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Preface 

The book is an entirely rewritten English version of the lecture notes of a 
course on Differential Equations I taught during the last twelve years at  the 
Faculty of Mathematics of “Al. I. Cuza” University of Iaqi. These lecture 
notes were written in 1999 in Romanian. Their goal was to present in a 
unitary frame and from a new perspective the main concepts and results 
belonging to a discipline which, due to  the continuous interplay between 
theory and applications, is by far one of the most fascinating branches of 
modern mathematics, i.e. dzflerential equations. It was my intention to 
give the reader the opportunity to know a point of view - rather different 
from the traditional one - offering a possible way to learn differential 
equations with main emphasis on the Cauchy problem. So, I decided to 
treat separately the problems of existence, uniqueness, approximation, 
continuation of the solutions and, at  the same time, to give the simplest 
possible but complete proofs to some fundamental results which are at  the 
core of the discipline: Peano’s local existence theorem, the classification of 
non-continuable solutions from the viewpoint of their behavior at the end 
of the existence interval, the continuous dependence of the solution on the 
data and parameters, etc. This goal was by far very hard to  accomplish due 
to the existence of a long list of very good, or even exceptional, textbooks 
and monographs on this subject covering all levels of difficulty: [Arnold 
(1974)], [Arrowsmith and Place (1982)], [Barbu (1985)], [Braun (1983)], 
[Coddington and Levinson (1955)], [Corduneanu (1977)], [Cronin (1980)], 
[Elsgolts (1980)], [Halanay (1972)], [Hale (1969)], [Hartman (1964)], [Hirsch 
and Srnale (1974)], [Hubbard and West (1995)], [Ionescu (1972)], [Piccinini 
et  al. (1984)], [Pontriaghin (1969)], to cite only a few. However, in spite 
of this challenging competition, I hope that the reader will find this text 
attractive enough from both the viewpoint of the chosen topics and the 

vii 
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presentation. 
The book contains a preface, a list of symbols, seven main chapters, a 

short chapter on auxiliary results, a rather long section including detailed 
solutions to all exercises and problems, a bibliography and ends with an 
index. With the sole exception of Chapters 6 and 7, which require some 
basic results on Lebesgue integral and Measure Theory, it is completely 
accessible to any reader having satisfactory knowledge of Linear Algebra 
and Mathematical Analysis. The 36 figures included illustrate the concepts 
introduced and smooth the way towards a complete understanding of the 
arguments used in the proofs. 

The first chapter starts with a very brief presentation of the main steps 
made along the last four centuries toward the modern theory of differential 
equations. It continues with some preliminary notions and results referring 
to: the concept of solution, some methods of solving elementary equations, 
various mathematical models described either by differential equations or 
systems of differential equations, and some basic integral inequalities. 

The second chapter contains several fundamental results concerning the 
Cauchy Problem: the local existence, the continuation of the solutions, the 
existence of global solutions, the relationship between the local and the 
global uniqueness, the continuous dependence and the differentiability of 
the solutions with respect to the data and to the parameters. 

The third chapter is merely concerned with some classical facts about 
the approximation of the solutions: the method of power series, the 
method of successive approximations, the method of polygonal lines, the 
implicit Euler method and a particular, and therefore simplified, instance 
of Crandall-Liggett exponential formula. 

In the fourth chapter we apply the previously developed theory to a 
systematic study of one of the most important class of systems: first-order 
linear differential systems. Here we present the main results concerning the 
global existence and uniqueness, the structure of the space of solutions, the 
fundamental matrix and the Wronskian, the variation of constants formula, 
the properties of the mapping t H etA and the basic results referring to 
nth-order linear differential equations. 

The fifth chapter is mainly concerned with the study of an extremely 
important problem of the discipline: the stability of solutions. We introduce 
four concepts of stability and we successively study the stability of the null 
solution of linear systems, perturbed systems and fully nonlinear systems 
respectively, in the last case by means of the Lyapunov’s function method. 
We also include some facts about instability which is responsible for the 
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so-called unpredictability and chaos. 
In the sixth chapter, we start with the study of the concept of prime 

integral, first for autonomous, and thereafter for non-autonomous systems. 
Next, with this background material at hand, we present the basic results 
concerning linear and quasi-linear first-order partial differential equations. 
Some examples of conservation laws are also included. 

The seventh chapter, rather heterogeneous, has a very special character 
being conceived to help the reader to go deeper within this discipline. So, 
here, we discuss some concepts and results concerning distributions and 
solutions in the sense of distributions, Carathbodory solutions, differential 
inclusions, variational inequalities, viability and invariance and gradient 
systems. 

In the last chapter we include some auxiliary concepts and results needed 
for a good understanding of some parts of the book: the operator norm of a 
matrix, compact sets in C([ a, b ] ;  Rn), the projection of a point on a convex 
set. 

Each chapte’r, except that one on Auxiliary Results, ends with a special 
section containing exercises and problems ranging from extremely simple 
to challenging ones. The complete proofs of all these are included into a 
rather developed final section (more than 60 pages). 

Acknowledgements. The writing of this book was facilitated by a 
very careful reading of some parts of the manuscript, by several remarks 
and suggestions made by Professors Ovidiu Chrjg, Mihai Necula from 
“Al. I. Cuza” University of Iwi, by Professors Silvia-Otilia Corduneanu 
and Silviu Nistor from “Gh. Asachi” Technical University of Iagi, remarks 
and suggestions which I took into account. The simplified version of the 
Frobenius theorem was called to my attention by Dr. Constantin Vkrsan, 
Senior Researcher at The Mathematical Institute of the Romanian Academy 
in Bucharest. Some of the examples in Physics and Chemistry have been 
reformulated taking into account the remarks made by Professors Dumitru 
Luca and Gelu Bourceanu. Professor Constantin OnicZ had a substantial 
contribution in solving and correcting most part of the exercises and the 
problems proposed. A special mention deserves the very careful - and 
thus critical - reading of the English version by Professor Mircea Bhrsan. 

It is a great pleasure to express my appreciation to all of them. 

Iagi, November 30th, 2003 loan I. Vrabie 
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Chapter 1 

Generalities 

The present chapter serves as an introduction. The first section contains several 
historical comments, while the second one is dedicated to a general presentation 
of the discipline. The third section reviews the most representative differential 
equations which can be solved by elementary methods. In the fourth section we 
gathered several mathematical models which illustrate the applicative power of 
the discipline. The fifth section is dedicated to some integral inequalities which 
will prove useful later, while the last sixth section contains several exercises and 
problems (whose proofs can be found at the end of the book). 

1.1 Brief History 

1.1.1 The Birth of the Discipline 

The name of “equatio diflerentialis” has been used for the first time in 1676 
by Gottfried Wilhelm von Leibniz in order to  designate the determination 
of a function to  satisfy together with one or more of its derivatives a given 
relation. This concept arose as a necessity to  handle into a unitary and 
abstract frame a wide variety of problems in Mathematical Analysis and 
Mathematical Modelling formulated (and some of them even solved) by the 
middle of the XVII century. One of the first problems belonging to  the 
domain of differential equations is the so-called problem of inverse tangents  
consisting in the determination of a plane curve by knowing the properties 
of its tangent at any point of it. The first who has tried to  reduce this 
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problem to quadratures was Isaac Barrow2 (1630-1677) who, using a ge- 
ometric procedure invented by himself (in fact a substitute of the method 
of separation of variables), has solved several problems of this sort. In 1687 
Sir Isaac Newton has integrated a linear differential equation and, in 1694, 
Jean Bernoulli (1667-1748) has used the integrand factor method in order 
to solve some nth-order linear differential equations. In 1693 Leibniz has 
employed the substitution y = tx  in order to solve homogeneous equations, 
and, in 1697, Jean Bernoulli has succeeded to integrate the homonymous 
equation in the particular case of constant coefficients. Eighteen years 
later, Jacopo Riccati (1676-1754) has presented a procedure of reduction 
of the order of a second-order differential equation containing only one of 
the variables and has begun a systematic study of the equation which in- 
herited his name. In 1760 Leonhard Euler (1707-1783) has observed that, 
whenever a particular solution of the Riccati equation is known, the latter 
can be reduced, by means of a substitution, to a linear equation. More 
than this, he has remarked that, if one knows two particular solutions of 
the same equation, its solving reduces to a single quadrature. By the sys- 
tematic study of this kind of equation, Euler was one of the first important 
forerunners of this discipline. It is the merit of Jean le Rond D’Alembert 
(1717-1783) to have had observed that an nth-order differential equation 
is equivalent to a system of n first-order differential equations. In 1775 
Joseph Louis de Lagrange (1736-1813) has introduced the variation of con- 
stants method, which, as we can deduce from a letter to Daniel Bernoulli 
(1700-1782) in 1739, was been already invented by Euler. The equations 
of the form Pdx + Qdy + Rdz = 0 were for a long time considered absurd 
whenever the left-hand side was not an exact differential, although they 
were studied by Newton. It was Gaspard Monge (1746-1816) who, in 1787, 
has given their geometric interpretation and has rehabilitated them in the 
mathematical world. The notion of singular solution was introduced in 1715 
by Brook Taylor (1685-1731) and was studied in 1736 by Alexis Clairaut 
(1713-1765). However, it is the merit of Lagrange who, in 1801, has defined 
the concept of singular solution in its nowadays acceptation, making a net 

lBy quadrature we mean the method of reducing a given problem to  the computation 
of an integral, defined or not. The name comes from the homonymous procedure, known 
from the early times of Greek Geometry, which consists in finding the area of a plane 
figure by constructing, only by means of the ruler and compass, of a square with the 
same area. 

2Professor of Sir Isaac Newton (1642-1727), Isaac Barrow is considered one of the 
forerunners of the Differential Calculus independently invented by two brilliant mathe- 
maticians: his former student and Gottfried Wilhelm von Leibniz (1646-1716). 
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distinction between this kind of solution and that of particular solution. 
The scientists have realized soon that many classes of differential equations 
cannot be solved explicitly and therefore they have been led to develop a 
wide variety of approximating methods, one more effective than another. 
Newton’ statement, in the treatise on fluxional equations written in 1671 
but published in 1736, that: all differential equations can be solved by  using 
power series with undetermined coeficients, has had a deep influence on 
the mathematical thinking of the XVIIIth century. So, in 1768, Euler has 
imaged such kind of approximation methods based on the development of 
the solution in power series. It is interesting to notice that, during this 
research process, Euler has defined the cylindric functions which have been 
baptized subsequently by the name of whom has succeeded to use them 
very efficiently: the astronomer Friedrich Wilhelm Bessel (1784-1846). We 
emphasize that, at  this stage, the mathematicians have not questioned on 
the convergence of the power series used, and even less on the existence of 
the “solution to be approximated”. 

1.1.2 Major Themes 

In all what follows we confine ourselves to a very brief presentation of the 
most important steps in the study of the initial-value problem, called also 
Cuuchy problem. This consists in the determination of a solution 2, of a 
differential equation x‘ = f ( t , z ) ,  which for a preassigned value a of the 
argument takes a preassigned value <, i.e. .(a) = <. We deliberately do 
not touch upon some other problems, as for instance the boundary-value 
problems, very important in fact, but which do not belong to the proposed 
topic of this book. 

As we have already mentioned, the mathematicians have realized soon 
that many differential equations can not be solved explicitly. This situation 
has faced them several major, but quite difficult problems which have had 
to be solved. A problem of this kind consists in finding general sufficient 
conditions on the data of an initial-value problem in order that  this have 
at  least one solution. The first who has established a notable result in this 
respect was the Baron Augustin Cauchy3 who, in 1820, has employed the 
polygonal lines method in order to prove the local existence for the initial- 
value problem associated to a differential equation whose right-hand side 

3F’rench mathematician (1789-1857). He is the founder of Complex Analysis and the 
author of the first modern course in Mathematical Analysis (1821). He has observed the 
link between convergent and fundamental sequences of real numbers. 
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is of class C1. The method, improved in 1876 by Rudolf Otto Sigismund 
Lipschitz (1832-1903), has been definitively imposed in 1890 in its most 
general and natural frame by Giuseppe Peano4. This explains why, in many 
monographs, this is referred to as the Cauchy-Lipschitx-Peano 's method. 

As in other cases, rather frequent in mathematics, in the domain of 
differential equations, the method of proof has preceded and finally has 
eclipsed the result to whose proof has had a decisive role. So, as we have 
already mentioned, the method of power series, one of the most in vogue 
among the equationists of both XVII and XVIII centuries, has become soon 
the favorite approach in the approximation of the solutions of certain initial- 
value problems. This method has circumvented its class of applicability 
(that class for which the right-hand side is an analytic function) only at  the 
middle of the XIX century, almost at  the same time with the development 
of the modern Complex Function Theory. This might explain why, the first 
rigorous existence result concerning analytic solutions for an initial-value 
problem has referred to a class of differential equations in the complex field 
C and not, as we could expect, in the real field R. More precisely, in 1842, 
Cauchy, reanalyzing in a critical manner Newton' statement referring to 
the possibility of solving all differential equations in R by means of power 
series, has placed this problem within its most natural frame (for the time 
being): the Theory of Complex Functions of Several Complex Variables. In 
this context, in order to prove the convergence of the power series whose 
partial sum defines the approximate solution for an initial-value problem, 
he was led to invent the so-called method of majorant series. This method 
consists in the construction of a convergent series with positive terms, with 
the property that its general term is a majorant for the absolute value of 
the general term of the approximate solution' series. Such a series is called 
a majorant for the initial one. The method has been refined by Ernst 
Lindeloff who, in 1896, has proposed a majorant series, better than that 
one used by Cauchy, and who has shown that the very subtle arguments 
of Cauchy, based on the Theory of Complex Functions of Several Complex 
Variables, are also at  hand in the real field, and more than this, even by 
using simpler arguments. 

Another important step concerning the approximation of the solutions 
of an initial-value problem is due to Emile Picard (1856-1941) who, in 1890, 

41talian mathematician (1858-1932) with notable contributions in Mathematical 
Logic. He has formulated the axiomatic system of natural numbers and the Axiom 
of Choice. However, his excessive formalism was very often a real brake in the process 
of understanding his contributions. 
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in a paper mainly dedicated to  partial differential equations, has introduced 
the method of successive approximations. This method, who has became 
well-known very soon, has its roots in Newton’s method of tangents, and has 
constituted the starting point for several fundamental results in Functional 
Analysis as Banach’s fixed point theorem. 

In the very same period was born the so-called Qualitative Theory of 
Differential Equations by the fundamental contributions of Henri P0incar6.~ 
As we have already noticed, the main preoccupation of the equationists of 
the XVII and XVIII centuries was to  find efficient methods, either to  solve 
explicitly a given initial-value problem, or at  least to approximate its solu- 
tions as accurate as possible. Unfortunately, none of these objectives were 
realizable, and for that reason, they have been soon abandoned. Without 
any doubt, it is the great merit of Poincar6 for being the first who has caught 
the fact that ,  in all these cases in which the quantitative arguments are not 
efficient, one can however obtain crucial information on a solution which 
can be neither expressed explicitly, nor approximated accurately.6 More 
precisely, he put the problem of finding, at a first stage, of the “allure” of 
the curve, associated with the solution in question, leaving aside any con- 
tinuous transformation which could modify it. For instance, in Poincarii’s 
acceptation, the two curves in R3 illustrated in Figure 1.1.1 (a) and (b) can 
be identified modulo “allure”, while the other two, i.e. (c) and (d) in the 
same Figure 1.1.1, can not. At the same time it was the birthday of the 
modern Theory of Stability. The fundamental contributions of Poincar6, of 
James Clerk Maxwell7 to the study of the planets’ motions, but especially 

5F’rench mathematician (1854-1912), the initiator of the Dynamical System Theory 
(an abstract version of the Theory of Differential Equations which is mainly concerned 
with the qualitative aspects of solutions) and that of Algebraic Topology. In Les me‘thodes 
nouvelles de la rndcanique celdste, Volumes I, 11, 111, Gauthier-Villars, 1892-1893-1899, 
enunciates and applies several stability results t o  the study of the planets’ motions. 

61n his address to the International Congress of Mathematicians in 1908, Poincar6 
said: “In the past an equation was only considered to be solved when one had expressed 
the solutions with the aid of a finite number of known functions; but this is hardly possible 
one time in one hundred. What we can always do, or rather what we should always try 
to do, is to solve the qualitative problem so to speak, that  is t o  try to  find the general 
form of the curve representing the unknown function.” (M. W. Hirsch’s translation.) 

7British physicist and mathematician (1831-1879) who has succeeded to unify the 
general theories referring the electricity and magnetism establishing the general laws of 
electromagnetism on whose basis he has predicted the existence of the electromagnetic 
field. This prediction has been confirmed later by the experiments of Heinrich Hertz 
(1857-1894). At the same time, he was the first who has applied the general concepts 
and results of stability in the study of the evolution of the rings of Saturn. 
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those of Alexsandr Mihailovici Lyapunov8, have emerged into a tremendous 
stream of a new theory of great practical interest. A similar moment, from 
the viewpoint of its importance for the Stability Theory, will come only 
after seven decades, with the first results of Vasile M. Popov concerning 
the stability of the automatic controlled systems. 

0 G' 

Figure 1.1.1 

The last years of the XIX century were, for sure, the most prolific from 
the viewpoint of Differential Equations. In those golden times there have 
been proved the fundamental results concerning: the local existence of at  
least one solution (Peano 1890), the approximation of the solutions (Picard 
l890), the analyticity of the solutions as functions of parameters (PoincarB 
1890), the simple or asymptotic stability of solutions (Lyapunov 1892), 
(Poincar6 1892), the uniqueness of the solution of a given initial-value 
problem (William Fogg Osgood 1898). Also in the last two decades of 
the XIX century, Poincar6 has outlined the concept of dynamical system 
in its nowadays meaning and has begun a systematic study of one of the 
most important and, at  the same time most fascinating problems belong- 
ing to the Qualitative Theory of Differential Equations: the classification 
of the solutions according to their intrinsic topological properties. These 
referential moments have been the starting points of two new mathemati- 
cal disciplines: the Dynamical System Theory and the Algebraic Topology 
which have developed by their own even from the first years of the XX 

8Russian mathematician (1857-1918) who, in his doctoral thesis defended in 1892, 
has defined the main concepts of stability as known nowadays. He also has introduced 
two fundamental methods of study of the stability problems. 
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century. It should be also mentioned that,  starting from an astrophysical 
problem he has raised in 1885, again Poincar6 was the founder of a new 
discipline: Bifurcation Theory. Among the most representatives contribu- 
tors are: Lyapunov, Erhald Schmidt, Mark Alexsandrovici Krasnoselski, 
David H. Sattinger and by Paul Rabinowitz, to list only a few. Also in 
the last decade of the XIX century, another fundamental result referring 
to the differentiability of the solution with respect to the initial data has 
been discovered. Namely, in 1896, Ivar Bendixon has proved the above 
mentioned result for the scalar differential equation, in 1897 Peano has ex- 
tended it to the case of a system of differential equations, but it was the 
merit of Thomas H. Gronwall who, in 1919, using the homonymous integral 
inequality he has proved just to this aim, has given the most elegant proof 
and, therefore the most frequently used by now. 

The beginning of the XX century was been deeply influenced by 
Poincark's innovating ideas. Namely, in 1920, Garret David Birkhoff has 
rigorously founded the Dynamical System Theory. At this point, one should 
mention that the subsequent fundamental contributions are due mainly 
to Andrej Nikolaevich Kolmogorovg , Vladimir Igorevich Arnold, Jurgen 
Kurt Moser, Joseph Pierre LaSalle (1916-1983), Morris W. Hirsch, Stephen 
Smale and George Sell. A special mention in this respect deserves the so- 
called KAM Theory, i.e. Kolmogorov-Arnold-Moser Theory. Coming back 
to the third decade of the XX century, a t  that time, a very important 
step was made toward a functional approach for such kind of problems. 
Birkhoff, together with Oliver Dimon Kellogg were the first who, in 1922, 
have used fixed point topological arguments in order to prove some existence 
and uniqueness results for certain classes of differential equations. These 
topological methods were initiated by Luitzen Egbertus Jan BrouwerlO, 
extended and generalized subsequently by Solomon Lefschetz (1984-1972), 
and refined in 1934 by Jean Leray and Juliusz Schauder who have expressed 
them into a very general abstract and elegant form, known nowadays un- 
der the name of Leray-Schauder Topological Degree. Renato Cacciopoli 
was the first who, in 1930, has employed the Contraction Principle as a 
method of proof for an existence and uniqueness theorem. However, it is 

9Russian mathematician (1903-1987). He is the founder of the modern Probability 
Theory. He has remarkable contributions in Dynamical System Theory with application 
to Hamiltonian systems. 

loDutch mathematician and philosopher (1881-1966). He is one of the founders of the 
Intuitionists School. His famous fixed point theorem says that every continuous function 
f ,  f rom a nonempty convex compact set K C B" into K ,  has at least one fixed point 
z E K, i.e. f (z)  = 2. 
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the merit of Stefan Banach who, even earlier, i.e. in 1922, has given its 
general abstract form known, as a result under the name of Banach's fixed 
point theorem, and as a method of proof under the name of the method of 
successive approximations. 

Concerning the qualitative properties of solutions the mathematicians 
have focused their attention on the study of the so-called ergodic behavior 
beginning with Birkhoff (1931) and continuing with John von Neumann" 
(1932), K6saku Yosida (1938), Yosida and Shizuo Kakutani (1938), etc. 
Due mainly to their applications in Chemistry, Electricity and Biology, 
the existence and properties of the so-called limit cycles, whose study was 
initiated also by Poincark (1881), became another subject of great interest. 
Motivated by the study of self-sustained oscillations in nonlinear electric 
circuits, the theory of limit cycles grew up rapidly since the 1920s and 
1930s with the contributions of G. Duffing, M. H. Dulac, B. Van der Pol 
and A. A. Andronov. Notable contributions in this topic (especially to 
the study of some specific classes of quadratic systems) are mostly due to 
Chinese, Russian and Ukraihean mathematicians as N. N. Bautin, A. N. 
Sharkovskij, S.-L. Shi, S. I. Yashenko, Y. C. Ye, and others. 

In this period Erich Kamke has established the classical theorem on 
the continuous dependence of the solution of an initial-value problem on 
the data and on the parameters, theorem extended in 1957 by Jaroslav 
Kurzweil. Also Kamke, following Paul Montel, Enrico Bompiani, Leonida 
Tonelli and Oscar Perron, has introduced the so-called comparison method 
in order to obtain sharp uniqueness results. This method proved useful 
in the study of some stability problems and, surprisingly, as subsequently 
observed by Felix E. Browder, even in the proof of existence theorems. 

Concerning the concept of solution, the new type of integral defined in 
1904 by Henri Lebesgue, has offered the possibility to extend the classical 
theory of differential equations based on the Riemann (in fact Cauchy) 
integral to another theory resting heavily upon the Lebesgue integral. This 
major step was made in 1918 by Constantin Carathkodory. Subsequent 
extensions, based on another type of integral, more general than that of 
Lebesgue, and known as the Kurxweil-Henstock integral, have been initiated 
in 1957 by Kurzweil. 

With the same idea in mind, i.e. to enlarge the class of candidates 
to the title of solution, but from a completely different perspective, a new 

l'American mathematician born in Budapest (1903-1957). He is the creator of the 
Game Theory and has notable contributions in Functional Analysis and in Information 
Theory. 
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discipline was born: the Theory of Distributions initiated in 1936 by Serghei 
Sobolev and definitely founded in 1950-1951 by Laurent Schwartz. Initially 
thought as a theory exclusively useful in the linear case, the Theory of 
Distributions has proved its efficiency in the study of various nonlinear 
problems as well. 

Other types of generalized solutions on which to rebuild an effective 
theory, especially in the nonlinear case, the so-called viscosity solutions, 
were introduced in 1950 by Eberhard Hopf and subsequently studied by 
Olga Oleinik and Paul Lax (1957), Stanislav Kruiikov (1970), Michael G. 
Crandall and Pierre-Louis Lions (1983) and Daniel Tgtaru (1990), among 
others. Notable results on the uniqueness problem, very important but at  
the same time extremely difficult in this context, have been obtained in 
1987 by Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions. 

Since 1950, with the publication of the famous counter-example due to 
Jean Dieudonnk, one has realized that, on some infinite dimensional spaces, 
as for instance c0l2, only the continuity of the right-hand side is not enough 
to ensure the local existence for an initial-value problem. This strange, 
but not unexpected situation, was been completely elucidated in 1975 by 
Alexsandr Nicolaevici Godunov, who has proved that, for  every infinite 
dimensional Banach space X there exist a continuous funct ion f ; X --+ X 
and < E X such that the Cauchy problem x‘ = f ( x ) ,  x (0)  = ( has no  local 
solution. Maybe from these reasons, starting with the end of the fifties, one 
has observed a growing interest in the study of the local existence problem 
in infinite dimensional Banach spaces and of some qualitative problems. In 
this respect we mention the results of Constantin Corduneanu and Aristide 
H a1 anay. 

The development of a functional calculus based on the Theory of F’unc- 
tions of a Complex Variable taking values into a Banach algebra was accom- 
plished in parallel with the study of the “Abstract Theory of Differential 
Equations”. So, in 1935, Nelson Dunford has introduced the curvilinear 
integral of an analytic function with values in a Banach algebra and has 
proved a Cauchy type representation formula for the exponential as a func- 
tion of an operator. In 1948, Einar Hille and K6saku Yosida, starting from 
the study of some partial differential equations, has introduced and studied 
independently an abstract class of linear differential equations, with possi- 
ble discontinuous right hand-side, and have proved the famous generation 
theorem concerning Co-semigroups, known as the Hille- Yosida Theorem. 

12We recall that  co is the space of all real sequences approaching 0 as n tends to  00. 

Endowed with the sup norm this is an infinite dimensional real Banach space. 
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The necessary and sufficient condition expressed in this theorem has been 
extended in 1967 to the fully nonlinear case, but only in a Hilbert space 
frame, by Yukio KGmura, while the sufficiency part, by far the most in- 
teresting, has been proved in the general Banach space frame in 1971 by 
Michael G. Crandall and Thomas M. Liggett. This result13 is known as the 
Crandall-Liggett Generation Theorem, while the formula established in the 
proof as the Exponential Formula. 

In parallel with the extension of the differential equations’ framework 
to infinite dimensional spaces via the already mentioned contributions, but 
also through those of Philippe Bknilan (1940-2000), Hai‘m Brezis, Toshio 
Kato, Jaques-Louis Lions (1928-2001), Amnon Pazy, one has reconsidered 
the study of some problems of major interest in this new and fairly general 
context. So, in 1979, Ciprian Foia2 and Roger Temam have obtained one of 
the first deepest results concerning the existence of the inertial manifolds 
and have estimated the dimension of such manifolds in the case of the 
Navier-Stokes system in fluid dynamics. Results of this kind essentially 
state that, some infinite-dimensional systems have, for large values of the 
time variable, a “finite-dimensional-type” behavior. 

The systematic study of optimal control problems in Rn, initiated in the 
fifties by Lev Pontriaghin (1908-1988), Revaz Valerianovici Gamkrklidze 
and Vladimir Grigorievici Boltianski, has been continued in the sixties and 
seventies by: Lamberto Cesari, Richard Bellman, Rudolf Emil Kalman, 
Wendell Helms Fleming, Jaques-Louis Lions, Hector 0, Fattorini, among 
others. We notice that Lions was the first who has extended this theory to 
the framework of linear differential equations in infinite-dimensional spaces 
in order to handle control problems governed by partial differential equa- 
tions as well. Notable results in this direction, but in the fully nonlinear 
case, have been obtained subsequently by Viorel Barbu. 

We conclude these brief historical considerations which reflect rather a 
subjective viewpoint of the author and which are far from being complete14, 
by emphasizing that the Theory of Differential Equations is a continuously 
growing discipline, whose by now classical results are very often extended 
and generalized in order to handle new cases suggested by practice and even 
who is permanently enriched by completely new results having no direct 

13A simplified version of this fundamental result is presented in Section 3.4 of this 
book. 

14The interested reader willing to get additional information concerning the evolution 
of this discipline is referred to [Wieleitner (1964)], [Hirsch (1984)] and [Piccinini et al. 
(1984)]. 
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correspondence within its classical counterpart. For this reason, all those 
interested in mathematical research may found in this domain a wealth 
of various open problems waiting to be solved, or even more, they may 
formulate and solve by themselves new and interesting problems. 

1.2 Introduction 

Differential Equations and Systems. Diflerential Equations have their 
roots as a “by its own” discipline in the natural interest of scientists to 
predict, as accurate as possible, the future evolution of a certain physical, 
biological, chemical, sociological, etc. system. It is easy to  realize that, in 
order to get a fairly acceptable prediction close enough to the reality, we 
need fairly precise data on the present state of the system, as well as, sound 
knowledge on the law(s) according to which the instantaneous state of the 
system affects its instantaneous rate of change. Mathematical Modelling is 
that discipline which comes into play at  this point, offering the scientist 
the description of such laws in a mathematical language, laws which, in 
many specific situations, take the form of differential equations, or even of 
systems of differential equations. 

The goal of the present section is to define the concept of differential 
equation, as well as that of system of differential equations, and to give a 
brief review of the main problems to  be studied in this book. 

Roughly speaking, a scalar diflerential equation represents a functional 
dependence relationship between the values of a real valued function, called 
unknown function, some, but a t  least one of its ordinary (partial) derivatives 
up to a given order n, and the independent variable(s). 

The highest order of differentiation of the unknown function involved in 
the equation is called the order of the equation. 

A differential equation whose unknown function depends on one real 
variable is called ordinary diflerential equation, while a differential equa- 
tion whose unknown function depends on two, or more, real independent 
variables is called a partial diflerential equation. For instance the equation 

x“ + x = sin t ,  

whose unknown function x depends on one real variable t ,  is an ordinary 
differential equation of second order, while the equation 
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whose unknown function u depends on two independent real variables x 
and y, is a third-order partial differential equation. 

In the present book we will focus our attention mainly on the study of 
ordinary differential equations which from now on, whenever no confusion 
may occur, we simply refer to as differential equations. However, we will 
touch upon on passing some problems referring to  a special class of par- 
tial differential equations whose most appropriate and 3atural approach is 
offered by the ordinary differential equations' frame. 

The general form of an nth-order scalar differential equation with the 
unknown function x is 

where F is a function defined on a subset D ( F )  in RIWn+2 and taking values 
in R, which is not constant with respect to the last variable. 

Under usual regularity assumptions on the function F (required by the 
applicability of the Implicit Functions Theorem), ( E )  may be rewritten as 

(N) .(") = f ( t ,  x ,  x', . . . , 2 ("- I ) ) ,  

where f is a function defined on a subset D ( f )  in Rn+' with values 
in R, which explicitly defines dn) (at least locally) as a function of 
t , x ,x ' ,  . . . ,d"-l), by means of the relation F(t ,x ,x ' ,  . . . ,x("))  = 0. An 
equation of the form (N) is called nth-order scalar dzfferentzal equation in 
normal form. With few exceptions, in all what follows, we will focus our 
attention on the study of first-order differential equations in normal form, 
i.e. on the study of differential equations of the form 

where f is a function defined on D ( f )  C R2 taking values in R. 
By analogy, if g : D(g) -+ R" is a given function, g = (g1,g2,. . . ,gn),  

where D(g)  is included in R x Rn, we may define a system o f n  first-order 
differential equations with n unknown functions: y1, y2, . . . , yn, as a system 
of the form 

which, in its turn, represents the componentwise expression of a first-order 
vector dafferential equation 
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By means of the  transformation^'^ 

(N) can be equivalently rewritten as system of n scalar differential equations 
with n unknown functions: 

or, in other words, as a first-order vector differential equation (V), with g 
defined by (7). This way, the study of the equation (3") reduces to the 
study of an equation of the type (V)  or, equivalently, to  the study of a 
first-order differential system. This explains why, in all what follows, we 
will merely study the equation (V), noticing only, whenever necessary, how 
to transcribe the results referring to (13) in terms of (N) by means of the 
transformations (7). 

We notice that,  when the function g in (V) does not depend explicitly 
on t ,  the equation (V) is called autonomous. Under similar circumstances, 
the system (S) is called autonornous. For instance, the equation 

yl = 2y 

is autonomous, while the equation 

yl = 2y + t 
is not. We emphasize however that  every non-autonomous equation of the 
form (V)  may be equivalently rewritten as an autonomous one: 

Z' = h ( z ) ,  

where the unknown function z has an extra-component (than y) .  More 
precisely, setting z = ( X I ,  22,. . . , zn+l) = (t ,  y1, y2, .  . . , yn) and defining 
h : D(g)  c Rn+' + EXnS1 by 

15Transformations proposed by Jean Le Rond D' Alembert. 
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for each z E D ( g ) ,  we observe that (77’) represents the equivalent writing 
of (77) .  So, the first-order scalar differential equation y’ = 2y + t may be 
rewritten as a first-order vector differential equation in It2, of the form 
x‘ = h ( x ) ,  where x = (z1,z2) = ( t , y )  and h ( z )  = (1,222 + zl). Similar 
considerations are in effect for the differential system (S) too. 

Type of Solutions. As defined by now, somehow descriptive and far from 
being rigorous, the concept of differential equation is ambiguous because 
we have not specified what is the sense in which the equality ( E )  should be 
understood16. Namely, let us observe from the very beginning that anyone 
of the two formal equalities (&), or (N) may be thought as being satisfied 
in at  least one of the next three particular meanings described below: 

(i) for every t in the domain I, of the unknown function x; 
(ii) for every t in 1, \ IE, with IE an exceptional set (finite, countable, 

(iii) in a generalized sense which might have nothing to do with the 
negligible, etc.);  

usual point-wise equality. 

It becomes now clear that a crucial problem arising at  this stage is 
that  of how to  define the concept of solution for ( I )  by specifying what 
is the precise meaning of the equality ( I ) .  It should be noted that any 
construction of a rigorous theory of Differential Equations is very sensitive 
on the manner in which we solve this starting problem. The following 
examples are of some help in order to understand the importance, and to 
evaluate the exact “dimension” of this challenge. 

Example 1.2.1 Let us consider the so-called eikonal equation 

IX‘I = 1. (1.2.1) 

It is easy to see that the only C1 functions, x : R + R, satisfying (1.2.1) 
for each t E R are of the form x ( t )  = t + c ,  or ~ ( t )  = -t+c, with c E R and 
conversely. On the other hand, if we ask that (1.2.1) be satisfied for each 
t E 118, with the possible exception of those points in a finite subset, besides 
the functions specified above, we may easily see that any function having 
the graph as in Figure 1.2.1 is a solution of (1.2.1) in this new acceptation. 

I6In fact, we indicated only a formal relation which could define a predicate (the 
differential equation) but we did not specify the domain on which it acts (it is defined). 
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Figure 1.2.1 

Example 1.2.2 Now, let us consider the differential equation 

X I  = h, 

where h : I + R is a given function. It is obvious that if h is continuous, 
then x is of class C1, while if h is discontinuous, the equation above cannot 
have C1 solutions defined on the whole interval 1. 

These examples emphasize the importance of the class of functions in 
which we agree to accept the candidates to the title of solution. So, if this 
class is too narrow, the chance to have ensured the existence of at least one 
solution is very small, while, if this class is too broad, this chance, which 
is obviously increasing, is drastically counterbalanced by the price paid by 
the lack of several regularity properties of solutions. Therefore, the concept 
of solution for a differential equation has to be defined having in mind a 
compromise, namely that on one hand to let have at least one solution and, 
on the other one, each solution to let have sufficient regularity properties in 
order to be of some use in practice. From the examples previously analyzed, 
it is easy to see that the definition of this concept should take into account 
firstly the regularity properties of the function F .  Throughout, we shall 
say that an interval is nontrivial if it has nonempty interior. So, assuming 
that F is of class C", it is natural to adopt: 

Definition 1.2.1 A solution of the nth-order scalar differential equation 
(&) is a function x : I, + R of class C" on the nontrivial interval I,, which 
satisfies (t ,  ~ ( t ) ,  x'(t), . . . , d")(t>) E D ( F )  and 

F ( t ,  x ( t ) ,  x ' ( t ) ,  . . . x'"'(t)) = 0 

for each t E I,. 
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Definition 1.2.2 A solution of the nth-order scalar differential equation 
in the normal form (N) is a function x : I, --+ R of class C" on the nontrivial 
interval I,, which satisfies ( t , x ( t ) ,  x'(t), . . . ,d"-')(t)) E D ( f )  and 

x y t )  = f ( t ,  x ( t ) ,  x ' ( t ) ,  . . . .'""'(t)) 

for each t E I,. 

Definition 1.2.3 A solution of the system of first-order differential equa- 
tions (8) is an n-tuple of functions (91, y2, . . . , yn) : I, --+ of class C1 on 
the nontrivial interval I,, which satisfies ( t ,  yl ( t ) ,  yz( t ) ,  . . . , y n ( t ) )  E D(g) 
and yh(t) = gi(t,yl(t),y2(t), . . . , y n ( t ) ) ,  i = 1 , 2 , .  . . ,n,  for each t E I,. The 
trajectory corresponding to  the solution y is the set ~ ( y )  = {y(t); t E I,}. 

The trajectory corresponding to  a given solution y = (y1,y2) of a dif- 
ferential system in R2 is illustrated in Figure 1.2.2 (a),  while the graph of 
the solution in Figure 1.2.2 (b). 

A A 

Figure 1.2.2 

Definition 1.2.4 A solution of the first-order vector differential equation 
(Y') is a function y : It, --+ Rn of class C1 on the nontrivial interval It,, which 
satisfies ( t ,  y ( t ) )  E D(g)  and y ' ( t )  = g(t, y ( t ) )  for each t E I,. The trajectory 
corresponding to  the solution y is the set ~ ( y )  = { y ( t ) ;  t E I,}. 

Let us observe that the problem of finding the antiderivatives of a contin- 
uous function h on a given interval I may be embedded into a first-order 
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differential equation of the form x‘ = h for which, from the set of solutions 
given by Definition 1.2.1, we keep only those defined on 1, the “maximal 
domain” of the function h. 

Definition 1.2.5 
of functions, implicitly defined by a relation of the form 

A family {x(., c) : 12,c + R; c = ( ~ 1 ,  c2, . . . , cn) E Rn} 

where G : D(G)  C Rn+2 -+ R, is a function of class Cn with respect to 
the first two variables, with the property that,  by eliminating the constants 
~ 1 ,  ~ 2 ,  . . . , C n  from the system 

and substituting these in (5) one gets exactly (€), is called the general 
integral, or the general solution of ( E ) .  

Usually, we identify the general solution by its relation of definition 
saying that ( 5 )  is the general solution, or the general integral of ( E ) .  

Example 1.2.3 The general integral of the second-order differential 
equation 

x” + a2x = 0, 

with a > 0, is ( ~ ( 9 ,  e l ,  c2); (el, c ~ )  E R2}, where 

z ( t ,  c1, c2) = c1 sin at + c2 cos at 

for t E H2,c17. Indeed, it is easy to see that the equation is obtained by 
eliminating the constants cl, c2 from the system 

(z - c1 sin at - c2 cos at)’ = O 
(x - c1 sin at - c2 cos at)” = 0. 

I7We mention that,  in this case, the general integral contains also functions defined 
on the whole set R, i.e. for which IIz,c = R. 
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In this case, G : R4 --$ R is defined by 

G(t ,  x, c1, c2) = x - c1 sin at - c2 cos at 

for each ( t ,  x, c1, c2) E R4, and (5) may be equivalently rewritten as 

z = c1 sin at + c2 cos a t ,  

relation which defines explicitly the general integral. As we shall see later, 
in many other specific cases too, in which from ( 5 )  one can get the explicit 
form of x as a function of t ,  c1, c2, . . . , C n ,  the general integral of (€)  can 
be expressed in an explicit form as z ( t ,  c1, c2, . . . , cn) = H ( t ,  c1, c2, . . . , Cn) ,  

with H : D ( H )  Rn+’ --+ R a function of class Cn. 

Problems to be Studied. Next, we shall list several problems which we 
shall approach in the study of the equation (V). We begin by noticing that 
the main problem we are going to treat is the so-called Cauchy problem, or 
initial value problem associated to ( V ) .  More precisely, given ( a ,  S )  E D(g) ,  
the Cauchy problem for (13) with data a and ( consists in finding of a 
particular solution y : 1, -+ R” of (V), with a E It, and satisfying the initial 
condition y ( a )  = <. Customarily a is called the initial time, while 5 the 
initial state. 

In the study of this problem we shall encounter the following subprob- 
lems of obvious importance: (1) the existence problem which consists in 
finding reasonable sufficient conditions on the function g so that,  for each 
(a ,<)  E D(g) ,  the Cauchy problem for the equation ( V ) ,  with a and < 
as data, have at  least one solution”; (2) the uniqueness problem which 
consists in finding sufficient conditions on the function g so that, for each 
(a ,<)  E D(g) ,  the Cauchy problem for the equation ( V ) ,  with a and < as 
data, have at  most one solution defined on a given interval containing a;  
(3) the problem of continuation of the solutions; (4) the problem of the 
behavior of the non-continuable solution at the end(s) of the maximal in- 
terval of definition; (5) the problem of approximation of a given solution; 
(6) the problem of continuous dependence of the solution on both the initial 

I8In many circumstances, in the process of establishing a mathematical model, one 
deliberately ignores the contribution of certain “parameters” whose influence on the 
evolution of the system in question is considered irrelevant. For this reason, almost all 
mathematical models are not at all identical copies of the reality and, accordingly, a first 
problem of great importance we face in this context (problem which is superfluous in the 
case of the real phenomenon) is that  of the consistency of the model. But this consists 
in showing that the model in question has at least one solution. 



Elementary Equations 19 

datum t and the right-hand side 9 ;  (7) the problem of differentiability of 
the solution with respect to the initial datum t; (8) the problem of getting 
additional information in the particular case in which g : 1 x Rn -+ R" and, 
for each t E 11, g ( t ,  .) is a linear function; (9) the study of the behavior of 
the solutions as t approaches +co. 

1.3 Elementary Equations 

The goal of this section is to collect several types of differential equations 
whose general solutions can be found by means of a finite number of integra- 
tion procedures. Since the integration of real functions of one real variable 
is also called quadrature, these equations are known under the name of 
equations solved by quadratures. 

1.3.1 Equations with Separable Variables 

An equation of the form 

(1.3.1) 

where f : II -+ R and g : J --+ R are two continuous functions with g ( y )  # 0 
for each y E J, is called with separable variables. 

Theorem 1.3.1 Let II and J be two nontrivial intervals in R and let 
f : II + R and g : J -+ R be two continuous functions with g ( y )  # 0 for 
each y E J. Then, the general solution of the equation (1.3.1) is given by  

(1.3.2) 

for  each t E Dom(x), where t o  i s  a fixed point in II, and G : J --+ R is defined 
by  

for  each y E J, with < E J. 

Proof. Since g does not vanish on J and is continuous, it preserves con- 
stant sign on J. Changing the sign of the function f if necessary, we may 
assume that g ( y )  > 0 for each y E 9. Then, the function G is well-defined 
and strictly increasing on J. 
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We begin by observing that the function x defined by means of the 
relation (1.3.2) is a solution of the equation (1.3.1) which satisfies z(t0) = t. 
Namely, 

for each t in the domain of the function x. In addition, from the definition 
of G, it follows that z(t0) = 5. 

To complete the proof it suffices to show that every solution of the 
equation (1.3.1) is of the form (1.3.2). To this aim, let x : Dom(x) -+ J 
be a solution of the equation (1.3.1) and let us observe that this may be 
equivalently rewritten as 

for each t E Dom(z). Integrating this equality both sides over [ t o , t ] ,  we 
get 

for each t E Dom(x). Consequently we have 

where G is defined as above with = x(t0). Recalling that G is strictly 
increasing on J, we conclude that it is invertible from its range G(J) into 

0 J. From this remark and the last equality we deduce (1.3.2). 

1.3.2 Linear Equations 

A linear equation is an equation of the form 

X' = a(t)z  + b(t), (1.3.3) 

where a,  b : II --j R are continuous functions on I[. If b = 0 on 1 the equation 
is called linear and homogeneous, otherwise linear and non-homogeneous. 

Theorem 1.3.2 If a and b are continuous on II then the general solu- 
tion of the equation (1.3.3) is given b y  the so-called variation of constants 
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formula 

x ( t )  = exp (1: a ( s )  ds)  < + Lot exp ( bt a ( r )  d r )  b (s )  ds (1.3.4) 

for each t E Dom(z), where t o  E Dom(z) i s  fixed, ( E R and exp(y) = eY 
for each y E R.  

Proof. A simple computational argument shows that x defined by (1.3.4) 
is a solution of (1.3.3) which satisfies x(t0) = <. So, we have merely to show 
that each solution of (1.3.3) is of the form (1.3.4) on its interval of definition. 
To this aim, let x : 10 --+ R be a solution of the equation (1.3.3), where 10 
is a nontrivial interval included in 1. Fix t o  E 10 and multiply both sides in 
(1.3.3) (with t substituted by s) by 

where s E 10. After some obvious rearrangements, we obtain 

for each s E 10. Integrating this equality both sides between t o  and t E 10, 
multiplying the equality thus obtained by 

we deduce (1.3.4), and this completes the proof. 0 

Remark 1.3.1 
be continued as a solution of the same equation to the whole interval 1. 

From (1.3.4) it follows that every solution of (1.3.3) may 

1.3.3 Homogeneous Equations 

A homogeneous equation is an equation of the form 

xJ = h (;), (1.3.5) 

where h : I[ + R is continuous and h(r) # r for each r E IT. 
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Theorem 1.3.3 
then the general solution of (1.3.5) is given by  

If h : 1 + R is continuous and h(r)  # r for each r E 1, 

x( t )  = tu( t )  

for t # 0,  where u is the general solution of the equation with separable 
variables 

1 
t UI = - (h(u)  - u )  . 

Proof. We have merely to express x' by means of u and to impose the 
0 

An important class of differential equations which can be reduced to 

condition that x be a solution of the equation (1.3.5). 

homogeneous equations is 

where aij and bi,  i, j = 1 , 2  are constants and 

According to the compatibility of the linear algebraic system 

allx + a12t + bl = 0 c ~ 2 1 ~  + a22t + b2 = 0 ,  

(1.3.6) 

we distinguish between three different cases. More precisely we have: 
Case I. If the system (AS) has a unique solution (J ,q )  then, by means of 
the change of variables 

x = y + J  
t = s + q ,  

(1.3.6) can be equivalently rewritten under the form of the homogeneous 
equation below 

Case 11. If the system (AS) has infinitely many solutions, then there exists 
X # 0 such that 
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and therefore (1.3.6) reduces to x' = A; 
Case 111. If the system (AS) is incompatible then there exists X # 0 such 
that 

and, by means of the substitution y = a2132 + a22t the equation reduces to 
an equation with separable variables. 

1.3.4 Bernoulli Equations 

An equation of the form 

x' = a ( t ) x  + b( t )x" ,  (1.3.7) 

where a ,  b : II --+ R are non-identically zero continuous functions which are 
not proportional on II, and a R \ (0 ,  l}, is called Bernoulli equation. 

Remark 1.3.2 The restrictions imposed on the data a ,  b and a can be 
explained by the simple observations that: if a = 0 then (1.3.7) is with 
separable variables; if there exists X E Iw such that a ( t )  = X b ( t )  for each 
t E II, (1.3.7) is with separable variables too; if b E 0 then (1.3.7) is linear 
and homogeneous; if a = 0 then (1.3.7) is linear; if a = 1 then (1.3.7) is 
linear and homogeneous. 

Theorem 1.3.4 If a ,b  : II + R are continuous and non-identically zero 
on  II and a E R \ (0, l} then x is a positive solution of the equation (1.3.7) 
i f  and only i f  the function y ,  defined b y  

y ( t )  = zl-"(t) (1.3.8) 

f o r  each t E Dom(x), is a positive solution of the linear non-homogeneous 
equation 

y' = (1 - a ) a ( t ) y  + (1 - a ) b ( t ) .  (1.3.9) 

Proof. Let z be a positive solution of the equation (1.3.7). Expressing 
x' as a function of y and y' and using the fact that x is a solution of (1.3.7) 
we deduce that y is a positive solution of (1.3.9). A similar argument shows 
that if y is a positive solution of the equation (1.3.9), then x given by (1.3.8) 
is, in its turn, a positive solution of (1.3.7), and the proof is complete. 0 
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1.3.5 Riccati Equations 

An equation of the form 

X' = a(t)a: + b(t)x2 + c(t) ,  ( 1.3.10) 

where a,  b, c : II + R are continuous, with b and c non-identically zero on II 
is called Riccati Equation. 

By definition we have excluded the cases b = 0 when (1.3.10) is a linear 
equation and c E 0 when (1.3.10) is a Bernoulli equation with a = 2. 

Remark 1.3.3 In general, there are no effective methods of solving a 
given Riccati equation, excepting the fortunate case when we dispose of an 
a priori given particular solution. The next theorem refers exactly to this 
particular but important case. 

Theorem 1.3.5 Let a,b,c : II --+ R be continuous with b and c non- 
identically zero on 1. If cp : J -+ R is a solution of (1.3.10), then the general 
solution of (1.3.10) on J is given by 

where y is the general solution of the Bernoulli equation 

Proof. One verifies by direct computation that J: = y + cp is a solution of 
the equation (1.3.10) if and only if y = x - cp is a solution of the Bernoulli 
equation above. 0 

1.3.6 Exact Diflerential Equations 

Let D be a nonempty and open subset in R2 and let g, h : D -+ R be two 
functions of class C1 on D ,  with h(t ,  x )  # 0 on D. An equation of the form 

(1.3.11) 

is called exact if there exists a function of class C 2 ,  F : D + R, such that 

(1.3.12) 
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The condition above shows that -g(t, z) dt + h(t, z) dz is the differential 
dF of the function F calculated at  ( t , z )  E D. 

Theorem 1.3.6 
is implicitly given b y  

If (1.3.11) is an exact equation, then its general solution 

F ( t , 2 )  = c, (1.3.13) 

where F : D -+ R satisfies (1.3.12), and c ranges over F(D) .  

Proof. 
solutions if and only if 

If (1.3.11) is an exact differential equation then x is one of its 

-g(t, x ( t ) )  dt + h(t ,  z ( t ) )  dz(t)  = 0 

for t E Dom(z), equality which, by virtue of the fact that  F satisfies 
(1.3.12), is equivalent to 

dF( t , z ( t ) )  = 0 

for each t E Dom(x). Since this last equality is, in its turn, equivalent to 
0 (1 .3.13), the proof is complete. 

Theorem 1.3.7 
suficient condition in order that (1.3.11) be exact is 

If D is a simply connected domain, then a necessary and 

for each ( t , z )  E D.  

For the proof see Theorem 5 in [Nicolescu et al. (1971b)], p. 187. 

1.3.7 Equations Reducible to  Exact Diflerential Equations 

In general if the system (1.3.12) has no solutions the method of finding 
the general solution of (1.3.11) described above is no longer applicable. 
There are however some specific cases in which, even though (1.3.12) has 
no solutions, (1.3.11) can be reduced to an exact equation. We describe 
in what follows such a method of reduction known under the name of the 
integrant factor method. More precisely, if (1.3.11) is not exact, one looks 
for a function p : D -+ R of class C1 with p( t ,  x )  # 0 for each ( t ,  z) E D 
such that 
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be the differential of a function F : D .+ R. Assuming that D is simply 
connected, from Theorem 1.3.7, we know that a necessary and sufficient 
condition in order that  this happen is that  

for each ( t , z )  E D. This is a first-order partial differential equation with 
the unknown function p. We shall study the possibility of solving such kind 
of equations later on in Chapter 6. By then, let us observe that, if 

does not depend on z, we can look for a solution p of the equation above 
which does not depend on x too. This function p is a solution of the linear 
homogeneous equation 

Analogously, if g( t ,z)  # 0 for ( t , z )  E D and 

does not depend on t ,  we can look for a solution p of the equation above 
which does not depend on t too. 

1.3.8 Lagrange Equations 

A differential equation of the non-normal form 

in which cp and 1c) are functions of class C1 from R in R and cp(r) # r for 
each r E R, is called Lagrunge Equation. This kind of differential equation 
can be integrated by using the so-called parameter method. By this method 
we can find only the solutions of class C2 under the parametric form 

More precisely, let z be a solution of class C2 of the Lagrange equation. 
Differentiating both sides of the equation, we get 
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Denoting by x' = p ,  we have x" = p' and consequently 

Assuming now that p is invertible and denoting its inverse by t = t ( p ) ,  the 
above equation may be equivalently rewritten as 

But this is a linear differential equation which can be solved by the variation 
of constants method. We will find then t = 8(p,c) for p E R, with c 
constant, from where, using the initial equation, we deduce the parametric 
equations of the general C2 solution of the Lagrange Equation, i.e. 

t = 8 ( P , C )  
x = Q(P,  C ) c p ( P )  + $ ( P ) ,  P E 

1.3.9 Clairaut Equations 

An equation of the form 

x = tx' + q(x ' ) ,  

where $ : R + R is of class C1 is called Clairaut equation. This can be 
solved also by the parameter method. More precisely, let x be a solution of 
class C2 of the equation. Differentiating both sides the equation, we get 

X"(t + $'(x')) = 0. 

Denoting by x' = p ,  the equation above is equivalent to p'(t + $ ' (p ) )  = 0. 
If p i  = 0 it follows that z ( t )  = ct + d,  with c, d E R, from where, imposing 
the condition on x to  satisfy the equation, we deduce the so-called general 
solution of the Clairaut equation 

x ( t )  = ct + $(c) 

for t E R, where c E R. Obviously, these equations represent a family of 
straight lines. If t + $'(p)  = 0 we deduce 

t = -$'(P) c x = -P$'(P) + $ ( P ) ,  P E R, 

system that defines a plane curve called the singular solution of the Clairaut 
equation and which, is nothing but the envelope of the family of straight 
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lines in the general solution. We recall that the envelope of a family of 
straight lines is a curve with the property that the family of straight lines 
coincides with the family of all tangents to the curve. 

Remark 1.3.4 In general, Clairaut equation admits certain solutions 
which are merely of class C1. Such a solution can be obtained by continuing 
a particular arc of curve of the singular solution with those half-tangents at 
the endpoints of the arc in such a way to get a C1 curve. See the solutions 
to Problems 1.11 and 1.12. 

1.3.10 Higher- Order Diserential Equations 

In what follows we shall present two classes of nth-order scalar differential 
equations which, even though they can not be solved by quadratures, they 
can be reduced to equations of order strictly less than n. Let us consider 
for the beginning the incomplete nth -order scalar diflerential equation 

where 0 < k < n and F : D ( F )  c 4 R. By means of the 
substitution y = dk) this equation reduces to an (n  - k)th-order scalar 
differential equation with the unknown function y 

F ( t ,  y, y’) . . . , y(n-k)  ) = 0. 

Let us assume for the moment that we are able to obtain the general solution 
y = y ( t ,  c1, c2,. . . , Cn-k) of the latter equation. In these circumstances, we 
can obtain the general solution x ( t ,  c1, c2,. . . , h) of the equation (1.3.14) 
by integrating k-times the identity dk) = y. Namely, for a E R suitably 
chosen, we have 

where Cn-k+l, %++a, . . . ) c, E R are constants appeared in the iterated 
integration process. 
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Example 1.3.1 
ferential equation 

Find the general solution of the third-order scalar dif- 

1 
t 

xlll = --XI/ + 3t ,  t > 0. 

The substitution XI' = y leads to  the non-homogeneous linear equation 

y t = - % + 3 t ,  t t > O  

whose general solution is y ( t ,  el) = t2 + c l / t  for t > 0. Integrating two times 
the identity x" = y we get x( t ,  el, c2, cg) = t 4 /12  + c l ( t  ln t  - t )  + c2t + cg. 

A second class of higher-order differential equations which can be re- 
duced to equations whose order is strictly less than the initial one is the 
class of autonomous higher-order differential equations. So, let us consider 
the autonomous nth-order differential equation 

F ( x ,  x', . . . , x (n ) )  = 0, (1.3.15) 

where F : D ( F )  c RnS1 -+ R. Let us denote by p = X I ,  and let us express 
p as a function of x. To this aim let us observe that 

d p  d p d x  d p  
\x''= dt= dzdt = -P, d x  

In this way, for each k = 1,2 ,  . . . , n, x ( ~ )  can be expressed as a function of 
p ,  2,  . . . , :g-. Substituting in (1.3.15) the derivatives of x as functions 
of p ,  $, . . . , .g~ we get an (n - l)th-order differential equation. 

Example 1.3.2 The second-order differential equation x" + f sinx = 0, 
i.e. the pendulu,m equation, reduces by the method described above to  the 
first-order differential equation (with separable variables) p g  = - 5 sin x 
whose unknown function is p = p ( x ) .  
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1.4 Some Mat hematical Models 

In this section we shall present several phenomena in Physics, Biology, 
Chemistry, Demography whose evolutions can be described highly accurate 
by means of some differential equations, or even systems of differential 
equations. We begin with an example from Physics, became well-known due 
to its use in archeology as a tool of dating old objects. We emphasize that,  
in this example, as in many others that  will follow, we shall substitute the 
discrete mathematical model, which is the most realistic by a continuously 
differentiable one, and this for pure mathematical reasons. More precisely, 
in order to  take advantage of the concepts and results of Mathematical 
Analysis, we shall assume that every function which describes the evolution 
in time of the state of the system: the number of individuals in a given 
species, the number of molecules in a given substance, etc., is of class C1 
on its interval of definition, even though, in reality, this takes values in a 
very large but finite set. From a mathematical point of view this reduces to 
the substitution of the discontinuous function x,, whose graph is illustrated 
in Figure 1.4.1 as a union of segments which are parallel to  the Ot axis, by 
the function x whose graph is a curve of class C1. See Figure 1.4.1. 

~ ~ 

0 t 

Figure 1.4.1 
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1.4.1 Radioactive Disintegration 

In 1902 Ernest Rutherford Lord of Nelsonlg and Sir Frederick Soddy2' have 
formulated the law of radioactive disintegration saying that the instanta- 
neous rate of disintegration of a given radioactive element is proportional 
to the number of radioactive atoms existing at the time considered, and does 
not depend on  any other external factors. Therefore, denoting by x ( t )  the 
number of non disintegrated atoms at  the time t and assuming that x is a 
function of class C1 on [ 0, +m), by virtue of the above mentioned law, we 
deduce that 

-x' = ax 

for every t 2 0, where a > 0 is a constant, specific to the radioactive 
element, called disintegration constant and which can be determined exper- 
imentally with a sufficient degree of accuracy. This is a first-order linear 
homogeneous differential equation, whose general solution is given by 

for t 2 0, with c E R+ 

1.4.2 The Carbon Dating Method 

This method21 is essentially based on similar considerations. So, following 
[Hubbard and West (1995)], Example 2.5.4, p. 85, we recall that living 
organisms, besides the stable isotope C12, contain a small amount of ra- 
dioactive isotope CI4 arising from cosmic ray bombardment. We notice that 
C14 enters the living bodies during, and due to, some specific exchange pro- 
cesses, such that the ration C14/C12 is kept constant. If an organism dies, 
these exchange processes stop, and the radioactive C14 begins to decrease 
at  a constant rate, whose approximate value (determined experimentally) is 
1/8000, i.e. one part in 8000 per year. Consequently, if x ( t )  represents this 
ratio C14/C12, after t years from the death, we conclude that the function 

IgBritish chemist and physicist born in New Zealand (1871-1937). Laureate of the 
Nobel Prize for Chemistry in 1908, he has succeeded the first provoked transmutation 
of one element into another: the Nitrogen into Oxygen by means of the alpha radiations 
(1919). He has proposed the atomic model which inherited his name. 

20British chemist (1877-1956). Laureate of the Nobel Prize for Chemistry in 1921. 
21The carbon-14 method has been proposed around 1949 by Willard Libby. 
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t H x ( t )  satisfies 

Consequently, if 
death, by means 

Generalities 

1 
2’ = -- 

8000 x’ 
we know x ( T ) ,  we can find the number T, of years after 
of 

where ro is the constant ratio C14/C12 in the living matter. For more 
details on similar methods of dating see [Braun (1983)I. 

1.4.3 Equations of Motion 

The equations of motion of n-point particles in the three-dimensional Eu- 
clidean space are described by means of Newton second law saying that 
“Force equals mass times acceleration”. Indeed, in this case, this funda- 
mental law takes the following mathematical expression 

mixy(t)  = Fi(xi( t ) ) ,  i = 1 , 2 , .  . . , n, 

where xi is the Cartesian coordinate of the ith-particle of mass mi and Fi 
is the force acting on that particle. According to what kind of forces are 
involved: strong, weak, gravitational, or electromagnetic, we get various 
equations of motion. The last two forces, i.e. occurring in gravitation and 
electromagnetism, can be expressed in a rather simple manner in the case 
when the velocities of the particles are considerably less than the speed of 
light. In these cases, the Fi’s are the gradients of newtonian and coulombic 
potentials, i.e. 

where k is the gravitational constant and ei is the charge of the ith-particle. 
For a more detailed discussion on this subject see [Thirring (1978)I. 

As concerns the case of only one particle moving in the one-dimensional 
space, i.e. in a straight line, we mention: 

1.4.4 The Harmonic Oscillator 

Let us consider a particle of mass m that moves on a straight line under 
the action of an elastic force. We denote by x ( t )  the abscissa of the particle 
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at the time t and by F ( x )  the force exercised upon the particle in motion 
situated at the point of abscissa x.  Since the force is elastic, F ( z )  = -kx 
for each x E R, where k > 0. On the other hand, the motion of the 
particle should obey Newton’s Second Law which, in this specific case, takes 
the form F ( x ( t ) )  = ma( t ) ,  where a(t)  is the acceleration of the particle 
at  the time t .  But a( t )  = x”(t) and denoting by w2 = k / m ,  from the 
considerations above, it follows that z has to verify the second-order scalar 
linear differential equation: 

X I /  + w2x = 0 ,  

called the equation of the harmonic oscillator. As we have already seen in 
Example 1.2.3, the general solution of this equation is 

x ( t ,  c1, c2) = c1 sin wt + c2 cos wt 

for t E R. 

1.4.5 The Mathematical Pendulum 

Let us consider a pendulum of length e and let us denote by s ( t )  the length 
of the arc curve described by the free extremity of the pendulum by the 
time t .  We have s ( t )  = t x ( t ) ,  where x ( t )  is the measure expressed in radian 
units of the angle between the pendulum at the time t and the vertical axis 
Oy. See Figure 1.4.2. 

The force which acts upon the pendulum is F = mg, where g is the 
acceleration of gravitation. This force can be decomposed along two com- 
ponents, one having the direction of the thread, and another one having 
the direction of the tangent at  the arc of circle described by the free end 
of the pendulum. See Figure 1.4.2. The component having the direction 
of the thread is counterbalanced by the resistance of the latter, so that the 
motion takes place only under the action of the component -mg sin x ( t ) .  

But x should obey Newton’ Second Law, which in this case takes the 
form of the second-order scalar differential equation mtx“ = -mg sin x ,  or 
equivalently 

9 
e XI‘ + - sinx = 0, 

nonlinear equation called the equation of the mathematical pendulum , or 
the equation of the gravitational pendulum. 
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F = m g  

Figure 1.4.2 

If we intend to study only the small oscillations, we can approximate 
sinx by x and we obtain the equation of the small oscillations of the pen- 
dulum 

9 
! 

X I 1  + -x = 0, 

a second-order scalar linear differential equation. For this equation, which 
is formally the same with that of the harmonic oscillator, we know the 
general solution, i.e. 

x(t ,  c1, c2) = c1 sin -t + c2 cos 8 f i t  

for t E R, where c1, c2 E R. 

1.4.6 Two Demographic Models 

A first demographic model describing the growth of the human population 
was proposed in 1798 by Thomas Robert Malthus.22 We shall present here 
a continuous variant of the model proposed by Malthus. More precisely, 
if we denote by x(t) the population, i.e. the number of individuals of a 
given species at  the time t ,  and by y(t) the subsistence, i.e. the resources 
of living, according to Malthus’ Law: the instantaneous rate of change of 
x at the time t i s  proportional with x(t), while the instantaneous rate of 

22British economist (1766-1834). In his A n  essay on the principle of population as 
it affects the future improvement of society (1798) he has enunciated the principle sti- 
pulating that a population, which evolves freely increases in a geometric ratio, while 
subsistence follows an arithmetic ratio growth. This principle, expressed as a discrete 
mathematical model, has had a deep influence on the economical thinking even up to 
the middle of the XX century. 
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change of the subsistence is constant at any time. Then we have the fol- 
lowing mathematical model expressed by means of a system of first-order 
differential equations of the form 

X I  = cx 
y' = k ,  

where c and k are strictly positive constants. This system of uncoupled 
equations (in the sense that each equation contains only one unknown func- 
tion) can be solved explicitly. Its general solution is given by 

for t 2 0, where < and q represent the population and respectively the 
subsistence, a t  the time t = 0. One may see that this model describes rather 
well the real phenomenon only on very short intervals of time. For this 
reason, some more refined and more realistic models have been proposed. 
The aim was to take into consideration that, a t  any time, the number of 
individuals of a given species can not exceed a certain critical value which 
depends on the subsistence at  that time. So, if we denote by h > 0 the 
quantity of resources necessary to one individual to remain alive after the 
time t ,  we may assume that x and y satisfy a system of the form 

X I  = cx (f -.) 
9' = k .  

This system describes a more natural relationship between the subsistence 
and the growth, or decay, of a given population. In certain models, as 
for instance in that one proposed in 1835 by Verhulst, for simplicity, one 
considers k = 0, which means that the subsistence is constant (y ( t )  = q for 
each t E R).  Thus, one obtains a first-order nonlinear differential equation 
of the form 

X I  = cx(b - x ) ,  

for t 1 0, where b = q/h > 0. This equation, i.e. the Verhulst model, 
known under the name of logistic equation, is with separable variables and 
can be integrated. More precisely, the general solution is 
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for t 2 0, where p 2 0 is a constant. To this solution we have to add 
the singular solution x = b, eliminated during the integration process. In 
order to individualize a certain solution x from the general one we have to 
determine the corresponding constant p. Usually this is done by imposing 
the initial condition 

bp 
l + P  

x(0)  = - = (, 

where < represents the number of the individuals at  the time t = 0, number 
which is assumed to be known. We deduce that the solution x(.,[) of the 
logistic equation that satisfies the initial condition z(O,<) = < is given by 

for each t 2 0. 
All the models described above can be put under the general form 

2' = d ( t ,  x), 

where d ( t , x )  represents the difference between the rate of birth and the 
rate of mortality corresponding to the time t and to a population x. 

1.4.7 

Following [Neuhauser (2001)], we consider an infinite number of sites which 
are linked by migration and we assume that all sites are equally accessible 
and no explicit spatial distances between sites are taken into consideration. 
We denote by x ( t )  the number of occupied sites and we assume that the 
time is scaled so that the rate at which the sites become vacant equals 1. 
Then, assuming that the colonization rate x' is proportional to the product 
of the number of occupied sites and the vacant sites, we get the so-called 
Levins Model 

A Spatial Model in Ecology 

XI = Xx(1 - x) - x 

which is formally equivalent to the logistic equation. 

1.4.8 The Prey-Predator Model 

Immediately after the First World War, in the Adriatic Sea area, a signifi- 
cant decay of the fish population has been observed. This decay, a t  the first 
glance in contradiction with the fact that almost all fishermen in the area, 



Some Mathematical Models 37 

enrolled in the army, were in the impossibility to practice their usual job, 
was a big surprise. Under these circumstances, it seems to be quite natural 
to expect rather a growth instead of a decay of the fish population. In 
his attempt to explain this strange phenomenon, Vito V01terra~~ has pro- 
posed a mathematical model describing the evolution of two species both 
living within the same area, but which compete for surviving. Namely, in 
[Volterra (1926)], he considered two species of animals living in the same 
region, the first one having at  disposal unlimited subsistence, species called 
prey,  and the second one, called predator,  having as unique source of sub- 
sistence the members of the first species. Think of the case of herbivores 
versus carnivores. Denoting by x ( t )  and respectively by y(t) the population 
of the prey species, and respectively of the predator one at  the time t ,  and 
assuming that both x and y are function of class C1, we deduce that x and 
y have to satisfy the system of first-order nonlinear differential equations 

x‘ = ( a  - k y ) z  
y‘ = - (b  - hx)y, 

(1.4.1) 

where a, b, k ,  h are positive constants. The first equation is nothing else 
than the mathematical expression of the fact that the instantaneous rate 
of growth of x at the time t is proportional with the population of the prey 
species at the time considered (x’ = ax-. . . ) while the instantaneous rate of 
decay of x at the same time t is proportional with the number of all possible 

Analogously, the second equation expresses the fact that the instantaneous 
rate of decay of y at the time t is proportional with the population of the 
predator species a t  that  time t (y’ = -by..  . ) while the instantaneous rate 
of growth of y at the same time t is proportional with the number of all 
possible contacts between prey and predators. It should be noticed that the 
very same model was been proposed earlier by [ L o t h  (1925)I and therefore 
the system (1.4.1) is known under the name of Lotka-Volterra S y s t e m  

As we shall see later on2*, each solution of the Lotka-Volterra System 
(1.4.1) with nonnegative initial data has nonnegative components as long 
as it exists, while each solution with positive initial data is periodic (with 
the principal period depending on the initial data). The trajectory of such 
solution is illustrated in Figure 1.4.3 (a), while its graph in Figure 1.4.3 

contacts between prey and predators a t  the same time t (x’ = . - .  - ky.). 

(b) * 
231talian mathematician (1860-1940) with notable contributions in Functional Analy- 

24See Problems 6.1, 6.3, 6.4 . 
sis and in Applied Mathematics (especially in Physics and in Biology). 
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Figure 1.4.3 

For this reason the function t I-+ z ( t )  + y(t), which represents the total 
number of animals in both species at the time t ,  is periodic too, and thus 
it has infinitely many local minima. Under these circumstances, it is not 
difficult to realize that, the seemingly non-understandable decay of the fish 
population in the Adriatic Sea was nothing else but a simple consequence 
of the fact that the moment in question (the end of the First World War) 
was quite close to a local minimum of the function above. 

Finally, let us observe that the system above has two constant solutions 
called (for obvious reasons) stationarp solutions, or equilibria: (0,O) and 
( b / h , a / k ) .  The first one has the property that, there exist solutions of 
the system, which start from initial points as close as we wish to (0, 0), 
but which do not remain close to (0,O) as t tends to infinity. Indeed, if at 
a certain moment the predator population is absent it remains absent for 
all t ,  while the prey population evolves obeying the Malthus’ law. More 
precisely, the solution starting from the initial point ( r , O ) ,  with 5 > 0, is 
(z(t),y(t)) = (<eat,O) for t >_ 0, and this obviously, moves off (0,O) as t 
tends to infinity. For this reason we say that (0,O) is unstable with respect 
to small perturbations in the initial data. We shall see later on that the 
second stationary solution is stable with respect to small perturbations in 
the initial data. Roughly speaking, this means that, all solutions having the 
initial data close enough to (b/h, a / k )  are defined on the whole half-axis and 
remain close to the solution ( b / h , a / k )  on the whole domain of definition. 
The precise definition of this concept will be formulated in Section 5.1. See 
Definition 5.1.1. 
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1.4.9 The Spreading of a Disease 

In 1976 A. Lajmanovich and J. Yorke have proposed a model of the spread of 
a disease which confers no immunity. Following [Hirsch (1984)], we present 
a slight generalization of this model. We start with the description of a 
very specific variant and then we shall approach the model in its whole 
generality. More precisely, let us consider a disease who could affect a 
given population and who confers no immunity. This means that anyone 
who does not have the disease at  a given time is susceptible to infect, even 
though he or she has already been infected, but meanwhile recovered. Let 
us denote by p the population which is assumed to be constant (assumption 
which is plausible if, for instance, during the spreading of the disease there 
are neither births, nor deaths) and by x the number of infected people in 
the considered population. As we have already mentioned at the beginning 
of this section, we may assume that x is a positive continuously differen- 
tiable function of the time variable t .  Consequently, p - x is a nonnegative 
continuously differentiable function too. Obviously, for each t 2 0, p - x ( t )  
represents the number of those susceptible to be infected at  the time t .  
Then, if we assume that,  at  any time t ,  the instantaneous rate of change of 
the number of infected members is proportional to the number of all pos- 
sible contacts between infected and non-infected members, number which 
obviously equals x ( t ) (p  - x ( t ) ) ,  we deduce that z must obey the following 
nonlinear differential equation 

2' = ax(p - z), 

where a > 0 is constant. This is an equation with separable variables, of 
the very same form as that described in the Verhulst's model, and whose 
general solution is given by 

where q is a positive constant. To this general solution we have to add the 
singular stationary solution x = p ,  eliminated in the integration process. 
As in the case of the logistic equation, the solution x( . ,c)  of the equation 
above, which satisfies the initial condition z(0,c) = c ,  is 
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for each t 2 0. It is of interest to note that, for each < > 0, we have 

lim 
t++w 

relation which shows that, in the absence of any external intervention 
(cure), a population which has at the initial moment a positive number 
< > 0 of infected, tends to be entirely infected. The graph of x(.,<) is 
illustrated in Figure 1.4.4. 

Figure 1.4.4 

We may now proceed to a more general case. More precisely, let us 
consider that the population in question is divided into n disjoint classes 
(on social criteria, for instance) each one having a constant number of 
members. We denote by pi the cardinal of the class i and by xi the number 
of infected in the class i, i = 1,2 , .  . . , n. Then, the number of susceptible 
in the class i is pi - xi. As above, from pure mathematical reasons, we 
shall consider that xi is a positive continuously differentiable function of 
the time variable t .  We denote by Ri the rate of infection corresponding 
to the class i and by Ci the rate of recovering corresponding to the same 
class i .  For the sake of simplicity, we shall assume that Ri depends only on 
x = ( q , x 2 , .  . . , xn), while Ci depends only on xi, i = 1 , 2 , .  . . , n. Finally, 
it is fairly realistic to consider that 2 2 0 for i ,  j = 1,2, . . . , n, relations 
which express the fact that the rate of infection Ri is increasing with respect 
to each of its arguments xi, that represents the number of infected in the 
class j. 

Let us observe that all these assumptions lead to the mathematical 
model described by the system of first-order nonlinear differential equations 

XI = Ri(x) - Ci(xi) ( i  = 1,2 , .  . . , n) 

We mention that the model proposed by A. Lajmanovich and J. Yorke has 
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the specific form 

41 

n 

xb = ~ a z j X j ( p z  - X i )  - kzxz ( 2  = 1 ,2 , .  . . ,n) ,  
j =O 

where aij 2 0 and ki 2 0, for i , j  = 1,2 , .  . . ,n and was obtained via 
analogous considerations as those used for the simplified model, i.e. to that 
one corresponding to a single class. 

For more details on models in both population dynamics and ecology 
see [Neuhauser (2001)]. 

1.4.10 Lotka Model 

In 1920 A. J. Lotka considered a chemical reaction mechanism described 
by 

A+X"'.2X 
X + Y % 2 Y  

k Y --% B ,  

(1.4.2) 

where X and Y are intermediaries, k l ,  k2 and k3 are the reaction rate 
constants, and the concentrations of both the reactant A and the product 
B are kept constant. See [Lotka (1920a)l and [Lotka (1920b)l. Noticing that 
the signification of the first relation is that one molecule of A combines with 
one molecule of X giving two molecules of X, the signification of the next 
two relations becomes obvious. 

Before obtaining the corresponding mathematical model of these reac- 
tions, we recall for easy reference a fundamental law which governs chemical 
reactions, i.e., the law of mass action. Namely this asserts that: the rate 
of a chemical reaction is  proportional to  the active concentrations of the 
reactants, i.e. only to  that amounts of reactants that are taking part in 
the reaction. For instance, for the irreversible reaction X + Y -+ A,  if x 
and y denote the active concentrations of X and Y respectively, the law of 
mass action says that x' = -kxy,  where k > 0 is the rate constant of the 
reaction. If one assumes that the reaction is reversible with rate constants 

of reaction Icl and k-1, i.e. X + Y A ,  then the active concentrations x 

and y must satisfy x' = -klxy + k-";d. Finally, for the simplest irreversible 
reaction X + C ,  the law of mass action implies that x' = -kx ,  while for 

ki 
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ki 
the reversible one X 2 C, says that x' = - k l x  + k-lc. 

Now, coming backktb (1.4.2), let us denote the concentrations of A, B ,  
X and Y by a,  b, z and y respectively, and let us observe that,  by virtue 
of the law of mass action just mentioned, x and y must obey the kinetic 
equations 

x' = k l a x  - k2xy 
ZJ = -k3y + k 2 ~ y .  (1.4.3) 

We emphasize that the system (1.4.3) is formally equivalent t o  the Lotka- 
Volterra system (1.4.1), and thus all the considerations made for the latter 
applies here as well. For this reason, in all what follows, we will refer to  
either system (1.4.1) or (1.4.3) t o  as the Lotka-Volterra system, or to the 
pruy-predator system. For more details on this subject see [Murray (1977)], 
pp. 136-141. 

1.4.11 A n  Autocatalytic Generation Model 

Following [Nicolis (1995)], let us consider a tank containing a substance X 
whose concentration at  the time t is denoted by x ( t ) ,  and another one A 
whose concentration a > 0 is kept constant, and let us assume that in the 
tank take place the following reversible chemical reactions: 

in which B is a residual product whose concentration a t  the time t is b(t).25 
Here ki 2 0, i = f l , f 2  are the reaction rate constants of the four 

reactions in question. The mathematical model describing the evolution of 
this chemical system, obtained by means of the law of mass action is 

25This model has been proposed in 1971 by Schlogl in order to  describe some isothermal 
autocatalytic chemical reactions. For more details on such kind of models the interested 
reader is referred to [Nicolis (1995)l. 
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If the second reaction does not take place, situation which is described 
mathematically by k2 = k-2 = 0, then the system above reduces to  

2 xf = klax - k- lx  . 

Let us notice the remarkable similarity of the equation above with the 
logistic equation in the Verhulst’s model as well with the equation describing 
the spread of a disease. 

1.4.12 An RLC Circuit Model 

Following [Hirsch and Smale (1974)], pp. 211-214, let us consider an electric 
circuit consisting of a resistance R, a coil L ,  and a capacitor C in which the 
sense of currents on each of the three portions of the circuit are illustrated 
in Figure 1.4.5. 

L 

Figure 1.4.5 

Let us denote by i( t)  = (i~(t),i~(t),i~(t)) the state of the current in the 
circuit at the time t .  Here i ~ ,  i ~ ,  ic represent the currents on the portions 
of the circuit containing the resistance R, the coil L and respectively the 
capacitor C. Analogously, let w ( t )  = ( w ~ ( t ) ,  v ~ ( t ) ,  wc(t)) be the state of the 
voltages in the circuit a t  the time t .  Following Kirchhoff’ Laws, we deduce 

i R ( t )  = i L ( t )  = -ic(t) { W ( t )  + w ( t )  - vc( t )  = 0, 

while from the generalized Ohm’s Law g ( i ~ ( t ) )  = w ~ ( t )  for each t 2 0. 
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Finally, from Faraday's Law, we obtain 

d i L  
C - = V L  

e- =ic 

d t  

dVC 
dt 

for each t 2 0, where C > 0 and e > 0 are the inductance of L and 
respectively the capacity of C. From these relations we observe that ZL and 
vc satisfy the system of first-order nonlinear differential equations 

for t 2 0. 
For simplicity, let us assume now that C = 1 and e = 1, and let us 

denote by x = i~ and y = wc. Then the previously considered system can 
be rewritten under the form 

for t 2 0. Assuming in addition that g is of class C1, differentiating both 
sides the first equation and using the second one in order to eliminate y, 
we finally get 

XI' + g'(x)d + x = 0 

for t 2 0. This is the Lie'nard Equation. In the case in which g ( x )  = x3 - x 
for each x E R, the equation above takes the form 

2'' + (3x2 - 1)x' + x = 0 

for t 2 0 and it is known as the Van der Pol Equation. For a detailed study 
of mathematical models describing the evolution of both current and voltage 
in electrical circuits see also [Hirsch and Smale (1974)], Chapter 10. For 
many other interesting mathematical models see [Braun (1983)l. 
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1.5 Integral Inequalities 
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In this section we include several inequalities very useful in proving the 
boundedness of solutions of certain differential equations or systems. We 
start with the following nonlinear integral inequality. 

Lemma 1.5.1 (Bihari) Let x : [ a , b ]  -+ R+, k : [ a , b ]  -+ R+ and 
w ; R+ -+ R: be three continuous functions with w nondecreasing on R+ 
and let m 2 0. If 

for each t E [a, b ] ,  then 

x ( t )  5 0-l (lt k ( s )  d s )  

for each t E [ a, b ] ,  where 0 : R+ -+ Iw is defined by 

for each u E R+.  

Proof. Let us observe that it suffices to prove the lemma in the case in 
which m > 0 because the case rn = 0 can be obtained from the preceding 
one by passing to the limit for m tending to 0. So, let m > 0, and let us 
consider the function y : [ a ,  b ]  -+ R; defined by 

for each t E [ a ,  b] .  Obviously y is of class C1 on [ a ,  b ] .  In addition, since, 
x ( t )  5 y(t) for t E [ a , b ]  and w is nondecreasing, it follows that 

for each t E [ a ,  b ] .  This relation can be rewritten under the form 
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for each s E [ a ,  b ] .  Integrating both sides of the last inequality from a to 
t ,  we obtain 

for each t E [ a ,  b ] .  As @ is strictly increasing, it is invertible on its range, 
which includes [ 0, +m), and has strictly increasing inverse. From the last 
inequality we get 

relation which, along with z ( t )  I y ( t )  for t E [ a ,  b ] ,  completes the proof.0 

The next two consequences of Lemma 1.5.1 are useful in applications. 

Lemma 1.5.2 
two continuous functions and let m 2 0 .  If 

(Gronwall) Let IC : [ a , b ]  --+ R+ and k : [ a , b ]  + R+ be 

for each t E [ a ,  b ] ,  then 

fo r  each t E [a, b ] .  

Proof. Let us remark that, for each E > 0, we have 

for each t E [ a ,  b ] .  Taking w : R+ --+ R:, defined by w ( r )  = r + E for each 
r E R+, from Lemma 1.5.1, we obtain 

for each E > 0 and t E [ a ,  b ] .  Passing to the limit for E tending to 0 in this 
inequality, we get the conclusion of the lemma. The proof is complete. 

Some generalizations of Gronwall’s Lemma 1.5.2 are stated in Section 6. 
See Problems 1.16 and 1.17. 
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Lemma 1.5.3 
continuous functions and let rn 2 0. If 

(Brezis) Let x : [ a , b ]  -+ R+ and k : [ a , b ]  -+ R+ be two 

for each t E [ a ,  b ] ,  then 

f o r  each t E [ a , b ] .  

Proof. As in the proof of Lemma 1.5.2, let us observe that, for each 
E > 0, we have z2( t )  I m 2 + 2  s," k(s),/-ds for each t E [ a ,  b ] .  This 
inequality and Lemma 1.5.1 with w : R+ -+ R;, defined by w ( r )  = 24- 

for each r E R+, yield x2 5 ( d G + J : k ( s ) d s )  - E  for each E > 0 
2 

and t E [ a ,  b ] .  We complete the proof by passing to the limit for E tending 
to 0 in this inequality and by extracting the square root both sides in the 
inequality thus obtained. 0 

For a generalization of Lemma 1.5.3, see Problem 1.18. 

1.6 Exercises and Problems 

Problem 1.1 Find a plane curve for  which the ratio of the ordinate by the sub- 
tangent26 equals the ratio of a given positive number k by the dijference of the 
ordinate by the abscissa.27 ([Halanay (1972)], p. 7) 

Problem 1.2 Find a plane curve passing through the point (3 ,2)  f o r  which the 
segment of any tangent line contained between the coordinate axes is  divided in 
half at the point of tangency. ([Demidovich (1973)], p. 329) 

26We recall that  the subtangent to a given curve of equation z = z ( t ) ,  t E [ a ,  b ]  at a 
point ( t ,  z ( t ) )  equals z ( t ) / x ' ( t ) .  

27This problem, considered to be the first in the domain of Differential Equations, has 
been formulated by Debeaune and conveyed, in 1638, by Mersenne to  Descartes. The 
latter has realized not only the importance of the problem but also the impossibility to 
solve it by known (at that time) methods. 
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Exercise 1.1 Solve the following diflerential equations. 

( I )  x‘ cos2 t cot x + tan t sin2 x = 0. ( 2 )  tx’ = z + x 2 .  
( 3 )  tx‘x = 1 - t2 .  ( 4 )  2’ = (t + z)2. 

( 5 )  x‘ = (8t  + 22 + l )2 .  ( 6 )  ~ ’ ( 4 t  + 6~ - 5 )  = - (2 t  + 32 + 1). 
(7)  z’(4t - 2x  + 3 )  = -(2t  - z). ( 8 )  z’(t2z - z) + tx2 + t = 0. 

Problem 1.3 Find a plane curve passing through the point (1, 2 )  whose segment 
of the normal at any point of the curve lying between the coordinate axes is  divided 
in half by the current point. ([Demidovich (1973)] ,  2758, p. 330) 

Problem 1.4 Find a plane curve whose subtangent is  of constant length a .  
([Demidovich (1973)] ,  2759, p. 330) 

Problem 1.5 Find a plane curve in the first quadrant whose subtangent is  twice 
the abscissa of the point of tangency. ([Demidovich (1973)] ,  2760, p. 330) 

Exercise 1.2 Solve the following diflerential equations. 

( 1 )  t x ‘ - x - t .  - 
( 3 )  t2x’ = x( t  - x )  

( 2 )  tx’ = -(t + x ) .  
( 4 )  2txx’ = t2 + x2.  

( 5 )  ( 2 6  - t)x’ = -z. 
(7)  (4s’ + 3 tx  + t2)x’ = - ( x2  + 3 t x  + 4 t2 ) .  (8) 2txz‘ = 3z2 - t 2 .  

( 6 )  tx’ = IC + d w ,  

Problem 1.6 Find the equation of a curve that passes through the point (1,O) 
and having the property that the segment cut 08 by the tangent line at any current 
point P o n  the t-axis equals the length of the segment OP.  ([Demidovich (1973)] ,  
2779, p. 331) 

Problem 1.7 Let f : R+ xR+ ----t R be a continuous function for  which there exists 
a real number m such that f ( X t , A m x )  = X m - l f ( t , x )  for each ( t , x )  E R+ x W+ 
and each X E R+. Show that, by the substitution x ( t )  = t m y ( t ) ,  the diflerential 
equation z‘ = f ( t , x ) ,  called quasi-homogeneous, reduces to a n  equation with se- 
parable variables. is  quasi- 
homogeneous and then solve it. ([Glgvan et al. (1993)],  p. 34) 

Exercise 1.3 

Prove that the differential equation x’ = x 2  - 

Solve the following differential equations. 

( 1 )  txi = + tx. ( 2 )  txi = -2x + t4 .  
( 3 )  tx‘ = -x + e t .  
(5) tx’ = - x  - tx2.  

(4) ( x 2  - 3t2)x’ + 2 tx  = 0. 
(6) 2txx‘ = x2 - t .  

(7)  (2 t  - t 2 z )d  = -x. (8) t ~ ’  = - 2 ~ ( 1  - t ~ ) .  

