the y-axis.
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Half Body

If a parallel flow is superimposed on a source, the flow field about a half body is obtained.
. E .
F(z) = (uoo*ZUOO)Z+27 Inz+iC
™

E
D = UpTH+Voy+— Inr
27

E o0

U = U@+ Uy + o [0 — arctan (v—ﬂ . (2.138)
m 00

The oncoming flow is assumed to be parallel to the x-axis. The velocity components
FEx Ey

= Ugo + ——, = 2.139

1= oo 2 r? VT on e ( )

vanish for z, = —3 WEH — (Stagnation point). The streamline through the stagnation point forms

the contour of a half body.

E wm—40
= 2.140
T 072 sing ( )
The width of the half body is for x — oo
E
h=— 2.141
Y. (2.141)
The pressure coefficient
ha\? hy 2
s=1— 1+ — — .14
Cp ( +7r7’2> + <7Tr2> (2.142)
along the contour with ' = 7 — 6 is
in(2 ¢/ AW
¢ — sin( : ) sm/ ' (2.143)
pressure coefficient along contour 0 0
y=0
:F For § = 0 the pressure coefficient is ¢, = 1 and for
o5 ¢ =7 ¢, =0. For § = 7 the pressure coefficient
is ¢, = —% and approaches asymptotically zero

_0'5} \_//—’ with increasing x after going through a minimum.

Clircular Cylinder

The superposition of a parallel flow with a dipole results in a flow about a circular cylinder.
Y = const.

M

—_ o = <Uoo+2]\/[2> r cos 0
W_ 7];[7“ )
:\ﬁ_wf—* v o= (uoo - m) r sin 6 (2.144)

The streamline ¥ = 0 contains the circle around the point of origin of coordinates with radius
R=\/5 7% —. The azimuthal and the radial velocity component are
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M . M
Vg = —Uoo <1 + m) sin @ Vp = —Uso <1 - m) cosf . (2.145)
Along the contour » = R, v, = 0 and vy = —2 u, sinf. The flow possesses two stagnation

points, one at § = 0 and the other at 6 = 7; at § = 5 and § = 3/2 7 the velocity is twice as
large as in the free stream.
The pressure distribution along the contour

cp=1—4sin*6 (2.146)

is symmetric with respect to the axes of coordinates and does not exhibit a resulting force
(d’Alembert’s Paradox 1753).

Circular Cylinder with Circulation (Magnus Effect)

If a potential vortex is superimposed on the flow about a circular cylinder, the cylinder expe-
riences a force normal to the direction of the free stream.

9 .
F(2) = us <Z+£> —£ Inz+1iC
2w
R r R?\ . r r
D = uy <T+7> cosHJrﬁO ¥ = Us (7‘—7> 51n9—ﬂ lnﬁ (2.147)

From F(z) there now results a velocity field, asymmetric with respect to the z-axis with com-
ponents

RQ
Uy Uso (1 — —> cos
Wy = const. r2
R? r
= —Us |1+ — | sinf + —(2.148
Vg u ( 2 ) sin o 7"( )
The pressure distribution on the contour r = R

I 2
p=1—(—=-2 sin@) 2.149
P <2 T Uoo R ( )
depends on the magnitude of the ciculation.
The sign of the circulation determines the di-
rection the resulting force normal to the free
stream. For |I'| < 47 uo R there exist two stag-
8 nation points on the contour, the position of
which is given by

r
sinfy = ——— . 2.150
Sy dTmux R ( )

If |I'] > 47 ux R, a free stagnation point is
generated in the flow.
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r=0 M<dnugR

2.6.5 Kutta-Joukowski Theorem

The force acting on an arbitrary body can be deter-
mined with the momentum theorem. If the local pressure
is eliminated with Bernoulli’s equation, the momentum
equation yields the force acting on the body.

. d v2 .
Fe—[pvwmai+ [ pTnds (215

The flow is assumed to be two-dimensional, and the po-
tential @ be given by

D =us v+ f(zy), (2.152)
with the function f(z,y) satisfying the Laplace equation. The velocity components are
of of
= g + 2L )= 3 2.153
U= Uso + % v ay ( )

Since the partial derivatives % and 2L vanish at large distances from the body, the control
surface is chosen so far away from the body, that the squares of the partial derivatives can be
neglected. The components of the force F' are then given by

02
p / (— cosafuvn> ds
Jo \ 2

2
F, P /C (% cosﬁ—vv,,,) ds . (2.154)

F,

If the velocity components are introduced

v, = (uooJrﬂ) cosoHra—fcos[i’
oz

dy
o of
v = <uoo + %> cos B+ o cos a, (2.155)

the expressions for the components of the force become, with the terms of second order neglected

2
F, Pl / cosads — pus / vy, ds
2 C c

2, .
F, = %/Ccosﬁds—puoc/cvtds . (2.156)

With cosa = % and cos[f = % the first integrals vanish. The second integral in the expression

for F, also vanishes, since it represents the volume flow through the closed curve C'. The body
does not experience a force in the direction of the free stream (drag).



54 2. Fluid Mechanics 11

The force normal to the direction of the free stream is
Fy=—pu I . (2.157)
This result is fundamental for the theory of lift-generating bodies (airfoils).

Flows about wing sections can be described by
conformal mapping of the potential flow about
/_\/ circular cylinders. The circulation has to be chosen
in such a way, that the flow near the trailing edge

correct circulation is tangent to the upper and lower surface (Kutta
condition).

If the circulation is too small the stagnation point
/\ near the trailing edge is shifted to the lower side,

and if the circulation is too large, to the upper
circulation too small side of the wing section.

This flow behavior is not observed in inviscid flow,
//Wl since the turning of the flow around the sharp trail-
ing edge would imply an infinitely large velocity.

circulation too large

Since, according to Thomson’s theorem the circulation in inviscid flow remains constant, two
counter-rotating vortices of equal strength must be generated, when a wing begins to move
through the air.

T IFt=0)=T{t)=I1+I,=0 (2.158)

The vortex generating the lift of the wing is called bound vortex, and the vortex, remaining at
location of the start, starting vortex.

2.6.6 Plane Gravitational Waves

The potential flow theory can also be applied to unsteady fluid motion, as for example the
description of wave motion of fluids with free surfaces. A suitable ansatz for the description of
the wave motion is to choose a potential of the following form

P(z,y,t) = f(y) cos(kx —wt), (2.159)

which satisfies the Laplace equation, if the amplitude function f(y) satisfies the differential
equation

"=k f=0. (2.160)

The quantities k and w are constants. The potential is subjected to the following boundary
conditions:

y Kinematic flow condition:
Yo
PN ) oP
T ~__ % y=—h: vza—y:() (2.161)
h t A i g . .
l Dynamic flow condition:

y=vyo(zt): p=po=const.  (2.162)
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The quantity yo is the function describing the free surface.
The general solution of the differential equation for the amplitude function f is

f=Ae*vy Bethy (2.163)
and with the kinematic flow condition there is obtained
f=C cosh[k (y + h)] (2.164)
and
& = c coshlk (y + h)] cos(kx —wt) . (2.165)

The velocity of wave propagation ¢ = ¢ is determined with the dynamic boundary condition for
the pressure and with Lagrange’s integral. In the following the partial differentials with respect
to t,x, and y are indicated as subscripts.
1 ;

O+ (@2 + 02+ % gy =K(t) (2.166)
If the amplitudes are small in comparison to the wave length, then the quadratic terms @2, @Z
can be neglected in comparison to the other terms. The quantities K (¢) and %07 which do not
depend on z and y are included in the potential. There results

Di+gy=0 . (2.167)
Since on the surface
dyo
= Poly=o (2.168)
it follows, that
Py +9P,=0 . (2.169)

If @ is substituted in this equation, the velocity of propagation of the wave crest is obtained
(phase velocity).

W | Ag 2mh
c== 2ﬂtanh< 3 > (2.170)

The velocity of propagation of the wave depends on the wave length A\ = 27” (Dispersion).

If the depth of the water is large in comparison to the wave length (h > M), then

c= ,/‘;L’\ : (2.171)
™

If, vice versa, the water depth is much smaller than the wave length (h > \), then

c=1Jgh . (2.172)

Waves in shallow water, as for example, in open channels do not exhibit dispersion.

2.7 Laminar Boundary Layers

Closed-form solutions of the conservation equations were primarily found for the limiting cases
Re — 0 and Re — oo.

Many flows are, however, characterized by a very large, but still finite Reynolds number. In these
flows the influence of the friction forces is restricted to a thin layer in the immediate vicinity
of rigid walls (boundary layer). The flow particles adhere to the wall, while on the outer edge
of the boundary layer the flow attains the velocity of the external flow. The partitioning of
the entire flow into an inviscid external flow and a viscous boundary-layer flow (The Prandtl
boundary-layer hypothesis) enables an essential simplification of the conservation equations.
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2.7.1 Boundary-Layer Thickness and Friction Coefficient

The boundary-layer thickness § can be estimated by requiring the inertia and friction forces to
be of the same order of magnitude. The inertia forces per unit volume (e. g. p ug—Z) are of the or-
der of magnitude 2 }‘3 , with u, being the velocity at the outer edge of the boundary layer and [ the
characteristic length in the streamwise direction. The order of magnitude of the friction forces

per unit volume is given by the change of the shear stress in the direction normal to the wall.

0% u Uq
— ~ = 2.1
Rap ~H e (2.173)

It can then be concluded that

o) -olde) - o

The nondimensionalized boundary-layer thickness % is then of the order of magnitude ﬁ, and
consequently, small for large Reynolds numbers.

With this estimate of % also the order of magnitude of the local skin-friction coefficient ¢ can be
determined. The shear stress 7,, acting on the wall is of the order of magnitude #%, such that

T, 1
cf=—=0—=]. 2.175
= (%) (2475)

As the dimensionless boundary-layer thickness the local skin-friction coefficient decreases with
increasing Reynolds number.

The flow in the boundary layer can be determined by solving the conservation equations,
simplified with the estimate for % to the boundary-layer equations.

2.7.2 Boundary-Layer Equations

For the derivation of the boundary-layer equations, an incompressible, two-dimensional, steady
flow along a flat plate is considered. In the conservation equations

ou o
or ' dy
ou n ou 1 0p P u n u
U—4+v— = ———+v|—+-
ox Ay p Ox ox?  0y?
dv o 1 0p v 0w
v _ _10p AL 2.176
“ax”ay p Oy <8x2+8y2 ( )
the following dimensionless variables are introduced:
B u _ [ -y _ T _ p
= b=—, y=2, =2 p= 2177
u Uso v Uoo Y L v L p pu ( )
y In the boundary layer the coordinate normal to the wall
. yis y = O(d) and hence?z()(%) :O<1/\/§€L)‘ It
= ‘l" follows from the continuity equation, that
=7 Bixl
E/ =0 ! (2.178)
7 X U= — . :
V R(:’L
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Instead of v and g the following quantities

]

=04/Re;, and §=y+/Rep (2.179)

are introduced. By stretching the normal velocity component and the normal coordinate with
the square root of the Reynolds number the magnitude of the dimensionless velocity components
and their derivatives are of order unity.

The conservation equations then read

o ov
or 0§
QOEL 00 op oa 1 ot
"oz L(‘?@ T 0% 07 Rep 072
1 (_0v _0v op 1 0%v 1 0?0
i i = — £ T 2.1
Rey, <u0f+uagj> 3g+ReL ag2+Rei 0 72 (2.180)

In (2.180) the barred quantities denote the dimensionless velocity components, pressures, and
coordinates. The normal velocity component and coordinate are stretched, and the reciprocal
value of the Reynolds number Rey, based on the reference length L, appears in both momentum
equations. As Rey is assumed to be large, the equations can be simplified.

The pressure gradient in the y-direction is by a factor R%L smaller than the pressure gradient
in the z-direction. For large Reynolds numbers the second momentum equation can therefore
be dropped. In addition, the last term in the first momentum equation can be neglected. There
result the boundary-layer equations (Prandtl 1904) for incompressible flows in dimensionless
form

ou  Ov

ou ou  dp 0% u
pua—x—ﬁ—pva—y = _%'Hl’ﬁ . (2.181)

For the solution of the boundary-layer equations the tangential velocity component at the outer
edge of the boundary layer u, has to be known. For that reason the entire flow is first assumed
to be inviscid and the Euler equations have to be solved, for example, for certain flows u, can
be determined with the aid of the potential theory. In a first approximation the velocity of the
inviscid flow at the rigid wall is then taken as w,., which is justified, since the thickness of the
boundary layer is very small.

Ya Ug
The pressure gradient in the boundary
layer is determined with the Bernoulli
equation for y = 0.
op Qe
— == — 2.182
Ox Pl 5z ( )
TF77777777 7777777 777

In flows with large density and temperature changes also a thermal boundary layer is generated.
Then the energy equation, simplified with the boundary-layer approximation, must also be used
for the determination of the flow properties. For two-dimensional, steady, compressible, laminar
flows the boundary-layer equations are

Ipu)  O(pv)

“or "oy = ©
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S ouop 0 (o
P P 0y = “ox oy \Moy
or oT 0 or Op ou
il - = — — . 2.1
pc,,uaIercpvay +8y <>\ 0y>+18 +u <8y> (2.183)

In addition to the boundary conditions for the velocity also the temperature has to be prescribed
at the outer edge of the boundary layer and at the wall. Instead of the wall temperature also
the heat flux through the wall can be prescribed.

In the following only incompressible boundary layers
are considered. The boundary-layer equations as listed

u,x above are also valid for flows with curved walls, if z is
taken as the coordinate in the tangential direction and y
in the direction of the outward normal. The boundary-
layer approximation remains valid as long as

V.Y

=

Rix)
0 dR
= — < : .
7 < 1 in 0(1) (2.184)

Corrections have to be introduced, if the curvature be-
comes large.

2.7.3 The von Karmén Integral Relation

The boundary layer is imagined to displace the inviscid external flow from the contour of the
body by the amount of the so-called displacement thickness ¢, being defined as

’ 5 :/0 <1_Z> dy . (2.185)

Due to the action of the friction forces the momentum
of the flow in the boundary layer is reduced. A suitable
— - measure for this effect is the momentum thickness

L s (- e

The integration of the boundary-layer equations in the y-direction yields a differential equation
relating 0y, d2, u, und 7,. If the normal velocity component in the momentum equation is
replaced by the integral of the continuity equation

v Ou

= — 2.1
v b o dy (2.187)

and after integrating the resulting equation in the y-direction, there is obtained
00 ou du ou 1
e — ) o d / e ) dy= —Zry=0) . 2.188
[Tt Gt [ (G a5 dy ==L ety =) (2159)
With

au 0 8(“6 - U)

(e — u) el (e (2.189)

there results
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4
dx

du,
Yo [T —u)dy = - =20 (2.190)

o . ;
/O(u u) udy + dr Jo p

This equation can be transformed with the displacement thickness and the momentum thickness
to give

dy 1 du,

ddy T(y=0)
dx + Ue dx

(20, + ) + —a =0 (2.191)

If the momentum thickness and the displacement thickness are known, the wall-shear stress
can be determined. An approximate solution is possible, if the velocity profile in the boundary
layer is assumed to be given by a truncated series

m n=N y n
— = - 2.192
Ue n;a (5) (2.192)

with the coefficients determined from the boundary conditions. For the flat plate boundary
layer at zero incidence (2 = 0), for example with N = 3 there results

Oz
u 3y 1 y>3
L _ (< . 2.1

U, 20 2(5 ’ (2.193)

and the dimensionless local skin-friction coeflicient is obtained by integrating von Kdrman’s
integral relation

Tw T(y=0) 0.648
¢p=ro = TW=0)_ ‘ (2.194)
£u? £ u? VvV Re,

2.7.4 Similar Solution for the Flat Plate at Zero Incidence

Similar solutions of the boundary-layer equations are solutions in which the dimensionless

velocity profiles ZL(;’)) at two arbitrary locations z; and x5 can be made congruent by stretching

the normal coordinate y with a scaling function g(z) (Affine velocity profiles).

u(xh[g(%l)]) u (mﬂﬁ])
ue(r1)  ue(z) (2.195)

The incompressible steady flow over a flat plate at zero incidence is the simplest example for a
similar solution. Since the pressure gradient vanishes, the boundary-layer equations are

o0
or Oy
ou ov 0 u
-— — = v— 2.196
U +v By v 7, ( )
and the boundary conditions
y =0, 0<z @ u=v=
y—oo, O<zx : JLI&u:um . (2.197)
By introducing the stream function
o o
uw= 2= b= 2 2.198
oy VT T (2.198)

the continuity equation is identically satisfied and the momentum equation takes on the fol-
lowing form
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2 2 )3
oGy w0y 150

This equation can be transformed into an ordinary differential equation with a similarity trans-
formation. If the scaling function is assumed to be g = /7%, the dimensionless independent
varables are

T Uoo
— ) 2.2
§= I n=y o (2.200)

The stream function is nondimensionalied with us g.
v 1
Uso § VT lUng

The velocity components are expressed through the transformed variables

f(&n) = U (zy) (2.201)

_L 9 e l of
U= Usg a V=3 . (f +2¢ 5) . (2.202)
The momentum equation then reads
>*f >*f aof *f of>f
o T o 5(8785677‘6?677 | (2.203)

If the flow is to satisfy the similarity condition, i. e. the velocity profiles are affine, then the
dimensionless stream function f can only depend on n = %, and the last equation reduces to
an ordinary differential equation

2f"+ff" =0 (2.204)
with the boundary conditions

n=0: f=0, f/=0 n—oo: lim ff=1 . (2.205)

n—o0 *

The solution (Blasius 1908) is in excellent agreement with experimental data. The local dimen-
sionless skin-friction coefficent can also be determined from the solution.

cp =2 f"(n=0) . (2.206)

Uso T

The drag coefficient of the plate with length L is obtained by integrating the local skin friction
coefficient.

1.328
= 2.207
b= L / “f duv = RPL ( )

| Equations (2.204) and (2.205) represent a two-point boundary-value
problem, with boundary conditions to be specified at the wall and at
the outer edge of the boundary layer. Because of the nonlinearity of
the momentum equation, the solution is obtained by numerical in-
tegration. The profile of the tangential velocity component is shown
in the following diagram.

7 The asymptotic behavior of the tangential velocity component near
the outer edge of the boundary layer is clearly evidenced. Close to
the wall the velocity increases almost linearly, and only for values
of n > 2 is the profile markedly curved.
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Because of the asymptotic behavior of the solution of the boundary-layer equations the velocity
of the external flow in the transformed plane is attained asymptotically at infinity. The outer
edge of the boundary layer is therefore often defined as the location, where ;- = 0.99. The
thickness of the boundary layer then is

0 5.0

T TR (2.208)

2.8 Turbulent Boundary Layers

Boundary layers become turbulent when the Reynolds number exceeds a certain value. As in
pipe flow irregular velocity fluctuations set in and cause an additional momentum transport,
which is much larger than in laminar flows. As a consequence the time-averaged mean of the
velocity profile is fuller and the skin friction increases.

———) T T

u - S
00 =T —
B Fr i —
P [ —
- -
laminar transition section turbulent x

The transition from laminar to turbulent flow is influenced by disturbances in the inviscid flow
and in the boundary layer, by the pressure gradient, the curvature and the roughness of the
wall, the wall temperature, and density changes in compressible flow.

Theoretical investigations show, that small disturbances always decay below and increase above
a certain Reynolds number. For the flow over the flat plate at zero incidence the laminar-
turbulent transition is observed at a critical Reynolds number of about Re = 5 - 10°.

2.8.1 Boundary-Layer Equations for Turbulent Flow

The turbulent momentum transport in the boundary layer can be described with the aid of the
Reynolds hypothesis, according to which the instantaneous flow quantities f can be split into
a time-averaged value f and a fluctuating part f’, for example

T/ wdt . (2.209)

U

Before the the time-averaged values and the fluctuations are introduced in the momentum
equations, it is advantageous to write them in divergence form by making use of the continuity
equation. For incompressible flow with the volume forces neglected the equations of motion are

Ou Qv Ow
or oy 0z
Ipu) 9 2 9 K2 _ 2
o T Pu +p)+8y(puv)+8 (puw) = pViu
dpv) 0 0 0 B 2
ot or (puv)+ ET (/)U +p>+$ (pow) = pViv
Ipw)

d 0 0 2 2
a5 +% (puu)Jra—y (pvw)Jr& (Pw +p) V- w . (2:210)



62 2. Fluid Mechanics 11

After introducing the Reynolds hypothesis the equations are time-averaged. All terms contain-
ing the fluctuations only and not products, the linear terms, drop out in the averaging process.
The equations of motion take on the following form for the time-averaged flow quantities

ou v 0w _
ox Oy 0z
du  0p 5 ou? du Vv oW
Prar ~ a—ernVu p<8x+ dy P )
do _ 9p 9 du v 9v? VW
p%—fanyrnV v — [)( O + ay + 2
dw op B v w v w  dw?
pﬁz—awyvzw - p( . 9y + 82> (2.211)

The quadratic and cross products of the velocity fluctuations appear in the form of additional
stresses. They are called apparent or turbulent stresses. They can be written in form of a tensor,
referred to as the Reynolds stress tensor.

w2 uv uw

p do 02 v (2212)

uvw o vw w?

It is known from measurements, that in boundary layers the change of the turbulent stresses is
much more pronounced in the direction normal to the wall than in the tangential direction. With
this observation and the boundary-layer approximation the following equations are obtained
for two-dimensional turbulent boundary layers

o o0
oxr  dy
_Ou 0 op 0%u ou v
UtV | = — ey —pe— 2.21
p(“ax”ay) 0$+H oy? p dy (2213)

As before in the case of the turbulent pipe flow, the time-averaged cross-product of the velocity
fluctuations v’ v’ is an additional unknown. If @ and © are to be determined, a relation has to
be introduced, which expresses the cross-product through the time-averaged quantities (closure
assumption), so that the number of defining equations is equal to the number of unknowns. A
simple closure assumption is the Prandtl mixing-length hypothesis, already introduced

ou| Ou

ol 9y (2.214)

W = —[?

Since the velocity fluctuations vanish at the wall, the wall shear stress is solely given by the
product of the dynamic shear viscosity and the gradient of the time-averaged tangential velocity
component.

2.8.2 Turbulent Boundary Layer on the Flat Plate at Zero Incidence

In contrast to the laminar boundary layer a similar solution for the turbulent boundary layer on
a flat plate can only be arrived at, if rather strong simplifying assumptions are introduced. As
in the vicinity of the wall the inertia forces per unit volume and the Stokes stresses are small in
comparison to the turbulent stresses, it follows with the assumption of constant shear stress, that
ou| 0u

| =4
3 . (2.215)

2
l ay

Tw =
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With Prandtl’s ansatz for the mixing length [ = 0.4 y the universal law of the wall is again
obtained

L oosm?™ o . (2.216)
Uy v

The constant C' was determined from experimental data to be equal to 5.5. The velocity
distribution in the viscous sublayer is given by

U Y Uy
Uy v

(2.217)

In the outer part of the boundary layer, which extends over about 85% of the boundary-layer
thickness, the fluctuating motions decay, and the velocity distribution follows von Karmén’s
velocity defect law

U=l _ g (%) ., (2.218)

Uy

0 05 5 which is shown in the diagram. With the universal law
0 * of the wall and the von Karmén integral relation the
drag coefficient of the flat plate can be determined as a
function of the Reynolds number.

-101 This result, confirmed by experiments up to Reynolds
numbers Re = 5 - 108, was approximated by Schlichting
with the simple formula

-

-2[]_

- 0.455

G-u. = 2.219
Us v (log Rey)%58 ( )

The velocity distribution in the boundary layer can in good agreement with measurements be
approximated by a power law of the form:

— 1
a y) n
— == 2.220
Uno (6 ( )
The exponent % is almost independent of the Reynolds number, and the velocity profiles are
therefore almost similar. Over a wide range of the Reynolds numbers n = 7. The displacement
thickness and the momentum thickness then are
0 7

=g, 0

=— . 2.221
8 72 o ( )

The 1/7-law looses its validity in the vicinity of the wall. For that reason the wall-shear stress
is determined with the aid of the resistance law of the pipe flow, which can be applied to the
turbulent flat plate boundary layer.

Tw

I
uoo

v 0.25
0.023 ( 5) (2.222)
.

If 7, and d5 are introduced into the von Karman integral relation, there result

1 0.37 0.074
— = . = . 2.22
x  +/Re; L= (2.223)

In contrast to the laminar boundary layer, the nondimensionalized boundary-layer thickness
. . A . . 1 1 S . .
and the friction coefficient are not proportional to Re~2, but to Re”s. In the following diagram

the drag coefficient of the flat plate is plotted versus the Reynolds number.
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, o The following interpolation formula
ey s suggested by Prandtl can be used for
X & the transition regime from laminar to
u tubulent flow
4
N\ = 0074 A
o Cp=—Fm—=— 2.224
\ /‘ H""“-..._. b \5/ RQL RQL ( )
! N =l
\ By where A = 1700 for Reqpi; = 5 - 10°.
: N
10° 108 17 10° w®
—=Re

2.9 Separation of the Boundary Layer

Pressure gradients % in the external flow can markedly influence the velocity distribution in
the boundary layer. The equilibrium of forces acting on an element of fluid is given by inertia,
pressure and friction forces, with the inertia and pressure forces prevailing at the outer edge,
and the pressure and friction forces near the wall. For incompressible laminar boundary layers

the momentum equation reduces for the wall with y = 0 to
dp 0% u
— =y — 2.225
ar M 0y? ( )
For the flat plate boundary layer, the
—u left-hand side is zero and the velocity
profile has a point of inflection at the
wall. The flow in the boundary layer is

Y' | retarded only by friction forces, and the
- change of the velocity profile in the z-
EE=0 ) kL 0 direction causes a decrease of the wall

shear stress.

If the pressure decreases in the z-direction (% < 0), the flow in the boundary layer is ac-
celerated, and the curvature of the velocity profile at the wall is negative. Depending on the
magnitude of the acceleration the following cases have to be distinguished:

1. If the acceleration is small the wall-shear stress decreases in the z-direction (‘)“ <0).
2. If the deceleration of the flow by the friction forces is just compensated by the pressure
forces, the wall-shear stress remains constant (‘)g; =0).
3. If the acceleration by the pressure forces is larger than the deceleration by the friction forces,
then the wall-shear stress increases (2 > 0).
If the pressure gradient is positive, the
flow is decelerated by friction and pres-
[ Ug —7 sure forces, and the curvature of the
velocity profile at the wall is positive.
The wall-shear stress decreases in the
y z-direction and can become negative.
T The fluid near the wall then flows in
3 the opposite direction of the main flow,
ax <Y ax associated with a separation of the flow
from the wall (separation and flow re-
versal) as depicted in the picture below.
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Boundary-layer separation by positive pressure gradient:

= 5 B B

s —

Uat =]

3., @ - 2y
Ix >0: -3%’0 % 0 -a;-tt]
free streamline At the z-position, where 7, = 0, the flow separates

from the body contour. The reversed flow often leads to
formation of vortices downstream from the separation
point. In the separated region, also called recirculation
or dead-water region, the boundary layer equations are
no longer valid. The wall-shear stress can only be deter-
mined up to the separation point.

If flow separation occurs, the actual pressure distribu-
tion can markedly deviate from the pressure distribution
computed for the inviscid flow. For example, on an air-
foil flow separation can give rise to a turbulent wake,
which begins at the separation point.

At large angles of attack the flow separates on the upper
surface of the airfoil near the leading edge, and the lift
is greatly reduced.

\
¢ inviscid flow
\

p) < arati
. separation

Flow Around a Circular Cylinder

Flows around cylinders and other blunt bodies exhibit substantially different separation behav-
ior as a function of the Reynolds number.

In very slow motion the flow moves around the cylinder without separating. For Re < 4 the
drag coefficient is nearly inversely proportional to the Reynolds number and the drag itself is
proportional to the free-stream velocity. This law looses its validity with increasing Reynolds

number.
’ \
1
Fa Poued L
: R =——

LT N

ol
ol

1 10 Lo

= — {P

= Do 7 ANV Cmn

For Reynolds numbers 200 < Re < 10° (subcritical region) the drag coefficient is approximately
constant and the drag is proportional to the square of the free-stream velocity. The boundary
layer on the cylinder is laminar and separates at an angle of about 83 degrees, measured from
the stagnation point. Downstream from the separation points the flow in the wake rolls up into
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vortices, which are shed from the cylinder in a alternating pattern (von Kérman vortex street).
The Strouhal number, based on the separation frequency f of the vortices, Sr = % is 0.2.

Laminar-turbulent transition of the flow in
€p the boundary layer occurs for Reynolds num-
bers 10° < Re < 5- 10°. Then the ki-
! netic energy of the flow is larger near the

\ /\ / wall, and the boundary layer can overcome

[ a larger positive pressure gradient. The sep-
aration point moves downstream. The wake,
which does no longer exhibit regular vortex
shedding, has a smaller cross section. The dif-
ference between the actual pressure distribu-
tion and that of the potential flow becomes
smaller, and the drag coefficient of the cylin-
der is decreased.

'Jke- 185410 %

= potential theory

Although the drag due to friction is increased, the total drag is decreased, as the pressure or
form drag is reduced by the downstream shift of the separation point.

Disturbances in the free stream and also the surface roughness influence the transition between
subcritical and supercritical regime. In the latter, beginning at 5-10° < Re the drag coefficient
increases again with the Reynolds number.

Comparable flow situations are observed in the flow around a sphere. However, alternating
vortex shedding does not occur.
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2.11 Appendix

The Nabla operator

g o0 0
v7<%, s E) (2.226)

is formally used as a vector. The gradient of a scalar function p is
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dp Op Op
p= £ £ ZF 2.227
o= (2 %) (2.227)
the divergence of a vector a
o a oa\[%™ da, Oa, Oa,
a=|-— =, = = b 2.22
V-a (81'7 oy’ 62) (ay) ox * dy + dz (2:228)
and the curl
i j ok (5 —52)
Vxa=|4& o o |= (%= — G) (2.229)
ay ay Q. ‘%’* "E)L;)

The following identities are used:

VxVp =0

VxV?a = V?(Vxa)
2

(@a-V)a = V%—ax (Vxa) . (2.230)

The total time derivative is given by the operator

d 0 0 0 0 0
$:E+(U~V):a+u%+vay+w$ . (2.231)

The dyadic product of two vectors is a tensor.
ay by ayb, a,b,
(ab)=| ayb, ayb, a,b. (2.232)
az b, a;b, a.b,
The inner vector product of a vector and a tensor yields a vector.

B Yoz Yoy  Vaz Oy Yoz + Ay Vya + 0z Vex
(@a-7) = ( Ay Gy A ) Yoz Yoy Yz | = | Qa Vay T Ay Vyy Q2 Vay (2.233)
Vex  Vzy  Vaz Ay Yoz + Ay Vyz +a. Vzz

In the derivation of the conservation equations the following transformation of the total time
derivative of an integral is used (p is the density, S a scalar function of space and time).

d r _ oS ap
E/T(t)deT - L(t) <p ot +58t> dT+/A(t)pS(v-n)dA

_ op 0S8

a /r(t) {S ot P o +SV'(PU)+(M~V)S} dr

i as
/T(t) {pa-ﬂ—(pv-V)S} dr

as

LoP @& (2.234)



3. Exercises in Fluid Mechanics

3.1 Problems

3.1.1 Hydrostatics

1.1 The density of a fluid p; is to be deter-
mined with a U-tube. One stem is filled
with water.

water 3
L

liquid

. k
h=03m L=02m p,=10°—>
m
1.2 In three communicating vessels pistons

are exposed to the forces Fy, F; and F3.

F; =1100N F;, =600 N F3 = 1000 N

A1 =0.04 Hl2 AQ =0.02 mz
. ki
Ay =003m? p=10° = g=102
w s
Determine the differences in height Ahy
and Ahs!

1.3 A cube floats in two laminated fluids,
one on top of the other.

1.4

o

ke K

pr =850 -2 py = 1000 -2
rﬁJ n13

pe=900-5 a=0.1m
.

Determine the height h!

A cylindrical vessel floats in another
cylindrical vessel, filled with water. Af-
ter adding a mass m the water surface
is raised by AH.

Given: p, A, m
Determine the difference in height AH!

A boat with vertical side walls and a
weight Wy has a draught in sea water
ho and displaces the volume 7. Before
entering the mouth of a river the weight
of the cargo is reduced by AW, in order
to avoid the boat running aground. The
draught is then h; and the volume is 7.
The density of the sea water is pg, and
that of the water in the river pg.

k . k
ps = 1.025-10° —=  pp = 10° =
m me
Wo=11-10N AW = 10N
m
ho=11m h; =10.5m g=10—
S
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Determine

(a) the volume 7o,

(b) the area of the deck A,

(c) the difference 7, —7; of the displaced
volumes in fresh water and sea wa-
ter,

(d) the draught hs in fresh water!

1.6 A diving bell with the weight W is low-
ered into the sea.

D=3m H=3m T=2m
pa=125—2 py =10" 2
I{In m m
pa=10"— W=8-10'N g=10
m S

(a) How high does the water in the bell
rise if the temperature remains con-
stant?

(b) How large is the force (magnitude
and direction) with which the bell
must be held?

(¢) At what depth of immersion is the
force zero?

1.7 A container filled with water is fastened
to a plate. It has a small opening in the
top.

. kg m
— — 3
R=1m p—lOE 52

Determine the force in the screws un-
der the assumption that the weight of
the container can be neglected!

1.8 A conical plug with density p closes the
outlet of a water basin. The base area
of the cone levels with the surface of the
fluid.

R=102m H=102m g=10-
S

. k 2 ki
pe=2-10° =5 p—10° =
m m
How large must the force be to lift the
plug?

1.9 A rectangular sluice gate with the width
B separates two sluice chambers.

hy p —_
P hy

B=10m h;=5m hy=2m
k .
p=10°0 5 g—102
m S
Determine

(a) the force acting on the sluice gate,
(b) the point of application of force!

1.10 A pivoted wall of a water container with
width B is supported with a rod.

h=3m_ B=1m «a=30°
po10° 58 4o
m3 g2

Determine the force in the rod!
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1.11 The triangular opening of a weir is
closed with a plate.

k
B=1m ;7:103m—g3 gzlﬂg
Determine
(a) the closing force,

(b) the point of application of force!

1.12 A fluid with a free surface rotates in
an open circular cylindrical vessel with
constant angular velocity, large enough,
so that the fluid just reaches the edge of
the vessel. When the fluid is at rest, it
fills the vessel up to the height hy.

f—

D=05m hy=07m H=1m

;):1031‘1—53 pa=10°— g=102
m’ m s
Determine
(a) the height h and the angular veloc-
ity w,

(b) the pressure distribution at the wall
and on the bottom!

Hint:
o e
or P 0z P9
op dp
dp = —dr+—d
P ar Tt Jz :

1.13 Determine the pressure as a function of
the height z
(a) for an isothermal atmosphere,
(b) for a linear temperature variation
T=T)—«az
(c) for an isentropic atmosphere,
(d) for a height of 3000 m, 6000 m und

11000 m!
z=0: N
m
R=287 % T,=28TK ~=14
kg K 0 Y
N K
po=10— a=6510"— g=10
m m S

1.14 A metereological balloon of mass m and
initial volume 7y rises in an isothermal
atmosphere. The envelope is slack until
the maximum volume 7 is attained.

!,
[

po = 10° — DPo=127T—
m m
m = 2.5kg
N
7 =28m® 7 =10m® R= 287kginll(
m

(a) How large is the force the balloon
must be held with before take off?

(b) At what altitude does the balloon
attain the volume 717

(¢) How high does the balloon rise?

1.15 A balloon with an inelastic envelope has
an opening at the bottom for equaliza-
tion of the pressure with the surround-
ing air. The weight of the balloon with-
out the gas filling is W. Before take off
the balloon is held with the force Fi.
W =1000N F,=1720N

T=213K g=102

S
Determine the height of rise of the bal-
loon in an isothermal atmosphere!

3.1.2 Hydrodynamics

If not mentioned otherwise, the flow is as-
sumed to be loss-free in this chapter.

2.1 Given the velocity field

U =1uy coswt v=wvsinwt

with %0 = % = 1m.

Determine

(a) the streamlines for wt =0

(b) the path lines,

(¢) the path line of a particle, which at
time ¢ = 0 is in the point z = 0,
y = 1m!

mm
IRV

[vww.ebook3000.con)
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2.2 Under an iceberg a steady downward
flow is initiated by the cooling of the
water by the ice. Determine the flow
velocity v in the depth h under the
assumption, that the cold water (den-
sity p.) does not mix with the warm
ater (densit; . . N
water (density py,) D=6-103m Ap=125 =
m
.2 k
p=10° ;53
o
25 <Re<250: (=1+%
250 < Re : 6=1
2.5 In order to determine the velocity in a
pipe flow the pressure difference Ap is
measured. The pressure difference de-
h=s50m P"P»_ o1 g=10 m viates f.rorn the dyngnnc pressure of
Pe s? the undisturbed flow, if there is a large
2.3 Hot exhaust air of temperature 7; flows blockage in the pipe.
through an open smokestack with a
large suction scoop into the atmo-
sphere. The external temperature is T,.
gl l ap
H Plot v/ /Z—f” as a function of 4!
%

1 2.6 Water flows out of a large reservoir un-
der the influence of gravity into the
open air.

T,=450K T,=300K
m
H=100m g=10- F———==0 1
S ==
h
Determine the discharge velocity, tak- % A
ing into account the influence of com- ]
pressibility!
Hint: Use the Bernoulli equation in dif- 9 ] H
ferential form: i
1
—dpt+vdv+gdz=0 l 1
p - |_a
24 chtcfr)min(;} lthc f.rcc—strcam Vcéocityk.vOO h=01m H=15m D=01m
O a Fran £ Stfm,c %ressure tfu}e’ tfi ng What is the diameter d of the water
}ntof account the influence of the viscos- stream at the position H below the
1ty for N opening?
(a) p =107 22
1;{113 2.7 Water flows out of a large pressure tank
(b) p=10"2 —t into the open air. The pressure differ-
Ns ence Ap is measured between the cross
() p=107" sections A; and A,.

m2’
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2.8

2.9

A=03m? A, =01m? A3=02m?
Lk N

h=1m p=10°— p,=10° =
m m

N
g:IOg Ap=0.64-10°

The outflow pipe was provided with a

variable cross-section distribution in or-

der to enable the measurement for the

pressure. The pressure difference Ap is

measured in the cross sections indicated

in the sketch.

Determine

(a) the velocities v, vq, v3,

(b) the pressures p1, pa, p3, and the pres-
sure p above the water surface!

Water flows out of a large vessel
through an opening of width B and
height 2a into the open air.

LT

_

a
For — — 0 the volume flow per unit

h .
time is Qo = 2 a B v/2 g h. Determine
0o— @ £ a 1
: or - = —
h 4

the relative error

N | —
=W

Two large reservoirs, one located above
the other, are connected with a vertical
pipe, with a nozzle attached to its end.

A=1m?

Ad:O.lmQ
H=80m 10(1:105—2
m

m

(a) How large is the volume flow per
unit time?

(b) Sketch the curve of the static pres-
sure in the pipe!

(c) At what size of the cross section
of the exit will vapor bubbles be
formed, if the vapor pressure is

N
Py = 0.025-10° =7
m
2.10 Air flows out of a large pressure tank

through a well-rounded nozzle and a
diffuser into the open air.

g *ap

TITFIT.

Kk N
p=125-2 Ap=10—;
m- m

Determine the velocity in the throat of
the nozzle as a function of the ratio of
the cross sections ﬁ
(a) for loss-free flow,
(b) for an efficiency of the diffuser of
np = Pa — PD
2 (v} —v2)

2

=0.84 !

(c) What is the maximum velocity that
can be attained for this efficiency of
the diffuser?

2.11 Water flows through a nozzle mounted
in a pipe (cross-sectional ratio mp, dis-
charge coefficient ap) and an orifice
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(mp, ag). The mercury gauges show
differences in height of hp and hg.

mp =05 ap=1.08 mp=0.6
hp=1m hg=144m D=01m

. k . k
pw = 10° -2 py. = 13.6-10° -2
m? m3
m
Determine

1. the volume flow per unit time,
2. the discharge coefficient of the ori-
fice!

2.12 A sluice gate is suddenly opened.

T /1 T T
A

Ay =3000m? h(t=0)=hy=>5m
g:IOE2
s

How large must the cross section of the
opening A be so that the water level
of the bordering lake is attained within
10 minutes, if quasi-steady flow is as-
sumed?

2.13 Two equally large reservoirs, one of

which is filled with water, are separated
from each other by a wall.

T ETETTTEEY

B=20m h(t=0)=hy=5m
m
[=005m ¢g=10—
s

Determine the time necessary for equal-
izing the water levels, if the dividing
wall is lifted by the amount f < h!
Neglegt the contraction of the flow!

2.14 Water flows out of a large reservoir into

a lower reservoir, the discharge open-
ing of which is suddenly reduced to one
third.

vl B
i l
R T_L[,
=T |}
=

A=003m? Az =1m?
m
h=5m ¢g=10—
S
Determine the time, in which the water

level rises to the quadruple value of its
initial height h!

2.15 A pipe filled with gasoline is held verti-

cally in water and closed at the upper
end with a top. A small, well-rounded
outlet in the top is opened.

)

HE

|

D=01m d=00lmm L=08m
g . m

pp =800 = p, =10° =
m m

Since the gasoline is lighter than wa-
ter, it will begin to flow upward through
the small hole. The surface of the water
surrounding the pipe is very large com-
pared to the cross-sectional area of the
pipe.

How long will it take, until the pipe is
completely emptied from gasoline?
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2.16 A fluid flows through a pipe with a well-
rounded intake. Its velocity is vy (t).

vt o

N
-~ ; f

Show that the integral of the local accel-
eration can be approximated as follows:

L
9 g — (£+L) %

Hint: Assume that for s < —% the fluid
flows radially towards the intake with
the velocity v = Q , and that for
s > % the velomty is equal to vo! For

_ D _
8= =15, V= 1.

2.17 Liquid flows out of a large container
through a hose, lying horizontally on
the ground, in steady motion into the
open air. The end of the hose is sud-
denly lifted up to the height of the lig-
uid level.

LZIO% h=5m D=0.16m
S

Determine

1. the velocity vy immediately after
lifting up the hose,

2. the time, in which the velocity de-
creases to 9,

3. the fluid volume that flowed through
the hose during this time!

2.18 The discharge pipe of a large water con-
tainer is led to a lake. The throttle
valve at the end of the pipe is suddenly
opened.

L=20m>D h=5m L;=5m

. kg m
o103 —
p=10 3 g—lOSZ

1. After what time are 99% of the final
velocity attained?

2. How much does the pressure at the
position 1 differ from its final value?

2.19 A piston is moving sinusoidally in a pipe
s = 8g sinw t.

- N

Pa=10>— L=10m>D h=2m
m

kg

N
Py = 2500 —

s50=01m p= 1[)d o2

At what angular velocity w is the pres-
sure at the piston head equal to the va-
por pressure p,?

2.20 In a hydraulic ram the valve I and the
valve II are alternatively opened and
closed. A part of the water is pumped
from the height h; to the height hy. The
other part flows through the valve I.

o —=
=

iy hy l9

hi=hy=5m L=10m> D
A:0.1r11112<<A3 Ti=1s

I
g=10—

s
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(a) First the valve I is opened for the
time 7. Determine the volume Q;
of the water discharged!

(b) After closing the valve I, the valve
IT is opened until the velocity in the
pipe is decreased to zero. How large
is the discharge volume Q;;?

2.21 The flap at the end of a discharge pipe

of a large container is suddenly opened.

N
pa:10572 L1:L2:5m>>a
m
Di=01m Dy=005m h=2m
. k
p=10°=5 g—102
m s
Determine

(a) the time T, in which the velocity at-
tains 99% of its final value,

(b) the volume of the fluid discharged,

(c) the pressures ps and pp immedi-
ately after opening the flap and at
time 7'

(d) Sketch the pressure at the positions
A and B as a function of time!

2.22 The pressurized pipe system of a stor-

age power station is closed with a valve.
During the closure (shut-down time 7})
the discharge volume decreases linearly
from Qy to zero.

h=200m L=300m A=02m?
3 kg . m

. m

=3— p=10"=

@ S P m3 52
— _ 7

Apsﬂ%'e - (pl - pa)sa‘ue =2-10 E

Determine

(a) the excess pressure in front of the
open valve for steady flow,

(b) the pressure variation p;(t) during
closure of the valve (Sketch the re-
sult!),

(¢) the closure time of the valve so that
the excess prssure does not exceed
the safe value Apgq,ge!

3.1.3 Momentum and Moment
of Momentum Theorem

In this chapter the friction forces are ne-
glected in comparison to the volume, pres-
sure, and inertia forces, but not the pressure
losses, resulting from flow separation.

3.1

3.2

Water flows out of a bifurcated pipe into
the open air. The pressure in the inflow
stem is higher by the amount Ap than
in the surrounding air.

A1 =0.2 m2 AQ =0.03 le
A3 =0.07m? @y =30° ag=20°
Ap=10t N e X8

P = m? p= m3
Determine

(a) the velocities vy, vg, vs,
(b) the force F' in the cross section 1,
(c) the angle ag, for which Fj, vanishes!

Water flows out of a large container
through a pipe under the influence of
gravity in steady motion into the open
air. Downstream from the nozzle the
water jet is deflected by 180°. The flow
is assumed to be two-dimensional.

== Ig —=5

N

’\1' ]—ﬁT_)

—_—

A=02m? Ap=0.1m?
. k

p=10° 5 g—10=
m S

h=5m

Determine the forces retaining the pipe
and the guide vane
(a) for the sketched configuration,
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3.3

3.4

(b) for the case that the inlet of the pipe
and the nozzle are removed!

Water flows out of a two-dimensional
nozzle in steady motion with the veloc-
ity vo against a guide vane, moving with
the velocity v,.

A=01m? vy=60—" 24=45°
s

kg

m?

(a) At what velocity v, does the perfor-
mance of the vane attain its maxi-
mum value?

(b) How large is then the force acting
on the vane?

p=10°

Two two-dimensional cascades (in-
finitely many blades) with width B and
spacing ¢ deflect a flow by the angle «.

—_—
R

S
N

cascade I cascade I1

Given: p, vy, a, B, t

Determine

(a) the velocity vy,

(b) the pressure difference p; — po,

(c) the pressure loss po; — pog,

(d) the force exerted by the flow on a
blade!

A rocket moves with constant velocity.
The air flowing past the rocket is dis-
placed in the radial direction. The ve-
locity in the jet is vy, around it v;.

i : Z a—
™ ZaT=

—
¥

“HHHHT

3.6

3.7

3.8

Given: vy, va, p1, pa, Ar

Determine

(a) the mass of air displaced,

(b) the thrust and the net performance!

The constant free-stream velocity of a
propeller is v;. A certain distance down-
stream from the propeller the velocity
in the slipstream is vy, outside of it v;.

e i l—
— - —
— A ——
f— I p—
—_—— — —_———,
- _
= [y | I— ——
fo——— 1
—_— - p—
-y p—
% A]
m
A =706m vi=5— wvy=8—
_ 103 X8
m3
Determine

(a) the velocity v in the cross-sectional
plane of the propeller,
(b) the efficiency!

A ducted propeller is positioned in a
free stream with constant velocity. The
inlet lip is well rounded.

¥y Al
—— —_—
— ——
—— —
J—— T —_—
—_— ———— A ——Vy——
— —_—
——— | + —=
JE—— ——
— —_—
g

N
A=1m? v =102 p,=10°—
S m

p=10% %

(a) Sketch the variation of the static
pressure along the axis!
Determine

(b) the mass flow,

(c) the thrust,

(d) the power transferred by the pro-
peller to the flow!

N
p1=1345-10" —
m

Two blowers, drawing air from the sur-
roundings, differ in the shape of their
inlets.
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Given: p, A, Ap

Determine

(a) the discharge volume,
(b) the power of the blowers,
(c) the retaining force!

3.9 A pipe with an inserted nozzle is po-
sitioned in a free stream with constant
velocity.

———
—_—
A, Al
—
——
—_— e -
—_
——
—_—
—_—
—_—

R

Vm

Ay =02m2 Ay =0.1m2 v, = 40—
S
k
p=125 m—gs

Determine

(a) the velocity in the cross sections A;
and As,

(b) the retaining force!

3.10 A jet apparatus, which is driven with
a blower, sucks the volume rate of flow
@2 through a ring-shaped inlet.

A =01m> A;=02m?

N
— 5
=1

3
Oy =422 p:1.25k—i
] m
Determine
(a) the velocity v, and the pressure py,
(b) the velocities v, and vy,
(c) the power of the blower,
(d) the retaining force of the blower cas-
ing (traction or compressive force?)!

3.11 Water flows out of a large frictionless
supported container through a pipe,
with a discontinuous increase of the
cross section, into the open air.

h=5m A=01m? pa:mf’ﬂz
m

3 kg m
3
p=10"— g—lOSZ

(a) For what cross-sectional area A,
does the volume rate of flow attain
its maximum value?

With A, determined under a) com-
pute

(b) the pressure py,

(c) the cutting forces Fyi, Fg, Fu
(Traction or compressive forces?)!

3.12 A pump is feeding water from a lake
into a large pressurized container. The
volume rate of flow is measured with
a standard nozzle (discharge coeffi-
cient ).

H=5m h=3m d=0.07m

s N N
pr =2-10° —  Ap, = 3160 —
m? m?

- N 5 kg m
pa:l()E pIIOE gzl(];z

D=01Im a=108
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Determine

(a) the velocity in the pipe,

(b) the static pressure upstream and
downstream from the pump,

(c) the net performance of the pump!

3.13 Water flows out of a large container
through a pipe with a Borda mouth-
piece into a lake.

m
h=1m gleS—2

Determine
(a) the contraction,
(b) the out-flow velocity vy

3.14 The volume rate of flow of a ventila-
tion blower is measured with an orifice
(discharge coefficient «, contration co-
efficient V).

_ b

——— ‘B__ﬂ—l_é IZ;
TI 1 —
P
. N N
pa=10° —  Ap, =300 —
m m
Kk
p=125-—2
=
a=07 ¥=066 A=10"2
Ap
=2 —05
m A

(a) Sketch the variation of the static
and total pressure along the axis of
the pipe!

Determine

(b) the volume rate of flow,

(c) the pressure upstream of the blower,

(d) the performance of the blower!

3.15 A hydraulic jump occurs in an open
channel.

hi=01m hy=02m g¢g= 10E2
s

Determine

(a) the velocities v; and vs,

(b) the Froude numbers Fr; and Fro,
(c) the energy loss Hy — Ho!

3.16 The volume of water flowing out of a
storage pond is controlled with a wicket.

h=T75m ¢g=10-
S

Determine

(a) the out-flow velocity vy as a function
of the height of level hy (why is v;
constant in the cross section?),

(b) the height of level, for which the vol-
ume rate of flow attains a maximum,

(c) the height of level, for which the hy-
draulic jump does not occur,

(d) the depth of water and the veloc-
ity downstream from the jump for
hy = 2.5m!

3.17 The depth of water hq of an open chan-
nel with constant volume rate of flow is
controlled by changing the height Z,, of
a weir. For Z,, = 0 the depth of water
is h().

T I
1 //?,-

upper water Tower water
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Q=80-— B=20m hy=2m
S

(a) Sketch the variation of the depths
of water for Z,, < Z.iu. and Z,, >
Zmil.!

Determine for Z,, = 1m

(b) the limiting height Z.;; of the dam,

(c) the depths of water h; and hs,

(d) the difference of the energy heights
between upper and lower water,

(e) the force acting on the weir!

H |

A /
win
15 s

4

“ ]

05 10 15 20 b
he

Hint: If a hydraulic jump occurs, it will
be at the downstream face of the weir;
the depth of the lower water is hy.

3.18 Assume that in a rotating flow pressure
and velocity depend only on the radius.

)
~/

(a) Choose the segment of a circular
ring as control surface and, by us-
ing the momentum theorem, derive
the relation

dp 112'

="

r r

(b) For what velocity distribution v(r)
does the Bernoulli constant have the

same value for all streamlines?

3.19 A lawn sprinkler is fed from a large
reservoir. The water jets are inclined to
the circumferential direction by the an-
gle a.. The friction torque of the bearing
is M,.

H=10m h=1m R=0.15m
A=05-10"m?> A, =1.5-10"m?

N
[M,| =3.6Nm p, =10° —
m

k
p=10° 5 g—105 a=30°
m S
Determine

(a) the number of revolutions,

(b) the rate of volume flow,

(c) the pressure py,

(d) the maximum angular velocity, if
the friction torque is assumed to be
zero!

3.1.4 Laminar Flow of Viscous Fluids

4.1 Determine the following quantities for
a fully developed laminar pipe flow of a
Newtonian fluid
(a) the velocity distribution

u(r) .1
e L JECRY
(b) the ratio
U,
(3.2)

(c) the dependence of the pipe friction
coefficient on the Reynolds number!

4.2 A Bingham fluid is driven by grav-
ity between two parallel, infinitely wide
plates.

o]

e —
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4.3

44

4.5

Given: b, p, i, 70, ¢, 3—’2’ =0

Assume that the flow is fully developed
and determine

(a) the distance a,

(b) the velocity distribution!

An oil film of constant thickness and
width flows down on an inclined plate.

A

o

A

0=3-100m B=1m o=30

kg

. Ns
_ -3 _
pn=30-10 2 p—SOOm3

m

Determine the volume rate of flow!

An oil film is driven by gravity.

Given: 9, a, p, i, g.

Determine the velocity distribution in

the oil film

(a) on a plane vertical wall,

(a) on a wall of a vertically standing cir-
cular cylinder!

A Newtonian fluid flows in the gap be-
tween two horizontal plates. The upper
plate is moving with the velocity u,,, the
lower is at rest. The pressure is linearly
decreasing in the z-direction.

dp

Given: H, uy, p, i,

4.6

4.7

Assume fully developed laminar flow

and determine

(a) the velocity distribution,

(b) the ratio of the shear stresses for
y=0andy=H,

(c) the volume rate of flow for a width
of the plates B,

(d) the maximum velocity for u,, = 0,

(e) the momentum flux for u,, = 0,

(f) the wall-shear stress in dimension-
less form for w,,

(g) sketch the velocity and shear stress
distribution for w,, > 0, u,, = 0, and
Uy < 0!

A Newtonian fluid flows between two
coaxial cylinders.

ulr)

¥
é_'_Lﬂ __j_._at_%

Given: R, a, u, %

Assume fully developed laminar flow

and determine

(a) the velocity distribution (sketch the
result!),

(b) the ratio of the shear stresses for
r=aandr =R,

(c) the mean velocity!

A Couette viscosimeter consists out of
two concentric cylinders of length L.
The gap between them is filled with a
Newtonian fluid. The outer cylinder ro-
tates with the angular velocity w, the
inner is at rest. At the inner cylinder
the torque M, is measured.
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R,=01lm R;,=01m L=01m T
1 mz?mm
w=10_ M,=7.24610""Nm i S
= H
Determine rrrY vrrres 7
(a) the velocity distribution,
(b) the dynamic shear viscosity of the ) B
fAuid! Given: R7 T‘un )‘7 Hy ﬁ
Hint: The differential equations for the (a) Assume fully developed laminar
velocity and shear-stress distributions flow and derive the differential equa-
are: tions for the velocity and tempera-
d 0 d ture distribution for a ring-shaped
— {7 — (rv)} =0 , volume element for vanishing con-
dr |7 dr vective heat flux and constant mate-
T=—pur i (E) rial properties! State the boundary
dr \r conditions!
(b) Determine the temperature distri-
4.8 A gas of thermal conductivity A and bution
specific heats ¢, and ¢, flows in the gap T-T,
between two horizontal plates. The up- —
. . . . Tmaac ﬂi7
per plate is moving with velocity u,, at
temperature T, the lower is at rest and 4.10 Under a gun slide a plane wall is moving
is thermally isolated. with the velocity tuo.
[ L
P
1_
l yl hix)
Given: uy,, H, Ty, 3—2 =0, 7 7
[ )‘7 Cpy Cy
Assume fully developed laminar flow h(zr)=hye 52 L=5-10"2m
and determine for vanishing .convcctivo hy=10~4m wuy =1 m p=10" N72
heat flux and constant material proper- 1 s m
ties p =800 i{;
(a) the velocity and temperature distri- nr
bution, Determine
(b) the heat flux per unit area through (a) the similarity parameter of the prob-
the upper plate! lem, .
(c) Show that the stagnation enthalpy (b) th? volume rate of flow per unit
has the same value everywhere for width,
Pr =1l (c) the pressure distribution in the gap,
(d) Determine the time-dependent tem- (d) the pressure force per unit width
perature variation, if both plates are bearing the gun slide, o
thermally isolated, and if at the time (e) the performance loss per unit width
t = 0 the temperature in the flow ¢ due to bearing friction!
field is Tp! 4.11 From the momentum equation in inte-
4.9 A Newtonian fluid with thermal con- gral form

ductivity A flows through a pipe. The
wall temperature is kept constant by
cooling the wall.

dI 9 i
— = /Ta(pv)dTJr/Apv('un)dA

dt
= ZF
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4.12

derive the differential form of the mo-
mentum equation in the z-direction for
an infinitesimally small volume element

du, ou ou\_ (00, Or,
Plar ™o Yoy ) T o oy

The z-component of the friction force
acting on a volume element is given by

Fyp = %{u (22—2—§V-v>}+
d ou  Ov
b3

7] ow  du

sl (e5) |

Reduce this equation for an incompress-
ible fluid with constant viscosity!

+

+

3.1.5 Pipe Flows

5.1

5.2

The viscosity of an oil is to be measured
with a capillary viscosimeter.

This is done by measuring the time T,
in which a small part of the oil (volume
7) flows through the capillary. Assume
that the flow is loss-free upstream of the
position 1!

. k
7=10cm? szOO—g3 L=01m
m
h=0.05m
m

D=1mm 7T =254s

Water flows out of a large container
through a hydraulically smooth pipe,
with a nozzle fixed to its end. The pres-
sure upstream of the nozzle is p;. The

5.3

5.4

friction losses in the intake of the pipe
and in the nozzle can be neglected. As-
sume that the flow in the pipe is fully
developed!

L=100m D=102m
. N
d=05-102m p,=10°—

m?
N K
pr=1075-10° = p=10° =
m m
Ns
pp=107° w2

Determine

(a) the velocity in the pipe and at the
exit of the nozzle,

(b) the pressure in the container,

(c) the velocity at the exit of the nozzle
for L = 0 and the same pressure in
the container!

Two containers are connected with each
other by 25 pipes with diameter D, and
25 pipes with diameter Dsy. A pressure
difference of Ap is measured between
the containers. The pressure-loss coef-
ficient of the intake is (.

Dy=0025m Dy =0.064m
k
L=10m p=10°—> X=0.025
N m
Ap=10°— ¢=1
m

Determine the volume rate of flow!

A fluid flows through a hydraulically
smooth pipe. The pressure drops by the
amount Ap over the length L.

L=100m D=01m Ap= 5~104E2
m
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Oil: p=10" Ns » = 800 kg (a) the momentum flux,
m? m? (b) the wall shear stress!
Water : p =103 N—z p=103 k—gB
m m 5.7 Water flows through a hydraulically

Determine the velocities of the flow! smooth pipe with an discontinuous

Hint: Use the Prandtl resistance law for widening of the cross section into the

super-critical Reynolds numbers! open air.

Pa
5.5 Compressed air is pumped through a

hydraulically smooth pipe. The pres-

sure pp, the density p; and the veloc-

ity @, are assumed to be known in the

intake cross section. N

D=10"2%m ])1:8‘105—2

m m D=002m Dy;=004m L=02m

U1 = 10 5 U1 = 0.5 m =103 k—gd

o s m

plle% u:1.875-10’5% leo,3$

(a) DeriV.e t}%e following relation with (a) At what length Ly does the pressure
the aid of the momentum theorem: . .

difference p; — p, vanish?
dp t o di, A p 2 =0 (b) How large is the corresponding pres-
dg PV g T ot T sure loss?

(b) Determine the length, over which Hint: Assume, that the wall shear stress
the pressure drops by one half of in the widened part of the pipe can be
its initial value for compressible flow determined with the equations for fully
with constant temperature and for developed pipe flow!
incompressible flow!

5.8 The feed pipes of a fountain consist out
of four straight pipes of total length L,
5.6 The velocity distribution in the intake two bends (loss coeficient (x) and a

region of a laminar pipe flow is de-
scribed by the following approximation:

x 7(3)
tn1-3E4d(3)
2 (1) o<y <)
f(«s)—{ ’ 1(5) 6(9c)y§y§TR

Given: U, R, p, p

Determine the following quantities for
the intake cross section, the end of the
intake region, and for % =0.5

valve (Cy).

h=10m
(k=025
Determine the volume rate of flow and
the height H for dissipative and nondis-
sipative flow with

() d=2,

(b) d = D!

Hint: Assume that the flow in the in-
take and in the nozzle is loss-free and
fully developed in the straight pipes!

D=005m L=4m
vy =45 A=0.025
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5.9 Water flows through a hydraulically
smooth pipe.

k
D=01m Re=10° p=10°% &
2 Ns
_10-3
n=10"0
Determine

(a) the wall shear stress,

(b) the ratio of the velocities 2=,

(c) the velocity for %= = 5 and for
yus _ 50,

v

(d) the mixing length for £2= = 100!

5.10 The velocity distribution of a turbulent
pipe flow is approximately described by
the ansatz

U,

S
N—
i

Y
R

Umaz

t_

Determine
(a) the ratio of the velocities “7: ,

(b) the ratio of the momentum fluxes

; !
pu2, TR? °

511 A pump is feeding water through a
rough pipe (equivalent sand roughness
ks) from the level h; to the level hy.

: m?
L=20km D=1m k;=2mm
. kg 2
p=10° "5 =100
m s
N m
—10° —
Pa = 10 ) g=10 2
(a) Sketch the variation of the static
pressure along the axis of the pipe!
Determine
(b) the pressure at the intake of the

pump,

(c) the pressure at the exit of the pump,
(d) the net performance of the pump!

5.12 In a fully developed pipe flow with vol-
ume rate of flow @ a pressure drop Ap
is measured over the distance L.

—p ——————
L
o
ap
. m?
®@=0393— L=100m =05m
s
N k
Ap = 12820 = p =900 —g
N
p=5-10%
m?
Determine

(a) the pipe friction coefficient,

(b) the equivalent sand roughness of the
pipe,

(c) the wall shear stress and the retain-
ing force!

(d) How large would the pressure drop
be in a hydraulically smooth pipe?

5.13 Air is to be conveyed through a rough

pipe with a well rounded intake with
the aid of a blower.

_ [
T

I'd P,

?

L=200m k;=1mm

Determine the ratio of the blower per-
formance for the diameters D = 0.1m
and D = 0.2m for the same volume rate
of flow and very large Reynolds num-
bers!

5.14 Water is fed through a system of 100
pipes into a channel with quadratic
cross section.
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=r

L] ]l

o —d

b | —

. 3
Q =0.01 - 0.5m a=0.1m
s

2 Ns

Lk
D=00lm p=10"—2 ;i =107°—
m m

For what length does the pressure loss
of the channel become equal to that of
the pipe system?

5.15 An open channel with quadratic cross

section is inclined by the angle a.

Ns m
—10-3 _
n=10 5 9=10 2

Determine the angle of inclination and
the pressure loss per unit length!

3.1.6 Similar Flows

6.1

6.2

Derive the dimensionless similarity pa-
rameters with the momentum equation
for the z-direction

Ou  Ouw  0Ou)_
Plat " "ar " ay) T~

_@ + 0*u + @ |
1 o)

ox 0x?

