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Preface

The book is an entirely rewritten English version of the lecture notes of a
course on Differential Equations I taught during the last twelve years at the
Faculty of Mathematics of “Al. I. Cuza” University of lagi. These lecture
notes were written in 1999 in Romanian. Their goal was to present in a
unitary frame and from a new perspective the main concepts and results
belonging to a discipline which, due to the continuous interplay between
theory and applications, is by far one of the most fascinating branches of
modern mathematics, i.e. differential equations. It was my intention to
give the reader the opportunity to know a point of view — rather different
from the traditional one — offering a possible way to learn differential
equations with main emphasis on the Cauchy problem. So, I decided to
treat separately the problems of: existence, uniqueness, approximation,
continuation of the solutions and, at the same time, to give the simplest
possible but complete proofs to some fundamental results which are at the
core of the discipline: Peano’s local existence theorem, the classification of
non-continuable solutions from the viewpoint of their behavior at the end
of the existence interval, the continuous dependence of the solution on the
data and parameters, etc. This goal was by far very hard to accomplish due
to the existence of a long list of very good, or even exceptional, textbooks
and monographs on this subject covering all levels of difficulty: [Arnold
(1974)], [Arrowsmith and Place (1982)], [Barbu (1985)], [Braun (1983)],
[Coddington and Levinson (1955)], [Corduneanu (1977)], [Cronin (1980)],
[Elsgolts (1980)], [Halanay (1972)], [Hale (1969)], [Hartman (1964)], [Hirsch
and Smale (1974)], [Hubbard and West (1995)], [Tonescu (1972)}, [Piccinini
et al. (1984)], [Pontriaghin (1969)], to cite only a few. However, in spite
of this challenging competition, I hope that the reader will find this text
attractive enough from both the viewpoint of the chosen topics and the

vii



viii Preface

presentation.

The book contains a preface, a list of symbols, seven main chapters, a
short chapter on auxiliary results, a rather long section including detailed
solutions to all exercises and problems, a bibliography and ends with an
index. With the sole exception of Chapters 6 and 7, which require some
basic results on Lebesgue integral and Measure Theory, it is completely
accessible to any reader having satisfactory knowledge of Linear Algebra
and Mathematical Analysis. The 36 figures included illustrate the concepts
introduced and smooth the way towards a complete understanding of the
arguments used in the proofs.

The first chapter starts with a very brief presentation of the main steps
made along the last four centuries toward the modern theory of differential
equations. It continues with some preliminary notions and results referring
to: the concept of solution, some methods of solving elementary equations,
various mathematical models described either by differential equations or
systems of differential equations, and some basic integral inequalities.

The second chapter contains several fundamental results concerning the
Cauchy Problem: the local existence, the continuation of the solutions, the
existence of global solutions, the relationship between the local and the
global uniqueness, the continuous dependence and the differentiability of
the solutions with respect to the data and to the parameters.

The third chapter is merely concerned with some classical facts about
the approximation of the solutions: the method of power series, the
method of successive approximations, the method of polygonal lines, the
implicit Euler method and a particular, and therefore simplified, instance
of Crandall-Liggett exponential formula.

In the fourth chapter we apply the previously developed theory to a
systematic study of one of the most important class of systems: first-order
linear differential systems. Here we present the main results concerning the
global existence and uniqueness, the structure of the space of solutions, the
fundamental matrix and the Wronskian, the variation of constants formula,
the properties of the mapping ¢ — e*! and the basic results referring to
nth_order linear differential equations.

The fifth chapter is mainly concerned with the study of an extremely
important problem of the discipline: the stability of solutions. We introduce
four concepts of stability and we successively study the stability of the null
solution of linear systems, perturbed systems and fully nonlinear systems
respectively, in the last case by means of the Lyapunov’s function method.
We also include some facts about instability which is responsible for the
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so-called unpredictability and chaos.

In the sixth chapter, we start with the study of the concept of prime
integral, first for autonomous, and thereafter for non-autonomous systems.
Next, with this background material at hand, we present the basic results
concerning linear and quasi-linear first-order partial differential equations.
Some examples of conservation laws are also included.

The seventh chapter, rather heterogeneous, has a very special character
being conceived to help the reader to go deeper within this discipline. So,
here, we discuss some concepts and results concerning distributions and
solutions in the sense of distributions, Carathéodory solutions, differential
inclusions, variational inequalities, viability and invariance and gradient
systems.

In the last chapter we include some auxiliary concepts and results needed
for a good understanding of some parts of the book: the operator norm of a
matrix, compact sets in C([a,b]; R™), the projection of a point on a convex
set.

Each chapter, except that one on Auxiliary Results, ends with a special
section containing exercises and problems ranging from extremely simple
to challenging ones. The complete proofs of all these are included into a
rather developed final section (more than 60 pages).

Acknowledgements. The writing of this book was facilitated by a
very careful reading of some parts of the manuscript, by several remarks
and suggestions made by Professors Ovidiu Cérji, Mihai Necula from
“Al. I. Cuza” University of lagi, by Professors Silvia—Otilia Corduneanu
and Silviu Nistor from “Gh. Asachi” Technical University of lagi, remarks
and suggestions which I took into account. The simplified version of the
Frobenius theorem was called to my attention by Dr. Constantin Varsan,
Senior Researcher at The Mathematical Institute of the Romanian Academy
in Bucharest. Some of the examples in Physics and Chemistry have been
reformulated taking into account the remarks made by Professors Dumitru
Luca and Gelu Bourceanu. Professor Constantin Onicd had a substantial
contribution in solving and correcting most part of the exercises and the
problems proposed. A special mention deserves the very careful — and
thus critical — reading of the English version by Professor Mircea Béarsan.

It is a great pleasure to express my appreciation to all of them.

Iagi, November 30", 2003 Ioan I. Vrabie
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List of Symbols

AT — the transpose of the matrix A € My xn(R)
B(¢,r) — the closed ball centered at £ of radius r > 0
191’ — the interior of the set B
B* — the adjoint of the matrix B € Mnxn(R)
conv F’ — the convex hull of F, i.e. the set of all convex
combinations of elements in F'
conv F — the closed convex hull of F, i.e. the closure of conv F’
CP(L, 1, f,a,) — the Cauchy problem z’ = f(¢,z), z(a) = £, where
i IxQ >R acland &€
C([a,b];R*) — the space of continuous functions from [a,b] to R®
D — the data (1,9, f,a,&). So, @P(D) denotes CP(L, 9, f,a,£)
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dist (X, F) = inf{llz —yll; € K,y € F}
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D(R) — the space of indefinite differentiable functions from R
to R, with compact support
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D'(R) — the set of linear continucus functionals from D(R) to R
graph (z) — the graph of z : I — R", i.e. graph (z) = {(¢,z(¢)}; t € I}
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[l Al — the norm of the matrix A € Mnxm(R), i.e.
Allx = sup{|lAz|l»; € R, |lz|lm < 1}
Q — a nonempty and open subset in R"
Pr(x) — the projection of the vector z € R™ on the subset K C R®
R — the set of real numbers
R* — the set of real numbers excepting 0

R4+ — the set of nonnegative real numbers
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Chapter 1

Generalities

The present chapter serves as an introduction. The first section contains several
historical comments, while the second one is dedicated to a general presentation
of the discipline. The third section reviews the most representative differential
equations which can be solved by elementary methods. In the fourth section we
gathered several mathematical models which illustrate the applicative power of
the discipline. The fifth section is dedicated to some integral inequalities which
will prove useful later, while the last sixth section contains several exercises and
problems (whose proofs can be found at the end of the book).

1.1 Brief History

1.1.1 The Birth of the Discipline

The name of “equatio differentialis” has been used for the first time in 1676
by Gottfried Wilhelm von Leibniz in order to designate the determination
of a function to satisfy together with one or more of its derivatives a given
relation. This concept arose as a necessity to handle into a unitary and
abstract frame a wide variety of problems in Mathematical Analysis and
Mathematical Modelling formulated (and some of them even solved) by the
middle of the XVII century. One of the first problems belonging to the
domain of differential equations is the so-called problem of inverse tangents
consisting in the determination of a plane curve by knowing the properties
of its tangent at any point of it. The first who has tried to reduce this
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problem to quadratures ! was Isaac Barrow? (1630-1677) who, using a ge-

ometric procedure invented by himself (in fact a substitute of the method
of separation of variables), has solved several problems of this sort. In 1687
Sir Isaac Newton has integrated a linear differential equation and, in 1694,
Jean Bernoulli (1667-1748) has used the integrand factor method in order
to solve some n'-order linear differential equations. In 1693 Leibniz has
employed the substitution y = {z in order to solve homogeneous equations,
and, in 1697, Jean Bernoulli has succeeded to integrate the homonymous
equation in the particular case of constant coefficients. Eighteen years
later, Jacopo Riccati (1676-1754) has presented a procedure of reduction
of the order of a second-order differential equation containing only one of
the variables and has begun a systematic study of the equation which in-
herited his name. In 1760 Leonhard Euler (1707-1783) has observed that,
whenever a particular solution of the Riccati equation is known, the latter
can be reduced, by means of a substitution, to a linear equation. More
than this, he has remarked that, if one knows two particular solutions of
the same equation, its solving reduces to a single quadrature. By the sys-
tematic study of this kind of equation, Euler was one of the first important
forerunners of this discipline. It is the merit of Jean le Rond D’Alembert
(1717-1783) to have had observed that an n'"-order differential equation
is equivalent to a system of n first-order differential equations. In 1775
Joseph Louis de Lagrange (1736-1813) has introduced the variation of con-
stants method, which, as we can deduce from a letter to Daniel Bernoulli
(1700-1782) in 1739, was been already invented by Euler. The equations
of the form Pdr + Qdy + Rdz = 0 were for a long time considered absurd
whenever the left-hand side was not an exact differential, although they
were studied by Newton. It was Gaspard Monge (1746-1816) who, in 1787,
has given their geometric interpretation and has rehabilitated them in the
mathematical world. The notion of singular solution was introduced in 1715
by Brook Taylor (1685-1731) and was studied in 1736 by Alexis Clairaut
(1713-1765). However, it is the merit of Lagrange who, in 1801, has defined
the concept of singular solution in its nowadays acceptation, making a net

!By quadrature we mean the method of reducing a given problem to the computation
of an integral, defined or not. The name comes from the homonymous procedure, known
from the early times of Greek Geometry, which consists in finding the area of a plane
figure by constructing, only by means of the ruler and compass, of a square with the
same area.

2Professor of Sir [saac Newton (1642-1727), Isaac Barrow is considered one of the
forerunners of the Differential Calculus independently invented by two brilliant mathe-
maticians: his former student and Gottfried Wilhelm von Leibniz (1646-1716).
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distinction between this kind of solution and that of particular solution.
The scientists have realized soon that many classes of differential equations
cannot be solved explicitly and therefore they have been led to develop a
wide variety of approximating methods, one more effective than another.
Newton’ statement, in the treatise on fluzional equations written in 1671
but published in 1736, that: all differential equations can be solved by using
power series with undetermined coefficients, has had a deep influence on
the mathematical thinking of the XVIII*! century. So, in 1768, Euler has
imaged such kind of approximation methods based on the development of
the solution in power series. It is interesting to notice that, during this
research process, Euler has defined the cylindric functions which have been
baptized subsequently by the name of whom has succeeded to use them
very efficiently: the astronomer Friedrich Wilhelm Bessel (1784-1846). We
emphasize that, at this stage, the mathematicians have not questioned on
the convergence of the power series used, and even less on the existence of
the “solution to be approximated”.

1.1.2 Major Themes

In all what follows we confine ourselves to a very brief presentation of the
most important steps in the study of the initial-value problem, called also
Cauchy problem. This consists in the determination of a solution z, of a
differential equation z’ = f(¢, ), which for a preassigned value a of the
argument takes a preassigned value &, i.e. z(a) = £ We deliberately do
not touch upon some other problems, as for instance the boundary-value
problems, very important in fact, but which do not belong to the proposed
topic of this book.

As we have already mentioned, the mathematicians have realized soon
that many differential equations can not be solved explicitly. This situation
has faced them several major, but quite difficult problems which have had
to be solved. A problem of this kind consists in finding general sufficient
conditions on the data of an initial-value problem in order that this have
at least one solution. The first who has established a notable result in this
respect was the Baron Augustin Cauchy® who, in 1820, has employed the
polygonal lines method in order to prove the local existence for the initial-
value problem associated to a differential equation whose right-hand side

3French mathematician (1789-1857). He is the founder of Complex Analysis and the
author of the first modern course in Mathematical Analysis (1821). He has observed the
link between convergent and fundamental sequences of real numbers.
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is of class C'. The method, improved in 1876 by Rudolf Otto Sigismund
Lipschitz (1832-1903), has been definitively imposed in 1890 in its most
general and natural frame by Giuseppe Peano?. This explains why, in many
monographs, this is referred to as the Cauchy-Lipschitz—Peano’s method.

As in other cases, rather frequent in mathematics, in the domain of
differential equations, the method of proof has preceded and finally has
eclipsed the result to whose proof has had a decisive role. So, as we have
already mentioned, the method of power series, one of the most in vogue
among the equationists of both XVII and XVIII centuries, has become soon
the favorite approach in the approximation of the solutions of certain initial-
value problems. This method has circumvented its class of applicability
(that class for which the right-hand side is an analytic function) only at the
middle of the XIX century, almost at the same time with the development
of the modern Complex Function Theory. This might explain why, the first
rigorous existence result concerning analytic solutions for an initial-value
problem has referred to a class of differential equations in the complex field
C and not, as we could expect, in the real field R. More precisely, in 1842,
Cauchy, reanalyzing in a critical manner Newton’ statement referring to
the possibility of solving all differential equations in R by means of power
series, has placed this problem within its most natural frame (for the time
being): the Theory of Complex Functions of Several Complex Variables. In
this context, in order to prove the convergence of the power series whose
partial sum defines the approximate solution for an initial-value problem,
he was led to invent the so-called method of majorant series. This method
consists in the construction of a convergent series with positive terms, with
the property that its general term is a majorant for the absolute value of
the general term of the approximate solution’ series. Such a series is called
a majorant for the initial one. The method has been refined by Ernst
Lindel6ff who, in 1896, has proposed a majorant series, better than that
one used by Cauchy, and who has shown that the very subtle arguments
of Cauchy, based on the Theory of Complex Functions of Several Complex
Variables, are also at hand in the real field, and more than this, even by
using simpler arguments.

Another important step concerning the approximation of the solutions
of an initial-value problem is due to Emile Picard (1856-1941) who, in 1890,

4Italian mathematician (1858-1932) with notable contributions in Mathematical
Logic. He has formulated the axiomatic system of natural numbers and the Axiom
of Choice. However, his excessive formalism was very often a real brake in the process
of understanding his contributions.
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in a paper mainly dedicated to partial differential equations, has introduced
the method of successive approzimations. This method, who has became
well-known very soon, has its roots in Newton’s method of tangents, and has
constituted the starting point for several fundamental results in Functional
Analysis as Banach'’s fixed point theorem.

In the very same period was born the so-called Qualitative Theory of
Differential Equations by the fundamental contributions of Henri Poincaré.?
As we have already noticed, the main preoccupation of the equationists of
the XVII and XVIII centuries was to find efficient methods, either to solve
explicitly a given initial-value problem, or at least to approximate its solu-
tions as accurate as possible. Unfortunately, none of these objectives were
realizable, and for that reason, they have been soon abandoned. Without
any doubt, it is the great merit of Poincaré for being the first who has caught
the fact that, in all these cases in which the quantitative arguments are not
efficient, one can however obtain crucial information on a solution which
can be neither expressed explicitly, nor approximated accurately.® More
precisely, he put the problem of finding, at a first stage, of the “allure” of
the curve, associated with the solution in question, leaving aside any con-
tinuous transformation which could modify it. For instance, in Poincaré’s
acceptation, the two curves in R® illustrated in Figure 1.1.1 (a) and (b) can
be identified modulo “allure”, while the other two, i.e. (c) and (d) in the
same Figure 1.1.1, can not. At the same time it was the birthday of the
modern Theory of Stability. The fundamental contributions of Poincaré, of
James Clerk Maxwell” to the study of the planets’ motions, but especially

5French mathematician (1854-1912), the initiator of the Dynamical System Theory
(an abstract version of the Theory of Differential Equations which is mainly concerned
with the qualitative aspects of solutions) and that of Algebraic Topology. In Les méthodes
nouvelles de la mécanique celéste, Volumes I, 11, IT1, Gauthier-Villars, 1892-1893-1899,
enunciates and applies several stability results to the study of the planets’ motions.

6In his address to the International Congress of Mathematicians in 1908, Poincaré
said: “In the past an equation was only considered to be solved when one had expressed
the solutions with the aid of a finite number of known functions; but this is hardly possible
one time in one hundred. What we can always do, or rather what we should always try
to do, is to solve the gualitative problem so to speak, that is to try to find the general
form of the curve representing the unknown function.” (M. W. Hirsch's translation.)

"British physicist and mathematician (1831~1879) who has succeeded to unify the
general theories referring the electricity and magnetism establishing the general laws of
electromagnetism on whose basis he has predicted the existence of the electromagnetic
field. This prediction has been confirmed later by the experiments of Heinrich Hertz
(1857-1894). At the same time, he was the first who has applied the general concepts
and results of stability in the study of the evolution of the rings of Saturn.
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those of Alexsandr Mihailovici Lyapunov®, have emerged into a tremendous
stream of a new theory of great practical interest. A similar moment, from
the viewpoint of its importance for the Stability Theory, will come only
after seven decades, with the first results of Vasile M. Popov concerning
the stability of the automatic controlled systems.

(\

(@

(a) (b)
()
Figure 1.1.1

The last years of the XIX century were, for sure, the most prolific from
the viewpoint of Differential Equations. In those golden times there have
been proved the fundamental results concerning: the local existence of at
least one solution (Peano 1890}, the approximation of the solutions (Picard
1890), the analyticity of the solutions as functions of parameters (Poincaré
1890), the simple or asymptotic stability of solutions (Lyapunov 1892},
(Poincaré 1892), the uniqueness of the solution of a given initial-value
problem (William Fogg Osgood 1898). Also in the last two decades of
the XIX century, Poincaré has outlined the concept of dynamical system
in its nowadays meaning and has begun a systematic study of one of the
most important and, at the same time most fascinating problems belong-
ing to the Qualitative Theory of Differential Equations: the classification
of the solutions according to their intrinsic topological properties. These
referential moments have been the starting points of two new mathemati-
cal disciplines: the Dynamical System Theory and the Algebraic Topology
which have developed by their own even from the first years of the XX

8Russian mathematician (1857-1918) who, in his doctoral thesis defended in 1892,
has defined the main concepts of stability as known nowadays. He also has introduced
two fundamental methods of study of the stability problems.
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century. It should be also mentioned that, starting from an astrophysical
problem he has raised in 1885, again Poincaré was the founder of a new
discipline: Bifurcation Theory. Among the most representatives contribu-
tors are: Lyapunov, Erhald Schmidt, Mark Alexsandrovici Krasnoselski,
David H. Sattinger and by Paul Rabinowitz, to list only a few. Also in
the last decade of the XIX century, another fundamental result referring
to the differentiability of the solution with respect to the initial data has
been discovered. Namely, in 1896, Ivar Bendixon has proved the above
mentioned result for the scalar differential equation, in 1897 Peano has ex-
tended it to the case of a system of differential equations, but it was the
merit of Thomas H. Gronwall who, in 1919, using the homonymous integral
inequality he has proved just to this aim, has given the most elegant proof
and, therefore the most frequently used by now.

The beginning of the XX century was been deeply influenced by
Poincaré’s innovating ideas. Namely, in 1920, Garret David Birkhoff has
rigorously founded the Dynamical System Theory. At this point, one should
mention that the subsequent fundamental contributions are due mainly
to Andrej Nikolaevich Kolmogorov®, Vladimir Igorevich Arnold, Jiirgen
Kurt Moser, Joseph Pierre LaSalle (1916-1983), Morris W. Hirsch, Stephen
Smale and George Sell. A special mention in this respect deserves the so-
called KAM Theory, i.e. Kolmogorov-Arnold—Moser Theory. Coming back
to the third decade of the XX century, at that time, a very important
step was made toward a functional approach for such kind of problems.
Birkhoff, together with Oliver Dimon Kellogg were the first who, in 1922,
have used fixed point topological arguments in order to prove some existence
and uniqueness results for certain classes of differential equations. These
topological methods were initiated by Luitzen Egbertus Jan Brouwer!?,
extended and generalized subsequently by Solomon Lefschetz (1984-1972),
and refined in 1934 by Jean Leray and Juliusz Schauder who have expressed
them into a very general abstract and elegant form, known nowadays un-
der the name of Leray-Schauder Topological Degree. Renato Cacciopoli
was the first who, in 1930, has employed the Contraction Principle as a
method of proof for an existence and uniqueness theorem. However, it is

9Russian mathematician (1903-1987). He is the founder of the modern Probability
Theory. He has remarkable contributions in Dynamical System Theory with application
to Hamiltonian systems.

10Dutch mathematician and philosopher (1881-1966). He is one of the founders of the
Intuitionists School. His famous fixed point theorem says that every continuous function
f, from a nonempty convex compact set K C R™ into K, has at least one fized point
z€ K, ie f(zx)==2.
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the merit of Stefan Banach whe, even earlier, i.e. in 1922, has given its
general abstract form known, as a result under the name of Banach’s fized
point theorem, and as a method of proof under the name of the method of
successive approxrimations.

Concerning the qualitative properties of solutions the mathematicians
have focused their attention on the study of the so-called ergodic behavior
beginning with Birkhoff (1931) and continuing with John von Neumann!?
(1932), Késaku Yosida (1938), Yosida and Shizuo Kakutani (1938), etc.
Due mainly to their applications in Chemistry, Electricity and Biology,
the existence and properties of the so-called limit cycles, whose study was
initiated also by Poincaré (1881), became another subject of great interest.
Motivated by the study of self-sustained oscillations in nonlinear electric
circuits, the theory of limit cycles grew up rapidly since the 1920s and
1930s with the contributions of G. Duffing, M. H. Dulac, B. Van der Pol
and A. A. Andronov. Notable contributions in this topic (especially to
the study of some specific classes of quadratic systems) are mostly due to
Chinese, Russian and Ukrainean mathematicians as N. N. Bautin, A. N,
Sharkovskij, S.-L. Shi, S. I. Yashenko, Y. C. Ye, and others.

In this period Erich Kamke has established the classical theorem on
the continuous dependence of the solution of an initial-value problem on
the data and on the parameters, theorem extended in 1957 by Jaroslav
Kurzweil. Also Kamke, following Paul Montel, Enrico Bompiani, Leonida
Tonelli and Oscar Perron, has introduced the so-called comparison method
in order to obtain sharp uniqueness results. This method proved useful
in the study of some stability problems and, surprisingly, as subsequently
observed by Felix E. Browder, even in the proof of existence theorems.

Concerning the concept of solution, the new type of integral defined in
1904 by Henri Lebesgue, has offered the possibility to extend the classical
theory of differential equations based on the Riemann (in fact Cauchy)
integral to another theory resting heavily upon the Lebesgue integral. This
major step was made in 1918 by Constantin Carathéodory. Subsequent
extensions, based on another type of integral, more general than that of
Lebesgue, and known as the Kurzweil-Henstock integral, have been initiated
in 1957 by Kurzweil.

With the same idea in mind, i.e. to enlarge the class of candidates
to the title of solution, but from a completely different perspective, a new

1 American mathematician born in Budapest (1903-1957). He is the creator of the
Game Theory and has notable contributions in Functional Analysis and in Information
Theory.
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discipline was born: the Theory of Distributions initiated in 1936 by Serghei
Sobolev and definitely founded in 1950-1951 by Laurent Schwartz. Initially
thought as a theory exclusively useful in the linear case, the Theory of
Distributions has proved its efficiency in the study of various nonlinear
problems as well.

Other types of generalized solutions on which to rebuild an effective
theory, especially in the nonlinear case, the so-called wiscosity solutions,
were introduced in 1950 by Eberhard Hopf and subsequently studied by
Olga Oleinik and Paul Lax (1957), Stanislav Kruzkov (1970), Michael G.
Crandall and Pierre-Louis Lions (1983) and Daniel T&taru (1990), among
others. Notable results on the uniqueness problem, very important but at
the same time extremely difficult in this context, have been obtained in
1987 by Michael G. Crandall, Hitoshi Ishii and Pierre-Louis Lions.

Since 1950, with the publication of the famous counter-example due to
Jean Dieudonné, one has realized that, on some infinite dimensional spaces,
as for instance c'?, only the continuity of the right-hand side is not enough
to ensure the local existence for an initial-value problem. This strange,
but not unexpected situation, was been completely elucidated in 1975 by
Alexsandr Nicolaevici Godunov, who has proved that, for every infinite
dimensional Banach space X there exist a continuous function f : X — X
and € € X such that the Cauchy problem z' = f(z), £(0) = £ has no local
solution. Maybe from these reasons, starting with the end of the fifties, one
has observed a growing interest in the study of the local existence problem
in infinite dimensional Banach spaces and of some qualitative problems. In
this respect we mention the results of Constantin Corduneanu and Aristide
Halanay.

The development of a functional calculus based on the Theory of Func-
tions of a Complex Variable taking values into a Banach algebra was accom-
plished in parallel with the study of the “Abstract Theory of Differential
Equations”. So, in 1935, Nelson Dunford has introduced the curvilinear
integral of an analytic function with values in a Banach algebra and has
proved a Cauchy type representation formula for the exponential as a func-
tion of an operator. In 1948, Einar Hille and Késaku Yosida, starting from
the study of some partial differential equations, has introduced and studied
independently an abstract class of linear differential equations, with possi-
ble discontinuous right hand-side, and have proved the famous generation
theorem concerning Cy-semigroups, known as the Hille-Yosida Theorem.

12We recall that cp is the space of all real sequences approaching 0 as n tends to oo.
Endowed with the sup norm this is an infinite dimensional real Banach space.
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The necessary and sufficient condition expressed in this theorem has been
extended in 1967 to the fully nonlinear case, but only in a Hilbert space
frame, by Yukio Kémura, while the sufficiency part, by far the most in-
teresting, has been proved in the general Banach space frame in 1971 by
Michael G. Crandall and Thomas M. Liggett. This result!? is known as the
Crandall-Liggett Generation Theorem, while the formula established in the
proof as the Fzponential Formula.

In parallel with the extension of the differential equations’ framework
to infinite dimensional spaces via the already mentioned contributions, but
also through those of Philippe Bénilan (1940-2000), Haim Brezis, Toshio
Kato, Jaques—Louis Lions (1928-2001), Amnon Pazy, one has reconsidered
the study of some problems of major interest in this new and fairly general
context. So, in 1979, Ciprian Foiag and Roger Temam have obtained one of
the first deepest results concerning the existence of the inertial manifolds
and have estimated the dimension of such manifolds in the case of the
Navier-Stokes system in fluid dynamics. Results of this kind essentially
state that, some infinite-dimensional systems have, for large values of the
time variable, a “finite-dimensional-type” behavior.

The systematic study of optimal control problems in R™, initiated in the
fifties by Lev Pontriaghin (1908-1988), Revaz Valerianovici Gamkrélidze
and Vladimir Grigorievici Boltianski, has been continued in the sixties and
seventies by: Lamberto Cesari, Richard Bellman, Rudolf Emil Kalman,
Wendell Helms Fleming, Jaques-Louis Lions, Hector O. Fattorini, among
others. We notice that Lions was the first who has extended this theory to
the framework of linear differential equations in infinite-dimensional spaces
in order to handle control problems governed by partial differential equa-
tions as well. Notable results in this direction, but in the fully nonlinear
case, have been obtained subsequently by Viorel Barbu.

We conclude these brief historical considerations which reflect rather a
subjective viewpoint of the author and which are far from being complete!?,
by emphasizing that the Theory of Differential Equations is a continuously
growing discipline, whose by now classical results are very often extended
and generalized in order to handle new cases suggested by practice and even
who is permanently enriched by completely new results having no direct

13A simplified version of this fundamental result is presented in Section 3.4 of this
book.

14The interested reader willing to get additional information concerning the evolution
of this discipline is referred to [Wieleitner (1964)], [Hirsch (1984)} and [Piccinini et al.
(1984)].
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correspondence within its classical counterpart. For this reason, all those
interested in mathematical research may found in this domain a wealth
of various open problems waiting to be solved, or even more, they may
formulate and solve by themselves new and interesting problems.

1.2 Introduction

Differential Equations and Systems. Differential Fquations have their
roots as a “by its own” discipline in the natural interest of scientists to
predict, as accurate as possible, the future evolution of a certain physical,
biological, chemical, sociological, etc. system. It is easy to realize that, in
order to get a fairly acceptable prediction close enough to the reality, we
need fairly precise data on the present state of the system, as well as, sound
knowledge on the law(s) according to which the instantaneous state of the
system affects its instantaneous rate of change. Mathematical Modelling is
that discipline which comes into play at this point, offering the scientist
the description of such laws in a mathematical language, laws which, in
many specific situations, take the form of differential equations, or even of
systems of differential equations.

The goal of the present section is to define the concept of differential
equation, as well as that of system of differential equations, and to give a
brief review of the main problems to be studied in this book.

Roughly speaking, a scalar differential equation represents a functional
dependence relationship between the values of a real valued function, called
unknown function, some, but at least one of its ordinary (partial) derivatives
up to a given order n, and the independent variable(s).

The highest order of differentiation of the unknown function involved in
the equation is called the order of the equation.

A differential equation whose unknown function depends on one real
variable is called ordinary differential equation, while a differential equa-
tion whose unknown function depends on two, or more, real independent
variables is called a partial differential equation. For instance the equation

z” +z =sint,

whose unknown function z depends on one real variable ¢, is an ordinary
differential equation of second order, while the equation

Bu_ Ou
oz20y oy
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whose unknown function © depends on two independent real variables z
and v, is a third-order partial differential equation.

In the present book we will focus our attention mainly on the study of
ordinary differential equations which from now on, whenever no confusion
may occur, we simply refer to as differential equations. However, we will
touch upon on passing some problems referring to a special class of par-
tial differential equations whose most appropriate and natural approach is
offered by the ordinary differential equations’ frame.

The general form of an n**-order scalar differential equation with the
unknown function z is

Ft,z,2,...,z™) =0, (&)

where F' is a function defined on a subset D(F) in R™*2 and taking values
in R, which is not constant with respect to the last variable.

Under usual regularity assumptions on the function F' (required by the
applicability of the Implicit Functions Theorem), (£) may be rewritten as

™ = f(t,z, 2, .., "), (N)

where f is a function defined on a subset D(f) in R™*! with values
in R, which explicitly defines z(™ (at least locally) as a function of
t,z,z’,...,2™ D by means of the relation F(t,z,2,...,z(™) = 0. An
equation of the form (N) is called n**-order scalar differential equation in
normal form. With few exceptions, in all what follows, we will focus our
attention on the study of first-order differential equations in normal form,
i.e. on the study of differential equations of the form

= f(t>$)’ (O)

where f is a function defined on D(f) C R? taking values in R.
By analogy, if ¢ : D(g) — R™ is a given function, g = (91,92, .-, ),
where D(g) is included in R x R™, we may define a system of n first-order

differential equations with n unknown functions: 41, y2,...,Yn, as a system
of the form

i = gi(t,yn,¥2, -+ Un) g

{i=1,2,...,n, (8)

which, in its turn, represents the componentwise expression of a first-order
vector differential equation

v =g(t,y) )
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By means of the transformations'®

{y et (yl:y2""ayn) = ($7$/)"'7m(n_1))

T
g(tvy):(y2>y37'-'aynv f(t»yl,yz,---,yn)), ( )

(N) can be equivalently rewritten as system of n scalar differential equations
with n unknown functions:

Y1 =192
Yo =Ys3
'I

yn—l = yn

yiz = f(t7ylay2v"'7yn)u

or, in other words, as a first-order vector differential equation (V), with g
defined by (7). This way, the study of the equation (N) reduces to the
study of an equation of the type (V) or, equivalently, to the study of a
first-order differential system. This explains why, in all what follows, we
will merely study the equation (V), noticing only, whenever necessary, how
to transcribe the results referring to (V) in terms of (N) by means of the
transformations (7).

We notice that, when the function ¢ in (V) does not depend explicitly
on t, the equation (V) is called autonomous. Under similar circumstances,
the system (8) is called autonomous. For instance, the equation

/

v =2y
is autonomous, while the equation
Yy =2y+t

is not. We emphasize however that every non-autonomous equation of the
form (V) may be equivalently rewritten as an autonomous one:

2 = h(2), (V)

where the unknown function z has an extra-component (than y). More
precisely, setting z = (z1,29,...,2p41) = (t,¥1,¥2,---,Yn) and defining
h: D(g) c R — R**+! by

h(Z) = (l’gl(zl)zza N ’Z'n—i-l)a e )gn('211227 e ',zn+1))

15Transformations proposed by Jean Le Rond D’Alembert.
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for each z € D(g), we observe that (V') represents the equivalent writing
of (V). So, the first-order scalar differential equation 3y’ = 2y + ¢t may be
rewritten as a first-order vector differential equation in R2, of the form
z' = h(z), where z = (z1,22) = (t,y) and h(z) = (1,225 + 2;). Similar
considerations are in effect for the differential system (8) too.