Problem 1.8 
where a ,  b has continuous functions on 1. Prove that the ratio 

Let x ,  X I ,  x:! be solutions of the linear equation x‘ = a ( t ) x  + b ( t ) ,  

x 2 ( t )  - x ( t )  
x ( t )  - X l ( t )  

R(t) = 
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is  constant on I. What is  the geometrical meaning of this result? 

Problem 1.9 Let X I ,  x2 be solutions of the Bernoulli equation x’ = a( t ) x+b( t ) x2 ,  
where a, b are continuous functions o n  I. Prove that, if x l ( t )  # 0 and x2(t)  # 0 
on J c I, then the function y ,  defined by y ( t )  = for each t E J, satisfies the 
linear equation y’ = b ( t ) [ x l ( t )  - x 2 ( t ) ] y .  

Problem 1.10 Let x ,  X I ,  x2 ,  2 3  be solutions of the Riccati equation 

x’ = a ( t ) x  + b ( t ) z 2  + c ( t ) ,  

where a ,  b, c are continuous functions o n  1. Prove that the ratio 

is  constant on I. 

Exercise 1.4 Solve the following differential equations. 

( 1 )  ( t  + 2x)x’ + t + x = 0.  
( 3 )  ( 3 t 2 x  - x2)x‘ - t2  + 3tx2 - 2 = 0. (4) ( t 2 x  + x 3  + t)x’ - t3 + t x 2  + x = 0. 

( 2 )  2tx‘ + t2  + 22 + 2t = 0 .  

( 5 )  ( 2 2  - 3t2)x’ + 2tx  = 0.  
(7)  tx’ - x ( 1 +  t x )  = 0. 

( 6 )  2txx‘ - ( t  + x 2 )  = 0.  
( 8 )  t ( x 3  + Int)z‘ + x = 0. 

Exercise 1.5 Solve the following diferential equations. 

1 
2 

( 5 )  x = tx‘ + X I 2 .  ( 6 )  x = tx’ + 2’. 
1 

(7) x = tx‘ + JW. ( 8 )  x = tx‘ + -. 
2’ 

( 1 )  x = -tx’ + XI3. ( 2 )  II: = 2‘ + J P .  
( 3 )  x = ( 1  + x’)t + X I 2 .  ( 4 )  x = --x’(2t + X I )  

1 
2 

Problem 1.11 
line tangent t o  this curve is  constant. ([Demidovich (1973)] ,  2831, p. 340) 

Find a plane curve fo r  which the distance of a given point t o  any 

Problem 1.12 Find the curve fo r  which the area of the triangle formed by a 
tangent line at any point and by the coordinate axes is  constant. ([Demidovich 
(1973)] ,  2830, p. 340) 

Problem 1.13 Prove that, for  a heavy liquid rotating about the vertical symmetry 
axis in a cylindric tank, the free surface is situated o n  a paraboloid of revolution. 
([Demidovich (1973)] ,  2898, p. 344) 

Problem 1.14 Find the relationship between the air pressure and the altitude i f  
it is  known that the pressure is  of l k g f  per l c m 2  at the sea level and of 0.92kgf 
per l c m 2  at an  altitude of500m. ([Demidovich (1973)] ,  2899, p. 344) 
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Problem 1.15 According to Hooke’s law an  elastic band of length 1 increases in 
length k l F  (k=constant) due to a tensile force F .  By how much will the band 
increase in length due to i ts  weight W if it is  suspended at one end? ( T h e  initial 
length of the band is 1 ) .  ([Demidovich (1973)], 2900, p. 344) 

Problem 1.16 (Bellman’s Inequality) Let x : [ a , b ]  --+ W+, h : [ a , b ]  -+ W and 
k : [ a ,  b ]  -+ W+ be three continuous functions. If 

f o r  each t E [ a ,  b ] ,  then 

fo r  each t E [ a ,  b ] .  

Problem 1.17 
continuous functions and E E W. If 

Let x : [ a , b ]  -+ W+, v : [ a , b ]  -+ W and k : [ a , b ]  -+ W+ be three 

fo r  each t E [ a ,  b ] ,  then 

fo r  each t E [ a ,  b ] .  ([Halanay (1972)], p. 196) 

Problem 1.18 If x : [ a ,  b ]  -+ W+ and k : [ a ,  b ]  -+ W+ are continuous and 

fo r  each t E [ a ,  b ] ,  where m 2 0 and p > 1, then 

for  each t E [ a ,  b ] .  

Problem 1.19 Let f : W --+ W be non-increasing and let z,y : [ 0 ,  TI -+ W be two 
functions of class C1. ~ f z ’ ( t )  + f(z(t)) I y ’ ( t )  + f(y(t)) for each t E [O,Tl and 
x (0 )  2 y(0) then z ( t )  2 y ( t )  f o r  each t E [ O,T]. 



Chapter 2 

The Cauchy Problem 

This chapter is exclusively dedicated to the introduction and study of the funda- 
mental concepts and results concerning the main topic of this book: the so-called 
Cauchy problem, or the initial-value problem. In the first section we define the 
Cauchy problem for a given differential equation and the basic concepts referring 
to: local solution, saturated solution, global solution, etc. In the second section 
we prove that a sufficient condition in order that a Cauchy problem have at least 
one local solution is the continuity of the function f. In the third one we present 
several specific situations in which every two solutions of a certain Cauchy pro- 
blem .coincide on the common part of their domains. The existence of saturated 
solutions as well as of global solutions is studied in the fourth section. In the 
fifth section we prove several results concerning the continuous dependence of 
the saturated solutions on the initial data and on the parameters, while in the 
sixth one we discuss the differentiability of saturated solutions with respect to 
the data and to the parameters. The seventh section reconsiders all the problems 
previously studied in the case of the nth-order scalar differential equation. The 
last section contains several exercises and problems illustrating the most delicate 
aspects of the abstract theory. 

2.1 General Presentation 

Let II be a nontrivial interval in R, R a nonempty and open subset in R", 
f : I x Q + R" a given function, a E I and 

The Cauchy problem, or the initial-value problem for a first-order diffe- 
rential system with data TI = (I, R, f, a, r )  consists in finding a C1-function 

E R. 
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x : J + R, where J C I[ is a nontrivial interval, a E 9, satisfying both 
“the equation” x’(t) = f ( t ,x( t ) )  for each t E J and “the initial condition” 
x (a )  = <. We denote such a problem by 

A function x : J --+ R with the properties mentioned above is called 
a solution of CP(!?l). We distinguish between several types of solutions of 
eIp(9). Thus, if J = 1, the solution x is called global and otherwise local. If 
J = [ a ,  b ) ,  or J = [ a ,  b ] ,  then z is called a right solution. Analogously, if 
J = (c, a ] ,  or J = [ c, a ] ,  x is called a left solution, while if inf J < a < sup J, 
x is called a bilateral solution. A right (left) solution z : J --+ 52 is called a 
global at the right (left) solution if J = {t E 1; t 2 a }  (J = {t  E I; t 5 a } ) .  
The solution z : J -+ Q is called continuable at the right (left) if there exists 
a right (left) solution y : K --+ s2 with sup J < sup IK (inf 9 > inf K) 
and such that z( t )  = y(t) for each t E J n K. A solution z : J --+ C2 is 
called saturated at the right (left) if it is not continuable at the right (left). 
Obviously each global at the right (left) solution is saturated at the right 
(left) but not conversely, as we can easily see from the example below. 

Example 2.1.1 Take II = R, R = R, f : R x R --+ R, f ( t , x )  = -x2 for 
each (t ,  z) E R x R, a = 0 and < = 1. Obviously, x : (--00,1) --+ R, defined 
by x ( t )  = (t - l)-l, for each t E (-00, I), is a solution of O(9) which is 
saturated at the right, but which is not a global right solution. However, 
x is a global left solution of (ZJ”J‘’D). Furthermore, xI(-oo,~12) is continuable 
at the right but not at the left, while xl(-1,1) is continuable at the left, but 
not at the right. 

This example is very instructive because it shows that even though f 
does not depend on t ,  no matter how regular it is with respect to z in 0, 
eF’(9) may have no global solutions. 

Remark 2.1.1 Inasmuch as all the considerations involving left solutions 
for O(D) are quite similar to those concerning right solutions, and since 
the study of bilateral solutions reduces to the study of the previous two 
types of solutions, our further discussions will refer only to right solutions. 
In addition, whenever no confusion may occur, we shall cancel the word 
“right”, and we shall speak about “solutions’) instead of “right solutions”. 

In a similar manner as for first-order differential systems, we formulate 
the Cauchy problem for an nth-order differential equation in the normal 
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form. Namely, let lI be a nontrivial interval in R, S2 a nonempty and open 
subset in Rn, g : lI x 0 ---j R a function, a E 1 and [ = ([I,&, . . . , E n )  E s2. 

The Cauchy Problem for an nth-order differential equation in the nor- 
mal form with data 9’ = ( I , O , g , a , [ )  consists in finding a function 
y : J -+ R, of class Cn, where 31 c II is a nontrivial interval with a E J 
and ( y ( t ) , y ’ ( t ) ,  . . . , ~ ( ~ - ‘ ) ( t ) )  E 0 for each t E J, function satisfying “the 
equation” y ( ” ) ( t >  = g(t,y(t), y ’ ( t ) ,  . . . ,ZJ(~-’)(~)) for each t E 31 and “the 
initial conditions” y(a) = el, y’(a) = e2,. . . , ~ ( ~ - ‘ ) ( a )  = <ns We denote 
this problem by 

By means of the transformations 

we see that erP(’D’) may be reformulated as a Cauchy problem for a first- 
order system of differential equations 

xi = x2 
xi = x3 

which, in its turn, may be rewritten as a problem of the form eP(D), where 
’D = (I, 0, f, a, c ) ,  with f defined as above. 

This way, the two Cauchy problems are equivalent in the sense that 
all the concepts and results referring to W ( D )  extend to eip(’D’) and con- 
versely via the transformations (7). However, we emphasize that, in order 
to minimize the possibility of confusion, we have to take a special care in 
understanding this equivalence. More precisely, there are properties of the 
solutions of the two Cauchy problems (as for instance: the boundedness, 
the behavior at  +oo, etc.) which are not invariant with respect to these 
transformations. This happens because the solution of eY(’D’) is the first 
component of the solution of e?(Dl’). In order to be more convincing, let 
us analyze the following two examples. 
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Example 2.1.2 Let us consider the Cauchy problem 

y" = -4t2y + 2cost2 
Y(0) = 0 
Y'(0) = 0, 

which, by means of the transformations, (T), can be rewritten as a Cauchy 
problem for a first-order system of differential equations of the form 

It is easy to see that the function y : R -+ R, defined by y(t) = sint2 
for t E R, is a solution of the Cauchy problem (P). In addition, this 
solution is bounded on R. By means of (T), y corresponds to the solution 
(21~x2) : R + R x R  of (PI), ( z l ( t ) , ~ ( t ) )  = (sint2,2tcost2) for each t E R, 
solution which is unbounded on R. So, the boundedness of solutions is not 
invariant with respect to (T). 

Example 2.1.3 Let us consider the Cauchy problem 

y" = y - cos et - et sin et 

y'(0) = cos 1 - sin 1. 
y(0) = sin 1 (a) 

One verifies by direct computation that the function y : R -+ R defined by 

for t E R is a solution of the problem (Q). Obviously 

lim y ( t )  = 0. 
t-++oo 

However, the solution 

(xl(t),x2(t)) = (e-tsinet, -e-tsinet + coset)>, 

for t E R, of the Cauchy problem 

xi= x2 
zb = x1 - cos et - et sin et 
q ( 0 )  = sin 1 
z2(O) = cosl - sin1, 
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corresponding to ((2) via the transformations (T), has no limit as t ap- 
proaches too .  

This example proves that the property of a certain solution of the 
Cauchy problem eiP(D') to have finite limit as t tends to +oo is not in- 
herited by the corresponding solution of the Cauchy problem (?J"P'D), which 
is the image of O(9') through T. 

Remark 2.1.2 We also notice that we may use very similar arguments 
to reduce the study of the Cauchy problem for a higher-order system of 
differential equations in the normal form to  that of one Cauchy problem 
for a first-order differential system. We leave to the reader the precise 
formulation of the Cauchy problem for a higher-order system of differential 
equations. 

Once all these observations being done, it is clear why, in all what 
follows, we confine ourselves only to the study of the Cauchy problem for 
first-order differential systems. 

Next, we will prove two simple but extremely useful results we will need 
frequently in the sequel. 

Proposition 2.1.1 Let f : JI x s2 --+ R" be a continuous function and 
J c 1 a nontrivial interval and such that a E J. Then, a function x : 3 --$ s2 
i s  a solution of CP(2l) i f  and only i f  x i s  continuous on 3 and satisfies the 
integral equation 

fo r  each t E 3. 

Proof. If z is a solution of eiP(?)), then i t  is continuous (being C') .  
Thus, r H f (7, x ( ~ ) )  is continuous on J too. Consequently, we are allowed 
to integrate both sides in 

from a to t. Taking into account that x(a) = t, we get ( Y E ) .  
f(r, ~ ( 7 ) )  

is continuous on 3 too. Hence, in view of ( Y E ) ,  x is C1 on 9. Differentiating 
both sides in ( Y E )  we obtain x l ( t )  = f ( t , x ( t ) ) ,  for each t E JJ, while setting 
t = a in ( 3 E )  we get z ( a )  = <. Thus z is a solution of eiP(D) and this 

Conversely, if z is continuous on J and satisfies ( Y E ) ,  then r 

completes the proof. 0 
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Proposition 2.1.2 Let f : II x R .+ Rn 
be a continuous function, let [ a , b ]  c I, [ b , c ]  c II and let e E R. Let 
x : [ a ,  b ]  -+ R be a solution of elp(II, R,  f ,  a ,  e )  and y : [ b, c ]  -+ i-2 a solution 
of W(lI,R, f , b , x ( b ) ) .  Then, the concatenate function z : [ a , c ]  --+ R, i e .  
the function defined by 

(Concatenation Principle). 

is a solution of e?(I, f ,  R, a ,  r ) .  
Proof. 
suffices to show that z satisfies 

Clearly z is continuous on [ a ,  c ] .  Thanks to Proposition 2.1.1, it 

(2.1.1) 

for each t E [ a ,  c ] .  If t E [ a ,  61, this is certainly the case because z ( t )  = x ( t )  
and x satisfies (3€). Thus, let t E (b , c ] ,  and let us observe that, again by 
Proposition 2.1.1, we have 

r t  r t  

Since 

substituting in the last equality we get (2.1.1). The proof is complete. 0 

Remark 2.1.3 It is not difficult to observe that the regularity properties 
of the solutions of (?lp(D) depend on the regularity properties of f. More 
precisely, we may easily check out that, if f is of class Ck-l on I x i-2 
( I c  2 l), each solution of elp(D) is of class Ck on its domain. Therefore, if 
f is a Coo-function on II x SZ, so is each solution of O ( ’ D )  on its domain. 
Furthermore, if f is analytic on lI x R, each solution of elp(D) is analytic 
on its domain. We shall prove this important and nontrivial result due to 
Cauchy in Section 1 of Chapter 3. 

We conclude this section with some simple but useful considerations 
concerning the autonomous case. We recall that a differential equation is 
called autonomous if it has the form x‘ = f(x), where f : R .+ Rn. In 
other words, a differential equation is autonomous if its right-hand side f 
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does not depend explicitly on t .  So, let us consider the autonomous Cauchy 
problem 

where 2) = (R, f, a,  <). 

Proposition 2.1.3 A function x : I, + R is a solution of AeT’(R, f, a ,  c )  
if and only if the function X a  : I,, --j R defined by  X a ( t )  = x ( t  +a)  for each 
t E I,,, where fiza = {t E R; t + a E I,}, is a solution ofJleT’(s1, f, 0, r>. 
Proof. Clearly x is of class C1 if and only if x ,  is. Further, .(a) = E if 
and only if xa(0) = and xh(t) = x’(t + a )  = f ( x ( t  + a ) )  = f ( x a ( t ) )  for 
each t E Iza if and only if x’(s) = f ( x ( s ) )  for each s E I,, which completes 
the proof. 0 

Proposition 2.1.3 explains why, in the case of autonomous systems, we 
will consider only the Cauchy problem with the initial datum given at a = 0, 
i.e. x(O) = <. 

2.2 The Local Existence Problem 

In general, not every Cauchy problem admits a solution as we can see from 
the example below. 

Example 2.2.1 Let f : R -+ R be defined by 

-1 i f x 2 O  
1 i f z < O .  f ( x >  = { 

Then the autonomous Cauchy problem 

x’ = f ( x )  { x(0)  = 0 

has no local right solution. Indeed, if we assume that x : [ O , S )  -+ R is 
such a solution, then z is of class C1 and x’(0) = -1. Therefore, on a 
certain right neighborhood of 0, x‘ has the same sign as -1. Without 
any loss of generality (diminishing 6 if necessary), we may assume that 
x’(t) < 0 for each t E (0,6).  It then follows that z is strictly decreasing 
on [ 0,6) and consequently, x ( t )  < x(0) = 0 for each t E (0,s). So we have 
x’(t) = f ( x ( t ) )  = 1 for each t E (0,6), and x’(0) = -1, relations which 
show that x‘, which is continuous on [ 0, S), is discontinuous at t = 0. This 
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contradiction can be eliminated only if the Cauchy problem considered 
has no local right solution. As we shall see later, this phenomenon of 
nonexistence is due to the discontinuity of the function f .  

The purpose of this section is to prove that, if f : I x R -+ Rn is conti- 
nuous, for each (a ,<) E I x R, elp(D) has at least one local solution. This 
fundamental result has been proved in 1890 by the Italian mathematician 
Giuseppe Peano. 

We analyze first the case in which 52 = R" and f is continuous and 
bounded on I x Rn, and then, we will show how to avoid these unnecessary 
extra-assumptions on f .  

Let f : I x R" -+ Rn, let a E 1, < E R", 2) = (I, Rn, f ,  a ,  <), and let us 
consider the Cauchy problem 

x' = f ( t , x )  
x(a)  = I$ 

At the same time, let us consider the integral equation 

f o r t  E [ a  

with the delay A 2 0 

4 , a I  

Let us remark that, for X = 0, ( 3 E ) x  reduces to ( 3 E )  in Proposition 2.1.1, 
which by virtue of the same Proposition 2.1.1 is equivalent to e'P(D). 
Roughly speaking, this remark suggests that, in order to prove that eP(D) 
has at  least one local solution, it suffices to show that, for each X > 0, ( 3 € ) ~  
has at least one local solution and then, if possible, to pass to the limit for 
A tending to  0 in (31)~. This is exactly we has going to do in the sequel 
in a rigorous manner. We begin with the following result which will prove 
useful later. 

Lemma 2.2.1 Iff : 1 x R" -+ R" is continuous and X > 0 then, for each 
( a ,  t) E 1 x R" and each 6 > 0 such that [ a ,  a+ 61 c I, there exists a unique 
continuous function xx, defined on [ a  - A, a + S] and satisfying (?&)A.  

Proof. Obviously xx  is uniquely determined and continuous on [ a-  A, a ] .  
Let then t E [ a ,  a + A ] .  Let us remark that, for each r E [ a,  t 1,  we have 
7 - X E [ a  - A, a ]  and consequently X X ( T  - A) = <. Therefore 
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and accordingly, zx is uniquely determined and continuous on [ a ,  a + A ] .  
Analogously, we find a unique continuous function zx , defined successively 
on [ a + A, a + 2x1, [ a  + 2X, a + 3x1, a.s.0. Obviously, after a finite number m 
of steps, with mX 2 a+6, we can define xx on the whole interval [ a ,  a + S ] .  
The proof is complete. 0 

As we have already mentioned, we will prove first the following existence 
result which, although auxiliary, is interesting by itself. 

Lemma 2.2.2 
then, for  each ( a ,  t) 
has at least one solution defined on [ a ,  a + 61. 

Iff : 1 x Rn -+ Rn is continuous and bounded on II x Rn, 
1 x R" and each 6 > 0 such that [ a ,  a+6]  c 1, CP(D) 

Proof. 
and let us consider the integral equation with the delay 6, = 6/m 

Let ( a , c )  E 1 x Rn and 6 > 0 so that [ a , a + 6 ]  c 1, let m E W* 

Let us remark that, by virtue of Lemma 2.2.1, for each m E N*, (JE), has 
a unique continuous solution z, : [ a  - b,, a + 61 -+ R". 

We shall show that the family of functions {x,; m E N*} is uniformly 
bounded and equicontinuous on [ a,a  + 61. First, let us recall that f is 
bounded on II x Rn and accordingly, there exists A4 > 0 such that 

for each ( 7 , ~ )  E II x Rn. From (J€),, we conclude that 

for each m E N* and t E [ a,  a + 6 1. Hence {xm; m E N*} is uniformly 
bounded on [a, a + 61. 

Let us observe next that, again, from (3€),, we have 

for each rn E N* and t ,  s E [ a , a  + 61. Consequently, {x,; rn E N*} is 
equicontinuous on [ a,a  + 61. By virtue of Theorem 8.2.1 it follows that 
( J ; , ) ~ ~ N *  has at least one uniformly convergent subsequence, denoted for 



60 The Cauchy Problem 

simplicity also by (xm)mEM*. Let us denote by x its uniform limit which is 
a continuous function. Clearly we have, 

lim X,(T - 6,) = ~ ( 7 ) ,  
m+oo 

uniformly for r E [ a ,  a + 61. Since f is continuous on ll x R", the relation 
above and Corollary 8.2.2 show that we are allowed to pass to the limit for 
m -+ 00 under the integral sign in (3&)m. Moreover, from the very same 
Corollary 8.2.2, we deduce that x satisfies 

t 

4 t )  = E + J, f ( r , x ( 7 ) )  d r  

for each t E [ a ,  a+6] .  Now, Proposition 2.1.1 shows that x : [ a ,  a+6] --+ Rn 
is a solution of erP(rr>), and this completes the proof. 

Remark 2.2.1 
for each (a,c) E II x Rn, O(9) has at least one global solution. 

Under the hypotheses of Lemma 2.2.2, we may prove that 

We may now proceed to the statement of the main result in this section. 
To this aim, let II be a nonempty and open interval in R, R a nonempty 
and open subset in R", and f : ll x R ---f Rn a given function. 

Theorem 2.2.1 
for each ( a ,  [) E II x R,  O(II, 0, f, a ,  t) has at least one local solution. 

(Peano). Iff : 1 x R + R" is continuous on ll x R then, 

Proof. 
and T > 0 such that [ a  - d , a + d ]  c 1, and 

Let ( a , [ )  E II x R. Since both 1 and R are open, there exist d > 0 

We define p : Rn -+ R" by 

For n = 1, the graph of p is illustrated in Figure 2.2.1. We may easily verify 
that p maps Rn into B(c,r)  and is continuous on Rn. 

N o w , l e t u s d e f i n e g : ( a - d , a + d ) x R n + R n  by 

for each ( t , y )  E (a - d,  a + d )  x Rn. 
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Figure 2.2.1 

Since f is continuous, by Weierstrass' Theorem, its restriction to the 
compact set [ a  - d, a + d ]  x B(c, r )  is bounded. Therefore, g is continuous 
and bounded on ( a  - d,  a + d )  x R". 

By virtue of Lemma 2.2.1, we know that, for each d' E (0, d) ,  the Cauchy 
problem 

XI = g( t ,  x) 

has at least one solution z : [ a ,  a + d'] .+ R". Since x(a) = < and z is 
continuous at t = a,  for r > 0, there exists 6 E (O,d'] such that for each 
t E [ a , a  + 61, Ilx(t) - 511 I: r .  But in this case g ( t , z ( t ) )  = f ( t , z ( t ) ) ,  and 
therefore x : [ a ,  a + 61 -+ R is a solution of eIp(D), thereby completing the 
proof. 0 

2.3 The Uniqueness Problem 

As we have already seen, the continuity of the right-hand side in CLp(D) is 
enough to  ensure the existence of a t  least one local solution. It should be 
noted that, if f is merely continuous, for certain choices of (a ,<) E II x R, it 
may happen that f!Lp(D) have more than one local solution, as we can see 
from the next classical example due to  Peano (1890). 

Example 2.3.1 Take I = R, R = R, f : Iw x R .+ R, f ( t , x )  = 3- for 
each ( t , z )  E R x R, a = 0 and < = 0. Then, we may easily verify that both 
z( t )  = 0 and y(t) = t 3 ,  for t E [O,m) are solutions of eIp(R,R, f , O , O ) .  

We note that there are examples of functions f : 1 x R --+ Rn such that 
for each ( a , < )  E II x R, eIp(D) has at  least two solutions. For such an 
example, the interested reader is referred to [Hartman (1964)], p. 18. 



62 The Cauchy Problem 

Definition 2.3.1 We say that eIp(’D) has the local uniqueness property 
if for each (a ,<) E II x R and each two solutions x and y of erP(D), there 
exists S > 0 such that [ a ,  a + S )  c II and z ( t )  = y ( t )  for each t E [ a ,  a + 6). 

We say that elP(D) has the global uniqueness property if for each fixed 
data (a ,<) E 1 x R, every two solutions of W(9) coincide on the common 
part of their domains. 

We begin with the following useful result. 

Proposition 2.3.1 
if and only if it has the global uniqueness property. 

The problem eY(9) has the local uniqueness property 

Proof. The “if’ part is obvious. So, let us assume that e’P(D) has the 
local uniqueness property, let ( a ,  {) E II x R and let z : J -+ R and y : lK -+ R 
be two solutions of eP(D). As x and y are continuous, the set 

e(x, y) = {t  E J n K; x ( s )  = y( s )  for each s E [ a ,  4) 
is nonempty and closed. To complete the proof it suffices to show that 

SUP e ( x ,  9 )  = SUP(J n K). (2.3.1) 

To this aim, let us assume the contrary. Since supe(z,y)  5 sup(J n K), 
it follows that sup e(z, y) < sup(Y n K). But in this case both z and y are 
defined at the right of b = sup e(z, y) ,  are solutions of erP(II, R, f ,  b, z (b)) ,  
and then, by hypothesis, they must coincide on an interval of the form 
[ b ,  b + S ) ,  with 6 > 0 sufficiently small. Since this statement contradicts 
the definition of b, it follows that the supposition sup C!(x, y) < sup(J fl K) 
is false. Then sup e(x, y) = sup(J n K) and this completes the proof. Cl 

By virtue of Proposition 2.3.1 “local uniqueness’’ and “global unique- 
ness” describe one and the same property of eiP(’D). Therefore, in all what 
follows, we shall say that erP(D) has the uniqueness property instead of 
saying that eY(D) has the local, or global uniqueness property. 

2.3.1 The Locally Lipschitn Case 

In order to state the first main result of this section, some definitions and 
remarks are needed. 

Definition 2.3.2 A function f : II x s2 -+ Rn is called locally Lipschitz on 
R if for each compact subset X in II x R, there exists L = L ( X )  > 0 such 
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that, for each ( t ,u ) ,  ( t , v )  E X we have 

Remark 2.3.1 The use of the term "locally" in Definition 2.3.2 is some- 
how improper, but it is explained by the fact that f : 1 x R -+ Rn is locally 
Lipschitz on R if and only if for each (a,<) E I[ x 0, there exists a neigh- 
borhood V of (a,<), V c I[ x R and L = L(V)  > 0 such that, for each 
( t ,  u), ( t ,  w) E V ,  (2.3.2) holds. We leave to the reader the proof of this nice 
problem of Real Analysis. 

Remark 2.3.2 I f f  : 1 x R --+ R" satisfies the Cauchy condition on R, i.e. 
f has first-order partial derivatives with respect to the last n arguments, 
and for each i ,  j E {1,2,. . . , n},  afi/axj is continuous on II x R, then f is 
locally Lipschitz on R. 

A first sufficient condition for uniqueness is: 

Theorem 2.3.1 
has the uniqueness property. 

Iff : II x R + R" i s  locally Lipschitz on R, then CiP(D) 

Proof. In view of Proposition 2.3.1, it suffices to show that if f is locally 
Lipschitz on 52, then CIP(z)) has the local uniqueness property. Thus, let 
(a, <) E II x R and let x : JJ + R and y : IK --+ R be two solutions of O(z)). 

Since (a ,<)  E II x R which is open, there exist r > 0 and 6 > 0 such that 
a + 6 < sup(J n K) and B(<,r )  = { r ]  E R"; l lr] - <[I  5 r }  c R. 

Furthermore, inasmuch as both x and y are continuous at t = a, and 
z ( a )  = y (a )  = <, diminishing 6 if necessary, we may assume that 

for each t E [ a ,  a+6] .  As f is locally Lipschitz on R, and [ a ,  a+6] x B(<,r)  
is compact, there exists L > 0 such that 

for each t E [ a, a + 61 and u, v E B(<, r ) .  At this point, let us observe that 
we may assume with no loss of generality that 

6L < 1. (2.3.5) 

(If not, we can take a smaller 6 satisfying all the conditions above including 
the last one.) 
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Now, as both x and y satisfy ( J E )  in Proposition 2.1.1, we have 

for each t E [ a ,  a + 61. From (2.3.3) and (2.3.4), it follows 

Since by (2.3.5) 6L < 1, the last inequality holds only if 

i.e., x( t )  = y( t )  for each t E [ a ,  a f d ] .  Thus O(D) has the local uniqueness 
property and, by virtue of Proposition 2.3.1, this completes the proof. 0 

A simple, but important consequence of Theorems 2.2.1 and 2.3.1 is 
stated below. 

Theorem 2.3.2 I f f  : 1 x R --f R" is continuous on IT x R and locally 
Lipschitz on 0,  then for each (a,<) E 1 x 0 there exists 6 > 0 such that 
[ a,  a + 61 c 1 and elp(D) has a unique solution defined on [ a ,  a + 61. 

2.3.2 The Dissipative Case 

Another very important class of functions f for which eTP(2I) has the 
uniqueness property is defined below. 

Definition 2.3.3 
for each t E IT and u,v E R, we have 

A function f : IT x R -+ R" is called dissipative on fl if 

where (., .) stands for the usual inner product in R", i.e. for each u,v  E R", 
u = ( u I , u ~ ,  . . . , U n )  and v = ( ~ 1 , 2 1 2 , .  . . , w n ) ,  

n 

(u ,  v )  = c uivi. 
i= I 

Remark 2.3.3 
on fl if and only if for each t E IT, f ( t ,  .) is non-increasing on 0. 

If n = 1, i.e. if R c R and f : lI x R -+ R, f is dissipative 

Theorem 2.3.3 
the uniqueness property. 

I f f  : 1 x R -+ Rn is dissipative on R, then elp(D) has 
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The conclusion of Theorem 2.3.3 follows from the next lemma which 
will prove useful in the sequel. 

Lemma 2.3.1 Let f : lI x St -+ Rn be dissipative on 0, let a E 11 and 
J,v E 0. If x : 1, -+ 0 and y : 1, -+ i-2 are two solutions of the Cauchy 
problems Clp(?)) and respectively C?P(!I, R, f ,  a,  q )  then 

llx(t) - Y(t>II  5 IIC - vll 
for each t E 1, n II,, t 2 a.  

Proof. 
and Clp(1, a, f ,  a ,  q ) ,  respectively. Then, for each t E II, n I,, we have 

Let a E 1, <, 7 E R and let x ,  y be two solutions of CY(I, R, f ,  a ,  c) 

x'(t> - y'(t> = f(t,  4 t > >  - f ( t ,  Y ( t > > .  

Taking the inner product both sides in the preceding relation by x ( t )  - y(t) 
and recalling that,  by (i) in Lemma 8.1.2, 

we get 

Here the dissipativity of f comes into play and shows that 

Thus, t H $IJz(t) - y(t)l12 and, by consequence, t t-+ $lJx( t )  - y ( t ) I )  are 
non-increasing on the common part of the domains of x and y. From this 
remark it follows that 

for each t E I, n IV, t 2 a,  and this completes the proof. 0 

Remark 2.3.4 In contrast with the Lipschitz condition which ensures the 
bilateral uniqueness, the dissipativity condition ensures only the uniqueness 
at the right but not a t  the left, as we can see from the next example. 

Example 2.3.2 Let i-2 = R and let f : R -+ R be defined by 

i f x < O  
if x 2 0. 

f(x) = { ;= 



66 The Cauchy Problem 

Then elp( f ,  R, 0,O) has only one right saturated solution, but x( t )  = 0 as 
well as y( t )  = t3 for t < 0, are saturated left solutions of eP(R, f ,  0,O). 

We conclude this section with a useful consequence of Theorems 2.2.1 
and 2.3.3. 

Theorem 2.3.4 I f f  : II x fl --f R” is continuous on II x fl and dissipative 
on 0, then for each ( a ,  {) E ll x R there exists S > 0 such that [ a ,  a + S] c 1, 
and elp(D) has a unique solution defined on [ a ,  a + 61. 

2.4 Saturated Solutions 

Let II be a nontrivial interval in R, R a nonempty and open subset in R”, let 
f : 1 x R -+ R” be a given function, a E II and 
and let us consider the Cauchy problem 

x’ = f ( t , x )  { .(a) = (. 

We recall that a solution x : J -+ 52 of 

[ E 0. Let D = (11, R, f, a,  <) 

e v )  
elp( 9) is called continuable 

at the right ( le f t )  if there exists a right (left) solution y : K .+ 0 with 
sup J < sup K (inf J > inf K) and such that x ( t )  = y( t )  for each t E J n K .  
We also recall that a solution x : J -+ R is called saturated at the right 
( l e f t )  if it is not continuable at the right (left). A right (left) solution 
x : J -+ R is called a global at the right (left> solution if J = { t  E II; t 1 a }  
(J = { t  E 11; t 5 a } ) .  Since we merely consider right solutions, in all that 
follows, by a “continuable” , respectively “saturated” solution we shall mean 
a “continuable at the right”, respectively “saturated at the right” solution. 

2.4.1 Characterization of Continua ble Solutions 

We begin with a very simple but useful lemma. 

Lemma 2.4.1 
solution x : [ a ,  b )  -+ 52 of O(D) is continuable if and only i f  

Let f : 11 x 52 -+ R” be continuous on 11 x R. Then, a 

(i) b < sup II 

(ii) z* = limz(t) and x* E R. 
and there exists 

t t b  

Proof. The necessity is obvious, while the sufficiency is a consequence of 
both Theorem 2.2.1 and Proposition 2.1.2. Indeed, if both (i) and (ii) hold, 
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a simple argument shows that x can be extended to [ a , b ]  as a solution 
of O ( I I , R , f , a , < ) ,  denoted again by z, by setting z(b) = x*. Then, by 
virtue of Theorem 2.2.1, fXP(II,R,f,b,x*) has at  least one local solution 
y : [ b, b + 61 --f R, where S > 0. By Proposition 2.1.2, we know that the 
concatenate function x is a solution of C!Ip(I[, R,  f, a ,  <) defined on [ a ,  b + S )  
which coincides with x on [ a ,  b) .  Hence x is continuable and this achieves 
the proof. 0 

Remark 2.4.1 From Lemma 2.4.1 it readily follows that, whenever ll 
and R are open and f is continuous, each saturated solution of C!lp(Zl) is 
necessarily defined on an interval of the form [ a ,  b ) ,  i.e. on an interval which 
is open at  the right. This is no longer true if either 1, or R is not open. A 
specific case of this sort will be analyzed in Sections 3.2 and 3.3. See also 
Section 7.7. 

A sufficient condition for the existence of the finite limit in (ii) is stated 
below. 

Proposition 2.4.1 
assume that b < +m, and there exists A4 > 0 such that 

Let x : [ a ,  b )  -+ R be a solution of C!lp(Zl) and let us 

l l f ( ~ 1 X ( - 4 > 1 1  5 M ,  

for each r E [ a ,  b) .  Then, there exists x* E G, 

z* = limz(t). 
t f b  

Proof. In view of Proposition 2.1.1, for each t ,  s E [ a ,  b)  we have 
1 r t  I 

and thus x satisfies the hypothesis of the Cauchy test on the existence of 
finite limit at b. 0 

We may now proceed to the statement of a useful characterization of 
continuable solutions of CP( TI). 

Theorem 2.4.1 Let f : ll x R -+ Rn be continuous on ll x R. Then, a 
solution x : [ a ,  b)  -+ R of C!rP(Zl) is continuable if and only if the graph of 
x ,  i.e. 

graph x = { ( t ,  x ( t ) )  E R x R"; t E [ a ,  b ) }  

is included an a compact subset in ll x R. 
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Proof. The “if’ part. Assume that graphz is included into a compact 
subset of II x R. Since II is open it follows that b < sup II and f is bounded 
on graphz, i.e. there exists M > 0 such that 

for each r E [ a ,  b) .  
The conclusion is a consequence of Lemma 2.4.1 and Proposition 2.4.1. 
The “only if’ part. Assume that 2 is continuable. Then, x may be 

extended by continuity to [ a ,  b ] ,  c II. Denote this extension by y, and let us 
observe that the mapping t H ( t , y ( t ) )  is continuous from [ a , b ]  to II x R. 
Therefore, its range which coincides with graphy is compact and included 

0 in II x R. Since graphz c graphy, the proof is complete. 

2.4.2 The Existence of Saturated Solutions 

We continue with a fundamental result concerning saturated solutions for 
eIp(D). We notice that in the next theorem f is completely arbitrary. 

Theorem 2.4.2 
saturated, or x can be continued up to a saturated one. 

If x : J -+ Cl is a solution of eIp(D), then either x is 

Proof. If z is saturated we have nothing to prove. Thus, let us assume 
that x is continuable and let us define S as the set of all solutions of CT(D) 
which extend 2. Obviously, x E S and thus S is nonempty. Moreover, since 
z is continuable, S contains at least two elements. On S let us define the 
relation ” 5 ” by y 5 z if z extends y. It is a simple exercise to show that 
(S, 5)  is an inductively ordered set. So, from Zorn’s Lemma, there exists 
at least one maximal element y E S such that x 5 y. From the definition of 
” - 4 ” , and from the maximality of y it follows that y is a saturated solution 
of O(D) which coincides with z on 9, thereby completing the proof. 0 

Remark 2.4.2 Under the hypothesis of Theorem 2.4.2, if IC : JJ + R 
is a continuable solution of eIp(D), it may happen to exist two or more 
saturated solutions extending z. See Problem 2.16. It is not difficult to 
see that this phenomenon occurs as a consequence of non-uniqueness. By 
contrary, if elp(D) has the uniqueness property, we may easily conclude 
that for each continuable solution z : JI + SZ of elp(D) there exists exactly 
one saturated solution of eIp(D) extending z. 

From Theorems 2.2.1 and 2.4.2 it follows: 
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Corollary 2.4.1 
(a, <) E II x 0, O(JI,0, f, a,  <) has at least one saturated solution. 

Iff : II x R -+ Rn is continuous, then for each data 

2.4.3 Types of Saturated Solutions 

We recall that  a limit point of a function x : [ a ,  b )  -+ R" as t tends to b 
is an element x* of Rn for which there exists a sequence ( t k ) k E H  in [ a ,  b )  
tending to b and such that limk,, x(tk) = x*. 

Concerning the behavior of saturated solutions at  the right end point 
of their interval of definition, we have the following fundamental result. 

Theorem 2.4.3 
x : [a, b)  -+ 0 be a saturated solution of eP(D). Then, either 

Let f : II x R -+ R" be continuous on II x R, and let 

(i) x is unbounded on [ a ,  b ) ,  or 
(ii) x is bounded on [ a ,  b ) ,  and, either x is global, i.e. b = supII, or 

(iii) x is bounded on [ a ,  b ) ,  and x is not global, i. e. b < sup II, and in 
this case each limit point of x as t tends to b lies on the boundary 
of 52. 

Proof. If x is unbounded on [ a ,  b ) ,  or if it is bounded and global, we 
have nothing to prove. Thus, let us assume that x is bounded on [ a ,  b)  and 
b < supII. To prove (iii) let us assume by contradiction that there exists at  
least one sequence (tk)kEN in [ a ,  b )  tending to b and such that (x(tk))kEN 
is convergent to some x* E R", but z* does not belong to  the boundary 
dR of 0. Since x* lies in the closure of R and x* 6 80, we necessarily have 
x* E R. In view of Lemma 2.4.1, to  get a contradiction, it suffices to show 
that there exists limttbx(t), which of course must coincide with x*. To this 
aim, let us observe that, since R is open and x* E R, there exists r > 0 
such that B(x*, r )  = (7 E R"; 117 - x*II 5 r )  c 0. Furthermore, inasmuch 
as b < supII, f is continuous'on [ a ,  b ]  x B(x* ,  r ) ,  and the latter is compact, 
from Weierstrass' theorem, it follows that there exists M > 0 such that 

for each (7, y) E [ a ,  b ]  x B(x*,  r ) .  Taking into account that limk+, tk = b 
and limk+oo x(tk) = x*, we may choose k E N such that 

(2.4.2) 
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Fix k with the properties above. We shall show that for each t E [ t k ,  b ) ,  
we have x( t )  E B(x* ,r ) .  Let 

If t* = b, the statement above is obviously true. Let us assume by contra- 
diction that t* < b. This means that x ( t )  E B(z*,r)  for each t E [ t k , t * ] ,  
Ilx(t*) - x*ll = r and there exist points t > t*, as close to t* as we wish, 
satisfying I(x(t) - x*I) > r .  In other words, t* is the “first moment in ( t k ,  b )  
after which z leaves the set B(z*,r)”.  See Figure 2.4.1. 

Figure 2.4.1 

The condition Ilx(t*) - x*1( = r signifies that, at  t*, x must cross the 
boundary of B(x*,  r ) .  Next, from the remark above combined with (2.4.1), 
and (2.4.2), we get 

r r  
2 2  

< ( b  - t k )M + llx(tk) - x*(1 < - + - = r .  - 

This contradiction ( r  < r )  comes from our supposition that for at least one 
t E [ t k ,  b ) ,  x ( t )  $ B(x* ,r ) .  Then, for each t E [ t k , b ) ,  x ( t )  E B(x*,r) .  Since 
r > 0 can be taken as small as we wish, we conclude that limtp z ( t )  = x*. 
But x* E 52 and thus, in view of Lemma 2.4.1, it follows that z is continuable 
thereby contradicting the hypothesis. This contradiction can be eliminated 

0 only if x* E d52. The proof is complete. 
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Next, under an additional hypothesis on f ,  we shall prove a sharper 
result. Namely, we have: 

Theorem 2.4.4 Let f : 1 x R + Rn be continuous on II x R and let us 
assume that it maps bounded subsets in II x R into bounded subsets in R”. 
Let x : [ a ,  b )  -+ R be a saturated solution of e’P(2l). Then, either 

(i’) x is unbounded on [ a ,  b) and, if b < $00, there exists 

(ii) x is bounded on [ a ,  b) ,  and, either x is global, i.e. b = supII, or 
limtp Ilx(t)II = +oo, or 

(iii’) x is bounded on [ a ,  b ) ,  and x is not global, i.e. b < sup 1, and in 
this case there exists lirntfb = x* and x* lies on the boundary of a. 

Proof. In view of Theorem 2.4.3, the only fact we have to prove here is 
that whenever (ii) does not hold, then one of the two conditions (i’) or (iii’) 
must hold. So, let us assume for the beginning that (i’) and (ii) do not 
hold. Then, from Lemma 2.4.1 and Proposition 2.4.1, it follows that there 
exists 

limx(t) = x*, 
t T b  

while from (iii) in Theorem 2.4.3 we have x* E 652. So, (iii’) holds true. 
Let us assume now that (ii) and (iii’) do not hold, and that b < +GO. To 

show that limtTb Jlx(t)II = +oo, let us assume by contradiction that, under 
these circumstances, we have 

lim inf Ilx(t)I) < +oo. 
tTb 

Equivalently, there exist a t  least one sequence (tk)kEM in ( a ,  b ) ,  converging 
to b, and r > 0 such that Ilx(tk)ll 5 r, for each k E N. 

Let C = {y E R; llyll 5 r + 1). Since f maps bounded subsets in 
II x s1 into bounded subsets in Rn, b < sup1 and C is bounded, there exists 
M > 0, such that 

(2.4.3) 

for each (7, y) E [ a ,  b )  x C. Now let us choose d > 0 satisfying 

dM < 1, (2.4.4) 

and fix k E N such that b - d < tk < b. Since x is unbounded on [ a ,  b) ,  it is 
necessarily unbounded on [tk, b) .  Then, there exists t* E (tk, b)  such that 
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for each r E [tk, t*)  and 

In fact, t* is "the first moment in (tk, b)  at which z leaves B(0, r + 1)". Let 
us observe that 

r + 1 = Ilx(t*)ll = Ilx(tk) -k 

t+ 

5 Il~(tk>ll + / llf(r1x(~))Ild7* 
tk 

Taking into account (2.4.3), (2.4.4), (2.4.5), and the obvious inequality 
t* - tl, < d,  we get 

r + 15 r + (t* - tk)M < r + d M  < r + 1. 

This contradiction can be eliminated only if 

and this completes the proof. 0 

Remark 2.4.3 If II = R and R = R", then, each continuous function 
f : II x R -+ R" maps bounded subsets in II x R into bounded subsets in 
R". Indeed, if B is a bounded subset in R x R", its closure B is included 
in R x Rn too. But B is compact, and f is continuous and thus f(B) is 
bounded. Since f ( B )  c f(B), f(B) is bounded. Of contrary, if II # R, or 
R # R", there are examples of continuous functions f : II x R -+ Rn which 
do not map bounded subsets in II x R into bounded subsets in R". 

Corollary 2.4.2 Let f : R x Rn -+ Rn be continuous on R x Rn and let 
x : [ a ,  b)  -+ Rn be a saturated solution of eP(D). Then either x is global, 
i.e. b = +oo, o r  x is not global, i.e. b < +oo and in this case there exists 

Proof. Let us observe first that, if b < +oo, x is necessarily unbounded 
on [ a ,  6). Indeed, if we assume the contrary, x has at  least one limit point 
z* as t tends to b. In view of Theorem 2.4.3, x* must lie on the boundary 
of R" which is the empty set. Thus, the supposition that x is bounded on 
[ a ,  b)  is false. The conclusion of Corollary 2.4.2 is then an easy consequence 
of Remark 2.4.3 combined with Theorem 2.4.4. 0 
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In the hypotheses of Corollary 2.4.2, if b < +oo and limtrb Ilx(t)II = +oo, 
we say that x blows up in finite time. 

Corollary 2.4.3 Let f : R x R" + R" be continuous on R x R" and let 
x : [ a ,  b )  ---f Rn be a solution of CP(D). Then x is continuable i f  and only 
i f  b < +oo and x is bounded on [ a ,  b) .  

Proof. The "only if' part is trivial, while the "if' part is a simple refor- 
mulation of Corollary 2.4.2. 0 

2.4.4 The Existence of Global Solutions 

We conclude this section with two sufficient conditions on f ensuring the 
existence of global solutions of ClP( 9). 

Theorem 2.4.5 
assume that there exist two continuous functions h, k ; 1 -+ R+ such that 

Let f : lI x R" -+ R" be continuous on JI x R", and let us 

for  each ( 7 , ~ )  E TI x R". Then, for  each (a ,<)  E lI x Rn, ClP(9) has at least 
one global solution. 

Proof. In view of Corollary 2.4.1 it suffices to show that  each saturated 
solution of CIp(D) is global. To this aim, let x : [ a ,  b )  --+ Rn be a saturated 
solution of ClP(D). 

Since x satisfies (?€) in Proposition 2.1.1, from (2.4.6), we get 
t 

llx(t)ll 5 IKII + J' h W 7  + I' k(~)11X(~)11d~) 

for each t E [ a,  b). We will show next that  b = sup 1. Indeed, if we assume 
the contrary, inasmuch as [ a , b ]  is compact and h, k are continuous on 
[ a , b ]  c 1, there exists M > 0 such that 

h(t)  5 A4 and k( t )  5 M ,  

for each t E [ a ,  b] .  

that  
The preceding inequalities along with Gronwall's Lemma 1.5.2 show 

Ilx(t) (I I "1 + M(b - a)leM@-"), 

for each t E ( a ,  b) .  Hence x is bounded on [ a ,  b )  and therefore i t  has at least 
one limit point x* as t tends to b. By Theorem 2.4.3, i t  then follows that 
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x* lies on the boundary of R" which is the empty set. This contradiction 
0 can be eliminated only if b = sup& and this completes the proof. 

A significant consequence of Theorem 2.4.5 refers to linear systems of 
first-order differential equations whose thorough study is the subject of 
Chapter 4. Let II be a nontrivial interval in R, and let A : II --$ M,,,(R) 
and B : II + M,,,(R) be two continuous matrix-valued functions, i.e. 
two matrices whose elements are continuous functions from I[ to R. Let 
a E 1, X a  E M,,,(R) and let us consider the Cauchy problem 

(2.4.7) 

whose unknown is a function X : 9 + M m x p ( R ) .  

Corollary 2.4.4 If A : II -+ M,,,(R) and !I3 : II -+ MmXp(R) are 
continuous, then f o r  each a E 1 and X a  E M m x p ( R )  the Cauchy problem 
(2.4.7) has a unique global solution. 

Proof. We recall that, as we have stated in Section 8.1, M,,,(R) is an 
m x p-dimensional linear space over R and therefore it can be identified 
with RWmxp. Moreover, the norm 11 - defined on M m x p ( R )  by 

is equivalent to the Euclidean norm. See Remark 8.1.1. Let us define the 
function f : I[ x Rmxp + Rmxp by 

for each ( t ,  X) E II x R m x p .  Clearly, f is continuous and 

for each (t ,  X) E IIxRmXP. Thus f satisfies the hypotheses of Theorem 2.4.5. 
Accordingly, for each a E I[ and X a  E Mmxp(R), the Cauchy problem (2.4.7) 
has at least one global solution. 

Finally, since 

for each ( t ,  X), ( t ,  Y) E 1 x Rmxp, it follows that f is locally Lipschitz on 
R m x p .  Thus, in view of Theorem 2.3.1, (2.4.7) has the uniqueness property 

0 and this completes the proof. 
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Theorem 2.4.6 Let f : II x R" -+ R" be continuous on 1 x R" and 
dissipative on R". Then, for each (a ,<)  E II x R", W(D) has a unique 
global solution. 

Proof. Let (a,<) E 1 x R". By Theorems 2.3.4 and 2.4.2, O(D) has a 
unique saturated solution x : [ a ,  b)  --+ Rn. To complete the proof it suffices 
to show that b = supII. To this aim, let us observe that W(D) may be 
equivalently rewritten as 

for each r E [ a , b ) .  Taking the inner product both sides in the equation 
above by x(T) ,  recalling that ( x ' (T ) , x (T ) )  = $ - $ - ( 1 ~ ( ~ ) 1 ( ~ ,  using the dissi- 
pativity of f and integrating over [ a ,  t 3 ,  we get 

for each t E [ a ,  b) .  From Cauchy-Schwarz Inequality, we obtain 

for each t E [ a , b ) .  Thus, Brezis Lemma 1.5.3 applies and shows that 

t 

Ilx(t>ll 5 l l < l l  + / llf(7-,0>lld'T, 

for each t E [ a ,  b) .  Consequently, if b < sup II, x is bounded on [ a,  b) and 
therefore it has at least one limit point x* as t tends to b. By Theorem 2.4.3, 
X* must lie on the boundary of R" which is the empty set. Thus b = sup1 

0 and this completes the proof. 

2.5 Continuous Dependence on Data and Parameters 

Let us consider the Cauchy problem 

where a, b : II -+ R are continuous functions on 1, t o  E 1 and < E R. As we 
have already seen in Section 1.3, this problem has a unique global solution 
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given by the so-called variation of constants formula 

See Theorem 1.3.2 and Remark 1.3.1. From the specific form of the solution, 
we may easily see that this is continuous with respect to the initial datum <, 
from R in C(II;R), the latter being endowed with the uniform convergence 
topology on compact intervals in II. Indeed, if J is a compact interval in II 
and c ,q  E R, then 

sup )z(t ,  t o ,  E )  - z(t ,  t o ,  dl L - TI, 
t€J 

where l is the length of the interval J, and M = supTEJ{ l a ( ~ > I } .  
Starting from this simple observation, we intend to show that,  under 

some natural hypotheses on the function f, the solution of the Cauchy 
problem e?('D) depends continuously not only on the data but also on the 
parameters (if any). 

We begin with the study of the continuous dependence of the solution 
on the data and next, we will show how the continuous dependence on the 
parameters can be inferred from the preceding one. Let II be a nontrivial 
interval in R, R a nonempty and open subset in Rn and let f : II x R --+ R" 
be a continuous function. Let a E II and < E R and let us consider the 
Cauchy problem 

If w c R is an open subset containing c,  we may also consider another 
Cauchy problem 

Assuming that the first Cauchy problem elp(II, R,  f ,  a,  () has the uniqueness 
property at  the right, from Theorem 2.4.2, it follows that both problems 
elp(II, R, f, a ,  <) and eiP(II, w ,  f i n x w ,  a ,  <) have a unique saturated solution. 
Since these solutions coincide on the common part of their domains, in 
order to distinguish them, we denote by x(-, c, St) : [a, bt,n) -+ R the unique 
saturated solution of e?(II, R ,  f, a,  c) and by z(., <, w) : [ a ,  b ~ , ~ )  --+ w the 
unique saturated solution of elP(II, w, f i n x w ,  a ,  6). Inasmuch as in all what 
follows we shall keep a E II fixed, and we allow only to vary in R, there is 
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no need to  make explicit the dependence of x on a. Although at a first glance 
these notations seem to be somehow awkward, it should be emphasized that 
they are needed in order t o  avoid a lot of troubles in the sequel. 

Remark 2.5.1 
for each t E [ a ,  b ~ , w ) .  

Let us observe that bt,u 5 bt,a and x(t,<, a) = x ( t , < , w )  

The next lemma will prove useful in what follows. 

Lemma 2.5.1 
Rn with X n 3 = 8. Then dist(X, 3) > O1. 

Let X be a compact subset in R" and 3 a closed subset in 

Proof. Let us assume by contradiction that there exist two subsets X 
and 3 in R", the former compact and the latter closed, with X n 3 = 0, but 
for which dist(X,3) = 0. From the characterization of the infimum of a 
set of reals by means of sequences, we deduce that there exist ( x k ) k E ~  c X 
and ( y k ) k E ~  c 3 such that 

Since X is compact, by virtue of Ces&ro Lemma, we know that there exists 
z E X such that,  a t  least on a subsequence, we have 

lim zk = x. 
k+oo 

From the preceding equality it follows that limk-+co yk = x too. But yk E 3 
for each k E W and inasmuch as 3 is closed, we conclude that x E 3, 
relation which is in contradiction with the initial supposition that 3 and 
X are disjoint. This contradiction can be eliminated only if the distance 

0 between X and F is strictly positive. The proof is complete. 

Definition 2.5.1 A function cp : R --+ R U {+a) is called lower semi- 
continuous at < E R (1.s.c.) if for each E > 0 there exists r > 0 such that, 
for each E B([ ,  r )  n L? we have 

A function cp : R -+ R U {+m} is called lower semi-continuous on  s1 if 
E a. it is lower semi-continuous at  any 

Definition 2.5.2 
if it is Lipschitz continuous with constant 1. 

A mapping between two metric spaces is nonexpansive 

IHere and in what follows, dist(X,F)=inf{lla: - yI/ : II: E X ,  y E F} represents the 
distance between the two subsets X and 3. 
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2.5.1 The Dissipative Case 

The first main result of this section is stated below. 

Theorem 2.5.1 Let f : 1 x 0  -+ R" be continuous on  IIxR and dasszpative 
on  0, let a E 1 be fixed, < E 0 and let x(., <, R) : [ a ,  bt,n) -+ R be the unique 
saturated solution of CiP(II, R, f ,  a ,  <). Then : 

(i) the function < bc,n is lower semi-continuous on  0, i.e., for  each 
< E 0 and each b E ( a ,  bt,n), there exists r > 0 with the property 
that B(<,r)  C R and f o r  each 17 E B ( J , r ) ,  x(.,q,R) is defined on 
[ a ,  b ]  at least, i.e. b < b,,n ; 

(ii) f o r  each < E R and each b E ( a ,  bt,n) there exist r > 0,  with 
B ( J , r )  c R, and a compact subset G c R such that, for each 
17, p E B(<, r ) )  both x(., 17, 0) and x(., p,  0) are defined on  [ a ,  b ]  at 
least and in addition, for each t E [ a ,  b ]  and 8 E [ 0,1] ,  we have 

(iii) for < E 0 and r > 0 as in (ii), 17 H x(-,17,!2) i s  nonexpansive 
f rom B(<, r )  to C( [ a,  b ] ;  Rn),  the latter being endowed with its usual 
supremum norm, 

Proof. Let b E (a, bt,,,) and let us define X = {x( t ,<,  0); t E [ a ,  b ] } .  
Since x is continuous and [ a ,  b ]  is compact, X is compact too and is included 
in 0. Inasmuch as SZ is open, it follows that X n = 8 and accordingly, by 
virtue of Lemma 2.5.1, the distance between X and dR is strictly positive. 
For this reason there exists p > 0 such that the set 

w = {y E R"; dist (y,X) < p }  

(which is obviously open) is included in 0. See Figure 2.5.1. 
In addition, diminishing p if necessary, we may assume that 

- 
w = {y E R"; dist(y,X) 5 p } ,  

is included in R too. See also Figure 2.5.1. 

defined on [ a ,  b ]  at least. As for each 17 E B(<, r )  we have 
Let r E (0 ,p) .  We will show first that  for each 17 E B(<,r) ,  x ( . , r ] ,w)  is 

it follows that 17 E w and therefore, by virtue of Theorems 2.3.2 and 2.4.2, 
the problem e'P(II, w ,  f l l x w ,  a, 17) has a unique saturated solution z(., 7 , ~ ) .  
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Figure 2.5.1 

In view of Remark 2.5.1, we have b,,, 5 b,,n and accordingly, in order 
to prove that b < b , , ~ ,  it suffices to show that b < b,,,. To this aim, let 
us assume the contrary, i.e. let us assume that there exists q E B ( J , r )  
such that b,,, 5 b. Since for each t E [ a ,  b,,,) we have x ( t ,  q, w )  E w and 
[ a ,  b,,,) x w c [ a ,  b ]  x 5 and f is bounded on the compact set [ a ,  b ]  x w, 
from Proposition 2.4.1, it follows that there exists 

lim ~ ( t ,  q ,  w )  = xu, (2.5.2) 
ttb,,u 

while, from Theorem 2.4.3 (iii), we have z, E aw. 

Lemma 2.3.1, we have 
On the other hand, from the dissipativity condition and from 

for each t E [ a ,  b,,,). Taking into account that b,,, 5 b < be,,, from (2.5.2) 
and (2.5.3), we deduce 

But ~(b, , , ,  (, R) E X and therefore 

Thus x, E w ,  thereby contradicting x, E dS1. This contradiction can be 
eliminated only if b < b,,,. So, for each q E B(( ,  r ) ,  x(-, q, w )  is defined on 
[ a ,  b ]  at least. But x(-, q, w )  coincides with x(-, q,  R) on [ a ,  b ] ,  which proves 
that (i) holds true. 
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Using again Lemma 2.3.1, we deduce 

(2.5.4) 

for each q,  p E B(<, r )  and t E [ a ,  b ] ,  which implies 

As z(t, <, 0) E X, this inequality shows that 

dist(Oz(t, P,  R) + (1 - e)z( t ,  rl, R), X) 

and consequently (2.5.1) holds. 
Finally, from (2.5.4), it follows that 

for each q ,p  E B ( J , r ) .  So, the mapping rl H z( . ,v ,R)  is nonexpansive 
from B ( J ,  r )  to C ( [  a ,  b ] ;  R"), the latter being endowed with the supremum 
norm and this completes the proof of Theorem 2.5.1. 0 

2.5.2 The Locally Lipschitx Case 

Theorem 2.5.2 Let f : II x R + R" be continuous on II x R and locally 
Lipschitz on R, let a E II be fixed, < E R and let z( . ,<,R) : [ a ,  bt,n) + R 
be the unique saturated solution of eIP(II,R, f ,a ,<) .  Then (i) and (ii) in 
Theorem 2.5.1 hold and; 

(iii) for each < E R and r > 0 as in (ii) the mapping t-+ z(., 7,  R) is 
Lipschitz continuous from B ( J ,  r )  to C( [ a,  b ] ;  R"), the latter being 
endowed with the supremum norm. 

Proof. The proof is similar to that of Theorem 2.5.1. Namely, let us 
consider the set X, defined by X = {z ( t , c ,  R); t E [ a ,  b ] } ,  which is obvi- 
ously compact and included in R. Then there exists an open subset 520 such 
that X C Ro C no c R. Moreover, there exists p > 0 such that the set 
w = {y E R"; dist (y,X) < p }  satisfies X c w c 5 c Ro. See Figure 2.5.2. 
In addition, as f is locally Lipschitz on R and [ a ,  b ]  x 20 is compact, there 
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Figure 2.5.2 

exists L > 0 such that 

for each t E [ a ,  b ]  and each u, v E 20. 
Let r E ( O , P ~ - ~ @ - ~ ) ) ,  where L > 0 is the Lipschitz constant of f on 

[ a ,  b ]  x no. We will show first that for each q E B(<, T ) ,  z(., q, w )  is defined 
on [ a ,  b ]  at least. As for each q E B ( J ,  r )  we have 

it follows that 7 E w and therefore, by virtue of Theorems 2.3.2 and 2.4.2, 
the problem O(1, w ,  f l l x w ,  a ,  q )  has a unique saturated solution z(., q,  w ) .  
In view of Remark 2.5.1 we have b,,, 5 b,,n and accordingly, in order to 
prove that b < bV,n, it suffices to show that b < b,,,. To this aim, let 
us assume the contrary, i.e. let us assume that there exists q E B ( J , r )  
such that b,,, b. Since for each t E [a,b,,,) we have z ( t , q , w )  E w 
and [ a ,  bq,,) x w c [ a , b ]  x W and f is bounded on the latter, in view of 
Proposition 2.4.1, i t  follows that there exists 

lim z ( t ,  q, w )  = 2,. (2.5.6) 
tfb,,, 

From Theorem 2.4.3 (iii), we necessarily have z, E dw. On the other hand, 
from the Lipschitz condition, we conclude 
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for each t E [a,b,,,). Thus, thanks to the Gronwall’s Lemma 1.5.1, we 
obtain 

for each t E [a, bq,,). Taking into account that b,,, 5 b < b c , ~ ,  from (2.5.6) 
and (2.5.7), we deduce 

But z(b,,,,<,R) E X and therefore 

Thus xu E w n dw which is empty. This contradiction can be eliminated 
only if b < b,,,. Consequently, for each r,~ E B(( , r ) ,  x(m,q,u) is defined on 
[ a ,  b ]  at least. But x(-, q, w )  coincides with x(., q,R)  on [ a ,  b ] ,  which proves 
(i). To prove (ii) and (iii), let us observe that, by the Lipschitz condition 
and Gronwall’s Lemma 1.5.1, for each 7 ,  p E B(J, T ) ,  we have 

which shows that the mapping rj~ H x(. ,q,Q) is Lipschitz continuous, with 
Lipschitz constant eL(b-a) ,  from El(<, r )  to C([ a, b ] ;  Rn), the latter being 
endowed with the supremum norm and this achieves the proof of (iii). Now 
let us observe that 

As z ( t ,  t ,  R) E X, this inequality shows that 

and consequently (2.5.1) holds. The proof is complete. 
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2.5.3 Continuous Dependence on Parameters 

We may now go on with the study of the continuous dependence on the 
parameters. To this aim, let II be a nonempty and open interval in R, R a 
nonempty and open subset in R", and IP a nonempty and open subset in 
Iw", the latter being called the set of parameters. If u E R and p E P, we 
denote by 

Let f : 1 x R x IP -+ R" be a function which is continuous on 1 x R x IP 
and locally Lipschitz on R x P, i.e. for each compact subset c 1 x R x IP 
there exists L = L ( e )  > 0, such that for each ( t ,  u , p ) ,  ( t ,  w, q )  E e, we have 

Ilf ( t ,  u, P )  - f ( t ,  w, 4)  Iln 5 Lll(u, P )  - (w, Q)lln+m, 

where, for k E N*, 11 Ilk stands for the Euclidean norm of Rk. 
Let a E 1, < E R and p E P and let us consider the Cauchy problem 

The-second main result of this section is: 

Theorem 2.5.3 Let f : I[ x St x P --+ Rn be continuous o n  II x R x P, locally 
Lipschitx o n  R x P, let (a ,  J , p )  E II x R x P and let x(-, <, p )  : [ a ,  be,,) --+ R be 
the unique saturated solution of eIp(II, R, f, a,  <),. Then, f o r  each b E ( a ,  be,,) 
there exist r > 0 and a compact subset W in R (which depends on  <, p ,  b)  such 
that B ( p , r )  c P, and for each q E B ( p , r ) ,  the unique saturated solution 
x(., <, q )  of eIp(II, R, f ,  a ,<)g  i s  defined at least o n  [ a ,  b ] ,  i e .  b < bc,g,  and 
fo r  each t E [ a ,  b ] ,  z ( t ,  <, q )  E (3. Moreover, the mapping q H x(., <, q )  is  
Lipschitz continuous from B ( p ,  r )  to C( [ a ,  b ] ;  Rn), the latter being endowed 
with the usual supremum norm. 

Proof. For each z E R and p E P, we denote by 

2 = ( 2 1 ,  2 2 , .  . ' , zn+m) = (z, P )  = (z1, z2,. . . 7 zn, P l ,  P 2 ,  * - , Pm), 

and we define F : II x R x P --+ by 

Then O(1, R, f, a,  <), may be rewritten as 

2' = F ( t ,  2 )  

z(a> = (<,P) .  
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Hence, the continuous dependence of x on p reduces to the continuous 
0 dependence of z on ( r ,  p ) ,  and thus Theorem 2.5.2 applies. 

In fact, by this method we have proved a more general result. Namely, 
we have proved: 

Theorem 2.5.4 Let f : II x R x P --+ Rn be continuous on  II x R x P, locally 
Lipschitz on  R x P, let ( a ,  J, p )  E IIx R x P and let x(., J,p) : [ a ,  b t , p )  --+ Rn be 
the unique saturated solution of eIp(II, R, f, a,  Q p .  Then, for each b E ( a ,  bc ,p )  
there exist r > 0 and a compact subset 3 in R (which depends on  < ,p ,  b)  
such that B ( (c ,p ) ,  r )  c R x P, and f o r  each (7, q)  E B((J ,p ) ,  r ) ,  the unique 
saturated solution x(., 7 ,  q )  of eP(II, R, f, a ,  q) ,  i s  defined at least on  [ a ,  b ] ,  
i.e. b < b,,,, and for each t E [ a ,  b ] ,  x ( t ,  r ] ,  q )  E c3. Moreover, the mapping 
(7, q)  H x(., r ] ,  q)  is Lipschitz continuous f rom B ( ( < , p ) ,  r )  to C ( [  a ,  b ] ;  R"), 
the latter being endowed with the usual supremum norm. 

2.6 Problems of Differentiability 

As we have already seen in Section 2.5, if f : II x R x P --+ R" is continuous 
on II x R x P and locally Lipschitz on R x JP, the unique saturated solution 
x(.,J,p) of C P ( I I , R , f , a , J ) p  depends continuously on (J,p) E s2 x P. Our 
aim here is to show that, whenever f is differentiable on R x P, the saturated 
solution x(., J, p )  is differentiable too as a function of (J,p) E R x P. 

In order to clarify from the very beginning what we are going to do 
next, let us consider the Cauchy problem governed by the first-order scalar 
differential equation 

x' = f ( t , x )  { .(a) = E 

and let us assume that f : II x R --+ R is of class C1. Let us assume also 
that, for each < E R, the Cauchy problem above has a unique saturated 
solution x(., J) defined on [ a ,  a + 61 at least, where 6 > 0 is independent 
of 6 E R. Finally, let us assume that, for each fixed t E R, the mapping 
< I--+ x( t ,<)  is differentiable on R. Then, differentiating both sides in 
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with respect to  c ,  we deduce 
t 

4 , o  = 1 + f&, 4% m d s ,  t) ds, 

where xc, fx represent the partial derivative of the function x with respect 
to S ,  and respectively of the function f with respect to  z. So, the function 
y : [a ,a  + 61 -+ R, defined by y ( t )  = ze(t,<) for each t E [ a ,a  + S] ,  is a 
solution of the linear Cauchy problem 

We shall see in what follows that a completely analogous result holds 
in the general case too. Of course, in this case, fZ has to  be substituted 
by the Jacobian matrix (6'fi/Oz,),,,, while 1 by the n x n-unit matrix 3,. 
We emphasize however, that  the true difficulty of the problem consists in 
proving that ( H z(t,<) is differentiable and not that  it satisfies a linear 
Cauchy problem very similar to  the scalar one. 

2.6.1 

As in the preceding section, we analyze first the simpler case in which f 
does not depend on parameters, and then we will show how the general 
case reduces to  the preceding. So, let II be a nontrivial interval in R, R a 
nonempty and open subset in R", f : II x R + Rn a continuous function, 
a E 1 and 

Dinerentiability with Respect to the Data 

E R. Let us consider the Cauchy problem 

If for each t E 1, f ( t , - )  is a function of class C1 on SZ, we denote by 
fz(t, z) its derivative at  z E R ,  i.e. the n x n-matrix whose generic element 
on the ith line and jth row is g(t,z), i,  j = 1 , 2 , .  . . , n. 

Remark 2.6.1 Iff : II x i-2 --+ Iw" is continuous and for each t E 1, f ( t ,  .) is 
of class C1 on R and fx is continuous on 1 x R, then f is locally Lipschitz on 
R. So, if this happens,-for each (a,<) E I[ x L?, C??(II,R,f,u,<) has a unique 
saturated solution z(.,c) : [ a , b c )  -+ R. See Remark 2.3.2, Theorem 2.3.2 
and Theorem 2.4.2. 

Remark 2.6.2 Let us assume that f : II x R + R" is continuous and for 
each t E 1, f ( t ,  .) : R -+ R" is of class C1. Let us assume further that  fz  
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is continuous on 1 x 0. Then, for each r E I and x , y  E R for which the 
segment line 

lies in R, we have 

(2.6.1) 

This is a consequence of the fact that f(r, .) is a function of class C1 on 
R and of the obvious equality 

for each 8 E [ 0 ,1 ]  

We may now state the first fundamental differentiability result. 

Theorem 2.6.1 Let f : II x R -+ Rn be continuous and such that, for 
each t E I, f ( t , - )  : R + Rn is of class C1 and fz : 1 x fl -+ Mnxn(R) is 
continuous on  II x R. Let (a ,  <) E II x R and let x(., c )  : [ a ,  b t )  4 R be the 
unique saturated solution of eP(II, R, f, a,  J). Then, for  each b E ( a ,  b t ) ,  there 
exists r > 0 (depending on  J and on  b )  such that B ( J ,  r )  c R and, for each 
q E B(<,r) ,  x(., q )  is defined on  [ a ,  b ]  at least, i.e. b < b,. I n  addition, f o r  
each t E [ a ,  b ] ,  the mapping q H z ( t ,  q )  is diflerentiable on  B(J, r )  and, for 
each q E B ( J , r ) ,  its derivative x,(t, q )  satisfies xV(., q )  : [ a ,  b ]  -+ Mnx,(R) 
and t H x q ( t , q )  is the unique solution of the Cauchy problem 

(2.6.2) 

where J n  = diag( 1,1, . . . ,1). 

Proof. Since, by virtue of Remark 2.6.1, f satisfies the hypotheses of 
Theorem 2.5.2, it follows that, for each b E ( a ,  b t ) ,  there exists r > 0 and 
a compact subset i;, in R such that B(J, r )  c Q and for each q E B(J, r ) ,  
x ( . ,q )  is defined on [ a , b ]  at least and, for each t E [ a , b ] ,  z ( t , q )  E 13. 
Moreover, from Theorem 2.5.2 (ii), we know that, for each p,q E B(c ,r ) ,  
r E [ a ,  b ]  and 8 E [ 0,1] ,  we have 
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Fix 7 E B ( [ ,  r )  and let us observe that fz(., x ( . , q ) )  : [ a ,  b ]  -+ ?v€,~,(R) 
is continuous. So, we are in the hypotheses of Corollary 2.4.4, from where 
it follows that (2.6.2) has a unique solution X : [ a ,  b ]  4 M,,,(R). 

In order to  show that,  for each t E [ a , b ] ,  z ( t , . )  is differentiable a t  
7 E B((,T) and its derivative xV(t ,q)  coincides with X ( t ) ,  it suffices to  
prove that, for each t E [ a ,  b ]  and 7 E B({,  r ) ,  we have 

(2.6.4) 

Let t E [ a ,  b ] ,  p, 7 E B ( J ,  r ) .  By Proposition 2.1.1, it follows 

and 

Then, for each t E [a ,  b ]  and p, 7 E B ( J ,  T ) ,  we have 

By virtue of (2.6.1) and (2.6.3), we successively obtain 

and 
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(2.6.5) 

On the other hand, as fz and X are continuous, there exists M > 0, 
for each t E [ a ,  b ]  and p, -r) E B(<, r ) .  

such that, for each t E [ a ,  b ]  and y E 6,  we have 

where 11 is the norm on Mnxn(R) defined in Section 8.1. 
Next, let us define g : B(<,r)  x B(<,r) -+ R+ by 

for each ( p , ~ )  E B(<,r)  x B(<,r).  Since fz is continuous and, by virtue of 
Theorem 2.5.2, 

uniformly for T E [ a ,  b ] ,  in view of Corollary 8.2.2, it follows that 

for each rl E B(J, r ) .  
From (2.6.5) and (2.6.6), we obtain 

for each t E [ a ,  b ]  and p,  7 E B(<,r).  Then, from Gronwall’s Lemma 1.5.2, 
we deduce 

for each p,  7 E B ( J ,  r )  and t E [ a ,  b ] .  As this inequality along with (2.6.7) 
0 implies (2.6.4)’ the proof is complete. 
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2.6.2 Diflerentiability with Respect to the Parameters 

We may now proceed to the study of the differentiability of the solution with 
respect to the parameters. To this aim, as in Section 2.5, let us consider 
a nontrivial interval JI in R, a nonempty and open subset R in Rn and a 
nonempty and open set of parameters IP in R". Let f : II x R x IP --$ R" 
be a continuous function, let a E 1, < E s1, p E IP, and let us consider the 
Cauchy problem 

If, for each t E JI, f ( t ,  ., - )  : R x P -+ Rn is of class C1, we denote 
by f x ( t ,  2 ,  p )  the derivative of the partial function f ( t ,  ., p )  calculated at 
x E Q ,  i.e. the n x n matrix whose generic element on the ith and jth row is 
e ( t ,  z , p ) ,  i ,  j = 1 , 2 , .  . . n,  and by fp(t, x ,p)  the derivative of the partial 
function f ( t ,  x ,  -) calculated at p E IP, i.e. the n x m matrix whose generic 
element on the ith and jth row is %(t,  z,p), i = 1 , 2 , .  . . ,n, j = 1 , 2 , .  . . , rn. 

The second fundamental differentiability result is stated below. 

Theorem 2.6.2 Let f : II x s1 x IP --+ Rn be continuous and let us assume 
that, for each t E 1, f ( t ,  ., a )  : R x P -+ R" is of class C1 and both functions 

are continuous on II x R x P. Let ( a ,  <,p)  E JI x R x P and let x( . ,  < , p )  : 
[ a ,  bg,p) -+ R be the unique saturated solution of e!P(JI, R, f ,  a,  < ) p .  Then, 
for  each b E ( a ,  bt,,), there exists r > 0 (depending on <, p ,  b)  such that 
B(p,  r )  c lP and for each q E B(p,  r ) ,  x( . ,  <, q )  i s  defined on [ a ,  b ]  at least, 
i.e. b < bt,q. In addition, for each t E 1, the mapping q x(t ,<,q) is 
diferentiable on B(p, r ) ,  and for each q E B ( p ,  r ) ,  its derivative xq( t ,  5, q )  
satisfies x,(.,<,q) : [ a , b ]  --+ Mnx"(R) and t H x,(t,<,q) is the unique 
solution of the Cauchy problem 

f Z ( - , . , * )  : JI x R x IP + Mnxn(R) and f p ( * , * , . )  : 11 x R x IP -+ M,xm(R) 

where On,, is the n x m null matrix. 

The linear differential system (2.6.8) is known under the name of system 
in variations associated to the problem elP('D),. 

Proof. Let x E R,  p E IP and let us denote by x = (z,p),  i.e. the vector in 
Rn+m whose first n components are the components of x ,  and whose last m 
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components are those of p .  Let us define the function F : II x R x IP -+ 

by 

for each ( t ,  z )  E II x x P, i.e. the vector in IWn+m whose first n components 
are those of f ( t , z )  and whose last m components are zero. Let us denote 
by c = (<, p )  and let us observe that elP(II, R, f ,  a,  <), may be rewritten as 

Then, we may apply Theorem 2.6.1 from where, it follows that, for each 
b E (a, b ~ , ~ ) ,  there exists r = r (c ,  b)  > 0, such that B(C, r )  c R x P and for 
each c E B(<,r ) ,  z ( . , c )  is defined on [ a , b ]  at least. In addition, for each 
t E 1, the partial function c I--+ z ( t , q )  is differentiable on B(c ,r )  and its 
derivative zc is the unique solution of the Cauchy problem 

(2.6.9) 

0 bserving that 

and 

and identifying the corresponding block matrices, from (2.6.9), we obtain 
0 (2.6.8), and this completes the proof. 

Remark 2.6.3 In practice, the parameter p E IP in the system 

may have various significations. It is, either the mathematical expression 
of an external command by means of which we can modify x according to 
some a priori performances or criteria, or the mathematical expression of a 
random perturbation which may modify the evolution of the system, or even 
a set of coefficients which are specific to some physical object, etc. In all 
these cases, it is very important to know “how fast” varies x ( t ,  <, p )  when p 
varies in some neighborhood of a certain po E IP. Due to the differentiability 
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of the mapping p I-+ x ( t ,  5 ,  p )  in PO, the “magnitude” of this variation may 
be “evaluated” by the “magnitude” of the norm of the derivative xp(t ,  J , p )  
at p = PO. This explains why this matrix is called the sensitivity matrix of 
( S )  and its elements sensitivity functions, while, whenever the norm of the 
sensitivity matrix is “sufficiently small”, the system (S) is called robust. 

Remark 2.6.4 Theorem 2.6.2 is the main tool in the so-called the small 
parameter method used for the first time in Mechanics. This consists in 

close to PO. 
approximating x( t ,  5, P )  by 44 t, P o )  + xp(t, ( 7  P o ) ( P  - P o )  for p sufficiently 

In order to  understand the spirit of this method, let us analyze the 
following example. 

Example 2.6.1 Find the solution of the scalar Cauchy problem 

x‘ = z + p ( x 2  + t )  { x(0)  = 0, 

for p close enough to  0. 
Since, for p # 0, the differential equation in (eIP), is nonlinear (in fact a 

Riccati equation) there exists very few chances to  solve it explicitly. Hence, 
we will try to  find the solution of the problem (C?’), approximately. 

Take 11 = R, !2 = R, P = R and f : R x R x R -+ R, defined by 
f ( t ,  x,p) = z + p ( x 2  + t )  for each ( t ,  z , p )  E R x R x R. For p = 0, (CIP), 
reduces to 

whose unique saturated solution x(.,O,O) : [ O , o o )  -+ R is x(t,O,O) = 0 for 
each t E R+. 

Let us observe that 

af ( t ,  x ( t ,  0, O ) ,  0) = 1 dx 
and 

af ( t ,  z ( t ,  0) O ) ,  0) = t 
8 P  

for each ( t ,  x,p) E R x R x R. Accordingly, the system in variations (2.6.8) 
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associated to efp(1, 52, f ,  0, 0), has the specific form 

The solution of this Cauchy problem is y ( t )  = et - t - 1 for each t E R+. 
Let T > 0. Then, if p is “sufficiently close to” 0, by virtue of Remark 2.6.4, 
we may take 

x( t ,  0 , p )  (et - t - 1 ) p  

for each t E [O,T].  

For the sake of completeness we include the following result of differen- 
tiability with respect to the “initial time” a. The reader interested in the 
proof of this result is referred to [Halanay (1972)], p. 100. 

Theorem 2.6.3 Let f : 1 x 52 --+ Rn be of class C1, let (a ,c)  E 1 x 52 
and let x(., a )  : (cay ba)  -+ IR be the unique saturated bilateral solution of 
the efp(1,52, f , a , c ) .  Then, for each c E (ca,a) and b E ( a ,  b a ) ,  there exists 
6 = &(a, b, c) > 0,  such that, for each ti E ( a  - 6, a + s>, the unique saturated 
bilateral solution x( . ,  ti) of O(1, 52, f, 5, .$) is defined at least on [ c, b ] .  In 
addition, for each t E [ c, b ] ,  the partial function 6 H x( t ,  ti) is differentiable 
on ( a  - S ,  a + S ) ,  and its derivative at 6 satisfies X G ( . ,  ti) : [ c, b ]  -+ Rn, and 
t H xc(-, 6 )  is the solution of the linear Cauchy problem 

(2.6.10) 

Remark 2.6.5 Under the hypotheses of Theorem 2.6.3, let us denote 
by x ( . , a , r )  : (ca,ba) -+ 52 the unique saturated bilateral solution of 
e?(1,52) f, a,  <). Then x satisfies 

Indeed, from (2.6.10) we have 

(2.6.11) 

while, from (2.6.2) it follows 
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Accordingly 

and thus (2.6.11) holds. 

2.7 The Cauchy Problem for the nth-Order Differential 
Equation 

The goal of this section is to  present several results referring to  the Cauchy 
problem for an nth-order scalar differential equation, which, as we have 
already seen in Section 2.1, may be reduced to  a Cauchy problem for a 
suitably defined first-order system of differential equations. 

More precisely, let II be a nontrivial interval in R, R a nonempty and open 
subset in Rn, g : II x R -+ R a given function, a E II, < = (el,&, . . . , e n )  E R 
and let us consider the Cauchy problem for the nth-order scalar differential 
equation in the normal form with data 9' = (II, R,  g ,  a ,  e )  

erP(D') can be reformulated as a Cauchy problem for the system of first- 
order differential equations 

x; = 22 

x; = 23 

2 6 - 1  =xn 
X; = g ( t , x 1 , ~ 2 , - . . , x n )  
xl(a) = <I, x2(a) = E2, * * .  , xn(a) = <n. 

In its turn, this Cauchy problem can be reformulated as a Cauchy problem 
for a first-order vector differential equation in the normal form 
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where D = (I, 0, f ,  a,  (), while f is defined as above. 

to eY(’D’). We begin with the following local existence theorem. 

Theorem 2.7.1 
for each ( a ,  () E I x R, W(II,R, 9, a,  <) has at least one local solution. 

Proof. Clearly g is continuous if and only if f ,  defined by means of the 
transformations (’T), has the same property. In view of Theorem 2.2.1, for 
each ( a ,  () E 1x0, there exists at least one local solution 2 : [a ,  a+6] -+ R of 
eY(II, R, f, a ,  r ) .  Taking into account (T), it is easy to see that the function 
y : [ a , a + 6 ]  --+ R, defined by y ( t )  =z1( t )  for each t E [ a , a + 6 ] ,  is a local 

0 
Definition 2.7.1 We say that CT(D’) has the uniqueness property if, for 
each ( a , ( )  E I x R, each two solutions y and z of C!lP(II,R,g,a,<) coincide 
on their common interval of definition. 

We may now pass to the statement of the fundamental results referring 

(Peano). If g : II x R -+ R is continuous on II x 0, then, 

solution of eY(1, R, 9, a,  (). The proof is complete. 

As in the case of the Cauchy problem for first-order differential systems, 
the continuity of the right-hand side of e3’(?>’) alone ensures only the local 
existence of at least one solution, but not its uniqueness on the interval 
of existence. In order to get the uniqueness as well, we have to impose 
additional conditions on the function 9. One of the most frequently used 
hypotheses is the locally Lipschitz condition. 

Definition 2.7.2 A function g : 1 x R --f R is called locally Lipschitx on 
R if for each compact subset X in II x 52, there exists L = L ( X )  > 0 such 
that, for each ( t , u ) ,  ( t , v )  E X we have Ig(t,u) - g(t,v)l 5 Lllu - vll. 

A sufficient condition for uniqueness is: 

Theorem 2.7.2 
has the uniqueness property. 

Proof. Let us observe that, if g is locally Lipschitz on R, then f defined 
by means of (7) has the same property. Indeed, let X be a compact subset 
in II x R and let L = L ( X )  > 0 as in Definition 2.7.2. Then 

If g : II x R --+ R is locally Lipschitx on R, then eT(9‘) 



Exercises and Problems 95 

for each ( t ,  u ) ,  ( t ,  w) E X and thus f is locally Lipschitz in the sense of 
Definition 2.3.2. The conclusion follows from Theorem 2.3.1. 0 

A simple but important consequence of Theorems 2.7.1 and 2.7.2 is: 

Theorem 2.7.3 If g : 1 x 52 + R is continuous on II x R and locally 
Lipschitx on R then, for each (a ,<)  E II x 0) there exists 6 > 0 such that 
[ a ,  a+6]  c 1 and W(1, Q, g ,  a ,  c )  has a unique solution defined on [ a ,  ai-61. 

2.8 Exercises and Problems 

Exercise 2.1 Solve the following Cauchy problems 

tx' = x + x2 tx' = ( 1  - t 2 ) x  
(4 { Z ( l )  = 1. (b )  { x(2) = 1. 

X' = (8 t  + 2~ + 1)2  x '( t2x - X )  + tx2 + t = 0 
x(0)  = -f. ( d )  { x(0)  = 2. 

tx' = x - t tx' = -(t + 2 )  

( e )  { 2 ( 1 )  = 2. ( f )  { x ( l )  = 0.  

t2x' = x ( t  - x )  22x2' = 3x2 - t 2  
( g )  { 2 ( 1 )  = 1. (h)  { 2 ( 1 )  = 2. 

tx' = x + t x  tx' = -2x + t4 
('1 { x(1)  = e.  ( j )  { z (1 )  = 2. 

tx' = -x - tx2 
x ( l )  = -1. 

tx' = -x i- et 
(k) { 2 ( 1 )  = 0.  

2txx' = x2 - t (2t  - t2x)x' = -x 
(4 { x ( l )  = 2. (4 { 2 ( 1 )  = 1. 

tx' = -2x(1 - t x )  ( x2  - 3t2)x' = -2tx 
(O) { z(1) = 1. { z ( 0 )  = 1. 

Problem 2.1 
equivalence between CP(D) and ( Y E ) .  

Give another proof to Proposition 2.1.2 avoiding the use of the 

Problem 2.2 
and 5 E R", W ( D )  has at least one global solution. 

Show that, under the hypotheses of Lemma 2.2.2, for each a E I[ 
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Problem 2.3 Let f : W x W --+ W be defined by 

f 0  if t E W  and z=O 

f ( t ' z )  = { if t E W and z E W\ (0). 

Prove that, for  each ( a , [ )  E W x W, e t p ( W , W ,  f , a , [ )  has at least one right global 
solution but, nevertheless, f is  not continuous o n  W x W. Consequently, the conti- 
nuity of the function f is  not a necessary condition fo r  the existence of solutions. 

Problem 2.4 Let f : W x W --t W be defined by 

- l i f  t E W  and 2 2 0  
1 if t E W and z < 0. 