In hydraulically smooth pipes of dif-
ferent lengths and diameters the pres-
sure loss is measured for different ve-
locities, densities, and viscosities. The
flow is fully developed, incompressible,
and steady.

How can the results of the measure-
ments be presented in a single curve?

6.3

6.4

6.5

6.6

6.7

A fluid flows slowly and steadily

through a hydraulically smooth pipe.

The flow is laminar and fully developed.

(a) Derive the Hagen-Poisseuille law
with the aid of the dimensional anal-
ysis from the ansatz

. Ap\“©
- (=X B DY o1
Q <L> a
(b) Show that the pipe friction coeffi-
cient is inversely proportional to the
Reynolds number!

What is the drag of two spheres of dif-
ferent diameter but the same Reynolds
number, if one moves in air and the
other in water, and if the drag coeffi-
cient depends on the Reynolds number
only?

Pa_ 01251072 Mo —1875.1072

Puw w

In an incompressible flow about a circu-
lar cylinder the frequency, with which
vortices are shed, depends on the free-
stream velocity, density, and viscosity.
Determine the similarity parameters
with the aid of the dimensional anal-
ysis!

The pipes in heat exchangers can oscil-
late due to excitation by the cross-flow
they are exposed to. It is known, that
in a flow about a circular cylinder, with
its axis normal to the direction of the
flow, the Strouhal number is constant
for 200 < Re < 10°.

D=01m v:lE ’1/23E

S S

sm? s m?

v=107"— V' =15-107" —
Determine

(a) the minimum diameter of the model
cylinder,
(b) the excitation frequency f, if for the

1
smallest model f/ = 600 —!
s

The power needed to overcome the
aerodynamic drag of an automobile
with quadratic cross-sectional area A
is to be determined in a wind-tunnel
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6.8

6.9

experiment. The cross-sectional area of
the model cannot exceed A,, in order
to avoid blockage effects in the wind-
tunnel.

A=4m? A, =06m?> v=302
S

(a) What speed has to be chosen for the
measurement in the wind tunnel?

(b) Determine the power needed, if with
a larger model the drag F' = 810 N
is measured!

Water flows through a model of a valve
(volume rate of flow Q'). Between intake
and exit the pressure difference Ap’ is
measured. The valve is supposed to be
used in an air pipe.

A=0.18m> A =0.02m?

kg 5 kg
p =125 P ; 10 3 .
= 18751070 & 4 =10° —
m? m?
3 N

@ =02" Ay =158-10° —;
S m-

(a) For what volume rate of flow are
the flows through the model and the
full-scale configuration similar?

(b) What is the pressure difference be-
tween intake and exit?

An axial blower (diameter D, number
of revolutions n) is to be designed for
air. In a model experiment with water
(reduction scale 1:4) the increase of the
total pressure Apj, is measured.

3
: 1
0=30" D=1m n=125
S
k Ns
p=125 -5 1 =1875-10"° —
m m
Sk N
p=10° =2 =107 —
m3 N m?

— 5
Aply=03-10° —

Determine

(a) the volume rate of flow and the num-
ber of revolutions during the exper-
iment,

(b) the change of the total pressure of
the blower,

(¢) the power and the torque needed for
driving the model and the main con-
figuration!

6.10

6.11

6.12

The power of a propeller of an airplane
is to be determined in a wind-tunnel ex-
periment (Model scale 1:4) for the flight
velocity v. In the test section of the
wind tunnel the velocity can be varied

between 0 and 300 E7 the pressure be-
S

N N
tween 0.5-10° — and 5-10° —;, and the
m? m?
temperature between 250 K and 300 K.
The viscosity of air is described by the
relation

L T \0T5
Haoox (300[()

1
D=1m n=100- v=200—m
S S

~ Nm
300K R =287 K

N
_ 5
p=10"1e

(a) Determine an operating point (v', p’,
T") such that the results of the mea-
surements can be applied to the full-
scale configuration!

(b) What number of revolutions must
be used in the experiment?

(c) Determine the power, if in the ex-
periment the power P’ was mea-
sured!

A model experiment is to be carried out

prior to the construction of a tanker

(Model scale 1 : 100) in a towing basin.

(a) How large would the ratio of the
kinematic viscosities ”;I have to be?

(b) How large must the towing veloc-
ity in water be, if the aerodynamic
drag can be neglected and if only the
wave drag or only the frictional drag
is taken into account?

A docking pontoon is fastened at the
bank of a river. An experiment is to be
carried out with a model scaled down
to 1: 16.




88 3. Exercises in Fluid Mechanics

L=36m B=12m H=27m
u:3% Fi=4N K =25cm
p=10° %
Determine

(a) the flow velocity in the model exper-
iment,

(b) the force acting on the pontoon, if
the force F is measured in the ex-
periment,

(c) the drag coefficient of the pontoon,

(d) the height of a wave h to be ex-
pected at the side of the pontoon,
facing the oncoming flow, if the
height A’ was measured in the ex-
periment!

6.13 In arefinery oil flows through a horizon-
tal pipe line into a reservoir with pres-
sure pg, with the pressure at the intake
being py. A safety valve is attached to
the end of the pipe line, which in the
case of emergency can close the pipe
line within the time 7'. In a model ex-
periment with water (diminution scale
1 : 10) the maximum pressure in front
of the safety valve, measured during the
shut-down procedure, is pl, ...

N
p:1.5~105E pR:I)’,,,:lof)@

k k
p =880 —gg o =10 —i
m m
Ns Ns
— —1 L —3
n=10 2 w =10 5

N
T=05s ph,=105-10°—
m

Determine

(a) the pressure pj and the shut-down
time in the model experiment,

(b) the maximum pressure in the full-
scale configuration!

6.14 In a petroleum pipe line (diameter D)
the volume rate of flow is to be deter-
mined with a measuring throttle (diam-
eter d). In a model experiment with wa-
ter (diminution scale 1 : 10) a differ-
ential pressure Ap/, and a pressure loss
Apy is measured at the measuring throt-
tle.

O=1" D=1m d=04m
s
ke N
p=800—2 p=10"—
m m
. kg 3 Ns
_ 103 %8/ _ 103
N N
Ap, = —  Ap; =400 —
pp = 500 . D, 00 -
Determine
(a) the flow velocity and the volume
rate of flow in the model experi-
ment,
(b) the discharge coefficient and the loss
coefficient of the measuring throttle,
(c) the differential pressure and the
pressure loss for the full-scale con-
figuration!

3.1.7 Potential Flows of
Incompressible Fluids

7.1 A cyclone is assumed to have the fol-
lowing velocity distribution:

wr r<nr
UG(T):{WT(Z, r> v, =0
0

1
ro=10m w=10-
s

ko
H=100m p=125-2

m?

(a) Sketch vy(r)!

(b) Determine the circulation for a cir-
cle around the axis of the cyclone for
r<rg, T=rgandr>rg!

(c) Show that for r > ry the flow is ir-
rotational!

(d) How large is the kinetic energy in a
cylinder with radius R = 2 ry and
height H?

7.2 (a) State the definitions of potential and
stream function for two-dimensional
flow! What conditions have to be
satisfied so that they can exist?

(b) How are V-v and V>@ and V x v
and V2 ¥ related to each other?

7.3 Examine, whether potential and stream
function exist for the following velocity
fields!

(@) u=2*y v=9y2x
b)u=z v=y
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7.4

7.5

7.6

(c)u=y v=—x
du=y v=x
Determine potential and

stream-function!

A two-dimensional flow is described by
the stream function ¥ = (%) zy. In the
point .y = 0, Yrey = 1 m the pressure

) . N
i8S prey = 10 e

=22 L—1m p=10°22
s m°

(a) Examine, whether the flow possesses
a potential
Determine

(b) the stagnation points, the pressure
coefficient, and the isotachs,

(¢) velocity and pressure for
T1=2m, Yy =2m,

(c) the coordinates of a particle, which
at time ¢t = 0 passes through the
point x1, y;, for the time ¢ = 0.5 s,

(e) the pressure difference between
these two points!

(f) Sketch the streamlines!

Given the potential

3
Y
O =ya? - =
vty
(a) Determine the velocity components
and examine, whether the stream
function exists!

(b) Sketch the streamlines!

Determine the velocity fields
v=
(a) Vxwvand V- v,

(b) potential and stream funktion,

(¢) the circulation along a curve around

the origin!

vp=0andv, =0 wvg= ¢

7.7

7.8

Hint: The following relations are valid
for polar coordinates:

_9¢_1ov 102  O¥
“Tor Tro0 T ro0” or
1 0(rv,) | 1 v
R 1)
10(rvg) 1 v,
Vxv = <? ar o0

Given the stream function

¥ (r,0) = L " sin(n 6).

(a) Sketch the streamlines for n = 0.5;
n=1lundn=2"!

(b) Determine the pressure coefficient
for the point x = 0, y = 0, if pres-
sure and velocity are known for the
point ey = 1, Yrey = 1!

Consider a large basin with an outlet.
The flow outside of the outlet (r > Ry)
can be described by superposition of a
plane sink and a potential vortex. For
r = Ry the in-flow angle is a and the
depth of water is hg. The volume rate
of flow of the discharging water is Q.

Roy=003m hy=002m g=10
) s

3

O=05-10" o =30°

Determine ’

(a) the circulation I’

(b) the shape of the water surface h(r)
for r > Ry,

(c) the depth of water at large distances
from the outlet!

Hint: The discharge volume of the sink

is to be determined for the radius

r = R[]'
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7.9 The free-stream velocity of a two-
dimensional half-body with width 2hA
1S Ueo-

Determine

(a) the stagnation point and the veloc-
ity in the point x = z,, y = h,

(b) the contour of the half-body,

(c) the pressure distribution on the con-
tour,

(d) the isobars,

(e) the curve along which the pressure
is larger by the amount £ w2, than
the pressure py, of the free-stream,

(f) the isotachs,

(g) the part of the flow field, in which
the velocity component v is larger
than %=,

(h) the curve, which is inclined to the
streamlines by 45°,

(i) the maximum deceleration a parti-
cle moving along the line of symme-
try is experiencing between z = —oo
and the stagnation point!

7.10 Given the stream function

R2
)

(a) Sketch the streamlines for

z?+y* > R?
Determine

(b) the pressure distribution on the con-
tour ¥ = 0,

(c) the time it takes for a particle to
move from the point = —3 R,

y = 0 to the point z =2 R, y = 0!

7.11 Consider a parallel free-stream with
velocity s flowing around a circular
cylinder with radius R, with its axis
normal to the direction of the oncoming
flow being in the origin of coordinates.
Determine

(a) the curve along which the pressure
equals the free-stream pressure py,
(b) the pressure on a circle around the
origin of coordinates with radius 2R!

7.12 The pressure difference Ap between two
boreholes in a circular cylinder, with its
axis normal to the direction of the on-
coming flow, is a measure for the angle
€ between the free-stream direction and
the axis of symmetry.

ap

(a) What is the relation between the
pressure difference and the angle of
attack?

(b) At what angle o does Ap attain its
maximum value for every €?

7.13 Consider a flow around a bridge pile
with circular with cross section. The
free-stream velocity is ue. The depth
of water far upstream is h..

b
T=T0

| Pep—) !
| —
— |

T Cl 777

Uo =1 — hee=6m R=2m
S

kg m
— 103 _
p=10"— gflﬂSZ

Determine

(a) the height of the water surface at the
wall of the pile as function of 6,

(b) the height of the water surface at the
stagnation points,

(c) the lowest depth of water, measured
from the ground!

Hint: Assume two-dimensional flow!
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7.14 The roof (weight G) of a hangar of
length L and semi-circular cross section
rests on the walls of the hangar, without
being fixed. The hangar is completely
closed except for a small opening on the
leeward side.

a=45 e =502 p=125-2
S m

Investigate, whether the roof has to be
anchored to the walls!
Hint: Assume two-dimensional flow!

7.15 Consider a flow around a rotating cir-

cular cylinder of length L with its axis
normal to the direction of the free-
stream with velocity . The circum-
ferential velocity of the flow on the sur-
face of the cylinder caused by the rota-
tion is vy.

Yon
—

(a) Determine the circulation!

(b) Discuss the flow field for v, = !

(¢) Determine the force acting on the
cylinder!

3.1.8 Boundary Layers

8.1 Show that the drag coefficient of the flat

plate at zero incidence is proportional
1 i |
to 5= for a laminar boundary layer!

8.2 The surface of a flat plate is parallel to

the direction of a free stream g)f air.

ey =452y =15.10° 2
S

S

8.3

8.4

8.5

Determine
(a) the transition point for

Recrit. =5 - 1057
(b) the velocity at the point
x =01m, y = 2-10"*m with
the aid of the Blasius solution! At
what coordinate y does the veloc-
ity for x = 0.15m attain the same
value?
Sketch
the variation of the boundary-layer
thickness 6(z) and a velocity profile
for © < xeyp. and & > Ty,
the wall-shear stress as a function of

—
o
~

—
o
=

x for
dp dp dp
—0: |
<0 , 0 and >0 !

The surface of a flat plate is parallel to
the dircetion of a free stream of water.
Formulate the momentum thickness in
terms of an integral over the wall-shear
stress for a laminar boundary layer

z 1(x;y =0
— / wz) dz' dar!
0 pu
Air moves past a flat plate (length L,
width B), with its surface parallel to
the direction of the free stream.

um:lOE L=05m B=1m
S

kg s m?
p=1.25—3 v=15-107" —
m s
(a) Sketch the velocity profiles u(y) for
several values of z!
(b) State the boundary conditions for
the boundary-layer equations!
(¢c) Sketch the distribution of the shear
stress 7(y) for the position z!
(d) Compute the boundary-layer thick-
ness at the trailing edge of the plate
and its drag!

The velocity profile in the laminar
boundary layer of a flat plate at zero in-
cidence (length L) can be approximated
by a polynomial of fourth degree

u y\2
E = ap+a (%)4’@2 (%) +

3 4
v (5) e (5)
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(a) Determine the coefficients of the

polynomial!
(b) Prove the validity of the following

relations
oo_ 3
5 100
b 3T
5 315’
5 584
z  +/Re,

1.371

Cp =

8.6 The velocity profile in a laminar bound-
ary layer on a flat plate at zero inci-
dence of length L is approximated by
A) a polynom of fourth degree

= (-3 )
U 2 \6/ 2 \§
and
B) a sinosoidal ansatz

u . <7r y)
— =sin(= =
Uso 20
(a) Determine 61, &9, 6, and ¢,,!
(b) Compute the boundary-layer

thickness at the trailing edge of
the plate and the drag for

um:lE L=05m B=1m
S

.k ' m?
p=10°=5 =107 |
m S

3.1.9 Drag
9.1 Two flat plates at zero incidence, one

downstream from the other, are ex-
posed to the free-stream velocity .

L
——L‘TH_-
|'E !

i i
_— —_—

R F

—_—
—_—
Uga

oo =12 L =L+ L,=036m
S
2

ks ) g

B=1m p=10"—=
m S

9.2

9.3

Determine

(a) the retaining forces Fy and F; for
Ly = Lo,

(b) the lengths Ly and L; for F} = Fy!

Two quadratic plates are exposed to a
flow, one at zero incidence, the other
with its surface normal to the direction
of the free stream.

Cu
1328
Re,
—L,
) .
—_— 5100 Re,
Cw
-_— L, —
114 -
- 4 .
Us i
-—-—w e Re,
m kg

U =D — L1 =1m 10:1.25—3
e

2
y=15-10"5 2
S

(a) Explain the difference between fric-
tional and pressure drag!

(b) How large must Ly be, so that both
plates generate the same drag?

(c¢) How does the drag depend on the
free-stream velocity?

Two flat rectangular plates are exposed
to a parallel flow. The plates have the
same lateral lengths L; and L,. The
edge of plate 1, with lateral length L,
is parallel to the direction of the free
stream, and of plate 2 the edge with lat-
eral length Lo. The free-stream velocity
1S Ugo-

m2
L1:1m L2:05m I/:1076?

(a) Determine the ratio of the friction
forces for Uy = 044E; O.SE; 1.6

s
(b) How large would the free-stream ve-
locity for the plate 2 have to be, if
the free-stream velocity of plate 1 is
Uso = 0.196 2, and if both drag co-
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9.4

9.5

9.6

efficients are supposed to have the
same value?

Hints:

0.074
Cp =

1700
4
Re;  Her

for 5-10° < Rey, < 107.

A kite (surface area A, weight W) gen-
erates the force F' in the kite string at
an angle of attack «.

L ite siing

A=05m2 W=10N u, =102
S

a=10° B=55° F=425N
kg

p=125—
m

Determine the lift and drag coefficient
of the kite!

Assume that the flow around a circu-
lar cylinder separates at a = 120°, that
the pressure distribution up to the sep-
aration point can be determined with
the potential flow theory, and that the
pressure in the dead water region is con-
stant!

VT

Neglect the frictional drag and deter-
mine the drag coefficient of the cylin-
der!

A surfboard (width b) moves with the
velocity u over the surface of quiescent
water. The height of the triangular sail
is h and its width b.

9.7

9.8

sail

11F

oo -
mounting

L=375m B=05m u=15->"
S

k N.

pu=10° "2 4, =107
m?3 m?
kg

N
fla= 1875107 — h=4m b=2m
me

Neglect the wave drag , the drag of the

sail mounting, and the frictional drag

of the upper side of the surfboard and

determine

(a) the wind speed uq,

(b) the drag of the sail!

(¢) How large would the frictional drag
of the upper side of the board be?

Hints:

Board cp = &714 — L700
Rei Rey,
(for : 5-10° < Rey < 107)
Sail cp =12
(for : Re>10°%)

How large must the surface of the equiv-
alent drag of a parachute at least be, in
order to avoid the sinking speed in qui-
escent air to exceed v?

u:4? W =1000N cp =133
p =125 k—gs

m
A sphere and a circular cylinder of
the same material fall with constant
velocity in quiescent air. The axis of
the cylinder is normal to the direction
of the gravitational acceleration. For
0 < Re < 0.5 the drag coefficient of a
sphere is given by ¢p = % and that of
a circular cylinder with its axis normal
to the oncoming flow by

87

Re(2 — In Re)

Cp =
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kg K
p=800-2 p,—125-2
m- m-
ve=15-10°"2 g=10=
S S

Determine

(a) the maximum diameters, for which
these relations are valid,

(b) the corresponding sink velocities!

9.9 Determine with the aid of the diagram
for the drag coeflicient of a sphere

Re rrco /
10 -
10 /
10 //,
1
1 10 10’ 10’ 10
20 e

(a) the steady sink velocity of a spheri-
cal rain drop of diameter D in air,
(b) the steady ascending velocity of a
spherical bubble of air of diameter
D in water!
ki
D=1mm p,=10®—= 5
) m?
Ve = 1070
k X
fa —125—g Ve = 15-107% 22
s
g= 10 —
s

9.10 Spherically shaped dust particles (den-
sity ps) are to be conveyed with a
stream of air against the gravitational
force.

|G

ATTTTIE

oL P

9.11

9.12

Kk
Dy=5-10"m p,=25-10° = &
k "N
pa=1.25 "5 1, = 1875-107° —
mn m

(a) At what velocity of the air v; are the
dust particles suspended?
(b) How large is the velocity of the dust
particles if the velocity of the air is
Vg =3 —"7
s
Hint:

Assume that the dust particles do not
influence each other!
24 3

Cp = Re (1+T6RC)

for0 < Re <1
A spherically shaped fog droplet (diam-
eter D) is being suspended by an up-
ward motion of air. At time ¢t = 0 the
air flow stops and the droplet begins to
sink.

k
D=6-10"m p,=10° =2
k N
po=125—2 i, =1875-107° —
mm m
S

(a) How large is the velocity of the air
flow prior to the lull?

(b) After what time does the droplet at-
tain 99% of its steady sink velocity?

Hint: For Re < 0.5 the law ¢p = 2 is

Re
valid for steady and unsteady flow.

A sphere is falling in steady motion in
quiescent air with the velocity v;. A
downwash squall increases the velocity
to vs.

kg
3
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(a) How large is the drag coefficient
prior to the squall?

(b) What steady final velocity does the
sphere attain after dying out of the
squall?

9.13 A spherically shaped deep-sea probe is
heaved with constant velocity from the
depth H to the surface of the sea in the
time T7.

D=05m H=4000m 7T;=3h
k 2 N

p=10° =5 =107 = g=102
m m S

Assume constant density of the water,

neglect the weight of the cable rope, and

determine

(a) the power needed for heaving the
probe, if the cable force is F} = 2700
N7

(b) the weight of the probe and the
shortest heaving time, if the cable
can take twice the value of the force,

(c) the power then needed!

Hint: Use the diagram of problem 9.12!

9.14 A sphere of diameter D and density p;
is vertically shot into quiescent air with
initial velocity v.

Assume a constant drag coefficient and

determine

(a) the height of rise,

(b) the rise time,

(c) the velocity at impact on the
ground,

(d) the falling time!

(e) What values do these quantities at-
tain for a wooden sphere of density
pw and for a metal sphere of density
Pm, if cp = 0.4 and ¢, = 07

D=01m ’00:30E 9210%
s s

kg ) kg
E Pw = 750 E
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3.2 Solutions

3.2.1 Hydrostatics

1.1
P = Patpugh=p.tprg(h—1L)
h ;3 kg
= Pu =3-10° =
pr p h—L m3
1.2
_ Fz'+
pi = gt
p2 = pi+pgAh=p3—pgAhy
Ahy = 22720 o5y
Py
Ahy = B27P2 33y,
Py
1.3
Fr = W
Fr, = prha®g+pa(a—h)a’g
W = PKCL39
o= P2TPK 667102 m
P2 — pP1
1.4

Wy=Fr=pAphayg
Wo=Wi+myg

The volume of the water remains con-
stant.

1.6

m
AH = —
pA
! .
0= Vo _ 107105 m?
pTTLg
AW = pMA(ho—hl)g
A = 1.95-10* m?
Wo—AW = pyTig=pr7yg
WO_AW<pM )
-1 = ——|—-—1
vyl PF
= 244-10° m®
m—n = (hy—Mi)A
he = 10.625 m
1T
gl ] H
-nT—-__J_
T
pl
L_iv {
=E| h
]
™ ™
.-~ D*H = ~D*H-h
Pay py D )
P = Patpwg(T—h)
ho— Peg(T+h)+p.
2pwy
wg(T+h) +p, )
<p 9(T+ )+p> oy
2pwyg
2m
F FL_VI/(H',T_W

s
1 D? g [(H - h) pw—H pa]

G
—9.58-10° N
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0 = FL—Wair_W

hy = H<17&), aw
Pu

Pa
Ty = ho[l4+ —"4——
’ 0( pwg(H7h0)>

= 183 m

1.7

P

I"Rccsu

[pi(2) — pa) dA sina
Rda27m R cosa
‘gRgpg:105um4N

1.8

dFy, = pg(h—z)2rxrdr

H-h+z
FL =

1.9

7D pu g

(b)

[p1(2) — p2(2)] Bdz

hy : p1(2) = pa + pg(hi—2)
h/2 : pz(Z) = Pa + p(](hg—z)
2<hi: ps=pq
1
5p9BM?7@)
1.05-10° N
z=h1

= / zdF

2=0

1 h3—h3
= 3 = 1.86

3 h— h} m

1.10
4
4
4
Y
FL =
dF
pi(s) =
F =
1.11

cs=L
/ sdF
s=0

[ps(s) — pa] B ds

= po+pg|[L sina— z(s)]

pgBRh?

=3-10"N
6 sina

a0

dF

pi(z) = patpg(H—2)

FZF

zZF

1 f f
ZprJ:25-m5N
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1.12

i

x

Boundary condition:
r =0, z=h: p=p,
1
p=pe = pg(h—2)+5pr

(a) Surface:

P = Pa
S22
= h
zo(r) + 24
r=R 2o = H
H-h
2
w* = 2 2
2
2o(r) = h+(H—h)—

RZ

Volume of the water:

R
7R*hy = / zo(r) 27 rdr

JO

1
TR*h + 57rR2(H—h)

h = 2hg—H=04m

[4g 1

(b)
r=R : p=p.t+pg(H—2z)
z=0 : p:paerthrng’rz
1.13
dp
e —p(2) g
(a)
p(z) = 2(2 p=poe i

(b)
p(2)
rlz) R(Ty—az)
a2\ fa
P = Do (1 - ?0)
()

1

p(z) = po (i);

y—1 gz \*1
n o— 1—
p po( ~ RT0>

[ p/po [ 3000 m [ 6000 m [ 11000 m |
a) 0.695 | 0.483 0.263
b) 0.686 | 0457 0.215
) 0.681 | 0.442 0.186

1.14 (a)
= (pmo—m)yg
10.6 N
(b) for
2<z1: P11 = PoTo
P b
Po
Po T1
z1 = — In—
Po g To
= 10.0 km
(c)
FL(Z‘Z) = M/
Po Po T1
Zp = — In——
Po g m
= 12.8 km
1.15
Fr(z) = W+ Wyas(z)
Fr(0) = W4 Wyas(0) + F
F, = pryg
G_qllS = panTq
p!]as(z) _ 67%
pgaS(O)
RTI <1+ FS)
z = —In —
g w

= 7.84 km
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3.2.2 Hydrodynamics

2.1 (a)
d
Yoo tan(w t)
dy U Ug
y = % tan(w f)} x+c
U

Straight lines with slopes 0,—1,—c0

(b)

/udt-‘rcl

_—— sin(wt) + ¢
w

y(t) = /v dt +co

% cos(wt) + ¢
w

(2) @=c) +
(2) (v

Circles with radius 1 m.
(c) Circle around the origin

Il
_

2.2

v
prtp.gh = P2t pe
P2 = p1F+pugh
v o= JagnPe=Pe

2.3
H
T
d 1
7p+5d(v2)+gd7; =0
p = pRT
inner:
Pri v
RIiln|—|+—=+4+9gH=0
Doi 2
outer:
RT,In (12) tgH = 0
Poa
T; m
=4/2¢gH (= — = 31.6 —
v V g (Ta S
2.4
Ap =0 g ’Uzo

(a) Assumption:

PV D

> 250 vy

S
D
(’”L - 3000)
[L

Il
o
o

(b) Assumption:

P Vs D
I

> 250 Vo =0.5

S
o D
(L _ 3OO>
1

(c) Assumption:
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2.5
. s l
—— D
) ~ |
ap
Ap = g'uz
Voo D? = v (D?—d?)
2
Voo _ 1 i
24y D2
p
e
280
7
0 —= d/D
2.6
d=D{|—— = 0.05
h+ H "
2.7 (a)
P P
P1+§U% = p2+§v;
(%1 A1 = U9 AQ
vg Az

2.8

U2

U1

pt+pgh

w|Bwn

P
p3+ 5 ’U§

2
N

10°—

m?

= 04610
m

= put

1.1-10°—
m?2

N

14
3t

;N
1.08-10°—

m

o [1-(2)]

Patpgla+h) =patpgz+5u(z)?

. 2a
Q = / v(z) Bdz
0
2 p
= 3V2s B[t lh=ay]
Q—Q 34
N (E
a/h 0.25 0.5
Q“T—Q 0.264% | 1.108%
a/h 0.75 1.0
QOT*Q 2.728% | 6.066%
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2.9 2 v 3 (a)
o weng—
h UDAD = vaA
l— 9 )
=7 K== Po=Dpat+Ap = pa+§ a
P
Vp =4 —— = —
R P p Ap Ap s
A | WY (b)
Po—Pa = (Po—pp)— (Pa—PD)
z P P P
ofF :.f = 5”%*%(5%23*5”3)
_— = 5 —
[ [ | By )
_ 24Ap A
(@ wo= 4
1
_ P o A2 w2
Ps = Patpgs A
. m3 B 45
Q = Aj\/29h=4— Up = —
S A
\/016 (4£) +084
b
(YR ©
!
£ PoH A m
&2“ v %pgs E%OO ’U]_):].Of
RS
4 2.11
12 3 L 5

(¢) Vapor bubbles are formed, if
P2 =pP3 = Po -

i Ay = v A
Pa = pv+pgh+§v*2

. Pa—DPo D (a)
A5 = -
! pgH H
2
= 0.244 m* O=mp ™ D% o (P —p2)p
4 Pw

PiF+pwght = P2+ pwg(hi—hp)
+ pugghp

geap \r"/—h“s«, 5 00723
0 s
/m R (b)

m D? 2(p1 —p2)B
4 aB p
mp hD

= —\[— =0.75
ap Qap mp hB

Q = mp
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2.12
—p, —=
il
Qo || lg
] it}
1 1 z
i Ed PP PP AT 77 27
A

p
Patpgrotsvg = pitpga

2
P
+5 vt

P1+pgz = pPatpgze

The assumption of quasi-steady flow re-
quires that f < v <o

dh
'UlA:’UOAszngS
po A dh A [T
T AJw2gh A g
2ho
A:AsTg:5m2
2.13
P
] *— 8 7
at
1 oo . |
A l :
y 'E'"vz’
1 A
3 £ 4

TTT T //f/l;

Patpgzo+lu?

B) = ptpga
+gv%

Pr+pgz = Patpgr

1;3 < Uf

f dZQ B
nf=v- = ——F =
IR dt 2

do _ _d=

at dt

dh_de—z) L dx

dt dt - dt

o _ _B o dh
f ho\/2gh
=100 s

4
_ B |
- 2f V29

2.14

P p
P(L+PQZO+§Ug:pa+§U%
v§<<v§

Volume rate of flow:
dz A
T; AB = U A— Vo g
2gh

(%1

p_ 3 Ap i dx
V29 A n 3V -7
3 Ap

= a6V VR~

~3VE @3 VR - yz)|

Ap [
T=628 [ 321 =108 s
29

A
2.15
d
v
B B
p1+,03!121+%vf = pa+p2 v2
Pa = P1+pwgz
v% < v%
v d> = v D?
_ le D2

dt
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2.16
l\flsl
]
| :
-ONE —s t
Vo R ()
—co Ot —0 Ot \ 27ms?
L
+/ %dsz
_D Ot
NG
D d’Uo
= ([=+L] 2
(ﬁ* ) i
2.17

vg=14/2gh =10 m
s

Pat+ 501 = Pat 53

2

2.18

rs1 Qv
Y
+p/51 at “°
st Qv duy D
Pas ~ 12 (Z <
W ot dt (L < )
Yo
T [t
v vy
2L
= =2s
V2gh
T
0 = A/ vy dt
0

_QAL/%O@
o (%))

PIIII I TSI

Patpeg(h+2) = patpgz

+ gvg
52 Qv
+ — ds
P ) ot
s2 Qu dvg
—ds ~ L—
W ot dt
0.99 /29 h v
T = L/ I &2
0 2gh—v3;
B L
T \V2gh
| |:\/m+v2:|0,99 2gh
n | Y242
V2gh -],
= 10.6 s

Pa = p1+pgh1+gﬂ§

dv
+pL1d—:

Pa = ple:pghlJrgv%e
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for:
dUg _ 1 Vo
dt L( 4 2)
v = 0.994/2gh
pr—pe = pgh (1-0.99%)-

(1-5)

N
746 —
m

I
=
=

=+
A
s
>
+

Pa

+

s
|

o

wov dy, s
s Ot T dt L

Py = Pa—pgh+ psow’® X
S
[L sinwt — Eocos2 wt

Ppmin = Do
Dp = Dpmin With coswt =0

(follows from% =0)

—pu — 1
po JPamPe—pgh o1
pso L S

(a)

P o dv
a h = a 5 L —
Patpghn pat v oL
Ty
Q = A/ vdt
0

v udv
o [r
0 2ghy —v?

1)2
= —ALln(1--—-1
2ghy

Determination of v;:

vr dv
T, = 2L/ o
! Jo 2ghy —v?
L 111\/2gh1+1)1
\/2gh1 \/2gh1—vj
TrVZghy 1
L —_

e
V29—
T +1

e
0.240 m?

<
<
Il

&
I

Patpghi = patpg(ha+hs)
P o dv
L L —
+ 211 +p i

Trr
Qi = A v dt
Ty

0
= —2AL [ —F——
vr 2 g ho + v?

Art (14 Y
n
29}12

vdv

= 0.194 m?
2.21
kv

== lg R

A B
h L (,

p l — el

N 2
1 1o, b,

(a)

P
Patpgh = Pat 502
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U1 D% = Vg Dg

Dy\?
T = 2|L ol
{ 1<D1> + z}
0.99v/29h oy
/0 2gh— v}
2
_ L(B) 4L
V2gh
| |:\/2gih+v2:|099 2gh
n|¥Yegot =
V2gh—wy],
= 5.231s
Dy\?
= |Li|= Ly| As-
@ { 1<D1> - 2} ’
/0.99 29k yy duy
0 2gh—v3
Dy\?
= —|L Ly| A, -
{ 1(D1) + 2} 2
2()‘99: 2gh
ln{Qghfvz]O
= 0.048 m*
P 1% dUQ
PA+§U12:Pa+2U§+PL2dt
p P dv:
p3+§U§:pa+2v§+pL2dtZ
as shown under (a):
dvs 2gh— v}
= 2
W oL (B) 4 o
t=0:
pgh
pa = pPp=pa+ 5
1+1 (5)
s N
= 1.16-10"—2
m
t="1T:
D4
pa = pﬁpgh[O-%2 <1fﬁi>
1

1-0.99
14 L (Dz)2]

Lz \D:

N
= 1.187-10° —
m-

1-0.992
P = Do+

= 1.003-10° ﬁQ
m

L D5
1+2 (3

)2p

gh

(a)

P
pa+pgh = p15+§1}15
T
1s A

)3
Pis —Pa = P Qh*m
18.875 - 10° —;
m
(b)
_ P o
Patpgh = Pt G vr
D’Ul
Li
Tk
. t
Q1 = Q (1—ﬁ)
Qo
) = p. h+pL—2 —
pi(t) Potpghtp Lo
t

- 2%

T

;
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R
ol
p"- pL“n
‘ p, +pgh
]
0 . t
1.
Apzul = DPimaz — Pa
_ Qo
ATs
Ts = 0.25s

3.2.3 Momentum and Moment
of Momentum Theorem

3.1

P 4 4
p1+§vf = pa+§v§:pa+§v§
Ap = pi—pa
v A = vy Ayt A
2 Ap 1
v = e —
Ay
<A2+A3) -1
m
= 2.58 —
s
Ay
Vg = Vg=-——10
2 3 At A,
m
= 5.16 —

s
(b)
p 3 Az cosaz + pus Ay cosan

—p U% Al = (pl - pa) Al + Fsac
F., — —866.4 N

p vg Ay sinag — p v§ Az sinag =

F

sy

F,, = —2384N

3.3

pvh Ap

Ay sin

. *
— Az sinag

|
o

*
Qg =

—pv%AD—vafAlel

Up
Up AD
p
Pa + 5 Z)ZD
Fa=—-4pghAp

(Pa
+ Fy
pgh(2Ap—A)=0

= /2gh
= 2’01/41
= pa+gvf
= —2-10"N

+pgh—p.) A+

pvp Ap (Patpgh—pa) A
Fa = —2pghA
= —2.10"N
Fo = 0
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P= *FS Uy

Moving control surface:

—pv? A 2pvE A% cos3=F,
Ve = Ug—
P o P 2
Pat 5V = Pat gl
v, A = 2v, A

P = pvg—v.)*v, A(1+cosf)

P
dv,
v, = g0
s
(b)
4 5
F, = *§p’UOA(1+COSﬁ)

3.08-10° N

cascade 1 - It __'_/
cascade 11
(a)
vy Bt = vy Bt cosa
U1
Vg =
cos o
Cascade 1

(b)

—pv? Bt+pv? Bt cos®
= (p17p2)Bt+Fsz

pv% Btsina cosa = Fy,
Force normal to the blade:

ST
tana = —

sy
pL—p2=—p vf tan® o

(©)

P
po1—po2 = (P1—p2)+ 3 (vi—23)
= g v% tan® o
(d)
F, = —F,= pv% Bt tan?a
F, = —F, =—pviBttana
Cascade 11
(b)
P P
p1+§vf = p2+§v§
pL—p2 = g@f tan® o
(c)
Por —Ppo2 =0

(d) Momentum equ. as for cascade I

E =7 v? Bt tan? o
F, = —polBttana
3.5
v ¥ cylindral surface Ay,
LR PV At

pP1 U1 Aw = P11 (Aoc - AR)
+ Am
Am = pyv Ag

—p1 0} Aso + p1 0} (Ase — AR) +
+ﬂA'U,24AR+/ P10, dA = F
Am
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F Aso > 1
or X P
AR (¥ (%1
/ PLUz v dA = vl/ pLU. dA
Anr Am
= lem
F, = PA’UiAR
P = Fs"l}l
= pAU,%\leR
3.6 i 0
_".'-u\__-._.__‘,__u
i~ j—
i n———-—
- _.—--u-2
SHTREIE e
(a)
pa+gﬂf = p11+gv’2
P P
p2’+§v(2 = pa+§v§
V1 Alz’l)l A/ = U2 AZ
0 = (pr—p2) A+ F,
s A + pus Ao
+ pv% (Ao — A2)
— Anmv =F;
See problem 4.3
pvi A +Am = puiA,
+ pvf (Ao — Ag)
o = U1 — U2
2
= 652
S
(b)
Fovy v
n= o = — =0.769
37 (a) Y S
:'W —
g —— fl A_{'_,,_..
i 1 —
=l T e _ ==
? ok ?
|
]
]
]

(b)
p1+gvf p1r+gv%
2 2
vy =vy = ;(plfpl')JFUl
k
m=pAuv, = 13.-10° -2

S

—pv? Ay — Ainvy + pvi A
+P/U% (A — A) = F§

See problem 4.5.

pu1 A+ A = puy (A — A)

+puvy A
F, = pua(vg—up) A
= 0.39-10° N

P = Q(Poz—pow)

= Q (p —pr) = 448.5 kW

3.8

Ap = pa—p1=pa— D1

vA= wA
V op

. 2Ap

Q.
Il

P =Q (po2 —po1) = TAPA

(c)

pvP A=F,=2ApA
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l 2 Tl }
I . “‘. \ |'_—~:" f Iy
| S A ..-"__q!.. — e
| ]
| B
I -
(a)
(d) .
pv A = (pa—p1) A vy = AQQA T
Ap=ps—p1 = pPa—m 3*p 12 S
. A Do = P2+ 5V
O=vaA = 2224 22 .
pa = 0.99-10° —
(e) m?
: [A (b)
P =Q (po2 — po) = TPAPA
—pv? Ay — pvi Ay + pui As
() =(p2— Pa) Az
p’U2 A — F‘S — ApA U1 A] + () A2 = U3 A3
3.9 -
v = |1+ |——F— | vo
—_— —_— Ay _ A
— R ( 24 (1 Ai))
J—— _3+ [ v S —*E v = 96.6 N
—_— =% i A A,
——— E po— vz = U1*+U2<1**)
fo " = 6832
S
) ©
P 2 P 9
o+ TV = += .
g 2 b P 2 " P = @ (Pm - Poy)
—pvs Ay +pvi Al = (pa—peo) A = O (p1—pv)
vp Ay = v A P = P2
[ _ P o
Vg = Yoo 5 Pa = DPv + 5 vy
A; A
1—242 49 (42) » = g(vg,vg) o Ay
= 566 = = 46.6 kW
s
v = 283 % (d)
(b) pvi At = (pa—p2) A1+ F,
_pngl-i-pval:(p3—poo)A1+Fs F o= p (vf - Ug) 4
, P o P 2
Poo t 506 = P3t 503 = 1066 N
v = U1 )
F, = P (W2 —2) A, = —100 N (Traction force)

2
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—pvi A1+ pvl Ay = (p1—pa) A
patpgh = pﬁrgv?

’UlAl = UaAZ
O = vV2ghA
- 2
2 (B) 24 +1
dQ
aa, =
Ay = 24, =02m2

N
pL=pPa—pgh=>510"—
m

Fg = —pghA
= —510% N (Traction force)

FSZ = 0
Fs3

pvE Ay

Fa = 2pgh A
= 10* N (Compressive force)

3.12

—pvs Ay + puvi Ar= (pa—pe) A

pz+p9H+§v§

D? 2
(§71> 1

5 N
— ng:OASQ.lOOE

3
Q
Il

vy Ay = v A

pe = 20k
a 2 1

N
pa = px+pgh=23-10°—
m

7w D?

P= v == (Poa — Por)

= 1.9-10° kW

3.13

Po = DPet 5 Ve
Ae
v = — =05
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(b) (a)

2 _ , h?
pviA = (pp—p)A —pviBhi+pviBhy = prﬂf
Po = pu+P!](h+h1) h2
P = Datpgh - PQB
v = gh:3.16E
S ’UlBhl = ’UthQ
v = %#(}Ll+h2)
- 739
v = 0.879
S
(b)
U1
Fry = =1.73
" vVagh
Fry = 0.61
()

1
Hy—Hy=hy —ho+ 25 (v? —v3)
(hs — hy)?

W Z M 0125
A1y hy m

= 7.67-10"

3.16

(c)
—pvlActpri A = (pe—p1) A

Da = DPet

O = v A =v A —v.UmA (a) For each streamline it is,
- 141 = Ve Ae = Ve

po= pa—ofm’ Patpgh = p+pgz+g”2
2
Apy {(1—i> +1} ptpgz = patpgh
vm
N v = /2g(h—h)
= 0.998-105E = vy (independent of z)
. ) = v Bh
P=Q(p,—p) =144 W Q te
aqQ 0
o d;“
I -l hlmazth = 5m
I g | 3
: | (b)
— o
V. Fr, = =1
hzl 2 T N
M —V _LJ 5
-“’«k“ﬂr‘,, R CTTLETLLCCTTTTTS. hig = gh:5m
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()

R Rl
93(3‘5

—pviBh +

+pv3 B hy

UlBhl = UQBhQ

hi h
hy = —||1416(—-1]-1
2 2( + 6<}L1 ) )

= 593 m
vy = 4222
S
3.17 (a) —
2, b s
7 ////! 7

Zerit. + Hmin = Hp

Q* 34
Zopir, = ho+ —os—=
! ot ogBre 2\ g5

= 0.446 m

(€) 2w > Zerat. :

hy = hcrit.: \

= 1170 m

Hl = ZW + Hmin
H,y Zw

H min H, min
from diagram:

h
hcrit.
hy = 2.64m

= 2.26

(Elevation of the upper water)
(d)
H,—Hy = Hi—Hp
ZVV - Zr:ri,t.
0.554 m

= +1=1.570

—pvi Bhy+pvs Bhy

W R
:pr<1 23>+Fs

2

F= - F
2

g B
= P92 (hy = hy) -

<h/1 + hg — 27@>

g B2 hy ho

= 260-10°N

3.18

dp dr dr
— - — — | df
(p dr 2><+2> *
db
2pdr —
+ pr2
dp _
dripr
(b)
d Po2) _
w(pr5e) =0
dp dv v?
B
dr p dr pr
const
T—
r
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3.19 (a)

M, = 3pv.A(rxwv,).
= 3pv,AR(—v, cosa+w R)

Determination of v, :

Pa = Pat

[N

52
= [T p(b-ds)

0

w? R?
= ptLe?—)p (gH+

2

V29 H+2w? R?

2

v =
with
wR
= ——— and
VeI
My = —3pAR2gH cosa

M, oo 1. §
M, 1+f2 ( 1+52—@>

2 AZ +tan’a —1

2 M
¢ 2tan? o
M, 2
14 ( — 1710) 2 tan 3
2 % +tan?a —1
& = 0.07
1
n = 1.05-
S

3
O=3vA=213-10"° =
S

(©)

Patpg(h+H) = p+L0?

2
oo Q
1 A,
= N
P o= 1.095-10“—2
m
(d)
1
& = =1.73
tan a
1
wy = 163 —
S

3.2.4 Laminar Flow of Viscous Fluids

4.1

(a)
(pl—pz)ﬂr2—7'27rrL:0
du

_HE
r=R: u = 0

)
uT",(I,.’L' B R

u(m) _ Q

uf”.(l.'lf u'r’L(l[ITWRZ
1 r 2
_ / 1- (7) x
0 { R
T

“74(%)

T =

(b)

DO | —

8 Tw

iz,
4 p Uy,

64
Re
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4.2 For y < a the fluid behaves as a rigid

body.
(a)

I

~TTTTT
———
w

PPy ryy

t—20—=i
(al‘iz' *t,&z

pg2aAz

—b—

pgalz=mrAz

TTTTY

TERRT

14
todyﬂ)f

dw

dy

+ 70

70
a=—
Py
b
(v) T
]
dlz 11 |
P9
dr
aly<b: — = pg
dy
T = —u
Y= T = To
y=b: w = 0
g
w(y) = 22[(0 - a)* = (y - 0)?)

4.3

) §
Q = B [ uw)dy
dr .
— = sin «v
dy PyY
du
T = —pu—
"y
y=20 u = 0
y=46d: 7 = 0
pgsina y?
uy) = PRS-
O - prsina(SS
3
= 1.2-10‘3E
4.4 (a)
\ 6
QI§ y
N
Wz —=i dy |=—
dzl -;.:_tdy
!
Pg
dr
ot = 0
dy+/)9
dw
T = —WU—
/dy
d2
Ew_ pg
dy*>  p
y=0 w = 0
y=0d0: 17 = 0
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r
lz l —=idr j=—o

W

: El[ ‘l:ogf—dr

—
T2mdz —

—(T—l—(jiidr) 27 (r+dr)dz+
r

+pg7r[(r+dr)2—r2] dz=0

dr " 0
—p _ =
ar T TPIT
dw
T = —u—
dr
d dw Py
il - L
dr (T dr) * 0 "
r=a =0
r=a+9 7=0
i
w(r) 5 X
2,2
X{(a—&—ﬁ)Zlnf—&-a T}
4.5 (a) Y 1-‘%“ o
H — dp
’L_ l L—dxt—-l
x .
d, d
dp  dr
de  dy
du
o= ot
/ldy
Pu _ 1dp
dy?2  pdx
y=20 u = 0
y= = Uy

Ty =H) o+ H
T(U = 0) Uy — i% 2

2
_ (M _dp HTN gy
2 der 12 p

dI H 6
e B 1 Yy = — 2 BH
i /0 puly)dy =< puy,
(f)
Tw E
L2 Re
() 7

=V

=
B N

4.6

t‘:—tdf
\\
ug 2722
r _'I- .d_! X
T_L&.I_..,_._________.q_
i
W ML

¥ o—dax—f
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(a)

dp 1d(rr)
dzx + rodr

Compare problem 5.4b

du
T=—U—
ﬂdr
d du 1dp
dr dr wdr
r=a: u=0
r=R: wu=
1dp, 2
u(r) 4uda:( a”) x
R?_T,Q

ulr

a) R 2d®>In%+R>—a?
T(r=R) a2R*In%+R>—a>

9
=
<
Il

@
m (R? — a?)

1 R
= o (=) /a u(r) 2mr dr

1 dp , <a>2
= - 1 il
SdeR{Jr R +

Uy =

r
wo= d v
" (?) =R,
M, = —t(r=R)2r R} L
M, Ri\?
- e ()
4dmwR; L R,
Ns
_ -2
= 10 3
4.8
rarrrrrsrrressrsrrrrerrerrAlan
4a d at e
ur 2 gy 47Ty L‘*a—drl

= {q— <q+@dy>} dx +1Tudr —

dy
or ou
— <T+87ydy> <u+87ydy> dz

dr

diy —_ 0

oT

q = *Aafy
o

% — )\027T+ % ’
Pag = Oy? o dy

(a) It follows from problem 5.5a):

Y

u) = g

de oT oT oT
p% = pcy (E—&-u%—i-va—y)

=0

PT g ()
dy X <ﬁ

y = H: T=T,

y = 0: ¢=

0
T(y) = T,+ 1o (%”)2 (H—y?)
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we 2T Py,
w dy i H
(c)

v? u?
ho = CpT+?:CpT+E
hg = const: Vhy=0
Ohy oT 8(“)

o K &L+ ox =0
Oy _ 0T 0(%)
oy Ty y
= ¢ ngudl
TP dy dy
BCp\ (U2
= (1-— —w
( X ) (H) 4
1t Cp Oho
Pr = — = — =
7 \ 3y 0
(d)
orT
— =0
dy
a _ p (@)2
dt ~ pc, \H
t = 0: T:TO

B\

Tt) = T — )t
0 = T+ ()
49 (a)

q.d—:tdr

ua:::'dr '(»g—:dr o
f poad:

Velocity distribution:

d
el ar
dr

T

dm 'ud7

=0
B du
udr

dp d T@ _
dr)

r=R : u=0
du
O %—

Temperature distribution:
0 =

dq
- <q+$dr> 27 (r +dr) doe —

dr du
— (7’-%-%617“) (u-i-gdr)‘

27 (r+dr)de+

b))

uTm [(7 +dr)? — 7"2}

q2nrdr+Tu2nrdr —

(b) It follows from problem 5.1a

e ()

2 N\ 4
/'I/uTn,(l.’I] 7
T-7, = Mime |y (L
Bl ()]
r=0:
jou?
,Tmaz*Tw = e
4\
T_ﬂll - 1 <T>4
Tmaszw R

4.10 (a)
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@ oy (v dp
2n h(z) h(z)) dz
Q _ux h(z) h(z) dp
B 2 12 p dz

r=0: p=px

With p(z = L) = ps yields:

jL dx
7 Uso JO h2 ()

Q
B - 2fL dx
Q
B

0 R3(z) z)

3 ; er 1

= Uoo N1 —5——
4 el
mZ
4.49-107° —

6071
es—1°

s L
h1 h]
{e«%fKeoL +K71}

p(z) = poo+15

B~ o) - poyda

LN2%[5 2
= pun (=) 221+ K-1
5““°°<h1> [6 (s =1)+ ]

P L

5 = Uoo /0 Toy(z,y = 0) d
du

T:x:y = —H d’f‘

4.11

Y
1—
. h(x)ﬂ
P
B = 20 p u;h—l X
9K
X [e%—l——(e%—l)]
16
= 55.9E
m
3 x
Ty * ;y dy

dl,  [9(pu)
dt /T ot )dA

= ZFw

/ pu) dr = (p% + u0—> dxdydz

ot ot ot

/Apu(v~n)dA:

(02
{fp u? + (p u? + 0(2; ) dz)} dy dz—

— {fpuv + (puz) + puv) dy)} dzx dz
Jy

_ ou 9,
T |Phar TPy

d(pu)  9(pv)
o < or Jy *
X dx dy dz

Continuity equation:

dp  Od(pu)  O(pv)
ot ox dy

=0




3.2 Solutions 119
ZFm =— 00y | Oy dz dy dz (a)
ox oy p
p1 +§“21 = Pa + 2“m2
(T = Tay)
2 2
ou ou n ou a2, 7r4D a2, Wf
il T el
at 0 Oy 2 ) N
P1—Pa
— 00—11 asz u'?nl - p D
ox dy <E) -1
m
- 1=
4.12 S
i m
i = const.: Umy = 4 s
Pu  Pu  u
F.. = —+ —+— b
a (812+8y2+8z2>+ (b)
Loy _ Lyp e
+38.7:(V v) Po = P1+(1+)\D)2“ml
p = const.: P Umr D
Pu  Pu  O*u Re = ,ul = 10¢
F. = 1% (@‘F E)iyz @) . 0.316 00316
4 - Y-
v Re
3.2.5 Pipe Flows po = 2.66-10° —
m
5.1
. ()
p Uy D
/J/ = —
2 — FPa
fre dy = |20 =Pa) _go
— S
Ym = T DT
L P _2
/)q(h+L) = (1—"_/\5—"_(5)5“’771 5.3
. 7T _ _
Assumption: Laminar flow Q = 251 (1 D} + iz D3)
L
¢ = 116 Ap = (1+/\§+§)gafm
A o= 1192 I )
64 — = F g2
re = S = UHAD + 05 T
Intake region: FT— #
p(l+ A o+ <)
L. 0.029 Re D -
0.16-107 m < L iy = #
— 8401080 pUHAD+0)
K ’ 2 . l'Il3
O = 0518 —
5.2 °
54
Lop
Ap = A =2
P D 9 Um

Um =
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a. PP =
I

(Re \/X) crit
Oil:

RevVi =
G R
VAN 64

Um =

Water:
RevA = 3.16- 10
= 2.0 log(Re VA) — 0.
7 g( )

Gy = 2.59 =
S

t
t

(a) o pvg—‘g dx

8

Om Gt ddU LI

d
= (p-i—ﬁda;) X

d_'ln
X (ﬂm—i- Y dx)
dx

= M 717”1

=—1,mD

o)

)\:87'w

72
p i,

dp
i

U,
P1 uml

AP
dx D2

P2

dxr+
nD?

4

m =10

(b) Compressible flow:
da,, _ dp
P dx i dz
(Continuity equation)

=0

p = oL p (T = const.)
P
dp_ prdp
dx p dx
dp  pipiis, dp
dx p? dx
+ ipl P1 ﬁgm
2D P
=0
Re = Re; =0.533-10°
0.316
A= o = 0.0208
vV Re

2
/pdp*
1

2 dp
—2

u — +
P1 D1 m]/l »

A s /2d
2Dp1p1um1 iA &z

-0
2
D
[ pfz {1<1’2>}
A P1 Um1 P1

2
_ P <@> —9287.9m
A P2

Incompressible flow:

dii,y,
-_m _
dx
@ _ ,Aﬂ(f
dz D2 ™
D p —
L o= 22072 57
A f)luml
5.6 (a)
r = R—y
. R
1 = / pu?2mrdr

= 2pu’, ﬂR/ (um)Z%d(%)
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u 2
§ = 0: —=1 D, D3 L1>
Ly, = —||2—=5—M =] X
. ) A{( oo
= pul T R? DA
2
0 = R: X D7?_ }
U 7\ 2
= 21— (= = 10m
UIYL { <R>}
[ = 133pu2 7R (b)
D% P 2
5 E Ap, = pl_pa+<1_ﬁg>§uml
2 N
= 1172 —
o {i’%( k) f<r<h w?
o 17 0<r<g 5.8
. L p
I = 2pu’mR?x pgh = (A5+2Q<+Cu> §ufn+
0.5 /24N\2 r r P o
=) —d(= + -u
XUO <17) R (R>+ L2
1796 r r\12 ugd® = ’ll,,,,D2
= (1-= .
+/().J17R< R) X O = u L
74 () '
R R
= 1196 pu?, 7 R? B 2gh m d?
= . ma
(b) L+ (5) (M p+20+ )
2
_ 5 9
Tw = KU Um 2 ud
) 5 =
=35+ (%) =3,
d—0 Ty — 00 with losses:
1 Uy f
60— R w =4 (a)
i R
R . . md
o5 T = 565" 0=579-10°""  H—69m
S
b
57 (a) (b)
3
L )-982-10° L H=12
pﬁgﬁiﬂ *pa+<1+/\gﬁ2>x @ =982-1077 = 5 m
2
P _2
x 2 Umz loss-free:
Li p (a)
+ <§+)\1 Dl) QUm] ,
D2\? Q0=69-10""2  H=h
C = *ng
ﬁml D% = Umpm2 D; (b)
3
Re; = 10 )\ =0.0316 O=2177-10° % H=ph
Res = 5-10° A = 0.0376 °
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5.9 (a) (b)
\ 04.316 I ffput2mrdr
Re p Uy ™ R? pu, mR?
Uy, = pLD Re
)\[)ﬂgn N - 9 <ﬂma1>2 .
o= SEmo2m o —
b [ 0-3) 7 (3)
(b) 0 R/ R R
o lima _ 0
v = a 4.07 = 19
Uy \ 2
A =8 (a) 5.11 (a)
U, 1
Umo T o84
Umax 14+4.07/3
(c)
e 52 (Viscous sub-layer)
v Uy
(b)
A m
P [ - L _
=543 tm = 0236 — pa+09h1—p1+<1+)\ﬁ>gui
(for y = 0.11 mm)
. 1w D?
Y Uy =50 Q = U 4
v _
(Logarithmic velocity distribution) Re = Um D —8.10°
v
R
. = = 250
L m(y“*) 455 ks
U, v
i — 0720 ™ (From diagram, page 29)
S
(for y = 1.1 mm) A = 0.024 N
— . 5 0
@ po= 122:10° —
| = 04y—044" Y (©)
v Ay
8 tm Lop_,
= 0.85 mm P2 = PaJrP!}thr)\@iUm
N
_ 105
5,10 (a) = 377107
r = R—y (d)
T Q .

1 r\F 7T r
2 1-—) —=d|—=
0-7) 74(z
@

60

)
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H ..:I
-]
@
ap
(a)
_ Lp_,
Ap = A D 3 Um
. a1 D?
Q = iy
2 5
_ mArDY 356
8pLQ?
(b)
U D
Re="2"m2 _18.10°
n
(From diagram, page 29)
R
L
ks
ks = 4.2 mm
()
D2
Ap T —Twnm DL = 0
D N
W= Ap = 16—
K P 4L m?
2
F= pr“f = —2517TN
(d)
A =0.016
(From diagram page 29)
. N
Ap=58-10° —
m
5.13
P (1+ XM &) g2,
PZ (1"1‘)\23)5125”2
. 7w D?
Q = Un—y
1 R
— = 201log|— 1.74
) o8 (5.) +
P, 1+ XM & /Dy\*
d - 2o (—2) =39.2
P2 1 + /\2 Do Dl

5.14
L P 2 Lch P _o
/\psB 5 Umps = Aeh d, 2 Upnch
dh = a
Rey=""9 _100 A, =008
J
pD @
Re,s = Aen = 0.030
P L 100 7 D2 h

d, C )
Re, = M%:s-m“ A =0.033
J
a = 0.02°
L2
Ap, 1Lp(@Q N
= AL (=) =361—
L dy 2 <a2 ; m?

3.2.6 Similar Flows

6.1
U=, 0=—, p=—-, p=2,
U1 U1 Apy 1
) oz oy st
M_Z7 x_flv y_flv t_a

op p (0*un 0%
— _Fu-ft 4+ 4=
"9z " Re ((%2 * 012
Sr = i7 Fu= Ap12~
vy tq p1 V7
Re = prv1 Ly
M1
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6.2
fi(Re,Eu) =0: FEu= fs(Re)
D Ap D
A= 7 —g z =2+ Eu = f3(Re)
6.3 (a)
L3 T—l — (A/[ L—Z T—Q)u
(M L' 1
a =1 fg=-1 y=4
. Ap D*
Q ~ 17
I
(b)
D Ap
A= =
ApD Qn  ump
L D3 D
1
A~ =
e
6.4
FDQ _ CDang% uch
FDw B CDw % D?H% Ugow
_ Cpa 5 o Re?
B CDw #12[} %’ Re%u
Re, = Rey: Cpa=CDw
FDa
= 0.281
FDw
6.5

F(f:u/)‘uomD) =0
Ky = fu psfﬁ )t D%

Take ay = 1:
b =0 m=-1, =1
D
Kl = L:ST
Uoo

K, = p* pﬁz w2 D%
o0

Take ap = —1:
B =1, m=1 dh=1
Uy D
Ky, = 252 _pe

Re = Re : v':y/%v

Small, so that flow in wind-tunnel
remains incompressible:

A=A, o = 7746 2
S

Fp
_ ’
P = Fr Fpov
D
3
_ _tp5v A oo
cp v A b
Re = Rd': cp=dp

Re = Re'
. vA .,
@ = v/A/Q
_ up’D’AQ/
wpDA
A D\?
v~ (5
S 9n713
s
2
Eu=FEu: Ap = p/—vlep'
pv
_ PQQA/ZA/
p/Q/2A2
N
= 494-10° —
m



6.9 (a)
A ,U/DIQ
= ,' / =
Re=Re : Q D2
B n’pD/Q
D
3
= 05
s
!
D
Sr=8r":n = ZD’”
1
= 133 -
s
(b)
2
EBu=FEu: Apy = %Apg
N
= 527
571112
(c)
P = QApy=15.82 kW
P = QAp,=15kW
M = 2P =201 Nm
m™n
P/
M = —— =179 Nm
T™n
6.10 (a)
T=T: u = ok
Ma=Md: + = v=200"2
s
/
D
Re=Re: p = Zp=2
e (e P pp bl
N
= 4-10°
(b)
!
D
Sr=Sr": nlva,n74007
(c)
23 D?
_ 2 ' 4 Dt
P_%’v/:sD/z =4P
6.11 (a)
7T 4
Re = Re': U=
¢ ¢ v v L
v L
Fr=Fm': Lo\ =
7 T » 7
!
vo_ 1073 (M

X

3.2 Solutions 125
(b)

/ L/
Fr=Fr. L— f:O‘l

oder
v L
Re = Re' : —=— =100
¢ ¢ v L
6.12 (a)
L/
Fr, = Fri: v =v T
m
= 0.75 —
s
(b)
cp = dp
oo fv*BH
D gv/Q B' H' D
= 1.64-10*N
(c)
cp=1.12
(d)
v v’
= ch=161 =04
Vagh gh "
6.13 (a)
Eu = FEu, Re=Re:
Po—pr _ PV pD*p”?
po—pr  pv:  p D2y

/
Po—Pr = 440@

Sr = Sr':
D/

T = ST =05Ts
(2

(b) Analogously to a)

Praa = 6.68 - 10° ﬁ2
m

6.14 (a)
"D Q
Re=Re: o = P —
p/ i D’ T D2
m
= 0.1 —
S

. 3
O = s-10 2
S
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()
2
4 D
o = _ (d)
2 Aply '\/QE’MD
P
Eup = Eup: «a=d =0.6366
Fw = EBu: (=(=1771
(d)
2
pu
App = PRE P
N
= 0.625-10° —
m
2
pv
Ap = W P
N
= 05-10° —
m

3.2.7 Potential Flows

of Incompressible Fluids

7.1 (a) v
1
|
1
1
1
|
y r
(b)
r = %vds
.CQTr
= / ve(r) r do
Jo
. 2mwr? r<ry
T 21wl >
(©)
c
,
/
/)\\
/ \
P T —
ro

r = %vds:o
S

2 1o p
/0 §U92H27T7‘d7‘

7pHw?rd (0.25+1n2)

3.7-10° Nm
,_ 0P 0P
T o U_ay

Potential @ exists, if

Vxv=0.

o o
u=—-— =——
y ox

Stream function exists, if,

V-v=0.
(b)
Vv = V2o
Vxv ViU k
7.3
Vv ||Vxo]
a) | 4xy y? —a?
b) 2 0
c) 0 -2
d) 0 0

Stream function exists, for ¢) and d),
the potential for b) and d).

Determination of the stream function:

(a)

v /udy+f(x):y—2+f(x)
o )
v o= —af—f(x)f—r

1
U = 5(:52—&—3/2)—&-0

1
U= §(y27x2)+(:
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(©)

Determination of the potential:

2
x
o = [udotfly) =5+
v,
v= g, W=y
1
¢ = §(x2+y2)+c
b=2y+c
| Vxuv|=0: Potential exists.
u*gx v*—g
"I Y

Stagnation points:

u=v=0: z=y=0

Pressure coefficient:

D — Dref
5V
u? 4+ 2
U,y VUl
2 4 2
Trep + Yres

¢ =

- 1-

Circles around the origin of coordi-
nates with radius

; /12 dx L1 To
= — = —In—=
Jxy u U Ty

Ty =544 m
U =const: X1y = ToYo
Yo = 0.74 m
(e)
p1—p2 = (cpn— ) g vzef

N
0.442 - 10° —
m

N
W

U:I2

0:Stream function exists.

2xy

x3

v = xy2—§+c

Streamlines: ¥ = const.