Type of Solutions. As defined by now, somehow descriptive and far from
being rigorous, the concept of differential equation is ambiguous because
we have not specified what is the sense in which the equality () should be
understood!®. Namely, let us observe from the very beginning that anyone
of the two formal equalities (£), or (N) may be thought as being satisfied
in at least one of the next three particular meanings described below:

(i) for every t in the domain I, of the unknown function z;
(ii) for every t in I, \ E, with E an exceptional set (finite, countable,
negligible, etc.);
(iii) in a generalized sense which might have nothing to do with the
usual point-wise equality.

It becomes now clear that a crucial problem arising at this stage is
that of how to define the concept of solution for (€) by specifying what
is the precise meaning of the equality (£). It should be noted that any
construction of a rigorous theory of Differential Equations is very sensitive
on the manner in which we solve this starting problem. The following
examples are of some help in order to understand the importance, and to
evaluate the exact “dimension” of this challenge.

Example 1.2.1 Let us consider the so-called etkonal equation
lz’| = 1. (1.2.1)

It is easy to see that the only C! functions, z : R — R, satisfying (1.2.1)
for each t € R are of the form z(t) = t+e¢, or z(t) = ~t+¢, with c € R and
conversely. On the other hand, if we ask that (1.2.1) be satisfied for each
t € R, with the possible exception of those points in a finite subset, besides
the functions specified above, we may easily see that any function having
the graph as in Figure 1.2.1 is a solution of (1.2.1) in this new acceptation.

6In fact, we indicated only a formal relation which could define a predicate (the
differential equation) but we did not specify the domain on which it acts (it is defined).
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Figure 1.2.1

Example 1.2.2 Now, let us consider the differential equation

1z’ = h,

where i : I — R is a given function. It is obvious that if A is continuous,
then x is of class C?, while if h is discontinuous, the equation above cannot
have C! solutions defined on the whole interval L.

These examples emphasize the importance of the class of functions in
which we agree to accept the candidates to the title of solution. So, if this
class is too narrow, the chance to have ensured the existence of at least one
solution is very small, while, if this class is too broad, this chance, which
is obviously increasing, is drastically counterbalanced by the price paid by
the lack of several regularity properties of solutions. Therefore, the concept
of solution for a differential equation has to be defined having in mind a
compromise, namely that on one hand to let have at least one solution and,
on the other one, each solution to let have sufficient regularity properties in
order to be of some use in practice. From the examples previously analyzed,
it is easy to see that the definition of this concept should take into account
firstly the regularity properties of the function F. Throughout, we shall
say that an interval is nontrivial if it has nonempty interior. So, assuming
that F is of class C", it is natural to adopt:

Definition 1.2.1 A solution of the n*P-order scalar differential equation
(&) is a function z : I, — R of class C™ on the nontrivial interval I, which
satisfies (t,z(t),z'(t),...,z(™(t)) € D(F) and

F(t,z(t),z'(t),...2™@1) =0

for each t € [.
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Definition 1.2.2 A solution of the nth-order scalar differential equation
in the normal form (N) is a function z : I, — R of class C™ on the nontrivial
interval I;, which satisfies (t, z(t), z'(t),...,2" "D (t)) € D(f) and

M (t) = f(t,2(t), &' (t),... 2"V (1))
for each t € 1.

Definition 1.2.3 A solution of the system of first-order differential equa-
tions (8) is an n-tuple of functions (y1,¥2,...,yn) : I, = R™ of class C! on
the nontrivial interval I,,, which satisfies (¢, y1(t), y2(t), ..., y(t)) € D{(g)
and y;(t) = gi(t, y1(t), y2(t), ..., yn(t)), 1 =1,2,...,n, for each t € I,. The
trajectory corresponding to the solution y is the set 7(y) = {y(t); t € I,}.

The trajectory corresponding to a given solution y = (y1,yz) of a dif-
ferential system in R? is illustrated in Figure 1.2.2 (a), while the graph of
the solution in Figure 1.2.2 (b).

4

Figure 1.2.2

Definition 1.2.4 A solution of the first-order vector differential equation
(V) is a function y : Iy — R™ of class C' on the nontrivial interval I,, which
satisfies (¢,y(t)) € D(g) and y'(t) = g(t,y(t)) for each t € I,. The trajectory
corresponding to the solution y is the set 7(y) = {y(¢); t € L}.

Let us observe that the problem of finding the antiderivatives of a contin-
uous function h on a given interval I may be embedded into a first-order
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differential equation of the form z’ = h for which, from the set of solutions
given by Definition 1.2.1, we keep only those defined on I, the “maximal
domain” of the function h.

Definition 1.2.5 A family {z(-,¢) : ;. = R; ¢ = (c1,¢2,...,¢n) € R"}
of functions, implicitly defined by a relation of the form

G(t,I,Cl,CQ,...,Cn)=O, (9)

where G : D(G) C R™*2 — R, is a function of class C™ with respect to
the first two variables, with the property that, by eliminating the constants
c1,Ca,. .., Cn from the system

41662l enen )] () = 0

d2

prel [G(,z(-),c1,62,- .. ,0)] (B) =0
\ jTT; Gl a(),er, o, vsen)] () = O

and substituting these in (§) one gets exactly (£), is called the general
integral, or the general solution of ().

Usually, we identify the general solution by its relation of definition
saying that (G) is the general solution, or the general integral of (£).

Example 1.2.3 The general integral of the second-order differential
equation

z" +a’z =0,
with @ > 0, is {z(-, c1,¢2); (c1,¢2) € R?}, where
z(t,c1,¢3) = ey sinat + ¢y cos at

for t € I, 7. Indeed, it is easy to see that the equation is obtained by
eliminating the constants cj, cy from the system

(z — cysinat — cgcosat) =0
(z —cisinat — eacosat)” = 0.

17We mention that, in this case, the general integral contains also functions defined
on the whole set R, i.e. for which Iz =R.
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In this case, G : R* — R is defined by
G(t,z,c1,¢3) = T — c1 sinat — co cos at
for each (t,x,c1,c2) € R4, and (§) may be equivalently rewritten as
T = ¢1 sinat + cg cos at,

relation which defines explicitly the general integral. As we shall see later,
in many other specific cases too, in which from (9) one can get the explicit
form of x as a function of ¢,c1,¢2,...,¢,, the general integral of (€) can
be expressed in an explicit form as z(t, ¢, c,...,cn) = H(t,c1,¢,...,¢n),
with H : D(H) C R**! — R a function of class C™.

Problems to be Studied. Next, we shall list several problems which we
shall approach in the study of the equation (V). We begin by noticing that
the main problem we are going to treat is the so-called Cauchy problem, or
initial value problem associated to (V). More precisely, given {a,£) € D(g),
the Cauchy problem for (V) with data a and £ consists in finding of a
particular solution y : I, — R™ of (V), with a € I, and satisfying the initial
condition y(a) = £. Customarily a is called the instial time, while £ the
initial state.

In the study of this problem we shall encounter the following subprob-
lems of obvious importance: (1) the existence problem which consists in
finding reasonable sufficient conditions on the function g so that, for each
(a,€) € D(g), the Cauchy problem for the equation (V), with o and ¢
as data, have at least one solution'®; (2) the uniqueness problem which
consists in finding sufficient conditions on the function g so that, for each
(a,€) € D(g), the Cauchy problem for the equation (V), with a and ¢ as
data, have at most one solution defined on a given interval containing a;
(3) the problem of continuation of the solutions; (4) the problem of the
behavior of the non-continuable solution at the end(s) of the maximal in-
terval of definition; (5) the problem of approximation of a given solution;
(6) the problem of continuous dependence of the solution on both the initial

1811 many circumstances, in the process of establishing a mathematical model, one
deliberately ignores the contribution of certain “parameters” whose influence on the
evolution of the system in question is considered irrelevant. For this reason, almost all
mathematical models are not at all identical copies of the reality and, accordingly, a. first
problem of great importance we face in this context (problem which is superfluous in the
case of the real phenomenon) is that of the consistency of the model. But this consists
in showing that the model in question has at least one solution.
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datum £ and the right-hand side g; (7) the problem of differentiability of
the solution with respect to the initial datum &; (8) the problem of getting
additional information in the particular case in which g : I x R™ — R" and,
for each ¢ € I, g(¢,-) is a linear function; (9) the study of the behavior of
the solutions as t approaches +00.

1.3 Elementary Equations

The goal of this section is to collect several types of differential equations
whose general solutions can be found by means of a finite number of integra-
tion procedures. Since the integration of real functions of one real variable
is also called quadrature, these equations are known under the name of
equations solved by quadratures.

1.3.1 Eguations with Separable Variables

An equation of the form

g’ = f(t)g(z), (1.3.1)

where f: 1 — R and g: J — R are two continuous functions with g(y) # 0
for each y € J, is called with separable variables.

Theorem 1.3.1 Let I and J be two nontrivial intervals in R and let
f:I—=Randg:J — R be two continuous functions with g(y) # 0 for
each y € J. Then, the general solution of the equation (1.3.1) is given by

t
z(t) = G™! ( f(s) ds) (1.3.2)
to
for each t € Dom(z), where tg 1s a fized point in1, and G : J — R is defined
by
Y odr
Gly) = / —
W= i

for eachy € J, with § € J.

Proof. Since g does not vanish on J and is continuous, it preserves con-
stant sign on J. Changing the sign of the function f if necessary, we may
assume that g(y) > 0 for each y € J. Then, the function G is well-defined
and strictly increasing on J.
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We begin by observing that the function z defined by means of the
relation (1.3.2) is a solution of the equation (1.3.1) which satisfies z(¢p) = €.
Namely,

N T 1 _
2= |67 ([ )] = — R

for each t in the domain of the function z. In addition, from the definition
of G, it follows that z(to) = &.

To complete the proof it suffices to show that every solution of the
equation (1.3.1) is of the form (1.3.2). To this aim, let  : Dom(z) — J
be a solution of the equation (1.3.1) and let us observe that this may be
equivalently rewritten as

()
PO

for each t € Dom(z). Integrating this equality both sides over [to,t], we

get
Ya'(s)ds _ [* ) ds
/to g(®) Sy T4

for each t € Dom(z). Consequently we have

G(a(t) = ) f(s)ds,

where G is defined as above with £ = z(tp). Recalling that G is strictly
increasing on J, we conclude that it is invertible from its range G(J) into
J. From this remark and the last equality we deduce (1.3.2). d

1.3.2 Linear Equations
A linear equation is an equation of the form
' = a(t)z + b(t), (1.3.3)

where a,b : I — R are continuous functions on I. If 6 = 0 on I the equation
is called linear and homogeneous, otherwise linear and non-homogeneous.

Theorem 1.3.2 If a and b are continuous on I then the general solu-
tion of the equation (1.3.3) is given by the so-called variation of constants
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formula

2(t) = exp (/t: a(s) ds> ¢+ /t: exp (/t o) dT) b(s)ds  (1.3.4)

for each t € Dom(z), where to € Dom(z) is fized, € € R and exp(y) = e¥
for each y € R.

Proof. A simple computational argument shows that x defined by (1.3.4)
is a solution of (1.3.3) which satisfies z(tg) = £. So, we have merely to show
that each solution of {1.3.3) is of the form (1.3.4) on its interval of definition.
To this aim, let z : [ — R be a solution of the equation (1.3.3), where I,
is a nontrivial interval included in I. Fix ¢y € [ and multiply both sides in
(1.3.3) (with ¢ substituted by s) by

exp (~ /t:a(f) dT)

where s € [ly. After some obvious rearrangements, we obtain

% (z(s)exp (_ /t a(7) dT)) = b(s)exp (— /t a(r) dT>

for each s € Ip. Integrating this equality both sides between ty and t € I,
multiplying the equality thus obtained by

s ([[aar).

we deduce (1.3.4), and this completes the proof. O

Remark 1.3.1 From (1.3.4) it follows that every solution of (1.3.3) may
be continued as a solution of the same equation to the whole interval L.

1.3.3 Homogeneous Equations

A homogeneous equation is an equation of the form

2 =h (%) , (1.3.5)

where h : T — R is continuous and h(r) # r for each r € I,
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Theorem 1.3.3 Ifh:I — R is continuous and h(r) # r for eachr €1,
then the general solution of (1.3.5) is given by

z(t) = tu(t)

fort # 0, where u is the general solution of the equation with separable
variables

u = %(h(u) —u).

Proof. We have merely to express ' by means of u and to impose the
condition that = be a solution of the equation (1.3.5). ad

An important class of differential equations which can be reduced to
homogeneous equations is
t+b
g = Tttt (1.3.6)
21T + agot + by

where a;; and b;, 4, = 1,2 are constants and
a%l +a%2+b% >0
a3, + a3, + b3 > 0.
According to the compatibility of the linear algebraic system

{a11$+a12t+b1 =0

AS
a21$+(122t+b2 =O, ( )

we distinguish between three different cases. More precisely we have:
Case I. If the system (AS) has a unique solution (£,7) then, by means of
the change of variables

r=y+¢§
t=s5+n,
(1.3.6) can be equivalently rewritten under the form of the homogeneous

equation below

Y
, ey + a2
Yy = vy }
021; + a2z

Case II. If the system (AS8) has infinitely many solutions, then there exists
A # 0 such that

(a11,a12,b1) = A (@21, age, ba)
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and therefore (1.3.6) reduces to 2’ = A;
Case IIL. If the system (A8) is incompatible then there exists A # 0 such
that

{((111,012) = A(a21,a22)
(@11, a12,b1) # A(as1, 692, ba)

and, by means of the substitution y = as1z + a9t the equation reduces to
an equation with separable variables.

1.3.4 Bernoulli Equations

An equation of the form
7' = a(t)T + b(t)z*, (1.3.7)

where a,b : I — R are non-identically zero continuous functions which are
not proportional on I, and @ € R\ {0,1}, is called Bernoulli equation.

Remark 1.3.2 The restrictions imposed on the data a, b and o can be
explained by the simple observations that: if a = 0 then {1.3.7) is with
separable variables; if there exists A € R such that a(t) = Ab(t) for each
t €I, (1.3.7) is with separable variables too; if b = 0 then (1.3.7) is linear
and homogeneous; if @ = 0 then (1.3.7) is linear; if & = 1 then (1.3.7) is
linear and homogeneous.

Theorem 1.3.4 Ifa,b:1 — R are continuous and non-identically zero
onl and o € R\ {0, 1} then = is a positive solution of the equation (1.3.7)
if and only if the function y, defined by

y(t) = 217(¢) (1.3.8)

for each t € Dom(z), is a positive solution of the linear non-homogeneous
equation

v = (1—-a)a(t)y + (1 — a)b(t). (1.3.9)

Proof. Let x be a positive solution of the equation (1.3.7). Expressing
z’ as a function of y and ¢’ and using the fact that z is a solution of (1.3.7)
we deduce that y is a positive solution of (1.3.9). A similar argument shows
that if y is a positive solution of the equation (1.3.9), then z given by (1.3.8)
is, in its turn, a positive solution of (1.3.7), and the proof is complete. [
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1.3.5 Riccati Equations

An equation of the form
' = a(t)z + b(t)z* + c(t), (1.3.10)

where a,b,c¢: I — R are continuous, with b and ¢ non-identically zero on I
is called Riccati Fquation.

By definition we have excluded the cases b = 0 when (1.3.10) is a linear
equation and ¢ = 0 when (1.3.10) is a Bernoulli equation with o = 2.

Remark 1.3.3 In general, there are no effective methods of solving a
given Riccati equation, excepting the fortunate case when we dispose of an
a priori given particular solution. The next theorem refers exactly to this
particular but important case.

Theorem 1.3.5 Let a,b,c : 1 — R be continuous with b and ¢ non-
identically zero on 1. If o : J — R is a solution of (1.3.10), then the general
solution of (1.3.10) on J is given by

z(t) = y(t) + p(t),

where y s the general solution of the Bernoulli equation
y' = (a(t) + 2b(t)(t))y + b(t)y>.

Proof. One verifies by direct computation that z = y+ ¢ is a solution of
the equation (1.3.10) if and only if y = z — ¢ is a solution of the Bernoulli
equation above. O

1.3.6 Ezact Differential Equations

Let D be a nonempty and open subset in R? and let g,h : D — R be two
functions of class C! on D, with h(t,z) # 0 on D. An equation of the form

,_ gt z)
= 1.3.
g = t.2) (1.3.11)
is called ezact if there exists a function of class C?, F : D — R, such that
OF

E (t$ I) = ~~g(t’x)

(1.3.12)
?9_5 (t,z) = h(t,x).
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The condition above shows that —g(¢, z) dt + h(t, x) dz is the differential
dF of the function F calculated at (t,z) € D.

Theorem 1.3.6 If(1.3.11) is an exact equation, then its general solution
is tmplicitly given by

F(t,z) = ¢, (1.3.13)
where F': D — R satisfies (1.3.12), and ¢ ranges over F(D).

Proof. If (1.3.11) is an exact differential equation then z is one of its
solutions if and only if

—g(t,2(t)) dt + h(t,z(t)) dz(t) = 0

for t € Dom(z), equality which, by virtue of the fact that F' satisfies
(1.3.12), is equivalent to

dF(t,z(t)) = 0

for each t € Dom(x). Since this last equality is, in its turn, equivalent to
(1.3.13), the proof is complete. d

Theorem 1.3.7 If D is a simply connected domain, then a necessary and
sufficient condition in order that (1.3.11) be exact is

8h _ 0Og
a (t,III) - _a (t,(L‘),

for each (t,z) € D.
For the proof see Theorem 5 in [Nicolescu et al. (1971b)], p. 187.

1.3.7 Eguations Reducible to Exact Differential Equations

In general if the system (1.3.12) has no solutions the method of finding
the general solution of (1.3.11) described above is no longer applicable.
There are however some specific cases in which, even though (1.3.12) has
no solutions, (1.3.11) can be reduced to an exact equation. We describe
in what follows such a method of reduction known under the name of the
integrant factor method. More precisely, if (1.3.11) is not exact, one looks
for a function p : D — R of class C! with p(t,z) # 0 for each (t,z) € D
such that

—p(t,x)g(t, x) dt + p(t, z)h(t,z) dx
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be the differential of a function F : D — R. Assuming that D is simply
connected, from Theorem 1.3.7, we know that a necessary and sufficient
condition in order that this happen is that

h(t,x)% (t,z) + g(t, x)g—g (t,x) + (g‘f} (t,z) + % (¢, z)) p(t,z) =0

for each (t,z) € D. This is a first-order partial differential equation with
the unknown function p. We shall study the possibility of solving such kind
of equations later on in Chapter 6. By then, let us observe that, if

1 dg oh .
s (o F ) =10

does not depend on z, we can look for a solution p of the equation above
which does not depend on z too. This function p is a solution of the linear
homogeneous equation

p'(t) = —f(t)p(t).
Analogously, if g(t,z) # 0 for (t,z) € D and

1 (9 on B
g9(t, x) (% (t2) + 5 (t’-”’)) = k(z),

does not depend on ¢, we can look for a solution p of the equation above
which does not depend on t too.

1.3.8 Lagrange Equations
A differential equation of the non-normal form
z = to(z') + y(a’)

in which ¢ and 1 are functions of class C! from R in R and ¢(r) # r for
each r € R, is called Lagrange Equation. This kind of differential equation
can be integrated by using the so-called parameter method. By this method
we can find only the solutions of class C? under the parametric form

{t=t(;0)
z=1z(p), peR

More precisely, let z be a solution of class C? of the Lagrange equation.
Differentiating both sides of the equation, we get

.TI — (p(l'l) + t(p/(x') x// _I_ wl(x/) x/l‘
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Denoting by &’ = p, we have 2"/ = p’ and consequently

o _ e -p
¢t te'(p) + ¢ (p)

Assuming now that p is invertible and denoting its inverse by ¢ = t(p), the
above equation may be equivalently rewritten as

a__ ¢ , ¥k

dp olp)-p ) —p
But this is a linear differential equation which can be solved by the variation
of constants method. We will find then ¢t = 8(p,¢) for p € R, with ¢
constant, from where, using the initial equation, we deduce the parametric

equations of the general C? solution of the Lagrange Equation, i.e.

{ t=0(p,c)
z = 0(p,c)po(p) + ¥(p), peR.

1.3.9 Clairaut Equations
An equation of the form
z =tz + ('),

where 1 : R — R is of class C! is called Clairaut equation. This can be
solved also by the parameter method. More precisely, let z be a solution of
class C? of the equation. Differentiating both sides the equation, we get

2’ (t+4'(2)) = 0.

Denoting by z’ = p, the equation above is equivalent to p/(t + ¢/(p)) = 0.
If p’ = 0 it follows that z(t) = ¢t + d, with ¢,d € R, from where, imposing
the condition on z to satisfy the equation, we deduce the so-called general
solution of the Clairaut equation

z(t) = ct + ¥({c)

for t € R, where ¢ € R. Obviously, these equations represent a family of
straight lines. If ¢ + ¢'(p) = 0 we deduce

{t = —1/(p)
z=—pY'(p) +¢(p), pER,

system that defines a plane curve called the singular solution of the Clairaut
equation and which, is nothing but the envelope of the family of straight
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lines in the general solution. We recall that the envelope of a family of
straight lines is a curve with the property that the family of straight lines
coincides with the family of all tangents to the curve.

Remark 1.3.4 In general, Clairaut equation admits certain solutions
which are merely of class C!. Such a solution can be obtained by continuing
a particular arc of curve of the singular solution with those half-tangents at
the endpoints of the arc in such a way to get a C* curve. See the solutions
to Problems 1.11 and 1.12.

1.3.10 Higher-Order Differential Equations

In what follows we shall present two classes of nt"-order scalar differential
equations which, even though they can not be solved by quadratures, they
can be reduced to equations of order strictly less than n. Let us consider
for the beginning the incomplete n*-order scalar differential equation

F(t,z® g*+D My =g, (1.3.14)

where 0 < k < n and F : D(F) ¢ R**2?  R. By means of the
substitution y = () this equation reduces to an (n — k)t"-order scalar
differential equation with the unknown function y

Flt,y, 9.,y ¥y =0.

Let us assume for the moment that we are able to obtain the general solution
y = y(t,c1,¢2,...,Cn-k) of the latter equation. In these circumstances, we
can obtain the general solution z(t,c1,¢2,...,cn) of the equation (1.3.14)
by integrating k-times the identity ¥} = y. Namely, for a € R suitably
chosen, we have

1 ¢ -
:zz(t,cl,C2,...,cn)=(k—_l—)l/(t—s)’c Yy(s,c1,¢2,- -, Cnk) ds

k
i—1
+ch—k+’it1’ )
i=1

where ¢p_k+1,Cn-k42,---;¢n € R are constants appeared in the iterated
integration process.
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Example 1.3.1 Find the general solution of the third-order scalar dif-
ferential equation

1
" = ~¥x” +3t, t>0.

The substitution " = y leads to the non-homogeneous linear equation

/

1
Y =—Ey+3t, t>0
whose general solution is y(t,c1) = t>+c¢; /t for t > 0. Integrating two times
the identity =" =y we get z(¢,c1,c,¢3) = t1/12 + c1(t Int — ) + cat + c3.

A second class of higher-order differential equations which can be re-
duced to equations whose order is strictly less than the initial one is the
class of autonomous higher-order differential equations. So, let us consider
the autonomous n'*t-order differential equation

F(z,z',...,z™) =0, (1.3.15)

where F : D(F) C R**! — R. Let us denote by p = 2/, and let us express
p as a function of z. To this aim let us observe that

g _dpdz _dp

dt  dzdt  dz¥

d [dp d (dp
" _ v
’ dt< )_dx<dx)p

™ = ..

In thlS Way, for each k =1,2,...,n, z(¥) can be expressed as a function of
p, <2 dr ey EEF—T Substltutmg in (1.3.15) the derivatives of z as functions

of p, dz, . Zgn—_f we get an (n — 1)*-order differential equation.

Example 1.3.2 The second-order differential equation z” + ¢ sinz = 0,
i.e. the pendulum eguation, reduces by the method described above to the
first-order differential equation (with separable variables) p% = —Zsinz
whose unknown function is p = p(z).
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1.4 Some Mathematical Models

In this section we shall present several phenomena in Physics, Biology,
Chemistry, Demography whose evolutions can be described highly accurate
by means of some differential equations, or even systems of differential
equations. We begin with an example from Physics, became well-known due
to its use in archeology as a tool of dating old objects. We emphasize that,
in this example, as in many others that will follow, we shall substitute the
discrete mathematical model, which is the most realistic by a continuously
differentiable one, and this for pure mathematical reasons. More precisely,
in order to take advantage of the concepts and results of Mathematical
Analysis, we shall assume that every function which describes the evolution
in time of the state of the system: the number of individuals in a given
species, the number of molecules in a given substance, etc., is of class C!
on its interval of definition, even though, in reality, this takes values in a
very large but finite set. From a mathematical point of view this reduces to
the substitution of the discontinuous function z,, whose graph is illustrated
in Figure 1.4.1 as a union of segments which are parallel to the Ot axis, by
the function = whose graph is a curve of class C'. See Figure 1.4.1.

X e Y the graph of X

o the graph of x

Figure 1.4.1
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1.4.1 Radioactive Disintegration

In 1902 Ernest Rutherford Lord of Nelson!? and Sir Frederick Soddy?° have
formulated the law of radioactive disintegration saying that the instanta-
neous rate of disintegration of a given radioactive element is proportional
to the number of radioactive atoms existing at the time considered, and does
not depend on any other external factors. Therefore, denoting by z(t) the
number of non disintegrated atoms at the time ¢t and assuming that z is a
function of class C! on [0, +00), by virtue of the above mentioned law, we
deduce that

—z =azx

for every t > 0, where a > 0 is a constant, specific to the radioactive
element, called disintegration constant and which can be determined exper-
imentally with a sufficient degree of accuracy. This is a first-order linear
homogeneous differential equation, whose general solution is given by

z(t) = ce”* = z(0)e”*

for t > 0, with c € Ry.

1.4.2 The Carbon Dating Method

This method?! is essentially based on similar considerations. So, following
[Hubbard and West (1995)], Example 2.5.4, p. 85, we recall that living
organisms, besides the stable isotope C'?, contain a small amount of ra-
dioactive isotope C* arising from cosmic ray bombardment. We notice that
C' enters the living bodies during, and due to, some specific exchange pro-
cesses, such that the ration C'4/C?? is kept constant. If an organism dies,
these exchange processes stop, and the radioactive C'¢ begins to decrease
at a constant rate, whose approximate value (determined experimentally) is
1/8000, i.e. one part in 8000 per year. Consequently, if 2(¢) represents this
ratio C1*/C'2, after t years from the death, we conclude that the function

*®British chemist and physicist born in New Zealand (1871-1937). Laureate of the
Nobel Prize for Chemistry in 1908, he has succeeded the first provoked transmutation
of one element into another: the Nitrogen into Oxygen by means of the alpha radiations
(1919). He has proposed the atomic model which inherited his name.

20British chemist (1877-1956). Laureate of the Nobel Prize for Chemistry in 1921,

21The carbon-14 method has been proposed around 1949 by Willard Libby.
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t — z(t) satisfies

p 1

= T3000"

Consequently, if we know z(T), we can find the number T, of years after
death, by means of

o
T = 800010 —2_,
"2
where 7o is the constant ratio C'*/C!? in the living matter. For more
details on similar methods of dating see [Braun (1983)].

1.4.3 Equations of Motion

The equations of motion of n-point particles in the three-dimensional Eu-
clidean space are described by means of Newton second law saying that
“Force equals mass times acceleration”. Indeed, in this case, this funda-
mental law takes the following mathematical expression

myzy (t) = Fi(z:(t)), 1=1,2,...,n

where z; is the Cartesian coordinate of the ith-particle of mass m; and F;
is the force acting on that particle. According to what kind of forces are
involved: strong, weak, gravitational, or electromagnetic, we get various
equations of motion. The last two forces, i.e. occurring in gravitation and
electromagnetism, can be expressed in a rather simple manner in the case
when the velocities of the particles are considerably less than the speed of
light. In these cases, the F;’s are the gradients of newtonian and coulombic
potentials, i.e.

w(xy) Z ||a: - “3 (kmim; — ezey),
P
where k is the gravitational constant and e; is the charge of the i*P-particle.
For a more detailed discussion on this subject see [Thirring (1978)].
As concerns the case of only one particle moving in the one-dimensional
space, i.e. in a straight line, we mention:

1.4.4 The Harmonic Oscillator

Let us consider a particle of mass m that moves on a straight line under
the action of an elastic force. We denote by x(t) the abscissa of the particle
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at the time t and by F'(z) the force exercised upon the particle in motion
situated at the point of abscissa . Since the force is elastic, F(z) = —kz
for each z € R, where & > 0. On the other hand, the motion of the
particle should obey Newton’s Second Law which, in this specific case, takes
the form F(z(t)) = ma(t), where a(t) is the acceleration of the particle
at the time t. But a(t) = z”(t) and denoting by w? = k/m, from the
considerations above, it follows that x has to verify the second-order scalar
linear differential equation:

2’ 4wz =0,

called the equation of the harmonic oscillator. As we have already seen in
Example 1.2.3, the general solution of this equation is

z(t,c1,c2) = ¢1 sinwt + ¢ coswt

fort e R.

1.4.5 The Mathematical Pendulum

Let us consider a pendulum of length £ and let us denote by s(¢) the length
of the arc curve described by the free extremity of the pendulum by the
time t. We have s(t) = x(t), where z(t) is the measure expressed in radian
units of the angle between the pendulum at the time ¢ and the vertical axis
Oy. See Figure 1.4.2.

The force which acts upon the pendulum is F' = mg, where g is the
acceleration of gravitation. This force can be decomposed along two com-
ponents, one having the direction of the thread, and another one having
the direction of the tangent at the arc of circle described by the free end
of the pendulum. See Figure 1.4.2. The component having the direction
of the thread is counterbalanced by the resistance of the latter, so that the
motion takes place only under the action of the component —mg sin x(¢).

But z should obey Newton’ Second Law, which in this case takes the
form of the second-order scalar differential equation méz” = —mgsinz, or
equivalently

z’ + %sin:c =0,

nonlinear equation called the equation of the mathematical pendulum | or
the equation of the gravitational pendulum.
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x@®

Figure 1.4.2

If we intend to study only the small oscillations, we can approximate
sinz by x and we obtain the equation of the small oscillations of the pen-
dulum

a second-order scalar linear differential equation. For this equation, which
is formally the same with that of the harmonic oscillator, we know the
general solution, i.e.

z(t,c1,c2) = ¢y sin \/%t 4 ¢5 cos \/%t

for t € R, where ¢;,cp € R.

1.4.6 Two Demographic Models

A first demographic model describing the growth of the human population
was proposed in 1798 by Thomas Robert Malthus.?? We shall present here
a continuous variant of the model proposed by Malthus. More precisely,
if we denote by z(t) the population, i.e. the number of individuals of a
given species at the time ¢, and by y(t) the subsistence, i.e. the resources
of living, according to Malthus’ Law: the instantaneous rate of change of
x at the time t is proportional with z(t), while the instantaneous rate of

22British economist (1766-1834). In his An essay on the principle of population as
it affects the future improvement of society (1798) he has enunciated the principle sti-
pulating that a population, which evolves freely increases in a geometric ratio, while
subsistence follows an arithmetic ratio growth. This principle, expressed as a discrete
mathematical model, has had a deep influence on the economical thinking even up to
the middle of the XX century.
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change of the subsistence is constant at any time. Then we have the fol-
lowing mathematical model expressed by means of a system of first-order
differential equations of the form

' =cx
Y =k,
where ¢ and & are strictly positive constants. This system of uncoupled

equations (in the sense that each equation contains only one unknown func-
tion) can be solved explicitly. Its general solution is given by

{m(t,§) = £e
y(t,n) =n+kt

for t > 0, where £ and 7 represent the population and respectively the
subsistence, at the time ¢ = 0. One may see that this model describes rather
well the real phenomenon only on very short intervals of time. For this
reason, some more refined and more realistic models have been proposed.
The aim was to take into consideration that, at any time, the number of
individuals of a given species can not exceed a certain critical value which
depends on the subsistence at that time. So, if we denote by h > 0 the
quantity of resources necessary to one individual to remain alive after the
time ¢, we may assume that z and y satisfy a system of the form

{x’zcw(%—w)

y' = k.

This system describes a more natural relationship between the subsistence
and the growth, or decay, of a given population. In certain models, as
for instance in that one proposed in 1835 by Verhulst, for simplicity, one
considers k = 0, which means that the subsistence is constant (y(t) = n for
each t € R). Thus, one obtains a first-order nonlinear differential equation
of the form

z' = cx(b - x),

for t > 0, where b = n/h > 0. This equation, i.e. the Verhulst model,
known under the name of logistic equation, is with separable variables and
can be integrated. More precisely, the general solution is

cbt
r = bue
1 +'u6‘:bt
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for t > 0, where u > 0 is a constant. To this solution we have to add
the singular solution x = b, eliminated during the integration process. In
order to individualize a certain solution x from the general one we have to
determine the corresponding constant p. Usually this is done by imposing
the initial condition

b
#(0) = =6

where £ represents the number of the individuals at the time ¢ = 0, number

which is assumed to be known. We deduce that the solution z(:,£) of the
logistic equation that satisfies the initial condition z(0,€) = £ is given by

_ b{ert
x(tag) - b+§(ert _ 1)
for each t > 0.

All the models described above can be put under the general form

z' = d(t,x),

where d(t,z) represents the difference between the rate of birth and the
rate of mortality corresponding to the time ¢ and to a population .