As we have seen in Example 2.2.1, e tp(W,W,  f , O , O )  has no  local right solution. 
Show that C P ( W ,  W, f ,  0,O) has a unique left saturated solution and find it. 
Problem 2.5 Let f : 1 x 52 -+ W" be a funct ion with the property that, for  each 
( a ,  () E 1 x R there exist a neighborhood 'V of ( a ,  [), 'V c 1 x R and L = L(V)  > 0 
such that f o r  each ( t , z ) ,  ( t , y )  E 'V, we have 11 f ( t , z )  - f ( t , y ) l l  5 Lllz - yII. Prove 
that f is locally Lipschitz o n  R in the sense of Definition 2.3.2 

Problem 2.6 Let f : 1 x R --f W" be a function which has partial derivatives with 
respect to the last n-arguments with the property that afilaxj are continuous o n  
II x R f o r  each i ,  j = 1 , 2 , .  . . , n .  Prove that f is  locally Lipschitz on R. 

Problem 2.7 Let f ,  g : W x W --t W, f ( t ,  z) = v m +  1 and g ( t ,  z) = 2f( t ,  z) 
for  each ( t , z )  E W x W. Prove that for  each (a,() E W x W,eF'(R,W,g,a,J) has 
the uniqueness property but, nevertheless, f o r  each a E W, O ( W ,  W, f, a ,  a )  has at 
least two solutions. ([Halanay (1972)], pp. 79-80) 

Problem 2.8 Let f : W x W --t W be a continuous function, let ( a , [ )  E W x W 
and let 2, y : J --+ W be two solutions of CJ"PW, W, f ,  a, [). Show that both 3: V y and 
z A y  defined by ( z V y ) ( t )  = m a x { z ( t ) , y ( t ) } ,  ( z A y ) ( t )  = m i n { z ( t ) , y ( t ) }  f o r  each 
t E $, are solutions of W ( W ,  W, f ,  a ,  0. 
Problem 2.9 Let f : W x W -+ R be a continuous function such that O ( D )  has 
the uniqueness property. Let a E W be fixed, [ E W and let x(., t )  : [ a ,  bc) t R be 
the unique saturated solution of (3ip(W, W, f ,  a ,  (). Show that, whenever ( 5 q, we 
have z ( t ,  S )  5 z( t ,  q) for each t in [ a ,  b t )  n [ a ,  bq) .  

Problem 2.10 Let 1 and 52 be two nonempty and open intervals in W, and let 
f : 1 x SZ 4 W be a continuous function such that C!lp(D) has the uniqueness 
property. Let ( a ,  r )  E 11 x R and let x : [a ,  b) --t 52 the unique saturated solution of 
etp(1, R, f ,  a ,  [). Let y : [ a ,  b) -+ R be a function of class C1 satisfying 

fo r  each t E [ a ,  b) .  Show that, f o r  each t E [ a ,  b ) ,  y ( t )  5 z ( t )  
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Problem 2.11 Let II be a nonempty and open interval in R, R a nonempty and 
open subset in R" and f : I x R + W" a continuous function fo r  which there exists 
a continuous function w ; I[ x W+ --f W+ such that, f o r  each ( t ,  x), ( t ,  y) E 1 x R, 
we have ( f ( t , x ) -  f ( t , y ) , x - y )  5 w ( t ,  IIx-yll)llx-yll. Show that if, for  a certain 
a E I, the unique saturated solution of e?(lI, W+, w ,  a,  0 )  is  identically 0 ,  then fo r  
each t E R,  eip(II, R,  f ,  a ,  t) has at most one solution on a given interval. Prove 
Theorems 2.3.1 and 2.3.3 by using this result. 

Problem 2.12 Let w : W+ --+ R+ be a continuous funct ion with w ( r )  > 0 f o r  
each r > 0 and w ( 0 )  = 0.  If sd 3 = +oo, then the only saturated solution of 
the Cauchy problem x' = w ( x ) ,  z(0) = 0 is z = 0.  

Problem 2.13 Let f , g  : I x R + W" be two functions,  continuous on I x R with 
f Lipschitz and g dissipative on R.  T h e n  e?(I, R,  f + g ,  a ,  6 )  has the uniqueness 
property. 

Problem 2.14 If f : I x R + R" is  continuous and there exists a continuous 
function w : R+ -+ R+, with w ( r )  > 0 for  each r > 0 ,  w ( 0 )  = 0,  Jt 3 = +oo 
and 11 f ( t , x )  - f (t,y)II 5 w(1lx - yII) f o r  each t E II and x , y  E R, then efp(D) has 
the uniqueness property. This  is  the Osgood's uniqueness theorem. 

Problem 2.15 Prove Theorem 2.3.1 by using Theorem 2.3.3 and the method of 
integrand factor. 

Problem 2.16 Let f : W x W -+ W be defined by f ( t , x )  = %? f o r  each ( t , x )  in 
R x R. Show that the solution x : [ - l , O ]  + R, x ( t )  = 0 for  each t E [ - - l , O ] ,  has 
at least two saturated solutions of erP(R, W, f ,  - 1 , O )  extending it. 
Problem 2.17 Find two nontrivial intervals I and R in R and a continuous 
function f : I x R -, W which does not carry bounded subsets in II x R into 
bounded subsets in R. 

Problem 2.18 Prove a result analogous to  Theorem 2.4.4 under the hypothesis 
that the function f : 1 x R + W" is  continuous and for  each 9 x B C I x R with 
J compact and B bounded, f (JI x B )  is bounded in W". Is the class of functions 
f satisfying the condition above strictly broader than that of functions f which 
carry bounded subsets into 1 x 52 in bounded subsets in W"? 
Problem 2.19 Let X be compact in W n  and 3 closed R", with X n 3 = 8. A s  
we already know by Lemma 2.5.1, dist(X, 3) > 0. Could this result be extended to 
the more general case in which both subsets X and 3 are only closed? 

Problem 2.20 Let f , g  : W + W be two continuous functions, and let G : W --f R 
be defined by G ( x )  = S,"g(s)ds  f o r  each x E W. Assume that there exists a > 0 
such that, f o r  each x ,  y E W, we have G ( x )  1 ax2  and yf (y) 2 0.  Show that, for  
each [I, <2 E W, each saturated solution of the Cauchy problem 

X I 1  + f ( x ' )  + g(x) = 0 { x(0)  = 51, x ' (0 )  = 5 2 ,  

is  defined o n  W+. 
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Problem 2.21 Let f , g  : W+ x Rn + Rn be continuous, with f Lipschitz and g 
dissipative on W". Then, f o r  each ( a ,  () E W+ x W", eT(R+, W", f + g ,  a ,  <) has a 
unique global solution. 

Problem 2.22 Let f : ( t 1 , t z )  x (w1,wz) --+ W be continuous, let a E ( t l , t 2 ) ,  
( E (w1, w2) and let x : [ a ,  b) + W be a saturated solution of the Cauchy problem 

2' = f ( t , x )  
x ( a )  = E .  

Show that, i f  b < t 2  and x is  bounded, then there exists limttb x ( t )  = x*. Prove a 
generalization to the case in which f : ( t l ,  t 2 )  x R + W", where R is  a nonempty 
and open subset in W" whose boundary contains only isolated points. 

Problem 2.23 Let f : R + R be a continuous funct ion and let x : [ a ,  b ]  + W be 
a function of class c1 satisfying 

Show that x is  constant. Extend this result to the case in which f : R" 3 W" with 
n > 1. Is the continuity off  suficient in this case? 

Problem 2.24 Let 1 be a nonempty an  open interval and f : I x R" -+ W" a 
continuous and bounded function such that eT(B) has the uniqueness property. 
Show that, for  each [ a ,  b ]  c I, the mapping E H x( . ,  c) is  continuous from R" in 
C( [ a ,  b ] ;  W"), the latter being endowed with the uniform convergence topology. 

Problem 2.25 Let f : W x R ---f W be as in Problem 2.3. For [ E ( O , + o o ) ,  
denote by x(  -, () the unique global solution of eip(W, W, f ,  0,  <). Show that, although 
l i m x ( t , J )  = t uniformly f o r  t E [O,+m), the funct ion y ( t )  = t ,  f o r  t E [O ,+m) ,  
€10 
is  not a solution of eT(W, R, f ,  0,O). Explain the result. 

Problem 2.26 Let f : R x R x W --+ W be defined by 

0 i f  t E R  and z + p = O  

For p E (O,+m) we denote by x ( . , p )  : R+ --+ W the unique global solution of 
CP(W,R, f ,  0,  O),. Show that, although l i m x ( t , p )  = t uniformly f o r  t E [ 0 , 1 ] ,  the 

P10 
function y ( t )  = t ,  f o r  t E [ 0 ,  1 1, is  not a solution of eip(W, W, f ,  0 ,  O),. Explain the 
result. 

Problem 2.27 Let f : R x R x W + W be defined by f ( t , z , p )  = 3 v w  for 
each ( t ,  x , p )  E W x R x W. Show that, f o r  each p # 0 ,  eT('D), has the uniqueness 
property. I n  addition, lim,,o x ( t ,  z , p )  = f ( t ,  x ,  0 )  uniformly f o r  ( t ,  x )  E x R, 
but, nevertheless, eip('D), lacks the uniqueness property. Thus,  the uniqueness 
property does not depend ((continuously)' o n  parameters. 



Chapter 3 

Approximation Methods 

This chapter is entirely dedicated to the presentation of several approximation 
methods of the solution of a given Cauchy problem. Although these methods are 
no longer used in their original form, they are still of interest in many effective nu- 
merical algorithms. In the first section we prove that a Cauchy problem has only 
analytic solutions whenever the right-hand side of the corresponding differential 
equation is an analytic function. This theorem is, on one hand, an approximation 
result (ensuring the possibility to develop any solution in power series), and on 
the other hand a sufficient condition for the regularity of solutions. In the next 
three sections we discuss: the method of successive approximations, the method of 
polygonal lines, known also as Euler explicit method, and Euler implicit method. 
The chapter ends with a set of exercises and problems. 

3.1 Power Series Method 

In this section, using the so-called majorant series method proposed by 
Cauchy and improved by Lindeloff, we shall prove that,  whenever f is 
analytic on 11 x R, the unique solution x of the Cauchy problem C!lp(D) is 
also analytic on its domain. This result allows us, either to  approximate 
the solution by a partial sum of the power series which defines it, or even 
to  find the solution explicitly as a power series. 

3.1.1 An Example 

This method of solving of a Cauchy problem by means of power series is 
one of the oldest and effective. In order to  illustrate it, let us analyze the 

99 
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following example. 

Example 3.1.1 Solve the Cauchy problem 

(1 - t2)x” - 4tx’ - 2x = 0 
x (0 )  = 1 { d ( 0 )  = 0 

by looking for the solution as a power series: 

00 

x( t )  = Cc,tn 
n=O 

for It1 < r ,  with r suitably chosen. 
We solve this problem in two steps. First, we find the coefficients c, for 

n = 0,1 , .  . . , and then we estimate the radius of convergence of the power 
series thus obtained. A last step, which solves the problem, consists in the 
continuation of the solution to a maximal domain of existence. 

In order to find the coefficients, we impose the condition that 2, given by 
(S), satisfy the differential equation and the initial conditions. The initial 
conditions are equivalent to 

co = 1, c1 = 0,  

while the fact that x satisfies (1 - t2)x” - 4tx‘ - 2x = 0 is expressed as 

00 00 00 00 

n=2 n=2 n=l n=O 

for every t with It1 < r.  The previous equality rewrites as 

for every t with It1 < r.  But, a power series, with radius of convergence 
r > 0, is identically zero on It/ < r if and only if all coefficients are zero. 
So we have c,+2 - c, = 0 for n = 0,1 , .  . . . From here and the initial 
conditions, we deduce c2k = 1 and c2k+l = 0 for k = 0,1 , .  . . . Consequently, 
x ( t )  = CEot2k for every t with It1 < r.  But, in this case r = 1 and 
x ( t )  = 1/(1 - t 2 )  for every t with It1 < 1. 
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3.1.2 The Existence of Analytic Solutions 

In what follows we will show what are the circumstances under which any 
solution of a certain Cauchy problem can be developed in power series. 

More precisely, let 1 be a nontrivial interval in R, L? a nonempty and 
open subset in R", f : II x 52 -+ Rn an analytic function on II x R, a E 1, 

E R and let us consider the Cauchy problem with data 2) = (f,JI,L?,u,<) 

x' = f ( t , x )  { x (u )  = <. 

The main result in this section is 

Theorem 3.1.1 (Cauchy-Lindeloff) If f : II x s2 + R" is analytic on  
II x R then, for each (a,c)  E II x R, the unique saturated solution of O(9) 
is analytic on  its interval of existence. 

Proof. Since f is analytic on II x R, it satisfies the conditions of both 
Theorem 2.3.2 and Corollary 2.4.1 and therefore, for every (a ,<) E II x R,  
elp(9) has a unique saturated solution. Hence, in order to  complete the 
proof, it suffices to  show that, for every ( a ,  <) E II x 0, the unique saturated 
solution of CJ"P'D) can be developed into a power series in a neighborhood 
of a. From here one can easily deduce that it can be developed into a power 
series about any point b in its domain of definition. 

First, let us observe that we may assume with no loss of generality that 
a = 0 and ( = 0. Indeed, if this is not the case, after two translations, i.e. 
t - a = s and x - 5 = y, we are in the specific situation described above. 

Next, we will show that, for every i = 1 ,2 , .  . . , n, we have 

(3.1.1) 

for t E R, It1 < ro, with TO > 0 suitably chosen. 
We recall that  the unique saturated solution x of the Cauchy problem 

eP('D) is of class C" because f is of class C". See Remark 2.1.3. So all the 
coefficients in the series (3.1.1) are well defined. I t  remains then to  prove 
that the series (3.1.1) are convergent on a neighborhood of a = 0. To this 
aim let us remark that all t he  coefficients b p )  in (3.1.1) can be expressed by 
means of f(0,O) and of the partial derivatives of the function f calculated 
at  (0,O). Indeed, 
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The idea of proof consists in finding a function g : (-r) r )  x ( -p ,  p)" -+ R 
with r > 0 and p > 0, suitably defined, such that both g and all its partial 
derivatives are positive at  (0,O) and satisfy 

(3.1.2) 
Let g be such a function, let us define F : (--r, r )  x ( -p ,  p)" + Rn by 

and let us consider the auxiliary Cauchy problem 

y' = F ( t , Y )  
y(0)  = 0. { (3.1.3) 

If we will show that the problem (3.1.3) admits a local analytic solution 

1 d S y i  00 

yi( t )  = c$,4ts) with cy) = - - (0 ) ,  i =  1 , 2  . . . ,  n, s! dts 
s=o 

as all the coefficients cf) can be expressed by means of the values of both F 
and its derivatives at  (0,O) in the same manner as the coefficients b r )  can 
be expressed by means of both f and its derivatives at  (0, 0), from (3.1.2) it 
will follow lbp)  1 5 cp) for i = 1 , 2 , .  . . ) n and s E N*. But these inequalities, 
along with the convergence of the series which define the partial functions 
yi, will prove the convergence of the series in (3.1.1). 

In order to  define the function g, we recall that ,  from the analyticity of 
f )  there exist r > 0 and p > 0 such that 

for every ( t , x )  E ll x with It1 < r and 1xil < p, i = 1,2,. . . ,n, where the 
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M > 0 such that 

103 

a ~ ) ) p l l  ..., p , r P o ~ l + p 2 + * , . + p ,  < A4 for every i = 1,2,. . . , n l -  

(2)  coefficients upo . . lp, are given by 

for every i = 1,2,. . . ,n  and every p o , p l , .  . . , p ,  E N. 
suggests that  g ought t o  be such that 

This inequality 

for every p o , p l , .  . . , p ,  E N. Such a function is 

M - - 

( 1 2 )  (1-7) (1-7) . . . (  1-y) 

for every t E (-r, r )  and every x E Rn with xi E ( p ,  p )  for i = 1,2,. . . , n. 
Now, let us observe that the problem (3.1.3) rewrites in the form 

for i = 1,2,. . . , n and t E ( - T , T ) .  = yA( t )  
for every t E ( - r , r )  and y l ( 0 )  = y ~ ( 0 )  = . . .  = yn (0) , we deduce that 
y l ( t )  = y2( t )  = = y n ( t )  = y ( t )  for every t E ( -r ,r) ,  where y is the 
unique saturated solution of the problem 

From yi(t)  = &(t) = 
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for t E ( -T ,T ) .  Taking into account the definition of 9, the problem is 
equivalent to 

for t E ( -r, r ) .  This equation is with separable variables and can be solved 
explicitly. More precisely, its solution is given by 

y ( t )  = p (1 - n+//) 

for every t E (--To,To) with TO E (O,r] suitably chosen. Since this function 
0 is analytic on ( - -TO,TO),  this completes the proof. 

Remark 3.1.1 We mention that the power series method is applicable in 
many situations, even for some Cauchy problems for which the differential 
equation, due to the presence of some singularities in the coefficients, cannot 
be put into the normal form. Indeed, in order to understand better this 
observation, let us analyze the following example. 

Example 3.1.2 Solve the Cauchy problem 

tx" - tx' - x = 0 
x(0) = 0 { x'(0) = 1 

looking for the solution in the form of a power series: 

x ( t )  = ccntn 
n=O 

for t E R with It1 < T .  

One may easily see that the differential equation tx" - tx' - x = 0 
is neither in the normal form, nor can be put into the normal form in 
any neighborhood of 0 (with an analytic right-hand side, of course). Even 
though, one may solve the problem in the same manner as in Example 3.1.1. 
In order to find the coefficients of the power series above, we impose the 
condition that x ,  given by (S), satisfy both the differential equation and 
the initial conditions. The initial conditions lead to co = 0 and c1 = 1, 
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while from the differential equation tx“ - tx‘ - J: = 0 we get 
00 00 00 

n=2 n=l n=O 

for every t E R. 
The previous equality rewrites in the form 

00 

for every t E R with It1 < r .  But, a power series with radius of convergence 
r > 0 is identically zero on It1 < r if and only if all the coefficients are zero. 
SO we have (n  + l)ncn+l - (n  + 1)cn = 0 for n = 0,1, .  . . . From here we 
deduce c, = l / ( n  - l ) !  for n = 1 , 2 , .  . . and co = 0. Consequently r = +oo 
and 

tn-1 
z(t> = t C - = tet 

(n - l ) !  n=l 

for every t E R. 

3.2 The Successive Approximations Method 

In many situations it is of great importance to know, not only that a Cauchy 
problem has exactly one solution on a given interval, but also how to find 
this solution. Unfortunately, the class of functions f for which we can ob- 
tain an explicit representation of the solution is extremely narrow. This 
explain why it would be very useful to have some effective methods to 
find some “approximating solutions”, i.e. to get explicit representation of 
some functions which, although not solutions of the problem, are in some 
sense ‘hs close as we wish” to the “exact solutions”. We have already pre- 
sented three such methods: the first one in Section 2.2, where the functions 
{zm; m E N*} defined by ( 3 E m )  “approximate” the solution of the Cauchy 
problem CP(D) on [ a ,  b ] ,  in the hypothesis that  this is unique, the second 
one in Remark 2.6.4 combined with Example 2.6.1, and the third one in 
the preceding section, where each term of the sequence of partial sums of 
the series which defines the solution approximates the latter. 

The aim of this section, as well as of the next two, is to present three 
more such methods which are at  the core of several very efficient algorithms 
in the numerical analysis of differential systems. 
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We begin with the so-called method of successive approximations due to 
Picard (1890). We note that this method is completely unspecific, in the 
sense that it is applicable, not only for differential equations and systems, 
but also for Volterra integral equations, Fkedholm integral equations, integro- 
differential equations, neutral equations, partial differential equations, etc. 
See Problems 3.7, 3.8 and 3.11. 

To begin with, let a E R, < E Rn, h > 0 and r > 0, and let us consider 
the cylinder A = [ a ,a  + h ]  x B([ , r ) .  Let f : A + Rn be a continuous 
function and let us consider the Cauchy problem 

which, as shown in Proposition 2.1.1, is equivalent to the integral equation 

for every t E J. 

Remark 3.2.1 We emphasize that, the framework here considered is 
quite different from that used in the preceding sections, simply because 
both II = [ a ,  a + h ]  and !2 = B(( ,  r )  are closed sets. Nevertheless, we can 
easily see that all the concepts and results extend in a natural manner to 
this framework, as long as we refer to the right solutions, since a is the left 
end-point of the interval 1 and [ i s  an  interior point of the set R. The sole 
exception which should be noticed is that every saturated solution of the 
problem ((9) (whose existence is ensured by Corollary 2.4.1) is defined on 
a closed interval. Indeed, as A is a compact set and f is continuous, there 
exists A4 > 0 such that, for every ( t ,  u)  E A, we have 

(3.2.1) 

Now, if we assume that x : [ a , b )  + B ( J , r )  is a saturated solution of 
(W), from (3.2.1) and Proposition 2.4.1, it follows that x can be extended 
to [ a ,  b ]  as a solution of (elp). This contradiction can be eliminated only if 
every saturated solution of (tY) is defined on a closed interval. 

Let x : [ a ,  b ]  + B([ ,  r )  be a saturated solution of (elp). The next lemma 
gives a lower bound for the length of the interval of existence of saturated 
solutions. 
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Lemma 3.2.1 Let f : A -+ R" be a continuous function on A and let 

(3.2.2) 

where M > 0 satisfies (3.2.1). Then each saturated solution of (Clp) is 
defined at least on [ a ,  a + 61. 
Proof. 
is a solution of (?&) too, for every t E [ a ,  b ] ,  we have 

Let IC : [ a ,  b ]  -+ B(5, r )  be a saturated solution of (Clp). Since x 

So, if b < a + 6, i t  necessarily follows that 

and therefore x(b) is an interior point of B(<,r) .  Consequently x is not 
saturated. This contradiction is a result of the assumption that b < a + 6. 

0 Hence a + 6 5 b and this achieves the proof. 

Lemma 3.2.2 Let f : A + R" be continuous on A and let S be defined 
by (3.2.2). Then, for each continuous function y : [ a ,  a + 61 --j B ( J , r ) ,  the 
function x : [ a ,  a + 61 --+ R", defined by 

for every t E [ a ,  a + 61, maps [ a ,  a + 61 in B(5, r ) ,  

Proof. In view of (3.2.1), (3.2.2) and of the definition of x, we have 

for every t E [ a ,  a + 61 and this completes the proof. 0 

Now we proceed to  the definition of the sequence of successive ap- 
proximations ( x k ) & M  corresponding to  the problem (CP). Let us consider 
z o  : [ a ,  a + 61 + B ( J , r )  defined by zo(t) = < for every t E [ a , a  + 61 and 
let us define zk : [ a ,  a + S] --+ El(<, r ) ,  for k 2 1, by 

t 
zrc(t) = < + 1 f (7, ~1c--1(7)) d7, for each t E [ a ,  a + 61. (3.2.3) 
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A simple inductive argument, combined with Lemma 3.2.2, shows that 
xk is well-defined for every k E P?. From obvious reasons, ( x k ) k E ~  is called 
the sequence of successive approximations corresponding to elp(D). 

The main result in this section is Picard Theorem below referring to the 
uniform convergence of (xk)&N. 

Theorem 3.2.1 (Picard) Let us assume that f : A -+ R" is continuous 
on  A and Lipschitx on  B ( J ,  r ) ,  i.e. there exists L > 0 such that for every 
( t ,u ) ,  ( t , v )  E A, we have 

Then  the sequence of successive approximations corresponding to Clp( D) is 
uniformly convergent on  [ a ,  a + S] to the unique solution x of (0) defined 
on that internal. I n  addition, we have the following estimating error formula 

(3.2.5) 

f o r e v e r y k E N  a n d t E  [ a , a + 6 ] .  

Proof. From Theorem 2.3.2 and both Theorem 2.4.2 and Remark 3.2.1, 
it follows that (W) has a unique solution defined at least on [a, a + 61. Let 
x : [a, a + S] -+ B ( J ,  r )  be this solution and let us observe that, from (31) 
and (3.2.1), for every t E [ a , a  + 61, we have 

IIxo(t> - z(t)ll = IIt - x(t>II L 1 Ilf (v(7)) l l  d7 I M ( t  - a). 

From (3&), (3.2.3), (3.2.4) and from the inequality above, we deduce 

for every t E [ a ,  a + 61. This inequality suggests that, for every k E N and 
t E [ a , a + 6 ] ,  we ought to have 

(3.2.6) 

We shall prove (3.2.6) by induction. Since for k = 0, or k = 1 this inequality 
is obviously satisfied, let us assume that it holds for some k E N and for 
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every t E [ a , a  + 61. Then, from (3.2.3), (3.2.4) and from the inductive 
assumption, we deduce 

for every t E [ a,  a + 61, and thus (3.2.6) holds for k + 1 as well. Hence 
(3.2.6) holds true for each k E N. Obviously (3.2.6) implies (3.2.5), while 
from (3.2.5) we get 

L k J k + 1  

SUP IlZk(t) - z(t)II L A4- 
t € [  a,a+6] ( k  + I)! 

for every k E W and t E [ a , a + J ] .  Since 

L”k+1 
lim M- = 0, 

the last inequality shows that ( x k ) k E ~  is uniformly convergent on [ a,  a + 61 
0 

k-oo  ( k + 1 ) !  

to z and this achieves the proof. 

3.3 The Method of Polygonal Lines 

In this section we present another method to  approximate the solution of 
a Cauchy problem, i.e. the  method of polygonal lines due to  Euler. 

As in the preceding section, let a E R, < E Rn, h > 0 and T > 0 and 
let us denote by A = [ a ,  a + h ]  x B ( J ,  r ) .  Let f : A --+ Rn be a continuous 
function and let us consider the Cauchy problem 

2‘ = f ( t ,  2) { x (a )  = J .  

Since f is continuous on the compact set A, there exists A4 > 0 such 
that,  for every ( t ,u )  E A, we have 
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We recall that ,  by virtue of Lemma 3.2.1, the Cauchy problem eY(9) 
has at  least one solution x : [ a,  a + 61 +. B(c, r ) ,  where S > 0 is given by 

6 = min { h ,  f}, (3.3.2) 

In what follows we assume that x is the unique solution of KP(iD) defined 
on [ a ,  a + 61. Let k E N* and let us consider the partition 

For simplicity, we assume that ti+l - ti = 6 / k  for i = 0,1 , .  . . , k - 1. The 
main idea of the method of polygonal lines consists in replacing the integral 
equation 

which is equivalent to  O(ID), by the system 

Yo=[ &+I = ti -I- (ti+i - t i ) f ( t i ,&) ,  for i = 0 , 1 , .  . . , k - 1, 

and in showing that the function yk : [ a ,  a + S ]  -+ Rn, defined by 

for t E [ti , t i+l) if i = 0,1, . . . ,  k - 2 ,  or t E [ti , t i+l] if i = k -  1, is 
“sufficiently close” to the unique solution x : [ a, a + 6 ] 3 B ( J ,  T) of (3&),  
for k “large enough”. 

We notice that the name of the method is suggested by the remark 
that the graph of the function ?Jk is the polygonal line passing through 
( t o ,  CO), ( t l ,  ( l ) ,  . - . 7 ( t k ,  < k ) .  See Figure 3.3.1. 

Lemma 3.3.1 
then, for every k E N*, ( s k )  has a unique solution (<o, c 1 ,  . . . , &).  

Iff : A -+ Rn is continuous and 6 is defined by  (3.3.2) 

Proof. The uniqueness is obvious. As concerns the existence, it suffices 
to show that, whenever E B ( [ ,  r )  for some i = 0,1 , .  . . , k - 2, then 
Ji+l E B ( J ,  r ) .  To this aim, we shall prove that for every i = 0 , 1 , .  . . , k - 1, 
we have -<I [  5 9. 

For i = 0 the inequality above is obviously satisfied because t o  = J, 
Next, let us assume that the inequality holds for i E { 1,2 ,  . . . , k - 2). From 
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Figure 3.3.1 

(3.3.1), (3.3.2) and ( s k ) ,  we have 

and this achieves the proof. 

q ( t )  = ti, for t E [ti ,  ti+l) if = 0,1, . . . .  k - 2, or t E [t i ,  ti+l] if 

0 

Now, let us define the step function a k  : [a,a + S] -+ [a,a + 61 by 
= k - 1. 

0 bviously 

for every t E [ a ,  a + 61, and therefore 

lim ak(t) = t 
k+oo 

uniformly for t E [ a ,  a + 6 J .  

Lemma 3.3.2 Let  f : A -+ R" be a continuous funct ion,  let 6 > 0 be 
defined by (3.3.2) and let yk : [ a ,  a + S ]  -+ Rn be defined by (3.3.3)) where 
( (0 ,  ( 1 , .  . . .  ( k )  i s  the unique solution of the sys tem ( s k ) .  T h e n  yk satisfies 

g k ( t )  = < + 1 f ( O k ( T ) ,  Y k ( o k ( 7 ) ) )  d7, (3.3.4) 

f o r  every t E [ a ,  a + 61, where a k  i s  defined as above. 

Proof. For t E [ a ,  tl 1,  we have 
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Furthermore, let us assume that y k  satisfies (3.3.4) for t E [ a ,  t i ] ,  where 
i 5 k - 1. Then, for t E [t i , t i+l] ,  we have 

t 

= c + 1 ( a k ( 4 , Y k ( a k ( r ) ) )  d7-S 

So y k  satisfies (3.3.4) and this completes the proof. 0 

We can now proceed to the statement of the main result in this section. 

Theorem 3.3.1 If f : A -+ Rn is continuous on A and CP(9) has the 
uniqueness property, then ( y k ) k E ~ * )  defined b y  (3.3.3)) is uniformly conver- 
gent on [ a ,  a + 61 to the unique solution x of W(D) on that interval. If, in 
addition, f is Lipschitx on A, i.e. there exists L > 0 such that, for every 
( t , 4  ( s , 4  E A 

then the following evaluation error formula holds true 

(3.3.5) 

for every k E N* and every t E [ a ,  a + 61. 
Proof. 
(3.3.4). For this reason, for every k E N* and t E [ a ,  a + 61 

From Lemma 3.3.2 we know that, for every k E N*, Y k  satisfies 

and so {yk; k E N*} is uniformly bounded on [ a ,  a + 61. Furthermore, for 
every k E N* and t , i E  [ a , a + S ] ,  we have 

and therefore the family {yk; k E W*} is equicontinuous on [ a ,  a + 61. By 
Arzelh-Ascoli’s Theorem 8.2.1, it follows that {yk; k E N*} is relatively 
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compact in C( [ a, a + 61; Rn) endowed with the uniform convergence topol- 
ogy. As, from (3.3.4) and Corollary 8.2.2, every limit point of the sequence 
( g k ) k E ~ *  is a solution of erP(!D) and the latter has the uniqueness property, 
we conclude that the sequence (yk)kEpp  is uniformly convergent on [ a, a+6 ] 
to the unique solution of eY(D) defined on that interval. 

Finally, let us assume that f is Lipschitz on A. We then have 

for every k E N* and t E [ a ,  a + 61. Since by (3.3.3) and (3.3.1), we have 

for every k E N* and r E [ a ,  a + 61, from the last three inequalities, we 
deduce that 

for every k E N* and t E [ a ,  a+6] .  But this inequality along with Gronwall's 
0 Lemma 1.5.2 shows that (3.3.5) holds. The proof is complete. 

Remark 3.3.1 In many books of differential equations, the method of 
polygonal lines is the main tool in the proof of Peano's local existence 
theorem. As an exercise, we suggest the interested reader to prove the 
latter theorem by using this method. 

3.4 Euler Implicit Method. Exponential Formula 

In this section we will present a new method to approximate the solution 
of a Cauchy problem, method closely related to Euler method of polygonal 
lines. This proved extremely useful in order to get effective algorithms 
for the numerical treatment of both ordinary differential equations, but 
especially of partial differential equations. 
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3.4.1 The Semigroup Generated by JI 

Let A : R" -+ R" be a continuous function. We recall that  A is called 
dissipative if 

for every z, y E R". Let us consider the autonomous equation 

XI = A(z). (3.4.1) 

For each a E R+ and E E R", we denote z ( . ,a ,<)  the unique saturated 
solution of equation (3.4.1) with z ( a , a , < )  = ,$. From Theorem 2.4.6 it 
follows that this solution is global, i.e. defined on [ a ,  +w). 

For any fixed t 2 0, let us define the operator, possible non-linear, 
S ( t )  : Rn -+ Rn, by 

Here and thereafter S ( t ) S ( s )  denotes the superposition operator defined by 
[S( t )S(s )]< = S( t ) [S ( s )<]  for each < E R". 

Theorem 3.4.1 
of the relation (3.4.2) satisfies 

The family of operators { S ( t ) ;  t 2 0) defined by means 

(S1) S ( t  + s )  = S ( t ) S ( s ) ,  for  every t ,  s 2 0 ;  

(S3) lim S ( t ) <  = < for every < E Rn ; 

(5'4) IlS(t)< - S ( t ) ~ l l  I IIC - ~ 1 1  for every t 2 0 and every ( , q  E Rn ; 
(5'5) ljz 7 ( S ( t ) <  - r )  = A(<) f o r  every < E R". 

(S2) S(0) = 3 ;  

t i 0  

1 

Proof. Let us remark that, for every < E R" and every t ,  s 2 0, we have 

and this because, both t I-+ z( t  + s,O,J) and t I-+ z ( t , O , z ( s , o , < ) )  are 
solutions of the same Cauchy problem 

problem which, by virtue of the fact that A is dissipative, has the uniqueness 
property. But the equality above is equivalent to (Sl). 
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Obviously, (S2) expresses nothing else but the initial condition satisfied 
by x(., 0, [), i.e. x(O,O, r> = [, while (5 ’3) follows from the continuity of the 
solution at  t = 0. 

In order to prove (S4), let us observe that 

x’(t, 0, r )  - x’(t, 0 ,q )  = JZ(x(t, 0, Q) - Jl(x( t ,  0, d), 
from which, taking the inner product on both sides by x ( t ,  0, [) - x ( t ,  0, q )  
and using Lemma 8.1.2, we deduce 

for every t 2 0. But this inequality obviously implies 
follows directly from the definition of the solution for the 
this completes the proof. 

Definition 3.4.1 The family of operators { S ( t ) ;  t 2 0} 

(S4). Since (S5) 
Cauchy problem, 

0 

defined by means 
of (3.4.2) is the  semigroup of non-expansive operators generated by A. 

Remark 3.4.1 The term semigroup is justified by the property (5’1) 
called semigroup property and this because it shows that the family 
{ S ( t ) ;  t 2 0) is a semigroup with respect to the usual composition of 
mappings. The property (S4) shows that each of the operators S ( t )  in 
the semigroup is non-expansive in the sense of Definition 2.5.2, while (S5) 
expresses the fact that the semigroup { S ( t ) ;  t 2 0 }  is “generated” by A. 

3.4.2 Two Auxiliary Lemmas 

In what follows we will present an approximation method for S ( t ) < ,  called 
Euler  implicit method. In order to define the approximating sequence, we 
need the following two lemmas which are also interesting by themselves. In 
order to simplify the exposition, we will assume that A(0) = 0, although 
all the results which follow remain valid without this technical restriction. 

Lemma 3.4.1 Let  .A : Rn -+ Rn be a continuous and dissipative func t ion  
with A(0) = 0. T h e n ,  f o r  every X > 0, every y E R” and every < E Rn, the  
unique saturated solution x(-, 0 ,  E ,  y) of the Cauchy problem 

(3.4.3) 

i s  defined o n  [ 0 ,  +oo) and there exists limtt+, x ( t7  0 ,  <, y) = G.  In  addition, 
j j  i s  independent of < and satisfies ij - XA@) = y. 
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Proof. Let X > 0, let y E Rn and let < E R”. Since X > 0 and J1 is 
dissipative, the function x H XA(x) - x + y is dissipative too. Therefore, in 
view of Theorem 2.4.6, for every < E Rn, the problem (3.4.3) has a unique 
global solution. Since in the first part of the proof, A, E and y are fixed, for 
the sake of simplicity, we denote this solution by x : R+ -+ R”. 

For the beginning, we will show that x is bounded on R+. To this 
aim, let us take the inner product on both sides in (3.4.3) by x ( t )  and let 
us observe that, from Lemma 8.1.2 and from the dissipativity condition, 
recalling that A(0) = 0, we have 

for every t 2 0. Using Cauchy-Schwarz inequality in order to evaluate 
the first term on the right-hand side of this inequality, and subsequently 
the mean’s inequality, we deduce $ (IIx(t)112) 5 I)y1I2 - llx(t)112 for every 
t E R+. Multiplying both sides of this inequality by et, rearranging the 
terms and integrating from 0 to t ,  we get successively 

and ll~(t)11~ 5 e-tll<112 + (1 - e-t) lly112 for every t 2 0. From here, it 
readily follows that x is bounded on R+. 

We can now proceed to the proof of the fact that there exists 

lim z ( t )  = ij. 
tT+m 

(3.4.4) 

To this aim, let t 2 0 and h 2 0. Multiplying both sides of the equality 

x’(t + h) - d ( t )  = X(A(x(t  + h ) )  - A(x ( t ) ) )  - ( x ( t  + h)  - x ( t ) )  

by ( x ( t  + h) - x(t)) and taking into account the dissipativity of the function 
XA, we get 

I d  
2 d t  -- (Ilx(t + h) - x(t)l12) I -/lx(t + h) - x(t)lj2. 

Multiplying both sides of this inequality by e2t and integrating from 0 to 
t ,  we deduce that 
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But the inequality above, combined with the boundedness of the function 
x, shows that x satisfies Cauchy's condition for the existence of the limit 
as t tends to +m, and this proves (3.4.4). 

Finally, let us remark that, from the mean value's theorem, for every 
rn E N and every i = 1,2,  . . . , n, there exists t9k E [ rn, rn + 1 3 such that 

+ 1) - xi(rn) = .;(e&). 
Passing to the limit for rn tending to  +oo in these equalities, we deduce 

that lim,t+, x:(O&) = 0 for i = 1 , 2 , .  . . , n. As XA - 3 is continuous, 
from (3.4.4), we conclude that there exists limtt+mz'(t) = 0. Passing to 
the limit in the equation (3.4.3) we deduce that i j  is the solution of the 
equation i j  - XA(ij) = y. Finally, in order to prove that i j  does not depend 
on <, it suffices to show that the equation above has a unique solution. So, 
let z' be a solution of the equation. Then i j  - z" - X(A(ij) -A(z")) = 0. Taking 
the inner product on both sides by i j  - 2, recalling that X > 0 and A is 
dissipative, we deduce that ( l i j  - Z ( l 2  5 0, which proves the uniqueness of 

0 the solution of the problem above. The proof is complete. 

Lemma 3.4.2 Let A ; R" + Rn be a continuous and dissipative function 
with A(0) = 0 .  Then, for  every X > 0,  3 - XA i s  bijective, and its inverse 
in the sense of relations, (3 - XJL)-l, is a non-expansive function. 

Proof. F'rom Lemma 3.4.1 we know that, for every X > 0, every y E R" 
and every E R", there exists the limit as t approaches +oo of the unique 
saturated solution x(., 0, c, y) of the problem (3.4.3), and this limit ij is the 
unique solution of the equation ij - XA(ij) = y. Since y is arbitrary in Rn, 
it  follows that 7 - XA is surjective. On the other hand, from the uniqueness 
of the solution of the equation above, it follows that 3 - XA is injective. 

Finally, let 91, y2 E Rn and let ij1, i j2 E R" such that ij1 - XA(ij1) = y1 
and 9 2  - XA(ij2) = y2. Subtracting side by side the two equalities and 
multiplying both sides of the equality thus obtained by ij1 - 9 2 ,  we deduce 

Taking into account that & = (3-XA)-l (pi) for i = 1 , 2 ,  from the preceding 
inequality, we get 

for every y1,y2 E R". So (J - XA)-' is non-expansive. The proof of 
Lemma 3.4.2 is complete. 0 



118 Approxamation Methods 

3.4.3 The Exponential Formula 

Let T > 0, k E N* and let Pk : 0 = t o  < tl < 
with equidistant points, i.e. ti+l - ti = T/k  for every i = 0,1 , .  . . , k - 1. 

of the integral equation 

< t k  = T be a partition 

The main idea of Euler implicit method is to approximate the solution 

r t  

which is equivalent to  the Cauchy problem 

by means of the solution t o ,  [I, . . . , & of the system 

Namely, we shall show that the function yk : [ 0, TI --+ Rn, defined by 

Y k ( t )  = <z + (t - tz)A(<i+l) (3.4.5) 

for t E [ti , t i+l) if i = 0,1,  . . . ,  k - 2 ,  or t E [ti , t i+l] if i = k -  1, is 
“sufficiently close” to the unique solution II: : [O,T] --+ R” of (3€), for k 
“big enough”. 

We notice that the name of the method is suggested by the remark that, 
this time, &+I is implicitly defined as a function of &, and not explicitly, 
as in the case of the method of polygonal lines described in the preceding 
section. Although, at the first glance, more complicated than the latter, 
Euler implicit method is extremely useful, especially in the case (which we 
will not touch upon here) when A is defined on a “rather small” subset D of 
Rn, the case in which the method of polygonal lines might not be applicable, 
simply because for a certain i ,  [i+1 could leave D. We emphasize that this 
weak point of the method of polygonal lines is much more evident in the case 
of partial differential equations, when A is discontinuous and defined on a 
proper subset D of a function space X,  while (3 - XA)-l is non-expansive 
and defined on the whole space X. 
Lemma 3.4.3 If A : Rn -+ R” i s  continuous, dissipative and, in addition, 
A(0) = 0 then, for every k E N*, ( S k )  has a unique solution ( t o ,  cl, . . . , &). 
Moreover, fo r  every k E N and every i = 1,2, . . . k ,  we have 

(3.4.6) 
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Proof. 
form 

Let us observe that ( s k )  may be equivalently rewritten in the 

(3.4.7) 
&+I = (3 - (ti+l - t i)A)- '(&),  for i = O , l , .  . . , k - 1. 

According to  Lemma 3.4.2, the operator (3-(ti+l --ti)A)-' is defined on R", 
is non-expansive and satisfies (3 - (ti+l -ti)A)-'(O) = 0 ,  for i = 1 , 2 , .  . . , k .  
Therefore, it follows that (3.4.7) has a unique solution. In addition, as 
(3 - (ti+l - ti)A)-l is non-expansive and vanishes a t  0, we have 

and this completes the proof. 0 

Theorem 3.4.2 If A : Rn --+ Rn i s  continuous, dissipative and A(0) = 0 ,  
then the sequence of functions defined by (3.4.5) i s  uniformly convergent on 
[ 0 ,  T 1 to the unique solution of PP('D). 

Proof. Let k E R" and let us define the function crk : [ O,T] -+ [ O,T] by 

for t E [ti,ti+l) if i = lJ,. . . , k  - 2 or t E [ti , t i+l] for i = k - 1. Since 
ti+l - ti = T / k ,  we have 

lim lak(t) - t J  = 0 
k-oo 

uniformly on [O,T].  Now, let us observe that equality (3.4.5) may be 
equivalently rewritten in the integral form 

(3.4.8) 

Since A is continuous, its restriction to a compact set is bounded. So, there 
exists A4 > 0 such that 

for every y E Rn with llyll 5 1 1 < 1 1 .  Then, by virtue of the inequality (3.4.6) 
and of the definition of the function O k ,  we have 
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for every t E [t i ,  ti+l 1,  i = 0,1, . . . k - 1. From this inequality and from 
(3.4.8), we deduce 

for every k E N and every t E [ 0 ,  TI. Consequently, the family of functions 
{ y k ;  k E N} is uniformly bounded on [ 0, TI.  Again from (3.4.8), we deduce 

for every k E N and every t ,  s E [ 0, TI. From here it follows that the family 
{yk; k E N} is equi-continuous on [O,T].  According to Arzelh-Ascoli’s 
Theorem 8.2.1, it follows that, at  least on a subsequence, we have 

uniformly on [ 0, TI ,  where y is the unique solution of e?(D). Since the 
limit of any convergent subsequence of the sequence ( y k ) k E ~  is a solution 
of e?(D) which has the uniqueness property, using once again the fact that  
the family {yk;  k E N} is relatively compact in the uniform convergence 
topology, we conclude that the sequence ( y k ) k c n  itself converges uniformly 

0 on [ 0, TI to y. The proof is complete. 

Theorem 3.4.3 
dissipative and A(0) = 0 then, for every J E Rn, we have 

(Exponential Formula) If J1 : R” --+ Rn is continuous, 

uniformly for t in bounded subsets of R+. 

Proof. Let t > 0, k E N* and let 

for i = 0,1 , .  . . k - 1. Obviously Ji represents the solution of the system 
( S k )  in the case when T is replaced by t. Taking i = k - 1 in the preceding 
relation, we successively deduce 

The conclusion follows from Theorem 3.4.2 by observing that, for any fixed 
J E Rn, and T > 0, the sequence (yk)kcn* is uniformly bounded (with 
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respect to k E N*) on [ O,T] by a constant C ( [ , T )  = 1 1 < 1 1  + T M  which is 
nondecreasing as a function of 2’. The proof is complete. 0 

We notice that the name of “Exponential Formula” comes from the 
simple observation that, in the one-dimensional linear case, i.e. when the 
function A : R -+ R is defined by A(y) = ay, with a < 0, this formula 
reduces to the well-known equality 

-k 
lim (1 - ;) < = eta<. 

k-+m 

We conclude this section with the mention that, if A(0) # 0, then, by 
defining the operator B : Rn -+ Rn by 23(y) = A(y) - A(O), for y E R”, we 
can easily see that this is continuous, dissipative and satisfies B(0) = 0. In 
addition C‘lP(2)) rewrites in the form 

with h = A(0). We leave to the reader to prove that, with some obvious 
modifications, all previous considerations remain also valid in this case. To 
all those interested in extensions of the results in this section we recommend 
the monograph [Barbu (1976)l. 

3.5 Exercises and Problems 

Exercise 3.1 
power series and by identifying the coeficients: 

Solve the following Cauchy problems by developing the solution in 

tx” + x = 0 
(1) { x(0)  = 0.  ( 2 )  { x(0)  = 0 ,  x’(0) = 1. 

(1 - t)x’ = 1 + t - x 

tx” + 22’ + t x  = 0 
(3) { x(0)  = 1, x’(0) = 0. (4) { x (0 )  = 1, x’(0) = 0. 

tx” + x’ + t x  = 0 

- 2tx‘ - 22 = 0 
(6) { ( 5 )  { z(0) = 1, x‘(0) = 1. 

(1 - t ) X ”  - 2‘ + t x  = 0 
x(0)  = 1, x‘(0) = 0. 

Problem 3.1 Integrate the Hermite equation 

2’’ - 2tx’ + 2xx = 0 ,  
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where X E R. 
polynomial if and only if X E N. 

Problem 3.2 

Show that the equation has as solution a non-identically zero 

Show that every solution of the equation 

-XI' + t2x  = (2X + 1 ) x ,  

where X E R, is  of the f o r m  x ( t )  = y ( t ) e - t2 /2 ,  where y satisfies the Hermite 
equation 

y" - 2ty' + 2 x y  = 0. 

Prove that, if X E N, at least one non-identically zero solution x of the equation 
is bounded on R+. 

Exercise 3.2 Find the general solution of the Airy equation 

XI' - tx = 0. 

Problem 3.3 
the Bessel equation 

Find the solutions of the form x ( t )  = t" cr=o C k t k  with co # 0 of 

t2x" + tx' + (t2 - n 2 ) x  = 0, 

where n E N. Show that 

O' (-l)k(t /2)"+2k 
x ( t )  = k ! ( n  + k)! 

k=O 

is  such a solution. 

Exercise 3.3 Find the solution of the Cauchy problem for  the Gauss equation 

t ( 1  - t)x" + [c - (a  + b + I)t]x' - abx = o 
x (0 )  = 1, d ( 0 )  = (ab ) / c ,  

where c > 0 .  

Problem 3.4 Show that Legendre equation 

( 1  - t 2 ) X / '  - 2tx' + X ( X  + l ) x  = 0,  

where X E R, has polynomials as local solutions about t = 0 i f  and only i f  X E N .  

Problem 3.5 Show that the first t e rm  in the sequence of successive approxima- 
tions m a y  be any continuous function xo : [ a ,  a + 61 + B([ ,  r ) ,  without aflecting 
i ts  uniform convergence to  the unique solution of Ipe(B) o n  [ a , a  + 61. Find a 
variant of the error evaluation formula of the type (3.4.6) in this general case. 

Problem 3.6 Prove Theorem 2.3.2 by the method of successive approximations. 

IEquation used in the oscillator theory in Quantum Mechanics. 
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Problem 3.7 Let f : [ a ,  b ]  -+ W" and g : [ a ,  b ]  x [ a ,  b ]  x Wn -+ Rn be continuous 
and let us assume in addition that g is  Lipschitz on  R", i.e. there exists L > 0 
such that for  every ( t ,  s ,  x), ( t ,  s ,  y) E [ a ,  b ]  x [ a ,  b ]  x W", we have 

Using the sequence of successive approximations, show that the Volterra integral 
equation 

x ( t )  = f ( t )  + J' g ( t ,  T ,  x ( m T  

has a unique solution x : [ a ,  b ]  -+ R". 

Problem 3.8 Let f : [ a , b ]  x R" + R" and g : [ a , b ]  x [ a , b ]  x R" + W" be two 
continuous functions on  [ a ,  b ]  x R" and on  [ a ,  b ]  x [ a ,  b ]  x Rn respectively, and 
Lipschitz on  R". Using the sequence of successive approximations, show that, for  
every E W", the Cauchy problem for the integro-differential equation 

has a unique solution x : [ a ,  b ]  + R". 

Problem 3.9 Let A : R" + W" be continuous and dissipative. Prove that for  
every continuous function h : [ 0, T ]  -+ R" and every E E R", the Cauchy problem 

2' = A ( x )  + h(t)  
{ d o )  = < 

has a unique solution x ( . ,  h, <) : [ 0 ,  T ]  --+ R". Show that for every continuous 
functions hi : [ 0, T ]  ---t R" and every ti E R", the functions X i  = x ( * ,  hi, ti), 
i = 1 , 2 ,  satisfy 

Problem 3.10 Let A : R" --+ R" be a continuous and dissipative function on  
W" and let f : [ 0 ,  T ]  x W" -+ R" be continuous on  [ 0 ,  T ]  x R" and Lipschitz 
on R". Let ( E R", and let us define the sequence of successive approximations : 
x o ( t )  = <, r c k ( t )  = x ( t , f ( t , z k - - l ( t ) ) , r )  f o r  k = 1 , 2 , .  . . and t E [O,T],  where 
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z(., f ( . , z k - l ( . ) ) , < )  : [O,T] --f W" is  the unique solution of the Cauchy problem 

for  k = 1,2 ,  . . . . Using the second inequality established in Problem 3.9 prove that 
the sequence (Xk) l cEN is  uniformly convergent on [ 0, T 1 to the unique solution of 
the Cauchy problem 

2' = A(z) + f ( t ,  z) { 4 0 )  = E -  
Problem 3.11 Let A : W" --+ W" and f : W + W" be two continuous functions.  
Let us assume that there exists w > 0 such that (A(z)-A(y),z-y) 5 -~~I(z-y((~ 
f o r  every x ,  y E W" and let T > 0 be fixed. Let us define the function2 'P : Wn --t Wn 
by ?(<) = z(T,O,<), where z(.,O,() is  the unique global solution of the Cauchy 
problem { 2' = A(z) + f ( t )  

x ( 0 )  = [. 
W e  define the sequence of successive approximations &I = [ and [ k  = ? ( < k - l )  f o r  

Prove that the sequence ( [k )k ,ZN is  convergent t o  a n  element q E W". 
Prove that the unique global solution of W ( q )  with q = lim (k satisfies 

k + c o  

z(T, 0 ,q )  = z(O,O, 77) = q. 
If, in addition, f is  periodic of period T > 0 ,  then the unique global 
solution z(., 0 ,  q) of e?(q) is  periodic of period T .  

The equation xi  = A(z) + f ( t )  has at most one T-periodic solution. 

2This function is known as the Poincart's mapping. 

(1)
(2)

(3)

(4)



Chapter 4 

Systems of Linear Differential 
Equations 

This chapter contains the most important results referring to the Cauchy problem 
governed by a system of n first-order linear differential equations with n unknown 
functions. In the first section we show that the set of all saturated solutions of 
such a homogeneous system is an n-dimensional vector space over R. The second 
section is dedicated to the study of non-homogeneous systems. Here we incIuded 
the celebrated variation of constants formula. In the third and fourth sections 
we present two methods of finding an algebraic basis in the space of all saturated 
solutions of a homogeneous system with constant coefficients. The aim of the 
fifth section is to rephrase the previously proved results in order to handle as 
particular case the nth-order linear differential equation, while the sixth section 
is dedicated to a simple method of solving explicitly such equations with constant 
coefficients. The chapter ends with a section of exercises and problems. 

4.1 Homogeneous Systems. The Space of Solutions 

Let aij : II -+ R and bi : 1 --+ R be continuous for i , j  = 1 , 2 , .  . . , n, and let 
us consider the system of first-order linear differential equations 

(4.1.1) 

125 
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which, with the notations 

and 

for t E 1, can be rewritten as a first-order vector differential equation 

z' = Jl(t)x + b(t). (4.1.2) 

For the sake of simplicity, in all what follows, we will write the system 
(4.1.1) only in the form of a vector differential equation (4.1.2), and we 
will call i t  by extension first-order system of linear diferential equations. 
We also notice that,  throughout this section, all the vectors considered are 
column vectors. 

Definition 4.1.1 
on I[ and non-homogeneous if b is not identically 0 on 1. 

The system (4.1.2) is homogeneous if b is identically 0 

From Corollary 2.4.4, we deduce: 

Theorem 4.1.1 For every a E JI and every E R" the Cauchy problem 

x' = JL(t)x + b(t) 

has a unique global solution. 

In its turn, Theorem 4.1.1 implies: 

Theorem 4.1.2 
on 1. 

Every saturated solution ofthe system (4.1.2) i s  defined 

Let us consider also the homogeneous system, i.e. 

x' = Jl(t)x, (4.1.3) 

called the homogeneous system attached to (4.1.2). 
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Theorem 4.1.3 
system (4.1.3) is an n-dimensional vector space over R. 

The set of all saturated solutions of the homogeneous 

Proof. In view of Theorem 4.1.2, each saturated solution of (4.1.3) is 
global, and thus defined on 1. We will show that the set of all these solutions, 
which is included in C1(I; Rn) is a vector subspace isomorphic to  Rn. Let 
S be the set of all saturated solutions of (4.1.3)) let x , y  E S and a,P E R. 
We will check that cyz + By E S, from where it will follow that S is a vector 
subspace of C1(I; Rn). Indeed, let us observe that 

for every t E I, relation which proves that ax + py E S. 

Rn. More precisely, let us fix a E I, and let us define 'T : S + Rn by 
We may now proceed to  the definition of an isomorphism between S and 

T(z) = z(u) 

for every z E S. Obviously T is linear. In addition, from the uniqueness part 
of Theorem 4.1.1, we conclude that 7 is injective, while from the existence 
part of the same Theorem 4.1.1 it follows that 'T is surjective. So 'T is an 
isomorphism of vector spaces. As each two isomorphic vector spaces have 
the same dimension, the dimension of S is n. The proof is complete. 0 

Remark 4.1.1 Theorem 4.1.3 has a crucial importance in the theory of 
first-order homogeneous systems of linear differential equations because it 
shows that,  within this framework, in order to  find the general solution of 
the system, i t  suffices to find only n linear independent saturated solutions.' 
Indeed, Theorem 4.1.3 asserts that ,  in S, every algebraic basis has exactly 
n elements. On the other hand, if xl, z2 , .  . . , xn E S is an algebraic basis, 
every element z E S uniquely expresses as a linear combination of elements 
in the basis, i.e. there exist c1, c2,. . , , c, E R, uniquely determined, such 
that 

n 

x ( t )  = C c z x Z ( t )  
i= 1 

(4.1.4) 

lWe recall that  zl,  z2, .  . . , zn E S are linear independent if from cT=, cizZ(t) = 0 for 
every t E ll it follows c1 = c2 = - + = cn = 0. 



128 Systems of Linear Differential Equations 

for every t E II. In other words, if we know a family of n linear independent 
saturated solutions of the system (4.1.3), we know any other solution, and 
thus the general solution. 

Remark 4.1.2 In accordance with Remark 4.1.1, a fundamental problem 
in the study of the system (4.1.3) consists in finding at least one algebraic 
basis in the space of all saturated solutions. We emphasize that, in general, 
we do not know general methods of finding such basis. A remarkable and, 
at the same time, very important exception is that when the matrix A is 
constant. This case will be thoroughly analyzed in a forthcoming section. 

We will present next a simple method of checking whether or not 
n saturated solutions of the system (4.1.3) are linear independent. Let 
xl ,  x2)  . . . , xn be n saturated solutions of the system (4.1.3), and let us de- 
fine the matrix X : 11 --+ M n x n ( R )  by X(t) = col(z1(t),z2(t>, . . . ,x"( t ) )  for 
every t E 1, i.e. the matrix whose columns at t E II are the components of 
the vectors x ' ( t ) ,  x 2 ( t ) ,  . . . , xn(t) .  More precisely 

i X(t)  = 

' z i ( t )  z f ( t )  . . . q ( t )  
xk(t)  Xi(t) . . . q t ) )  

,xA(t) x ; ( t ) .  . . xE(t) 

(4.1.5) 

for every t E II. 

Definition 4.1.2 The matrix X defined by (4.1.5) is called the associated 
matrix of the system of solutions x', x2,. . . , xn E S .  

Remark 4.1.3 Since each column of the associated matrix X of (4.1.3) 
is a solution of that system, it follows that X : 11 -+ M n x n ( R )  is a solution 
of the matrix system 

x' = JL(t)X. 

Definition 4.1.3 The system d, x 2 ) .  . . , xn E S is called a fundamental 
system of solutions of the equation (4.1.3) if it is an algebraic basis in S. 

Definition 4.1.4 The matrix associated to a fundamental system of so- 
lutions of equation (4.1.3) is called a fundamental matrix of the system 
(4.1.3). 

Remark 4.1.4 We notice that (4.1.3) has infinitely many fundamental 
matrices. This follows from the observation that the space of saturated 
solutions of the system (4.1.3) has infinitely many algebraic basis. 
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Remark 4.1.5 
the general solution of (4.1.3) is given by 

If X is a fundamental matrix for the system (4.1.3), then 

x ( t , c )  = X ( t ) c  (4.1.6) 

for t E JI and c E Rn, Indeed, (4.1.6) represents nothing else but the matrix 
version of the relation (4.1.4) because 

1 Z i ( t )  Z ? ( t ) .  , . xT(t) 

\$t) X i ( t ) .  . * X E ( t )  

n 

= C C i X 2 ( t ) .  
i= 1 

Definition 4.1.5 
xl,  x 2 , .  . . , xn in S, its determinant, denoted by W : 11 --+ R, i.e. 

If X is the matrix associated to a system of solutions 

W ( t )  = det X ( t )  

for every t E JI, is called the Wronskian associated to the system of solutions2 
X I ,  2 2 , .  . , , xn. 

Theorem 4.1.4 Let X I ,  x 2 , .  . . , xn  be a system of saturated solutions of 
equation (4.1.3)) let X be the associated matrix and let W be the associated 
Wronslcian. The conditions below are equivalent : 

( i )  the matrix X i s  fundamental; 
(ii) for every t E 1, W ( t )  # 0;  

(iii) there exists a E 1 such that W ( a )  # 0.  

Proof. We begin by showing that (i) implies (ii). So, let us assume that 
the matrix X is fundamental, which amounts to saying that the system 
x l ,  x2, . . . , xn is linear independent. Let us assume by contradiction that 
there exists a E II with W ( a )  = 0. Therefore the linear and homogeneous 
system of algebraic equations 

X ( a ) c  = O 
~~ ~~ 

2The name of this determinant comes from the name of the polish mathematician 
Hoene Joseph Maria Wronski (1776,1778?-1853) which was the first who defined and 
studied it. 
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with the unknowns c1, c2,. . . , c, has at least one nontrivial solution 
(1 ,  &, . . . , (n. On the other hand, the function x : 1 -+ Rn, defined by 

for every t E II is, in view of Remark 4.1.5, a solution of the system (4.1.3) 
which satisfies z ( a )  = 0. From the uniqueness part of Theorem 4.1.1 it 
follows that x ( t )  = 0 for every t E II, relation which is equivalent to 

n 

X ( t ) J  = CJzsZ(t) = 0 
i= 1 

for every t E I, where at  least one of J1, J2 ,  . . . , (n is not zero. Hence the 
system z l ,  x2 ,  . . . , xn is not linear independent, assertion which contradicts 
(i). This contradiction can be eliminated only if (ii) holds. 

Obviously (ii) implies (iii) . 
Finally we shall prove that (iii) implies (i). Again, let us assume by 

contradiction that, although (iii) holds, X is not a fundamental matrix. 
This means that there exist some constants c1, c2, . . . , c,, not all zero, such 
that 

n 

C C i X i ( t )  = X( t ) c  = 0 
i= 1 

for every t E II. From this equality we deduce in particular (taking t = a )  
that the algebraic linear homogeneous system 

X(a)c  = 0, 

whose determinant W(a)  is nonzero, has at  least one nontrivial solution. 
This contradiction can be eliminated only if (iii) implies (i). The proof is 
complete. 0 

Remark 4.1.6 Let a E I, J E Rn and X be a fundamental matrix for 
the homogeneous system (4.1.3). Then, the unique solution of the Cauchy 
problem 

is given by 

(4.1.7) 
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for every t E 1. Indeed, from Remark 4.1.5, we know that x(-, a, [) is given 
by (4.1.6), i.e. 

for every t E II, where c E Rn. Imposing the condition x (a ,a , c )  = t, we 
deduce X ( a ) c  = <. But, in view of Theorem 4.1.4, X ( a )  is invertible and 
consequently c = X-'(a)<, which proves (4.1.7). 

Lemma 4.1.1 
Then, the matrix-valued function U : II x II --+ MnXn(IR), defined by  

Let X be a fundamental matrix of the system (4.1.3). 

U ( t ,  s )  = X ( t ) X - l ( s )  

for  every t ,  s E II, i s  independent of the choice of the fundamental matrix 
X .  I n  addition, for every s E 11, U(., s )  satisfies 

(4.1.8) 

U(s, s) = J 

for every t E II, where 3 is the unit n x n matrix. 

Proof. The fact that U(.,s) satisfies (4.1.8) follows from Remark 4.1.6 
with a = s and taking successively < = e l ,<  = e2,. . . ,c  = en, with 
el ,  e2,. . . , en the canonical basis in Rn. Since the Cauchy problem (4.1.8) 
has the uniqueness property, we deduce that U does not depend on the 

0 choice of the fundamental matrix X .  The proof is complete. 

Definition 4.1.6 
Lemma 4.1.1, is the evolutor, or the evolution operator generated by A. 

The family of matrices { U ( t ,  s) ; t ,  s E I}, defined in 

Remark 4.1.7 The evolutor has the following properties: 

(11) U(s, s) = 7 for every s E I; 
(12) U ( t , s ) U ( s , T )  = U ( t , T )  for every 7, s , t  E II; 
(13) lim IlU(t, s) - 71" = 0. 

t + s  

Indeed, ( € 1 )  and (€3) follow from Lemma 4.1.1, while ( 1 2 )  is a direct 
consequence of the definition of the operators U ( t ,  s). 

Remark 4.1.8 Remark 4.1.6 can be restated in terms of the evolution 
operator generated by A. More precisely, for every a E II and every ( E Rn, 
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the unique saturated solution of the Cauchy problem for the system (4.1.3), 
which satisfies z (a ,a ,<)  = <, is given by 

z(t, a ,  t )  = w, a)< 

for every t E 1. 

In what follows, we shall prove a result which shows explicitly how 
the Wronskian of a system of solutions depends on the elements of the 
associated matrix A. We begin with 

Lemma 4.1.2 
T h e n  the function 9 ; II -+ R defined by: 

Le t  dij : II -+ R be diflerentiable o n  II, i, j = 1 , 2 , .  . . , n. 

for every t E II is differentiable o n  11 and 

for every t E 11, where Dk i s  the determinant  obtained from D by replacing 
the elements  d k l ( t ) ,  dka( t ) ,  . . . , d k n ( t )  of the kth row by the corresponding 
derivatives d L l ( t ) , d L 2 ( t ) ,  . . . dLn( t ) ,  k = 1 , 2 , .  . . ,n. 
Proof. We denote by S(n) the set of substitutions of { 1,2,  . . . , n} and by 

e(o)  the signature of the substitution o E S(n), o = ( 1  2 1 : 7 ). Since, 
21 22 an 

in view of the definition of the determinant, we have 

for every t E 11, it follows that ’D is differentiable on 1. In addition, we have 

n n 

which completes the proof. 0 
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n 

W’(t) = >: 
k = l  

Theorem 4.1.5 
solutions of (4.1.3)) then 

(Liouville3) If W is the Wronskian of a system of n 

(Xk)’(t) (x;)’(t) . . . ( z p ( t )  

zA(t) z i ( t )  . . . zE(t) 

. 
. 

for every t E 11, where to E II is fixed, while trA i s  the trace of A, i.e. 
trA(s) = xy=, uii(s) for  every s E I. 

Proof. 
in addition 

From Lemma 4.1.2, it follows that W is differentiable on 1, and 

1 Xi(t) X?(t) . . . z;”(t) 

Taking into account that x l ,  x2, . . . , xn are solutions of the system (4,1.3), 
we get 

n n  

k = l  j=1 

x#) $( t )  . . . zT(t) 

xi@) z$) . . . zj”(t) 

xA(t) x;(t) . . . XE(t) 

. . .  . . .  . . .  

* . .  . . .  . . .  

Joseph Liouville (1809-1882) French mathematician known for his contributions to 
the study of the transcendental functions and that of double-periodical functions. 

3
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Since for each Ic # j the corresponding determinants in the last sum have 
two equals rows, i.e. the kth and the jth, all are zero, and therefore 

n 

W’(t) = c ajj ( t )  
j=1 

z t ( t )  rc?(t) . . . z?(t) 

z ) ( t )  xj2(t) . . . zj”(t) 

XA(t) z;(t) . . . z;(t)  

. . .  . . .  . . .  

. . .  . . .  . . .  
, 

or equivalently W satisfies W / ( t )  = trA(t)W(t) for every t E 1. But the 
equation above is linear and homogeneous and therefore W is given by 
(4.1.9). 0 

Remark 4.1.9 We notice that Theorem 4.1.4 may be proved also with 
the help of Theorem 4.1.5. We leave as an exercise this variant of proof of 
Theorem 4.1.4. 

4.2 Non-homogeneous Systems. 
Variation of Constants Formula 

Let us consider the first-order linear non-homogeneous system 

x/ = A( t ) z  + b(t), (4.2.1) 

where A : H + Mnxn(R) and b : II --+ Rn are continuous functions. At the 
same time, let us consider the homogeneous system 

XI = Jl(t)z. (4.2.2) 

In this section we will present a method of determination of the general 
solution of the system (4.2.1) with the help of the general solution of the 
attached homogeneous system. 

We begin with the following simple, but very useful in applications 

Theorem 4.2.1 Let X be a fundamental matrix of the system (4.2.2) and 
let y : II 3 Rn be a solution of the system (4.2.1). A function x : 1 + Rn is 
a solution of the system (4.2.1) if and only zfx is of the form 

x( t )  = X(t)c + Y(t)  (4.2.3) 

for every t E I, where c E R”. 
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Proof. 
let us define the function z : 1 -+ R" by 

Necessity. Let x : 1 -+ R" be a solution of the system (4.2.1) and 

for every t E IT. Obviously z is differentiable on 1 and we have 

z' ( t )  = d ( t )  - y ' ( t )  = A(t)z(t)  + b ( t )  - A ( t ) y ( t )  - b( t )  

for every t E 1. Hence z is solution of the homogeneous system (4.2.2) and, 
in view of Remark 4.1.5, it is of the form 

Z ( t )  = X ( t ) c  

for every t E IT, where c E Rn. From this relation and from the definition of 
the function z ,  we deduce (4.2.3), which achieves the proof of the necessity. 

Sufficiency. Let x be the function defined by (4.2.3). Since t I-+ X(t)c  is a 
solution of the homogeneous system (4.2.2)) i t  follows that x is differentiable 
on 1. In addition 

d ( t )  = X'( t )c  + y ' ( t )  = A(t)X(t)c  + A ( t ) y ( t )  + b( t )  

= A ( t ) ( X ( t ) c  + y ( t ) )  + b( t )  = J l ( t ) x ( t )  + b( t )  

for every t E 1 and, by consequence, x is a solution of the system (4.2.1). 
The proof is complete. 0 

Remark 4.2.1 Theorem 4.2.1 asserts that  the general solution of the 
system (4.2.1) is of the form (4.2.3) with y a particular solution of the 
system (4.2.1) and c E Rn. 

Let now a E 1, [ E R" and let us consider the Cauchy problem 

{ x' = A(t)a: + b( t )  
x ( a )  = <. (4.2.4) 

Theorem 4.2.2 
t e m  (4.2.2). 
(4.2.4) is given by 

Let X be a fundamental matrix of the homogeneous sys- 
Then  the unique saturated solution of the Cauchy problem 

z ( t ,  a , c )  = X( t )X- ' (a )c  + X ( t ) X - l ( s ) b ( s )  ds  (4.2.5) 

for  every t E 1. 
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Proof. 
Cauchy problem of the form 

Remark 4.1.5 suggests to  look for the unique solution of the 

for t E II, where c : 1 -+ R” is a function of class C1 which has to  be 
determined. We will find c by letting x defined by (4.2.6) be a solution of 
the Cauchy problem (4.2.4). We have 

d ( t ,  a, () = X’(t)c(t)  + X(t)c’(t)  

for every t E 1. Hence x, given by (4.2.6), is a solution of the system (4.2.1) 
if and only if 

X’(t)c(t) + X(t)c’(t)  = A(t)X(t)c( t )  + b ( t )  

for every t E II. Recalling that X satisfies X ’ ( t )  = A(t)X(t) for every t E II, 
the last equality is equivalent to 

A( t )X( t ) c ( t )  + X(t)c’(t) = A(t )X( t )c ( t )  + b ( t )  

for every t E II which, in its turn, can be rewritten in the form 

X(t)c’(t) = b ( t )  (4.2.7) 

for every t E 1. Since X ( t )  is non-singular, we deduce c’(t) = X - l ( t ) b ( t )  for 
t E II. Integrating this relation on both sides from a to  t ,  we get 

t 
c ( t )  = c(a) + J, X- l ( s )b ( s )  ds, 

relation which, in view of (4.2.6), leads to  

t 
z ( t ,  a, () = X(t )c (a)  + X ( t )  / X-’(s)b(s) ds 

a 

for every t E 1. According to  (i) in Lemma 8.1.3, X ( t )  commutes with the 
integral. So 

t 
x ( t ,  a, () = X(t )c (a)  + / X(t)X-’(s)b(s)  ds 

a 

for every t E 1. Letting z ( a , a , < )  = <, we deduce that c(a)  = X-l(a)< 
0 relation which, along with the preceding one, implies (4.2.5). 
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Remark 4.2.2 
can be equivalently rewritten in the form 

Formula (4.2.5)) called the variation of constants formula, 

x ( t ,  a ,  <) = U ( t ,  a)< + U ( t ,  s)b(s) ds (4.2.8) 

for every t E II, where { U ( t ,  s) ; t ,  s E It} is the evolutor generated by A, i.e. 

Ii 
U ( t ,  s) = X ( t > X - l ( s )  

for every t ,  s E 1. See Definition 4.1.6. 

4.3 The Exponential of a Matrix 

Let us consider the first-order linear homogeneous system with constant 
coefficients 

XI = Ax, (4.3.1) 

where A E Mnxn(R). Since the right-hand side is an analytic function 
on Rn, according to Theorem 3.1.1, i t  follows that all the solutions of the 
system (4.3.1) are analytic on R. On the other 
scalar equation x' = ax, the general solution is 
t E R, where 

hand, in the case of the 
given by z ( t )  = Jets for 

the convergence being uniform on every bounded subset in R. Concerning 
the n-dimensional case, i.e. the case of the system (4.3.1)) these two remarks 
suggest to define (formally for the moment) a candidate to the title of a 
fundamental matrix by 

(4.3.2) 

We notice that A'" is the k-times product of the matrix J1 by itself, while 
.Ao = 3. By analogy with the scalar case, we shall prove that the series on 
the right-hand side is uniformly convergent, for t in bounded sets in R, in 
the sense of the norm 1 1  . 1 1 ~  defined in Section 8.1. Finally, we will show 
that the sum of this series is the unique fundamental matrix X ( t )  of the 
system (4.3.1) which satisfies X ( 0 )  = 3. 

To fix the ideas, we begin with 
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Definition 4.3.1 
is convergent to e if 

The series xr=o e k ,  whose terms belong to M,.,(R), 

where 11 ( I N  is the norm defined in Section 8.1. The series CEO e k ,  whose 
terms belong to MnX,(R), is normal convergent if the series cT=, I lekl lM 

is convergent. 

Remark 4.3.1 One may easily see that, for every normal convergent 
series of matrices, zr=, e k ,  there exists one matrix e such that the series 
converges to e. This follows from the simple observation that the sequence 
of partial sums of any normal convergent series of matrices is fundamental 
in the norm of the space M,,,(R> which is complete (it can be identified 
with RnXn endowed with the Euclidean norm). See Remark 8.1.1. 

Definition 4.3.2 Let e k  : II -+ %f.,.,(R>, k E lV. We say that the series 
of the matrix-valued functions CEO e k ( t )  is uniformly convergent on 1 to 
e : II --+ M,,,(R) if for every E > 0 there exists m ( ~ )  E N such that,  for 
every m E N, m 2 m(e) ,  we have 

for every t E II. 
Theorem 4.3.1 For every A E M n x n ( I R ) ,  the series - tk 

k=O 

is uniformly convergent on every bounded interval 1 in R. I n  addition, its 
sum etA is dijjferentiable on  R and 

for every t E R. 

Proof. According to Corollary 8.1.1 we have 

(4.3.3) 
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for every m, p E N and every t E R. This inequality shows that the 
series in question satisfies the Cauchy's condition uniformly for t in every 
bounded subset, simply because the numerical comparison series has this 
property. Hence the sequence of partial sums is a uniform Cauchy sequence 
on every bounded interval 1, and therefore the series considered is uniformly 
convergent on 1. 

In order to  prove the second part of the theorem, we begin by observing 
that the series is termwise differentiable and that the series of derivatives is, 
in its turn, uniformly convergent on every bounded interval in R. Indeed, 
it is easy to see that 

t k -  1 t k - 1  
A"?A J p - 1  - - 

d 
-(3) = O  and - -Ak =A- 
dt d t  d ( t k  k !  ) ( k - l ) !  ( k  - I)! 

for every k E N* and every t E R. From here it follows that 

Therefore the series of derivatives satisfies Cauchy's condition uniformly for 
t in every bounded interval. So, the sum of the initial series is differentiable 
and its derivative satisfies 

relations which obviously are equivalent to (4.3.3) and this completes the 
proof. 0 

Remark 4.3.2 The first equality in (4.3.3) proves that every column of 
the matrix et", thought as a function from R to  Rn, is a solution of the 
homogeneous system (4.3.1). Since eoA = 3 and 3 is non-singular, it follows 
that etA is a fundamental matrix for the system (4.3.1). 

Some useful consequences of Theorem 4.3.1 are stated below. 

Proposition 4.3.1 For every A E Mnxn(R) the series 

is convergent. In addition, the function A I-+ eA defined on  Mn,n(R) 
taking values in 3vcnxn(R), where eA is the sum of the series above, has the 
following properties: 
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(i) e3 = e3, eU = 3, where (3 is the null n x n-matrix; 
(ii) if A23 = 23A then e"+' = e"eIB; 

(iii) i fA  = Q-123Q then e" = ZZ-le'Q; 
(iv) e-JL = (eA1-l. 

Proof. 
matrix e". In order to prove (ii), let us observe that, if A!B = BA, then 

The item (i) is an immediate consequence of the definition of the 

for every t E R. Indeed, if A23 = 23A then Ak!B = 23Ak for every k E N, 
relation which, along with the definition of the matrix etA, implies (4.3.4). 
From (4.3.4) and (4.3.3), it follows that 

for every t E R. Consequently X ( t )  = et"etIB is a fundamental matrix for 
the system 

x' = (A + 23)x 
which satisfies X ( 0 )  = 3. From the uniqueness part of Theorem 4.1.1 and 
from Remark 4.3.2, it follows that etAetB = et("+') for every t E R, which 
obviously implies (ii) . 

If .A = P1238a then .Ak = Q - 1 T 3 k Q  for every k E N, and so 

which proves (iii). 
Finally, as A and -A commute, from (ii), we deduce 

Consequently e" is invertible and its inverse is e-" and this completes the 
proof. 0 

Remark 4.3.3 Let us consider the Cauchy problem 

x' = Ax + b ( t )  { 44 = e 
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where A E M n x n ( R ) ,  b : II --t Rn is a continuous function, a E 1 and < E R". 
Then the unique solution of this problem is given by 

(4.3.5) 

for every t E 1. 
We notice that (4.3.5) is a consequence of the variation of constants 

formula (4.2.5). Indeed, taking X ( t )  = etA and making use of (ii) and 
(iv) in Proposition 4.3.1, we deduce that X ( t ) X - l ( s )  = e(t-S)A for every 
t , s  E R. From here and (4.2.5), we deduce (4.3.5). 

Remark 4.3.4 All the considerations in this section can be extended 
without difficulty to  the case of first-order differential systems of linear 
equations with constant complex coefficients. More precisely, let us consider 
the first-order linear differential homogeneous system 

w' = Aw, (4.3.6) 

where J1 E M n x n ( @ ) .  By a solution of this system we mean a function 
w : D -+ en, holomorphic on D C C., and which satisfies wI(z) = Aw(x) 
for every z E D. 

We endow CC" with the standard inner product, i.e. ( a ,  a ) ,  defined by 

n 

(w, w) = c wa7iq 
i= 1 

for every A E M n x n ( C ) .  Now, let us observe that the series CEO $-Ak is 
uniformly convergent on every bounded subset in CC and its sum is a matrix 
whose elements are entire functions (holomorphic on C.). We denote this 
matrix by eZA. From a classical theorem concerning the differentiability of 
complex power series, we deduce that the matrix above is a solution (on C )  
of the Cauchy problem 

W 1 =  AW { W(0) = g. 
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4.4 A Method to Find etA 

In this section we will present a method of finding the matrix etA using the 
Jordan canonical fomn of a matrix. We begin by recalling that, for every 
matrix with complex elements A E M n x n ( C ) ,  there exists a non-singular 
matrix Q E Mnx,(C),  such that 

A = a-lga, (4.4.1) 

8 being the Jordan canonical form of the matrix A. Namely, if Ax, A 2 , .  . . , A, 
are the roots4 of the characteristic equation det(A - A7) = 0, with orders of 
multiplicity ml ,  r n 2 , .  . . , rn,, xi=, rnp = n, then a is a matrix of diagonal 
blocks: a p j ,  p = 1 ,2 , .  . . , s, j = 1 , 2 , .  . . , h(p) .  So, eta is a matrix of diagonal 
blocks too, i.e. 

Here, for each p = 1 , 2 , .  . . , s and j = 1 , 2 , .  . . , h ( p ) ,  a p j  are the Jordan cells 
corresponding to the characteristic root A,, i.e. 

A, 1 o . . .  

E ~ m p j  x m p j  (C) 
[ 0 A p l  . . .  ' j 

8 p j  = 

0 0 o . . .  A, 

and $:? r n p j  = mp. For a method of finding the matrix Q see for instance 
[Udrigte et al. (1982)], p. 62. From (4.4.1) and (iii) in Proposition 4.3.1, 
combined with Remark 4.3.4, it follows that 

for every t E R. Then, in order to  determine etA, it suffices to find e t 8 p j  

with p = 1 , 2 , ,  . . , s, j = 1 , 2 , .  . . , h ( p ) .  To this aim, let us observe that 

0 1  o . . .  0 
0 0 1  . . .  0 

8 p j  = : is 0 0 0  . . .  0 

+ A, 

1 0 0  . . .  0 
0 1 o . . .  0 

0 0 0  . . .  1 

4Real, or complex. 
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for p = 1 , 2 , .  . . , s and j = 1 , 2 , .  . . , h(p). Denoting by 

&,j = and 3 p j  = 1 

0 0 0  . . .  0 0 0  . . .  
the relation above rewrites in the form g p j  = &,j + XP3,j. Since t&,j and 
tXP3,j commute, according to  Proposition 4.3.1, it follows that  

I t  is easy to see that the power of exponent q = 1 , 2 , .  . . m,j of the matrix 
€,j, & E j ,  is the matrix whose elements ek,l are given by: ek,l = 0 for every 
k = 1 , 2  , . . . ,  mpj and 1 = 1 , 2  , . . . ,  mPj, 1 # k + q  and ek,k+q = 1. Thus, 
as the matrix & p j  is of order mpj, it follows that & E p j  is the null matrix. 
Taking into account the definition of the exponential of a matrix, we have 

(4.4.5) 

for every t E R. From (4.4.2), (4.4.3), (4.4.4) and (4.4.5), we explicitly get 
the matrix etA. 

We conclude with a fundamental result in the theory of systems of 
linear differential equations with constant coefficients, result known as the 
structure theorem of the matrix etA. 

Theorem 4.4.1 All elements of the matrix etA are of the fo rm 
S 

eakt [pk( t )  cos(Pkt) + qk( t )  s in(Pkt )]  7 

k=l 

where a!k + a,&, k = 1 , 2 .  . . , s ,  are the roots of the characteristic equation 
det(J1- N) = 0, while pk and qk are polynomials with real coeflcients, of 
degree not exceeding m k  - 1, ? n k  being the order of multiplicity of the root 
CYk -k i p k ,  k = 1 , 2 , .  . . , S .  
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Proof. Let X = a+@ be any root of the equation det(J1-X3) = 0. Taking 
into account that  etx = eat [cos(Pt) + i sin(@)] , performing the calculations 
in (4.4.3), using (4.4.4), (4.4.5) and recalling that, although L2-l and 9 are 
matrices with complex elements, the product Q-’eta9 = etA is necessarily 

0 a matrix with real elements, we get the conclusion. 

The functions of the form specified in Theorem 4.4.1 are known in the 
literature under the name of quasi-polynomials. 

Remark 4.4.1 The theorem of structure of the matrix etA furnishes an 
effective method of determination of this matrix. More precisely, in order to 
find etA, we take into account that all its elements are of the form mentioned 
in Theorem 4.4.1 and we determine the coefficients of the polynomials p k  

and q k  by imposing the conditions: eoA = 9 and (etA)’ = hetJL for every 
t E R. However, we emphasize that this method is rather complicated, as 
we can see from the example below. 

Example 4.4.1 Find etA in the case in which 

A=( -2 2 -1). 3 

The characteristic equation det(J1 - XJ) = 0 rewrites equivalently in the 
form 

and has the roots A 1  = 1 and X2 = 4, both having the order of multiplicity 
1. Accordingly, the elements of the matrix etA are linear combinations of 
et and e4t. We have 

From the condition eoA = 9 it follows 

So, denoting by cil = a,  ci2 = /3, cfrl = y and c $ ~  = 6, we have c:l = 1 -a,  
c:2 = -p, c;l = -7 and c ; ~  = 1 - 6. With these notations, etA is of the 
form 

ae t  + (1 - a)e4t 
yet - ye4t 

pet - , ~ e ~ ~  
Jet + (1 - 6)e4t 

etA = ( 



The nth -Order Linear Differential Equation 145 

The condition (etA)' = AetA rewrites as 

act + 4(1 - a)e4t 
ye t  - 4ye4t 

pet - 4pe4t 
Set + 4(1  - S)e4t 

for every t E R. Taking into account that the family { e t , e 4 t }  is linear 
independent in the space of continuous functions from R to Iw, identifying 
the coefficients of et rund e4t in the two matrices, we get a linear system of 
eight equations with four unknowns (a ,  p, y, S), having the unique solution 

1 ( 2et + e4t et - e4t 
a = $, ,O = +, y = i7 s = 4. Consequently etA = - 3 2et - 2e4t et + 2e4t 
for every t E R. 

4.5 The nth-Order Linear Differential Equation 

Let us consider the nth-order linear differential equation 

+ al(t)y(n-l) + * * * + a,(t)y = f ( t ) ,  (4.5.1) 

where a1 , a2, . . . a,, f are continuous functions from a nontrivial interval II 
in R. As we have seen in Section 1.2, equation (4.5.1) can be rewritten 
as a system of first-order differential equations. Indeed, by means of the 
trans forms 

x = (XI, 22,. * . ,  2,) = (9, y', . * . , ? p - l ) )  (T) 

(4.5.1) may be rewritten its a system of n linear differential equations: 

(4.5.2) 



146 Systems of Linear Differential Equations 

With the notations 

and 

1 
0 

for t E I, the system (4.5.2) can be written as a first-order vector differential 
equation 

X' = Jl(t)x + b( t ) .  (4.5.3) 

From this moment, it is completely clear that all the considerations made 
in the preceding sections of this chapter rephrase in order to be applica- 
ble to  equation (4.5.1). We begin by introducing some concepts and by 
establishing some variants of the previously proved results. 

Definition 4.5.1 
homogeneous. Otherwise, it is called non-homogeneous. 

If in (4.5.1) f ( t )  = 0 on I, equation (4.5.1) is called 

has a unique global solution. 

Theorem 4.5.2 Every saturated solution of (4.5.1) is  defined on I. 

Let us consider now the homogeneous equation attached to equation 
(4.5.1), i.e. 

We denote by S n  the set of all saturated solutions of the homogeneous 
equation (4.5.4) and with S the set of all saturated solutions of the linear 
homogeneous system attached to (4.5.3). 
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Lemma 4.5.1 The map 7 : S n  -+ S, defined by 

T(Y> = ( Y ,  Y', . - - , Y(~-')) = ( ~ 1 ,  ~ 2 ,  > X n >  

f o r  every y E S n )  is  an  isomorphism of vector spaces. 

Proof. We may easily see that S n  is a vector subspace of C"(II;R) and 
that the map T is linear. In addition, T is surjective because given a 
solution ( ~ 1 ~ x 2 , .  . . , X n )  of the homogeneous system attached to (4.5.3) it 
is quite obvious that the function y = q is of class Cn from I to R and 
T(y) = (XI, 22, . . . , X n ) .  Finally, T is injective because T(y) = 7 ( z )  is 
equivalent to (y, y', . . . , Y ( ~ - ' ) )  = ( z ,  z', . . . , dn-')), equality which clearly 
implies y = z .  Hence 'T is isomorphism and this completes the proof. 0 

An immediate consequence of Lemma 4.5.1 is: 

Theorem 4.5.3 
equation (4.5.4) is an n-dimensional vector space over R. 

Remark 4.5.1 By virtue of Theorem 4.5.3, the determination of the 
general solution of equation (4.5.4) is equivalent to the determination of n 
saturated linear independent solutions. 

From Theorem 4.2.1, we deduce 

The set of all saturated solutions of the homogeneous 

Theorem 4.5.4 The general solution y ( . , c ) ,  c E Rn, of (4.5.1) is  of the 
fom 

d t ,  c> = Y M ( t ,  c> + Y&>, 

where y ~ ( . , c )  is  the general solution of the homogeneous equation (4.5.4)) 
while yp i s  a particular saturated solution of equation (45 .1) .  