[x3  k
=4/ 4 2
Y 3+ac

Asymptotes:

(z #0)
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7.6

o = /‘v,dr+f1(9)
= clnr+ f1(6)
op
90 Of fi(0) =k
v o= /rv,.d9:c0+f2(r)
88% = 0 fz(T):kQ

(c) Circle with radius r:

27
/ vgrdf =0
0

C
v, = 0 Vg = —
r

r

Vxv = 0

S
I

cl+ ks
U = —clnx+ky

I'=2nc

7.7 (a) n=0.5:

9 /Fsin (g)

= 0: =027

> '—(E>2 sin~? Q
c: r= 5 2

S
Il

=

Parallel flow:

n = 1:Y=rsinf=y
1.
n = Q:W:§7'Z sin(2 0) = xy

See problem 8.4.
(b)

Cp = ppi IZJTEf =1-
2 Uref Uref

oy —r™= sin(n 6)

v, = " cos(nf)

2 _ .2 n—1
¢, = 1_(1‘ 29)
: =0

n > 1: ¢,(00)=1
n < 1: ¢,(0.0)=-00
7.8 (a)
v
K
//—-' ~d
A r
 Fo )
\
\
S s
N y

E r r
v o= — i _
27 2 nR
E
v, =
2mr
r

v

&
Il
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vy
tana = ——
Vo r=Ro
Q
E = <%
ho
- 2
T
hoy tan « S

pgh+gv2 = pgh0+gvg
v = vl 0]
vy = vszn

. 2
h(r) = ho + é (L> :

7w Ry hy sin a

-]

. 2
1 Q
li N = ot —[—
rgroloh(” hot 8¢ (7r R hg sin a>
=235-102m
7.9
y
rk

E
U = upy+—0+c
27
e
= Uy |y + —arctan <7> +c
m T
1+h T
U = Uy —
T x4 y?
hy
v =

U= 5
ma?+y?

Stagnation point: u =v =10

h
Ts = ——, ys:O
™
2
T
57h = 7 |, o9
u(zs,h) U
2
e
S7h T | o
v(xs,h) U

(b) Contour: Streamline through stag-
nation point

o hm=0 _h ¥
e = 7 sinf 7 sind
with
¢ = n-0
(c)
_ W+ h2+ 2
N wt,  ma? 4P
sin(2 6) sing\*
GC = I - I
(d)
¢, = const:

h\: o, ho\?
o =(1-¢,) |—
<$+ ”Cp> Y (1=c) (”(517)

Circles around ( L.O) with radius

T mep
hy/1=cp
T ep
(e)
1 2h\? N h\?
Cpi§ $+? +y = ;
¥
1
ﬁ\ .“ nx
-2 -1
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6

st

)

e
)

Circles around ( =Ty with ra-
dius %
(8)
hy Uso

- >
a4 y2 2

9 ( h>2 <h>2
r+ |y —— < | =
m s

my

ik
\

(i) Acceleration along the z-Axis:

y _ du_ odu
T at ' odr
k(L
T Tl 2T B
db 3h
— =0 mazx -y
dx * 2w
4 T ,
bmaz 727751//00

7.10 (a)
v=0: y =0
P4y = B
(Parallel flow)
r=yz24+y? >00: VU oumy

Stream function describes the flow
around a cylinder.

W = const.

v+ v}
o = L
2
Uy = Uso {1— <E> } cos 6
r
2
Vg = —Us |:1+ (E> } sin 0
r
r=R: cp:174sin20
(c)
2R
A - / dx
—3r u(x.0)
RQ
w(2.0) = ue (1— ﬁ)
1 R, xz— R
At = . [1+§ In 7]:_"_3}
R
= —(1 Inl
Uoo( + nl.5)

7.11 Determination of velocity components
see problem 8.10.

o= (§)2 [2 cos(26) — (5)2
(a)

¢ = 0
R
r = —f————— or
2 cos(26)
V2u 27 V2y 2_1
R R )
Hyperbola
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Ap = (em— Cpl)Buzo

Cp 1—4 sin®a
sin? g —sin?ay = sin(a; + o)

SiIl(OCQ — al)

Ap =2 pu? sin(2a) sin(2e€)

(b)
™
a=_
2
7.13 (a)
pghm+gu§o = pgh(9)+§v2
r=R:v* = v} =42 sin’0

2
_ _ Yo 1 gain?
h(0) —he = % (1—4sin”0)

(b) Stagnation points:

f=0und b =m
u?
h=he+="=6.05m
29
(c)
T 37
emin_ ) 5
2 2
2
29

7.14 ,
o /¢
Py
H
a ]
\
dF, = (pi—p)LH sin6df
Pi = Pt g uZ

P
p = poo+cp§uzo

Poo + (1 — 4 sin?6) guzo
37
F, = /4 2 pu? LH sin®0 df
T
2 1.y
= 2pu; LH [—g sin” 6 cos —
3
9 3m
—= cos@] )
3 i
= 737-10°N<G
Mooring not necessary.
7.15 (a)
2
VY = uy,r sinf {1— <E> } —
r
r 1 T
27 " R
R 2
Vp = Uso {1— (—) } cos
r
2
Vg = —lUso {1 + (E) } sin 6
r
r
2mr
r

r R: Vg vortex = UVt =
I' = 27 Ry

(b) Flow field for vy = uc:

2
U = UypT sin€<17<§)>f
r
r
_ In —
Uso R nR
2
Uy Uso {1— <§> } cos
r

2
Vg = Uso {E — {1—&—%} siHO}
r r

v = 0:
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Contour: Circle around the ori- 3.2.8 Boundary Layers
gin of coordinates with radius R.

2 Stagnation points on the contour 8.1
(r=R):0,= g,%’“; nor free Stagna- Fy T
tion points ¢ ~ o2, BL ~ DAz,
¥ % 1
N -~ -~

pul,  puxd

—_— T
\/—7\/// Inertia and frictional forces of equal or-
@
K / der of magnitude:
W = const. 2

pu T
L 0
¥) oF 1
c ~
x D /7R6L
. dF
p ¥
dF 8.2 (a)
de vy = LBt 0167 m
Uoo
[£]
: X (b)
Y
n=<=4/Re, = 1.095
dF, = —pLR cosfdf u] T
P o «
= o+ Cp = 0 . .
b p Pk from diagram, page 60
r = R:
. 2 _ . _ BT
cp:lf<£72§‘in0> y z=015m : Re,=45-10
oo Z\/Rey, =1.095 : y=245-10""m
x
2m
P 9
F, = —-LR =
o gl (c)
2
x [1—<ﬂ—2sm0> } x
Uso
X cosfdf —
2
— LR/ Poo cOsldf =0
0
2T
F, = —LR gu’;x
0
2 (d)
X {1—(——251119) } X
Uoo
X sinf df —
2
- LR/ oo 00 dO
0
= =27 pLRv; Uy
= —pusxI'L

separation
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8.3
Am
Um L U
e L
—
5
fpu205+p/ wrdy + A us =
0
:/ZT(w/,y:O) dx’
0
5
Am=p | (U —u)dy
/‘5i<1_ﬁ>:
0 Uso Uso
T -
:(52:7/ T('T >y2 O) dl',
Jo pu
8.4 (a)

Rey, = 3.3310° :

Boundary layer laminar

U

From boundary-layer equation:

&:0 fory=0und y =9
dy

¥

&

(d) From Blasius solution:

So_p) — Ok, _ 060
TmB S Re YT Ve
0(zx=L) = 433 mm

L
F, = 2/ BT, dx
0

L

= puZOB/ ¢y dw
Jo

0.144 N

8.5 (a) Boundary conditions:

=0: —=0, —=0
Uso Uso

= 1: ?—Lzl
uOO

SRSESAES

From boundary-layer equation:

< ou 6u> 0*u
plus-+tvo—|=n

or " Coy) oy
% =0 u=v = 0
0% (-~
(:aoQ) = 0
2(3)
Yy ou  Ou
==1: —=— = 0:
1) ox 0Oy

=0
o(3)
Inviscid external flow
v _ . 0@,
) B %)

LA AP AN EA
E*Q(e;) 2(5)*(5)

Sy
Il
C\_‘
—
—
|
¢ l=
~
ISH
P
SRS
~—
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Von Karmén integral relation

46,  Tly=0) _
dx P Uso
a2, d (%
ly=0) = — 5= <;3
d(‘g
M Uoo
= _gHtix
0
Integration:
5 584
z v/ Re,
— 3 /L Tw dx
D= Tk pu, ’
oL —
_ _2/ Ty=0),
LJo puZ
LG
N \/RCL
8.6 (a) Solution see problem 9.5
A)
LI
5 8’
bW
0 280’
5 4641
z  +/Re,
1.293
c =
i VRer,
B)
(51 2
EE
5 - 0.363
) 2 1
2 _ 2 _—_o1
3 i 0.137
6 B 419
r v Re, N vV Re,
DRV O )1
L= \/REL 7\/R6L
(b) A)
ozx=1L) 3.288 mm
Fp = chuZCQLB
= 091N
B)
d(x=L) = 3.39 mm

Fp = 093N

3.2.9 Drag
9.1 (a)
F1 CD1gUi02L1B
Rem 1.8- 105 < Recrit.
1.328
- =313-107°
Cp1 /Tem
Fy = 0.564 N
Reyp, 3.6-10° < Regir.
Eot = Fl + FZ
L% vz arn
vV REL 2
F 0.233 N
(b)
Ftnt = 2 Fl
L
Ly = 1 = 0.09 m
Ly = 027m

9.2 (a) The frictional drag results from

(b)

the shear stresses acting on the
body, the pressure drag results from
change of the potential pressure dis-
tribution caused by the frictional
force.

cp1 p w20} = cpy P u? 2 L2
2 2
0o L 5
Rep = 2221 — 333.10°
v
1.328 )
P = 230-1073
D1 T,
Assumption:
Use L .
Rez = “72>1052 CD2:1-1
v
2 CD1 _2
Cp2

Rey, = 2.16-10* > 10°

1328 p 5 . 5 3
F) = - 2 L7 ~udk
b R(;’l 2 Yoo 1 v

Fpy = 1.1gu;Lg~ugo
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9.4

(a) 9.5
Foi _eo
Fps Cp2
Uoo Req 10% cpy
04m | 4-10° | 210
08= | 8.10° | 276
162 | 16-10° | 319
Rey | 10%cpy | 42
2.10° | 297 | 0707 oy = 2l dFu(a)
1.10° | 210 | 1.313 £ug, DL
8.10° | 276 1.156 dFp(a) = dF(a) cosa
D
(b) = pla)L 5 cosa do
Rey = 196-10° p@) = )P+ pe
Cp1 = Cpy = 3.0- 1073 2
1) 9
m 0<a< 3 T
Res = Rep: s =0.392 —
s
2) p(a) = (1 —4 sin® @) guio + Do
Res ~ 1.3-10°: oy = 2.6 =
s
2 <a<
<a<n
3) gSas
Res ~ 9-100: 1o =18 2
s
. P 2
= |[1—-4sin*(s7)| & o
(2) and 3) from diagram page 64). p(@) sin (3 ) g U P
P 2
= _9of -
5 Uoo +p
Ccp = \/g
U
9.6 (a)
Fps = Fpp
CDB&UZLB = CDS& X
Fr 2 2 W
LT ruz A X(uoo*U)%
F, — W—-Fsin(B—a)=0 " pwulL
i e, = WX
cy, = —W +}; S;n(ﬂ CV) =1.28 Hw
§us. A = 5.625-10°
Fp
= 0.074 1700
fu A cpp = T
5 Rep,
Fp — Fceos(B—a)=0 Rej
P _ — 301078
oy = FeosB—a)

2 02
SuZ, A
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Assumption:
a oo b :
Rey = Lol Wby
ta
Cps = 1.2
. 2LB
U = w1+ £pB pw 222
¢ps pa hb
= 295 =
s

Re, = 1.94-10° > 10°
Fpg=6.33N

* _ * & a2
Frg = cpp 5 (uoo u)LB
Pa (Uoo —u) L

Ha

_ 1328 =220-1073

.
chg =

.

\/ Rej,

Frp = 545-107° < Fpp

* —
Re; =

9.7
CDg’UQA = W
w
A=—— = 752w’
CD§U
9.8 (a)

Fp =W (Lift can be neglected)

Sphere:
Pa ,mD%  wD}
Dy T TP
v,
— R a
v eDs
2
Ds = {18RePt e
P g
Re=10.5:

Dgmas = 6.81- 1072 mm
Cylinder (Length L):

o 7w D?
CD%’U2D0L:p 1 Lg

Do d 16 Re  po v3
¢~ 2—InRe p g

=3.63-10°

Re=0.5:
Dz = 4.71-1072 mm

vg = 0.110 2
s
ve = 0.159 =
s
9.9
v
= Re —
v e5
(a) (Lift can be neglected:)
71'D3
Fp = W=pw G Y
B Pa o mD?
F]_) = Cp D) v 74
= ¢p Re? %pa v2
8Fp 1
Re/cp = —
P pD Tr p(l l/(l
4 D
- 2PV p 9=
3 Pa Va
= 2177
from diagram: Re = 250
v = 375 =
s
(b) (Weight can be neglected)
7w D3
Fp = Fr=pw G Y
7w D?
4 D
Re+/cp = -Dg— =115
3 Uw
Re = 113
v o= 011 =
s
9.10 y
L
y v ‘Vuu
gl ‘Vs
4
2
]
4
Y
I
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W = Fp (Lift can be neglected)
Urel = Vg — Vs
(a)
vy = 0
Pa o 7 D% 7 D}
CDWE/U% 4g = Ps 699
o U1 D
Assumption: Re = PaL TS
fta
24 g
v = ——
' 9 pa Ds
2
24/"@ 8 Ps
2P p
’ «9%%) Tt p, 8
— 0168 =
s
Re = 0.559<1

9.11 (a)

U1

m
Vg — U1 = 2.832 —
S

Fp=WwW

(Lift can be neglected)

o o T D?
G

Assumption:

Re =
Ha

7w D3 dv
Pw

Pa Va D

pw g D?
18 pur,
0.427 < 0.5

6 da " 6

w D3
6

P w g

< 0.5

—0.107 =
S

T D?

g—

24#(1 Pa 27TD2
[ A T ——

Pav D

2 4

Steady sinking velocity:

Vg = Uy

Tdv v
g dt Vg
0.99 v,
T = e 1n<1—3)
g Va/ 0

= 0.049s

9.12 (a)
W = Fp,

(Lift can be neglected)

a m D2
Fpr = ¢cpm % v? 1
cpi = 04 (Rep =3.03-10°%)

(b)

V2 D

Rey = = 4.2-10°
Va
from diagram: cps = 0.1
Pa o D?
Fpy = Cngvg 1
= 1.9 N<W
Acceleration vs, so that
G = Fps
Pa o T D?
G = Cp3 5’032) 4
from diagram: c¢p3 = 0.1
vy = 2602
S
9.13 (a)
H
P=F v =F —=1000 W
T
(b)
W = Fi+F,—Fp
w D3
= Fi+p g—
p (H>2 m D?
— et (=
Po\n) a4
HD
Re = 222 _185.10°
pTy
from diagram: cp; = 0.4
G = 3349 N
(c)
P H>2 7 D?
Fpy = ~ =
D2 Cp2 9 (T2 1

2R+ FL-WwW
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Assumption: H 1 /UB ;
gJo 1_(z
HD v
Rey =222 5 36-10° , () ,
2 i1 ()
2g Vs
from diagram: cps = 0.1 v Vs
B
1+ ()
T P CD2
T, = HD , |—r——
2 8 (Fl + F]_n) (d)
= 241.0s
Rey = 83-10° T, = ! /”B v
7o)
@ 2 :
Vg Vs + VB
H = —2In —
Py =2F, — =89.64 kW g Vs —UB
T,
()
9.14 (a) cp =04 cw =0
D d D wooden | metal
m D? dv 7 D : ,
pw T E = —ps : g— sphere | sphere
, Him] | 37.2 | 440 45
cpp Pe 2 T D Ty ls] | 264 | 2.96 3
2 4 vp [2] | 249 | 293 | 30
Introduce steady sinking velocity: Ty [s] | 281 2.98 3
2 ApsDyg
: 3 pa Cp
1 dv d
W - a=Z
91+ (2) v
Py RTS
g Jvo 1+ (%)
)2 2
= <2 In {1 + (£> }
2g Vs
(b)
1 0 d
Ty = — [ —2
70 ()
U? Vo
= — arctan —
g Vs
(c)
7 D3 dv Pa 5T D? n
— g = cp—v
P76 Yt T
7w D3
+ ps 6 Y

I
=
|
|




4. Gasdynamics

4.1 Introduction

In the first part of this chapter, which is a continuation of fluid mechanics II, after a short
repetition of the important thermodynamic relations, one- dimensional, steady, isentropic flows
of compressible gases in a stream tube with variable cross-section are described. Then normal
compression shocks in one-dimensional supersonic flows associated with a discontinuous increase
of entropy will be explained. It will be shown, that the increase of entropy is due to heat
conduction and disspation of mechanical energy in the shock.

The description of normal shocks quite naturally leads to oblique shocks, which are discussed as
third topic. The properties of strong and weak shocks are explained with the aid of the shock
polar diagram, and the jump conditions for weak shocks are subsequently used as starting
point for the derivation of the relations for isentropic flows, the expansion around a corner
after Prandtl and Meyer, and the reverse, the isentropic compression. The jump conditions for
oblique shocks and the Prandtl-Meyer expansion are then employed to determine lift and wave
drag of airfoil profiles at angle of attack in supersonic flow.

In the next chapter an introduction to the computation of supersonic flows is given. Begin-
ning with the fundamental equation of gasdynamics, the theory of characteristics is explained.
Thereafter, compressible potential flows are discussed. These considerations include plane and
axially symmetric supersonic and subsonic flows about slender bodies.

Finally the similarity rules of gasdynamics are discussed. First the similarity rules for two-
dimensional flows are derived with the aid of the linearized potential equation, together with
several examples of their application. The chapter closes with the extension of the similarity
rules to axially symmetric and transonic flows.

The various topics presented are again supplemented by exercises in gasdynamics in Chap. 5.
Several examples are given to illustrate the application of the laws for one-dimensional steady
flows. The abrupt changes of the flow quantities across normal and oblique shocks are delt with
in the following two subsections. Prandtl-Meyer expansions and their interaction with oblique
compression shocks is studied in detail for several flow configurations, followed by exercises
concerned with the determination of lift and wave drag in the frame of the small-perturbation
theory. Finally the application of the theory of characteristics and the computation of potential
compressible flows together with the similarity rules are demonstrated.

4.2 Thermodynamic Relations

In flows of compressible gases, in addition to the rate of change of the mechanical energy also
the rate of change of the thermal energy has to be considered. It is therefore necessary to define
the thermodynamic state of the gas with state variables, e. g. the pressure p, the density p, and
the temperature 7'. Their interdependence is described by the thermal equation of state. If the
law given by Boyle, Mariotte, and Gay-Lussac is used, i. e.

p=pRT |, (4.1)
the gas is called thermally perfect. For thermally non-perfect gases other relations must be used,
as for example the Van der Waals law. The specific gas constant R depends on the molecular

weight of the gas. For air it is R = 287&‘%}(.



140 4. Gasdynamics

Another state variable is the internal energy. It is defined by two thermodynamic quantities,

the temperature T and the specific volumen v = 1.

e=re(v,T) (4.2)

This relation is known as the caloric equation of state. The total derivative is

Oe Oe

de=|—| d — | dT . 4.3

‘ (31) ) T ot <8T) v ( )
The internal energy of thermally perfect gases depends on the temperature only. It then follows

that
Oe Oe
== T W= — . 4.4
oo (o) - o= (), =

The quantity (g—;) is called specific heat ¢, at constant volume. If ¢, is constant, the gas is
v
called calorically perfect, and the internal energy is given by

e=c,T+e, . (4.5)
The quantity e, is a reference value. The enthalpy A is another important state variable:
h=e+pv (4.6)

As the internal energy, the enthalpy of thermally perfect gases depends on the temperature
only.

dh = ¢, dT’ (4.7)

The quantity c, is the specific heat at constant pressure

() as

It follows from the relation for the specific heats ¢, and c,
p=c+R (4.9)
for calorically perfect gases, that ¢, = is constant. Hence
h=c¢,T+h, (4.10)

where h, is again a reference value.
The ratio of the specific heats 2 = v is — according to the gas-kinetic theory — given by the
number n of degrees of freedom

n+ 2
’y:
n

(4.11)

For monatomic gases (n = 3) v = 1.667, and for diatomic gases (n = 5) v = 1.4. At high
temperatures additional degrees of freedom are excited, and the ratio %Z decreases. For air at a
temperature of 300 K v = 1.4, and for 3000 K is v = 1.292.

The entropy s is introduced as another state variable with the second law of thermodynamics

Tds=de+pdv . (4.12)



4.3 One-Dimensional Steady Gas Flow 141

For a thermally perfect gas it follows that
dp @

ds=c, — —¢,

) ; (4.13)

This relation can be integrated for a calorically perfect gas.

()

-
»
(%)
The quantities p,, p, are reference values.
If the entropy is constant s = s,., there results the isentropic relation

5=5,4¢, In { } (4.14)

p_pr (4.15)

P

In flows in which the entropy is constant, the pressure varies only with the density p, with the
relationship depending on the isentropic exponent ~.
4.3 One-Dimensional Steady Gas Flow

Consider the one-dimensional flow of a compressible, inviscid gas without heat exchange. The
gas is assumed to be thermally and calorically perfect.

4.3.1 Conservation Equations

With the assumptions stated the conservation equations for mass, momentum, and energy are:

dlpu] = 0
dlpu*+p] = 0
d {pu <h + u;)} =0 (4.16)

The quantities in the square brackets represent the mass, momentum, and energy fluxes. The
system of equations is closed by introducing the thermal equation of state; density, pressure,
enthalpy, and velocity can now be determined.

p=pRT (4.17)

If only continuous changes of the state variables are admitted, it follows from the second law
of thermodynamics, that the entropy remains constant.

1 dp\

One of the conservation equations can then be replaced by the isentropic relation:

p Po
=== (4.19)
P
The quantities pg and py are the values of pressure and density, which the gas attains in the
state of rest after isentropic compression.
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4.3.2 The Speed of Sound

The Mach number Ma is an important similarity parameter for the description of compressible
flows. It is given by the ratio of the local flow velocity and the speed of sound. Distinguished are
subsonic, supersonic, and transonic flows. Since each of the flows exhibits its own particularities,
the Mach number has to be known for the description of flows.

In a compressible medium pressure disturbances travel with finite speed. The speed of propa-
gation of small pressure disturbances is the speed of sound. The changes of the state variables
caused by the propagation of sound occur at constant entropy.

The compression of a gas by an explosion does not take
place without losses, and the speed of propagation is
larger than the speed of sound. Consider a small distur-
bance moving with the velocity u through a gas at rest.
For an observer moving with the flow, the flow process
B FEAp is steady. The mass and momentum balance

p —= —_— AP

pu = (p+ Ap)(u+ Au)
—pud 4 (p+Ap)(u+Au)® = p—(p+Ap)  (4.20)

u u+ Au

disturbance

yield
2 1 Ap

= — . 4.21

ant “ 1+ % Ap ( )
u=0 If the changes of the flow quantities are assumed to be
infinitesimally small, then the expression for the speed

of sound is
3
Ip

— a= — , 4.22
u<a <8p> s=const. ( )
which for incompressible media is infinitely large as

Ap — 0. In the above derivation it was tacidly assumed,

3 that the influence of friction forces can be neglected;
‘. u=a are small enough so that the assumption is valid. Dis-
@ turbances caused by sound are small, and friction forces

@

(4.22) can therefore only be applied, if the disturbances
can be left out.

It then follows that the motion in a sound wave can
be considered as isentropic, as the entropy production

=3
/m(—\ a is proportional to the squares of the velocity and tem-
+ u>
W/

perature gradients. For perfect gases, with the isentropic
relation dp/p = vdp/p and the thermal equation of state
p/p = RT, one obtains

a:\/g:vaT . (4.23)

The speed of sound depends on the temperature of the gas only. Since it is finite, the propagation
of sound is influenced by the speed of the sound source. Consider a punctiform sound source: If
it is at rest, the sound waves propagate in concentric circles and spread out in the entire space.
If the source is set in motion and moves with subsonic speed, the sound waves propagate in
excentric circles. If the source moves with the speed of sound, the waves can propagate only
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in the space downstream from the source, and for supersonic speed, the sound can spread out
only in the so-called Mach cone, the half angle of which is given by

m) ‘ (4.24)

An observer can therefore hear a sound source moving with supersonic speed only after it has
passed him.

« = arcsin (

4.3.3 Integral of the Energy Equation

It follows from the conservation equations for one-dimensional, steady, compressible flow, that
2

the sum of the kinetic energy ‘- and the static enthalpy h remains constant. The value of this

constant is given by the stagnation enthalpy

U2

ho=h+t 5 . (4.25)

For calorically perfect gases the enthalpy can be replaced by the product of static temperature
and the specific heat at constant pressure ¢, T'.

2

& Th=c T+ 5 (4.26)
Introducing the thermal equation of state there results
2
7 Po Y P U
—=—— =+ = 4.27
vy=1po ~v—=1p 2 (4.27)
and with the definition of the speed of sound
2 2 .2
-2 42 (4.28)
y—1 ~v—-1 2
If the isentropic relation is combined with the expression for the speed of sound,
-1
2_ 2 (P
a“=ay | — , 4.29
:(2) (429

(4.27) takes on the following form

-1

v 2
Y Do 0 Po P\ u
——==—— = = +—= . 4.30
=1 po 7*1<Po> (po) 2 (4.30)

This equation is often called the Bernoulli equation for compressible flow. Because of the isen-
tropic change of the state the dependence of the static pressure on the kinetic energy is not
linear as it is in incompressible flow. If the last equation is divided by the square of the speed of
sound, pressure, temperature, density, and speed of sound can be expressed in a simple manner
by the Mach number and the stagnation quantities:

P <1+7_1 Ma2> o
Po
T -1 2)71
— = (1 M
T < T e
1 --L
Lo (1+LM¢L2) ‘
Po 2
a v—1 2)’%
— = 1+ —M 4.31
ap < + 2 “ ( )
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4.3.4 Sonic Conditions

If the local flow velocity is equal to the speed of sound, pressure, temperature, and density
attain specific values, which solely depend on the stagnation conditions of the gas. The sonic
condition, also refered to as the critical state, is designated by an asterisk:

w - ()"
Po v+1
™ 2
Tg N v+ 1
Lo ()
Po v+1
a* 2
i 4.32
c - ) (132
For air with v = 1.4 the critical values are as follows:
])* T* p* (I/*
— =0.528; — = 0.833; — = 0.634; — =0.913 (4.33)
Po Ty Po ao

Instead of the local speed of sound @ also the critical speed of sound can be used to define a
Mach number, which is called the critical Mach number

u
Ma* = —. 4.34
=t (434)

The relation between the local Mach number Ma = % and the critical Mach number is given

by the energy equation. If therein aq is replaced by a*, after division by u?, there is obtained

1
Ma?= 171 (4.35)
Y= 1 + MaZ
For Ma — oo the critical Mach number Ma* approaches the limiting value
1
lim Ma* = |1~ (4.36)
Ma—o0 v = 1

With these relations the ratios of the pressure, temperature, density, and speed of sound, refered
to their stagnation values, can be expressed by the critial Mach number :

= (1 -1l = Ma*2

)
- (1 A M “)
: - (Hw)”
- (1 - ﬁ Ma*Q> (4.37)

With Ma* = 1 these relations reduce to those given for the critial state.

S8 T
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4.3.5 The Limiting Velocity

A flow attains its maximum velocity, if the gas is expanded into vacuum. The resulting limiting
velocity u, depends only on the stagnation conditions. To show this, the Bernoulli equation for
compressible flow is solved for the velocity u
Y
=
- <ﬁ> . (4.38)
Do

This relation was first derived by de Saint-Venant and Wantzel in 1839. If the pressure is lowered
to zero, the limiting velocity is given by

2y RTy
v—1

(4.39)

The corresponding Mach number Ma, is infinitely large, the critical Mach number has the
finite value, already stated

1
Ma; =122 (4.40)

The limiting velocity can also be used to define the pressure, density, temperature, and speed
of sound in terms of the local velocity and the stagnation conditions:

J2\ T
=
u!f’
2
(-3
Uy

2\ 71
- (-3
Po Uy

1

a u2 2
L (1-5) (441)

9

=3

The ratio of the limiting velocity and the speed of sound at stagnation conditions is

T =t 4.42
o Vo1 (4.42)

The numerical values of the quantities discussed here are given in the appendix as a function
of the Mach number Ma. The data can be used to compute one-dimensional isentropic flows,
if the stagnation conditions are prescribed.

4.3.6 Stream Tube with Variable Cross-Section

The influence of the compressibility on one-dimensional isentropic flow in a stream tube with
slowly varying cross-section A can be investigated with the conservation equations given pre-
viously. The continuity equation can be written in the form

d d dA
7p+£+7:

PR Ul (4.43)

The differential of the density can be eliminated with the aid of the momentum equation:
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d d
—udu="L =g (4.44)
P P
There results
@ -~ 1 dA

U - _(1 — Mag) 7 . (445)

Three cases can be distinguished:

1. SuBsoNIC FLOW (Ma < 1)
The velocity increases with decreasing cross section.
2. SUPERSONIC FLOW (Ma > 1)
The velocity decreases with increasing cross section.
3. TRANSONIC FLOW (Ma = 1)
Sonic velocity can only be attained in the stream tube, if dA vanishes locally.

According to this result supersonic flow can only be generated, if the stream tube has a
convergent-divergent distribution of the cross section (Laval nozzle). The cross section with
minimum area, where the local velocity is equal to the speed of sound, is called critical cross
section or throat. The local velocity can be computed with the Bernoulli equation for compress-
ible flow as a function of the pressure ratio:

—
Wzilﬁl_@> . (4.46)
v—1 po Do

The local Mach number is obtained by dividing by the local speed of sound

Ma = % {(’;)771—1} . (4.47)

The rate of mass flow through every cross section is constant. For the following derivation it is
advantageous to choose the critical rate of mass flow as reference value.

puAd=pa- A" . (4.48)

With this relation, the interdependence between static pressure, Mach number, and cross-
sectional area can be formulated. If (4.48) is solved for % and if the stagnation quantities are
introduced as reference values, there results

A popyu

—_—=——— . 4.49
A poptoagat (4.49)
The critical cross-sectional area ratio % can be expressed by the pressure ratio p%
()7 1= ()T
A* L)y — ()~
i e (4:50)
7 Ga)
or by the local Mach number
A* Ma
T ; ) gl (4.51)
1 g, DYy
[ (145 Ma2)]

The last equation shows, that % tends to zero for small Mach numbers (Ma — 0) and also

for very large Mach numbers (Ma — o0). The critical area ratio is plotted in the following
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diagramm for v = 1.4 as a function of the I\I&Ch number and of the pressure ratio. The maximum

Aj = 1 is attained for a pressure ratio of -

= 0.528. The two branches of the curve correspond

to subsonic and supersonic flow. If the (’IOSQ section is chosen to first converge and then diverge,
and if the flow entering the stream tube is subsonic, it is then accelerated and becomes sonic,

and finally in the divergent part supersonic.

1.0
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4.4 Normal Compression Shock

According to the assumptions introduced,
(4.50) and (4.51) are valid only for isentropic
flow, since the variation of the density is
assumed to be isentropic.

Mach number and pressure distribution
can be determined for an area distribution
prescribed in the streamwise direction.

The flow in the nozzle solely depends on the
pressure in the exit cross section.

If the pressure drop in the exit cross section
is small pe; < pe < po, the flow in the nozzle
remains subsonic.

If the pressure in the exit cross section is
reduced to pe;, the speed in the critical
cross section will be equal to the speed of
sound. An isentropic supersonic flow in the
divergent part of the nozzle can exist only
if the pressure in the exit cross section is at
least reduced to pes.

If the pressure in the exit cross section is
between p.; and peo, the flow cannot ad-
just isentropically to the conditions exist-
ing in the exit cross section. Then a dis-
continuous increase of the density, pressure,
and temperature occurs in the supersonic
part of the nozzle, known as normal com-
pression shock. The flow is decelerated to
subsonic speed. This discontinuous process
causes losses, which result in an increase in
entropy.

Compression shocks can be viewed as a discontinuous change of all flow quantities. The corre-
sponding changes can be obtained with the integrals of the conservation equations.

4.4.1 The Jump Conditions

Consider a plane supersonic flow with a normal compression shock in a chanel with constant
sross-sectional area; the integrals of the conservation equations given earlier can be written in

the following form:
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pLUL = pP2U2
pLtpmul = patpru;
2 2
o |l Mt = ket (4.52)
Ma=1 8 Py Ma<1
:: :’ In order to determine the density ratio %’ the velocity
; difference is first obtained from the continuity and the
momentum equation.

compression shock

a; _ af
7 U2 - 7 UL
The local speed of sound is expressed through the critical speed of sound a* and the flow velocity
u. The intergal of the energy equation yields

(4.53)

Uy — Uz =

1 -1
a’ = % a? — WT ur . (4.54)

Combining the last equations gives the Prandtl relation

uy uy = a*? or Mat = (4.55)

1
Mas
The Prandtl relation shows that a normal shock decelerates a supersonic flow always to a
subsonic flow. The density ratio follows from the continuity equation

u +1) Ma?
P2 _ W :]\/faf _ (v ) 1 _ (4.56)
P U 24 (y—1) Ma?
The pressure ratio z—f is obtained by first solving the momentum equation for the pressure
difference p, — p; and expressing the velocity ratio o by May.

P2 2y 2
— =1+ Mai —1 4.57
o1y e - (4.57)
For high Mach numbers Ma; the pressure ratio %f tends to infinity, while the density ratio
approaches the finite value % The increase of entropy across the compression shock follows
from (4.14). It is

~

2w [(Zj) - (%) “} : (4.58)

If the Mach number is introduced in the expression for the pressure and density ratio, the
entropy difference across the compression shock becomes

e v
S3— 81 27 PN (vy+1) Ma? -t -
R = In { {1 + P (Maj 1)} 4 (1) Ma? . (4.59)

The condition sy — s1 > 0 shows, that compression shocks can exist only in supersonic flows.

The nozzle flow discussed earlier can now be explained for the case of the non-adjusted pressure
in the exit cross section with the aid of the normal-shock relations. If the pressure p. is not
equal to the value, required for an isentropic supersonic flow in the divergent part of the nozzle,
a normal compression shock is generated at a certain location in the nozzle, with the pressure
jump just large enough, such that the pressure in the exit cross section can be matched. The
flow velocity between the normal shock and the exit cross section is — according to the shock



4.4 Normal Compression Shock 149

relations — everywhere smaller than the local speed of sound. The following diagram shows the
pressure and Mach number distribution in the streamwise direction in the nozzle.

The photographic picture taken in a supersonic wind tunnel shows the compression shock as
thick dark line in the flow, almost normal to the line of symmetry of the two-dimensional nozzle.
Also visible are several Mach lines, originated at the wall of the nozzle. Small disturbances,
caused by grooves in the wall propagate along these lines into the flow.

|
|
/7} |
| Il
p/Pa e } !
| P’ Po
! |
05284===== ‘r\
Y=14 i 4 y _ By’
0 t y Y
1 | :
Ma } . . .
T } Supersonic flow with compression
10 { ) shock in a Laval nozzle. Mach lines can
be noted upstream of the shock, which
0 are originated on the wall of the nozzle.
ek

4.4.2 Increase of Entropy Across the Normal Compression Shock

Assuming that the compression shock represents
a discontinuity is only an approximation. In re-
ality the shock has a thickness & of the order of

magnitude of several free mean paths. If the gas — P
flowing through the shock can be assumed to be Ma, >1 Ma,<1
—_— ——

a continuum, the Navier-Stokes equations can be

employed for the description of the flow between

the upstream and downstream edge of the com- Py §
pression shock. The flow quantities do not change
discontinuously in form of a jump, but in a contin-
uous transition from the free-stream conditions to
the flow conditions downstream from the shock.
The increase of the entropy can now be explained as an action of the frictional forces and
the heat conduction within the shock region of finite thickness. The conservation equations for
one-dimensional, steady, viscous, and heat conducting flow are

dlpu] = 0
4 du
dlpu+p—-pul| =
{pu tp 3de} 0
u? dlr 4 du
_ _ = | = . 4.
d[pu <h+ 2) Ad:v 3“”11:0} 0 (4.60)

The terms in the square brackets represent the mass, momentum, and energy fluxes. They
remain constant, and the introduction of frictional forces and heat conduction does not affect
this result. If the flow variables are constant upstream of and downstream from the shock, the
terms describing the shear stresses and the heat flux vanish outside of the shock.

The increase of entropy can be explained with the aid of the first law of thermodynamics in
the form
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1 1
ds = T (dh - dp) . (4.61)

If the momentum equations is solved for dp and the energy equation for dh and if the resulting
expressions are inserted in the second law of thermodynamics, there results

ds 1 |d (. dT\ 4 (du)®
T e D T 4.62
pud.r T |dzx (Adx>+3'u<dx>} (4.62)
As the mass flux is constant, the last equation can be written in the following form:
2\ [dT\’ 4 2 p (du\’
9—51)= [ — |— | dz+= / ——] d 4.
prun(s2 = 1) /1 T2 (m) T3l T (da:) ‘ (4.63)

The integrals in the above equation represent the contributions of the heat conduction and the
dissipation of mechanical energy. They can be determined, if the local gradients 2 b and ¢ d are
known. They, in turn, can be obtained by repeated integration of (4.60), with the boundary
conditions given by (4.52). If it is assumed, that the Prandtl number is Pr = p % = 0.75, then
the total enthalpy hy remains constant. The continuity and the momentum equatlon can then
be combined to yield

y+1 a*? 4 du
— - 1-— — =0 4.64
2y pru (1 =) ( Uy U dl ( )
The solution of this equation would provide the velocity distribution u(z) within the shock.
The temperature distribution T'(x) can be obtained from the energy equation in the form of
(4.60) and also the integrands in (4.63). A closed-form solution is, however, not possible. The
thickness of the shock can be estimated from (4.64). For transonic speeds it is of the order of
magnitude

PO —

pa (ug — uz)

(4.65)

4.4.3 Normal Shock in Transonic Flow

The shock relations can considerably be simplified for low supersonic speeds. If in the relation

S9 — 81 = (y+1) Ma2 “T
2o { [1 + = (Ma1 - 1)} [m} } (4.66)

the square of the Mach number Ma? is replaced by 1 + m, with m assumed to be small
compared to unity, the expression of the right-hand side of (4.66) can be expanded in a power
series. Collecting the resulting expressions in increasing powers of m, it is seen that the terms
of first and second order vanish, and one obtains

ss—s1 2y (Ma}— 1)°
R (03
This results shows, that the entropy increase across a normal compression shock is small at low

supersonic Mach numbers. It increases with (Ma? — 1)3. All changes of the state are therefore
almost isentropic. The relation for the pressure change across the normal compression shock

(4.67)

- 24
prlpl = 7+/ (Ma? —1) (4.68)

reduces to

1 1
P2 — P1 12 72 3 (sz — 81 )i
= . 4.
P (’Y +1 R (4.69)

The change of pressure can thereby directly be related to the increase of entropy.
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4.5 Oblique Compression Shock

In addition to normal compression shocks, also oblique shocks can occur in supersonic flow.
They are inclined by a certain angle, the shock angle o, with respect to the direction of the
free-stream flow.

4.5.1 Jump Conditions and Turning of the Flow

As for the normal shock, the jump conditions for the
oblique shock can be obtained from the Euler equa-
tions for two-dimensional flow. It is advantageous, to
use Cartesian coordinates, oriented normally and tan- ®
gentially to the shock. L)
For uniform free-stream conditions and constant inclina-
tion of the shock, the jump conditions follow from the
continuity equation, the two momentum equations, and

oblique
compression shock

the energy equation: x
prur = pP2Uz
P1L ULV = P U V2
Pl +p = pauj+pe

p1 Uy [hl + % (uf + ’U]Z)] P2 Uz [hz + % (ug + vg)] (4.70)
The jump conditions for the oblique compression shock correspond to those for the normal
shock. Mass, momentum, and energy fluxes normal to the shock remain constant during the
passage of the flow through the shock. The tangential velocity component remains unchanged.
The following sketch shows a part of an oblique shock, indicated by the thick black line. Shown
is also the velocity upstream of the shock Vi, and downstream V3, both decomposed into com-
ponents normal and tangential to the shock u; and vy, and uy and vy. As us is smaller than
u1, and as vy is equal to vy, the direction of the oncoming velocity is changed, as the velocity
triangles indicate. Thus an oblique shock always causes a turning of the flow towards the shock.

The flow is turned by the angle 5. The jump conditions
can again be used to derive the relations for the density,
pressure, temperature, and velocity changes across the
shock.

The density ratio can be expressed with the shock in-

tensity 3+ = May sino as
p2 _ (y+1)Ma}sin’c (471
p (y—1)Ma}sin®o+2 ' ’
the increase of pressure as
— 2
I% = ﬁ (Ma? sin?o —1) | (4.72)

the temperature ratio as

=)

B_da_yy,0-0 (”/fﬂ? sin o + 1
i (v+1)

) (Nlaf sin®o — 1) , (4.73)

Ma? sin’ o

the increase of entropy as
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1 [ -
Sg — $1 0% 9 . o 71 (y+1) Ma? sin’ o 71
=1 142—— (M -1 4.74
I3 n{{Jr ’y+1( aj sin“o )} {(~/—1)]\/la§sin20+2 o )

and the Mach number downstream from the shock as

) 2+ (y—1) Mda? sin’o
Maj sin*(0 — 3) = !
@y sin*(o = ) 2~ Ma? sin®c — (y— 1)

(4.75)

From the velocity diagram shown above, the normal components of the velocity u; and us are
D tano and 2= tan(o — 5) . (4.76)
v v

The ratio of these two expressions yields, together with the jump condition for the mass flux

tan(c — ) (y—1) Mai sino? 42

= 4.77
tan o (y+1) Ma? sino? (4.77)
The turning angle 3 can now be expressed as follows
2 coto (Ma? sin®o — 1
3 = arctan coto (May sin"o = 1) (4.78)

Ma3 (v +cos(20)) + 2

The equation for the increase of entropy, (4.74), with As > 0, indicates that the shock intensity
has to satisfy the condition

May sinoc >1 . (4.79)

The shock angle ¢ is bounded from below by the Mach angle «

1
= in ——. 4.80
a = arcsin Ma, (4.80)
Then ¢ can vary within the limits
agagg (4.81)

The turning angle 3 vanishes for both limits ¢ = § and ¢ = «; it attains an extremum value
in between. For Ma; — oo the expression for (3 reduces to

sin 20

tanf — ———
anf v + cos(20)

(4.82)
so that with v = 1.4 the maximum turning angle results to (.. ~ 45° and the corresponding
shock angle to ¢ = 67.5°. Similarly, it can be shown, that a maximum turning angle exists for
every finite Mach number.

Another interesting relation results from (4.75), if Mas is set equal to unity. Then for every
free-stream Mach number Ma; and flow turning angle 3 there exists a shock angle o, which
yields sonic conditions immediately downstream from the shock. It can also be expected, that
the shock angle o of flows with May = 1 is close to 0,4, as then the shock tends to be close to
normal, with subsonic flow conditions downstream.

In the following diagram the dependence of the shock angle ¢ is shown for several Mach numbers
as a function of (3.

According to the diagram, the jump conditions yield two solutions, which are characterized by
different shock angles and shock intensities. The solutions are known as the weak and strong
solution. The strong solution describes a flow which is subsonic downstream from the shock,
the weak solution a flow which is supersonic with the exception of 8 ~ .. This region is
bounded by the line May = 1.



4.5 Oblique Compression Shock

153

90° -1
it
- ~ .
to N
N
\ A

MQ1=°°

30°

7
- - - strong solution

—— weak solution

0°

0° 15° 300 T B

4.5.2 Weak and Strong Solution

The supersonic flow over a wedge is described by the
weak solution for f < G4z

The turning angle 3 is equal to the wedge angle. All
flow quantities downstream from the oblique shock can
be determined with the relations obtained from the
jump conditions. The weak solution is also valid for a

45°

double wedge with nose angle [3.

The flow quantities downstream from the shock can also
be determined for a double wedge at angle of attack.
With vanishing turning or nose angle of the wedge the
shock intensity Ma; sino tends to unity, and the shock
deteriorates to a sonic line.

If the nose angle of the wedge [ is > (s, the shock
is detached from the wedge and deforms into a bow
shock in front of the wedge.

A closed-form solution of the conservation equations
does not exist for the flow field between the bow shock
and the wedge. In a certain point on the shock, the tan-
gent of the shock is normal to the direction of the free-
stream velocity.
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The shock angle o then attains all possible values, from
7 to the value corresponding to the maximum turning
angle, further to the angle, corresponding to the speed of
sound immediately downstream from the shock, until it
decreases to the Mach angle of the free stream « at large
distances from the wedge. The strong solution is valid for

that part of the shock between the points S and S’.

g =

4.5.3 Heart-Curve Diagram and Hodograph Plane

Due to the non-linearity of the jump conditions the pressure ratio cannot explicitly be formu-
lated in terms of the turning angle. However, the pressure ratio %’ and the turning angle 3 can
be computed for all values of the shock intensity, so that a plot of 22 = f (B) can be provided.
The shape of the curve is similar to that of the contour of the heart, the lower part of which
representing the weak solution and the upper part the strong solution. With the aid of the
heart-curve diagram the pressure ratio across the oblique shock can easily be determined for
every turning angle.

A supplement for the description of the flow in the physical plane is the so-called hodograph
plane, with the velocity components as coordinates. The hodograph plane enables a simple

representation of the solution of the jump conditions for the normal and the oblique compression
shock.

nip,

strong solution i i
| 7 Y
| physical plane

weak solution

0 ]}:m\ B hodograph plane

The velocity vectors downstream from the oblique shock are first plotted for all values of the
turning angle at a constant free-stream Mach number. The resulting curve is called the shock
polar. Most of the time it is plotted in the form of the velocity components, nondimensionalized
with the critical speed of sound a*. The hodograph plane is bounded by a circle with radius
R = %H% The sonic line is represented by a circle with radius unity. The weak solution is
given by the point B, the strong solution by the point B’; the velocity of the flow containing a
normal shock is given by the point A’. There exists a shock polar for every free-stream Mach
number May.

In order to determine the dimensionless downstream velocity 72 the turning angle 3 is plot-
ted, intersecting the shock polar in the point B. The tangential and the two normal velocity
components are obtained by constructing the normal from the origin of the coordinates to the
extension of the line A — B.
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Ma = o=

4.5.4 Weak Compression Shocks

Compression shocks are termed weak, if the shock intensity Ma, sino approaches unity. The
jump conditions can be simplified with this assumption. First the relation for the turning angle
(3 is solved for Ma? sin’o:

2 tano
(v+1)tan(c — B) — (v — 1) tano

(4.83)

Ma} sin’ o =

For weak shocks the shock angle o does not differ much from the Mach angle o, and the turning
angle § tends to zero. One obtains for small angles /3

1 Ma?
Ma? sin?on14+ 200 94 5 (4.84)

2 /Ma2-1
The dimensionless pressure difference is approximately

— Ma?
P2 P1 _ v ay ﬁ . (485)

h Ma2 —1

Also the expression for the increase of the entropy can be approximated:

3
s9—s51  y+1 vy Ma? 3
= I6; (4.86)
R 1242 (,/Ma%l

The square of the velocity ratio s

(2>2 ) (%) +1 ta2c-B)+1  costo (4.87)

vy (1%)2 L1 tano+1  cos?(o—f)

With the approximation o — «, § — 0 there results

<@>2 ~(1-2 tanaf) ~ {1 - 5} 2 (4.88)

U1 VMa} —1
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and finally

Uz_vlzﬂ:,L (4.89)

U1 U1 \/Ma} -1
The last relation shows, that the velocity is decreased, if the turning angle (3 is increased. The
decrease of the velocity simultaneously causes an increase of the pressure and of the density.
The compression can be enforced either by one or several weak oblique compression shocks.

Ma,>1

ap

ap

77 7oP

If the compression is designed in such a way, that the turning of the flow is the same in both
cases, i. e.  =n A 3, then the pressure after the n-th turning is

Pa=pi+ O(AB) . (4.90)
The increase of entropy

sp=51+0(nABF) =0 (%Z) (4.91)

can substantially be reduced, if the number of the turning elements is increased and approaches
infinity in the limiting case. Very weak shocks then reduce asymptotically to so-called Mach
waves. The width of each of the compression elements is infinitesimally small. The contour
is continuously curved. Along the Mach lines the Mach number and the turning angle are
constant. The flow cannot be influenced against the main flow direction, and disturbances
cannot propagate upstream. A certain distance away from the contour, the Mach waves coalesce
to an oblique compression shock.

compression shock

Ma;>1

4.6 The Prandtl-Meyer Flow

As just shown, the entropy remains constant if an inviscid supersonic flow is continuously
turned by infinitesimally weak oblique compression shocks. An increase of the total turning
angle causes a decrease of the velocity and an increase of the static pressure. Vice versa, the
turning angle can be decreased, the velocity increased, and the pressure decreased. Then the
gas is said to expand.
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In a supersonic flow a continuously curved
isentropic contour therefore generates an isentropic
expansion compression, if the turning angle is in-
creased, and an expansion, if the turning
angle is decreased.

isentropic
compressiol

If a discontinuous expansion would be
assumed, as indicated in the sketch, the
normal velocity component would have
to increase and pressure and temperature
would have to decrease. The shock relations
would then require a decreasee of entropy,
which would contradict the second law of
thermodynamics; it is for this reason, that
an expansion can occur only in isentropic
flow with continuous turning.

4.6.1 Isentropic Change of Velocity

The equation for the change of the velocity across a weak compression shock reduces to a
differential equation of the following form if isentropic flow is assumed

dv dv

Ma?>—-1— =cota — = —df . (4.92)

v v
The integral of this equation was first published by Prandtl and Meyer in 1908. In order to
facilitate the integration, the square of the velocity is expressed through the Mach angle with
the aid of the energy equation

a*Z
2
V= . 4.93
sin? o + b2 cos? o (4.93)
The quantity b? is an abbreviation of 1—3 By differentiation of this expression the differential

equation for the velocity change can be cast into the following form:

vl do = —dg3 (4.94)
21 tanta O ’
The integration of the left-hand side of this equation yields an angle v(Ma), which became
known as the Prandtl-Meyer angle.

1
v(Ma) = a — 3 [g — arctan(b cot oz)] +C (4.95)
The constant of integration C' is so chosen, such that the Prandtl-Meyer angle vanishes for

Ma=1.

1 -1
v(Ma) = s T arctan { ﬁ (Ma? - 1)} — arctan {\/ Ma? — 1} (4.96)

For Ma > 1 there exists a uniquely defined value of v, which with increasing Mach number
monotonically tends to

‘ _ Tyl
i v == (1), (90



158 4. Gasdynamics

For example, for vy = 1.4  vy0, = 130.5°.
The integral of the right-hand side of the differential equation for the velocity change completes
the relation between the Prandtl-Meyer angle v(Ma) and the turning angle:

v—uv =0 -0 (4.98)

With these relations isentropic expansion and compression of the Prandtl-Meyer flow can easily
be determined:

Expansion: B< P, v>u

v=uv+|8-5|

Compression: 8>p, v<u
V=V— | /8 - ﬁl | (499)

Yvsar
The Prandtl-Meyer angle v(Ma) is tabulated
R= :‘% //”' _"“n\\ in the appendix as a function of the Mach
N ~ number. The solution can easily be plotted
/ \‘\ in the hodograph plane. The Prandtl-Meyer
// M“{;__ L \\ integral represents an epicycloid, extending
Mo s . \ from the somic circle (Ma = 1) to the
| (K 4 circle of the limiting velocity (Ma — 00).
} } } - Expansion and compression, which are given
\ y; \\ | u/a e .

| e N | by a certain turning of the flow AfS, can
"\ Yo "f\/.r'/ux / simply be entered in the hodogragh plane
\ // T Voot Jap / and the corresponding velocity change can

\\ / 2 /’/ be read off.

\—— s
-~
//

4.6.2 Corner Flow

A uniform supersonic flow with a Mach num-
ber Ma; > 1 over a plane wall, by kinking
of the wall at an arbitrary point P into a
convex corner, can be turned by the amount
Ap. After the turn the gas moves with the
Mach number May parallel to the bent part
of the wall. The flow can be determined with
the aid of the Prandtl-Meyer integral.

Mach lines

compression shock
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In the region bounded by the Mach lines PA and PB the flow quantities are constant along
each Mach line, but change from line to line. It is in this region that the flow expands from
May to Masy. The solution is singular in the point P, where all flow conditions corresponding
to Ma; < Ma < Masy can be found.

The gas can also be thought of to flow in the opposite direction. In this form the Prandtl-Meyer
flow provides the principle for an isentropic inlet diffuser, used on supersonic airplanes. The
previous sketch shows the flow reversal (compression by solidification of a streamline). The flow
field on the right demonstrates how a supersonic inlet diffuser can be constructed with the
Prandtl-Meyer corner flow.

Expansion and compression are illustrated with two numerical examples: Assume that a plane
supersonic flow with a Mach number Ma; = 3 is given. The corresponding Prandtl-Meyer angle
v is v = 49.76°. The oncoming flow is assumed not to have been turned, so that #; = 0°. If the
flow is to be decelerated to sonic speed, it has to be turned by (p,—1 = 49.76°.

In the second example it is assumed, that a plane supersonic flow with a free-stream Mach
number Ma; = 2 (v = 26.38°) is turned by 10°. For an expansion there results a Prandtl-Meyer
angle of vy = 36.38°, corresponding to a Mach number Ma, = 2.386, and for a compression,
the Prandtl-Meyer angle is v, = 16.38°, and the Mach number is Mas; = 1.652.

4.6.3 Interactions Between Shock Waves and Expansions

Prandtl-Meyer flows and oblique compression shocks can interact with each other. To be dis-
tinguished are shock-shock and shock-expansion interactions.

In the following sketch the reflexion of an oblique
compression shock on a rigid wall is shown. If a
shock impinges on a wall, it is reflected, as the
wall affects the oncoming flow as a wedge.

The reflected shock has the shock angle o, which
differs from oy, although (; and [, have the same
value. The gas can only flow off parallel to the walll
CD, if the wall AB is parallel to C'D. The pressure
ratio 5—? is given by the shock intensities Ma, sin oy
and May sin os.

If the flow is mirrored at the wall C'D and if the wall is replaced by a streamline, the intersection
of two oblique compression shocks of equal intensity results. The shocks are bent when they
intersect each other. For the flow shown the gas flows off parallel to the oncoming flow.

The intersection of two oblique shocks of different intensity is also possible. If both shocks are
assumed to be weak, the flow pattern is different from the one just discussed. The streamline
through the point of intersection divides the flow into two regions of different stagnation pres-
sures, as the shock intensities are no longer the same on both sides of the dividing streamline.
As a consequence, the two regions have different entropy levels and also the other flow variables
attain different values, with the exception of the static pressure. Hence the flow cannot maintain
the direction of the free stream. It is found that the streamline through the point of intersection
is inclined to the direction of the oncoming flow by the angle § (Page 160, a).

The angle § results from the condition, that the static pressure on both sides of the streamline
through the point of intersection has to have the same value.

/ /ool
& _ @ _ D3 D2 _ P3 Pa (4100)

P P p2p Dhp

Because of the different shock intensities the increase of entropy sj — s1 is not equal to the
increase of entropy sz — s1. The streamline through the point of intersection represents a line
of discontinuity of the entropy, the density, the velocity, and the temperature.
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b)

If two oblique shocks are generated by two wedges, one downstream from the other (see
sketch b), they coalesce and form a single shock, which approximately produces the same
rise of the static pressure as the two other oblique shocks. A mutual pass through of the shocks
is not possible, and a weak expansion or compression can arise downstream from the point of
intersection to balance the static pressure.

If a Prandtl-Meyer flow interacts with an oblique compression shock, the shock is being curved.
The Mach waves are reflected at the shock and interact with each other.

If an oblique compression shock impinges on a wall at an shock angle o, for which at Mas

B > [umas, the reflected shock can no longer be attached to the wall. This type of reflection
is called Mach reflection. An almost normal compression shock is originated in the immediate
vicinity of the wall, which joins the impinging and the reflected shock in the triple point.

Ma, >1
——

triple point
-7 7 7
N{bpm“{mz]

Again a line of discontinuity of entropy is formed downstream from the triple point. The static
pressure has the same value on both sides of the line, but all other flow quantities attain different
values.

4.7 Lift and Wave Drag in Supersonic Flow

With the jump conditions for oblique compression shocks and the Prandtl-Meyer flow pressure
distributions can be determined for airfoil sections moving in supersonic flow.
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4.7.1 The Wave Drag

Airfoils in inviscid supersonic flow generate drag, which is caused by the compression shocks.
For example, the flow over the front part of a
double-wedge profile is compressed by the oblique
shock, attached to the leading edge, and the pres-
sure is po. The gas expands at the shoulder of the
profile in a Prandtl-Meyer corner flow, and the
pressure on the rear part of the profile is lowered
to p3. Finally, the pressure is increaed again at the
P2 trailing edge, when the flow passes through the re-
compression shock, downstream of which the pres-
P — P. sure is py. Caused by the overpressure on the front
part and the lower pressure on the rear part of the
profile, a drag per unit length results, which is

P3
The quantity d is the maximum thickness of the profile. The drag is called wave drag of super-

sonic flow. Pressure drag caused by flow separation and frictional drag have to be determined
separately.

4.7.2 Lift of a Flat Plate at Angle of Attack

A flat plate, inclined in an inviscid supersonic flow at the angle of attack [, generates lift in
addition to the wave drag. Both, lift and wave drag can be determined with the jump conditions
of oblique compression shocks and the Prandtl-Meyer flow:

Fr, = (ph—pa)t cospf
Fp = (ph—po)tsing (4.102)

expansion

recOmpression

Ma =1
; P The quantity t is the chord of the profile. Since
| surface of discontinuity wing sections in general are thin and since their
leading edge . .
i angles of attack are small, approximate solutions

can be constructed for the determination of lift
lomer side and wave drag. Because of the different shock
intensities of the oblique shock at the leading
», E— edge and the recompression shock at the trailing
edge, a surface of discontinuity of the entropy is
generated at the trailing edge of the flat plate.

upper side

4.7.3 Thin Profiles at Angle of Attack

With the approximation for the pressure jump for weak oblique compression shocks
& ~ yMa? A
w M1

the pressure coefficient can be determined for small angles of attack as a function of the free-
stream Mach number.

(4.103)

D — D1 2 Ap 20
c, = = iy — 4.104
P 7”2' v} vy Ma? p /Ma? —1 ( )
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Lift and wave drag of the flat plate result from the pressure difference between lower and upper
side of the plate.

44

Cpl — Cpu = ———— (4.105)
mo Ma? — 1
The lift coefficient is
4
L = (cpl - cpu) COSﬁ = 75 (4106)
Ma2 -1
and the drag coefficient
4 2
cp = (e — cpu)sin B = _45 . (4.107)
Ma? -1

The ratio

Cp 1

‘L

is independent of the angle of attack (3.
For the double-wedge profile with nose angle 2e and vanishing angle of attack, the approximation
yields for the front and rear part of the profile

2€

) = f—F/—m—==
T Ma -1

(4.109)

The drag coefficient is

4 d\*
cp=—-—- (). (4.110)
VMa2 -1 <l>

With the approximation for thin profiles, lift and wave drag can also be determined for non-zero
angles of attack, variable thickness distribution, and camber.

t

+_4::;::—::.—£'=l—:-‘m-. +I

angle of attack camber thickness distribution
The local angle of attack consists out of three parts: The angle of attack of the chord [y, the
angle of attack of the mean camber line AG.(x) with respect to [y, and the angle of attack of
the thickness distribution Af;(x), with respect to the mean camber line
The lift of the profile is

t
Fr= %1 Uf/ (Cpu — Cpo) dz . (4.112)
0
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The other integrals vanish with AB.(z) ~ %= and ABy(z) ~ %, and the expression for the lift
coefficient is

T (4.113)

Cr, =
VMa? —1
The wave drag of the profile is
A ANNCAY 2
P1 Y] Yu Yi
Fp— / Y YW gy —2 4114
"2 ORdl') +<d$> C a1 y
and the drag coefficient can be written in the following form:

4
Cp = —F/7————
VMa? -1

The quantities A2 and AB? are the squares of the angular variations, averaged over the chord
of the profile. In general the wave drag consists out of three parts, which result from the angle
of attack, the camber, and the thickness distribution.

(B3 + AB2 + AB?) (4.115)

4.8 Theory of Characteristics

If two Prandtl-Meyer flows interact with each other, the flow cannot be described by super-
position of the Prandtl-Meyer solutions, since they describe only simple waves, but not their
intersections. A solution for non-simple regions can be constructed with the conservation equa-
tions for two-dimensional flows.

The following sketch shows the simple and non-simple regions of two Prandtl-Meyer flows
superposed on each other. Close to the two corners the flows do not interact with each other,
but downstream from the first intersection of the Mach lines the flow is influenced by both

corners.

Non-simple regions also exist on the down-
stream side of curved compression shocks.
Then the changes of the entropy have to be
included in the determination of the pres-
sure, density, temperature, and velocity. The
interdependence between the distribution of
entropy and the velocity field is described in
the Crocco vorticiy theorem.

4.8.1 The Crocco Vorticity Theorem
With the second law of thermodynamics

d
Tds = dh — ;p (4.116)

and the energy equation the total derivative of the entropy can be expressed through the total
derivatives of velocity and pressure. If it is assumed, that the stagnation temperature is constant
throughout the entire flow field, it follows that

d,
Tds = — (u du+vdv+ pp) . (4.117)
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For a two-diemnsional steady flow the total derivatives of the velocity components are

ou ou ov ov
f — = — . 4.11
du ard x + ay dy and dv= o dx + ay —dy (4.118)

Introduction of the momentum equations leads to the following expression for T'ds

o v dy v OJu )
Tds == K* - (7) (F - aiﬂ ue (4.119)
Y

The ratio Z—I can be viewed as the slope of arbitrary unknown sets of curves. If the slope is
chosen to be identical with the slope of the streamlines
dy v

D u (4.120)

it can be concluded, that the entropy remains constant along streamlines.

85 63 Jds 85

Streamlines are therefore called the characteristic lines of the entropy. The entropy remains
constant in the entire flow field, if the second bracketed term % — %7 representing one of
the components of the vorticity vector, vanishes. This is the contents of the Crocco vorticity
theorem, which also holds for three-dimensional flows: If in the second law of thermodynamics
in the form

TVs=vh- Y2 (4.122)
P

the gradient of the static enthalpy is eliminated with the energy equation
o2
Vh:—VE-&-VhO , (4.123)

and if the momentum equation is introduced in vector form

0 \Y%
a—” +(v-V)v= 77]’ (4.124)
one obtains the Crocco vorticty theorem for three-dimensional flow
v
TVs+vx (Vx v):EJtho . (4.125)

According to this theorem the entropy remains constant along streamlines, even in three-
dimensional flows, as long as the the velocity and the stagnation enthalpy do not change with
time. This becomes clear, if the scalar product of (4.125) and the velocty vector v is obtained;
then the second term of the left-hind side of the last equation vanishes. For otherwise equal
conditions the entropy remains constant in irrotational flows.