1.4.7 A Spatial Model in Ecology

Following [Neuhauser (2001)], we consider an infinite number of sites which
are linked by migration and we assume that all sites are equally accessible
and no explicit spatial distances between sites are taken into consideration.
We denote by z(t) the number of occupied sites and we assume that the
time is scaled so that the rate at which the sites become vacant equals 1.
Then, assuming that the colonization rate z’ is proportional to the product
of the number of occupied sites and the vacant sites, we get the so-called
Levins Model

= (l—z)—2z

which is formally equivalent to the logistic equation.

1.4.8 The Prey-Predator Model

Immediately after the First World War, in the Adriatic Sea area, a signifi-
cant decay of the fish population has been observed. This decay, at the first
glance in contradiction with the fact that almost all fishermen in the area,
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enrolled in the army, were in the impossibility to practice their usual job,
was a big surprise. Under these circumstances, it seems to be quite natural
to expect rather a growth instead of a decay of the fish population. In
his attempt to explain this strange phenomenon, Vito Volterra?® has pro-
posed a mathematical model describing the evolution of two species both
living within the same area, but which compete for surviving. Namely, in
[Volterra (1926)], he considered two species of animals living in the same
region, the first one having at disposal unlimited subsistence, species called
prey, and the second one, called predator, having as unique source of sub-
sistence the members of the first species.. Think of the case of herbivores
versus carnivores. Denoting by z(t) and respectively by y(¢) the population
of the prey species, and respectively of the predator one at the time ¢, and
assuming that both z and y are function of class C!, we deduce that z and
y have to satisfy the system of first-order nonlinear differential equations

' = (a—ky)x
R (4D

where a,b,k, h are positive constants. The first equation is nothing else
than the mathematical expression of the fact that the instantaneous rate
of growth of z at the time ¢ is proportional with the population of the prey
species at the time considered (2’ = az—. ..} while the instantaneous rate of
decay of x at the same time ¢ is proportional with the number of all possible
contacts between prey and predators at the same time ¢ (z/ = -+ — kyz).
Analogously, the second equation expresses the fact that the instantaneous
rate of decay of y at the time ¢ is proportional with the population of the
predator species at that time t (y' = —by...) while the instantaneous rate
of growth of y at the same time ¢ is proportional with the number of all
possible contacts between prey and predators. It should be noticed that the
very same model was been proposed earlier by [Lotka (1925)] and therefore
the system (1.4.1) is known under the name of Lotka-Volterra System

As we shall see later on??, each solution of the Lotka—Volterra System
(1.4.1) with nonnegative initial data has nonnegative components as long
as it exists, while each solution with positive initial data is periodic (with
the principal period depending on the initial data). The trajectory of such
solution is illustrated in Figure 1.4.3 (a), while its graph in Figure 1.4.3

(b).

231talian mathematician (1860-1940) with notable contributions in Functional Analy-
sis and in Applied Mathematics (especially in Physics and in Biology).
24Gee Problems 6.1, 6.3, 6.4 .
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(a)

Figure 1.4.3

For this reason the function ¢ — z(¢) + y(t), which represents the total
number of animals in both species at the time t, is periodic too, and thus
it has infinitely many local minima. Under these circumstances, it is not
difficult to realize that, the seemingly non-understandable decay of the fish
population in the Adriatic Sea was nothing else but a simple consequence
of the fact that the moment in question (the end of the First World War)
was quite close to a local minimum of the function above.

Finally, let us observe that the system above has two constant solutions
called (for obvious reasons) stationary solutions, or equilibria: (0,0) and
(b/h,a/k). The first one has the property that, there exist solutions of
the system, which start from initial points as close as we wish to (0,0),
but which do not remain close to (0,0) as ¢ tends to infinity. Indeed, if at
a certain moment the predator population is absent it remains absent for
all ¢, while the prey population evolves obeying the Malthus’ law. More
precisely, the solution starting from the initial point (£,0), with £ > 0, is
(z(t),y(t)) = (€e*,0) for t > 0, and this obviously, moves off (0,0) as ¢
tends to infinity. For this reason we say that (0,0) is unstable with respect
to small perturbations in the initial data. We shall see later on that the
second stationary solution is stable with respect to small perturbations in
the initial data. Roughly speaking, this means that, all solutions having the
initial data close enough to (b/h, a/k) are defined on the whole half-axis and
remain close to the solution (b/h,a/k) on the whole domain of definition.
The precise definition of this concept will be formulated in Section 5.1. See
Definition 5.1.1.
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1.4.9 The Spreading of a Disease

In 1976 A. Lajmanovich and J. Yorke have proposed a model of the spread of
a disease which confers no immunity. Following [Hirsch (1984)], we present
a slight generalization of this model. We start with the description of a
very specific variant and then we shall approach the model in its whole
generality. More precisely, let us consider a disease who could affect a
given population and who confers no immunity. This means that anyone
who does not have the disease at a given time is susceptible to infect, even
though he or she has already been infected, but meanwhile recovered. Let
us denote by p the population which is assumed to be constant (assumption
which is plausible if, for instance, during the spreading of the disease there
are neither births, nor deaths) and by = the number of infected people in
the considered population. As we have already mentioned at the beginning
of this section, we may assume that z is a positive continucusly differen-
tiable function of the time variable t. Consequently, p — z is a nonnegative
continuously differentiable function too. Obviously, for each t > 0, p — z(t)
represents the number of those susceptible to be infected at the time ¢.
Then, if we assume that, at any time t, the instantaneous rate of change of
the number of infected members is proportional to the number of all pos-
sible contacts between infected and non-infected members, number which
obviously equals z(t)(p — z(¢)), we deduce that = must obey the following
nonlinear differential equation

z' = az(p — z),

where a > 0 is constant. This is an equation with separable variables, of
the very same form as that described in the Verhulst’s model, and whose
general solution is given by

pue’?*
"1+ peart’

where 7 is a positive constant. To this general solution we have to add the
singular stationary solution 2 = p, eliminated in the integration process.
As in the case of the logistic equation, the solution z(:,£) of the equation
above, which satisfies the initial condition z(0,¢) = ¢, is

pge’?

a(t.0) = p+E&(e?t —1)
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for each t > 0. It is of interest to note that, for each £ > 0, we have

lim z(t,§) = p,

t—+o0

relation which shows that, in the absence of any external intervention
(cure), a population which has at the initial moment o positive number
& > 0 of infected, tends to be entirely infected. The graph of z(-,£) is
illustrated in Figure 1.4.4.

Figure 1.4.4

We may now proceed to a more general case. More precisely, let us
consider that the population in question is divided into n disjoint classes
(on social criteria, for instance) each one having a constant number of
members. We denote by p; the cardinal of the class ¢ and by z; the number
of infected in the class ¢, ¢ = 1,2,...,n. Then, the number of susceptible
in the class ¢ is p; — z;. As above, from pure mathematical reasons, we
shall consider that z; is a positive continuously differentiable function of
the time variable t. We denote by R; the rate of infection corresponding
to the class 7 and by C; the rate of recovering corresponding to the same
class 7. For the sake of simplicity, we shall assume that R; depends only on

z = (21,%2,...,2,), while C; depends only on z;, 1 = 1,2,...,n. Finally,
it is fairly realistic to consider that g—f;l >0fori,j=1,2,...,n, relations

which express the fact that the rate of infection R; is increasing with respect
to each of its arguments x;, that represents the number of infected in the
class j.

Let us observe that all these assumptions lead to the mathematical
model described by the system of first-order nonlinear differential equations

.’E,/L = R@(.’E) - Ci(:ri) (l =12,... ,n).

We mention that the model proposed by A. Lajmanovich and J. Yorke has
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the specific form
n
.’E; = Zaijxj(pi — l‘i) — kixi (Z = 1,2, - ,n),
=0

where a;; > 0 and k; > 0, for 4,7 = 1,2,...,n and was obtained via
analogous considerations as those used for the simplified model, i.e. to that
one corresponding to a single class.

For more details on models in both population dynamics and ecology
see [Neuhauser (2001)].

1.4.10 Lotka Model

In 1920 A. J. Lotka considered a chemical reaction mechanism described
by

A+ X 20X

X+Y By (1.4.2)

Y £ B,
where X and Y are intermediaries, ky, ko and k3 are the reaction rate
constants, and the concentrations of both the reactant A and the product
B are kept constant. See [Lotka (1920a)] and [Lotka (1920b)]. Noticing that
the signification of the first relation is that one molecule of A combines with
one molecule of X giving two molecules of X, the signification of the next
two relations becomes obvious.

Before obtaining the corresponding mathematical model of these reac-
tions, we recall for easy reference a fundamental law which governs chemical
reactions, i.e., the law of mass action. Namely this asserts that: the rate
of a chemical reaction is proportional to the active concentrations of the
reactants, i.e. only to that amounts of reactants that are taking part in
the reaction. For instance, for the irreversible reaction X +Y — A, if z
and y denote the active concentrations of X and Y respectively, the law of
mass action says that @' = —kzy, where k > 0 is the rate constant of the
reaction. If one assumes that the reaction is reversible with rate constants

k1
of reaction k; and k_q, i.e. X + Y:A, then the active concentrations z

k_
and y must satisfy ' = —k;zy + k_1a. Finally, for the simplest irreversible
reaction X — C, the law of mass action implies that z’ = —kz, while for



42 Generalities

k1
the reversible one X : C, says that o’ = —kjz + k_c.

Now, coming bacléc o (1.4.2), let us denote the concentrations of A, B,
X and Y by a, b, x and y respectively, and let us observe that, by virtue
of the law of mass action just mentioned, z and y must obey the kinetic
equations

L —
{x = kiax — kazy (14.3)

yl = ——kgy + kziL'y.

We emphasize that the system (1.4.3) is formally equivalent to the Lotka—
Volterra system (1.4.1), and thus all the considerations made for the latter
applies here as well. For this reason, in all what follows, we will refer to
either system (1.4.1) or (1.4.3) to as the Lotka—Volterra system, or to the
pray-predator system. For more details on this subject see [Murray (1977)],
pp. 136-141.

1.4.11 An Autocatalytic Generation Model

Following [Nicolis (1995)], let us consider a tank containing a substance X
whose concentration at the time ¢ is denoted by z(¢), and another one A
whose concentration a > 0 is kept constant, and let us assume that in the
tank take place the following reversible chemical reactions:

k1

A+ X 92X
k_1
k2

X B,
k-2

in which B is a residual product whose concentration at the time ¢ is b(t).25

Here k; > 0, i = +£1,+2 are the reaction rate constants of the four
reactions in question. The mathematical model describing the evolution of
this chemical system, obtained by means of the law of mass action is

2 =kiax — k_12% — kox + k_ob
bl = kzx — k__zb.

25This model has been proposed in 1971 by Schlgl in order to describe some isothermal
autocatalytic chemical reactions. For more details on such kind of models the interested
reader is referred to [Nicolis (1995)].
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If the second reaction does not take place, situation which is described
mathematically by ke = k_g = 0, then the system above reduces to

' = kiaz — k_12°.

Let us notice the remarkable similarity of the equation above with the
logistic equation in the Verhulst’s model as well with the equation describing
the spread of a disease.

1.4.12 An RLC Circuit Model

Following [Hirsch and Smale (1974)], pp. 211-214, let us consider an electric
circuit consisting of a resistance R, a coil L, and a capacitor C in which the
sense of currents on each of the three portions of the circuit are illustrated
in Figure 1.4.5.

R Q C

Figure 1.4.5

Let us denote by i(t) = (1gr(t),11(¢),ic(t)) the state of the current in the
circuit at the time ¢. Here ig, iy, i¢ represent the currents on the portions
of the circuit containing the resistance R, the coil L and respectively the
capacitor C. Analogously, let v(t) = (vr(t),vL(t),ve(t)) be the state of the
voltages in the circuit at the time ¢. Following Kirchhoff’ Laws, we deduce

{iR(t) =1ir(t) = —ic(t)
vr(t) +vr(t) —ve(t) =0,

while from the generalized Ohm’s Law g(ir(t)) = vg(t) for each ¢ > Q.
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Finally, from Faraday’s Law, we obtain

dig
LE—’UL
dve _;
a °

for each t > 0, where L > 0 and C > 0 are the inductance of L and
respectively the capacity of C. From these relations we observe that ¢7, and
ve satisfy the system of first-order nonlinear differential equations

di .
Ld—tL =wve —g(iL)
dv. .
e = i

fort > 0.

For simplicity, let us assume now that £ = 1 and € = 1, and let us
denote by z = iy, and y = ve. Then the previously considered system can
be rewritten under the form

dx

‘d‘t*=il/—9(m)

for t > 0. Assuming in addition that g is of class C*, differentiating both
sides the first equation and using the second one in order to eliminate y,
we finally get

" +¢(z)r' +z=0
for t > 0. This is the Li¢nard Equation. In the case in which g(z) = 2% —z
for each x € R, the equation above takes the form

"+ 3z 1)z’ +z=0

for t > 0 and it is known as the Van der Pol Equation. For a detailed study
of mathematical models describing the evolution of both current and voltage
in electrical circuits see also [Hirsch and Smale (1974)], Chapter 10. For
many other interesting mathematical models see [Braun (1983)].
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1.5 Integral Inequalities

In this section we include several inequalities very useful in proving the
boundedness of solutions of certain differential equations or systems. We
start with the following nonlinear integral inequality.

Lemma 1.5.1  (Bihari) Let = : [a,b] — Ry, k : [a,b] — R4 and
w: Ry — Ry be three continuous functions with w nondecreasing on R,
and let m > 0. If

z(t) < m+/ k(s)w(z(s))ds

for each t € [a,b), then

2(t) < &1 (/atk(s)ds)

for each t € [a,b), where & : Ry — R is defined by

_ [ dan
o= |

Proof. Let us observe that it suffices to prove the lemma in the case in
which m > 0 because the case m = 0 can be obtained from the preceding
one by passing to the limit for m tending to 0. So, let m > 0, and let us
consider the function y : [a,b] — R defined by

m+/k w(z(s))d

for each t € [a,b]. Obviously y is of class C* on [a,b]. In addition, since,
z(t) < y(t) for ¢t € [a,b] and w is nondecreasing, it follows that

for each u € Ry.

y' () = k() wiz(t)) < k(t) w(y(t))
for each t € [a,b]. This relation can be rewritten under the form

y'(s)
(s = )
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for each s € [a,b]. Integrating both sides of the last inequality from a to
t, we obtain

S(y(t)) < / k(s) ds

for each t € [a,b]. As & is strictly increasing, it is invertible on its range,
which includes [0, +00), and has strictly increasing inverse. From the last

inequality we get
t
y(t) < &1 ( / K(s) ds) ,

relation which, along with z(t) < y(t) for t € [a,b], completes the proof.(]
The next two consequences of Lemma 1.5.1 are useful in applications.

Lemma 1.5.2 (Gronwall) Let z : [a,b] = Ry and k : [a,b] — R4 be
two continuous functions and let m > 0. If

z(t) <m+ /t k(s)z(s)ds

for each t € [a,b], then

o0 < mesp ([ ) ds)

Proof. Let us remark that, for each € > 0, we have

for each t € {a,b].

z(t) <m+ /t k(s)(x(s) +¢€)ds

for each t € [a,b]. Taking w: Ry — R*, defined by w(r) =r + ¢ for each
r € Ry, from Lemma 1.5.1, we obtain

2(t) < (m+ €) oxp </:k(s) ds> e

for each € > 0 and ¢ € [a,b]. Passing to the limit for £ tending to 0 in this
inequality, we get the conclusion of the lemma. The proof is complete. O

Some generalizations of Gronwall’s Lemma 1.5.2 are stated in Section 6.
See Problems 1.16 and 1.17.
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Lemma 1.5.3  (Brezis) Let z : [a,b] — R4 and k: [a,b] — Ry be two
continuous functions and let m > 0. If

2 (t) <m? +2 /t k(s)z(s)ds

for each t € [a,b], then

z(t) < m+/tk(s)ds

for each t € [a,b].

Proof. As in the proof of Lemma 1.5.2, let us observe that, for each
e > 0, we have 22(t) < m?+2 [ k(s)/z%(s) + e ds for each t € [a,b]. This
inequality and Lemma 1.5.1 with w : Ry — R}, defined by w(r) = 2v/r +¢

2
for each r € Ry, yield 22 < (vVmZ +e+ *k(s)ds) — e for each € > 0
+ a

and ¢ € [a,b]. We complete the proof by passing to the limit for ¢ tending
to 0 in this inequality and by extracting the square root both sides in the
inequality thus obtained. O

For a generalization of Lemma 1.5.3, see Problem 1.18.

1.6 Exercises and Problems

Problem 1.1  Find a plane curve for which the ratio of the ordinate by the sub-
tangent®® equals the ratio of a given positive number k by the difference of the
ordinate by the abscissa.®” ([Halanay (1972)], p. 7)

Problem 1.2  Find a plane curve passing through the point (3,2) for which the
segment of any tangent line contained between the coordinate axes is divided in
half at the point of tangency. (|Demidovich (1973)}, p. 329)

26We recall that the subtangent to a given curve of equation = = z(t), ¢t € [a,b] at a
point (¢, z(t)) equals z(t)/z(t).

27This problem, considered to be the first in the domain of Differential Equations, has
been formulated by Debeaune and conveyed, in 1638, by Mersenne to Descartes. The
latter has realized not only the importance of the problem but also the impossibility to
solve it by known (at that time) methods.
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Exercise 1.1  Solve the following differential equations.

(1) z' cos® tcot  + tan tsin®z = 0. (2) tz’ =z + z2.

(3) tz’z = 1 -2 (4) ' = (t + x)2.

(5) ' = (8t + 2z + 1)%. (6) z' (4t + 6x — 5) = —(2t + 3z + 1).
(7) 2'(4t — 22+ 3) = —(2t —z). (8) z'(t*’z —x) +tz® +t=0.

Problem 1.3  Find a plane curve passing through the point (1,2) whose segment
of the normal at any point of the curve lying between the coordinate azes is divided
in half by the current point. ([Demidovich (1973)], 2758, p. 330)

Problem 1.4 Find a plane curve whose subtangent is of constant length a.
([Demidovich (1973)], 2759, p. 330)

Problem 1.5 Find a plane curve in the first quadrant whose subtangent is twice
the abscissa of the point of tangency. ([Demidovich (1973)], 2760, p. 330)

Exercise 1.2 Solve the following differential equations.

(Hte' =zt
(3) t?z' = z(t — )
(5) (2Vtz — t)z’ = —z.

2) tz' = —(t +z).
(4) 2tzz’ = 1* + 22

(6) ta' =z + V12 + 22

(7) (422 + 3tz + t¥)az’ = —(x? + 3tz + 4t%). (8) 2tzx’ = 322 — 2.

Problem 1.6 Find the equation of a curve that passes through the point (1,0)
and having the property that the segment cut off by the tangent line at any current
point P on the t-azis equals the length of the segment OP. ([Demidovich (1973)],
2779, p. 331)

Problem 1.7 Let f : Ry xRy — R be a continuous function for which there ezists
a real number m such that f(At,\"z) = A™ ! f(t,z) for each (t,z) € Ry X Ry
and each A € Ry.. Show that, by the substitution x(t) = t™y(t), the differential
equation ' = f(t,z), called quasi-homogeneous, reduces to an equation with se-
parable variables. Prove that the differential equation ' = 2% — ;27 15 quasi-

homogeneous and then solve it. ((Glévan et al. (1993)], p. 34)

Exercise 1.3 Solve the following differential equations.

(V) tz' =z + t. (2) ta’ = -2z + t*.

(3) tz' = —x + €' (4) (z® - 3tH)z’ + 2tz = 0.
(5) ta’ = —zx —tz®.  (6) 2tzxz’ =2 —1t.

(1) (2t — t*z)z’ = —z. (8) tz' = —2x2(1 — tz).

Problem 1.8  Let z, z1, z2 be solutions of the linear equation z' = a(t)z + b(t),
where a, b has continuous functions on I. Prove that the ratio

z2(t) — z(t)

RO = "m0
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s constant on I. What is the geometrical meaning of this result?

Problem 1.9  Let zy, z2 be solutions of the Bernoulli equation ' = a(t)z-+b(t)z?,
where a, b are continuous functions on I. Prove that, if 1(t) # 0 and z2(t) # 0
on J C 1, then the function y, defined by y(t) = :J;(z—; for each t € J, satisfies the
linear equation y' = b(t)[z1(t) — z2(t)]y.

Problem 1.10  Let z, z1, x2, x3 be solutions of the Riccati equation
" =a(t)z +b(t)z” + c(t),

where a, b, ¢ are continuous functions on I. Prove that the ratio

_oxa(t) —x(t) | x3(t) —=2(t)
B = - o () o (t)

15 constant on I.

Exercise 1.4  Solve the following differential equations.

(1) (t+2z)z' +t+2=0. (2) 2tz’ +t* + 2z + 2t = 0.

(3) Btz — ¥z’ —t* + 3tz —2=0. (4) (2w +2® +t)a’ — > +tzx* + 2 =0.
(5) (2? — 3t¥)z’ + 2z = 0. (6) 2tzx’ — (t +z*) = 0.

(7) ta’ —z(1 + tz) = 0. (8) t(z® +Int)x’ + z = 0.

Exercise 1.5 Solve the following differential equations.

(Lyz= %tw’-}—x's, Q=2 +V1—2z'%.
@B z=(1+a )+ @) z= —%w'(Zt +z').
(5) z = ta' + z'%. (6) z = ta' +2'.

1
(1) z =tz + V1 +a'%. (8) r=tr' + =.
z

Problem 1.11  Find a plane curve for which the distance of a given point to any
line tangent to this curve is constant. ([Demidovich (1973)], 2831, p. 340)

Problem 1.12  Find the curve for which the area of the triangle formed by a
tangent line at any point and by the coordinate azes is constant. ([Demidovich
(1973)], 2830, p. 340)

Problem 1.13  Prove that, for a heavy liquid rotating about the vertical symmetry
azis in a cylindric tank, the free surface is situated on a paraboloid of revolution.
([Demidovich (1973)], 2898, p. 344)

Problem 1.14  Find the relationship between the air pressure and the altitude if
it is known that the pressure is of lkgf per lem? at the sea level and of 0.92kg [
per lem® at an altitude of 500m. ([Demidovich (1973)], 2899, p. 344)
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Problem 1.15  According to Hooke’s law an elastic band of length | increases in
length klF (k=constant) due to a tensile force F. By how much will the band
increase in length due to its weight W if it is suspended at one end? (The initial
length of the band is ). {[Demidovich (1973)], 2900, p. 344)

Problem 1.16  (Bellman’s Inequality) Let z : [a,b] — Ry, b : [a,b] = R and
k:[a,b] — Ry be three continuous functions. If

(t) < h(t) + / t k(s) x(s) ds

for each t € [a,b], then

2(t) < h(t) + / " k(s) h(s) exp ( / “k(r) dT) ds

for each t € [a,b].

Problem 1.17 Letz : [a,b] —» Ry, v: [a,b] >R and k: [a,b] — Ry be three
continuous functions and £ € R. If

o(t) < £+ / '[5(s) 5(s) + v(s)] ds

for each t € [a,b], then

z(t) < €exp (/‘: k(s) ds) + /at'u(s)exp (/: k(7) d‘r) ds

for each t € [a,b]. ([Halanay (1972)], p. 196)

Problem 1.18 Ifz:[a,b] = Ry and k: [a,b] — Ry are continuous and
i
() < m® +p / k(s)2® () ds
a

for each t € [a,b], where m > 0 and p > 1, then

z(t) < m+ /t k(s)ds

for each t € [a,b].

Problem 1.19  Let f : R — R be non-increasing and let z,y : [0,T] — R be two
functions of class C*. If z'(t) + f(z(t)) < ¥'(t) + f(y(t)) for each t € [0,T] and
z(0) < y(0) then z(t) < y(t) for each t € [0,T].



Chapter 2

The Cauchy Problem

This chapter is exclusively dedicated to the introduction and study of the funda-
mental concepts and results concerning the main topic of this book: the so-called
Cauchy problem, or the initial-value problem. In the first section we define the
Cauchy problem for a given differential equation and the basic concepts referring
to: local solution, saturated solution, global solution, etc. In the second section
we prove that a sufficient condition in order that a Cauchy problem have at least
one local solution is the continuity of the function f. In the third one we present
several specific situations in which every two solutions of a certain Cauchy pro-
blem coincide on the common part of their domains. The existence of saturated
solutions as well as of global solutions is studied in the fourth section. In the
fifth section we prove several results concerning the continuous dependence of
the saturated solutions on the initial data and on the parameters, while in the
sixth one we discuss the differentiability of saturated solutions with respect to
the data and to the parameters. The seventh section reconsiders all the problems
previously studied in the case of the n'"-order scalar differential equation. The
last section contains several exercises and problems illustrating the most delicate
aspects of the abstract theory.

2.1 General Presentation

Let I be a nontrivial interval in R, £ a nonempty and open subset in R7,
f:Ix 8 — R" agiven function, a € I and € € Q.

The Cauchy problem, or the initial-value problem for a first-order diffe-
rential system with data D = (I, {, £, @, £) consists in finding a C*-function

51



52 The Cauchy Problem

z:J — Q, where J] C I is a nontrivial interval, a € J, satisfying both
“the equation” z'(t) = f(t,z(t)) for each t € J and “the initial condition”
z(a) = £&. We denote such a problem by

z! = f(t,x)
{w<a) —¢ HD)

A function z : J — £ with the properties mentioned above is called
a solution of CP(D). We distinguish between several types of solutions of
CP(D). Thus, if J] =1, the solution z is called global and otherwise local. If
J = [a,b), or J = [a,b], then z is called a right solution. Analogously, if
J={(c,a],or] =[c,a}, zis called a left solution, while ifinf J < a < sup J,
z is called a bilateral solution. A right (left) solution z : J — €2 is called a
global at the right (left) solutionif J={t€l; t > a} J={t€I; t <a}).
The solution z : J — Q is called continuable at the right (left) if there exists
a right (left) solution y : K — Q with sup J < sup K (inf J > inf K)
and such that z(t) = y(t) for each ¢ € JNK. A solution z : J — Q is
called saturated at the right (left) if it is not continuable at the right (left).
Obviously each global at the right (left) solution is saturated at the right
(left) but not conversely, as we can easily see from the example below.

Example 2.1.1 Take[ =R, Q2 =R, f:RxR =R, f(t,z) = -z for
each (t,z) € Rx R, a =0 and £ = 1. Obviously, z : (—o0,1) — R, defined
by z(t) = (t — 1)71, for each t € (—o0,1), is a solution of €P(D) which is
saturated at the right, but which is not a global right solution. However,
z is a global left solution of CP(D). Furthermore, x|(_s0,1/2) is continuable
at the right but not at the left, while z{_; 1 is continuable at the left, but
not at the right.

This example is very instructive because it shows that even though f
does not depend on ¢, no matter how regular it is with respect to z in Q,
CP(D) may have no global solutions.

Remark 2.1.1 Inasmuch as all the considerations involving left solutions
for CP(D) are quite similar to those concerning right solutions, and since
the study of bilateral solutions reduces to the study of the previous two
types of solutions, our further discussions will refer only to right solutions.
In addition, whenever no confusion may occur, we shall cancel the word
“right”, and we shall speak about “solutions” instead of “right solutions”.

In a similar manner as for first-order differential systems, we formulate
the Cauchy problem for an n*f-order differential equation in the normal
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form. Namely, let I be a nontrivial interval in R, Q a nonempty and open
subset in R™, g: I x Q — R a function, a € l and & = (£1,&,...,6n) € Q.

The Cauchy Problem for an ntt-order differential equation in the nor-
mal form with data D' = (I,Q,g,a,£) consists in finding a function
y : J — R, of class C™, where J C I is a nontrivial interval with a € J
and (y(t),y'(t),...,y™ D (t)) € Q for each t € J, function satisfying “the
equation” y™(t) = g(t,y(t),y' (t), ...,y (t)) for each t € J and “the
ingtial conditions” yla) = &, ¥'(a) = &,...,y™ V(a) = &,. We denote
this problem by

y™ =gt y, 9.,y D) CP(D
{y(a) :gl) y/(a) 252’_“,1}(11—1)(0,) =§n ( )

By means of the transformations

= (1171,1'2,.- ‘axn) = (yvy’»' o )y(n_l))
(7)
f(t,l‘) = (m2ax3>"'7zn> g(tawlazZa"'axn))a

we see that CP(D’') may be reformulated as a Cauchy problem for a first-
order system of differential equations

Ty = T2
Ty = T3
efP('D”)
xln—l = Tn
x’:l =g(t,T1,Z2,...,Tn)
\ xl(a) = &1, $2(a) =&,... ,xn(a) =&,

which, in its turn, may be rewritten as a problem of the form CP(D), where
D =(I,Q, f,a,£), with f defined as above.

This way, the two Cauchy problems are equivalent in the sense that
all the concepts and results referring to CP(D) extend to CP(D’) and con-
versely via the transformations (7). However, we emphasize that, in order
to minimize the possibility of confusion, we have to take a special care in
understanding this equivalence. More precisely, there are properties of the
solutions of the two Cauchy problems (as for instance: the boundedness,
the behavior at +oo, etc.) which are not invariant with respect to these
transformations. This happens because the solution of CP(D’) is the first
component of the solution of CP(D”). In order to be more convincing, let
us analyze the following two examples.
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Example 2.1.2 Let us consider the Cauchy problem

y" = —4t%y + 2cost?
y(0) =0 (?)
y'(0) =0,

which, by means of the transformations, (T), can be rewritten as a Cauchy
problem for a first-order system of differential equations of the form

CL'II = T2

zh = —4t?z; + 2 cost? @)

T2 (0) =0.
It is easy to see that the function y : R — R, defined by y(t) = sint?
for ¢ € R, is a solution of the Cauchy problem (P). In addition, this
solution is bounded on R. By means of (T), y corresponds to the solution
(z1,22) : R — RxRof (P'), (z1(t),z2(t)) = (sint?, 2t cost?) foreach t € R,
solution which is unbounded on R. So, the boundedness of solutions is not
invariant with respect to (7).
Example 2.1.3 Let us consider the Cauchy problem

i t

y"” =y — cose! —etsine
y(0) =sinl (Q)
y'(0) = cosl —sinl.

One verifies by direct computation that the function y : R — R defined by
y(t) = e sine’
for t € R is a solution of the problem (Q). Obviously
, _l_}gloo y(t) =0.
However, the solution
(z1(t), z2(t)) = (e~ *sine’, —e sine’ + coset),

for t € R, of the Cauchy problem

=2
zh =1 —cose’ —etsine’ (@)
z1(0) =sinl

z2(0) = cos1 —sin1,
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corresponding to (Q) via the transformations (7), has no limit as ¢t ap-
proaches +00.

This example proves that the property of a certain solution of the
Cauchy problem CP(D’) to have finite limit as ¢ tends to oo is not in-
herited by the corresponding solution of the Cauchy problem CP(D), which
is the image of €P(D’) through 7.

Remark 2.1.2 We also notice that we may use very similar arguments
to reduce the study of the Cauchy problem for a higher-order system of
differential equations in the normal form to that of one Cauchy problem
for a first-order differential system. We leave to the reader the precise
formulation of the Cauchy problem for a higher-order system of differential
equations.

Once all these observations being done, it is clear why, in all what
follows, we confine ourselves only to the study of the Cauchy problem for
first-order differential systems.

Next, we will prove two simple but extremely useful results we will need
frequently in the sequel.

Proposition 2.1.1 Let f: I x Q — R”™ be a continuous function and
J c 1 a nontrivial interval and such that a € J. Then, a functionz : J —
is a solution of CP(D) if and only if x is continuous on J and satisfies the
integral equation

() = £+ / F(r,2(r))dr (7€)

for eachte].

Proof. If z is a solution of €P(D), then it is continuous (being C').
Thus, 7 — f(7,z(7)) is continuous on J too. Consequently, we are allowed
to integrate both sides in

/(1) = f(r,2(r))

from a to t. Taking into account that z(a) = &, we get (JE).

Conversely, if z is continuous on J and satisfies (J€), then 7 — f(1,2(7))
is continuous on J too. Hence, in view of (J€), z is C* on J. Differentiating
both sides in (J&) we obtain z'(t) = f(t, z(t)), for each t € J, while setting
t = a in (J€) we get z(a) = £ Thus z is a solution of CP(D) and this
completes the proof. O
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Proposition 2.1.2 (Concatenation Principle). Let f : I x § — R”
be a continuous function, let [a,b] C I, [b,c] C I and let £ € Q. Let
z:[a,b] — Q be a solution of CP(L,Q, f,a,€) andy : [b,c] — Q a solution
of CP(L,Q, f,b,2(b)). Then, the concatenate function z : [a,c] — Q, i.e.
the function defined by

_ [ z(t), for t € [a,b]
2(t) = {y(t), for t € (byc],

is a solution of CP(L, f,Q, a,§).

Proof. Clearly z is continuous on [a,c]. Thanks to Proposition 2.1.1, it
suffices to show that z satisfies

z(t) =¢ +/ f(r, z(1))dr, (2.1.1)

for each t € [a,c]. Ift € [a,b], this is certainly the case because z(t) = z(t)
and z satisfies (J€). Thus, let t € (b,c], and let us observe that, again by
Proposition 2.1.1, we have

t t
2() = y(t) = 2(b) + /,, Flry(r))dr = o(b) + /b f(r, 2(7))dr.

b b
z(b) =&+ / flrz{r))dr =&+ / f(r, z(r))dr,

substituting in the last equality we get (2.1.1). The proof is complete. O

Remark 2.1.3 It is not difficult to observe that the regularity properties
of the solutions of CP(D) depend on the regularity properties of f. More
precisely, we may easily check out that, if f is of class C*~! on I x Q
(k > 1), each solution of CP(D) is of class C* on its domain. Therefore, if
f is a C°°-function on I x 2, so is each solution of €P(D) on its domain.
Furthermore, if f is analytic on I x 2, each solution of CP(D) is analytic
on its domain. We shall prove this important and nontrivial result due to
Cauchy in Section 1 of Chapter 3.