Now let y1, y2, .  . , , Y n  be a system of saturated solutions of equation 
(4.5.4), and let us define the matrix 9 : II --+ Mnxn(lR) by 

Y ( t )  = 

,yr"-l '( t)  y P - l ) ( t ) .  . . y P - l ) ( t )  

(4.5.5) 

for every t E I. 



148 Systems of Linear Differential Equations 

Definition 4.5.2 
of the system of solutions 91, y2, . . . , Yn E Sn. 

Definition 4.5.3 The system y1, y2,. . . ) yn E Sn is a fundamental system 
of solutions of equation (4.5.4) if it is an algebraic basis in the set S, of all 
saturated solutions of equation (4.5.4). 

Definition 4.5.4 
system of solutions of (4.5.4) is a fundamental matrix of (4.5.4). 

The matrix Y defined by (4.5.5) is the associated matrix 

The associated matrix corresponding to a fundamental 

Remark 4.5.2 Recalling that the map T, defined in Lemma 4.5.1, is 
an isomorphism between Sn and S, it follows that a system of saturated 
solutions y1, y2, . . . , yn of equation (4.5.4) is fundamental if and only if 
x l ,  x2, .  . . , xn, with xi = T(yi) for i = 1,2,. . . , n, is a fundamental system 
of solutions for the homogeneous system associated to the system (4.5.3). 
This simple observation allows us to reformulate several results, established 
for homogeneous linear systems, in this new framework of the nth-order 
linear differential equation. 

More precisely, let 91, y2, . . . , yn be a system of saturated solutions of 
equation (4.5.4), let be the associated matrix of this system, and let 
W ( t )  = detY(t), for t E II, be the determinant which, by analogy with the 
case previously studied, is called the Wronskian of the system of solutions. 

Theorem 4.5.5 
of n saturated solutions of (4.5.4). Then 

(Liouville) Let W be the Wronskician of a given system 

W ( t )  = 'W(t0)exp (- 1; ads) ds)  (4.5.6) 

f o r  every t E II, where t o  E II i s  fixed. 

Proof. The conclusion follows from Theorem 4.1.5, by observing that,  in 
the case of the homogeneous system attached to (4.5.3), the trace of the 
matrix A equals -al. 0 

Theorem 4.5.6 Let y1, y2,. . . , Yn be a system of saturated solutions of 
(4.5.4)) let 3 and W be the matrix, and respectively the Wronskian, associ- 
ated to the system of solutions. The following conditions are equivalent: 

(i) the matrix 3 is fundamental; 
(ii) for  every t E It, W ( t )  # 0;  

(iii) there exists a E 1 such that W ( a )  # 0.  

Proof. The conclusion follows from Theorem 4.1.4. 0 
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Let y1, y2, . . . , Yn be a fundamental system of solutions of equation 
(4.5.4). Then, from Theorem 4.5.3, it follows that the general solution 
of the homogeneous equation (4.5.4) is given by 

(4.5.7) 

with ci E R for i = 1,2,  . . . , n. Concerning the non-homogeneous equation 
(4.5.1), we have: 

Theorem 4.5.7 
of equation (4.5.4). 
equation (4.5.1) i s  given by 

Let  y1, y2 , .  . . , Yn be a fundamental system of solutions 
Then ,  the general solution of the non-homogeneous 

where ci : II -+ R fo r  a = 1 , 2 , ,  . . , n range the set of all funct ions of class 
C1 which satisfy 

c : ( t ) y ~ ( t )  + 4 ( t ) y 2 ( t )  + * ' '  + Ck( t ) yn ( t )  = 0 
c: ( t )y : ( t )  + c ; ( t ) y g t )  + * * * + ck( t )y: , ( t )  = 0 

(4.5.8) 

c i ( t ) y y 2 ) ( t )  + c g t ) y p - 2 ) ( t )  + * - + ' c : , ( t ) y t 2 ' ( t )  = 0 
c ; ( t ) y y ' ( t )  + c ; ( t ) y y ) ( t )  + * * + c:,(t)y?-l)(t) = f ( t )  

fo r  every t E 1. 

Proof, Let us observe that y ( t )  = C:., c i ( t ) y i ( t )  is a solution of equation 
(4.5.1) if and only if z( t )  = y ( t ) c ( t )  is a solution of the system (4.5.3), 
where c(t)  is the column vector whose components are c1 ( t ) ,  c2 ( t ) ,  . . . , &(t).  
Reasoning as in the proof of Theorem 4.2.2, we deduce that c must satisfy 
(4.2.7). But the system (4.5.8) is nothing else but the specific form taken 

0 by (4.2.7) in this case. The proof is complete. 

The method of finding the general solution of the non-homogeneous 
equation (4.5.1) as specified in Theorem 4.5.7 is called the variation of 
constants method. 
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4.6 The nth-order Linear Differential Equation 
with Constants Coefficients 

Next, we describe a method to get a fundamental system of solutions in the 
case of the nth-order linear homogeneous differential equation with constant 
coefficients. We emphasize that, for the general case of an equation with 
variable coefficients, no such methods are known. 

Let us consider the nth-order linear homogeneous differential equation 
with constant coefficients 

where a l ,  a2, . . . , an E R. By means of the transformations 

(4.6.1) rewrites as a first-order linear homogeneous vector differential equa- 
tion 

XI = Ax, 

where 

0 1  0 ... 0 
X7 0 0  1 . . .  0 

-an -Un-l -Un-2 . . . -a1 

(4.6.2) 

Remark 4.6.1 
case, the equation det(A - XJ) = 0 has the form 

One may easily state by direct computations that,  in this 

+ a1Xn--l + - .  . + a, = 0. (4.6.3) 

This is called the characteristic equation attached to  equation (4.6. l), 
while the corresponding polynomial on the left-hand side is known as the 
characteristic polynomial attached to  equation (4.6.1). 

The main result referring to the determination of a fundamental system 
of solutions for equation (4.6.1) is: 

Theorem 4.6.1 Let X I ,  X2,. . . ,A, be the roots of equation (4.6.3) with 
orders of multiplicity ml, 7712, . . . , m,. Then, a fundamental system of so- 
lutions for equation (4.6.1) is 3 = u%=, Fj, where, if X j  is real with order 



The nth -order Linear Equation with Constants CoeJgicients 151 

of multiplicity mj )  

while if X j  is not real, 3j = s j  U 3Cj with 

and 

In the latter case, aj is the real part of X j )  while Pj is the modulus of the 
imaginary part of the same root. 

Proof. One may easily see that the family 3 contains a t  most n elements. 
So, in order to prove the theorem, it suffices to show that every solution 
of equation (4.6.1) is a linear combination of elements in F. Indeed, if we 
assume that this is the case, then 3 is a family of generators for the set 
of all saturated solutions Sn of equation (4.6.1), set which, according to 
Theorem 4.5.3, is an n-dimensional vector space over R. Then, 3 must 
have exactly n elements and so it is a basis in Sn and this completes the 
proof. 

So, let y 6 S,. Then the function T(y) = x defined in Lemma 4.5.1 is a 
solution of the homogeneous equation (4.6.2). According to Remark 4.1.5, 
there exists c E Rn such that x(t)  = etAc for every t E R. On the other 
hand, from Theorem 4.4.1 and Remark 4.6.1, it follows that all components 
of x are linear combinations of elements in 3. In particular y = 2 1  enjoys 
the same property, and this completes the proof. 0 

We can now analyze an example which gives a mathematical explanation 
of the resonance phenomenon in the case of forced harmonic oscillations. 

Example 4.6.1 
tion 

Let us consider the second-order linear differential equa- 

XI/ + w 2 x  = f ( t )  (4.6.4) 

which describes the oscillations of a material point P of mass m which 
moves on the Ox axis under the action of two forces: the first, an elastic 
one F ( z )  = -kx for x E R, and the second, a periodic one of the form 
G(t)  = mf( t )  for t E R. We recall that w2 = k/m. We emphasize that 
here we have two systems: the first one characterized by the elastic force 
called receptor, and the second one called excitatory and characterized by 
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the perturbing force G, exterior to the receptor system. Equation (4.6.4) 
describes the action of the excitatory system on the receptor system. Due to 
the evident signification of the action of the force G, the equation above is 
called the equation of forced oscillations of the material point P. We recall 
that here z ( t )  represents the elongation of the point P at the moment t .  Let 
us remark that, by Theorem 4.6.1, the general solution of the corresponding 
homogeneous equation is given by ~ ( t )  = c1 sin wt+c2 cos w t  for every t E IR, 
where c1, c2 E J R .  We analyze next the case in which the excitatory force 
G is itself a solution of the homogeneous equation, situation in which G 
amplifies the oscillations of the material point. The well-understanding of 
the mechanism of this phenomenon, known under the name of resonance, 
represents a first step through the explanation of many other phenomena 
much more complex, but essentially of the same nature. More precisely, let 
us assume that f ( t )  = kl sinwt + k2 cos wt for t E J R ,  where at  least one of 
the numbers k l ,  k2 E IR is non-zero. In view of the variation of constants 
method, presented at  the end of the preceding section, we conclude that 
the general solution of (4.6.4) is of the form ~ ( t )  = c l ( t )  sinwt+c2(t) coswt, 
where c1, c2 are functions of class C1 which satisfy 

ci ( t )  sin w t  + c; ( t )  cos w t  = O 
wci ( t )  cos w t  - wc; ( t )  sin w t  = kl sin w t  + k2 cos w t .  

Solving this system, after a simple integration, we get 

c l ( t )  = & ( -k l  cos 2wt + Ic2 sin2wt) + $t + k3 
c2 ( t )  = ( k l  sin 2wt + k2 cos 2wt) - $t + kq 

for t E R, where k3,  kq E R. Accordingly, the solution of equation (4.6.4) is 
z(t> = (& + k3) sinwt + 2t sinwt + (3 + k3) coswt - &t coswt. One 
can easily see that, unlike the solution of the homogeneous equation which 
is bounded on R, this is unbounded. This observation is very important in 
practice. Namely, it shows that the components of any structure subjected 
to vibrations have to be chosen such that their own frequencies be different 
from any rational multiplier of the frequency of the excitatory force. 

We conclude this section with the presentation of a class of nth-order 
linear differential equations with variable coefficients which, by a simple 
substitution, reduce to nth-order linear differential equations with constant 
coefficients. More precisely, let us consider the equation 

(4.6.5) 
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with al ,  a2,. . . ,an E R and f : JR? --+ R, equation known as the Euler 
equation. 

Theorem 4.6.2 By means of the substitutions 

for  s E R, (4.6.5) reduces to an  nth-order linear diferential equation with 
constant coeficients with the new unknown function x depending o n  the 
new argument s. 

Proof. 
of y is of the form 

Let us remark that,  for k = 1 , 2 , .  . . , n, the kth-order derivative 

dz  d 2 z  
-- c1- + c 2 7  + * * * + c k -  
d t k  ds  d s  

(4.6.6) 

with c1,c2,. . . ,c, constants. Indeed, for k = 1, we have 

Assuming that (4.6.6) holds true for some Ic 5 n - 1 and differentiating side 
by side, we deduce 

with d l ,  d2, .  . . , dk+l real constants. By consequence (4.6.6) holds true for 
every k = 1 , 2 , .  . . , n. Computing the derivatives of y,  substituting these 
in (4.6.5) and taking into account that ,  for every k = 1 , 2 ,  . . . , n, we have 

differential equation with constant coefficients. The proof is complete. 0 
t ke -kS  - - 1, we easily conclude that z is the solution of an nth-order linear 

Remark 4.6.2 Analogously, by means of the transformations 

cut + p = es 
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for at + p > 0 and s E R, the equation 

(at + P)"y("'(t) + (at + p)n- la ly(n- l ) ( t )  + * - - + a,y(t) = f(t) ,  
with Q! > 0 and p E R, reduces to an nth-order linear differential equation 
with constant coefficients. 

4.7 Exercises and Problems 

Problem 4.1 

and b absolutely integrable o n  W+. Let us consider the system 
Let a, b : W+ + R be two continuous functions with lim a(t) = 1 

t++m 

x' = a ( t ) y  
y' = b ( t ) z .  

Prove that 

(i) if (x, y )  is  a solution of the system ( S )  with x bounded on R+, then 

lim y ( t )  = 0 ; 
t++w 

(ii) there exists at least one solution of the system (8) which is  unbounded 

Let f : 1 x W" 3 W" be a function of class C1 with the property 

on R+. 

Problem 4.2 
that 

o n  II x R". For a E II and < E W", we denote by S(.)< : [ a ,  b) -+ W" the unique 
saturated solution of the problem eiP(lt, R", f ,  a ,  <). Let D be a domain of finite 
volume in W" and let D ( t )  = S ( t ) D  for t E [ a ,  b ) .  Prove that the volume of D ( t )  
i. e. 

Vol ( D ( t ) )  = // . . . S, det (r) aSi(t)x dxi dx2 . . . dzn 

is constant on [ a ,  b ) .  This result is  known as Liouville's theorem and is  especially 
useful in Statistical Physics. 

Problem 4.3 Let H Rn x R" + R be a function of class C2 and let us  consider 
the Hamiltonian system 
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Let E,q E Rn and let S( . ) (<,q)  = ( p ( . ) , q ( . ) ) ,  where ( p , q )  : [ a , b )  + R" x R" is  
the unique saturated solution of the system which satisfies p ( a )  = ( and q (a )  = q. 
Prove that, f o r  each domain D of finite volume Vol(D) in R" x R", we have 
Vol(S(t)D) = Vol(D) for  every t E [ a ,  b) .  

Problem 4.4 Let A E Mnxn(R) be a matrix whose transpose A' = -A. Show 
that, f o r  every t E R, the matrix etA i s  orthogonal. We recall that a matrix 23 i s  
orthogonal if it is  non-singular and BT = B-' .  

Problem 4.5 Let A E MnX,(R) be a matrix whose transpose A' = -A. Show 
that every fundamental matrix X of the system 

XI = A x ,  

which is orthogonal at t = 0 ,  is orthogonal at every t E R. 

Problem 4.6 Let A : W t MnX,(R) be a continuous function with the property 
that, for  every t E R, A'(t) = -A(t). Prove that every fundamental matrix X of 
the system 

X I  = A ( t ) x ,  

which as orthogonal at t = 0 ,  is orthogonal at every t E R. 

Problem 4.7 Let A E MnXn(R). Show that, if X E C is  a root of the equation 
det(A - M) = 0, then, f o r  every t E R, etX i s  a root ofdet(etA - p3) = 0. 

Problem 4.8 If A E MnX,(R) is  symmetric, i.e. A' = A then and etA is 
symmetric f o r  every t E R. 
Problem 4.9 Let A : R --+ Mnxn(R) be a continuous function with the property 
that A*(t) = A(t) for  every t E R. Prove that every fundamental matrix X of the 
system 

x1  = A ( t ) x ,  

which i s  symmetric at t = 0 ,  is  symmetric at every t E R. 
Problem 4.10 Let A E M,.,(R). A necessary and suf ic ient  condition in order 
that all the elements of the matrix etA be positive f o r  every t 2 0 i s  that all the 
non-diagonal elements of the matrix A be positive. ([Halanay (1972)l , p. 190) 

Problem 4.11 
problem 

Let A,23,e E Mnx,(R). Prove that the solution of the Cauchy 

XI = AX + XB { X ( 0 )  = e 
is  given by X ( t )  = etAC!etB. ([Halanay (1972)], p. 191) 

Problem 4.12 Let A, 3, e E MnX,(R). Prove that if the integral 

+- 
X = - I eSAeeslBds 

is convergent, then it satisfies A X  + XB = e. ([Halanay (1972)], p. 191) 
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Problem 4.13 Let A E Mn,n(W) and let 

k A2k 00 

C O S A  = Z(-l) - 
(2k)! 

sinA = X ( - I )  - 
(2k + l)! * 

k=O 
00 ~ 2 k + l  

k=O 

d d 
(1) Compute - (cos tA) and - (sin tA) ; d t  dt  
(2) Show that the 2n x 2n matrix  

c o s t A  sintA 
-A sin tA A cos tA Z ( t )  = 

is  a n  associated matrix  of a certain system of solutions for  the first- 
order system of linear digerential equations with 2n unknown functions : 
21 , 2 2  , * * 7 X n  7 Y1, Y2 , . . - ) Y n  

x1 = y { Yl= -A2x. 

Under what circumstances is  this a fundamental matrix? 

([Halanay (1972)], p. 191) 

Problem 4.14 Let f : 1 x R" + R" be continuous o n  1 x W" and Lipschitz o n  
W", let < E W", a E 1 and A E Mnxn(W). W e  define the following sequence of 
successive approximations: xo is the unique global solution of the system 

while xm is the unique global solution of the system 

Prove that, f o r  every b > a with [ a ,  b ]  C I, (2m)mcN converges uniformly on [ a ,  b ]  
to  the unique solution x : [ a ,  b ]  --+ W" of the Cauchy problem 

X I  = f ( t , x )  
x ( a )  = <. 

([Halanay (1972)], p. 196) 
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Exercise 4.1 Solve the following systems of linear differential equations : 

2: = 22 

2; = 21. 
(7) { x'z = 2 3  

2'1 = x2 + 2 3  

x'z = 2 3  + 21 
2; = 21 + 2 2 .  

(8) { 
Exercise 4.2 Solve the following second-order linear diflerential equations : 

(1) 2'' - 52' + 4x = 0. (2) x" + 22' + x = 0. (3) 2'' + 42 = 0. 
1 

sin t ' 
(4) x" - 4 2  = t2eZt .  ( 5 )  X" + 9~ = cos 2t.  (6) X" + x = - 
(7) X" + x = 2t cos t cos 2t. ( 8 )  x" - 42' + 42 = te2t .  (9) 2'' - 2x = 4t2et2.  

Exercise 4.3 Solve the following higher-order linear differential equations : 

(1) x'" - 132" + 122' = 0. ( 2 )  x"' - x' = 0. (3) XI'' + x = 0. 
( 4 )  x zv  + 4 x  = 0.  (5) x"' - 3 ~ ' '  + 32' - x = t .  (6) XI" + 22" + x = 0. 
(7) xcIv - 2x'" + x" = e t .  (8) x"' + x" + x' + x = t e t .  (9) x"' + 6 ~ "  + 92' = t .  

Exercise 4.4 Solve the following Euler, or reducible to  Euler equations: 

(1) t 2 X "  + 3tx' + x = 0. ( 2 )  t2x" - tx' - 32 = 0. 
(3) t2x" + tx' + 4 x  = 0.  

( 5 )  (3 t  + 2)x" + 72' = 0. 
XI x 

(7) x" + - + - = 0.  t t 2  

( 4 )  t3x''' - 3t2x" + 6 t ~ '  - 6~ = 0. 
22 (6) X" = - 
t 2  * 

( 8 )  t2d' - 4 t ~ '  + 6x = t .  

(9) (1 + t)2x" - 3(1 + t)x' + 4x = (1 + t)3. (10) t2x" - tx' + x = 2t.  
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Chapter 5 

Elements of Stability 

This chapter is entirely dedicated to the study of the stability of solutions to 
certain systems of differential equations. In the first section we introduce and 
illustrate the main concepts referring to stability. The second one is concerned 
with several necessary and sufficient conditions for various types of stability in 
the particular case of first-order systems of linear differential equations. In the 
third section we present some sufficient conditions under which the asymptotic 
stability of the null solution of a first-order differential system is inherited by the 
null solution of a certain perturbed system, provided the perturbation is small 
enough. In the fourth section we prove several sufficient conditions for stability 
expressed by means of some functions decreasing along the trajectories, while 
in the fifth section we include several results regarding the stability of solutions 
of dissipative systems. In the sixth section we analyze the stability problem 
referring to automatic control systems, while the seventh section is dedicated to 
some considerations concerning instability and chaos. As each chapter of this 
book, this one also ends with an Exercises and Problems section. 

5.1 Types of Stability 

In its usual meaning, stability is that property of a particular state of a 
given system of preserving the features of its evolution, as long as the 
perturbations of the initial data are sufficiently small. This meaning comes 
from Mechanics, where it describes that property of the equilibrium state 
of a conservative system of being insensitive ‘ ‘h la Zongue” to any kind of 
perturbations of “small intensity”. Mathematically speaking, this notion 

159 
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has many other senses, all coming from the preceding one, and describing 
various kinds of continuity of a given global solution of a system as function 
of the initial data, senses which are more or less different from one another. 
The rigorous study of stability has its origins in the works of Celestial 
Mechanics of both Poincar6 and Maxwell, and has culminated in 1892 with 
the doctoral thesis of the founder of this modern branch of differential 
equations, Lyapunov. 

As we have already shown in Theorem 2.5.2, under certain regularity 
conditions on the function f, the map q H x(., a,  q )  - the unique saturated 
solution of the Cauchy problem 

- is locally Lipschitz from R to C([ a,  b ] ;  R"), for each b E ( a ,  bg ) ,  where 
[ a ,  b,=) is the domain of definition of the saturated solution x(., a,  c) .  A much 
more delicate problem, and of great practical interest, is that  of finding 
sufficient conditions on the function f such that,  on one hand, x( . ,a ,<)  
be defined on [a,+oo) and, on the other hand, the map q H x ( . , a ,q )  be 
continuous from a neighborhood of < to  the space of continuous functions 
from [ a ,  +m) to R", endowed with the uniform convergence topology. 

Let R be a nonempty and open subset in R", let f : R+ x R -+ Rn be 
continuous on R+ x R and either locally Lipschitz, or dissipative on R ,  and 
let us consider the differential system 

x' = f ( t , x ) .  (5.1.1) 

Let us assume that (5.1.1) has a global solution 6 : R+ + R. 

Definition 5.1.1 The solution q!~ : R+ + R of (5.1.1) is stable if: 

for every a 2 0 there exists p(a) > 0 such, that for every [ E R 
with - $(a)II 5 p (a ) ,  the unique saturated solution x(., a,  <), of 
the system (5.1,1), satisfying z ( a ,  a ,  [) = 5, is defined on [ a ,  +co) 
and 
for every a 2 0 and every E > 0, there exists d(&, a )  E (0, p(a )  3 such 
that,  for each [ E R with l l [ -~(a) l l  5 J ( E ,  a) ,  the unique saturated 
solution x ( . , a , t ) ,  of the system (5.1.1), satisfying z ( a , a , [ )  = [, 
also satisfies Ilz(t, a ,  <) - +(t)ll 5 E for every t E [ a ,  +XI). 

For a suggestive illustration of the situation described in Definition 5.1.1, 
in the case n = 2, see Figure 5.1.1. 

(i)

(ii)
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the graph of x 

Figure 5.1.1 

Definition 5.1.2 The solution + : Iw+ --+ 52 of (5.1.1) is uniformly stable 
if it is stable and both p(a) > 0 and 6 ( ~ , a )  > 0 in Definition 5.1.1 can be 
chosen independent of a 2 0, i.e. p(a) = p and S ( E , U )  = 6 ( ~ ) .  

Definition 5.1.3 The solution 6 : Iw+ --+ 52 of (5.1.1) is asymptotically 
stable if it is stable and, for every a 2 0, p(a) > 0 in Definition 5.1.1 can 
be chosen such that,  for each < E 52 with Ilr - +(.)/I 5 p(a), the unique 
saturated solution x(-, a,  S) of the system (5.1.1), satisfying z ( a ,  a ,  <) = <, 
also satisfies lim llx(t, a ,  <) - $(t)  1 1  = 0. 

t++m 

The situation described in Definition 5.1.2 is illustrated in Figure 5.1.2. 

1 1 1 1 1 1 1 1 1 , 1 1 1 , 1 1 1 1 1  the graph of @ 

- the graph of x 

Figure 5.1.2 

Definition 5.1.4 The solution + : R+ -+ 52 of (5.1.1) is uniformly asymp- 
totically stable if it is uniformly stable and, for every E > 0, there exists 
T ( E )  > 0 such that, for every a 2 0, every < E 52 with II< - +(a) 1 1  _< p (where 
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,u > 0 is given by Definition 5.1.2), and every t 2 a + r (&) ,  we have 

Remark 5.1.1 These four concepts of stability refer to a property of a 
certain solution of (5.1.1), and not to a property of the system itself. More 
precisely, there exist systems which have both stable and unstable solutions. 
Indeed, let us consider the differential equation 

x' = ax(p - x ) ,  

where a > 0 and p > 0 are constants. As we have seen in Section 1.4, 
this equation describes the spread of a disease within a population p ,  x ( t )  
representing the number of the infected individuals at the moment t. We 
recall that  for every r 2 0 and every [ E R the unique global solution 
x ( . ,  r,  <) : [ r, +oo) + R of this equation, which satisfies x ( r ,  7, <) = [, is 

for t E [ 7 ,  +m). Among the two stationary solutions x = 0 and x = p of the 
equation, the first one is unstable, while the second one is uniformly stable. 
Rephrasing this observation in the terms of the modelled phenomenon, we 
can say that: in an isolated biological system, the state of health ( x  = 0 )  is 
fragile to small perturbations, i.e. unstable, while the state of illness ( x  = p )  
is uniformly stable. 

Remark 5.1.2 Every solution 4 of the system (5.1.1) which is uniformly 
asymptotically stable is both uniformly stable and asymptotically stable. 
Moreover, every uniformly, or asymptotically stable solution is stable. We 
emphasize that: (1) stability does not imply uniform stability; (2) the 
concepts of uniform stability and asymptotic stability are independent; (3) 
uniform stability does not imply uniform asymptotic stability. See the 
example below. 

Example 5.1.1 
consider the equation x' = a( t )x ,  where 

In order to prove the item (1) in Remark 5.1.2, let us 

d 
dt a(t)  = - [ t ( l  - t cost)  cost] . 

It is not difficult to see that a satisfies the condition (1) in Problem 5.1 
with M : R+ -+ R defined by M(t0) = ( t o  cost0 - i)2 for every t o  E R+, 
but it satisfies none of the other three conditions. Hence the null solution 
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of the equation above is stable but is neither uniformly, nor asymptotically 
stable, which proves (1). 

The identically zero solution of the equation x' = 0 is uniformly stable 
but it is neither asymptotically stable, nor uniformly asymptotically stable. 
This observation proves (3) and the fact that uniformly stability does not 
imply asymptotic stability. In order to complete the proof of item (2) in 
Remark 5.1.2, we will show that the asymptotic stability does not imply 
uniformly stability. To this aim let us consider the equation x' = a(t)J:,  
where 

d 
d t  a ( t )  = - [t (sint - at)] 

for every t 2 0, where a E (0,1/7r), We leave to the reader the proof of 
the fact that a satisfies condition (3) in Problem 5.1 but does not satisfy 
condition (2) in the same problem. Hence the null solution of the equation 
is asymptotically stable, but it is not uniformly stable. 

Remark 5.1.3 By means of the transformation y = x-q5 the study of any 
type of stability, referring to the solution q!I of the system (5.1.1), reduces 
to the study of the same type of stability referring to  the identically zero 
solution of the system y' = f ( t ,  y+q!I(t)) -4'(t).  Therefore, in the following, 
we will assume that 0 E Q ,  f ( t ,  0 )  = 0,  and we will confine ourselves only 
to the study of the stability of the identically zero solution of the system 
(5.1.1). 

A stationary point or equilibrium point of (5.1.1) is an element x* in 
R with the property that f ( t , x * )  = 0 for every t E R+. Obviously, if 
x* is a stationary point for the system (5,1.1), the function J: E x* is a 
constant solution of (5.1.1) , called stationary solution. Let us observe that 
the identically zero solution of the system (5.1.1) is in fact a stationary 
solution or an equilibrium point for that system in the just mentioned 
sense. In the case of autonomous systems, i.e. of systems (5.1.1) for which 
f does not depend explicitly on the variable t E R+, we have the following 
result on the behavior of the solutions as t approaches +oo. 

Theorem 5.1.1 Let f : s2 + Rn be continuous and let x : [ a ,  +m) -+ s2 
be a solution of 

XI = f(x). (5.1.2) 

If there exists lim x( t )  = x* and x* E 0, then x* is an  equilibrium point 
t++w 

for the system (5.1.2). 
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We mention that a rather similar result has already been established in 
Section 3.4. See Lemma 3.4.1. 

Proof. From the mean-value theorem applied to the component xi of the 
solution on the interval [ m, m+ 1 1, with m E Nn [ a,  +oo) and i = 1 , 2  . . . , n, 
it follows that there exists 8i, in (m, m + 1) such that 

for i = 1 ,2 ,  , .  . , n and m E N n [ a ,  +oo). As lim, ( q ( m  + 1) - x i (m))  = 0 
and lim, fi(x(Oi,)) = fi(x*), it follows that 

lim f i ( z ( t ) )  = f&*) = o 
t++m 

for i = 1 , 2 , .  . . , n and therefore f(x*) = 0. The proof is complete. 0 
For the sake of simplicity we will restate the preceding definitions in the 

particular case 4 = 0. 

Definition 5.1.5 The null solution of (5.1.1) is stable if 

(i) for every a 2 0 there exists p(a) > 0 such that, for every ( E R 
with 1 1 < 1 1  5 p(a), the unique saturated solution x( . ,a ,<) ,  of the 
system (5.1.1), satisfying x (a ,  a ,  E )  = <, is defined on [ a ,  +m) and 

(ii) for every a 2 0 and every E > 0, there exists S ( E , U )  E (O,p(a)] 
such that, for each ( E R with 1 1 < 1 1  5 6 ( e , a ) ,  the unique saturated 
solution x( . ,a ,<) ,  of the system (5.1.1), satisfying x(a,a,J)  = <, 
also satisfies Ilz(t, a ,  <)I\ 5 E for every t E [ a ,  +oo). 

Definition 5.1.6 The null solution of (5.1.1) is unzformly stable if it is 
stable and both p(a) > 0 and & ( € , a )  > 0 in Definition 5.1.5 can be chosen 
independent of a 2 0, i.e. p(a) = p and S ( E , U )  = S ( E ) .  

Definition 5.1.7 The null solution of (5.1.1) is asymptotically stable if 
it is stable and, for every a 2 0, p(a) > 0 in Definition 5.1.1 can be chosen 
such that,  for each < E R with 1 1 < 1 1  5 p(a), the unique saturated solution 
z(., a,  <) of the system (5.1.1), which satisfies x(a, a,<) = <, also satisfies 

lim llx(t, a ,  <) / I  = 0. 
t++m 

Definition 5.1.8 The null solution of (5.1.1) is uniformly asymptotically 
stable if it  is uniformly stable and, for every E > 0, there exists r(E) > 0 
such that, for every a 2 0, every < E R with 1 1 < 1 1  5 p (where p > 0 is given 
by Definition 5.1.6), and every t 2 a + T ( E ) ,  we have 
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We conclude this section with the definition of a stability concept which, 
this time, describes a property of the system (5.1.1) and not one of a certain 
solution. 

Definition 5.1.9 The system (5.1.1) is globally asymptotically stable if, 
for every a 2 0 and every c E 52, its unique saturated solution, x( . ,u , ( )  
which satisfies x (a ,  a ,  () = (, is defined on [ a ,  +oo) and 

lim x( t ,  a ,  () = 0. 
t++m 

5.2 Stability of Linear Systems 

The aim of this section is to  present several results referring to various types 
of stability in the particular case of first-order systems of linear differential 
equations. More precisely, let us consider the system 

x' = A ( t ) x ,  (5.2.1) 

where A = (a i j )nxn  is a matrix whose elements aij are continuous functions 
from R+ in R. 

Theorem 5.2.1 The  null solution of (5.2.1) i s  stable (asymptotically 
stable), (uni formly stable), (uni formly asymptotically stable) if and only 
if each one of i t s  saturated solutions i s  stable (asymptotically stable), 
(uni formly stable), (uni formly asymptotically stable). 

Proof. If x = 4 is a saturated solution of the system (5.2.1)) by the 
transformation y = x-$, this solution corresponds to  the saturated solution 
y E 0. The conclusion of theorem follows from the simple observation that 
4 satisfies the conditions in Definition 5.1.1, (5.1.2)) (5.1.3), (5.1.4) if and 
only if y = 0 satisfies the corresponding conditions in Definition 5.1.5, 
(5.1.6)) (5.1.7)) (5.1.8). 0 

Remark 5.2.1 According to Theorem 5.2.1, in the case of linear systems, 
the stability of one saturated solution is equivalent to the stability of any 
one saturated solution. Therefore, within this framework, we will speak 
about the stability, or instability of the system itself, understanding by this 
the stability, or instability, of the null solution, or of any one of its saturated 
solutions. 

We continue with a fundamental result referring to  stability. 

Theorem 5.2.2 The  following assertions are equivalent: 
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(i) the system (5.2.1) i s  stable; 
(ii) the system (5.2.1) has a fundamental system of solutions which are 

(iii) all saturated solutions of the system (5.2.1) are bounded on  R+ ; 
(iv) all fundamental matrices of the system (5.2.1) are bounded on  R+ ; 
(v) the system (5.2.1) has a bounded fundamental matrix on  R+. 

bounded on  R+ ; 

Proof. If (5.2.1) is stable, then for E = 1 and a = 0 there exists S > 0 
such that, for every ,$ E R" with lltll 5 6 ,  the unique saturated solution 
z(., 0, <) of the system (5.2.1) satisfies 

for every t E R+. Take n linear independent vectors in the ball B(O,S), 
and let us observe that the n saturated solutions, which have as initial 
data at t = 0 those n chosen vectors, are bounded on R+ and constitute 
a fundamental system of solutions for (5.2.1). Hence (i) implies (ii). If 
(5.2.1) has a fundamental system of solutions, bounded on R+, as every 
solution is a linear combination of elements in the fundamental system, it 
is bounded and therefore (ii) implies (iii). Obviously (iii) implies (iv) which 
in its turn implies (v). Finally, let us consider a fundamental matrix X ( t )  of 
the system (5.2.1) and let us recall that, for every u 2 0 and every < E Rn, 
the unique saturated solution z(., a,  <) of the system (5.2.1) is given by 

for every t 2 a. Assuming that (v) holds true, we can choose X ( t )  such 
that there exists M > 0 with the property 

for every t E R+, where IlX(t)Ilm is the norm defined in Section 8.1, norm 
which, according to Remark 8.1.1, is equivalent to the Euclidean norm of a 
matrix X ( t ) ,  i.e. with the square root of the sum of its squared elements. 
From the last two relations, we have 

for every t 2 a. Consequently, for every E > 0 and every a 2 0, there exists 
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such that, for every < E R" with ll[ll 5 J(E,u)  we have 

for every t 2 a. Hence (v) implies (i) and this completes the proof. 0 

In the linear case, a necessary and sufficient condition of the asymptotic 
stability is: 

Proposition 5.2.1 The system (5.2.1) i s  asymptotically stable i f  and only 
if for every a 2 0 there exists p(a) > 0 such that for  every < E R" with 
11<11  I P b ) ,  we have 

lim 
t++w 

x ( t ,  a ,  <) = 0. 

Proof. The necessity is obvious. In order to prove the sufficiency let 
us observe that,  for a = 0 there exists p > 0 such that all the saturated 
solutions of the system (5.2.1), which have as initial data at t = 0 vectors in 
B ( O , p ) ,  tends to 0 as t approaches +oo. Consequently, all these solutions 
are bounded on R+. In particular, every fundamental system of solutions 
of the system (5.2.1), which have as initial data at t = 0 vectors in B(0, p ) ,  
contains only functions which are bounded on R+. From the equivalence of 
the assertions (i) and (ii) in Theorem 5.2.2, it follows that (5.2.1) is stable, 
which completes the proof. 0 

Concerning the asymptotic stability of linear systems, we have: 

Theorem 5.2.3 The following assertions are equivalent: 

(i) the system (5.2.1) as asymptotically stable; 
(ii) the system (5.2.1) has a fundamental system of solutions which tend 

(iii) the system (5.2.1) is globally asymptotically stable; 
(iv) the norm of any fundamental matrix of the system (5.2.1) tends to 

(v) there exists a fundamental matrix of the system (5.2.1) whose norm 

to 0 as t approaches +oo; 

0 as t approaches +CQ; 

tends to 0 as t approaches +oo. 

Proof. If (5.2.1) is asymptotically stable, for a = 0, there exists p > 0 
such that, for every ( E Rn with 11[11 5 p,  the unique saturated solution 
x(- ,O,c)  of the system (5.2.1), which satisfies x(O,O,c) = (, tends to 0 as 
t approaches +w. Let us consider a fundamental system of solutions of 
(5.2.1) consisting of functions whose values at  t = 0 belong to B(0, p ) ,  and 
let us observe that,  from the manner of choice of p > 0, this fundamental 



168 E lemen t s  of Stability 

system contains only functions which tend to 0 as t approaches +w. So 
(i) implies (ii). If (5.2.1) has a fundamental system of solutions which tend 
to 0 as t approaches +w, then every solution of (5.2.1) enjoys the same 
property, being a linear combination of elements in the fundamental system 
considered. Hence (ii) implies (iii). Obviously (iii) implies (iv) which, in 
its turn, implies (v). Finally, if X ( t )  is a fundamental matrix of the system 
(5.2.1) with 

from the representation formula of the solution : x ( t ,  a ,  <) = X( t )X- ' (a )<  
for every t 2 a ,  we deduce that every saturated solution of the system 
(5.2.1) tends to 0 as t approaches +w. According to Proposition 5.2.1, the 
system (5.2.1) is stable, and therefore (v) implies (i), and this completes 
the proof. 0 

Theorem 5.2.4 
has a fundamental matrix X ( t )  fo r  which there exists M > 0 such that 

The system (5.2.1) is uniformly stable if and only i f  it 

(5.2.2) 

for  every t ,  s E R+, s I t .  

Proof. In order to prove the sufficiency let us assume that the system 
(5.2.1) has a fundamental matrix which satisfies (5.2.2). Let c E R" and 
a E R+. Since the unique saturated solution of (5.2.1), x ( . , a , ( ) ,  is given 
by 

from (5.2.2), it follows that 

for every t 2 a. Let E > 0. From the preceding inequality we deduce that, 
for every < E 52, with ll(ll 5 EM- ' ,  we have 

for every t 2 a.  So (5.2.1) is uniformly stable. 
In order to prove the necessity, let us assume that (5.2.1) is uniformly 

stable. Then, for E = 1 there exists 6 > 0 such that, for every a E R+ and 
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every c E SZ with 1 1 < 1 1  5 6, the unique saturated solution a(. ,  a ,  t) of (5.2.1), 
which satisfies z ( a ,  a ,  <) = <, satisfies the inequality 

for every t _> a. Let X ( t )  be that fundamental matrix of the system (5.2.1) 
which satisfies X ( 0 )  = Y n .  Let X E (0,6) and t , s  E R+ with s I t .  Let us 
remark that the matrix X X ( t ) X - l ( s )  has as column of rank i E {1,2, .  . . , n} 
that  saturated solution xi of the system (5.2.1) which for t = s takes the 
value <z, where ti is the vector with all components zero, excepting that one 
on the row i which equals A. Then l l < Z l l  = X < 6 and therefore IlxZ(t)ll I 1 
for every i E {1,2, .  . . , n} and every t >_ s. Since, from Remark 8.1.1, we 
have 

1/2 

XIIX(t>X-l(s)llAf 5 ~ l l ~ ( t ) X - l ( s ) l l e  = c ll"i(t)l12 
( i I1  ) 

for every t 2 s, from the preceding inequalities, we get 

for every t ,  s E R+,  s 5 t. The proof is complete. 0 

With regard to the uniform asymptotic stability we prove: 

Theorem 5.2.5 
and only if it has a fundamental matrix X ( t )  which satisfies 

The system (5.2.1) is uniformly asymptotically stable if 

Proof. Let us remark that (5.2.1) is uniformly asymptotically stable if 
and only if it is a t  the same time uniformly stable, and asymptotically 
stable. The conclusion follows from Theorems 5.2.3 and 5.2.4. 0 

Now, let us consider the system 

2' = Ax (5.2.4) 

where A E Mnxn(R) is a constant matrix. 

Definition 5.2.1 
characteristic equation det(A - XY) = 0 have strictly negative real parts. 

The matrix A is hurwitzianl if all the roots of the 

~~ ~ 

lThe name of this property comes from the name of the German mathematician Adolf 
Hurwitz (1859-1919) which has defined and studied this class of matrices. 
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Lemma 5.2.1 
and w > 0 such that 

I f  J1 is hurwitzian then there exist the constants M 2 1 

for every t 2 0. 

Proof. According to Theorem 4.4.1, all the elements of etA are of the 
form C”,=, bk( t )eak t  COs(pkt) + q k ( t ) e a k t  sin(pkt)], where a k + z &  is a root 
of the characteristic equation det(J1 - XJ) = 0, of order of multiplicity 
m k ,  while p k  and q k  are polynomials with real coefficients, of degree not 
exceeding r n k  - 1. If A is hurwitzian then there exists w > 0 such that 
every root a + ip of the characteristic equation satisfies 

a < -w. 

Indeed, let XI) X2, . . . ) A, be the roots of the characteristic equation, ordered 
like their real parts: a1 5 a2 5 - 5 a k  < 0. Then w = - i a k  satisfies the 
property mentioned above. So we have 

where all the elements of the matrix B are of the form 

2 [pk( t )e - t~k  cos(pkt) + qk(t)e-tYk sin(Dkt)] ) 

where 7% > 0, while pk and q k  are polynomials. Accordingly, there exists 
M 2 1 such that 

k = l  

for every t 2 0. This inequality along with the relation above completes 
the proof. 0 

Theorem 5.2.6 If the system (5.2.4) is asymptotically stable then the 
matrix A is hurwitzian. If the matrix J1 i s  hurwitzian then the system 
(5.2.4) is globally and uniformly asymptotically stable. 

Proof. In order to prove the first assertion, let us assume by contradiction 
that, although the system (5.2.4) is asymptotically stable, the matrix A 
is not hurwitzian. This means that there exists at least one root of the 
characteristic equation det(J1 - XJ) = 0 with nonnegative real part. Let 
X = a + ip be that root. Then the matrix A, thought as an element 
in Mnxn(@) ,  has at least one eigenvector z E (En corresponding to the 
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eigenvalue A. We denote this vector by x = < + iq, where <,q E R". If 
the eigenvalue X is real, then the corresponding eigenvector has only real 
components ( z  = <) and in this case the function z(t,O,<) = ceXt<, with 
c E R, is a solution of the system (5.2.4). Since c ,  as an eigenvector of 
the matrix A, is nonzero, while X 2 0, it follows that for every c E R* the 
function x(.,O,c<) cannot tend to 0. So, the null solution of the system 
(5.2.4) cannot be asymptotically stable. If X is not real, then its complex 
conjugate is also an eigenvalue of .A, while Z = E - iq is a corresponding 
eigenvector. Moreover, let us observe that q # 0. Indeed if q would be zero, 
then z E Rn and from .Az = Xz would follow X E R, in contradiction with 
the initial supposition. In these conditions, let us observe that the function 
y(., 0, cq) : R -+ R", defined by 

for every t E R, where c E R*, is nonzero being the imaginary part of 
the function ceAtz, which at  t = 0 equals cq. But this function y(., 0, cq), 
which is a solution of the system (5.2.4), cannot tend to  0 for any choice of 
c E R*. Hence the null solution of the system is not asymptotically stable. 
This contradiction can be eliminated only if .A is hurwitzian. The proof of 
the first assertion is complete. 

On the other hand, if the matrix .A is hurwitzian, from Lemma 5.2.1, it 
follows that 

relation which, by virtue of Theorem 5.2.5, completes the proof of the 
second assertion. 0 

Remark 5.2.2 Theorem 5.2.6 shows that,  for systems of first-order linear 
differential equations with constant coefficients, the asymptotic stability is 
equivalent to  both global, and uniform asymptotic stability. Moreover, all 
these are equivalent to  the property of A of being hurwitzian. 

A useful completion of Theorem 5.2.6 is: 

Theorem 5.2.7 If the characteristic equation det(J1-Xg) = 0 has at least 
one root with strictly positive real part, then the system (5.2.4) i s  unstable. 
If all the roots of the characteristic equation have non-positive real parts 
and the Jordan cells corresponding to all those roots having the real parts 0 
are of first-order, then the system (5.2.4) i s  uniformly stable. I n  particular, 
if all the roots of the characteristic equation have non-positive real parts 
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and all the roots having the real part 0 are simple, then  the sys tem (5.2.4) 
i s  uni formly stable. 

Proof. Using similar considerations as those in the proof of the first part 
of Theorem 5.2.6, we deduce that,  if a + ip is a root of the characteristic 
equation and <+iq E Cn is a corresponding eigenvector, then, at least one of 
the functions z ( t ,  0, @) = text< or y ( t ,  0 ,  cq) = ceat(sinpt-<+cosPt.q), with 
c E R*, is a nontrivial solution of system. Obviously, if a > 0, that  solution 
is unbounded. In accordance with Theorem 5.2.2, the system (5.2.4) is 
unstable. If all the roots of the characteristic equation have non-positive 
real parts and the Jordan cells corresponding to those roots A, having 0 
real part are of first-order, i.e. etapj = (A,) for j = 1 , 2 , .  . . , h(p)  (the 
notations are those in Section 4.4), it follows that all the elements of the 
matrix etA are bounded on R+. As a consequence, there exists A 4  > 0 such 
that IletAe-SA1lM = lle(t-s)A1lM 5 M for every t , s  E R+, s 5 t. By virtue 

0 of Theorem 5.4.5, the system (5.2.4) is uniformly stable. 

Example 5.2.1 The condition that all Jordan cells corresponding to 
those roots with 0 real part are of first-order is less restrictive than the 
condition that all those roots are simple. 
det(J1- AJ) = 0, where the matrix A, in 

1 0 0  0 

0 0  0 

Indeed, the roots of the equation 
Jordan form, is given by 

-1 

are X = 0 and X = -1, both having the order of multiplicity 2. Nevertheless, 
the Jordan cells corresponding to the double root 0 are of first-order. In 
this case the matrix etA is 

1 0  0 

etA = (: o o 1 (1 + t ) e - t  1 e ! t )  O ' 

We conclude this section with a necessary and sufficient condition in 
order that a given matrix A be hurwitzian or, equivalently, in order that 
a polynomial with real coefficients have all the roots with strictly negative 
real parts. Let p ( z )  = a0zn + a1zn-l + - 0 - + an be a polynomial with real 
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coefficients. To this polynomial we associate the so-called Hurwitx matrix 

a1 a0 0 0 . . *  0 ' 

a3 a2 a1 a0 . . .  0 

H =  
a 2 k - 1  a 2 k - 2  a 2 k - 3  a 2 k - 4  ' * a 2 k - n  

0 0 0 0 . . .  an , 

where ai = O if i < O or i > n. 

Theorem 5.2.8 (Hurwitz) A polynomial p ( z )  = Q O Z " + ~ ~ Z " - ~ + .  - .+an 
has all the roots with strictly negative real parts if and only if all the principal 
minors of the associated Hurwitx matrix are positive, i.e. 

> o ,  . . . )  

Dn = det(H) > 0. 

For the proof of this theorem see [Nistor and Tofan (1997)], p. 176. 

5.3 The Case of Perturbed Systems 

Let 52 be an open neighborhood of 0 E R" and let F : R+ x 52 -+ Rn be 
continuous on R+ x R and locally Lipschitz on R with F ( t ,  0) = 0 for every 
t E R+. Let A E M,x,(R) and let us consider the system 

X' = AX + F ( t ,  x). (5.3.1) 

Since, in what follows this system will be thought of as a modified version 
of the linear and homogeneous system 

xJ =Ax (5.3.2) 

obtained by adding the so-called perturbing function F ( t ,  x), it will be called 
perturbed system. 

In this section, we present some sufficient conditions in order that  the 
stability properties of the system (5.3.2) be inherited by the system (5.3.1). 
As we will see later, if (5.3.2) is asymptotically stable and F is '(dominated 
in a certain sense" by .A, then the null solution of the system (5.3.1) is 
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asymptotically stable. This is no longer the case for the stability, which 
is fragile to  perturbations. Indeed, (5.3.2) may be stable if all the roots 
of the characteristic equation have 0 real parts. On the other hand, one 
can construct linear perturbations “as small as we wish” leading to  a linear 
system governed by a matrix for which at least one of the roots of the 
characteristic equation has a strictly positive real part, situation generating 
instability. For instance, the scalar equation x’(t) = 0 is stable, while the 
perturbed equation z’(t) = ~ z ( t ) ,  with E > 0, is not, and this regardless of 
how small E > 0 is. 

We begin with the following fundamental result. 

Theorem 5.3.1 (Poincarh-Lyapunov) Let A E Mn.,(rW), let R be a 
neighborhood of 0 E Rn, and let F : R+ x il --+ Rn be continuous on  R+ x R 
and locally Lipschitz on  R. If there exist M 2 1, w > 0 and L > 0 such 
that 

for every t E R+, 

(5.3.3) 

(5.3.4) 

for every ( t ,  z) E R+ x R and 

L M - w < 0 ,  (5.3.5) 

then the null solution of the system (5.3.1) i s  asymptotically stable. 

Proof. Let < E R, a E R+ and let x( . ,u ,<)  : [u,Tm) --+ il be the unique 
saturated solution of the system (5.3.1) which satisfies the initial condition 
x ( a , a , < )  = <. To begin with, we will show that, if ll<ll is sufficiently small, 
then x(., a ,  <) is defined on [ a ,  +m). In order to do this, let us observe that, 
by virtue of the variation of constants formula (4.3.5), with b ( t )  = F ( t ,  z ( t ) )  
for t E [ a ,  Tm), we have 

for every t E [ a ,  Tm). From this relation we deduce 

J u  
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from where, by virtue of conditions (5.3.3) and (5.3.4), it follows that 

for every t E [ a ,  T ! ) .  Multiplying both sides of this inequality by ewt > 0, 
we get 

t 

ewt Ilz(t, a, <>I1 I M e w a l l l l l  + / U M e w s  IIz(s, a, <) I1 ds 
a 

for every t E [ a ,  T,). Denoting by y : [ a ,  T,) + R+ the function defined 
by 

for t E [ a ,  Tm), the preceding inequality rewrites equivalently in the form 
t 

y(t> I Mewal l<l l  + 1 LMYW ds 

for every t E [ a ,  T,). From Gronwall's Lemma 1.5.2, it follows 

y ( t>  5 Mewal l<l leLM(t-a) 

from where, recalling the definition of the function y, we deduce 

for every t E [ a ,  Tm). 
NOW, let p > 0 be such that B ( 0 , p )  c R and let p(a) > 0 be defined by 

Then, according to the inequality (5.3.6), for every < E R with ll<ll 5 p(a), 
we have 

P 
Ilz(t, a, r)II I 2 

for every t E [ a ,  Tm). Assuming that T, < +oo, from this inequality and 
Proposition 2.4.1, it follows that there exists 

and z* E B(O,$) c R relation which, by virtue of (iii) in Theorem 2.4.3, 
contradicts the fact that x( . ,a ,<)  is saturated. This contradiction can be 
eliminated only if, for every E R satisfying 1 1 < 1 1  5 p(a), we have T, = +oo. 



176 Elements of Stability 

Finally let us observe that,  from what we have already shown combined 
with (5.3.6), i t  follows that,  for every [ E R with ll[ll I p(a) ,  we have 

lim x ( t , a , [ )  = 0, 
tt+m 

which achieves the proof. 0 

A useful consequence is stated below. 

Theorem 5.3.2 Let Jl E Mnxn(R) be hurwitzian, let R be a neighborhood 
of 0 E Rn, and let F : R+ x R -+ Rn be continuous on  R+ x R and locally 
Lipschitz on  R. If there exists a function a! : R+ -+ R+ such that 

for  every ( t ,  z) E R+ x R and 

= 0, lim - 
T - ~ O  r 

a! (4 

then the null solution of the system (5.3.1) i s  asymptotically stable. 

Proof. Since Jl is hurwitzian, by virtue of Lemma 5.2.1, there exists 
M 2 1 and w > 0 such that  (5.3.3) holds. Fix L > 0 with the property 
(5.3.5), and choose 6 > 0 such that 

for every T E [ 0,s). Clearly both the matrix J1 and the restriction of F to 
R+ x { x  E 0 ;  11z11 < 8 )  satisfy the hypotheses of Theorem 5.3.1, and this 
completes the proof. 0 

Now, we proceed to  the study of the stability by the first approximation 
method, which proves very useful in applications. Let f : R -+ Rn be a 
function of class C1 with f ( 0 )  = 0 and let us consider the system 

X I  = f ( x )  

which obviously has the identically zero solution. 

(5.3.7) 

Theorem 5.3.3 Let R be a neighborhood of 0 E Rn. I f f  : R -+ Rn is a 
function of class C1 with f ( 0 )  = 0 and whose Jacobian matrix Jl = fz(0) 
is hurwitzian, then the null solution of the system (5.3.7) is asymptotically 
stable. 
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Proof. Since f is of class C1, it is differentiable and therefore 

f(z) = f ( 0 )  + fx(0)z + F ( x )  = jl.x + F ( x )  

for every x E 0, where 

So, we are in the hypotheses Theorem 5.3.2 with 

for r 2 0. 0 
The next example shows that, though it is a corollary of Theorem 5.3.1,  

Theorem 5.3.3 proves effective even in situations in which Theorem 5.3.1 is 
not directly applicable. 

Example 5.3.1 Let us consider the Lie'nard equation 

z'l + gl (z )x l  + z = 0, 

where g : R -+ R is a function of class C1 with g(0)  = 0. This equation 
rewrites as a first-order differential system 

z' = y - g(z )  { y' = -z.  

The system above is of the form (5.3.1) with n = 2, 

Since the matrix A. is not hurwitzian, the condition (5.3.3) in Theorem 5.3.1 
is not fulfilled and therefore Theorem 5.3.1 is not directly applicable. 

Nevertheless, let us observe that the system above may be regarded as 
a system of the form (5.3.7) in which the function f : R2 .+ R2 is defined 
by 

for every x E R2 and whose Jacobian matrix at (0,O) is 
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Since this matrix is hurwitzian if g'(0) > 0, in view of Theorem 5.3.3, it 
follows that, in this case (g'(0) > 0), the null solution of the system above is 
asymptotically stable. As a consequence of this result, we deduce that the 
null solution of the Van der Pol equation, i.e. the equation corresponding to 
the particular case g ( z )  = z - z3 for every z E R, is asymptotically stable. 

We state without proof a completion of Theorem 5.3.3. For details see 
[Malkin (1953)], Chapter 4. 

Theorem 5.3.4 Let f : R + R" be a function of class C1 with f(0) = 0 
and let A = fz(0). If there exist a > 1, M > 0 and r > 0 such that 
[If(.) -Ax11 5 Mllxlla for  every x E Rn with 11x11 5 r and at least one root 
of the characteristic equation det(J1- XJ) = 0 has strictly positive real part, 
then the null solution of the system (5.3.7) i s  unstable. 

The case when at least one of the characteristic roots of the matrix fz(0) 
has 0 real part needs a much more delicate analysis involving the signs of 
the higher order derivatives of the function f at x = 0. See also [Malkin 
(1953)], loc. cit. 

5.4 The Lyapunov Function Method 

A very refined and powerful method of establishing sufficient conditions 
of stability consists in finding a certain real-valued function, decreasing 
along the trajectories of a given system, function which may increase only 
with the norm of the argument. Suggested by the evolution of certain 
phenomena in Classical Mechanics, where this function represents, in some 
sense, the potential energy of the system, this method, invented by the 
Russian mathematician Lyapunov in 1892, proves extremely effective and 
useful and is still far of being obsolete. 

Let R be an open neighborhood of 0 E R", and let f : R+ x R --+ R" be 
continuous on R+ x R and locally Lipschitz on a, with f ( t ,  0) = 0 for every 
t E R+. This last condition shows that cp = 0 is a solution of the system 

2' = f ( t , x ) .  (5.4.1) 

Definition 5.4.1 A function V : R+ x R --+ R+ is positive definite on 
R+ x R if there exists a function w : R+ --+ R+ continuous, nondecreasing, 
with a(.) = 0 if and only if r = 0, and such that 

(5.4.2) 
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for every ( t ,  x )  E R+ x R. A function V : R+ x R -+ R- is negative definite 
on R+ x R if -V is positive definite on R+ x R. 

Definition 5.4.2 
for the system (5.4.1) if 

A function V : R+ x R -+ R+ is a Lyapunov function 

(i) V is of class C1 on R+ x R and V(t,O) = 0 for every t E R+; 
(ii) V is positive definite on R+ x R; 

(iii) for every ( t , z )  E R+ x R we have 

(5.4.3) 

Theorem 5.4.1 
null solution is stable. 

(Lyapunov) If (5.4.1) has a Lyapunov function then its 

Proof. Let a E R+, < E R and let x(.,O,<) : [u,Tm) -+ R be the unique 
saturated solution of the system (5.4.1) which satisfies the initial condition 
x(a,a,c) = t. First we will show that,  if ll<ll is sufficiently small, then 
T, = +oo. To this aim let us define the function g : [ a ,  T,) + R+ by 

for every t E [ a ,  Tm), where V is a Lyapunov function for the system (5.4.1). 
Obviously g is of class C1 on [u,T,). In addition, from (5.4.3), it follows 
that 

for every t E [a,T,). So g is non-increasing, and hence g(t) 5 g(a )  for 
every t E [ a ,  Tm). Recalling the definition of the function g, this inequality 
rewrites equivalently in the form V( t ,  x( t ,  a ,  0) L V(a, <) for t E [ a ,  T.,). 
From (5.4.2) and the preceding inequality, we deduce 

for every t E [ a ,  T,). 
Since V ( a ,  .) is continuous at  0 and 

V(a, 0) = 0, for w(p)  > 0, with p > 0 as above, there exists T = ~ ( a )  E (0, p) 
Let p > 0 with B ( 0 , p )  c R. 
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such that V ( a ,  <) < w ( p )  for every E R with llEll 5 r.  From this inequality 
and from the preceding one, we deduce w(IIx(t,a,c)II) < w ( p )  for every 
t E [ a ,  Tm). Recalling that w is nondecreasing, we deduce 

for every t E [a,T,). Since B ( 0 , p )  c R and x ( . , a , ( )  is saturated, this 
inequality proves that, for every E R with 11e11 5 r ( a ) ,  T, = +00. Finally, 
a similar argument shows that, for every a E R+ and every E > 0 there exists 
6 ( a , ~ )  > 0 such that 

for every < E R with 1 / < 1 1  5 S ( U , E )  and every t 2 a. Hence the null solution 
0 of the system (5.4.1) is stable, which completes the proof. 

Theorem 5.4.2 (Lyapunov) If (5.4.1) has a Lyapunov function V and 
there exist X , q  : R+ -+ R+ continuous, nondecreasing, satisfying X(r) = 0 
i f  and only if r = 0,  ~ ( s )  = 0 if and only if s = 0,  

and 

(5.4.5) 

for  every ( t l x )  E R+ x 0, then its null solution i s  asymptotically stable. 

Proof. By virtue of Theorem 5.4.1 the null solution of the system (5.4.1) 
is stable. So, for every a E R+,  there exists p(a) > 0 such that, for every 
< E R with 1 1 < 1 1  5 p(a) ,  the unique saturated solution of the system (5,4.1), 
with initial data a and <, is defined on [a, +00). Let x(., a, <) : [a, $00) -+ R 
be such a solution and let us define the function g : [a,+oo) -, R+ by 
g ( t )  = V ( t ,  z( t ,  a, 5 ) )  for t E [a, +m), where V is a Lyapunov function with 
the properties (5.4.4) and (5.4.5). The function g is of class C1 and 
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for every t E [ a ,  +m). Integrating this relation both sides from a to t ,  we 
deduce 

for every t E [ a ,  +m). Since both q and V are positive, this inequality 
ensures, on one hand, that the integral 

is convergent and, on the other hand, that there exists the finite limit 

lim V( t , z ( t , a ,<) )  = l .  
tt+m 

Now, let us observe that, from the positivity of the function q and the 
convergence of the integral above, it follows that there exists at  least one 
sequence (tn)nEM with 

Since q is nondecreasing and q(r)  = 0 if and only if r = 0, it follows that 

Recalling that V satisfies (5.4.4) and that X is continuous and vanishes a t  
0, we deduce that ! = 0. From the remark above and from (5.4.2), we have 

and therefore 

Since w is nondecreasing and w ( r )  = 0 if and only if r = 0, the relation 
above holds true only if limtr+m (Iz(t, a, <)I1 = 0. The proof is complete. 0 

As concerns the global asymptotic stability of the system (5.4.1), we 
have: 

Theorem 5.4.3 Let us assume that fl = Rn and that the system (5.4.1) 
has a Lyapunov function V : R+ x Rn -+ R+ satisfying all the hypotheses 
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of Theorem 5.4.2. I f ,  in addition, w : R+ -+ R+ in Definition 5.4.1 satisfies 

lim w ( r )  = +oo, 
rT+w 

then the system (5.4.1) is globally asymptotically stable. 

Proof. The only difference from the proof of Theorem 5.4.2 consists in 
that all the evaluations there performed are still valid for every < E Rn. We 
emphasize that the hypothesis imposed on the function w is needed only 
in proving that, for every a E R+ and every < E Rn, the unique saturated 
solution x(., a ,  <) of (5.4.1), satisfying x (a ,  a ,  S )  = <, is global, i.e. defined 
on [ a ,  +m). 0 

For autonomous differential systems, i.e. for systems of the type 

where f : R -+ Rn, we look for autonomous Lyapunov functions, i.e. we 
look for functions V : R -+ R which do not depend on t .  Lemma 5.4.1 
below gives a sufficient condition in order for such a function be positive 
definite. 

Lemma 5.4.1 If V : SZ 4 R is continuous on  0, V(0)  = 0 and V(x) > 0 
for  every x E R, x # 0, then there exists a neighborhood of the origin, 
SZo c R, such that V is  positive definite on  Ro. 

Proof. It suffices to show that V is positive definite on a set of the form 
B ( 0 , p )  c 0, with p > 0 suitably chosen. To this aim, let p > 0 such that 
B ( 0 , p )  c 0, and let w : R+ -+ R+ be defined by 

inf{V(x); r I 11x11 <_ p }  for 0 I T 5 p 
for r > p. 

w ( r )  = 

Clearly the function w is continuous and nondecreasing on R+. In addition, 
one can easily see that w ( r )  = 0 if and only if r = 0. Consequently V is 
positive definite, which completes the proof of the lemma. 

Corollary 5.4.1 I f V  : R -+ R satisfies 

(i) V i s  of class C1 on R and V(0)  = 0 ;  
(ii) for eve y x E 52, x # 0,  we have V(z) > 0 ; 

(iii) for  every x E R we have 
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then there exists a neighborhood of the origin, Sto c R, such that V is a 
Lyapunov function for  the autonomous equation (5.4.6) on 0 0 .  

The image of the trajectory of an autonomous differential system in R2 
through a Lyapunov function V is illustrated in Figure 5.4.1 below. The 

Figure 5.4.1 

sense indicated corresponds to the sense of increase of the argument t .  The 
practical effectiveness of Corollary 5.4.1 is illustrated by the next example. 

Example 5.4.1 
system 

Check for stability the null solution of the differential 

2'1 = -21x2 - 2 2  c x; = 21 + x1x2. 

Let us observe from the beginning that the system above may be re- 
written as a vector differential equation X' = f ( ~ ) ,  where f : R2 -+ R2 
is defined by f(x)  = (fl(x),f2(x)) = ( - X I X ~  - z2,xl + zlxa),  for every 
x = (XI, 2 2 )  E R2. Obviously f is of class C" while its Jacobian matrix at  
0 is 

The equation det(J1 - XJ) = 0 has the roots f i  and therefore A is not 
hurwitzian. For this reason, none of the stability results proved in the 
preceding section can be used in this case. Nevertheless, we will show 
that the system above possesses a Lyapunov function defined on a suitably 
chosen neighborhood R of 0. To this aim, let us observe that the function 
V : (-1,l) x (-1,l) --+ R defined by V(x) = XI +XZ -ln(l+x1) - l n ( l + q )  
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for every x = (21, x2) E (-1,1) x (-1,1) is of class C1, V(O) = 0, V(X) > 0 
for every x # 0 and 

for every x E (-1,l) x (-1,l) .  From Corollary 5.4.1 it follows that V is a 
Lyapunov function for the system and therefore, by virtue of Theorem 5.4.1, 
the null solution is stable. 

We conclude with the remark that the manner, somehow obscure, in 
which we have found the function V will be much more understandable and 
completely clarified in the next chapter where we will present a necessary 
and sufficient condition in order that a function V remain constant along 
the trajectories of an autonomous system. For this reason we do not enter 
into details which could distract us from the essence of the problem: the 
fact that Theorem 5.4.1 is useful in situations in which Theorem 5.3.3 is 
not. 

In the case of first-order systems of linear differential equations with 
constant coefficients 

XI = Ax, (5.4.7) 

where A E Mnx,(IW), we have the following characterization of global and 
uniform asymptotic stability. 

Theorem 5.4.4 (Lyapunov) The system (5.4.7) is globally and uniformly 
asymptotically stable if and only i f  there exists a symmetric, positive definite 
matrix 3' E Mnxn(R) satisfying 

A*P + ?A= 4, (5.4.8) 

where A* is the transpose of the matrix A. 

Proof. According to Theorem 5.2.6, (5.4.7) is globally and uniformly 
asymptotically stable if and only if A is hurwitzian. For the necessity let 
us assume that A is hurwitzian. Then, by virtue of the obvious equality 
det(A - A?) = det(A* - A?), it follows that A* is hurwitzian too. So, from 
Lemma 5.2.1, there exist M 2 1 and w > 0 such that 
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for every t E R+. We can then define 

+m 
fp = 1 etA*etAdt 

since the integral on the right-hand side is convergent. Let us observe that 
the matrix fp is symmetric. Indeed, as (etA)* = etA* and (Be)* = e*B*, 
from (ii) in Lemma 8.1.3 we have 

From (iii) of the same Lemma 8.1.3, we deduce 

+m 

(Ipx, x) = 1 (etA*et"x, z) d t  = Jn+m (IetAx ( 1  2dt .  

So ( f p x , ~ )  > 0 for x # 0, and therefore Ip is positive definite. To conclude 
the proof of the necessity let us observe that, from (i) in Lemma 8.1.3, it 
follows that 

from where, integrating by parts, we get 

d Itrn d t  

The sufficiency follows by observing that,  if P is a positive definite and 
symmetric solution of (5.4.8), then V : Rn -+ R defined by V ( x )  = 4 (Ipx, J:) 
is a Lyapunov function for the system (5.4.7). Indeed, we can easily see 
that VV(z) = Ipz, while from (5.4.8), it follows that (fpz,Az) = 
for every J: E R". Hence V is a Lyapunov function for the system (5.4.7). 
In addition, because Y is positive definite, there exists 7 > 0 such that 
V(z)  2 qllslj2 for every x E Rn. From this observation and from the 
obvious inequality V(z) 5 ~ I ~ T P I I M I I J : ~ ~ ~  for every J: E Rn, we deduce that V 
satisfies the conditions of Theorem 5.4.3. Hence the system (5.4.7) is global 
and asymptotically stable. According to Theorem 5.2.6, the matrix A is 
hurwitzian and therefore, again from the same Theorem 5.2.6, it follows 
that the system (5.4.7) is globally and uniformly asymptotically stable. 

etA* - (etA> d t  = -3 - ?A. A * I ~  = etA*etJLlr  - 

The proof is complete. 0 

Remark 5.4.1 
equation than (5.4.8), has been considered in Problem 4.12. 

The existence of a matrix Ip, satisfying a more general 
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We conclude this section with a direct application of the previously 
proved results to the study of stability of the null solution for a class of 
autonomous dissipative systems. A much more detailed analysis of the 
stability problems in connection with these systems will be done in the 
next section. 

Let R be an open neighborhood of the origin and let A : R -+ R". We 
recall that  A is dissipative if (A(z) - A(y),z - y) 5 0 for every z,y E R. 
Let us consider the autonomous equation 

2' = A(x). (5.4.9) 

Theorem 5.4.5 If A : R -+ R" i s  a continuous dissipative func t ion  
with A(0) = 0 ,  then  the null solution of (5.4.9) i s  stable. If, in addition, 
R = R" and fo r  every x E Rn, x # 0, (A(x),x) < 0, then  the sys tem 
(5.4.9) i s  globally asymptotically stable, i.e.,  for every < E R", we have 
lim u(t,O,C) = 0, where u(.,O,J) : [ 0 ,  +oo) --j X i s  the unique global 

tt+m 
solution of (5.4.9) satisfying u(O,O, <) = 5 .  

A closely related result has been proved in Section 3.4. See Lemma 3.4.1. 

Proof. Since A is dissipative and A(0) = 0 it follows that V : R + R, 
defined by V(z) = 1 ) ~ ) ) ~  for every x E 0, is a Lyapunov function for the 
system (5.4.9). Indeed, V is of class C1, V(0) = 0 and is positive definite; 
the function w being in this case defined by u ( r )  = $r2 for r E R. In 
addition, as for every x E R 

from the dissipativity of the function JL and from the condition A(0) = 0, 
we deduce that V ,  defined as above, is a Lyapunov function for (5.4.9). 
From this observation and Theorem 5.4.1, it follows that the null solution 
of the system (5.4.9) is stable. If in addition R = R" and (Jl(z),x) < 0 for 
every z E R" with x # 0, then, according to Lemma 5.4.1, the functions 
X , q  : Rn -+ R, defined by X(x) = i11x112 and q(z) = -(Jz(z),z) for every 
x E R", satisfy the conditions of Theorem 5.4.3. The proof is complete. 0 

5.5 The Case of Dissipative Systems 

As we have seen in the preceding section, in the case of dissipative systems 
for which 0 is an equilibrium point, the function V : Rn --+ R, defined by 
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V(x) = f llx112 for every x E R", is a Lyapunov function. Now, we will show 
that,  due to  the particularities of these systems, we can reveal new and 
interesting properties of global solutions with regard to  their asymptotic 
behavior as t approaches +00. 

Rn be a continuous and dissipative function and let us 
consider the autonomous equation 

Let A : Rn 

x' = Jl(x). (5.5.1) 

For a E R+ and < E Rn, we denote by z(., a, <) the unique saturated solution 
of equation (5.5.1) which satisfies x ( a , a , t )  = t. From Theorem 2.4.6, it 
follows that this solution is global, i.e. defined on R+. 

Let t 2 0 and let S( t )  : Rn --+ Rn be defined by S(t)< = x(t,O,c) for 
every E Rn. As we have seen in Theorem 3.4.1 in Section 3.4, the family 
of operators {S ( t ) ;  t 2 0}, defined by means of the relation above, satisfies: 

(Si) S(t  + s )  = S ( t ) S ( s ) ,  for every t ,  s >_ 0 ;  
(S2) S(0) = 3 ;  
(5 '3 )  lim S(t)( = ( for every < E Rn ; 
(5'4) Ils(t)< - s(t)qll L lie - qll for every t 2 0 and every c ,  7 E Rn ; 
(S5) l$ ; (S( t )< - <) = A(<) for every 5 E I W ~ .  

t l0  

1 

We recall that  this family of operators is the semigroup of non-expansive 
operators generated by A. 

Definition 5.5.1 Let E IW". The set 

is the trajectory, or the orbit of the solution of (5.5.1) starting from c. 
Definition 5.5.2 Let < E Rn. The set 

is the w-limit set of the trajectory y(J). In the specific case n = 2, an w-limit 
set which is the trajectory of a periodic solution is called limit cycle. 

One trajectory of the dissipative system 

xi = -2x: + 2 2  { xi = -xi- x; 
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approaching its u-uni t  set is illustrated in Figure 5.5.1 (a), which in this 
case is even a limit cycle, while Figure 5.5.1 (b) shows the graph of the 
corresponding solution. 

Figure 5.5.1 

We denote by A-l(O) = {y E R"; A(y) = 0) and let us recall that a 
subset D in R" is convex if, for every z, y E D and every X E (0, l), we have 
AX + (1 - X)y E D.  

Lemma 5.5.1 
J Z - l ( O )  i s  nonempty,  then  it i s  closed and convex. 

Let  A Rn + Rn be continuous and dissipative. If the set 

Proof. Since A is continuous, it follows that A-'(O) is closed. In order to 
prove the convexity, let z,y E A-'(O) and < E R". From the dissipativity 
condition, we deduce that 

Analogously 

Multiplying both sides of the two inequalities: the first one by X E (0, l), 
the second one by 1 - X E (0, l), and adding them side by side, we get 
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Denoting by zx = Xz + (1 - X)y, the inequality above can be rewritten in 
the form 

Let now E E (0 , l )  and x E R". Taking [ = & = E X A  + (1 - E ) Z  in (5.5.2), 
we deduce 

Dividing this inequality on both sides by 1 - E  > 0, and then passing to the 
limit for E tending to 1, we obtain 

for every x E Rn. Taking z = zx + J l ( z ~ ) ,  we get ( A ( z ~ ) , A ( x ~ ) )  5 0, 
which is equivalent to A(zx) = 0. Hence Xz + (1 - X)y E A-l(O) for every 

0 z, y E A-l(O) and every X E (0,l) .  The proof is complete. 

Lemma 5.3.2 Let J1 : Rn -+ R" be continuous and dissipative. Then 

A-'(O) = {y E R"; S(t)y = y for each t 2 0 } ,  (5.5.3) 

where { S ( t ) ;  t 2 01, is the semigroup of non-expansive operators generated 
by A. 

Proof. We begin by showing that A-l(O) c {y E R"; S(t)y = y, t 2 0). 
Let y E A-'(O) and let us define the function $ : R+ 3 R" by $(t) = y for 
every t 2 0. Obviously $'(t) = 0 = A(y) = A(#(t)) for every t 2 0. On the 
other hand, y = $(t)  = S(t)y, for every t 2 0, and since y is arbitrary in 
A- (0) , we have 

. A - ~ ( O )  c {y E R"; ~ ( t ) y  = y for every t 2 0). 

Let now y E Rn with S(t)y  = y for every t 2 0. Since S(t)y = z(t,O,y) 
for every t 2 0, we deduce 0 = (S(t)y)' = A ( S ( t ) y )  for every t >_ 0, equality 
which is equivalent to y E A-l(O). It then follows 

{y E I W ~ ;  S( t )y  = y for every t 2 0) c A - ~ ( o )  

and this completes the proof. 

Lemma 5.5.3 

and lim s ( t k ) [  = 7.  Then 
Let 7 E w ( c )  and let ( t k ) & w  with lim ( t k + l  - t k )  = +oo 

k 4 c m  

k 4 0 0  

lim S(tk+l - t k ) q  = 7.  (5.5.4) 
k+m 
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Proof. 
and (&), it follows 

We denote by sk = t k + l  - tk and let us observe that, from (S1) 

for every k E N. Since limk,, S(tk)J = 77, this inequality completes the 
proof of (5.5.4). 0 

Remark 5.5.1 We mention that, for every q E w(<), the sequence ( t k ) k E ~  

with the property that limk,, tk = +oo and limk,, S(tk)< = q,  can 
always be chosen in order to satisfy the condition imposed by Lemma 5.5.3, 
i.e. limk,m(tk+l - tk) = +oo. 

Theorem 5.5.1 
set A-l(O) is nonempty and < E Rn, then: 

Let A R" --+ R" be continuous and dissipative. If the 

(i) w(<)  as nonernpty, bounded and closed; 
(ii) fo r  every t 2 0, S(t)w([)  c w(<); 

(iii) for every 7,  u E .I((), we have IIS(t)q - S(t)uII = 117 - vlj ; 
(iv) for every 7 E JL-'(O), there exists T 2 0 such that 

(v) if w(<) c Jl - ' (O)  then w(<)  contains only one point q and 
c {J: E Rn; 11J: - Vll  = T I ;  

lim S(t)< = q. 
tT+w 

Proof. In order to prove (i) it suffices to show that the trajectory of 
equation (5.5.1) issuing from <, $<), is bounded. Then, it will follow 
that the function t H S(t)< has at  least one limit point as t approaches 
+oo. Since A-l(O) is nonempty, there exists at least one y E Rn such that 
A(y) = 0. Taking into account that S ( t ) t  = x(t,O,J), we have 

for every t 2 0. Taking the inner product both sides of this inequality 
by S( t )J  - y, and using the dissipativity condition and Lemma 8.1.2, we 
deduce 

for every t 2 0. From here, it follows that t I-+ IlS(t)[-yll is non-increasing 
on [ 0, +m) and by consequence l\S(t)( - yI( 5 I\( - y 11 for every t 2 0. But 
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this inequality shows that the function t H S(t)e  is bounded on [ 0, +oo), 
or equivalently that r(<) is bounded. From the remark above and Cesar6’s 
lemma, it follows that w(<)  is nonempty, bounded and closed, which shows 
that (i) holds true. 

Let q E a(<) and t > 0. Then there exists ( t k ) k E ~  with limk,,tk = 
+oo and limk+w S ( t k ) J  = 7. In order to  check (ii) it suffices to  show that 

lim S( t  + t k ) <  = S(t)q. 
k+oo 

(5.5.5) 

To this aim, let us observe that,  from (5’1) and (&), we have 

for every k E W ,  inequality which proves (5.5.5). 

have 
In order to  prove (iii), we will show first that ,  for every 7 E w(<) ,  we 

From (5.5.4) and Remark 5.5.1, it follows that w(<) c w(q) .  In order to  
prove the converse inclusion, let v E w(q)  and let ( t k ) k E ~  with limk,, t k  = 
+oo and limk+m S(tk)q = v. Since q E w(<) ,  we conclude that there exists 
( T ~ ) ~ E M  with limk.-+mTk = +oo and limk,,S(Tk)< = q. Denoting by 
81, = t k  4- Tk, we have lirnk+, s(ek)< = v. From this relation, we deduce 
that w ( q )  c w(<), inclusion which, along with the preceding one, proves 
(5.5.6). 

From (5.5.6), we know that q E w ( v ) ,  and 
therefore there exists a sequence ( ~ k ) k € ~  with limk.-+ooTk = +oo and 
limk+,S(7k)v = q. On the other hand, as v E w([), according to 
Lemma 5.5.3, there exists ( s k ) k E ~  with limk,, Sk  = +oo and 

Let now q , v  E w(<).  

(5.5.7) 

Let us remark that 

for every k E N, inequality which, along with (5.5.77, shows that 

lim S(sk)v  = u 

lim S(sk)q = q. 
k+oo { k - x a  

(5.5.8) 
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From (5.5.8), (SI) and (&), we deduce 

for every t 2 0, which proves (iii). 
Let q E A-l(O). Then the function t H S(t)< satisfies 

Multiplying both sides of the equation above by S(t)J-q, from Lemma 8.1.2 
and the dissipativity condition, we deduce 

for every t 2 0. Consequently the function t H llS(t)<-qll is non-increasing 
on R+ and, as it is bounded from below (being positive), there exists 

This relation shows that, for every v E w(<), we have IIv - 711 = r and 
therefore w(<) c {x E R" ; llz - qll = r } ,  which proves (iv). 

Let us remark that, in accordance with (iv), for every q E A-'(O), 
there exists r 2 0 such that w(() c {x E R"; 112 - qll = r } .  Taking 
q E w ( t )  c A-'(O), it follows T = Ilq-qll = 0, which shows that w ( c )  = {q} .  
Obviously this relation is equivalent to lim S(t)< = q and this completes 

tt+m 
the proof. 0 

5.6 The Case of Controlled Systems 

All the equations and systems of differential equations considered by now 
were abstract expressions of some mathematical models describing the free 
or uninfluenced evolution of some phenomena from Physics, Demography, 
Biology, etc. In contrast with these models which offer only a contempla- 
tive description of the evolution, there are some others trying to catch the 
possible external interventions done during the evolution with the precise 
purpose to modify it according to some performance criteria. For instance, 
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as we have already seen in Section 1.4, the free evolution of a species of 
bacteria is described by the so-called logistic equation 

2' = cz(b - x), 

where x ( t )  stands for the number of bacteria at the moment t ,  b > 0 and 
c > 0. Since the null solution of this equation is unstable (see Remark S . l . l ) ,  
it is clear that ,  once we intend to make this number z ( t )  tend to 0 as t 
approaches +oo, we have to intervene in the evolution of the system trying 
to minimize, as much as possible, the instantaneous rate of growth of these 
bacteria. In order to fix the ideas, let us assume that the case in question is 
that  of a contagious disease whose complete remission rests heavily on the 
action of a certain drug, having the role of bringing the number of bacteria 
involved as close to 0 as possible in a fairly reasonable short time. This 
external intervention can be expressed by means of the new mathematical 
model: 

X I  = a ( b  - X) + ku. (5.6.1) 

More precisely, u : R+ -+ R+ is a function which gives a quantitative 
description of the intervention, while k < 0 signifies the fact that  this 
intervention takes place in the desired sense, i.e. in order to minimize XI. 
We can imagine, for instance, that u(t)  represents the amount of penicillin 
used at  the moment t with the scope of diminishing as much as possible 

At this moment, some observations are needed. Firstly, it is clear that ,  
from medical reasons, the values of the function u cannot exceed a certain 
admissible maximal level. Second, let us remark that, from rather obvious 
practical considerations, the function u cannot be continuous. Instead, it 
may be (and, in this case, it certainly is) a step function. Finally, we have 
to take into consideration a very important economical criteria, i.e. the 
total cost of the recovering, amount expressed mathematically as Pu(+oo), 
where P > 0 is the per/unit price of the penicillin while u(+oo) is the total 
quantity of penicillin used, be minimal. 

We conclude with a special mention on such kind of problems, mention 
having a general character. In practice one uses the fact that the function 
u*, which enjoys all the required properties, can be expressed in the form 
u*(t)  = Q(x*( t ) )  for every t E R+, where x* is the solution of the problem 
(5.6.1) corresponding to u = u*, while Q : R + R is the so-called synthesis 
operator or feedback operator. Substituting ku by k Q ( x )  in equation (5.6.1), 

x( t>* 
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we get 

X‘ = C X ( ~  - X) + ~ Q ( x ) ,  (5.6.2) 

called the closed loop system. Recalling once again the fact, of maximal 
importance in this context, that  the null solution of the logistic equation is 
unstable, it is easy to understand why the function Q which, in general, is 
neither unique, nor known, has to be chosen such that the null solution of 
the closed loop system (5.6.2) be asymptotically stable. 

This is an extremely simple example of a control system which, we 
believe, is convincing enough with regard to the importance of the study 
of this branch of Applied Mathematics which is in a very fast process of 
development. 

We will now proceed to the statement, within a general abstract frame- 
work, of a large class of such control problems. For the sake of simplicity we 
will confine ourselves only to the linear case in which the control function, 
or controller u, is real valued. Let us consider the system 

2‘ = A x  + u(t)b, (5.6.3) 

where A E MnXn(R), b E R” and u : R+ -+ R. Such a system is called 
control system. The function u is called controller or input, while x the 
state function, or output. In many cases the state is known only in an 
indirect form y = q ( x ) ,  where q is the so-called obserwation operator, while 
y is the observed variable or the observed output. For instance, in the case 
of the example presented before, the total number of bacteria z cannot be 
effectively counted. Nevertheless, we can make a pretty good idea on its 
size once we have access to some variable which is “drastically dependent” 
on it, as for instance the temperature y = q(x )  of the infected subject. In 
general, the observation operator 7 depends on x by means of a differential 
equation of the type 

(5.6.4) 

where cp : R --+ R is a nonlinear law, usually known, while a! > 0, c E Rn 
and b E R” are the so-called regulating parameters. The problem in this 
context is to find some easy to check sufficient conditions in order that  the 
system 



The Case of Controlled Systems 195 

be globally asymptotically stable for any choice of the function cp : R -+ R 
which satisfies the conditions 

qcp(q) > 0 for every q E R, q # 0 (5.6.6) 

and 

(5.6.7) 

The problem above is the so-called Lurie-Postnikov problem. 

Theorem 5.6.1 If A. i s  hurwitzian, then there exist a > 0,  b E R" and 
c E Rn such that, fo r  every cp : R -+ R which satisfies (5.6.6) and (5.6.7), 
the system (5.6.5) is globally asymptotically stable. 

Proof. The idea is to construct a Lyapunov function which satisfies all 
conditions of Theorem 5.4.3. More precisely, let V : R" x R --+ R be defined 
by 

where 9' is the symmetric and positive definite matrix whose existence is 
ensured by Theorem 5.4.4. Also from Theorem 5.4.4 combined with (5.6.6) 
and (5.6.7), it follows that V is positive definite and 

lim V ( z , q )  = +m. 
ll z II +Ivl--t+Oo 

On the other hand, we have 

where (IPz)~ is the component of rank i = 1 , 2 , .  . . , n of the vector Tz. Let 
us observe that the system (5.6.5) rewrites in the form z' = f(z), where 
f : Rn+' + Rn+l is defined by f ( z )  = f(z, 7 )  = (J lz+p(q)b,  (c, z) - ~ c p ( q ) )  
for every z E Rn+', z = (z, q).  Then we have 

From this relation, taking into account that P is symmetric and satisfies 
Jl*P + IpJl = -3, it follows that (kc, Ipz) = -i11z112, and therefore 
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Consequently, if a ,  b and c satisfy the so-called regulating inequality 

then V fulfills all the conditions of Theorem 5.4.3, from where it follows 
that (5.6.5) is globally asymptotically stable. 

5.7 Unpredictability and Chaos 

As we have already noticed occasionally, the study of differential equations 
and systems of differential equations owes the main part of its tremendous 
development to the efficiency in predicting with great accuracy the future 
evolution of many phenomena of practical interest. We emphasize that,  in 
the mathematical treatment of concrete problems, in general, we cannot 
dispose of the exact initial data of the Cauchy problem which models the 
phenomenon in question. This inconvenience is due to the technological 
impossibility to diminish a certain degree of imprecision in the process of 
measurement, and also to the inevitable errors: of reading, of rounding, 
random, etc., appearing during both the collection and the processing of 
data. So, the user of the techniques and previously established abstract 
results has to confine himself, almost at  any time, with approximate data. 
A fundamental problem raised in this context is to establish the “degree of 
credibility” of a conclusion obtained on this basis. It is easy to understand 
that, in order to make such a prediction which could be accepted and took 
into consideration in getting conclusions with a very low level of ambiguity, 
we need: 

6) 

(ii) 

(iii) 

- 

a mathematical model describing the real phenomenon as accurate 
as possible, and whose solutions be stable; 
numerical data as close as possible to the real values of the initial 
state of the system; 
efficient numerical methods and suitable computing equipment in 
order to find as fast as possible the approximating solutions of the 
system with an error not exceeding a certain preassigned critical 
level imposed by practice. 

In order to  understand these requirements, let us analyze the following 
examples. We begin with one, with no apparent connection with differential 
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equations, example adapted from [Hubbard and West (1995)], Example 522, 
p. 216. 

Example 5.7.1 Let us consider a system in which, to every bit of a 
clock a certain angle doubles. The state of the system is the angle and it 
doubles again and again at each second. So, the evolution of the system is 
completely described by the sequence of angles: 00, e l , ,  . , , where 00 is the 
initial state, while en+, = 20,, for n = 0,1,2, .  . . . Let us remark that, if 80 

is very slightly perturbed, say with lo-’, after only 30 seconds, the state of 
the system is completely unknown, simply because the degree of uncertainty 
grew up to 230 x > 1. As a consequence, the evolution of this system, 
although extremely simple and ordered, is practically unpredictable even 
on short intervals of time. 

Example 5.7.2 Let us consider the differential equation x‘ = x and 
we aim to determine the approximating values’of the solution x(-, 0, n) at 
t = 1O1O with an error not exceeding We have chosen the initial data n 
simply because, this one being an irrational number we are forced to replace 
it during the numerical processing by some of its rational approximates. Let 
us remark that “the exact solution” is given by 

x(1o1O,0,n) = ne 1 o ’ O  , 

while the approximate solution corresponding to the approximate value nu 
of n is 

1o’O x( 0, n) = rue . 