4.8.2 The Fundamental Equation of Gasdynamics

The partial derivative of the density, pressure, and temperature can be eliminated from the
conservation equations for mass, momentum, and energy, so that only the velocity components
and their partial derivatives remain in the resulting equation. This equation is called the fun-
damental equation of gasdynamics. It will first be derived for two-dimensional steady flows, but
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will then be extended to three-dimensional flows. The continuity equation and the momentum
equations read

ou Ov 1( dp ap
a*aﬁ;( “or T ay> 0
u@+ 8u+}@ =0

Oz dy p Ox
v 81) 1 9p
U=+ — = 0 . 4.126
Ox 8@/ p 9y ( )
The energy equation in the form hy = const. and the differential of the thermal equation of
state

p P
dp="Ldap+ Lar 4.127
p="dr+ 7 ( )

yield the following relation:

ap Op _ up 5‘u v up (9u ov ou  Ov
e - — . (4.12
Y or tv dy T e tv O T e T oz ox t oy Ay (4.128)

Multiplying the first momentum equation with v and the second with v and adding the resulting
relations yields

WO [ a0u (o o) L0
Ly + = {pu 8x+pu By +8;r +pv | (4.129)

The fundamental equation of gasdynamics for two-dimensional steady flow is obtained by sub-
tracting (4.129) from (4.128)

u ou v . v
2 2y OU ou oV 2 _ 2\ 9V _
(u® —a?) P +ou (8@/ + c%) + (U a ) 9 0 . (4.130)

In the above equation, a is the local speed of sound. For three-dimensional flows, one obtains
with the aid of the energy equation, the thermal equation of state, and the continuity equation,
a relation for v -V p

2
0 Vp=-Lov V() -p(Vi) (4.131)
P

which is inserted into the equation for the mechanical energy:
v?2 v
v(3)=-2v 4132
v 5 S VP (4.132)

After collecting terms, the last equation, written in Cartesian coordinates, becomes:

(u* — a?) g—z + (v = a?) v + (w? — a?) dw +

0y 0z
o (D049 o (94 ) e (209 (4.133)
0z 0Oy

oy Oz dz Oz

In comparison to the equation derived previously, the fundamental equation of gasdynamics
contains three additional terms for three-dimensional flows.
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4.8.3 Compatibility Conditions for Two-Dimensional Flows

According to the Crocco vorticty theorem, in inviscid steady flows the entropy remains constant
along streamlines. It is therefore advantageous, to introduce streamline coordinates & and 7,

which are oriented in the direction of the streamlines and normal to them. Since g—s =0, the
derivative of the entropy in the direction normal to the streamlines can be written as total
derivative

ds 1 69 85

— == — . (4.134)

dn v 87/ Y oz

The partial derivatives gs and ‘99 are substituted with the aid of the Crocco vorticity theorem

Js v (Ov Ou Js u ov  Ou
%*"(@‘a@) et () 1)

so that the partial dcrlvatlvo is replaced by and the entropy gradient & dn

ov Ou T ds
=" 0@ (4.136)

This expression is inserted into the fundamental equation of gasdynamics. There is obtained

0 0 ]

(uz—aQ)—u+(112—a2)—v+2vu—+——:(] . (4.137)
ox Y Y )

The last step consists in the elimination of the partial derivatives of the velocity components.

The total derivatives

ou ou ov ov
du %d x4+ 8—dy and dv= 8—dx + a—ydy (4.138)

are solved for ¢ d“ and ¢ 6”

dz  dx By oy v

dr Oz

au_du_ ou v 1 (dv 8v> (4.139)

The quantity 3/, written as abbreviation for % o, can, as in the derivation of the Crocco vorticity
theorem, be thought of as the unknown local blope of sets of curves. With the last two equations
the fundamental equation of gasdynamics can be written as

du 1 dv 1 ou
2 2 2 2 ’oo2 2 2 2
_ _ - _ — il _ ) -
(u a)dm (v a)y, = [y(u a)+yl(v a®) uv} »
1 9 9 T ds
- {—y/ (v* —a®) uv} v dn =0 . (4.140)

The slope 3’ is now chosen in such a way, that the bracketed term multiplying %Z’ vanishes:

, uwvEavu+v?—a?
y:

u? — a?

(4.141)

For supersonic flows Ma > 1 the fundamental equation reduces to a system of nonlinear
ordinary differential equations with real coefficients. If in the expression for ¢’ the inclination
of the velocity vector, given by the angle (3, and the Mach angle « are introduced, it is seen,
that ¢’ is identical with the slope of the Mach lines.
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dy

— =tan(f£a) . 4.142
Y — tan(5 £ a) (4142)
The Mach lines are called the characteristic curves of the fundamental equation of gasdynamics.
Along these curves the change of the velocity can be expressed by total derivatives. With the
expressions obtained for y' substituted into the fundamental equation, with v = v cos 3 and
v = v sin § the compatibility conditions for the velocity take on the form

d ds
cota?l Fdf +sina cos a® —0. (4.143)
v YR

These relations are valid along the Mach lines, the characteristic curves, given by the equations

dy
e tan(8 £ ) . (4.144)

The differential ds must be determined with the compatibility condition for the entropy.

ds =0 along the streamlines % =tanfg . (4.145)
The solution of the equations describing the compatibility conditions along the characteristic
curves, in general, is only possible with numerical methods for ordinary differential equations.
For isentropic flows, (4.142) can be integrated, since the term cot a% represents the differential
of the Parndtl-Meyer angle v.
The compatibility conditions then reduce to the simple form

d(v ¥ ) =0, (4.146)
or
v F (3 = const. (Riemann invariants) (4.147)
for
@—t n(f+ ) (4.148)
gy a) . :

The difference or the sum of the Prandtl-Meyer angle and the local flow inclination angle,
respectively, are constant along the corresponding Mach lines.

4.8.4 Computation of Supersonic Flows

With the Riemann invariants and the equations describing the slope of the characteristic curves,
supersonic isentropic flows can be determined. This is explained in the following example.
Given are the flow quantities in two neighboring points P, and P, which are not supposed to
lie on a Mach line. The Prandtl-Meyer angle v and the flow inclination angle 8 at the point
of intersection of the characteristic curves P;, can be determined with the integrals of the
compatibiliy conditions.

vo—fr = v3— [
v+ = v+ (4.149)

With the notation adopted, one obtains
vy = 5 [(n+1)+ (B —B))

Bs = (1 — 12) + (61 + 2)] (4.150)

N =N =
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With the Prandtl-Meyer angle v3 known, the
Mach number Maz and the other flow quantities
can be determined. The location of the point
p3 is computed with a difference-solution of the
characteristic equations.

For the computation of a supersonic flow field
it is assumed that n neighboring points (not on
the same Mach line) are given in a supersonic flow.

At these points the flow quantities are known, i. e.
V1, V2yeeey Viy ooylUp and ,‘317 527 ..47ﬁi, ey ﬁn. With Vi,
vip1 and 3, Bi41 of two neighboring points, v; and
B; of a third point P; in the vicinity of the points
P; and P,y can be determined. The position of the
point P; is obtained by discretizing the equations
for the characteristic curves and solving the differ-
ence equations for small distances from the points
P; and Py . The coordinates of the new point are:

Pio1

" _
(Yig1 — yi + mi T — M%)

(mf - mi+1)
|4

Yirr + M (25— Tiga) (4.151)

Zj

Q

Yj
Py
X

The quantities m* and m™ are abbreviations of the slopes of the characteristic curves. For the
determination of the coordinates of the point P; mean values of the slopes can be employed

o
m; =

[tan(8 + «); + tan(f + «);]

Miy1 =

N =N =

[tan(f — a)ip1 + tan(f — «);] . (4.152)
Only a certain part of the flow field depends on the initial data prescribed. This region is called

the domain of dependence, sketched in the following figure. The flow outside of the domain of
dependence cannot be determined without additional information.

¢ P8 Py

Piat

inirial

data Pi

region of
influence of C

domain of
dependence for C

It is therefore necessary to prescribe boundary conditions for the computation of the other
parts of the flow field. Two kinds of boundary conditions, representing streamlines of the flow
field, are to be distinguished: the rigid wall and the free boundary, for example the edge of a
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supersonic jet. For a rigid wall the curve of the contour of the wall y,, = f(z) has to be known.
If the point P; is a point on the contour, all other points on the contour, for which the flow
quantities have to be determined, can be obtained by intersection of a characteristic with the
curve describing the contour of the wall y,, = f(z). For the points Py and P; the local flow
inclination angle is known from the relation (see sketch)

Ay o)

—— = f'(z) = tan [, 4.153

Vo _ (z) = tan (4153)
The Prandtl-Meyer angle is obtained from the one Riemann invariant, corresponding to the
Mach line intersecting the contour:

vy =V + ﬁz - ,34 . (4154)

After determining the flow quantities at the point Py, the quantities at all other points on the
contour, for example, at the points Ps and P;, or at all points between the points A and D are
computed.

ve = v+ s — Pr (4.155)

Along a free boundary the static pressure p, is known, but not the flow inclination angle ;.
Since the stagnation pressure py of an isentropic flow is constant in the entire flow field, the
pressure ratio ;’;—Z can be computed for the edge of the jet, also the Mach number Ma,, and the
Prandtl-Meyer angle v,. The compatibility condition then yields the flow inclination angle ;.
If B is a point on the edge of the jet, it follows that

ﬁs = ﬁn—l + Vs —Vp1 . (4156)

edge of free jet

s}
I[\

P

AR Fr ot
The location of the point P, is determined by letting the streamline through the point B
intersect the Mach line through the point P, ;.

With the procedure described, the flow in the
E region B — D — E can be determined, one side
of which is bounded by the edge of the jet (free
boundary), and the other by the Mach line, origi-
nated in the point D. If the boundary conditions
downstream from the points D and E are known,
the computation of the flow can be continued.

edge of free jet

It is often required, for example for nozzle flows, to
prescribe constant flow quantities along the char-
acteristic curve through the point D.
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Then the computation begins in the point F,
which is assumed to lie on the characteristic
curve through the point D in its vicinity. The
computation is continued in the direction towards
the free boundary along the characteristic D — B.
The flow in the region A — B — D is not influenced
by the flow condition prescribed.

If two characteristic curves of the same kind inter-
sect, the computation cannot be continued. In the
point of intersection a compression shock is orig-
inated, causing a change of entropy, which is not
included in the method of computation described
here.

4.9 Compressible Potential Flows

The condition of irrotationality admits the introduction of a potential @ for the description of
compressible flows. However, in contrast to incompressible flows, the partial differential equation
for the determination of the potential @ is not linear.

4.9.1 Simplification of the Potential Equation

The fundamental equation of gasdynamics, in which only partial derivatives of the velocity
components are contained, will be used to derive a simplified partial differential equation for
the determination of the unknown potential @.

The potential, defined by

0

L 0D
Oz

=%
inserted into the fundamental equation of gasdynamics, yields the exact potential equation for
steady compressible flows:

0

= (4.157)

v w

g O*® 0P 0?9

2_ .2\ * 2 2\ Y * 2 2y *
(u a)8x2+(v a)0y2+(w a)822 +

0P 0?9 09

The nonlinearity of this equation is immediately evident, if the velocity components appearing
in the coefficients are replaced by (4.157). A closed-form solution is therefore not possible.
Since in flows about slender bodies the velocity components v and w are small and u deviates
only little from the free-stream velocity, the exact potential equation can be simplified. With
the aid of the perturbation velocities

v=u—u, V=v w=w (4.159)

a perturbation potential can be defined:
, 0P , 0P , 0P
u = — v = w = —
Ox Ay 0z

In order to simplify (4.158) the speed of sound is eliminated by employing the energy equation

2 // ! 2 ! 2 )/ 2
vy <l> + <L> + (“ > . (4.161)

(4.160)

2
; 1,
S gy V%
aOO

(o)
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This relation is introduced together with the definition of the perturbation potential into the
exact potential equation. If terms of the order

9 u/? 2 /UIQ ) LU2
O(MaZ, @) O(MaZ, @) O(MaZ, go) (4.162)
are dropped, one obtains
PP 0*P  0*P u 9@
(1—Ma2)ﬁ+— 57 = (y+1) Md2, e
i, 2 (20, 0
+ (v—1)Ma < o 022>
0 w'  0*P
2 Ma2 | 41
+ { 0xdy . Uso Bz(‘)z} (4.163)

It is seen, that the simplified equation still contains nonlinear terms, and only if terms of the
order
o v w'
O(Mda%, —), O(Md:, —), O(Mad*: —) (4.164)
. Uso Uoo
are neglected, a linear differential equation results for the determination of the perturbation
potential

*¢  0*d 0%

(1 ]Wa)aanaerazz—

(4.165)

This linearization is not valid for transonic flows. For Ma., — 1 the term

0%
(1—Mad2) —— o2
tends to zero faster than the term
v 0*P
) Ma:, — —
(y+1) Mag, 022

It is for this reason, that the last terms cannot be omitted in the computation of transonic
flows, since

li 1— Md? 1) Ma? 0o = 1 0o 4.166
Moy |77 Mo - (r+1) M, Uoo | D22 —0 )uoo Ox? (4.166)
For Mas, — 1 the simplified potential equation therefore reads
P PP 5P v 0P
1—Mak) v + = 1) Ma? — 4.1
( ) g Tt o — ) Mas s (4.167)

This equation must be employed for transonic flows, while for subsonic and supersonic flows
the linearized potential equation can be used.

4.9.2 Determination of the Pressure Coefficient

For the linearized potential equation and also for the transonic approximation the relation,
describing the pressure coefficient

2 P
Cy = — =1 4.1
“ v Ma?, <poo ) (4.168)

can be simplified.
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Equation (4.168) can be rearranged for isentropic flows with the aid of the energy equation:

.,
2 v -1 u? + 0% +w?\ |77

- = 1 Ma? (1 - —M— -1 ) 4.169

P Ma2, {[ Ty M ( 2 (4.169)

(o]

A series development of the last equation yields for the terms of first and second order

2 u\? o \? w'\?
+(1— Mad2) <—) + (—) + ( ) . (4.170)
Uoo Uno Uso Uoo

If the second-order terms are neglected as in the derivation of the linearized potential equation,
one obtains for the pressure gradient

!
L (4.171)

Unso Uso OT

This relation is also valid for transonic flows.

If the perturbation potential is known from a solution of the linearized potential equation or the
transonic approximation, the pressure distribution (for example on a body) can be computed
with the last equation.

4.9.3 Plane Supersonic Flows About Slender Bodies

The linearized potential equation for supersonic flows for determining the perturbation potential
@ in the form

0P 1 0P

o7 MaZ —10g¢ " (4.172)

can be solved with the ansatz of d’Alembert for the solution of the wave equation

P(x,y) = f(&) +9(n)- (4.173)

The functions f(§) and g(n) must be twice differentiable functions. Their arguments are defined
as follows:

E=ax—Xy n=zx+Xy (4.174)
For the solution of the linearized potential equation A is the constant

A=/Ma2, —1 . (4.175)

For ¢ = const. one obtains
x
Y= 3 const . (4.176)

The curves described by this relation are straight lines with the slope
dy 1
de\ [Ma2, —1

They are identical with the Mach lines of the free stream with positive inclination.
For n = const. there results

(4.177)

y = *% + konst. (4.178)
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and

d 1
. (4.179)

dr — /Ma2, -1

The lines n = const. are the Mach lines of the free stream with negative inclination.

The curvature of the Mach lines caused by
their mutual interaction cannot be grasped
by the linearized theory.

const.

The perturbations caused by a slender body
propagate along the lines ¢ = z— Ay = const.
1= const. on its upper side, and on its lower side along
the lines n = x 4+ \y = const.

The solution is therefore split into two parts:

P(zy) = flz—y)
P(zy) = g(z + \y) (4.180)

The still unknown functions f(€) and g(n) are determined from the boundary conditions. The
kinematic flow condition requires the velocity vector to be normal to the surface normal of the
contour of the body. If the surface is described by the equation F(x,y) = 0, the kinematic flow
condition can be written as

v-VF(z,y) =0 (4.181)
or
oF oF
nYt I
(Uoo Jru)mj +v R 0 . (4.182)

With v/ < us, the slope of the contour of the body is approximately

dy v or

2| =tanfB ~ — = - (4.183)
Pe oF

dx . Uso S

Since the body is slender, a series development for y = 0 can be employed:

1,/

V(zy) = (z,0) + a—y(x,o)y + .. (4.184)
One obtains
dy N 0P
Uso %'C ~v'(x,0) = a—y(x,o) . (4.185)

If the contour on the upper side is specified by F,(z,y) = 0, the derivative of the function f(&)
is determined by

Uoo = ) = -\ —(z,0). (4.186)

dg

The function f(&) is then obtained by integration. The pressure coefficient for the upper side is

dy ' df

292 (.0) 2 df
L= ——0 2 4.187
CP Uso Uso d§ (1‘,0) I ( )
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and with (4.186)

2 dy
v = —= 4.188
Cp \/m dr . ( )
The pressure coefficient for the lower side is obtained analogously:
2 d
= — & (4.189)
Ma2, dl‘

With the pressure coefficient for the upper and lower side of the body known, wave drag and
lift can be computed for supersonic free-stream conditions.

4.9.4 Plane Subsonic Flow About Slender Bodies

Solutions of the linearized potential equation can also be constructed for compressible subsonic
flows. Since the partial differential equation for the perturbation potential
PP 9P

1—-Mal) =0 4.190

(1-2a2) 55 + 55 (1190)
differs from the exact potential equation for incompressible flow only by a constant factor,
solutions available for incompressible flows can be used. The adaption of such a solution to
compressible flow is demonstrated here for a symmetric airfoil profile at zero angle of attack.
The thickness distribution of the profile can be described by positioning sources and sinks along
the axis of symmetry. For an incompressible flow they are given by the following relation:

D(x,y) = % Iny/(x — &2 +y? (4.191)
In this equation the positions of the sources or sinks are given by the points (z = £,y = 0).
The constant E is positive, if a source is considered, and negative if a sink is to be described.
Equation (4.191) also satisfies the linearized potential equation for compressible flow, if the
coordinate y is replaced by y /1 — Ma2,. Since the differential equation is linear, solutions can
be superposed. With this ansatz an arbitrary contour can be generated with a distribution of
sources and sinks along the line of symmetry. The potential then is of the form

W)=Y Lo ey T m (1192
i=1

with m? =1 — M2,
Also a continuous distribution of sources and sinks can be thought of. The sum is then exchanged
with an integral:

P(zy) = L (&) ny/(z =€) +m?y? d€ (4.193)

m™m Jo

The source function f(§) has to be determined in such a way, that the contour of the profile
forms a streamline. It follows from the boundary condition that

v'(x,0) _ dfg/

1 0P(x,0) . 1 t my dé
o = JRGE

Gty (4:194)

Uso dx .

The limit process gives the simple relation f(z) = uw%. Then the expression for the potential
becomes
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¢
b(z,y) = :% A (Z%) Iny/(z —&)2+m?y? dg, (4.195)

and the pressure coefficient is

PSP o (T dg
cp(z,0) = QUOO(m,O) al— (dx>15 R (4.196)

The application of the solution is illustrated for the subsonic compressible flow about a double
parabolic wing section:

, Yo = 4d <% - (%)2) (4.197)

In the first step the source function f(x) is

Ma<1 2d determined from the contour of the body.
—_— - %_..
" J) = e e g% 1 — 2 ) a108)
T) = Uso =4d—ux (1-2-)(4.
| t dx t t
The perturbation velocity for y = 0 is
d u rt 13 1

(2,0) =4 - —= 1-22 d¢ 4.199
v'(@,0) t Tm o( t)(xf§) & ( )

and the expression for the pressure coefficient becomes

x 1—
¢(x0) =85 — (27 (uz%) In

t

x

t

) : (4.200)

The plot of the pressure coefficient exhibits
Cpm singular behavior of the solution at the
leading and trailing edges. The failure of
the solution at these points can be traced
back to the simplifications intoduced by
the linearization of the potential equation.
-10 0 10 20 Another point to be mentioned is, that
' { \ w/t the solution provides the same values for

the product ¢, m, as long as the thickness
ratio % retains the same value. In other
words, similar profiles have similar pressure

-10 distributions.

4.9.5 Flows about Slender Bodies of Revolution

A slender body of revolution is an axially symmetric body, the local radius R(z) of which
everywhere being much smaller than its length L. For pointed bodies solutions of the simplified
potential equation for compressible flow can be constructed in a manner similar to that of
two-dimensional flows. The velocity components in the axial, radial, and azimuthal direction
are again expressed with a perturbation potential:

, oo, _ 09 ,_ 102
“or " T o YT .o

u (4.201)
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The linearized potential equation for bodies of rev-
olution, in comparison to plane flows, contains an
additional term, which results from the continuity
equation, written in cylindrical coordinates: For a
volume element of the flow in cylindrical coordi-
nates the mass balance for steady flow yields the
continuity equation in the following form

0 10
— + = + = = =0 . (4.202
(pvr) +o-(pw) + 5 £5(pw) =0 . (1202)
The term containing the radial velocity compo-
nent deviates in form from its counterpart for two-
dimensional flow. This is also reflected in the lin-
earized potential equation:

PP 9% 109 1 9%¢
p— 2 - - PR P
(1= Ma,) Ox? + Or? * r Or * r2 002 +40203)

The last term in the above equation vanishes for
axially symmetric flows ; the second-last term ap-
proaches the limit for r — 0

100 0°0
lim - — =

b B = o =0 . (4.204)

=0

Equation (4.184) show, that the boundary condi-
tion for the body of revolution is given by the sec-
ond derivative of the potential in comparison to
the first for two-dimensional flow, see (4.185).
Also the formulation of the boundary conditions for the body contour deviates from the for-

mulation for plane flows.
If the contour of the body is specified by a certain

distribution of the local radius over the length of
the body L, the exact boundary conditon is

x dit _ (“7>R . (4.205)

L dr — \ue + 1/

r

R{x]

If the boundary conditon is to be prescribed again in an approximation as in the case of the
two-dimensional flow, along the axis, then the series development for v(r,z) for r = 0 must
take into account the different variation of the radial velocity component manifested in the
continuity equation. If the continuity equation is written in the form

S pvny=—r Lipu) (4.200)

it is seen that, if % (p w) remains finite in the vicinity of the axis, for r — 0 there results

lim 9 (pvr)—0 . (4.207)

r—0 Or

In the neighborhood of the axis the product p v r is a function of the axial coordinate z, and
the series development of the radial velocity component has the form:

vr = ag(x) + a1 (@)r + ay(x)r® + ... (4.208)
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The approximation of the exact boundary condition then reduces to

R ( VR >R ~ 20@) (4.209)

dx Uso + U Uso

Also the expression for the pressure coefficient differs from its counter part of plane flows. Since
v" and u’ for r — 0 are of different order of magnitude, the expression for the pressure coefficient
for axially symmetric flows in the neighborhood of the axis is

u/ U/2

The solution of the linearized potential equation for axially symmetric, compressible flows
about slender bodies can again be constructed by superposition of fundamental solutions. The
thickness distribution of slender bodies of revolution is, as before, generated by a distribution
of sources and sinks along the axis, given by the following relation
n E’L

D(x,r) = Z

=R (4.211)

for incompressible flows, with the constants E; having positive (sources) and negative (sinks)
values. For a continuous source-sink distribution along the axis the sum is replaced by an
integral, so that

&) d
/ ) 3 (4.212)
V(@ =82 +r?
The source function f(&) is determined with the boundary conditions, as described earlier. The
solution for the compressible flow is adjusted by stretching the radial coordinate by the quantity
(1 — Ma2,). The potential is of the form

/ \/ﬁ (4.213)

The solution can formally be extended to supersonic flows. With A\> = Ma2, — 1 — 0 the
linearized potential equation

P 1 0P , 0*®

e & S | 4.214

or? * r or Ox? ( )
changes over into the form of the wave equation, the solution of which can be obtained by
superposition of fundamental solutions for source-sink distributions along the axis

E;
P(x,r) = ——mne. (4.215)
(2= &) = (Ar)?

The potential becomes imaginary, if A2 72 — (z — &)2. Since an imaginary potential does
not represent a physically meaningful solution, the integration for the continuous source-sink
distribution can only be carried out up to the upper limit

E<xz—Ar. (4.216)

The integral representation of the potential is then

D(x,r) / )d§ (4.217)

V(@ —=¢ (Ar)?
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The change of the upper limit of integration
is necessitated by the finite extent of the
region of influence of supersonic flows. A
point P(z,r) on the surface of the Mach

Mach cone xn

cone, given by ¢ = x — A r, cannot be
influenced by the sources and sinks further
downstream.

x
/ E=x=ir

source — sink distribution

4.10 Similarity Rules

Similar flows exhibit physically similar behavior for geometrically similar conditions. Ratios of
two kinds of forces or energies have to have the same value at corresponding points in flows to
be compared. The laws for carrying over a result obtained in one flow to another are given, for
example, by the similarity laws of Euler, Strouhal, Reynolds, and Mach. It is well known that
not all of the similarity laws can be obeyed, if measured data are to be applied to the full-scale
configuration.

In gasdynamics the similarity laws of Euler and Mach are extended to similarity rules for steady
inviscid flows in the frame of the simplified potential theory by combining the similarity laws
with geometric parameters. In the following the similarity rules will briefly be discussed.

4.10.1 Similarity Rules for Plane Flows After the Linearized Theory

Assume a compressible subsonic flow, which can be described by a solution of the linearized
potential equation:
0P, N 1 0,
dz2  1— Ma? 0y?

=0 (4.218)
The free-stream Mach number is Ma; and the perturbation potential @ (x1,y1). It satisfies the
boundary condition

om,
i

di
(21,0) = wy n

d1 ;L1
=u — fi(—) . 4.219
| = G (4219)

The quantities d; and ¢; are the maximum thickness and the length of the body, w; is the free-
stream velocity, and fl(f—ll) the function describing the contour of the body, which is assumed
to be slender. The pressure coefficient is

2 (0P,
=—— = . 4.220
o= (52) (1.220)

A second flow with the potential ®y(xa,ys) satisfies the linearized potential equation for a
different free-stream Mach number Mas:
0*®, 1 0%d,
——t—— ——— =0 4.221
0z3 Tz Ma} 0y? ( )

The corresponding boundary condition is

62®2 dyQ dy (L2
oy W2 B (T2 4.222
8y§ (I270) 2 d.”L‘Q c 2 t2 fz (tg) ’ ( )
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and the pressure coefficient is given by

2 9%,

= (4.223)

sz =
The potential ¢; and also the pressure coefficient c,; are assumed to be known. It will be
shown, that ¢, can be expressed through c,;. First the differential equation for the potential
@, is transformed into the differential equation for the potential @,. In order to be able to do
S0, it is necessary, to determine the dependencies x = x9(x;) and yo = yo(y1). This is done by
expressing the differential operator a‘% by xo:

2 2 92 2

022 \Owy) 023 0a% Oms
Since the first derivative of the potential does not appear in the differential equation, the term

92 . . . . . . .
%;} has to vanish. Hence the relation connecting x5 with z; is linear, such that xy = azy, with
1

a being a constant. the same is true for y» and y;, and yo = by;. The differential equation for
@, can then be written in the form

0*d b? 0*d
2 1 1

— =0 , 4.225
“ 0x3  1—Ma3 0y3 ( )

and the boundary condition transforms into the relation

8@1 dl , (’Ll>
b—= — — . 4.226
ys " <t1 > f 3] ( )
The pressure coefficient becomes
2 0D,
L= e () 422
o= (52) (1227)

Since the simplified potential equation is linear and homogeneous, every solution can be multi-
plied by an arbitrary constant. In order to express @; through @, a linear relation can therefore
be used to connect the two solutions:

Pi(z1,51) = A Po(22,y2) (4.228)

The quantity A is an unknown constant. If @; is substituted by (4.228) in the differential
equation, (4.225), it is seen, that the original equation for @, is transformed into the differential
equation for @, if the ratio g is given by

b [1- M2
—=,|—. 4.22
a 1— Ma3 (4.229)

The boundary condition for @; then reads

9 0y = 12 (4 (E)
o (22,0) = = (h> i 0 (4.230)

The boundary condition for @5 with an arbitrarily assumed thickness ratio f—j is

02 0) =y (2 p1 (%2
aTjg(“?’O) =up <t2> fa (tg) : (4.231)
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For bodies of the same geometric family f; (%) =/ (’f—j) the constant A is obtained to

1 Uy d1 tQ
=_-— == . 4.232
b (5] tl dg ( )
On the other hand the constant A can be chosen and the thickness ratio %2 thereby be fixed.
The following relation holds for the pressure coefficients

2a A 8@2 U2
i =—— | =—]=-—"Aac . 4.233
“rt (75} (C?IQ ) (5] @ ( )
Finally there results
1— Ma? 1— Ma3
e \/ - L= \/ - z (4.234)
t1 t2

Since the left-hand side of (4.234) was assumed to be known, the subscripts on the right-hand

side can be dropped:
\J1— Ma?

N
t1

I = const. . (4.235)

The last relation provides four similarity rules for bodies, described by the contour f(%):

1
1-M2)2 .
((ﬁ“) remains constant.

1. The pressure coefficient ¢, remains constant, if the ratio
t

2. The pressure coefficient ¢, varies with (1— A/ ago)’%, if the thickness ratio % remains constant
(Prandtl-Glauert rule).
3. The pressure coefficient ¢, varies with %7 if the free-stream Mach number is kept constant.
4. The pressure coefficient ¢, varies with (1 — Ma2 )7, if the thickness ratio % varies with
(1 — Ma2)~2 (Gothert rule).

These rules are also valid for supersonic flows.

4.10.2 Application of the Similarity Rules to Plane Flows

If the pressure distribution on an airfoil section was measured for a certain free-stream Mach
number, the results of the measurements can be converted to other free-stream Mach number
with the Prandtl-Glauert rule. According to this rule the product of the pressure coefficient
and (1 — M azo)% remains constant:

1— Ma?
o2 = Cp1 1_7]”(12 : (4.236)

If, for example Ma; is Ma; = 0.4, one obtains for a second Mach number, say May = 0.7 =
¢y = 1.283 ¢p1. Another application of the Prandtl-Glauert rule is demonstrated with the
example of determining the critical free-stream Mach number for an airfoil profile.

If the free-stream velocity about an airfoil profile is subsonic, in general the pressure on the
upper side of the profile is lowered, and the flow can locally attain sonic or even supersonic
velocity. The particular free-stream Mach number, for which locally the speed of sound is
attained for the first time, is called critical free-stream Mach number. From the expression for
the pressure coefficient

2 24 (y—1) Ma2,]77
- x| 42
@ Ma2 { [ 2+ (- 1) Ma? (4.237)
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the critical value of the pressure coefficient is obtained by setting Ma = 1:

2 {{NWl)M@Zorll} (4.238)

Cperit =
Perit ™y Ma2, y+1

This relation is independent of the airfoil profile
considered. The critical free-stream Mach number
of an airfoil profile can be determined with the
Prandtl-Glauert rule, if the pressure distribution
is known for another Mach number, for example
May = 0. Then the expression for the pressure
coefficient can be written as

€ perit

_____ = ——pne (4.239)

"1 Ma2,

With (4.239) The critical Mach number can be de-
0 ; . termined by intersecting the curve obtained with
0 05 Ma i 10 Mg, (4.238) with the curve obtained with (4.239) as
shown in the diagram.

The application of the Géthert rule will be shown as the third example. According to this rule

the product of the thickness ratio % and (1 - M agc)% remains constant.
If the pressure distribution of a wing, known for a given angle of attack in incompressible flow, is
to be converted to a compressible subsonic flow, the chord of the wing ¢ is changed for constant

maximum thickness to
t =tine. /1 — Ma2, . (4.240)

The corresponding angle of attack is

L
!
|
|
|

jne.

o= (4.241)

J1—Ma2,

Equations (4.240) and (4.241) are graphically illustrated in the following sketch. The corre-
sponding angle of attack « in compressible subsonic flow is larger than in incompressible flow
and the chord is shortened as a result of the Prandtl-Glauert transformation.

This result shows already, that the similarity rules play an important role in the design of wing
sections and wings for compressible subsonic flow, illustrated in the following sketches.

X,
x=x  /Vi-MaZ x e

ine

compressible flow incompressible flow
Mas <1 Mas =0

For delta wings also the planform has to be changed.
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2§t=t_ ¥1-Mal 2, tie )
b/2fF————— b, /2|-— —— — - =
] G
X x‘N
compressible flow incompressible flow

The sweep angle o for compressible flows is

o = arctan (tan JW) . (4.242)

W1 — Ma2,

The similarity rules loose their validity in the vicinity of stagnation points, since the linearized
theory is not valid there.
4.10.3 Similarity Rules for Axially Symmetric Flows
If @1 (x1,r1) and Po(x2,12) are solutions of the linearized potential equation for axially symmetric
flows

0P 1 P 10

— —_— —+-—=0 , 4.243

0I2+<1—]Lfago> <8r2+r or ' ( )

the relations zo = a x,, ry = bry are valid as for two-dimensional flows with

b 1— Ma?
a = 1772\[(]% and @1(1’1,7”1) =A ¢2(I2,r2) . (4244)

Differences are encountered in the conversion of the boundary conditions. The boundary con-
dition for the potential @;(z1,r1) is with

_ Rmaz T
m=(5), 0 ()

(9@1 R T
= ) — maz\ g <7> _ 4.245
ory (w1r1 1) = < l )1 h A ( )
If &; and ry are replaced with the ansatz above, there is obtained
a¢ Rmaz
bA 22 (1300 = bRY) = uy ( ) 7 <ﬂ) ‘ (4.246)
Ory I /1 Iy

The boundary condition for the potential @, is with Ry = (R";“’”)z la fo (ﬂ)

2

aé? _ _ Rma,x / T2
077,2(37277“2 = Ry) = uy < ] )2 o <E> . (4.247)
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By comparing the last three equations it is seen, that for bodies of the same family f; (’l”—ll) =

f2 (f—j) the thickness ratios have to satisfy the condition

Rmaz 1- Ala% Rmrw
— =, . 4.24
( l >2 1-— Ma% ( l )1 ( 8

As a consequence the constant A is fixed by the boundary conditions:

Riaz
A= % ERzgl ;1, (4.249)

The pressure coefficient ¢,

2 06, 1 (08,\°
P =—— ——— | =, 4.250
Cpt w O  ud (8r1 ) ’ ( )
after replacing @, by @, and r; by r9, takes on the following form:
1-Ma2 | 2 06, 1 [08,)°
S - L === 4.251
Tz Ma3 [ uy O ud \ Ory ( )

The content of the square bracketed term represents the pressure coefficient c,2. The similarity
rule, which results from this relation, has the form

const.
c

P 1- Ma2 (4.252)

The last equation can also be written in the following form with the condition for the maximum
radii
const. (—R”l"”)

which is equal to the similarity rules for plane flows.

(4.253)

4.10.4 Similarity Rules for Plane Transonic Flows

Instead of the linearized potential eqaution the nonlinear approximation for transonic flows
must be used
0*® 1 Po (y+1)Mal, 1 99 PP

922 T1-MaZ 07~ (1= Md2) uw 0z 02°

(4.254)

With the same ansatz as employed previously the constant A is already fixed by the right-hand
side of the differential equation
(Y2 +1) Ma3 (1 — Ma3)

A= ‘ 42
(v +1) Ma2 (1 —Ma3) (4.255)

and the expression for the pressure coefficient becomes:

G (n+ ) M3 G (12 +1) M3 -
1— Ma? 1— Ma3 '

Since the constant A is fixed, these considerations cannot be carried over to axially symmetric
flows.
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5. Exercises in Gasdynamics

5.1 Problems

5.1.1 One-Dimensional Steady Flows
of Gases

1.1 Consider an inviscid flow of gas without
heat exchange through a stream tube.

pig lg
1(5%“2 ¥

(a) Formulate the first law of thermo-
dynamics for this system!

(b) What kinds of energies interact
1. in compressible fluid flow
2. in incompressible fluid flow?

1.2 An airplane flies over an observer in
level flight.

H=57m v:680? T = 287K:

Nm

R =287 K v=14

(a) Determine the Mach number!

(b) What distance did the aeroplane
cover, before it was heard by the ob-
server?

(¢c) When was the noise generated the
observer heard?

1.3 Determine for an isentropic flow

(y=14)

(a) the critical temperature ratio,

(b) the critical pressure ratio,

(c) the limiting value of the critical
Mach number Ma* = % for Ma —
ool

How large is the change of temperature

across the normal compression shock?

1.4 A small pressure disturbance moves
through a gas at rest. Derive the ex-
pression for the speed of propagation!

1.5

1.6

steady wave front
/ s
=
P 1 | p+ Ap
P | | p+ Ap
—_—
u : i u+ Ay
h h+ Ah
Lid

dp
2 _ =
‘T (6/))5

A jet-propelled airplane passes a second
jet-plane at a distance b.

vA=510" g = 680% b =170 m;
s
Nm
T=28TK R=287T— =14
ek
After what time would the pilot of the
overtaken airplane have been able to
hear the noise generated by the faster
flying airplane?
Gas flows isentropically and steadily
through a vertical pipe with cylindrical
cross section against the direction of the
gravitational acceleration.

B

LY

10

Derive the expression describing the
convective acceleration, and state, how
the velocity changes for

(a) Ma(z=0) <1

(b) Ma(z=0)>1
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1.7 Derive the expression relating Ma* to
Ma for a one-dimensional isoenergetic
flow with the aid of the energy equation
and show, that for v = const.

lim Ma* = )11
Ma—o0 v — 1

1.8 Derive the relation describing the de-
pendence of the area ratio % on the
Mach number Ma and the isentropic
exponent v for an isentropic nozzle flow!

1.9 The relation between the mass flow ©
and the local velocity v, nondimension-
alized with the speed of sound at stag-
nation conditions ag, is shown in the
following diagram for one-dimensional,
isentropic and isoenergetic flow.

fu
0= pea.

Gmc:

=M
aa

0 VIBmax )
Determine:
(a) the maximum mass flow,
(b) the velocity, corresponding to this
value of the mass flow,
(¢) the maximum velocity, nondimen-
sionalized with the speed of sound
at stagnation conditions.

1.10 Viscous flow of air passes through a
thermally isolated pipe with cylindrical
cross section at subsonic speed.

7 FA e

v /

® ®

Ma, < 1; JE:Q; y=14
Po2

(a) Determine the ratio of the critical
cross sections %

(b) How does the Mach number vary in
the direction of the flow?

(c) To what value can M ay,,,,; increase?

1.11 Air flows out of a large container
through a nozzle into the open air. The
flow in the nozzle is steady and isen-
tropic. The Mach number in the throat
is smaller than unity.

po.'l:'=com|. P

s

(a) Derive the function f describing the
retaining force F'

P

(b) Develop the function in a power se-
ries for the case p, = pg, and com-
pare the result with the correspond-
ing relation for incompressible flow!

1.12 Consider an inviscid nozzle flow of a
perfect gas with constant specific heats.

Determine %0 %, and % as a function
of the Mach number for adiabatic con-
ditions!

1.13 In the nozzle sketched below a flow is
accelerated to supersonic speed corre-
sponding to a Mach number Ma = 2.
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(a) Sketch the pressure distribution £,
the variation of the Mach number
Ma, and the ratio of the mass flow
pfj - along the axis of the nozzle.

(b) Determine for the exit cross section:
1. the cross-sectional ratio %

2. the pressure ratio ’;—Ig.,

3. the temperature ratio %
4. the mass-flow ratio ”pﬁ%

1.14 Air is sucked through a convergent noz-
zle into a large container.

\ "
PD‘TO/' ¥a.
po=10°Pa; Ty, =300K; ~=1.4;
Nm 9
R =287 kg7K7 A, =0.02m

Determine the mass flow for
(a) p. = 7-10* Pa,
(b) p. =2-10" Pal
(c) Sketch the variation of the mass-
flow ratio —™——, as a function of
PO .aO e .
the pressure in the container Z—;!

1.15 Consider a large pressurized vessel filled

with air, that flows through a nozzle
sketched below into the surrounding air.

surrounding
T pressure
o P
Pg e
Py 1
|

|
1

pressurized vessel

po=10°Pa; Tp=288K; ~ =14
Nm
R:287kg—K; Ag =1cm?

Determine for poouy, = 7.824 - 10° Pa
and py = 1.086 - 10° Pa

(a) the stagnation density po,

(b) the quantities Ma, Ma*, p, p, T, u,
and 7 in the cross section of the
throat Ay and in the exit cross sec-
tion Ag assuming isentropic flow in
the nozzle!

1.16 Gas flows through a thermally isolated
pipe with constant cross section.
(a) Derive the relation

h+ % = Cy; Cy, Cy = const. (x)!

(b) With the relation (x) the so-called
“Fanno”- curve is obtained in the h-
s diagram (see sketch).

1. Prove that the Mach number is
unity in the point P!

2. Caused by wall friction, the stag-
nation pressure decreases in the
direction of the flow.

Plot the direction of the change of
state along the “Fanno”- curve for
supersonic and subsonic flow!

hf

1.17 Consider the inviscid flow of a gas
through a thermally non-isolated pipe
with constant cross section.

(a) Derive the following relations for

this flow!
P % + 0y C1,Cy = const. (%)

(b) The relation (x) yields the “Ra-
leigh”-curve in the h-s diagram.



188

5. Exercises in Gasdynamics

|
|
|
|
}

Smax S

1. Determine the Mach number in
the point P!

2. Mark the branches of the curve,
indicating supersonic and sub-
sonic flow!

3. Indicate the direction of the
change of state on the branches
of the curve, if the pipe is heated!

5.1.2 Normal Compression Shock

2.1

2.2

2.3

How large can the density ratio
'Z—f = f(v) across a nomal compression
shock become? v =const.

The free-stream velocity in front

of a mnormal compression shock is
m

up = 300— and the critical Mach num-

s
ber Maj = 1.25.

Compute the velocity us downstream
from the shock, without using a dia-
gram!

A normal compression shock moves
through air resting in a thermally iso-
lated pipe with pressure p; and temper-
ature T3, with velocity u.

r T

compression wave | *s

® — . e

pr=10°Pa; Ty =293K; ~=14;
Nm m
R=287——; u=515—
kg K S

The flow is unsteady with respect to co-
ordinates fixed to the pipe x g; for an ob-
server moving with the shock (x;) the

2.4

2.5

flow is steady. Determine the quanti-

ties p, po, T, Ty, Ma, and also u up-

stream of (Index “1”) and downstream

(Index “2”) from the shock for:

(a) the system of coordinates moving
with the shock zy,

(b) the coordinate system fixed to the
pipe xg.

A normal compression shock moves
through quiescent air with temperature
Ty and pressue p; in a thermally iso-
lated shock tube with velocity u. The
static pressure downstream from the
shock wave is ps.

timet=t
A
u p]
P, (NS
model T]
timet=t,
s
May,_ \\%\\\N u Py
PZ Tl
py = 10°Pa; T = 300 K; v =1.4;
N
po=10°Pa; R =287 ——

kg K
1.) Determine the velocity of the shock
u (for t = t4).
2.) Determine for t = tp,
(a) the Mach number Mac,
(b) the stagnation temperature T,
(c) the stagnation pressure pgeo-

An airplane flies at supersonic speed. A
shock wave is formed, which is normal
in front of the nose of the airplane.
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2.6

2.7

2.8

Nm

T=287TK
kg K

y=14 R=287
m

u; = 680 —
S

How large is the temperature change of
the air across the shock?

A normal compression shock was gen-
erated in the divergent part of a plane
Laval nozzle between the cross sections
Ay and Ag, for which the Mach num-
bers Ma, and Map are known.

l

. —— . —— - — . . .
|

— .z’tttw;ﬁlzb
e
L H
B

May =22, Mag =0.6; ﬁ—j =1.8;

y=14

Determine:

(a) the ratio of the stagnation pressures
Po1
Po2’

(b) the ratio of the static pressures 22

immediately upstream of and down-
stream from the shock,
(c) the pressure ratio 2.

A turbo engine sucks air out of the at-
mosphere. The pressure in front of the
COMPressor is pj.

Nm
kg K
po = 10° % py=0.74 - 10° %
A=9-10"%m?

Determine the mass flow through the
engine!

y=14 R=287 T = 287K

An engine equipped with a Laval noz-
zle is tested on a test stand. The en-
gine is designed for the Mach number

2.9

M aggesign1- The pressure in the cham-
ber p, can be varied.

]\/[aEdesi_qnl = 23 Po = 105 Pa;
Nm
14 R=—o287 .
v ; K

Ty =280K; Ay =1cm?

Assume isentropic flow in the nozzle

and determine:

(a) PEdesignl and %’EI?

(b) the lowest pressure p,;, for which
the flow in the nozzle is subsonic ev-
erywhere, and also Mag;,

(c) the pressure in the chamber p,q, at
which a normal shock is formed in
the exit cross section Ag,

(d) the thrust F, for p, = ppgesign and
Pv = Du2-

(e) Sketch the variation of p and Ma
along the axis of the nozzle for
Pv = Pu1 and Pv = PEdesign-

During the test procedure of a jet en-
gine equipped with a Laval nozzle the
chamber pressure p, and the pressure
pE at the exit of the nozzle are varied.
The stagnation pressure at the exit of
the nozzle pop is measured with a pitot
tube.

large reservoir

P\

Y

po = 10° Pa; Ty = 280 K:

AH =1 Cm‘z; A{ab‘dcsign = 2.3;
Nm

R =287 —; = 1.4;
kg K7 ,y b

Determine the position of the normal
compression shock %, the mass flow 1,
and the Mach number at the exit of the

nozzle Mag, for:
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(a) pye = 0.645 - 10° Pa
Poge = 0.721-10° Pa
(b) pyy = 0.816 - 10° Pa
Poeb = 0.876 - 105 Pa
(c) Compute the ratio if‘;
(d) Sketch the variation of p, po, and
Ma along the axis of the nozzle.
(e) At the pressure p,. a normal
compression shock is observed at
Q; = 0.9. Determine Maj, ahead
of the shock, Maj downstream from
the shock, Mag, and the pres-
SUTe Pre.

2.10 Air is sucked from the surroundings

into a supersonic wind tunnel, equipped
with a Laval nozzle and variable dif-
fuser, and from there into a large con-
tainer (volume V) with constant tem-
perature T,,. The Mach number in the
test section for the design condition is
Ma M = 2.3.

po=10°Pa; Ty =T, =280K;
m

R=1287 ——; V,=1000m?%

AE:AJW; AH:()l II12;

v=14; Magdesign = 2.3

(a) A normal compression shock is ob-
served in the exit cross section of the
diffuser. Determine the pressure in
the container p.!

(b) A normal compression shock is ob-
served at A, = 0.57 Ag.

Determine:

1. the Mach number Ma} and the
static pressure p, downstream
from the shock,

2. the pressure in the container peo!

(c) Sketch the variation of the Mach
number Ma along the axis of the
nozzle up to the point P for both
cases!

(d) 1. How must the throat of the dif-

fuser A, be adjusted, to maxi-

mize the testing time for a test
Mach number May, = 2.37

2. Compute the gain in testing time
for this case and compare it to
the situation that the wind tun-
nel is operated without a dif-
fuser!

2.11 Air flows isentropically (7 = 1.4) out of

a large, frictionless supported container
through a well-rounded nozzle into the
surroundings.

(a) Determine the dimensionless thrust
L for the pressure ratios
pe
e = 1, 06; 0.2; 0!
(b) How large are the corresponding val-
ues for incompressible flow?

2.12 An adiabatic wind tunnel sucks air from

the surroundings into an adiabatic con-
tainer (volume V). The Mach number
May, in the test section is controlled
by adjusting the throat Ay of the Laval
nozzle.

po=10°Pa; T, =300K; ~=14;

R =287 g—; V, = 400 m?®;
Ap =0.508m?; Ay =0.2m%;

slide.
valve, |
— Py
- /
. e - / | Ty
o - | v
A i K
. H A 1
T L I Ag
- 1
Y N i
- v
s AN _1

(a) the tunnel is started by opening a
slide valve and at time ¢t = ty5 a
steady flow has built up in the test
section. The Mach number Mag in
the exit cross section Agp of the
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Laval nozzle is at this time equal to
the design Mach number. Determine
the cross sectional area of the throat
Aj, of the Laval nozzle, so that the
Mach number in the test section
Mayy is Mayr = 0.8. How large are
then the Mach number Mag and the
static pressure pg in the exit cross
section Ap?

(b) Determine the maximum measuring
time t,,44, for which the Mach num-
ber in the test section is constant
Ma M = 0.8.

(¢c) A loss of stagnation pressure
Apo = 0.020p, is caused by installa-
tions in the test section. How large
is now the Mach number Mad), in
the test section, if the cross section
of the throat Ay, of the Laval nozzle
is the same as before? How has the
cross section of the throat A7 of the
Laval nozzle to be adjusted, so that
the Mach number in the test section
is again May = 0.87

5.1.3 Oblique Compression Shock

3.1 A supersonic flow is turned by the con-

tour sketched below by the angle 3.
Physical plane:

. Br < Pt

SANAN ! x

Sketch:

(a) the variation of the turning angle 3
as a function of the shock angle o,
and plot the state B in the physical
plane,

(b) the geometric construction for de-
termining the state B in the hodo-
graph plane (u, v velocity compo-
nents in the z, y directions),

(c) the flow field for 81 > Bnaa!

The velocity Vi upstream of a straight
compression shock is given by its nor-

m
mal component u,; = 400 — and the
s

3.3

m
tangential component u;y = 300 —.

s
Across the shock the static temperature
is increased to 1o = 1.2 T}

Determine with v = 1.4 and

R =287 Nm/kgK:

(a) the Mach number Ma; and the
static temperature 7 upstream of
the shock,

(b) the velocity components s and s,
the Mach number May, and the
turning angle 3 downstream from
the shock,

(c) the velocity components u,; and
for Ma; = const., so that May =
1. How large is the turning angle /3
now?

Air is sucked out of the atmosphere
through a supersonic wind tunnel into
a vacuum container (see sketch). The
Laval nozzle is designed for the Mach
number Mag in the test section.

p=10°Pa; T =280K; ~=14;
Nm
=287 ——; Ay =01m?
V, =1000m®; Map =23

large reservoir

During the test the temperature in the
container is 7, = 280 K = const. At
time ¢ = 0 the pressure in the container
is p,(t = 0) = 0.08 - 10° Pa.
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(a) Determine the available testing time 2
At (undisturbed flow in the test sec-
tion, Mag = 2.3).
(b) Determine the following quantities:
Shock angle o, turning angle [,
Po2, Mag, Ty, Ty, and the veloc-
ity V5 downstream from the shock
for the pressure in the container
Py = 0.16 - 10° Pa.
(¢) A wedge with nose angle 2 3,, = 40°
is mounted in the test section.
Mam o
P
P The flow is assumed to be two-
1 dimensional and inviscid. The pressure
in the atmosphere is given by:
hy,<<h ~
K M Pa ( z) B <1 v-1 >ﬁ
=|(l—-——az
How large can the angle of attack € be, Pa(0) A v
without detachment of the compression Rocket: py = 15-10° Pa;  Ap = 1m?;
shock? How large are the pressure dif- Agp=015m?* ~=14
ference p; — py, and the Mach numbers surroundings: p,(0) = 10°Pa; =14
Ma,, and Ma; for this case? 1
a=11-10"* -
3.4 Determine for the sketched flow field . .
(Mase, ho = const.): 1. Determine for lift-off:
(a) the Mach number Mag and the
pressure pg in the exit cross sec-
M g A tion Ag,
- ~ discontinaiy (b) the shock angle o of all shocks
- /**‘” and the Mach numbers down-
o stream from the shocks!
. (c) Sketch the flow field downstream
from the exit cross section!
Sketch the shocks, the stream-
lines, and the Mach lines!
Ma, =2; May,=18; v=14 2. What is the height of the design con-
R = 287 Nm dition of the rocket?
kg K
(a) the entropy difference As = s, — s,, 3.6 The flow in a two-dimensional super-
(b) the ratio of the velocities sonic wind tunnel is compressed by the
Vol /1 Ve, shock configuration shown in the follow-
(c) the density ratio p,/pp- ing sketch.
3.5 In the combustion chamber of a slender

rocket a steady state with the stagna-
tion pressure pg is attained after igni-
tion.

May =3; po/p1 =185 =14
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3.7

3.8

Determine the ratio of heights of the
tunnel hg/h; and the ratio hy /I.

Given is the detached shock of a blunt
symmetric body as sketched below.

Sketch the shock polar and the heart-
curve diagram. Plot the points 1 to 4 in
the diagrams.

Consider a two-dimensional curved
compression shock (see sketch). The
shock angles 04 and op are known
for the points A and B, the verticle
distance between them is A y. Deter-
mine (approximately) the vorticity of
the flow downstream from the shock for
the streamline in the middle between
the points A and B.

May =2; Ay=3cm; Ty=300K;
o4 =35° op=>55%

Nm
R =287 ——; =14

kg K7 ’7

Hint: Component of the vorticity in the
z-y-plane:

dv  Ou
vX'U = <%—aiy>k

Av_Au)
Ax Ay

Consider the shock as straight line with
an averaged slope between the points A
and B for the determination of A x.

5.1.4 Expansions
and Compression Shocks

4.1

4.2

4.3

The radial component u, and the tan-
gential component u; of the velocity are
given for a point P inside of a Prandtl-
Meyer expansion.

Uy

Ma.>1

wp =500 2wy =250 2
s $

Nm
kg K’
Determine:

(a) the Mach number Ma, for the

point P
(b) and the temperature T,!

R =287 y=14

vy

Derive Sz = f(a) for the sketched

Prandtl-Meyer expansion; a = speed of
sound.

V[‘/;’

The flow in the sketched supersonic
wind tunnel is accelerated from Ma;
to Mas by two Prandtl-Meyer expan-
sions. The first and the last character-
istic lines of both expansions are plotted
in the drawing.
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4.4

4.5

The flow is expected to leave the tunnel
parallel to the direction of the oncom-
ing flow. Determine the length of the
distances AB’ and AC’ and their incli-
nation to the horizontal line.

May, = 1;
y=14

Mas = 2.06;

hy =0.1m;

Consider the plane supersonic flow
sketched below.
P
May ©)
—— @ ﬂ? @ I’j,a
- B 1
ap
}_lJ
A4(11 = 25 ﬁl = ﬁg = 120;
pr = 0.541-10°Pa;  Ap = 0.304-10°Pa;
— 14 R—og7
7= o kg K
Determine:
(a) May, 0, poz2, and py,
Mag and ps,

(b)

(C) M ay, ﬂ3.

(d) Sketch streamlines, shock waves,
and expansion fans.

An oblique compression shock is ob-
served at the exit of a plane Laval nozzle
for the pressure in the surrounding at-
mosphere p,. The shock angle o7 is 40°
and the turning angle 3; = 10°.

Pe edge of free jet

Nm
e =02-10°Pa; R =287 —;
p a‘i kg K7
v = 1.4;
Determine:

(a) the Mach numbers Ma; and Mag,
and the static pressure po,

4.6

4.7

(b) the angle 35!

(c) Sketch the flow field for
Pa = 0.28 - 10° Pal

(d) At what surrounding pressure in the
atmosphere is a normal shock to be
observed in the exit cross section of
the nozzle?

A plane inlet diffuser of a jet engine is
so designed, that the front shock hits
the lip at a free-stream Mach number
May = 3. The center body has a wedge
angle of ;. The flow is decelerated in
the diffuser with a Prandtl-Meyer com-
pression to the speed of sound.

B3

. """”‘I_IIV

May=3; Ty =250K; ~=14;
Nm
Mas = 1; R = 287 ——; =
as 3 kg K’ /61
15°%;
l=1m; p, =054-10°Pa;
width b= 0.5 m

(a) Determine for the design condition:
L. May; pa; Ta; Toz; pos; and 22,
2. B3, ps, and the mass flow .

(b) How high would the static pressure
P3is. be for isentropic compression
from Ma; = 3 down to Mas =17

(c) At what free-stream Mach number
May. would the compression shock
still be attached to the center body?

A plane three-shock diffuser is designed
for the free-stream Mach number Ma,.
The compression of the air from “3” to
“4” (see sketch below) is enforced by a
normal compression shock.
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4.8

4.9

Ma;=3; Ty =300K; ~=14;
A=01m?% p; =0.5-10° Pa;
Nm
R =287 ——; =16°
kg K’ g
Determine:

(a) the static pressure py and the Mach
number May,

(b) and the mass flow ri through the in-
let diffuser.

(¢) How large would the mass flow
and the static pressure p4;, be for
isentropic compression from May
down to May?

The contour shown below decreases the

Mach number Ma; > 1 of the free

stream by a Prandtl-Meyer compression

down to Ma = 1.

(a) Sketch the flow field for Ma; and
for a Mach number May, with
1< May < May

,7/

Ha > 1 4
— -

(b) Sketch the supersonic flow field
about a flat plate at angle of at-
tack, (shocks, expansion fans, and
streamlines).

\

(c) Sketch the flow field for the given
wall contour with shocks, expansion
fans, and streamlines for 5 > (,,42-

Maz=>1

Ha > 1
—_— -

PSRN . LR RN

T

A plane supersonic jet is deflected with
a baffleplate. Sketch the flow field with
shocks, expansion fans and streamlines.

4.10 (a) Sketch the supersonic flow field
about the body, shown below, in-
cluding shocks, expansion fans, and
streamlines.

Ha > 1

Sketch the supersonic flow field
about the body, shown below, in-
cluding shocks, expansion fans, and
streamlines.

—~
o
=

Ha > 1

4.11 (a) Sketch the supersonic flow field over
the contour, shown below, including
shocks, Mach lines, and streamlines!

(b) Sketch the supersonic flow field
about a cambered plate, shown be-
low, including shocks, Mach lines,
and streamlines.

Ha > 1

—
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5.1.5 Lift and Wave Drag —
Small-Perturbation Theory

5.1 Consider the two-dimensional inviscid

ot

supersonic flow with free-stream Mach
number Ma,, about a double wedge
profile and a pair of profiles with the
same thickness ratio d/I.

double wedge profile

Ma, Zﬁf{%ﬁ_ - -‘,

Pt
Mas, = 2.5; 1 =12° [ =15°%
l=1m; d=0.24m;

14, R—o87 0
TERE ALK

(a) Sketch a streamline of the flow
about the pair of profiles somewhere
between 0 < y < h and indicate the
variation of the static pressure along
this streamline.

(b) Sketch the flow field about the
double-wedge profile with shocks,
expansion fans, and streamlines.

(c) Sketch the static pressure distribu-
tion on the surface of the double-
wedge profile.

(d) Determine the drag coefficient c¢p of
the double-wedge profile and for the
pair of profiles (approximately).

Fp
cp =
L bl
b = wing span

Air flows through a two-dimensional
tunnel with a velocity twice the speed
of sound. For reasons of reconstruction
the cross section of the tunnel has to be

5.4

widened and the flow be redirected, as
sketched below. Use the linearized the-
ory and compute the turning angle (32
and the Mach number Mas!

]Wal = 27
v =14

614 = 50;
R =287

0, = 10°;
Nm
kg K
Hint (linearized theory):
Ap _ Ma? AB

b1 JMa?2 —1

The contours of the upper and lower
side, y,(z) and y(x), respectively, of
a thin airfoil profile with h < ¢ are
given. Derive the expressions for deter-
mining the lift and drag coefficients ¢,
and cp for supersonic free-stram condi-
tions with the linearized theory!

Show, that the lift coefficient c¢; de-
pends only on the free-stream Mach
number and the angle of attack e.

Yo[)'!]

yulx! €0

Air flows through a two-dimensional
cascade. The lower side of the blades

are flat, the contour of the upper side is

given by the relation ¥ = % cos(§ 7).
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5.5

t
D

v/t
h/t
0 1 %/t
Mo %z“
—_—
s/t

Mas =3;  peo = 10° Pa;
v=14; h/t=0.05

width of the blades: b=1m
chord: t = 1m

Determine with the linearized theory:
(a) the spacing s/t such that the blades
do not interfere with each other,

(b) the pressure coefficients ¢,, =
cpu(z/t) and ¢y = cp(x/t) for the
upper and lower side of a blade and
sketch their variation,

(c) the forces F, and F,.

Use the linearized theory and compute
the ratio of lift and drag coefficient
¢r/ep for a profile with angle of attack
€, and thickness distribution for super-
sonic flow with Ma,,, as sketched be-
low!

)f.,ﬂxi:clsm[-r'ix]

Eo;:;
M

[+

Given: Mas; €; a; by t

Consider thin, two-dimensional profiles
in supersonic flow at Mas,. Determine
lift and drag coefficient with the ap-
proximation for slender airfoils.

2412 28Ixs1 = 1P

M. o
® —= o : :
™ 2 12 26 [ 1= N
212 L8l x /1121

" o
® —— tﬂ#z% -
1

= tzs1=0
D, 2wk [ - (A Le 11 x sl g
Ma,, -
@ .
-l 2/ (1 nille, ; £,=3°

Masw =v2; 6=D/l=01

o

T

5.7 1.) Determine the drag coefficient ¢ of

the double-wedge profile, sketched
below, for inviscid, two-dimensional
supersonic flow without any approx-
imation.

4-010m; =14

2.) Determine with the linearized the-
ory:

(a) the pressure coefficient c,; on
the front and rear part cp,
and the drag coefficient c¢p for
Mas, = 3;

(b) the lift coefficient ¢, and the
drag coefficient cp for an angle
of attack € = 5° (Mao, = 3).

5.8 An airplane flies in level flight at a Mach

number Ma; and an altitude H; (static
pressure p;). Lift and drag are gener-
ated by a wing with a thin double-
wedge profile at an angle of attack ¢;
and a thickness ratio §. The airplane
climbs to an altitude H, with the static
pressure po and flies then again in level
flight.
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May =2 e =22
p2="5 =14
Determine for the altitude Ho:

(a) the angle of attack eq, if the Mach
number is kept constant (May =
M ay ),

(b) the Mach number Mas, if the angle
of attack remains unchanged (e; =
€1; give reasons for the solution),

(c) the ratio of drag and lift F)p/Fy, for
the wing,

(d) the ratio of the necessary propulsive
powers P,/P, (T = const.) (P, =
propulsive power for May; = May,
see part a), P, = propulsive power
for €5 = €1, see part b),

(e) the ratio of the energies W, /W, nec-
essary for the same route of flight
(notation same as under d).

§=49=0.03;

=

5.1.6 Theory of Characteristics

6.1 (a) Under what angle  are characteris-
tics reflected at the edge of a jet?

characteristic curves
;

(b) Discuss, how the flow direction is de-
termined at the edge of a jet and
how the Mach number is determined
along a rigid wall.

6.2 A plane jet impinges on a concave wall
(see sketch below).
The flow is assumed to be isentropic.
The Mach number downstream from
the characteristic line 4-5 is supposed
to be constant.
Determine the turning angle 53 and the
Mach number Maz for the point P!

edge of free jet

6.3

6.4

6.5

In the flow field shown below the line
OA is the first, and the line OB the
last charakteristic of an expansion fan.

egde of free jet
» ! A

May =2; poo=10°Pa; |3 |=10°
S 14 R—os7
Determine:

(a) the pressure and the Mach number
for the point C,

(b) the slope of the streamline for the
point E.

In the flow field sketched below the line
01 is the first, and the line 02 the last
characteristic of the Prandtl-Meyer cor-
ner in the point 0.

Puo edge of free e

Maw, =17, |B|=T°
Nm
=14, R=287T——
¥ ; e K
Determine:

(a) the direction of the flow in the
points 2 and 6,

(b) the Mach numbers in the points 3
and 4,

(c) the angle v and the pressure ratio

Air flows through a plane symmetric
nozzle, the contour consisting out of
two circular sectors, isentropically into
a large container (see the following
sketch).



5.1 Problems 199

6.6

Mao = 1.34;  poo = 10° Pa;
A ps = 0.98 - 10° Pa;
Nm
=14; R=287——
2 ; ke K

(a) State the differential equation de-
scribing the two characteristics as a
function of the flow angle 8 and the
Mach angle a.

(b) The region ABCEA is a simple re-
gion. Prove that all right-running
characteristics in this region are
straight lines!