We conclude this section with some simple but useful considerations
concerning the autonomous case. We recall that a differential equation is
called autonomous if it has the form z’ = f(z), where f : @ - R". In
other words, a differential equation is autonomous if its right-hand side f



The Local Ezistence Problem 57

does not depend explicitly on ¢. So, let us consider the autonomous Cauchy
problem

& = f(z)
{m(a> ¢, ACH(D)

where D = (Q, f,a,£).

Proposition 2.1.3 A function z : I, — Q is a solution of ACP(Q, f,a,&)
if and only if the function x4 : Iz, —  defined by x4(t) = z(t +a) for each
tel,,, wherely, = {t € R; t+a €L}, is a solution of ACP(R, f,0,£).

Proof. Clearly z is of class C! if and only if z, is. Further, z(a) = ¢ if
and only if z,(0) = £ and 2,(t) = 2'(t + a) = f(z{t + a)) = f(z.(t)) for
each t € I, if and only if 2'(s) = f(z(s)) for each s € I, which completes
the proof. O

Proposition 2.1.3 explains why, in the case of autonomous systems, we
will consider only the Cauchy problem with the initial datum given at a = 0,
ie. z(0) =&

2.2 The Local Existence Problem

In general, not every Cauchy problem admits a solution as we can see from
the example below.

Example 2.2.1 Let f: R — R be defined by

-1 ifz>0
f(x)_{ 1 ifz<0.

Then the autonomous Cauchy problem

{20

has no local right solution. Indeed, if we assume that z : [0,6) — R is
such a solution, then z is of class C! and z'(0) = —1. Therefore, on a
certain right neighborhood of 0, z’ has the same sign as ~1. Without
any loss of generality (diminishing ¢ if necessary), we may assume that
z'(t) < 0 for each t € [0,48). It then follows that z is strictly decreasing
on [0,6) and consequently, z(t) < z(0) = 0 for each ¢t € (0,4). So we have
z'(t) = f(xz(t)) = 1 for each t € (0,4), and z’(0) = —1, relations which
show that z’, which is continuous on [0, §), is discontinuous at ¢ = 0. This
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contradiction can be eliminated only if the Cauchy problem considered
has no local right solution. As we shall see later, this phenomenon of
nonexistence is due to the discontinuity of the function f.

The purpose of this section is to prove that, if f: 1 x Q — R™ is conti-
nuous, for each (a,£) € I x Q, CP(D) has at least one local solution. This
fundamental result has been proved in 1890 by the Italian mathematician
Giuseppe Peano.

We analyze first the case in which @ = R™ and f is continuous and
bounded on I x R™, and then, we will show how to avoid these unnecessary
extra-assumptions on f.

Let f:IxR* > RM letael, £ R D= (IR" f qa,f), and let us
consider the Cauchy problem

z! = f(t> LE)
e ls e D)

At the same time, let us consider the integral equation with the delay A > 0
£, fort € [a—Aa]

zA(t) = E‘l‘/ f(r,za(r = A))dr, for t € (a,a + 6.

(J€)a

Let us remark that, for A = 0, (J€), reduces to (J€) in Proposition 2.1.1,
which by virtue of the same Proposition 2.1.1 is equivalent to CP(D).
Roughly speaking, this remark suggests that, in order to prove that CP(D)
has at least one local solution, it suffices to show that, for each A > 0, (J€),
has at least one local solution and then, if possible, to pass to the limit for
A tending to 0 in (J€),. This is exactly we has going to do in the sequel
in a rigorous manner. We begin with the following result which will prove
useful later.

Lemma 2.2.1 If f: IxR™ — R"™ is continuous and A > Q0 then, for each
(a,8) e IxR™ and each § > 0 such that [a,a+ 8] C 1, there exists a unique
continuous function xy, defined on [a — \,a + 8] and satisfying (JE),.

Proof. Obviously z, is uniquely determined and continuous on [a— A, a].
Let then ¢ € [a,a + A]. Let us remark that, for each 7 € [a,¢], we have
T—X€[a— A a] and consequently z(7 — A) = €. Therefore

() =€+ / f(r,€) dr
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and accordingly, z) is uniquely determined and continuous on [a,a + A].
Analogously, we find a unique continuous function xz, defined successively
on [a+A,a+2X], [a+2XA,a+3)], a.s.0. Obviously, after a finite number m
of steps, with mA > a4, we can define z on the whole interval [a,a+§].
The proof is complete. 0

As we have already mentioned, we will prove first the following existence
result which, although auxiliary, is interesting by itself.

Lemma 2.2.2 If f: T x R™ — R" is continuous and bounded on I x R™,
then, for each (a,£) € IXR"™ and each § > 0 such that [a,a+8] C I, CP(D)
has at least one solution defined on [a,a + §).

Proof. Let (a,§) € I xR™ and § > 0 so that [a,a+ 8] C [, let m € N*
and let us consider the integral equation with the delay §,, = §/m

¢, fort € [a—6m,a]
mm(t) ) {5_'—/ f(T, iL'm(T - 6m)) dT» fort e (a,a+ 6] (38)"”

Let us remark that, by virtue of Lemma 2.2.1, for each m € N*, (J€),, has
a unique continuous solution z, : [a — §p,a + 8] — R™.

We shall show that the family of functions {z,,; m € N*} is uniformly
bounded and equicontinuous on [a,a + §]. First, let us recall that f is
bounded on I x R™ and accordingly, there exists M > 0 such that

If(myll < M
for each (7,y) € I x R™. From (J€),,, we conclude that
fzm @8 < NN+ (¢ —a)M < [I€]| + 6M

for each m € N* and t € [a,a + §]. Hence {x,,,; m € N*} is uniformly
bounded on [a,a +§].
Let us observe next that, again, from (J€},,, we have

[2m(t) — Zm(s)]} < / (7 Zm(T = )l dr| < Mt — 5],

for each m € N* and t,s € [a,a + &]. Consequently, {z,,; m € N*} is
equicontinuous on [a,a + ¢]. By virtue of Theorem 8.2.1 it follows that
{Zm)men+ has at least one uniformly convergent subsequence, denoted for
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simplicity also by (Z, }men+. Let us denote by z its uniform limit which is
a continuous function. Clearly we have,

lim 2, (7 — 6,) = z(7),

m—od

uniformly for 7 € {a,a + §]. Since f is continuous on I x R”, the relation
above and Corollary 8.2.2 show that we are allowed to pass to the limit for
m — co under the integral sign in (J€),,. Moreover, from the very same
Corollary 8.2.2, we deduce that z satisfies

t
a(t) = €+ / f(r,2(r)) dr

for eacht € [a,a+&]. Now, Proposition 2.1.1 shows that z : [a,a+d] — R™
is a solution of €P(D), and this completes the proof. O

Remark 2.2.1 Under the hypotheses of Lemma 2.2.2, we may prove that
for each (a,&) € I x R™, CP(D) has at least one global solution.

We may now proceed to the statement of the main result in this section.
To this aim, let I be a nonempty and open interval in R, € a nonempty
and open subset in R™, and f : I x Q2 — R™ a given function.

Theorem 2.2.1 (Peano). If f : Ix Q — R™ is continuous on Ix Q then,
for each (a,&) € I x Q, €P(L,Q, f,a,£) has at least one local solution.

Proof. Let (a,£) € I x . Since both I and € are open, there exist d > 0
and r > 0 such that [a —d,a +d] C I, and

B(§r)={neR™ In-¢l<r}cq.

We define p: R® — R™ by
Y for y € B(&, 1)

py) = r

m(y—g) + ¢ for y € R™\ B(£,7).

For n = 1, the graph of p is illustrated in Figure 2.2.1. We may easily verify
that p maps R™ into B(£,r) and is continuous on R™.
Now, let us define g : (a — d,a + d) x R* — R™ by

9(t.y) = f(t, p(¥)),
for each (t,y) € (a — d,a + d) x R™.
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0 E~r & E+r y
Figure 2.2.1

Since f is continuous, by Weierstrass' Theorem, its restriction to the
compact set [a —d,a+d] x B(£,7) is bounded. Therefore, g is continuous
and bounded on (a — d,a + d) x R™.

By virtue of Lemma 2.2.1, we know that, for each d’ € (0, d), the Cauchy
problem

(a2t

has at least one solution z : {a,a + d'] — R™. Since z(a) = € and z is
continuous at t = a, for » > 0, there exists § € (0,d’] such that for each
te€la,a+d), ||z(t) —€|| < r. But in this case g(¢,z(t)) = f(t,z(t)), and
therefore z : [a,a + 8] —  is a solution of €P(D), thereby completing the
proof. O

2.3 The Uniqueness Problem

As we have already seen, the continuity of the right-hand side in CP(D) is
enough to ensure the existence of at least one local solution. It should be
noted that, if f is merely continuous, for certain choices of {a,£) € Ix £, it
may happen that CP(D) have more than one local solution, as we can see
from the next classical example due to Peano (1890).

Example 2.3.1 Take /=R, Q=R, f:RxR — R, f(t,z) = 3Vz2 for
each (t,z) € Rx R, a =0 and £ = 0. Then, we may easily verify that both
z(t) = 0 and y(t) = ¢3, for t € [0, 00) are solutions of CP(R, R, £,0,0).

We note that there are examples of functions f : I x 2 — R” such that
for each (a,§) € I x Q, CP(D) has at least two solutions. For such an
example, the interested reader is referred to [Hartman (1964)], p. 18.
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Definition 2.3.1 We say that CP(D) has the local uniqueness property
if for each (a,€) € I x Q and each two solutions z and y of CP(D), there
exists 6 > 0 such that [a,a +8) C T and z(t) = y(¢) for each t € [a,a + §).

We say that CP(D) has the global uniqueness property if for each fixed
data (a,€) € 1 x Q, every two solutions of €P(D) coincide on the common
part of their domains.

We begin with the following useful result.

Proposition 2.3.1  The problem CP(D) has the local uniqueness property
if and only if it has the global uniqueness property.

Proof. The “if” part is obvious. So, let us assume that CP(D) has the
local uniqueness property, let (a,§) € IxQandletx:J - Qandy : K — Q
be two solutions of CP(D). As z and y are continuous, the set

Clz,y) ={t € INK; z(s) = y(s) for each s € [a,t]}
is nonempty and closed. To complete the proof it suffices to show that
sup C(z,y) = sup(J N K). (2.3.1)

To this aim, let us assume the contrary. Since sup€(z,y) < sup(J N K),
it follows that sup C(z,y) < sup(J NK). But in this case both z and y are
defined at the right of b = sup €(z,y), are solutions of €P(I, Q, f,b,z(b)),
and then, by hypothesis, they must coincide on an interval of the form
[b,b 4 0), with § > 0 sufficiently small. Since this statement contradicts
the definition of b, it follows that the supposition sup C(z,y) < sup(J N K)
is false. Then sup €(z,y) = sup(J NK) and this completes the proof. O

By virtue of Proposition 2.3.1 “local uniqueness” and “global unique-
ness” describe one and the same property of CP(D). Therefore, in all what
follows, we shall say that CP(D) has the uniqueness property instead of
saying that CP(D) has the local, or global uniqueness property.

2.3.1 The Locally Lipschitz Case

In order to state the first main result of this section, some definitions and
remarks are needed.

Definition 2.3.2 A function f:Ix £ — R" is called locally Lipschitz on
Q if for each compact subset X in I x €2, there exists L = L(X)} > 0 such
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that, for each (t,u), (¢,v) € X we have
| f(t,u) — f(t,v)|| < Ljju —v|. (2.3.2)

Remark 2.3.1 The use of the term “locally” in Definition 2.3.2 is some-
how improper, but it is explained by the fact that f : 1x Q — R™ is locally
Lipschitz on € if and only if for each (a,£) € I x Q, there exists a neigh-
borhood V of (a,£), V C I x Q and L = L(V) > 0 such that, for each
(t,u), (t,v) €V, (2.3.2) holds. We leave to the reader the proof of this nice
problem of Real Analysis.

Remark 2.3.2 If f: I x ) — R™ satisfies the Cauchy condition on €, i.e.
f has first-order partial derivatives with respect to the last n arguments,
and for each 4,5 € {1,2,...,n}, 0f;/0x; is continuous on I x §, then f is
locally Lipschitz on €.

A first sufficient condition for uniqueness is:

Theorem 2.3.1 If f: 1 x Q — R" is locally Lipschitz on §, then CP(D)
has the uniqueness property.

Proof. In view of Proposition 2.3.1, it suffices to show that if f is locally
Lipschitz on £2, then CP(D) has the local uniqueness property. Thus, let
(g,6) €IxQandlet z:J — Qand y: K — Q be two solutions of CP(D).
Since (a,€) € I x  which is open, there exist » > 0 and § > 0 such that
a+ 0 <sup(JNK) and B(&,r)={neR™ |n—€&| <r}cC.

- Furthermore, inasmuch as both x and y are continuous at ¢ = a, and
z(a) = y(a) = £, diminishing § if necessary, we may assume that

z(t) € B(€,r) and y(t) € B(£,r) (2.3.3)

foreacht € [a,a+0]. As f islocally Lipschitz on 2, and [a,a+d | x B(&,7)
is compact, there exists L > 0 such that

1/t w) = f(t )l < Lljw vl (2.3.4)

for each t € [a,a + ] and u,v € B(&,r). At this point, let us observe that
we may assume with no loss of generality that

§L < 1. (2.3.5)

(If not, we can take a smaller § satisfying all the conditions above including
the last one.)
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Now, as both 2 and y satisfy (J€) in Proposition 2.1.1, we have

() -yl < / \f(r2(r)) = F(rp(r)dr
for each t € [a,a + §]. From (2.3.3) and (2.3.4), it follows

sup [lz(t) —y(®)Il <L sup iz(t) - y(B).
te(a,a+d] te(a,a+6)

Since by (2.3.5) 6L < 1, the last inequality holds only if

sup |lz(t) —y(&)| = 0,
t€fa,a+d]

ie., z(t) = y(t) for each t € [a,a+§]. Thus €P(D) has the local uniqueness
property and, by virtue of Proposition 2.3.1, this completes the proof. [

A simple, but important consequence of Theorems 2.2.1 and 2.3.1 is
stated below.

Theorem 2.3.2 If f:1x Q — R" is continuous on I x Q and locally
Lipschitz on Q, then for each (a,€) € I x Q there exists § > 0 such that
[a,a+ 3] CI and CP(D) has a unigue solution defined on [a,a + §].

2.3.2 The Dissipative Case

Another very important class of functions f for which €P(D) has the
uniqueness property is defined below.

Definition 2.3.3 A function f: I x Q@ — R” is called dissipative on Q if
for each t € T and u,v € Q, we have

(f(t,u) — f(t,v),u—v) <0,

where (-, -} stands for the usual inner product in R", i.e. for each u,v € R,
u = (u1,us,...,un) and v = (v1,v2,...,0p),

k(3
(u,v) = Z U5
i=1

Remark 2.3.3 Ifn=1,ie ifQCRand f:IxQ2 —> R, fis dissipative
on 2 if and only if for each t € I, f(¢,) is non-increasing on €.

Theorem 2.3.3 If f: 1 x Q — R" is dissipative on 2, then CP(D) has
the uniqueness property.
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The conclusion of Theorem 2.3.3 follows from the next lemma which
will prove useful in the sequel.

Lemma 2.3.1 Let f:1xQ — R™ be dissipative on Q, let a € 1 and
Eme Ifx: 1, - Qandy : I, — Q are two solutions of the Cauchy
problems CP(D) and respectively CP(L, 2, f,a,n) then

(@) — (Ol < 1§ =l
foreach t €l N, t > a.

Proof. Letacl, £&,n e Qandlet z,y be two solutions of CP(L, Q, f,a,&)
and CP(L, 8, f,a,n), respectively. Then, for each ¢t € I; N1, we have

2'(t) —y'(t) = f(t, z(t)) = f{t,y(t))-

Taking the inner product both sides in the preceding relation by z(t) —y(t)
and recalling that, by (i) in Lemma 8.1.2,

| s

lz(t) -y,

N =
Qu

(2'(t) —y'(t), z(t) — y(t)) = .

we get

22 llet) — I = (£ (8,7(0)) = F(2,3(0), 2(0) ~ 90

Here the dissipativity of f comes into play and shows that
1d
2dt

Thus, t — 3||z(t) — y(t)||* and, by consequence, t — 3|lz(t) — y(t)|| are
non-increasing on the common part of the domains of = and y. From this
remark it follows that

lz(t) =yl < llz{a) — y(a)ll = 1§ — 7l
for each ¢t € I, N1, t > a, and this completes the proof. O

lz(t) ~y(®)* < 0.

Remark 2.3.4 In contrast with the Lipschitz condition which ensures the
bilateral uniqueness, the dissipativity condition ensures only the uniqueness
at the right but not at the left, as we can see from the next example.

Example 2.3.2 Let @ =R and let f: R — R be defined by

fa) = 3922 ifz <0
1o if z > 0.
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Then CP(f,R,0,0) has only one right saturated solution, but z(t) = 0 as
well as y(t) = t3 for t < 0, are saturated left solutions of CP(R, f,0,0).

We conclude this section with a useful consequence of Theorems 2.2.1
and 2.3.3.

Theorem 2.3.4 If f : IxQ — R™ is continuous on I x Q and dissipative
on Q, then for each (a,&) € I x Q there exists § > 0 such that [a,a+d] C 1,
and CP(D) has a unique solution defined on [a,a +0].

2.4 Saturated Solutions

Let I be a nontrivial interval in R, § a nonempty and open subset in R”, let
f:IxQ — R™ be a given function, a €l and £ € Q. Let D = (1,9, f,q,§)
and let us consider the Cauchy problem

z' = f(t,z)

We recall that a solution z : J — Q of €P(D) is called continuable
at the right (left) if there exists a right (left) solution y : K — Q with
sup J < sup K (inf J > inf K) and such that z(t) = y(t) for each ¢t € JNK.
We also recall that a solution z : J —  is called saturated at the right
(left) if it is not continuable at the right (left). A right (left) solution
z:J — §is called a global at the right (left) solution if J = {t € I; t > a}
(J={t el t <a}). Since we merely consider right solutions, in all that
follows, by a “continuable”, respectively “saturated” solution we shall mean
a “continuable at the right”, respectively “saturated at the right” solution.

2.4.1 Characterization of Continuable Solutions
We begin with a very simple but useful lemma.

Lemma 2.4.1 Let f: I x Q — R” be continuous on 1 x Q. Then, a
solution z : [a,b) — Q of CP(D) is continuable if and only if

(i) b<sup I
and there exists
(ii) z* = ltl%’? z(t) and z* € Q.

Proof. The necessity is obvious, while the sufficiency is a consequence of
both Theorem 2.2.1 and Proposition 2.1.2. Indeed, if both (i) and (ii) hold,
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a simple argument shows that z can be extended to [a,b| as a solution
of CP(L,Q, £f,a,£), denoted again by z, by setting z(b) = z*. Then, by
virtue of Theorem 2.2.1, CP(L, §, f,b,z*) has at least one local solution
y:[bb+ 8] — Q, where § > 0. By Proposition 2.1.2, we know that the
concatenate function z is a solution of CP(I, 2, f, a, ) defined on [a,b + J)
which coincides with z on [a,b). Hence z is continuable and this achieves
the proof. O

Remark 2.4.1 From Lemma 2.4.1 it readily follows that, whenever I
and ) are open and f is continuous, each saturated solution of EP(D) is
necessarily defined on an interval of the form [a, b), i.e. on an interval which
is open at the right. This is no longer true if either I, or € is not open. A
specific case of this sort will be analyzed in Sections 3.2 and 3.3. See also
Section 7.7.

A sufficient condition for the existence of the finite limit in (ii) is stated
below.

Proposition 2.4.1 Let z: [a,b) — Q be a solution of CP(D) and let us
assume that b < +00, and there exists M > 0 such that

|f(r ()] < M,
for each T € [a,b). Then, there exists z* € Q,
*=1i t).
Proof. In view of Proposition 2.1.1, for each t,s € [a,b) we have

() — 2(s)] < / 17 (r, 2(r)lldr| < Mt = s,

and thus x satisfies the hypothesis of the Cauchy test on the existence of
finite limit at b. O

We may now proceed to the statement of a useful characterization of
continuable solutions of €P(D).

Theorem 2.4.1 Let f: 1 x  — R"™ be continuous on I x Q. Then, a
solution z : [a,b) — Q of CP(D) is continuable if and only if the graph of
z, i.e.

graph z = {(t,z(t)) e R x R"™; ¢ € [a,b)}

is tncluded in a compact subset in 1 x Q.
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Proof. The “if’ part. Assume that graphz is included into a compact
subset of I x €. Since I is open it follows that b < sup I and f is bounded
on graphz, i.e. there exists M > 0 such that

If(r,z(T)Il < M,

for each 7 € [q,b).
The conclusion is a consequence of Lemma 2.4.1 and Proposition 2.4.1.
The “only if” part. Assume that z is continuable. Then, z may be
extended by continuity to [a,b] C L. Denote this extension by y, and let us
observe that the mapping ¢ — (¢,y(t)) is continuous from [a,b] to T x Q.
Therefore, its range which coincides with graphy is compact and included
in I x ©. Since graphz C graphy, the proof is complete. ]

2.4.2 The FExistence of Saturated Solutions

We continue with a fundamental result concerning saturated solutions for
CP(D). We notice that in the next theorem f is completely arbitrary.

Theorem 2.4.2 Ifz :J — Q is a solution of CP(D), then either x is
saturated, or x can be continued up to a saturated one.

Proof. 1If z is saturated we have nothing to prove. Thus, let us assume
that z is continuable and let us define § as the set of all solutions of CP(D)
which extend z. Obviously, z € § and thus § is nonempty. Moreover, since
z is continuable, § contains at least two elements. On S let us define the
relation ” <7 by y < z if 2z extends y. It is a simple exercise to show that
(8,=) is an inductively ordered set. So, from Zorn’s Lemma, there exists
at least one maximal element y € § such that z < y. From the definition of
? <", and from the maximality of y it follows that y is a saturated solution
of CP(D) which coincides with = on J, thereby completing the proof. O

Remark 2.4.2 Under the hypothesis of Theorem 2.4.2, if z : J — Q
is a continuable solution of CP(D), it may happen to exist two or more
saturated solutions extending z. See Problem 2.16. It is not difficult to
see that this phenomenon occurs as a consequence of non-uniqueness. By
contrary, if CP(D) has the uniqueness property, we may easily conclude
that for each continuable solution z : J — Q of CP(D) there exists exactly
one saturated solution of CP(D) extending z.

From Theorems 2.2.1 and 2.4.2 it follows:
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Corollary 2.4.1 If f : I x & — R™ is continuous, then for each data
(a,8) eI x Q, CP(I,Q, f,a,€) has at least one saturated solution.

2.4.3 Types of Saturated Solutions

We recall that a limit point of a function z : [a,b) — R™ as ¢ tends to b
is an element z* of R™ for which there exists a sequence (tg)ken in [a,b)
tending to b and such that limg_.co z(tx) = z*.

Concerning the behavior of saturated solutions at the right end point
of their interval of definition, we have the following fundamental result.

Theorem 2.4.3 Let f : I x Q@ — R™ be continuous on I x Q, and let
z:[a,b) — Q be a saturated solution of CP(D). Then, either

(i) z is unbounded on [a,b), or
(if) z is bounded on [a,b), and, either x is global, i.e. b =supll, or
(iii) z is bounded on [a,b), and = is not global, i.e. b < sup I, and in
this case each limit point of x as t tends to b lies on the boundary

of §2.

Proof. If z is unbounded on [a,b), or if it is bounded and global, we
have nothing to prove. Thus, let us assume that z is bounded on [a,b) and
b < supl. To prove (iii) let us assume by contradiction that there exists at
least one sequence (¢g)ken in [a,b) tending to b and such that (z(tk))ken
is convergent to some z* € R", but z* does not belong to the boundary
052 of 2. Since z* lies in the closure of {2 and z* & 94, we necessarily have
z* € Q. In view of Lemma 2.4.1, to get a contradiction, it suffices to show
that there exists lim,yy 2(t), which of course must coincide with z*. To this
aim, let us observe that, since £} is open and z* € (2, there exists r > 0
such that B{z*,r) = {n € R™; {ln — z*|| < r} C Q. Furthermore, inasmuch
as b < supl, f is continuous on [a,b] x B(z*,7), and the latter is compact,
from Weierstrass’ theorem, it follows that there exists M > 0 such that

1f(m )l < M, (2.4.1)

for each (7,y) € [a,b] x B(z*,r). Taking into account that limy .00 tx = b
and limg_, o z(tx) = z*, we may choose k € N such that
T
b—tr < oM
(2.4.2)

r
lo(ts) - 2°l| < 7.
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Fix k with the properties above. We shall show that for each ¢t € [tx,b),
we have z(t) € B(z*,r). Let

t* = sup{t € [tk,b); z(s) € B(z*,r), for s € [t,t]}.

If t* = b, the statement above is obviously true. Let us assume by contra-
diction that t* < b. This means that z(t) € B(z*,r) for each ¢ € [k, t*],
lz(t*) — z*|| = r and there exist points ¢ > t*, as close to t* as we wish,
satisfying [|z(t) — =*|| > r. In other words, t* is the “first moment in (¢, b)
after which x leaves the set B(z*,r)”. See Figure 2.4.1.

Q
4
x (1)
Figure 2.4.1
The condition ||z(t*) — z*|| = r signifies that, at t*, x must cross the

boundary of B(z*,r). Next, from the remark above combined with (2.4.1),
and (2.4.2), we get

r=lz@") =2 < Jl2(7) — @)l + l2(t) — 27|

< [ Wrtramlar + aft) = a°)| < (¢ = )M + fo(te) —=°|

ti

r
2
This contradiction (r < r) comes from our supposition that for at least one
t € [tk,b), 2(t) & B(z*,r). Then, for each ¢ € [tg,d), z(¢) € B(z*,7). Since
r > 0 can be taken as small as we wish, we conclude that lim, 2(¢) = 2*.
But z* € §2 and thus, in view of Lemma 2.4.1, it follows that x is continuable
thereby contradicting the hypothesis. This contradiction can be eliminated
only if 2* € 952. The proof is complete. d

=r.

< (b= t)M +|lalt) —2*| < § +
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Next, under an additional hypothesis on f, we shall prove a sharper
result. Namely, we have:

Theorem 2.4.4 Let f: 1 x 2 — R™ be continuous on I x Q and let us
assume that it maps bounded subsets in 1 x Q into bounded subsets in R™.
Let z : [a,b) — Q be a saturated solution of CP(D). Then, either

(i) z is unbounded on [a,b) and, of b < +oo, there ezists
limgtp ||z(2)]} = 400, or
(ii) z is bounded on [a,b), and, either x is global, i.e. b =supl, or
(iii’) z is bounded on [a,b), and x is not global, i.e. b < supl, and in
this case there exists limgp = z* and z* lies on the boundary of .

Proof. In view of Theorem 2.4.3, the only fact we have to prove here is
that whenever (ii) does not hold, then one of the two conditions (i’) or (iii’)
must hold. So, let us assume for the beginning that (i’) and (ii) do not
hold. Then, from Lemma 2.4.1 and Proposition 2.4.1, it follows that there
exists

H *

ltlTIil z(t) = z*,
while from (iii) in Theorem 2.4.3 we have z* € 9. So, (iii’) holds true.

Let us assume now that (ii) and (iii’} do not hold, and that b < +00. To

show that limgy ||2(t)|| = 400, let us assume by contradiction that, under
these circumstances, we have

hr%nf l=(¥)]] < +oc.

Equivalently, there exist at least one sequence (tx)ken in (a,b), converging
to b, and r > 0 such that ||z(¢x)|| < 7, for each k € N.
Let C = {y € Q; |ly]l £ r+ 1}. Since f maps bounded subsets in

I x © into bounded subsets in R™, b < supl and C is bounded, there exists
M > 0, such that

1f(r. )l < M, (2.4.3)
for each (7,y) € [a,b) x C. Now let us choose d > 0 satisfying
dM <1, (2.4.4)

and fix £ € N such that b—d < ¢, < b. Since z is unbounded on [a,b), it is
necessarily unbounded on [tk, b). Then, there exists t* € (tx,b) such that

lz(r)| <7 +1, (2.4.5)
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for each 7 € [tg,t*) and
lz@)|| =7+ 1.

In fact, t* is “the first moment in (tx,b) at which z leaves B(0,7 +1)". Let
us observe that

r 1= a(t)] = o(te) + / F(r,x(r))dr]

t*

< llz(te) ] + / 1 (r,z(7)) .

ti

Taking into account (2.4.3), (2.4.4), (2.4.5), and the obvious inequality
t* -ty < d, we get

r+l1<r+ (" —te)M <r+dM <r+1.
This contradiction can be eliminated only if
lim |lz(£)]] = +oo

and this completes the proof. O

Remark 2.4.3 IfI = R and Q@ = R", then, each continuous function
f 1 IxQ — R™ maps bounded subsets in I x € into bounded subsets in
R™. Indeed, if B is a bounded subset in R x R™, its closure B is included
in R x R™ too. But B is compact, and f is continuous and thus f(B)is
bounded. Since f(B) C f(B), f(B) is bounded. Of contrary, if I # R, or
Q # R™, there are examples of continuous functions f : I x  — R™ which
do not map bounded subsets in I x € into bounded subsets in R”.

Corollary 2.4.2 Let f: R x R* —» R" be continuous on R x R" and let
z: [a,b) = R™ be a saturated solution of CP(D). Then either z is global,
i.e. b= 400, or x is not global, i.e. b < +00 and in this case there exists

lim l2(¢)]| = +oo.

Proof. Let us observe first that, if b < +00, z is necessarily unbounded
on [a,b). Indeed, if we assume the contrary, z has at least one limit point
z* as t tends to b. In view of Theorem 2.4.3, * must lie on the boundary
of R™ which is the empty set. Thus, the supposition that z is bounded on
[a,b) is false. The conclusion of Corollary 2.4.2 is then an easy consequence
of Remark 2.4.3 combined with Theorem 2.4.4, O
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In the hypotheses of Corollary 2.4.2, if b < 400 and limyy, ||2(t)| = +00,
we say that x blows up in finite time.

Corollary 2.4.3 Let f: R x R®* — R" be continuous on R x R™ and let
z: [a,b) = R” be a solution of CP(D). Then x is continuable if and only
if b < +oo and z is bounded on [a,b).

Proof. The “only if” part is trivial, while the “if” part is a simple refor-
mulation of Corollary 2.4.2. 0

2.4.4 The Ezxistence of Global Solutions

We conclude this section with two sufficient conditions on f ensuring the
existence of global solutions of CP(D).

Theorem 2.4.5 Let f :IxR™ — R™ be continuous on I x R™, and let us
assume that there exist two continuous functions h,k 1 — Ry such that

(o)l < B(T)llyll + A7), (2.4.6)

for each (1,y) € Ix R™. Then, for each (a,&) € Ix R, CP(D) has at least
one global solution.

Proof. In view of Corollary 2.4.1 it suffices to show that each saturated
solution of €P(D) is global. To this aim, let z : [a,b) — R™ be a saturated
solution of CP(D).

Since z satisfies (J€) in Proposition 2.1.1, from (2.4.6), we get

=@l < ||§Il+/ h(T)dT+/ k(7)llz()lldT,

for each t € [a,b). We will show next that b = supl. Indeed, if we assume
the contrary, inasmuch as [a,b] is compact and h,k are continuous on
[a,b] C 1, there exists M > O such that

h(t) < M and k(t) < M,

for each t € [a,b].

The preceding inequalities along with Gronwall’s Lemma 1.5.2 show
that

=@l < gl + M (b — a))e™ =),

for each t € (a,b). Hence z is bounded on [a, b) and therefore it has at least
one limit point z* as ¢ tends to b. By Theorem 2.4.3, it then follows that
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x* lies on the boundary of R™ which is the empty set. This contradiction
can be eliminated only if b = supl, and this completes the proof. a

A significant consequence of Theorem 2.4.5 refers to linear systems of
first-order differential equations whose thorough study is the subject of
Chapter 4. Let I be a nontrivial interval in R, and let A : [ — M, xm(R)
and B : T — Muxp(R) be two continuous matriz-valued functions, i.e.
two matrices whose elements are continuous functions from I to R. Let
a€l, Xo € Mpyp(R) and let us consider the Cauchy problem

{ X = AE)X + B(2)

X(a) = X, 247

whose unknown is a function X : J — My p(R).

Corollary 2.4.4 If A : 1 — Mpuxm(R) and B : I — My p(R) are
continuous, then for each a € I and Xy € Mpyxp(R) the Cauchy problem
(2.4.7) has a unigue global solution.