Then, the error is 

10’0 &(nu) = In - T a l e  . 

In order for the error not to exceed 
must satisfy 

the approximate value na of n 

To do this we must choose nu with more than 3,000,000 exact digits, a fact 
which is very hard to achieve practically. 

Let us observe that, if we take as approximate initial data a truncation 
na of n satisfying the realistic and feasible condition In - nul 5 the 
absolute error of the corresponding approximate solution is greater than 
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x elo’’. Since e” > x4 for x > 100, the error exceeds So, the 
information thus obtained is completely inaccurate and of no practical use. 

Consequently, we may consider that the evolutions described by the 
equation x‘ = x ,  although ordered, are unpredictable on long term. This 
fact is nothing but a simple consequence of the instability of the linear 
differential equation above. 

These two examples which reveal the great importance, in the study 
of such kind of problems, of the so-called entropy. In this context, the 
entropy is the rate at which the information dissipates in time, which may 
be identified with the rate of growth of the degree of uncertainty, or with 
the minimal t ime needed to double the uncertainty. For instance, in the 
case previously analyzed, the rate of growth of the degree of uncertainty 
on an interval of time T is eT .  This is due to the fact that  an initial 
error (uncertainty) & multiplies after the time T by eT .  In other words, 
the remark above asserts that, on every interval of time of length ln2, the 
degree of uncertainty doubles. 

Besides these very simple situations when the evolution of the system, 
although “ordered”, is unpredictable on long term, there are examples of 
systems having stationary solutions with very strange behavior, in the sense 
that, for initial data very close to the stationary solution, the corresponding 
solutions have a highly disordered even chaotic evolution, on relatively short 
intervals of time. An example of this kind is the celebrated Lorenx system 
in [Lorenz (1963)I. 

Example 5.7.3 
system 

Let us consider the so-called Lorenz nonlinear differential 

2’ = -ax + ay 
y’ = rx  - y - xz 
Z‘ = -bz + x y  

(5.7.1) 

which is a simplified model, deducted from a system of partial differen- 
tial equations describing thermal convection within an incompressible fluid 
moving in a horizontal plane. Here b > 0, a > b + 1 and r > 0 are 
some parameters which characterize the fluid. For r E (0, l), the system 
above has a unique stationary solution, namely (0, 0, 0), which is stable. 
For T- > 1, the null solution is no longer stable and, in addition, the sys- 
tem has two more stationary solutions ( d m ,  d m ,  r - 1) and 
(--d-, - d m ,  r - 1). Actually, these two new stationary solu- 
tions mark the beginning of an extremely stirred convection process which 
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starts when r crosses from the left the value 1. 

Figure 5.7.1 

199 

This strange behavior has been observed in 1963, by the meteorologist 
Edward N. Lorenz from Massachusetts Institute of Technology, who used 
this system in order to get meteorological predictions on short term. More 
precisely, during some numerical simulations, he has observed that certain 
solutions of the nonlinear differential system (5.7.1), for the specific choice 
o = 10, r = 28 and b = 8/3, seem to become closer and closer, in a 
very disorderly manner - and therefore highly unpredictable - either 
to one stationary solution, or to the other. Lorenz has stated that very 
small perturbations of the initial data produce considerable modifications 
in the evolution of the system. The projection on the xOz plane of one 
trajectory of the Lorenz system is illustrated in Figure 5.7.1 (a), while the 
graph of t F-+ ( x ( t ) , z ( t ) )  (the t-axis is vertical) in Figure 5.7.1 (b). One 
may easily observe the chaotic evolution of the solution corresponding to 
this trajectory which “becomes closer and closer” both to the first and the 
second stationary solution. 

This disorderly behavior generating unpredictable evolutions on 
medium, or even short term, is known in the literature under the name 
of chaos, or chaotic behavior. 
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In order to understand and to explain what is really hidden behind this 
apparently paradoxical phenomenon, we will define the so-called modulus 
of continuity of the solution of a Cauchy problem as a function of the initial 
data. To this aim let f : R" --+ Rn be a locally Lipschitz function and let 
us consider the Cauchy problem 

(5.7.2) 

Let us assume that for every [ E R" the unique saturated solution of (5.7.2), 
x( ., <), is global and let us observe that,  by virtue of Theorem 2.5.2, for every 
T > 0, the function < H x(.,<) is continuous from Rn to  C([O,T];Rn) .  
This means that,  for every 6 E R", every T > 0 and every E > 0 there 
exists s ( t , T , ~ )  > 0 such that,  for every 7 E Rn with I\< - qll 5 S(<,T,E) 
we have Ilx(t, <) - x( t ,  q )  11 5 E uniformly with respect to t E [ 0, TI.  We 
denote by rn(<,T,e)  the larger real number s(C,T,e) from (0,1]  with the 
properties above. The function E H rn(J,T,&) is called the modulus of 
continuity of the function q H x(., q ) ,  from R" in C( [ 0, TI;  R"), a t  a point 
<. One may easily observe that, in general, for E E Rn and E > 0 fixed, 
the function T I-+ rn (< ,T ,~ )  is non-increasing. One may also see that a 
stationary solution < of the system x' = f(x) is stable if and only if, for 
every E > 0, inf{rn((, T ,  E ) ;  T > 0 )  = rn(& E )  > 0. 

The last two examples dealt with the manner in which m varies as a 
function of T .  More precisely, the extremely drastic growth of the degree 
of uncertainty is caused by the very abrupt decrease of the modulus of 
continuity m with respect to T .  

In other situations, which we did not touch upon by now, the unpre- 
dictability and chaos are generated by the instability of the solutions with 
respect to one or to several parameters. Many mathematical models des- 
cribe phenomena whose evolution laws modify as functions of a certain 
parameter. So, the evolutions of such a phenomenon are described by a 
differential system of the type 

(5.7.3) 

where f : R+ x Rn x IP -+ Rn is a continuous function, while P is an open 
subset in Rm. We denote by x(., a ,  J,p) : [ a ,  T )  + Rn the unique saturated 
solution of the system (5.7.3) which satisfies z ( a ,  a ,  < , p )  = < and let us 
assume that 0 E IP and f ( t ,  0,O) = 0 for every t E R+,  which means that, 
for the value 0 of the parameter, (5.7.3) has the null global solution. Let 
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us also assume that f is locally Lipschitz on Rn x P. In these conditions, 
paraphrasing the definition of stability we introduce: 

Definition 5.7.1 
stable, or robust if 

The null solution of the system (5.7.3) is persistently 

(i) for every a 2 0 there exists ,u(a) > 0 such, that for every p E Ip with 
llpll 5 p ( a ) ,  the unique saturated solution x( . ,a ,O,p) ,  of (5.7.3), 
satisfying x(a,  a, 0 , p )  = 0, is defined on [ a ,  +m) and 

(ii) for every a 2 0 and every E > 0, there exists J (E ,  a )  E (0, p(a) ] such 
that, for each p E Ip with JJpIJ 5 J (E ,  a ) ,  the unique saturated solu- 
tion x( . ,a ,O,p) ,  of (5.7.3), satisfying x(a,a,O,p)  = <, also satisfies 
(Ix(t, a ,  0,p)II 5 E for every t E [ a ,  +m). 

We leave to the reader the definition of an analogous concept referring to 
an arbitrary solution of the system (5.7.3) as well as of all other concepts 
which paraphrase those of uniform, asymptotic and uniform asymptotic 
stability. 

As one can easily realize, the lack of robustness of a certain solution 
could cause unpredictability and even chaos. A very interesting example of 
this sort is that of the nonlinear oscillator. 

Example 5.7.4 
nonlinear differential equation 

(Arecchi and Lisi, 1982) Let us consider the second-order 

X" + I ~ x '  - x + 4x3 = Acoswt 

where x ( t )  is the abscissa, at the moment t ,  of a material point of mass 1 
moving under the action of a force F ( t ,  x, x') = -kx' + x - 4x3 + A cos w t  
centered at the origin. It has been proved that, for every initial datum, the 
solution evolves towards a periodic one, called by extension limit cycle. For 
a special choice of k ,  A and w, the graph of the function t t - i  (x(t),x'(t)), 
with x : [ 0,501 -+ R the solution of the equation above satisfying x(0) = 10 
and x'(0) = 0, is illustrated in Figure 5.7.2 (a), while the graph o f t  H x ( t )  
in Figure 5.7.2 (b). 

Moreover, one has observed that, the decreasing of the parameter2 k ,  
has as effect the growing up to +oo of the period of the limit cycle. As a 
consequence, there exists a sequence ( I C n ) n E N  tending to 0,  with the property 
that the corresponding sequence of periods (Tn)nEN satisfies Tn+1 = 2Tn 

'In this model, the parameter k represents the coefficient of friction, while -kx' the 
force of friction. 
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? ! 

Figure 5.7.2 

for every n E N. From this reason, for very small values of k the evolution 
described by the equation above becomes unpredictable, even chaotic. 

In Figure 5.7.3, we reconsider the case in Figure 5.7.2 with the very 
same data, excepting for k which now is ten times smaller. 

x' : 

X 

(a) (b) 

Figure 5.7.3 

For a detailed and systematic presentation of theory of limit cycles the 
interested reader is referred to [Ye et  al. (1986)]. 
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All these examples lead to the conclusion that many phenomena which 
evolve according to deterministic laws can be studied on the basis of these 
laws only on very short intervals of time, and this because extremely small 
perturbations of the initial data produce dramatic changes in the evolution 
of the system. For this reason one may assert that “the determinism has 
a local character”. On the other hand, some of these phenomena which 
evolve towards chaos admit statistical models which may bring some ex- 
tra information exactly where the deterministic techniques say nothing, 
or very few. In many cases of this kind, the evolution, although chaotic 
from a purely deterministic point of view, is, statistically speaking, very 
smooth and regular, in the sense of the existence of the mean ergodic, i.e. 

1 rT 
of lim L. x ( t )d t .  Here, we have in mind first the turbulence in Fluid 

Mechanics, but also the disorders of the cardiac rhythm, the noises in the 
electric lines, the evolution of a certain society, etc. For details on this 
subject, the reader is referred to [Arnold and Avez (1967)I. 

T+oo T /o 

5.8 Exercises and Problems 

Problem 5.1 Let u s  consider the scalar linear differential equation 

x‘ = a(t)z ,  

t 2 0, where a ; [ 0, +m) - W is  a continuous function. Prove that: 

(1) (&) is  stable i f  and only i f  there exists a funct ion K : [ 0, +w) 
that: /; a(s) ds I W t o )  

f o r  every t o  2 0 and every t 2 t o  ; 

(E) 

R such 

(2) (€) i s  uniformly stable if and only if there exists M E W such that: 

f o r  every to 2 0 and every t 2 t o  ; 
(3) (1) i s  asymptotically stable if and only i f  
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(4) ( E )  is  uniformly asymptotically stable if and only i f  there exists K 2 0 
and a > 0 such that 

l: a(s)  ds 5 K - a(t - t o )  

for every t o  2 0 and every t 2 t o .  

([Corduneanu (1977)] ,  p. 117) 

Exercise 5.1 Check for  stability the null solution of 

(1) 2' = x. (2) 2' = 0. (3) 2' = -x. 
(4) x' = -22 + sinx. (5) x' = x 2 .  

(7)  x' = - tan  x. 
(6) x' = - x 2 .  

(8) x' = - sinx. (9) x' = -x + x2. 

Exercise 5.2 
ferential equations : 

Check for  stability the following systems of first-order linear dif- 

x: = x 2  

x; = X I .  

2: = 2 2  4- x3 

x; = 2 1  + 2 2 .  

2: = 2 2  - 2 3  

2; = 2 1  - x2. 
(7) { x; = 2 3  (8) { 4 = x3 + 2 1  (9) { 2; = x3 - 2 1  

Problem 5.2 Let w > 0 and f : [ 0, +m) 4 R be a continuous function which is 
absolutely integrable on [ 0 ,  +m). Prove that every global solution of the equation 
x" + w2x = f ( t ) ,  t 2 0 ,  is  bounded o n  [ 0 ,  +m). ([Corduneanu (1977)] ,  p. 152) 

Problem 5.3  Let w > 0 and f : [O,+m) t R be a continuous function which 
is absolutely integrable o n  [ 0 ,  +co). Prove that the null solution of the equation 
2'' + [w2 + f ( t ) ] x  = 0,  t 2 0,  is  uniformly stable. ([Corduneanu (1977)] , p. 152) 

Problem 5.4 Let A E M,,,(R) be hurwitzian. Let 'B : [ 0, +oo) 4 M,,,(W) be 
continuous with lim ll'B(t)11M = 0. Prove that the nu11 solution of the system 

x' = [A + ' B ( t ) ] x ,  t 2 0 ,  is a sympto t i cdy  stable. ([Corduneanu (1977)], p. 153) 

Problem 5.5 
be continuous with 

t++co 

Let A E MnX,(R) be hurwitzian and let 3 : [ 0, +co) 3 M,x,(rW) 
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Prove that there exist k > 0 and cy > 0 such that every solution x : [ 0 ,  +ca) --+ Rn 
of the system X I  = [A + B(t )]x ,  t 2 0, satisfies 

f o r  every t 2 0 .  I n  particular the null solutaon of the system is asymptotically 
stable. ([Halanay (1972)], p. 194) 

Problem 5.6 Let J l k  E Mnxn(R), k = 0 ,1 , .  . . ,m. If& is  hurwitzian then, f o r  
every a > 0 there exists S(a)  > 0 such that, for  every ( E B(O,S(a)) ,  the unique 
global solution x ( - ,  a ,  <) of the Cauchy problem 

satisfies 
lim x ( t ,  a ,  <) = 0. 

t++W 

Problem 5.7 Let f : W+ x R 4 R be continuous o n  W+ x W and locally Lipschitz 
on W and let .(.,ti) : [O,+m) -+ R, 51 < [2, i = 1,2 ,  be two solutions of the 
differential equation 

2' = f ( t , z )  
with x(O,<i) = t i ,  i = 1 , 2  and lim x ( t , [ l )  = lim x ( t , & )  = x* E R. Prove 

that for every [ E ([I, [ 2 ) ,  the saturated solution of the equation above, x(., [), 
which satisfies x(O,() = t ,  is  globally and asymptotically stable. ([Glgvan et al. 
(1993)], p. 178) 

Problem 5.8 Let f : fl C W" 4 W" be a locally Lipschitz function with f (0)  = 0. 
If all saturated solutions of the differential equation 

t++m t++m 

2' = f ( x )  

are global and bounded on [ 0 ,  +m) is  the null solution of the equation above stable? 
([Glgvan et al. (1993)], p. 179) 

Problem 5.9 Let f : R -+ R be a function of class C1 with f (0 )  = 0 and having 
the property that f'(0) = X > 0.  Then  the null solution of the equation x' = f (2)  

is not asymptotically stable. 

Exercise 5.3 
nonlinear differential systems : 

Check for  stability the null solution of the following first-order 

(4) { x; = 2x1 - x; ( 5 )  { xi = - sinx1 + 2; { x >  = 2shx2 
x/2 = X I 2 2  - 2 2 .  X h  = -421 - 5x2. 2 2  = -25 - 3x2. 
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Exercise 5.4 
nonlinear diflerential systems 

Check for  stability the null solution of the following first-order 

xi = -sinxl +x2 X; = -2sh X I  + 42; 
2 2  = 21x2 - x2. xi = -421 - 3 tan 22. { 2; = -x; - 2x2. 

x1- x; 
(4) { = 

See also Problems 6.5 and 6.6 in the next chapter. 



Chapter 6 

Prime Integrals 

This chapter is dedicated to the introduction and study of the concept of prime 
integral for a system of first-order differential equations. In the first two sections 
we present the main notions and results referring to this problem in the case of 
both autonomous and non-autonomous systems. The third section is concerned 
with the study of first-order linear and quasi-linear partial differential equations, 
while the fourth section contains a fundamental existence and uniqueness theorem 
with regard to the Cauchy problem for a class of first-order quasi-linear partial 
differential equations. In the fifth section we collect some specific properties of 
the so-called conservation law. The chapter ends with an Exercises and Problems 
section. 

6.1 Prime Integrals for Autonomous Systems 

Let R be a nonempty and open subset in R", let f : R --f R" be a continuous 
function and let us consider the autonomous system 

x' = f(x). (6.1.1) 

In many specific situations, considerations of extra-mathematical nature 
based on the physical signification of the functions involved in (6.1. l), prove 
the existence of some functions of class C', U : R -+ R which, although non- 
constant on R, are constant along the trajectories' of the system (6.1.1). 
Any family of functionally independent such functions could be of real help 

Here and thereafter, by trajectories of (6.1.1), we mean the trajectories corresponding 
to the solutions of (6.1.1). 

207 
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in obtaining information on the solutions of (6.1.1) which, in most cases, 
cannot be explicitly solved. Moreover, the larger is such a family, the big- 
ger are the chances to solve (6.1.1) explicitly or, at least, to obtain crucial 
information on its solutions. This is because, from a set of relations of the 
form Ui(xl,x2,. . . , xn) = Ci, i = 1,2 , .  . . , p ,  with Ui functionally indepen- 
dent and ci constants, one can express (locally at least) p components of 
x as functions of the other n - p .  So, (6.1.1) is equivalent (locally) to a 
system of n - p equations with n - p unknown functions. 

In order to be more specific and explicit, let us analyze the following 
example. 

Example 6.1.1 Let us consider the second-order differential equation 

XI’ = g(x), 

where g : R --+ R is a continuous function. This equation, obtained from 
Newton’s second law, describes the movement of a material point of mass 
1, along the O x  axis, under the action of a force parallel to Ox, and whose 
intensity at the point of abscissa x is g(x) .  We mention that x ( t )  is the 
position, x’(t) the speed and x”(t) the acceleration of the point at the 
moment t .  We recall that, in accordance with Remark 2.1.2, the preceding 
equation may be equivalently rewritten as a first-order system of differential 
equations of the form 

Multiplying the second equality in this system 
deduce 

on both sides by y = x’, we 

I d  
2 dt 
-- (92) = g(x)x’ 

for every t in the interval [O,T) of existence of the solution. Integrating 
the equality above on both sides from 0 to t ,  we get 

for every t E [ 0, T ) ,  where G is a primitive of the function g. 
So, the function U : R2 --+ R, defined by 

U ( X ,  p) = $y” - G ( x )  
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for ( x , g )  E R2, which is obviously of class C1 and nonconstant on It2, 
remains constant along the trajectories of the system. 

Let us observe that the preceding equality rewrites in the equivalent 
form 

for every t E [ 0 ,  T ) ,  which asserts that the total energy of the material point 
remains constant o n  the trajectories. 

An advantage of this observation consists in the possibility to reduce the 
order of the equations by one unit, expressing either z, or x', as a function 
of the other one by means of the equality U(z ,z ' )  = c, where c is a real 
const ant. 

Another situation quite frequently encountered in applications is the 
one in which the explicit solving of a system of differential equations is 
practically impossible, but the determination of one unknown as a function 
of the other one suffices in order to obtain the information we need. We 
hope that the next example is convincing enough in this sense. 

Example 6.1.2 Let us consider the prey-predator system 

z' = ( a  - ky)z { y' = - (b  - hz)y 

and let us assume that we intend to find out the number of individuals from 
the predator species to a given moment T > 0. In order to solve this pro- 
blem it suffices to know z(0) and y(O), and then to determine explicitly the 
solution of the corresponding Cauchy problem. Unfortunately, due to the 
nonlinearity of the system, this way is not easy to go through. Therefore, it 
is of great importance to find a simpler procedure of getting y(T) avoiding 
the explicit solving of the Cauchy problem. To this aim, let us assume that 
we have at our disposal the technical devices to determine the number z ( t )  
of individuals from the prey species at  any time t of its evolution. Then, in 
order to determine y(T),  it suffices to express y as a function of z, z(0) and 
y(0). In the case considered, this is clearly feasible because, considering y 
as function of class C1 of z, from the system, we get 
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This is an equation with separable variables and its general solution is 
defined implicitly by 

ha: + ky - b lna: - a lny = c 

where x > 0, y > 0 and c E R. Consequently, in order to find y(T), it 
suffices to know x(0)  = J, y(0) = q and x(T) .  In these circumstances, we 
can obtain y(T) solving the equation 

hz(T) + Icy(T) - b lnz(T) - a lny(T) = hJ + kq - b In< - a lnq. 

We emphasize the fact of extreme importance that, in order to solve 
this problem by the method described before, we have to determine only 
three values x (0 )  = (, y(0) = q and z(T).  Thereafter, without solving the 
corresponding Cauchy problem, we can get y(T) from the equation above. 

Definition 6.1.1 
integral of the system (6.1.1) on 00 is a function U : 00 + R satisfying 

Let Ro c R be nonempty and open. A prime, or first 

(i) U is nonconstant on Ro ; 
(ii) U is of class C1 on 0 0  ; 

(iii) for every solution x : IT --+ Ro of the system (6.1.1) there exists a 
constant c E R such that U ( x ( t ) )  = c for every t E I. 

For n = 2, the situation described in Definition 6.1.1 is illustrated in 
Figure 6.1.1. 

X I 

Figure 6.1.1 



Prime Integrals for Autonomous Systems 211 

Remark 6.1.1 
equivalent to 

Since (6.1.1) is autonomous, (iii) in Definition 6.1.1 is 

(iv) for every solution x : [ 0,T) --+ Ro of the system (6.1.1) there exists 
a constant c E R such that U(z( t ) )  = c for every t E [ 0, T ) .  

Theorem 6.1.1 Let f : R -+ Rn be continuous, let Ro be a nonempty and 
open subset in 52 and let U : Ro -+ R be a function of class C1, nonconstant 
o n  Ro. The necessary and suficient condition in order that U be a prime 
integral of (6.1.1) o n  Ro i s  that 

(6.1.2) 

f o r  every < E Ro. 

Proof. Necessity. Let U be a prime integral of the system (6.1.1) on Ro, 
let 5 E Ro and let x(-,O,<) : [O,T,) -+ Ro be a saturated solution of the 
system (6.1.1) which satisfies x(O,O,c) = <. Since U ( x ( t ) )  = c for every 
t E [ O,T,), it follows that 

Taking t = 0 in equality above, we get (6.1.2). 
Sufficiency. Let x : [O,T) --+ Ro be a solution of the system (6.1.1). Let 

us define the function g : [ 0,T) + R by g ( t )  = U ( x ( t ) )  for every t E [ 0,T).  
Obviously g is of class C1 and, by virtue of the relation (6.1.2), we have 

Hence U ( x )  is constant on [ 0, T ) ,  and this completes the proof. 0 

Remark 6.1.2 The condition (6.1.2) has a very suggestive geometrical 
interpretation. Essentially, it asserts that, for every < E Ro for which 
V U ( r )  # 0, the vector f(e) is parallel to the tangent plane to the surface 
of equation V(z) = U ( e )  at e. Indeed, the condition (6.1.2) expresses the 
fact that f(t) is orthogonal to VU(t) which, in its turn, is orthogonal to 
the surface U(z )  = U([) at the point [. 

In view of the preceding observation, we have: 
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Theorem 6.1.2 Let f : R --+ Rn be continuous, let RO be a nonempty 
and open subset in s2 and let U : 00 -+ R be a function of class C1 with the 
property that V U ( x )  # 0 on  00. The necessary and suficient condition in 
order that, f o r  each c E Ro, every trajectory of (6.1.1), passing through a 
point of the surface of constant level 

remain entirely on  this surface i s  that, for every c E Ro and every q E C,C) 
f(7) be parallel to the tangent plane to  C,C at 7. 

Proof. The condition that, “for every t E Ro, all trajectories of equation 
(6.1.1) starting from the surface CE remain entirely in CE” is equivalent to 
the condition that, ‘(the function U be constant on every trajectory of the 
differential equation (6.1.1) having the initial datum in 00”. In accordance 
with Theorem 6.1.1, the latter condition is equivalent to (f (c) ,  V U ( e ) )  = 0 
which, in its turn, is equivalent to the condition that, for every 7 E Ct, 
f(7) be parallel to the tangent plane to Ct at q, and this completes the 
proof of the theorem. 0 

We recall that a point a E R is a stationary point, or an equilibrium 
point for the system (6.1.1) if f ( a )  = 0. 

Definition 6.1.2 Let a E R and let Ro be an open neighborhood of a 
included in R. The prime integrals U l ,  Uz, . . . , u k  : Ro 4 R of the system 
(6.1.1) are independent at a if 

rank ( % ( a ) )  = k. 
k x n  

Obviously, (6.1.1) can have at most n prime integrals which are inde- 
pendent at a point a E R. The following theorems bring precise information 
in this respect, in the case in which a E R is not a stationary point of the 
system (6.1.1). 

Theorem 6.1.3 Let f : R -+ R” be continuous and let a E R be a non- 
stationary point of the system (6.1.1). Then, on every open neighborhood 
Ro of a included in R, there exist at most n- 1 prime integrals of the system 
(6.1.1) independent at a.  

Proof. Let us assume, by contradiction, that there exist at least one non- 
stationary point a of the system (6.1.1) and one open neighborhood 00 of 
a, included in 0, such that (6.1.1) has n prime integrals U1, U2,. . . , Un on 
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Ro, which are independent at a. From (6.1.2) in Theorem 6.1.1, it follows 
that 

Obviously, (6.1.3) can be interpreted as an algebraic linear homogeneous 
system with the unknowns fi (a), f2 (a), . . . , fn  (a). Taking into account that 
U1, U2,. . . , Un are independent at a,  it follows that the determinant of this 
system is nonzero. Consequently the system (6.1.3) admits only the trivial 
solution f&) = f 2 ( a )  = - . .  = fn(a) = 0, which is in contradiction with 
the fact that a is non-stationary. This contradiction can be eliminated only 

0 if U1, U2,. . . , Un are not independent at a. The proof is complete. 

If f satisfies some extra-regularity conditions, the preceding result may 
be considerably improved. More precisely, we have: 

Theorem 6.1.4 Let f : R --+ Rn be a function of class C1 and let a E R 
be a non-stationary point of the system (6.1.1). Then, there exists an  open 
neighborhood Ro of a,  included an R, on which there are defined n - 1 prime 
integrals of the system (6.1.1)) independent on  Ro. 

Proof. Let a E R be a non-stationary point of (6.1.1). Relabelling the 
components of f and those of x if necessary, we may assume with no loss 
of generality that f n ( a )  # 0. Let 

We denote by 4 : [ 0, T,) x Q(a)  --+ SZ the function defined by 

for ( t ,  X i ,  A2, . . . , An-1) E [ 0 ,  T,) x R(u), where x ( * ,  XI, A 2 , .  . . , An-1, an) is 
the unique saturated right solution of (6.1.1) satisfying 
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From the fact that z(., A1, A 2 , .  . . , An-1, an) is a solution of the system 
(6.1.1), and from (2.6.2) in Theorem 2.6.1, we deduce 

l f l (U) 1 0  o . . . o  I 

So, we are in the hypotheses of the local inversion theorem, from 
where we deduce that there exists an open neighborhood DO of 
(0, a l ,  ~ 2 , .  . . , Un-l), included in [ 0, T,) x R(a), such that c$ is invertible 
on DO, with inverse of class C1. We denote this inverse by U : RO -+ DO, 
U = (Uo, U1, . . . , Un-l),  where Ro is an open neighborhood of a included 
in R. From the definition of the function U ,  it follows 

We will prove in what follows that U1, U2, . . . , Un-1 are prime integrals 
of the system (6.1.1), defined on Ro and independent at a. To this aim, 
let us observe that, by virtue of the last n - 1 relations in (6.1.4), these 
functions are constants along any solution of (6.1.1) with values in Ro, and 
which at 0 satisfies zn(0) = an. Let c E 00. Since U is the inverse of 
the function 4, it follows that (7, XI,. . . , An-,) = U(<) belongs to the set 
[O,?',) x R(u) and = ~ ( 7 ,  X i , .  . . , Xn-l, an). SO 

From this equality and from (6.1.4), we deduce that 

for i = 1 , 2 , .  . . , n - 1. Consequently, Ui, i = 1,2,. . . , n - 1 are of class C1 
and remain constants on all the trajectories of the system (6.1.1) included 
in Ro. 
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Finally, as U is a regular transformation on 00, it follows that the 
functions Ui, i = 1 , 2 ,  . . . , n - 1 are non-constant and independent at a. See 

0 [Nicolescu et al. (1971a)], p. 677. The proof is complete. 

Theorem 6.1.5 Let f : R -+ Rn be a continuous function, let a E R 
be a non-stationary point of the system (6.1.1) and let U1, U2,. . . , Un-1 be 
prime integrals of (6.1.1)) defined on an open neighborhood 520 of a included 
in R, and independent at a. Then, for every prime integral U : Ro -+ R of 
the system (6.1.1)) there exist an open neighborhood 0 1  c 00 of the point 
a,  an open subset D in Itn-',  with (Ul(a) ,  &(a) ,  . . . , Un-l(a)) E D ,  and a 
function of class C1 F : D -+ R, such that 

for every x E 521. 

Proof. Since U1, U2,. . . , Un-1 are independent at a,  it follows that for 
every open neighborhood R1 c RO of a there exists at least one function of 
class C 1 ,  Un : R1 --+ R, such that 

A simple example of such function is Un(Z) = xj for each x E s11, where 
j E {1,2, . . . , n}  is so that the determinant obtained from the matrix 

by cancelling the column j is nonzero. 
Clearly the open neighborhood 521 of a can be chosen such that, the 

transformation G = (U1, U2,. . . , Un) is a diffeomorphism from 0 1  to an 
open set A in R". Let H : A -+ 521 be the inverse of this transformation, 
and let us observe that 

for every x E 01. So, denoting by F = U o H ,  in order to complete the 
proof, it suffices to show that F ,  defined as above, does not depend on the 
last variable yn. Let us observe that 

(6.1.5) 
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Recalling that 771, Uz,. . . , Un-1, U are prime integrals of the system (6.1.1) 

{ 

/ 

\ 

virtue of Theorem 6.1.1, it follows that 

a non-stationary point, we have f ( a )  # 0, and therefore we can 
open neighborhood 01 c Ro of a such that 

f(x) # 0 and rank (%(x)) = n - 1 
8x3 (n-1)xn 

for every x E 01. In these conditions, interpreting the system above as a 
linear and homogeneous system with unknowns fl(x), fi(x), . . . , fn(z), it 
follows that its determinant is identically zero on 01. Since this determinant 
D ( z )  has at least one minor of order n- 1, whose first n - 1 rows correspond 
to the first n- 1 rows of D(x), which is nonzero, it follows that the last row 
of D ( z )  is a linear combination of the others. More precisely, there exist 
the functions ai : s11 + R with i E {l, 2,.  . . , n - 1) such that 

for every j E {1,2, .  . . , n} and x E 01. From (6.1.5)) using these equalities, 
we deduce 

Observing that, from the definition of H ,  we have x = H(y) if and only if 
y = ( U ~ ( X ) ,  U ~ ( X ) ,  . . . , Un(x)), we conclude that 
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for i = 1 , 2 , .  . . , n - 1. Consequently 

for every y E A. Since A can be chosen convex (diminishing the set R1 if 
necessary), and D = { (yl, . . . , yn-l) ; (yl, . . . , yn-l, Yn) E A}, this relation 
proves that F does not depend on yn, which achieves the proof. 0 

Remark 6.1.3 If we know p prime integrals of the differential system 
(6.1.1) which are independent at a non-stationary point a E R, then there 
exists one neighborhood of a on which the system (6.1.1) is equivalent to 
another differential system with n - p unknown functions. In particular, 
for p = n - 1, there exists a neighborhood of a on which the system (6.1.1) 
is equivalent to a scalar differential equation, i.e. with only one unknown 
function. Indeed, let 171, U2,. . . , Up : -+ R be those p prime integrals 
of (6.1.1), independent at a, and let x : 1 -+ 00 be a generic solution 
of the system (6.1.1). Taking into account that there exist the constants 
c1, c2, .  . . , cp such that 

Uj(xI,x2,. . . ,xn) = c j ,  j = 1 , 2 , .  . . , p ,  

by virtue of the fact that U1, U2,. . . , Up are independent at a, and of the 
implicit functions theorem, it follows that there exists a neighborhood of 
a ,  on which, p components of x can be uniquely expressed as functions of 
class C1 of the other n - p components. Relabelling if necessary, we may 
assume that those components which express as functions of the others are 
the last p .  Substituting these components of x in the first n - p equations 
of (6.1.1), we get a differential system with n - p unknown functions. 

6.2 Prime Integrals for Non-Autonomous Systems 

In this section we will extend the preceding considerations to the case of 
non-autonomous systems of the form 

where f : 1 x 52 -+ R" is a continuous function, by reducing these to the 
autonomous case. More precisely, let D = 11 x R c Rn+l, let 
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and let F : D -+ Rn+' be defined by 

for every z E D.  Obviously, F is of class C1 and (6.2.1) may be equivalently 
rewritten in the autonomous form 

z' = F ( z ) .  (6.2.2) 

Taking into consideration the equivalence between (6.2.1) and (6.2.2), we 
will define the concept of prime integral for (6.2.1) as follows. 

Definition 6.2.1 
U : DO -+ R is called prime integral of the system (6.2.1) on DO if 

Let DO c 1 x R be nonempty and open. A function 

(i) U is nonconstant on DO ; 
(ii) u is of class C1 on Do ; 

(iii) for every solution z : J -+ R of (6.2.1) with (t ,  x ( t ) )  E DO for every 
t E I, there exists c E R such that U ( t , z ( t ) )  = c for every t E J. 

We state next some of the most important results referring to prime 
integrals for systems of type (6.2.1). Since, due to the equivalence between 
(6.2.1) and (6.2.2), all these results are consequences of the theorems proved 
in the autonomous case, we do not give proofs. 

Theorem 6.2.1 Let f : II x R -+ Rn be continuous, let DO be a nonempty 
and open subset in I[ x R and let U : Do --+ R be a function of class C1, 
nonconstant on  Do. The necessary and suficient condition in order that U 
be a prime integral f o r  (6.2.1) is that 

for  every (s,<) E DO. 

(6.2.3) 

Due to the particular form of the function F ,  it follows that every point 
in D is non-stationary. So we have: 

Theorem 6.2.2 Let f : II x R -+ Rn be continuous. Then  on  every open 
neighborhood of any point in 1 x R, there exist at most n prime integrals of 
the system (6.2.1) which are independent at a.  

Theorem 6.2.3 Let f : 1 x R -+ Rn be a function of class C1. Then for  
every ( s ,  a )  E II x Q there exists an  open neighborhood DO of (s ,  a ) ,  included 
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in IT x R, on  which there are defined n prime integrals of the system (6.2.1) 
which are independent on Do. 

6.3 First Order Partial Differential Equations 

Let R be a nonempty and open subset in R3, let f : R -+ R3 be a function 
of class C1 (vector field) and let us consider the following problem with 
geometrical character: determine all surfaces C of class C1 in R3 with the 
property that at any point of coordinates (xl,x2,x3) E C,  f(xl,x2,x3) i s  
parallel to the tangent plane to the surface. From the formulation of the 
problem itself, we are led to look for these surfaces either explicitly, i.e. 

z3 = x3(21,x2) (8) 

with ( ~ 1 ~ x 2 )  in a nonempty and open subset D in R2, or implicitly, i.e. 

where $ : R --+ R is of class C1, while c E R. 
Let us remark that, a necessary and sufficient condition in order that 

a surface C have the desired property is that, at every point ( x ~ , x ~ , Q )  
in C, the normal vector to C at that point, n(zl,22,x3), be orthogonal to 
f ( q , z 2 , 2 3 ) .  This condition may be equivalently written as 

( f ( ~ 1 , ~ 2 , ~ 3 ) , ~ ( ~ 1 , ~ 2 , ~ 3 ) )  = 0 

where N(z1,  x 2 , ~ )  is any vector parallel to  n(x1,22,23). So, if we decide 
to find those surfaces in the explicit form ( E ) ,  taking into account that, in 
that case, N(zl,z2,11;3) can be taken as 

the necessary and sufficient condition above rewrites in the form 

for every (XI ,  2 2 )  E D. 

the surface is 
If we choose the implicit variant (J), as in this case a normal vector to 
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the previous necessary and sufficient condition takes the form 

(6.3.2) 

for every ( 2 1 , 2 2 ,  2 3 )  E 0. 
So, the determination of these surfaces reduces to the determination, 

either of all functions 23, of class C1, satisfying (6.3.1), or of all functions 
4, also of class C1, satisfying (6.3.2). Hence, in order to solve the problem, 
we have to solve an equation in which the unknown function is involved 
together with its first-order partial derivatives. In what follows we will 
present the most important results referring to such kind of equations. 

Let R be a nonempty and open subset in Rn+l and let f i , f  : R -+ R 
with i = 1 , 2 , .  . . , n, be functions of class C1. 

Definition 6.3.1 
is an equation of the form 

A first-order quasi-linear partial differential equation 

(6.3.3) 

where 

at least for one (z, z )  E R. A solution of (6.3.3) is a function z : D + Iw of 
class C1, with D nonempty and open in Rn, such that ( x , z ( x ) )  E R and z 
satisfies (6.3.3) for every x E D. The set of all solutions of equation (6.3.3) 
is called the general solution of (6.3.3). 

If f = 0 on R and fi, i = 1 , 2 , .  . . ,n,  do not depend on z ,  equation 
(6.3.3) is called linear. More precisely, let D be a nonempty and open 
subset in Rn and let fi : D -+ R, i = 1 , 2 , .  . . , n, be functions of class C1 
on D. 

Definition 6.3.2 
equation of the form 

A first-order linear partial differential equation is an 

(6.3.4) 
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A solution of this equation is a function q5 : Do --+ R, of class C’, with 
Do nonempty and open in D ,  such that 4 satisfies (6.3.4). The set of all 
solutions of (6.3.4) is called the general solution of equation (6.3.4). 

Obviously every constant function on D is a solution of equation (6.3.4). 
Therefore, in all what follows, we will refer only to solutions of equation 
(6.3.4) which are nonconstant. 

We begin with the study of equation (6.3.4). Then, we will show how 
the study of the problem (6.3.3) reduces to that of a problem of the type 
(6.3.4). The price we have to pay in order to do that consists in the intro- 
ducing of a new unknown function of n + 1 variables, $(XI) z2, . . . , xn,  z ) ,  
which by means of $(XI, 22,. . . ) xn,  z )  = 0 defines implicitly z as function 
of 2 1 ,  ~ 2 , .  . . ) 2,. 

Definition 6.3.3 The differential system 

xi = fi(z), i = 1 , 2 , .  . . ) n  (6.3.5) 

is called the characteristic system attached to the linear equation (6.3.4). 

Remark 6.3.1 
formally written under the so-called symmetric f o rm 

From traditional reasons, very frequently, this system is 

(6.3.6) 
f l ( 4  f 2 ( 4  f n ( x )  ‘ 

We make the convention that whenever, for some i = 1 , 2 , .  . . ) n, fi zz 0 
on a certain open subset Ro in R, the “fraction” dxi/O in (6.3.6) should be 
interpreted as dxi  = 0 on 0 0 .  

dxn -=-- - .. .  = - dxl dx2 

We begin with the following reformulation of Theorem 6.1.1. 

Theorem 6.3.1 Let Do be a nonempty and open subset in D ,  and let 
4 : Do -+ J f t  be a nonconstant function of class C1.  The necessary and 
suficient condition in order that 4 be a solution of equation (6.3.4) is that 
4 be a prime integral, on  Do) of the characteristic system (6.3.5). 

An immediate consequence of Theorem 6.1.5 is: 

Theorem 6.3.2 Let a E D be a non-stationary point of the characteristic 
system (6.3.5)) let Do be an open neighborhood of a,  included in D ,  and 
let U1, U2,. . . , Un-1 : DO -+ Jft be prime integrals of the system (6.3.5)) 
independent at a .  Then, there exists an  open neighborhood D1 c Do of a,  
such that the general solution of equation (6.3.4) o n  D1 is given by 
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for x E D1, where F belongs to  the set of all real-valued functions of class 
C1, defined on  the range o f U  = (Ul, U2,. . . , Un-1) : D1 4 litn-'. 

Example 6.3.1 Find the general solution of the equation 

on the set of all non-stationary points. The characteristic system in the 
symmetric form is 

We have dxl + dx2 + dx3 = 0 and xldxl + x2dx2 + x3dx3 = 0. So, the 
functions U1, U2 : R3 + R, defined by Ul (XI, 22, x3) = x1 + 2 2  + 23 and 
by U2(x1,x2,x3) = x: + xi + xi respectively, are prime integrals for this 
system. The stationary points of the system are of the form (xl,x2,x3) 
with x1 = x2 = x3. One may easily see that the prime integrals above are 
independent at any of the non-stationary points. So, the general solution 
of the equation is 4(xl,x2,x3) = F(x1 + x2 + x3,x: + xz + xz), where 
F : R2 --+ IR is a function of class C1. 

As we can state from the example at the beginning of this section, 
a function x3, of class C1, implicitly defined by a relation of the form 
$(x1,x2,x3) = c is a solution of the problem (6.3.1) if and only if 4 is 
a solution of the problem (6.3.2). This observation suggests to look for 
the solution of the problem (6.3.3) as a function z ,  implicitly defined by a 
relation of the form 4(x, z) = c. From the theorem on the differentiation of 
implicitly defined functions, we have 

for every i = 1,2,  . . . , n. Substituting dz/axi in (6.3.3) and eliminating the 
denominator, we get 

(6.3.7) 

equation which is of the type (6.3.4). From Theorem 6.3.2 we deduce 
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Theorem 6.3.3 
teristic system 

Let (a ,<) E R be a non-stationary point of the charac- 

Z: = fi(x, z) ,  i = 1 ,2 , .  . . ,n 
z' = f(z,z) 

(6.3.8) 

attached to  equation (6.3.7)) let Ro be an  open neighborhood of the point 
( a ,  c ) )  included in R, and let U1, U2,. . . , U n  : Ro -+ R be prime integrals 
of the system (6.3.8)) independent at the point (a ,<).  Then  there exists 
an  open neighborhood R1 c Ro of ( a , ( )  such that the general solution of 
equation (6.3.3) on R1 i s  defined implicitly by 

where F belongs to the set of all real-valued functions of class C1 defined 
on  the range of the transformation U = (U1, U2,. . . , Un) : R1 + Rn) while 
c belongs to R. 

6.4 The Cauchy Problem for Quasi-Linear Equations 

In this section we prove an existence and uniqueness result concerning the 
solution of a first-order quasi-linear partial differential equation, solution 
which satisfies a certain condition reminding the Cauchy condition in the 
case of ordinary differential equations. In order to understand the geome- 
trical significance of this condition, we will consider first the specific case 
corresponding to the dimension n = 2. So, let R c R3 be a nonempty 
and open subset, let f l , f2 , f  : R -+ R be functions of class C1 and let us 
consider the equation 

Let I? be a curve of class C1, included in R. The Cauchy problem for 
equation (6.4.1) on the curve I? consists in: the determination of a nonempty 
and open subset D c R2 and of a surface C of equation z = z ( x ~ , x ~ )  with 
( x I , x ~ )  E D, where z : D -+ R is a solution of equation (6.4.1) on D with 
the property that I? is contained in C. See Figure 6.4.1. 

Let us observe that this problem has no solution in the case in which 
I' is contained in no surface defined by a solution of (6.4.1), and it has 
at least two solutions when r is defined as an intersection of two surfaces 
defined by two distinct solutions of equation (6.4.1). Finally, it has exactly 
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Figure 6.4.1 

one solution when is contained in one and only one surface defined by a 
solution of (6.4.1). So, the problem above might be successfully approached 
only if I? lies in none of the first two situations described above. If this is 
the case, the idea to solve the problem is the following. Let (F ,c )  be a 
current point on r, < = (<I, <z) and let us consider the Cauchy problem for 
the characteristic system attached to equation (6.4.1) 

xi = fi(z,z), i = 1 , 2  
z' = f(z, z )  

z(0) = <, z (0 )  = c. 
(6.4.2) 

This problem admits a unique local solution, whose graph is, according to 
Theorem 6.3.3, a curve r(t,c) defined as the intersection of two surfaces 
zi = zi(z1,z2), with z i ,  i = 1,2,  independent solutions of equation (6.4.1). 
Such a curve is called characteristic curue. So, if (<,[) moves on r, the 
family of characteristic curves I?(<,() describes a surface C, which, as we 
shall see later, is explicitly defined by an equation z = z(zl,z2) with z a 
solution of (6.4.1), and which, obviously, contains r. See also Figure 6.4.1. 

We can now proceed to the presentation of the problem in the general 
case. Let 52 be a nonempty and open subset in litWn+', let fi, f : 52 --+ R with 
i = 1 , 2 , .  . . , n be functions of class C1, and let us consider the first-order 
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quasi-linear partial differential equation 

225 

(6.4.3) 

Let U be a nonempty and open subset in Itn-',  and let us consider the 
(n - 1)-dimensional manifold r of equations 

(6.4.4) 

where cp : U -+ Rn and 8 : U -+ R are of class C1 and satisfy 

We also assume that I' is included in R, i.e. {(p(u), 6(u)) ; u E U }  c R. The 
Cauchy problem (6.4.4) f o r  equation (6.4.3) consists in finding a solution 
z : D 4 R of (6.4.3), which contains the manifold I?, i.e, 

for every u E U. Such a solution z of equation (6.4.3), defined on D c R", 
with the property that the set Co = {(z, ~(2)) ; z E D }  is a neighborhood 
of the manifold r, is called a local solution of the Cauchy problem (6.4.4) 
for equation (6.4.3). 

Theorem 6.4.1 If cp : U ---f Rn and 8 : U 3 R satisfy 

for every u E U, then there exists D c Rn such that the Cauchy problem 
(6.4.4) for  equation (6.4.3) have a unique local solution defined on  D .  

Proof. Let u E U be arbitrary, and let us consider the Cauchy prob- 
lem for the characteristic system attached to equation (6.4.3) with data 

2The method of proof, due to Cauchy, relies on the generation of the surface, i.e. 
solution, by the family of characteristic curves supported by the manifold r and, from 
this reason, is called the characteristic method or the Cauchy's method. 
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(6.4.6) 

This problem admits a unique saturated solution 

x = X(*, Cp(u>, W )  
z = Z(*, cp(u>, @4> 

defined on a neighborhood of the origin (tu, Tu). 

defined by 
Let us consider the map x : { ( t ,u )  E IW x U ;  u E U, t E (L ,%)}  -+ 

and let us observe that, in view of Theorem 2.6.2, we have 

for every u E U .  The determinant above being jointly continuous, there 
exists an open set V ,  of the form 

{ ( t ,u )  E R x u; u E u, t E (t;,T,*)}, 

with t ,  5 t: < 0 < T ,  5 T, for every u E U, such that 

( t ,u )  # 0 
D(x1, x 2 , .  * * 7 xn) 
D(s ,  u1, - * - 7 un-1) 

for every ( t ,u )  E V .  From the local inversion theorem, it follows that, the 
map (6.4.7) is a local diffeomorphism from V into an open subset D in Rn. 
We denote by @ : D -+ V the local inverse 
have 

of this application. Then we 

. . , n - 1  (6.4.8) 

for x E D. Substituting ui and t given by (6.4.8) in 

z ( t ,  u> = z(t, cp(u>, e ( U > > ,  

we obtain the explicit equation 

z = z(x1, 22,. . . , xn) 
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of a surface C, which obviously contains the manifold I'. 
We will prove in what follows that z is a solution of equation (6.4.3), 

and that it is the only one defined on D. To this aim, let us observe that, 
for every x E D ,  x = x(t,u), we have 

which shows that z is a solution of equation (6.4.3) on D. 
In order to prove the uniqueness on D of the solution z of the Cauchy 

problem (6.4.4) for equation (6.4.3), let w : D -+ R" be another solution of 
this problem. Let us consider the Cauchy problem 

xi(t)  = f&(t), w ( x ( t ) ) )  i = 1 , 2 , .  . . , n { 4 0 )  = c p b ) ,  

which has a unique saturated solution x defined on [O,T). Since w is a 
solution of equation (6.4.3), we have 

for every t E [O,T). Inasmuch as w(z(O,cp(u))) = O(u), it follows that the 
pair ( x , w )  : [O,T) -+ s2 is a solution of the Cauchy problem (6.4.6). But 
this problem has the unique solution (2, w) given by 

for every t E [O,T,). Hence w(z) = z ( z )  for every z E D and the proof is 
complete. 0 

6.5 Conservation Laws 

In this section we present a first-order partial differential equation which 
describes the evolution of several phenomena whose characteristic feature is 
the conservation of a certain physical property as for instance: the mass, the 
energy, the kinetic momentum, etc., on the whole duration of the evolution. 

6.5.1 Some Examples 

To fix the ideas, let us analyze: 
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Example 6.5.1 Let us consider a highway which, for simplicity, will be 
assumed infinite and orienked in the direction of the Oy axis, and let us 
denote by p( t , y )  the density of vehicles at the point y E R and moment 
t E R+. Let us denote also by v(t ,y) the speed of the vehicles in traffic at 
the point y and moment t .  Then, the flux of vehicles at the point y and 
moment t is given by 

We may assume that the speed is a function of density, i.e. v = V(p).  
We emphasize also the fact, very important for the point of view of future 
considerations, that on the highway there is a unique sense. Namely, let 
us assume that sense allowed is the positive sense of the Oy axis. Then, 
by observing that, for every y E R and every 6 > 0, all the vehicles which 
pass through y reach y + S and leave, and that the rate of decrease of the 
number of vehicles, situated at the moment t on the part [ y, y + 61 of the 
highway, equals the variation of the flux on that portion, we deduce 

for every y E R and every t E R+. Dividing the equality above by S > 0 
and passing to the limit for S tending to 0, we get 

From this equation and from (6.5.1), denoting by W(p) = V(p)  + pV’(p),  
it follows 

(6.5.2) 

for every y E R and every t E R+, equation known under the name of the 
t r a f i c  equation. 

Example 6.5.2 Let us consider an infinite channel which, for simplicity, 
is modelled as a straight line having the same direction and sense as the 
Oy axis. The channel contains water which is flowing in the positive sense 
of the Oy axis. We assume that the transversal section of this channel 
is a rectangle whose width equals 1. Let us assume also that, for every 
y E R and every t E R+, the flux of water per/unit of surface on the section 
through the point y and at the moment t is constant on the entire section 
and, more than this, the height of the water in the channel at the moment 
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t is also constant on the whole section through the point y, i.e. it does not 
depend on the x-variable. See Figure 6.5.1. We denote by q(t, y) the flux of 

y+6  

Figure 6.5.1 

the water through the section at the point y and moment t ,  and by h( t , y )  
the height of the water at the same section and same moment. 

The mathematical expression of the fact that, for every y E R and 
every t E R+, the rate of decrease of the mass of water on the portion of 
the channel [ y, y + 61 equals the variation of the flux at the two endpoints 
of the interval, is 

for every y E R and t E R+. See also Figure 6.5.1. 
Dividing by S the equality above and making S tend to 0, we get 

d h  dq - + - = o  
at dy 

for every y E R and t E R+. Now, taking into account that the flux is a 
function of the height h, i.e. q = Q(h) ,  where Q : R+ -+ R, from the last 
equation, it follows 

for every y E R and t E R+. Experimental considerations show that the 
function Q is of the form Q(h) = ah3i2 for every h E R+, where a! > 0. So 
the equation above rewrites in the form 

d h  3 dh - + = 0 at 2 dY 
(6.5.3) 
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for every y E R and t E R+. This is the so-called equation of big waves in 
long rivers. 

6.5.2 A Local Existence and Uniqueness Result 

These examples justify the importance given in the last decades to the 
study of the following Cauchy problem for the first-order quasi-linear partial 
differential equation, called the conservation law 

(6.5.4) 

for (t ,  y) E R+ x R, where a : R 4 R and $ : R -+ R are of class C1. 

established in the preceding sections. More precisely, we have: 
In order to solve this problem, we shall use the methods and the results 

Theorem 6.5.1 If a : R + R and $ : R -+ R are functions of class C1 
then there exists a function b : R -+ R; such that the problem (6.5.4) has a 
unique solution z : D --+ R, where D = { ( t ,  y) E R+ x R; t E [ 0,  b (y ) ) } .  I n  
addition, this solution is implicitly defined by 

z = $(g - t a ( z ) ) .  (6.5.5) 

Proof. With the notations in Section 6.4, we have: n = 2, z1 = t ,  22 = y, 

cpl(u) = 0, cp2(u) = u and O(u) = $(u) for every u E R. Let us observe 
that A(u) in Theorem 6.4.1 is given by 

0 = R2, fl(Zl,ZZ,X) = 1, f2(21,22,2) = a(z) ,  f(Z1,22,Z) = 0, u = R, 

for every u E R. So, the existence and uniqueness part of Theorem 6.5.1 
follows directly from Theorem 6.4.1. In order to prove (6.5.4), let us observe 
that the characteristic system attached to the conservation law is 

dt dy  d z  - = - - -  - 
1 a(.) 0 
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Solving this system, we get the general equation of the characteristic curves 

From here, we deduce that the parametric equations of the surface z are 

Eliminating the parameter r in the system above, we get (6.5.5), which is 
0 the implicit equation of the surface. The proof is complete. 

6.5.3 Weak Solutions 

We will present next some qualitative properties specific to the solutions of 
the conservation law. 

From (6.5.4), it follows that if 1c) is bounded on R, say by M > 0, 
then, at the point ( t , y ) ,  the solution x depends only on the initial-values 
z(0,w) = $(w) for w in the interval {w E R : Iw - yI 5 ~ ~ u ~ ~ ~ } ,  where 
l l a l l ~  = sup{la(z)l : IzI 5 M } .  From here, it follows that, if the initial 
datum $ vanishes outside the set {y E R; lyl 5 r } ,  then z vanishes outside 
the set { ( t , y )  E R+ x R; lyl 5 r + IlallMt}. This property justifies the 
assertion that the solution has finite speed of propagation. 

At this point, let us observe that, in order that equation (6.5.5) fulfil 
the hypotheses of the implicit functions theorem, we must have 

t$’(y - ta(x))a’(z)  # -1. 

Whenever this condition fails to be satisfied, a certain loss of regularity 
of the solution may occur, as a consequence of the loss of its character of 
being a classical single-valued function. For instance, for equation (6.5.3), of 
big waves in rivers, with the initial condition $(y) = sin y + 1, the solution, 
which at t = 0 has the form in Figure 6.5.2 (a), for those values of t for 
which tcos(y - i a f i )  = -$fi, takes the form illustrated in Figure 6.5.2 
(b), form which corresponds to the overturn of the crest of the wave. 

These situations which completely agree with the evolution of the real 
phenomenon have imposed the relaxation of the concept of solution for 
the conservation law, having as main goal the possibility of handling the 
singular cases just mentioned as well. In what follows we will present such 
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Figure 6.5.2 

an extension of the class of functions which are candidates to the title of 
solution. 

Let D = R+ x R. We denote by CA (0) the set of all functions cp : D -+ R 
of class C1 on D for which there exists a compact set K c D with the 
property that cp(t, y) = 0 for every ( t ,  y) E D \ K .  

Definition 6.5.1 Let $ : R -+ R be locally Lebesgue integrable on Re3 
A locally Lebesgue integrable function z : D --+ R is a weak solution of 
equation (6.5.4) if, for every cp E C,’(D), we have 

(6.5.6) 
where A : R --+ R is defined by 

for every r E R. 

The precise signification of this apparently strange condition (6.5.6), will 
be completely clarified during the proof of Theorem 6.5.2. 

3We recall that  a function u : S2 C Rn + R is called locally Lebesgue integrable on Cl 
if its restriction to any closed ball included in R is Lebesgue integrable on that ball. 
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In what follows, by a classical solution of equation (6.5.4) we mean 
any solution in the sense of Definition 6.3.2. In order to understand the 
relationship between the two types of solution of the problem (6.5.4), the 
next auxiliary result is needed. 

Lemma 6.5.1 Let R c I tn  be a nonempty and open subset and u : R + Iw 
a locally Lebesgue integrable function. If f o r  every function p : R -+ R of 
class C1 vanishing outside of a compact subset K c R 

then, at every point < E R of continuity of u, we have u(<) = 0.  

Proof. Let < E R be a point of continuity of the function u, let r > 0 be 
such that B(J , r )  c R and let us consider a function cp : R -+ R, of class C1 
on R, which vanishes outside the set B ( J , r )  and which satisfies 

An example of such a function cp : R -+ R is: 

where 

For every E E (0 , l )  let us define cpE : R -+ Iw by 

for every x E R. One may easily see that cpE vanishes outside the ball 
B ( J ,  u) and that 

From the last relation, the hypothesis and from the fact that u is continuous 
at <, we have 



234 Prime Integrals 

= lim SJ . . . S, cp&(x)[ u(<) - u ( x ) ]  d ~ i d ~ a . .  . dxn  
E l 0  

The proof is complete. 0 

Theorem 6.5.2 A function z : D --$ R is  a classical solution of equation 
(6.5.4) if and only i f  z i s  of class C1 and i s  a weak solution of the same 
equation. 

Proof. Necessity. Let z : D -+ R be a classical solution of equation 
(6.5.4). Let cp f Ci(D) and let us consider a rectangle [ O , b ]  x [ c , d ]  with 
K c [ 0, b)  x (c,  d) ,  where K is the compact set outside of which cp vanishes. 
Multiplying the first equality in (6.5.4) by cp(t,y) and integrating over D ,  
we get 

Since cp vanishes for t = b, y = c,  or y = d, from the equality above, 
Fubini's theorem on the interchanging the order of integration (see [Dunford 
and Schwartz (1958)], Theorem 9, p. 190) and from the initial condition 
z(O,y) = $ ( y )  for y E R, it follows 

Since cp vanishes outside the rectangle [ 0, b ]  x [ c,  d ] ,  the equality above is 
equivalent to (6.5.6). 



Conservation Laws 235 

Sufficiency. Let z : D -+ Iw be a weak solution of equation (6.5.4) 
which is of class C1. Starting from (6.5.6), and repeating backward the 
calculations done in the necessity part, we deduce that z satisfies 

+oo 

( 4 0 ,  Y) - $(Y))Cp(O, Y) dy = 0 (6.5.7) 

for every function cp E Ci(D) .  Let now cp be a function of class C1 which 
vanishes outside of a compact subset included in the interior of the set D. 
Then, for every y E R, cp(0,y) = 0, and from the last relation, it follows 

+L 

(6.5.8) 

Hence the function u : D + R, defined by 

0 

for every (t,y) E D ,  satisfies the hypotheses of Lemma 6.5.1 on R =D. 
So, z satisfies the first equality in (6.5.4) for every (t ,y) ED. Let now 
7 : R -+ R be a function of class C1 which vanishes outside of a compact 
interval [ c, d ] .  Let us define cp : D --+ R by 

0 

1 - t)2q(y) for ( t ,y)  E [0,  11 x R 
otherwise. 

We can easily state that cp is of class C1 and vanishes outside the compact 
set [ 0,1]  x [ c, d ] .  From (6.5.7) and (6.5.8), it follows 

( 4 0 ,  Y) - $ ( Y ) ) d Y )  dY = 0. 

From Lemma 6.5.1, we deduce that z (0 ,  y) = $(y) for y E R, which achieves 
the proof. 0 
Remark 6.5.1 Actually, analyzing the proof of the sufficiency, we can 
see that, if a function x is a weak solution of the problem (6.5.4) and is of 
class C1 on an open subset Do in D ,  then z is a classical solution on DO of 
the partial differential equation in (6.5.4) and satisfies the initial condition 
relative to Do, i.e., z(0,  y) = $(y) for every y E R for which (0, y) E DO. 
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The example below illustrates the fact that  the conservation law can 
have weak solutions which are discontinuous. 

Example 6.5.3 
problem 

([Barbu (1985)], p. 184) Let us consider the Cauchy 

[ 4 0 ,  Y) = $J(Y>, 

where $J : R + R is defined by 

Oif y < O  
1 i f  y>O. 

Then, the function z : R+ x R + R, defined by 

is a discontinuous weak solution of the Cauchy problem. 

Let now z : D + R be a weak solution of the Cauchy problem (6.5.4) 
with the property that there exists a simple curve I? of equation y = f ( t ) ,  
separating D into two sub-domains D- = { ( t , y )  E D; y < f ( t ) )  and 
D+ = {(t ,y) E D ;  y > f ( t ) }  on which x is of class C1. For the sake of 
simplicity, we will assume that the transformation f is a non-increasing 
bijection from R; to  R. See Figure 6.5.3. 

Figure 6.5.3 

The next theorem describes the behavior of weak solutions along the 
curve I?. 
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Theorem 6.5.3 Let z : D -+ Iw be a weak solution of the Cauchy problem 
(6.5.4) which is of class C1 on both domains D- and D+ and for which there 
exist finite limits 

uniformly for  t in bounded subsets in Iw;. Then, at every point t E R;, z 
satisfies the jump condition on r4 

where A is the function from Definition 6.5.1. 

Proof. A-om Remark 6.5.1, we deduce that z satisfies the first equality in 
(6.5.4) both on D- and D+. Let cp E CA(D). Multiplying the first equality 
in (6.5.4) by p and integrating over D-,  we get 

4This is known under the name of Hugoniot-Rankine’s condition. 
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A similar calculus leads to 

These two relations and (6.5.6) show that l : " g ( t ) ( p ( t , f ( t ) ) d t  = 0 for 
every cp E Ci, where g is defined by 

for t > 0. 
Finally, we shall prove that the equality above implies (6.5.9). To this 

aim let us observe that the functions t I-+ z- ( t ,  f ( t ) )  and t I-+ z+(t, f ( t ) )  
are continuous on R: because the two sequences of functions of class C1 
( ' u ~ ) ~ ~ P J *  and ( w ~ ) ~ ~ w * ,  defined by vn(t) = z ( t , f ( ( l  - l /n) t ) )  and respec- 
tively by wn(t)  = z ( t , f ( ( l  + l /n ) t ) )  for n E N* and t E R, are uniformly 
convergent on every bounded interval in R; to z- and respectively to z+. 
So, the function g : R; -+ R, defined as above, is continuous on R;. From 
Lemma 6.5.1, we deduce that g ( t )  = 0 for every t E RT, which achieves the 
proof. 

We conclude this section with the remark that the uniqueness property 
of the classical solution for the problem (6.5.4) is no longer true in the case 
of weak solutions, as we can see from the example below. 
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Example 6.5.4 ([Barbu (1985)], p. 185) Let us consider the Cauchy 
problem in Example 6.5.3. Then, besides the weak solution there men- 
tioned, the problem admits a second weak solution w : R+ x R + R, 
defined by 

Y 
t 0 f o r - < O  o r t = O a n d y L O  

w(t ,y)  = fi for 0 5 Y 5 1 

Y 1 for - > 1 or t = O  and y > 0. 1 t 
In order to individualize one weak solution of (6.5.4)’ customarily one 

imposes an extra-qualifying criterium expressing an essential property of 
the solutions of the system which, although very important, was not taken 
into consideration in the process of the mathematical modelling. Such a 
criterium, suggested by the second principle of thermodynamics, is that of 
the entropy’s growth. More precisely, it can be proved that, among the 
weak solutions of the problem (6.5.4), one and only one evolves in the sense 
of the entropy’s growth. 

For more details on conservation laws see [Courant and Hilbert (1962)I. 
A more advanced approach can be found in [Lu (2003)]. 
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6.6 Exercises and Problems 

Exercise 6.1 
prime integrals which are independent at any non-stationary point ; 

For each of the following autonomous differential systems, find two 

x'l = 2 2  - 2 3  

xc'z = x 3  -XI (2) 
2; = 2 1  - 22. 
x: = 21x2 
2; = -x; (4) 
X$ = ~ 2 x 3 .  

'2'1 = X I  

2; = x2 (6) 
x$ = -221x2. 
x: = x1x; 
xi = x;x2 (8) 
x$ = x3(x: + xi). 

Problem 6.1 Prove that the function U : W; x W; --+ W, defined by 

fo r  every (x, y) E R2, is  a prime integral for  the prey-predator system, known also 
as the Lotka- Volterra system : 

2' = (a  - ky)x 
3' = -(b - hx)y ,  

where a ,  b, k, h are positive constants. ([Arrowsmith and Place (1982)], p. 145) 

Problem 6.2 Prove that all trajectories of the differential system 

x: = 2 3  - 22 
x'z = 2 1  - x3 { x; = x2 - 21 

are circles. 

Problem 6.3 Prove that all trajectories of the prey-predator system which start 
in the first quadrant, except f o r  the two semi-axes, remain in the first quadrant 
and are closed curves. ([Gliivan et al. (1993)], p. 134) 

Problem 6.4 Under another formulation, Problem 6.3 says that each solution 
of the prey-predator system which starts in the first quadrant, except f o r  the two 
semi-axis, is  periodic with period T depending o n  the initial data. Prove that the 
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medium populations of both species o n  a n  interval whose length equals the period 
T ,  i.e. 

X m  = - x ( s ) d s  and ym = - f lt+T Y(S) d s  ; lt+T 
are independent of the initial data. ([Arrowsmith and Place (1982)1, p. 172) 

Problem 6.5 Let f : s1 c Wn + Wn be a locally Lipschitz function. Prove that 
all the points of strict local minimum of a prime integral of the diflerential system 

which are stationary solutions of the system above, are stable. ([Gliivan et al. 
(1993)], p. 180) 

Problem 6.6 
system is  stable. 

Prove that the stationary solution (b /h ,  u/k) of the prey-predator 

Problem 6.7 Find the first-order autonomous diflerential systems which have in-  
jective prime integrals. Are there non-autonomous systems having injective prime 
integrals? 

Problem 6.8 
integral U : Wn -+ R of the autonomous system 

Let f : R" --f Rn be a continuous function. If there exists a prime 

X I  = f(x) 

which i s  coercive, i.e. 
lim V ( x )  = +oo, 

llz II -++m 

then all saturated solutions of the system are global. Does this conclusion remain 
valid if the limit i s  -002 

Problem 6.9 
so-called Hamiltonian systems 

T h e  evolution of m a n y  phenomena in physics is  described by the 

where H : !2 C W2" --+ W i s  a funct ion of class C1, nonconstant, known as 
the Hamilton function, depending o n  p l  , p 2 , .  . . , p , ,  called generalized momen ta  
and o n  qI ,q2,  . . . , qn,  called configuration coordinates. Prove that the Hamilton 
func t ion  i s  a prime integral f o r  the Hamiltonian system. ([Gliivan et al. (1993)] 
p. 134)5 

5The fact that  H is constant along the trajectories of the system represents a special 
instance of the conservation law of the energy and this because, in all concrete cases, 
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Problem 6.10 Let Sl be a nonempty and open subset in Wn and let f : Sl --$ Wn be 
a continuous function. Prove that, for every # 0, the set of prime integrals for 
the equation xi = f (x) coincides with the set of prime integrals for the equation 
xi = A f ( X ) .  

Problem 6.11 
no prime integral defined on W2 

Show that, for the decoupled autonomous system below, there is 

Prove that there exist prime integrals defined on  { ( x I , x ~ )  f 114'; XI > 0). 
([Gliivan et al. (1993)], p. 135) 

Problem 6.12 Let A : I + Mnxn(W) be continuous, with a i j ( t )  = -aji(t) for 
every i ,  j = 1,2, .  . . , n and every t E I .  Prove that every global solution of the 
system 

is bounded on I .  I n  the case in which I[ = [O,+oo), is the system above stable? 
([Gliivan et al. (1993)], p. 136) 

Exercise 6.2 
equations below : 

x i ( t )  = Jl(t)x(t)  

Find the general solutions of the first-order partial diflerential 

az 2 az 
ax1 ax2 8 x 3  

(1) (xi - xi)- + (xi - x1)- + (x; - xi)- = 0. 

8x3 
ax1 ax2 

(5) x3- - x 3 5  = 2 2  - 2 1 .  

ax3 ax3 21x2 

ax1 ax2 2 3  
(6) 2 1 -  + 2 2 -  = 2 3  + -. 

dz a2 az (8) (1 + dz - ulxl - ~ 2 x 2  - ~3x3)-  + - + - = a1 + a2 + u3. axl ax2 ax3 
H ( p , q )  is nothing else but the energy of the system corresponding to  the values of the 
parameters (P, q )  = (pi , . . . , p n ,  qi , . . . , qn) .  
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([Craiu and Ro2culet (1971)], pp. 48-60) 

Exercise 6.3 Solve the following Cauchy problems 

da dz 
ax  ay 

z(x, x 2 )  = x3 .  

x -  - z- = 0 dz a2 

( l ) { x & - y z = o  z ( x ,  0 )  = cosx. 
(2) { 

d u  d u  au 2 x- - y- - 22- = 0 
ax a y  dz 

u ( 1 ,  y ,  z )  = sin(y + z). 

+ ( y +  x )- = z 
dY 

Z(2,Y)  = (Y - 413. 

([Gliivan et al. (1993)], pp. 188-192) 

Problem 6.13 
and a E W. Find the solution of the Cauchy problem 

Let f : W x W -+ W and cp : W -, W be two functions of class C' 

a2 a2 - + a- = f ( t , x )  
d t  d x  I 

Problem 6.14 
and a : W -+ W a continuous function. Find the solution of the Cauchy problem 

Let f : W x W + W and cp : W W be two functions of class C1 

Problem 6.15 
and a E W". Find the solution of the Cauchy problem 

Let f : W x W" + W and cp : Wn --+ W be two functions of class C1 

([Barbu (1985)], p. 200) 

Problem 6.16 Let f : W x W" -+ W and cp : W n  --+ W be two functions of class C1 
and a : W + W" a continuous function. Find the solution of the Cauchy problem 
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Problem 6.17 
and a E W. Find the solution of the Cauchy problem 

Let f : W x W 3 W and cp : W --t R be two functions of class C1 

Problem 6.18 
and a : R --f R a continuous function. Find the solution of the Cauchy problem 

Let f : R x W + W and 'p : R --f W be two functions of class C1 

az dt + a ( t ) x -  = f ( t ,  x )  
ax 

Problem 6.19 
and let A E Mnx,(R). Find the solution of the Cauchy problem 

Let f : R x W" --t W and cp : W" --f W be two functions of class C1 

([Barbu (1985)], p. 200) 

Problem 6.20 
C1 and let A : W 
Cauchy problem 

Let f : W x W" + W and cp : W" -, W be two functions of class 
Mnxn(W) a continuous function. Find the solution of the 

- + (A( t )x ,  VZZ)  = f ( t ,  2) F 4 0 , x )  = c p ( 4 .  

Problem 6.21 Find the surface containing the circle xf + x i  = 1, 22 = 2, 
orthogonal t o  the family of cones 2 1 2 2  = az;, a! E W*. ([Craiu and Rogculel 
(1971)1, P. 58) 



Chapter 7 

Extensions and Generalizations 

The main goal of this chapter is to present several methods to approach some 
Cauchy problems which, from various reasons, do not find their place in the 
preceding theoretical framework. In order to extend the concept of solution in 
the case of linear differential equations and systems with discontinuous right-hand 
sides, in the first three sections we introduce and study the notion of distribution 
as a generalization of an infinitely many differentiable function. In the same spirit, 
in the fourth section, we present another type of solution suitable for the nonlinear 
case when the function f on the right-hand side is discontinuous with respect to 
the t variable. In the next two sections, we discuss two variants of approaching 
some Cauchy problems for which f is discontinuous as a function of the state 
variable z, situation involving much more difficulties than the preceding one. In 
both cases, the manner of approach consists in replacing the differential equation 
with a so-called differential inclusion. The sixth section is concerned with the 
study of a class of variational inequalities, while in the next four sections we 
deal with a Cauchy problem in which the function on the right-hand side of the 
equation is defined on a set which is not open. In the eleventh section, we present 
an existence and uniqueness result referring to the Cauchy problem for a class 
of systems of first-order nonlinear partial differential equations of type gradient. 
The chapter ends with a section of Exercises and Problems. 

7.1 Distributions of One Variable 

In many cases, the right-hand side of a differential equation does not satisfy 
the minimal requirements ensuring the existence of at least one classical 

245 
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solution, i.e. of a function of class C”, where n is order of the equation 
considered and which satisfy the desired equality for every t in its domain 
of definition. In all these situations, in order to recuperate as many as 
possible results already established, one has tried to introduce a new type 
of solution by enlarging the class of candidates to this title. We emphasize 
that all these extensions have been done in such a way that, whenever 
we are in the “classical” hypotheses of regularity, the only “generalized” 
solutions are the classical ones. As expected, in the process of definition 
of the concept of any kind of generalized solution, we have postulated as 
characteristic some minimal properties satisfied by all classical solutions. 
In this way, a necessary but not sufficient condition, in order that a certain 
mathematical object be a classical solution, has been promoted to the rank 
of definition. 

The aim of this section is to present one of the deepest extension of 
this kind, having a great impact in the development of the theory of both 
ordinary, but especially of partial differential equations. The main idea of 
this extension is very simple and extremely efficient. More precisely, it is 
based on the simple remark that, if 2 : R -+ R is a solution of class C1 of 
the first-order differential equation 

with f : R x R -+ R continuous, then, for each function, q5 : R -+ R, of class 
C1, for which there exists [a ,  b ]  such that $(t) = 0 for every t E R \ [a ,  b ] ,  
we have 

(7.1 -1) 

Indeed, in order to deduce (7.1.1), let us multiply (1) on both sides by +(t) 
and then, let us integrate the equality thus obtained over R. This is always 
possible because, due to the conditions imposed on the function $, the 
improper integral on R reduces to a proper one on [a ,  b ] .  So, integrating 
by parts, and taking into account that $(a) = $(b)  = 0 we get (7.1.1). 

At this point, let us observe that, through these simple manipulations, 
the action of the differential operator has moved from the solution x to 
the function 4. Obviously, (7.1.1) can take place for any function x which 
is only Lebesgue integrable on every compact interval, but might fail to 
be of class C1. At this moment, (7.1.1) suggests that we may extend the 
notion of classical solution by defining, for example, as generalized solution 
of the equation ( E )  any function x : R + R, Lebesgue integrable on every 
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compact interval and which satisfies (7.1.1) for every function of class C1 4 
which vanishes outside an interval of the form [ u4, b4 1. This is a very brief 
presentation of one of the main ideas which partially motivates the birth of 
the distribution theory. 

In order to introduce the concept of distribution, some preliminaries are 
needed. 

Definition 7.1.1 The support of the function 4 : R -+ R is the set 

We denote by 

'D(R) = {4; q6 E CO"(R;R), q6 with compact support} 

and we call D(R) the space of testing, or test functions o n  R. 

Example 7.1.1 The function 4 : R -+ Iw, defined by 

e h  for t E (-1,l) 

0 for t E R \ (-1, l), 

is of class Cm and has the compact support [ -1,1]. Hence the set D(R) 
is nonempty. 

Proposition 7.1.1 The set 'D(R) i s  a vector space over R with respect to 
the usual operations. I n  addition, for each 4 E D(R) and .II] E C"(R; R))  
4.rcI E wv 
Proof. Obviously every linear combination of functions of class C" from 
Iw to R is a function enjoying the same property. In addition, the product 
of a function with compact support and an arbitrary function from R to 
R is a function with compact support. Hence D(R) is a vector subspace 
of C" (R; R). Since the last part of the conclusion also follows from the 

0 considerations above, this completes the proof. 

In what follows, we introduce a convergence structure on D(R), allowing 
us to define the class of functions which are sequentially continuous from 
B(R) in R. We emphasize that this convergence structure is essential in 
the process of definition of the concept of distribution. 

Definition 7.1.2 
4 E D(R) if there exists a compact interval [a ,  b ]  such that: 

A sequence ( 4 k ) k E N  in D(R) is convergent in D(R) to 
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(i) supp +k c [ a ,  b ]  for every k E N; 
(ii) for every p E N, limk+m ( t )  = +(PI ( t )  uniformly for t E 1 a,  b 3, 

or equivalently, uniformly for t E R. 

We denote this situation by $k --+ 6. 
Definition 7.1.3 
x : D(R) --$ R, i.e. a function x which satisfies: 

A distribution on D(R) is a linear continuous functional 

(i) z(a$ + P$) = az(4) + Px($J)  for every 4,$J E 'D(R) and every 

(ii) if 4 k  --- 4 then limk+ooz(&) = ~ ( 4 ) .  
a,P E R; 

!D (W 

Remark 7.1.1 A linear mapping z : D(R) +. R is a distribution if and 

only if it is continuous at 4 = 0, i.e. if and only if from +k --+ 0 it follows 
limk+m z(+k) = 0. 

!D 

In all what follows we denote by D'(R) the set of all distributions defined 
on D(R). 

Example 7.1.2 Distributions of type function. Let x : R -+ R be 
a locally Lebesgue integrable function, i.e. a function whose restriction to 
each compact interval is Lebesgue integrable on that interval. We define 
the map 5 : D(R) -+ R by 

z(4)  = 1 X(t)$(t> dt 

for every + E D(R). Since 4 E D(R), there exists [ a , b ]  with supp4 c 
[ a , b ]  and it follows that 5 is well-defined, in the sense that the integral 
on the right-hand side, apparently on a set of infinite measure, is in fact 
a Lebesgue integral defined on a compact interval. Since Z is obviously 
linear and continuous, it follows that it is a distribution on D(R). We call 
such a distribution a distribution of type function. Let us remark that, if 
z, y : R --+ R are two locally Lebesgue integrable functions which are almost 
everywhere equal on R, then 5 = fj. Indeed, 

s, .(t>4(t) d t  = / Y(t>4(t) d t  w 
for every 4 E 'D(R). Let us denote by ,L:oc(R) the space of all locally 
Lebesgue integrable functions x : R -+ R, and let us define the relation 
p c Ltoc(R) x Ltoc(R) by zpy if and only if z = y almost everywhere on 
R. Then, p is an equivalence relation on L~oc(R). One may prove that 
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any two equal distributions of type function are defined by two functions 
which are almost everywhere equal. According to this observations, the set 
of distributions of type function can be identified with the quotient space 
L;oc(R)/p, which is nothing but the well-known space L&c(R). For this 
reason, we agree to denote a distribution of type function by Z, Z being the 
p-equivalence class of the element 2, or even by 2. 

Example 7.1.3 The Dirac Delta. Let S : D(R) -+ R be defined by 

for every 4 E D(R). One may easily see that 6 is linear and continuous. 
So, it is a distribution on ’D(R) called the Dirac delta. We notice that 
this distribution has been introduced in 1926 by Paul Diracl with the aim 
of explaining certain phenomena with impulsive character. For the sake 
of simplicity, in the example that follows, we will confine ourselves to the 
presentation of an extremely simple such physical situation whose descrip- 
tion from a rigorous mathematical viewpoint cannot avoid the use of Dirac 
delta. 

Example 7.1.4 Density of a point of mass m. Let us consider a 
material point of mass m whose density we intend to determine. Since the 
point has zero measure, at the first glance we could be tempted to assert 
that the density is foo. On the other hand, if we think of the point as to 
a geometrical object obtained as a “limit of a sequence of objects”, all of 
mass m and all having well-defined densities, for which we can give a sense 
to the limit of the corresponding sequence of densities, that limit could be 
a good candidate for the density of the point, with the condition to be 
independent of the sequence of approximates in question. Approximating, 
for example, the point by an interval of length 2 4  centered at the origin, 
of mass m and of density d : R -+ R uniformly distributed on the interval 
[ -1, l ] ,  i.e. 

‘British physicist (1902-1984). He was one of the founders of Quantum Mechanics. 
Using the mathematical formalism introduced by himself, he has succeeded to  predict 
the existence of the positive electron, or positron. Nobel Prize in 1933. 



250 Extensions and Generalizations 

and expressing the mass as function of density, we deduce 

m = J, de(t)  dt .  

At this point, let us observe that there exists 

lim&(t) = &(t) 
el0 

point-wise on R, where 

+oo i f t = O  

0 i f t  E R\{O}. 
do@) = 

On the other hand 

1 de(t)dt = m 
w 

for each l > 0, and therefore we could be tempted to conclude that “do is 
a function from R to E, taking the value +oo at t = 0, and zero otherwise, 
but whose integral over R equals rn > 0”. Obviously such a conclusion is 
unacceptable because there exists no function with the properties above. 

However, to give a sense to the limit above (other than the usual one), 
let us observe that, by virtue of the mean-value theorem, for every + E D(R) 
and every l > 0 there exists 8e E [ -e, l ]  such that we have 

Thus, the density of a material point of mass rn can be identified with 
mS where 6 is the Dirac delta. 

Proposition 7.1.2 The set 2Y(IR) i s  a vector space over R with respect 
to the usual operations with functions, i. e. addition, and multiplication b y  
a real number. 

If 2 E W(R) and $ E ’D(Iw), we agree to denote by 

We emphasize that the notation x ( t )  i s  somehow improper because x is not 
a function of a real variable t ,  but is useful whenever we want to specify 
which one of the variables of a function $J (if many) is that one with respect 
to which $ is considered as a test function. See Example 7.1.2. We will face 
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such situations in some of the next definitions in which, in order to avoid 
possible ambiguities, we will be led to use this notation. 

Operations with distributions. Besides the usual operations of addition 
of two distributions and of multiplying a distribution by a real number, 
we can define some other new ones, which endow the space 'D'(R) with a 
particularly rich and, at the same time, useful structure. 

Let x E 'D'(R) and q E Coo(R; R). One can easily see that the function 
qx : D(R) -+ R, defined by 

(7.1.2) 

for every 4 E D(R), is a distribution. 

Remark 7.1.2 
and 4 
Definition 7.1.4 By definition, the product of the distribution x by  the 
function of class C" r]  is the distribution vx defined by means of the 
relation (7.1.2). 

The function qx is well-defined because, if 7 E Cw(R; R) 
D(R), then q+ E !!)(It). 

If x E 'D'(R) and a > 0, then the function z(at) : D(R) --+ R, defined 
by 

(7.1.3) 

for every + E D(R), is a distribution. 

Definition 7.1.5 By definition, the omothety of coeficient a > 0 of the 
distribution x is the distribution x(a t )  defined by means of the relation 
(7.1.3). 

If x E ?>'(EX) and a E R, then the function x( t  - a )  : D(R) --+ R, defined 
by 

for every E B(R), is a distribution. 

Definition 7.1.6 
is the distribution x( t  - a ) ,  defined by means of the relation (7.1.4). 

Example 7.1.5 
the so-called Diruc delta concentrated at a ,  i.e. 6 ( t  - a ) ,  defined by 

By definition, the translation by a of the distribution x 

For instance, the translation by a of the Dirac delta, is 
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for every 4 E 'D (R) . 
Remark 7.1.3 The idea of defining the operations above was suggested 
by the particular case of distributions of type function, case in which we 
have 

and respectively 

for the product by a function of class C", for the omothety of coefficient 
Q > 0 and for the translation by a, respectively. 

Let z E D'(R) and k E N. Taking into account the definition 
of the convergence on D(R), we can easily conclude that the function 
dk) : D(R) -+ R, defined by 

(z("(t>, +(t>) = ( -1 )k (4 t ) ,  dWt>>  (7.1.5) 

for every $I E D(R), is a distribution. 

Definition 7.1.7 
distribution dk) defined by means of the relation (7.1.5). 

The derivative of order k of the distribution II: is the 

Remark 7.1.4 The definition of the derivative of a distribution was sug- 
gested also by the case of distributions of type function which are of class 
Ck and for which the equality (7.1.5) follows by a successive application 
of k-times by parts integrations. At this point, we are in the position to 
notice the advantage of these new mathematical objects, i.e. distributions 
versus classical functions. More precisely this advantage consists in that, 
unlike the usual functions, the distributions are always infinitely-many dif- 
ferentiable. For this reason, the distributional framework is very suitable 
to the construction of a general theory of linear differential equations and 
systems. 

Next, we prove a simple but useful result which completely clarifies the 
relationship between the distributional derivative of a function, i.e. the 
derivative of a distribution of type function in the sense of Definition 7.1.7, 
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and the classical derivative of that function. In order to avoid possible 
confusion, we denote by x the distributional derivative of the function 2, 
i.e. the derivative given by Definition 7.1.7, and by x’ the classical derivative 
of the function 2, i.e. in the usual sense of Real Analysis. 

Proposition 7.1.3 Let x : R -+ R be a function of class C1 on R \ { a }  
with the property that x’ is locally Lebesgue integrable. If a is a discontinuity 
point of the first kind2 of x then 

k ( t )  = x’(t) + ~ ( x ,  a)b(t - a ) ,  (7.1.6) 

where w(z,a) = z(a + 0) - .(a - 0 )  is the jump of the function x at the 
point a.  In particular, if w(x,a) = 0,  then 

x = 2’. 

Proof. 
of type function. Let + E iD(R). According to  Definition 7.1.7, we have 

Since x’ is locally Lebesgue integrable, it generates a distribution 

- - - [, x(t)+’(t) d t  - l+m x(t)+’(t) d t  

= -x(t)+(t)la_, + /a x’(t)+(t) d t  - x(t)@(t)I,frn + i+, x’(t)+(t) d t .  
-m 

Since 4 has compact support, we deduce that 

lim x( t )$( t )  = lim x( t )4( t )  = O 
tl--co tt+co 

and therefore 

Since this equality is obviously equivalent to (7.1.6)) this completes the 
proof. 0 

~ ~ 

2We recall that  a discontinuity point of the first kind of a function z : R -, R is a 
discontinuity point a E R at which there exist both one-sided limits z(a+O) and z (a -0 ) .  
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Corollary 7.1.1 
of the distribution qx i s  given by the Leibniz rule 

Let q E P ( R ;  W) and x E D’(R). Then, the derivative 

(ix) = qlx + qx. 
Proof. Let 4 E D(R). We have 

relation which achieves the proof. 0 

7.2 The Convolution Product 

We denote by D’+(R) the set of all distributions x with the property that 
for every 4 E D(R) with supp4 c (-oo,O), we have (x( t ) ,4( t ) )  = 0. In 
other words, D’+(R) is the set of all distributions which “depend)) only of 
the values at t E [ 0, +w) of the test functions. Indeed, x E D>(W) if and 
only if for every q5,$ E D(R) with 4(t) = $(t)  for every t E [ O , + o o ) ,  we 
have ( x ( t ) ,  4(t)) = (4% $(t)) .  
Lemma 7.2.1 Let x E D!,-(R), b E R and q,p,$ E C”(R;R) be such 
that q( t )  = p ( t )  = 1 for every t E [-l,+oo), q(t)  = p(t )  = 0 for every 
t E (-oo,-2] and supp$ c (-00,bl.  Then q$,p$ E D(R) and 

The graph of such function q, with the properties in Lemma 7.2.1, is 
illustrated in Figure 7.2.1. 

Proof. Obviously q$,plC) E Cm(W;R). If b 5 -2, then q$ = p$ = 0. 
If b > -2, supp(q$) c [ - 2 , b ]  and supp(p$) c [-2,b], which shows that 
q$) p$ E D(R). On the other hand, supp((q-p)$) c (-m, -11 c (-00~0) 
and, as x E D’,(R), it follows that 

The proof is complete. 0 
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-2 -1 0 t 

Figure 7.2.1 

Lemma 7.2.2 If y E D'+(R) and 4 E D(R) satisfies supp 4 c [a ,  b ] ,  then 
the function t H (y(s), $(t + s)) is of class C" and its support is included 
in ( -00 ,bI .  