(c) Determine the Mach number at the
edge of the jet and the angle v be-
tween the edge of the jet and the
wall!

(d) Show that the flow angle 3 down-
stream from the point D first has to
decrease!

Air flows through a divergent two-
dimensional channel with straight walls.
Along the circular segment with radius
r* the Mach number is Ma = 1.

characteristic

Determine for v = 1.4 :

(a) the Mach number Ma, for the point
A with the method of characteris-
tics,

(b) theratio r4/r*(r4 = distance 0—A).

6.7 Consider the flow field sketched below.

May; 0, AMa

Determine the Prandtl-Meyer angle and
the flow angle in the points 1 to 3.

6.8 A plane jet (Mas = 3) is symmetri-
cally turned by a wedge with nose angle
23 = 28° (see sketch below).

F

£

RIRIRE

M(Ig, ﬁ47

Determine [s, May, and

May,!

5.1.7 Compressible Potential Flows
and Similarity Rules

7.1 Reflexion of Mach waves

LLLLL e
Ma.
h= Jﬁ1_|' — =h
[+ Y1 G‘
7 177V 772 ]

Determine the pressure coefficient
¢y(z,y) for 0 < x < 2 for the lower wall!
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7.2 Consider a supersonic flow in a wind (a) Formulate the solution of the lin-
tunnel . The flow is turned by the angle earized potential equation for the re-
€ in the point A. gions I and II!

. (b) State the expression for the pressure
coefficient ¢, and the boundary con-
dition at the edge of the jet for the
region II!

(c) Determine the angle § as a funcrion

Draw the streamline through the point of !

B, based on the linearized theory.

7.3 Supersonic flow flows through a cas- 75 A two—dimens?qnal superS(.)nic. flow .is
cade, consisting out of thin flat plates turned by a rigid _Wau as 1.nd1(:ated m
at small angle of attack e. the sket'ch. The discontinuity surface,

marked in the sketch, separates two flow
regimes of equal pressure and flow di-
rection, but with different velocities.
Ma 1
e 3
By
line of (Il\:c:nlmulty s \ 5 _-’_
—

Formulate: pio 0 v Ma May;

(a) the solutions for the linearized po- May >1;  Map > 1;
tential equation May # Mas;  ps = pe
(Ma2, — 1) ¢ur — pyy = 0 for the Determine the turning angle of the flow
regions I, 11, and III, 0 and the static pressure pg with the lin-

(b) the boundary conditions for the po- earized potential theory in the region 5.
tentials in the regions I and II! Hint: First formulate the solution for

the perturbation potential and the
Determine: boundary conditions in the regions 3,

(c) the potential function ¢(z,y) for the 4, and 5.
regions I, I, and III,

(d) the magnitude of the perturbation 7.6 For the incompressible flow about an el-
velocities and the direction of the liptic profile at zero angle of attack, the
outflow in the region III! relation below describes the dependence

of the maximum velocity along the con-

7.4 Consider the flow field sketched below. tour, (Vinaz), on the free-stream velocity

edge af froe jet

Uy, and the normalized thickness §:

Vmaz

—1+44
U

Determine the free-stream Mach num-
ber of the compressible subsonic flow, at
which locally the speed of sound is at-
tained on the surface of an ellipse with
0 = 0.25; use the following diagram for
the solution.
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7.7

7.8

0
h=]
—-—
[ o

0
1} 0z o4 08 0z 10

—= Mag,

Consider a transonic flow at Ma; =
0.95 about a wing section with the rela-
tive thickness §; = 0.05. The minimum
pressure on the contour is measured to
be cpimin = 0.3. Use the von Karmén
similarity rule and compute the relative
thickness d, and the pressure coefficient
Cpomin Of a second wing section for a
free-stream Mach number Ma, = 0.9.

The critical Mach number of a thin
wing section is Maoeris. = 0.7. The lift
coefficient measured at this Mach num-
ber is ¢, = 0.3.

¥

Ma .
—_—

Pe 0 1 xt

Poo = 10° 1I\DIa;
m

R =287 kK

(a) Determine the lowest local pressure
on the contour and the critical pres-
sure coeflicient cperiz..

(b) For what free-stream Mach number
Masp is the sketched pressure dis-
tribution measured with the same
wing section?

v =14

Cp

1,0 4

-— -0,65
057 /_\
0

“ x/t

0.5

7.9

(c¢) Determine the lift coefficients
CLcomp. at ]\/[aoo c = 0.4 and Caine. for
incompressible flow!

A model experiment is carried out in in-
compressible flow in order to determine
the pressure distribution of a compress-
ible flow over a cambered wall.

What similarity rule

¢/ Cpine. = [(Mas) should be used for
the application of the results of the
measurements and what geometric di-
mensions L. /L and H;,. /H are de-
termined for the model?

Use the solution of the linearized poten-
tial equation for compressible flow and
a sinosoidal wall:

2w d/l
V31— ]\/[aooz

. 27
X szn< ] )

with d = maximum amplitude.

6—27ryH A /l—M(sz %

Cp

7.10 1. According to the linearized theory

for plane flows the following similar-
ity rule is valid for bodies of the same

family:
d/t
& _ const., if % =
A Ay Ma2, — 1]
const., and A arbitrary.
Y
M0, AL
o 0+ L LT Ty -

Determine A in such a way, that
the transformation of the body con-
tour is identical with the coordinate
transformation

x = const; y /| MaZ, — 1 | = const.

What similarity rule is obtained?
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2. An equivalent formulation of (1) is

/| Ma2, —1|
djt

= const.

(a) Derive the corresponding similar-
ity rule for the lift coefficient ¢!
(b) Show, that the relation

di/t = const.
is valid for supersonic flow, if €
designates the angle of attack!
3. Name three classes of flows, fo which
the above similarity rules are not
valid!

7.11 (a) An airfoil with thickness ratio
0, = 0.1 generates a lift coeffi-
cient ¢y = 0.325 at May; = 0.6.
At what free-stream Mach number
Masy is the lift coefficient cro =
0.377

How large is the thickness ratio d; of
a wing of the same family for incom-
pressible flow, if its lift coefficient
CLine. = cr1 for Mag, = 0.67

=

7.12 An airplane generates its lift with a
thin wing with a double-wedge profile.
It flies steadily in level flight.

A. Assume linearized plane supersonic
flow (Ma > 1):

1. The lift coefficient is ¢,; = 0.1
at the free-stream Mach number
Mas1 = 1.5. Determine the an-
gle of attack €; of the wing!

2. The Mach number is increased
to Mays = 3. Determine the an-
gle of attack e and the drag co-
efficient cps!

B. Linearized plane subsonic flow

(Mas < 1):

3. How large does the lift coeffi-
cient c¢r3 at Mags = 0.75 have
to be? How large is the drag co-
efficient ¢ps at this free-stream
Mach number?

4. How large is the lift coefficient
crs for the same geometry (e
= const., & = const.) in incom-
pressible flow?

5. How large do the ratios 0sipe /0
and €5 /€3 have to be in incom-
pressible flow, so that cpsine is

CL5ine. = CL3”!
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5.2 Solutions

5.2.1 One-Dimensional Steady Flows
of Gases

1.1 (a) Law of thermodynamics for steady
processes

u3

Ae> Agz+ A 2

+al

p
In compressible flows internal
energy is transformed into ki-
netic energy, potential energy,
and compression work.

Ae=0

The internal energy is constant
in incompressible fluids, which,
for thermally perfect gases (e =
f(T)) implies a constant temper-
ature. There is only an exchange
between mechanical energies.

Ma = =20

;

YRT

aiplane

L = i
tan o
tan (572)
a = arctan [ —
Ma
= 1001 m

A= 2
a
H
cosa = —
S

At = 1.96s

prior to flying over the observer.

1.3 (a)
*2
ol = c,,T*+a2
a? = YRT
YR
C. =
P P
T* 2
— = —— =10.833
T() ’7+1

Ma — oo T7—0
uZ,
CPT[] — maxr
1
lim Ma® = 252 945
Ma—o0 ’}/—1
1.4
steady wave front
/ /
<
P B p+ Ap
p P p+Ap
" : i u+ Ag
b Ll h+ Ah
pu = (p+Ap) (u+Au)
= udp=—pdu
p—(p+A4p) = (p+4p) (utAu)?
pu
=2pudu + uldp=—dp
d
> = 2

dp
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u3 1 9
h+?:(h+Ah) §(u+Au)
= dh+udu = 0
Tds = dhf@
P
d
with udu = _®
p
=Tds = 0
=2 = <@> =d?
Iy
1.5
A=
(v —va) tana
Mag = 2: «a=30°
At 1.73 s
1.6
l: u + du
/ p + dp
p+dp
_____ /_ldx
_———-7‘—%—
v
A v
d(pu®) = —dp — pgdz
d(pu) = 0
du 1 dp
Su- = —— — —
udw p dx
oo
dp
N du+a2 dp
u—+——= = —
o p dx 9
Cdu Ma?
Yz Maz—17
with u >0 dx > 0 it follows for
a) Ma<1 du>0
b) Ma>1 du<0
1.7
w?
hg:5+cpT = const.
Y

w2 ~ a2 ~
—+ ——RT = RT™
2 +771 2 +A/ 1
2 2 1 1
I Sk 3 G
2 y—-1 2~v—-1
y+l
Ma* = ey
I+ ~—1 Ma?
1
= lim Ma? = 17
Ma—o0 '\/71
1.8
A _ p*a/* p* _ <T*>7£1
A pu p T \T
A <T> 1
A+ \T ) Ma
w2 a2
cpTJr? = I" + 5
T* 1+ 25t Ma?
= — =
T 1+ 251
After problem 1.7
1
Ma*? = Lz
Y1+ g2

y+1 B
71+ v

A <1+”21M(12>v11

-1
L+5

Wl

1.9 (a)
8maz = p*a* :&* E
pao  p VT
2 \7T [ 2 \?
-+ 1> 7+1
2 ey
3(7—1
Qmaz T
y+1
(b)
a* T+ 2
Qmaz =\ =
UOmar) = o=\ =51
()
2
u
WQLaz = ¢ T[) = jRTg
Umaax 2
Umaz = =
ap y+1
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1.10 (a)
pray Al = pya; Ay
T =Ty = aj=a;
A*
=2 = Dot g
Al Po2
(b)
As As
f =2 j; May < 1

= May > May

M A2maz =

(...~ % ()
A maxr N A max

= ]\/[alm,a.l' =

.
3|2

.O[\.’MH:B

w

1.11 (a) Momentum:

F = yp.Ma*A

F o
= — = 'yp—JWQZ
Apo Po

Energy:

1
=2 Ma?

2
)
p
2y pa>
= = ——° [Z2).
Apo v—1<po

()7

= 14+

RIESIES TR

1.12

incompressible

(i) _ 2p0 — Pa
ApO ink Po

I (i) A (i)
Apo Apo ) ik Apo

= 0(é)
Table of solution in the Appendix.

2
u
CpTU = CPT-Q-?
YR
C = —
P ,y_l
T v—-1 -1
— = (L— Mda? 1)
T ( g et
2 - ()
Po To
1
-1 =
- (LMaZ’H) ’
2
P (T EEn
Po To
1 =
= (72 Ma2+1>

LA o503
Ay = 0.593;
2. P2 _ 198,
Po
T
?f = 0.556;
;UL A
Pelie —0.593
prur Ap
m _pu
po ag A Poo

2=

ro_ (2)
Po Po



206 5. Exercises in Gasdynamics

2 2 2
u a ag

2 +’y—1

=4 =

critical state

Ma, =1
k. 2 %
on = Tnm ()T
Do v—1
= 0.528-10° Pa
(a)
Pe 0.7 > 0.528 = subcritical
Po

Vl (1—<z:>”’)

Pe 0.2 < 0.528 = supercritical
Po
pe = p'
1 v+l
2 7—1
= RTy A,
" RT i ( ¥ 1)
k .
= 4672
S
) .
PaZorc | }
0573 I <
I
ONE
o ;_’-,0‘523 ' %
Pe P

m

= = const. = 0.579
poaoAe
o7
Po
mm Pe
= = [=
poaoAe ( 0> Y-
- (&>
Po
with
Pe — po:Ma—0;

P = pPo
[2
Ue R - (P() - pc)
p
m [ Pe
= ~ 1——
po ag Ae Po

1.15 (a) for: pg = 7.824 - 10° Pa

Po kg
= po=——- =947 —
Po RTO m3
(b)
po = 7.824-10° Pa; Ay = A%

Ma = Ma =1

P 0528 = py =4.13-10° Pa
Po
P kg

= 0.634= py = 6.00 -2

0o m3

T*
Ty
ug =a* = \JyRT*=310.5 =
S
. k
me = ptat A*=0.186 -2
S
PE = 10‘) Pa
= PE 01978
Po
Map = 2; May=1.63
PE_ 0.230
Po
kg
Tk
ZE 0556 = T = 160 K
Ty
up = Magap=5071 2
S
k
mip = m* = 0.186 —g
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(a) for: py = 1.064 - 10° Pa

k
129 -5
me

= po =
(b) po is only slightly higher than p,

= Subsonic flow in the entire noz-

zle! The throat is no longer a special
cross section!

AF; . pj =

Po
= Mag =0.3; May, =

0.9398
0.326

with isentropic relation

Lo const., it follows:
p'Y
PE_ 0.956
Po
K
= pp=123 =
m
Tg
B .982
To
- Tp=283K
up = 1012 2
S
k.
mo= 21-1072 28
S
Ay # A*
A*
Lo PP 499
Ap Pyar
A*
;o
o= 0
= May = 0.59; Maj =0.62
Po 96
PH

= py=0.79-10°Pa

Isentropic condition:

k .
109 "5 Ty = 269.2 K
m

PH =
k
up = 194 2 g, =2.1.1072 28
S .
1.16 (a)
U2
ho = const. :h—&-? =y
pu = const. =4/C}
C
= h4—= =0

2p?

(Tds)p = 0= (dh — az@)P

p
dh = 2@
p
d
:>(uf,fa2) (7/)) =0
PJp
= Ma = 1
274 and 37¢
|
h Ma<1
—
P({Ma=1)
I
/ |
|
Ma=1 |
t
Smax E
1.17 (a)
pu = const.
pu2+p = const.

(pu)?

Ma<1

EAN

w0

5l'l'|CI>(
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5.2.2 Normal Compression Shock

2.1 Continuity equation: uip; = uspso
Prandtl relation : ujue = a*
Uy u%

P2 T e
pr uy a*

1
= <@> =Mal, 2 = v+l

P y—1
2.2
U U a*?
*2
a Uy m
= = = 3 192 —
b ui  Mai? s
2.3 (a)
(75} Uy
Ma = — = =
“Ta T VARG
Lo pom
Po1s

= po1s = 3.67-10° Pa
Tors =425 K; pos = 2.45-10° Pa
Ty, = 387 K; poos = 3.4-10° Pa
Toos = Tois

Ma, = = 0.7328

Maj,
= Mays = 0.71

Ups = Mag, \/ ’YRTZS

= 280 2
S
(b)
UIR = ]Wam =0
poir = p1; Tour=T
Par = Das; Top = T
m
Usar = U_u25:235 —
S
= Masy = 0.596
= 2R 18
Po2r
= poor =3.14-10° Pa
T:
R = 0.94 = Tyop =399 K
To2r

1.5

2.4 1) Coordinates moving with shock:
Index “s”

D2
P
u

2) (a)

= 102= Ma;s;=3

Mayo/vRT) = 1042 2
S

Mas, =

= May, = 047
T
T2 = ?Tl = 795 K

Uss = Maggy/vRTS

T
Ma,, = 1.37= Ti =0.72

0oco
= The = 1104K
(c)
Pose = P20, = 309 10° Pa
P2
2.5

u? u?
CpT1+ 21 = CPT2+?2

up (v+1) ]W‘ﬁ

u 2+ (y—1) Ma

c, = 1R
(o
hon _ 0D
27 R
= 1979 K
2.6 (a)

A A3 A A
@:%:J f£:3_04
Po2 A7 Ap A7 Aa

(b)
Por 304
Po2
=Ma = 3=2-10

P1
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(c)
Ps _ PB Po1 Poz _ 276
pPa  Po2 PA Po1

2.7
m=p v A = Lpl May A
RTy
P |
! e
- J“'IHJ I
| T |
| SO
| i
- |
pvi A= (pg—p1) A
1
Ma, = |- <@ — 1>
7 \P1
V2
Ty = T+ El
Ty
T = — 2
L LM
k
mo= 141 -2
s
2.8 (a)
]\/[aEdesign 2.3
= PEdesign = pjpo =0.08 - 105 Pa
Po
Ay A*
- = 0.456
Ag Agp
(b) Subsonic flow in the nozzle
A*
— = 0.456
Ag
=py = 2Zpy=095-10° Pa
Po
Mag; = 0.28
(c)
_ Duv2 o 5
Pv2 = PEdesignl = 0.48 - 10° Pa
PEdesignl
/d)
Ap pp uf (po —pp) Ap + F
Apppuy = ApppyMaj,
Pv = PE

1.
FSdcsign = Ab PE design X
X"/AIG’QE design
= 13N
2.
Fsqu = Ag PE2 UE2
2
u PE2
= Ag 242 —PE2
ufy " g
1
FspvQ = FSlW:ZLQN

(e) for isentropic flow pg = px

Per/ P,

Pez’ P

29 (a)
P 1387
PoEa
A*
= Mag, = 2= 1= 0.593
1
m=pA'v = p'yA"Ma —
a/*
= —poyA" x
1
R%TO
= 0.0242 ké
s
Pka — 0.895
PoEa
= Mag, =04
(b) see (a)
k
o= 0.0242 <2 Mag, = 0.32;
s
A*

= 0.77
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N o I‘—-____
(e)
Ag  ApApg
A T A A, 0.507
= Ma> = 1.71 = Ma’,®> = 0.585
A*
2 Pu_ g5
Ay Po2
A2 Al
2 _ AMAn_ oo
Ag Ap Ag
PE 5
pE = —po2 = 0.538-10° Pa
Po2
2.10(a) 1
M(IE = Ma]u:2.3
Spy = PPEL048.10°Pa
PE Po
(b)
A Ap A*
el A 2} A —0.8
Ag Ag Ag
= Ma} = 1425= Ma,=0.7
pe = PP 0.66.10° Pa
P1 Po
2.
A _ M An oA
Ag Ay Ap Po2 Ap
= 0.511
= Masr, = 0.311
DPr2 Po2
P2 = ——Pon1
Po2 Po1
= 0.82-10°Pa

2.11

M

___T_}?“ _
Fal] \
7 oo

Aam
m
= (pvmax_pvl)Tiv
= 0.95
= 585 kg
o
= A = AH7ITOPO
VBE T
k
= 2415 8
s
= 2422

= (pa—pe) Ap + F,
= QCP(T()*TQ)

YR

~y—1
ﬂ&(l_ﬁ)
v—=1po Ty
Pa | Pe
Po Do

P\ (p\T
(po> 7(?0)
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F, 2y (m)i (c)
po Ap =1 \po Al Pa — 0.02p,
’7/+1 Pe Pa 4, = ., =098
— j - — T AL Pa
Y Po Po A/L B A/ Ap — 0.944
7 - A AL AM ‘
subcritical : po = p, = Mady, = 0.76
supercritical : = p* Al
P p P L = 0963
= 0.528 py Ay
Ap A
A/ _ 2L '
0 (see problem 1.3) L AL Ay
= 0.197 m?
F, = Pe 'U(% Ap
2 - Ma
vg = % 5.2.3 Oblique Compression Shock
L 2 (1 - @> -
pU AD po B weak | strong
solution
pg A Blnau-
% d LO]Ilp ‘ l]lCOIIlpI' "al: monts
1 By
0.6 0.66
0.2 1.07
0 1.27 G, e S
2.12 (a)
A 0.963
Ay
A*=A; = 0.193 m?
A*
= 0.38= Map =25
Ag
P PE _ 0585
Pa Po

=pp = 0.0585-10° Pa

A e ]
tmaz = m7 Te:T[J:Ta
m
Ve
= maxr t =1 .
(pe pe( 0))mRTK 3.2 (a)
K May sinc = 1.32
. & * g n
m=Ap'u* = 45 = o = arctan 1 = 53.1°
A Ut1
L
— = 0.3793 - —
AL Ma, = a = 1.65
= Map(t = tyma) = 0.23 =T, = 2285K

= pp(t =tpaw) = 0.96-10° Pa
:>tmu:l: = 93s



212 5. Exercises in Gasdynamics

(b)

Utz = Unl
Maysinoe = 1.32 = uy,y = 259 u
s
Ma} = 1.45= Ma;=1.16
May = 1.2; [=12°
(¢) Shock polar
Dl 128 M 0.69;
a a
3 = 15°

T*TO m
Y= (YR T =344 —
a "YRTO T1 1 3 S

Sy = 440 o uy = 2374 &
S S
3.3 (a)
A= 2
m
; . kg
m = p‘Agut=24.15 =
S
%4
A = = cemax — Pu t=0
m RT, (P po(t =0))
Pvmax 048 . 105 Pa

(normal shock in exit cross section)

= Am = 497.6 kg = At =20.6 s

v = PEpy=0.0810° Pa
Po
=P 9o Magsine =1.36
PE
=0 = 3625 f=11.5°
Po 0165 = Mas = 1.83
Po2
T2T1
T, = 22217 167K
2 T] To 0
Vo = Magas =474 2
S

(©)

Bmaz(Ma =2.3) = 275°
= €maz = 1.5°
Boy, = 12.5° = oq, = 37°
= Magsinog, = 1.384
By = 275°=0,=062°

= Magsino, = 2.03

3.5

(pu p()b>
——— |PE
PeE PE

Pu —Pob =
= 0.22-10°Pa
Mag, =1.55 = Mag =1.85
Ma; =092 = Mag =0.94
(a)
As = Rln <@>
Pob
_ Rin (@&)
Pa Pob
A 88.62 —J
Pa = Db; s = .
p Py ke K
(b)
Ma, |T,
Vol /I Vol = S204/5
Val /1ol = i[5
_ Ma, |T, @
B ]Wab T()a Tb
= 1.063
(Toa = Tw)
(c)
P _ Ty g9
Pb T,

An

—— =0.15= Magaus. = 3.5

Ap

Pa(0)

PE
= Magsino;

=0
May,
= Maj

= A[(ll

B2 =M
Mas =12

5.13

2.12

37.3°

2.06

1.71

(B =22°)
2.2

oy = 53°
May =1.25
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(c) 3.7
X
]_-\_'-‘
‘:-'_3__“'“'&
| 2 ~
1 u
L
P,
<
-
N
|
|
N
2) (a) A j
pa(z) = PEdesignl p max B
= 0.195-10° Pa
a1
PEdesignl v
z = 1-— X
{ ( Pal0) ) } 58
b 2Ay
— ANp = ==Y
(y=1Da * tanoa + tanop
= 11.9 km = 2.8 cm
Ma; = 1.63= (4 =5.5
3.6 Bp = 21°
viprhy = wv3pshs = Ma}, = 154; Mag,=1.13
- * T*
hy _ Maip @ = \YR-T, = 31694
ha Maj ps T s
22 _ g5 var = Maj,a” sinf3
A = 4678 2
= Ma;sino; = 1.5 s
=0, =30°, Ma = 1964 ug2 = Maj,a” cosfBa
m
= [=13% Ma; = 1.78; = 485.84;
May, = 24 vps = Map,a® sinfp
Ma3 =156, o = 37° — 19835 ™%
= Maysi = 1.4 L
Gg%lﬁz’; ups = Map,a” cosfp
= = 175 m
P2 = 334.35 —
P P1 P2 S
— = ——=0.309 1
P3 P2 P3 = Vxv=-790—
hs 5
— = 0.389
hy
hl *hg hl 1- %&
t = = — 1
anf 2 I 2
h 2t
= B _ o756
l 1—ls
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5.2.4 Expansions
and Compression Shocks

4.1 (a) r is a Mach line

Ut

tana = — = a = 26.57°
Uy
1
Ma, = - =224
sin av
(b)
Uy = Gy
u
=T, = —==155K
P ,YR

4.2 P.-M. flow = plane, isentropic flow

=rotV = 0
W= D)
ob ot ?
Ovg  Ov,
Sty "o =0
Ovg o,
W—Oandz@ = a:>a¢—a

4.3

vs=wv1+2|6]; v3=28 1 =0°

= [ =14°

ve =uv+ | B |=14°

= May = 1.57; g = 39.5°

Conti: a* h p* = AB uy py sinay
A h

A ABsin ay

= AB=0.192m

= 0.82

(b) P.-M. flow = isentropic flow

= Po2 = Po3 = Poa

v3 = vyt | B |

vy = 26.4° = v3 = 38.4°
= Mag = 2.47

ps = L3 p0s = 0.546 - 10° Pa
Pos

- A
by P3— AP 0.0273
Po3 Poa

= May = 3, vy = 49.8°
ﬁ' ﬁ ‘: vy — V3 = 11.4°

£1=10% o7 =40°= Ma; =2
Ma™ =144; By=p
= Maj=1.2; Maz=1.26

2 )
=Py = 0.11-10° Pa
Pa

AC =2 ABcosas = 0.296 m B3 = vi—13
6A3:a2—ﬂ:25.5° p74 — &&7
o DPos D3 Pos
dac =0 =14 Pos = Pos; Pas=DP2=DPu
May; = 1.62; o9 =051°
14 (a) = ? = 1.69
2
May =25, B =12° =p; = 0.388-10° Pa
=0 =34% May=2 P2 _—0096 Mp‘fﬁ = 126
Do P P =2 = 038 »y=51°
pos = 220y, = 8.87-10° Pa Pos
oL P1 = P 095
Dos

po=L2py =113 10° Pa
2

Po

:>Ma4
= 05

1.63; vy =15.7°
10.6°
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(c)
p{LC — 2'5
p1
= Maysino; = 1.51
=0=49°% p = 17.5%
May, = 1.32

(d)

= /81 > ﬂmaz(]w-az) = 7°

= Mach reflexion

2.
IJ3:0 = V27|ﬁ2|
= [y = 33.02°
By =0s— 1 = 18.02°
p3 = Epoz = 9.36-10° Pa
Pos
m = wuypp bl tanoy
k
= 23248
S
(b)
_ Psis 5
P3is = —po1 = 10.48 - 10° Pa
Po1
(c)

Maymin(61 = 15°) = 1.62

(e)
Maysino =2
P = 22p, = 0.5 -10° Pa
Y41
46 (a) 1.

Maj; = 1.96; [ =15°
= Ma; = 1.73; o0=33°
= May, = 2.25;

Ma,sine = 1.634
D2
b2 = —p1
V41
= 1.57-10° Pa
T,
T, = =T
2 T1 1
= 350 K
T
Ty = Ty = T =700 K
T
DPo2 Po1
Po2 = ——
Po1 D1

= 17.71-10° Pa

po = 2 =19.84-10° Pa
V41

Po2

A <@>:0.1134

4.7 (a) from shock polar
Ma | Ma* | 8 o | Masino g
1 3 1.96 | 16° | 33.3° 1.65 3
21221 1.72 | 16° | 42.4° 1.49 2.41
31159 | 142 0° 90° 1.59 2.77
4 1 0.67 | 0.71
— PPz, 10.03.10° Pa
P3 P2 P1
(b)
m = p4’ll4A
= P Ny JyRT, A
RT, 4 4
v Ty
= pyMay (|- 2120
PN R T T,
k .
— 169.9 -2
S
1.
pus = AP —13.56-10° Pa
Po P1
- k
e = Pl — 9097 58
P4 S
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4.8 (a) 4.10 (a)
f
!
Ma=1 //
1<Ma;<Ma, i
(b)

|
|
4—%
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5.2.5 Lift and Wave Drag —
Small-Perturbation Theory

(d) Table of solution in the Appendix

Pair of profiles

CDp
Fp

= Cp

D1

Poo
Po3
ps

P

2Fp
VP MaZ lb
(p1 — p3)db

2 ( P
WJV[amfty Poo
0.016
2.1

= Poz2;

D3 PoaP> P

Po3 P2 P1 P
1.8

Double wedge

Fp

= Cp

(p1 — py)db

2 1
YMaZ, \Poo

Py

P

)

")

d
I

5.2

5.3

p_pg
Po

= ]\/{@2

P
Poo
Doz
Py

P

Ps— DN

P2 —Pp3

p1
P2 P1

P
Ps—D

P
D2 —Pa

p1
P2 P1

= 20, — 0
=

VMa} -1

0.096
2.1

= DPo2;

Py Por P
Po3’ P1 Po
0.345

yMa}

VMa? —1

= K(_((So - 5))

= K(3-2,)

= Ko,

= K(_(ﬁ - (5u))

= K(25u _ﬁ)

= 57250

= 0,40, =15°

yMa?

= 0.0918
2.22

2 (dy
Cy = —e——
4 /Ma2, —1 dx

Cpl

).

1 gt
c, = ;/O(cpl—cpu)dx
de

2

JMaz -1

(o)

dy

dx

(5u - 50):|

,4414(@>
JMa2, —1 dz J,

)

2

l

_Lp dy _dy
o=y fom () o (-2 J o
1t (dy ’
[ J(m)ﬁ(

- Ma2 —11

}dx
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5.4 (a)

. h 1
; = ?] + tan (arcsin ZWa1> =04

(r) 2 dy
Cul =) = —m— | -=
"\t Md3 —1 \dz ),

T h . <7TL>
———————sin(-—
VMa2 -1t 2t

<JL> 2 (h)
Cpl| — = —F— | —
"\t JMaz -1\t

Cp
[+
op, = 0.035
¢ %,
\'\1_
-0DsEf — — ==
a:pu(x/il
-
(c)
F, = c,bt Po uzo
2
1
= 30 bty Ma? ps
4h
¢, = ——t—u =0.0707
VMa? —1
= F, = 44.55kN
1
F, = 3 cp bt"/Ma%poo

2

cp = —F———X

Y JMa2, — 1
(% SNEAY i(%)
Jo | \dx N dl“l t

= 0.004 = F, =2.52 kN

5.5
4 €0
Cl, = —F7————

2

CD:\/WX

5.6

5.7

1 rt|(dy ’ dy ’
24 - i i e
2e” + " /0 {(dz)u + <d:c>l dx

X
4 a? + b? (7‘1’)2
- + Z
YMa2, -1 \/Maz, —1\1
Cr, 460
P 2
04+ (a2 +12) (3)
460
c;, = —F—
VMa2, —1
4
cp = —F/— X
VMa2, —1
— (dd(=x)\’
X 24 2
60+65(1‘)+< i )
cpt = 0;
6., 1
cpp = — 0 ——=0.05
30 L1
cra = 0;
cps = 0.11 =2cp,
Cry = 021.
4 8 4 9
cps = 7<7(5 +e)
JMaz, —1\3°
= 0.12
(a) 1
Cp = (1—]2> X
Y41
w2 d
Doo Y Ma?, t
P 908,
Poo
po_ Ppn
Y41 Po2 P1
Ma; = 245
v = v+ |fi+ G
= 52.9°
= May, = 3.18
P2 0.024;
Po2
2L 0.0603
Po1
P2 038 = ¢p = 0.0204
V41
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2.
2t
o = WA _ 195
Ma2 —1
2tan 3
M7 0.0494

= a1

d
cp = (1 — Cpg)z =0.0174

4
o = ¢ 01237
Ma2 —1
4 ¢
CD = CDa) +
Ma2, —1
= 0.0282
5.8 (a)
4e
F, = poo'yMa:‘;ko;
Ma2, —1
= const.
Ma2,
=  Poo € ———= = const
JMa2, —1
= piL€1 =D2€2
= €y = €] \/522.80
(b)
€ = €1
Ma3 Ma?

= Mai—8Mdai+8=0

= Mag,,=V4+V8

= Ma,y, = 2.61 A May, = 1.08

(transonic regime, for which

CL% = const. is not valid!)
()
Fp _ecp &+¢€
Fr, cr, €
(d)
P =uy Fp; F; = const.

P, 8%+ Maj — 1 Md} o6

P, 824 /Mag_llwa;? N

N T

Pt; s=ut

S5
Il

5.2.6 Theory of Characteristics

6.1 (a)

characteristic curves

edge of free jet

/\'/

v =180° — 2«

1
o = arcsin a

(b) Edge of free boundary:

v — =12~ [

B,

pl)
= f=n—F0—n

Rigid wall:

5 is known
va=vy — [+ B

6.2

Vo4 Py = v3+ 3

Vy = Vy
Bo = B1=0
>+l = Ve
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vs— [ = vy— 4
Vy = Vg
Bo=0s = B
== = Voo—f
= V3 = Voofg
g =2

6.3 (a)

Voo + ﬁA =V.+ ﬂc
Voo = 26.38°;  (,=10° [B4=0
= v, =36.38°; Ma,=2.4

pe=320,  535.10° Pa
Po Poo
(b)
vp — Bp = Ve — BE
vp + fBp = Ve + BE
V00+|ﬁ|_e8:Voo_ﬁB
= fp=28=-20°
= Vp = 16‘380; ﬁE =0
N [‘Ly} 0
dr|,
6.4 (a)

vy— =Vt | B 0
V2:Voo*>ﬁ2:7140
ve—Bs=va— B Ba=p
Vs 4 0= Voo + P2

=1, =10.81°% (=0

v3+ B3 =vi+ B

5i=0 n=rve, [=0
= 3 =24.81° = Mas = 1.94
Vit Pa=12+ o

=1, =10.81 = May = 1.46

(©)

v =180° — 2 ap = 107.94°

bs _ P4 Po _ 1.43

Poo Dol Poo

d
{—y} =tan(f £ o)
dz |,

+ : left running characteristic

— ¢ right running characteristic

vi+ b =ve+ 5
Vo =11 — [
Voo = Vo — B2
Sn=rvy bh=p
For arbitrary points 1, 2 in region

ABCEA: it follows from vy = 1p
Q] = Q9.

d
= LTﬂ . = tan(f; — aq)
= tan(fy — az) = const.

(c)

Prr. _ PocPoc = AP _ ) 00ee
Po Po Peo

= Map, =4; vp, =65.78°
Vpr, = Voo +90° — 7
= v =2315°

Voo = VF — 3D

vy — By = vr — B2

Vy = Voot | B2 | = Voo — P2
—2032=—Pp2+Bp

= Bp2=Pp+2062<fp

6.6 (a)
vy + (—10°) = 0
= vy = 10°
vy —10° = vy — (—10°)
= vz = 30°
vy = v3 + 10° = 40°
= May = 2.54

(b) Continuity equation:
A" p = Aauapa

A
T (May=2.54) = 0.36

=714 =28"r"
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6.7
Vy =V3 = Voot | B |
vy — o = Voo
= 2=V — Voo =| B |
vy =v (Mas + 2AMa)
v, =V (Mas + AMa)
Vo= Bu=v1— 015 Bu=Veo — Vu
Vot Bo=v1+ 515 Bo=Vo— Vo
= U=V Uy — Vso
B = v, — vy
n—>0=vs—0s
= O3 =] 0] +2 (Voo — V)
6.8
Ma, =3; |f|=14°=0=315°
= Maysino = 1.57
= D09
Po2
May = 1.75; v, =34°
P3s = P1; Pos = Po2
Ps _ PLPO ) 0299
Po3  Po1 Po2
= Maz =2.94; v3=485°
v3+ B3 =12+ (2
= 3 = —28.5°
vy — Py =v3 — B3
By =—14° - vy, =63% May =38

vs+ Bs =vat+ Py
1/5:V3*>ﬁ5:0.50
Ve_ﬁe:VS_ﬁS

=y, =34° Ma, =229 = Mas,

5.2.7 Compressible Potential Flows
and Similarity Rules

7.1
u/
LT
0<z<1; v =0
=60<z<1ly=0) = 0
Gll

o1 =g(x)+ X y) =
with A

B.C.:
S ()
Uso dx Ci ¢
o= @* dfg*—eu
T oy Tdn o
dg _ i
dn A
Ggi
p2=gm) + f(&); {=(z—Ay)
B.C.:
’ 8902 dg df
— 0= 22 )2 _ L
R TR T
df dg  euy
Toa T AT A
4e
= Cp2 X
4e
ol < w22 y=0)=75
7.2
Eiﬁgriitﬁi;hﬁé
-
N sy
7.3 (a)

wr =gz +\y)
wYrr = f(I - )\y)

o = flz = Ay) + g(z + Ay)

= Y1

®rr

©rrr

(

€

dy\ _
dxci

_ L oer 1 O¢n
Uso QY Uso OY

g'A
Uoo
ﬂ%(x +Ay) + ¢

1
———f'A
uOO
€U

—T(x — )+

EUso

3 (x+\y) + ¢
Elloo
*T(I = Ay) + e
2€U0 Y+ Crrp
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(d)
o — &PHI

or 0
580111
!
= =2
dy € thec
<dﬁ) =2€
dz ) Streamline in Gt
74 (a)
or = fr(x — \y)

11 = fri(r — Ay) + grr(z + Ay)
(b)

PFr. = Poo = CpFr. = 0

= Uy, = <a§;> =0
Fr.

g di
e d¢
Ve = Us
df1r
= )Y
(%),
Vpp = Uso O

(Y dgn
d¢ dn ) .

Oprr
=0
()
dfir | dgn -
:><d£+d77>FT' =0
=V, = —2A

2

i

=9

7.5

w3 = gs(ms); M3 =T+ My

N o= yMa?-1

01 = fa(&a) + ga(na)

1o}
%;4 = Uﬁxzﬁzﬂ/«l
dga dfy
= = —(=A
an ™ T ag, M
ga _ dgs _ ow
M4 dns M
df4 Uy
=>— = —(0—
g~ A0
L~ _ 20
P = u, Ox
2 (d df.
2 <ﬁ+£>
uy \dns  déy
2 (5u1 (%51
= (=L 25—
U ()\1 + )\1 ( /34))
— Zeo-a)
= " A
2 09’)5 2
C. = _77:_7[35
v U ox )\2‘

e, = 2 (P
s yMat \py

§ _ 2 Ps 1
w7 M3 \p

Pis = D5 = Cp ]V[af = Cps ]Wag
2Ma?
Cp4]\1(1% = - 4 (26-[34)
A1
2Ma3
= 0
By = Bs=0
25Ma?
=0 = 2 a12 A
Mai+ Mas 5;
Ds yMa?
25 _ . 1
D1 Cps 9 +
Ma2=1-
26y MaiMa?

Ma3/Ma2 — 1+ Ma3\/Ma} —1

7.6

=75 Vi =Ux(l+0)

BuZ,

. Poo Poo
1ncomp.:7u,io + Poo = 7‘/,721(11 + DPmin

= P22 4 pag = P20 (14 07 +pin

= Cpmin, inc. = 1- (1 + 6)2 = —0.5626
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Cpmin,inc.

V1 — Ma2,

Cpmin,comp. =

1

in diagram

1

= Magerie. = 0.7
-3
cpl

2 1|,

| o]

v 0z 04 06 DB 1D
— May,
7.7
Ma? Ma;
b = 4 2\3
(1— Ma?)? (1— Ma3):
= 8, =0.15
]\Ja% ]Ma%
T MEZP = 1 a2’
- M L~ Ma;
= cp=0651
78 (a)
Pmin = P = 771)00
Po P?o
2 v
“perit. T Ty !
Cporit v M Gooeri, (p” >
= —0.778
(b)
Cpbmin =—0.65

from diagram

Cpbmin \V 1- ]\/jagob
= Cpamin\/ 1-— ]Wagoa

= Masy, = 0.519

intersection with curve for cpei.

1
cr = ?/0 (ept — cpu)d

= cpe /1 — Mad?,
=crq /1 — Mad?,

= cpo = 0.2246;  crine = 0.214

7.9
P = f(Max)
Cpinc.
(1)-()
l B l inc
(1) = (D). =
l l inc 1 — ]\Jago
L H 1
= =1; =
inc. H'mc. 1/ 1 — ]\/fago
o 1
Cpinc. B 1- ]\/[ago
7.10 1.
r = const. = ¢ = const.
yy/| Ma2, — 1| = const.
— dy/| Ma2, — 1| = const.
1
4=
| Ma2, — 1|
= ¢, | Ma®, — 1 |= const,;
Gothert rule
2. (a)
1 rt
cp = ?/0 (cpt — cpu)dt
ep /| Ma2, — 1|
= = const.
it cons
(b)
de
= —F/——-—
| Ma2, —1 |
= ¢ onst
—— = const.
d/t
(¢) transonic flows
hypersonic flows
7.11 (a)

cp /| Ma2, — 1| = const.

= Mawe =0.711
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(b)

|1— MaZ |
cr, B S const.
Cr1 = CLinec.
0
= dipe. = —————=10.125
| Ma2, —1 |
712 (a) 1.
de
cp = —F——
JMa2, —1
— ¢ = 0.028=1.6°
2.

F, = const. (Tw,poo = const. )

= Cr1 Mazol = CL2 ]V[ag(ﬁ

=cra = 0.025

— € = 0.0177=1.013°
4

Cp = \/WX

[+

= 0.0027
(b) 3
cL;;]WaiO3 = cLleagcl
= c13=04; c¢p3 =0
4.

cra = cpzy/1 — Ma%y = 0.265

ot

CL5 V1= Mal
= CL3——(=
S5 s
s 1
=2 = —  —1512
J 1— Ma2,
=6 = 006
€3
f = &8
1— Ma%,

= 0.042=24°
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5.3 Appendix

Tables and Diagrams

Table of solution problem 1.11

) v - ey | 20E)
Ma € € Apo (Al"(J)inC A (APU) Al;o [/6}
0 0 0 0 0 0 -
0.05 [ 1.8-1073 | 3.1-107% | 3.496- 1073 | 3.496 - 1073 | —2.2-1076 -0.06
0.10 [ 7.0-1072 | 4.9-1075 | 1.390- 1072 | 1.394- 1072 | =3.5-1075 -0.25
0.151.6-1072 | 2.4-107*| 3.101-1072 | 3.118 - 1072 | —1.7-107* -0.56
0.20 [ 2.8-1072 | 7.6-107* | 5.446 - 1072 | 5.501- 1072 | =5.5-107* -1.00
0.30 [ 6.1-1072 | 3.7-107% | 1.184-107% | 1.211- 107 | —2.7-1073 -2.30
0.40|1.0-107* | 1.1-107% | 2.006 - 107! | 2.088 - 107! | —8.2- 1073 -4.10
0.60 [ 2.2-107! | 4.7-1072 | 3.951- 107! | 4.320- 107" | =3.7-1072 -9.30
0.80 [3.4-1071 | 1.2-107! | 5.878 - 107 | 6.879-1071 | —=1.0- 107! -22.00
1.00 | 4.7-1071 {2.2-1071 | 7.396- 1071 | 9.434-10"! | —2.0- 107! -28.00
Table of solution 5.1 (d)
Pair of profiles
Ma | Ma* | o v | Masino % pf’ll p%l
oo | 2.5 | 1.83 | 12° | 34° 1.39 0.059
1 2.0 | 1.63 | 12° | 42° 1.33 0.128 | 2.1 0.96
2 | 1.56 | 1.40 | 15° 13° 0.250 | 1.9 | 0.97
3] 21 | 168 28° 0.113 | 0452 | 1
Table of solution 5.1 (d)
Double wedge profile
Ma | Ma* | 3 v % % }%
2.0 | 1.63 | 12° | 26° [ 0.128 | 2.1 | 0.96
3132|201 53°10.021 | 0.164 | 1
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plp,
TrT,
pip,
A% A,

075

0.5

025

AY 1 A ;
i [ Ma
NPIRg
prpg\!
i AT /T,
| |
1 2 ha*

Gasdynamic quantities of the Laval-nozzle flow (y = 1.4)
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ll)mllpo;; . P/P

100 |
L
T/T |
P,/ P
Por’ Rz
10 i
| e P, /P,
1
1 Malsin G 10

Gasdynamic quantities for compression shock
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120

100

80

60 /

40 v

Ve

20 ot

e

1 1.2 ) 1.6 1.8 2 2.2 2.4

Prandtl-Meyer-Function v(Ma*)

%(ﬁf@*? -1)
1- 2 Ma® —1)

L (Ma® -1
_ aretan #
1-21= Va*
M 2 —

v(Ma) = / - arctan

— arctan vV Ma? —

v+ 1
v(Ma*) = '+ - arctan
y—1
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|
32

|
|1 I
|
|
I
a
2,75
225
a4

[=3 Ploy__~l 1 ™ — |1 S \ ©
- o3 o3 orf oF ~ o X\\
L]
by - T
! o
o e ey = o [+ i) m
1 |
o, o )
o
1)
\ m
w
13

[t
T

|
[
PO il
| e
L,
]
LY
AN
32

|

Oblique compression shock: Heart-curve diagram
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One-dimensional nozzle flow

Perfect gas with const. spec. heats, v =14

Ma

Ma*

p

Po

)

00

T
To

T
A

0.00
0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0.00000
0.01095
0.10944
0.21822
0.32572
0.43133
0.53452
0.63481
0.73179
0.82514
0.91460
1.00000

1.0000000
0.9999300
0.9930314
0.9724967
0.9394697
0.8956144
0.8430192
0.7840040
0.7209279
0.6560216
0.5912601
0.5282818

1.000000
0.999950
0.995017
0.980277
0.956380
0.924274
0.885170
0.840452
0.791579
0.739992
0.687044
0.633939

1.00000
0.99998
0.99800
0.99206
0.98232
0.96899
0.95238
0.93284
0.91075
0.88652
0.86059
0.83333

0.000000
0.017279
0.171767
0.337437
0.491385
0.628875
0.746356
0.841610
0.913766
0.963178
0.991215
1.000000

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.50
4.00
4.50
5.00
6.00
7.00
8.00
9.00
10.00

1.08124
1.23114
1.29987
1.29987
1.36458
1.42539
1.48247
1.53598
1.58609
1.63299
1.67687
1.71791
1.75629
1.79218
1.82574
1.85714
1.88653
1.91404
1.93981
1.96396
2.06419
2.13809
2.19360
2.23607
2.29528
2.33333
2.35907
2.37722
2.39046

0.4683542
0.4123770
0.3609139
0.3142409
0.2724031
0.2352712
0.2025935
0.1740403
0.1490396
0.1278045
0.1093532
0.0935217
0.0799726
0.0683997
0.0585277
0.0501152
0.0429500
0.0368483
0.0316515
0.0272237
0.0131109
0.0065861
0.0034553
0.0018900
0.0006334
0.0002416
0.0001024
0.0000474
0.0000236

0.581696
0.531142
0.482903
0.437423
0.394984
0.355730
0.319693
0.286818
0.256991
0.230048
0.205803
0.184051
0.164584
0.147195
0.131687
0.117871
0.105571
0.097626
0.084889
0.076226
0.045233
0.027662
0.017446
0.011340
0.005194
0.002609
0.001414
0.000815

0.00495

0.80515
0.77640
0.74738
0.71839
0.68966
0.66138
0.63371
0.60680
0.58072
0.55556
0.53135
0.50813
0.48591
0.46468
0.44444
0.42517
0.40683
0.38941
0.37286
0.35714
0.28986
0.23810
0.19802
0.16667
0.12195
0.09259
0.07246
0.05814
0.04762

0.992137
0.910459
0.937818
0.896921
0.850219
0.799850
0.747604
0.694936
0.642981
0.592593
0.544383
0.498759
0.455969
0.416129
0.379259
0.345307
0.314168
0.285704
0.416129
0.236152
0.147284
0.093294
0.060378
0.040000
0.018804
0.009602
0.005260
0.003056
0.001866
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Prandtl-Meyer angle (v in °, v = 1.4)

Ma v Ma v Ma v Ma v Ma v

1.00 0.00 | 1.60 14.48 | 2.55 40.28 | 4.10 67.08 | 7.10  91.49
1.02  0.13|1.62 1545 |2.60 4141|420 68.33| 7.20 92.00
1.04 0.35]1.64 16.04 | 2.65 42.53 | 4.30 69.54 | 7.30  92.49
1.06 0.64 | 1.66 16.64 | 2.70 43.62 | 4.40 70.70 | 7.40  92.97
1.08 097 | 1.68 17.22 | 275 44.69 | 4.50 71.83| 7.50 93.44
1.10  1.34 | 1.70 17.81 | 2.80 45.74 | 4.60 7292 | 7.60  93.90
112 1.73 | 1.72 18.40 | 2.85 49.78 | 4.70 73.97 | 7.70 94.34
1.14 216 | 1.74 18.98 | 290 47.79 | 4.80 74.98 | 7.80 94.76
1.16  2.61 | 1.78 19.56 | 2.95 4878 | 4.90 7597 | 7.90 95.21
1.18 3.07 | 1.80 20.15 | 3.00 49.76 | 5.00 76.92 | 8.00 95.62
1.20  3.56 | 1.82 20.72 | 3.05 50.71 | 5.10 77.84 | 8.50 97.57
122 4.03]1.84 21.30 | 3.10 51.65|5.20 7873 | 9.00 99.32
1.24 457 ]1.86 2245 |3.15 5257|530 79.59 | 9.50 100.98
126 5.09 | 1.88 23.02 | 3.20 53.47 | 5.40 80.43 | 10.00 102.31
1.28  5.63 | 1.90 23.59 | 3.25 54.35 | 5.50 81.24 | 11.00 104.79
1.30  6.17 ] 1.92 24.15 | 3.30 55.22 | 5.60 82.03 | 12.00 106.88
132 6.76 | 1.94 24.71 | 3.35 56.07 | 5.70 82.79 | 13.00 108.65
1.34  7.28 11.96 25.27 |3.40 56.91 580 83.54|14.00 110.18
136 7.84|1.98 2583|345 57.72|590 84.26 | 15.00 111.51
1.38  8.411]2.00 26.38 |3.50 5853 |6.00 84.95|16.00 112.64
1.40 899 |2.05 27.75|3.55 59.32|6.10 85.63 | 17.00 113.71
1.42  9.56 | 2.10 29.10 | 3.60 30.09 | 6.20 86.29 | 18.00 114.63
1.44 10.15 | 2.15 30.42 | 3.65 60.85 | 6.30 86.94 | 19.00 115.43
1.46 10.73 | 2.20 31.73 | 3.70 61.59 | 6.40 87.56 | 20.00 116.19
1.48 11.32]2.25 33.02|3.75 62.35|6.50 88.17|21.00 116.87
1.50 11.90 | 2.30 34.28 | 3.80 63.04 | 6.60 88.76 | 22.00 117.48
1.52 1249 | 2.35 35.52 | 3.85 63.75 | 6.70 89.33 | 23.00 118.04
1.54 13.09 | 2.40 36.75 | 3.90 64.44 | 6.80 89.89 | 24.00 118.55
1.56 13.68 | 2.45 37.94 | 3.95 65.12 | 6.90 90.44 | 25.00 119.03
1.58 14.27 | 2.50 39.15 | 4.00 65.78 | 7.00 90.97 oo 130.45




6. Aerodynamics Laboratory

6.1 Wind Tunnel for Low Speeds (Gottingen-Type Wind Tunnel)

Abstract

The wind tunnel for low speeds of the Aerodynamisches Institut of the RWTH Aachen is a

Gottingen-type wind tunnel. It is a continuously running closed-circuit tunnel, in which the

the air is circulated with a single-stage axial-flow fan with a maximum power of 100 kW. The

test section is open and has a diameter of 1.2m. The maximum attainable air speed is 60 m/s

(216 km/h).

Generally a wind tunnel has to be built in such a way that:

1. an air flow is generated in the test section with constant velocity distribution in time and
space,

2. the losses caused by the closed-circuit circulation are as small as possible.

The objective of this experiment is to examine the quality of this wind tunnel. In order to do so,

the velocity distribution in the test section is measured with a Prandtl tube. The dependence of

the accuracy of the measurement on the free-stream direction is tested by turning the Prandtl

tube with respect to the direction of the oncoming flow. Also, the quality coefficient of the wind

tunnel (ratio of the power of the air stream and the power of the axial-flow fan) is determined

as a function of the flow velocity.

6.1.1 Preliminary Remarks

The prerequisits for the usability of wind tunnels for fluid-mechanical investigations are the
following:

1. The similarity laws can be applied, so that the results obtained with models in the wind
tunnel can be transfered to flows about full-scale configurations, especially to flows about
airplanes in free flight.

2. The boundary conditions for the flows about the models in the wind tunnel and the full-scale
configurations, especially for those in free flight, have to be similar.

In general, complete similarity cannot be attained in a single experiment. For this reason, it
is necessary to determine the similarity parameter, which is of greatest importance for the
problem to be investigated, and only obey the corresponding similarity law in the experiment.
For steady low speeds, it is sufficient to keep

_vlp  Inertia force

Re =

= 1
w Frictional force (6.1)

constant.

In order to obey the similarity law, it is necessary to provide similar initial and boundary

conditions, e. g.:

1. the ratio of the width of the air stream in the wind tunnel and the size of the model compared
to the infinite width of the air stream in free flight,

2. the roughness of the surface of the model,

3. the intensity of turbulence of the flow in the wind tunnel, and others.
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The flow velocity of the Gottingen-type tunnel of the Aerodynamisches Institut is small com-
pared to the speed of sound. The influence of the compressibility of the air on the flow can
therefore not be investigated.

6.1.2 Wind Tunnels for Low Speeds

Wind tunnels for low speeds (with air as working medium at atmospheric temperatures: v <
80m/s) are continuously operated, i. e. a fan generates a flow for an arbitrary duration of the
test. Two basic types of tunnels are known:

1. The Gottingen-type (after Prandtl) wind tunnel: Tunnel circulating the air with either open
or closed test section.
2. The Eiffel-type wind tunnel : Tunnel without air circulation with open or closed test section.

The Eiffel-type tunnel is briefly described next.

Eiffel-Type Wind Tunnel

The Eiffel tunnel in its simplest design consists of a tube with a fan. Air is sucked from the
surroundings; Eiffel tunnels are used for determining wind loads on buildings (low construction
costs for large dimensions; the air speed is low — only up to 40m/s). Most of the available
tunnels are built at higher expenditures.

In order to generate a uniform velocity profile with low turbulent intensity in the test section,
a nozzle with a contraction ratio of A./A, = 5=+ 20 is necessary. A further improvement of the
velocity distribution is possible by positioning guiding vanes and screens upstream of the test
section: A high contraction yields a relatively low velocity in the settling chamber and small
losses caused by installations.

In order to keep the operating costs low, diffusers are used for pressure recovery (in a simple
wind tunnel the entire dynamic pressure of the test section p v?/2 must be counted as loss).
The pressure in the measuring cross section is below atmospheric. An underpressure chamber
is needed for an open test section; the air flows through a diffuser back into the open air. A
recirculation is possible inside of a hangar, and testing is then independent of the weather
coditions. Most of the time the fan is mounted at the end of the wind tunnel. A long diffuser
enables a high pressure recovery, but this is also associated with higher construction costs; in
very long diffusers the losses due to wall friction are increased.

The advantages of an Eiffel-type tunnel are its simple construction and its low construction
costs. A high quality coefficient can only be obtained, if a refined diffuser with large opening
angle — up to 35° — and internal guide vanes are used, in order to avoid flow separation. The
guide vanes can cause fouling of the tunnel.

The disadvantage of the Eiffel-type tunnel is given by the necessity, that with an open test
section the air stream has to be enclosed by an underpressure chamber. The advantage of low
construction costs is then at least in part outweighed by a lower quality coefficient and higher
operating costs.

Gottingen-Type Wind Tunnel

In wind tunnels of the G&ttingen-type after Prandtl the flow medium is circulated from the
measuring cross section back to the settling chamber with the aid of diffusers and guide vanes.
The optimal widening of the diffusers (ap/2 = 3 +4°) requires a minimum length for a given
cross section of the test section and a prescribed contration ratio. The fan is to be installed as
far away as posible from the test section, so that the disturbances caused by spiralling of the
flow and non-uniformities caused by the hub, have space enough to decay.

The advantages of this type of tunnel are the following: If the tunnel has an open test section,
the pressure in the air stream is atmospheric and the test section is easily accessible. The quality
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coefficient - in particlar with a closed test section - can attain maximum values. The operation
is independent of the conditions in the surroundings, as temperature and humidity of the air.
The disadvantages are, that the construction costs are high, and a minimum space is needed;
if foreign substances are added to the air, e. g. smoke for flow visualization, fouling has to be
controlled.

6.1.3 Charakteristic Data of a Wind Tunnel

The power of the fan P,.¢; needed for a continuously operated wind tunnel is proportional to
the power of the air stream Pg;, in the test section.

The power of the air stream is Ps;, = m v /2 = p Ag;, v3 /2 (The subscript “co” denotes the
test section).

The constant of proportionality is called the quality coefficient. It is defined as

_ PStr
Fery

(6.2)

The quality coefficient is not the same as an efficiency. In general it exceeds unity and is the
higher the smaller the mechanical losses of the wind tunnel are. The electric power needed is
usually smaller than the power of the air stream.

1p 3
Fegp = €2 Asir V3, (6.3)
Since the power of the air stream is proportional to the third power of v, the power of the
fan can increase rapidly to large values. The required power is given in the following table. The
values are calculated for a wind tunnel with a cross section of the test section of Ag, = 1m?

with atmospheric conditions inside (pressure, density, and temperature).

Uso [m/s ]| Mal—] | Psy [ kW |
80 0.24 314
340 1.0 2.5 10%
680 2.0 2.0 10°

With these data it can easily be estimated, that a Gottingen-type wind tunnel needs its own
power plant for high subsonic and supersonic velocities to satisfy its power requirements.

The power of the air stream is also proportional to the measuring cross section Agy.. It is
reasonable to assume, that the diameter of the test section is approximately equal to the length
of the model, as the following example shows. If the Reynolds similarity law is to be obeyed,
one obtains for the length of the models considered:

Original e. g. Automobile = 5m; v=100 km/h; Re ~ 107
Airplane 1=20m; v=300km/h; H=3km; Re=~ 10
Modell e. g. Automobile l=Rep/pv=185m
Airplane [=185m

For the above examples it is assumed, that these Reynolds numbers can be attained at atmo-
spheric conditions and at most at a maximum speed of v,, = 80 m/s in the model tests.
Wind tunnels for low speeds therefore have to be as large as possible, so that the similarity
laws can be obeyed. The exceptions to be mentioned here are flows about bodies, of which the
force coefficient does not strongly depend on the Reynolds number.

Power Balance of a Gottingen-Type Wind Tunnel

The power to be provides by the fan is:

Peff = Q Aptot. = AStr Voo Aptot. (64)
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Q = Volume rate of flow
Apyor. = Difference of the total pressure up- and downstream from the fan

Aptot. = ApLoss = Z C’Lgl)? . (65)

(3

The subscript “i” refers to the corresponding components causing the losses, e.g. diffuser,
turning corner, etc. To be able to compare, all loss coefficients are referenced to the dynamic
pressure p v2 /2 in the test section.

0
ApLoss = Z Czoo %Ugo (66)
The quality coefficient is
1
= 6.7

Losses of Mechanical Energy in a Gottingen-Type Wind Tunnel

The characteristic orders of magnitudes of the losses of mechanical energy in a Gottingen-type
wind tunnel are listed in the following table:

Nr. compare. page 240 | construction part G Cioo Percentage %
9 Test section open 0.11 0.11 33
(Test section closed) (0.016)
10 Collector (friction) ..
11 1. Diffuser 0.06 0.06 18
12 1. Turning corner 0.15 0.03 9
1 Fan 0.05 0.007 2
2 2. Turning corner 0.15 0.03 9
3 2. Diffuser 0.06 0.025 7.5
4 3. Turning corner 0.15 0.006 1.75
5 4. Turnng corner 0.15 0.006 1.75
6 Screens a. Straightener | 3.0+0.2 | 0.04 12
7 Nozzle (friction) s. b.
8 Edge of nozzle
Friction (A = 0.01) 0.02 6

\ [ [>=0334] > — 100% |

Test section: The air stream in an open test section causes much larger losses due to the
mixing at its edge, than in a closed test section, which causes only wall friction.

10 | Collector: Variable Geometry or slots guarantee proper ouflow for different volume flow.

11, 3 | Diffuser: To avoid separation an opening angle of «/2 = 3 =+ 4° cannot be exceeded;

this requirement may result in large construction lengths. Short diffusers with large opening
angles are also built; flow separation is avoided by guide vanes.

12, 2, 4, 5 | Turning corners: For structural reasons, most of the time they are built as profiled

cascades; curved plates, used as cambered surfaces can bring about substantial improvements.
Fan: The size of the hub, the motor can be mounted in, also depends on structural and

acoustic conditions; disturbances due to swirl in the flow are compensated by guide wheels.
Instead of a large fan, often several smaller fans are used for better controllability. Adjustable
blades are also installed, in order to attain a optimal efficiency at partial load.
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Screens and straighteners: Several screens with different mesh size exhibit a more favorable
ratio of the damping of the turbulent fluctuations and the drag than a comparable single
screen. Straighteners often are built out of honeycomb profiled cascades. Empirically determined
standard values are available for the ratios of the spacing, diameter of the tunnel, and the chord
of the cascade.

7 | Nozzle: The contraction ratio and the contour are the most important quantities that

determine the flow uniformity in the test section.

Small winglets, also called Seiferth wings, are mounted near the edge of the nozzle to avoid the
formation of vortex rings and velocity oscillations in the air stream.

Friction: The inner walls of the tunnel should be as smooth as possible; steps between the
various parts of the tunnel should be avoided.

For the example given in the table there results

1 1

=5, "osm

The electric power needed for this tunnel with Ag, = 1m? and atmospheric conditions of the
air in the stream would be
Psy, 314 kW

Pu= = = 140 kW
: 57751 Nfan 3-0.94-0.8

6.1.4 Method of Test and Measuring Technique

For determining the characteristic data of the tunnel the following measurements were carried
out in the experiment:

1. Measurement of the velocity distribution in the measuring cross section at a fixed distance
from the edge of the nozzle.

2. Investigation of the directional sensitivity of the Prandtl tube.

3. Determination of the quality coefficient of the wind tunnel for several wind speeds.

Measurement of the Velocity with a Prandtl Tube

The difference between the total pressure and the static pressure at free-stream conditions is
measured at two points, the stagnation point and a point on the wall, parallel to the direction
of the free stream (sketch see page 241)

Prot. — Poc = g@; = - (6.8)

In the experiment the pressure difference ¢, is measured with a liquid manometer. In order to
obtain v, the density p has to be determined

_p _ Bag-136 Ns? (6.9)
" RT  RT mmHgm? '

p

The barometric pressure Ba [mm Hg| and the temperature T [K] are measured. The gas constant
of air is for 1 bar and 273 K
2
m
R =287 ——
s s2K
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Liquid Manometer (U-Tube Prinziple)

Betz-Manometer: In comparison to the simple U-tube the Betz-Manometer (sketched on
page 241) has one narrow stem (measuring tube) and a wide stem (pot).
Principle:

a
ha = HA (6.10)
A £ £
h+H = W (6.11)
[ (6.12)
T 1+a/A '

The data are read on a scale, which is attached to a float and moves with the fluid column in
the stem. The scale division A is distorted, compared to the actual height of the fluid A’. There
is only one reading position.

Inclined-Tube Manometer: In order to increase the accuracy of the reading, the scale stem
of the inclined-tube manometer is inclined (see sketch on page 242).

hs = — ; « for large h

Stagnation Tube — Venturi Tube

The sensitivity of the stagnation tube is limited:
In air: 4m/s is equivalent to Imm H,0

1m/s is equivalent to 0.0625 mm H,O at atmospheric conditions of the air.
In comparison to the stagnation tube the reading sensitivity of the Venturi tube can be improved
by changing the ratio of the cross sections of the two measuring positions (see the following
sketch).

p o[ A
pL—py = ivf K!‘T;) - 1} (6.13)

Theor.: p1 = poo(V1 = Vo) (6.14)

= ap=l {<A1>271} (6.15)

2 Ay

for stagnation tube

Nozzle-Calibration Factor

The nozzle-calibration factor is defined as

9o
Y=

Apse

The quantity Apy, is proportional to the dynamic pressure go. It is important for measurements,

since it can be used to determine the velocity without having a measuring probe interfere with

the model.