Proof. We recall that, as we have stated in Section 8.1, Myxp(R) is an
m X p-dimensional linear space over R and therefore it can be identified
with R™*P, Moreover, the norm || - ||, defined on My xp(R) by

[Xline = sup{l|X¢[lm; € € R?, [I€]l» < 1},

is equivalent to the Euclidean norm. See Remark 8.1.1. Let us define the
function f : I x R™*P — R™*? by

7(t,%) = A(HX + B(t),
for each (¢, X) € I x R™*P, Clearly, f is continuous and

17 X)llae < PAD el Xllae + [BE v

for each (¢,X) € IXR™*P. Thus f satisfies the hypotheses of Theorem 2.4.5.
Accordingly, for each a € [ and X, € My, x»(KR), the Cauchy problem (2.4.7)
has at least one global solution.

Finally, since

(8, ) = £t Dl < BAG N hX = Blon,

for each (£,X),(t,Y) € I x R™*?, it follows that f is locally Lipschitz on
R™*P, Thus, in view of Theorem 2.3.1, (2.4.7) has the uniqueness property
and this completes the proof. O
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Theorem 2.4.6 Let f: 1 x R® — R" be continuous on [ x R™ and
dissipative on R™. Then, for each (a,€) € I x R", CP(D) has a unique
global solution.

Proof. Let (a,¢) € I x R*, By Theorems 2.3.4 and 2.4.2, @P(D) has a
unique saturated solution z : [a,b) — R™. To complete the proof it suffices
to show that b = supl. To this aim, let us observe that €P(D) may be
equivalently rewritten as

{w’(T) = f(r,2(7)) = f(7,0) + f(7,0),
z(a) = ¢,

for each 7 € [a,b). Taking the inner product both sides in the equation
above by z(7), recalling that (z'(t),z(r)) = %2 |lz(r)||%, using the dissi-
pativity of f and integrating over [a,t], we get

1 1,,o [°
SOl < 3061+ [ (7o) alrar

for each t € [a,b). From Cauchy-Schwarz Inequality, we obtain

el < Sl + [ 10 - Je(r)lar

for each t € [a,b). Thus, Brezis Lemma 1.5.3 applies and shows that

le@)ll < lél] + / 17(r,0)dr,

for each t € [a,b). Consequently, if b < supl, z is bounded on [a,b) and
therefore it has at least one limit point z* as ¢ tends to b. By Theorem 2.4.3,
z* must lie on the boundary of R™ which is the empty set. Thus b = supl
and this completes the proof. a

2.5 Continuous Dependence on Data and Parameters

Let us consider the Cauchy problem
{ z'(t) = a(t)z(t) + b(t)
x(tﬂ) = 57

where a,b: 1 — R are continuous functions on I, t; € T and £ € R. As we
have already seen in Section 1.3, this problem has a unique global solution
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given by the so-called variation of constants formula

z(t, t0, &) = exp (/t: a(s) ds) £+ /t: exp </sta(7') d’r) b(s) ds.

See Theorem 1.3.2 and Remark 1.3.1. From the specific form of the solution,
we may easily see that this is continuous with respect to the initial datum &,
from R in C(I;R), the latter being endowed with the uniform convergence
topology on compact intervals in I. Indeed, if J is a compact interval in I
and &, € R, then

Stu.IIT) |$(t7t0;£) - :C(t, tU’T/)l < eéle - TI|,
€

where £ is the length of the interval J, and M = sup,¢j{|a(7)|}.

Starting from this simple observation, we intend to show that, under
some natural hypotheses on the function f, the solution of the Cauchy
problem CP(D) depends continuously not only on the data but also on the
parameters (if any).

We begin with the study of the continuous dependence of the solution
on the data and next, we will show how the continuous dependence on the
parameters can be inferred from the preceding one. Let I be a nontrivial
interval in R, £ a nonempty and open subset in R® and let f : Ix Q — R"
be a continuous function. Let a € I and £ €  and let us consider the
Cauchy problem

' = f(t,x)
§ CP(LQ, f,a,
{25 @9 f,0,6)
If w € Q is an open subset containing £, we may also consider another
Cauchy problem

z(a) = E£.

Assuming that the first Cauchy problem CP(L, 2, f, a, £) has the uniqueness
property at the right, from Theorem 2.4.2, it follows that both problems
CP(I, L, f,a,€) and CP(L,w, fiixw,a,§) have a unique saturated solution.
Since these solutions coincide on the common part of their domains, in
order to distinguish them, we denote by z(-,&,) : [a,b¢ o) — € the unique
saturated solution of CP(I, 8, f,a,£) and by z(-,&,w) : [a,bew) — w the
unique saturated solution of CP(I,w, fiixw,a,£). Inasmuch as in all what
follows we shall keep a € I fixed, and we allow only & to vary in 2, there is

{.'I?I = fl][xw(trx) GfP(lI,w,fmxwa,f)
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no need to make explicit the dependence of z on a. Although at a first glance
these notations seem to be somehow awkward, it should be emphasized that
they are needed in order to avoid a lot of troubles in the sequel.

Remark 2.5.1 Let us observe that b¢,, < b¢ o and z(t,£, Q) = z(¢,{,w)
for each t € [a,b¢ o).

The next lemma will prove useful in what follows.

Lemma 2.5.1 Let X be a compact subset in R™ and F a closed subset in
R™ with X NF = 0. Then dist(X,F) > 0.

Proof. Let us assume by contradiction that there exist two subsets X
and ¥ in R™, the former compact and the latter closed, with XNJF = @, but
for which dist(X,¥) = 0. From the characterization of the infimum of a
set of reals by means of sequences, we deduce that there exist (zx)reny C K
and (yk)ng C F such that

lim ||lzx —ykl = 0.
k—o0

Since X is compact, by virtue of Cesaro Lemma, we know that there exists
xz € X such that, at least on a subsequence, we have

lim zx = z.

k—o0 k
From the preceding equality it follows that limg e yx = z too. But yp € F
for each £ € N and inasmuch as ¥ is closed, we conclude that z € 7,
relation which is in contradiction with the initial supposition that ¥ and
X are disjoint. This contradiction can be eliminated only if the distance
between X and JF is strictly positive. The proof is complete. O

Definition 2.5.1 A function ¢ : & — R U {+oo} is called lower semi-
continuous at £ € § (I.s.c.) if for each € > 0 there exists r > 0 such that,
for each nn € B(£,7) N we have

©(§) — e < p(n).

A function ¢ : Q@ — RU {400} is called lower semi-continuous on § if
it is lower semi-continuous at any £ € Q.

Definition 2.5.2 A mapping between two metric spaces is nonezpansive
if it is Lipschitz continuous with constant 1.

1Here and in what follows, dist(X,F)=inf{|lz —y|| : = € X, y € F} represents the
distance between the two subsets X and F.
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2.5.1 The Dissipative Case
The first main result of this section is stated below.

Theorem 2.5.1 Let f : IxQ — R™ be continuous onIxQ and dissipative
onQ, leta €1 be fixed, £ € Q and let (-,£,Q) : [a,be,0) — Q be the unique
saturated solution of CP(L,Q, f,a,€). Then:

(1) the function & — be o is lower semi-continuous on 1, i.e., for each
€ € Q and each b € (a,be ), there exists v > 0 with the property
that B(€,7) C Q and for each p € B{&,r), z(-,n,Q) is defined on
[a,b] at least, d.e. b < bypq;

(ii) for each &€ € Q and each b € (a,beq) there exist r > 0, with
B(¢,7) C Q, and a compact subset W C Q such that, for each
n,u € B(E,r), both (-,n, Q) and z(-, u, Q) are defined on [a,b] at
least and in addition, for eacht € [a,b] and 8 € [0,1], we have

0z(t, 1, Q) + (1 — 0)2(t,n,Q) € T, (2.5.1)

(ili) for £ € Q and v > 0 as n (i), n — z(-,1,Q) is nonerpansive
from B(&,r) to C([a,b]; R™), the latter being endowed with its usual
supremum norm.

Proof. Let b € (a,be,,) and let us define X = {z(,£,Q); t € [a,b]}.
Since z is continuous and [ a, b] is compact, X is compact too and is included
in Q. Inasmuch as © is open, it follows that XN8Q = @ and accordingly, by
virtue of Lemma, 2.5.1, the distance between X and 952 is strictly positive.
For this reason there exists p > 0 such that the set

w = {y € RY; dist (y,X) < p}

{which is obviously open) is included in Q. See Figure 2.5.1.
In addition, diminishing p if necessary, we may assume that

w = {y € RY; dist(y,X) < p},

is included in §2 too. See also Figure 2.5.1.
Let r € (0,p). We will show first that for each n € B(§,7), z(-,n,w) is
defined on [a,b] at least. As for each n € B(£,r) we have

dist (n, X) < dist(n, &) = |ln — €|l <7 < p,

it follows that n € w and therefore, by virtue of Theorems 2.3.2 and 2.4.2,
the problem €P(I,w, fix.,a,n) has a unique saturated solution z(-,7,w).
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Figure 2.5.1

to prove that b < by q, it suffices to show that b < b, .. To this aim, let
us assume the contrary, i.e. let us assume that there exists n € B(§,7)
such that b, ., < b. Since for each ¢ € [a,by.) we have z(¢,n,w) € w and
[aybyw) X w C [a,b] x @ and f is bounded on the compact set [a,b] x @,
from Proposition 2.4.1, it follows that there exists

In view of Remark 2.5.1, we have b, . < b, and accordingly, in order

lim z(t,n,w) =z, (2.5.2)

tThy,w

while, from Theorem 2.4.3 (iii), we have z, € Ow.
On the other hand, from the dissipativity condition and from
Lemma 2.3.1, we have

“:L‘(t,.f,Q) - x(tﬂ% w)“ < |l§ - 77“ (253)

for each t € {a, by ). Taking into account that b, ., < b < b o, from (2.5.2)
and (2.5.3), we deduce

2 (bnw, &, ) — x|l <7
But z(by,w, &, Q) € X and therefore
dist (2, X) < dist(zo,, z(bnw,§, Q) <r < p.

Thus z, € w, thereby contradicting z,, € Q. This contradiction can be
eliminated only if b < b,,. So, for each nn € B(€,7), z(:,7,w) is defined on
[a,b} at least. But z(-,7,w) coincides with z(-,7, ) on [a, b}, which proves
that (i) holds true.
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Using again Lemma 2.3.1, we deduce

”33('5,77, Q) - (L‘(t, Ky Q)“ < ||77 - N“ (2'5'4)
for each i, u € B(€,r) and t € [a,b], which implies

< 9“5‘3(75’ My Q) - I(t7§’ Q)” + (1 - 9)[|W(t,77a Q) - IL‘(t,f, Q)“ <
As z(t,£,9Q) € X, this inequality shows that

dist{0z(t, 4, Q) + (1 — &)z (t, 1, 2), X)

<|[0z(t, 11, Q) + (1 = O)z(t, 1, Q) — 2(t,€, Q) <7 <p,

and consequently (2.5.1) holds.
Finally, from (2.5.4), it follows that

sup ||z, 7, Q) — z(t, u, O < [ln — 4l (2.5.5)

tela,b]
for each n,u € B(&,r). So, the mapping n — z(-,7,£)) is nonexpansive
from B(,r) to C([a,b]; R™), the latter being endowed with the supremum
norm and this completes the proof of Theorem 2.5.1. 0

2.5.2 The Locally Lipschitz Case

Theorem 2.5.2 Let f:1x§ — R™ be continuous on I x Q and locally
Lipschitz on 2, let a € I be fired, £ € Q and let (-, &,Q) : [a,bg ) — Q
be the unique saturated solution of CP(L, R, f,a,€). Then (i) and (i) in
Theorem 2.5.1 hold and:

(iii) for each & € Q and T > 0 as in (ii) the mapping n — z(-,n,Q) is
Lipschitz continuous from B(&,r) to C([a,b];R™), the latter being
endowed with the supremum norm.

Proof. The proof is similar to that of Theorem 2.5.1. Namely, let us
consider the set X, defined by X = {z(t,£,Q); t € [a,b]}, which is obvi-
ously compact and included in §2. Then there exists an open subset 23 such
that X C Qp C Qo C . Moreover, there exists p > 0 such that the set
w={y € R™; dist (y, X) < p} satisfles X Cw C @ C Q. See Figure 2.5.2.
In addition, as f is locally Lipschitz on  and [a,b] x Qo is compact, there
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Figure 2.5.2

exists L > 0 such that

£t w) = f(& )l < Liju— vl

for each t € [a,b] and each u,v € Q.

Let 7 € (0, pe ("), where L > 0 is the Lipschitz constant of f on
[a,b] x Qg. We will show first that for each n € B(€,7), z(-,7,w) is defined
on [a,b] at least. As for each n € B(£,r) we have

dist (9, X) < dist(n,§) = |l[n — & <7 < p,

it follows that € w and therefore, by virtue of Theorems 2.3.2 and 2.4.2,
the problem €P(I,w, fiixw,a,m) has a unique saturated solution z(:,n,w).
In view of Remark 2.5.1 we have b, , < b, o and accordingly, in order to
prove that b < b, q, it suffices to show that b < b,,. To this aim, let
us assume the contrary, i.e. let us assume that there exists n € B(£,r)
such that b, ., < b. Since for each t € [a,by,) we have z(t,n,w) € w
and [a,b,,) X w C [a,b] x W and f is bounded on the latter, in view of
Proposition 2.4.1, it follows that there exists

lim z(¢t,7,w) = z,,. (2.5.6)

byw

From Theorem 2.4.3 (iii), we necessarily have z,, € Gw. On the other hand,
from the Lipschitz condition, we conclude

2(¢,€, Q) — z(t,n,w)| < € -7l +L/ ll2(s,£, ) — z(s,m,w)| ds
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for each t € [a,by,). Thus, thanks to the Gronwall’s Lemma 1.5.1, we
obtain

l2(t, €, Q) — z(t,n,w)|| < "€ — )| (2.5.7)

for each t € [a, by .,). Taking into account that b, ., < b < be o, from (2.5.6)
and (2.5.7), we deduce

[2(b o, &, Q) — 2| < rel=9) < p.
But z(by ., &, §2) € X and therefore
dist (., K) < dist(zy,, £(byw, €, Q) < reF=2 < p,

Thus z, € w N Ow which is empty. This contradiction can be eliminated
only if b < b, .. Consequently, for each n € B(§,7), #(:,n,w) is defined on
[a,b] at least. But z(-,n,w) coincides with z(:,7,) on [a, b], which proves
(i). To prove (ii) and (iii), let us observe that, by the Lipschitz condition
and Gronwall’s Lemma 1.5.1, for each n, u € B(,r), we have

sup (¢, 7, Q) - z(t, g, D < =Dy — pl), (2.5.8)
t€|a,

which shows that the mapping 1+~ z(-,7,Q) is Lipschitz continuous, with
Lipschitz constant eZ(®~%) from B(¢,r) to C(|a,b]; R™), the latter being

endowed with the supremum norm and this achieves the proof of (iii). Now
let us observe that

162 (t, 1, ) + (1 = 6)a(t,n, Q) — z(2, & Q)|

< || z(t, p, Q) — z(t, &, Q)| + (1 = 0)||z(t, 7, Q) — 2(t, &, Q)| < relt=2 < p.
As z(t,£,9) € K, this inequality shows that

dist(z(t, p, ) + (1 — 9)z(¢t, 71, 2), X)

< |0z (t, 1, Q) + (1 — O)a(t, m, Q) — z(t, £, Q)| < rel®=2) < p,

and consequently (2.5.1) holds. The proof is complete. O
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2.5.3 Continuous Dependence on Parameters

We may now go on with the study of the continuous dependence on the
parameters. To this aim, let I be a nonempty and open interval in R, Q a
nonempty and open subset in R, and P a nonempty and open subset in
R™, the latter being called the set of parameters. If u € Q and p € P, we
denote by

(uap) = (ul)u%' ceUnyPiy P2y 00 - >pm)-

Let f:Ix 2 x P — R™ be a function which is continuous on I x  x P
and locally Lipschitz on §2 x P, i.e. for each compact subset CCIx Q x P
there exists L = L{€) > 0, such that for each (¢, u,p), (¢,v,q) € €, we have

1 £(t,u,p) — fF(t, v, 9)lln < L[ (v, 0) = (v, 8)llntm,

where, for k € N*, || - ||x stands for the BEuclidean norm of R¥.
Letacl, £ € Q and p € P and let us consider the Cauchy problem
¢’ = f(t,z,p)
{Zal% €PN f0,6);

The second main result of this section is:

Theorem 2.5.3 Let f: IxQxP — R"™ be continuous on Ix Q2 x P, locally
Lipschitz on QO x P, let (a,&,p) € IXQxP and let z(-,&,p) : [a,be,p) — Q be
the unique saturated solution of CP(I, L, f,a,&),. Then, for each b € (a,be p)
there existt > 0 and a compact subset @ in § (which depends on &, p, b) such
that B(p,7) C P, and for each ¢ € B(p,r), the unique saturated solution
z(-,€,q) of CP(L,Q, f,a,8)q is defined at least on [a,b], i.e. b < beq, and
for each t € [a,b], z(t,€,q) € ©. Moreover, the mapping ¢ — z(-,£,q) is
Lipschitz continuous from B(p,r) to C([a,b];R™), the latter being endowed
with the usual supremum norm.

Proof. For each z € Q and p € P, we denote by
z= (21,22, s Znt+m) = (,p) = (1,22, .. ., T, P1, D2y - - -y Pm ),
and we define F : I x Q x P — R**™ by
F(t,2) = (fi(t, 2), fa(t, 2), ..., fu(t,2),0,0,...,0).
Then CP(I, 9, f,a,£), may be rewritten as

2 = F(t,z)
{z<a> = (&p)- CP(I,Q x P, F,a, (£,p))
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Hence, the continuous dependence of x on p reduces to the continuous
dependence of z on (¢, p), and thus Theorem 2.5.2 applies. d

In fact, by this method we have proved a more general result. Namely,
we have proved:

Theorem 2.5.4 Let f: [IxQxP — R™ be continuous on IxQ xP, locally
Lipschitz on QxP, let (a,&,p) € IXQxP and let x(-,&,p) : [a,be,p) — R™ be
the unique saturated solution of CP(L,Q2, f,a,§),. Then, for eachb € (a, be p)
there exist r > 0 and a compact subset & in 0 (which depends on &,p,b)
such that B((¢,p),7) C Q x P, and for each (n,q) € B((£,p),7), the unique
saturated solution x(-,n,q) of CP(I,Q, f,a,n), ts defined at least on [a,b],
i.e. b <byg, and for each t € [a,b], z(t,7,q) € @. Moreover, the mapping
(m,q) = z(-,n, q) is Lipschitz continuous from B((€,p),r) to C([a,b];R™),
the latter being endowed with the usual supremum norm.

2.6 Problems of Differentiability

As we have already seen in Section 2.5, if f: I x  x P — R” is continuous
on I x & x P and locally Lipschitz on £ x P, the unique saturated solution
z(-,&,p) of CP(I,Q, f,a,€), depends continuously on (£,p) € @ x P. Our
aim here is to show that, whenever f is differentiable on Q2 xIP, the saturated
solution z(-, €, p) is differentiable too as a function of (£,p) € 2 x P.

In order to clarify from the very beginning what we are going to do
next, let us consider the Cauchy problem governed by the first-order scalar
differential equation

(i e

and let us assume that f : I x R — R is of class C1. Let us assume also
that, for each £ € R, the Cauchy problem above has a unique saturated
solution z(-,&) defined on [a,a + §] at least, where § > 0 is independent
of £ € R. Finally, let us assume that, for each fixed ¢t € R, the mapping
& x(t,€) is differentiable on R. Then, differentiating both sides in

2(t,€) = € + / £(5,5(5,£)) ds,
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with respect to £, we deduce

ze(t,€) =1 -I—/ fz(s,2(s,€))ze(s, &) ds,

where z¢, fy represent the partial derivative of the function x with respect
to &, and respectively of the function f with respect to . So, the function
y: [a,a+ 8] — R, defined by y(t) = z¢(t,€) for each t € {a,a + §], is a
solution of the linear Cauchy problem

{y/ = fa(t, 2(t, €))y
yla) =1

We shall see in what follows that a completely analogous result holds
in the general case too. Of course, in this case, f; has to be substituted
by the Jacobian matrix (8f;/0%;)nxn, while 1 by the n x n-unit matrix J,.
We emphasize however, that the true difficulty of the problem consists in
proving that £ — z(t,€) is differentiable and not that it satisfies a linear
Cauchy problem very similar to the scalar one.

2.6.1 Differentiability with Respect to the Data

As in the preceding section, we analyze first the simpler case in which f
does not depend on parameters, and then we will show how the general
case reduces to the preceding. So, let I be a nontrivial interval in R, 2 a
nonempty and open subset in R, f:1Ix @ — R"™ a continuous function,
a € and € € Q. Let us consider the Cauchy problem

g = f(t,z)

! P, Q, f,a,¢

el .2 5,0.8)

If for each t € I, f(t,-) is a function of class C' on €, we denote by

fz(t,z) its derivative at z € €, i.e. the n X n-matrix whose generic element
on the " line and j* row is g%(t,:r), i,j=1,2,...,n.

Remark 2.6.1 If f : Ix{) — R" is continuous and for each t € I, f(¢,-) is
of class C'! on € and f; is continuous on I x €2, then f is locally Lipschitz on
Q. So, if this happens, for each (a,£) € I x Q, CP(I, £, £, a,&) has a unique
saturated solution z(:,§) : [a,b¢) — Q. See Remark 2.3.2, Theorem 2.3.2
and Theorem 2.4.2.

Remark 2.6.2 Let us assume that f: I x  — R"” is continuous and for
each t € I, f(t,-) : © — R™ is of class C*. Let us assume further that f,
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is continuous on I x Q. Then, for each 7 € I and z,y € Q for which the
segment line

[y,2] = {fz+ (1 -0)y; 6 €[0,1]}

lies in €2, we have

1
f(rz) = f(ry) = / £ (7,65 + (1 - 8)y) (z — y)d8 (26.1)

This is a consequence of the fact that f(7,-) is a function of class C! on
) and of the obvious equality

d
5 S (162 + (1= 0)y)) = fu(r, 8z + (1 = O)y)(z — y)
for each 6 € [0,1].
We may now state the first fundamental differentiability result.

Theorem 2.6.1 Let f: I x Q — R” be continuous and such that, for
each t € 1, f(t,) : Q — R™ is of class C! and fy : I x Q — Mpux,(R) is
continuous on 1 x Q. Let (a,€) € Ix Q and let x(-,€) : {a,be) — Q be the
unique saturated solution of CP(I,Q, f,a,&). Then, for each b € (a, bg), there
exists r > 0 (depending on € and on b) such that B(§,r) C Q and, for each
n € B(&, 1), z(-,n) is defined on [a,b] at least, i.e. b < b,. In addition, for
eacht € [a,b], the mapping n — x(t,n) is differentiable on B(€,r) and, for
eachn € B(E,), its derivative z,(t,n) satisfies (-, 1) : [@,b] = Mpxn(R)
and t — z,(t,n) is the unique solution of the Cauchy problem

{x’ = falt 2t n))X

Y(a) = Tn, (2.6.2)

where I, = diag(1,1,...,1).

Proof. Since, by virtue of Remark 2.6.1, f satisfies the hypotheses of
Theorem 2.5.2, it follows that, for each b € (a, be), there exists r > 0 and
a compact subset @ in © such that B(&,r) C Q and for each € B(¢,7),
z(-,m) is defined on [a,b] at least and, for each t € [a,b], z(t,n) € @.
Moreover, from Theorem 2.5.2 (ii), we know that, for each u,n € B(¢,7),
7 € [a,b] and 0 € [0,1], we have

0z(r, ) + (1 — O)z(r, ) € @. (2.6.3)
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Fix 5 € B(€,r) and let us observe that f,(-,z(-,7)) : [a,b] - M,xn(R)
is continuous. So, we are in the hypotheses of Corollary 2.4.4, from where
it follows that (2.6.2) has a unique solution X : {a,b] = Muxn(R).

In order to show that, for each t € [a,b], z(t, ) is differentiable at
n € B(&,r) and its derivative ,(¢,7) coincides with X(t), it suffices to
prove that, for each t € [a,b] and 7 € B(£,r), we have

. 1
im ———— |z, u) — z(t,n) — X(t)(u —n)|} = 0. (2.6.4)
won |l — ||
Let t € [a,b], p,m € B(£,r). By Proposition 2.1.1, it follows

.’L‘(t,/,b) - x(tﬂ?) =p—n+ /t[f(T:x(Tr ,u)) - f(‘T,:E(T, n))]dT,

and

t
X(0)(u = 1) = Ialte =)+ [ (il n))X(r) (u = m) .
Then, for each ¢t € [a,b] and p,n € B(£,7), we have

z(t, u) — 2(t,n) — X(E) (ke — )

11 t
= [ st - fratrmldr = [ fulra(rm) X)) b
By virtue of (2.6.1) and (2.6.3), we successively obtain

x(t, 1) — z(t,n) — X)) (k. —n)

t 1
- / /O Fu(r B(r 1) + (1 — O)a(r, ), ) — ()8 dr

-/  fa(r 2 )X (s — ) dr
and

x(t, 1) — x(t,n) — X(E)(u —n)

=/ /O fo(m, 02(7, 1) + (1 - O)z(7, m) (7, ) —2(7,7) = X(7) (1 —n)]db d7
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t /ol
+/a (/(; fo(r, 0z (r, u) + (1 — 8)2(7,1))d0 — folr, z(7, 77))) X(7)(u—n) dr

(2.6.5)
for each t € [a,b] and u,n € B(, 7).
On the other hand, as f, and X are continuous, there exists M > 0,
such that, for each t € [a,b] and y € @, we have

(8 9)llm < M and [[X(@){m < M, (2.6.6)

where || - || is the norm on M, xn(R) defined in Section 8.1.
Next, let us define g : B{¢,7) x B(¢,r) — Ry by

9w m) =/ab

for each (i, n) € B(€,7) x B(&,7). Since f. is continuous and, by virtue of
Theorem 2.5.2,

| 1ot 6o, + 0= O)str, )0 — futr o, 77))“ dr,
0 M

lim z(7, p) = z(7,7m)
u—n

uniformly for 7 € [a,b], in view of Corollary 8.2.2, it follows that

lim g(u, ) =0, (2.6.7)
w—n

for each n € B(£, 7).
From (2.6.5) and (2.6.6), we obtain

2, 1) = z(t,m) = X&) = mll < lu = nllg(u, m)M

+M / lo(r, 1) — 2(rym) = X(7) (i — )| dr,

for each t € [a,b] and u,n € B(£,r). Then, from Gronwall’s Lemma 1.5.2,
we deduce

lo(t, 1) = 2(t,m) = X(8) (6 = | < lls = g ) M M=),

for each p,7 € B(§,r) and t € [a,b]. As this inequality along with (2.6.7)
implies (2.6.4), the proof is complete. d
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2.6.2 Differentiability with Respect to the Parameters

We may now proceed to the study of the differentiability of the solution with
respect to the parameters. To this aim, as in Section 2.5, let us consider
a nontrivial interval I in R, a nonempty and open subset £ in R™ and a
nonempty and open set of parameters P in R™. Let f: Ix Q x P — R"
be a continuous function, let a € I, £ € 2, p € P, and let us consider the
Cauchy problem

{x’ = f(t,z,p) CP(L,9, f,a,8),

z(a) = ¢&.

If, for each t € I, f(t,-,-) : Q@ x P — R" is of class C!, we denote
by fz(t,z,p) the derivative of the partial function f(t,-,p) calculated at
z € €, i.e. the n x n matrix whose generic element on the it* and j* row is
g%(t,z,p), i,7 = 1,2,...n, and by f,(¢,z,p) the derivative of the partial
function f(t,z,-) calculated at p € P, i.e. the n x m matrix whose generic
element on the i*" and j** row is %(t,m,p), i=1,2,...,n,7=1,2,...,m.

The second fundamental differejntiability result is stated below.

Theorem 2.6.2 Let f:Ix Q xP — R™ be continuous and let us assume
that, for each t €1, f(t,-,-) : @ x P — R™ is of class C* and both functions
Folor, ) T IX QX P - Mpun(R) and fp(, ) : IXQ x P — Mpxm(R)
are continuous on I x @ X P. Let (a,€,p) € I x Q x P and let z(-,§,p) :
[a,bep) — Q be the unique saturated solution of CP(I,Q, f,a,€),. Then,
for each b € (a,be,p), there exists 7 > 0 (depending on &,p,b) such that
B(p,r) C P and for each q € B(p,r), z(-,£,q) is defined on [a,b] at least,
ie. b < beg. In addition, for each t € I, the mapping ¢ — z(t,£,q) is
differentiable on B(p,r), and for each q € B(p,r), its derivative z4(t,,q)
satisfies £4(-,€,9) : [a,b] = Muxm(R) and t — z4(t,€,q) is the unique
solution of the Cauchy problem

Y = fo(t,2(t,€,9), )Y + fo(t, z(t,€,9),9) 9
{ o Lt (26.8)
where Opxm 18 the n X m null matriz.

The linear differential system (2.6.8) is known under the name of system
in variations associated to the problem CP(D),.

Proof. Letz €, p e Pand let us denote by z = (z,p), i.e. the vector in
R™*™ whose first n components are the components of x, and whose last m
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components are those of p. Let us define the function F : Ix{I X P — R**™
by

F(t,2) = (fi(t,2),..., fa(t,2),0,...,0)

for each (¢,z) € Ix Q2 x P, i.e. the vector in R**™ whose first n components
are those of f(t,z) and whose last m components are zero. Let us denote
by ¢ = (€, p) and let us observe that CP(I,, f,a, §), may be rewritten as

2 = F(t, z)
{z(a):C CPI, QA% P, F a,()

Then, we may apply Theorem 2.6.1 from where, it follows that, for each
b € (a,be,p), there exists r = r({,b) > 0, such that B(¢,r) C & x P and for
each ¢ € B((,7), z(,<) is defined on [a,b] at least. In addition, for each
t € 1, the partial function ¢ — 2(¢,¢) is differentiable on B(¢,r) and its
derivative 2. is the unique solution of the Cauchy problem

{ 2! = F,(t, z(t,¢))Z

e (2.6.9)

Observing that

2(t) = z(t) = (x"(t:’% 9) rq(t,n,q))

Omxn j'r’Tl)(?TI.

and

Fu(t,2) = (fx(t’z,q) fq(t,w,q))

OmXTL Omxm

and identifying the corresponding block matrices, from (2.6.9), we obtain
(2.6.8), and this completes the proof. O

Remark 2.6.3 In practice, the parameter p € P in the system
z’ = f(t,z,p) (8)

may have various significations. It is, either the mathematical expression
of an external command by means of which we can modify = according to
some a priori performances or criteria, or the mathematical expression of a
random perturbation which may modify the evolution of the system, or even
a set of coefficients which are specific to some physical object, etc. In all
these cases, it is very important to know “how fast” varies z(t,&, p) when p
varies in some neighborhood of a certain pg € P. Due to the differentiability
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of the mapping p ~ z(¢,£,p) in po, the “magnitude” of this variation may
be “evaluated” by the “magnitude” of the norm of the derivative z,(¢, €, p)
at p = po. This explains why this matrix is called the sensitivity matriz of
(8) and its elements sensitivity functions, while, whenever the norm of the
sensitivity matrix is “sufficiently small”, the system (§) is called robust.

Remark 2.6.4 Theorem 2.6.2 is the main tool in the so-called the small
parameter method used for the first time in Mechanics. This consists in

approximating z(t, €, p) by z(t,£, po) + zp(t,&,p0)(p — po) for p sufficiently
close to pg.

In order to understand the spirit of this method, let us analyze the
following example.

Example 2.6.1 Find the solution of the scalar Cauchy problem

{ ' =z +p(z? +1) ©P),

z(0) =0,

for p close enough to 0.

Since, for p # 0, the differential equation in (€P), is nonlinear (in fact a
Riccati equation) there exists very few chances to solve it explicitly. Hence,
we will try to find the solution of the problem (C?), approximately.

Take I = R, Q =R, P=Rand f: Rx R xR — R, defined by
ft,z,p) = z + p(z? + t) for each (¢t,z,p) € R x R x R. For p = 0, (CP),
reduces to

z'(t) = z(t)
{x(O) = (€2)o

whose unique saturated solution z(-,0,0) : [0,00) — R is z(¢,0,0) = 0 for
each t € R,.
Let us observe that

of

% (¢,2(¢0,0),0) =1

and

of

By (t,z(¢,0,0),0) =¢

for each (t,z,p) € R x R x R. Accordingly, the system in variations (2.6.8)
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associated to CP(I, 2, f,0,0), has the specific form

{ y'(t) =y(t) +¢
y(0) = 0.

The solution of this Cauchy problem is y(t) = e* —t—1 for each t € R,.
Let T > 0. Then, if p is “sufficiently close to” 0, by virtue of Remark 2.6.4,
we may take

z(t,0,p) = (et —t —1)p
for each t € [0,T].

For the sake of completeness we include the following result of differen-
tiability with respect to the “initial time” a. The reader interested in the
proof of this result is referred to [Halanay (1972))], p. 100.

Theorem 2.6.3 Let f : 1 x Q — R” be of class C!, let (a,€) € Ix Q
and let z(-,a) : (ca,ba) — Q be the unique saturated bilateral solution of
the CP(L, R, f,a,£). Then, for each c € (cq,a) and b € (a,b,), there exists
§ = §(a,b,c) > 0, such that, for each a € (a—8,a+6), the unique saturated
bilateral solution z(-,a) of CP(L,Q, f,8,€) is defined at least on [c,b]. In
addition, for eacht € [c, b}, the partial function & — z(t,a) is differentiable
on (a—6,a+6), and its derivative at & satisfies x5(-, @) : [¢,b] — R", and
t — z5(-,a) is the solution of the linear Cauchy problem

{ZI = fx(th(t’a‘))z’
Z(a@) = —£(a,¢).