Proof. Since y is linear and continuous and 4 is of class C", by a simple 
inductive argument, we deduce that the function t I--+ (y(s), $(t + s)) is of 
class Cm because 

for every k E N. 
In order to prove that the support of this function is included in (--00, b] ,  

let us observe that, for each t E R, supp4(t+.) c [a-t, b-t]. So, if b-t < 0, 
we have supp $(t + .) c (-m,O) and, by consequence ( ~ ( s ) ,  q5(t + s)) = 0. 
But this relation shows that the support.of the function t I--+ (y(s), $(t +s)) 

0 

Corollary 7.2.1 Let x, y E D'+(R) and q, p E C"(R; R) be such that 
q(t) = p(t)  = 1 for  every t E [-l,+oo) and v(t) = p( t )  = 0 for every 
t E (--00, -21. Then, for every 6 E !D(R) 

is included in (-00, b ]  and this completes the proof. 

Proof. In view of Lemma 7.2.2, it follows that the function 1c) : R -+ R, 
defined by $(t)  = (y(s ) ,4( t  + s)) for every t E R is of class C" and its 
support is included in (-00, b ] .  So we are in the hypotheses of Lemma 7.2.1, 

0 from where the conclusion follows. The proof is complete. 

Corollary 7.2.1 allows us to introduce: 
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Definition 7.2.1 
distributions x and y is the functional z * y : 'D(R) -+ R, defined by 

Let z,y E D'+(R). The convolution product of the 

for every 4 E D(R), where q E C" is a function with q( t )  = 1 for t 2 -1 
and q( t )  = 0 for t 5 -2. 

Remark 7.2.1 For every x, y E D',(R) the convolution product J: * y is 
well-defined because, according to Corollary 7.2.1, ( ~ ( t ) ,  q ( t ) ( y ( s ) ,  $ ( t + s ) ) )  
is independent of the choice of the function q. Moreover, we can show that 
x * y is a distribution. 

Example 7.2.1 Let z,y : R + R be two locally Lebesgue integrable 
functions with the property that x ( t )  = y ( t )  = 0 a.e. for t < 0. Then, the 
distributions of type function z and y belong to D+(R) and their convolu- 
tion product x * y is a distribution of type function, x * y : R -+ R, defined 
by 

t 
(z * y>( t>  = s, W Y ( t  - 4 d7- (7.2.1) 

for every t E R. In order to prove the equality above, let us observe that, 
for every q!I E D(R), we have 

where q is a function of class C" with q( t )  = 1 for t E [-1, +m) and 
q( t )  = 0 for t E (-03, -21. Making the substitution t + s = T and using 
Fubini's theorem (see [Dunford and Schwartz (1958)], Theorem 9, p. 190) 
in order to interchange the order of integration, we get 

n n  
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lT z ( ~ ) Y ( T  - t )  dt  dT, 

equality which proves that z * y is of the form (7.2.1). 
We notice that we have already used the convolution product of two 

functions, as expressed by formula (7.2. l), without naming it explicitly. 
Indeed, let us consider the Cauchy problem for the linear non-homogeneous 
differential equation 

where a E R and b E C(R;R). We know that the solution of this problem 
is given by the variation of constants formula 

for every t E R. Let us observe that this formula can 
the form 

be rewritten under 

where b ( t )  * eat is given by (7.2.1). This observation suggests to define 
the solution of the equation above by the very same formula, even in the 
case when b is no longer a function but a distribution in ’D!+(R). We shall 
develop this idea in the next section. 

Proposition 7.2.1 The convolution product has the following properties : 

(i) z * ( y + z )  = z * y + z * z  f o r e v e r y z , y , x E ’ D ’ + ( R ) ;  
(ii) x * S = 6 * x = x for  every x E D/,(R) ; 

(iii) (X * y) = x * j/ for  every x, y E D’+(R). 

Proof. 
product combined with the linearity of the distribution x. 

The property (i) follows from the definition of the convolution 
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Let 4 E D(R) and 77 be a function as in Definition 7.2.1. We have 

equalities which prove (ii). 
Finally, let us observe that 

for every 4 E 'D(R), relation which achieves the proof. 0 

Remark 7.2.2 One can show that, for every x , y  E iD'+(R), we have 
x * y = y * x (the commutativity of the convolution product). The proof 
of this property is not elementary and therefore we will not include it here, 
especially because we will not make use of it in this book. 

7.3 Generalized Solutions 

In this section, we will present a distributional approach to those equa- 
tions, or systems of linear non-homogeneous differential equations which, 
due to the lack of regularity of the right-hand side(s), cannot be handled 
by classical methods. We begin with the first-order system of linear non- 
homogeneous differential equations with constant coefficients: 

x = . A x +  f (7.3.1) 

where A f M n x n ( R )  and f f ('D'(R)In. Since the right-hand side of 
the equation is an n-tuple whose components are distributions, we have to 
clarify from the very beginning what do we mean by a solution of equation 
(7.3.1). 

Definition 7.3.1 A generalized solution, or solution distribution of the 
equation (7.3.1) is an element x = (x l ,z2,  , . . ,zn) E [ D'(R)]" which satis- 
fies the relation 

X = A x +  f, 
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where x = ($I,&,. . . , xk), while xi stands for the derivative of xi, 
i = 1,2 , .  . . ,n in the sense of the Definition 7.1.7, i.e., the distributional 
derivative. 

Example 7.3.1 
equation 

Let us consider the first-order linear differential scalar 

x = 2 2  + 6, 

where 6 is the Dirac delta. Here and in all that follows, we denote by 
6 : R -+ R the function defined by 

0 i f t < O  
1 if t 2 0, 

called the unit function, or the Heaviside function, and let us observe that 
e(t)  = 6 ( t ) .  Then, a generalized solution for this equation is a distribution 
x, of type function, 

~ ( t )  = e2t6(t) ,  

where e2t6(t)  represents the product of the function of class C" e2t by the 
distribution of type function O(t). 

Indeed, using Leibniz rule, established in the preceding section, one can 
easily state that 

x = (e2t)' 6 ( t )  + e2tb = 2e2t6(t) + e2t6(t) ,  

where e2t6(t) denotes the product of the function of class C" e2t by the 
distribution 6. See Definition 7.1.4. In order to calculate this product, let 
us observe that 

for every $ E D(R). Hence e2t6(t)  = 6 ( t )  in the sense of distributions. 

every a E R, we have 
We mention that, in general, for every function of class C", 7 ,  and for 

q(t)b( t  - a )  = q(u)S(t - a) .  

It then follows that 

x = 22 + 6, 

which means that x is a generalized solution of the equation considered. 
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The next two lemmas will prove useful in the sequel. 

Lemma 7.3.1 A function 7 E D(R) i s  of the form 

7 = 4'7 (7.3.2) 

with 4 E D(R), if and only if 
r 

J, V(S) ds = 0. (7.3.3) 

Proof. 
support, there exists [ a ,  b ]  such that @(t) = 0 for every t E R \ [ a ,  b ] .  So 

Let us assume that 7 is of the form (7.3.2). As 4 is with compact 

which proves (7.3.3). 
Conversely, if (7.3.3) holds true, then taking 4 : R -+ R, defined by 

4(t> = s" rl(W 
-00 

and taking into account the fact that there exists [ a , b ]  such that q( t )  = 0 
for every t E R \ [ a ,  b ] ,  we deduce that #I is with compact support. More 
precisely 

for every t E R \ [ a ,  b ] .  Since 4 is obviously of class Coo, it follows that 
0 

The only generalized solutions of the first-order linear 

4 E D(W), and it satisfies (7.3.2). The proof is complete. 

Lemma 7.3.2 
scalar diflerential equation 

x = 9, (7.3.4) 

where g : R -+ R is a continuous function, are the primitives of g .  

Proof. 
differential scalar equation 

We begin by showing that the only generalized solutions of the 

X = O  (7.3.5) 

are the constant functions. To this aim, let q!~ E D(R), with JR @(s) ds = 1. 
Then 
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and, by consequence 

Since 

from Lemma 7.3.1, it follows that there exists E D(R) such that 

for every t E R. Then, from (7.3.5), we deduce that 
r 

Hence 

Denoting by c = (a ( t ) ,  $ ( t ) ) ,  the last equality rewrites 

( X c ( t > ,  4 0 ) )  = / C 4 W  ds ,  w 
which proves that x is the distribution generated by the function x ( t )  = c 
for t E R. Consequently, the only generalized solutions of equation (7.3.5) 
are the constant functions. 

Now, let us consider equation (7.3.4). Let G : R -3 R be a primitive of 
the function g and let us observe that (7.3.4) rewrites in the form 5 = G‘ 
equality which, by virtue of Proposition 7.1.3, is equivalent to  x = G. Since 

the last relation may be written in the form x - G = 0, from what we have 
previously proved, it follows that x - G = c with c E R, which achieves the 
proof of the lemma. 0 

A 

Theorem 7.3.1 I f f  = (fi, fi , .  . . , fn), where fi are distributions of type 
function generated by continuous functions from R to  R, i = 1,2, , . . , n, 
then the only generalized solutions of equation (7.3.1) are the classical ones. 

Proof. From Lemma 7.3.2 we deduce that the only generalized solutions 
of the system 
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with gi : R -+ R continuous, i = 1 , 2 , .  . . , n, are of the form xi = Gi, with 
Gi a primitive of the function gi, i = 1 , 2 , .  . . , n. 

Let y E [ D'(R)]" be a generalized solution of the system (7.3.1). We 
emphasize that, by e-'"y(t) we mean the n-tuple of distributions formally 
obtained by multiplying the matrix e-tJL by the vector y ( t ) ,  with the speci- 
fication that the product of one element P i j ( t )  of the matrix by a component 
y j ( t )  of the solution y ( t )  should be understood as the product of the function 
of class Coo, p i j ( t ) ,  by the distribution y j ( t ) .  See Definition 7.1.4. 

Then, taking into account that Jl commutes with eWtA, we deduce 

So, y satisfies 

Since the right-hand side of this equation is a continuous function, according 
to what we have already proved, it follows that 

t 
e-tAy(t) = c + 1 e-s"f(s> cis 

or equivalently 
t 

y(t) = et"c + 1 e(t-s)JIf(s) ds. 

The proof is complete. 0 

Let us consider now the nth-order linear differential equation 

y'"'(t> + a1 (t)y (n-l)(t) + ' - - + a,(t)y(t) = f ( t ) ,  (7.3.6) 

where a l ,  a2, , . . , a, are functions of class C" from R to R and f E D'(R). 
For simplicity, we denote by G : D'(R) -+ 9'(R) the nth-order differential 
operator associated to (7.3.6), i.e. the operator defined by 

G[  y ] ( t )  = y'" '( t)  + u1(t)y("-l)(t) + - * * + a,(t)y(t) 

for every y E D'(R), where ak(t)y("-')(t) is the product of the function of 
class C" ak by the distributional derivative of order n - k, y("-"), of the 
distribution y. See Definitions 7.1.4 and 7.1.7. 

(t)
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Definition 7.3.2 
a distribution y which satisfies 

By a generalized solution of equation (7.3.6), we mean 

where C is the nth-order differential operator associated to equation (7.3.6). 

Remark 7.3.1 By Proposition 7.1.3, we have L (Cn(R; R)) c C(R; a). 
Then, if f : R -+ R is a continuous function, every classical solution of 
equation (7.3.6) is a generalized solution. We recall that (7.3.6) can be 
rewritten as a first-order linear differential system. So, if ai are constants, 
i = 1 ,2 ,  . , . , n, and f is continuous, by virtue of Theorem 7.3.1, it follows 
that the only generalized solutions of equation (7.3.6) are the classical ones. 

Definition 7.3.3 
operator G we mean a distribution € which satisfies 

By an elementary solution of the nth-order differential 

& [ € I  = 6 ,  (7.3.7) 

where 6 is the Dirac delta (concentrated at 0). 

The next theorem is fundamental in order to understand the mechanism 
of solving equation (7.3.6). 

Theorem 7.3.2 
diflerential operator G, then, f o r  every f E ’D;(R), the distribution 

If & E ’D‘+(R) is an  elementary solution of the nth-order 

y =  f * &  (7.3.8) 

is  a solution of equation (7.3.6). 

Proof. In accordance with Proposition 7.2.1, we have 

G [ y ] = G [ f * € ] = f * G [ € ] = f * 6 = f ,  

which achieves the proof. 0 

Remark 7.3.2 Essentially, Theorem 7.3.2 asserts that if one knows the 
response of the system to a “unitary impulse” concentrated at t = 0, then 
one can find out the response of the system to any perturbation f .  

In Example 7.3.1 we have determined an elementary solution for a first- 
order differential operator. In what follows we will present a method of 
determination of an elementary solution to the nth-order differential ope- 
rator L, associated to equation (7.3.6), whenever the latter has constant 
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coefficients. More precisely, let C : D'(R) --+ D'(R) be defined by 

L[ y ]  = y(n) + aly(n-') + . . . + any, 

where ai E R, for i = 1,2, .  . . , n. In order to find out an elementary solution 
1 E ?);(I%) of this operator, we shall use an extension of the variation of 
constants formula to the framework of generalized solutions. More precisely, 
let y1, y2,. . . , yn be a fundamental system of solutions for the homogeneous 
equation L[ y ]  = 0. By analogy with the method presented in Section 4.5, 
we will look for an elementary solution of the form 

n 

i= 1 

(7.3.9) 

in a distributional sense. See Theorem 4.5.7. We emphasize that in the 
system (7.3.9) is the product of the function of class C" y("-') 
by the distribution Ci, for k = 1 , 2 , .  . . , n and i = 1 , 2 , .  . . , n. 

This system with unknowns Ci, i = 1,2 , .  . . , n has the solution 

(7.3.10) 

for i = 1 , 2 , .  . . , n, where W is the Wronskian of the fundamental system 
of solutions y1, y2,. . . , gn, while Wi is a determinant obtained from W by 
substituting the column of rank i by a column containing n - 1 zeros on 
the first n - 1 rows and 1 on the last row. As we have already observed in 
Example 7.3.1, the product of the function of class C" q by the distribution 
6 is q(t)S(t)  = q(O)6(t). So 

and the relation (7.3.10) rewrites in the form 
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At this moment, let us observe that if we choose y1, y2,. . . , gn so that 
yi(0) = ei for i = 1 , 2 , .  . . ,n, where el ,  e2,. . . ,en are the vectors of the 
canonical basis in Rn, then W(0) = 1 and 

Hence, a possible solution of the system above is c1 = c2 = - = % - I =  0 
and %(t)  = 8 ( t ) ,  where 8 is the distribution generated by the Heaviside 
function. So, we have 

where yn is the unique global solution, of the homogeneous Cauchy problem 

Obviously & E 'D'+(R). 

Remark 7.3.3 From Theorem 7.3.2 and from the preceding arguments, 
it follows that the general solution of the non-homogeneous linear equation 
L [  y ]  = f with f E D!+-(R) is given by 

n 

y = c kiYi + f * I, 
i= 1 

where k l ,  k2,. . . , kn E R, y1,y2,. . . , gn is the fundamental system of solu- 
tions of equation = o satisfying (yi(o), y;(o), . , , yjn-l)(0)) = ei for 
i = 1 ,2 , ,  . . , n, where el, e2,. . . ,en are the vectors of the canonical basis in 
Rn, while & is given by (7.3.11). 

7.4 Carath6odory Solutions 

As we have already seen in Section 2.2, there are Cauchy problems which 
do not admit solutions of class C1. We recall that, if f : Iw + R is defined 
by 

-1 if x L O  
1 if x < 0, 
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then the Cauchy problem 

XI = f(x) { z(0) = 0 

has no C1 local solution to the right. See Example 2.2.1. This phenomenon 
is a consequence of the fact that the right-hand side f of the equation is 
discontinuous with respect to “the state variable” x. One may easily see 
that not only the discontinuity off with respect to z might be incompatible 
with the existence of C1 solutions. Actually, the discontinuity of f with 
respect to t is equally responsible for such nonexistence phenomena. For 
instance, for f : R -+ R defined by 

-1 if t > O  
1 i f t < O ,  

the Cauchy problem 

has no C1 local right solutions. On the other hand, instead of C1 functions, 
we may allow as candidates for solutions continuous functions x : 9 -+ I@ 
which are almost everywhere differentiable. Furthermore, we may impose as 
a qualification criterion for solutions to satisfy the differential equation for 
every t E J\E, where E is a set of Lebesgue null measure. If this is the case, 
the second equation above has as solution the function 3: : R -+ R defined by 
z ( t )  = -It1 for every t E R. One may easily see that the function x, which is 
obviously continuous, satisfies the differential equation for every t E R \ (0). 
So, in the second example, in which the function f is discontinuous only 
with respect to the t variable, by suitably redefining the concept of solution 
and by paying the price of some slight modifications, we may completely 
rebuild the whole theory referring to C1 solutions developed previously 
for the continuous right-hand side casee3 We recall that we have already 
done such a construction for systems of linear differential equations, when 
we have introduced the generalized solutions, i.e. solutions distributions. 
~~ 

3The situation is completely different in the case of the first example in which the 
discontinuity of the function f with respect to the state variable I leads to a law of 
evolution which is contradictory by itself. In this case, only the redefinition of the 
concept of solution in the class of continuous functions cannot ensure the existence. As 
we shall see in the next sections, in such situations, besides the introduction of a new 
concept of solution, a “minimal correction” of the evolution law f is necessary, and this 
in order to eliminate the existential self-contradiction. 
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See Section 7.3. Unfortunately, due to its “starting linear philosophy”, the 
theory there developed can be adapted only to very few nonlinear cases and 
therefore, in the general nonlinear setting, the construction of a completely 
different theory is needed. The aim of this section is to present briefly 
such a theory, initiated at the beginning of the XX century by Constantin 
Carathbodory by using the framework offered by the very new (at that 
moment) Lebesgue integral. 

More precisely, we begin with the definition of the class of functions 
allowed as right-hand sides in the differential equation corresponding of the 
Cauchy problem 

Definition 7.4.1 
if: 

The function f : II x R -+ R” is a Curuthe‘odory function 

(i) for almost all t E II, the function 2 H f(t,z) is continuous from R 
to IWn; 

(ii) for every z E R, the function t I--+ f(t ,x> is Lebesgue measurable 
on It; 

(iii) for every ( a , c )  E II x R there exist r > 0, 6 > 0 and a Lebesgue 
integrable function h : [ a , a  + 61 -+ W+ such that B(c,r)  c R, 
[ a , u + S ]  C I a n d  

for every J: E B ( J ,  r )  and for almost all t E [ a ,  a + 61. 

Let a E 1 and let S > 0 be such that [ a , a + S ]  c It. 
Definition 7.4.2 A function z : [ a ,  a+6] -+ R is u Curuthe‘odory solution 
of the problem C!Ip(’D) if z is absolutely continuous4 on [ a , a +  61, x(u)  = J 
and x satisfies x’(t) = f ( t , z ( t ) )  for almost all t E [ a , a  + 61. 

In what follows we will show that, iff  is a Carathkodory function, then, 
for every ( a ,  S )  E II x R, there exists 6 > 0 such that O(a> has at least one 
Carathkodory solution defined on [ a ,  a + 61. 

4We recall that a function z : [ a ,  a + 61 --+ Rn is absolutely continuous if for each 
E > 0 there exists V ( E )  > 0 such that, for all points ti, si E [ a ,  a+6] ,  i = 1 , 2 , .  . . , m, with 
CEl ]ti - si] 5 ~ ( e ) ,  we have Czl ]Iz(ti) - z(si)ll 5 E .  It is known that each abso- 
lutely continuous function is almost everywhere differentiable, its derivative is Lebesgue 
integrable on [ a ,  a + 61 and, for each t ,  s E [ a ,  a + 61, z(t)  - z(s) = s,” z’(7) dr. 
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We begin with the particular case in which R = R" and f is a 
Carath6odory function which satisfies (7.4.1) for every 2 E R", and then 
we will show how the general case reduces to the latter. 

E R and let us consider the integral 
equation with the delay A > 0 

So, let f : II x R" ---t R", let a E 11, 

We begin with the following copy of Lemma 2.2.1. First we recall that 
a function h : 11 -+ Rn is locally Lebesgue integrable if its restriction to any 
compact interval included in I[ is Lebesgue integrable on that interval. 

Lemma 7.4.1 
there exists a locally Lebesgue integrable function h : 11 -+ R+, such that 

Let f : II x Rn --+ R" be a Carathe'odory function fo r  which 

fo r  every x E R" and for  almost all t E 1. Then fo r  every (a ,  <) E II x Rn and 
every S > 0 such that [ a ,  a + S] c 11, ( € 3 ) ~  has one and only one absolutely 
continuous solution defined on  [ a  - A, a + 61. 

Proof. Let us remark that, if y : 11 -+ Rn is a continuous function, then 
the function t H f( t ,  y ( t ) )  is Lebesgue measurable on IT and, by virtue of 
the inequality (7.4.2)) it satisfies 

for almost all t E 11. It follows then that t H f ( t , y ( t ) )  is locally Lebesgue 
integrable. From here, it follows that if ZA is defined and continuous on an 
interval of the form [ a-A, a+iX] with a+iX < a+S, then s t--+ f(s,z~(s-A)) 
is Lebesgue integrable on [a ,  a + (i + 1 ) A ]  and therefore 2~ can be uniquely 
extended to [ a  - A, a + (i + l ) A ] .  

Clearly ZA is uniquely determined on [ a  - A,a]  from equation ( € 3 ) ~  
itself. Let then t E [ a ,  a + A ] .  Let us remark that, for every r E [ a , t ] ,  we 
have r - A E [ a  - A,a] and therefore zA(r - A) = 5. Therefore 

r t  

and zx is uniquely determined on [ a ,  a + A ] .  Similarly, we can uniquely 
determine ZA on [ a + A, a + 2X 1 ,  [ a + 2X, a + 3x1, a.s.0. After rn steps, with 
mX 2 a+S, we can define 2~ on the whole interval [ a ,  a+6]. Observing that 
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zx is absolutely continuous, being the primitive of a Lebesgue integrable 
0 function, this completes the proof of the lemma. 

As we have already mentioned, we shall prove first the following auxili- 
ary existence result which is interesting by itself. 

Lemma 7.4.2 Let f : II x R" -+ Rn be a Carathe'odory function with the 
property that there exists a locally Lebesgue integrable function h : II --f R+, 
such that (7.4.2) is satisfied. Then, for  every ( a , c )  E II x Rn and every 
6 > 0 such that [ a ,  a + 61 c I T ,  (C?) has at least one Carathe'odory solution 
defined on  [ a , a  + 61. 

Proof. 
and let us consider the integral equation "with the delay 6, = 6/m" 

Let ( a , c )  E II x R" and 6 > 0 such that [ a , a + 6 ]  c 1, let m E N* 

for t  E [a-6,,a] 

Let us remark that, by virtue of Lemma 7.4.1, for every m E N*, (€3), 
has a unique absolutely continuous solution x, : [ a - S,, a + 61 -+ R". 

We will show in what follows that the family of functions {x,; m E N*} 
is uniformly bounded and equicontinuous on [ a ,  a + 61. For the beginning 
let us observe that, by virtue of the inequality (7.4.2)) we have 

for every m E N* and t E [ a ,  a+6] .  So {z,; m E N*} is uniformly bounded 
on [ a , a + 6 ] .  

Next, let us observe that, also from (7.4.2), we have 

for every m E N* and t ,  s E [ a,  a + S J .  Since h is Lebesgue integrable on 
[ a,  a + 61, the function t H s," h(7) d r  is absolutely continuous on [ a ,  a + 61 
and, by consequence, the preceding inequality shows that (zm; m E N*} is 
equicontinuous on [ a ,  a + 61. By virtue of ArzelA-Ascoli's Theorem 8.2.1, it 
follows that (z,),~" has at least one subsequence, denoted for simplicity 
again by ( Z ~ ) , ~ N * ,  uniformly convergent on [a,a + 61 to a continuous 
function z. Obviously, we have 

lim X,(T - 6,) = z ( ~ ) ,  
,--roo 
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uniformly for r E [ a ,  a + 61. Since f is a Carathkodory function on 1 x R", 
we have 

for almost all r E [ a , a  + 61. From this relation, from (7.4.2) and the 
Lebesgue's dominated convergence theorem, see [Dun ford and Schwartz 
(1958)], Theorem 7, p. 124, it follows that we can pass to the limit in 
(€3), for m -+ 00. We deduce that x satisfies 

t 
4 t )  = S + J. f ( r , x ( d )  d7 

for every t E [ a, a + 6 3 ,  and therefore IC is absolutely continuous on [ a, a + 6 ] 
and z(a) = E .  Thus, d ( t )  = f ( t ,  z ( t ) )  for almost all t E [a ,  a + b ] ,  and this 

0 achieves the proof of the lemma. 

Remark 7.4.1 
every initial data (a, () E II x R", W(9) has at least one global solution. 

In the hypotheses of Lemma 7.4.2, we can prove that for 

We can now proceed to the formulation of the main result in this section. 
To this aim, let 1 be a nonempty and open interval in R, let R be a nonempty 
and open subset in R" and f : II x Q .--) R" a given function. 

Theorem 7.4.1 (Carathhodory). If f : II x Q -+ R" is a Carathebdory 
function then, for every ( a ,  S) E 1 x 51, there exists S > 0 with [ a ,  a + S ]  c II 
and such that W(1, R, f, a,  () has at least one Carathe'odory solution defined 
on [ a , a + b ] .  

Proof. 
and r > 0 such that [ a - d , a + d ]  c I and 

Let (a, <) E II x 51. Since both II and are open, there exist d > 0 

Taking into account that f is a Carathhodory function, diminishing T if 
necessary, we may assume that there exists a Lebesgue integrable function 
h : [ a ,  a+d] -+ R+, such that (7.4.1) be satisfied. Let us define p : R" -+ Rn 
by 

Y for Y E B(E, r )  

(Y - 0 + E for Y E Rn \ B(J,r). 
IlY - Sll 

One can easily see that p maps Rn in B(( ,  r )  and is continuous on Rn. 
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Now, let us define g : ( a  - d, a + d)  x R" -+ R", by 

for every (t ,  y) E ( a  - d,a  + d )  x Rn. 
Since f is a Carathkodory function , while r ,  d and h are chosen such that 

(7.4.1) holds, it follows that g satisfies all the hypotheses of Lemma 7.4.2. 
So, for every k E (O,d), the Cauchy problem 

x' = g( t ,  x) { 44 = < 
has at least one Caratheodory solution x : [a, a + k ]  + Rn. Since z ( a )  = < 
and z is continuous at t = a,  for r > 0, there exists 6 E (0, k] with the 
property that for every t E [ a , a  + 61, [lx(t) - CII 5 r. But, in this case, 
g(t,x(t)) = f ( t ,x( t ) )  and therefore x : [ a , a  + 61 -+ R is a Carathkodory 

0 solution of eiP(II, R, f, a,  <). The proof is complete. 

Remark 7.4.2 We mention that, whenever f is continuous, then the 
only Carathkodory solutions of O(9) are the classical ones, i.e. of class 
C1. Indeed, in this case, if x : [a, b ]  -+ R is a Carathhodory solution then 
it is continuous. Since f is continuous, it follows that x' is continuous too, 
which shows that x is of class C1. If f is discontinuous as function of the 
t variable, even at a single point, then W(9) might have Carathhodory 
solution but no classical solution, as we can see from the example below. 

Example 7.4.1 The Cauchy problem 

x' = xsgn (t - I) 
x(0) = 1 

has as unique saturated Carathhodory solution the function x : R+ -+ R, 
defined by x ( t )  = elt-ll-l for every t E It+, function which is not of class 
C1. 

7.5 Differential Inclusions 

The evolutions of certain phenomena which present one or more states 
of ambiguity cannot have in general as satisfactory mathematical models 
differential equations, or systems of differential systems. Some of these phe- 
nomena can be fairly well described by the so-called diflerential inclusions. 
Roughly speaking, these are generalizations of differential equations in that, 
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instead of a single-valued function, they have, on the right-hand side, a set- 
valued function (called for this reason multi-valued function). The next 
simple but very instructive model of pursuit-evasion due to [Brezis (1975)] 
is illuminating in this respect. 

Example 7.5.1 A policeman P chases a gangster G. The policeman’s 
strategy is to run as fast as he can towards the gangster. So, if g ( t )  and 
p ( t )  are the position vectors, at the moment t ,  of the gangster and of the 
policeman respectively, then the policeman’s speed p ’ ( t )  is given by 

if p ( t )  # g ( t )  and p’(t) E B(O,V) if p ( t )  = g ( t ) ,  where V represents the 
maximal speed which P can reach. See Figure 7.5.1 below. 

Figure 7.5.1 

Introducing the set-valued function A : R2 -+ 2w2, by 

( B(O, V )  if x = o 
and the new unknown functions u = p - g, the relations above rewrites in 
the form 

u‘ E A(u)  + h(t) ,  

where h = 9‘. One may easily see that, on R2 \ {0}, A can be identified 
with a continuous and dissipative function. Let us observe that in fact A 
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constitutes, up to a multiplicative constant, a generalization of the signum 
function. We emphasize that, in this example the state of ambiguity of the 
system is that one at which p ( t )  = g( t ) ,  where the sense of the displacement 
has no relevance. It should also be noticed that, exactly at this state, one 
has to consider as value of the right-hand side a set and not a single point. 

Another situation, which may suggest the consideration of some diffe- 
rential inclusions as alternative models, is that one in which, from various 
reasons, the corresponding “single-valued differential models” has no “clas- 
sical solutions”. For instance, let us consider the Cauchy problem 

(7.5.1) 

where f : R -+ R is defined by 

1 i f x < O  
-1 i f z > 0 .  

As we have already seen in Example 2.2.1, this problem has no local 
classical right solution. More precisely, there exists no function of class C1 
2, defined on a right neighborhood of 0, to satisfy (7.5.1). For this reason, 
in order to give a “reasonable sense” to this problem, we must first enlarge 
the class of all possible candidates to the title of solution of (7.5.1), and 
second to replace the right-hand side of the equation in (7.5.1) by a “less 
discontinuous function”, but “as close as possible” to the initial one. In 
this respect, we might replace (7.5.1) by 

{ x(0) F(x) = 0, 

where F : R -+ 2’ is defined by 

{I} i f x < O  

(-1) i f x > O .  
[-1,1] i f x = O  

(7.5.2) 

(7.5.3) 

We leave to the reader to find out the similarities as well as the differences 
between the graph of the function f and that one of the set-valued function 
F as illustrated in Figure 7.5.2 (a) and (b), respectively. 

In this context, we might accept as solution of equation (7.5.1) any 
almost everywhere differentiable function x : [0,6) -+ R which satisfies 
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Figure 7.5.2 

both the differential inclusion in (7.5.2) for almost all t E [0,6), and the 
initial condition. 

In view of a rigorous development of these ideas, some concepts and 
results concerning multi-valued functions are needed first. In order not to 
complicate the notations, we will confine ourselves to the autonomous case, 
leaving to the interested reader the extension to the general case. Let R 
be a nonempty subset in Rn. A multi-valued, or set-valued function, or 
multifunction, defined on R with values in R", is a function F : R -+ 2'". 

Definition 7.5.1 The multi-valued function F : R -+ 2wn is upper semi- 
continuous (u.s.c.) at x E R if for every open subset D with F ( x )  c D 
there exists an open subset V c R" such that for every y E V n R, we 
have F ( y )  c D.  A multi-valued function which is upper semi-continuous 
at every x E R is called upper semi-continuous on R. 

Remark 7.5.1 In the case in which a multi-valued function F has as 
values only singletons it can be identified in a natural way with a single- 
valued function from R in R" denoted, for simplicity, also by F .  In this 
case F is U.S.C. on R if and only if F is continuous on R in the usual sense. 

Remark 7.5.2 
means of the relation (7.5.3) is U.S.C. on R". 

Let us observe that the multi-valued function defined by 

In what follows, if A,  B are two subsets in R", we denote by A + B their 
sum, i.e. the set of all elements x in R" of the form z = x + y with x E A 
and y E B. By S(O,E) we denote the open ball centered at 0 and of radius 
E in R". 



Differential Inclusions 275 

Proposition 7.5.1 Let F : R --+ 2wn and x E R. If F ( x )  i s  compact then 
F i s  U.S.C. at x if and only if for every E > 0 there exists 6 > 0 such that 
F(y)  c F ( x )  + S(O,E) for every y E R with I1y - xll < 6. 

Proof. The necessity follows from the simple observation that for every 
e > 0, F(x)+S(O, e )  is an open set which includes F(z). For the sufficiency, 
let us remark that, if D is open with F ( z )  c D, then F ( x )  n d D  = 8. Since 
F ( x )  is compact and d D  is closed, in view of Lemma 2.5.1, it follows that 
the distance d from F ( z )  to d D  is strictly positive. Taking E = d/2,  from 
the hypothesis and the preceding remark, it follows that there exists 6 > 0 
such that F(y) c F ( z )  + S(O,E) c D for each y E R with Ily - zll < 6, 
which achieves the proof of the sufficiency. 0 

Definition 7.5.2 The multi-valued function F : R -+ 2wn is bounded on 
s2 if 

is bounded. 

The next lemma is an extension of Weierstrass theorem in Real Analysis. 

Lemma 7.5.1 If R c Wn is nonernpty and compact and F : 52 -+ 21Wn is 
U.S.C. on  R and, fo r  every x E 0, F ( x )  is a bounded set, then F i s  bounded 
on  R. 

Proof. Let us assume the contrary. Then there would exist a nonempty 
and compact subset fl in 116" and a U.S.C. multi-valued function, F ,  on R, 
with bounded values, which is not bounded on R. This means that for 
every n E N* there exist X n  E R and Y n  E F(Xn) such that 

IlYnII L n- ( 7.5.4) 

Since R is compact, we may assume without loss of generality that there 
exists x E R such that, on a subsequence at least, we have 

lim xn = 2. 

By virtue of Proposition 7.5.1 combined with the relation above, it follows 
that for E = 1 there exists no E N* such that, for every n 1 no, we have 
F ( z n )  c F(z)+S(O, 1). Since F(x)+S(O, 1) is bounded and Y n  E F(xn)  for 
every n E N* , the preceding inclusion is in contradiction with the inequality 
(7.5.4). This contradiction is a consequence of the initial supposition that 
there would exist a nonempty and compact subset R in Rn and a U.S.C. 

n+oo 
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multi-valued function, F ,  on R, with bounded values, which is unbounded 
0 

Let F : R -+ 2Rn be a multi-valued function, E E R and let us consider 

on R. The proof is complete. 

the Cauchy problem with data ’D = ( F ,  R, 0, E )  

Definition 7.5.3 An a.e. solution of erP(rr>) is a function x : I -+ R, with 
I a right neighborhood of 0, which is absolutely continuous on II and which 
satisfies both x(0)  = t and d ( t )  E F ( x ( t ) )  a.e. for t E 1. 

Let X > 0 and ax : [ 0, +m) -+ R defined by 

ax@) = ( 2  - 1)X 

if t E [ (i - l ) X ,  i X ) ,  i E N. 
Let us consider the differential inclusion with the delay X > 0 

e % ( q  q t )  E F(xx(ax( t ) ) )  for t E [ 0 , 4  
for t E [-X,O]. = E 

By an a.e. solution of Wx( ’D)  on [ 0,s) we mean an absolutely con- 
tinuous function xx : [-X,S) -+ R” which satisfies xx( t )  = < for every 
t E [-X,O] and 

4 (t> E F(xx  (ax (tN> 
a.e. t E [ 0,s). We begin with the following simple, but useful lemma. 

Lemma 7.5.2 If F : R” -+ 2Rn is nonempty-valued and X > 0 then, for 
every < E Rn and every 6 > 0,  ePpx(D) has at least one a.e. solution defined 
on  [O,S]. 

Proof. Obviously xx is uniquely determined on [ -A,  01 from “the initial 
condition” itself. Let then t E [O,X). Let us remark that ax(t) = 0 and 
therefore xx(ax( t ) )  = t. Fix y1 in F(<)  and let us define xx : [O ,X ]  --+ Rn 
by 

xx(t) = t + t9l 
for t E [ 0, A ] .  One may easily see that x is a.e. solution of erPx(’D) on [ 0, A). 
Taking t E [ A ,  2X), let us observe that, ax@) = X and, by consequence, we 
have 
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Let us fix y2 in F(< + Ayl) and let us define xx : [ A ,  2x1 -+ R" by 

for t E [A ,  2x1. Similarly, we can uniquely determine xx successively on 
[ 2X, 3x1, [ 3X, 4x1, a.s.0. After m steps, with mX 2 S, we can define xx on 

0 the whole interval [ 0,6] ,  and this achieves the proof of the lemma. 

By analogy with the single-valued case, we shall prove first the following 
existence result which, although auxiliary, is interesting by itself. 

Lemma 7.5.3 If F : Rn --+ 21Wn is a nonempty compact convex valued 
multi-valued function which is U.S.C.  and bounded on  R", then for every 
< E Rn and every S > 0,  eY(F,  Rn, 0 ,  <) has at least one a. e. solution 
defined on  [ 0,S 1. 
Proof. 
differential inclusion with the delay 6 ,  = b/m 

Let < E R" and S > 0, let rn E N*, and let us consider the 

where a,  : [ 0, +cm) -+ R is given by 

a,(t) = (i - l)6, 

if t E [ (i - l)S,,iS,), i E N. By virtue of Lemma 7.5.2, for every rn E N*, 
CY,('D) has at least one a.e. solution x, : [ -S,, 61 --+ Rn. For every 
m E N* let us fix such an a.e. solution x, with the property that its a.e. 
derivative is a step function. We can do that thank to the construction 
described in Lemma 7.5.2. 

We will show in what follows that {x,; rn E N*} is uniformly bounded 
and equicontinuous on [ 0,6]. Since F is bounded on R", there exists M > 0 
such that 

for every rn E N* and a.e. t E [ 0,6] .  Since 

r t  

for every t E [ O , S ] ,  we conclude that llxm(t)II 5 ll<ll + SM,  for every 
rn E N* and t E [ 0,6]. Consequently, {x,; rn E N*} is uniformly bounded 
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on [ 0 , 6 ] .  Next, let us observe that, from (7.5.5)) we have 

for every m E N* and t ,  s E [ 0,6]. So, {zm; m E N*} is equicontinuous on 
[ 0 ,6] .  By virtue of Theorem 8.2.1, it follows that ( Z ~ ) ~ ~ N *  has at least one 
subsequence, denoted for simplicity again by (z,),~N*, which is uniformly 
convergent on [0 ,6]  to a continuous function x. From (7.5.6), we deduce 
that 

for every t ,  s E [ 0,6],  and therefore x is absolutely continuous on [ 0,6]. In 
order to complete the proof it suffices to show that 

a.e. t E [ 0,6]. To this aim let D be the set of all points t E [0,6] at which, 
both z, and x, are differentiable for every m E N*. One may easily see 
that the Lebesgue measure of the set D equals 6. Let t E D ,  m E N* and 
h > 0. Let us observe that 

x&(s) ds. 
1 
h - ( ~ m ( t  + h) - xm(t))  = 

Since xk is a step function, it follows that the right-hand side of the equality 
above is a convex combination of elements in 

In other words, 

We recall that conv(F) is the set of all convex combinations of elements 
of the set F .  Let E > 0. Since F is U.S.C. at x( t )  and F ( x ( t ) )  is compact, 
by virtue of Proposition 7.5.1 it follows that there exists q = q(e) > 0 such 
that, for every y E Rn with Ily-x(t)ll < 7, we have F(y )  c F(x(t))+S(O, E ) .  

Since 
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for every rn E N* and t ,  s E [ 0,6], recalling that 

lim zm(s)  = z(s) and lim a,(s) = s 
m+ca m+cQ 

uniformly on [O,S] and that the family {zm; m E N*} is equicontinuous, 
we deduce that, for q = V ( E )  > 0, there exist h, > 0 and m, E N* such that 

for every m E N*, rn 2 rn, and every s E [ t ,  t + h,]. From the definition of 
7 and from (7.5.8) , it follows 

for every m E N*, rn 2 m, and h E (0, h,]. Since F ( z ( t ) )  + S(O,E) is 
convex, we deduce 

for every rn E N*, rn 2 rn, and h E (0, h,]. Using this inclusion and passing 
to the limit in (7.5.7) first for rn -+ 00 and second for h 1 0 ,  we deduce 

z'(t) E F ( z ( t ) )  + S(0,E) 

for every E > 0. Since F ( z ( t ) )  is closed, this relation implies 

z'(t) E F ( z ( t ) ) .  

Recalling that the relation above is satisfied for every t E D and that 
0 [ 0, S] \ D has null measure, this completes the proof. 

The main result in this section is the following generalization of Peano's 
Theorem 2.2.1. 

Theorem 7.5.1 Let L? c R" be nonempty and open. If F : R --+ 2wn is 
U . S . C .  on s2 and has nonempty compact and convex values then, for every 
( from R, elP(D) has at least one local a.e. solution. 

Proof. Let 5 E R. Since R is open, there exists r > 0 such that 
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We define p : R" -+ R" by 

Y for Y E B(J, r )  

(Y - 0 + c for Y E R" \ W W .  
IlY - Jll 

One can easily see that p maps R" in B(<,r) and is continuous on R". 
Let us define G : R" --t 2wn by 

G(y) = F ( p ( y ) ) ,  for every y E R". 

Since F is U.S.C. and has bounded values, from Lemma 7.5.1, it follows that 
its restriction to B(J ,  r )  is bounded. So, G is bounded on R". In addition, G 
is U.S.C. on Rn being the superposition of two functions with this property. 
From Lemma 7.5.3 we know that, for every d > 0, the Cauchy problem 

has at least one a.e. solution x : [O,d]  -+ R". Since x(0) = J and x is 
continuous at t = 0, for r > 0, there exists 6 E (O ,d ]  such that, for every 
t E [ O,S], IIx(t) - ( 1 1  5 T.  But in this case G(x( t ) )  = F ( x ( t ) )  and therefore 

0 x : [ 0 ,  S] --+ R is a solution of C'lp(2l). The proof is complete. 

For more details on such kind of problems, the reader is referred to 
[Aubin and Cellina (1984)], [Ciirja (2003)] and [Vrabie (1995)l. 

7.6 Variational Inequalities 

The evolution of certain systems from chemistry, physics, biology, socio- 
logy etc. is described by mathematical models expressed by differential 
inequalities with state constraints of the type 

for every u E K and a.e. t E [ O,T], where K is a nonempty convex and 
closed subset in R", f : K -+ Rn is Lipschitz continuous, g : [ O,T] --+ R" 
is continuous and < E K .  Problems of this kind have been considered and 
studied for the first time by Jaques-Louis Lions and Guido Stampacchia, 
under the name of evolution variational inequalities. 
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In order to illustrate the importance of such mathematical models, let 
us analyze an example in population dynamics. 

Example 7.6.1 Let us consider a species of fish living in a lake and 
whose free evolution, i.e. non-influenced by external factors, is described 
by means of the Cauchy problem associated to the logistic equation 

where s(t) represents the fish population at the time t ,  c and b axe two 
positive constants, and < is the initial fish population. See Subsection 1.4.6. 
Now, let us assume that, at each moment t 2 0, one harvests a constant 
number of fishes in such a way that the remaining number of fishes in the 
lake belongs to a given interval K = [ c1, c2 3 ,  with 0 < c1 < c2 < b. In 
these conditions, it is easy to see that x has to satisfy 

x ( t )  E K for every t 2 0 
x ' ( t )  - cx(t)(b - x ( t ) )  = 0 if z ( t )  E (c1, c2) 
x'(t) - cx(t)(b - x ( t ) )  > O if x ( t )  = c1 
z'(t) - cx(t)(b - s(t))  < O if z( t )  = c2 
rc(0) = (. 

Let us observe that the system above may be equivalently rewritten in the 
form (7.6.1), with f : [ c1, c2] -+ R defined by 

f(z) = cx(b - s) 

for every s E [ c1, c2 3 and g 5 0. So, the problems of the form (7.6.1) are 
completely justified by practice, in the sense that they furnish a better des- 
cription of the evolution of those phenomena when the state x is subjected 
to a point-wise restriction of the form z( t )  E K for every t 2 0. 

Let x E K and let us denote by 

N ( z )  = {w  E R"; (w ,x  - u)  2 O for every u E K ) ,  

set called the normal cone to the set K at the point x .  Let us observe that 
the problem (7.6.1) may be equivalently rewritten as a Cauchy problem for 
a differential inclusion of the form 

(7.6.2) 
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One may easily see that, for every x in the interior of the set K ,  we 
have N ( x )  = (0). So, in the case K = Rn, we have N ( x )  = (0) for 
every x E R" and the differential inclusion above reduces to the differential 
equation x' = f ( x )  + g. 

The main result referring to (7.6.2) is: 

Theorem 7.6.1 Let K c R" be a nonempty closed and convex subset, 
let f : K -+ Rn be a Lipschitz continuous function and g : [ 0, T ]  -, R" a 
function of class C1. Then, f o r  every E K there exists a unique absolutely 
continuous function x : [ 0,  T ]  -+ K which satisfies (7.6.2). In addition x 
satisfies 

a.e. t E [0,TI5. 

Proof. First let us observe that we may assume with no loss of generality 
that f is defined and Lipschitz continuous on R". Indeed, if this is not the 
case, let us replace f by f~ = f o ? ~ ,  where IPK : Rn -+ K is the projection 
operator on the set K (see Definition 8.3.1). According to Lemma 8.3.2, 
f~ is well-defined, Lipschitz continuous on Rn and coincides with f on K .  
If we succeed to prove the theorem for f replaced by fK, from the fact that 
x ( t )  E K for every t 2 0, we can conclude that f K ( z ( t ) )  = f ( x ( t ) )  for every 
t 2 0, and this will achieve the proof in the general case, i.e. f : K + R". 

Hence, let f : Rn -+ R", let E > 0 and let us consider the &-approximate 
problem 

(7.6.4) 

where fE : R" -+ Rn is defined by 

for every x E Rn, From the hypothesis and Lemma 8.3.2, it follows that 
the function f, is Lipschitz continuous on Rn with Lipschitz constant L, 
and satisfies 

5We recall that iPNc,ct,,(f(x(t)) + g ( t ) )  is the projection of the vector f(z(t)) + g ( t )  
on the set N ( z ( t ) ) .  See Definition 8.3.1. 
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for every II: E R" and every t E [O,T]. Accordingly, the problem (7.6.4) 
has a unique global solution x& : [O,T] 4 R". See Theorem 2.4.5. 

The idea of proof consists in showing that there exists one sequence 
( & k ) k E ~ ,  of positive numbers, tending to 0, such that the corresponding 
sequence of solutions of the ek-approximate problems (7.6.4) is uniformly 
convergent on [O,T] to an absolutely continuous function 5 ,  which is a 
solution of the differential inclusion (7.6.2). We have to show next (7.6.3) 
and to prove the uniqueness of the solution. For the sake of simplicity we 
divide the proof into four steps. 
First step. The family {x&; E > 0 )  satisfies the hypotheses of Arzelk- 
Ascoli's Theorem 8.2.1. Indeed, taking the inner product on both sides in 
(7.6.4) by zE( t )  - 5 and taking into account the inequality (8.3.2) which 
characterizes the projection, we get 

for every t E [O,T]. Let A4 = I l f ( ( ) l l  + sup{11g(t)ll; t E [O,T]} and let L 
be the Lipschitz constant of the function f. From the preceding inequality, 
we get 

for every t E [O,T]. Using Gronwall's Lemma 1.5.2, we conclude that 

Taking s = t in this inequality, we deduce 

for every t E [O,T]. From (7.6.5) it follows that Ilzt:(t)ll 5 llrll + MeLTT 
for every E > 0 and every t E [ 0, TI ,  and therefore the family {ze; E > 0 )  
is uniformly bounded. Let now h > 0 and t E [ 0, T - h ] .  Taking the inner 
product on both sides in the equality 

d 
d t  -(4 + h)  - x:E(t)) = f&(Z&(t + h ) )  - f&(Z&(t)) + g( t  + h)  - g ( t )  
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by zE(t + h) - ze(t) and recalling that $(?’ - J) is dissipative (see 
Lemma 8.3.2) , we deduce 

I d  
2 d t  --Ilz& + h) - 4t)1I2 

5 ( I l f (4 t  + h))  - f(&))ll + 11dt + h) - S(t)ll)llzE(t + h)  - d ) l l  
for every h > 0 and every t E [ 0, T - h ] .  From here, from the fact that f 
is Lipschitz continuous of constant L and from Lemma 1.5.3, it follows 

114 + h)  - G(t>ll 5 l lG (W - CII + L l l Z&(S  + h) - Z&(S)II ds 

t 

+ Jo Il9b + h) - 9(s>II ds. 

In view of Gronwall’s Lemma 1.5.2, we get 

for every h > 0 and every t E [ 0, T - h ] .  This inequality, along with (7.6.5) 
and with the fact that g is of class C1, implies 

llz& + h)  - G(t)lI I Ch (7.6.6) 

for every h > 0 and every t E [ 0, T - h ] ,  where C > 0 is independent of 
E > 0. But (7.6.6) implies 

for every E > 0 and every t E [ 0, TI. Since 

for every t ,  s E [ 0, TI ,  from the last inequality, we deduce 

for every t ,  s E [ 0, TI. Obviously, (7.6.8) shows that the family {xE; E > 0) 
is equicontinuous on [ 0, TI. According to Arzel&Ascoli’s Theorem 8.2.1, 
it follows that there exists at least one sequence ( & k ) k E N ,  convergent to 0, 
such that the corresponding sequence of ek-approximate solutions, denoted 
for simplicity by ( X k ) k E N ,  converges uniformly on [ 0, T ]  to a continuous 
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function z : [O,T] -+ Rn. Passing to  the limit for k tending to  +ca in 
(7.6.7) with E = Q ,  we deduce that z is Lipschitz continuous on [ 0, TI.  So, 
it is absolutely continuous on [ 0, TI. 
Second step. Now, we will prove that the function z is a solution of the 
evolution variational inequality (7.6.1). To begin with, let us observe that,  
from (7.6.4)) from the definition of f E  and from (7.6.7), we have 

for every k E N and every t E [O,T],  where C1 > 0 depends neither on 
k nor on t .  Passing to the limit for k -+ 00 in this inequality, we deduce 
(Iz(t) - rP~(z(t)) l l  = 0 for every t E [O,T],  which shows that z( t )  E K 
for every t E [O,T].  From (7.6.4) and from the characterization of the 
projection of the point z k ( s )  - see (8.3.2) - it follows 

for every s E [ 0, TI and every u E K .  Now, let us consider a point t E [ 0, T )  
at  which z is differentiable and let h > 0 with t + h E [ O,T]. Integrating 
the inequality above from t to  t + h, we get 

t+h 
L 4 (f(zrc(4) + g(4, E d 4  - 4 ds 

for every u E K .  At this point, let us observe that,  in view of Schwarz 
inequality, it follows 

1 
2 

(w - w, w - u) 5 - (Ilw - u(I2 - Ilv - ull2) 

for every u, v,  w E R”. Taking 20 = xk(t+h) and w = xk( t )  in this inequality, 
using the preceding one, and then dividing by h > 0, we deduce 

for every u E K .  Passing to the limit for k tending to  00 we get 

(f(z(s>) + g(s>,z(s) - 4 ds 
1 
h 
- ( ~ ( t  + h)  - ~ ( t ) ,  ~ ( t )  - U )  5 
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for every u E K .  Finally, passing to the limit for h tending to 0, we conclude 
that x satisfies 

for every u E K and a.e. t E [O,T]. So x is a solution of the problem 
(7.6.1). 
Third step. In order to prove the uniqueness, let z and y be two solutions 
of the problem (7.6.1), and let s E [O,T] be a point of differentiability of 
both x and y. Taking successively u = y(s) E K in the inequality (7.6.1) 
satisfied by x, and u = z(s) E K in the inequality (7.6.1) satisfied by y, we 
get 

Integrating this relation from 0 to t and using Gronwall's Lemma 1.5.2, we 
deduce that x( t )  = y ( t )  for every t E [O,T], which achieves the proof of 
the uniqueness part. 
Fourth step. In order to prove (7.6.3), let us observe that, from (7.6.2), 
we have 

for every t E [ 0,T)  and a.e. s E R; with t + s E [ 0, TI. From the definition 
of the set N ( x ( t  + s ) ) ,  it follows that 

(v - u, x( t  + s )  - x ( t ) )  2 0 

for every 21 E N ( x ( t  + s)) and every u E N ( x ( t ) ) .  So 

for every u E N ( x ( t ) ) .  Integrating with respect to s from 0 to h > 0, we 
get 

I rh  

Ilx(t + h) - z(t)II2 I ( f ( z ( t  + s)) + g ( t  + S) - U ,  z(t + S) - ~ ( t ) )  ds 
2 
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for every t E [ 0, T 1, h > 0 with t + h E [ 0, T ] and every u E N (  x( t ) )  . From 
Schwarz inequality and Lemma 1.5.3, it follows 

for every t E [O,T],  h > 0 with t + h E [O,T],  and every u E N ( z ( t ) ) .  
Taking a point t of differentiability of the function x, dividing by h, and 
passing to the limit for h tending to 0, we deduce 

a.e. for t E [O,T] and for every u E N ( z ( t ) ) ,  relation equivalent to (7.6.3). 
The proof is complete. 0 

For some extensions and generalizations of Theorem 7.6.1, we refer to 
[Barbu (1976)l. 

7.7 Problems of Viability 

In accordance with Theorem 2.2.1, if 52 is a nonempty and open subset in 
Rn and f : R -+ R" is a continuous function, then for every < E 0, the 
Cauchy problem with data 2) = (R, 52, f, 0, r )  

has at least a local solution x : [ 0, TI --+ R. The condition which assumes 
that R is open is essential and cannot be removed, unless some other com- 
pensating extra-condition is added, as we can see from the simple example 
below. 

Example 7.7.1 Let us consider the plane C = {(XI, 22, x3); 23 = 1) and 
the function f : C --$ R3, defined by f(Zl,Z2,x3) = ( 2 2  + 23, -XI, -21) 
for every (q, 2 2 , ~ )  E C. Then, if < is the projection of the origin on this 
plan (i.e. = (O,O,  l)), CP(2)) has no local solution. Indeed, assuming 
by contradiction that there exists such a solution x : [O,T] --+ C, we have 
(d ( t ) , z ( t ) )  = ( f ( z ( t ) ) , z ( t ) )  = 0 and therefore llz(t)ll = ll<ll = 1 for every 
t E [0, TI. Hence z(t)  lies on the sphere of center 0 and radius 1 which has 
only one point in common with C, namely 5. Then, necessarily x ( t )  = [ 
for every t E [ 0, TI ,  which is impossible, because, in this case, one would 
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have x l ( t )  = 0 and x i ( t )  = x2(t) + zQ(t) = 1 for every t E [O,T].  This 
contradiction can be eliminated only if e'P(D) has no local solution. 

We have already seen in Theorem 6.1.2, that if U : R --+ R is a function of 
class C1 with V U ( x )  # 0 on R and i f f  : R -+ R" is continuous and parallel 
to the tangent plane to every level surface C, = { x  E R; U ( x )  = U ( q ) }  
at every point of this surfaces, then, the restriction of the function f to 
any surface C, ,has the property that, for every J E C,, eIp('D) has at least 
one local solution x : [ 0, T ]  -+ C,. This condition constitutes a first step 
through a partial answer to the question: what extra-conditions must satisfy 
the set C c Rn and the continuous function f : C -+ R", in order that, 
for  every < E C to exist at least one function of class C1, x : [ 0,  TI --+ C, 
such that x ( 0 )  = < and x'( t)  = f ( x ( t ) )  for each t E [O,T].  However, the 
conditions offered by Theorem 6.1.2 have three weak points. First, they 
ask f to be defined on the union of all surfaces C, and not on a single one. 
Second, f must satisfy the mentioned "tangency condition" on each of the 
surfaces of the family. Finally, the set C is in this case of a very specific 
type, namely it is a surface of constant level for a function U : R -+ R, of 
class C1 and satisfying V U ( x )  # 0 for every x E $2. 

The possibility of removing the already mentioned three weak points is 
suggested even by Theorem 6.1.2 which we reformulate below. 

Theorem 7.7.1 Let C be a regular surface in R" and f : C -+ R" a 
continuous function. The necessary and suficient condition in order that, 
for eve ry < E C to exist T > 0 and a function of class C1,  x : [ 0,  TI -+ C ,  
such that x ( 0 )  = < and d ( t )  = f ( x ( t ) )  for every t E [ O,T], is that for every 
7 E C ,  f(7) be tangent to C at 7 .  

We will obtain this theorem as a consequence of a more general result 
which we will present in what follows. 

We begin with some background material we will need subsequently. For 
the sake of simplicity, we will confine our considerations to the autonomous 
case, although all the results we shall prove can be extended to the non- 
autonomous case as well. 

Definition 7.7.1 Let C c R" be nonempty and f : C --+ R". The set C 
is viable with respect to the differential equation x' = f ( x )  if for every < E C 
there exist T > 0 and at least one function of class C1, x : [O,T] --+ C, 
such that x ( 0 )  = < and x'(t)  = f ( x ( t ) )  for every t E [ 0 ,  TI. 

Definition 7.7.2 The set C c Rn is locally closed if for every E C there 
exists r > 0 such that C n B ( J ,  T )  be closed. 
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Remark 7.7.1 Obviously every closed set is locally closed. Furthermore, 
every open set C is locally closed too. Indeed, if C is open, for every < E C 
there exists r > 0 such that B(( , r )  c C which proves the assertion. There 
exist however locally closed sets which are neither open, nor closed, as for 
example C c R3 defined by C = {(XI, Q, 53) E R3; 2 3  = 0, xf + xi < 1). 
This set, which is in fact the set of points in the interior of the disk of center 
0 and radius 1 in the plane zlOz2 is a locally closed set which is neither 
open, nor closed. 

The next concept has been introduced independently by [Bouligand (1930)l 
and [Severi (1930)I. 

Definition 7.7.3 
in the sense of Bouligand-Severi to the set C at the point 5' if 

1 
t l0  t 

Let C E Rn and < E C. The vector q E Rn is tangent 

liminf - dist (< + tq, C )  = 0. (7.7.1) 

The set of all vectors which are tangent in the sense of Bouligand-Severi 
to the set C at the point 5 is a closed cone6 (see Problem 7.9) and is called 
Bouligand-Severi tangent cone to the set C at the point [. We denote this 
cone by 7 ' ~  ( r ) .  
Proposition 9.7.1 
if fo r  every E > O there exist h E (0, E )  and p h  E B(O, E )  with the property 

A vectorq E R" belongs to the cone 'Jx(t) if and only 

c + h(r] + P h )  E c. 
Proof. Obviously q E Tx(<) if and only if, for.every E > 0 there exists 
h E (0 ,  E )  and Zh E C such that 115 + hr] - zhII 5 E.  Now, let us define 
p h  = ~ ( z h  - 5 - hq), and let us observe that we have both [[phi1 5 E ,  and 

a 
Remark 7.7.2 We notice that, if 5 is an interior point of the set C, then 
' T x ( J )  = R". Indeed, if there exists r > 0 such that B(<,r) c C, it follows 
that, for each 77 E R" and t E (O,r[Iql[-'), 5' + tq E B(<,r) c C. In these 
circumstances, we have dist (5 + tr], C) = 0. So, the condition (7.7.1) in 
Definition 7.7.3 is satisfied, and therefore r] E YE([), as claimed. 

1 

5 -t h(r] 4- p h )  = zh E c, thereby completing the proof. 

We can now proceed to the main result in this section. 

Theorem 7.7.2 (Nagumo) Let C c R" be a nonempty and locally closed 
set and f : C -+ R" a continuous function. The necessary and suficient 

6We recall that  a cone is a set e C Rn, such that,  for each r] E e and X > 0, we have 
xq E e. 
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condition in order that C be viable with respect to x' = f(x) is that, for  

eve7y < E C, f(<) E W<). 
The necessary and sufficient condition for viability in Theorem 7.7.2 

can be expressed equivalently as the so-called Nagumo tangency condition 
below 

(7.7.2) 
1 

hi0  h 
liminf - dist (< + hf(<), C) = 0 

for each 6 E C. 

7.8 Proof of Nagumo's Viability Theorem 

Proof. 
and a function of class C1) x : [ 0, T 1 --+ C ,  with x(0) = 
for every t E [ 0, TI. Since x ( t )  E C we deduce that 

In order to prove the necessity let 6 E C. Then, there exist T > 0 
and d ( t )  = f ( x ( t ) )  

Since x is differentiable at t = 0 and ~ ' ( 0 )  = f(x(O)), we have 

From the last relation and the preceding inequality, we deduce 

1 lim -dist (< + t f ( < ) ,  C )  = 0. 
t l 0  t 

(7.8.1) 

But this relation shows that, for every < E C, f(<) € Tz(5). The proof of 
the necessity is complete. 

Remark 7.8.1 We have shown that the set Tx(J) in Theorem 7.7.2 can 
be replaced by the set 3~(<) of all vectors q E Rn which are tangent to C 
at < in the sense of Federer, i.e. of all vectors 7 satisfying 

1 
lim -dist (< + tq, C) = 0. 
t i0  t 

It should be noticed that 3&) is, in general, strictly smaller than YE((). 
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For the sake of simplicity, we will divide the proof of the sufficiency into 
three steps. In the first one, we shall prove the existence of a family of 
approximate solutions for the Cauchy problem 

(7.8.2) 

defined on intervals of the form [ O , a ] ,  with a > 0. In the second step we 
will show that the problem (7.8.2) admits such approximate solutions, all 
defined on an interval [ 0, T ] independent of the “approximation order”. 
Finally, in the last step, we shall prove the uniform convergence on [ 0, TI 
of a sequence of such approximate solutions to a solution of the problem 
(7.8.2). 

Let ( E C be arbitrary and let us choose r > 0, M > 0 and T > 0, such 
that B(S,r) n C be closed, 

for every x E B(( , r )  n C and 

T ( M  + 1) 5 r. (7.8.4) 

The existence of these three numbers is ensured: by the fact that C is locally 
closed (from where it follows the existence of T > 0), by the continuity of f 
which implies its boundedness on B ( J , r )  (and so the existence of A4 > 0) 
and by the fact that T > 0 may be chosen as small as we wish. In the 
first step, we will show that, once fixed an E E (0,l)  and T ,  M and T as 
above, there exist three functions: cr : [O,T] -+ [O,T] - nondecreasing, 
g : [ 0, T ]  --+ IWn - Lebesgue integrable, and x : [ 0, T ]  -+ IW” - continuous, 
satisfying 

(i) a( t )  5 t and t - a(t)  5 E for every t E [O,T]; 
(ii) 11g(t)II 5 E for every t E [ 0, TI; 

(iii) z (a( t ) )  E B((,T) n C for every t E [ O,T] and z (T )  E B((,T) n C; 
(iv) z( t )  = ( + f (z(cr(s)))  ds + g(s) ds for every t E [ 0, TI.  

For the sake of simplicity, in all that follows, we will call such a triple 
(a,g,x) an &-approximate solution of the Cauchy problem (7.8.2) on the 
interval [ 0, TI. 
The first step. Let ,f E C and let r > 0, M > 0 and T > 0 be fixed as 
above. We begin by showing that, for each E E (0, l), there exists at least 
one &-approximate solution on an interval [ 0, a ] ,  with a 5 T .  Since for every 
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e E C we have f(S) E ’JC(<), from Proposition 7.7.1, it follows that there 
exist a E (0, TI, a 5 E and p E R” with llpll 5 & such that <+af(c)+ap E C. 
At this point, we can define the functions a : [ 0, a ]  --f [ 0,  a ] ,  g : [ 0, a ]  --f Rn 
and 2 :  [O,a] ---j R” by 

a(t) = 0 
d t )  = P 
z ( t )  = < + t f ( < )  + t p  

for t E [(),a] 
for t E [ o , a ]  
for t E [ 0, a ] .  

One can readily see that triple (a, g, 2) is an &-approximate solution of the 
Cauchy problem (7.8.2) on the interval [ O , a ] .  Indeed the conditions (i), 
(ii) and (iv) are obviously fulfilled, while (iii) follows from (7.8.3), (7.8.4) 
and (i), by observing that z (a ( t ) )  = < E B(<,r) n C for every t E [ O , a ] ,  
z ( a )  = < + af(c) + up E C, and 

The second step. Now, we will prove the existence of an &-approximate 
solution defined on the whole interval [ 0, TI. To this aim we shall make use 
of Zorn’s lemma, as follows. Let S be the set of all &-approximate solutions 
of the problem (7.8.2) having the domains of definition of the form [ 0, a ]  
with a 5 T .  On S we define the relation “5” by (o l , g l , q )  5 ( 0 2 , 9 2 , ~ 2 )  

if the domain of definition of the first triple, [0, all, is included in the 
domain of definition, [ 0, a2], of the second triple and the two &-approximate 
solutions coincide on the common part of the domains. Clearly “5” is a 
partial order relation on S. Let us observe that the set S endowed with ‘(5” 
is inductively ordered, i.e. every totally ordered subset in S has a majorant. 
Indeed, let C = {(gay gay 2,); a E r} be such a totally ordered subset. Since 
C is totally ordered, we may assume with no loss of generality that I? is 
the set of those elements a E (O,T] with the property that (aa,ga>x,) is 
defined on [O,a]. If I’ has one last element a*, then the corresponding 
&-approximate solution is a majorant for L. If sup I? = a*, which is clearly 
in [ 0, TI ,  does not belong to I?, we will define a majorant for C as follows. 
First, let us observe that, because all the functions in the set {aa; a E I?} 
are nondecreasing, with values in [ 0, T ]  and satisfy oa ( a )  5 ab(b) for every 
a ,  b E r with a 5 b, there exists lim aa(u) and this limit belongs to [ 0, TI. 
From the fact that C is totally ordered, we deduce that, if a ,b  E r and 
a 5 b, then za(a) = zb(u).  Taking into account (iii), (iv) and (7.8.3), we 

afa* 
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deduce 

for every a, b E I?, and thus there exists lim z,(a). As for every a E I?, 

Z a ( a )  E B(c, r ) n C ,  and the latter is closed, we have lim z a ( a )  E B(<, r )nC. 

Then, we can define (a*, g*, z*) : [ 0, a*] + [ 0, a*] x R" x Rn by 

a f a *  

a f a *  

Obviously (a*, g*, z*) is an &-approximate solution which majorizes every 
element in C. According to Zorn's lemma, it follows that S has maximal 
elements. Let ( a , g , z )  be such an element having the domain of definition 
[ O , a ] .  We will show that a ='T. Indeed, let us assume by contradiction 
that a < T .  Then, taking into account the fact that z(a) E B(<,r) n C, we 
deduce that 

As z ( a )  E C and f(x(a)) E T ~ ( x ( a ) ) ,  there exist 6 E (0,T - a) ,  6 5 E 

and p E Rn such that Ilpll 5 E and z(a) + 6 f ( x ( a ) )  + 6 p  E C. Then, 
from the inequality above, it follows that we can diminish S if necessary, in 
order to have \Iz(a) + 6 ( f ( z ( a ) )  + p )  - <I\ 5 T.  Let us define the functions 
5: ( O , a + 6 ]  -+ ( O , a + 6 ]  and? :  [O,a+6]  + R n  by 

a( t )  for t E [ o , a ]  
a for t E ( a ,  a + 61 ?(t) = 

g ( t )  for t E [ ( ) , a ]  
~ ( t )  = { p for t E (a, a + 6 1. 

It is no difficult to see that 5 is nondecreasing, 9 is Lebesgue integrable on 
[O,a + 61 and 11g(t)II 5 E for every t E [O,a + 61. In addition, for every 
t E [ 0 ,  a + 6 1,  Z ( t )  E [ 0,  a ]  and therefore x(Z( t ) )  is well-defined and belongs 
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to the set B(<, r )  n C. Accordingly, we can define Z : [ 0, a + S 3 + Rn by 

for every t E [O,a + 61. Clearly Z coincides with J: on [O,a] and then it 
readily follows that 3, 5 and F satisfy all the conditions in (i) and (ii). In 
order to prove (iii) and (iv), let us observe that 

z(a) + (t - a ) f ( z ( a ) )  + (t - a)p 
Z( t )  = { x( t )  

Then Z satisfies (iv). Since 

for t E [ & a ]  
for t E (a,a + 61. 

it follows that Z(3(t)) E B(<, r )  n C for each t E [ a ,  a + 61. Furthermore, 
from the choice of 6 and p ,  we have both Z(a+6) = s ( a ) + b f ( z ( a ) ) + 6 p  E C, 
and 

Consequently F satisfies (iii). It follows that (F,5,  Z) E S and is a strict 
upper bound for the maximal element (a,g,z). But this is absurd. This 
contradiction can be eliminated only if each maximal element in the set S 
is defined on [ 0, TI. 
The third step. Let ( & k ) k E ~  be a sequence in (0, l )  decreasing to 0 and 
let ( (ak, gk, ~ k ) ) k , = ~  be a sequence of &k-approximate solutions defined on 
[ 0, TI. From (i) and (ii), it follows that 

lim ~ ( t )  = t and lim g k ( t )  = 0 (7.8.5) 
k 4 o o  k+oo 

uniformly on [ 0, TI. On the other hand, from (iii)) (iv) and (7.8.4) we have 
rT 

for every k E N and every t E [O,T].  Hence the sequence ( z k ) k E N  is 
uniformly bounded on [ O,T]. Again from (iii), (iv) and (7.8.4)) we have 
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for every t ,  s E [ 0, TI.  Consequently, the set {zk ; k E N} is equicontinuous 
on [ O,T]. From Theorem 8.2.1, it follows that, at least on a subsequence, 
(xk)&N is uniformly convergent on [ 0, T ]  to a function z : [ 0, TI -+ Rn. 
Taking into account (iii), (7.8.5) and the fact that B(<,r) n C is closed, we 
deduce that z( t )  E B(<, r )  n C for every t E [ 0,  TI. Passing to the limit in 
the equation 

and using (7.8.5), we deduce that 

for every t E [ O,T], which achieves the proof of the theorem. 

From Remark 7.7.2 combined with Theorem 7.7.2, we deduce a variant 
of Peano’s local existence Theorem 2.2.1 referring to the case of autonomous 
systems. More precisely, we have 

Corollary 7.8.1 
be continuous. Then C is viable with respect to x’ = f ( x ) .  

Let C c Rn be nonempty and open and let f : C -+ Rn 

We have to mention that Theorem 7.7.1 too is a direct consequence 
of Theorem 7.7.2, combined with the remark that the classical notion of 
tangency there used is equivalent to the tangency notion introduced in 
Definition 7.7.3. See also Problem 7.10. 

The readers which are interested in the study of viability problems are 
referred to [Aubin (1991)], [Ciirjii (2003)], [Ciirjii and Vrabie (2004)] and 
[Pavel (1984)l. 

7.9 Sufficient Conditions for Invariance 

Let R c Rn be given, let C c R be nonempty, and let us consider the 
differential equation 

2’ = f (4, (7.9.1) 

where f : R --+ Rn is a continuous function. Since, throughout this section, 
we are dealing with autonomous equations, we may assume that, for all 
initial conditions considered, the initial time T = 0. See Proposition 2.1.3. 
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Definition 7.9.1 Let R C R" be given, and let f : R -+ R". The 
nonempty subset C c 0 is invariant with respect to x' = f(x) if, for every 
< E C, and every solution x : [O,c]  --+ C2 of (7.9.1) satisfying z(0) = <, 
there exists T E (0, c ]  such that x( t )  E C for every t E [ 0 ,  TI.  It is globally 
invariant if it is invariant and T = c. 

The relationship between viability and invariance is clarified in: 

Remark 7.9.1 If f is continuous on R which is open, and C is invariant 
with respect to the differential equation x' = f(x), then C is viable with 
respect to x' = f l c  ( 2 ) .  The converse of this assertion is no longer true as we 
can see from Example 7.9.1 below. Nevertheless, if C is viable with respect 
to x' = flE(x) and x' = f(x), x(0)  = < has the uniqueness property, then 
C is invariant with respect to x' = f(x). 

Example 7.9.1 Let R = R, C = (0) and let f : C -+ R be defined by 
f(x) = 3 8 ?  for every x E R. Then C is viable with respect to x' = f lE(x)  
but C is not invariant with respect to x' = f(x), because the differential 
equation x' = f(x) has at least two solutions which satisfy both x(0)  = 0, 
and x ( t )  # y( t )  for each t > 0, i.e. x = 0 and y ( t )  = t3 .  See also 
Problem 7.8. 

A simple necessary and sufficient condition of invariance is stated below. 

Theorem 7.9.1 Let 52 c R" be open, C c Q a nonempty and locally 
closed subset and f ; R -+ R" a continuous function with the property 
that the associated Cauchy problem has the uniqueness property. Then, a 
necessary and suficient condition in order that the set C be invariant with 
respect to x' = f(x) is that, for every < E C, f(<) E YE(<). 

Proof. The conclusion follows from Theorem 7.7.2 and Remark 7.9.1.0 

Theorem 7.9.1 says that, if C is viable with respect to x' = flc(x), and 
x' = f(x), ~ ( 0 )  = has the uniqueness property, then C is invariant with 
respect to f .  The preceding example shows that this is no longer true if we 
assume that C is viable with respect to x' = flc(x) and merely x' = fl,(x), 
x(0)  = tj has the uniqueness property. 

Remark 7.9.2 Moreover, if f : R --+ R" is continuous and there exists 
one point < E R such that the differential equation x' = f(x) has at least 
two solutions, x and y, satisfying both x(0)  = y(0) = c,  and x ( t )  # y( t )  
for each t E (0, TI, then the set C = { x ( t )  ; t E [ 0,571) is viable, but not 
invariant, with respect to x' = f(x). 
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The next example reveals another interesting fact about local invariance. 
It shows that C could be invariant with respect to f even though x‘ = f i x  (z) 
does not have the uniqueness property. 

Example 7.9.2 
f : R2 -+ R2 be defined by 

Let us consider C = {(XI, z2) E R2 ; 2 2  2 0} and let 

Clearly C is invariant with respect to x‘ = flc(x), but x‘ = jlE(x), z(0) = 5 
does not have the uniqueness property. The latter assertion follows from 
the remark that, from each point ( 5 , O )  (on the boundary of C), we have 
at least two solutions of x‘ = f(z), x ( t )  = (t  + c, 0) and y ( t )  = (t + <, t 3 )  
satisfying x(O) = y(O) = (<,O).  

In order to formulate the main sufficient condition for local invariance, we 
need some preliminaries. 

We denote by [D+x](t)  the right lower Dini derivative of the function z 
at t ,  i.e. 

~ ( t  + h) - ~ ( t )  
h 

[D+z]( t )  = lim inf 
h10 

If x, y E R”, we denote by [z,y]+ the right directional derivative of the 
norm 11 11 calculated at x in the direction y. Similarly, (x, y)+ denotes the 
right directional derivative of 11 - / I 2  calculated at x in the direction y. More 
precisely 

One may easily see that 

for each z, y E Rn and, if 11 11 = m, where ( a ,  .) is the inner product on 
Rn, we have 
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Definition 7.9.2 
cp(0) = 0, and the only continuous function z : [ 0,T) + [ 0, a), satisfying 

A function cp : [ 0, a) ---$ R is a comparison function if 

[D+z](t)  2 cp(z(t)) for all t E [ 0,T)  { x(0) = 0, 

is the null function. 

Now, we can introduce the following exterior tangency condition: there 
exists an open subset V of R with C c V such that 

1 
hi0  h liminf - [dist (< + hf(<);  C )  - dist (<; C)] _< cp(dist (<; C)) (7.9.2) 

for each < E V, where cp is a certain comparison function. Clearly, this 
condition reduces to the classical Nagumo's tangency condition (7.7.2) when 
applied to < E C, and this simply because, at each such point E C, 
dist (c; C) = 0. The main result in this section is: 

Theorem 7.9.2 (CSrjg-Necula-Vrabie) Let C c 0 c R", with C locally 
closed and R open, and let f ; R + R". If (7.9.2) is satisfied, then C i s  
invariant with respect to x' = f (2). 

Proof. Let V c R be the open neighborhood of C whose existence is 
ensured by (7.9.2) and let cp : [O,a) + JR the corresponding comparison 
function. Let < E C and let x : [O,c] -+ V be any local solution of (7.9.1) 
satisfying x ( 0 )  = <. Diminishing c if necessary, we may assume that there 
exists p > 0 such that B(<,p)  n C is closed, x ( t )  E B([,p/2) and, in 
addition, dist ( x ( t ) ;  C) < a for each t E [O,c). Let g : [O,c] -+ R+ be 
defined by g ( t )  = dist ( ~ ( t ) ;  C) for each t E [O ,c ] .  Let t E [O,c) and h > 0 
with t +  h E [O,c] .  We have 

g ( t  + h)  = dist (z(t  + h); C) = dist (z ( t )  + [+h f (z(s)) ds; C) 

Therefore 

g( t  + h, - g ( t )  5 a(h) + dist ( z ( t )  + h f ( z ( t ) ) ;  C )  - dist (z( t ) ;  C) 
h h 7 
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where 

Since limhloa(h) = 0, passing to the liminf for h J 0, and taking into 
account that V, C and f satisfy (7.9.2), we get 

for each t E [O,T). So, g ( t )  = 0 which means that z( t )  E En B ( J , p / 2 ) .  
But n B(J ,  p /2 )  c C n B(J, p )  for each t E [ 0 ,  T), and this completes the 
proof. 0 

Remark 7.9.3 Let V c R be an open neighborhood of C. It is easy 
to see that (7.9.2) is satisfied with cp = ’pf, the function cpf : [O,a) -+ R, 
a = suptEv dist ( J ;  C), being defined by 

1 
( P J ( X )  = sup liminf -[dist (< + hf(<); C) - dist (<; C)] (7.9.3) 

EEV h10 h 
dist (<;C)=z 

for each x E [ 0,  a ) .  

So, Theorem 7.9.2 can be reformulated as: 

Theorem 7.9.3 Let C c R, with C locally closed, and let f : 0 --+ Rn be 
continuous. If there exists an  open neighborhood V of C with V c R such 
that vf, defined by  (7.9.3)) i s  a comparison function, then C i s  invariant 
with respect to x’ = f (x). 

7.10 Necessary Conditions for Invariance 

We say that < E Rn has projection on  C if there exists 7 E C such that 
I l J  - 711 = dist (J;  C). Any 7 E C enjoying the above property is called a 
projection of E on C, and the set of all projections of 5 on C is denoted by 
nz (0 * 

Definition 7.10.1 An open neighborhood V of C, with IIc(J) # 8 for 
each 5 E V, is called a proximal neighborhood of C. If V is a proximal 
neighborhood of C, then every single-valued selection, 7rc : V -+ C, of Ilz, 
i.e. 7 r ~ ( J )  E & ( J )  for each < E V, is a projection subordinated to V. 
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The next lemma, proved in [Ciirja and Ursescu (1993)], essentially shows 
that each locally closed set C has one proximal neighborhood. 

Lemma 7.10.1 
set of all c E Rn such that ITc(J) is nonempty is a neighborhood of C. 

(Ciirjii and Ursescu) Let C be locally closed. Then  the 

Proof. Let c E C. Since C is locally closed, there exists p > 0 such 
that C n B(c,p) is closed. We will show that, for every q E C satisfying 
I]< - qll < p / 2 ,  IIc(q) is nonempty, which justifies our conclusion. Indeed, 
given q as above, there exists a sequence (<k)k  in C such that the sequence 
((I& - q(()k: converges to dist (7; C). We can suppose, taking a subsequence 
if necessary, that the sequence (&)k converges to a point < E R". So we 
have dist (7; C) = ~ ~ ~ - q ~ ~ .  firther l lCk-Ell  L ~ ~ < ~ - - - ~ ~ ~ + ~ ~ q - - < ~ ~  for all E N, 
and consequently 11s - EIJ 5 dist (q;  C) + llq - ell 5 2117 - < p. Finally, 
Il& - q((  < p for all k E N sufficiently large. Hence & E C n B(<,p), and 
since the latter is closed, it follows that < E C. Thus rIx(q) is nonempty, 

0 and this achieves the proof. 

Definition 7.10.2 Let C c R c R". We say that a function f : R -+ Rn 
has the comparison property with respect to (0, C )  if there exist a proximal 
neighborhood V c R of C, one projection 7rc : V + C subordinated to V, 
and one comparison function p : [ 0, a )  -+ R, with a = supEEv dist (<; C), 
such that 

for each < E V. 
Let us observe that (7.10.1) is automatically satisfied for each E E C, 

and therefore, in Definition 7.10.2, we have only to assume that (7.10.1) 
holds for each < E V \ C. 
Definition 7.10.3 The function f : fl --+ R" is called: 

(i) (R, C)-Lipschitz if there exist a proximal neighborhood V c S2 of 
C, a subordinated projection 7rc : V -+ C, and L > 0, such that 

for each E V \ C ;  
(ii) (0, C)-dissipative if there exist a proximal neighborhood V c 52 of 

C, and a projection, 7rx : V -+ C, subordinated to V, such that 
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for each 5 E V \ C. 

Let V be a proximal neighborhood of C, and let Q : V -+ C be a 
projection subordinated to V. If f : V --+ C is a continuous function with 
the property that, for each r] E C, its restriction to the “segment” 

is dissipative, then f is (52, C)-dissipative. 
It is easy to see that if f is either (52, C)-Lipschitz, or (52, C)-dissipative, 

then it has the comparison property with respect to (R, C). We notice that 
there are examples showing that there exist functions f which, although nei- 
ther (0, C)-Lipschitz, nor (52, C)-dissipative, do have the comparison prop- 
erty. Moreover, there exist functions which, although (0, C)-Lipschitz, are 
not Lipschitz on R, as well as, functions which although (0, C)-dissipative, 
are not dissipative on 52. In fact, these two properties describe merely the 
local behavior of f at the interface between C and 0 \  C. We include be- 
low two examples: the first one of an (R,C)-Lipschitz function which is 
not locally Lipschitz, and the second one of a function which, although 
non-dissipative, is (Q, C)-dissipative. 

Example 7.10.1 The graph of an (0, C)-Lipschitz function 
which is not Lipschitz is illustrated in Figure 7.10.1. Here C = 

4 

f 

Figure 7.10.1 

52 is any open subset in R including C. 

f : R  
-a, a 

+ R  
and 

Example 7.10.2 The graph of a function f : R + It which is (R,C)- 
dissipative but not dissipative is illustrated in Figure 7.10.2. This time, C 
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is either (-00, P I ,  or [a ,  +m), or [a, p ]  with Q I -a L a L p, and R is 
any open subset in R including C. 

Figure 7.10.2 

Theorem 7.10.1 (C&rj&Necula-Vrabie) Let C c R c Rn, with C locally 
closed and R open, and let f : 52 -+ Rn. Iff has the comparison property 
with respect to (52,C), and (7.7.2) is satisfied, then (7.9.2) i s  also satisfied. 

Proof. Let V c 52 be a proximal neighborhood of C, let I E V, and let 
.~rz : V -+ C be the projection subordinated to V as in Definition 7.10.2. 
Let h > 0. Since Ilc - nc([)II = dist (c; C), we have 

5 (P(llC - T d C ) l l ) -  
This inequality shows that (7.9.2) holds, and this completes the proof. 0 

From Theorems 7.7.2 and 7.10.1, we deduce the following necessary 
condition for invariance. 



Gradient Systems. Frobenius Theorem 303 

Theorem 7.10.2 (Ciirjii-Necula-Vrabie) Let C C R C R", with C lo- 
cally closed and R open, and let f : R + Rn be continuous. Iff has the 
comparison property with respect to (52, C )  and C as invariant with respect 
to x' = f(x),  then (7.9.2) holds true. 

Proof. As C is invariant with respect to x' = f (2) and f is continuous, it 
follows that C is viable with respect to x' = f(x). In view of Theorem 7.7.2 
we conclude that (7.7.2) is satisfied, and thus we are in the hypotheses of 
Theorem 7.10.1. The proof is complete. 0 

Combining Theorems 7.7.2 and 7.10.1, we deduce: 

Theorem 7.10.3 (Chrjii-Necula-Vrabie) Let C c R c IP, with C lo- 
cally closed and R open, and let f : R -+ Rn be continuous. Iff has the 
comparison property with respect to (R, C), and (7.7.2) is satisfied, then C 
is invariant with respect to (7.9.1). 

For details on invariance problems see [Aubin (1991)], [Ciirjii, Necula 
and Vrabie (2004)] and [Ciirjii and Vrabie (2004)l. 

7.11 Gradient Systems. F'robenius Theorem 

Let U c Rm and 9 c Rn be nonempty and open, let X z  : U x $j --+ R", 
i = I, 2 , .  . . , m, be functions of class C1 and let us consider the gradient 
system 

m 

dy = C X i ( z ,  y) dxi. 
i= 1 

(7.11.1) 

Definition 7.11.1 Let r E U and < E 9. A solution of the system (7.11.1) 
subjected to the Cauchy condition y ( r )  = 5 is a function y : V c U -+ 9, 
where V is a neighborhood of the point 7, which satisfies 

If V = U, the solution y is global. 

The existence problem for such equations has been encountered in some 
particular cases, i.e. ( n  = 1 ,m = l), (n  = 1 ,m = 2) and (n  = l , m  = 

3). For n = l , m  = 1 equation (7.11.1) reduces to dy = X(x,y)dz, or 
equivalently to y' = X ( z ,  y), situation completely clarified by Peano's local 
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existence Theorem 2.2.1. In the case n = 1, rn = 2 the equation has the form 
dy = X 1 ( x ,  y) dzl + X 2 ( x ,  y) dx2, while the local existence problem equi- 
valently rephrases as the problem of finding sufficient conditions, or even 
necessary and sufficient, in order that the right-hand side of the equation 
above be an exact differential. In this case, the continuity of the functions 
X 1 ,  X 2  is no longer sufficient for existence. Moreover, now, even under the 
very restrictive hypothesis that X1, X 2  do not depend on y and are of class 
C" on 5, the problem considered may have no solution. We recall that, 
if X 1 ,  X 2  are independent of y and are of class C1 on 5 which is simply 
connected, then a necessary and sufficient condition for the existence of a 
function y, of class C1 on 5 such that dy = X 1 ( x l , x 2 )  dxl +X2(x1 ,x2)  dx2, 
is that 

on the set 9. See [Nicolescu et al. (1971b)], Theorem 5, p. 187. 
In the case n = 1 , m  = 3, again in the hypothesis that the functions 

X 1 , X 2 , X 3  do not depend on y, are of class C1 and that 9 is a paral- 
lelepiped, a necessary and sufficient condition in order for 

to be an exact differential is that 

(7.11.2) 

on the set 9. See [Nicolescu et al. (1971b)], Theorem 4, p. 181. 
The results we just have recalled, from which the last two ones refer to 

the case in which Xi for i = 1,2, .  . . , rn are independent of y, reveal the 
difficulty of finding sufficient conditions of existence for the general case of 
equation (7.11.1), when at least one of the functions X i ,  i = 1,2 ,  . . . , m 
depends on y. 