(6.16)

Apsc = Psc = Pas Joo = Pg — P (617)
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The pressure in the settling chamber p,. (compare. test assembly page 242) is approximately
equal to the total pressure py(v = 0). Often the static pressure in the air stream is set equal
to the ambient pressure, which is only approximately true. In reality the surrounding air is
entrained into the air stream. Thereby the edge-streamline of the air stream is curved, and the
following can be observed:

pS‘.‘

-
nozzle —'\<_~

—_—— ey —— Apse = Qoo+ Poo = Pa (6.19)
i,/— ,,/:“‘ Ape > 4w (6.20)

Measurement of the Quality Coefficient

Poo > Pai  Poo—DPa>0  (6.18)

Power of air stream Py,

Quality Coefficient =¢ (6.21)

Power of fan TP, tf
Power of air stream = Pgy, = g Agiv3, (6.22)

The power of the air stream can be obtained from the measurement of the velocity, the baromet-
ric pressure, and the temperature. The power of the fan, P, ne g, is determined by measuring
the voltage and the current of the armature and the exciter field of the direct-current motor of
the wind tunnel. The ratio of these two quantities yields the quality coefficient.

Other Methods for Measuring the Velocity

With the Prandtl and the Venturi tube, the velocity is determined by measuring a pressure
difference. Methods which use other principles are:

1. Measurement of a force: The drag of a body — its dependence on the free-stream velocity is
assumed to be known — is measured (Example: The Robinson anemometer).

2. Heat-transfer measurement: The larger the velocity of the flow over a heated body, the
larger the heat transfer from the body to the cold flow becomes (Example: hot film, hot
wire).

3. Optical Doppler effect: The frequency shift of an incident light ray and its reflexion from
particles, moving with the velocity of a flow, can be used to determine the flow velocity
(Example: Laser-Doppler anemometer).

Selected References:

PRANDTL, L.: Fihrer durch die Stromungslehre, 6. Aufi., Vieweg-Verlag, 1965, S.301 ff.
WuesT, W.: StrémungsmejfStechnik, Vieweg-Verlag, 1969.
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Lever micro manometer after Betz
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Test assembly
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6.1.5 Evaluation
1. Draw the following diagram of the measured data:
(o }- Prandl tube
o = f(é)ﬁ:(]", x=const. I
w
= f( o — - ?—— —_
o = f(ﬁ)z:(), const. X 8
£ = fluw) ,
nozzle test section collector
Quantity Formula Dimension Measured data
Apse Measurement mm HyO 20 40 60 80 120 160
(oo Measurement mm HyO s. b.
Ba Measurement mm Hg 749.44
Pa ™ Poo Ba13.6 g s N/ m? 0.99987 10°
too Measurement °C 22.4 22.5 22.8 23.1 23.4 24.2
Poo Poo/ R Too kg / m3 1.18 1.179 1.178 | 1.178 | 1.176 | 1.172
Voo V2 oo 9/Poo m/s 18.2 25.8 31.6 36.5 | 44.7 | 51.75
[ Astr. Voo m? /s 21.7 30.8 37.7 43.6 | 534 61.8
n Measurement min~! 239.5 | 335.6 | 409.1 | 469.7 | 567.9 | 659.2
u mnD,/60 m/s 25.1 | 35.14 | 428 49.2 | 59.5 | 69.0
Qo
A - ) 5 —— 0.37 0.37 0.37 0.38 | 0.38 0.38
w D2 /41 — (dn/D,)’]
na(N) from diagram — 0.8 0.8 0.8 0.77 | 0.77 0.77
Ia Measurement A 55 90 128 165 240 330
Uag Measurement 14 63 89 108 124 150 167
Ip Measurement A 3 3 3 3 3 3
Ug Measurement 14 204 205 204 206 205 206
Py I4Ux w 3465 | 8010 | 13824 | 20460 | 36000 | 55110
Py Paner w 3181 | 7353 | 12690 | 18782 | 33048 | 50591
Pesy Pweneg w 2544.8 | 5882.4 | 10152.0 | 11462 | 25447 | 38955
Psy, Astr poo/2 vgc w 4247 | 12088 | 22191 | 34169 | 62705 | 96969
¢ Psir/ Py —_— 167 | 2.1 22 | 236 | 25 | 25
Apse = (oo % 196.2 | 394.4 588.6 | 784.8 | 1177.2 | 1569.6
A]02 02503 [035]04
ne | 0.83 | 0.89 | 0.89 | 0.85 | 0.72
Agyy = A, =1194m? ; D,=2m; dy/D,=05;

Tlel = 0.918 )

1Nm = 1H,0 = 1J;

kg K

A = ratio of forward circumferential velocity =

Axial velocity

circumferential velocity
1mmHg = 13.6 mm H,O; 1mm H,O =1kp /m?; 1kp =9.81N;
2

N
R =287 _ 287% for air at 1 bar and 273K
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G = f(2)
z[m] goo[mm H,0] oo [N/m?]
0 116.6 1143.85
0.1 116.9 1146.79
0.2 117.2 1149.73
0.3 117.4 1151.69
0.4 117.4 1151.69
0.5 117.6 1153.66
0.55 1174 1151.69
0.575 114.7 1125.21
0.6 48.5 475.79
0.625 1.0 9.81
0.65 0 0
1mm H,O = lk—z = k2g = EQ
m sec2 m m
4o = f(B)
Bl<°] (oo[mm Hy0] oo [N/m?]
0 116.5 1142.87
5 116.9 1146.79
10 115.1 1129.13
15 109.6 1075.18
20 100.6 986.89
25 92.3 905.46
30 79.3 777.93
1200
doo N .
1000 | - |
|
800 - ]
|
600 | |
400 | I
200 |
0
0 02 04 06 038 1

z [m]
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b) c)
60 - = . - 5
v, [m/s]
50 - 1
40 - 1
600 | - 30
400 | — : . 1 1 .| 20 = h|
0 | 1 1 1 b J 0 L L ! L | i
0 5 10 15 20 25 30 0 05 1 15 2 25 3
B g

The dynamic pressure ¢, was not measured for this series of measurements, since
(oo = Py — Poo AN Pog & Pa.
With
Py & Psc and Apye = ppv — pa
there results

Apsc = Qoo + Doo — Pa
= (oo = Apsc
. How large is the nozzle-calibration factor ¥7

_
Apse

N
with  goo = 1143.85 —

m
(from series of measurements for diagram 1.a)

N
Apge = 120mm HyO = 1177.2—2
m
=9 =10.972

. The power needed for a Géttingen-type, return-circuit wind tunnel is approximately 180 kW
for a velocity of 80m/s and a measuring cross section of the air stream of 1.2m?, all losses
included.

a) What power would be needed for an Eiffel-type tunnel with 80m/s and 1.2m? cross
section, which sucks the air through a straight tube out of the open air and returns it
without, pressure recovery? The frictional losses can be neglected! (p = 1.25kg/m?)

() v =802, Ag, —12m
vl s

H = Nsir. = 5 Asrvd, = 384kW
i . Nepp = 180kW Gottingen-type tunnel

1esl section . . .
Ma =0.24 = air =~ incompressible
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Momentum equation

pv’ A = (po—p1) A
Ap = pa—p1=7pa— D1

P = Q(pm*pm)
Q = UASf,rA

poz—P01:p2+§U2—p1—gUQZAP

P = vAg, Ap

P = PU2 Asir.

P = T70kW
b) What power is needed for the same Eiffel tunnel, if a short diffuser is installed downstream
from the test section? The length of the short diffuser is assumed to be 2m, its angle of
inclination is «/2 = 3°. Flow separation is avoided by guide vanes; wall friction can be
neglected.

P, | s Momentum equation:
- . . - . 9
P Uy AStr. =A AStr.
N
Ap = p, — p1 = 8000 —;
m
As Bernoulli equation for cross sections 2 — 3:
Asur,
P2+§U§ = pa+gw§§ UV =V2 U3 =10 Af:
2
P o (Astr P
pr—p1 = pa+§vf< AJ) — 5 =Pt Ap
2
P o Asgy.
= s [
P2 — D1 P+ 5 vy { A,

— _ P o | Asu ?
Negs = Q(p2—p1) =vi Ay, |Ap+ 5 U -1
Nepp = 485kW

4. If a subsonic wind tunnel of the Gottingen type is built as compressed-air tunnel, the
Reynolds number can be increased by increasing the density p. To what value is the Reynolds
number increased, if for the same power of the fan the density is raised to three times of
its original value? The temperature of the air is assumed to be the same, and the loss
coefficients > ¢; of the tunnel are assumed to be independent of the Reynolds number.

: P
Neps = Aser. vzo Z{il 5= const. = Uf p1= vwg po

Subscript 1 @ py
Subscript 2 : py =3 py

RBeo _obp i _vip e gl g
Rey P valaps w2 p2 p1 P2 3 '

3
<ﬂ> = P Rey = 2.08 Re,

U2 P1
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6.2 Pressure Distribution on a Half Body

Abstract

In this experiment the distribution of the static pressure on the surface of an axially symmetric
half body is measured in an incompressible flow. An analytic expression is derived for the
description of the contour with the aid of the potential theory by superposing a spherical source
and a parallel flow. The theoretical pressure distribution is compared with experimentally
determined values. In the experiment the Betz projection, the multiple-tubed, the inclined-
tube, and the micromanometer are used. The Hele-Shaw flow is discussed for flow visualization
purposses .

6.2.1 Determination of the Contour and the Pressure Distribution
Derivation of the Equation for the Contour with the Potential Theory

In the experiment the pressure distribution is measured on the rounded part of a half body, i.
e. of a half-infinitely long, cylindrical body. Such a body can be generated with the potential
theory by superposing a spherical source, positioned on the z-axis with a flow, parallel to the
z-axis.

Weo
et
R
LL;;
—_— -

|

Weo

|

Q
¢superp. = Voo 2 — m (623)

The expressions for the velocity componets can be written as:

__Qx
B P (6:24)
_9%_Quy
Y= oy Am 13 (6:25)
v, = 9% _Q = + Voo (6.26)

T 0z Am 3
For reasons of continuity the fluid leaving the source can flow only inside the half body.
There results

Q = v R? . (6.27)

The part of the parallel flow, that flows in a cylinder of radius y about the z-axis, is equal to
that part of the source flow, that flows in the opposite direction of the oncoming parallel flow
inside the cylinder.
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Q (1 —cosa)
2

The flow is axially symmetric with respect to the z-axis. In order to determine the contour

of the half body, the meridional plane is considered, and with (6.28) one obtains the equation

describing the contour in the following form:

(6.28)

Ty Vo =

r_ sina/2 1 7 (6.20)

R sina  2-cosa/2

The angle « is the angle between the negative z-axis and the projection of the radius vector r
on the meridional plane.

Derivation of the Equation for the Pressure Distribution

Since in a potential flow the Bernoulli equation is valid in the entire flow field and on its bound-
ary, the pressure and the dimensionless pressure coefficient can immediately be determined for
the contour of the half body:

P—Px v’
. - 6.30
@ p/2 v <vm> (6.30)

with

2 _ 2 2, .2
V7= vy U, U

The components of the local velocity vector w again result from the superposition of the source
flow with the parallel flow. Equation (6.29) inserted into (6.30) yields the expression for the
pressure coefficient

¢, =1 — 4sin? % + 331n4% . (6.31)

6.2.2 Measurement of the Pressure

In the experiment the static pressure is measured at 12 measuring points on the half body just
described, through small boreholes in the surface, which are connected with manometers. Four
manometers with different sensitivity are used:

Measuring range [mm HyO] ‘ Accuracy of measurement

Multiple-tubed manometer 800 5/10
Betz projection manometer 400 1/10
Inclined-tube manometer 80 1/10
Betz lever micro manometer 2.5 1/100

Error Sources

1. The angle between the surface normal and the axis of the borehole is not exactly zero.

WOO
—

7

w

oo
~—P=  p >p

PoS Pexac
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2. The roughness, or burr, and chamfers or radii at the edge of the borehole disturb the flow
in the borehole and falsify the measurement.

3. Dimension size of the boreholes:
Some of the influences of the dimension sizes of the borehole on the error of measurement
are described by Wuest in [Wuest 1969]. According to his findings the error of measurement
increases approximately linear with the diameter of the borehole d (the measured values are
too large). The following relation is often used for describing the error of measurement Ap:

A =f (Re,,l) with Re, = g\/i (6.32)
7o d v\ip

(170 = wall shear stress)

Also the depth of the borehole [ is of importance. In the following two diagrams, taken from
[Wuest 1969], curves describing the influence of the ratio I/d and of the ratio burr height to
diameter £/d on the error of measurement, are depicted:

8
’ £ _1
d
(4p/T, Lo
P a} {/d=15-6 a 6t
2 s
! 5
| s
; / O’S_L__ Lo |
/"—.’ \w :
-.% 2r Ap
o =%
0 200 400 600 800 0 ———~ 1 j
fd/w) (1‘0/9) 100 200 300

far)/i(T /e

According to [Liepmann 1967] the diameter d should be smaller than one fifth of the boundary-
layer thickness, otherwise the borehole could produce disturbances in the outer flow.

The connecting tube between borehole and manometer should be as short as possible in order to
keep the transit time of the pressure measuring system as short as possible. The flow restistance
in the tubes and the elasticity of the tubes result in finite measuring times: The exact pressure
can only asymptotically be registered by the measuring device [Wuest 1969].

Comparison of the Results

Differences between the pressure distribution determined with the potential theory and the
experimental data are explained by the fact, that the influence of the boundary layer on the
pressure distribution was not taken into account. In the boundary layer the velocity increases
from zero at the wall (Stokes no-splip condition), asymptotically to the local value of the
external flow, which can be considered as inviscid and therefore be computed with the potential
flow theory. In the boundary layer the pressure is constant in the direction normal to the wall,
and the static pressure along the wall is therefore imposed by the external flow. The external
flow is displaced by the boundary layer away from the body.

6.2.3 The Hele-Shaw Flow

The Hele-Shaw flow [Schlichting und Gersten 1997] is a creeping flow between two parallel flat
plates, separated from each other by a small distance. Although the flow is governed by viscous
forces, it can be described with a solution, which in form is identical with that of the potential
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theory. If it is assumed that the Reynolds number is small and that the ratio of the distance
between the plates and the length of the plates h/L << 1, the equations of motion can be
simplified.

dp
0= "o
dp Pw
Y - _9r Yy
X uy 0 ay o (6:33)
Uy
zlu t
'z
op 0w,
0 = — 6.34
. 5, T H gz TP (6.34)

It follows from (6.34) that the pressure does not depend on . The other two equations can be
integrated in the x-direction, with the boundary conditions given by the no-slip condition on
the plates, and the velocity field can be obtained.

_1ap [, h? ) 1 dp 9 h?
“Fﬂa@(“ﬁ b= gle ) T (6.3

The results reveal the following properties of the Hele-Shaw flow:

1. The streamlines exhibit the same patterns in all planes x = const.
2. In every plane x = const. the velocity can be expressed by the gradient of a scalar function,
ie.

0 0 . 1 h?
Uy = a—j ; u, = a—f with ¢ = o (p — pgz) <3:2 — Z) . (6.36)
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6.2.4 Evaluation

1.

Draw the contour of the half body in the scale 1:1, and plot the measured and theoretically
determined pressure distribution (c,) versus the z-coordinate.

|
R=50mm
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N
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2. Sketch the multiple-tubed manometer and state why the reading of the pressure difference
does not depend on the pressure above the measuring fluid in the supply container.

Ap=p; —pr=p g (hi—h1) # f(p2)

Only pressure differences are measured, and conse-
i quently the reading is independent of the constant
=1 pressure po.

Pa

3. Determine the position (angle ) on the contour of the half body, where the pressure is equal
t0 Poo- Comsider the Prandtl tube: Why is the borehole for measuring the static pressure
not placed in this position?

P =P = Cp = 0

o =1—4 sin’(2) + 3 sin?(2L) = 0;

the zero position is determined numerically with the method of interval bisecting for
ap € [69°, 70°] from diagram resp. interpolation; Aa = 0,1; € = 0.0001.

ap = 69.54°; from diagram: ag = 69°

It can be seen in the diagram, that dec,/da and de,/dz are large at the position in question,
so that small errors can cause large inaccuracies in the measurement of the pressure with
the Prandtl tube.

4. Why can it not be expected — not even for a technically perfect pressure measurement — that
the measured data agree completely with the results computed with the potential theory?
In order to be able to apply the potential theory it is necessary to assume inviscid flow.
The actual flow is viscous, and for a sufficiently high Reynolds number a boundary layer is
formed on the measuring probe, which causes a displacement of the inviscid external flow.
This influence is not taken into account in the potential theory.

5. Can a three-dimensional potential flow be visualized with the Hele-Shaw flow?

The Hele-Shaw flow is a creeping motion between two parallel plane plates, a small distance
apart from each other. A three-dimensional potential flow cannot be visualized with the
Hele-Shaw flow, since the curl of the velocity vector does not vanish because of the influence
of the viscous forces.

y-z-Plane: x-z-Plane:

Vxv=0 VxvA0

It can be shown, that the velocity components, averaged over the gap between the plates
can be derived from a potential, and it can be concluded that the flow of a viscous fluid is
analogous to an irrotational flow with regards to the velocity components averaged over the
gap between the two plates.
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6.3 Sphere in Incompressible Flow
Abstract

The drag coefficient of the sphere is to be measured in a wind tunnel as a function of the
Reynolds number of the free stream Re. The flow velocity of the air is less than 50 m/s, and
compressibility effects do not come into play. The variation of the drag coefficient with the
Reynolds number Re will be discussed, also the influence of the intensity of turbulence of the
air stream, the roughness of the surface of the sphere, and the support of the sphere in the
wind tunnel.

6.3.1 Fundamentals
Flow Around the Sphere According to the Potential Theory

The flow around the sphere can be determined with the potential theory by superposing a
three-dimensional dipole with a parallel flow.

M
O = Uso + T2 08 e (6.37)

With this ansatz the pressure distribution on the sphere is

¢ =252 =1- s’ (6.38)
—U,
2 o0
4
—— r
Uoo 0 -—

s_tégnalioﬁ -points

The pressure distribution is symmetric with respect to the y-axis; it follows that the resulting
drag force is zero — in contrast to all experience — (The d’Alembert Paradox).

In the following diagram the pressure distribution obtained with the potential theory is com-
pared with the results of measurements by O. Flachsbart [Flachsbart 1927].

+1. = T F
. \ | Re,,.=435.10

/ 5 Re =162.10

suber,

theoretical —

0\ 60 w0 1 80 | \| 20 | [ 360

\, /500 T O\

"“"-,.__‘-__:

4 = k
’ \
s [ subcritical -

[~ supereritical \
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Viscous Flow Around a Sphere

If a sphere is positioned into an air stream, the flow exerts a force in the direction of the
oncoming flow (drag), which is usually described by the drag coefficient.

F
p =52 (6.39)
2
“us A
2
with
Fp = Drag force
gu; = Dynamic pressure of the free stream
A = Cross-sectional area

The drag coefficient ¢p was determined in numerous experiments as a function of the Reynolds
number Re [Wieselsberger 1914, Bacon 1924, Reid 1924, Flachsbart 1927, Fage 1936, Moller
1937, Achenbach 1972, Bailey 1974].
At moderate Reynolds numbers, ranging from 10 to 10°, the drag coefficient c¢p can be mea-
sured in relatively small wind tunnels (e.g. in the wind tunnel of the Aerodynamisches Institut).
Very low and very high Reynolds numbers require other experimental techniques:
At very low Reynolds numbers the drag coefficient cp is determined by measuring the sinking
speed of small spheres in highly viscous fluids; Reynolds numbers Re > 10% can be obtained
either in wind tunnels with a large measuring cross section, compressed-air tunnels, or in towing
experiments in the free atmosphere.
Stokes was able to obtain a closed-form solution for very low Reynolds numbers (creeping
motion), by neglecting the inertia forces in comparison to the frictional forces. The result of his
theory is

24
" Re ’
which agrees well with experimental data for Reynolds numbers Re < 1. An extension of the
Stokes theory by Oseen, who considered the influence of the inertia forces on the flow in the far
field, yielded a solution similar to the one provided by Stokes, but it could not be applied to
higher Reynolds numbers. For high Reynolds numbers the value of the drag coefficient mainly
depends on the position of the separation point of the boundary layer.

(6.40)

Cp
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The above diagram shows the drag coefficient as a function of the Reynolds number after H.
Schlichting [1982]; curve(1): Theory of Stokes; curve(2): Theory of Oseen.

For 10° < Re < 2-10°, ¢p remains almost constant at /~ 0.4. This regime is called the subcritical
regime, since the boundary layer on the sphere remains laminar. On the front part of the sphere
the flow is accelerated, and a part of the mechanical energy is used up by the friction forces
in the boundary layer. The pressure rise on the rear part strongly decelerates the flow; the
kinetic energy of the flow in the boundary layer is diminished and the flow cannot attain the
the total pressure at the rearward stagnation point as predicted by the potential theory. The
flow separates, and a large “dead-water region” is formed. With increasing Reynolds number
the separation point moves downstream on the sphere close to the equator (a & .80°).

Since in the dead-water region the static pressure is approximately equal to the value obtained
with the potential theory for the separation point, the pressure distribution on the sphere is
asymmetrical, and a high pressure drag results.

P e a = 80°
—_——
Jrﬁ = 04
—

c =
dead b
i ead water
00
——t— —_— — -
X
Pm
LN
laminar

boundary layer A PCl‘l?d- shedding
separation line vortices

In the supercritical regime 4 - 10° < Re < 10° the laminar boundary layer undergoes transition
to turbulent flow on the front part of the sphere, a certain distance downstream from the
stagnation point.

Due to the turbulent momentum transport in the boundary layer, additional kinetic energy
is transported into the fluid layers near the wall, replacing a part of the energy consumed by
the frictional forces. The velocity profile is now fuller. The boundary layer can now longer
withstand the increasing pressure and separates further downstream (o / .120°). The diameter
of the dead-water region is smaller, and the pressure is higher, so that the drag of the sphere
is reduced (see the following sketch).

The laminar-turbulent transition can already be enforced in the subcritical Reynolds number
regime by imposing a disturbance on the laminar boundary layer. A ring of a thin wire (called
tripping wire) is mounted along a “parallel of latitude”, shortly upstream of the equator. With
this experiment Prandtl proved his hypothesis, according to which the abrupt drop of the drag
coefficient c¢p is caused by the flow in the boundary layer.

The regime between the sub- and supercritical regime is called the critical regime, in which the
drag coefficient decreases rapidly. The position and the shape of the curve of the drag coefficient
in this regime are influenced by several factors, as reflected in the deviation of the results of
various experimentators from each other (see the following diagram, provided by Achenbach).
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o =120°
B = 60° = 100°
c =01
D
u
— —_—
x
poo
laminar turbulent

boundary layer boundary layer

06

0-5

0-4

03

0-2

01

From E. Achenbach [1972] Drag coefficient of the sphere as a function of the Reynolds number; comparison of
data of the literature. —, Wieselsberger (1922); —, Bacon & Reid (1924); — - —, Millikan & Klein, free-flight
(1933); — , Maxworthy (1969). Achenbach [1974]: — —, with wire strain gauge; x, by integration.

In the so-called transcritical regime Re > 10° a slow increase of the drag coefficient cp from
0.1 to ¢p = 0.2 is noted. The separation point moves upstream, and periodic vortex shedding
is observed downstream from the sphere, similar to the subcritical regime. If the transcritical
regime Re > 10° is not accesssible with the available experimental facility, the flow behavior of
this regime can be simulated by mounting a “separation wire”! on the rear part of the sphere.
Thereby a clearly defined separation line is provided for the turbulent boundary layer.

If the transition of the boundary layer is enforced with a tripping wire on the front part of
the sphere, the drag coefficient does not drop to the value ¢p =~ 0.1, but only to c¢p ~ 0.22.
Obviously the tripping wire does not only influence the laminar-turbulent transition, but also
the position of the separation point of the turbulent boundary layer . The details of this behavior
of the flow, so far could not be sufficiently clarified and are still subject to ongoing research.

1 The separation wire is to be distinguished from the tripping wire, which, when mounted on the front part of
the sphere in the laminar part of the boundary layer, causes transiton to turbulent flow.



6.3 Sphere in Incompressible Flow 257

6.3.2 Shift of the Critical Reynolds Number by Various Factors of Influence

Since the abrupt drop of the drag coefficient cp is observed for a certain Reynolds number regime
Re, the critical Reynolds number (Rec.;;.) is defined as the Reynolds number, for which the drag
coefficient is ¢p = 0.3. The first measurements in the transcritical regime were conducted in
1912 and 1914. Eiffel determined a drag coefficient of c¢p = 0.176 in 1912. Prandtl repeated
the measurements in 1914 and obtained a drag coefficient of ¢p = 0.44 for the same Reynolds
numbers. Only later, more accurate experiments could clarify this apparent discrepancy. It was
shown that the drag coefficient depends on the following factors of influence: Reynolds number,
intensity of turbulence of the free stream, surface roughness, support of the sphere, and heat
transfer.

Intensity of Turbulence of the Free Stream

An increase of intensity of turbulence of the free stream shifts the transition of the boundary
layer and also the abrupt drop of the drag coefficient to lower Reynolds numbers (see the
following diagram).

D
047 TN 5 . .
\\ Recrir. = 1.5 10° windtunnel of poor quality
ut———F——— (high turbulence intensity)
A |
02 : \\ | Recris. = 3.65-10° windtunnel of good quality
S | (low turbulence intensity)
0.1 -
I : E _ Recrir. = 3.85 - 10° max. value reached in
0 T T T free atmosphere (practically zero turbulence
10 : 2.10° ’ : Re intensity)
i I 385-10°
Re =15-10" Re=365-10"

The highest critical Reynolds number is obtained in measurements in the free atmosphere, it is:
Reerir. = 3.85 - 10°

The turbulent fluctuations seem to have little influence on Re.;., since the characteristic length
scales of the turbulent eddies are one order of magnitude larger than the boundary-layer tickness
of the sphere.

One of the main objectives of wind tunnel testing is to carry out measurements with models
of airplanes, the full-scale configurations of which are to be flown in the free atmosphere. Since
in many cases the separation of the boundary layer is of greatest interest, it is understandable,
that the intensity of turbulence of the wind tunnel is adjusted to that of the free atmosphere.
The extreme sensitivy of the critical Reynolds number of the flow around the sphere with
regards to the intensity of turbulence of the free stream is used to determine the quality of the
wind tunnel with respect to turbulence.

A turbulence factor T'F is defined as:

_ Regy.(free atmosphere)

TF . >1 (6.41
<y Reri (wind tunnel) ( )
0.4 L3

-4 Surface Roughness
034
An increase of roughness of the surface of the
021 sphere affects the flow behavior in a fashion
0.1 similar to an increase of the intensity of tur-
o _ bulence or the mounting of a tripping wire
107 10¢ 105 108 Re (see diagram).

% = characteristic roughness height, referenced to

diameter of the sphere
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Support of the Sphere

If possible, the support of the sphere should be attached to the sphere in the dead-water region.
Otherwise the boundary layer on the sphere could be disturbed (see the following sketch).

a) Spindle in the dead water b) Suspended crosswise ¢) Suspended by wires

Bacon and Reid [1924] showed that the drag can be 2.5 times larger if a transverse spindle is
used instead of a spindle in the dead-water region.
If the sphere is suspended by wires, turbulent wakes are generated by the wires, which affect
the measurement. Special attention has to be paid to mechanical oscillations of the suspension,
since they can falsify the measurements markedly.

6.3.3 Method of Test

The drag of a sphere is measured for

Reynolds numbers 2 - 10° < Re < Yoo

5 - 105 with the balance in the wind =

tunnel. The sphere is mounted in the ::

test section with a swordlike support —

and a spindle, connected to the bal- ——
——

A sword

7

spindle

ance (see sketch). Since in the measure-
ment of the force also the drag of the
swordlike support is contained, a sec-
ond experiment is necessary, in which
the drag of the sword is determined.
This is done by mounting a mock-up
of the sphere upstream of the spin-
dle, so that the same flow is generated
around the swordlike support, without
connecting the mock-up with the spin-
dle (see sketch). In a third experiment
a tripping wire is attached to the front
part of the sphere, and the flow is kept
at subcritical conditions. In this exper-
iment the abrupt drop of the drag co- x
efficient ¢p can be observed.

mock-up sphere
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6.3.4 Evaluation

1. The drag force is to be plotted as function of the dynamic pressure ¢, of the free stream:
F Ds = f (qoo)
The dynamic pressure is determined with the pressure in the settling chamber Apyg, of the
wind tunnels:

N N
Qoo [E] = Apselmm HyO] - g [E/mm HZO] -0 (6.42)
g = Gravitaional acceleration
¥ = Nozzle calibration factor = 0.98[——]

The drag force is determined with the mass M placed on the balance after the formula:

m
Fp[N] = M[ke] - ¢ [;2} K. (6.43)
K., = Callibration factor of the balance = 1
g = Gravitational acceleration = 9.81 F;]
s
In order to obtain the drag of the sphere,
7 T T ! the total drag of the sphere and the support
NI ! ! ! must be reduced by the drag of the support
B : ﬂ : ' (comp. Sect. 4).
' \| |
5 ' b | Fp, = Fpo. = FD,yp. (6.44)
| with slri'pping wire
4 e R | — The abrupt drop of the drag coefficient c¢p,
/ caused by the laminar-turbulent transition,
3 - . depends on several factors of influence: In-
tensity of turbulence of the free stream;
2 - the model support; method of test, (distin-
guished are the direct and integrated mea-
i surement); the measuring probes or the bore-
holes for the pressure measurements can in-
D 1 1 1

fluence the flow); roughness of the surface of
the sphere and possible heat transfer from
the sphere to the flow.

0 0.5 1 15 2
q . 10% N/m’|
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2. The drag coefficient ¢p is to be plotted as function of the Reynolds number Re:
The drag coefficient is defined as
Fp,

°p = A4
Cp qOOAS (6 5)

with A, = projection area of the sphere = 0.0163 m?

{oo] DS
Re === (6.46)
v
with
2450
U = ([——
p
and
H; N
Bamm Hg] - 13.6 mm H,0 g [—/mm HQO]
kg mm Hg m?
Pl ~ Nm (6.47)
R|—| - TK
k] I
p = density R = gas constant of air
— 287.14 {@ : K]
kg
Ba = barometric pressure density ratio 7 = temperature
mm H,O .
HgtoHy O =13.6 | ——— D; = diameter of the sphere
mm Hg
= 0.144 [m]
g = gravitational acceleration v = kinematic viscosity [m{}

(from table)

If measurements of different wind tunnels
06 : . . : 3 are compared, the test conditions have to

c' be considered. For example, the intensity

N of the free stream, which depends on the

2.3 wind tunnel used, can markedly influence
the result. In earlier investigations this eff-

0.4 1 fect was not taken into account, as the in-
tensity of turbulence was not known yet.

0.3

0.2

0.1 1

0 1 1
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3. Determine the critical Reynolds number with the curve ¢p = f(Re) for ¢p = 0.3.
Rerir. = 3.6 - 10° from diagram
With increasing flow velocity the influence of the compressibility of the air on the flow can
be noted. Then the Mach number has to be introduced, so that the drag coefficient does
not only depend on the Reynolds number but also on the Mach number of the free stream,
i.e. cp = f(Ma,Res). This influence can be noted for Ma., > 0.3.

4. Determine the intensity of turbulence of the wind tunnel:

— 3.85-10°
TF - Recrit. ((fD:0-3) > 1

TF = 385100 — 1 g7,

Recrit.

Not. Apse Qoo Mioi. | Fp,,, Mgusp. | FD.ye Fp cp Uoo Re
Dim. | mm HyO | N/m? g N g N N m/s 10°
1 30 288.4 245 2.403 12 0.118 2.285 0.486 22.75 1.97
2 50 480.7 400 3.924 24 0.235 | 3.689 | 0.471 29.37 2.54
3 70 673 531 5.21 35 0.343 | 4.867 | 0.444 34.75 3.01
4 80 769.1 585 5.74 37 0.363 | 5.377 | 0.429 37.15 3.01
5 85 817.2 613 6.014 39 0.383 | 5.631 0.423 38.3 3.32
6 90 865.2 636 6.24 44 0.432 5.808 0.412 39.4 3.41
7 95 913.3 620 6.082 52 0.51 5.572 | 0.374 40.5 3.51
8 100 961.4 550 5.396 58 0.569 | 4.827 | 0.308 41.5 3.6
9 105 1009.4 | 500 4.905 67 0.657 | 4.248 | 0.258 42.5 3.69
10 110 1057.5 | 385 3.777 69 0.677 3.1 0.18 43.56 3.77
11 120 1153.6 | 370 3.63 78 0.765 | 2.865 | 0.152 45.5 3.94
12 130 1249.8 | 370 3.63 91 0.893 | 2.737 | 0.134 47.35 4.10
13 150 1442 370 3.63 102 1.001 2.629 0.112 50.86 4.41
14 170 1634.3 368 3.61 115 1.128 2.482 0.093 54.15 4.69

Measurements with tripping wire:

Not. Apse Goo Miot. | Fp,pr. | Msusp. | £, Fp, Cw Uso Re
Dim. | mm WS | N/m? g N g N N m/s 10°
1 30 288.4 110 | 1.079 19 0.183 | 0.893 0.19 22.75 1.97
2 50 480.7 160 1.569 31 0.304 1.265 0.161 29.37 2.54
3 70 673 230 | 2.256 38 0.373 | 1.883 | 0.172 34.75 3.01
4 80 769.1 265 2.59 47 0.461 1.129 0.17 37.15 3.22
5 90 865.2 295 | 2.894 52 0.51 2.384 | 0.169 39.4 3.41
6 100 961.4 325 | 3.188 57 0.559 | 2.629 | 0.168 41.5 3.6
7 110 1057.5 | 355 | 3.482 61 0.598 | 2.884 | 0.167 43.56 3.77
8 130 1249.8 | 430 | 4.218 68 0.667 | 3.551 | 0.197 47.35 4.10
9 150 1442 490 | 4.807 76 0.746 | 4.061 | 0.173 50.86 4.41
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6.4 Flat-Plate Boundary Layer
Abstract

The laminar and turbulent boundary layer generated by an air stream on a flat plate at zero
angle of attack is investigated. The density of the air p and the dynamic shear viscosity p are
assumed to be constant. The change of the flow characteristics caused by the laminar-turbulent
transition is discussed, and the critical Reynolds number of transition will be determined. The
velocity distributions in the laminar and the turbulent part of the boundary layer will be
determined in the experiment and compared with theoretical data, obtained with solutions of
the boundary-layer equations.

6.4.1 Introductory Remarks

For sufficiently high Reynolds numbers, i. e. when

the friction forces are small compared to the in- 4 |

ertia forces, the flow over a flat plate can be con- u
sidered as a potential flow except for the region —— 8
near the wall. Only in this thin layer of thickness

4, the boundary layer, in which the velocity in- 5

creases from zero to the value us of the external e

flow, are the friction forces of the same order of
magnitude as the inertia forces.

Characteristic Dimensions of the Boundary Layer

The boundary-layer thickness § is the distance measured from the wall, from where on the
velocity u is asymptotically equal to the velocity us of the outer flow. With experimental
accuracy accepted, this requirement is generally satisfied for the distance measured from the
wall, where the velocity is about 99% of ;.

The displacement thickness ¢, is a measure for the y “ |
distance, by which the external flow is displaced 0,99 u;
from the wall; with p = const., the displacement -7
thickness is u
00 [}
5 = / (1 - 3) dy (6.48) /)
0 Uus b ﬁ
5 z %
The momentum thickness 0, is a measure for the ! = -
loss of momentum the flow is suffering by the fric- Us

tion forces; for p = const., there results

52=/0°°3(173) dy . (6.49)

Uus Uus
The Laminar-Turbulent Transition on the Flat Plate

At relatively low Reynolds numbers the flow is laminar; at high Reynolds numbers the flow
in the boundary layer becomes turbulent after a certain laminar starting region. The laminar-
turbulent transition sets in at a certain position, designated as x... O. Reynolds suggested in
1883 to introduce a thin thread of dye into the flow parallel to the direction of the main flow
in order to detect transition (see sketch).

The transition from laminar to turbulent flow in the boundary layer is affected by several quan-
tities, the most important ones being the pressure gradient in the external flow, the roughness
of the wall of the plate, and the intensity of turbulence in the flow of the free stream. Small
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boundary layer
(strongly magnified;

i | A
“_ thread of dye /__,_—"
u / - T _\[ )
— | TN
N - , T
—— - x

krit

perturbations introduced in the flow in the boundary layer can no longer be damped out any-
more by the Stokes stresses, and the flow changes its behavior. First it becomes intermittent,
alternating in time between being laminar and turbulent, generating so-called turbulent spots,
which appear in irregular intervals of time. They travel downstream. Finally the flow becomes
fully turbulent, and velocity fluctuations occur in all three coordinate directions, causing a
strong diffusion of the dye, which is then completely spread out in the flow.

While for x < x4 the thread remains straight in the laminar part of the boundary layer,
downstream from z = z..;., the transition point, the thread begins to oscillate irregularly, and
for x > w4 the dye spreads out, caused by the velocity fluctuations in the turbulent part of
the boundary layer.

Laminar and turbulent boundary layers are characterized by different boundary-layer thick-
nesses and velocity distributions. The shear stress at the wall is markedly higher in the tur-
bulent boundary layer. The main quantity influencing the transition of the laminar boundary
layer is the Reynolds number Re, = usox/v. The value at which transition occurs, is called
Reyir., usually observed between Re.. = 10° and 3 - 105. The actual value depends on the

1) shape of the leading edge of the plate,

2) alignment off the plate with respect to the direction of the oncoming flow,
3) technical quality of the surface (roughness, waviness)

4) intensity of turbulence of the free stream.

6.4.2 Method of Test
Determination of the Critical Reynolds Number of the Plate

The laminar-turbulent transition is first detected with the aid of a hot-wire signal. The hot-
wire anemometer is particularly apted for this measurement, since it measures the instantaneous
value of the velocity and thereby also the turbulent oscillations of the velocity.

—K ) x |

- R I
—— "\-_._72 _____ —_—
plate //(‘T—b

hotwire
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In the experiment the hot wire is positioned shortly upstream of the trailing edge of the plate
in the boundary layer. Its signal is recorded with an oscillograph. If the velocity u., is slowly
increased, the following signals are observed:

AC AC AC

ool Boo2 > W) U3 > Uao2

time time time

laminar transition turbulent

At a certain velocity e e, first fluctuations appear clearly visuable (see the sketch in the
middle). The critical Reynolds number is computed with this velocity.

The transition can also be detected by overhear- e T T T T T
ing the boundary layer. A Pitot tube, connected S~ —— T
with a stethoscope, is positioned in the boundary Pitot tube

layer. The pressure fluctuations, caused by the tur-
bulent velocity fluctuations, can be heard as high-
frequency crackling.

stethoscope

In this experiment the velocity u., is kept constant, and the Pitot tube is held at a constant
distance from the wall and moved downstream. The coordinate z, where a clear high-frequency
crackling is first heard, is used for determining the critical Reynolds number.

Measurement of the Velocity Distribution

The velocity distributions are measured with a Pitot tube with a diameter of 0.2 um. It is
connected with a differential pressure manometer, which measures the following difference:

A
pP2 Pu

with p, being the static pressure outside of the air
stream. This difference is approximately equal to

u2
p2 )

since, in a good approximation, it is
Poo =P = Pu

The Pitot tube is held by a support, its distance

y from the surface of the plate is varied with a —_— Qa:’:ﬁztaz
screwed spindle and read on a scale. The diame- 25

ter of the Pitot tube must be considerably smaller :”

than the thickness of the boundary layer, in order

not to falsify the measurements. The dimension

sizes of the Pitot tube are given in the sketch in

mm.
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6.4.3 Prediction Methods

The differential equations, describing the flow in the boundary layer, are obtained with an
order of magnitude estimation of the various term of the Navier-Stokes equations [Schlichting
1982]. For the flat plate at zero incidence they read for steady incompressible flow with constant
density and dynamic shear viscosity:

ou _Ou pdPu 0
T— + 70— = ——— — —u'v/ 6.50
u(’?x+v8y Oy ayuv (6.50)

The quantities w and T are the time-averaged velocity components in the x- and y-direction, if
the flow is turbulent. The product pu/v’ ist the only term of the Reynolds stress tensor of the
turbulent fluctuating motion, that is retained in the boundary-layer formulation. The boundary
conditions are:
a)fory=0: w=0 (The Stokes’ no-slip condition)

7 = 0 (impermeable wall)
b) for y — 00 : u = Us

Similar Solution for the Laminar Boundary Layer

For the laminar boundary layer the velocity components u and v can be determined with
a similar solution of (6.50), first obtained by Blasius, [Schlichting 1982]. The validity of the
solution is confirmed by experimental data. It is tabulated, for example, in [Walz 1956]. The
characteristic quantities are:

1) 5 Y u
- = for =y\/Re, =5 itis — =0.99
. (for SV ERe itis - )

Re, T

01 1.72
Re,
3
Re,
.66

= 6.51
o (6.51)

T

7

(M)
[\

S

BAY
S

=
o

as
<
gw

o
=~

7

Approximate Solution for the Turbulent Boundary Layer
Following Prandtl the turbulent shear stress in equ. (6.50) can be appproxinated as

Ju
dy

u = —1*— .

. (6.52)

The quantity [ is the Prandtl mixing length. In the vicinity of the wall it is assumed to be
proportional to y, and in the outer part of the boundary layer it is approximately constant.
This assumption was experimentally confirmed for turbulent pipe flows, but was also shown to
be valid for the turbulent boundary layer on a flat plate . Equation (6.50) can be integrated with
this closure, but the solution is not similar. Another possibility to determine the characteristic
boundary-layer quantities is given by the approximate integral method of von Kérmén and
Pohlhausen.
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The von Karman-Pohlhausen Method

The simple approximate method of von Kérmdn and Pohlhausen is based on equs. (6.50),
integrated in the y-direction for steady, inkompressible flow. For the flow over the flat plate at
zero angle of attack the so-called integral condition is (see e. g. [Schlichting 1982]):

e}

To d [ U -
o / (1 (6.53)

The solution of (6.53) requires an assumption for the unknown velocity distribution

u(z,y)/uso = f(y/d(x)). Pohlhausen replaced f by a fourth-degree polynomial of %

Example: Laminar Boundary Layer with Linear Ansatz

The velocity u/uq, is crudely approximated by u/us = y/d. With this ansatz there are obtained

1
du Uoo u u y 1
o= \ay —h ‘d /7(177>d7:7
o= H <dy>y0 N a J Uoo U/ § 6

After insertion of these values in (6.53), integration yields § /o = 2v/3/+/Re,. The displacement
thickness 4, results to:

s 1
61:/(1_7>dy_5/<1_7>dy g, and hence %: V3
0 0 i

VRe,

Despite of the crude approximation of for u/u., the displacement thickness 4y is rather accu-
rately determined, compared with the similar solution (\/§ = 1.73 versus 1.72 in the section
“Similar Solution for the Laminar Boundary Layer”).

Example: The Power-Law Ansatz for the Turbulent Boundary Layer

Prandtl employed the experimental results obtained for the pipe flow and applied them to the
flat-plate boundary layer.
With the approximate velocity distribution

- 1/7
u_ <£> after Nikuradse
U R

and the drag resistance law

8}; =)A= 05)16 after Blasius
o JaDp
I
- L ‘ Pipe ‘ Plate ‘
U Uso
Re6 R g

S
Il
|
B[S
N—"
i
13
S|
Il
|
SIS
Ne—
<A
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there results for the flat-plate boundary layer

1
(AT
pUus, JUocOp 1) ) oo U/ & T2

I

and )
01 w y 1
a_ 1— — g2 =2
§ 0/ ( uoo> 6 8

With (6.53) the boundary-layer thickness and the displacement thickness become

1 0.37 01 0.0462

— = and — =

T Joop T o[ Uocp
0 I

The results imply that the flow is turbulent from the leading edge on, which is usually not true.
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6.4.4 Evaluation

Baromeric pres. Ba = 735.9mm Hg = 93849.3N/m?
Temperature # =21.6°C =294.6 K

Gas ckonstant R =287Nm/kg K

Density p =p/RT = 1.11kg/m?
Kinem. viscosity v = 15.8-107% m?/s

Determination of the Critical Reynolds Number

— with hot-wire signal
r=131[m], qeo,, =41.65 [mm HyOl], uc,.,, =27.13 [m/s], Reey = 2.25-10°

— by “overhearing” the boundary layer
Goo = 83.3 [mm Hs0], us = 38.37 [m/s], e = 0.83 [m], Regr. = 2.02 - 10°

Velocity Distribution

Laminar Boundary Layer:
r =119 [m],ge = 27.54 [mm H,0] = 270.15 [N/m?],uc, = 22.06 [m/s]

U/ Uso = 1/q/qoo- Diagram: u/us = f (%\/Rcm)

Turbulent Boundary Layer:

z =119 [m],ge = 117.11 [mm H,0] = 1148.85 [N/m?],us, = 45.45 [m/s]
u=4/2q/p. Diagram: u = f(y) (double-logarithmic).
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Flat-Plate Boundary Layer
laminar turbulent
r=1.19 m, u, = 22.06 E7 r =119 m, uy, = 45.45 E7
S S
v=158-10"° g, Re, = 1.16- 105 v=16-10"° g, Re, = 3.38- 106
T

Not. Y q T % \/Rie, Y q u

Dim. || mm | mm HyO - - mm mm H,O m/s
1 0.2 1 0.191 0.22 0.2 33.0 24.15
2 0.4 1.4 0.225 0.43 0.7 51.8 30.26
3 0.7 2.5 0.301 0.76 1.2 63.4 33.48
4 1.2 6.3 0.478 1.3 1.7 1.7 35.60
5 1.7 10.8 0.626 1.84 2.2 78.8 37.32
6 2.2 15.1 0.740 2.38 2.7 84.8 38.72
7 2.7 20.1 0.854 2.92 3.7 94.9 40.96
8 3.2 22.6 0.906 3.47 4.7 102.4 42.54
9 3.7 25.2 0.957 4.01 5.7 107.9 43.67
10 4.2 26.6 0.983 4.55 6.7 111.9 44.47
11 4.7 27.2 0.994 5.09 7.7 114.4 44.97
12 5.2 27.5 0.999 5.63 8.7 115.9 45.29
13 5.7 27.7 1.003 6.17 9.7 117.2 45.51
14 6.2 27.8 1.005 6.72 10.7 117.5 45.57
15 6.7 27.8 1.005 7.26 11.7 117.7 45.61
16 12.7 117.8 45.63

(), =0 ()=

z exp.
(%@) - 172 (ﬁJE) —=1.36

6.4.5 Questions

1. State the assumptions for the validity of the boundary-layer theory.
The characteristic Reynolds number has to be high, Re,, > 1. This requirement implies,
that the length of the body and the wall curvature must be much larger than the thickness
of the boundary layer.

2. State the reasons for the deviation of the measured velocity profiles from the theoretical
predictions and discuss one of them in detail.
It can be seen in the plot of the measured velocity distribution, that the experimental values
at about v/ Re, ~ 0.2 fall under the curve of the theoretically predicted data, corresponding
approximately to ;- < 0.25. Obviously the deviation is caused by a systematic error of
measurement. The distance from the wall Ay ~ 0.2x+/Re, mm is of the order of magnitude
of the diameter of the Pitot tube. In the vicinity of the wall the Pitot tube influences the
flow, so that an accurate measurement of the tangential component of the velocity is not
possible.
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exact Pitot tube measured
»
?’ ) — -
/s / [ // /;'I #
e I —”":y | Ay=04mm
IS

3. Sketch a laminar and a turbulent velocity profile and discuss the differences!

8 r

yix v -R'a'x'
7

0 1

0 0.2

04 O

u/u

laminar boundary layer on a flat plate

u_ [m/s]

100 |-

1
0.1

1 10
y [mm]

turbulent boundary layer on a flat plate

4. Assume that the boundary layer is turbulent from the leading edge of the plate on and
determine the force, exerted by the plate on its the suspension.
(Dimensional sizes of the plate: Length = 1.5m , width = 0.55 m; Free-stream velocity: see

data of experiment)

yields:

ddy n 1
dr = U

70
pud,

02

205 +01) +
(202 + 01) 2

.

The von Karmén-Pohlhausen integral method

Ty=0) _
2
uOO

Tw
F=2cpfw LB op= 7o
widhw  Byperiment:
. — goo = 117.11 mm H,O = 1148.85 Nm ™2
; Uoo = 4545 ms™t; p=1.11kgm™
— L = 1.5 m; B =0.55m

2
1.6-1070 2
S

dus,
dx
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With

there is obtained:

The Blasius approximation:
70
p uds
72 dx
T [0 oo
. 60,2o ds
=3
T 1 o
R/
721.25
0
:> —
T
Local skin friction coefficient:
Cf
T(y=0)

0.023 (

)025
oo

0.023 <i> 502
U,

0.25
0.023 ( ) / dr
.25 1.25
0.023 <l) z
0.377
\/5 Re.’l)

20.25

_ T(y=0)
2.2
250

&,
dx

14

=0 =

do
dx

0.2 0.2 1
= 6=03TTa ( v ) =B 3708 <L> g0z 03016
Uso X dx U v/ Re,
e — E 0.3016 E 0.05864
T T 72 YRe, 72 Re,
1L I, . v\
cp = Z/o cpdr = 7 €y 0.05864 <;> xtdw
_0.05864 1 ( v )02 L
08 L \uelL
0.0733 o 0.455 -3
D e, (comp. Schlichting: ¢p = W =3.45-10 )
oL : f
Rep = 27— 496.10° = ¢p = 346 - 1073
14
=F = 2¢pgeLB=655N

(for turbulent flow and flate plate of zero thickness!)

5. By what experimental measures can the value of the critical Reynolds number of the flat-
plate boundary layer be influenced?
The critical Reynolds number Re..; can be changed by shaping the leading edge of the
plate differently and by changing the surface quality of the plate. Re..;. is also affected by
the alignment of the plate with the flow direction and by the intensity of turbulence of the

free stream.
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6.5 Pressure Distribution on a Wing

Abstract

Pressure distributions are measured in five profile sections on a wing of finite span. The aim
of the experiment, carried out in the wind tunnel of the Aerodynamisches Institut for low
velocities, is to demonstrate, how lift and pitching moment of the wing can be determined
with the pressure measured. Also the dependence of the pressure distributions on the angle of
attack is investigated, and flow separation will be demonstrated. The pressure distributions are
measured through 25 boreholes in every measuring cross section and recorded with multiple-
tubed manometers.

6.5.1 Wing of Infinite Span

On a wing of infinite span the velocity does not change in the spanwise direction. The pressure
distributions are therefore the same for all wing sections (two-dimensional problem). The lift
is determined by decomposing the pressure force (p — poo)ds - Ay acting on a surface element
of the profile ds - Ay into the components tangential (d7) and normal (dN) to the surface and
by subsequent integration over the entire surface area of the wing.

dT

(p-poo)ds-Ay
ds

The length element in the spanwise direction Ay, for example, is chosen to be 1 m. The normal

component is:
AN = (p — po) dscose Ay

with ds - cose = dx. The resultant N,.s acting on the profile, is obtained by integrating d/N
on the upper (subscript «) and lower side (subscript /) over the wing chord and by taking the
difference:
1
Nees = Ay /[(pz — Poo) — (Pu — Pe)] dz
0
l

Nyes = Ay /[Apl — Ap,] dx (6.54)
0
The resulting tangential force can be obtained in similar fashion. However, for small angles ¢, i.
e. for slender profiles, T}, is negligibly small in comparison to N,s. The dimensionless normal
force coefficient Cy
NTES

Oy = 1
pOO 2
UL Ay
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then becomes with the pressure coefficient

Cpug = Poo 72

!
1
Cy = 7b/(cpl —¢p,) - dx,

with the subscripts v and [ designating again the upper and lower side of the profile. If the

resulting pressure coefficient

Cpres = (Cp[ - Cﬁu)

is plotted versus the wing chord (see the following diagram), it is clear, that the normal force

coefficient C'y can be obtained by integration.

C
s
center of gravity
of area
1
0

* aerodynamic
center

The center of gravity of the shaded area is the location of the aerodynamic center of the
profile, i. e. of that point, at which the resulting force acts. The product of the distance of
the aerodynamic center from the leading edge of the profile s and the normal force N is the

pitching moment M about the leading edge of the profile.
M:N-s:CN%OUfclAys

With the dimensionless moment coefficient Cyy

M

Ov = 7 5 An
L= U212 Ay
one obtains for C's
s
Cu=Cy 7
The lift coefficient of the profile
L
G = Poorr2 1 A

can for small angles of attack a, with the exact relation
Cy=Cycosa— Crsina

approximately be set equal to Cy.

(6.56)

(6.57)

(6.58)
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6.5.2 Wing of Finite Span
Determination of the Downwash Distribution

In general the pressure on the lower side of the wing is higher than on the upper side, so that,
caused by the pressure difference, a flow about the wing tips is originated.

i _
G D)

view of wing from upstream

Since the lift vanishes at the wing tips, the circulation has to satisfy the condition I'(y =
+b/2) = 0. For this reason the circulation distribution over the span is assumed to be given
by a discontinuous step curve with small increments AI'; the vortex elements of strength AI’
leave the wing in the downstream direction as free vortices, shown in the following sketch, and
form a vortex sheet, which rolls up into the two free tip vortices.

AT
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upper and lower side
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top of view of wing

-

A

C

view on wing from
downstream

— e | ——— - -

cut interface
(seen from behind)

top view interface

ro

/

@ ™ interface rolls up
|

é‘ free vortices

At every positon y on the wing a downwash velocity w;(y) and thereby an angle of attack a;(y)
is induced; according to the Biot-Savart law they are



274 6. Aerodynamics Laboratory

1 8F(y/)> dy'
1U’Ly = - / ,7
w5 / (“5) o
—b/2
+1
o) LT e T :
ai(y) = U _2ﬂ/1<3n’ A T (6.59)

The downwash velocity is superposed on the free-stream velocity, whereby the geometric angle
of attack is decreased. If w; < s, then the approximation w;/u., = tana; ~ «; can be
accepted.

As a consequence of the downwash the resulting aerodynamic force of the wing is no longer
normal to the free-stream direction (see the following sketch); the vortices shed from the wing
generate an “induced drag” of the magnitude

b/2

Di:Ui / (%) wily) dy. (6.60)

b2

zero—lift
direction

The local lift is now no longer determined by the geometric angle of attack ageom., but by the
local “effektive” angle of attack oy = .
The expression for an element of lift d must now be written as:

dL(y) = aly) Z=U%Uy)dy (6.61)
where

at) = (G2)aut) = ot (6:62)

If it is further assumed, that the local lift is given by the Kutta-Joukowski theorem, one obtains

d, (o)
(ﬁ) ac(y) P2U21(y)dy = poUn T (y)dy (6.63)
da ) 2
The last equation yields a.(y)
2I'(y)
= = .64
ae(y) Tlly) v(n) f(n) (6.64)
with
2b
Fn) = —2 6.65
"=y g (0%

With the expression for a; the local angle of attack can, according to Prandtl, be expressed by
the following integro-differential equation:
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b/2
20(y) 1 dr dy'
W) = T +47TU007}[2 <@> ) (6.66)
+1 ,
ag(n) = f(n) ”/(n)+%/ (j%,) (71(?77/) (6.67)

This equation is the starting point of the lifting-line theory, for which two main problems are
defined:

1. Main problem: a) given: v(n),f(n)
to be determined: ay(n) distribution of the angle
of attack (twist)
b) given: v(n),0q(n)
to be determined: f(n)
2. Main problem: given: F(m),eq(n)
to be determined: ~(n)

Elliptic Circulation Distribution

The results obtained for the elliptic circulation distribution as obtained in [Trunkenbrodt 1967]
are repeated here. If the circulation is given by

I(y)=T,\/1- <%y>2 (6.68)

with I, being a constant, the lift of the wing is obtained to

b/2
L = poUs / I'(y)-dy = gpoo Use Iy 0. (6.69)
—b/2
The downwash velocity is constant
I
wily) = 5 (6.70)
The induced drag of the elliptic circulation distribution is
Di= 2. pI? | (6.71)

8

and the coefficient of the induced drag Cp, can be expressed by the lift coefficient C;, and the
aspect ratio of the wing

Ct
== .72
Cp, = —% (6.72)
The aspect ratio is defined as
b/2
A=0?JA  and A= / I(y)-dy . (6.73)
—b/2
The induced angle of attack is given by
Cr
= — 6.74
a=_+ (6.74)

With the last two equations drag coefficients and angles of attack can be determined for different
aspect ratios A.
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Solution of the Prandtl Integro-Differential Equation

Following the ansatz of Glauert and Trefftz (6.63) can be transformed into a system of linear
algebraic equations with the aid of a Fourier-series representation for the circulation. The
circulation 7 is represented by a truncated Fourier series

() =2 a,sinpd, (6.75)
p=1
in which ¥ is obtained from 7 by the transformation

¥ = arccosn . (6.76)

The integration of (6.67) yields (special attention is to be paid to the singularity in the integral)

i . u sin pv
ag(9) =2 f(V) Y a,sinpd + Y pa, e (6.77)
p=1 pn=1
The quantities a, are the Fourier coefficients.
17 , A
= /7(19) sin pddd ~ e nz::l'yn sin 1, (6.78)

0

The trapezoidal rule is used for the solution of the integral. If the coefficients a, are replaced
by the approximate expression (6.66), there results

Ul Top osinpd, .
v — Jv T n " 3 19714 6.79
= it o 3 S (6.79

With (6.78) the Prandtl integro-differential equation is transformed into a system of m linear
algebraic equations for v, (v = 1,2....m).
In matrix formulation (6.5.2) can be written as

B-y=aq, (6.80)
In this equation B is the coefficient matrix, which depends only on the geometry of the wing,
and 7 is the unknown solution vector.

The model of the wing used in the experiment has a profile NACA 23012; the characteristic
quantities are:

b=09m; 1=02m; ¢ =535 a,=6% A=45 (6.81)

The results of the calculation with the lifting-line theory are shown by the curve 1 in the
following diagram. Also shown are the results of the extended lifting-line theory of [Schlichting,
Truckenbrodt 1967] in curve 2.

The Approximate Method of Schrenk

Munk could show [Schlichting and Truckenbrodt 1967], that the induced drag attains a min-
imum, if the circulation distribution on the wing is elliptic. The fact, that the circulation
distribution also depends on the shape of the wing (see (6.67), which contains the quantity
(y)), offers the possibility to quickly estimate the deviation of the circulation distribution of a
given wing from the elliptic distribution; such an estimate is advantageous for design problems.
In [Schlichting and Truckenbrodt 1967] it is proposed to assume the local lift to be given by
the mean value of the elliptic distribution and a distribution proportional to the local chord:
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1 092 0707 0.38 0 0.38 0707 0921 lef'
--- cr, = 0.39045 c¢p; = 0.01121 simple lifting-line theory
cr, = 0.3419 cp; = 0.0834 extended lifting-line theory

Lift distribution of the rectangular wing with NACA-profile 23012; o = 6°

L(y) = % [ao Uy) + a1 - (2—;/)2 (6.82)

The constants ag and a; can be obtained by integration in the spanwise direction and requiring
that both integrals have to have the same value. One obtains for ¢(y)

aly) = % {1+731(7;)~ 1- (%) , (6.83)

with [, being the mean chord and C}, the total lift of the wing. The dimensionless circulation
distribution then is:

(6.84)

YY) = ny) +(y) = Cully) A J; <2i’>

TR b
The quantity 7 (y) is the local circulation proportional to the chord, and v,(y) is the elliptic
contribution.

The following distribution is obtained for a rectangular wing:

y A elliptic distribution
e
B s Rl Y
. AN

~ e NNE interpolated
distribution

/ AN

b

It is to be noted, that the Schrenk approximation does not drop to zero at the end of a
rectangular wing. The error is of minor importance, if one remembers the simplicity of the
method.
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6.5.3 Method of Test

In the experiment a model of a wing is used with a span width of 900 mm and a chord of
200mm. The wing has zero twist and its profile is the NACA 23012 profile with a maximum
thickness position of 30% chord, 12% relative thickness, and 1.84% relative camber at 15%
chord.

The pressure distribution is measured in five sections at various locations in the spanwise
direction (see the following drawing of the model). In each measuring section there are 14
boreholes on the upper side of the wing, and 11 on the lower side. All pressure holes are
connected with multiple-tubed manometers via flexible tubes so that 125 connections have to
be lead out of the model of the wing. In order to avoid disturbances of the flow by the pressure
tubes, they are put inside the sword-like support of the wing, which is mounted at a right angle
to it in the wind tunnel (see the following drawing). A comparison of the calculated and the
measured lift distribution shows, that there is some disturbance by the sword, but it is small.
The pressure tubes are lead from the sword to five multiple-tubed manometers, which are filled
with water as sealing liquid. The entire measuring unit consists of a storage container, filled
with water and sealed off against the atmospheric pressure. 27 glas tubes are immerged in the
container, and the pressure inside can be raised by letting compressed air in, which causes the
water columns in the glas tubes to rise. Since the flexible tubes of every measuring section
are connected with 25 glas tubes, the water columns are sucked upward by underpressures
and pushed downward by overpressures. The two remaining glas tubes are connected to the
surrrounding atmosphere and serve for reference pressure measurements. In this manner the
multiple-tubed manomaters are used as differential pressure manometers.

The dimension size of the sword could be reduced and thereby also the error of the measure-
ments, if electric pressure probes were used. The multiple-tubed manometers, however, are
prefered here because of their simplicity. Also the pressure distribution can be recorded, when
the flow separates and stalls. The position of the boreholes is shown in the following drawing.
The total lift of the wing is obtained by integrating the local lift coefficients in the spanwise
direction.

The following page contain a perspective drawing of the model of the wing with the sword and
the suspensions. Indicated are the five sections, in which the pressures are measured. Sections
I and I are close to the wing tips, sections 1] and IV further inboard, and section V near
the sword.

The table below the drawing gives the positions of the boreholes for the pressure measurements
on the upper and lower side of the wing. The corresponding numbering of the holes is shown in
the sketch below the table. The drawing on the bottom of the page gives the spanwise positions
of the five measuring sections. The various distances are measured in mm.