Remark 2.6.5 Under the hypotheses of Theorem 2.6.3, let us denote
by z(,a,&) : (ca,ba) — § the unique saturated bilateral solution of
CP(L,Q, f,a,&). Then z satisfies

(2.6.10)

Oz = Oz
5208 + ; fila )5 (@,0,6) =0. (2.6.11)
Indeed, from (2.6.10) we have

Oz
E‘_’(a»a:f) - _f(aa E),
while, from (2.6.2) it follows

ze(a,a,€) =TI,
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Accordingly

fla, &) = Unf(a,f) = .’L‘E(a,ay f)f(a,f) = Z f’;(a’g)gg;

=1

(0,0,8)

and thus (2.6.11) holds.

2.7 The Cauchy Problem for the n'*-Order Differential
Equation

The goal of this section is to present several results referring to the Cauchy
problem for an n*t-order scalar differential equation, which, as we have
already seen in Section 2.1, may be reduced to a Cauchy problem for a
suitably defined first-order system of differential equations.

More precisely, let I be a nontrivial interval in R, € a nonempty and open
subset in R, ¢g: IxQ — R a given function, a € [, £ = (£1,&2,...,&n) €0
and let us consider the Cauchy problem for the n‘P-order scalar differential
equation in the normal form with data D' = (I,Q,¢9,a,£)

(n) = ! (n—1)
Y _g(t7y:y)"'5y ) /
CP(D
{y(a) = &1, y'(a) =&, ..,y D (a) = &n. @
We recall that, by means of the transformations,
{z:(mly-:v?)-")zn):(y)y/7"'ay(n—l)) (rjf)
f(t,l') = (132,I3, vy T, g(ta$17$21 o y"rn))v

CP(D’) can be reformulated as a Cauchy problem for the system of first-
order differential equations

( ../
T; =2
Ty = T3
) .
‘T;L—I =In
/I
T, = g(t,x1,%2,...,Tn)
kml(a) = 61’ xQ(CL) = 52)' . )xn(a) = €n.

In its turn, this Cauchy problem can be reformulated as a Cauchy problem
for a first-order vector differential equation in the normal form

(Z31e”
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where D = (I, 9, f,a,€), while f is defined as above.
We may now pass to the statement of the fundamental results referring
to CP(D’). We begin with the following local existence theorem.

Theorem 2.7.1 (Peano). If g: Ix Q — R is continuous on I x Q, then,
for each (a,&) e I x Q, CP(I,9,¢9,a,&) has at least one local solution.

Proof. Clearly g is continuous if and only if f, defined by means of the
transformations (7), has the same property. In view of Theorem 2.2.1, for
each (g, &) € IxQ, there exists at least one local solution z : [a,a+6] — & of
CP(, 9, f,a,£). Taking into account (7T), it is easy to see that the function
y:[a,a+48] — R, defined by y(t) = z1(¢) for each ¢t € [a,a + ], is a local
solution of CP(I, 2, g, a,€). The proof is complete. O

Definition 2.7.1 We say that CP(D’) has the uniqueness property if, for
each (a,&) € I x 2, each two solutions y and z of €P(I, ), g,a,€) coincide
on their common interval of definition.

As in the case of the Cauchy problem for first-order differential systems,
the continuity of the right-hand side of €P(D’) alone ensures only the local
existence of at least one solution, but not its uniqueness on the interval
of existence. In order to get the uniqueness as well, we have to impose
additional conditions on the function g. One of the most frequently used
hypotheses is the locally Lipschitz condition.

Definition 2.7.2 A function g: 1 x Q — R is called locally Lipschitz on
Q if for each compact subset X in [ x €, there exists L = L{XK) > 0 such
that, for each (t,u), (t,v) € X we have [g(t,u) — g(t,v)| < L|lu —v].

A sufficient condition for uniqueness is:

Theorem 2.7.2 Ifg:1x Q — R is locally Lipschitz on Q, then CP(D’)
has the uniqueness property.

Proof. Let us observe that, if g is locally Lipschitz on €2, then f defined
by means of (T) has the same property. Indeed, let X be a compact subset
inIxQandlet L =L(X) > 0 as in Definition 2.7.2. Then

n 1/2
1£(2,w) - £(2,0)]| = (2 s — vil? + lg(t, ) - g(t,vn?)

=2

n 1/2
= (Z fus — vil? + L2|ju — v||2) =V 1+ L2ju—vl

i=1
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for each (t,u),(t,v) € X and thus f is locally Lipschitz in the sense of
Definition 2.3.2. The conclusion follows from Theorem 2.3.1. O

A simple but important consequence of Theorems 2.7.1 and 2.7.2 is:

Theorem 2.7.3 Ifg:1x§ — R s continuous on I x O and locally
Lipschitz on Q then, for each (a,&) € I x §, there exists 6 > 0 such that
[a,a+d] C I and CP(L, 9, g,a, &) has a unique solution defined on [a,a+46].

2.8 Exercises and Problems

Exercise 2.1  Solve the following Cauchy problems

O AR O il

"= (8t+ 2z +1)? "(*z —z) + ta® +1=0
@ {im S 17T

tr' =2 —t tz' = —(t + z)
(e) {m(l) =2. () {x(l) = 0.

A i
@ {:tsmll)zzwjtm (J){im'l=:—22m+t4
N
(m) it(?)n: Tt { f(tl)—:tzw)w =z
O G2

Problem 2.1  Give another proof to Proposition 2.1.2 avoiding the use of the
equivalence between CP(D) and (JE).

Problem 2.2  Show that, under the hypotheses of Lemma 2.2.2, for each a € 1
and & € R™, @P(D) has at least one global solution.
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Problem 2.3 Let f: R xR — R be defined by

0if teR and z=0
fltz) = %if teR and z € R\ {0}.

Prove that, for each (a,€) € R x R, CP(R,R, f,a,€) has at least one right global
solution but, nevertheless, f is not continuous on R x R. Consequently, the conti-
nuity of the function f is not a necessary condition for the existence of solutions.

Problem 24 Let f: R xR — R be defined by

f(t,3) = —1if teR and z>0
o 1if teR and 2<0.

As we have seen in Ezample 2.2.1, CP(R,R, f,0,0) has no local right solution.
Show that CP(R, R, £,0,0) has a unique left saturated solution and find it.

Problem 2.5 Let f:Ix Q@ — R™ be a function with the property that, for each
(a,€) € Ix 2 there exist a neighborhood V of (a,&), VCIXxQ and L = L(V) > 0
such that for each (t,z), (t,y) € V, we have || f(t,z) — f(t,y)|| < L||z — y||. Prove
that f is locally Lipschitz on 2 in the sense of Definition 2.3.2

Problem 2.6 Let f:IxQ — R™ be a function which has partial derivatives with
respect to the last n-arguments with the property that 8f;/8z; are continuous on
IxQ for eachi,j =1,2,...,n. Prove that f is locally Lipschitz on .

Problem 2.7 Let f,g : RxR - R, f(t,z) = ¥/(z ~ t)2+1 and g(t,z) = 2f(t, z)
for each (t,z) € R x R. Prove that for each (a, {) € R x R,CP(R,R,g,a,§) has
the uniqueness property but, nevertheless, for each a € R, CP(R,R, f,a,a) has at
least two solutions. ([Halanay (1972)], pp. 79-80)

Problem 2.8 Let f : R x R — R be a continuous function, let (a,€) € Rx R
and let ¢,y : J — R be two solutions of CP(R, R, f,a,£). Show that both x Vy and
Ay defined by (zVy)(t) = max{z(t), y(t)}, (xAy)(t) = min{z(t),y(t)} for each
t € J, are solutions of CP(R,R, f,a,§).

Problem 2.9 Let f: R x R — R be a continuous function such that CP(D) has
the uniqueness property. Let a € R be fized, £ € R and let z(-,€) : [a,be) — R be
the unique saturated solution of CP(R,R, f,a,&). Show that, whenever £ < 1, we
have z(t,€) < z(t,n) for each t in [a,be) N |a,by).

Problem 2.10 Let I and §) be two nonemply and open intervals in R, and let
f:IxQ — R be a continuous function such that CP(D) has the uniqueness
property. Let (a,€) € Ix Q and let z : [a,b) — Q the unique saturated solution of
CP(L,Q, f,a,6). Let y: [a,b) — Q be a function of class C* satisfying

{ymeamm

yla) <€

for each t € [a,b). Show that, for each t € [a,b), y(t) < z(2).
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Problem 2.11  Let I be a nonempty and open interval in R, Q a nonempty and
open subset in R™ and f : IxQ — R™ a continuous function for which there exists
a continuous function w : I x Ry — Ry such that, for each (t,z),(t,y) € [ x §,
we have {f(t,z) — f(t,y),z~vy) S w(t, ||z —yl)llz —yll. Show that if, for a certain
a €1, the unigue saturated solution of CP(I,R4,w,a,0) is identically O, then for
each § € Q, CP(L,Q, f,a,£) has at most one solution on a given interval. Prove
Theorems 2.3.1 and 2.3.3 by using this result.

Problem 2.12 Letw : Ry — Ry be a continuous function with w(r) > 0 for
each v > 0 and w(0) = 0. If fol w—d(:}y_) = +o00, then the only saturated solution of

the Cauchy problem a' = w(z), z(0) =0 is ¢ = 0.

Problem 2.13  Let f,g: I x Q — R” be two functions, continuous on I x € with
f Lipschitz and g dissipative on Q). Then CP(L,Q, f + g,a,€) has the uniqueness
property.

Problem 2.14 If f : I x Q@ — R™ s continuous and there exists a continuous
function w : Ry — Ry, with w(r) > 0 for each r > 0, w(0) = 0, fol w_d(?;‘) = +00
and |f(t,z) — f(t,9)]| Lw(llz —y||) for each t €1 and z,y € 2, then CP(D) has

the uniqueness property. This is the Osgood’s uniqueness theorem.

Problem 2.15  Prove Theorem 2.3.1 by using Theorem 2.3.3 and the method of
integrand factor.

Problem 2.16 Let f : R x R — R be defined by f(t,z) = Vz2? for each (t,z) in
R x R. Show that the solution z : [~1,0] — R, z(t) =0 for each t € [-1,0], has
at least two saturated solutions of CP(R,R, f,—1,0) ertending it.

Problem 2.17 Find two nontrivial intervals 1 and  in R and a continuous
function f : I x Q — R which does not carry bounded subsets in I x @ into
bounded subsets in R.

Problem 2.18  Prove a result analogous to Theorem 2.4.4 under the hypothesis
that the function f : 1 x @ — R™ is continuous and for each J x B C I x  with
J compact and B bounded, f(J x B) is bounded in R™. Is the class of functions
f satisfying the condition above strictly broader than that of functions f which
carry bounded subsets into 1 x Q in bounded subsets in R™7

Problem 2.19  Let K be compact in R™ and F closed R™, with XNTF = 0. As
we already know by Lemmae 2.5.1, dist(X, F) > 0. Could this result be extended to
the more general case in which both subsets X and F are only closed?

Problem 2.20 Let f,g: R — R be two continuous functions, and let G: R — R
be defined by G(x) = [ g(s)ds for each z € R. Assume that there ezists a > 0
such that, for each z,y € R, we have G(x) > az? and yf(y) > 0. Show that, for
each £1,&2 € R, each saturated solution of the Cauchy problem

{w“ +f(z') +g(x) =0
2(0) =&, '(0) = &2,

is defined on Ry.
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Problem 2.21 Let f,g : Ry X R” — R"™ be continuous, with f Lipschitz and g
dissipative on R™. Then, for each (a,€) € Ry X R", CP(R+,R™, f+g,a,&) has a
unique global solution.

Problem 2.22  Let f : (t1,t2) X (w1,ws) — R be continuous, let a € (t1,t2),
€ € (wi,wz) and let z : [a,b) > R be a saturated solution of the Cauchy problem

(ot

Show that, if b < tz2 and x is bounded, then there exists limyyp z(t) = ™. Prove a
generalization to the case in which f: (t1,t2) x Q@ — R", where 2 is a nonempty
and open subset in R™ whose boundary contains only isolated points.

Problem 2.23  Let f : R — R be a continuous function and let z : [a,b] — R be
a function of class C* satisfying

{Z0 .

Show that z is constant. Eztend this result to the case in which f : R" — R™ with
n > 1. Is the continuity of f sufficient in this case?

Problem 2.24 Let T be o nonempty an open interval and f : IxR” — R* a
continuous and bounded function such that CP(D) has the uniqueness property.
Show that, for each [a,b] C I, the mapping £ — z(-, &) is continuous from R™ in
C([a,b]; R™), the latter being endowed with the uniform convergence topology.

Problem 2.25 Let f : RXx R — R be as in Problem 2.3. For ¢ € (0,+o00),
denote by z(-, &) the unique global solution of CP(R, R, f,0,£). Show that, although
lEiflgx(t,ﬁ) = t uniformly for t € [0,+00), the function y(t) = t, for t € (0,400),
is not a solution of CP(R,R, f,0,0). Ezplain the result.

Problem 2.26 Let f:R xR xR — R be defined by

0 if teR and z+p=0

f(t,z,p) = m_j-_;;if teR and z+p#0.

For p € (0,+00) we denote by z(-,p) : Ry — R the unique global solution of
CP(R,R, f,0,0),. Show that, although li?g z(t,p) =t uniformly for t € [0,1], the
P

function y(t) = t, for t € [0,1], is not a solution of CP(R,R, f,0,0)0. Explain the
result.

Problem 2.27 Let f :Rx R X R — R be defined by f(t,z,p) = 33/x2 + p? for
each (t,z,p) € R x R x R. Show that, for each p # 0, G(P(D)p has the uniqueness
property. In addition, limp_oz(t,z,p) = f(¢t,z,0) uniformly for (t,z) € RxR,
but, nevertheless, CP(D), lacks the uniqueness property. Thus, the uniqueness
property does not depend “continuously” on parameters.



Chapter 3

Approximation Methods

This chapter is entirely dedicated to the presentation of several approximation
methods of the solution of a given Cauchy problem. Although these methods are
no longer used in their original form, they are still of interest in many effective nu-
merical algorithms. In the first section we prove that a Cauchy problem has only
analytic solutions whenever the right~hand side of the corresponding differential
equation is an analytic function. This theorem is, on one hand, an approximation
result (ensuring the possibility to develop any solution in power series), and on
the other hand a sufficient condition for the regularity of solutions. In the next
three sections we discuss: the method of successive approzimations, the method of
polygonal lines, known also as Euler explicit method, and Fuler implicit method.
The chapter ends with a set of exercises and problems.

3.1 Power Series Method

In this section, using the so-called majorant series method proposed by
Cauchy and improved by Lindeloff, we shall prove that, whenever f is
analytic on I x €, the unique solution z of the Cauchy problem €P(D) is
also analytic on its domain. This result allows us, either to approximate
the solution by a partial sum of the power series which defines it, or even
to find the solution explicitly as a power series.

3.1.1 An Ezample

This method of solving of a Cauchy problem by means of power series is
one of the oldest and effective. In order to illustrate it, let us analyze the
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following example.
Example 3.1.1 Solve the Cauchy problem

(1-t2)z" —dtx' ~ 22 =0
z(0)=1
2'(0) =0

by looking for the solution as a power series:

z(t) =D cat™ (8)

for |t| < r, with r suitably chosen.

We solve this problem in two steps. First, we find the coefficients ¢, for
n=0,1,..., and then we estimate the radius of convergence of the power
series thus obtained. A last step, which solves the problem, consists in the
continuation of the solution to a maximal domain of existence.

In order to find the coefficients, we impose the condition that z, given by
(8), satisfy the differential equation and the initial conditions. The initial
conditions are equivalent to

C0:17 cl=0)

while the fact that z satisfies (1 — ¢?)z” — 4tz’ — 22 = 0 is expressed as

o0 oo

Z (n—1) t"_2—Zn(n—1cnt Z4ncnt” Zant”—

n=2 n=2
for every ¢ with |t| < 7. The previous equality rewrites as

oo

Z n+2)(n+1)(cnt2 — cu)t" =0

for every t with |t| < r. But, a power series, with radius of convergence
r > 0, is identically zero on |¢| < 7 if and only if all coefficients are zero.
So we have cp42 — ¢, = 0 for n = 0,1,.... From here and the initial
conditions, we deduce cgr = 1 and cggy1 = 0for k =0,1,.... Consequently,
z(t) = Yo poot?* for every t with [t| < r. But, in this case 7 = 1 and
z(t) = 1/(1 — t2) for every t with [¢| < 1.
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3.1.2 The Existence of Analytic Solutions

In what follows we will show what are the circumstances under which any
solution of a certain Cauchy problem can be developed in power series.
More precisely, let I be a nontrivial interval in R, € a nonempty and
open subset in R®, f : I x Q@ — R™ an analytic function on Ix Q, a € [,
€ € Q and let us consider the Cauchy problem with data D = (f,1I,9,q,§)

' = f(t,z)
{x(a> 3 PD)

The main result in this section is

Theorem 3.1.1 (Cauchy-Lindeloff) If f : I x @ — R™ is analytic on
I x Q then, for each (a,€) € I x Q, the unique saturated solution of CP(D)
is analytic on its interval of existence.

Proof. Since f is analytic on I x €, it satisfies the conditions of both
Theorem 2.3.2 and Corollary 2.4.1 and therefore, for every (a,£) € I x (,
CP(D) has a unique saturated solution. Hence, in order to complete the
proof, it suffices to show that, for every (a,&) € I x ), the unique saturated
solution of €P(D) can be developed into a power series in a neighborhood
of a. From here one can easily deduce that it can be developed into a power
series about any point b in its domain of definition.

First, let us observe that we may assume with no loss of generality that
a =0 and £ = 0. Indeed, if this is not the case, after two translations, i.e.
t—a=sand x—£ =y, we are in the specific situation described above.

Next, we will show that, for every i = 1,2,...,n, we have
oo
; y 1 d%
() = (D45 i (= 2%
z;(t) —;)b;t , with b{) = <=2 (0) (3.1.1)

for t € R, || < 7o, with 79 > 0 suitably chosen.

We recall that the unique saturated solution x of the Cauchy problem
CP(D) is of class C'™ because f is of class C*°. See Remark 2.1.3. So all the
coefficients in the series (3.1.1) are well defined. It remains then to prove
that the series (3.1.1) are convergent on a neighborhood of a = 0. To this
aim let us remark that all the coefficients bgi) in (3.1.1) can be expressed by
means of f(0,0) and of the partial derivatives of the function f calculated
at (0,0). Indeed,

6§ = 24(0) = 0, b{? = z{(0) = £i(0,0),
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. 1 5 i
bgz) = 2/(0) = S af (0,0) + Z gﬂf 0,0)£;(0,0) | and so on.
: J

The idea of proof consists in finding a function g : (—r,7) X (—p, p)* = R
with 7 > 0 and p > 0, suitably defined, such that both g and all its partial
derivatives are positive at (0,0) and satisfy

5~Po+171+-~+zonf1 6P0+P1+‘”+png

. =1,2,...,n.
otPodit ... Ozl ©, )| OtPodxt ... Oxhr 0,0, ¢=1,2...,n
(3.1.2)

Let g be such a function, let us define F': (—r,7) x (—p, p)" — R™ by
g(t,z)
g9(t,z
Pt z) = (t,2)
9(¢,z)

and let us consider the auxiliary Cauchy problem

y' = F(tvy)
{y(O) —o (3.1.3)

If we will show that the problem (3.1.3) admits a local analytic solution

oo
- 1 d°y;
¥ (t) =2:c1 t?, with cg’) ==4Y
=0

S (0, i=1,2...n,

as all the coefficients c!” can be expressed by means of the values of both F'
and its derivatives at (0,0) in the same manner as the coefficients bS” can

be expressed by means of both f and its derivatives at (0,0), from (3.1.2) it
will follow ‘bm‘ <cfori=1,2,...,nand s € N*. But these inequalities,
along with the convergence of the series which define the partial functions
i, will prove the convergence of the series in (3.1.1).

In order to define the function g, we recall that, from the analyticity of
[, there exist r > 0 and p > 0 such that

(¢, ) = al® trogPr | gPr i=1,2,....n, (3.1.4
Po,P1,--Pn 1 n
P0,P1,-,Pn €N

for every (t,z) € I x Q with |¢| < r and |z;] < p, 1 = 1,2,...,n, where the
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coefficients aé?,pl,_,.,pn are given by

. po+pit+-+tpn £
o) -1 0 5 (0,0). (3.1.5)

Po:P1s:-:Pn po‘pl‘pn' 6tP06z’1" Bxﬁ"

Moreover, as the series (3.1.4) are convergent, it follows that there exists
M > 0 such that .a;(a?,pl,...,p,.r""p”‘+”2+"'+Pn < M foreveryi =1,2,...,n

and every pg,p1, ..., Pn € N. From this inequality and from (3.1.5), we get

grotpit-+pn f,

po'p1!. .. pn!
Otrodz}t ... dxhr (0,0)

' 7P0 pP1 +p2+-4Pa

o

for every i = 1,2,...,n and every pp,P1,...,Pn € N. This inequality
suggests that g ought to be such that

5P0+P1+---+Png

_ po'p1!...pn!
Simpat ot 00 =M

7P0 pP1 +p2+-+Pn

for every pp,p1,-..,Pn € N. Such a function is

gtoy=M (;)”” (%)m (%Y? (%n>”"

P0:P1y--PnEN

IEIERED

for every t € (—r,7) and every z € R" with z; € (p,p) for i =1,2,...,n.
Now, let us observe that the problem (3.1.3) rewrites in the form

{y'z :g(t1y11y21~";yn)

yi(0) =0
for i = 1,2,...,n and t € {—r,r). From yi(¢) = yp(t) = --- = y,(¢)
for every t € (—r,r) and y1(0) = y»(0) = -+ = yn(0), we deduce that
yi1(t) = yalt) = -+ = yp(t) = y(t) for every t € (—r,r), where y is the

unique saturated solution of the problem

{y’=g(t,y,y»---,y)
y(0) =0
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for t € (—r,r). Taking into account the definition of g, the problem is

equivalent to
-1 -n
(w14
r P

y(0)=0

for t € (—r, 7). This equation is with separable variables and can be solved
explicitly. More precisely, its solution is given by

. ™ (n+ 1)Mr ot
y(t)-p(l \/1+~—————p ln(l r>>

for every t € (—ro,7o) with 79 € (0,7} suitably chosen. Since this function
is analytic on (—rg, 7o), this completes the proof. a

Remark 3.1.1 We mention that the power series method is applicable in
many situations, even for some Cauchy problems for which the differential
equation, due to the presence of some singularities in the coefficients, cannot
be put into the normal form. Indeed, in order to understand better this
observation, let us analyze the following example.

Example 3.1.2 Solve the Cauchy problem

tz! —tzx' —x2=0
z(0)=0
z'(0) =1

looking for the solution in the form of a power series:

oo

z(t) =) cnt” (8)

n=0

for t € R with Jt| < 7.

One may easily see that the differential equation tz” —tz’ —z = 0
is neither in the normal form, nor can be put into the normal form in
any neighborhood of 0 (with an analytic right-hand side, of course). Even
though, one may solve the problem in the same manner as in Example 3.1.1.
In order to find the coefficients of the power series above, we impose the
condition that z, given by (8), satisfy both the differential equation and
the initial conditions. The initial conditions lead to ¢ = 0 and ¢; = 1,
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while from the differential equation tz" — tz’ — x = 0 we get

(o9} o oo

Z n(n — )eat™ ! — Z nept”™ — Z ent™ =0

n=2 n=1 n=0

for every t € R.
The previous equality rewrites in the form

o
Y l(n+)neaps — (n+ 1)ealt™ =0
n=0

for every t € R with |t| < . But, a power series with radius of convergence
r > 0 is identically zero on |t} < r if and only if all the coeflicients are zero.
So we have (n+ 1)ncpy1 — (n 4+ 1)c, =0 for n = 0,1,.... From here we
deduce ¢, =1/(n—1)! forn = 1,2,... and ¢y = 0. Consequently 7 = +o0
and

tn—l

n=1

for every t € R.

3.2 The Successive Approximations Method

In many situations it is of great importance to know, not only that a Cauchy
problem has exactly one solution on a given interval, but also how to find
this solution. Unfortunately, the class of functions f for which we can ob-
tain an explicit representation of the solution is extremely narrow. This
explain why it would be very useful to have some effective methods to
find some “approximating solutions”, i.e. to get explicit representation of
some functions which, although not solutions of the problem, are in some
sense “as close as we wish” to the “exact solutions”. We have already pre-
sented three such methods: the first one in Section 2.2, where the functions
{xm; m € N*} defined by (J€,,) “approximate” the solution of the Cauchy
problem CP(D) on [a,b], in the hypothesis that this is unique, the second
one in Remark 2.6.4 combined with Example 2.6.1, and the third one in
the preceding section, where each term of the sequence of partial sums of
the series which defines the solution approximates the latter.

The aim of this section, as well as of the next two, is to present three
more such methods which are at the core of several very efficient algorithms
in the numerical analysis of differential systems.



106 Approzimation Methods

We begin with the so-called method of successive approzimations due to
Picard (1890). We note that this method is completely unspecific, in the
sense that it is applicable, not only for differential equations and systems,
but also for Volterra integral equations, Fredholm integral equations, integro-
differential equations, neutral equations, partial differential equations, etc.
See Problems 3.7, 3.8 and 3.11.

To begin with, let a € R, £ € R®, h > 0 and r > 0, and let us consider
the cylinder A = [a,a + h] x B(£,7). Let f : A — R™ be a continuous
function and let us consider the Cauchy problem

' = f(t,z)
{M®=¢ (€%)

which, as shown in Proposition 2.1.1, is equivalent to the integral equation

xm=£+/fhdﬂﬂf se)

for every t € J.

Remark 3.2.1 We emphasize that, the framework here considered is
quite different from that used in the preceding sections, simply because
both I = [a,a + h] and = B(&,r) are closed sets. Nevertheless, we can
easily see that all the concepts and results extend in a natural manner to
this framework, as long as we refer to the right solutions, since a is the left
end-point of the interval I and & is an interior point of the set Q2. The sole
exception which should be noticed is that every saturated solution of the
problem (C7P) (whose existence is ensured by Corollary 2.4.1) is defined on
a closed interval. Indeed, as A is a compact set and f is continuous, there
exists M > O such that, for every (¢,u) € A, we have

(& wll < M. (3.2.1)

Now, if we assume that z : [a,b) — B(,r) is a saturated solution of
(CP), from (3.2.1) and Proposition 2.4.1, it follows that z can be extended
to [a,b] as a solution of (€P). This contradiction can be eliminated only if
every saturated solution of (CP) is defined on a closed interval.

Let = : [a,b] — B(&,7) be a saturated solution of (€P). The next lemma
gives a lower bound for the length of the interval of existence of saturated
solutions.
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Lemma 3.2.1 Let f: A — R"™ be a continuous function on A and let

§ = min {h, er} , (3.2.2)

where M > O satisfies (3.2.1). Then each saturated solution of (CP) is
defined at least on [a,a +0].

Proof. Letz:[a,b] — B(£,r) be a saturated solution of (CP). Since z
is a solution of (J€) too, for every t € [a,b], we have

t
llz(t) —¢€ll < / £ (r,z(7))|| d7 < (t - a) M.
So, if b < a + 4, it necessarily follows that
(b)) — €[l < (b—a)M < 6M <,

and therefore z(b) is an interior point of B(£,r). Consequently z is not
saturated. This contradiction is a result of the assumption that b < a + 6.
Hence a + 6 < b and this achieves the proof. ]

Lemma 3.2.2 Let f: A — R™ be continuous on A and let § be defined
by (3.2.2). Then, for each continuous function y:|[a,a + 6] — B(E,7), the
function xz : [a,a + 8] — R™, defined by

oty =€+ / fry(r) dr

for every t € [a,a + 6], maps [a,a+ 6] in B(&,r).

Proof. In view of (3.2.1), (3.2.2) and of the definition of z, we have

t
lz(t) €] < / 17 (r ()l dr < 6M <7

for every ¢t € [a,a + &] and this completes the proof. |

Now we proceed to the definition of the sequence of successive ap-
proximations (zk)ren corresponding to the problem (€P). Let us consider
zo : [a,a + 8] — B(€,r) defined by zo(t) = £ for every ¢ € [a,a + §] and
let us define zy : [a,a + 8] — B(€,7), for k > 1, by

t
xp(t) =& +/ f(ryxe—1(7))dr, foreach t€[a,a-+4]. (3.2.3)
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A simple inductive argument, combined with Lemma 3.2.2, shows that
z is well-defined for every k£ € N. From obvious reasons, (zy)ken is called
the sequence of successive approzimations corresponding to CP(D).

The main result in this section is Picard Theorem below referring to the
uniform convergence of (zx)ken-

Theorem 3.2.1 (Picard) Let us assume that f : A — R™ is continuous
on A and Lipschitz on B(€,r), i.e. there exists L > 0 such that for every
(t,u), (t,v) € A, we have

£ @) = F& )l < Liju—vf. (3.2.4)

Then the sequence of successive approximations corresponding to CP(D) is
uniformly convergent on [a,a + &) to the unique solution z of (CP) defined
on that interval. In addition, we have the following estimating error formula

Lk5k+l
—z®)|| < M——— 3.2.5
for everyk € N and t € [a,a+ 8]
Proof. From Theorem 2.3.2 and both Theorem 2.4.2 and Remark 3.2.1,
it follows that (CP) has a unique solution defined at least on [a,a +4]. Let
z:(a,a+ 6] — B(£,r) be this solution and let us observe that, from (J€)
and (3.2.1), for every t € [a,a + &], we have

lzo(t) — ()l = I — z(B)]| < /a I f(r,z(7))lld7 < M(¢ — a).

From (J€), (3.2.3), (3.2.4) and from the inequality above, we deduce

foa(t) — 2@ < [ 15,6) = S dr

¢ RY
< L/ lzo(r) — z(7)] dr < Mf% ,

for every t € [a,a + §]. This inequality suggests that, for every k € N and

t € [a,a+ d], we ought to have

Lk (t _ a)k‘H
(k+1)!

We shall prove (3.2.6) by induction. Since for & = 0, or k£ = 1 this inequality

is obviously satisfied, let us assume that it holds for some k € N and for

|lzk(t) — ()| < M (3.2.6)
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every t € [a,a + ¢]. Then, from (3.2.3), (3.2.4) and from the inductive
assumption, we deduce

t
|mﬂaw—xwus/duwwuﬂ)—ﬂﬂxvmwf

_ a)k+1

t t k
gL/ ”.’I:k(T)—:L’(T)”dTSL/ M%———

dr
LF+1(t — g)k+2
(k +2)! ’
for every t € [a,a + §], and thus (3.2.6) holds for £ + 1 as well. Hence

(3.2.6) holds true for each k € N. Obviously (3.2.6) implies (3.2.5), while
from (3.2.5) we get

Lk5k+1

te[il,lapm I2(6) = 2 (@)l < M (k+1)!

for every k € Nand t € [a,a+ d]. Since
Lkgkt1

klglgoM(k PN

the last inequality shows that (x)ken is uniformly convergent on [a,a+ 4]
to = and this achieves the proof. O

3.3 The Method of Polygonal Lines

In this section we present another method to approximate the solution of
a Cauchy problem, i.e. the method of polygonal lines due to Euler.

As in the preceding section, let a € R, £ € R®, A > 0 and r > 0 and
let us denote by A = [a,a + h] x B(&,7). Let f : A — R™ be a continuous
function and let us consider the Cauchy problem

' = f(t,z)
{mw=a (€%)

Since f is continuous on the compact set A, there exists M > 0 such
that, for every (t,u) € A, we have

£t u)lf < M. (3.3.1)
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We recall that, by virtue of Lemma 3.2.1, the Cauchy problem CP(D)
has at least one solution z : [a,a + 8] — B(¢,7), where § > 0 is given by

§ = min {h, %} . (3.3.2)

In what follows we assume that z is the unique solution of €P(D) defined
on [a,a+d]. Let k € N* and let us consider the partition

Pria=to<ti < ---<tr=a+4d.

For simplicity, we assume that ¢;,; —¢; = d/k for i = 0,1,...,k — 1. The
main idea of the method of polygonal lines consists in replacing the integral
equation

t
z(t) =€ +/ f(r,z(7)) dr, (7€)

which is equivalent to CP(D), by the system

EO :’S (S )
Civ1 =&+ (tiv1 — t) f(t:,&), for i =0,1,... k- 1, §

and in showing that the function yz : [a,a + §] — R", defined by

yk(t) = &+ (¢ — ) f(t:, &) (3.3.3)

for t € [tiyti—i—l) ifi =0,1,...,k—2,0rt € [ti,t¢+1] ifi=%k-—1, is
“sufficiently close” to the unique solution z : {a,a + 6] — B(€,r) of (J€),
for k “large enough”.

We notice that the name of the method is suggested by the remark
that the graph of the function yx is the polygonal line passing through
(to, o), (t1,&1), ..., (tk, ). See Figure 3.3.1.

Lemma 3.3.1 If f: A — R” is continuous and § is defined by (3.3.2)
then, for every k € N*, (8) has a unique solution (£y,£&1,-..,Ek).

Proof. The uniqueness is obvious. As concerns the existence, it suffices
to show that, whenever & € B(£,r) for some i = 0,1,...,k — 2, then
&1 € B(&, 7). To this aim, we shall prove that for every ¢t =0,1,...,k—1,
we have [|§; — £ < .