We will consider first the case in which X i  is independent of the variable 
x E U, for i = 1,. . . , m, called homogeneous, and we shall prove a necessary 
and sufficient condition in order that (7.11.1) have the local existence and 
uniqueness property. We will then extend this result to the fully general 
case. 
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So, let Xi : 5 -+ R", i = 1 , 2 , .  . . , m, be functions of class C1 and let us 
consider the homogeneous system with exact differentials 

(7.11.3) = xZ(y(x)) for x E 'v, i = 1 , 2 , .  . . ,m 

One may easily see that, if y : 'V c U --+ is a solution of the system 
(7.11.3), then y is of class C2 and, by virtue of Schwarz theorem, one has 

for every z E 21. It then 
the system (7.11.1) have 

follows that, a necessary condition in order that 
the local existence property is that 

(7.11.4) 

Definition 7.11.2 The Lie-Jucobi bracket associated to the vector fields 
X 2 , X j  : 9 4 Rn, of class C1 on 9, is the function [Xi,Xj] : 5 --+ R, 
defined by 

Remark 7.11.1 
of class C1, we have 

One may easily state that, for all vector fields X Z , X j ,  

[xZ,xj] = - [Xj,XZ]. 

This property shows that [Xi, Xj] = [Xj, Xi] if and only if [Xi, Xj] = 0, 
which justifies the definition that follows. 

Definition 7.11.3 
on 9 if 

The family {Xi : 9 --+ R" ; i = 1,2 , .  . . , m} commutes 

[XZ,Xj] (y) = 0 

for every i, j E {1,2, .  . . , m}  and y E 5.  

The main local existence and uniqueness result referring to the homo- 
geneous system (7.11.3) is: 

Theorem 7.11.1 Let Xi : 5 --+ Rn, i = 1 , 2 , .  . . , m be of class C1 on 
9. The necessary and suficient condition in order that the system (7.11.3) 
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have the local existence and uniqueness property i s  that the family of vector 
fields {X1, X2, . . . , Xm) commute o n  9. 

Proof. The necessity was already proved when we have shown the rela- 
tion (7.11.4). 

Sufficiency. The system being homogeneous, we may assume without 
loss of generality that r = 0. Let 5 E 5 be arbitrary, and let us denote by 
cpi(.,c) : (--ai,,t,&,t) + R" the unique saturated bilateral solution of the 
Cauchy problem 

Let a = rnin{ai,,t, Pi,< ; i = 1 ,2 ,  . . . , m) and let us observe that, in view of 
Theorem 2.5.1, it follows that there exists r > 0 such that S(<,r) c $3 and, 
for every X E S(c, r ) ,  the unique saturated solution pi(., A) of the Cauchy 
problem 

is defined at least on (-a, a). Let us define y : (-a, a)m x S(<, r )  + Rn by 

where by "0" we denoted the superposition of functions. We will prove, by 
induction over m, that y ( . , e ) ,  defined by (7.11.5)) is the desired solution. 
For m = 1 we have one vector field and y ( q , < )  = pl(zl,<) is obviously 
a solution of the problem (7.11.3). Let us assume then that, for every 
family of m - 1 vector fields of class C1 which commutes, y(., <), defined by 
(7.11.5), is a solution of the Cauchy problem (7.11.3). In particular, since 
{ X 2 ,  X3,. . . , Xn} commutes, the function 

is the solution of the gradient system 

- aij = Xj(ij(Z;<)), j = 2,3,. . . ,m, 
8 X j  

where 5 = ( 2 2 ,  2 3 , .  . . , xm). We will prove that the function 
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is a solution of the problem (7.11.3). We have 

where 

p = cpZ(22, -1 0 (P3(23, .) O ’ * * O cpm(2 rn, 4- 

(P1(-x1,y(x,t)) = cpl(-2l,(Pl(xl,~(z,r))) = (P l ( -2 l+~ l ,m ,<) )  = Y”(Z,<). 

From the semigroup property, we have 

Differentiating both sides of the equality above with respect to zj ,  we de- 
duce 

-(-X1,Y(Z,J))-(2,5) acp1 aY = -(%5), aii j = 273, * - * ,m* 

---(-xl,Y(2><)) a(P1 = ~ ( - x l , Y ( x 7 < ) ) ,  391 

dY ax.7 a2j 

From this relation, by observing that 

dY 
and taking into account Theorem 2.6.1, we get 

satisfies 

It then follows that H1 (-XI, y) satisfies 
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In view of Leibniz-Newton formula, the right-hand side of (7.11.7), denoted 
by Yj (21, y), can be rewritten as 

because, by hypothesis, [X',Xj] ( z )  = 0 for every z f 5. In particular, 
taking y = y(z,J) in (7.11.8), we get 

from where, using (7.11.7), we deduce 

and the proof of the local existence part is complete. 
-+ R" be two 

solutions of the Cauchy problem (7.11.3). Let 8 E ( - U , U ) ~  and let us 
define the functions u, v : [ 0,1]  -+ Rn by 

In order to prove the uniqueness part, let y, z : (-a, 

~ ( t )  = y ( t8 )  and v( t )  = z ( t 8 )  

for every t E [0,1] .  Further, let us define the function f : 9 -+ Rm by 
fi(w) = ( X i ( w ) , 8 )  for every i = 1,2  , . . . ,  m and every UI E 5. From the 
hypothesis, we know that Xi, i = 1 , 2 , .  . . , m are vector fields of class C1 
and therefore f has the same property. On the other hand, one can easily 
see that u and w are solutions of the Cauchy problem 

which has the uniqueness property. Then we have u(1) = v(l), which is 
equivalent to y(8) = z (0 ) .  Since 8 is arbitrary in ( - U , U ) ~ ,  this completes 
the proof. 0 

We will now proceed to the general non-autonomous case. 

Theorem 7.11.2 (F'robenius) Let Xi : U x 9 -+ R", i = 1 , 2 , .  . . , m be 
of class C' on U x 9. The necessary and sufficient condition in order that 
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the system (7.11.1) have the local existence and uniqueness property i s  that 
the family of vector fields { X ' ,  X 2 , .  . . , X m >  satisfy the relations 

for eve y a ,  j = 1 , 2 . .  . , m and e v e y  (2, y) E U x 5, called the Frobenius 
integrability conditions. 

Proof. The idea of proof is the same as that one used to rewrite a 
non-autonomous system as an autonomous one by introducing an extra- 
unknown function and an extra-equation. To begin with, let us denote by 
z = (x,y) E Rn+m, and let us define 22 : U x $j -+ Rn+" b Y 

for i = 1 , 2  ,..., ni and z = ( z ,y )  E U x 9, where e1,e2 ,..., em is the 
canonical basis in R". Let us observe that the system (7.11.1) admits 
a solution y satisfying the Cauchy condition y ( ~ )  = 5,  if and only if the 
system 

i = 1,2,. . . , rn admits the solution z(x) = ( yG)) satisfying the condition 

Z ( T )  = q, where q = (;) . Finally, because 

we have 

azi 
a z  
- ( z )@ ( 2 )  

for every z = (x,y) E U x s. Accordingly, { X ' ,  X2,.  . . , X m }  fulfils the 
Frobenius integrability conditions if and only if (Zl, Z2,. . . , 2") commutes 

0 on U x 5 which, by virtue of Theorem 7.11.1, completes the proof. 
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Remark 7.11.2 If n = 1, m = 3 and the vector fields X 1 , X 2 , X 3  do not 
depend on y, the Frobenius integrability conditions reduce to the conditions 
(7.11.2). 

7.12 Exercises and Problems 

Exercise 7.1 
in D(R)? 

Let 4 E D(W). Which one of the sequences below are convergent 

([Vladimirov et al. (1981)], p. 101) 

Exercise 7.2 
ing distributions of type function: 

Find the derivatives in the sense of Definition 7.1.7 for the follow- 

(1) x ( t )  = sgn ( t )  (2) x ( t )  = cost sgn ( t )  
(3) x ( t )  = t sgn ( t )  (4) x ( t )  = t sgn  ( t  - 1) 
( 5 )  x ( t )  = sintO(t) (6) ~ ( t )  = etO(t) .  

Problem 7.1 
given b y  

Prove that the product of the function of class C” 7 b y  8(t)  is 

q ( t )b( t )  = -7’(0)6(t) + 7(0)8( t ) .  

Prove that: 

(1) tb(rn)(t) = -ms(rn-l) ( t ) ,  m =  1,2, . . .  

(3) tk6(”)(t) = 0, m = 1,2, .  . , , k - 1. 
(2) t W m ) ( t )  = (-l)rnm!6(t), rn = 0,1, .  

([Vladimirov et al. (1981)], p. 110) 

Problem 7.2 Let x : W 4 W be a locally Lebesgue integrable function, let n E N 
and let us define xn  : W + W b y  x n ( t )  = n x ( n t )  for  every t E W. Prove that 
the sequence of distributions of type function (xn)nEN is point-wise convergent in 
’D(R) and find its limit. 

Exercise 7.3 Find an elementary solution for the differential operator L if: 
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Exercise 7.4 
following diflerential equations: 

Using the elementary solutions found in Exercise 7.3, solve the 

(1) y" + 3y' + 2y = et q t ) .  (4) y"' + 4y" + 43' = sint  s(t). 

(3) y" + 4y = cos2t e( t ) .  
(2) y" + 2y' + y = t e ( t ) .  (5) y"' - y i  = t e(t). 

(6) y"' - 39' + 23 = tet q t ) .  

Exercise 7.5 Find the Carathe'odory solutions of the Cauchy problems below: 

z~ = -x + e(t - 1) 

21 = 2x + te(t - 3) 

tz' = 

d = (1 + P ) e ( t  - ;) sint 

x1 = sgn (t - 2) cos2 z 

2x2' = sgn (t - 1) 

{ z(0) = 1. 

(2) { x(1) = 0. 

(3) { x(l)  = -1. 

(4) { x(;) = 0. 

(5) { x (0 )  = 1. 

{ z(0) = 1. 
+ e(t - 2) 

Problem 7.3 
F : W ---f 2' is upper semi-continuous ifi7 

Indicate the points at which the following multi-valued function 

0 i f x < 0  

1 if x > 0. 

0 i f z < O  

1 if x > 0. 
(0,1] if x = 0 (2) F ( x )  = 

0 i f x < 0  

x2 + 1 if x > 0. 

0 i f x < 0  

1 if x > 0. 
(0 , l )  if x = 0 (4) F ( x )  = 

0 i f x < 0  

x + 2 i f  x > O .  

0 i f z < O  
[ O , l ]  if x = 0 (6) F ( x )  = 
z2 if z > 0. 

Problem 7.4 Let K be a nonempty and closed subset in R" and let F : K ---f 2Rn 
be a multi-valued function with closed values, which is upper semi-continuous on 
K .  Then its graph is a closed subset in W" x W". 

Problem 7.5 Let K c Rn be nonempty and let F K + 2Rn be a multi-valued 
function whose values are included in a compact subset H in W". If the graph of 
F is closed in W" x Rn then F is upper semi-continuous on K .  

Problem 7.6 Let K c R" be nonempty and let F ; K ---f 2Rn be a multi-valued 
function having compact values. If F is upper semi-continuous on K then conv Fa 
7T0 simplify the writing we agree that, whenever the value of one multi-valued func- 

tion F at a point x is a set containing a single element 9, to  use the notation F(x) = y, 
instead of F ( z )  = (9). 

8We recall that convF(x) is the closed convex hull of the set F ( z ) ,  i.e. the intersection 
of all closed convex subsets in R" which include it. 
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is upper semi-continuous on K .  

Problem 7.7 Let K c W" bennonempty and let f : K + W" be a bounded 
function. We  define F : K 3 2" by F(x) = Limf(x), where Limf(x) is the set 
of all limit points of the function f at x E K .  Then F is upper semi-continuous 
on K .  

Problem 7.8 Find two nonempty sets R E W, C c 51, and a continuous function 
f : R ---f W ,  such that C is viable with respect to x' = flc(x), but C is not invariant 
with respect to XI = f (2). 

Problem 7.9 A subset C! in W n  is a cone i f  for every q E C! and every s > 0,  we 
have sq E C!. Let C be a nonempty subset in W" and 6 E C. Prove that Tz(6) is 
a closed cone. 

Problem 7.10 Let R be a nonempty and open subset in Rn and let U : R + R 
be a function of class C1 with V U ( x )  # 0 on 52. Let c E W and let us assume 
that C = {x E Q; U ( x )  = c }  is nonempty. Prove that 7 E W" is tangent to  C at 
the point 6 E C i f  and only i f  (r,~, V U ( e ) )  = 0. In other words, an this case, Tz(5) 
coincides with the set of vectors parallel to the tangent plane to C at E .  
Problem 7.11 Prove that the set C = {(x1,x2,x3) E W3; x: + z; + zg = 1) is 
invariant for the digerential system 

Problem 7.12 
the Lotka- Volterra system 

Prove that each of the two coordinate axes is an invariant set for 

x' = ( a  - ky)x 
= -(b - h ~ ) y .  

Using this, prove that every solution of the system issued from the first quadrant 
remains there on the whole interval of existence. 

Problem 7.13 Prove the following interesting consequence of Theorem 7.7.2 : 
Theorem A Let C c W" be nonempty and locally closed and let f : C -+ W" 
be continuous. A suficient condition in order that C be viable with respect to 
x' = f (x)  is that, for every ( E dC, f(<) E Tax((), where dC denotes the 
boundary of the set C. 

Is this condition necessary? 
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Auxiliary Results 

8.1 Elements of Vector Analysis 

For n E N* we denote by Rn the set of all n-tuples x = ( 2 1 ,  x 2 , .  . . , xn) of 
real numbers which, with respect to the operations "+" (internal composi- 
tion law) and ((-" (external composition law) defined by 

for every x, y E R" , and respectively by 

X - x = X ( Z 1 J 2 , .  . . ,zn)  = ( X X l , X X 2 , .  . ., Axn) 

for every X E R and every z E Rn, is an n-dimensional vector space over R. 
In all that follows, (-, .), : R" x Rn --+ R is the standard inner product on 
R", i.e. 

and 11 - 11, : Rn -+ R+ is the induced Euclidean norm, i.e. 

for every x, y E Rn. Whenever no confusion may occur, we will cancel the 
index n ,  writing (2, y)  instead of (x,y)" and llxll instead of \ [x \ ln .  Also, we 
will cancel ".'' by simply writing Ax instead of X x. 

Let M,,,(rW) be the set of all n x m-matrices with real elements. In 
many situations we will identify an element .A E MnX,(R) by a linear 

313 
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operator (denoted for simplicity by the same symbol) J1 : Rm -+ Rn, defined 
by 

for every x E Rm, where z is a column vector. 

over R, we define the function 11 1 1 ~ ,  by 
On the set MnXm (R), which clearly is an n x m-dimensional vector space 

for every J1 E M,,,(R). The next simple lemma is particularly useful in 
what follows. 

Lemma 8.1.1 
Mnxm(R), i.e. it satisfies: 

The function )I a llly~ : MnXm(R) + R+ is a norm on 

Moreover, for  every x E Rm and every J1 E M,xm(R) 

I n  addition, f o r  every A E Mnxm(R) and every 23 E Mm,,(R), we have 

Proof. Since ( N l )  and (N2) are obvious, we will confine ourselves to 
the proof of the remaining three properties. In order to check (N3) ,  let 
us observe that the operator .A + 23 is continuous from R" to Rn. Since 
( 1  . is continuous on R", it follows that the function x I-+ //(.A + !B)xlln is 
continuous on Rm. Furthermore, the set B(0,l) = {x E R"; Ilxllrn 5 1) 
is compact and then, according to Weierstrass' theorem, it follows that the 
function above attains its supremum on B(0,l). So, there exists E B(0,l) 
such that 

But 

which achieves the proof of item (N3). 
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In order to prove (N4) ,  let us observe that, for x = 0, it is obviously 
E B(0, l), and therefore satisfied. Let then x E EXm, x # 0. We have 

which shows that (N4) holds true for every x E R”. Finally, from (N4) ,  

we deduce that, for every .A E Mnxm(R), every 23 E Mmxp(R) and every 
J: E Rp, we have 

Passing to the supremum for x E B(0 , l )  in the inequality above, we deduce 
0 ( N s ) .  The proof is complete. 

Corollary 8.1.1 F o r  every .A E M,,,(R) and every k N we have 

Proof. The conclusion follows by a simple inductive argument reiterating 
the property (NS) .  0 

Remark 8.1.1 The norm 11 - l ) ~ ,  defined on M,xm(R), is equivalent on 
the isomorphic space Rnxm with the Euclidean norm. More precisely, there 
exists two constants Icl > 0 and Icz > 0, such that 

for every .A E Mnxm(R), where 

n m  

Indeed, if el, e2,.  , . , em are the vectors of the canonical basis in Rm, we 
have 

Adding side by side these inequalities, we deduce 

lJLk denotes the Ic-times product of the matrix J1 by itseIf. For k = 0, by definition 
JIo = 3, where 3 is the unit matrix in Mnxn(R). 
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Hence, for Ic2 = f i , the second inequality in (8.1.1) is satisfied. On the 
other hand, as we have already seen in the proof of Lemma 8.1.1, there 
exists < f R", with l l < l l m  5 1, such that 

Using the Cauchy-Schwarz inequality2 in order to majorize the sum over 
j ,  we deduce 

This inequality shows that, for Icl = 1, the first inequality in (8.1.1) holds 
true also. 

We emphasize that (8.1 .l) expresses the invariance of boundedness, con- 
tinuity, differentiability of functions with values in Mnxm (R), with respect 
to the two norms 11 I ( M  and 11 - I l e .  

Let now D be a nonempty subset in R and let f : D + Rn be a function, 

for every t E D. In all that follows, we shall say that f has a certain 
property if all the partial functions f1, f2 ,  . . . , f n  have that property. For 
instance, we will say that f is differentiable at t E D if all the functions fa, 
with i = 1,2,. . . , n, are differentiable at t .  If f is differentiable at t E D ,  
we denote by f'(t) its derivative at t ,  i.e. 

By analogy, we shall say that f : [ a ,  b ]  --i Rn is Riernann integrable on [ a ,  b ]  
if all the partial functions fi with i = 1,2,. . . , n are Riemann integrable 

2We recall that the Cauchy-Schwarz inequality asserts that ,  for every system of real 
numbers x1,22, .  . . , xm and y1, y2,. . . , ym, we have 
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over [a, b ] .  In the case in which f has this property, we denote by 

its Riemann integral over [a, b ] .  The next lemma extends to arbitrary 
n E N* two well-known results for n = 1. 

Lemma 8.1.2 Let f : [ a , b ]  4 R" and g : [ a , b ]  -+ R". 

(i) Iff and g are differentiable at to E [ a ,  b ] ,  then (f, g )  : [a, b ]  -+ IW 
is differentiable at t o ,  and 

I n  particular, if f i s  differentiable at t o  
l l f l 1 2  : [a, b ]  -+ R+ i s  differentiable at to, and 

[ a ,  b ] ,  then the function 

(ii) I f f  : [ a ,  b ]  + Rn is Riemann integrable on  [ a ,  b ] ,  then the function 
l l f l l  : [ a ,  b ]  + R+ is Riemann integrable on  [a, b ] ,  and 

(8.1.4) 

for every t E [ a ,  b ] .  Since all functions fi and g i ,  with i = 1,2,. . . , n, are 
differentiable at t o ,  by the relation above, it follows that (f ,g) is differen- 
tiable at to. In addition, we have 

which proves (8.1.2). Clearly, (8.1.3) follows from (8.1.2) by taking f = g. 
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In order to prove (ii), let us observe that the function ) I f  11 : [ a ,  b ]  --+ R+ 
is defined by 

for every t E [ a ,  b ] .  Since all functions fi, with i = 1,2,  . . . , n, are Riemann 
integrable, it follows that ( 1  f I( has the same property. Furthermore, let us 
consider A : a = t o  < tl < - < t k  = b, a partition of the interval [ a ,  b ] ,  
and let E [ti,ti+1), i = 0 ,1 , .  . . , ii - 1, be arbitrary intermediate points. 
We have 

k-1 

I l a A ( f ,  tz)ll = x(ti+l - ti).f(tz) 5 x ( t i + l  - ti)ll.f(Ci)ll = oA(l l f  II,Cz>- 11::: // i=o 

Taking a sequence of partitions of the interval [ a ,  b ] ,  with the sequence 
of norms tending to zero, and a sequence of corresponding intermediate 
points, and passing to the limit in the inequality above, we get (8.1.4). The 
proof is complete. 0 

In the next lemma, all vectors considered are column vectors. 

Lemma 8.1.3 Let us consider f : [ a , b ]  -+ Rn, A E Mnxn(R) and 
: [ a ,  b ]  + Mnxn(R). 

(i) If f is Riemann integrable over [ a ,  b ]  then Af i s  Riemann inte- 
grable over [ a ,  b ]  and 

([ f ( t )  d t )  = [ Af ( t )  dt. 

(ii) If B is Riemann integrable over [ a ,  b ]  then ’B* is Riemann inte- 
grable over [ a ,  b ]  and 

( [ B ( t ) d t ) *  = [ ’ B * ( t ) d t ,  

where B* denotes the adjoint of the matrix B.  

is Riemann integrable over [ a ,  b ]  and 
(iii) If% i s  Riemann integrable over [ a ,  b ]  and 2, y E Rn then (B(.>z, y) 
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Proof. 
[ a ,  b ]  and let 
points. We have 

Let A : a = t o  < tl  < - . .  < tk = b be a partition of the interval 
E [ti, ti+l), i = 0,1, .  . . , k - 1, be arbitrary intermediate 

and 

Taking a sequence of partitions of the interval [ a ,  b ] ,  with the sequence 
of norms tending to zero, and a sequence of corresponding intermediate 
points, and passing to the limit in the equalities above, we get (i), (ii) and 

0 (iii). The proof is complete. 

8.2 Compactness in C (  [ a, €11; Rn) 

In this section we shall prove an analogue of Ceskro's lemma referring 
to sequences of continuous functions from [ a , b ]  to R". We denote by 
C( [ a,  b ] ;  Rn) the space of all continuous functions from [ a ,  b )  to  Rn and we 
endow this space with the uniform convergence topology on [ a ,  b ] .  

Definition 8.2.1 A family 3 in C( [ a,  b ] ;  R") is relatively compact if every 
sequence in 3 has at least .one subsequence which is uniformly convergent 
on [ a , b ] .  

Definition 8.2.2 A family F in C( [ a,  b ] ;  Rn) is equicontinuous at a point 
t E [ a ,  b ]  if for every E > 0 there exists J(E, t )  > 0 such that, for every 
s E [ a ,  b ]  with It - s( < J(&,t) we have 

for all f E F. 

t E [ a ,  b ] ,  in the sense described above. 
A family 3 is equicontinuous on [ a , b )  if it is equicontinuous at each 



320 Auxiliary Results 

A family 3 is uniformly equicontinuous on [a ,  b ]  if it is equicontinuous 

A family 3 in C(  [ a, b ] ;  Itn) is equicontinuous on [ a ,  b ]  if 

on [ a ,  b ]  and 6(&, t )  can be chosen independent of t E [ a ,  b ] .  

Lemma 8.2.1 
and only if it is uniformly equicontinuous on [ a ,  b] .  

Proof. Clearly, each family which is uniformly equicontinuous on [ a ,  b ]  
is equicontinuous on [ a ,  b].  In order to prove the converse of this state- 
ment, we shall proceed by contradiction. So, let us assume that there 
exists a family 3 which is equicontinuous on [ a ,  b ] ,  but is not uniformly 
equicontinuous on [ a ,  b ] .  This means that there exists E > 0 such that, for 
every 6 > 0, there exist t g ,  s6 E [ a ,  b ]  and fd E 3, with Its - s61 L 6 and 
Ilfg(t6) - fg(sg)ll 2 E.  Taking 6 = l / m  with m E Pi*, and denoting by 
t ,  = t 6 ,  s ,  = sg, and f, = f a ,  we have 

for every rn E N*. Since the sequence (tm)mEpp is bounded, from CesLro's 
lemma, it follows that it has one subsequence, convergent to an element 
t E [ a ,  b].  We denote by (tm,)pEN* this subsequence, and we observe that, 
from the first inequality above, it follows that ( S , , ) ~ ~ N *  is convergent to t 
too. On the other hand, the family 3 is equicontinuous at t and therefore, 
for E > 0 as above, there exists 6(&, t )  > 0 such that, for every s E [ a ,  b ]  
with Is - tl I 6 ( ~ , t )  and every f E 3, we have Ilf(s) - f(t)II 5 ~ / 3 .  Since 
both ( tm,)pE~* and ( S , , ) ~ ~ W *  converge to t ,  for p E N* large enough, we 
have It,, - tl 5 6 ( ~ , t )  and Is,, - tl <_ 6(e,t). Then 

E 5 Ilfm,(tm,> - fmp(Smp)ll 

This contradiction can be eliminated only if T is uniformly equicontinuous 

Definition 8.2.3 A subset 3 is uniformly bounded on [a ,  b ]  if there exists 
Ill > 0 such that for every f E 3 and every t E [ a ,  b ] ,  we have Ilf(t)II 5 Ill. 

on [ a ,  b ] .  The proof is complete. 

Theorem 8.2.1 
compact if and only ifi 

(Ascoli-ArzelL) A family 3 in C ( [  a ,  b ] ;  Rn) i s  relatively 

(i) 3 is equicontinuous on [ a ,  b ] ;  
(ii) 3 is uniformly bounded on [ a ,  b ] .  
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Proof. We begin with the necessity of the conditions (i) and (ii). To this 
aim, let 3 be a relatively compact subset in C( [ a,  b ] ;  Rn) and let E > 0. Let 
us assume by contradiction that 3 is not uniformly bounded. Then there 
would exist one sequence @,),EN in [ a ,  b ]  and one sequence (fm),€~ in 
3 such that tlfm(tm)ll 2 m. Since F is relatively compact, the sequence 
(f,),€~ has at  least one subsequence ( f m p ) p E ~  which is uniformly con- 
vergent to a continuous function f. Then, there exists pl E N such that 
Ilf,,(t) - f(t)ll 5 1 for every p 2 pl and every t E [ a , b ] .  On the other 
hand, by virtue of Weierstrass' theorem, it follows that there exists A4 > 0 
such that llf(t)ll 5 A4 for every t E [ a , b ] .  So, we have 

for every p 2 pl. But this inequality contradicts limp+m mp = $00. This 
contradiction can be eliminated only if 3 is uniformly bounded. Hence the 
condition (ii) is necessary for the relative compactness of the set F. 

Next, let us assume by contradiction that there exists a relatively com- 
pact set F which is not equicontinuous, or equivalently, who is not uniformly 
equicontinuous on [ a ,  b ] .  See Lemma 8.2.1. This means that there exists 
E > 0 with the property that, for every 6 > 0 there exist t d ,  sg E [ a ,  b ]  and 
fd E F with ( t b  - sgl 5 6 and [ I f g ( t g )  - fd(s6)11 2 E .  Taking 6 = l /m with 
m E N*, and denoting by t ,  = t 6 ,  s, = sg, and f, = fg, we have 

for every m E N*. Since F is relatively compact there exist f E C([ a,  b ] ;  Rn) 
and one subsequence, (fm,)pE~* of (fm)mE~* which is uniformly convergent 
on [ a ,  b ]  to a certain function f .  It then follows that there exists PI(&) E N* 
such that, for every p 2 PI(&), we have Ilf,,(t) - f(t)II 5 e/4. Since f is 
uniformly continuous on [ a ,  b ]  and limp-..+m It,, - s,, I = 0, there exists 
P ~ ( E )  > 0 such that, for every p >_ P~(E), we have Ilf(t,,> - f(s,,)ll 5 e/4. 
Accordingly, for every p L max{pl ( E ) ,  p2 ( E ) }  

This contradiction can be eliminated only if 3 is uniformly equicontinuous 
on [ a ,  b ] .  Hence (i) is also a necessary condition of relative compactness 
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for the set 3. The proof of the necessity part is complete. 
Sufficiency. The proof of the sufficiency is based on Cantor's diagonal 

procedure. More precisely, let 3 be a set in C( [ a,  b ] ;  Rn) which satisfies 
(i) and (ii). Let {tm; m E N*} be a countable dense subset in [ a , b ] .  
For instance, this could be the set of all rational numbers in [ a ,  b ] .  Let 
(fm)mE~* be a sequence of elements in 3, and let us observe that the 
sequence ( f m ( t l ) ) m E ~ f  is bounded in Rn, because F satisfies (ii). From 
CesBro's lemma, it follows that it has at least one subsequence which con- 
verges to a certain element f ( t 1 )  E R". We fix and denote by (fml ( ~ I ) ) ~ € N *  

such a subsequence. Let us consider now the sequence (fm,(t~))mE~*, 
and let us observe that, again from CesBro's lemma, this has at least 
one subsequence, (fm,(tz))mE~*, convergent to an element f ( t 2 )  E Rn. 
Moreover, as (fm2 ( t l ) ) m E ~ *  is a subsequence of (fml ( ~ I ) ) ~ ~ N *  , we have 
lim, f,,(tl) = f(t1). Repeating this procedure, we get a family of subse- 
quences (fmp)mE~* of the sequence ( f m ) m E ~ *  and one sequence ( f ( t p ) ) p E ~ *  
in Rn, with the property 

for every p E N* and i = 1 , 2 , .  . . , p .  Let us consider now the diagonal 
sequence ( fm, )mE~*  and let us observe that, in accordance with the choice 
of the subsequences above, we have 

for every p E N*. In order to complete the proof, it suffices to show that 
(fm,)mE~* satisfies the Cauchy's condition for the existence of the uniform 
limit on [ u , b ] .  Hence, we will show that, for every E > 0 there exists 
m = m ( ~ )  E N* such that, for every m 2 m ( ~ ) ,  every p 2 m ( ~ )  and every 
t E [ a , b ] ,  we have 

Let E > 0. Since the family 3 is equicontinuous on [ a ,  b ] ,  it is uniformly 
equicontinuous on [ a , b ] .  See Lemma 8.2.1. Then, there exists J (E)  > 0 
such that, for every t , s  E [ a , b ]  with It - SI 5 b ( ~ )  and every f E F) we 
have 

Since the interval [ a , b ]  is compact and the set {tm; m E N} is dense, 
it contains a finite subfamily {ti; i = 1 , 2 , .  . . , p ( ~ ) }  such that for every 



Compactness in C( [ a,  b ] ;  Rn) 

t E [ a , b ]  there exists i E {1 ,2 , .  . . , p ( ~ ) }  with the property 

As the family 
is finite, there 
and every i = 
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of convergent sequences { (fm, ( t i ) ) m E ~ *  ; i = 1,2,. . . , p ( e ) }  
exists a natural number m(&) such that,  for every m 2 m(e) 
1 , 2 , .  . . , p ( e ) ,  we have 

& II fm, (ti) - f(ti> I1 I 3 * 
It  then follows 

5 Ilfm,(t) - frn,(ti)ll + Ilfm,(td - fp,(tz)Il + Ilfp,(ti) - fp*(t)Il I & 

for every m 2 m(e) and every p 2 m(&). Hence (fm,)mEN* satisfies 
Cauchy's condition of uniform convergence on [ a , b ] .  The proof is cam- 
plete. 

Several useful consequences of Ascoli-Arzel&'s theorem are listed below. 

Corollary 8.2.1 
Then 

Let F be a relatively compact subset in C ( [  a ,  b ] ;  Rn). 

is  relatively compact an R". 

Proof. Let ( fm( tm))mE~* be a sequence in F([ a ,  b ] ) .  Since [ a ,  b ]  and F 
are relatively compact in R and C([ a,  b ] ;  Itn) respectively, we may assume 
without loss of generality that,  on one subsequence at least, we have 

lim t ,  = t and lim fm = f 
m-oo m-w 

uniformly on [ a ,  b ] .  Let us observe that 

for every rn E N*. Since the family {f, ; m E N*} is equicontinuous, the 
first term on the right-hand side of the inequality above tends to  0 for m 
tending to  +m. Finally, since f is continuous, the second term tends to  0 
too, for m tending to +oo, which shows that,  on one subsequence a t  least, 
we have limm+m fm(tm) = f ( t ) .  Hence F([  a,  b ] )  is relatively compact in 

0 Rn, and this achieves the proof. 

(t)
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Corollary 8.2.2 
a continuous function, 

Let U c R" be nonempty and closed, g : [ a ,  b ]  x U -+ R" 

and let G : U --+ C ( [  a ,  b ] ;  R") be the superposition operator associated to 
the function g ,  i.e. 

for  every u E U and t E [ a , b ] .  Then  G is continuous f rom U in 
C( [ a,  b ] ;  R"), both the domain and the range being endowed with the uni- 
f o rm convergence topology. 

Proof. Let ( u ~ ) ~ ~ M  be a sequence in U which converges uniformly 
on [ a ,  b ]  to  u E U. Obviously {u,;m E N} is relatively compact in 
C ( [  a ,  b ] ;Rn) .  Then, according to Corollary 8.2.1, the set 

K = { u m ( t ) ;  m E N, t E [ a , b ] }  C U 

is compact in Rn. As a consequence, the restriction of g to [ a ,  b ]  x K 
is uniformly continuous, i.e., for each E > 0 there exists 6(e) > 0, such 
that,  for each ( t , v ) , ( s , w )  E [ a , b ]  x K with It - SI + JJv - wll 5 6(&), 
we have 11g(t,v) - g(s,w)ll  5 E .  Since ( U ~ ) , ~ W  converges uniformly on 
[ a , b ]  to u, there exists m(&) E N such that, for each m E N, m 2 m(c) ,  
and each t E [ a ,  b ] ,  we have llum(t) - u(t)II 5 6(e). So, for each m E N, 
m 2 m ( ~ ) ,  and each t E [ u , b ] ,  we have llg(t,um(t)) - g(t,u(t))ll 5 E ,  

thereby completing the proof. 0 

8.3 The Projection of a Point on a Convex Set 

Let K be a nonempty closed and convex subset in R" and x E R". In 
what follows, we shall prove the existence of a unique point < E K with the 
property that llx - equals the distance between z to K .  More precisely 
we have: 

Lemma 8.3.1 Let K be a nonempty, closed and convex subset in R". 
Then, for  every x E R" there exists one and only one element < E K such 
that 

dist (z, K )  = 112 - ( 1 1 .  (8.3.1) 
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In addition, < E K enjoys the property (8.3.1) i f  and only if 

for every u E K .  

Proof. 
( x k ) k E ~ * ,  of elements in K ,  with the property 

Since dist (2, K )  = inf{ 112- y(I; 3 E K } ,  there exists one sequence 

1 
dist (z, K )  5 11. - zkI( 5 dist (z, K )  + - 

k 

foreveryk E N*. As IIxkll 5 JIz1,--21)+IIxll 5 dist(x,K)+IIxII+i forevery 
k E N*, it follows that ( x k ) k E N  is bounded. Since K is closed, from Ceshro's 
lemma, it follows that there exists t E K such that, on one subsequence at 
least, we have 

lim xk = <. 

Obviously dist (x, K )  = 11. - <ll, which proves the existence part. In order 
to prove the uniqueness of the point <, let E K be another point with the 
property dist (2, K )  = (12 - ~ 1 1 .  Since K is convex, p = 

k-mo 

+ & E K and 

1 
112 - Pll L 5 (llx - rll + 11. - dl) = dist (x, K ) .  

We denote by d = dist (2, K ) .  Let us observe that 

1 1 2 1  4 IIY + 412 + 4 IIY - zll = 2 (IIYI12 + 1 1 ~ 1 1 2 >  
for every y, z E Rn. Taking y = t - x and z = - x in the equality above, 
we get 

IIP - xu2 -I- 

Since l l ~  - xIl2 = d 2 ,  

1 1 
,IIE - rlIl2 = 5 (I< - .l12 + llrl - X I 2 )  = d 2 .  

by virtue of the preceding relation, we deduce that 

which proves that < = 7. 

definition of the point C, we have 
In what follows, we will show that (8.3.1) implies (8.3.2). From the 
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for every v E K .  This inequality is equivalent to  

(C - v, -C + 2x - v) 2 0 

for every v E K .  Let u E K ,  X E (0,l)  and v = + (1 - X)u. Since 
K is convex, it follows that w E K ,  and therefore it satisfies the preceding 
inequality, i.e. 

Dividing by 1 - X and passing to the limit for X tending to  1, we get 

(C - u, -2C + 22) _> 0, 

inequality which proves (8.3.2). 0 

Definition 8.3.1 Let K be a nonempty, convex and closed subset in Rn 
and let x E Rn. The vector 'PK(x) = [ in K with the property (8.3.1) is 
called the projection of the vector x o n  the set K .  The function IPK : Iwn --+ 
K ,  defined by I p ~ ( x )  = <, where ( is the projection of the vector x on the 
set K ,  is called the projection operator o n  the set K .  

Lemma 8.3.2 
i. e. 

The projection operator on the set K is  non-expansive, 

f o r  every x, y E Rn. I n  addition, the operator I ~ K  - 3 i s  dissipative, i.e. 

for  every x, y E Rn, 

Proof. Take ( = PK(z) and u = Ip~(y) in (8.3.2). We have 

Similarly, we get 

for every x, y E Rn. Adding side by side the two inequalities, we deduce 
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for every z,y E Rn. From this relation and Cauchy-Schwarz inequality, it 
follows 

for every x, y E Rn, which proves (8.3.3). 
Finally, let us observe that (8.3.4) is equivalent to 

( Y K ( 4  - T K ( Y ) J  - Y> L llx - !/It2 
for every z,y E Rn. But the latter relation follows from the Cauchy- 

0 Schwarz inequality and (8.3.3), and this achieves the proof. 
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Solutions 

Chapter 1 

Problem 1.1 Let x : [ a ,  b ]  --$ R be the curve we are looking for. The condition 
in the problem reads as 

k z( t> - - 
x ( t ) / x ’ ( t )  z ( t )  - t ’ 

or equivalently 
Ic z’(t) = - 

x ( t )  - t 
for every t E [ a ,  b ] .  This is a differential equation reducible to one with separable 
variables. The change of unknown function y = x - t leads to 

for every t E [ a ,  b ] ,  whose general solution is defined by y + In (Ic - yI + t + c = 0, 
with c an arbitrary constant. It then follows that the family of curves with the 
desired property is implicitly defined by x + In Ilc - x + tl + c = 0, c E R. 
Problem 1.2 Let z : 1, --$ R be the curve we are looking for with 3 E 1, and let 
A(a,O) and B(0,b)  be the intersection points of the tangent to the curve at the 
point ( t , x ( t ) )  with the coordinate axes. Since ( t , z ( t ) )  is the middle point of the 
segment AB,  we have a = 2t and b = 2x. See Figure 9.1.1. 

0 t A 

Figure 9.1.1 

329 
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On the other hand, the slope of the tangent at the current point (t , z(t)) is 
x’(t). The condition in the problem expresses by x‘(t) = -$, or equivalently 
by tz:’(t) = -z(t) .  The equation above is with separable variables and has the 
general solution tz  = c, with c real constant. Since 4 3 )  = 2, we deduce c = 6. 
Consequently, the desired curve is the hyperbola of equation tx = 6. 
Exercise 1.1 (1) This is an equation with separable variables having the general 
solution defined by z ( t )  = farcsin for t E I,, where the interval 
1, C ((2k - 1) 5 ,  (2k + 1);) depends on the constant c E W. 

(2) This is a Bernoulli equation, but with separable variables too. The general 
solution is defined by z( t )  = ct(1 - ct)-l for t E It,, where 1, depends on the 
integration constant c E R. The equation also admits the stationary solution 
~ ( t )  = -1 for every t E W. 

(3) This is an equation with separable variables having the general solution 
z ( t )  = f d 2 l n  It1 - t 2  + c for every t E I,, where I, is an interval which does not 
contain 0 and depends on the integration constant c E W. 

(4) The substitution y = t + x leads to the equation with separable variables 
y‘ = 1 + y2. Solving this equation and coming back to the function x, we get 
z ( t )  = tan(t + c) - t for every t E (-$ - c, 5 - c ) ,  c E W. 

(5) The substitution y = 8t + 22 + 1 leads to an equation with separable 
variables. The general solution of the initial equation is z ( t )  = tan(4t + c)  - 4t - $ 
foreverytE (-:-:,:-:),cER. 

(6) The substitution y = 2t + 32 + 1 leads to an equation with separable 
variables. The general solution of the initial equation, after suitably denoting the 
constant of integration, is given in the implicit form by t+2x+7 In 12t+3~-131 = c 
with c E R. 

(7) The substitution y = 2 t  - x leads to an equation with separable variables. 
The general solution of the initial equation, after suitably denoting the constant 
of integration, is given in the implicit form by 5t+10z-3 In (10t-5x+61 = c with 
c E W. The equation also has the solution x : W ---f W defined by z( t )  = 2t + t,  
eliminated during the integration process of the equation with separable variables. 

(8) This is an equation with separable variables having the general solution 
x ( t )  = +,/= for every t E I,, where 1, is an interval, depending on the 
constant c E W and which does not contain f l .  
Problem 1.3 As in the case of Problem 1.2, let z : It, + W be the curve to be 
found out with 1 E I, and let A(a,O) and B(0,b) be the intersection points of the 
normal to the curve at the point ( t ,  z ( t ) )  with the coordinate axes. Since ( t ,  z ( t ) )  
is the middle of the segment AB,  we have a = 2 t  and b = 2s. See Figure 9.1.2. 

On the other hand, the slope of the normal to the curve at the current 
point ( t , z ( t ) )  is -[a’(t)]-’. The condition in the problem expresses then by 
-[z’(t)]-’ = -$, or equivalently by x(t)z’(t) = t .  The latter equation is with 
separable variables, and has the general solution x2 - t2 = c, with c constant. 
But z(1) = 2, and then c = 3. Consequently, the curve we are looking for is a 
hyperbola of equation a2 - t2  = 3. 

m 
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Figure 9.1.2 

Problem 1.4 Let x : I, 3 W be the curve we are looking for. The required 
condition takes the equivalent form 

x ( t ) / x / ( t )  = a, 

equation which has the general solution x ( t )  = cetIa for t E W, with c E W. 
Problem 1.5 In this case we get the equation 

x ( t ) / x / ( t )  = 2t, 

for t 2 0, which has the general solution x ( t )  = c& with c > 0. 
Exercise 1.2 (1) Dividing by t # 0, the equation reduces to a homogeneous one 
having the general solution z( t )  = -t In It1 + ct for t E I,, where I, is an interval 
which does not contain 0, and c E W. 

(2) Dividing by t # 0, the equation reduces to a homogeneous one whose 
general solution is z( t )  = f - 5 for t E I,, where 1, is an interval which does not 
contain 0, and c E W*. The equation also admits the solution z(t)  = - $  for every 
t E W. 

(3) Dividing by t 2 ,  we get a homogeneous equation whose general solution is 
defined by x ( t )  = t(ln It[ + c)-' for every t E Iz, where I, is an interval which 
depends on the constant c E W and does not contain 0. The equation also admits 
the solution x( t )  = 0 for every t E W. 

(4) Dividing by 2tx, we get a homogeneous equation whose general solution, 
x : I, + W, is defined by 

x(t) = *tJF, 
where c E W and 1, depends on c and does not contain 0. At the same time the 
equation also admits the solution zl,z(t) = f t  for every t E W. 

(5) Obviously x : R --t W, x ( t )  = 0 for every t E W, is a solution of the equation. 
Dividing the equation by t # 0, we get a homogeneous equation whose solution 
is given in the implicit form: In 1x1 - 6 = c for t E (--oo,O) and lnx + fi = c 

for t E (0, +m). 
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(6) Dividing by t # 0, we get a homogeneous equation. The general solution 
of the initial equation is x : W -+ W, x ( t )  = (c2t2 - 1)(2c)-l for every t E R, where 

(7) Dividing by 4x2 + 3tx + t 2 ,  and simplifying the fraction thus obtained 
by t 2  # 0, we get a homogeneous equation. The general solution of the initial 
equation is implicitly defined by ( x 2  + t 2 ) 3 / 2 ( x  + t )  = c, where c E R. 

(8) Dividing by 2tx # 0 the equation reduces to a homogeneous one. The 
general solution of the initial equation is x : I, + R, x ( t )  = &tJm for every 
t E Iz, where c E W, and I, depends on c. 
Problem 1.6 Let x : I, + R be the curve we are looking for, with 1 E I=. The 
required condition expresses as 

C E W;. 

or equivalently as 

See Figure 9.1.3. 

Figure 9.1.3 

These equations are reducible to homogeneous equations. Analyzing the two 
cases, we deduce that only the equation t-x/z '  = d m  has a suitable solution 
( ~ ( 1 )  = 0), i.e. z(t) = &24=. 
Problem 1.7 Imposing the condition that x = tmy satisfy the equation, we 
deduce 

mt-y + t"y' = f ( t ,  t"y) = t"- ' f ( l ,  y), 

or equivalently 
1 

Y' = +Y) - "Y). 

For the considered equation, we have f(t ,z)  = x2 - $. Let us observe that 
f ( X t ,  Am,) = Xm-lf ( t ,  z) for every ( t ,  x )  E R+ x R+ and X E R+ if and only if 
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We observe that this condition is satisfied if and only if m = -1. Imposing 
x = t - l y ,  we get y' = $(y2 + y - 2), equation which has the general solution 
y ( t )  = with c E R. The general solution of the initial equation is then 
x : I, + R+, x ( t )  = c = ,  where c E R and I, is an interval which does not 
contain 0 and fi. 
Exercise 1.3 (1) The equation is reducible to a linear equation. Also, the equation 
is with separable variables. The general solution is x : W -+ W, x ( t )  = ctet, for 
every t E R, where c E R. 

( 2 )  The equation is reducible to a linear one. The solutions are z : W + R, 
x ( t )  = 5 for every t E W and z : 1, + R, x(t) = f + $ for every t E I,, where 
c E R* and 1, = (O,+cm) or (-m,O). 

(3) This is an equation reducible to a linear one, with solutions X I  : W -+ W, 
defined by 

and x2 : I[ --f W, defined by ~ ( t )  = (et + c)t-' for every t E I, where c E R \  (-1) 
and I = (O,+cm) or (-co,O). 

(4) The equation has the solution x f 0. For x # 0 we will look for t as a 
function of x .  We obtain the equation 

d t  3t x 
dx 2x t 
- = - - -  

which is both Bernoulli and homogeneous and which, by integration, leads to the 
implicit form of the general solution for the initial equation: cx3 + x2  - t2 = 0 ,  
with c E R;. 

(5) The equation is reducible to a Bernoulli equation with cr = 2. The general 
solution is x ( t )  = ( t  In It1 + ct)-' for every t E I,, where I, depends on c E R. 
The equation also has the solution x = 0. 

( 6 )  The substitution x2  = y leads to an equation reducible to a linear one. 
The general solution of the initial equation is x : 1, -+ W, z( t )  = *,/- 
for every t E I,, where I, does not contain 0 and depends on c f R. 

(7) We observe that z E 0 is a solution. For x # 0 we determine t as a 
function of x. We conclude that t satisfies the Bernoulli equation 

dx x 

The general solution x of the initial equation is given in the implicit form by 
(cz2 + z)t  = 1, where c E R. 

(8) The equation is reducible to a Bernoulli equation whose general solution, 
x : I[, -+ R, is defined by x ( t )  = (2 t  + ct2)-' for every t E I,, where I, depends 
on c E R. The equation also has the solution x = 0. 
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Problem 1.8 We have 

for every t E I. Hence R is constant on I. The geometric meaning of this 
result is the following: if 2 1 , 2 2  are two distinct solutions of the linear equation 
&(t) = a( t ) z ( t )+b( t )  and z is another solution, then A(t ,  z ( t ) )  lies on the straight 

AAi line passing through the points Al(t ,z l ( t ) )  and A2(t,z2(t)) and the ratio - 
AAz 

is constant. 
Problem 1.9 We have 

which shows that y ' ( t )  = b ( t ) [ z ~ ( t )  - z2( t ) ]y ( t ) .  
Problem 1.10 We denote by 

z2(t)  - z( t )  
z2 ( t )  - m(t) 

A(t) = 

and let us observe that 

Similarly, 

satisfies 
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But 

B'(t) = A'(t)C(t) + A(t)C'(t) 

for every t E I. Hence B is constant on I. 
Exercise 1.4 (1) This is an exact differential equation. The general solution is 
given in the implicit form by t2  + 2tx + 2x2 = c, where c 2 0. 

(2) This is an exact differential equation. The general solution is given in the 
implicit form by: t3 + 6tx + 3t2 = c, where c E R. 

(3) This is an exact differential equation. The general solution is given in the 
implicit form by: 2t3  - 9t2x2 + 12t + 2x3 = c, where c E R. 

(4) This is an exact differential equation having the general solution given in 
the implicit form by -t4 + 2t2x2 + 4xt + x4 = c, with c E R. 

( 5 )  This is an equation reducible to an exact differential one by means of 
the integrand factor p ( z )  = f .  The general solution is given in the implicit 
form by t2 - x2 - cx3 = 0 ,  where c E W. The equation also admits the solution 
x = 0 eliminated during the reducing process of the initial equation to an exact 
differential one. 

(6) This is an equation reducible to an exact differential one by means of the 
integrand factor p( t )  = &. The general solution is given in the implicit form by 
x2 - t In It\ - ct = 0, where c E R. F'rom here, we deduce that x : 1, -+ Iw is 
defined by x ( t )  = &,/- for every t E I,, where I, depends on c E W. 

(7) This is an equation reducible to an exact differential one by means of the 
integrand factor p(x)  = 5 .  We have the solutions z = 0 and x : I, --f R, defined 
by x ( t )  = 2t(2c - t2)-' for every t E I,, where I, depends on c E W. 

(8) This is an equation reducible to an exact differential one by means of the 
integrand factor p( t )  = +. The general solution is given in the implicit form by 
z ln t  + 5 = c for every t > 0, where c E W. 
Exercise 1.5 (1) This is a Lagrange equation having the general solution in the 
parametric form: 

t(p) = 6p2 + cp 
1 2 ,  P E R ?  c z(p) = 4p3 + zcp 

where c E W. The equation also admits the solution x E 0. 

form: 
(2 )  This is a Lagrange equation having the general solution in the parametric 

where c E R. The equation also admits the solution x = 1. 
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(3) This is a Lagrange equation having the general solution in the parametric 
form: 

t(p) = ce-p - 2p + 2 { X(P) = c(1 +p)e-p - p2 + 2 ’  P W, 
where c E W. 

form: 
(4) This is a Lagrange equation having the general solution in the parametric 

1 c  
t(P) = --p + - 
x(p) = -c@- -p2 

q , P > O ,  
6 

or 

where c E R. The equation also has the solution x = 0. 

with c E W, and the singular solution in the parametric form: 
( 5 )  Clairaut equation having the general solution 2 : W --+ W, x(t) = ct + t2 

Eliminating p E R, we get z(t> = -5 for every t E R. 
(6) Clairaut equation, but with separable variables too. The general solution, 

x : W --+ W, is given by ~ ( t )  = ct + c, with c E W. The equation does not admit 
singular solution. 

(7) Clairaut equation. The general solution is x : W --+ W, x(t) = ct + d m ,  
with c E W. The singular solution is 

P t(p) = -- 

4 P )  = - 
{ +-,PEW. 

d m  
Eliminating p, we obtain x : (-1,l) --+ W, x(t) = d m .  

with c E W*, and the singular solution 
(8) Clairaut equation having the general solution z : W --+ W, x(t) = ct + $, 

Eliminating the parameter p, we get x : ( O , + o o )  -+ W, x(t) = f 2 4 .  
Problem 1.11 Let us choose a Cartesian system of coordinates with the origin at 
the fixed point. Let x : 1, --+ IR be the function whose graph is the curve we are 
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looking for. The equation of the tangent to the curve at the current point ( t ,  x ( t ) )  
is X - x ( t )  = x’(t)(T - t ) ,  while the distance from the origin to this tangent is 
constant if and only if there exists c E W* such that 

tx:‘(t) - x ( t )  
Jm = c *  

Solving this with respect to x ( t ) ,  we get a Clairaut equation having the general 
solution ~ ( t )  = k t  - c d m ,  with Ic E R*, and the singular solution 

Eliminating p ,  we get the implicit equation of the curve: x2 + t2 = c2, equation 
which represents a circle centered at  the origin (at the fixed point considered) 
and of radius IcI, i.e. the distance from point to the tangent. Other solutions, of 
class C1 only, can be obtained concatenating any arc of the circle with the two 
“semi-tangents” at the two endpoints of the arc. See Figure 9.1.4. 

Figure 9.1.4 

Problem 1.12 Let x : 11, 4 R be the function whose graph is the curve we are 
looking for. The equation of the tangent to the current point of the curve ( t ,  x ( t ) )  
is X - x ( t )  = z’(t)(T - t ) ,  while the intersection points of the tangent with the 
coordinate axes are A ( t  - s, 0),  and B(O,z(t) - tx:’(t)) .  See Figure 9.1.5. 

The condition irnpdsed expresies analytically in the form 

( t  - +) ( x ( t )  - tx’(t)) = -c, 4)  
where c E R*. Rearranging, we get a Clairaut equation with the general solution 
~ ( t )  = Ict f 6, with k E R*, ck > 0, and the singular solution tx = -2 We 

4 ’  
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t A 

Figure 9.1.5 

get other solutions, of class C1 only, by concatenating an arc of hyperbola with 
the semi-tangent(s) at the end(s) of the arc. 
P r o b l e m  1.13 We observe that the resultant of the two forces, gravitational and 
centrifugal, has the direction of the normal to the surface at the point considered. 
Taking Oy as rotational axis, and denoting by w the angular speed, we get, for 
the axial plane section of the surface, the differential equation 

9 2  (x) = U 2 X .  

Problem 1.14 According to the Boyle-Mariotte law, the density is proportional 
with the pressure. So, the variation of the pressure from the altitude t to altitude 
t + h is p ( t  + h) - p ( t )  = -kp ( t )h .  The equation obtained is p ’ ( t )  = -Icp(t). We 
deduce p ( t )  = e-0.000167t. 
P r o b l e m  1.15 The variation of the length on the portion x, x + h is given by 
~ ( 1 1 :  + h) - s ( x )  = kW(Z - 11:)Z-lh. We get s’(x) = kW(Z - 11:)-l. It then follows 
that s(Z) = 0.5kW1. 
P r o b l e m  1.16 Let y : [ a ,  b ]  -+ R+ be the function defined by 

y ( t )  = f k ( ~ )  X ( S )  ds 
a 

for t E 1 a,  b ] .  Obviously y is differentiable on [ a ,  b ]  and y’(t) = k ( t )  x ( t )  for every 
t E [ a ,  b ] .  Taking into account the inequality in the hypothesis and the fact that 
the function k is positive, we deduce 

for every s E [ a ,  b ] .  Multiplying both sides of the inequality above by 
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Integrating from a to t ,  we get 

Since x(t) 5 h(t)  + y(t) for every t E [ a ,  b ] ,  this completes the proof. 
Problem 1.17 From the Bellman’s inequality, it follows 

Problem 1.18 The proof follows, with minor modifications, the same way as that 
one used for establishing Lemma 1.5.3. 
Problem 1.19 Let us assume by contradiction that there exists t l  E (O,T), such 
that x(t1) > y(t1). Since x and y are continuous and x(0) y(O), there exists 
t o  E [O,T] with t o  < t l ,  such that x(t0) = y(to), and x(t) 2 y(t) for every 
t E [ t o ,  t l ) ,  Since f is nondecreasing, we have 

for every t E [ t o ,  tl 1. Integrating this inequality over [ t o ,  t l  1 ,  we get 

relation which contradicts the inequality x(t1) > y(t1). 

Chapter 2 

Exercise 2.1 (a) z ( t )  = t ( 2  - t)-’ for t E [ 1,2). (b) ~ ( t )  = $te2-t2’2 for 
t E [ 2,+00). (c) z ( t )  = tan 4t -4 t -a  for t E [ 0,;). (d) z ( t )  = d5(1 - t2)-l - 1 
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for every t E [ 0,1). (e) x ( t )  = -t Int+2t fort E [ 1, +m). (f) x ( t )  = (1-t2)(2t)-l 
for t E [ l,+oo). (g) z ( t )  = t(1nt + 1)-l for t E [ l,+oo). (h) z ( t )  = ,/m 
for t E [ l ,+oo) .  (i) x ( t )  = tet for t E [ l ,+oo) .  (j) z( t )  = (t6 + 11)(6t2)-l for 
t E [ l ,+oo) .  (k) x ( t )  = (et - e) t - l  for t E [ 1,+00). (1) x ( t )  = (t ln t  - l)-' 
for t E [ 1, t * ) ,  where t* is the root of the transcendental equation t In t - 1 = 0. 
(m) x ( t )  = ,/- for t E [1,e4). (n) x ( t )  = t-l for t E [1,+m). (0) 
x ( t )  = (2t - t2)-l for every t E [ 1,2) .  (p) x is implicitly defined by the equation 
x3 - z2 + t 2  = o for t E [ 1, +m). 
Problem 2.1 One may easily state that the function z is continuous on [ a , c ] ,  
differentiable on [ a ,  c ]  \ { b } ,  and satisfies z (a )  = 6, and z ' ( t )  = f ( t ,  z ( t ) )  for 
every t E [ a ,  c ]  \ {b}.  From the continuity of the functions f and z and the last 
equality, we deduce that z' can be extended by continuity at the point b. But 
this means that z is of class C1 on [ a ,  c ]  and, in addition, that it is a solution of 

Problem 2.2 According to Lemma 2.2.2, for every a E 1 and every 6 > 0 with 
[ a ,  a + 61 c I[, eIp(D) has at  least one solution x : [ a , a  + 61 -+ R". Let ( 6 k ) k E W  

be a sequence of positive numbers, with ( a  + 6 k ) k E W ,  strictly increasing to sup 1, 
and let x k  : [ a ,  a + 6 k ]  -+ R" be a fixed sequence of solutions of e?('D) satisfying 
xk ( t )  = x k + l ( t )  for every k E N and every t E [ a , a  -I- 6 k ] .  By Lemma 2.2.2 
combined with Proposition 2.1.2, we can always find such a sequence. More 
precisely, let us take first the solution z1 defined on [ a,  a + 611. Then the Cauchy 
problem 

emL R ,  f, a ,  0. 

= x1(a + 61) 
has at least one solution y1 : [ a + & ,  a+62] + R". We define 2 2  : [ a,  a+62] -+ W n  
by concatenating the functions z1 and y l .  We continue the procedure inductively. 
Let us observe that the function z : [a,supI[) -+ W", defined by x ( t )  = zk(t)  for 
t E [ a ,  a + 6 k ]  , is well-defined and, more than this, it is a global solution of eIp( 23). 
Problem 2.3 If > 0, then 2 : [a,+m) --+ W, x ( t )  = d m ,  is the 
unique global right solution of Ci"P(R,R,f,a,(). Similarly, if 6 < 0 then the 
function z : [ a ,  +oo) -+ R, defined by z ( t )  = - d p ,  is the unique right 
global solution of eP(R, W, f, a ,  0. If < = 0, then x : [ a ,  +m) -+ R, x ( t )  = 0, is 
the global solution we are looking for. Obviously the function f is not continuous 
at  (1,O) because f(1,O) = 0, while lim,Lof(l,x) = +m. 
Problem 2.4 Let x : (c,O] -+ R be a saturated left solution of e?(R,R,O,O). 
Then we have d ( t )  = f ( t ,  ~ ( t ) )  for every t E (c, 01. Since x'(0) = f(0,O) = -1, 
and x is of class C1, x' can take only the value -1. We recall that f has only 
the values f l .  So x ( t )  = -t + k with k E R. Since x(0)  = 0, it follows that 
k = 0, and by consequence the unique saturated left solution of eY(R, R, 0,O) is 
the function x : (-oo,O] -+ R, defined by x( t )  = -t. 
Problem 2.5 Let us assume by contradiction that this would not be the case. 
Then there would exist a compact set X C II x R such that for every L > 0 
there exist ( t ~ , z ~ ) , ( t ~ , y ~ )  E X with I l f ( t ~ , z ~ )  - ~ ( ~ L , Y L ) I I  > LIIZL - 3~11. 
Taking L = n with n E N, and denoting by t ,  = t ~ ,  xn = ZL and yn = y ~ ,  
we have l l f ( t n , xn )  - f(tn,yn)l( > n\lzn - ynII for every n E N. Since X is 

(4 - In t)
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compact and f is continuous on 1 x 52, it is bounded on X. So there exists 
M > 0 such that Ilf(t,z)II 5 M for every ( t , z )  E X. F'rom this inequality and 
from the preceding one, we deduce that nllz, - y,)) 5 2M for every n E W. It 
follows that limn-.oo(zn - 3") = 0. Using once again the compactness of X, 
we may assume without loss of generality that there exists ( t* ,  z*) E X such 
that 1imn+=(tn,zn,gn) = ( t * , ~ * , z * ) .  By hypothesis, we have that there exist a 
neighborhood V of ( t* ,  z*), and L = L(V) > 0, such that for every ( t ,  z), ( t ,  y) E V, 
we have Ilf(t,z) - f(t,y)ll I L ( ( z  - yll. Since hnn--,m(tn,zn,yn) = ( t* ,z*,z*) ,  
we deduce that there exists n(V)  E N such that for every n 2 n(V)  we have 
( tn ,  zn), ( tn ,  y,) E V. Consequently, for every n 2 n(V), we necessarily have 
n 1 1 ~  - YnII < llf(tn,zn> - f ( t n , g n ) l l  L L( ( z ,  - yn(( which, by virtue of the 
fact that zn # yn for every n E N, leads to a contradiction: (n < L )  for every 
n 2 n(V) .  
Problem 2.6 According to Problem 2.5, it suffices to prove that, for every (a,<) 
in II x 52, there exist a neighborhood V of (a,<) and L > 0, such that, for every 
( t ,  z), ( t ,  y) E V, we have 1 )  f ( t ,  2) - f ( t ,  y)II 5 Lllz - 911. Let (a, <) E 1 x R and let 
V be a closed ball centered at (a,<) included in II x a. Let ( t , z ) ,  ( t , y )  E V ,  and 
let us observe that the function 0 H ( t ,  By + (1 - e ) x )  is continuous from [ 0, 1 ] 
and takes its values in 21, and this because V is convex. Then the function 

is continuous from [ 0 ,1 ]  in R" too, and 

F'rom the hypothesis, we know that afi/Oxj, i , j  = 1 , 2 , .  . . ,n, are continuous on 
I[ x R, and therefore they are bounded on the compact set V. This means that 
there exists M > 0 such that 

for every i, j = 1,2,  . . . , n and every (s, z )  E V. Then, we have 

and therefore L = J n M .  
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Problem 2.7 The substitution x - t = y in the equation x‘ = g( t ,  x) leads to the 
equation y’ = h(y), where h : R -+ R is defined by h(y) = 1 + 2w for every 
y E R. This equation is with separable variables, while the associated Cauchy 
problem has the uniqueness property. Indeed, according to Theorem 1.3.1, the 
solution of C?(R, R, h, a ,  6) is 

y ( t ,  t‘) = H - y t  - a )  

for every t E R, where 

H ( z )  = I’ 1+?@* 

In order to complete the proof, let us remark that the functions 2 1 ,  xp : R - R, 
defined by q ( t )  = t and zp(t) = &.(t - + t for t E R, are distinct solutions of 

Problem 2.8 We begin by observing that both functions x V y and x A y satisfy 
the initial condition. Also, it is easy to see that x V y and x A y are continuous on 
J, differentiable on the open set { t ;  t E J, x ( t )  # y ( t ) } ,  and satisfy the differential 
equation at  every point in this set. This follows from the fact that the set above 
is at most a countable union of open intervals and, on each interval JI, from 
this union, we have either x ( t )  < y ( t )  for every t E JI,, or z( t )  > y ( t )  for every 
t E y k .  In order to complete the proof, it suffices to show that x V y and z A y 
are differentiable at  every point t E J at which z( t )  = y ( t ) .  Let t be such a point. 
Then, we have 

eqw,  R, f ,  a ,  4 .  

which shows that z V y  and z A y  are differentiable at  t and both derivatives at this 
point are equal, i.e. x’(t) = y ’ ( t ) .  From this simple remark, and from the fact 
that (z V y ) ( t )  = (x A y ) ( t )  = x ( t )  = y ( t ) ,  it follows that both functions satisfy 
the differential equation at t ,  which achieves the proof. 
Problem 2.9 Let us assume by contradiction that there exists t o  E [ a ,  b c ) n  [ a ,  b,) 
such that x ( to , [ )  > z(t0,q). Since (z(to,E) - x(to,q))(x(a,E) - x ( a , q ) )  L 0 and 
t +-+ z( t ,J )  - x ( t , q )  has the Darboux property being continuous, there exists 
tl E [ a ,  t o )  such that z(t1, [) = z(t1,q). From the uniqueness property, we deduce 
that x ( t ,  J )  = x ( t ,  q )  for every t E [ t l ,  bc)  n [ t l ,  bv). We get  to, r )  = x(to,q) 
which is in contradiction with the supposition made. This contradiction can be 
eliminated only if z ( t ,  t‘) 5 x ( t ,  q )  for every t E [ a ,  bc)  n [ a ,  bv). 
Problem 2.10 First, we will analyze the particular case in which f is continuous 
on I[ x fl and locally Lipschitz on R,  and then, we will show that the general 
case reduces to the former one. In addition, let us observe that it suffices to 
prove the inequality only locally to the right of the point a.  More precisely, if, 
in the hypotheses of the problem, there exists c E (a ,b)  such that y ( t )  5 x ( t )  
for every t E [ a , c ] ,  then b = c* = sup{c E [ a , b ) ;  y ( t )  5 ~ ( t )  for t E [ a , ~ ] } .  
Indeed, if this is not the case, we must have c* < b and y(c*) L z(c*). Now, 
from the fact that the inequality y ( t )  5 z( t )  holds locally to the right of c*, 
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we get a contradiction, i.e. c*, which is the supremum of a set, is strictly less 
than an element in that set. Let then c E (a ,b)  and let us define the function 

: [a ,b )  -+ R by ~ ( t )  = y(t) - ~ ( t )  for every t E [ a , c ] .  Let us assume by 
contradiction that there exists s E [ a, c] such that z(s)  > 0. Since z is continuous 
and z ( a )  5 0, the set {t E [ a ,  s ] ;  ~ ( t )  = 0) is nonempty, bounded and closed. So 
it has a last element T .  Obviously Z ( T )  = 0. Also z ( t )  > 0 for every t E ( T , s ] .  
Indeed, assuming by contradiction that this is not the case, it follows that there 
exists a point tl E (7,s) with z ( t l )  5 0. Since z has the Darboux property, 
it follows that there exists t 2  E ( t l ,  s) with z(t2) = 0, which is absurd because 
r < t 2  < s and r is the biggest number in [ c , s ]  for which Z ( T )  = 0. The 
contradiction we got can be eliminated only if z ( t )  > 0 for every t E (7, s] .  Let 
now L > 0 be the Lipschitz constant of the function f corresponding the compact 
set K = { ( t , z ( t ) ) ;  t E [ a , c ] }  U { ( t , y ( t ) ) ;  t E [ a , c ] } .  Then, we have 

for every t E [ T , s ] .  Since ~ ( 7 )  = 0, integrating the inequality ~ ' ( 7 )  5 Lz (v )  over 
h t ] ,  we get 

4 t >  L I' L47) d7 

for every t E [ T , s ] .  From Gronwall's Lemma 1.5.2, it follows that z ( t )  5 0 for 
every t E [ 7, s] ,  relation in contradiction with z ( t )  > 0 for every t E (7, s). This 
contradiction originates in the supposition that there exists s E [ a ,  c]  such that 
z (s )  > 0. So, z ( t )  5 0 for every t E [ a , c ] ,  which solves the problem in the 
particular case when f is locally Lipschitz on R. 

We can now proceed to the general case. To this aim, let us fix c E ( a ,  b)  and 
let T > 0 be such that B ( ( , r )  c R. Let us also fix A4 > 0 such that 

for every ( t , ~ )  E [ a , c ] ,  and let us observe that the set C = [ a , c ]  x B ( J , r )  is 
compact and included in I[ x IR. From Weierstrass' approximation theorem, it 
follows that, for every E > 0, there exists a polynomial fE : II x R -, W with the 
property that 

for every ( t ,  2) E C. Since f, is of class C", it is Lipschitz on C. Let us consider 
the Cauchy problem 

If(t,z> - f€(t,.)I 5 E 

(e% .c:(t) = f E ( t , . & ( t ) )  + E { .,(a) = <. 
Let 6 = min{c - a,  *} and let us observe that, for every c E (0, l), (e?), 
has a unique saturated solution xE : [ a ,  b E )  -+B ( ( , T )  with the property that 
b, 2 a + 6. Indeed, if we would assume by contradiction that b, < a + 6, from (*) 
it would follow that f E ( . ,  z,(.)) is bounded on [ a ,  be)  by M + 1. This means that 
If,(t, .)I L I fE(t,  x ) - f ( t ,  x)l+lf(t, .)I 5 E+M I l + M ,  and, by Proposition 2.4.1, 

0 
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there would exist limx,(t) = z*. In addition, in view of (iii) in Theorem 2.4.3, 

x* must belong to the boundary of the set B(J , r ) ,  i.e. Ix* - < I  = T .  On the other 
hand, we have 

t tbc 

i.e. T < T ,  which is absurd. Consequently, x, is defined at least on [ a ,  a + 61. Let 
us observe that f(t,3;) 5 f,(t,x) + & for every ( t , ~ )  E [ & , a  + 61, and therefore 
we have y'(t) 5 f,(t,y(t)), x:(t) = f , ( t , z ( t ) ) ,  and y(a) 5 z,(a) = 5. According 
to the preceding item, we have that y(t) 5 x,(t) for every t E [ a ,  a + 61. On the 
other hand, we can observe that the family {x,; E E (0 , l ) )  is uniformly bounded 
and equicontinuous on [ a ,  a + S] .  According to Theorem 8.2.1, there exists one 
sequence ( & k ) k e N  tending to 0, such that the corresponding sequence of solutions 
of (eF),k) denoted for simplicity by ( 2 k ) k E W )  be uniformly convergent on [ a ,  a+&] 
to a function 5. Passing to the limit in (C'3'),k, we deduce that Z is a solution of 
the problem d ( t )  = f ( t , z ( t ) ) ,  x(a) = 5. Since this problem has the uniqueness 
property, Z = x. Passing to the limit in the inequality y(t) 2 zk( t )  for every 
t E [ a ,  a + S] we get the required inequality. 
Problem 2.11 Let x, y : J + R be two solutions of elP(It, R ,  f, a ,  [). Taking the 
inner product on both sides of the equality z'(t) - y ' ( t )  = f ( t ,  ~ ( t ) )  - f ( t ,  y(t)) by 
x ( t )  - y(t), using (i) in Lemma 8.1.2 and the condition in hypothesis, we deduce 

for every t E Jl. Denoting by ~ ( t )  = illz(t) -y(t)1I2, the inequality above rewrites 
in the form z ' ( t )  5 w ( t ,  ,/-),/-, or equivalently (@)'(t) 5 w ( t ,  d m )  
for every t E J. Since ,/m' = 0 and the unique solution of C'F(1, R+, w ,  a ,  0) is 
the identically null function, from Problem 2.10, it follows that ,/m 5 0 for 
every t E J, which shows that x ( t )  = y(t) for every t E JI. 

Theorem 2.3.1 follows from the previous result by taking w : W -+ R, defined 
by w ( q )  = Lq for every q E W, where L > 0 is the Lipschitz constant corresponding 
to the function f on the set [a,  a + 61 x B(J , r ) .  See the proof of Theorem 2.3.1. 
Theorem 2.3.3 follows from the preceding considerations by taking w s 0. 
Problem 2.12 We begin by observing that, for every a > 0, we have 

Let us assume by contradiction that there exists a non-identically zero solution 
z : [ 0, T )  -+ R. Since W ( T )  2 0, it follows that z ( t )  2 0. Consequently, there exists 
t E (0,T) such that x ( t )  > 0. From here, it follows that there exist C U , ~  E [O,T) 
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with Q! < and x(a) = 0 < x ( t )  for every t E (a,p).  Then, we have 

for every t E ( c Y , ~ ) .  Integrating this equality from Q! to p, we get 

which is absurd. The contradiction we got can be eliminated only if the unique 
saturated solution of the Cauchy problem considered is x E 0. 
Problem 2.13 Since f is Lipschitz and g is dissipative, we have 

for every t E I[ and every x , y  E R. We are in the hypotheses of Problem 2.11, 
with w ( r )  = r for every r E W+. 
Problem 2.14 We have 

for every t E II and every x, y E R, and we are in the hypotheses of Problem 2.11. 
Problem 2.15 Let [a ,  a + S], B ( [ ,  r )  and L > 0 be chosen as in the proof of 

and let us observe that ZL, IJ are solutions of eip(II,Ro, 9, a ,  [), where the function 
g( t ,  z )  = e--L(t--a) f ( t ,  eL( t -a)z )  - Le-L(t-a)z for every ( t ,  z )  in II x 00 with Ro c R 
suitably chosen. Since g satisfies the hypotheses of Theorem 2.3.3 (see the proof 
of Theorem 2.5.2), it follows that u EE IJ, or equivalently that x = y on J. 
Problem 2.16 The functions x1,x2 : R -+ W, defined by x1 ( t )  = 0 for every t E W, 
and 

Theorem 2.3.1. We denote by u(t)  = e-L(t-a)x(t)  and by v( t )  = e--L(t-a)  Y ( t )  1 

I 
x2(t)  = 

are two distinct saturated solutions of C P ( W ,  W, f, - 1 , O ) .  
Problem 2.17 Let 1 = R, R = (-$, $) and f : I[ x R --f R, f ( t , x )  = tan x for 
every ( t ,  x) E 1 x R.  One may easily see that f does not map bounded subsets in 
I[ x R into bounded subsets in W. 
Problem 2.18 The proof follows the same way as that of Theorem 2.4.4, excepting 
the phrase preceding the inequality (2.4.4), which in this case should read : “Since 
for every compact subset J in I[ and every bounded subset B in R, f(J x 52) is 
bounded, as [ a , b ]  is compact and included in II and C is bounded, it follows 
that there exists M > 0 such that. .  . ” .  In addition, it is easy to see that the 
function f : (-;, S) x (-;,$) + W, defined by f ( t , x )  = tan t . tan x for 
( C ,  z) E (-$, $) x (-$, $) has the property in the problem, but it does not map 
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bounded subsets in II x R in bounded subsets in W. Hence, the class of functions 
with the property described in this problem is strictly broader than that one of 
the functions f which map bounded subsets in II x R into bounded subsets in R". 
Problem 2.19 The answer is in the negative as we can see by taking the sets 

X = {(x1,22) E R2; 21 2 0, 2 2  = O } ,  3 = (x1,52) E R2; 2 1  > 0, z2 = - { 
which are closed in R2 and X n 3 = 0, but dist(X, 3) = 0. 
Problem 2.20 Let x : [0,  b )  -+ R be a saturated solution of the Cauchy problem 
considered. This means that the vector-valued function z : [ O , b )  4 R2, defined 
by ~ ( t )  = ( x ( t ) ,  x'(t)) for every t E [ 0, b), is a saturated solution of the Cauchy 
problem 

2' = y 
Y' = - 9 ( 4  - f ( Y )  ( e w  { x (0 )  = Cl, y(0) = ( 2 .  

Multiplying the equation x" + f(x') + g(x) = 0 by x', integrating the equality 
thus obtained over [ 0, t ] ,  and recalling that G ( x )  2 ax2 and yf(y) 2 0, we get 

for every t E [ 0 , b ) .  Since a > 0, it follows that the function z ,  defined as above, is 
a saturated bounded solution of erP('D). According to Corollary 2.4.3, b = +oo, 
which achieves the proof. 
Problem 2.21 The uniqueness follows from Problem 2.13. We show that every 
saturated solution of eiP(R+, R", f+g ,  a, 5) is global. By virtue of Corollary 2.4.3, 
in order to do this, it suffices to prove that, if x : [ a , b )  + R" is a solution of 
C"J'(R+, R", f + 9,  a, <) with b < +oo, then x is bounded on [ a ,  b ) .  Let us observe 
that, since f is Lipschitz g is dissipative on R", we have 

for each s E [ a ,  b) .  Integrating on both sides from a to t and using Lemma 1.5.3, 
we get 

for every t E [ a ,  b) .  From Gronwall's Lemma 1.5.2, it follows that 

for every t E [ a ,  b) ,  which achieves the proof. 
Problem 2.22 Since x is bounded on [ a , b ) ,  the set of its limit points for t b 
is nonempty and compact. In order to complete the proof it suffices to show 
that this set contains exactly one element. To this aim, as x is saturated and 
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b < t 2 ,  by (iii) in Theorem 2.4.3, we deduce that the set of these limit points 
is included in the boundary of the set (w1, w2) which is (w1, w2 }. Assuming by 
contradiction that both w1 and w2 are limit points of x for t 'T b, it follows that 
there exist two sequences (tk)kcN and ( s k ) k E N ,  both strictly increasing to b and 
such that limk,oox(tk) = w1 and limk,,x(sk) = w2. In addition, we may 
assume without loss of generality (taking two subsequences and relabelling, if 
necessary) that t k  < Sk for every k E N. Let now w E (w1,w2). Then there exists 
k ,  E W such that x(tk) E (w1,w) and x(sk) E (w,w2) for every k 2 k,. Since 
x is continuous, it has the Darboux property, and therefore, for every k 2 k,, 
there exists Tk E ( t k ,  s k )  such that z ( T ~ )  = w. Obviously limk-,, r k  = b and by 
consequence w E (w1,wz) is also a limit point of x for t T b. This contradiction 
can be eliminated only if the set of all limit points of x for t T b is a singleton. 
The generalization to the n-dimensional case reads as follows: i f  R C R" is an  
open set whose boundary contains only isolated points, f : ( t l , t z )  x R -+ R" is  
continuous, a E (t l , tZ),  ( E 52 and x : [a,  b) -+ 52 is a saturated solution of 
efp((t1, t 2 ) ,  52, f, a, I )  with b < t 2  and x is bounded o n  [a,  b),  then there exists 
limt.yb x ( t )  = x * .  The proof follows the same way as before, by observing that the 
line segment joining any two distinct points in the boundary of R contains the 
whole nontrivial subsegment (which does not reduce to a single point) included 
in Q. 
Problem 2.23 Multiplying the equation x' = f(x) by x', integrating side by side 
over [ a , b ) ,  and taking into account that x (a )  = x ( b ) ,  we get 

where F : R -+ R is a primitive of the function f. Since xI2 is continuous and non- 
negative, its integral over [a,  b ]  equals zero if and only if x' = 0 on [a ,  b ] .  Hence 
x is constant on [ a, b ] .  The result does no longer hold in the case f : W" --+ R" for 
n > 1, as we can state by observing that the function x : [0,27r] -+ It2, defined 
by x(t) = ( z l ( t ) , x z ( t ) )  = (sint,cost) for t E [O,27rTT], is anonconstant solution of 
the problem 

where [ a , b ]  = [0,27r] and f : W2 --+ W2 is given by f ( x 1 , ~ 2 )  = (xz,-x1) for 
(z1, 2 2 )  E R2. However, we can prove, by using very similar arguments, that if 
f : R" --t R" is the gradient of a function of class C1 @ : R" --+ R, then every 
solution z : [ a ,  b ]  4 R", of class C1, of the problem (fp) is ~ o n s t a n t . ~  In this case 
we have 

3This condition is automatically satisfied for n = 1 because every continuous function 
f : R + R admits primitives, and thus it is the gradient of any of its primitives. 
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= @(z(b))  - @ ( z ( a ) )  = 0. 

Problem 2.24 Let [ a ,  b ]  C I. From Lemma 2.2.2 and the uniqueness assumption, 
it follows that, for every < E W", eP(I,W", f,a,<) has a unique solution x(,,[) : 
[ a ,  b ]  W". Let ( & ) ~ E w  be a sequence of points in W" with limrc+m & = (. 
Since the function f is bounded, it follows that there exists M > 0 such that 
Ilf(t,z)ll 5 M for every ( t , z )  E I[ x Wn. Also there exists m > 0 such that 
ll&II 5 m for every k E N. Then, we have 

and 

for every k E N and every t , s  E [ a , b ] .  According to Theorem 8.2.1, it follows 
that the family of functions {z(.,&); k E N} is relatively compact in the space 
C( [ a ,  b ] ;  Rn) endowed with the uniform convergence topology. Therefore, in order 
to conclude the proof, it suffices to show that the only limit point of the sequence 
( z ( . , & ) ) k E ~ ,  in this topology, is z(.,[). Let then y be such a limit point. For 
the sake of simplicity, let us denote again by (z(.,  EN the subsequence which 
is uniformly convergent to y. Then, according to Corollary 8.2.1, it follows that 
the set U = {z ( t ,  [k); k E N, t E [ a ,  b ] }  is compact. Passing to the limit in the 
equality 

z ( t )  [ k )  = <k $- f(s,  z ( S ,  <k)) ds 

for k tending to -too, and using Corollary 8.2.2 with 

we deduce that y is a solution of elp(I[, R", f ,  a, <). As, by hypothesis this problem 
has the uniqueness property, it follows that y ( t )  = z ( t , [ )  for every t E [ a , b ] ,  
which achieves the proof. 
Problem 2.25 As we have seen in the proof of Problem 2.3, if < > 0, then the 
function z(., E )  : [ 0, +m) + R, defined by z ( t ,  [) = d m ,  is the unique global 
right solution for erP(R, R, f ,  0, <). Then 

for every t 2 0 and every [ > 0. Hence limtloz(t,[) = t uniformly for t 2 0. 
Nevertheless, the function y(t) = t for t 2 0 is not a solution of O ( R ,  R, f, O , O ) ,  
because y'(0) = 1 # f(0,O) = 0. This discontinuity with respect to the initial 
data is a consequence of the discontinuity of the function f at the points of the 
form (t, 0) with t E R. 
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Problem 2.26 For every p > 0, the unique solution of CP(R, R, f, 0, O), is z(*, p )  : 
[O,+m) -+ R, defined by z( t ,p)  = Jt?+;;" - p for every t E [O,+m). We have 

for every p 2 0 and every t E [ 0,1]. So, the family of functions {z ( . ,p ) ;  p 2 0) is 
relatively compact in C([ 0, I]; R). From this observation and from the fact that 
limplo z ( t , p )  = t point-wise on [ 0 , 1 ] ,  it follows that the convergence above is in 
fact uniform on [ 0,1].  But the function y : [ 0,1] --t R, defined by y(t) = t ,  is not 
a solution of tXJ"PW, W, f ,  0,O)o because y'(0) = 1 # f ( O , O ,  0) = 0. In this case too, 
the discontinuity of the solution with respect to the parameter p is caused by the 
discontinuity of the function f at the points of the form ( t ,  ~ , p )  with z + p = 0. 
Problem 2.27 For every fixed p # 0, the function z H 3 v m  is locally 
Lipschitz on R, being of class C1. Then, according to Theorem 2.3.1, it follows 
that, for every p > 0, eip('D), has the uniqueness property. On the other hand, 
as we have already seen in Example 2.3.1, eIp('D), does not have the uniqueness 
property. 

Chapter 3 

Exercise 3.1 (1) We look for the solution as a power series of the form 

Imposing the condition that x satisfies the equation, we deduce 

From the initial condition and identifying the coefficients, we get 

from where it follows 

the series being uniformly and absolutely convergent on [ -1 ,1] ,  
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(2) Proceeding as in the preceding exercise, we find 

03 tP+ 1 
x ( t )  = C(-l)P 

p=o ( P ! ) 2 ( P  + 1)  ’ 

the series being absolutely convergent on W and uniformly convergent on every 
compact interval. 

(3 )  Similarly, we have 

( t / 2 )2p  x ( t )  = X ( - l ) P -  
p=o (P!I2  ’ 

00 

the series being absolutely convergent on W and uniformly convergent on every 
compact interval. 

(4) The solution of the equation is 

t 2 P  03 

z ( t )  = X(-l)P7 
p=o 2 p +  I)! 

for every t E R, i.e. { (sin t ) / t  for t # O 
1 for t = 0.  x ( t )  = 

(5) The solution of the equation is 

for every t E R, i.e. x ( t )  = et for every t E R. 
(6) The solution of the equation is 

for every t E R, i.e. x( t> = et2 for every t E W. 
Problem 3.1 We look for x as z( t )  = x p = o c k t k .  Asking that x satisfy the 
equation, we obtain CT==, k(k - 1)ckt”’ - C& 2kckt‘ + Cr=o 2Xcktk = 0.  By 
identifying the coefficients, we get 
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for every k E N. From these equalities, we deduce 

2PX(X - 2 )  . . . (A - 2 p  + 2) 
(2P) 

c2p = (-1)P CO 

2P(A - 1)(X - 3 ) .  * . (A - 2 p  + 1) 
( 2 p  + I)! 

c1 I C2p+l = 

for every p E N. Taking successively (CO, CI) = ( 1 , O )  and (co , ci) = (0,1)) we get 
the solutions 

2”X(X - 2 ) .  . . (A - 2 p  + 2) p p ,  
Xl(t) = 1 + C(-1)” 03 

(2P) ! p =  1 

and 
00 2P(X - 1)(A - 3 ) .  . . (A - 2 p  + 1) t2p+l 

4) = t + C(-1>” ( 2 p  + I)!  , 
p=l 

both series being absolutely convergent on W, and uniformly convergent on every 
compact interval. Since the Wronskian of this system of solutions is nonzero 
at t = 0, it follows that ( 5 1 , ~ )  is a fundamental system of solutions for the 
Hermite equation. If X E N, one can easily see that one of the two solutions is 
a polynomial. More precisely, if X is even, x1 is a polynomial of even degree, 
while if X is odd, 2 2  is a polynomial of odd degree. Conversely, if there exists a 
non-identically null polynomial which satisfies the equation, then this is a linear 
combination of z1 and 5 2 .  Since the first series contains only even powers of t ,  
while the second one only odd powers, a1 least one of these must be a polynomial. 
From here it follows that there exists a first null coefficient in the series, which 
can happen only if X E N. 
Problem 3 . 2  For X = 0 the equation takes the equivalent form 2” + (1 - t2)z  = 0. 
Let us remark that a solution of this equation is z( t )  = eet2 I2 .  For this reason 
it follows that, for every X E R, the function z( t )  = y ( t ) e - t 2 / 2  satisfies the 
equation -5‘‘ + t 2 x  = (2X + 1 ) ~  if and only if y satisfies the Hermite equation 
y” - 2ty + 2 x 3  = 0. Accordingly, the general solution of the equation is of the 
form x ( t )  = [clsl(t) + c z ~ z ( t ) ] e - ~ ~ / ~ ,  with c1,cz f R, and 21,x2 determined in 
the solution of Problem 3.1. Then, if X E N, again from Problem 3 . 1 ,  we have that 
at least one of the two solutions is a polynomial. So, at least one of the solutions 
~ ( t )  = x 1 ( t ) e - t 2 / 2 ,  or z ( t )  = ~ z ( t ) e - ~ ~ / ~  is non-identically zero and bounded on 
119, * 

Exercise 3.2  According to Theorem 3.1.1 the solution of the equation is an 
analytic function. Consequently ~ ( t )  = cr=o Cki?. Then d ( t )  = kcktk-’ 
and ~ ” ( t )  = cp=2 k(k - l)Cktk-’. Substituting in the equation and identifying 
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the coefficients, we get 

1 .4. . . (3k - 5 )  (3k - 2 )  
co for every k E N* 

c1 for every k E N* 
for every k E N. 

(3k) !  c3k = 

2 * 5 . .  . (3k - 4) (3k - 1 )  
(3k + l)! c3k+l = 

C3k+2 = 0 

Hence 

4 2 . 5 . .  . (3k - 4) (3k - 1)  t3k+1 

(3k + l)! +Cl ( 1  + 2 
k= 1 

for every t E R (the two series converge on R). 
Problem 3.3 We look for x ( t )  = ta ~ ~ . - o  C k t k .  Termwise differentiation yields 
both d ( t )  = x~==o(k+a)Ckt"+k- l  and d ' ( t )  = x r = o ( k + a ) ( k + a -  1)Ckt"'"'. 