Selected References

MuvrrHOPP, H.: Die Berechnung von Auftriebsverteilung von Tragfliigeln, Luftfahrtforschung,
Bd. 15, 1938

SCHLICHTING, H., TRUCKENBRODT, E.: Aerodynamik des Flugzeugs, 2. Band, 2.Aufl.,
Springer-Verlag, 1967
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The wing model for measuring the pressure distribution

125 connection
to manometers

&

Position | Dim. | 1 2 314 |5 6 7 8 9 10 11 12 13 14
Typperside | Mm | 0 | 6 | 15|23 |32 48|62 | 77 | 92 | 109 | 122 | 140 | 158 | 175
TLowerside | MM | 15123132 |48 | 62|77 192|109 | 122 | 147|170 | — | — | —
5 6 7 8 9
5 3 4 0 15 12 1 "
123 . 5 6 7 & 9 1m0 ™
-
X
b=900
410 390
320 100 225
I 111 \ IV 11
8
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I
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I
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Pressure holes on the NACA profile 23012
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6.5.4 Evaluation

1. Evaluation of the data:

a) Draw the diagrams Ap = f(x) for the five sections I, II, III, IV, V;
150

T
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100 |-
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0 50 100 150 200 0 50 100 150 200
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Pressure distribution p [mm H,O)]

Section T Section 1T Section ITT Section TV Section V
Pu Yyl Pu y23 Pu 21 Pu yi Pu y2i
1 120 -2 120 -1 12T -2 117 9 110 8
2 -30 -23 -60 -5 -63 -8 -95 1 -99 0
3 -75 -25 -94 -10 -94 -14 -120 -10 -119 -10
4 -75 -25 -90 -18 -92 -20 -112 -15 -112 -21
5 -68 -21 -81 -17 -85 -21 -102 -16 -101 -22
6] -50 -21 -62 -16 -66 -20 -80 -17 -78 -23
7] -0 -16 A7 -16 -53 -19 -65 -19 -65 -24
8 -29 -13 -34 -11 -41 -15 -50 -14 -52 -20
9 -22 -9 -29 -11 -33 -12 -1 -11 -1 -18
10 -16 -3 -10 -7 -25 -7 -32 -6 -33 -11
11 -13 -1 -13 -2 -20 -2 -27 -3 -27 -2
12 -10 — -12 — -14 — -18 — -18 —
13 -4 — -5 — -5 — -10 — -10 —
14 5 — -4 — 3 — -2 — 1 —
b) Determine the mean pressure for all sections!

1 gl
Apn = 7 [(2pu— Ap)da
1 gl
Apm = - / Ap dx
[ Jo
1h
Apy = 73 (Apo +4 Apy +2 Apy +4 Aps + ... + 4 Apyy + Apy)
(Simpson’s method)
I
h=—; choose: [ =19.6cm=n=14; h=14cm
n
Ap; from diagram (results see following table)
Section Nr. 1 2 3 4 5
Apg 0 0 0 0 0
Apy 627.84 | 941.760 | 922.14 | 1314.54 | 1255.680
Aps 451.260 706.32 | 725.94 961.38 961.38
Aps 313.920 490.5 | 529.74 725.94 686.7
Apy 196.200 333.54 | 372.78 549.36 470.880
Aps 117.72 176.58 | 255.16 392.4 333.54
Apg 78.48 98.1 | 176.58 204.3 235.44
Apy 39.240 58.860 | 117.72 235.44 137.340
Aps 19.62 39.24 78.48 176.58 98.1
Apg 19.620 19.620 58.86 137.34 78.480
Ap,0 19.620 19.620 39.24 98.10 58.860
Api 1 9.81 9.81 19.62 78.48 39.240
Api2 9.81 9.81 19.62 39.240 19.620
Ap13 5.886 3.924 9.81 19.620 19.620
Ap4 0 0 9.8T 9.810 9.810
App, 1 28.402 43.015 50.77 74.026 64.870
App, 144.908 | 219.464 | 259.03 | 377.685 330.971
Cq 0.126 0.190 0.225 0.327 0.287
v 0.014 0.021 0.025 0.036 0.032

¢) Calculate the local lift coefficient ¢; = Ap,,/Aps. - 0 for all sections; determine v = ¢, - 1/2b
and plot in diagram (nozzle calibration factor § = 0.98);

o

Apm _ Apn
Apse "~ 1153.6 Pa
Y=a 2%

d) Determine the location of the aerodynamic center for the section III, measured from the

. A
leading edge. Cpres. = Cpui = 7%0p

02
v Qoo

Ap _ ___4p

T 1153.6 Pa
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See diagram:
Position of center of gravity of the area is approximately at s = 43 mm

extended lifting—line theory

~/simple liftingline theory.

measured

-1 -0.5 0 0.5 1
2y/b

e) Discuss the influence of the Reynolds number Re on the maximum lift of a wing!
At high angles of attack the pressure minimum on the upper side of the wing is located
near the leading edge. The pressure rise towards to trailing edge generates a large positive
pressure gradient, which either provokes laminar-turbulent transition or separation of the
laminar flow. Whether transition or separation is first, mainly depends on the Reynolds
number and on the magnitude of the pressure gradient.

CL supercritical
Re

subcritical

[0

For low Reynolds numbers laminar separation is observed first and leading edge stall may
result. The maximum lift coefficient is very low. With increasing Reynolds number transition
is posssible, and the flow can reattach. The maximum lift therefore increases with increasing
Reynolds number.
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6.6 Aerodynamic Forces Acting on a Wing
Abstract

Lift, drag, and pitching moment of a rectangular wing with the NACA 23012 profile, and the
drag of the model suspension are determined by measuring three aerodynamic forces with the
balance of the low-speed wind tunnel of the Aerodynamisches Institut. The functioning and the
utilization of the balance and the correction of the measured data are explained. Application
of the experimental data to full-scale configurations will also be described.

6.6.1 Nomenclature of Profiles

Wing profiles for subsonic flight are well rounded at the leading edge and pointed at the trailing
edge. The shape of the profile is charcterized by the following parameters:

vector of free—stream velocity
(tangent to direction of camber line)

camber line

Chord of the profile I: The characteristic parameter, to which all dimension sizes are referenced.
Maximum relative profile thickness d/I; relative thickness position 24/l; maximum relative
camber f/l; relative camber position z/I.

The influence of the geometric parameters of a profile on its aerodynamic characteristics has
been investigated by numerous authors, see for example [Abbott, v. Doenhoff, Pankhurst,
Holder]|, but especially by NACA Research Laboratories of the United States, see for example
[Ann. Reports 193, 1937]. The digits of the profile, used here in the experiment, have the fol-
lowing meaning: For the five-digit series (e. g. NACA 23012), which begins with a 2, x4/l is
x4/l = 0.3 = const.; for 230....., f/1 = 0.0184.

The digit 2 indicates 20/3 of the lift coefficient ¢ (= 0.3) at shockless entrance, i. e. flow
direction is tangent to the camber in the point on the leading edge (see sketch above). The 2nd
and 3rd digit denote twice the value of z in percent of I: 2/l = 0.15. The 4th and 5th digit
denote d in percent of I: d/l = 0.12.

6.6.2 Measurement of Aerodynamic Forces

The aerodynamic forces acting on a wing of infinite span can be decomposed into lift, drag, and
pitching moment about a suitable point. The forces, especially the drag of the profile, cannot be
determined from the pressure distribution, since the friction forces are not taken into account.
In the flow about a profile the friction forces can become markedly larger than the pressure
forces (e. g. the drag of the profile). The accurate determination of the drag alone by integration
of the normal forces is only possible for blunt bodies, since the normal forces are considerably
larger than the friction forces. It is for this reason that the aerodynamic forces acting on the
model are measured directly with a wind-tunnel balance.
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Wind-Tunnel Balances

For force measurements with multi-components balances the model must be suspended in such
a way, that individual forces do not interact with each other, if possible, i. e. a force, which acts
in a certain coordinate direction (e. g. the drag) should not generate a component in another
direction (e. g. lift). Mechanical and electric balances are used. The working principle of the
mechanical lever balances is, that the displacement of the model by the aerodynamic forces is
compensated by increasing the weight. The main advantage of this type of balance is, that the
model is always brought back to its initial position. The disadvantages are: The space required
and their limitation to steady measurements. The electric balances measure the displacement
of the model due to the action of the aerodynamic forces indirectly with ohmic, capacitiv,
or inductive displacement pickups. The suspension has to be so elastic, that the aerodynamic
forces to be expected cause only a small displacement of the model and the suspension. It has to
be compromized between the displacement, which generates components in other directions of
force and the sensitivity of the reading of the balance. The advantage of the electric balances is
mainly to be sought in their possible miniaturization. They can be mounted on models. Because
of their short response times measurements of unsteady aerodynamic forces are possible. A large
effort is, however, necessary for the design of the suspension of the model, if the interaction of
the components of forces, measured with an electric balance, is to be avoided.
The balance used in the test is a mechanical three-components balance with wire suspension
and transfer of force via beams of balance, suspended by knife edges.
A model is held in equilibrium position by six wires, with six corresponding forces in the
general case, measured with the balances A',B,C,D.E, and F. The quantities to be measured
are specified in the following drawing.
The schematic arrangement of the experimental setup is shown in the sketch on the bottom of
the page. Depicted is a model of an airplane with its axes of orientation. Indicated are also the
six balances, the wires, and the positions, where the wires are connected with the model. The
balances A’ and B are fastened at the wing tips, with the wires aligned in the direction of the
main flow. The drag is measured with these balances. The wires leading to the balances C' and
D are fastened at the same positions, but in the direction normal to the main flow. Together
with a third balance F they are used for measuring the lift. The side force is measured with the
sixth balance F, with the wire connected to one of the wing tips, orientated in the spanwise
direction. The rolling, yawing, and the pitching moment are obtained as indicated in the sketch
from the force measurements.
1.Drag D=A'"+B

c 2Lt L=C+D+FE
3. Side force S = F
4. Rolling moment Mg = (C' — D) -b/2
5. Yawing moment Mg = (A’ — B)-b/2
6. Pitching moment My = E -t

The various components to be mea-
sured are explained with the aid of
the following drawing; a more detailed
drawing of the balance is shown on page
296 of the section 6.6.4; the balance for
measuring the lift in the rear is dis-
placed horizontally when the model of
the wing is positioned at angle of at-
tack, so that the suspension wires in the
front and at the rear remain vertical,
when the distance between the suspen-
sion points is changed.
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In the diagrammatic sketch the equilibrium condition for the individual systems (beams of

balance) is given: The external forces Ly und Ly act on the beam of balance in the middle (a),
and the equilibrating forces are D and H.

S K,=0:Ly+Ly=D+H (6.85)

The external force D acts on the lower beam of balance (b), and F and B are the balancing
forces.

> M;=0:D-e=B-(e+d)—»D=B-(e+d)/e (6.86)

On the upper beam (c¢) the equilibrium is given by the bearing forces in point II, B, H, and G
act as external forces.

—p=C L Bt (6.87)

(b) and (c) are inserted into (a):

B-(e+d)iB~(c+b)+G-f

Ly + Ly = Liot. = p b b

(6.88)
In order to ensure that the lift is proportional to the force G (weight laid on), the following
condition has to hold:
B- d B- d d
+d) _B-etd ,,4d =2 (6.89)

e b ’ e

Finally there is obtained:
_a.l_
LtotA =G- g =G- ZLtotv (690)

The balance is constructed according to the condition (Zp.r. = 3). The lever ratios Zy and Zp
for the lift balance in the rear and also for the drag balance can be read from the diagrammatic
sketch on page 296.

Determination of the Aerodynamic Coefficients from the Measured Data

The total lift L., the rear lift Ly, and the total drag of the model, and the suspension D
are determined in the measurement with the balance. For a fixed geometry of the profile (i.
e. including the angle of attack) it follows from the similarity laws, that the dimensionless
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force coefficients depend only on the Reynolds number Re: The aerodynamic coefficients are
presented in the form ¢, ¢p, ¢, = f(a) or as polar diagrams ¢y, ¢, = f(cp), with the
Reynolds number Re as parameter. The drag of the suspension has to be measured separately
and be subtracted from the total drag. The mutual interference between model and suspension
has to be taken into account.
The model is suspended with two swords, fastened
at the wing tips and with a wire downstream from
the wing, schematically depicted in the sketch. In
order to keep the interference between the model
and the suspension small, the drag of the swords
should be as small as possible. This requirement
implies, that the size of the wing should be suffi-
ciently large, so as to guarantee an accurate mea-
> surement of the drag.

~ Dsusp, = Dswords + Dwire

It follows from the above sketch that the drag of the suspension consists of the drag of the
two swords and of the drag of the wire. The drag of the swords is measured in a separate
experiment without the model and is later on included in the evaluation of the three-components
measurements. The drag of the wires is calculated with existing drag formulas for circular
cylinders.

The moment coeflicient is obtained from the following equilibrium consideration:

1o front lift balance

ta rear 1ift balance

b

= . —
L J/
weight
With the suspension included the equilibium of moments is:
ZMp:O:N~x’—LH~tF~cosa:0 (6.91)

The weight of the wing drops out, since the balance is calibrated for u,, = 0. For the free flight
the moment about the point £ (again without the weight) is:
Mg = N(2' — x). N 2’ inserted, there results:

]V[Ezj\ly:AHtF cosae — N x (692)

The diagrammatic sketch shows the aerodynamic forces on page 296; one obtains
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N = Lcosa+ Dsina

T = Dcosa— Lsina . (6.93)
The moment coefficient is:
M,
Cmy = Cm = 0 o Y (694)
Euokoing lu;ing

For the determination of the moment the change of the rear lift (§Ly) caused by the static
moment for an eccentric location of the center of gravity. The equilibrium of moments about
the point P gives (for & = 0 with symmetric (o) and asymmetric (x) location of the center of
gravity (cgl)):

Ay Ay

*‘Th o For symmetr. (o) and eccentric (%)
P land o =0
for cgl and a =
. e Ly, tr=Grls
Ang for symmetr. cgl (o)
lscosa
‘S""—H Ly, tr cosa=Gylg cosa
FCOos O

For eccentric cgl (%)
Ly, tr cosa =Gy cosa (Is + )

With z = h tana, there is obtained 6Ly = Ly, — Ly,

h
For (¢) =0 for () = Gr f—tana

Lr
If the wing is in the normal position the rear lift is measured too small, caused by the change of
the static moment. If A = 0, (center of gravity on the chord; in general on the line connecting
the suspension points), then the correction ALy = 0 is not needed. Estimate for the wing
investigated: G ~ 20 kN;tp ~ 0.3m; h & 3.5mm; Qunar = 22° — tan Qe ~ 0.4.

2-10*-3.5-04
AL =—F——N=100N 6.95
Hinas 300 (6.95)
1
ALy = §6LH — (AL} maz = 50 N (Reading round off to 50 N) (6.96)

Since the maximum error is less than 1%, if §L} is neglected, the correction of the rear lift is
left out in the evaluation (note that ALy is larger for strongly cambered profiles).

6.6.3 Application of Measured Data to Full-Scale Configurations

Influence of the Reynolds number on the Boundary Layer

It the measured data are to be applied to the full-scale configurations, in incompressible flow
the Reynolds number has to have the same value for the flight condition and the experiment;
this requirement implies large wind-tunnel models. However, only very few profiles have been
investigated in full scale in large wind tunnels.
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The dependence of the aerodynamic force coefficients (e. g. ¢pmin and cy,,,,. ), and of the behavior
of the boundary layer on the Reynolds number Re is briefly discussed for the profile NACA
23012 with the following diagrams.

If the laminar boundary layer separates downstream from the location of the maximum thick-
ness (see sketch A), a dead-water region is generated; the drag coefficient ¢, is relatively large.
If the boundary layer undergoes transition downstream from the location of maximum thick-
ness (see sketch B), because of the large momentum transport in the direction normal to the
wall, the turbulent boundary layer separates only shortly upstream of the trailing edge. The
drag coefficient c¢p drops and attains a minimum value. With increasing Reynolds number Re
the transition point moves upstream (see sketch C); the overall flow patterns do not change
much in comparison to those shown in sketch B, but the turbulent boundary layer extends
over a larger region in the streamwise direction than does the laminar boundary layer; conse-
quently the integral over the Reynolds stresses is larger, and the drag coefficient c¢p also rises.
If the boundary layer is turbulent from the leading edge on, the drag coefficient decreases with
increasing Reynolds number, but the drag increases further.

Since the turbulent boundary layer can withstand a larger pressure increase than the laminar
boundary layer, the flow separates only at a larger angle of attack (i. e. high ¢, ); with
increasing Reynolds number ¢y, .. increases from 1.0 at Re ~ 10° to 1.7 at Re ~ 107. The
variation of ¢, clearly shows the sensitivity of the profile used to changes of the Reynolds
number.

Correction of the Data Due to Finite Diameter of the Test Section

Boundary conditions in wind tunnels. Caused by the influence of the edge of the air stream
on the flow near the model, a correction of the measured data is necessary prior to applying the
data to a full-scale configuration. In order to keep the influence of the edge small, the model
must be small in comparison to the diameter of the air stream, while the similarity laws require
large models, because of the high Reynolds numbers of the full-scale configurations.
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The conditions at the periphery of the test section will first be discussed for the closed and open
test section. Consider the following example: The drag coefficient of a circular disk, positioned
at a right angle to the oncoming flow, shows the following variation with the Reynolds number
¢p = f(Re), indicated schematically in the sketch below.

Cn <o closed test section
’ I ] '/
—— e free atmosphere

- free jet

1
i
I
10 Re 0.15 4D

For the range of Reynolds numbers for which ¢p = const., one obtains the sketched behavior
of wind-tunnel measurements compared to measurements in the atmosphere (d = diameter of
the circular disk, and D is the diameter of the air stream in the wind tunnel). As long as the
ratio d/D is small (here d/D < 0.15), the wind tunnel measurements of the drag coefficient
cp agree with the values measured in the atmosphere.

The comparison of the flow about a blunt body in a closed test section of a wind tunnel
(Boundary condition on a rigid wall: v, = 0) with the flow about the same body in the free
atmosphere shows, that the wall of the test section squeeses the flow and narrows the stream
tube of the actual flow. The walls thereby cause an increase in velocity and higher drag compared
to the free atmosphere (see sketch).

0 streamlines in free flight
' * Y= _4'/
I ___,,t"d:__T,_._——-——-.=_ -—
——— e =TT ~ R
S -_‘_.:’——‘;f-_ = e —

In an open test section the conditions are reversed; the flow can stronger expand in the direction
normal to the oncoming flow than in the free atmosphere.

The corrections of the measured data, necessitated by the false lateral boundary conditions
in the wind tunnel, can either be obtained from special experiments [NACA Annual Reports
1935, 1937, Pope 1954, Wien and Harms, 1932] or with theoretical estimates [Pope 1954, Prandtl
1961]. The methods of corrections can only briefly be discussed here. The boundary conditions
can relatively simply be satisfied in potential flow by superposition of singularities. In order to
apply this method, the following assumptions are introduced:

1. The friction forces at the edge of air stream are not considered.

2. The velocity disturbances caused by the body at the edge of the air stream are small
compared t0 Uso: f(Vg,Un,v;) << Uso 1. €. B/ D << 1.

3. Incompressibles flow is assumed: p = const.

4. The flow is assumed to be steady.
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Vi Vi

Polar coordinates:
v, parralel to Uy,
v, radial

Yoo v; tangential

Boundary conditions at the adge of the air stream with circular cross section: The velocity at
the edge is decomposed into u, and the perturbation velocities shown in the sketch above.
The Bernoulli equation along the edge streamline yields:

P o 14

P [(too + v2)2 + 02 + 07 (6.97)

Vi

P R

The static pressure at the edge of the air stream is equal to the atmospheric pressure everywhere:
P = Poo- If quantities of second order are neglected (v,.,v,,v;), there is obtained

P _P o2
5loo = Gllos F Pllccls (6.98)

Pl =0 = v, =0 (6.99)

The perturbation velocity possesses only a normal and a tangential velocity component. The
velocity field can be derived from a potential that consists of the potential of the undisturbed
free stream and the perturbation potential:

¢ = ¢oo + ¢pert.; ¢pert. = f(vn; Ut) (6100)

With the assumptions introduced, the lines on the circumference in the n —t—plane are equipo-
tential lines, since the Bernoulli equation is valid everywhere.

Since the streamlines ¢ = const. are normal to the equi-potential lines, it follows that v; = 0.
The boundary conditions therefore are: v,, = 0 for the closed test section, and v, = v; = 0 for
the open test section.

If the boundary conditions for the corresponding type of wind tunnel can be satisfied a certain
distance away from the body to be measured with a suitably chosen potential distribution, then
the flow around the body in unrestricted space is similar to the flow in the wind tunnel.
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Mirror Imaging of Singularities. For plane flows the principle of mirror imaging is a simple
method for searching suitable potentials. A few simple examples to illustrate the principle are
discussed next:

1. The first question to be discussed is: How does the velocity field (streamlines) of a flow

generated by a punctiform source change in infinite two-dimensinal space, if the space is
subdivided by a plane wall at the distance a away from the source?
Obviously the boundary condition v, = 0 cannot be satisfied by the potential of a source
alone. By mirror imaging of the source at a wall (with the same strength and the same
distance) the velocities add up in such a way, that v, vanishes along the line of symmetry
(see following diagrammatic figure). Two sources generate a flow field, which corresponds
to the flow field of a single source in the vicinity of a rigid plane wall (the wall is the mid-
vertical to the line connecting the two sources). The second source can also be taken as the
mirror image of the first source.

Source (Intensity @) Mirror image of a source

Y

source

NI
,-~§u&o—~\
—
—_— T -~
-7 //I\\ \\
~
T:2—; vy, =0 // 7/ ! I\\ . ~
2rr 0 7 / ] \ Y
6 56
1:,.*51:, iy S Cﬁlel”

2. The flow field of a vortex in the vicinity of a rigid wall (circulation I") can be generated by
mirror imaging of the vortex with the same strength but opposite direction of rotation:

1 +T CT)H"

/0 71
/i Va | vy =0

Aol | 2a @l
IR g
V¢ I +Vn=0 |
\\l \ |
| |

dy-r &or
a) b)

3. A vortex in the vicinity of the edge of a free jet is generated by mirror imaging of a vortex
of the same circulation and the same direction of rotation (see afigure above).



292 6. Aerodynamics Laboratory

Application of the Principle of Mirror Imaging to the Case of a Wing with Finite
Span in an Open Wind Tunnel (Free Jet)

The cross section of the air stream is assumed to be circular as an approximation to the
octagonal cross section of the low-speed wind tunnel of the Aerodynamisches Institut. The wing
is represented by a bound vortex and two tip vortices (horseshoe vortex). The lift distribution
is assumed to be rectangular.

Since the thickness of the profile is much smaller than the diameter of the air stream, the
x — y-plane does not have to be considered (v, = 0), (see the following sketch). Since the span

is almost as large as the diameter of the air stream, the y — z-plane has to be investigated.

At the location of the bound vortex the cross section of the air stream is represented as depicted
in the following sketch:

2 h
edge of{‘/"_-_

’%
"

In the y — z-plane the boundary condition at the edge of the air stream is v; = 0. This condition
is not satisfied by the flow about the wing in the infinite space, since the two tip vortices do not
compensate each other to zero (e. g. in the point P). The boundary condition mentioned can
be satisfied with an additional vortex distribution along the y-axis. Since the problem is posed
as a two-dimensional one, the position of the mirror-imaged singularities is not immediately
evident. For reasons of symmetry at least two potentials with equal distance s measured from
the origin of coordinates are needed. The distance s is obtained from the condition, that at an
arbitrary point P on the edge of the air stream v; then vanishes, when the circulation of the
mirror-imaged vortices is equal to those of the tip vortices (y = const).

_ 10¢(ry)
v =———""

e (6.101)

In polar coordinates:

The velocity induced by an infinitely long vortex filament is

r

=— 6.102
27r ( )

Ut
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At the location of the bound vortex the free vortices are only half-infinitely long (from 0 to
+ 00). With the law of Biot-Savart there is obtained:

r
v = 6.103
o dmr ( )
Now the four potentials of the vortices shown in the last figure are superposed and the boundary
condition on the edge of the air stream v; = 0 is satisfied by a suitable choice of s. The following
result is obtained:

1. The solution does not depend on ¢; it is valid for all points on the circumference of the edge
of the air stream.

2 R? s 2
B (6.104)

T R b

The solution of the equation for s with the boundary condition v; = 0 is tedious. Only the
result is reported here. It is seen, that for b/2 < R the distance s becomes very large, so that
the additional vortices affect the flow near the edge only little.

The corrections of the measured data are now possible since the vortex distribution representing
the edge of the air stream is known. First it can be stated, that an additional downwash velocity
is induced at the location of the wing, caused by the direction of rotation of the additional
vortices. In comparison to the free atmosphere the induced drag and the induced angle of
attack measured in the air stream are too large.

In the middle of the wing the downwash velocity induced by the left additional vortex is equal
to I'/4ws, and the one induced by the right is of the same amount I'/47s.

The downwash velocity is:

I r ro
= T T R

(6.105)

For an estimate it is assumed that s > b/2, so that AW can be taken as constant along the
span of the wing. Lift and circulation are connected by the Kutta-Joukowsky theorem:
L

r=- (6.106)

The downwash velocity then is

L-b/2 L
AW = _ ‘ 6.107
PUscb2mR? ApussAprecjet ( )

With the change of the angle of attack

AW 2L
Agyy="=_—""_ 6.108
@ Uso 8 pul A, ( )
the change of the induced drag is
L2

4 pul A,

These values have to be subtracted from the measured values of a and D, if the data are to be
applied to a full-scale configuration in free flight in the atmosphere. An exact correction should
take into account the actual lift distribution at the location of the bound vortex; the additional
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vortices then have a corresponding distribtion. Prandtl [1961] carried out this computation for
the elliptic lift distribution.

L2 3(b6\" 5 (b))
AD; = ——— — = — = 6.110
Zin |3 (5) *wl) 610
g
with D = 2R; and A = cross-section area of the air stream.
L 3(b\" 5 (b))
Aoy = ——— |1+ = [ = — | = 6.111
a6 (5) *i () * o1
g

The first term agrees with the rough estimate presented here; the second contributes only an
additional amount of about 1 % of the first term for b/D = 1/2.
The correction formulas are listed on the evaluation sheet.
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6.6.4 Evaluation

1. Draw the curves of the following functions in a diagram!

a) cr, ¢p, & = fla)

[ 1 VNS O SO, . .

06 —— R W WS SR

b) cr, em = f(cp)

St
cm L

08

0.6

04

02

L
en 1
Cm
02 b—-d L !
0
0.2

0

LIS

0 0.05 01 015 02 025 03

€p

Evaluation of a three-components measurement L;.; ,D;, ,M, for a rectangular wing,
profile NACA 23012

Geometric data of the wing:

Wind tunnel data:

Suspension:

Span width

Wing chord
=Wing area

Diameter of air stream
Cross section of air stream

Nozzle calibration factor

Diameter of wire
Total area

Geometry of balance:

Data of air:

Atmospheric pressure
Kinematic viscosity
Gas constant
Temperature

Ba = [mm Hg]
v= [m?/g

bf =09m
l=1,=02m
A= [m?]
D,=122m
A, = 1.165 m?
9 =0.98

tp = 0.2965 m
= 0.0075m
¢ = 0.6 mm

fD.msp.tot. = 2.868 - 1073 IIl2

R =287J/kgK = 287m?/s*K

tSt’V' = [OC}
= TStr = [K]
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The pressure in the settling chamber during the test was 81.6 mm HyO. The dynamic pressure
in the test section with this value is

[ Apge -V [mm H,0]

G = pw-9-ds [Nm’]
Determine the free-stream velocity u., and the Reynolds number.
Three-components measurement: Model and aerodynamic forces see sketch on page 286 and
balance see the following sketch

rear lift t;alance total lilft balance drag balance

the
- i
o
=
n
b

= ’bi_ﬂ- o
i
0
™
2
L%}
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(Numbers in () give the numbers of the columns in the test report)

Measured Data:
(1) geometric angle of attack a*[°] (3) Total lift Ly, [N]

(2) Drag D*[N] (4) Rear lift L;[N]
Determination of the Lift Coefﬁci%nt:
(5) Liot. = 214, - Lis, (6) cr = %0’7‘”14

Determination of the Corrected Drag Coefficient:
a) Correction of the influence of the suspension:
(7) D' = 2p(D* — Dyysp.)

with Dsusp. =CD (o fD_wcp.

Cp = 1

b) Correction of the influence of the induced drag

_ L?ot. 3 b’Lb !

(9) D= D' — AD;
D

10) ¢cp = —

(10) e Y\

Determination of the Effective Angle of Attack:
Induced angle of attack Aq; in the air stream

L (.3 (b )4 180
8o An 16 \ D, ™
(12) a = a* — Aw;

(11) Ae; =

Determination of the Normal Force: (comp. page 296)
(13) N = L. cosa + Dsina

Determination of the Pitching Moment Coefficient Referenced to Point E:
(14) My = Ly - tp - cosa
with Ln = LE *ZLH
(15) My =N -
(16) Mg =M, =Ly -tp-cosa— N -z

M,
(17) ¢y = em = Y

(IOO'A'Z;L



6.7 Water Analogy 299

6.7 Water Analogy — Propagation of Surface Waves
in Shallow Water and of Pressure Waves in Gases

Abstract

The analogy between the flow proccesses in shallow water and the flow of compressible gases
is called "water analogy”. The analogy is demonstrated here for the propagation of a surface
wave in a shallow open channel flow and the propagation of a pressure wave in a gas-filled pipe.

6.7.1 Introduction

Different physical processes are called analogous, if they can be described by the same mathe-
matical relations. In a flow field the local changes of state are in general described by partial
differential equations with prescribed boundary and initial conditions. If another physical proc-
cess can be found, which can be described by the same differential equations, boundary and
initial conditions, then the field in which this process takes place is anlogous to the flow field.
It is clear that only those analogies are meaningful, which make it possible to describe the flow
field in a simpler manner by transferring results of observations and measurements obtained for
the analogous field than by a direct flow experiment. Two known examples of such analogies
are:

a) The electric analogy of the incompressible potential flow

The potential u of the electric current in a homogeneous three-dimensional conductor satisfies
the Laplace differential equation in the same way as does the flow potential @

Au=0 ; AD=0 (6.112)

b) The Hele-Shaw flow
If in an incompressible flow the inertia forces can be neglected in comparison to the friction
forces, the flow is described by the Laplace equation for the pressure p:

Ap=0 (6.113)

The pressure p is therefore the quantity that is analogous to the flow potential @ of the incom-
pressible potential flow. This analogy is employed in the experiment on the pressure distribution
on a half body for simulating potential flows about blunt bodies.

6.7.2 The Water Analogy of Compressible Flow

The flow analogous to the gas flow is the shallow-water flow. This analogy is valid for steady
and unsteady flows.

Observation

In shallow, supercritical steady water flow in open channels surface waves are observed, which
are caused by roughness elements of the walls, similar to the Mach lines in supersonic nozzle

flow:
/ W
/\/ 4 7 77
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Upstream of an obstacle the water rises in an almost discontinuous “jump”, which is similar in
shape to the bow shock in front of a blunt body in supersonic flow:

—
7 Vi

An analogy between the supersonic flow of gases and the supercritical flow of water can therefore
be infered by such an obersvation alone. This analogy also exists for subsonic gas flows, as an
exact analysis of [Preiswerk 1938] shows.

AN

Surface Waves

Waves observed on the boundary of two me-
dia are called surface waves [Prandtl 1965].
The waves on free surfaces of liquids are
classified, according to the nature of their
restoring force, in gravity and capillary waves.

Gravity Waves

Caused by inertia and gravitational forces the individual fluid particles move along approxi-
mately circular paths in planes normal to the water surface, the diameter of which strongly
decreases with the depth below the surface of the water. With the aid of the potential theory the
propagation velocity of a wave crest, also called phase velocity can be determined [Truckenbrodt
1968] to

Ag 2mh

The dependence of the propagation velocity on the wave length is called dispersion. If the water
depth is large in comparison to the wave length (h < \), the last equation reduces to

Ag
27
Vice versa, if the water depth is much smaller than the wave length (h << X), the propagation
velocity is simply

c=4/gh . (6.116)
In the following the analogy between the propagation velocity ¢ = /g h of a shallow-water

wave and the propagation velocity of waves in perfect gases with constant specific heats will be
derived.

(6.115)

Capillary Waves

In waves with very short wave length the restoring forces, which tend to smoothen the wave
motion, are not due to gravity but primarily to surface tension. The propagation velocity is
then:
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27wo

pPA

(6.117)

)
Il

The quantity o is the capillary constant, which for water is ¢ = 72:1073N/m. If both, gravitation
and capillarity have to be taken into account, the propagation velocity of surface waves of deep
water is

Ag 270

(6.118)

The propagation velocity attains a minimum for the wave length A = 2 my/o /g p. The values
for water are A = 1.7 em and ¢, = 23.3 cm/s.

In the following the analogous laws will be derived for the special case of the propagation of a
pressure disturbance in a gas-filled pipe with constant cross section and in the shallow-water
flow in an open channel. The laws for the gas flow will be considered on the left-hand side of
the page, and those for the shallow-water flow on the right. This form is chosen, in order to
demonstrate the completely analogous forms of the laws to be derived.

The derivation begins with the statements of the assumptions to be introduced for the derivation
of the analogies.

Derivation of the Analogous Laws
With the assumptions for
Gas Water
- perfect gas with constant specific heats -shallow water zp < A (which means: The
vertical components of the velocity and ac-

celeration can be neglected)
-isentropic flow -inviscid flow

it can be shown, that a plane unsteady gas flow and the shallow-water flow can be described
by analogous differential equations [Niehus 1968].

The analogy between the propagation of a pressure disturbance in a gas-filled pipe with constant
cross section and in a shallow open channel with constant width is considered as a special case.

Gas Water
popeowa pipe _._.-/¥ 1:,:,\\-_.._«— open channel
P z
-
——
X
X

Consider a continuous solitary wave of finite amplitude in the sketch. It is approximated by
a sequence of a finite number of wave elements, in which the flow conditions are changing
discontinuously.

Such a wave element which changes the flow conditions only slightly, for example the velocity
u to u + du, propagates with the speed of sound in the gas and with the phase velocity in the
water. Its absolute velocity is therefore v + a and u + ¢, respectively. It is assumed that the
control surface sketched below also moves with the absolute velocity.
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[ p
1 control surface n [T _ control surface
— Y

p+dp | ! z+dz | I
p+dp | I a+u u +du | con
T +dT | = | -
u+du ! | I

I Py

LJ - I v A

p.pTu L
&Lu

The changes of conditions generated by the wave element appear to be steady to an observer
moving with the control surface. For this frame of reference the fundamental equations can be
formulated for steady flow:

downstream side upstream side downstream side upstream side
ra r
—astn | | -a —e+du || -c
1
1 | |
e+de z
Alp+dp) :-JI Ap {p-gh-z-d/ LJ / pogh-z-de
u—(u+a)=—a Upstream velocity —u— (u+¢) = —c¢

utdu— (u+a)=—a+du Downstream velocity u + du — (u+¢) = —c+du
The continuity equation then reads:

—ap- A= (—a+du)(p+dp)- A| —cpbz = (—c+du)p-b(z + dz)
If higher-order terms are neglected, there is obtained

pdu = adp zdu = cdz

The momentum theorem yields:

—(p+dp) (—a+ du)* A+ pa® A —pb(z 4 d2)(—c + du)* + pbzc?
— _ z+dz z
=p+dpA-pA :/ pgb-zdz—/pgb-zd,z

0 0

Again, neglecting higher-order terms gives

2
dp = apdu d (%) = czdu
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The relative speed of propagation follows from the simplified continuity and momentum equa-
tion to

2= oot (92
dp dz 2
respectively
2 p g ,2
a” == 2 _ 927 _
p c 2 2 gz

(Corresponding assumption:
Isentropic change of state)

Other analogous quantities can be found. From the above relations it follows:

2 2 g
a; 7R E ;257

P 2 =
ai ’71R T] CY 2%2’1

and for 7 = const.

For a perfect gas with constant specific heats | Directly from the continuity and momentum
it follows with h = ¢, T = - and dh— %dp = | equation with the propagation velocity

0 (isentropic relation) from the simplified mo-
mentum equation

da du = 2d(/77)

It is seen, how for both flows from mass-flow and momentum considerations relations are ob-
tained, which in their form are completely equivalent, if only the variable in question in one
system is replaced by the corresponding variable or a group of variables in the other system.
The analogies can be extended, if additional assumptions are introduced, as for example the
extension to two media, as shown by the relations for the speed of sound of the gas flow and
for the propagation velocity of the wave in the shallow-water flow.
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Analogous Quantities and Conclusions

The following analogous quantities can be identified from these considerations:

Gas Water

compressible incompressible

velocity u velocity u

speed of sound a phase velocity ¢
density p water depth z

pressure p product $gz*

ratio of the spec. heats v constant 2
temperature 7' water depth z

gas constant R costant %

specific heat c, constant g

specifice heat ¢, constant §

Mach number Ma = % Froude number Fr = %
subsonic flow Ma < 1 subcritical flow Fr <1
supersonic flow Ma > 1 supercritical flow Fr > 1

The last equations show, how pressure, particle velocity, speed of sound, and phase velocity
change in the wave: The front of the wave moves faster than the tail. Wave fronts in which
pressure or water hight, respectively, increase, become steeper, and fronts, in which these quan-
tities decrease, are flatened. In gases the steepening of the front results in a non-isentropic
compression shock; the steepening of a surface wave leads to the hydraulic jump, also causing
losses in the flow.

The water analogy derived here for the example of a solitary wave for a gas with isentropic
exponent v = 2 is generally valid for the shallow-water flow. A gas with v = 2 does not exist,
as y = % corresponds to a gas with only two degrees of freedom, while a monatomig gas
(v = 1.66) possesses already three degrees of freedom. If an open channel is used with a cross
section different from a rectangular one, gases with different isentropic exponents 7 can be
included in the analogy. A triangular cross section would lead to an analogy with a gas with
v =1.5.

The water analogy can be used to clarify qualitatively complex flow processes, which are the-
oretically and experimentally difficult to analyze. For example the propagation of a pressure
wave in an exhaust system, which is difficult to follow because of the high propagation velocity,
can conveniently be studied in the analogous proccess in an open channel.

Selected References

NieHAUs, G.: Die Anwendbarkeit der Gas-Flachwasser-Analogie in quantitativer Form auf
Strémungen um stumpfe Korper, DLR, FB 68-21, 1968.

PRANDTL, L: Fiihrer durch die Strémungslehre, Vieweg-Verlag, 1965

PREISWERK, E.: Anwendung gasdynamischer Methoden auf Wasserstromungen mit freier
Oberfliche, ETH-Bericht Nr. 7, 1938.

TRUCKENBRODT, E: Strémungsmechanik, Springer-Verlag, 1968, S.355 ff.
Lezikon der Physik, Francksche Verlagsbuchhandlung Stuttgart

6.7.3 The Experiment

A simple unsteady flow process is considered, namely the propagation of a surface wave in a
shallow-water open channel with constant width as analogy to the propagation of a pressure
wave in a gas-filled pipe with constant cross section.
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In the experiment the dependence of the phase velocity ¢ on the depth of the water zp is mea-
sured first. It is analogous to the dependence of the speed of sound of a gas on the temperature.
In the second part of the experiment the change of the profile of a surface wave is investigated
during the propagation of the wave in the open channel, which is analogous to the change of
the profile of a pressure wave in a pipe.

6.7.4 Evaluation

1. Measurement of the propagation velocity of a small disturbance as a function of the water
depth and comparison of the measured velocity values ¢ = % with data obtained from theory

c= /9 2.
Ax 20 At (;:% c=.9 %
mm mm S o n

3.6 0.55
25 3.8 0.526 0.495
3.8 0.526
2000 3.3 0.61
35 3.3 0.61 0.586
3.25 0.615
2.8 0.714
46 2.8 0.714 0.672
0.7]— = T 1
< [mfs] | : I /

c-'lr_z.zo

0.3 - : e
| .; Basic wave velocity
02

/i

an

40 50

2q [mm]

2. Comparison of measured (upper curve) with computed change of shape (lower curve) of a
surface wave moving in the open channel.

z

_ZU

The initial wave (measuring position I)
is to be subdivided into at least 8 sec-
tions, for which the theoretical propa-
gation velocity is to be determined. The
change of the shape of the wave, which
would result from the propagation of
the wave through the open channel is to
be compared with the measured values.
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As shown before, the absolute propagation velocity of a wave element is

% = c(2) + u(z) with c(2) = \/g- 2
u(z) = 2(/TZ — /T %)

Point | z[mm] | 3,/g- z[m/s] | 2\/g- zo[m/s] | dz/dt{m/s] | Ax[m] | Ats]
1;9 40.3 1.886 0.634 1.18
2;8 42.3 1.933 0.683 1.10
357 44.3 1.977 1.25 0.727 0.75 1.03
4;6 46.3 2.022 0.772 0.97

5 47.7 2.052 0.802 0.935

The form of the wave computed for the measuring point II is to be plotted.
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Propagation of a surface wave in an open channel of constant cross section

Discuss the deviation of the computed form of the wave from the measured form.

The amplitude of the measured wave is smaller than that of the computed. On the whole,
the experimentally determined wave is somewhat flatter. The flow was assumed to be inviscid
for the computation. In the experiment the action of the friction forces results in a damping
of the wave. Additionally, the vertical components of the velocity and of the acceleration are
neglected in the computation, i. e. it was assumed that zy < A. In the experiment zy = 4 cm,
and A\ ~ 11 em.

3. Discuss the change of the shape of a sinosoidal pressure wave, which is moving in a pipe with
constant cross section, filled with a compressible gas.

In the initial phase the sinosoidal wave propagates with the speed of sound relative to the
flowing gas; the change of state can be assumed to be isentropic, and the pressure wave steepens
according to the water analogy, until the density gradient becomes large.

4. Discuss the advantages and disadvantages of the investigation of gas flows with the aid of
the shallow-water analogy.

The advantages are, that complex flow processes, which are difficult to analyze either experi-
mentally or theoretically, can be simualted in a simple manner, as for example pressure waves
with high propagation velocities, which barely can directly be followed visually.

The disadvantages are, that the simulated analogous results can only qualitatively be applied to
the actual flow to be investigated. The formulation of the analogy may also contain simplifying
assumptions, which cannot always be realized in the experiment.
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6.8 Resistance and Losses in Compressible Pipe Flow

Abstract

The resistance coefficient of a standard orifice and its gasdynamic losses are measured in a
smooth cylindrical pipe as a function of the free-stream Mach number Ma, for values of 0.1 <
Ma; < 0.3. The experimental data are obtained by measuring the pressure distribution along
the wall of the pipe and by measuring the volume rate of flow with a standard nozzle connected
in series with the pipe.

6.8.1 Flow Resistance of a Pipe with Inserted Throttle
(Orificee, Nozzle, Valve etc.)

The total resistance R;, of a pipe of length [; » with a device inserted consists of the friction
and pressure resistance

Ris=Rrp+Rp (6.119)

The momentum theorem yields
Rz = Al(pr + prud) — (p2 + pau3)] (6.120)
with A = 7D?/4, the velocity u, and the density p averaged over the cross section. In

incompressible flow it is pju? = pou3 = pu?, and the total resistance coefficient is defined as

¢ RLZ P1— P2

1,2inc. — -

) £4,2 £4,2
su A SU

(6.121)

Since in compressible pipe flow the dynamic pressure pu?/2 is changing in the flow direction
with the other flow quantities, (6.121) cannot be used for the determination of the resistance
coefficient. The method of test for compressible flow will be described later.

= — N — |

I N [ |

Ma | |

_— le |
TI'_ - :2 X

| |

L _QJ'TLQ____ _J

6.8.2 Friction Resistance of a Pipe Without a Throttle
Friction Coefficient A of Fully Developed Pipe Flow

The friction coefficient
. 47—“}

pu?
2

A

(6.122)

is defined by the local wall shear stress 7,,, non-dimensionalized with the local dynamic pressure.
For the fully developed compressible flow in rough pipes A depends on the Reynolds number Re,
on the equivalent sand roughness r/k, and also on the Mach number Ma. Early experiments
[Frossel 1936, Naumann 1956, Jaeneke 1975] showed, that in supersonic flows (Ma > 1) the
friction coefficient A varies strongly with Ma, while in subsonic flows A is almost independent of
Ma, so that the data measured in incompressible flow remain also valid for subsonic compress-
ible flow for Ma < 1. The following formula is valid for smooth pipes for Reynolds numbers
2-10* < Re < 2-105:

A = 0.0054 + 0.396 - Re™ %3 (6.123)
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The Change of the State Variables by Skin Friction

For steady, one-dimensional, adiabatic flow of a perfect gas the conservation equations for mass,
momentum, and energy have the following differential form:

dp d
P du

Continuity equation —+—=0
p u
. Mz pu?
Momentum equation dp + pudu + D o9 = 0
Energy equation cpdT + udu = 0
and further
d, d dT
Equation of state & _2% + —
p p T

dMa®>  du® dT
Ma2 w2 T
The relation between the increase of entropy and the decrease of stagnation pressure is obtained

from the second law of thermodynamics:

and for constant specific heats

d,
Tds = c,dT — £ (6.124)
p
dT dp
ds = G R ) (6.125)
| I |
p I |[ p+dp
P p+dp
T : | T+dT
u [ u+du ——
Ma| Ma + dMa
1\'«'
dx

The stagnation conditions (Tp,pg) of a flowing gas are defined by the assumption, that they are
generated by an isentropic deceleration to zero velocity u = 0. The following relations are then
valid:

d1; d,
s =80, ds=dsgand dsy= cp?oo — R% (6.126)

With the adiabatic change of state assumed, i. e. (d7p = 0), there results

Sp2 — Sp1 = S9 — S§1 — Rln <&> . (6127)
Po2

The changes of the state variables are obtained with the above equations [Shapiro 1953, Emmons
1958]:
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Ma<1l Ma>1

du  _ #}‘5@2) . %dm >0 <0
d?T - 7%(771)-%513; <0 >0
% _ _%[H(y—l)mﬂ%m <0 >0
df — _%%.%dx <0 >0
R L
% — 71”2[“2.%6195 >0 >0
% = 7’7121&2 -%dm <0 <0
For constant mass flow pu = m/A the adiabatic change of state can be plotted in the

T — s-diagram.

T

The diagram mainly serves the purpose to trace the flow process in a pipe during a change
of state. The curves are easier to follow than the equations stated above. The ordinate T can
be taken as a distorted scale of the velocity, and for a perfect gas, also of the speed of sound
and the Mach number. As other physical processes the pipe flow proceeds in the direction of
increasing entropy. The curves for constant mass flow attain an extreme at Ma = 1. They can
be made to coincide by shifting them in the direction of increasing entropy. The line Ma = 1
is parallel to the abscissa, separating the diagram into the subsonic region (upper part) and
supersonic region (lower part):
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The considerations are not necessarily restricted to pipe flows with circular cross sections. The
relations also hold true for ducts with constant cross sections.
The resulting curves are called Fanno curves. They are obtained from the above equations:

(T)%-u T (Tl)wlTl T
To To To To

According to the second law of thermodynamics the entropy increases in the flow direction
and attains a maximum for Ma = 1. In subsonic and also in supersonic flow through a pipe
with constant cross section, the Mach number tends to unity, Ma = 1. For prescribed inflow
conditions the flow will either be accelerated or decelerated to sonic speed at a maximum pipe
length Lq0-

s — 81

R

=lIn —lIn (6.128)

The Resistance Coefficient (42

The maximum pipe length at which Ma = 1 is reached, is obtained by integration of the
equation for d%}";, within the limits given by the Mach number at inflow conditions Ma,; (xz = 0)
and Ma(z = Lye,) = 1:
/2 Lmaz)\dx Ma?=1 1— Ma?
Jo

D Juae  kMat (1 + 25 Ma?)

dMa? (6.129)

Since A = A(Re), and since the Reynolds number and the Mach number are changing, the
following simplification is introduced:

_ 1 Limas
= / Az (6.130)
L’maz 0
With the definition
L
mazr — A e 5 6.131
G = A2 (6.131)
there is obtained
1— Ma? y+1 1)Ma?
(m:( ;h) O+, [ +1)May i (6.132)
yMai 27y 24 (y—1)Ma?
The following diagram shows the plot of (4. = ((Ma), determined with (6.132) for v = 1.4.
6._
; max
4
2
] 08215
0 T T
0 1 2 Ma

For a given perfect gas with constant specific heats the resistance coefficient (., depends only
on the Mach number, and is - as the Mach number - therefore a state variable of the adiabatic
pipe flow.

It follows, that if the Mach numbers Ma; and Mas are known for two points, with the distance
l1,2 between them, the resistance coefficient ¢ 5 of this part of the pipe is

Cl,? = Cmaz(]\/[al) - C]Wag 5 (6133)
and it follows with (6.131) that

A b

Cl,Z = B[Lmaz(]\{al) - Lmaz(]\/faé)] = ;\6 (6134)
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6.8.3 Resistance of an Orifice

Since (paz(Ma) is a state variable, (19 = ((May,Mas) in adiabatic pipe flow depends only on
the conditions at the positions “1” and “2” but not on the change of state from “1” to “27. It
is therefore irrelevant, whether the change of state is caused by the action of friction or pressure
forces or both. The total resistance coefficient ¢ o of a piece of pipe with an orifice can therefore
be determined with (6.133), if only the position “2” is located far enough downstream from the
orifice, so that the process of entropy increase equivalent to the work done by the resistance
force has come to an end.

For the design of a pipe system it is important to know the additional resistance, which is caused
by the insertion of an orifice, or in general by a throttle. The resistance consists of the pressure
resistance caused by the throttle and of the change of the frictional resistance caused by the
insertion of the throttle in comparison to that of the fully developed pipe flow. The additional
resistance is then given by the difference between the resistance of the pipe measured with the
insertion and without, such that

)
Co=Ca= A7 - (6.135)
The following diagram shows the rsistance coefficient of an orifice (o of a standard orifice
(m = (Do/D)? = 0.5) as a function of the Mach number Ma;. The Reynolds number of the
flow was Re ~ 3-10° .

|
|
|
|
|
|
|
I
1
|
|
:
|
=

T T T T T T T TR T T

0 1 —A— ! T —
0 01 May, 02 Ma, .. 03

—= May
The variation of (o(May) is discussed with the aid of the following sketches of the flow through
the orifice, which changes with the Mach number Ma;.

W
_._®_._ @ _._._._._®_.._

I e

For low Mach numbers Ma; the friction coefficient depends only on the Reynolds number, i. e.
Co = Co(Re). Tt is almost constant. With increasing Mach number Ma; the friction coefficient
also depends on the Mach number, i. e. (o = (p(Re,Ma), increasing only slightly until the
speed of sound is reached in the narrowest cross section near the orifice (Ma, = 1) for the
so-called critical inflow Mach number Maj ;..
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If then pa/per is further increased, o increases rapidly, and downstream from the orifice the
flow expands to supersonic speed, subsequently being decelerated again to subsonic speed by a
compression shock. The narrowest cross section of the stream, where Ma, = 1, is enlarged. As
a consequence the mass flow is increased, and Ma, exceeds Mayeris..

@ — — DY L5
5] O

The resistance coefficient of the orifice attains its maximum value (paz, if the supersonic flow
extends to the wall of the pipe. A further increase of the Mach number beyond M a4, is not

possible.
< A

An additional decrease of the pressure ratio pa/pe; causes a downstream motion of the com-
pression shock, and the flow downstream from the orifice is supersonic, intersected by a system
of oblique shocks: The resistance coefficient of the orifice now remains almost constant.

Losses

The losses due to flow resistance can be classified in the following manner.

Mechanical Losses (Loss of Momentum)

The loss of momentum, which the fluid or gas is experiencing by the resistance (friction and
pressure resistance) of the pipe with or without a throttle, is determined by the momentum
theorem independent of the choice of the control surface. It is advantageous to choose it in
such a way, that the experimental effort for measuring the resistance is as small as possible, i.
e. a cross section should be chosen, in which the radial pressure and velocity variations have
decayed.

For geometrically similar insertions in pipes with the same relative roughness the dimensionless
resistance coefficient (; , computed from the losss of momentum, depends only on the Reynolds
number Re and on the Mach number Ma.

Thermodynamic and Gasdynamic Losses in Adiabatic Flow

The irreversible processes caused by the friction and the pressure resistance result in an increase
of entropy and a decrease of the stagnation pressure. In general these processes are not felt at



6.8 Resistance and Losses in Compressible Pipe Flow 313

the same location, where the resistance force acts. The control surface must therefore be chosen
in such a way, that it includes the region, in which the entropy generation equivalent to the
mechanical losses has taken place. This is in particular true for the thermodynamic losses caused
by the pressure resistance. The axial extent of this region can be estimated from the pressure
distribution on the body (here the orifice). In the experiment reported here the entropy is
increased and the stagnation pressure is decreased by the mixing process refered to as Carnot’s
shock. For Ma; > Mag;., the increase of entropy and the decrease of the stagnation pressure
are not only caused by the mixing process but also by the compression shock at the downstream
end of the supersonic region. For Ma; = M a4, the entropy increase and also the decrease in
stagnation pressure are solely due to the terminating compression shock, since the flow in front
of the shock is almost isentropic.
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6.8.4 Evaluation
Method of Test

The pressure distribution on the wall of the pipe is measured in the vicinity of the orifice with
a multiple-tubed manometer for a prescribed Mach number Ma;.

To Bao
standard ok | standard orifice
u - May ]
x

0,
1
|
|

shope: pressure loss consed by wall friction

pressure koss eaused by orifice
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The following quantities are measured: pp, Apy, Ty, Ba,p(x)

n 1 2 3 4 5 6 7 8 9 10 11 12
z/D -5 -4 -3 -2 0 0.1 1.8 2.2 2.6 3.0 3.4 3.8
p(z) — Ba [mm Hg| 491 490 489 490 500 73 195 217 234 244 251 259
p(x) [N/mz] - 103 165 165 165.2 165 166.6 | 109.8 | 126.1 129 131.3 | 132.6 | 133.5 | 134.6
n 13 14 15 16 17 18 19 20 21 22 23 24
x/D 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.6 8.6 9.6 10.6 11.6
p(z) — Ba [mm Hg] 260 261 260 261 261 260 260 259 257 257 255 254
p(x) [N/mz] 134.7 | 134.8 | 134.7 | 134.8 | 134.8 | 134.7 | 134.7 | 134.6 | 134.3 | 134.3 | 134.1 | 133.9

Data Evaluation

The mass flow pu can be determined with the data pp, Apy, To and the dimension sizes of the
nozzle according to standard specifications (NORM DIN 1952 in Germany).

pu = mp ae\/2pp Apy (6.136)

Inserting the quantities pu, p, and Tj into the gasdynamic relations the state variables in the
cross sections I and II can be computed, and the resistance coefficient of the orifice (o is obtained
as a function of Ma; and Re;.

If the static pressure p is known at a certain location, the Mach number can be determined
with the following relations

m |[RTy  pu [RIy Ty
—— === = May| = 6.137
ApYV v ATV v T ( )

and
TO vy — 1 2
—=1 M . 6.138
T =1+-—F—Ma (6.138)
If the abbreviation Ma % = K is used, there is obtained
1
Me? = —— { 1+ 2K2(y—2) — 1} . (6.139)
5 —
If Ma is known, the temperature ratio T'/T; can be computed from (6.138) and
Po To> =
— == . 6.140
= (7 (6.140)
For the temperature of the experiment the viscosity of air is approximated by the relation
L T 076
o ( ) . (6.141)
Hooc Toec
The Reynolds number can be expressed as
puD  puD <T0>0.7o' <TO>O.76
e =——" = — = Rey | = . 6.142
W)~ ulTo) \T \7 (6:142)

Resistance and losses of a compressible pipe flow with a standard orifice (details of evaluation)
{'0 Ba
L 1 7

LI B B | IR AR ERA R L L ]

B PsiPs  pressure holes P2y
Po ‘rﬁpw ! P
-X +X
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‘ Nr. ‘ ‘ Symbol ‘ Numerical value ‘ Unit ‘ Equation
1 Diameter of pipe D 0.05 m
2 Diamter of nozzle d, 0.04 m
3 | Opening ratio of nozzle mp 0.64 my, = (d,,/D)?
4 | Diameter of orifice d 0.0353 m
5 | Opening ratio m 0.5 m = (d/D)?
6 | Gas constant R 287.3 Nm/kgK
7 | Viscosity at 0°C' Lo 1.71-107° Ns/m?
8 | Barometer reading Ba 753 mm Hg
9 Stagnation temperature To 293 K
10 | Nozzle excess pressure hp, 555 mm Hg
11 | Differential pressure Apy 1085 mm HpO | Imm Hy0 = 9.81 N/m?
10643.85 N/m?
12 | Pressure ahead of nozzle Pn 1308 mm Hg pn = Ba+ hy,
173964 N/m? 1mm Hg = 133N/m?
13 | Density ahead of nozzle Pn 2.066 kg/m?3 pn =pn/R Tp
14 | Viscosity at T 1o 1.8044 -10~° Ns/m? (6.141)
15 | Pressure ratio p2/p1 0.9388 p2/p1 =1— Apy/pn
16 | Expansion coefficient € 0.9389 from table
17 | Estim. discharge coefficient o) 1.1732 from table
ap = a(Re = 10°,m,,)
18 | Mass flow p u(ap) 147 kg/s m? (6.136)
19 | Reynolds number Rey 4.096 - 10° Rey = p u(ag) D/ o
20 | Discharge coefficient @ 1.1707 from table
21 | Mass flow ! pu 147.523 kg/s m? pu = pu(ag) a/ag
22 | Total mass flow m 0.2896 kg/s m = puD?r /4
23 | Pressure at I pr 165.2 - 10° N/m? p(x)
24 | Combination K 0.2189 (6.137)
25 | Mach number M; 0.2178 (6.139)
26 | Cmax(Mr) Cmaal 13 diagram
27 | Temperature ratio To/Tr 1.0095 (6.138)
28 | Stagnation pressure Por 1.707 - 10° N/m? (6.140)
29 | Reynolds number Re; 4.125 - 10° (6.142)
30 | Friction coefficient Ar 0.01358 (6.123)
31 | Pressure at IT pIr 134.1-10° N/m? p(x)
32 | Combination Kir 0.2697 (6.137)
33 | Mach number My 0.2678 (6.139)
34 | Cmax(Mir) CmazlI 8 diagram
35 | Temperature ratio To/Trr 1.01434 (6.138)
36 | Stagnation pressure Poll 1.409 - 10° N/m? (6.140)
37 | Reynolds numberl Repy 4.14-10° N/m? (6.142)
38 | Friction coefficient i1 0.01357 (6.123)
39 | Total friction coefficient Crar 5 (6.133)
40 | Crriction Ni.r1/D 0.19005 A=1/2(A\1 + \i1)
41 | Resistance coefficient of orifice (B 4.81 (6.135)
42 | Ratio of stagnation pressures Po1/Por1 1.2115
43 | Increase of entropy As/R 0.192 (6.127)

1

additional iterations do not improve the result
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6.8.5 Problems

1. The pressure distribution measured on the wall of the pipe is to be plotted in the diagram

p=f(2).

- 20=10°
plx) |
[N/m?]
—-———
it
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[ . o ]
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/ e . Sy
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*| 01342
0|0,1645 i
10,1800 ¥ —s
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© | 02625
/Af""“'mm " -
———— 05x10°
-5 0 x/D 10

2. The resistance coefficient of the orifice, the ratio of the stagnation pressures pors/por, and
the increase of entropy ASy;r/R are to be plotted in the corresponding diagrams.

Wp— — —

Foz —— — Poz
Por ~ P
08 ~
[ T \\
Se 06
! ss
5- R
[T
i
B 074
3 T T 0-
0 a1 02  Mag i}

Resistance coefficient (g, increase of entropy, and loss of stagnation pressure of a standard orifice with m = 0.5
as a function of the free-stream Mach number May

3. What quantities must be measured for the determination of the Mach number Ma;?

The quantities h,, py, T, Ba, and p; must be measured, if the Mach number May is to be
determined.

4. Which flow is described by the Fanno curve in the T-s diagram? Do the flow conditions
upstream of and downstream from a normal compression shock also lie on the Fanno curve?
The Fanno curve describebs the dependence of the temperature 7' on the entropy difference
AS/R for an one-dimensional, compressible flow with constant mass flow p v = const. for
an adiabatic change of state. The conditions upstream of and downstream from a normal
compression shock lie on the Fanno curve, since p u and T remain constant.

Gasdynamic quantities as a function of the pressure ratio:

up <@)0A76_ Re —f<£>
appo \T' 7"’”#’;” Po
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Mo B0 @:f<£>
a pAY vy Do
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The quantities to be determined from the pressure measurements are summarized above and
plotted in the diagram.
Resistance of adiabatic pipe flow (y = 1.4)

l

gmaz = (E\B)mazzémaz(ﬂial)

D = diameter of pipe

Ma; = Mach number at pipe entrance
—— D — . .
Emax = max. resistance coefficient at
’| lz 1' May =1
2d (p+pu?)
AN = ————
putdg

= pipe friction coefficient
Emazl — Emaze = Ag’g = resistance coefficient of a pipe (without installations) of length [; 5, the
diameter D, and the friction coefficient .