For i = 0 the inequality above is obviously satisfied because & = &.
Next, let us assume that the inequality holds for 7 € {1,2,...,k —2}. From
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Figure 3.3.1

(3.3.1), (3.3.2) and (8), we have

(E+1)r
k b
and this achieves the proof. O

lEeer = &l < flgser = &l + 16 — €1l < %M + <

Now, let us define the step function oy : [a,e + 8] — [a,a + 8] by
O'k(t) =1t;, fort e [ti7ti+1) ifi=0,1,...,k—2,0rt € [t’i)t’i-l-l] ifi=k-1.
Obviously

é
t) -t < —
on()— < 7
for every t € [a,a + ¢}, and therefore
lim or(t) =t

k—o0
uniformly for ¢ € [a,a + §].

Lemma 3.3.2 Let f: A — R" be a continuous function, let 6 > O be
defined by (3.3.2) and let yi, : [a,a + 6] — R™ be defined by (3.3.3), where
(€0,€1,...,8k) is the unique solution of the system (8x). Then yy satisfies

v(t) = € + / F(0x(r), v (o (7)) dr, (3.3.4)

for every t € [a,a + §], where ok is defined as above.

Proof. Fort € [a,t1], we have

wl) =€+ [ fla)dr =g+ [ fon),uto ) ar
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Furthermore, let us assume that y; satisfies (3.3.4) for t € [a,t;], where
i <k ~—1. Then, for t € [t;,t;+1], we have

ye(t) = yu(ts) + : Flts, yn(ts)) dr

—e+ [ e dr+ [ fonmmonn) ar

=§+/ (0k(7), ye(ok(T))) dT.

So yi. satisfies (3.3.4) and this completes the proof. ]
We can now proceed to the statement of the main result in this section.

Theorem 3.3.1 If f: A — R" is continuous on A and CP(D) has the
uniqueness property, then (yi)ken+, defined by (3.3.3), is uniformly conver-
gent on [a,a+ 8] to the unique solution  of CP(D) on that interval. If, in
addition, f is Lipschitz on A, i.e. there exists L > 0 such that, for every
(t,u),(s,v) € A

1 u) = f(sv)|l < L(Jt = s| + flu —vf}),
then the following evaluation error formula holds true

lye(t) —z(@)]| < ﬂf—ﬂe”, (3.3.5)

for every k € N* and every t € [a,a + §].

Proof. From Lemma 3.3.2 we know that, for every k € N*, y;. satisfies
(3.3.4). For this reason, for every k € N* and ¢ € [a,a + §]

lys ()l < II€II+/G (o (7), ye(or(TINldr < €]l + 0M,

and so {yx; k£ € N*} is uniformly bounded on [a,a + ¢]. Furthermore, for
every k € N* and t, € [a,a + 8], we have

llye(t) — yr ()]l < M ok (), ye(or(r)) dr| < Mt — ¢

and therefore the family {yx; k € N*} is equicontinuous on [a,a + §]. By
Arzela-Ascoli’'s Theorem 8.2.1, it follows that {yx; & € N*} is relatively
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compact in C([a,a + d]; R™) endowed with the uniform convergence topol-
ogy. As, from (3.3.4) and Corollary 8.2.2, every limit point of the sequence
(Yk)ken- is a solution of @P(D) and the latter has the uniqueness property,
we conclude that the sequence (yx)ken- is uniformly convergent on [a,a+4]
to the unique solution of CP(D) defined on that interval.

Finally, let us assume that f is Lipschitz on A. We then have

I:(®) =2 < | (), welow(r))) = S (o)l dr
< / 1(0%(7), v (01 (7)) — £, i () + / 17w (7)) = (7, 2(r)) |

<L [ oum)=rldr+L [ Jun(onm) -wl dr+L [ ur)-e(r)] dr

for every k € N* and ¢ € [a,a + ¢|. Since by (3.3.3) and (3.3.1), we have

(k7)) — we(r)l < 222 and low(r) — 7] < 3,

for every k € N* and 7 € [a,a + §], from the last three inequalities, we
deduce that

I = )1 < 5L 4 1 [ () - 2l

for every k € N* and ¢ € [a, a+§]. But this inequality along with Gronwall’s
Lemma 1.5.2 shows that (3.3.5) holds. The proof is complete. J

Remark 3.3.1 In many books of differential equations, the method of
polygonal lines is the main tool in the proof of Peano’s local existence
theorem. As an exercise, we suggest the interested reader to prove the
latter theorem by using this method.

3.4 Euler Implicit Method. Exponential Formula

In this section we will present a new method to approximate the solution
of a Cauchy problem, method closely related to Euler method of polygonal
lines. This proved extremely useful in order to get effective algorithms
for the numerical treatment of both ordinary differential equations, but
especially of partial differential equations.
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3.4.1 The Semigroup Generated by A
Let A : R® — R™ be a continuous function. We recall that A is called
dissipative if
(A() = Ay), 2~ 3) <0
for every =,y € R™. Let us consider the autonomous equation
z' = A(z). (3.4.1)

For each @ € Ry and £ € R", we denote z(-,a,£) the unique saturated
solution of equation (3.4.1) with z{a,q,&) = & From Theorem 2.4.6 it
follows that this solution is global, i.e. defined on {a, +00).

For any fixed t > 0, let us define the operator, possible non-linear,
8(¢) : R® - R™, by

8(t)€ = z(t,0,¢). (3.4.2)
Here and thereafter 8(¢)8(s) denotes the superposition operator defined by
[8(t)8(s)]€ = 8(t)[8(s)€] for each £ € R™.

Theorem 3.4.1 The family of operators {8(t); t > 0} defined by means
of the relation (3.4.2) satisfies

S (t+s)—8() (s), for every t,s > 0;

(51)
(S2) 8(0) =

(Ss) 1m8(t)§ & for every £ e R™;
(S4) ( )€ —

(Ss) i

Sa H N S(t)nll <€ —nll for every t > 0 and every §,n € R™;
S5 7 (8()¢ =€) = A(€) for every £ € R™.

Proof. Let us remark that, for every £ € R™ and every t,s > 0, we have
z(t +5,0,&) = z(t,0,2(s,0,8))

and this because, both ¢ — z(t + 5,0,¢) and ¢t — z(t,0,2(s,0,£)) are
solutions of the same Cauchy problem

{y’ = A(y)
y(0) = =(s,0,£),

problem which, by virtue of the fact that A is dissipative, has the uniqueness
property. But the equality above is equivalent to (S7).
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Obviously, (S3) expresses nothing else but the initial condition satisfied
by z(:,0,€), i.e. 2(0,0,£) = £, while (S3) follows from the continuity of the
solution at ¢t = 0.

In order to prove {S4), let us observe that

xl(tv 015) - I/(t, 0’77) = A(a:(t,O,&)) - .A(:L‘(t, 0,77)),

from which, taking the inner product on both sides by z(¢,0,¢) — z(¢,0,7)
and using Lemma 8.1.2, we deduce

1,
2dt

for every t > 0. But this inequality obviously implies (S4). Since (Ss)
follows directly from the definition of the solution for the Cauchy problem,
this completes the proof. O

H:L‘(t,o,f) - .’L’(t,O,’f})”Z) <0

Definition 3.4.1 The family of operators {8$(t); t > 0} defined by means
of (3.4.2) is the semigroup of non-expansive operators generated by A.

Remark 3.4.1 The term semigroup is justified by the property (S;)
called semigroup property and this because it shows that the family
{8(t); t > 0} is a semigroup with respect to the usual composition of
mappings. The property (S;) shows that each of the operators §(¢) in
the semigroup is non-expansive in the sense of Definition 2.5.2, while (S5)
expresses the fact that the semigroup {8(¢); t > 0} is “generated” by A.

3.4.2 Two Auziliary Lemmas

In what follows we will present an approximation method for 8(¢)€, called
Euler implicit method. In order to define the approximating sequence, we
need the following two lemmas which are also interesting by themselves. In
order to simplify the exposition, we will assume that A(0) = 0, although
all the results which follow remain valid without this technical restriction.

Lemma 3.4.1 Let A:R™ — R"™ be a continuous and dissipative function
with A(0) = 0. Then, for every A > 0, every y € R™ and every £ € R™, the
unique saturated solution x(-,0,€,y) of the Cauchy problem

{:c’=)\fl(:c)—:c+y
z(0) = ¢

is defined on [0, +00) and there exists limy 100 (£,0,€,y) = §. In addition,
7 1s independent of £ and satisfies § — AA(F) = y.

(3.4.3)
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Proof. Let A > 0,let y € R™ and let £ € R™. Since A > 0 and A is
dissipative, the function z — AA(z) — z +y is dissipative too. Therefore, in
view of Theorem 2.4.6, for every £ € R™, the problem (3.4.3) has a unique
global solution. Since in the first part of the proof, A, £ and y are fixed, for
the sake of simplicity, we denote this solution by z : R4 — R".

For the beginning, we will show that x is bounded on R,. To this
aim, let us take the inner product on both sides in (3.4.3) by z(¢) and let
us observe that, from Lemma 8.1.2 and from the dissipativity condition,
recalling that A(0) = 0, we have

1d 9 9

57 IZ@®IF) < (v, 2(@) — =]
for every ¢t > 0. Using Cauchy-Schwarz inequality in order to evaluate
the first term on the right-hand side of this inequality, and subsequently
the mean’s inequality, we deduce % (lz@®N?) < lyl? = Nlz(@®)]|? for every
t € Ry. Multiplying both sides of this inequality by e?, rearranging the
terms and integrating from 0 to ¢, we get successively

t
etz < el + / ¢ ly|1?ds
0

and |lz(8)|?2 < e ?||€]|2 + (1 — e *) |ly||? for every ¢ > 0. From here, it
readily follows that z is bounded on R;.
We can now proceed to the proof of the fact that there exists

t%lfgo z(t) = 4. (3.4.4)

To this aim, let ¢ > 0 and h > 0. Multiplying both sides of the equality
z'(t+ h) —2'(t) = AA(z( + 1)) — Az(t))) — (z(t+ k) — z(t))

by (z(t+h) —z(t)) and taking into account the dissipativity of the function
AA, we get
1d 9 9
5 (2@ +h) —2@)) < ~fla(t + h) — @O

Multiplying both sides of this inequality by €?* and integrating from 0 to
t, we deduce that

lz(t + k) = z(®)]| < e™*lz(h) —¢]I.
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But the inequality above, combined with the boundedness of the function
z, shows that x satisfies Cauchy’s condition for the existence of the limit
as t tends to +oo, and this proves (3.4.4).

Finally, let us remark that, from the mean value’s theorem, for every
m € N and every i = 1,2,...,n, there exists 6%, € [m,m + 1] such that

zi(m + 1) - zi(m) = z}(6L,).

Passing to the limit for m tending to 400 in these equalities, we deduce
that lim,,1y00 2{(65,) = 0 for i = 1,2,...,n. As M — J is continuous,
from (3.4.4), we conclude that there exists lim;1100 2’ (t) = 0. Passing to
the limit in the equation (3.4.3) we deduce that ¢ is the solution of the
equation § — AA(g) = y. Finally, in order to prove that 7 does not depend
on €, it suffices to show that the equation above has a unique solution. So,
let Z be a solution of the equation. Then §—2—A(A(7) —A(2)) = 0. Taking
the inner product on both sides by § — Z, recalling that A > 0 and A is
dissipative, we deduce that ||§ — Z[|* < 0, which proves the uniqueness of
the solution of the problem above. The proof is complete. t

Lemma 3.4.2 Let A: R™ — R"™ be a continuous and dissipative function
with A(0) = 0. Then, for every A > 0, T — AA is bijective, and its inverse
in the sense of relations, (J — AA)™1, is a non-ezpansive function.

Proof. From Lemma 3.4.1 we know that, for every A > 0, every y € R"
and every £ € R", there exists the limit as ¢ approaches +00 of the unique
saturated solution z(-,0,£,y) of the problem (3.4.3), and this limit § is the
unique solution of the equation § ~ AA(§) = y. Since y is arbitrary in R",
it follows that J— AA is surjective. On the other hand, from the uniqueness
of the solution of the equation above, it follows that J — MA is injective.
Finally, let y1,y2 € R™ and let §;, 92 € R™ such that 41 — M(§1) = »
and §z — AMA(J2) = yo. Subtracting side by side the two equalities and
multiplying both sides of the equality thus obtained by §; — §2, we deduce

Ior — G2 < {yn — y2, 1 — B2) < llya — w2l 51 — B2))-

Taking into account that §; = (J—AA)~(y;) for ¢ = 1,2, from the preceding
inequality, we get

1O = AA) " 1) — (9= M)~ (wa)ll < llya — wall,

for every y1,y2 € R™. So (J — MA)~! is non-expansive. The proof of
Lemma 3.4.2 is complete. O
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3.4.3 The Exponential Formula

Let T >0, ke N*andlet P, : 0=1tg < t; < --- <tp =T be a partition
with equidistant points, i.e. t;41 —¢; = T/k for every i =0,1,...,k — 1.

The main idea of Euler implicit method is to approximate the solution
of the integral equation

t
o(t) =€+ [ Atalr))dr, (98)
0
which is equivalent to the Cauchy problem
' = A(z)
ot (€7)
by means of the solution &, &1, ..., & of the system
Eivr =& + (tig1 — ti)A(&igr), for i =0,1,...,k— 1. b

Namely, we shall show that the function y : [0,T'] — R", defined by
yk(t) = & + (t — ti)A(Sis1) (3.4.5)

for t € [ti,ti+1> ifi =0,1,...,k—2,0ort € [ti,t¢+1] fi=%k-1,1s
“sufficiently close” to the unique solution z : [0,7'] — R™ of (J€), for k
“big enough”.

We notice that the name of the method is suggested by the remark that,
this time, &;,1 is implicitly defined as a function of &;, and not explicitly,
as in the case of the method of polygonal lines described in the preceding
section. Although, at the first glance, more complicated than the latter,
Euler implicit method is extremely useful, especially in the case (which we
will not touch upon here) when A is defined on a “rather small” subset D of
R™, the case in which the method of polygonal lines might not be applicable,
simply because for a certain ¢, £;41 could leave D. We emphasize that this
weak point of the method of polygonal lines is much more evident in the case
of partial differential equations, when A is discontinuous and defined on a
proper subset D of a function space X, while (J — AA)™! is non-expansive
and defined on the whole space X.

Lemma 3.4.3 IfA:R" — R™ is continuous, dissipative and, in addition,
A(0) = 0 then, for every k € N*, (8¢) has a unigue solution (&, &1, ..., &k)-
Moreover, for every k € N and every i = 1,2,...k, we have

&l < 1I€]]. (3.4.6)
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Proof. Let us observe that (Sx) may be equivalently rewritten in the
form

& =¢
{€i+1 = (T = (tix1 — ta)A)"1(&), for i = 0,1,...,k— 1. (3.4.7)

According to Lemma 3.4.2, the operator (J—(t;4+1—t;)A) ! is defined on R™,
is non-expansive and satisfies (J— (£;41 —t;)A)71(0) =0, fori = 1,2,...,k.
Therefore, it follows that (3.4.7) has a unique solution. In addition, as
(9 — (tiy1 — t;)A)"! is non-expansive and vanishes at 0, we have

1 = (tirr = t)A)THED N < N€all = 1T = (s — tem2)A)H (Eim)]

<Nl < - <8
and this completes the proof. O

Theorem 3.4.2 IfA:R™ — R" is continuous, dissipative and A(0) =0,
then the sequence of functions defined by (3.4.5) is uniformly convergent on
[0,T] to the unique solution of CP(D).

Proof. Let k € R™ and let us define the function o : [0,T] — [0,T] by
ok (t) =ty

fort € [ti,ti+1) ifi=1,2,...,k—2orte [ti,ti+1] for i = k — 1. Since
tiv1 — t; = T'/k, we have

lim Jog(t) —t| =0
k—oo

uniformly on [0,T]. Now, let us observe that equality (3.4.5) may be
equivalently rewritten in the integral form

yi(t) = €+ / Alyr(ow(r)) dr. (3.4.8)

Since A is continuous, its restriction to a compact set is bounded. So, there
exists M > 0 such that

AW < M

for every y € R™ with ||y|| < ||€]l. Then, by virtue of the inequality (3.4.6)
and of the definition of the function o}, we have

A e (oeODIF = IAYk DI = [AEG+2)l £ M
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for every t € [t;,ti+1], ¢ = 0,1,...k — 1. From this inequality and from
(3.4.8), we deduce

lye@I < i€l +TM

for every k € N and every t € [0,T]. Consequently, the family of functions
{yk; k € N} is uniformly bounded on {0, T]. Again from (3.4.8), we deduce

k(@) — yk(s)ll < Mft - s|

for every k € N and every t,s € [0,T]. From here it follows that the family
{yx; k € N} is equi-continuous on [0,T']. According to Arzelad-Ascoli’s
Theorem 8.2.1, it follows that, at least on a subsequence, we have

Jim yi(t) = y(t)

uniformly on [0,T'], where y is the unique solution of CP(D). Since the
limit of any convergent subsequence of the sequence (yx)ren is a solution
of CP(D) which has the uniqueness property, using once again the fact that
the family {yx; k& € N} is relatively compact in the uniform convergence
topology, we conclude that the sequence (yx)ren itself converges uniformly
on [0,T] to y. The proof is complete. O

Theorem 3.4.3 (Exponential Formula) If A : R® — R" is continuous,
dissipative and A(0) = 0 then, for every & € R™, we have

i (1-£4) () = s

uniformly for t in bounded subsets of R, .

Proof. Lett >0, ke N*and let

¢ —1
Civ1 = (3 - %A> (&), &=¢

for i = 0,1,...k — 1. Obviously &; represents the solution of the system
{8k) in the case when T is replaced by t. Taking i = k — 1 in the preceding
relation, we successively deduce

b= (3-44) 0= (1-24) @w==(1-14) @

The conclusion follows from Theorem 3.4.2 by observing that, for any fixed
£ € R*, and T > 0, the sequence (Yk)ken« is uniformly bounded (with
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respect to k € N*) on [0,T'] by a constant C(€,T) = ||¢|| + TM which is
nondecreasing as a function of 7. The proof is complete. O

We notice that the name of “Exponential Formula” comes from the
simple observation that, in the one-dimensional linear case, i.e. when the
function A : R — R is defined by A(y) = ay, with a < 0, this formula
reduces to the well-known equality

ta\ "
1 — —— - ta
khm (1 p ) £ =e"¢.

We conclude this section with the mention that, if A(0) # 0, then, by
defining the operator B : R™ — R™ by B(y) = A(y) — A(0), for y € R", we
can easily see that this is continuous, dissipative and satisfies B(0) = 0. In
addition CP(D) rewrites in the form

{y’ =B(y) +h
y(0) =&,

with A = A(0). We leave to the reader to prove that, with some obvious
modifications, all previous considerations remain also valid in this case. To
all those interested in extensions of the results in this section we recommend
the monograph {Barbu (1976)].

3.5 Exercises and Problems

Exercise 3.1  Solve the following Cauchy problems by developing the solution in
power series and by identifying the coefficients:

(1-t)y'=1+t—= "’ +z=0
1) { z(0) =ZO. ) {w(O) =0, (0)=1.

tr’ +2' +txr=0 tr’' +22' +tx =0
(3){m(0) =1, 2(0) = 0. (4){x(0) —1, 2(0) = 0.

1-t)z" -2’ +tz=0 z' — 2%z —22=0
(5){93(0) =1, 2(0) = 1. (6){w(0) 21, 20) =0,

Problem 3.1 Integrate the Hermite equation

z” — 2ta’ +2hz = 0,
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where A € R. Show that the equation has as solution a non-identically zero
polynomial if and only if A € N.

Problem 3.2  Show that every solution of the equation *
~z" + 2z = 2\ + D)z,

where A € R, is of the form z(t) = y(t)e_t2/2, where y satisfies the Hermite
equation
-2ty + 22y =0.

Prove that, if A € N, at least one non-identically zero solution x of the equation
is bounded on Ry.

Exercise 3.2  Find the general solution of the Airy equation
ety = 0.

Problem 3.3  Find the solutions of the form x(t) =t ¢, ckt® with co # 0 of
the Bessel equation
2" iz’ + (t* = nPz =0,

where n € N. Show that

i t/2)n+2k

Z k'n+k)'

is such a solution.

Exercise 3.3  Find the solution of the Cauchy problem for the Gauss equation

{t(l -tz +[c—(a+b+t]lz' —abz =0
z(0) =1, z'(0) = (ab)/c,

where ¢ > 0.

Problem 3.4  Show that Legendre equation
(1—t)z" — 2tz + A(A+ Dz =0,

where A € R, has polynomials as local solutions about t = 0 if and only if A € N.

Problem 3.5 Show that the first term in the sequence of successive approzima-
tions may be any continuous function o : [a,a + 8] — B(&,r), without affecting
its uniform convergence to the unique solution of PC(D) on [a,a + §]. Find a
variant of the error evaluation formula of the type (3.4.6) in this general case.

Problem 3.6  Prove Theorem 2.3.2 by the method of successive approzimations.

1Equation used in the oscillator theory in Quantum Mechanics.
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Problem 3.7 Let f : [a,b] = R™ and g : [a,b] x [a,b] X R* — R™ be continuous
and let us assume in addition that g is Lipschitz on R™, i.e. there exists L > 0
such that for every (t,s,z),(t,8,y) € [a,b] x [a,b} x R™, we have

llg(t,s,x) — g(t,s, )|l < Lilz — yl|.

Using the sequence of successive approzimations, show that the Volterra integral
equation

¢
o) = £0+ [ gt ar))ar
has a unique solution x : [a,b] — R™.

Problem 3.8 Let f:[a,b] xR" - R" and g: [e,b] x [a,b] x R™ — R™ be two
continuous functions on [a,b] x R™ and on [a,b] x [a,b] x R™ respectively, and
Lipschitz on R™. Using the sequence of successive approzimations, show that, for
every £ € R™, the Cauchy problem for the integro-differential equation

{xﬁ)=f@xmy+/}anm@»m
r(a) =€
has a unigue solution = : [a,b] — R".

Problem 3.9 Let A : R” — R” be continuous and dissipative. Prove that for
every continuous function h: [0,T] — R" and every £ € R™, the Cauchy problem

2’ = A(z) + h(t)
{028 .0

has o unique solution x(-,h,§) : [0,T'] — R™. Show that for every continuous
functions h; : [0,T] — R™ and every & € R", the functions z; = z(-, hi, &),
1= 1,2, satisfy

l21(8) — w22 < llés — &7 + 2 / (ha(s) — ha(s), 21(s) — wa(s))ds

and \
(&) ~ 22(8)]| < I — &) + / 1B (s) — ha(s)llds
for everyt € [0,T].

Problem 3.10 Let A : R™ — R”™ be a continuous and dissipative function on
R"™ and let f : [0,T] x R* — R" be continuous on [0,T] x R"™ and Lipschitz
on R™. Let £ € R™, and let us define the sequence of successive approzimations:
zo(t) = & zk(t) = x(t, f(t,x6-1(8)),€) for k = 1,2,... and ¢t € [0,T], where
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(-, f(,2e=1()),8) : [0,T] — R” is the unique solution of the Cauchy problem

/
Ty = .A(IL‘k) + f(t, zk—1(t))
{ 20(0) = ¢ EPk)
fork=1,2,.... Using the second inequality established in Problem 3.9 prove that

the sequence (Tx)ren is uniformly convergent on {0,T] to the unique solution of

the Cauchy problem
z' = A(z) + f(t, )

Problem 3.11 Let A:R™ - R"™ and f : R — R" be two continuous functions.
Let us assume that there exists w > 0 such that {A(z)—A(y),z—y) < —w?|z—yl*
for everyz,y € R™ and let T > 0 be fized. Let us define the function® P : R* — R"
by P(€) = z(T,0,&), where z(-,0,£) is the unique global solution of the Cauchy

problem

We define the sequence of successive approzimations £ = € and €k = P(€x—1) for
ke N*.
(1) Prove that the sequence (£k)ken s convergent to an element n € R™.
(2) Prove that the unigue global solution of CP(n) with n = kli_.ngo &, satisfies
z(T,0,n) = 2(0,0,1) = 7.

(3) If, in addition, f is periodic of period T > 0, then the unique global
solution z(-,0,7m) of CP(n) is periodic of period T'.

(4) The equation =’ = A(z) + f(t) has at most one T-periodic solution.

2This function is known as the Poincaré’s mapping.



Chapter 4

Systems of Linear Differential
Equations

This chapter contains the most important results referring to the Cauchy problem
governed by a system of n first-order linear differential equations with n unknown
functions. In the first section we show that the set of all saturated solutions of
such a homogeneous system is an n-dimensional vector space over R. The second
section is dedicated to the study of non-homogeneous systems. Here we included
the celebrated wvariation of constants formula. In the third and fourth sections
we present two methods of finding an algebraic basis in the space of all saturated
solutions of a homogeneous system with constant coefficients. The aim of the
fifth section is to rephrase the previously proved results in order to handle as
particular case the n*'-order linear differential equation, while the sixth section
is dedicated to a simple method of solving explicitly such equations with constant
coefficients. The chapter ends with a section of exercises and problems.

4.1 Homogeneous Systems. The Space of Solutions

Let a;; : I — R and b; : 1 — R be continuous for ¢, = 1,2,...,n, and let
us consider the system of first-order linear differential equations

1‘/1 = an(t)ml + alz(t).rz + -4+ aln(t)xn + bl(t)
x4y = ag1(t)z1 + age(t)za + -+ + agn(t)zpn + ba(t)
_ (4.1.1)
Ty, = an1(t)T1 + ana(t)z2 + - - + ann(t)zn + ba(t),

125
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which, with the notations

I b1 (t)

Tg bg(t)
z=1 . |, b(t) = .

zn ba(t)

and

au(t) an(t) e aln(t)

A(t) _ agl:(t) Q922 (t) e agn(t) ’

an1(t) an2(t)... ann(t)
for t € 1, can be rewritten as a first-order vector differential equation
z’ = A(t)z + b(t). (4.1.2)

For the sake of simplicity, in all what follows, we will write the system
(4.1.1) only in the form of a vector differential equation (4.1.2), and we
will call it by extension first-order system of linear differential equations.
We also notice that, throughout this section, all the vectors considered are
column vectors.

Definition 4.1.1 The system (4.1.2) is homogeneous if b is identically 0
on I and non-homogeneous if b is not identically 0 on L

From Corollary 2.4.4, we deduce:
Theorem 4.1.1 For every a € 1 and every £ € R™ the Cauchy problem

{ z’' = A(t)z + b(t)
z(a) =¢

has a unique global solution.

In its turn, Theorem 4.1.1 implies:

Theorem 4.1.2  Every saturated solution of the system (4.1.2) is defined
on I

Let us consider also the homogeneous system, i.e.
' = At)z, (4.1.3)

called the homogeneous system attached to (4.1.2).
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Theorem 4.1.3 The set of all saturated solutions of the homogeneous
system (4.1.3) is an n-dimensional vector space over R.

Proof. In view of Theorem 4.1.2, each saturated solution of (4.1.3) is
global, and thus defined on I. We will show that the set of all these solutions,
which is included in C1(I;R™) is a vector subspace isomorphic to R™. Let
8 be the set of all saturated solutions of (4.1.3), let z,y € § and o, § € R.
We will check that ax + By € 8, from where it will follow that 8 is a vector
subspace of C1(I; R™). Indeed, let us observe that

(o + By)' (1) = az'(t) + By (t) = cA(t)z(t) + BA()y(t)

= A()[az(t) + By(t)] = A()[(az + By) (1))

for every t € I, relation which proves that az + Gy € §.
We may now proceed to the definition of an isomorphism between § and
R™. More precisely, let us fix a € I, and let us define T: 8§ — R™ by

T(z) = z(a)

for every z € 8. Obviously 7 is linear. In addition, from the uniqueness part
of Theorem 4.1.1, we conclude that T is injective, while from the existence
part of the same Theorem 4.1.1 it follows that T is surjective. So T is an
isomorphism of vector spaces. As each two isomorphic vector spaces have
the same dimension, the dimension of 8 is n. The proof is complete. O

Remark 4.1.1 Theorem 4.1.3 has a crucial importance in the theory of
first-order homogeneous systems of linear differential equations because it
shows that, within this framework, in order to find the general solution of
the system, it suffices to find only n linear independent saturated solutions.’
Indeed, Theorem 4.1.3 asserts that, in 8, every algebraic basis has exactly
n elements. On the other hand, if z1,x2,...,2" € § is an algebraic basis,
every element z € 8§ uniquely expresses as a linear combination of elements
in the basis, i.e. there exist ¢1,¢2,...,¢, € R, uniquely determined, such
that

n

z(t) = Zciwi(t) (4.1.4)

i=1

1We recall that z1,22,...,2™ € § are linear independent if from > 7, ¢;z%(t) = O for
every t €l it follows c1 =ca =+ - =¢n =0.
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for every t € I. In other words, if we know a family of n linear independent
saturated solutions of the system (4.1.3), we know any other solution, and
thus the general solution.

Remark 4.1.2 In accordance with Remark 4.1.1, a fundamental problem
in the study of the system (4.1.3) consists in finding at least one algebraic
basis in the space of all saturated solutions. We emphasize that, in general,
we do not know general methods of finding such basis. A remarkable and,
at the same time, very important exception is that when the matrix A is
constant. This case will be thoroughly analyzed in a forthcoming section.

We will present next a simple method of checking whether or not
n saturated solutions of the system (4.1.3) are linear independent. Let
z!,z?%, ..., z" be n saturated solutions of the system (4.1.3), and let us de-
fine the matrix X : I — Muxn(R) by X(¢t) = col(z!(t),z%(t),...,z"(t)) for
every t € I, i.e. the matrix whose columns at ¢ € I are the components of
the vectors z!(t), z(t),...,z"(t). More precisely

X(t) = xz:(t) z5(t) ... 25 (t) (4.1.5)

T (t) Z2(t) ... T(¢)
for every t € .

Definition 4.1.2 The matrix X defined by (4.1.5) is called the associated
matriz of the system of solutions z%,z2,...,z" € 8.

Remark 4.1.3 Since each column of the associated matrix X of (4.1.3)
is a solution of that system, it follows that X : [ — My, x,(R) is a solution
of the matrix system

X = A(H)X.

Definition 4.1.3 The system z!,z2,...,z" € § is called a fundamental
system of solutions of the equation (4.1.3) if it is an algebraic basis in 8.

Definition 4.1.4 The matrix associated to a fundamental system of so-
lutions of equation (4.1.3) is called a fundamental matriz of the system
(4.1.3).

Remark 4.1.4 We notice that (4.1.3) has infinitely many fundamental
matrices. This follows from the observation that the space of saturated
solutions of the system (4.1.3) has infinitely many algebraic basis.
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Remark 4.1.5 If X is a fundamental matrix for the system (4.1.3), then
the general solution of (4.1.3) is given by

z(t,c) = X(t)e (4.1.6)

for t € I and ¢ € R™. Indeed, (4.1.6) represents nothing else but the matrix
version of the relation (4.1.4) because

2(0) 3(0)... 570\ [ #1(0)

S ECECEE O T N

xi(t) T2(t) ... z(t) c'n = x%(t)
=icimi(t)

Definition 4.1.5 If X is the matrix associated to a system of solutions

xzt, 22, ..., 2" in 8, its determinant, denoted by W: 1 — R, i.e.

W(t) = det X(¢)

for every t € 1, is called the Wronskian associated to the system of solutions®

zl,x2,..., 2"

Theorem 4.1.4 Let 2%, 22%,...,2™ be a system of saturated solutions of
equation (4.1.3), let X be the associated matriz and let W be the associated
Wronskian. The conditions below are equivalent:

(i) the matriz X is fundamental;
(#1) for everyt € I, W(t) #0;
(441) there exists a € I such that W(a) # 0.

Proof. We begin by showing that (i) implies (ii). So, let us assume that
the matrix X is fundamental, which amounts to saying that the system
z!,z%,...,z" is linear independent. Let us assume by contradiction that
there exists a € I with W(a) = 0. Therefore the linear and homogeneous
system of algebraic equations

X(a)e=0

2The name of this determinant comes from the name of the polish mathematician
Héene Joseph Maria Wronski (1776,17787-1853) which was the first who defined and
studied it.
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with the unknowns c¢j,¢2,...,¢, has at least one nontrivial solution
£1,€a,...,&,. On the other hand, the function z : I — R", defined by
z(t) = X(¢)¢

for every t € [ is, in view of Remark 4.1.5, a solution of the system (4.1.3)
which satisfies z(a) = 0. From the uniqueness part of Theorem 4.1.1 it
follows that z(t) = 0 for every ¢ € I, relation which is equivalent to

X(0) = 3" €w(t) = 0
i=1

for every t € I, where at least one of £1,&y,...,£€, is not zero. Hence the
system z!,22,...,z" is not linear independent, assertion which contradicts
(i). This contradiction can be eliminated only if (ii) holds.

Obviously (ii) implies (iii).