Substituting in the equation and identifying the free term, taking into account 
that co # 0, it follows a = f n .  For a = n, we get C2k+l  = 0 and 

for every k E W .  Taking co = l/(n! 2"), we deduce that a non-identically null 
solution, corresponding to (I! = n, is given by 

for every t E R (the radius of convergence of the series above is R = +m). For 
a = -72, we get C Z k + l  = 0 for every k E N, C2k = 0 for k = 0 , 1 , .  . . ,n  - 1 and 

for every k E W .  Let us remark that, in this case, ( a  = -n), every non-zero 
solution is of the form Ax, with X E W*. Indeed, taking can = l / (n!  2"), we 
deduce that the solution corresponding to this coefficient and to a = -n coincides 
with xn. 
Exercise 3.3 We look for the solution of the form x ( t )  = cr=o C k t k .  Substituting 
in the equation and identifying the coefficients, we get 
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for every k E N*. By virtue of the conditions ~ ( 0 )  = 1 and ~ ' ( 0 )  = (ab)/c ,  it 
follows that co = 1 and c1 = (ab) /c .  Then the solution is given by the sum of the 
Gauss hypergeometric series 

00 

* tk  
( a +  k - l ) ( a+  k - 2). . .a(b+ k - l ) ( b +  k - 2). . . b  

n!(c + k - I)(c + k - 2) . . . (C + l ) ~  
Z ( t )  = 1 + c 

k = l  

for every t E (-1,l) (the radius of convergence of the series above is R = 1). 
Problem 3.4 The solutions about 0 are of the form z( t )  = x E o c k t k .  Asking z 
to satisfy the equation and identifying the coefficients, we get 

c2 = - 

c3 = - 

ck+2 = 

c1 
X(X + 1) 

(A - 1 ) ( A  + 2) 
2 . 1  

c2 
- (A %$(A + k + 1) 

(k + 2)(k + 1) * 

Then we have 

for every k = 1,2,. . . . From here, it follows that a necessary and sufficient 
condition in order that a local solution about 0 be a polynomial is that X E N. 
Problem 3.5 From Lemma 3.2.2, it follows that, for every "starting" continuous 
function z o  : [ a ,  a + 61 -+ El(<, T ) ,  the sequence of successive approximations: 

for every k E W* and t E [ a ,  a + 61 is well-defined. Let z : [ a ,  a + 61 ---f B(<, T )  

be the unique solution of (2F"PD) and let m > 0 such that 
every t E [ a ,  a + 51. Using the fact that f is Lipschitz on 
complete induction that 

for every k E N and every t E [ a ,  a + 61. From here, we 
evaluation formula, in this general case, is 

Ilzo(t) - z(t)I( L m for 
B ( [ ,  r ) ,  one proves by 

deduce that the error 

forevery k E N a n d e v e r y t E  [ a , a + 6 ]  
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Problem 3.6 Let ( Z ~ ) ~ E N  be the sequence of successive approximations defined 
on [ a ,  a + S] with values in B ( J ,  r): xo(t)  = J and 

for every k E N* and t E [ a ,  a + 61. One shows by mathematical induction that 

for every k E N and every t E [ a ,  b ] .  From the inequality above, we deduce that 

for every k , p  E N and every t E [ a ,  b ] .  Since Cr=o = e L ( b - a ) ,  it follows 
that the sequence ( z ~ ) ~ E N  is uniformly Cauchy on [ a ,  b ] .  So it is uniformly con- 
vergent on [ a ,  b ]  to a continuous function x. Passing to the limit in the recurrence 
relation which defines the sequence and taking into account Corollary 8.2.1, we 
deduce that x is the solution of the integral equation 

and implicitly of Cip( iD) .  This achieves the proof of the existence part of The- 
orem 2.3.2. Since f is Lipschitz on B(J , r ) ,  it follows that every two solutions 
x, y : [ a ,  a + 61 +. B ( J ,  r) of C!5'(9) satisfy 

for every t E [ a ,  a + 61. From Gronwall's Lemma 1.5.2, it follows that x 3 y 
which proves the uniqueness too. 
Problem 3.7 Let us define the sequence of functions: xk : [ a , b ]  --f R" by 
zo(t) = f ( t )  for every t E [ a ,  b ] ,  and 

for every k E N* and every t E [ a ,  b ] .  Obviously all the terms of this sequence 
are continuous functions on [ a ,  b ] .  Since [ a ,  b ]  is compact, there exists M > 0 
such that 11g(t,s,f(s))ll 5 M for every ( t , s )  E [ a , b ]  x [ a , b ] .  Then, we have 
IIx~l(t) - xo(t)I( 5 M ( t  - a )  for every t E [ a , b ] .  Using the fact that the function g 
is Lipschitz on W", one proves by mathematical induction that ( z k ) k e ~  satisfies 
the inequality (*) established in the solution of Problem 3.6. From this point, the 
proof follows that of Problem 3.6. 
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Problem 3.8 One shows for the beginning that x : [ a ,  b ]  -, R is a solution of the 
Cauchy problem for the integro-differential equation if and only if z is continuous 
on [ a , b ]  and 

for every t E [ a ,  b 1 .  w e  define the sequence Xk : [ a ,  b ]  + R" of successive 
approximations: ~ ( t )  = E and 

for every k E N* and every t E [ a , b ] .  Let us observe that all the terms of 
this sequence are continuous functions. Also, there exist M f  > 0 and M g  > 0 

Let 
M = Mf + ( b  - a ) M g ,  and let us observe that Ilzl(t) - z:o(t)JJ _< M ( t  - a)  for 
every t E [ a ,  b ] .  Let L j  > 0 and L, > 0 be the Lipschitz constants corresponding 
to the functions f and g, and let L = Lf + ( b  - a)Lg .  Majorizing if necessary 
the double integral over [ a ,  t ] x [ a ,  s ]  by the double integral over [ a ,  b ]  x [ a ,  t ] 
and using the complete induction method, one shows that the sequence ( 2 k ) k E ~  

satisfies the inequality (*) established in the solution of Problem 3.6. In what 
follows, one proceeds by analogy with the case of Problem 3.6. 
Problem 3.9 Let h : [O,T] + W" be a continuous function and let ,$ E R". 
According to Corollary 2.4.1, elP(9) has at least one saturated solution z defined 
either on [ 0, TI or on [ 0, T . ) ,  with Tm 5 T .  We will show in what follows that z 
is defined on [ 0, TI.  To this aim, let us assume by contradiction that 2 is defined 
on [0, Tm). Then, for every s E [ 0, Tm) and 6 > 0 with s + 6 < T. we have 

such that lIf(t,5)ll 5 qf and 119(t,s,t)ll I Mg for (4 3) E [ a , b ]  x [ a , b ] .  

z l ( s  + 6) - z'(s) = Az(s + 6) - A x ( s )  + h(s  + 6) - h(s) .  

Taking the inner product on both sides of this equality by x ( s  + 6) - z(s), using 
the dissipativity condition and (i) in Lemma 8.1.2, we deduce 

I d  
2 ds - - (II.(. + 6 )  - z(s)1I2) L: (h(s  + 6 )  - h(s) ,  z(s + 6 )  - z(s)). 

Integrating this inequality over [ 0, t ]  with t + 6 < Tm, we get 

Ilz(t + 6) - z(t)l12 I Ilz(S) - Ell2 + 2 (h(s  + 6) - h(s ) ,  z(s + 6) - z (s ) )ds .  I' 
From the Cauchy-Schwarz inequality, we have that 

(h(s  + 6 )  - h(s) , z ( s  + 6) - z(s)) I llh(s + 6 )  - h(s)(Illz(s + 6) - z(s)l(. 
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From this relation, the preceding one, and from Lemma 1.5.3, we deduce that 

r t  

Since z is continuous at t = 0, x(0)  = < and h is uniformly continuous on [ 0, TI ,  
from this inequality, we conclude that x satisfies the Cauchy’s condition of the 
existence of finite limit to the right at the point T,. So, x can be extended 
to [ 0, T,], which is absurd. This contradiction can be eliminated only if x is 
defined on [ 0, TI. The uniqueness follows from the second inequality formulated 
in the problem, which we prove below. Let 2 1 ,  2 2  be two saturated solutions 
corresponding to the initial data ti and to the functions hi with i = 1,2.  Taking 
the inner product on both sides of xi ( t )  - x;( t )  = Ax1 ( t )  - Az2(t) + hl(t) - h2(t) 
by xl(t)  - x2(t), taking into account the dissipativity of the function A and using 
(i) in Lemma 8.1.2, we deduce 

for every t E [ 0, TI.  Integrating this inequality over [ 0, t 1 ,  we get 

for every t E [O,T].  From this inequality, the Cauchy-Schwarz inequality and 
from Lemma 1.5.3, it follows that 

for every t E [ 0, TI,  which completes the proof. 
Problem 3.10 Since the function z1 is continuous on [ 0, TI,  it follows that there 
exists M > 0 such that Ilxl(t) - ( 1 1  2 A4 for every t 6 [O,T]. From the second 
inequality established in Problem 3.9, and from the fact that f is Lipschitz on 
W” of constant L > 0, we deduce 

for every k E N and every t E [ 0, TI.  From this inequality, and from the preceding 
one, using the method of complete induction, one shows that 
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for every k E W and every t E [O,T]. So, 

for every k , p  E W and every t E [ a ,  b ] .  Since CrZ0 = eL(b-a) ,  it follows 
that the sequence ( x k ) k E ~  is uniformly Cauchy on [ u , b ] ,  and hence uniformly 
convergent on this interval to a continuous function x. Passing to the limit in 
the recurrence relation (in the integral form) which defines the sequence and 
taking into account Corollary 8.2.1, we deduce that x is a solution of the integral 
equation 

z(t)  = 5 + [JWs) + f(s, x(s))l ds I' 
and implicitly of Cip(D). This completes the proof of the existence part of the 
problem 3.10. Since f is Lipschitz on B(J,r), from the second inequality estab- 
lished in Problem 3.9, it follows that every two solutions z, y : [ a ,  a+&]  -+ B(J, r )  
of erP(9) satisfy 

llx(t) - Y(t>II I ~ ' L l l Z ( S )  - Y(S)Il ds 

for every t E [ a ,  a + 61. €+om Gronwall's Lemma 1.5.2, it follows that x = y 
which completes the proof of the uniqueness part. 
Problem 3.11 We begin by observing that, from the hypothesis imposed on the 
function A, it follows that this is dissipative on R". From Problem 3.9, we deduce 
that for every 5 E R" erP(5) has a unique global solution and therefore P is well- 
defined. Let S,q E R" and let us denote by x and y the two global solutions 
of CY(6)  and C!ip(q) respectively. Taking the inner product on both sides of the 
equality d ( t )  - y ' ( t )  = Jlx(t) - Jly(t) by x ( t )  - y(t), taking into account the 
dissipativity condition satisfied by A and using (i) in Lemma 8.1.2, we obtain 

for every t E R+. Multiplying both sides of this inequality by the integrant factor 
, we deduce e 2 w 2 t  

for every t E W+.  From here, integrating over [ 0, TI,  we get 

Recalling that z(0) = <, y(0) = 7, z (T)  = ?(<) and y(T) = iP(q), the last 
inequality implies 

Ilw9 - w?)II L 4 r  - 7711 
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for every ( , q  E R", where q = e-w2T. From this property it follows by mathe- 
matical induction that ((&+I - &(( 5 q k ( ( &  - for every k E W and therefore 
( ( J ~ C + ~  - &(( 5 )I& - Cyz: q"2 for every lc,p E W*. Finally, by observing 
that the geometric series Cp=o qk is convergent because q E (0, l), it follows 
that the sequence (&)&W is convergent to an element q E W". Passing to the 
limit in the recurrence relation & = Ip(zk-1) and taking into account the con- 
tinuity of the function P, we conclude that q = y ( ~ ) ,  which is equivalent to 
q = z(O,O,q) = z(T,O,q). The proof of (1) and (2) is complete. Finally, if f is 
T-periodic and z is a global solution of the equation ~ ' ( t )  = Az(t)  + f ( t ) ,  then 
the function X T  : W+ 4 R", defined by Z T ( ~ )  = z(t + T) is also a solution of 
the same equation. Since z(T, 0,q)  = q,  from the uniqueness property, it follows 
that z ( t  + T,O,q) = z(t,O,q) for every t E W+. This means that z(.,O,q) is 
periodic of period T ,  which completes the proof of (3).  In order to prove (4), 
let us observe that if z : W+ 4 R" is a T-periodic solution of the differential 
equation ~ ' ( t )  = Jlz(t) + f ( t )  then ( = z(0) is a fixed point of the function Ip, i.e. 

= ~ ( t ) . ~  Since Y is a strict contraction (Ilr~(t) - ~ ( q ) l I  5 q l l t  - qll for every 
E,q E R", where q E (0, l)), it follows that Ip has at most one fixed point. The 
proof is complete. 

Chapter 4 

Problem 4.1 If z is bounded on R+, there exists m > 0 such that 

for every t E R+ . From the second equation in (S) , we deduce 

for every t ,  s E R+. Since b is absolutely integrable over R+,  for every E > 0 there 
exists 6 ( ~ )  > 0 such that 

for every t , s  E R+, with t 2 6 ( ~ )  and s 2 6 ( ~ ) .  From the inequality previously 
established, it follows that y satisfies the Cauchy's condition of the existence of the 
finite limit at +oo. Let C = limt++oo y ( t ) .  It follows then that limt++= d ( t )  = e.  
Assuming by contradiction that .t # 0, we deduce that z is unbounded. Indeed, 
to fix the ideas, let us assume that C > 0. Then, there exists t o  > 0 such that, for 

4Under the extra-assumption that f is T-periodic, the converse of this assertion also 
holds true, as we have already seen. 
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every t 2 t o ,  we have ~ ( t )  E [$(t  - t o )  + z(to), !f(t - t o )  + z( to) ] .  Accordingly II: 
is unbounded on W+.  This contradiction can be eliminated only if e = 0, which 
proves (i). 

In order to prove (ii), let us observe that the Wronskian of the system (S) is 
constant. Let us consider then a fundamental system of solutions of (S). Assum- 
ing that both solutions are bounded on R+, from what we have already proved, 
it follows that 

c = lim W ( t )  = 0 

relation in contradiction with the fact that the system of solutions is fundamental. 
This contradiction can be eliminated only if at least one of the two solutions is 
unbounded on R+ , which shows (ii). 
Problem 4.2 By virtue of Theorem 2.6.1 

t-b+03 

is the solution of the Cauchy problem 

X ' ( t )  = f & ,  S ( t ) x )X( t )  { X ( a )  = 3,. 

According to Liouville Theorem 4.1.5, we have 

det(X(t)) = det(X(a))exp ([ tr fZ(s, S(s)J) d s )  

for every t E [ a, b ) ,  which achieves the proof. 
Problem 4.3 Since H is of class C2, from Schwarz theorem (on the equality 
of the second order mixed partial derivatives), we conclude that the function 
f : W2" --+ R2n, defined by 

where p ,  q E Rn, is divergence free. The conclusion follows from Problem 4.2. 
Problem 4.4 F'rom the definition of the matrix etA and from the continuity of 
the mapping J1 H AT, it follows that 

which shows that etA is orthogonal. 
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Problem 4.5 Let X be a fundamental matrix of the system x' = A x  which is 
orthogonal at t = 0. Obviously X satisfies X' = AX, and therefore 

Hence X' is a solution of the Cauchy problem 

On the other hand X ( t ) X - ' ( t )  = J n ,  which implies ( X ( t ) x - ' ( t ) ) '  = 0. Then we 
have 

x'(t)x-l(t) = - X ( t )  (x-1)' ( t )  

or 
(x-')I ( t )  = - x - ' ( t ) X ' ( t ) X - l ( t )  = x-'(t)  (-A) = x-'(t)A'. 

It follows that X-l is also a solution of the Cauchy problem above, while from 
the uniqueness part of Theorem 4.1.1, we deduce that X(t)' = X - ' ( t )  for every 
t E R. 
Problem 4.6 The proof follows the same lines as those in the proof of the pre- 
ceding problem. 
Problem 4.7 We have 

Ak - A"" = (A - X3")(Ak-1 + XAk-2 + * * * + X"l3") 

for every k E N*. From here, one observes that every root of the characteristic 
equation det(A - X3,) = 0 is also a root of the equation 

k 

Since the function det is continuous, passing to the limit in the equality above for 
k tending to +m, we deduce that, if X is a root of the equation det(A- X3,) = 0, 
then, for every t E R, etx is a root of the equation det (etA - pYn) = 0. 
Problem 4.8 The matrix A is symmetric if and only if (Az,~) = (z,Ay) for 
every z,y E W". So, if A is symmetric, we have 

Passing to the limit for k tending to +m in this equality and taking into account 
that the inner product is a continuous function of both variables, we deduce 
(etAx, y) = (2, etAy) for every 2, y E W" and t E W, which shows that etA is 
symmetric for every t E W. 
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Problem 4,9 Let X : R 4 M,,,(W) be a fundamental matrix of the system 
with the property that X ( 0 )  is symmetric. Since the inverse of every self-adjoint 
matrix is symmetric, while X - ’ ( t )  = X ( - t )  for every t E R, it suffices to consider 
only the case t > 0. Let then t > 0, and let us choose a > 0 with the property 
that t E [ 0, a ] .  Let k E N*. Let us divide the interval [ 0, a ]  in k equal parts 
0 = t o  < tl < < t k - 1  < t k  = a and let us define Arc : [ O , a ]  --+ Mnxn(R), 
by &(t)  = &(ti) for t E [ t i ,  t i+l),  i = 0 ,1 , .  . . , k - 1 and &(a)  = & ( t I , - 1 ) .  Let 
us define the function XI, : [O,a] --+ MnX,(R) by &(t)  = e( t - t i )A(t i )XI , ( t i )  for 
t E (t i , t i+l],  i = 0 ,1 , .  . . , k - 1 and X I , ( O )  = X ( 0 ) .  One may easily see that XI, 
is continuous on [ 0, a ] ,  differentiable on the set [ 0, a ]  \ {ti; i = 1 , 2 , .  . . k}, and 
satisfies 

X’,(t) = J L k ( t ) X k ( t )  (*> 
at every point of differentiability. Let us observe that XI, is obtained by the 
concatenation of the solutions of the Cauchy problems of the type 

z:: = Jl(t&l)Zi { Zi(ti-1) = zZ-l(ti-l), Zo(0) = X ( 0 )  

for i = 1 , 2 , .  . . , k. From the previous problem, we successively deduce that &(t)  
is symmetric for every t E [ t i - 1 ,  ti] and i = 1 , 2 , .  . . , k. So, XI,@) has the same 
property for every t E [ O , a ] .  Finally, let us observe that the sequence of func- 
tions ( X I , ) I , ~ W +  is uniformly bounded and equicontinuous on [ 0, a ] .  This is an 
immediate consequence of the fact that XI, satisfies 

 XI,(^) = X ( 0 )  + JLI , ( s )XI , (S)  ds I’ 
for every k E N* and every t E [ 0, a ] ,  and of the boundedness of the function A 
on the interval [ 0, a ] .  By virtue of Theorem 8.2.1, it follows that, at least one 
subsequence, ( X ~ ) I , E N *  is uniformly convergent on [ O , a ]  to a function ’41. Since 
limI,-,w & = A uniformly on [ 0, a ] ,  passing to the limit in (*), we deduce that 
Y ( t )  = X ( t )  for every t E [ O , a ] .  We conclude the proof with the remark that 
y ( t )  is symmetric for every t E [ 0, a ] being the uniform limit of a sequence of 
functions having the same property. 
Problem 4.10 Since etA = 5’+tJl+xz, it follows that, for t > 0 sufficiently 
small, all the elements of the matrix e tA,  which are not on the diagonal, have the 
same sign with the corresponding ones of the matrix tA. Hence the condition is 
necessary. In order to prove the sufficiency, let us observe that, by virtue of (ii) in 
Proposition 4.3.1,  for every t ,  s E R+, we have etA = et(Afs’)  e --st’ . M oreover, if 
s is large enough and A satisfies the condition of the problem, t (A + s7) has only 
positive elements. Then et(A+s3) has the same property too. Since e-st3 = e - ? J  
has only positive elements and the product of two matrix with positive elements 
is a matrix with positive elements, this completes the proof. 
Problem 4.11 Let us define f : M,x,(LR) -+ M,x,(3) by f ( X )  = AX + X’B 
for every X E MnX,(2). Following the same way as that one used in the proof 
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of Corollary 2.4.4, one concludes that f is globally Lipschitz and therefore the 
Cauchy problem considered has one unique global solution. To complete the 
proof, it suffices to show that X : R -+ Mnx,(W), defined by X ( t )  = etAeetB, 
is a solution of the Cauchy problem. We have X ( 0 )  = eoJLeeoB = e. From 
Theorem 4.3.1 it follows 

The proof is complete. 
Problem 4.12 Let us observe that 

+oo 
A X  + X'B = - Jd JLeSAeeSIBds - I+" esA eeSB 23 ds 

+0° d d = - Z (e'") eeSBds - 6'" es"eZ (esB)  ds 

= -2eSAeesB 1,'m + 1'" AeSAeesBds + l'" eSAeesB'B ds = 2 e  - A X  - X B ,  

the last equality being satisfied if and only if lims..++oo es"eesB = 0. Since there 
exists lims,+, esAeeslB, in order to complete the proof it suffices to show that, 
the inf-limit, for s tending to +oo, of each element of the matrix esJlCes' is 0. 
To this aim let us observe that, by virtue of the convergence of the integral 

it follows that 
m+ 1 m5:ook eSAeesBds = 0. 

Also, from the mean-value theorem, it follows that, for every element aij of the 
matrix etAeetB there exists tm( i j )  E [m ,m + 11 such that 

From this relation and from the preceding one, it follows that 

lim a i j ( t m ( i j ) )  = O 
m++m 

for every i, j = 1 , 2 , .  . . ) n, which achieves the proof. 
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Problem 4.13 The power series which define both functions t H costA and 
t H sintA are termwise differentiable. From this observation, we deduce that 

d d - (costJ1) = -J-lsintA = -(sintA)A and - (sintA) = AcostA = (costA)A, 
d t  d t  

which proves (1). From here, it follows that 

cost& sintA ) '= ( o "> ( costA sintA 
-JL sin tA JL cos tA - A ~  o -AsintA   cost^ 

which proves the first part of (2). The matrix Z( t )  is fundamental for the system 
if and only if det Z(0) # 0, relation which holds true if and only if det A # 0. 
Problem 4.14 Let us remark that, from the variation of constants formula (see 
Remark 4.3.3), it follows 

for every rn E N* and every t E [a ,b] .  Let L1 > 0 be the Lipschitz constant 
corresponding to the function f, let M > 0 be such that llzl ( t )  - zo(t)ll 5 M for 
every t E [a,  b ] ,  and let us define L = e(b-a)llA1lM [L1 + ~ ~ A ~ ~ ~ ] .  Using the fact 
that ]IAq]1 5 IIAll~llqll for every r,~ E Rn (see (Nd) ,  from Lemma S. l . l ) ,  and by 
observing that Ile(t-S)AIIM 5 e(b-a)lIAIIM for every t ,  s E [a ,  b ]  with s 5 t ,  one 
shows by mathematical induction that 

for every Ic E N and every t E [a,  b ] .  From this point, the proof follows the same 
arguments as those used in the solution of Problem 3.10. 
Exercise 4.1 The general solutions of the systems are: 

zl ( t )  = cle-' + c2e5' 
(1) { m(t) = -c1ewt + 2c2e5'. 

21 ( t )  = c1 cost + cg  sin t 
(2) { z2(t) = -c1 sint + c2 cost. 

z1 ( t )  = cle-' cos t + cae-' sin t 
(3) { z2(t) = i(c2 - Zcl)e-'cost - i(c1 + 2c2)e-'sint. 

m(t)  = L(cle2' + c2 - 2t2 - 2t - 1) 
- c2 + 2t2 - 2t - 1). 

m ( t )  = 2sint - (2cl + c2)t + c1 
~ ( t )  = -2cost - 3sint + (4cl + 2c2)t + c2. 

z l ( t )  = (c1 - 4c2)e2' + 4(cl + ~ , ) e - ~ '  + t2 + t 
zz(t> = (-c1+ 4C2)e2' + (c1 + c 2 > c 3 t  - $. 

(4) { z2(t) = g(c1e2' 'I 

( 5 )  { 
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z:l(t) = -cle-t + 2c2e2t 
zz(t) = -c3eWt + 2c2e2t 
~ 3 ( t )  = (c1 + ~ 3 ) e - ~  + 2 ~ 2 e ~ ~ .  

Here C I , C Z , C ~  E W and t E W. 
Exercise 4.2 The general solutions of the equations are: 

(1) z ( t )  = clet + ~ 3 e ~ ~ .  

(2 )  z ( t )  = cle-t + czte-t. 

(3) z ( t )  = c1 cos 2t + c2 sin 2t. 

( 5 )  z ( t ) = c ~ c o s 3 t + c ~ s i n 3 t + ~ c o s 2 t .  

( 6 )  z ( t )  = ci cos t + c2 sin t + sin t In I sin t (  - t cos t ,  for t E ( k ~ ,  ( I c  + l ) ~ ) ,  

(7) z(t> =clcost+czsint+ $ s i n t +  2(4sin2tsint+cos3t) - h s i n 3 t  

(8) z ( t )  = cle2t + c2te2t + $ezt .  

(9) z(t> = c le f i t  + cze-4 '  + et2. 

k E Z. 

+ cos 2t sin t .  

Here C ~ , C Z , C ~  E R and, with the exception of item (6 ) ,  t E R. 
Exercise 4.3 The general solutions of the equations are: 

(1) ~ ( t )  = c1 + c2et + ~ 3 e ' ~ ~ .  

( 2 )  z ( t )  = c1 + c2e-t + c3et. 

(3) z(t> = cle-t + c2et cos $t + c3e3 sin Gt. 
(4) z ( t )  = clet sin t + c2et cost + c3ewt sin t + 
( 5 )  z( t )  = clet + c2tet + c3t2et - t - 3. 

(6 )  z ( t )  = c ~ c o s t + c z s i n t + c ~ t c o s t + c ~ t s i n t .  

(7) x ( t )  = ci + cat + c3et + a t e t  + p e t  - 2tet + 3et. 

(8) z ( t )  = cle-t + c2 cost + c3 sint + y e t .  

(9) z(t> = c1+ C2e-3t + c3te-st + $ - g.  

cost. 
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Here C I , C ~ , C ~  E W and t E W. 
Exercise 4.4 (1) This is an Euler equation. The general solution, x : I -, W, is 
defined by x ( t )  = clt-'+c2t-' In It\ for every t E I, where I = (-00,0) or (0, +00) 

and c1, c2 E W, c: + ci # 0. The equation also admits the solution x : W -, W, 
x = 0. 

(2) Euler equation. The general solution is x : I -, W, x ( t )  = c1t-l + c2t3 

for every t E I, where I = (-XI, 0) or (0, +00), where c1 E W* and c2 E W. The 
equation also admits the solution x : R --f W, defined by 

(3) This is an Euler equation whose general solution, x : II + W, is defined by 
x ( t )  = c1 cos(lnt2) + c2 sin(1n t 2 )  for every t E I, where I = (-00, 0) or (0, +m) 
and c1, c2 E W, cf  + c$ # 0. The equation also admits the solution x : R -, R, 
x = 0. 

(4) This is an Euler equation whose general solution, z : R -, W, is defined 
by x ( t )  = clt + c2t2 + c3t3 for every t E R, where c1, c2, c3 E W. 

( 5 )  The equation is reducible to one of Euler type by means of the substitution 
3t + 2 = T .  The general solution is x : I + W, defined by x ( t )  = c l ( 3 t  + 2)-$ + c2 

for every t E I, where I = (-XI, -!), or ( -$,+00),  while c1 E W*, c2 E W. The 
equation also admits the solution x : R + R, defined by x ( t )  = c for every t E W, 
where c E W. 

(6) The equation is reducible to one of Euler type. The general solution, 
z : I + W, of the initial equation is defined by x ( t )  = c1t-l + c2t2 for every t E 1, 
where I[ = (-00,0) or (0, +00), while c1, c2 E R. 

(7) This is an equation reducible to one of Euler type having the general 
solution x : 1 -+ R, defined by x ( t )  = c1 cos(1n It/) + c2 sin(1n Itl) for every t E 1, 
where I = (-m, 0) or (0, +XI) and c1, c2 E W. 

(8) This is a non-homogeneous Euler equation. The general solution is 

(9) The substitution l+ t  = T leads to a non-homogeneous Euler equation with 
the general solution defined by x ( t )  = c1(1+ t )2  + c2 (1 + t )  In 11 + t 1 + (1 + t )3  for 
every t E 1, where I = (-00, -1) or ( - 1 ,  +GO), c1 E W and c2 E W*. The equation 
also has the solution x : W --f R, defined by x ( t )  = c( 1 + t ) 2  + ( 1  + t )3  for every 
t E W, where c E R. 

(10) The equation is of Euler type, non-homogeneous, having the general 
solution x : 1 4 R, defined by x ( t )  = clt + cat In (tl + t ln2 It1 for every t E I, 
where I = ( - -oo,O) or (0, +m) and c1, c2 E W. 
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Chapter 5 

Problem 5.1 Before proceeding to the proof of the four assertions, let us observe 
that, in the case of the equation considered, every fundamental matrix is of type 
1 x 1 and of the form 

~ ( t )  = <eJi ds 

for every t E R, where < E W*. 
(1) In view of Theorem 5.2.2, the null solution of the equation considered 

is stable if and only if there exists a fundamental matrix bounded on R+, or 
equivalently every fundamental matrix is bounded on R+. According to the 
remark from the beginning, this happens if and only if 

for every t ,to E W + ,  t o  5 t .  If the mentioned inequality is satisfied, we have 
~ ( t )  5 eK(O) for every t E R+, and therefore x is bounded on R+. Hence the 
null solution is stable. Conversely, if there exists M > 0 such that x ( t )  5 M for 
every t E R+, then from (*), one observes that the function K : R+ -, R, which 
satisfies the inequality in question, can be taken 

t0  

K(to) = 1nM - a(s )  ds 

for every t o  E R+. 
(2) By virtue of Theorem 5.2.4, the null solution of the equation is uniformly 

stable if and only if there exists a fundamental matrix X ( t )  and there exists M > 0 
such that l l X ( t ) X - l ( t ~ ) l l ~  5 M for every t , t o  E W+, t o  5 t .  According to the 
initial remark, the null solution is uniformly stable if and only if 

for every t ,  t o  E R+, t o  5 t ,  or equivalently 

for every t , t o  E W + ,  t o  5 t. 

and only if 
(3) According to Theorem 5.2.2, the null solution is asymptotically stable if 

lim 4 s )  ds  - - 0 ,  
t++m 

which happens if and only if 
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(4) According to Theorem 5.2.5, the null solution of the equation is uniformly 
asymptotically stable if and only if 

It is evident that the mentioned inequality implies the relation above and therefore 
the uniform asymptotic stability of the null solution. Conversely, let us assume 
that the null solution is uniformly asymptotically stable. Then, there exists p > 0, 
and for every E > 0, there exists T, 2 0, such that, for every t o  2 0, every 
t 2 t o  + TE and every ( E R with I(] 5 p ,  we have 

Let us fix q E (0, l), let us take ( = p, E = qp and let us denote by T = T k p .  The 
preceding inequality rewrites, in this particular case, in the equivalent form 

for every t o  2 0 and every t 2 t o  + T .  On the other hand, the null solution is 
uniformly stable, being uniformly asymptotically stable. According to (2), there 
exists K 2 0 such that 1; 4 s )  ds 5 K (* * *I 
for every t o  2 0 and every t 2 t o .  Let t 2 t o .  Let us observe that there exists 
m E N such that t E [to + mT, t o  + (m + 1)T). We have 

Let us remark that, by virtue of the inequality (**), each of the first m terms in 
the sum above does not exceed lnq, while the last term is bounded from above 
by K (see (* * *)). We deduce that 

Since t - t o  5 mT, it follows that m 2 f ( t  - t o ) ,  and by consequence 

for every t , to  E R with t 2 t o .  Hence, the mentioned inequality holds true for 
K 2 0 and a = -? determined as above. 
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Exercise 5.1 (1) The unique saturated solution x(-, a,  [) of equation (l), satis- 
fying the initial condition x ( a , a , [ )  = (, is x ( . , a , t )  : [a,+oo) -+ W, defined by 
x ( t , a , J )  = Jet-a for t 2 a. So, limtT+m Ix(t,E)I = +m for every ( E W*, and by 
consequence, the null solution is unstable. 

(2) The unique saturated solution, x( . ,a ,  t‘), of equation (2), which satisfies 
the condition x (a ,  a ,  6) = <, is x(-, a ,  c )  : [ a ,  +m) -+ W, defined by x ( t ,  a ,  [) = [ 
for t 2 a.  Then, for every E > 0 and every a >_ 0 there exists 6(c ,a)  = c > 0 such 
that, for every ( E W with 1“ 5 6 ( ~ , a )  we have Ix(t ,a,()l  5 E for every t 2 a. 
Hence, the null solution is uniformly stable. 

(3) The unique saturated solution x(., a ,  <) of equation (3) which satisfies the 
condition z (a ,  a ,  [) = < is x(., a ,  c )  : [ a ,  +m) + R, ~ ( t ,  a ,  6) = Je-(t-a) for t 2 a.  
So, limtT+oo I ~ ( t , ( ) l  = 0 for every ( E W* and, by consequence, the null solution 
of equation (3) is globally and uniformly asymptotically stable. 

(4) The function f : W -+ R, defined by f(x) = -2x + sinx, is of class C1 and 
satisfies f(0) = 0 and fL(0) = -1. We are in the hypotheses of Theorem 5.3.3, 
and consequently the null solution of equation (4) is asymptotically stable. 

(5) Let a 2 0 and [ E R. The unique saturated solution x : Ia,t -+ W of 
equation (5), which satisfies x ( a , a , l )  = E ,  is defined by 

for every t E I[a,(, where I[,,€ = [ a ,  +m) if [ 5 0 and Ia ,< = [ a ,  a + $) if > 0. 
Since x(., a ,  () is not global for < > 0, the null solution is not stable. We notice, 
however, that the continuity property (ii) required by Definition 5.1.5 is satisfied 
in this case “from the left” of [ = 0. Indeed, this follows from the inequality 

for every ( 5 0 and every t 2 a. 

x (a ,  a ,  [) = E ,  is defined by 
(6) The unique saturated solution x : Ia,< -+ R of equation (6), which satisfies 

f o r e v e r y t E I a , E , w h e r e I a , E = [ a , a - ~ )  i f J < O a n d I a , E = [ a , a + m )  i f ( 2 0 .  
Since %(.,a,<) is not global for [ < 0, the null solution is not stable. Again, the 
continuity property (ii) required by Definition 5.1.5 is satisfied in this case “from 
the left” of [ = 0. 

(7) The function f : (-;, 5) --+ R defined by f(z) = -tan z is of class C1, 
f(0) = 0 and fL(0) = -1. We are in the hypotheses Theorem 5.3.3 and therefore 
the null solution of equation (7) is asymptotically stable. 

(8) The function f : W + W, defined by f(x) = - sinx, is of class C1, f(0) = 0 
and fL.0) = -1. We are, also, in the hypotheses Theorem 5.3.3 and therefore the 
null solution of equation (7) is asymptotically stable. 
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(9) The same arguments used in the last two exercises lead to the conclusion 
that the null solution of equation (9) is asymptotically stable. 
Exercise 5.2 (1) The roots of the characteristic equation det(J1 - X3) = 0 are 
X1,2 = - l & f i .  Since -1+fi > 0, the system (1) is unstable. See Theorem 5.2.7. 

(2) The roots of the characteristic equation det(A - X3) = 0 are X1,2 = hi. 
Since both these roots have the real part 0 and are simple, the system (2) is 
uniformly stable. See Theorem 5.2.7. 

(3) The roots of the characteristic equation det(A - XI) = 0 are X1,2 = -1 &z. 
Hence the matrix A is hurwitzian and therefore the system (3) is uniformly and 
globally asymptotically stable. See Theorem 5.2.6. 

(4) Since the roots of the characteristic equation det(J1- XJ) = 0 are X1,2 = 
$(l  f m), and $(1 + m) > 0, the system (4) is unstable. See Theorem 5.2.7. 

(5) The matrix J1 is hurwitzian and, by consequence, the system (5) is uni- 
formly and globally asymptotically stable. See Theorem 5.2.6. 

(6) The roots of the characteristic equation det(JI - XJ) = 0 are A1 = -4 
and A2 = 0. Since A2 = 0 is simple, the system (6) is uniformly stable. See 
Theorem 5.2.7. 

(7) We may use Theorem 5.2.7, but we may also conclude directly, by observ- 
ing that every global solution of the system (7), having equal components, is of 
the form ~ ( t )  = c(et, et ,  e t )  for every t E R, where c E W. From this observation, 
it follows that the system is unstable. 

(8) Let us observe that every global solution of the system (8) having equal 
components, is of the form x ( t )  = c(e2t,e2t,e2t) for every t E R, where c E R. It 
follows that the system is unstable. 

(9) The roots of the characteristic equation det(J1- X3) = 0 are XI = 0 and 
x2,3 = hi&. Since all these roots have the real part 0 and are simple, the system 
(9) is uniformly stable. See Theorem 5.2.6. 
Problem 5.2 Using the variation of constants method - see Theorem 4.5.7 - 
we deduce that the general solution of the equation considered is 

1 rt 

where <I, <2 E Jw. Then we have 

for every t E W+. 
Problem 5.3 We begin by noticing that, in the case of the second-order equation, 
the uniform stability of the null solution is equivalent to the uniform stability of 
the null solution of the first-order system 
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Also, the equation being linear, every saturated solution is global. So, its unique 
saturated solution, z(., a, ( 1 ,  &), with z ( a ,  a, [I ,&) = [ I ,  z ' (a ,  a, 61, &) = <2, is 
defined on [ a ,  +m). By the variation of constants method (see Theorem 4.5.7), 
we deduce that 

t 2  z(t  , a ,  (1, Jz) = J1 cos w (t -a)+ - sin w (t-a)+ f (s)z( s, a, <I, (2) sin w (t -s) ds  
W 

for every t 2 a. It follows that 

and 

for every t >_ a. F'rom Gronwall's Lemma 1.5.2, we get 

and 

lzl(t, a ,  (1 , t 2 ) l  L 

for every J1, E2 E R and every 2 
there exists m > 0 such that 

2 a. Since f is absolutely integrable over R+,  

for every a ,  t E R+, t 2 a. From the last three inequalities, recalling that z' = y, 
we deduce 

z2@, a ,  (1, Jz) + y2(t, a ,  El  , J2) L M (E? + E22) 
for every E l ,  & E R and every a ,  t E R+, t 2 a ,  where M > 0 depends only on m 
and on w ,  but not on a ,  t ,  E l ,  J2. This inequality shows that the null solution of 
the system (S) is uniformly stable. 
Problem 5.4 Since A is hurwitzian, according to Lemma 5.2.1, it follows that 
there exist M > 0 and w > 0 such that IletAIIM 5 Me-wt for every t 2 0. Let 
us fix a number L > 0 with the property M L  - w < 0. Using the fact that 

lim Il';s(t)lln: = 0, we conclude that there exists c 2 0 such that IIB(t)llM 5 L 
for every t 2 c, where L > 0 is fixed as above. So, IlB(t)xIl 5 Lllzll for every t 2 c 
and every z E R". The conclusion follows from a simple variant of Theorem 5.3.1 
which instead of the hypothesis IIF(t,z)II 5 Lllzll for every ( t , ~ )  E R+ x R ,  uses 
the hypothesis IIF(t,z)II 5 Lllxll for every t 2 c and every x E R,  where c 2 0. 

t-++cc 
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Problem 5.5 From the variation of constants formula - see Remark 4.3.3 - 
we have that the unique global solution x( . , r )  : W+ --$ W" of the system, which 
satisfies x(0, r )  = I ,  also satisfies 

for every t E R+. Since Jl is hurwitzian, according to Lemma 5.2.1, there exist 
M > 0 and w > 0 such that lletAllM 5 Mewwt for every t E R+. Then, we have 

for every t E W+. Multiplying both sides of this inequality by ewt, and denoting 
by y(t) = ((x(t)l(e"', we deduce 

for every t E R+. From Gronwall's Lemma 1.5.2, it follows that 

for every t E R+. Since 

from the preceding inequality, we deduce that y(t) 5 kllS(l for every t E W + ,  where 
Ic = MeMm. Multiplying both sides of this inequality with e-"', and recalling 
the definition of y(t), we get the conclusion. 
Problem 5.6 The change of variable s = leads to a system of the type 
considered in Problem 5.4 excepting that, in this case, the interval of definition 
of the function 23 is (O,+m) and not [ O , + o o ) .  Indeed, putting ~ ( t )  = y(s), we 

m + l  

have 
dx dyds 
dt ds dt 
-(t) = --(t) = 

and the initial system is equivalent to 

dY -(s) = [A 
ds 

-- m A = Ao, B(s) = [(m+l)s] -:1A1+[(m+l)s]-+&+. . *+[(m+l)s]-..+lAm. 
From the hypothesis, we know that A is hurwitzian. Also, we may easily see that 

lim l lB (s )11~ = 0. From this point, following the same way as that one used 

for solving Problem 5.4, one shows that for every a > 0 there exists 6 ( a )  > 0 
s + + m  
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such that lim y(s,a,J) = 0 for every 6 E B(O,6(a)).  We conclude the proof by 

recalling the relationship between y(s) and x ( t ) .  
Problem 5.7 Since 6 1  < Jz, from Problem 2.9, we deduce that x(t,Jl) < x ( t , & )  
for every t 2 0 and also that, for every a 2 0 and every E E (x(a,~~),x(a,&)), 
the unique saturated solution x(., a ,  6) of the equation considered, which satis- 
fies x(a,a,J)  = J, also satisfies x ( t ,a , J )  E (x(t,J1),z(t,Jp)) for every t in the 
interval of definition. Assuming that this solution is not global, it follows that 
it is bounded on the interval of existence [ a ,  Tm). In view of Corollary 2.4.3, it 
follows that it is continuable. This contradiction can be eliminated only if x(., I) 
is global. From the condition in the statement and the preceding inequality, it 
follows that, for every a 2 0 and every E > 0, there exists 6(e ,a)  > 0 such 
that for every a 2 a,, every t 2 a, and every 7 E (x(a,(1),x(a,(2)) we have 
Ix(t ,  a,  7) - x* I 5 E .  We distinguish between two cases: a 2 a, and a < a,. If 
a 2 a,, taking 6(e,a> = min{x(a,() - x(ajJ~))x(a,(2) - x ( a , ( ) } ,  we get that 
Iz(t, a ,  7) - x ( t ,  ()I 5 E for every t 2 a, which is nothing else but the condition 
of stability. If a < a,, then, from Theorem 2.5.2, it follows that there exists 
&(€ ,a )  > 0 such that, for every 7 E W with Ix(a,J) - 71 5 6(e ,a) ,  we have 
Ix( t ,a,J)  - x( t ,a ,q) l  5 E for every t E [ a , ~ , ] .  Let us observe that, from the 
definition of both a, and 6(e, a ) ,  we have Iz(t, a ,  7) - x ( t ,  [)I 5 E for every 7 E R 
with Ix(a,J) - 71 5 6 ( ~ , a )  and every t 2 a. Consequently, the solution z(.,E) 
is sthble. Finally, as lim x ( t , a ,q )  = x* for every q E (x(a,~l),x(a,~z)), we 

deduce that x(., J) is asymptotically stable. 
Problem 5.9 From the Lagrange formula, we have f(x) = Ax + g ( x ) ,  where 

9++W 

t++W 

!Ax) lim - = 0. 
210 x 

Multiplying the equation by x, we get ;& (x’) = Ax2 + g ( x ) x  = 0. From (*), 
it follows that there exists r > 0 such that Ax + g(x) > 0 for every x E W with 
1x1 5 r .  Accordingly, every solution, which “enters or is’’ in the interval [ -T ,  T I ,  
tends to leave this interval. From here, it follows that the null solution of the 
equation cannot be asymptotically stable. 
Exercise 5.3 (1) The function on the right-hand side of the system f : R2 -+ R2 
isdefined by f (x )  = (fl(z),f2(x)) = (-x1+x%,-x:-2x2) f o r x =  (x1,xz) €W2. 
We can easily see that the matrix 

fz(0) = A = (;I :2) 

has both characteristic roots real and strictly negative. By Theorem 5.3.3, the 
null solution is asymptotically stable. 

(2) With the notations in the preceding exercise, we have 
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Since the matrix above has one strictly positive characteristic root, by virtute of 
Theorem 5.3.4, the null solution is unstable. 

(3) The matrix 

has both characteristic roots real and strictly negative. In view of Theorem 5.3.3, 
the null solution is asymptotically stable. 

(4) We have 

Since this matrix has a strictly positive characteristic root, by Theorem 5.3.4, it 
follows that the null solution is unstable. 

( 5 )  The matrix 

fz(0) = A =  (1; 9 )  
has both characteristic roots strictly negative. According to Theorem 5.3.3, the 
null solution is asymptotically stable. 

(6) The matrix 

fz(0) = A  = (; :3) 

has one null characteristic root. In this case, none of the theorems proved in 
Section 5.3 can help with respect to stability. 
Exercise 5.4 We begin with the remark that, for all systems considered in this 
exercise, we will look for Lyapunov functions which are independent o f t ,  and this 
because all these systems are autonomous. 

(1) The system is of the form x' = f (x ) ,  where the function on the right-hand 
side, f : W2 --f R2, is defined by f (x )  = (f~(z), f2(x)) = (-x; +Q, -21 - 2xi) for 
every x = (XI,  z 2 )  E R2. One observes that V : W2 -+ R, defined by V(x) = illzl12 
for every x E W2, is of class C1, V(x) = 0 if and only if x = 0 and satisfies 

for every z E W2. Accordingly, V is a Lyapunov function for the system. From 
Theorem 5.4.1, it follows that the null solution is stable. Let us remark that 
the function V also has the extra-properties required by Theorem 5.4.2. More 
precisely, V satisfies V(z) 5 X(llxll) = $ 1 1 ~ 1 1 ~  and 

for every x E W2. Obviously the functions X , q  : W+ -+ W+, defined by X(r) = f r2  
and ~ ( r )  = ;r* are continuous, nondecreasing and satisfy X(r) = q ( s )  = 0 if 
and only if r = s = 0. According to Theorem 5.4.2, it follows that the null 
solution is asymptotically stable. Moreover, because for every x E W2, we have 
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V(z) = illzl12 = w(l lzl l )  and lim w(r)  = +oo, in Theorem 5.4.3, we conclude 
that the system considered is globally asymptotically stable. 

(2) In the case of this system the function on the right-hand side, f : R2 t R2, 
is f(z) = (fl(z),f2(z)) = (-zf - 322,351 - 4x32) for every z = ( z 1 , ~ 2 )  E w2. 
We remark that V : W2 -+ W, defined by V ( z )  = +JJz1l2 for every x E W2, is a 
Lyapunov function. Indeed, V is of class C1, V(z) = 0 if and only if z = 0 and 
satisfies 

r++m 

for every z E R2. Let us observe that the restriction of this function to the set 
RO = { (z l ,z2) ;  1x11 < 1, (221 < 1) (which obviously is an open neighborhood of 
the origin), satisfies all the hypotheses of Theorem 5.4.3. This follows from the 
remark that, on this set, we have f(zs + z;)4 5 z: + zg 5 xy + 42:) which implies 

for every x E R2. In order to complete the proof we only have to observe that the 
functions A, q : W+ -+ R+, defined by A(T)  = $r2 and q(r)  = $r8 are continuous, 
nondecreasing and satisfy A(r) = q ( s )  = 0 if and only if T = s = 0. According to 
Theorem 5.4.2, it follows that the null solution is asymptotically stable. 

(3) The function f : R2 -+ W2 on the right-hand side of the system considered 
is defined by f (z) = (f 1(z),f2(z)) = (-z1+5zi, -4-322)  for z = ( 2 1 , 2 2 )  E w2. 
We observe that V : R2 R, defined by V(z) = i(zf + 52;)  for every z E R2, is 
a Lyapunov function. Indeed, V is of class C1, V(z) = 0 if and only if 12: = 0 and 
satisfies 

for every z E W2. Let us observe that V satisfies all the hypotheses of both 
Theorems 5.4.2 and 5.4.3. Indeed, V is bounded from below by the function 
w : W+ -+ R+, defined by w ( r )  = $r4 for every T E R+, and which satisfies the 
condition lim w ( r )  = +oo. Finally, let us observe that a possible choice of 

the functions A , q  : R+ t W+ in Theorem 5.4.2 is A(T)  = i r 4  and q(r)  = i r4 .  
According to Theorem 5.4.2, it follows that the null solution of the system is 
asymptotically stable, while from Theorem 5.4.3, we deduce that the system is 
globally asymptotically stable. 

(4) Let us observe that the unique global solution of the system considered 
x(., 0, (E, 0)), which satisfies z(O,O, ( 6 ,  0)) = ( E ,  0), is z( t ,  0, ( E ,  0)) = <(e*, 0) for 
every t E R+. So, the null solution of the system is unstable. 

(5) The function f : R2 t R2 on the right-hand side of the system considered 
is defined by f(z) = (f I(%), fi(2)) = (- sins1 + z2, -421 - 3 tan 2 2 )  for every 
z = (z1,22) E R x (- 5, 5). One observes that V : R2 -+ R, V ( x )  = 22; + $zz for 
every z E R2 is a Lyapunov function for the system on Ro = (-5, 5) x (-5, 5). 

r++w 
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Indeed, V is of class C’, V ( z )  = 0 if and only if z = 0 and satisfies 

dV dV 
0x1 8x2 

fl(z)-(z) + f2(2)-(2)  = - 2 1  sin21 - 3x2 tan 2 2  5 O 

for every x E (-2,;) x (-5, 5). According to Theorem 5.4.1, the null solution is 
stable. Observing that, on a sufficiently small neighborhood of the origin, (-6, S), 
we have y sin y 2 $ and y tan y 2 $ , we deduce that the system satisfies the 
hypotheses Theorem 5.4.2 too, with X(r) = 2r2 and q(r) = i r 2  for every r E W+. 

Hence the null solution is asymptotically stable. 
(6) The function f : R2 ---$ R2 on the right-hand side of the system considered 

is defined by f(x) = ( f l (z) , f2(z))  = (-2sh21 + 42;, -2; - 222). One observes 
that V : R2 4 R, defined by V(z) = 2: + 42; for every z E R2, is a Lyapunov 
function for the system on W2. On fl = {LC E R2; llzll < l}, V satisfies the 
hypotheses of Theorem 5.4.2. Hence the null solution is asymptotically stable. 

Chapter 6 

Exercise 6.1 (1) Adding side by side the three equations, we get 2’1 +x/2+xi  = 0. 
Hence every solution of the system satisfies x1 + 2 2  + 2 3  = c1. So, one prime 
integral is the function UI : W3 -+ W, defined by U1(21,22,23) = z1 + 2 2  + 2 3 .  

Multiplying the equation of rank i with xi, i = 1 , 2 , 3 ,  and adding the equalities 
thus obtained, we deduce xlx/1+z22/2+z3x/3 = 0. Hence the function U2 : W3 --+ R 
defined by UZ (21, 2 2 ,  2 3 )  = 25 + xz + 232 is also a prime integral. Since 

it follows that U1, U2 are independent about any non-stationary point. Indeed, 
let us observe that ( 2 1 ,  z2, x3) is non-stationary if and only if x1 # 2 2 ,  or $1 # 2 3 ,  

or 2 2  # 2 3 ,  situations in which the rank of the matrix above is 2. 
(2) From the system, we deduce x/1 - z/2 + x$ = 0 and zlz/1 - 2 2 4  = 0. So, 

the functions Ui : W3 4 W, i = 1,2,  defined by U ~ ( X ~ , Z ~ , Q )  = 2 1  - 2 2  + 2 3 ,  

and U2(z1,22,23) = 23 - zi respectively, are prime integrals for the system. The 
only stationary points of the system are of the form (0, 0,23). Since the rank of 
the matrix 

(2) 2 x 3  ( 2 1 , 2 2 , 2 3 )  = ( 2 i 1  -ii2 ;) 
is 2 at every point (z l ,z2 ,x3)  with z1 # 2 2  or z1 = 2 2  # 0, it follows that the 
two prime integrals are independent at  any non-stationary point. 

(3) From the first two equations, we deduce qz/1 + 2 2 4  = 0, while from 
the first and the last equation, we obtain 2/1/21 = x;/x~. Then, two prime 
integrals are U I ( Z I , ~ ~ , Z ~ )  = 2: + xi and U2(21,22,23) = x3/x1 defined on the 
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Obviously, the rank of this matrix is 2 at every non-stationary point and therefore 
the two prime integrals are independent on R. 

(4) Subtracting the first two equations, we deduce xi - x/2 = (XI - x2)(x3 - 1) 
equality, which along with the third equation, leads to 

Hence, the function U1, defined on R I  = { ( X I , X ~ , X ~ ) ;  x3 # -1) by 

Xl - 2 2  
Ul(Xl,X2,23) = - 

x 3 + 1 ’  

is a prime integral for the system. Adding the first two equations and re- 
peating the manipulations above, we deduce that the function U2, defined on 
f12 = {(xi, 22, ~ 3 )  ; x3 # 1) by 

is also a prime integral for the system. A point ( x I , x ~ , x ~ )  is stationary for the 
system if and only if X I  = -x2 and x3 = 1, or X I  = 22 and x3 = -1. One may 
easily state that the rank of the matrix 

I 1 1 21 -22 

2 3  + 1 x3+ 1 (z3 + 1)2 
1 1 x1+ 2 2  

x 3 - 1  x3-1  2 3 - 1  

- -- - 

-- -- 
(2) 2 x 3  (21 3 22% 23) = 

is 2 at all non-stationary points. 
(5) All solutions satisfy xix2 - x1x; = 0 and xi22 + xlx; + xi = 0. Two 

prime integrals, on W3, are Ul(xI,x2,x3) = 21/22 and U2(21,22,23) = x122+23. 
The stationary points of the system are of the form (0, 0,~s). So, the rank of the 
matrix 

is 2 at every non-stationary point of the system. 
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(6) From the first two equations, we deduce 2’1x2 +x1z/2 = 0 which shows that 
the function U1 : R3 - W, defined by UI(X~,XZ,X~) = x1x2, is a prime integral 
for the system. Since ‘(along the solutions” of the system we have xlx2 = c, from 
the first and from the last equation, it follows that -x1(1+ x: )x :  = cx;. So, we 
have c23 + 2:/2 + 2:/4 = c2. Then, “along the solutions” of the system, we have 
2122x3 + x:/2 + xf/4 = CZ. Another prime integral is UZ : R3 ---t R, defined by 
U2(22,22,23) = 21x223 + x:/2 + x:/4. The stationary points of the system are 
of the form (O,O,x3), while the rank of the matrix 

is 2 at every non-stationary point of the system for which x1 # 0. 
-xlx/2 = 0. So, the function 

U ~ ( X ~ , X Z , X Q )  = 2 1 / 2 2 ,  whose domain is 521 = { ( X I , X Z , X ~ ) ;  R3, 22 # 0}, is a 
prime integral for the system. Let us observe that x;/x1+ 2/2/22 = xG/23, which 
shows that the function U ~ ( X I , X ~ , X ~ )  = ( x ~ x z ) / x ~ ,  whose domain is given by 
0 2  = { ( X I ,  22, 2 3 )  ; R3, 2 3  # 0)) is also a prime integral for the system. The 
stationary points of the system are of the form (xl,O,O) or (0,x~)O). At every 
non-stationary point of the system for which 2122x3 # 0, the rank of the matrix 

(7) From the first two equations, we deduce 

is 2. 
2 1 2 ’ 1  + 2 2 2 ;  + 2 3 4  = 4 x‘ . From +2-  =Oand (8) We have both - 

2x3 2; + 2; + 2; 2-21  2 3  

these relations, it follows that U1, U2 : {(xI,xz,x~) E w3 ; xi # 0) ---t R, defined 
by U ~ ( Z ~ , X Z , Z ~ )  = (2-21)/232, and U Z ( X ~ , Z C Z , X ~ )  = (xcf+xg+x;)/x3, are prime 
integrals for the system. The stationary points of the system are all the points of 
the circle of equations 2 2  = 0 and ( 2 1  - 2)’ + x ;  = 4. The rank of the matrix 

0 f 1  -- 
4 

is 2 at all non-stationary points, except for (2,0,2) and (2 ,0 ,  -2). 
Problem 6.1 Let us observe that the function U is a prime integral for the system 
if and only if the function V : (0, +m) x (0, +w) --f R, defined by V = ln(U) has 
the same property. Let us also observe that V is nonconstant, of class C1, and 
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satisfies 

Solutions 

According to Theorem 6.1.1, it follows that V, or equivalently U, is a prime 
int egr a1 . 
Problem 6.2 One observes that U I ,  U2 : W3 --t W, Ul(z1, z 2 ,  z3) = zi + z2 + 23 
and U2(~1,x2,x3) = x;+xi+xi for every (xl,x2,x3) E W3, are prime integrals for 
the system. So, every trajectory of the system is included in the intersection of the 
plane of equation x1 + 2 2  + z3 = c1 and the sphere of equation 25 + x; + x$ = c2, 

intersection which is a circle. We complete the proof by observing that every 
saturated solution is global. 
Problem 6.3 Let us observe that the graph of the prime integral V ,  defined in 
the solution of Problem 6.1, is a "paraboloid-like" surface whose vertex has the 
coordinates (b/h, a / k ,  U ( b / h ,  a / k ) ) .  So, the intersection of this graph with every 
plane, parallel with the zOy-plane, is a simple closed curve. See Figure 9.1.6. 

t 

Figure 9.1.6 

Since the trajectory of any solution of the system is the projection of such a curve 
on the xOy-plane, this, in its turn, is a simple closed curve. 
Problem 6.4 Dividing the first equation by 2, we deduce $ = a-lcy. Integrating 
this equality on [ t ,  t + T ]  and taking into account that x is periodic of period T ,  
we deduce 

t+T 
UT - lcl y(s)ds = 0) 

or equivalently ym = a / k .  Analogously, we obtain zm = b / h .  
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Problem 6.5 Let us remark that, if U is a prime integral of the system which has 
a strict local minimum at <, then V ( x )  = U ( x )  - U(() is also a prime integral. 
By a simple translation argument, we may assume without any loss of generality, 
that ( = 0. Obviously, V is positive defined (see Lemma 5.4.1), V(0)  = 0, and 
satisfies 

So, V is a Lyapunov function for the system. We are then in the hypotheses of 
Theorem 5.4.1 from where we get the conclusion. 
Problem 6.6 The conclusion follows from Problem 6.5, by observing that the 
prime integral, defined in the solution of Problem 6.1 by V(z,y) = ln(U(x,y)), 
has local strict minimum at (b /h ,  u/k). 
Problem 6.7 If the autonomous system x‘ = f(z) admits an injective prime 
integral, it follows that all the solutions of the system are constants. Hence, the 
system is of the form x‘ = 0. Let us assume by contradiction that there exists 
a non-autonomous system X‘ = f ( t , ~ )  which admits an injective prime integral 
U. As in the autonomous case, it follows that the graph of each solution reduces 
to one point which is absurd as long as there exist solutions defined on intervals 
containing at  least two points. So, under minimal continuity assumptions on f ,  
the non-autonomous system x‘ = f ( t ,  x) cannot admit injective prime integrals. 
Problem 6.8 Let x : [ a ,  Tm) 3 W” be a solution of the system and let us assume 
that T, < +00. Since U ( x ( . ) )  is constant on [ a ,  T,), while U is coercive, it follows 
that x is bounded on [ a ,  Tm). According to Corollary 2.4.3, it follows that z is 
not saturated. Hence every saturated solution is global. If lim U ( x )  = -00 

then -U is a coercive prime integral for the system. Hence, the result still holds 
true even in this case. 
Problem 6.9 It follows that 

112 It + +m 

According to Theorem 6.1.1, H is a prime integral for the system. 
Problem 6.10 We observe that, a function of class C1, U : 520 C R + W, satisfies 
the condition (6.1.2) in Theorem 6.1.1 with respect to the function f if and only 
if it satisfies the same condition with respect to the function Xf.  
Problem 6.11 Let us assume by contradiction that there exists a prime integral 
for the system, U : R2 -+ W. Since its general solution is x l ( t )  = ( e 2 t ,  ~ ( t )  = qet 
for t E W, we have that U([e2t ,qe t )  = U ( [ , q )  for every ( ( , q )  E W2 and every 
t E W. Letting t to approach -00, we conclude that U(<, q )  = U(0,O) for every 
(Oq)  € W2, i.e. U is a constant function. This contradiction can be eliminated 
only if there is no prime integral of the system considered, defined on the whole 
W2. On the other hand, the function U : ( ( x 1 , ~ )  E R2; z1 > 0 )  + W, defined 
by U ( m ,  x2)  = &/XI, is a prime integral for the system. 
Problem 6.12 The first part of the problem follows from the fact that the function 
U : R“ + R, defined by U ( z )  = llzl12, is a prime integral for the system. Hence, 
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the trajectory of any solution lies on a sphere centered at  the origin and with 
radius depending on the solution. In addition, if 11 = [ 0, +oo), as every saturated 
solution of the system is bounded, according to Theorem 5.2.2, it follows that the 
system is stable. 
Exercise 6.2 (1) The characteristic system in the symmetric form is 

We have dxi +dx2 +dx3 = 0 and xqdxl +z;dx2 +xidx3 = 0. Hence, the functions 
V1, V2 : W3 -+ W, defined by UI(X~,X~, 23) = x1 + x2 + 2 3  and respectively by 
U2(51,22,23) = x: + 2: + x!, are prime integrals for this system. The stationary 
points of the system are of the form ( x I , x ~ , x ~ )  with XI = fx2 = fx3. One 
may easily see that the prime integrals above are independent about any non- 
stationary point. Therefore, the general solution of the equation is defined by 
z(x1, x2, 23) = F(x1 + 2 2  + 23, x: + x; + x:), where F : W2 + W is a function of 
class c? 

(2) The characteristic system is 

and so, x3dZ1 +xldx~ = 0 and x,'dxl +ex2dx2 = 0. We have the prime integrals 
U~(XI,Z~,X~) = 21x3 and U2(21,x2,x3) = x1eeZ2, defined on R3. The system 
has no stationary points, and the two prime integrals are independent at every 
point. The general solution of the equation is z(xI,x~,x~) = F(Z1x3,x1eeZ2), 
where F : W2 + W varies in the set of functions of class C'. 

(3) The characteristic system is 

We have 
dxi d ~ 2  d ~ 3  dxi + dx2 + dx3 = 0 and - + - + - = 0. 
21 x2 x3 

Consequently, UI(X~,X~,X~) = XI +x2 +x3 and U2(x1,22,23) = ~ 1 x 2 ~ 3 ,  defined 
on W3, are prime integrals for the system. A point (x1,22,x3) is stationary for 
t h e s y s t e m i f a n d o n l y i f x l = x 2 = ~ 3 o r x i = z j  = O f o r i , j = 1 , 2 , 3 , i # j .  The 
two prime integrals are independent at any non-stationary point and therefore 
the general solution is Z(ZI,XZ,X~) = F(x1 + x2 + x3,x1x2x3), where F ranges 
over the set of all real functions, of class C1, defined on W2. 

(4) The equation is quasi-linear. So, we are looking for the solution as a 
function 23 implicitly defined by a relation of the form C$(XI, x2,23(xl,x2)) = c,  
where the function C$ is the solution of the first-order linear partial differential 
equation 
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The characteristic system is 

381 

21 +x2 ( 2 2  + x3)2 Thus, the functions Ui(x1, 2 2 ,  x3) = - and U~(XI,X~,X~) = 7 
2x3 XR 

defined on the set {(XI, x2,x3) E R3; 23 # 0}, are prime integrals for the characte- 
ristic system. The only stationary point of the system is the origin. One observes 
that the prime integrals above are independent at  any non-stationary point for 
which 23 # 0 and x2 # -x3. The general solution is implicitly defined by a 

-I- x2 (x2 + x3)2 = c, where F ranges over the set relation of the form F - 

of all real functions of class C1, defined on R2, and c E R. 
(5) The equation is quasi-linear. So, we are looking for the solution as a 

function 23, implicitly defined by a relation of the form  XI, 2 2 ,  x3(x1, x2)) = c, 
where the function Q, satisfies the first-order linear partial differential equation 

) ( 2x3 ’ x3 

84 84 84 
x3- - x3- + (x2 - 21)- = 0. 

ax1 ax2 8x3 

The characteristic system is 

The solutions of the system satisfy X I  - 22 = c1 and xf - zg + x: = c2, and 
therefore the functions Ul, U2 : R3 ---f R, defined by Ul(xl,x2,x3) = XI - x2 and 
U2(21,52,23) = xf - xi + x:, are prime integrals for the characteristic system. 
The stationary points of the system are of the form ( a ,  a ,  0), while the two prime 
integrals are independent at every non-stationary point except for the origin. 
Hence the general solution of the initial equation is implicitly defined by a relation 
of the form F(z1 - x 2 , x :  - zz + x:) = c, where F : R2 4 W ranges over the set 
of all real functions of class C1 and c E R. 

(6) We look for the solution as a function, implicitly defined by 
Q , ( X ~ , X ~ , X ~ ( Z ~ , X ~ ) )  = c, where 4 is the solution of the first-order linear partial 
differential equation 

a4 84 21x2 aQ, o. 
21- +x2- + x3 + - 

ax1 822 ( x3)G= 
The characteristic system attached is 
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Along the solutions of the system we have 5 = c1. Therefore, a prime integral 

of the characteristic system is U1 : { (21, x2,x3) E W3; 2 2  # 0) -+ W, defined by 
U1 (XI, 22, x3) = -. We also have 

2 2  

x1 

x2 

Denoting by 
21x2 = u 

( 2  x3 = 2)) 

the equation above rewrites in the form 2 = f + 1. F’rom this equation, we 
deduce - lnlu( = c2. So, U2 : {(XI,XZ,X~) E R3; ~ 1 x 2  # 0) -+ R, defined 

- In [xlx2[ is a second prime integral. The system has by U2(21, ~ 2 , 2 3 )  = - 
no stationary points, and the two prime integrals are independent a t  every point 
( x I , x ~ , x ~ )  for which ~ 1 x 2 ~ 3  # 0. The general solution of the initial equation is 

implicitly defined by a relation of the form F -, - - In 1x1~21) = c, where 

F : W2 W ranges over the set of all functions of class C1, while c E R. 
(7) The general solution is implicitly defined by F(z :  - x;, 2x; - xs) = c, 

where F : R2 -+ R ranges over the set of all functions of class C1, and c E R. 
(8) We look for the solution z ,  defined by qb(x1,22,23, z(z1,x2, x3)) = c, where 

4 is the solution of the first-order linear partial differential equation 

U 
232 

x1x2 

(:; x 2 2  

The attached characteristic system is 

F’rom the equality of the last three ratios, we deduce that Ui, U2 : R4 + R, 
defined by U ~ ( X ~ , X ~ , X ~ , Z )  = 2 2  - 2 3  and UZ(X~,X~,X~,Z) = 23 - 

a1 + a2 + a3 ’ 
are prime integrals for the system. F’rom the derived proportion 

we deduce that U3 : {(x1,x2,x3, z )  E W4; z > alxl+ a222 + ~ 3 x 3 )  -+ R, defined 
by U3(~1,x2,x3, z )  = a122 + 242 - a121 - a222 - ~ 3 x 3 ,  is also a prime integral. 
The system has no stationary points. The three prime integrals are independent 
at all points in the common part of the domains of definition. The general solution 
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of the initial equation is implicitly defined by 

where F : R3 -+ R ranges over the set of all functions of class C1, and c E R. The 
equation also admits the “special” solution z = a121 + a222 + ~ 3 x 3 ,  eliminated 
during the determination of the prime integral V3. 
Exercise 6.3 (1) The prime integral of the characteristic system is x2 + y 2  = c. 
So, the general solution is z = p(x2 + y2), and the solution of the Cauchy problem 
is z = cos J-. 

(2) The characteristic system is 

Two independent prime integrals are 

( “ = “  lnlxl + - : = c2. 

Substituting x = s, y = s2 and z = s3 in the system above and eliminating s, we 
get In l c ~ l +  ~ 1 ’ ’ ~  = c2. Finally, substituting c1 and c2 from the system, we get 
the implicit equation of the solution f In Izl + z-1/3 = In 1x1 + t. 

(3) The characteristic system is 

and so, two independent prime integrals are 

xy = c1 { 2 z 2  = 2. 

The general solution of the equation is u = ( ~ ( x y ,  x z 2 ) .  From the initial condition, 
we deduce p(y, z2 )  = sin(y + z ) ,  and consequently, the solution of the Cauchy 
problem is u(x,  y ,  z )  = sin(xy + z&). 

(4) The characteristic system is 

dx d y  dz -=-=- 
x y + x 2  z 

Two independent prime integrals are 

X - = c1 ir - - x = c2. 
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Hence, the general solution of the equation is given implicitly by F ( 5 ,  s) = c, 

with F of class C1. By the implicit function theorem, we get z = x f  z& 
F'rom the initial condition we deduce that 2f (y) = (y - 4)3. Consequently, 
f(s) = 4s3 and z ( x , y )  = 4 1 e .  
Problem 6.13 We consider for the beginning the attached homogeneous problem 

( 1. 

az az - + a - = o  at ax 

whose characteristic system is 
dt dx 
1 a '  

A prime integral for this system is U ( t , x )  = x - at for every ( t , x )  E W x R. 
The general solution of the homogeneous equation is then z ( t , z )  = F ( x  - at ) ,  
where F : R --f R is of class C1. From the Cauchy condition, it follows that 
the unique solution of the homogeneous Cauchy problem is z ( t , x )  = (p(x - at )  
for ( t , z )  E W x W. In order to determine the solution of the non-homogeneous 
equation, we shall use a variation of constants-like method. More precisely, we 
will look for the solution in the form z ( t ,  z) = $(t ,  x - a t ) ,  where $ : R x R -+ R 
is a function of class C1 which will be determined by imposing the condition that 
z be the solution of the non-homogeneous problem. We have 

- - - -  

az a$ a$ -@, 2)  = -(t, x - at )  - a-(t, x - at) 
at at dY 

a z  a$ -(t ,z)  = - ( t , x  - a t ) ,  I ax dY 

and consequently 

9 ( t , y )  = f ( t , y  + at).  at 
From this equation, we deduce 

for every t E R. Finally, the last equality and the initial condition yield 

for every t E W. 
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Problem 6.14 First, let us consider the attached homogeneous problem 

whose characteristic system is 
d t  dx - --- 
1 a( t ) ‘  

A prime integral for this system is 

U ( t )  2) = x - I‘ a(s)  ds 

for ( t ,  x )  E R x R. The general solution of the homogeneous equation is given by 
z ( t ,  x )  = F ( x  - a(s)  d s ) ,  where F : R -+ R is of class C1. From the Cauchy 
condition it follows that the unique solution of the homogeneous Cauchy problem 
is 

z ( t , 2 )  = cp (2 - l‘ a(s) ds)  

for ( t , z )  E R x R. We look for the solution to the non-homogeneous equation in 
the form 

where $ : R x W --+ R is a function of class C1 which satisfies 

Z(t’2) a2 = 3 ( t , 3 - l t a ( s ) d s )  - a ( t ) g  ( t ) r - l t a ( s ) d s )  

- ( t , z )  az = 3 ( t , s - L ‘ a ( s ) d s ) )  

at 

dX aY 

from where 

From this equation, we deduce 

$(t, y) = $(O, 2)  + s,’ f (s, Y + h’ 4-) d r )  ds 

for every t E R. Finally, from the last equality and the initial condition, it follows 

~ ( t ,  x) = cp ( x  - lt U(T)  d ~ )  + lt f (s, x - [ a(7)  d ~ )  ds 
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for every t E W. 
P rob lem 6.15 The characteristic system attached to the homogeneous equation 
is 

d t  - dxi - dx2 - dxn - - - - - - . . .  = - 
1 a1 a2 an 

Its general solution is ~ ( t ,  x )  = U ( z  - ta) ,  where U : Rn -, R ranges over the set 
of all functions of class C1 and x - ta  = ( X I  - alt,x;! - az t , .  . . ,xn - ant). The 
solution of the homogeneous equation which satisfies the corresponding initial 
condition is ~ ( t ,  x )  = ~ ( x  - ta )  for every ( t ,  x )  E W x W". We seek for the solution 
of the non-homogeneous equation in the form z ( t , z )  = $( t , x  - ta )  for every 
( t ,  x )  E R x R", and we deduce 

z ( t ,  z) = p ( x  - ta )  + f(s, 2 - ( t  - 44 ds 6' 
for every ( t ,  x )  E W x W". 
P rob lem 6.16 By analogy with the solution of Problem 6.14, we deduce that 

for every ( t ,  x )  E W x W". 
P rob lem 6.17 First, we consider the attached homogeneous problem 

az da - + a x - = o  at a x  

whose characteristic system is 
d t  dx 
1 ax '  

A prime integral for this system is U ( t , x )  = xe-at for every ( t , x )  E R x R. 
The general solution of the homogeneous equation is z ( t , x )  = F(xe-a t ) ,  where 
F : R --t R is of class C1. From the Cauchy condition, it follows that the 
unique solution of the homogeneous Cauchy problem is z ( t , x )  = 'p(zeeat) for 
( t , x )  E R x R. In order to find the solution of the non-homogeneous equation, 
we shall use the variation of constants-like method. More precisely, we will look 
for the solution in the form z ( t , x )  = $( t ,xe-a t ) ,  where $ : W x W --t W is a 
function of class C1, which will be determined by letting z to be a solution of the 
non-homogeneous problem. We have 

- = -  
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from where 

From this equation, we deduce 

for every t E W. Finally, from the last equality and the initial condition, it follows 

for every t E R. 
Problem 6.18 The solution is given by 

for every ( t , z )  E R x W. 
Problem 6.19 We have 

for every ( t , z )  E R x Rn, where e-tA is the exponential of the matrix -tA. 
Problem 6.20 The solution is 

z ( t ,  z) = cp (X- ' ( t ) x )  + f (9, X- l ( t )X( s ) z )  ds Jd" 
for every ( t , z )  E R x Rn, where X ( t )  is a fundamental matrix of the first-order 
linear differential system x' = A(t )x .  

Chapter 7 

Exercise 7.1 (1) One observes that, for any choice of the function cp, the sequence 
satisfies all the conditions in Definition 7.1.2, and therefore it is convergent to 
cp G 0 in D((w). (2) If cp is non-identically zero, the sequence, although uniformly 
convergent to 0, is not convergent in D(R) because it does not satisfy the condition 
(ii) in the definition 7.1.2. Indeed, in this case, there exists at least one t E W such 
that cp'(t) # 0. Let t k  = t / k  for k E N*, and let us observe that p k ( t k )  = cp'(t) # 0 
for every Ic E N* , which shows that the sequence of the first-order derivatives does 
not converge uniformly to 0 on W. (3) If cp  is non-identically zero, the sequence, 
although uniformly convergent to 0, it is not convergent in D(R) because it does 
not satisfy the condition (i) in Definition 7.1.2. Indeed, in this case, there exists 
at least one t E R* such that cp(t) # 0. Let us observe that the term of rank k 
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of the unbounded sequence (kt)kcN* lies in the support of the term of the same 
rank of the sequence of functions considered. 
Exercise 7.2 (1) k( t )  = 2S(t). ( 2 )  k ( t )  = cost2S( t )  - sintsgn(t) = 26(t)  - 
sintsgn(t). (3) k ( t )  = t6(t)+sgn(t) = sgn(t). (4) k ( t )  = t 6 ( t - l>+sgn( t - I )  = 
6(t  - 1) + sgn (t - 1). (5) k ( t )  = sintS(t) + costO(t) = cost&. (6) k ( t )  = 
e t6( t )  + et6t = 6 ( t )  + et6t. 
Problem 7.1 For every test function cp E B ( W ) ,  we have 

where, C i  = w. Since t ( k )  = 0 for k = 2,3, .  . . , m and (6(t),tcp(m)(t)) = 0, 
we deduce that 

(t6cm)(t)) cp(t)) = (-1)y6(t) ,  cAcp‘”-”(t)) 

= (-l)m(-l)(m-l)(m - l)(6(m-1)(t)) cp(t)) = -(m - l)(6(m-1)(t)) cp(t)), 

which achieves the proof. 
(2) Let cp E B(W). We have 

( t r n P ) ( t ) ,  cp(t)) = (-l)”m!(6(t), cp‘”’(t)), 

which achieves the proof. 
(3) As before, we have 

m 

Since k 5 m - 1, it follows that (6( t ) ,  (tk)(p)cp(m-p)(t))  = 0 for k = 1,2,. . . ,m. 
The proof is complete. 
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Problem 7.2 We denote by c = JR z( t )  d t  and we observe that JR Z n ( t )  d t  = c for 
every n E N. Let $ E D((w). We have 

Hence 

on D((w). 
Exercise 7.3 (1) x ( t )  = (e-’ - e-”)O(t). (2) z( t )  = t e -%(t ) .  (3) x ( t )  = + sin2t  q t ) .  (4) x ( t )  = L ( I  - eWzt - 2 t 2 - 7 q t ) .  (5) x ( t )  = +(et + e-t - 2 ) e ( t ) .  
( 6 )  z( t )  = $(l - 2et + e )O(t). 
Exercise 7.4 (1) z ( t )  = (et O ( t ) )  * (e-I - e-2t)>e(t). (2) x ( t )  = (tO(t))  * (te-‘O(t)). 
(3) z ( t )  = (cos2tO(t)) * (isin2tB(t)). (4) ~ ( t )  = (sintO(t)) * (+(I  - e-2t - 
2te-2t)8(t)). ( 5 )  ~ ( t )  = (tO(t)) * ( $ ( e t  + e-t - 2)O(t)). ( 6 )  ~ ( t )  = (tet O(t) )  * 
(f(1 - 2et + e”)O(t)) where, according to Example 7.2.1, 

Exercise 7.5 The solutions are: 

lim xn = cS(t) 
n+m 

9t 

(3) 

(4) 

( 5 )  

for t E [ 1, 21 
-t + t In $ for t > 2. x ( t )  = 

for t E [0, ;] 
tan(-cost) for t > 5. x ( t )  = 

1 for t E [0,  f ]  
x( t )  = { arctan t for t > f. 

1 
& f o r t  > 1. 

for t E [0, 11 x( t )  = 

Problem 7.3 Using Definition 7.5.1, one observes that the multi-valued functions 
in (l), (4) and (5) are upper semi-continuous on W ,  while the others, only on W * .  
Problem 7.4 We denote by graph(F) the graph of the multi-function F .  Let 
( ( z k  , Yk) )kEW be a sequence in graph ( F )  , convergent to (x, y) and let us assume by 
contradiction that (z, y) does not belong to the graph of F .  Since x E K (because 
K is closed), from the assumption made, we have that y does not belong to F ( z ) .  
But F ( z )  is closed and {y} is compact. According to Lemma 2.5.1, we know that 
dist ( p , F ( z ) )  = S > 0. Then, the set D = { z  E W n ;  dist ( z ,  K )  < 6 / 2 }  is open, 

(1)

(2)

(6)
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includes F ( x ) ,  while does not contain y. Since F is upper semi-continuous, 
for k big enough, we have yk E F ( Z k )  c D ,  which shows that y E n. This 
contradiction can be eliminated only if graph ( F )  is a closed set. 
Problem 7.5 Let us assume by contradiction that there exists x E K with the 
property that F is not upper semi-continuous at x. Then, there exists D c R" 
with F ( x )  c D ,  such that, for every neighborhood V of x, there exists zv E V 
such that F ( z v )  is not included in D. Let k E N*. Take Vj = B(z,  i )  and 
let us denote by xvk = xk. From the assumption made, it follows that there 
exists yk E F ( z k )  with yk E R" \ D. Since F takes values in a compact set, 
( Y k ) k e N *  is convergent (at least on a subsequence) to an element y. On the other 
hand, (xk)ke~* is convergent to x, and therefore (x,y)  belongs to the graph of 
F .  This means that x E K and y E F ( z ) .  At the same time, because for every 
k E N* yk belongs to the closed set R" \ D ,  it follows that y E R" \ D ,  relation in 
contradiction with y E F ( x )  C D. The contradiction can be eliminated only if F 
is upper semi-continuous on K .  
Problem 7.6 Let x E K and let D be an open set with convF(z) c D. Since 
F ( z )  is compact, conv F ( x )  is compact too, and conv F ( x )  n a D  = 0. According 
to Lemma 2.5.1, we have that dist (convF(x),aD) = 6 > 0. Then, the set Dg, 
defined by DJ = {y E Rn; dist (y, conv F ( z ) )  < 6/2}, is convex, open and satisfies 
F ( z )  c DJ c c D. Since F is upper semi-continuous at  x, there exists a 
neighborhood V c K of x such that F ( z )  c Ds for every z E V .  Since Da is 
convex, we have convF(z) C c D for every z E V. Hence, convF is upper 
semi-continuous at  z. Since x is arbitrary in K ,  this completes the proof. 
Problem 7.7 Since f is bounded, from Ceshro's lemma, it follows that F is 
nonempty and closed valued. Moreover, F takes the values in a compact set. 
According to Problem 7.5, in order to complete the proof, it suffices to show that 
graph ( F )  is closed. So, let ( (x,, y p ) ) p c ~ *  be a sequence in graph ( F )  convergent 
to (x,y). From the definition of F ,  we have that, for every p E N*, there exists a 
sequence ( z p , k ) ~ c w *  with limk,, X p , k  = x, and limk,, f ( x , , k )  = yp. Then, for 
every p E N*, there exists k, 2 p such that we have both ( ( x p , k P  - zp ( (  5 l /p and 
I l f ( z p , k p )  - ypII 5 l/p. Then hn,-+, X p , k p  = x and limp-+, f ( x , , k p )  = y, which 
shows that y E F ( x ) .  The proof is complete. 
Problem 7.8 Let s1= R, C = (0) and f : w 4 W be defined by f(z) = 3- for 
every z E R. Then C is viable for z' = fl, (2) but C is not invariant for x' = f(x), 
because the latter equation has at least two solutions which satisfy x(0) = 0. See 
Example 2.3.1. 
Problem 7.9 Let ( E C. According to Definition 7.7.3, we have r ]  E YE([) if 
lim inftlo dist (6 + tr], C) = 0. Let s > 0, and let us observe that 

1 1 
t i 0  t t l 0  t s  

lim inf - dist ( E  + tsq, C) = s lim inf - dist (( + tsq, C) 

1 
710 7 

= s liminf - dist (( + rr], C) = 0. 

Hence sq E TE(<). In order to complete the proof, it remains to show that Tz(<) 
is a closed set. To this aim, let ( r ] k ) k E N *  be a sequence of elements in Yx(E), 
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convergent to q. We have 

39 1 

1 
= llq - qkII + ; dist ([ + t q k ,  C )  

for every k E N*. So, limsuptlo dist ([ + tq, c) 5 117 - qk)I for every k E N*. 
Since limk,, llq - q k I I  = 0, it follows that liminftlo dist ([ + tq, C) = 0,  which 
achieves the proof. 
Problem 7.10 Let us observe that a vector q E " ~ ( 6 )  if and only if there exists a 

function x : [ O,1] -, C with x(O) = [, lim -((Z(hk) - <) = q, for some sequence 

h k  0. But, in the particular case of the set C in the problem, this relation holds 
if and only if (q ,  VU([)) = 0, which achieves the proof. 
Problem 7.11 Let us consider f : W3 3 W3 and U : R3 + Iw, defined by 
f(xl ,x2,x3) = ( -22  + x:,x1,--21x3) and u(xl7x2,x3) = xf + x; +xi for every 
(x1, ~ 2 ~ x 3 )  E R3. It is easy to see that f is locally Lipschitz being of class 
C". Therefore, the uniqueness hypothesis in Theorem 7.9.1 is satisfied. In order 
to check the tangency condition: f([) E YE([) for every E E C, according to 
Problem 7.10, it suffices to show that (f ([), VU([)) = 0 for every E E C. But this 
condition is satisfied because (f([), VU([)) = -2[1[2 + 2[1[32 + 2[1& - 2[1[32 = 0. 
Problem 7.12 We will analyze only the case of the Oy-axis. So, let f : W2 -, R2 
and U : R2 --+ W be defined by f(x, y) = ( (a  - ky)x, -(b - hx)y) and respectively 
by U(z,y)  = x, for every (x,y) E R2. Since f is locally Lipschitz, the uniqueness 
hypothesis in Theorem 7.9.1 is satisfied. We have C = {(x, y) E W2; U ( x ,  y) = 0}, 
while in order to check the tangency condition in Theorem 7.9.1, in accordance 
with Problem 7.10, we must show that (f([l,[z),VU(&,[2)) = 0 for every 
(&,  &.) E C. This condition is satisfied because f((l,  &) = f(0, (2) = (0,  -b&) 
and VU([1,&) = ( l , O ) ,  for every ([I,&) E C. Similarly, one proves that the 
Ox-axis is invariant for the Lotka-Volterra system. By virtue of the remarks 
above, in order to show that the first quadrant is an invariant set for the system, 
it suffices to observe that every solution, issued at a point of the boundary of this 
set, remains there as long as it exists. But this amounts of proving that every 
solution, which reaches the origin remains there, assertion which is obvious in 
view of the uniqueness property. 
Problem 7.13 By virtue of Definition 7.7.3, we deduce that for every [ E dC we 
have Tax(<) c TE([) and therefore the condition in the statement implies: for 

every 5 E we have f ( E )  E YE([). Since for every 6 €5, YE([) = R", it follows 
that f satisfies the sufficiency part in Theorem 7.7.2. 

The condition is not necessary, as we can state from the following simple 
example. Let C = {(z,y) E W2;  x 2  + y2 5 l}, and let us consider the system 

1 
h k l O  hk 

Y 2' = -x - { yf = x - y .  
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Multiplying the first equality by z and the second by y, we deduce that 

I d  
2 d t  
-- (z"(t) + y"(t)) = - (z2W + Y"(t)) 

for every t E [O,T]. Hence z2((t) + y2(t) = e-2t(x2(0) + y2(0)) < 1 for every 
(z(O), y(0)) E dC. So, although the set C is invariant for the system, its boundary 
dC is not. According to the necessity part of Theorem 7.7.2, it follows that one 
cannot have f([) E Tax([) for every [ E dC. Hence, the condition in Theorem A 
is not necessary. 
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contraction principle, 7 
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disintegration constant, 31 
distribution, 248 

derivative of order k of a, 252 
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traffic, 228 
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perturbing, 173 
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Riemann integrable, 316 
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condition, 18 
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initial-value problem, 51 
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first, 210 
general, 17 
independent prime, 212 
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nontrivial, 15 
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law 
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method 
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parameter, 26 
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Lotka, 41 
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pursuit-evasion, 272 
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multifunction, 274 
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model 
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operator 

evolution, 131 
feedback, 193 
nth-order differential, 262 
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point 
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stationary, 163, 212 
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problem 
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Lurie-Postnikov, 195 
of inverse tangents, 1 

convolution, 256 
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set 
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distribution, 258 
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singular, 2 
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