U Al
- n - gmazl - &naz? = §B + L2

D

(¥

resistance coefficient with installations.
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1404 144 144
Emux ]
1204 124 1.24
1004 10 1.0
80+ B‘I 0.8
03E,,, 3140 \0= =14
604 6+ 06
404 4o U,!'.-I
204 24 0,24
0+ '.'JJ- 0+ v T T T T T T T 7
] 0.1 0.2 03 0.4 05 06 07 08 08
—=Ma
Re 2-107[25-107 [ 3-10" [4-10" [ 6-107 [ 7-107 [ 10° [ 2-10° [ 10T -2-10°
m m? g
0.1000 | 0.01 0.9892 1 0.9895 | 0.9895 0.9896
0.1414 | 0.02 0.9917 | 0.9924 | 0.9927 0.9928
0.1732 | 0.03 0.9946 | 0.9954 | 0.9959 0.9960
0.2000 | 0.04 | 0.9768 | 0.9849 | 0.9883 | 0.9926 | 0.9951 | 0.9973 | 0.9984 | 0.9992 0.9994
0.2236 | 0.05 | 0.9822 | 0.9871 | 0.9906 | 0.9951 | 0.9977 | 1.0002 | 1.0015 | 1.0026 1.0027
0.2449 | 0.06 | 0.9849 | 0.9895 | 0.9930 | 0.9976 | 1.0005 | 1.0033 | 1.0047 | 1.0059 1.0061
0.2646 | 0.07 | 0.9876 | 0.9921 | 0.9956 | 1.0002 | 1.0033 | 1.0064 | 1.0080 | 1.0093 1.0095
0.2828 | 0.08 | 0.9907 | 0.9951 | 0.9984 | 1.0031 | 1.0063 | 1.0096 | 1.0113 | 1.0128 1.0130
0.3000 | 0.09 | 0.9939 | 0.9982 | 1.0014 | 1.0060 | 1.0093 | 1.0128 | 1.0147 | 1.0163 1.0166
0.3162 | 0.1I0 | 0.9973 | 1.00I5 | 1.0046 | 1.0092 | 1.0125 | 1.0162 | 1.0182 | 1.0199 1.0202
0.3317 | 0.11 | 1.0009 | 1.0050 | 1.0080 | 1.0126 | 1.0159 | 1.0196 | 1.0217 | 1.0235 1.0238
0.3464 | 0.12 | 1.0048 | 1.0086 | 1.0116 | 1.0160 | 1.0194 | 1.0230 | 1.0263 | 1.0272 1.0275
0.3606 | 0.13 | 1.0088 | 1.0123 | 1.0153 | 1.0197 | 1.0230 | 1.0266 | 1.0290 | 1.0309 1.0312
0.3742 | 0.14 | 1.0129 | 1.0163 | 1.0192 | 1.0235 | 1.0267 | 1.0303 | 1.0328 | 1.0347 1.0350
0.3873 [ 0.15 | 1.0I73 | 1.0206 | 1.0234 | 1.0274 | 1.0305 | 1.0341 | 1.0366 | 1.0385 1.0388
0.4000 | 0.16 | 1.0219 | 1.0251 | 1.0276 | 1.0316 | 1.0345 | 1.0380 | 1.0405 | 1.0424 1.0427
0.4123 | 0.17 | 1.0266 | 1.0297 | 1.0321 | 1.0358 | 1.0386 | 1.0420 | 1.0445 | 1.0463 1.0467
0.4243 | 0.18 | 1.0315 | 1.0344 | 1.0367 | 1.0402 | 1.0428 | 1.0461 | 1.0486 | 1.0504 1.0507
0.4359 | 0.19 | 1.0366 | 1.0393 | 1.0415 | 1.0447 | 1.0472 | 1.0503 | 1.0527 | 1.0545 1.0547
0.4472 1 0.20 | 1.0418 | 1.0444 | 1.0464 | 1.0494 | 1.0517 | 1.0546 | 1.0569 | 1.0586 1.0589
0.4583 | 0.21 | 1.0472 | 1.0496 | 1.0515 | 1.0543 | 1.0563 | 1.0590 | 1.0612 | 1.0628 1.0631
0.4690 | 0.22 | 1.0528 | 1.0550 | 1.0567 | 1.0593 | 1.0611 | 1.0636 | 1.0656 | 1.0671 1.0674
0.4796 | 0.23 | 1.0586 | 1.0606 | 1.0621 | 1.0644 | 1.0660 | 1.0682 | 1.0701 | 1.0715 1.0718
0.4899 | 0.24 | 1.0645 | 1.0662 | 1.0677 | 1.0697 | 1.0710 | 1.0730 | 1.0746 | 1.0760 1.0762
0.5000 [ 0.25 | 1.0706 | 1.0721 | 1.0734 | 1.0751 | 1.0763 | 1.0779 | 1.0793 | 1.0805 1.0807
0.5099 | 0.26 | 1.0769 | 1.0782 | 1.0792 | 1.0806 | 1.0816 | 1.0830 | 1.0841 | 1.0852 1.0854
0.5196 | 0.27 | 1.0833 | 1.0844 | 1.0853 | 1.0864 | 1.0871 | 1.0881 | 1.0890 | 1.0899 1..0901
0.5292 | 0.28 | 1.0899 | 1.0908 | 1.0914 | 1.0923 | 1.0928 | 1.0934 | 1.0941 | 1.0948 1.0949
0.5385 | 0.29 | 1.0966 | 1.0972 | 1.0976 | 1.0982 | 1.0985 | 1.0989 | 1.0993 | 1.0998 1.0999
0.5477 1 0.30 | 1.1035 | 1.1037 | 1.1039 | 1.1042 | 1.1043 | 1.1045 | 1.1046 | 1.1049 1.1049
0.5568 | 0.31 | 1.1106 1.1106 1.1105 | 1.1104 | 1.1102 | 1.1101 | 1.1101 | 1.1101 1.1101
0.5657 | 0.32 | 1.1179 | 1.1176 | 1.1173 | 1.1168 | 1.1164 | 1.1159 | 1.1156 | 1.1155 1.1154
0.5745 | 0.33 | 1.1253 | 1.1246 | 1.1241 | 1.1233 | 1.1225 | 1.1218 | 1.1214 | 1.1209 1.1208
0.5831 | 0.34 | 1.1329 | 1.1320 | 1.1312 | 1.1300 | 1.1290 | 1.1279 | 1.1272 | 1.1266 1.1264
0.5916 | 0.35 | 1.1407 | I1.1394 | 1.1384 | 1.1368 | 1.I355 | 1.1341 | 1.1332 | 1.1324 1.1321
0.6000 | 0.36 | 1.1486 | 1.1470 | 1.1457 | 1.1438 | 1.1423 | 1.1406 | 1.1394 | 1.1383 1.1379
0.6083 | 0.37 | 1.1567 | 1.1548 | 1.1532 | 1.1510 | 1.1493 | 1.1472 | 1.1457 | 1.1445 1.1439
0.6164 | 0.38 | 1.1650 | 1.1627 | 1.1609 | 1.1583 | 1.1564 | 1.1540 | 1.1523 | 1.1508 1.1501
0.6245 | 0.39 | 1.1734 | 1.1709 | 1.1668 | 1.1658 | 1.1636 | 1.1609 | 1.1590 | 1.1573 1.1565
0.6325 [ 0.40 | 1.182T | 1.1793 | 1.1768 | 1.1735 | 1.1711 | 1.1680 | 1.1660 | 1.1641 1.1630
0.6403 | 0.41 | 1.1909 | 1.1877 | 1.1861 | 1.1813 | 1.1788 | 1.1754 | 1.1732 | 1.1710 1.1698
Discharge coefficients ag = f(m? Re) for standard nozzles in smooth pipes, valid for pipe diameters D

between 50 tos 500 mm. The values of m? listed (not of m) can be interpolated linearly.
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alp1 TO] 098 | 0.96 [ 0.904 [ 092 | 0.90 | 085 | 0.80 | 0.5
m m? e fory=12
0 0 1.0 | 0.9874 | 0.9748 | 0.9620 | 0.9491 | 0.9361 | 0.9029 | 0.8089 | 0.8340

0.3162 | 0.1 | 1.0 | 0.9856 | 0.9712 | 0.9568 | 0.9423 | 0.9278 | 0.8913 | 0.8543 | 0.8169
0.4472 | 0.2 | 1.0 | 0.9834 | 0.9669 | 0.9504 | 0.9341 | 0.9178 | 0.8773 | 0.8371 | 0.7970
0.5477 | 0.3 | 1.0 | 0.9805 | 0.9613 | 0.9424 | 0.9238 | 0.9053 | 0.8602 | 0.8163 | 0.7733
0.6325 | 0.4 | 1.0 | 0.9767 | 0.9541 | 0.9320 | 0.9105 | 0.8895 | 0.8390 | 0.7909 | 0.7448
0.6403 | 0.41 | 1.0 | 0.9763 | 0.9532 | 0.9308 | 0.9090 | 0.8877 | 0.8366 | 0.7881 | 0.7416
e fory=1.3

0 0 1.0 [ 0.9884 [ 0.9767 | 0.9649 | 0.9529 [ 0.9408 | 0.9100 | 0.8783 | 0.8457
0.3162 | 0.1 | 1.0 | 0.9867 | 0.9734 | 0.9600 | 0.9466 | 0.9331 | 0.8990 | 0.8645 | 0.8294
0.4472 | 0.2 | 1.0 | 0.9846 | 0.9693 | 0.9541 | 0.9389 | 0.9237 | 0.8859 | 0.8481 | 0.8102
0.5477 | 0.3 | 1.0 | 0.9820 | 0.9642 | 0.9466 | 0.9292 | 0.9120 | 0.8697 | 0.8283 | 0.7875
0.6325 | 0.4 | 1.0 | 0.9785 | 0.9575 | 0.9369 | 0.9168 | 0.8971 | 0.8495 | 0.8039 | 0.7599
0.6403 | 0.41 | 1.0 | 0.9781 | 0.9567 | 0.9358 | 0.9154 | 0.8954 | 0.8472 | 0.8012 | 0.7569
efory=1.4

0 0 1.0 [ 0.9892 | 0.9783 | 0.9673 | 0.9563 | 0.9449 | 0.9162 | 0.8865 | 0.8558
0.3162 | 0.1 | 1.0 | 0.9877 | 0.9753 | 0.9628 | 0.9503 | 0.9377 | 0.9058 | 0.8733 | 0.8402
0.4472 | 0.2 | 1.0 | 0.9857 | 0.9715 | 0.9573 | 0.9430 | 0.9288 | 0.8933 | 0.8577 | 0.8219
0.5477 | 0.3 | 1.0 | 0.9833 | 0.9667 | 0.9503 | 0.9340 | 0.9178 | 0.8780 | 0.8388 | 0.8000
0.6325 | 0.4 | 1.0 | 0.9800 | 0.9604 | 0.9412 | 0.9223 | 0.9038 | 0.8588 | 0.8154 | 0.7733
0.6403 | 0.41 | 1.0 | 0.9796 | 0.9596 | 0.9401 | 0.9209 | 0.9021 | 0.8566 | 0.8127 | 0.7704
e for v =1.66

0 0 1.0 | 0.9909 | 0.9817 | 0.9724 | 0.9629 | 0.9533 | 0.9288 | 0.9033 | 0.8768
0.3162 | 0.1 | 1.0 | 0.9896 | 0.9791 | 0.9685 | 0.9578 | 0.9471 | 0.9197 | 0.8917 | 0.8629
0.4472 | 0.2 | 1.0 | 0.9879 | 0.9759 | 0.9637 | 0.9516 | 0.9394 | 0.9088 | 0.8778 | 0.8464
0.5477 | 0.3 | 1.0 | 0.9858 | 0.9718 | 0.9577 | 0.9438 | 0.9299 | 0.8953 | 0.8609 | 0.8265
0.6325 | 0.4 | 1.0 | 0.9831 | 0.9664 | 0.9499 | 0.9336 | 0.9176 | 0.8782 | 0.8397 | 0.8020
0.6403 | 0.41 | 1.0 | 0.9827 | 0.9657 | 0.9490 | 0.9324 | 0.9161 | 0.8762 | 0.8373 | 0.7993

Expansion coefficient € for standard nozzles for arbitrary gases and vapors, for different pressure ratios pa/ps.
Listed are also the squares of the opening ratios m and Isentropic exponent 7y

The numerical values m = m? = 0 and py/p; = 1 are listed only to enable the interpolation of values of € for
m? < 0.1 and p2/p; > 0.98.
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6.9 Measuring Methods for Compressible Flows

Abstract

Optical methods for measuring density fields of gas flows are introduced: The shadow method,
the Mach-Zehnder interferometer , the differential interferometer, and the working principle of
the holographic interferometer. For measuring the local velocity the hot-wire anemometer and
the Laser-Doppler anemometer are briefly described.

6.9.1 Tabular Summary of Measuring Methods

1. Optical methods for measuring the density

. Hot-wire and Laser-Doppler anemometry for measurements of velocities and turbulent fluc-
tuation velocities

. Pressure measurement

. Measurement of forces and moments

. Temperature measurement

. Skin friction measurement

. Visualization of streamlines

. Concentration measurement

. Film thermometer for measuring heat transfer

[\

© 00~ O Ut = W

6.9.2 Optical Methods for Density Measurements

The propagation velocity of light ¢ in gases depends on the gas itself and on its density p. It is
smaller than in vacuum. The index of refraction ny of a gas “1” is defined as the ratio of the

velocity of light in vacuum ¢q to its value in the gas
=2 (6.143)
[&]

The optical path length S is defined as the distance, which a light ray would cover in vacuum
in the time ¢, in which the ray would cover the geometric distance [; in the gas with index of
refraction n;

If a light ray crosses the boundary between two gases of different index of refraction, it is
deflected. If two rays travel different optical paths, a phase difference between the two results.

Methods Based on the Deflection of the Light

If a light ray enters a transparent wedge with index of refraction ny and wedge angle as, the
ray is deflected by the angle €, when it leaves the wedge.

cp > ¢ o, np<ng
E = Q1 —Qy
sinoy = «oT1/AB

sinag = co7/AB

sin at/AB ¢ ng
sin cT/AB  c m
. . g
sina; = sinap—

ny
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From the sketch it follows for small angles «
e~ a (ﬂ - 1) . (6.145)
ny
The index of refraction n of a gas or vapor can approximately be expressed in terms of the
density p by the following relation:
n—1=Kp Gladstone-Dale (6.146)

The Gladstone-Dale constant K depends on the gas and on the wave length of the light, for
example:
Air at15°C, A = 644nm — K = 0.2255- 10 m?/kg
A = 447nm — K = 0.2290 - 10* m® /kg

Other examples are listed below:

Gladstone - Dale constant K

K [m®/kg ] A [nm)] Gas
0.2239 -1073 912.5
0.2274 -1073 509.7 Air (T = 288K)

0.2330 1073 | 356.2
0.190 -10~ 589 0, (T =273K)
0.229 -10~ 589 CO, (T =273K)
0.238 -10~ 589 N, (T =273K)

Index of refraction (A = 589 nm, T' = 293 K) Coherence length of light rays

Air: n =1.00027 (p = 1bar)  Sun ~ 107"m
Water: n=1.333 Spectroscopic lamp ~ ~ 107'm
Crown glass (BK 7) n = 1.519 Ar - Laser ~ 10?m
Flint glass (SF 10) n = 1.734 He - Ne - Laser ~ 10*m

The continuous increase of the geometric path in the medium “2” in the wedge with constant
index of refraction ny causes a deflection of the incident ray. It can also be concluded that an
increase of the index of refraction causes a deflection of the light if the geometric path 1 is
constant.

An object, which causes the product n -1 to change in an arbitrary direction, is called schlieren.
If the index of refraction n remains constant in the direction of the incident ray (z) and if the
geometrical path does not change in the y-direction, then the schlieren is called two-dimensional.
The following approximation is valid for a weak deflection in the schlieren

ldn
R —— 6.147
Sty (6.147)
With (6.146) the following proportionality holds for the two-dimensional schlieren:
d
e~ 12 (6.148)
dy

The Shadow Method

The angles ¢ occuring in applications are very small (e < 1/10°). Two methods are used to make
them visible. A very simple method is the shadow method. If the light after passing through a
schlieren is captured on a film, the part of the field, from which the light is deflected, generates
an image which is not as dark as the image of the area, which is additionally lightened by the
deflected light rays.
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density in schlieren boundaries film light intensity E
the schlieren

It is clear from the sketch above, that a constant density gradient in the phase object deflects
the entire incident light, but does not change the distribution of the light intensity on the film.
Only a change of the density gradient leads to a brightening and darkening of parts of the
image. The light intensity is approximately given by
d*p
dy?
Jumps in the distribution of the density gradient, as they occur in compression shocks, are
extremely well detected.

AE ~ (6.149)

The Schlieren Method

In order to build up a schlieren optic a focus (focal spot) must be generated between the object
and the image screen. The focal spot serves to focus the non-deflected rays (regular bundle of
rays). A knife edge, positioned close to the focus, captures the light, deflected by the schlieren
to it, so that the corresponding areas on the film are not illuminated.
y

regular beam %
 of rays

Sy e R =
— — = ?

~ Fa knife egde |7 S
schlieren boundaries collector lense light screen E

Because of the finite size of the focal spot, about half of it is covered with the knife edge, so
that the optical sytem is sufficiently sensitive. The schlieren then appear in different grey tints,
depending on their direction and intensity, which is approximately given by

~ —, 15
AE a (6.150)

The schlieren method is more sensitive than the shadow method and provides very clear pictures
of the flow field.
Methods Based on the Measurement of Phase Differences

(Interferometric Methods)

If two equal light rays travel along different optical paths, the light waves of the two rays are
shifted relative to each other.
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The shift Af is called phase difference. If the two light rays are superposed, they cancel each
other, if Af is an uneven, integral multiple of one half of the wave length. If Af is an integral
multiple of the wave length, then they amplify each other.

Two light rays, which are identical in all aspects except for their phases, are called coherent.
They are not coherent, if they are generated by different light sources; they therfore have to be
generated by the same light source and split into two rays, if they are to be coherent. After they
have travelled different optical paths, their phase difference can be determiend by superposition
of the two rays.

Mach-Zehnder Interferometer

In a Mach-Zehnder interferometer the splitting and superposition of the light rays is done with
semitransparent mirrors.

If the mirrors 1 to 4 are positioned parallel to each other, then all geometric paths of both rays
are equal. If there is a density field in the test section, constant in the direction of the ray, then
the interference fringes represent lines of constant density.

Y N

4
compensating chamber

3 !
| |
| I
| \
| T
[
_._/JC:,__N__-___/V ) —
2

1

test section

’
/ mirror // semitransparent mirror

This condition is very well suited for a qualitative evaluation of a flow process. For quantitative
evaluation so-called finite-fringe spacing is used. By turning the corresponding mirror a linearly
increasing density field, also called wedge field is simulated, such that a field of parallel equidis-
tant interference fringes, generated without a flow process, appears. If a real flow is investigated,
the known wedge field has to be subtracted from the field obtained with the flow. This is done
by measuring the shift of the fringes in the picture of the flow process in comparison to its
position in the wedge field. This method of evaluation makes it possible to catch optical errors,
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resulting from the glass panes of the wind tunnel or from the mirrors and from those that are
contained in the wedge field.

Differential Interferometer

In the differential interferometer the light ray is split with doubly refracting crystals, for example
wollaston prisms, the action principle of which is explained in the following sketch. The distance
d between both rays is so samll, that both can travel through the test section (The distance is
of the order of magnitude of 1 mm).

L
Z X

direction of the optical axis

of the 1st prism
orderly partial ray

N polarized in direction |
3
2 d
A2 extra ordinary partial
ray polarized in the
direction of the optical axis direction @
of the 2nd prism

Both rays are superposed after they have passed the test section, and the superposition yields
density gradients in two-dimensional and axially symmetric flows. If the wollaston prism is
positioned in such a way, that with constant density in the test section interference fringes
do not appear (infinite fringe), then the interference fringes which appear after generating a
two-dimensional density field, are lines of constant density gradients. A suitable polarisation is
necessary for generating interference fringes.

A field of equidistant interference fringes can be gener-
ated by shifting the wollaston prism. The fringe shift
AW is then a measure for the density gradient. It is
[Merzkirch 1974]:

AW d [.  én an
o= {smﬂ/%dl—i—cosﬂ_/a—ydl}

(6.151)

n = Index of refractionx

d = Distance between the rays

| = geometrical path

For the analysis of axially symmetric density fields,
Abel’s integral equation has to be solved.

{2/

b)
)
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6.9.3 Optical Setup

So far only the physical principles of some of the optical measuring methods were briefly
explained. In order to apply them, an optical setup must be arranged, which has to depict the
object to be measured and also the signal, for example the fringes of the interferometer on the
film. In addition the setup should also provide the possibility of passing parallel light through
the test section. An example of an optical setup is shown below for the so-called Z-arrangement
of the differential interferometer, which is often used to keep the defects of the images small.

light source

apertured partition ol
condensor

= polarizer
= test section
== ; o
%&\/ D ) \| s

imaging optics

W, ,: Wolloston prism 2. polarizer (analizer)

S, concave mirror
L2 = screen

The light of the source is focussed by a condenser in a point, which is so chosen that it coincides
with the focus of a concave reflector. The light rays leaving the reflector are parallel to each
other. They pass the test section and are focussed again by a second reflector. Special imaging
optics are required to depict the test section in a suitable size on the film.

Holographic Interferometry

The methods discussed so far can only be used for the analysis of two-dimensional density
fields. With the development of the Laser it became possible to use the holgraphy as a measur-
ing technique and record the wave fronts generated by a body. A typical setup is shown below.
A parallel light beam, generated by a Laser, is split with a splitter plate; one part of it, the
reference beam, after being
deflected by a mirror, is di-
rectly led to a photographi-

H
H cally sensible layer H (Holo-
gram). The second beam
is diffusedly scatteerd on a
C ground-glass plate.
object ;;ILL;;L;M!’L The object is behind the

ground-glass plate in the
diffused light. The wave
fronts, passing through the
object, interfere with the
cxposure reproduction reference beam and are
recorded on the photo-

graphically sensible layer.
For reconstruction of the image the hologram H is again exposed to the reference beam. In
this manner a three-dimensional picture of the phase relationship of the light penetrating the
flow is generated. The method of double exposure of the hologram is preferably used, i. e., the

ground—glass

mirror divider
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photographically sensible layer is exposed without the flow and a second time with the flow. In
this manner the change of density caused by the flow can be determined.

6.9.4 Measurements of Velocities and Turbulent Fluctuation Velocities

The optical methods just discussed, in general provide data which represent values averaged over
the width of the test section. Hot-wire and Laser-Doppler anemometer enable the measurement
of the velocity at a point with a resolution of about 1 mm3.

Hot-Wire Anemometer

The hot-wire and the hot-film anemomter are measuring devices which are heated with an
electric current, so that a temperature difference is generated between the device and the
flowing medium (Temperature differences in gases are about 200 to 300 K).

The measuring devices consist of hot wires (¢ 1075 to 107*m) which are fixed to two pins, hot
films (thickness 1078 to 107%m) are fastened to glass or ceramic supporting bodies.

Two methods are used to construct a relation between the heat transfer from the measuring de-
vice to the flowing medium and its local velocity: Either the heating current is kept constant and
temperature or electric resistance are measured (constant-current method) or the temperature
or the electric resistance are kept constant and the current is readjusted (constant-temperature
method). The adjustment of the heating current can be achieved in a simple manner by com-
bining the measuring device with
a Wheatstone’s bridge. The limit
of the methods are given by the
spatial, temporal, and amplitude
resolution. It must also be re-
membered that the heat transfer
of the anemometer is affected by a

(scale 3:1) 55 A22 probe with plug (scale 1:1) change of density or temperature
of the flowing medium.
A single hot-wire probe is shown above. The wire has a diameter of the order of 5 um. Modern
hot-wire anemometers measure all three velocity components with three wires, orthogonally
arranged to each other in a measuring volume of about 1mm?, gold-soldered to six prongs,
which lead the electric current to the bridge.

Laser-Doppler Anemometer (LDA)

The Laser-Doppler anemometer is an opto-elektronic measuring method. The position of the
measurement is given by the volume of intersection of two intersecting Laser beams (typical
size: &~ .1 mm?). The velocity of small particles, travelling with the flow (¢ 1077 to 1075 m) is de-
termined with the aid of the light scattered by the particles and is assumed to be approximately
equal to the velocity of the flow.

Since the particles move relative to the light source, the frequencies of the stray light of the two
Laser beams is distorted as a consequence of the Doppler effect, by different amounts, resulting
from the different directions of the beams. The difference in the frequencies of the Doppler
shifts is called Doppler frequency f. It can be determined from the beat frequency of the two
parts of the stray light with the aid of photodetectors.

Of the many possible setups the “two-beam method” is shown here. With this method the
frequency f can also be explained with the interference of the two Laser beams.

Selecte References

Durst, F., MELLING, A, WHITELAW, J.H.: Principles and practice of laser-doppler-
anemometrie, Academic Press, 1976.
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FRANCON, M.: Holographie, Springer-Verlag, 1972.
MERZKIRCH, W.: Flow visualition, Academic Press, 1976.

SCHARDIN, H.: Die Schlierenverfahren und ihre Anwendung, Ergebnisse der exakten Natur-
wissenschaften, Bd.20, 1942.

STRICKERT, H.: Hitzdraht- und Hitzfilmanemometrie, VEB Verlag Technik, Berlin, 1974.
WuesT, W.: Strémungsmef$technik, Vieweg-Verlag, 1969.

6.9.5 Evaluation

Determination of the Mach number by measuring the pressure:

Measured data: po—p = 696 mm Hg
po = 747.5 mm Hg
P P TP 68 20451
Po Po p
=1
2 S
Ma = (”i> —1] =239

y—1\\p

1. Pitot-pressure measurement at supersonic speeds

Mg,
23] [o ﬂ

straight shock p =slagnation pressure

Given:
Po2

=g(Mase,y
Po1 ( )

To be determined:
Py _ f(Mas,x) (Give derivation!)

Poo
laser beam—divider prism  lense wind tunnel lensg  photomultiplier
| A A
4 Wart Argon—Laser ( . | g
A=514.5 i
o ' l |
[ .
shutter  photomuliiplier
intensity disuibution of the interference band in the

scartered light measuring volume
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v+1

Po2 2y 2 G
Mae,, =14+ —=(Mas, -1 T
9 "= Po1 { 7+1 ( )} -1+ Ma2

DPo2 = Pg ; Poo = D1

-1 =
Lo _Po_ Do Po_ = 9(Mas) 7% B — g(Mase) - (1 + LM@&) "= f(Ma,)
Poo  P1 DPoi D1 2
2. State the difference between the shadow and the schlieren method! (optical setup, measured

quantities, advantages and disadvantages)
The shadow method: Changes of the density gradient cause brightening or darkening in the

picture, AE ~ de
The schlieren method: The density gradients visualize themselves, AE ~ d@g.

3. The picture shows a photograph of a candle light, obtained
with a differential interferometer as finite fringe interferogram.
a) How can the density profile be determined from these data?
b) Sketch the picture for infinite fringe spacing. Explain the
interference fringes generated!
¢) Sketch the setup of a Mach-Zehnder interferometer for finite
fringe spacing, if the interference fringes in the reference field
without the flame run diagonally.

a) The fringe shift is the measure for the density = density profile.

Aw Ou Ou dp
from equ: ?77{911[)’/8—(1[4-009/3/—6”} :>%7afy7nf(l(~p)+l é%

b) c)
A — A
- \
3 4
| compensating chamber |
| |
' |
! |
i
= A
’
1 . 2
test section
”
/mirmr // semitransparent mirror
The interference fringes are lines If the reflectors 2 and 4 are not turned, the light rays pass

of constant density gradients. through. A phase difference is generated and thereby an inter-

ference field.
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6.10 Supersonic Wind Tunnel and Compression Shock at the Wedge
Abstract

Several types of wind tunnels are reviewed. The working principle of supersonic wind tunnels is
explained. The straight oblique compression shock in steady two-dimensional flow of a perfect
gas with constant specific heats is experimentally investigated. Friction forces and addition and
removal of heat are neglected. The pressure ratio across the shock ps/p; and the shock angle
o of an oblique shock generated with a wedge are measured for a certain Mach number and
compared with theoretical values.

6.10.1 Introduction

The objective of wind-tunnel testing is to generate spacially and temporally constant flows for
the investigation of fluid-mechanical problems. Studies of problems in fluid mechanics often
have to rely on experiments, since theoretical analyses of complex flow processes are not always
possible.

Since experimental investigations of flows about full-scale models can be realized only in rare
cases, wind-tunnel testing has to resort to reduced-scale models and the similarity laws have
to be observed. In addition to geometric similarity the following similarity parameters are of
importance:

Reynolds number Re = ”;T”

Ma—=%— Flow velocity

Mach number Pl Speedom

Kn—=lm — Mean free ath

Knudsen number t 7 Characteristic length

Prandtl number  Pr = £2

By
Strouhal number  Str = “71 = %
Schmidt number ~ Se — v — Kinematic viscosity

~ D1z~ Diffusion coefficient

Lewis number Le = % ,
The regimes of the flow characteristics to be simulated in wind tunnels can be obtained from
the missions of the air- or spaceplanes to be built. It is generally not possible to cover all flight
conditions with a single wind tunnel (see the following Re-Ma-number diagram), and to abey
all similarity laws. In particular the Reynolds similarity law is difficult to implement since either
very high stagnation pressures or very large wind tunnels would be required (Re ~ py -1
The following diagram shows the working areas of several wind tunnels.

model) :

6.10.2 Classification of Wind Tunnels

Classification According to Mach Number

Subsonic tunnel (incompressible) 0 < Ma <025
Subsonic tunnel (compressible) 025 < Ma<038
Transonic tunnel 08 <Ma<12
Supersonic tunnel 1.2 <Ma<b
Hypersonic tunnel 5 < Ma

The hypersonic tunnels are designed as either cold and hot tunnels. In the former only the
Mach number is simulated, in the latter also the stagnation temperature. Hot wind tunnels are
also used to study real-gas effects.
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DLR Hypersonic tunnel DLR Plasma tunnel PK1

DLR Gun tunnel DLR Vacuum tunnel
DFL Gun tunnel 7 | AIA Vacuum tunnel 15 x 15 cm?

Shock-wave tunnels AJA Vacuum tunnel 40 x 40 cm?

(RWTH Aachen u. ISL Saint Louis)

DLR - Deutsches Zentrum fiir Luft- und Raumfahrt
RWTH - Rheinisch Westfilische Technische Hochschule
ISL - Insitute Saint Louis

Classification According to Type of Construction

Closed-circuit, continuously operating wind tunnels (Gottingen Type)
Open wind tunnels (Eiffel Type)

Classification According to Time of Operation

Continuously operating tunnels intermittently operating tunnels

Wind tunnels with closed circuit and returning Vacuum storage tunnel

of the air Pressure storage tunnel
(Transonic tunnel Gottingen) Shock-wave tunnel
Plasma tunnel Injector tunnel, pipe wind tunnel

MHD tunnel (Magneto-hydrodynamic tunnel) — Kryo-shock-wave tunnel, gun tunnel
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6.10.3 Elements of a Supersonic

Tunnel

Supersonic Nozzle with Test Section

The nozzle of a supersonic wind tunnel is designed with the method of characteristics [Shapiro
1953]. The purpose of the nozzle is to accelerate the flow from sonic speed (Ma = 1) in the
throat of the nozzle to a prescribed supersonic speed in the test section (See the following sketch
and diagram). The nozzle consists of the subsonic part, the transonic part, the expansion part,
and the part for correction of the flow to uniform conditions in the test section.
The flow expands in the area (7-5-3), with several reflections along the wall of the nozzle. The
expansion waves hitting the wall of the nozzle in the correction part (3-1) are cancelled there

by generating equally strong compression waves with the concave curvature of the contour of

the wall. If the nozzle geometry is correctly designed, the flow in the measuring rhombus is
parallel and its Mach number is constant. A change of the Mach number can only be achieved
by changing the entire nozzle geometry. This can be realized with

a) exchangeable nozzles
b) nozzles with variable contours
¢) combinations of a) and b).

subsonic
intake

Mach line
Ma =1

expansion section

X
> measuring rhombus

et

2

correction section

parallel wall

0528

T

Data of air: v = 1.4, T, =288K

wyw

May, 1 1.5 2 3 5 10 20
Ay /A* 1.0 1.17 1.68 4.19 24.4 533 15300
p1/Po 0.527 0.279 0.1277 0.0273 0.0019 | +2.4-107°|2.1-107"
u [m/s] 310 424 507 610 694 742 755
T [K] 240 198 157 102 47.5 13
Diffuser

Analogously to the generation of the supersonic flow in the Laval nozzle, the deceleration of the
velocity with pressure recovery is facilitated in a convergent-divergent diffuser. The pressure




6.10 Supersonic Wind Tunnel and Compression Shock at the Wedge 333

recovery should be as large as possible in order to keep the required compressor power as
small as possible for continuously operating tunnels or to achieve optimum measuring times for
intermittently operating tunnels.

The largest pressure recovery is obtained, if critical flow conditions prevail in the throat of
the diffuser and if the deceleration of the flow to subsonic conditions is facilitated by a weak
normal compression shock in the divergent part of the diffuser, immediately downstream from
the throat of the diffuser A* = A*'. Since the shock is weak, the losses caused by the shock are
small. The start of the supersonic tunnel , however, requires a different cross section of the throat
of the diffuser, as is clear from the following consideration [Pope and Goin 1960, Voigt 1960].
During the initial phase of the start of the tunnel subsonic flow prevails in the entire tunnel.
The speed of sound is first attained in the throat of the Laval nozzle. The flow expands to
supersonic speeds in the divergent part of the nozzle, with a normal shock terminating the
supersonic part. With increasing velocity the shock moves downstream. The shock intensity
and the losses in the flow reach their maximum, when the shock is located in the test section.
In order to guarantee that the mass flow can pass the diffuser, the cross section of the throat
of the diffuser must then be sufficiently large.

The continuity equation yields

nozzle test section diffuser

lshock
—= Mac<l Ma>1 | Ma <1 Ma> 1
T~ 0o

A A

p*A*a* _ p*’A*/a*/
Ty = Tope — a*=a" — T=T"
A*’ * * T*'
* = L*’ = p*’ ’ * = ]ﬂ > 1
A P " T DPo2

Several tunnels were built with an adjustable cross section of the throat of the diffuser, which
immediately after the start of the tunnel is reduced from A* to A*, in order to garantee a
maximum pressure recovery.

6.10.4 The Oblique Compression Shock
Introduction

The flow in a concave corner is continuously turned, if the velocity is subsonic, but discontinu-
ously by a compression shock, if the velocity is supersonic.

It is justified to consider the compression shock as a discontinuity here, since the thickness of
the layer, in which pressure, density, temperature, velocity and other quatities change, is of the
order of magnitude of several free mean paths only.

If the turning angle does
not exceed a certain an-
gle and if the Mach num-
ber in front of the shock
is sufficiently large, in
s two-dimensional flow the

shock is straight.

o
$
B
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If the turning angle is large, the shock is detached from
the contour and curved, normal at the wall (see sketch),
so that the flow is subsonic in its immediate vicinity.
Further away from the wall the curvature of the shock
is decreased, and the flow velocity downstream from it is
supersonic. A sonic line w = a separates the supersonic
flow from the subsonic flow near the wall.

Computation of the Change of State Across the Oblique Compression Shock
Assumptions

1. The flow is steady and two-dimensional.

2. Gravitational and friction forces can be neglected.

3. Heat transfer with the surroundings can be neglected.

4. The flowing medium is a perfect gas with constant specific heats.

Basic Equations

With a small change in notation the jump conditions for the oblique shock are listed again in
the following. They were already derived in section 4.5, but are needed here for comparison of
the theoretical results with the measured data.

With the assumptions listed, the conser-
vation equations for the control surface

indicated in the sketch are the following: PPy
Continuity equation:
w,: g;i
P1WL, = PaWsay, (6.152) g

Momentum equation normal to the shock:

LS S S

P1 — P2 = P2W2p W2y — P1W1, W1y (6-153)

Momentum equation tangential to the shock:

0 = pawspway — prwrwiy (6.154)
Energy equation: | 1 "
2 2 T n 2 2 ) P2
—(wy, +wi,) + — = (wy +wsy,) + ——— 6.155
it wh) - T = Sl ) TP (6.155)

The following relations can be derived from the sketch:

sinoc = wy,/w (6.156)
tano = wi,/wy, (6.157)
tan(o — ) = way/way (6.158)
sin(oc — B8) = wa,/ws (6.159)
After introducing the Mach number in front of the shock,
May = = wy ) [y B2 (6.160)
ay P1

with a being the local speed of sound, (6.156) can be rewritten in the following form:

Ma2sin?o = w?, | (7 %) (6.161)
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Solution
It follows from (6.152) to (6.155) and (6.161):
wyy = Wy (6.162)
2
) 1421 2 1+ =L A7a2 sin?
oo P 2T 2 /e I MAST Wan 6.163
Wy, P2 4l Wi, Y#Ma% sin? o wln(% a.0) (6.163)
2 pi/p1
P2y %/< Wi 71>:1+4§;Mmﬁ$ﬁ044):8y%Mmﬂ(6%@
P 7+ 1\wi/;m T+1 pi
With (6.162) there is obtained from (6.157) and (6.158):
Wan _ tan(o — () (6.165)
Wi, tan o ’ ’
and further
LH]\/[(f
cotf =tano 1 i o=o0(v,Ma,p) . (6.166)

Ma?sin’o — 1

Equations (6.164) and (6.166) yield a relation for the construction of the heart-curve diagram,
after elimination of o

102 P2 _ 2
SN SR S T
v (o) ] DMt (1)
It follows from (6.156) and (6.159) that
W2 Wan SO (6.168)

w,  wi, sin(o — ()
This equation together with (6.166) and the critical speed of sound a*,
2
a? =" R.T,
y+1
after elimination of o, with R being the gas constant, and Tj the stagnation temperature, leads
to the expression for the shock polar:

wiws cos B — a*?

(6.169)

(wasin 3)* = (w1 — ws cos f)? D)

poyre 1wf — wyws cos B+ a*?

Heart-Curve Diagram and Shock Polar

The heart-curve diagram and the shock polar are sketched for constant « for a given free-stream
Mach number.

B
Py

P, N

|
4
|
145, ! E
!

B Brmox

heart-curve diagram shock polar
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Only the physically meaningful regions are shown (p2/p; > 1 and wy/w; < 1). Two solutions
exist for a prescribed value of 3 indicated by the symbols o and e). In the actual flow the weak
solution (o) with the smaller p, and the larger wy is observed in straigth oblique shocks. For
the case that = 0 the heart-curve diagram and the shock polar contain the solution for the
normal compression shock (B) and the trivial solution for the unperturbed flow (A). Closed-
form solutions for the straight shock do not exist for turning angles 5 > B,4.; the turning of
the flow takes place in a curved shock.

Supplementary Remarks

The Hugoniot relation: With (6.152) to (6.155) the energy equation is cast into the following
form, named after Hugoniot

P2 _ 7—7) (6.170)

or in the form given by von Kérman

P2 — D — D2 +P1. (6.171)
P2 — P1 P2+ p1

Tt follows from (6.170) for the very strong shock (p2/p; — 00), that the maximum compression
ratio of an perfect gas with constant specific heats is

‘ ]
<&> _ 1t : (6.172)
P pafprsoo T T
Vice versa, it follows from (6.171) for the weak shock (pa/p; — 1)
A d
(J) . (i’) (6.173)
Ap p/p—1 p dp isentrop.

Very weak shocks can in a first approximation be considered as isentropic compression waves.
The maximum turning angle:
For v = 1.4 the maximum turning angle (... has the following values:

ﬁmaz' OU 230 34(} 42(} 44[) 45{)
Ma | 1 2 3 5 8 o0

Construction of the Shock Polar

All velocity components are non-dimensionalized with the critical speed of sound a*,the speed
of sound in the throat of the Laval nozzle, in which the flow expands in the divergent part
to supersonic conditions corresponding to the Mach number Ma. The relation connecting the
velocity non-dimensionalized with a* and Ma is

(6.174)

The shock polar was explained in Sect. 4.5.3, where it was introduced in conjunction with the
transformation of the flow quantities from the physical plane into the hodograph plane. The
shock polar offers a convenient means of determining the velocity immediately downstream
from an oblique shock.
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If the velocity components in front and down-
stream from the shock are plotted as indicated
in the sketch, it is seen that for given values of
Ma,y, und w; the quantities ws,wpe,Wse, and o
can be determined from the shock polar.

6.10.5 Description of the Experiment

The experiment is carried out in the intermittently operating supersonic wind tunnel of the
Aerodynamisches Institut. The air is sucked from the surroundings (po, Tp) through the Laval
nozzle and the test section into the vacuum storage.

wedge

to vacunm
reservoir

A supersonic flow with a Mach number of Ma ~ .2.0 in the test section is generated by
expansion of the air in the Laval nozzle.

The Laval nozzle is a continuously adjustable nozzle and admits a variation of the test Mach
number from about Ma = 1 to Ma = 5. The contour of the nozzle is generated with flexible
steel sheets, which are fastened at one end of the nozzle frame. The sheets are held in position
by six supporting jacks. The jacks are adjusted in such a way, that the metal sheets take on
the form of the nozzle contour required for the test Mach number.

The model support enables a change of the angle of attack of the model. It can be varied in
steps of one half, one, and two degrees. The maximum angle of attack the model can be held
at is 39.5°.

In order to obtain a symmetric flow about the wedge, it is turned with the aid of its support
until the pressure difference ps, — p2; measured at the two symmetrically positioned pressure
holes vanishes. After this directional adjustment of the wedge, the pressure differences pg — p,
Do — P2, and py — Pegp are measured with U-tubes. The shock angle o and the Mach angle a of
a Mach line of the free stream are visualized with a schlieren picture:
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The Mach line, inclined by the angle «, can be recognized in the photograph. In the actual
flow it is a very weak oblique compression shock, generated by a small perturbation of the flow,
caused by a piece of Scotch tape, pasted to the wall.

T |

P, P, w w P, [
The sketch shown above depicts the arrangement of the pressure measurement on the wedge.
The U-tube on the left measures the pressure ratio ps/po. The U-tube in the middle of the
sketch measures the pressure ratio pa1/po, i. €. the ratio of the static pressure on the wedge
to the stagnation pressure. The third U-tube measures the pressures pss and peg, which serve
to align the model with the direction of the free stream. The angle of attack of the wedge is
changed until psy = po3. The U-tube on the right measures the pressure downstream from the
shoulder, after the expansion, pexp., referenced to the stagnation pressure py.

Also indicated is the Mach angle a of the free stream, as made visible by a roughness element

of the wall of the wind tunnel. The lines at the nose of the wedge indicate the shock angle o
for the weak solution.
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6.10.6 Evaluation

Measured Data

Do 1

po = T47Tmm Hg —=——=131
0 L~ (po—p1)/po

hS]

po—p1 = 690 mm Hyg
o 1 — (pn — D
Po—p2 = 632mm Hyg P2 M =2.017
m 1=(po—p1)/po
8 = b.75°
¥ 1.4

Po = Pexp = 700 mm Hg

Determination of the Mach Number

1
1. Ma = — =213 « is determined from photograph
sino
v—1
2 Ma = |2 <@> 1] =233
y=1|\m

Determination of o

1. o = 33.0° from photograph
1
2. o = 39.9° from sino =sina - yrl <‘T£ — 1) +1
2y \m;
3. o = 32.5° from shock polar (Ma* = Ma
Determination of the Pressure Ratio p»/p;
P2
1. — = 2017 from measurement
b1
2. P2y from heart-curve diagram
p1

Questions

1. Sketch the contour of the shock in the sections (1, 2, 3) parallel to the side walls of the
tunnel.

T I = =
—~ side wall
- T = boundary layer
e 5 7 T T (strongly magnified)
— — 1
A
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The sketch shown above depicts the top view of the wedge in the test section of the wind
tunnel. The model extends to both side walls of the tunnel. As indicated in the sketch by
the dashed curved lines a turbulent boundary layer develops on the side walls. The thickness
of the boundary layer is strongly magnified. Also indicated in the sketch are 3 sections, one
in the middle of the tunnel (section 1), one closer to the side wall (section 2), and the third
near the wall (section 3).

Case 1:
Ma =213
Case 2:
Ma > 1
o > 33

or detached shock for 8 > (4

Case 3: / « Mast
Ma < 1, no shock, Ma<1 *\
flow decelerated by wall friction Ma,>1 | P> Bmax
or M > 1 = detached shock !
SX /7 Ma»

2. The pressures in front of and downstream from a normal compression shock are measured
with two Pitot tubes. What pressures are measured and how do the readings differ from
each other? (It is assumed that the shock is not affected by the Pitot tube positioned in
front.)

The total pressure downstream from a normal compression shock is measured. The reading
is the same in both cases.

3. Given is a wedge at an angle of attack with 8 = 20° at a free-stream Mach number Ma,, =
2.91.

—_—
—-
—
MaQ o

Poo

How large can the angle of attack o become, without having the compression shock detach
from the wedge?

Omaz = 33.8° from heart-curve diagram

here Bae = 0 + Qunae for lower side

= Qpaz = 13.8°

P= P,

P

How large is then the pressure difference

PL=Pu
s =643
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6.11 Sphere in Compressible Flow

Abstract

The drag of a sphere is investigated experimentally in compressible subsonic flow. The drag
coefficient cp depends on the Reynolds number Re and on the Mach number Ma. The influence
of the critical Mach number on the separation of the boundary layer is studied with two spheres
of different diameter. The drag of the spheres is measured for several free-stream velocities.
The different flow patterns of sub- and supercritical Mach numbers Ma are visualized with the
schlieren method.

6.11.1 Introduction

In this experiment the influence of the compressibility of the air on the flow field about a sphere
is studied in an experiment. The compressibility has to be taken into account in steady flows,
if the density changes are larger than about one percent. The drag coefficient ¢; then also
depends on the Mach number in addition to the similarity parameters mentioned already in
the experiment sphere in incompressible flow.

The drag coefficient of the sphere measured in the wind tunnel

D
D= ——+7 (6.175)
Qoo ZD g‘
with
D drag,
g = 2 w2, dynamic pressure of the free stream,
Dy diameter of the sphere,

depends on the following similarity and other parameters:

ks Aw
cp = f(Re.,]\/[aoon/,D—S,Tu,ALST7 support,Kn,...) (6.176)

The quantities mentioned in the above equation are defined as follows:

poouooDS>

oo

Re,, Reynolds number (
Mas Mach number (fﬁ)

Loo

vy ratio of the specific heats

gss relative roughness of the surface
Tu Turbulence intensity of the free stream
AALéT ratio of the cross-sections tunnel-sphere

Kn Knudsen number AD—f with Ao, = mean free path.

In (6.179) the function f is unknown. In the experiment only the Reynolds number Re,, and
the Mach number Ma,, are varied; the other parameters, which are given by the experimental
facility, are kept constant.

6.11.2 The Experiment
Experimental Facility

The experiment is carried out in the intermittently operating vaccum-storage tunnel of the
Aerodynamisches Institut, with a test section of 15 - 15cm?. Air is sucked out of the atmo-
sphere through a well-rounded intake and the test section into the vacumm tank. A convergent-
divergent diffuser with an adjustable throat is positioned between the test section and the tank.
If the ratio of the pressures in the tank and in the atmosphere is sufficiently small, the velocity
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of the air in the throat of the diffuser is equal to the speed of sound. With this arrangement it
is guaranteed, that despite of the increasing pressure in the tank the flow conditions in the test
section remain constant for a certain time. The similarity parameters Re and Ma are coupled
by the following relation, if it is assumed, that the viscosity u = u(T) is konwn:

_puDs _p U G Ko

1 .
Re f.po.i.7.(1,0.*.*.DS:'/£(M%O).M.

Dg (6.177)
H Po oo Qg K“ Ho Ho

po Stagnation density of the air

ap Speed of sound at stagnation conditions

Lo Viscosity
In a vacuum-storage tunnel with constant pg,ag, and pg, with the Mach number Ma held
constant, the Reynolds number Re,, can only be changed by changing the diameter of the
sphere.
Two spheres with diameters of 25 mm and 50 mm were used in the experiments. The spheres
were mounted on the model support, which was positioned in the dead-water region of the
spheres. The drag was measured with a strain-gauge balance mounted in the support.

Balance for Measuring the Drag

The balance mounted in the support measures the drag of the sphere by recording the change
of the electric resistance, caused by the elongation of an electric conductor (strain gauge). The
installation of the support and the balance are sketched below.

.

w=0 w>0 S

s A /ﬂ/////
II ///\ stran gauge

2
4 .

;7 flat spring deformed
LSS LSS

The spring elements of the balance are deformed when they are exposed to strain. The defor-
mation is measured with two strain gauges connected to a bridge circuit. The strain gauges are
arranged in such a way that sufficient temperature compensation is guaranteed. The balance
was calibrated in an extra experiment prior to the drag measurement by taking the balance
out of the support and loading it with weights. The influence of the support on the drag of the
sphere could not be taken into account.
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Description of the Measurement

The drag of two spheres with 25 mm and 50 mm diameters is measured for several free-stream
velocities w. The free-stream velocity is varied by varying the cross section of the throat of the
diffuser, where sonic conditions prevail.

The unperturbed free-stream conditions are determined with a measurement of the pressure.
A sketch of the pressure measurements is given on the data sheet.

The flow field about the sphere is visualized with the schlieren method.

6.11.3 Fundamentals of the Compressible Flow About a Sphere

Potential Flow

According to potential theory, the flow of an incompressible medium about a sphere is obtained
by superposing a spacial dipole with a parallel flow. Some of the streamlines are shown below.

equator

—
—l—
Upg —
pm——-
Ao —=
Moo =™
Poo —
—l
——

The velocity and the pressure on the surface of the sphere in incompressible flow are described
by the following relations:

3
% = Jsind (6.178)
s — Po 9 .
b uzp =1- Zsmzﬁ on r = R (6.179)
=

Lamla [1939] investigated the potential flow of a compressible gas about a sphere. The following
diagram shows the ratio of the velocities Weompr. /Wincompr. for the surface of the sphere. In the
vicinity of the upstream stagnation point the deceleration of the compressible flow is more
pronounced, and near the equator the acceleration is stronger than in the incompressible flow.
According to Lamla [1939] the critical Mach number of the free stream Ma is given by the
condition, that the velocity at the equator becomes sonic, which with v = 1.4 yields a value of

Mg, =057 Ma?,, =0.6 (6.180)

The velocity Weompr. at the equator for Mag.;. is about ten percent higher than the velocity
computed for incompressible flow.
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Definition of the Critical Reynolds Number

The location of the separation line and the size of the dead-water region are strongly influenced
by the nature of the flow in the boundary layer, which can either be laminar or turbulent.
If the laminar-turbulent transition occurs upstream of the separation line, it is shifted from
the upstream to the downstream side of the equator and reduces the dead-water region. The
Reynolds number Re, at which the transition occurs, is called critical Reynolds number.

Definition of the Critical Mach Number

An increase of the Mach number Ma in subsonic flow leads to an increase of the velocity in the
vicinity of the equator, and, aided by the displacement effect of the sphere, eventually to the
formation of a local supersonic pocket, which is terminated by a shock. The lowest free-stream
Mach number, at which the local velocity is equal to the local speed of sound, is called critical
Mach number.

The Dependence of the Flow Field on Reynolds and Mach Number

As previously mentioned, the magnitude of the drag coefficient depends on the location of the
separation line, which in turn is influenced by the nature of the flow in the boundary layer.
It was, however, shown in experiments, that for supercritical Mach numbers separation in the
vicinity of the equator is also influenced by the shock, terminating the supersonic pocket. The
following diagrams and sketches on the left show the flow patterns, if the critical Reynolds num-
ber Re..;. is attained prior to the critical Mach number Ma..;.. When the critical Reynolds
number Re..;;. is reached, the drag coefficient c¢p decreases abruptly. The flow separates down-
stream from the equator.

When the critical Mach number is reached, a shock is generated at the equator, which causes
the boundary layer to separate. The drag coefficient cp rises again. If Ma,,;. is reached prior
to Reqi. (diagram and sketches on the right below), the shock prevents the drag coefficient
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cq from dropping abruptly at the critical Reynolds number, since the separation line, usually
observed to move downstream, when Re..;;. is reached, is now fixed by the shock at the equator.
The different cp-distributions can be explained by using spheres with different diameters; the
results for the sphere with the larger diameter are shown on the left, those for the sphere with
the smaller on the right.

b ¢ 2
a > ; e
o A v 2 W s
v (% :
ik et
supersonic flow supersonic flow
Re < Re Re=Re Re>Re 5 Re < Re ot Re < Re
Ma< Ma Ma<Ma Ma>Ma Ma < Ma g, Ma > Ma 5
Schematic diagram of the drag coefficient and Schematic diagram of the drag coefficient and
the flow patterns as a function of the free-stream the flow patterns as a function of the free-stream
velocity for large diameters of the sphere. velocity for small diameters of the sphere.

The free-stream velocities, at which Re..;. and Ma.,;. are observed, are

Recrit. Hoo
ecrit. — 6.181
{heerit pooDS ( )
Whra,crit. = ]\/laurit Uoo - (6182)

If the free-stream conditions are kept constant, then wysqer. = const., and wgeerit. ~ 1/Ds.
Therefore for large diameters Wreerir. < Waracrir. (See diagram on the left), and for smaller
diameters Wreerit. > Watacriz, (See diagram on the right). In the limiting case Wreerit. = Watacrit.,
the critical Reynolds number and the critical Mach number are reached at the same free-stream
velocity. The diameter of the sphere, correponding to this condition is somwhere between 30
and 50 mm.

Experimental Results

The experimental results ¢p = f(Re,Ma) of Naumann and Walchner, shown in the following
two diagram confirm these considerations, [Naumann 1953].

The curves in the first of the following diagrams show the influence of the free-stream Mach
number on the drag coefficient cp for different diameters of the sphere. It can be seen, that
for small diameters up to approximately 30 mm M a..;;. is reached before Recpip.. After Maeys.
is exceeded, the drag coefficient increases slightly, as the shock intensity and also the fluid
mechanical losses are increased.

For spheres with diameters larger than 50 mm, Reg.;. is reached before Mae.;.. The abrupt
drop of the drag coefficient ¢4 is observed as in incompressible flow. If the critical Mach number
is exceeded, the drag coefficient cp increases sharply.

In the second diagram the drag coefficients measured by Naumann [1953] are shown as a
function of the Reynolds number Re and of the Mach number Ma.
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6.11.4 Evaluation

The drag coefficients ¢cp = f(Re,Ma) are to be computed from the measured data given on
page 350:

All equations, needed for the computation are listed on the data sheet.

The drag coefficients ¢p = f(Ma,Ds) and c¢p = f(Re,D;) are to be plotted and to be discussed.
The experiment and the results of the measurements are to be commented critically.
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For D, = 50 mm the drag coefficient cp drops abruptly at Re ~ 3.5-10° ~ Re..;;. and Ma = 0.3,
caused by the sudden shift of the separation line further downstream from the equator, reducing
the dead-water region and also the drag coefficient. At Ma = M a4 = 0.55 the drag coefficient
cp increases sharply, since the flow velocity exceeds the local speed of sound just upstream of
the equator and becomes supersonic, with a shock terminating the supersonic pocket near the
equator. The sudden pressure rise enforces flow separation just downstream from the shock,
and the dead-water region is immediately increased.

The drop of the drag coefficient cp is not observed in the experiment with the sphere with a
diameter of 25 mm, as in this case Ma,,;. is reached before Re..;;. and the shock prevents the
shift of the separation line. In principle, measurements of the drag are rather inaccurate, which
explains the deviation of the data from each other.

6.11.5 Questions

1. Sketch the flow field about a sphere for the following free-stream conditins:
a.) Ma=0, Re > Re.
b.) Ma > Ma.y., Re> Req.
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2. Why does the drag coefficient ¢p increase with increasing Ma for Mag.;;. < Ma < 17

The shock moves upstream, which causes an enlargement of the dead-water region.

3. How large is the density change at the equator in a potential flow about the sphere
(Poo — P)/Po, if the free-stream Mach number May,, = Maeu.? Assume isentropic change
of state (y = 1.4,air).

Mo = 057 (ﬂ> =117
P =l g 2P0 <ﬁ> <ﬂ> =1-0634-1.17 = 0.258
Poo P PO Po Poo

4. Up to what flow velocity can the influence of the compressibility of dry air on the flow be
neglected (Tp = 293K)?

P =P >0.01 = compressible flow

o)

=P 20.99= Ma>014
Po
m

Uso = Ma /7 R Ty = ue > 48—
s

The influence of the compressibility can be neglected up to a flow velocity of about 487, since
then the relative density changes are below 1%.

Calibration values of the strain gauge balance

loading F [N] 0 (071 271|471|6.71 |871|10.71 | 15.71 | 20.71

Reading loading Units] | 0 | 1.4 | 47 | 81 [11.6|15.0| 185 | 27.1 | 35.7
Reading unloading | [Units] | 0.2 | 1.5 | 4.9 | 84 | 11.8 | 15.1 | 185 | 27.1 | 35.7
24
FIN] /
b é
//
15 S
X
x'/
/M/ temEimy
8 oX % new calibration |
°"/ o old calibration
/’x/ :
o / 10 20 30 Skt 40
0 40 80 120 1‘50 U/mv ZCI)U

Calibration curve
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affine velocity profiles 59
airfoil 54, 65, 174, 180, 181
d’Alembert’s paradox 52
d’Alembert’s solution 172
apparent shear stresses 26, 62
atmospheric pressure 1,4,15
axially symmetric flow 176

barometer 4

barometric height formula 3

bent pipe 13

Bernoulli equation 35,48, 53,57, 143, 145,
146

Bingham model 22

Blasius law 29

Blasius solution 60

boundary layer 55, 56,91, 132, 262, 265267

boundary layer separation 64,254, 256, 342

boundary-layer equations 56-59, 61, 65

boundary-layer thickness 56,57, 61

Buckingham’s IT theorem 38

calorically perfect gas 140, 141, 143

capillary viscometers 25

capillary waves 300

Carnot’s equation 15

Cauchy-Riemann differential equations 47

cavitation 11

characteristic curves 167,168,170

circular cylinder 51,52, 54, 65

circulation 44,45

communicating vessels 3,4

compatibility conditions 166, 167,169

complex stream function 48

compressible potential flow 139,170, 199, 221

compression 147,151, 155

compression shock 147,149,151, 188,191,
193, 208, 211, 214, 329, 333

computation of supersonic flow 139

continuity equation 7,13, 14,31, 32,44, 46,
61,145

continuum 1,2,12

contraction 9,10, 33

contraction ratio 15

control surface 12-16, 53

control volume 16,32

convective acceleration 8

corner flow 158

creeping motion 41

critical depth 17

critical free-stream Mach number 180
critical Mach number 144,145, 181, 346
critical Reynolds number 61, 261, 345, 346
critical speed of sound 144

critical state 144

Crocco vorticity theorem 163

dead water region 14

differential pressure 10
dimensional analysis 38,39

dipole 50

dipole moment 50

discharge coefficient 10
discontinuous widening of a pipe 14
dispersion 55

displacement thickness 58
dissipation 150

dissipation function 37

drag 53,65, 66, 86,91,92,134

drag coefficient 162, 196

drag of a ship 42

dyadic product 67

dynamic flow condition 54

dynamic pressure 8,9

dynamic shear viscosity 21, 22,25, 31

Eiffel-type wind tunnel 234, 245

energy equation 8, 11,20, 35-38, 40, 143, 144,
148, 150, 151

energy height 17

enthalpy 37,140, 141, 143, 150, 164

entropy 139-142, 147-150, 160, 161, 163, 164,
166, 167

equilibium of moments of momentum 12

equipotential lines 47

Euler equations 41,47,48,57

Euler number 39,41

Euler’s turbine equation 19
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Eulerian method 5,6
expansion 139, 157-159
explosion 142

Fanno curve 310,316

flat plate 56,59, 61, 62

flat plate turbulent boundary layer 62,265,
269

flow-measurement regulation 10

fluid coordinates 5

flux of vorticity 44, 45

form drag 66

Fourier heat flux 36

friction coefficient 56, 59, 60, 63

friction velocity 27

Froude number 17,39, 41

Froude’s Theorem 16

fully developed pipe flow 25

fundamental gasdynamic equation 139

fundamental hydrostatic equation 3

gas constant 41,139

Gauss integral theorem 31

Goethert rule 180, 181

Gottingen-type wind tunnel 233-235, 246
gravity waves 17,41, 54, 300

Hagen-Poiseuille law 24,25
half body 51,247,248, 251
heart-curve diagram 154,193,230, 335, 339,
341
heat flux 36, 37
heat source 35
Hele-Shaw flow 247
hodograph plane 154
Hooke’s law 21, 33
hot-wire anemometer 326
Hugoniot relation 336
hydraulic diameter 29, 30
hydraulic jump 18
hydraulic press 4
hydrodynamics 5, 71,99
hydrostatic lift 5
hydrostatic paradox 4
hydrostatics 2,69, 96

incompressible potential flows 49
inertia forces 42,56, 62,64
influence quantity 38,40

intake pipe 11

intake region 25

interaction 139

internal energy 35, 140
irrotationality 44, 46

isentropic exponent 41, 141
isothermal atmosphere 3

jump conditions 147,151

von Kdrman vortex street 66

von Kdrman’s constant 27

von Karmén’s integral relation 58, 59
von Kérman’s velocity defect law 63
kinematic flow condition 47,54
kinematic viscosity 21

Kutta condition 54

Kutta-Joukowski theorem 53

Lagrange’s method 5
Lagrangian particle path 5
laminar boundary layers 55,262
laminar flow 20, 24, 30, 57
Langrange’s method 6

Laplace equation 47-49, 53, 54
Laser-Doppler anemometer 320
Laval nozzle 146

lift 54,65

limiting velocity 145

linearized potential equation 139
liquid manometer 3

local acceleration 6,8, 11

Mach angle 152,154, 155,157, 166

Mach cone 143,178

Mach line 159, 167, 169

Mach number 41, 142-146, 148, 150, 152, 154,
156-159, 161, 168, 178, 180, 181

Mach-Zehnder interferometer 320

Magnus effect 52

manometer 4

mechanical energy 8, 35,37

method of differential equations 31

moment of momentum theorem 12,18, 76,
106

moment of reaction 19

momentum 12

momentum equation 26,40, 43, 53, 57-60, 64

momentum theorem 12-16, 18,19, 26

momentum thickness 59

Navier-Stokes equations 32,35, 36, 45, 46

Newton'’s law 7

Newtonian fluid 21,24

Non-Newtonian fluids 22

normal compression shock 139,147, 148, 150,
160

normal stress 22,26

nozzle flow 148, 169, 226
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oblique compression shock 191,194, 211, 228,

230
one-dimensional isentropic flows 145
open channel flow 17,1829, 41
orifice 10,307,311
Ostwald-de Waele model 22
outflow velocity 9

parallel flow 49, 51
path line 5
phase velocity 55

pipe flow 10, 17, 20, 25-27, 39, 61, 62, 80, 83,

119, 307
pipe friction coefficient 28, 29
Pitot tube 8
plane flow 180
plane subsonic flow 174
plunger pump 11
potential equation 47
potential flow 44, 46-48, 54, 126, 344
potential function 46
potential theory 46,57
potential vortex 50
Prandtl boundary-layer hypothesis 55
Prandtl integro-differential equation 276
Prandtl mixing-length hypothesis 62
Prandtl number 41
Prandtl relation 208
Prandtl tube 9
Prandtl’s mixing-length hypothesis 26
Prandtl-Glauert rule 180
Prandtl-Meyer angle 157,232
Prandtl-Meyer flow 156
Prandtl-Meyer-function 229
pressure coefficient 48, 51,161, 171,173
pressure loss coefficient 14, 15
principle of solidification 3
propeller of a ship 15

quasi-steady flow 11,41

radial turbine 19

Rankine’s slip-stream theory 15
recirculation region 65

relative roughness 29

resistance law 27,29

Reynolds hypothesis 61
Reynolds number 1,9,24, 39,41, 55, 56
Reynolds stress tensor 62
Riemann invariants 167
rotation 44

rotation of the flow 15
rotational flow 44

rough pipes 29
roughness of the wall 29

sand roughness 29

scaling function 59, 60

schlieren method 322

Schrenk’s approximate method 276

Segner’s water wheel 19

separation points 65

Ser’s disc 9

shadow method 321

shallow water waves 55

shear action 21

shear experiment 21,22

shear flow 22

shear stress 21, 22, 24-28, 56

shock angle 151

shock intensity 151

shock polar 139

similar flows 38, 86, 123

similar solution 59

similarity law 41

similarity parameter 38

similarity rules 139,178, 180-182, 183, 199,
221

similarity transformation 60

single-stem manometer 3

slender axially symmetric body 175

slender body 139,170, 172-175, 177

sonic conditions 144

source 49,50

specific heat 31,40, 41, 140, 143

speed of sound 142

sphere 253, 258

stagnation enthalpy 37,143

stagnation point 8,49, 51, 54, 65

standard nozzle 10

standard orifice 10

starting moment 20

starting vortex 54

steady flow 6,12,13,17,19

steady gas flow 141, 185,203

Stevin’s principle of solidification 3

Stokes hypothesis 33

Stokes’ no-slip condition 20, 23, 24, 27

stream filament 7,8

stream function 46-50, 59, 60

stream tube 7,10, 15

streamline 6,7, 37,44, 46,47, 49-51

stress tensor 13,32, 34-37

Strouhal number 39,41, 66

supersonic tunnel 329, 332, 333

surface forces 2,32, 35
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surface roughness 66
surface waves 299, 300

tangential stress 1,20, 21,34

theory of characteristics 139, 163,198,219

theory of lift-generating bodies 54

theory of similitude 38

thermal conductivity 31

thermal energy 35

thermal equation of state 3,31, 139

thermally perfect 139

thin profile 161

Thomson’s theorem 45

total energy 35

transonic flow 139,142,146, 150, 171,172,
183

transport properties 40

turbulent flow 61,64

turbulent pipe flow 25

turbulent shear stress 27

U-tube manometer 3
universal law of the wall 27

vapor pressure 11

velocity correlation 26

velocity fluctuation 26,27, 61, 62

velocity height 17

Ventury nozzle 10

viscosity law 20-22, 26

viscous sublayer 28

volume dilatation 34

volume force 2,3,12,32,35,37,45,46, 48,61
volume rate of flow 7,10, 11,17, 23-25,43
volume viscosity 34

vortex line 44

vortex theorem 44

vortex tube 44

vorticity transport equation 45

vorticity vector 44,45

wake 65

wall shear stress 23-25, 27,62, 64, 65

wall velocity 23

water analogy 299, 304, 306

wave drag 87,93, 139, 160-163, 174, 196, 217
weak and strong solution 152,153

weak compression shock 155, 157

wind tunnel 190-193, 200

wind tunnel balance 283

wing 271,273,278
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