Finally we shall prove that (iii} implies (i). Again, let us assume by
contradiction that, although (iii) holds, X is not a fundamental matrix.
This means that there exist some constants ¢, ¢, - - ., ¢n, not all zero, such

that
Y () =X(t)e=0
i=1

for every t € I. From this equality we deduce in particular (taking ¢t = a)
that the algebraic linear homogeneous system

X(a)e =0,

whose determinant 'W(a) is nonzero, has at least one nontrivial solution.
This contradiction can be eliminated only if (iii) implies (i). The proof is
complete. ]

Remark 4.1.6 Leta € I, £ € R™ and X be a fundamental matrix for
the homogeneous system (4.1.3). Then, the unique solution of the Cauchy
problem

is given by

z(t,a,€) = X(t)X"Ha)€ (4.1.7)
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for every ¢ € Il. Indeed, from Remark 4.1.5, we know that z(-,q, ) is given
by (4.1.6), i.e.

2(t,a,€) = X(t)e

for every t € I, where ¢ € R™. Imposing the condition z(a,a,&) = ¢, we
deduce X(a)c = £. But, in view of Theorem 4.1.4, X(a) is invertible and
consequently ¢ = X~!(a)¢, which proves (4.1.7).

Lemma 4.1.1 Let X be a fundamental matriz of the system (4.1.3).
Then, the matriz-valued function U : 1 x I — M,,x.(R), defined by

UL, s) = XA ()

for every t,s € 1, is independent of the choice of the fundamental matriz
X. In addition, for every s € I, U(-, s) satisfies

0

2 t,5) = AUt )

ot (4.1.8)

U(s,s) =17
for every t € I, where J is the unit n X n matriz.

Proof. The fact that U(., s) satisfies (4.1.8) follows from Remark 4.1.6
with ¢ = s and taking successively £ = el, & = e?,...,6 = e", with
el,e? ..., e" the canonical basis in R™. Since the Cauchy problem (4.1.8)
has the uniqueness property, we deduce that U does not depend on the
choice of the fundamental matrix X. The proof is complete. a

Definition 4.1.6 The family of matrices {U(t,s); t,s € 1}, defined in
Lemma 4.1.1, is the evolutor, or the evolution operator generated by A.

Remark 4.1.7 The evolutor has the following properties:

(€1) U(s,s) =T for every s € I
(€2) UL, s)U(s,T) = U(¢,T) for every T,8,¢ € [
(€2) lim JU(t, ) — Tl = 0.

Indeed, (€;) and (€3) follow from Lemma 4.1.1, while (€;) is a direct
consequence of the definition of the operators Uz, s).

Remark 4.1.8 Remark 4.1.6 can be restated in terms of the evolution
operator generated by A. More precisely, for every a € I and every ¢ € R®,
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the unique saturated solution of the Cauchy problem for the system (4.1.3),
which satisfies z(a, a,£) = £, is given by

I(tf a, 5) = U(t, a)f
for every t € L.

In what follows, we shall prove a result which shows explicitly how
the Wronskian of a system of solutions depends on the elements of the
associated matrix A. We begin with

Lemma 4.1.2 Let d;; : I — R be differentiable on 1, i,5 = 1,2,...,n
Then the function D : I — R defined by:

dll(t) d12(t) o dln(t)

’D(t) _ d21'(t) dzz(t) oo dan(t)

dnl(t) dn?(t) e dnn(t)

for every t € I is differentiable on I and

'(t) =) Dlt)
k=1

for every t € I, where Dy is the determinant obtained from D by replacing
the elements dy,(t),dka(t),. .., drn(t) of the k™ row by the corresponding
derivatives di(t), d)y(t), .. . dp,(t), k=1,2,...,n

Proof. We denote by 8(n) the set of substitutions of {1,2,...,n} and by

e 12 ... )
(o) the signature of the substitution o € 8(n), ¢ = (z’ ; :L ) Since,
162 ... ¥p
in view of the definition of the determinant, we have

D(t)= Y &(0)dis, (t)daiy(t). . dni, (t)

aged(n)
for every t € [, it follows that D is differentiable on I. In addition, we have
n n
= Z D e(0)dey (£)dai, (t) - diiy () - iy () = Y Di(2),
k=1o0€8(n) k=1

which completes the proof. O
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Theorem 4.1.5 (Liouville®) If W is the Wronskian of a system of n
solutions of (4.1.3), then

W(t) = W(to)exp (/tt trA(s) ds) (4.1.9)

0

for every t € 1, where tg € I is fired, while trA is the trace of A, t.e.
trA(s) = Y. auls) for every s € 1.

Proof. TFrom Lemma 4.1.2, it follows that W is differentiable on I, and
in addition

i) a3) ... 230)

W) = 3| @Y @) .. (@),

k=1 :

zo(t)  zh(t) ... 2R(t)
Taking into account that z!,22,...,2" are solutions of the system (4.1.3),
we get

z1(t) zi(t) e z7(t)

W) = 3| 0y a2 (0) Ty a2 - S, ks (D27(0)

k=1

zi(t) 23(t) ... 2(t)

= Zzakj(t) acjl-.(t) m?.(t) x;-‘l(t) .

L) 22(0) . 230

3Joseph Liouville (1809-1882) French mathematician known for his contributions to
the study of the transcendental functions and that of double-periodical functions.
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Since for each & # j the corresponding determinants in the last sum have
two equals rows, i.e. the k" and the j**, all are zero, and therefore

zi(t) #3(t) ... 27 (t)

W(t) = Zajj(t) x}.(t) x?(t) w;‘.(t) ,

j=1

2A(8) 22(1) ... 2()

or equivalently W satisfles W/(t) = trA()W(t) for every t € 1. But the
equation above is linear and homogeneous and therefore W is given by
(4.1.9). O

Remark 4.1.9 We notice that Theorem 4.1.4 may be proved also with
the help of Theorem 4.1.5. We leave as an exercise this variant of proof of
Theorem 4.1.4.

4.2 Non-homogeneous Systems.
Variation of Constants Formula

Let us consider the first-order linear non-homogeneous system

z’ = A(t)x + b(t), (4.2.1)

where A : I — M, (R) and b : I — R™ are continuous functions. At the
same time, let us consider the homogeneous system

z' = A(t)z. (4.2.2)

In this section we will present a method of determination of the general
solution of the system (4.2.1) with the help of the general solution of the
attached homogeneous system.

We begin with the following simple, but very useful in applications

Theorem 4.2.1 Let X be a fundamental matriz of the system (4.2.2) and
let y: 1 — R™ be a solution of the system (4.2.1). A functionz: 1 — R™ is
o solution of the system (4.2.1) if and only if z is of the form

z(t) = X(t)e + y(t) (4.2.3)

for every t € I, where c € R™.



Non-homogeneous Systems. Variation of Constants Formula 135

Proof. Necessity. Let o : 1 — R™ be a solution of the system (4.2.1) and
let us define the function z : I — R™ by

z(t) = z(t) — y(t)
for every t € I. Obviously z is differentiable on I and we have

2(t) =2'(t) - '(t) = A)z(t) + b(t) — A()y(t) — b(¢)

~ A(t)(a(t) - (1)) = AW)=(1)

for every ¢t € 1. Hence z is solution of the homogeneous system (4.2.2) and,
in view of Remark 4.1.5, it is of the form

z(t) = X(t)e

for every t € I, where ¢ € R™. From this relation and from the definition of
the function z, we deduce (4.2.3), which achieves the proof of the necessity.

Sufficiency. Let x be the function defined by (4.2.3). Since t — X(t)cis a
solution of the homogeneous system (4.2.2), it follows that z is differentiable
on I. In addition

') =X+ 1y {t) = AB)X(E)c+ A)y(t) + b(t)

= A)(X(t)e+ y(t)) + b(t) = A(t)z(t) + b(t)

for every ¢ € I and, by consequence, z is a solution of the system (4.2.1).
The proof is complete. d

Remark 4.2.1 Theorem 4.2.1 asserts that the general solution of the
system (4.2.1) is of the form (4.2.3) with y a particular solution of the
system (4.2.1) and ¢ € R™.

Let now a € I, £ € R™ and let us consider the Cauchy problem

o' = At)z + b(t)
{z(a) e (4.2.4)

Theorem 4.2.2 Let X be a fundamental matriz of the homogeneous sys-
tem (4.2.2). Then the unique saturated solution of the Cauchy problem
(4.2.4) is given by

2(t, 0, €) = X(OX~L(a)e + / AN obs)ds  (4.25)

for everyt € 1.
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Proof. Remark 4.1.5 suggests to look for the unique solution of the
Cauchy problem of the form

x(t,a, &) = X(t)e(t) (4.2.6)

for t € 1, where ¢ : I — R”™ is a function of class C'! which has to be
determined. We will find ¢ by letting = defined by (4.2.6) be a solution of
the Cauchy problem (4.2.4). We have

2'(t,0,€) = X' (£)et) + X(t) (t)

for every ¢ € I. Hence z, given by (4.2.6), is a solution of the system (4.2.1)
if and only if

X' (t)e(t) + X(@) (t) = AE)X(t)e(t) + b(t)

for every ¢ € I. Recalling that X satisfies X'(t) = A(t)X(¢t) for every t € I,
the last equality is equivalent to

A()X(t)e(t) + X(t) (t) = At)X(t)e(t) + b(t)

for every t € T which, in its turn, can be rewritten in the form

X(t)c (t) = b(t) (4.2.7)

for every t € I. Since X(t) is non-singular, we deduce ¢'(t) = X~1(¢)b(t) for
t € I. Integrating this relation on both sides from a to t, we get

e(t) = / X1
relation which, in view of (4.2.6), leads to
t
x@ma=x@q@+mo/x*@m@@

for every t € I. According to (i) in Lemma 8.1.3, X(¢) commutes with the
integral. So

2(t,a,8) = /x (s)b(s) ds

for every t € I. Letting z(a,q,£) = ¢, we deduce that c(a) = X~ !(a)¢
relation which, along with the preceding one, implies (4.2.5). O
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Remark 4.2.2 Formula (4.2.5), called the variation of constants formula,
can be equivalently rewritten in the form

¢
z(t,a,&) = U(t,a)¢ + / U(t, s)b(s) ds (4.2.8)
for every t € I, where {U(t, s); t,s € I} is the evolutor generated by A, i.e.
UL, s) = X ()X (s)

for every t,s € I. See Definition 4.1.6.

4.3 The Exponential of a Matrix

Let us consider the first-order linear homogeneous system with constant
coeflicients

z’ = Arz, (4.3.1)

where A € M, x,(R). Since the right-hand side is an analytic function
on R", according to Theorem 3.1.1, it follows that all the solutions of the
system (4.3.1) are analytic on R. On the other hand, in the case of the
scalar equation 2’ = az, the general solution is given by z(t) = &e'* for
t € R, where

o0

thak
ta __
=2 k!’
k=0

the convergence being uniform on every bounded subset in R. Concerning
the n-dimensional case, i.e. the case of the system (4.3.1), these two remarks
suggest to define (formally for the moment) a candidate to the title of a
fundamental matrix by

[

N

|
NE
| %
o
b

(4.3.2)
k=0

We notice that AF is the k-times product of the matrix A by itself, while
A% = J. By analogy with the scalar case, we shall prove that the series on
the right-hand side is uniformly convergent, for ¢ in bounded sets in R, in
the sense of the norm || - || defined in Section 8.1. Finally, we will show
that the sum of this series is the unique fundamental matrix X(t) of the
system (4.3.1) which satisfies X(0) = J.

To fix the ideas, we begin with
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Definition 4.3.1 The series }_po, Cx, whose terms belong to M, xn (R),
is convergent to C if

=0
M

lim
m~——+oc

k=0

where || - [|3¢ is the norm defined in Section 8.1. The series Y7o Ci, whose
terms belong to My x,(R), is normal convergent if the series > po g ||Cxlle
is convergent.

Remark 4.3.1 One may easily see that, for every normal convergent
series of matrices, > po Ck, there exists one matrix € such that the series
converges to €. This follows from the simple observation that the sequence
of partial sums of any normal convergent series of matrices is fundamental
in the norm of the space M, «.(R) which is complete (it can be identified
with R™*" endowed with the Euclidean norm}. See Remark 8.1.1.

Definition 4.3.2 Let C; : I — M, x,(R), k € N. We say that the series
of the matrix-valued functions 3 32, €k (t) is uniformly convergent on I to
C: I — Muxn(R) if for every € > 0 there exists m(e) € N such that, for
every m € N, m > m(e), we have

<e

S eut) - e
k=0

M

for every t € IL.

Theorem 4.3.1 For every A € M,xn(R), the series

o t_}i‘Ak
|
P k!

s uniformly convergent on every bounded interval I in R. In addition, its
sum et is differentiable on R and

d

- (e) = At = et A (4.3.3)

for every t € R.

Proof. According to Corollary 8.1.1 we have

m+p L m+p k
t* (el Al
P D

M k=m
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for every m, p € N and every ¢ € R. This inequality shows that the
series in question satisfies the Cauchy’s condition uniformly for ¢ in every
bounded subset, simply because the numerical comparison series has this
property. Hence the sequence of partial sums is a uniform Cauchy sequence
on every bounded interval I, and therefore the series considered is uniformly
convergent on [.

In order to prove the second part of the theorem, we begin by observing
that the series is termwise differentiable and that the series of derivatives is,
in its turn, uniformly convergent on every bounded interval in R. Indeed,
it is easy to see that

d d [tk 4 AR S R L
for every k € N* and every ¢ € R. From here it follows that
m+
> & (e
dt \ k!
M

k=m

m+p k—1
<l Y LRERO

k=m

Therefore the series of derivatives satisfies Cauchy’s condition uniformly for
t in every bounded interval. So, the sum of the initial series is differentiable
and its derivative satisfies

d . A o~ TN ke A
5 (€)= 4 ZWA = Z(k_l)!A A,

k=1 k=1

relations which obviously are equivalent to (4.3.3) and this completes the
proof. O

Remark 4.3.2 The first equality in (4.3.3) proves that every column of
the matrix e**, thought as a function from R to R™, is a solution of the
homogeneous system (4.3.1). Since e = J and 7 is non-singular, it follows
that e is a fundamental matrix for the system (4.3.1).

Some useful consequences of Theorem 4.3.1 are stated below.

Proposition 4.3.1  For every A € M,xn(R) the series
o0
1
> A
k=0 "

is convergent. In addition, the function A — e” defined on Mpxn(R)
taking values in My, x,(R), where e? is the sum of the series above, has the
Jollowing properties:
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(i) e’ =eJ, e =17, where O is the null n x n-matriz;
(ii) if AB = BA then et = eAeB;
(iii) if A = Q71BQ then e = Q7 1eBQ;
(iv) et = (eﬂ)_l.

Proof. The item (i) is an immediate consequence of the definition of the
matrix e*. In order to prove (ii), let us observe that, if AB = BA, then

e B = Beth (4.3.4)

for every t € R. Indeed, if AB = BA then A*B = BA* for every k € N,
relation which, along with the definition of the matrix e**, implies (4.3.4).
From (4.3.4) and (4.3.3), it follows that

4 iaemy _ G Ay 4B, A D (1
dt(e e )_dt(e )et® +e dt(e )

:AetﬂetB +€t'ABEtB — (.A +B)etﬂet3

t./let3

for every t € R. Consequently X(t) = e is a fundamental matrix for

the system
' =(A+B)z

which satisfies X(0) = J. From the uniqueness part of Theorem 4.1.1 and
from Remark 4.3.2, it follows that e**e!® = e*A+®B) for every ¢t € R, which
obviously implies (ii}.

If A =Q 'BQ then A* = Q~1B*Q for every & € N, and so

P ar =Y Eo-ipra - 01 (3 Bk g
2t = =07 > 5% )2
k=0 k=0 k=0

which proves (iii).
Finally, as A and —A commute, from (ii), we deduce

Ae——./l=e~./le./l — 9 =1

€ €

Consequently e is invertible and its inverse is e™# and this completes the
proof. O

Remark 4.3.3 Let us consider the Cauchy problem

{ z' = Az + b(t)
(o) = €
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where A € My xn(R), b: I — R™ is a continuous function, @ € I and € € R".
Then the unique solution of this problem is given by

t

z(t, a, &) = elt~®A¢ +/ et 4p(s) ds (4.3.5)
a

for every t € [

We notice that (4.3.5) is a consequence of the variation of constants
formula (4.2.5). Indeed, taking X(¢) = ¢™* and making use of (ii) and
(iv) in Proposition 4.3.1, we deduce that X(t)X~1(s) = e(t=5)4 for every
t,s € R. From here and (4.2.5), we deduce (4.3.5).

Remark 4.3.4 All the considerations in this section can be extended
without difficulty to the case of first-order differential systems of linear
equations with constant complex coeflicients. More precisely, let us consider
the first-order linear differential homogeneous system

w' = Aw, (4.3.6)

where A € My, x,(C). By a solution of this system we mean a function
w : D — C", holomorphic on D C C, and which satisfies w'(z) = Aw(z)
for every z € D.

We endow C™ with the standard inner product, i.e. {-,-}, defined by

n
(’U, ’U.)> = Z VW5
i=1

for every v,w € C”, and we define the induced norm || - || : C* - Ry by
[lvlle = v/ (v, v}, and the norm || - [jag : Mpxn(C) — Ry by

Al = sup{||Avle; llvlle <1}

for every A € My xn(C). Now, let us observe that the series Zi‘lo %Ak is
-uniformly convergent on every bounded subset in C and its sum is a matrix
whose elements are entire functions (holomorphic on C). We denote this
matrix by e**. From a classical theorem concerning the differentiability of
complex power series, we deduce that the matrix above is a solution (on C)
of the Cauchy problem

two 2o
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4.4 A Method to Find 4

In this section we will present a method of finding the matrix e*# using the
Jordan canonical form of a matrix. We begin by recalling that, for every
matrix with complex elements A € M, x,(C), there exists a non-singular
matrix Q € My« (C), such that

A =Q7130Q, (4.4.1)

d being the Jordan canonical form of the matrix A. Namely, if A, Az, ..., Aq
are the roots* of the characteristic equation det(A — \J) = 0, with orders of
multiplicity my, mag,...,m,, }:;=1 mp = n, then g is a matrix of diagonal
blocks: Jp5, p=1,2,...,5,5 =1,2,...,h(p). So, e¥ is a matrix of diagonal
blocks too, i.e.

e = diag (e, .., e gl | otlane) (4.4.2)

Here, for each p =1,2,...,sand j = 1,2,...,h(p), dy; are the Jordan cells
corresponding to the characteristic root A, i.e.

A 10...0
0 Apl... 0

Ipi = ‘ € M,y xmy; (C)
0 00... )

and Z?(:”l) Myp; = myp. For a method of finding the matrix Q see for instance
[Udrigte et al. (1982)], p. 62. From (4.4.1) and (iii) in Proposition 4.3.1,
combined with Remark 4.3.4, it follows that

et = Q1etdQ (4.4.3)

for every t € R. Then, in order to determine e**, it suffices to find e®¥ri
withp=1,2,...,s,7=1,2,...,h(p). To this aim, let us observe that

010...0 100...0

001...0 010...0
gpj: . +/\P :

000...0 000...1

4Real, or complex.
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forp=1,2,...,5and j =1,2,..., h{(p). Denoting by

010...0 100...0

001...0 010...0
Epi=1 . and Jp; = | | )

000...0 000...1

the relation above rewrites in the form Jp,; = €55 + ApJp;. Since t€y; and
tApJp; commute, according to Proposition 4.3.1, it follows that

v = etretles, (4.4.4)

It is easy to see that the power of exponent ¢ = 1,2,...,m,; of the matrix
Epiy ng, is the matrix whose elements e; are given by: ex; = 0 for every
k=1,2,...,my and !l =1,2,...,mp;, | # k+ q and ey k4q = 1. Thus,

m.

as the matrix £,; is of order my;, it follows that €7 is the null matrix.

Taking into account the definition of the exponential of a matrix, we have

1t &2 tMpi—t
11 21 "+ Tmp, = D)1
Mypi—2
01 & ... ——(:n,:—z)!
etéri = (4.4.5)
000... 1

for every t € R. From (4.4.2), (4.4.3), (4.4.4) and (4.4.5), we explicitly get
the matrix et4.

We conclude with a fundamental result in the theory of systems of
linear differential equations with constant coefficients, result known as the

structure theorem of the matriz e*.

A

Theorem 4.4.1 All elements of the matriz e** are of the form

S
D €2 [pi(t) cos(Bit) + aw(t) sin(Bet)]
k=1
where ag + 10k, k =1,2...,s, are the roots of the characteristic equation
det(A — XJ) = 0, while p, and qx are polynomials with real coefficients, of
degree not exceeding my — 1, my being the order of multiplicity of the root
ar+i0k, k=1,2,...,s.
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Proof. Let A = a+if be any root of the equation det(A—\J) = 0. Taking
into account that e** = e®* [cos(Bt) + 4 sin(Bt)], performing the calculations
in (4.4.3), using (4.4.4), (4.4.5) and recalling that, although Q=! and Q are
matrices with complex elements, the product Q= 'e*3Q = e*4 is necessarily
a matrix with real elements, we get the conclusion. ]

The functions of the form specified in Theorem 4.4.1 are known in the
literature under the name of quasi-polynomials.

Remark 4.4.1 The theorem of structure of the matrix e** furnishes an
effective method of determination of this matrix. More precisely, in order to
find e*4, we take into account that all its elements are of the form mentioned
in Theorem 4.4.1 and we determine the coefficients of the polynomials py
and g by imposing the conditions: €®* = J and (e**)’ = Ae** for every
t € R. However, we emphasize that this method is rather complicated, as
we can see from the example below.

Example 4.4.1 Find e** in the case in which

A:<_22_31>.

The characteristic equation det(A — AJ) = 0 rewrites equivalently in the
form

2-x -1
-2 3-A

‘=A2—5A+4=0

and has the roots Ay = 1 and Ay = 4, both having the order of multiplicity
1. Accordingly, the elements of the matrix e** are linear combinations of
¢! and e**. We have

2 4
oA — c€ + cfie? clpet + chhet
chiet + c2 et chyet + clhett )

From the condition e®* = J it follows

{c%l-kc%l:l ch+c% =0
1 2 _n Al 2 _
cigtceip =0 ¢tz =1

So, denoting by ¢}; = a, ciy = 8, c3; =y and ¢}, =6, we have ¢, = 1 —q,
¢y = —0, ¢, = —v and ¢, = 1 — §. With these notations, e** is of the
form
A aet + (1 —a)e?®  Bet — Get
B vet —yett  fet +(1-0)ett )
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apr ! -
The condition (e*4)" = Ae™* rewrites as

aet +4(1 —a)ett  Bet — 4[ett
et — dyelt  bet 4 4(1 — §)ett

B < (20 — y)et + (2 — 2a + y)ett (28 - 8)et + (—28 — 1+ §)ett )
T\ (=2a 4 3y)et + (=2 + 20 — 3y)e*t (—26 + 38)et + (28 + 3 — 38)ett

for every t € R. Taking into account that the family {ef,e*} is linear
independent in the space of continuous functions from R to R, identifying
the coefficients of ef and e** in the two matrices, we get a linear system of
eight equations with four unknowns (e, 3, v, §), having the unique solution
1 2€t + e4t et _ e4t

_2 g_.1 _2 s_1 A _
a=%2 =1 v=32,§=3. Consequently e* = 3 (2€t et ot 4 9t

for every t € R.

4.5 The n'*-Order Linear Differential Equation
Let us consider the ntP-order linear differential equation

Y™ 4 ar(®y®Y ot an(t)y = F(D), (4.5.1)
where a1,as, ...an, f are continuous functions from a nontrivial interval I
in R. As we have seen in Section 1.2, equation (4.5.1) can be rewritten

as a system of first-order differential equations. Indeed, by means of the
transforms

:E=(1‘1,x2,...,mn) = (y1y,x"',y(n_l)) (‘I)

(4.5.1) may be rewritten as a system of n linear differential equations:

i =x9

Th = I3

: (4.5.2)
Th_ 1 =%Tn

z,, = —an(t)z1 — an—1{t)x2 — - — a1 (t)zn + f(t).
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With the notations

Iy 0
Ia O
z=| . |, b(t) = :
Ln f(®
and
0 1 0 0
0 0 1 0
Alt) = ;
—an(t) —an—1(t) —an—2(t) ... —a1{t)

for t € I, the system (4.5.2) can be written as a first-order vector differential
equation

o' = A(t)z + b(t). (4.5.3)

From this moment, it is completely clear that all the considerations made
in the preceding sections of this chapter rephrase in order to be applica-
ble to equation (4.5.1). We begin by introducing some concepts and by
establishing some variants of the previously proved results.

Definition 4.5.1 If in (4.5.1) f(t) = 0 on I, equation (4.5.1) is called
homogeneous. Otherwise, it is called non-homogeneous.

Theorem 4.5.1 For every a € I and every £ € R™, the Cauchy problem

{y(") +ar )y 4+ an(t)y = £(2)
y(a‘) = glay’(a) = &21 v ,y('n—l)(a) = é'n

has a unique global solution.
Theorem 4.5.2 Every saturated solution of (4.5.1) is defined on 1.

Let us consider now the homogeneous equation attached to equation
(4.5.1), i.e.

y(ﬂ) + al(t)y(”—l) 4+t an(t)y =0. (4.5.4)

We denote by 8, the set of all saturated solutions of the homogeneous
equation (4.5.4) and with 8 the set of all saturated solutions of the linear
homogeneous system attached to (4.5.3).
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Lemma 4.5.1 The map T: 8, — 8, defined by

‘I(y) = (y>yla cee ,y("_l)) = (351, Ty ,iL‘n)
for every y € 8, is an isomorphism of vector spaces.

Proof. We may easily see that 8, is a vector subspace of C™(I;R) and
that the map 7 is linear. In addition, T is surjective because given a
solution (z1,Z2,...,2n) of the homogeneous system attached to (4.5.3) it
is quite obvious that the function y = z; is of class C™ from I to R and
T(y) = (x1,%2,...,%n). Finally, T is injective because T(y) = T(z) is
equivalent to (y,1/,...,y™ V) = (z,2,..., 2" 1), equality which clearly
implies y = z. Hence 7 is isomorphism and this completes the proof. O

An immediate consequence of Lemma 4.5.1 is:

Theorem 4.5.3 The set of all saturated solutions of the homogeneous
equation (4.5.4) is an n-dimensional vector space over R.

Remark 4.5.1 By virtue of Theorem 4.5.3, the determination of the
general solution of equation (4.5.4) is equivalent to the determination of n
saturated linear independent solutions.

From Theorem 4.2.1, we deduce

Theorem 4.5.4  The general solution y(-,c), c € R™, of (4.5.1) is of the
form

y(t) C) = yM(t,C) + yp(t))

where Y (-, ) is the general solution of the homogeneous equation (4.5.4),
while y, is a particular saturated solution of equation (4.5.1).

Now let y1,¥2,...,yn be a system of saturated solutions of equation
(4.5.4), and let us define the matrix Y : 1 — M, xn(R) by
ut) y)... ()
vit) w2(8).-. wn(d)

Y(t) = | (4.5.5)

T ORT i (s Y IO

for every t € IL.
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Definition 4.5.2 The matrix Y defined by (4.5.5) is the associated matriz
of the system of solutions y1,y2,...,¥n € 85.

Definition 4.5.3 The system y1,y3,...,Yn € S, is a fundamental system
of solutions of equation (4.5.4) if it is an algebraic basis in the set §,, of all
saturated solutions of equation (4.5.4).

Definition 4.5.4 The associated matrix corresponding to a fundamental
system of solutions of (4.5.4) is a fundamental matriz of (4.5.4).

Remark 4.5.2 Recalling that the map 7, defined in Lemma 4.5.1, is
an isomorphism between §,, and §, it follows that a system of saturated
solutions y1,%s,.-.,¥, of equation (4.5.4) is fundamental if and only if
zl,z?,.. ., 2", with 2 = T(y;) for i = 1,2,...,n, is a fundamental system
of solutions for the homogeneous system associated to the system (4.5.3).
This simple observation allows us to reformulate several results, established
for homogeneous linear systems, in this new framework of the n‘"-order
linear differential equation.

More precisely, let y1,%2,...,Yn be a system of saturated solutions of
equation (4.5.4), let Y be the associated matrix of this system, and let
W(t) = det¥(t), for t € I, be the determinant which, by analogy with the
case previously studied, is called the Wronskian of the system of solutions.

Theorem 4.5.5 (Liouville) Let W be the Wronskian of a given system
of n saturated solutions of (4.5.4). Then

W(E) = Wito)exp (— /t t a1(s) ds) (4.5.6)

for every t € I, where to € I is fized.

Proof. The conclusion follows from Theorem 4.1.5, by observing that, in
the case of the homogeneous system attached to (4.5.3), the trace of the
matrix A equals —aj. O

Theorem 4.5.6  Let y1,v2,...,Yn be a system of saturated solutions of
(4.5.4), let Y and W be the matriz, and respectively the Wronskian, associ-
ated to the system of solutions. The following conditions are equivalent:

(1} the matrizy is fundamental;
(i) for every t € I, W(t) £ 0;
(ili) there exists a € I such that W(a) # 0.

Proof. The conclusion follows from Theorem 4.1.4. O
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Let y1,y2,...,yn be a fundamental system of solutions of equation
(4.5.4). Then, from Theorem 4.5.3, it follows that the general solution
of the homogeneous equation (4.5.4) is given by

y(t) =Y ciwilt) {4.5.7)
=1
with ¢; € R for i = 1, 2,...,n. Concerning the non-homogeneous equation
(4.5.1), we have:
Theorem 4.5.7 Let y1,ya,...,Yn be a fundamental system of solutions

of equation (4.5.4). Then, the general solution of the non-homogeneous
equation (4.5.1) is given by

y(t) = D alt)wi(t),
i=1

where ¢; : 1 — R fori=1,2,...,n range the set of all functions of class
C! which satisfy

)y (t) + )y (t) + -+ (t)yn(t) = 0
Ay (t) + ca(B)ya(t) + - + e (Byn(t) =0
: (4.5.8)

YD) + BBy () + -+ By (1) =0
'
1

TV () + YT (E) + -+ (0TI () = ()
for every t € L.

Proof. Let us observe that y(t) = > ., ¢i(t)yi(¢) is a solution of equation
(4.5.1) if and only if z(t) = Y(t)c(t) is a solution of the system (4.5.3),
where c(t) is the column vector whose components are ¢ (), ca(t), ..., ca(t).
Reasoning as in the proof of Theorem 4.2.2, we deduce that ¢ must satisfy
(4.2.7). But the system (4.5.8) is nothing else but the specific form taken
by (4.2.7) in this case. The proof is complete. O

The method of finding the general solution of the non-homogeneous
equation (4.5.1) as specified in Theorem 4.5.7 is called the variation of
constants method.
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4.6 The n''-order Linear Differential Equation
with Constants Coefficients

Next, we describe a method to get a fundamental system of solutions in the
case of the n*P-order linear homogeneous differential equation with constant
coefficients. We emphasize that, for the general case of an equation with
variable coefficients, no such methods are known.

Let us consider the n'"-order linear homogeneous differential equation
with constant coeflicients

y™ + a4 any =0, (4.6.1)
where a1,a3,...,a, € R. By means of the transformations
T = (.’L‘l,l'z,...,.’ﬂn) :(yayl7-",y(n—l))7 ((‘T)

(4.6.1) rewrites as a first-order linear homogeneous vector differential equa-
tion

z’ = Az, (4.6.2)
where
T = . and A =
In —Qn —Ap—-1 —aAn—-2 ... —a1

Remark 4.6.1 One may easily state by direct computations that, in this
case, the equation det(A — AJ) = 0 has the form

A+ a A" g, =0. (4.6.3)

This is called the characteristic equation attached to equation (4.6.1),
while the corresponding polynomial on the left-hand side is known as the
characteristic polynomial attached to equation (4.6.1).

The main result referring to the determination of a fundamental system
of solutions for equation (4.6.1) is:

Theorem 4.6.1 Let Aj, Ao, ..., Ay be the roots of equation (4.6.3) with
orders of multiplicity my, ma,...,my,. Then, a fundamental system of so-
lutions for equation (4.6.1) is F = Uj=1 F;, where, if A; is real with order
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of multiplicity m;,
¥, = {e)"'t,te’\‘jt,tzeAjt, .. ,t(mj_l)ekft} ,
while if A; is not real, F; = G; UH,; with
G; = {e™" cos(B;t), te*" cos(B;t), t°e® cos(Bst), ..., t™ e cos(B;t) }
and
H; = {e**sin(B;t), te®* sin(B;t), t°e® ! sin(B;t), . .. ,t™ et sin(B;t) } .

In the latter case, ay is the real part of A;, while B; is the modulus of the
imaginary part of the same root.

Proof. One may easily see that the family F contains at most n elements.
So, in order to prove the theorem, it suffices to show that every solution
of equation {4.6.1) is a linear combination of elements in F. Indeed, if we
assume that this is the case, then J is a family of generators for the set
of all saturated solutions 8, of equation (4.6.1), set which, according to
Theorem 4.5.3, is an n-dimensional vector space over R. Then, F must
have exactly n elements and so it is a basis in 8, and this completes the
proof.

So, let y € 8,,. Then the function T(y) = z defined in Lemma 4.5.1 is a
solution of the homogeneous equation (4.6.2). According to Remark 4.1.5,
there exists ¢ € R™ such that z(t) = e*‘¢c for every t € R. On the other
hand, from Theorem 4.4.1 and Remark 4.6.1, it follows that all components
of = are linear combinations of elements in F. In particular y = z; enjoys
the same property, and this completes the proof. (]

We can now analyze an example which gives a mathematical explanation
of the resonance phenomenon in the case of forced harmonic oscillations.

Example 4.6.1 Let us consider the second-order linear differential equa-
tion

" + Wiz = f(t) (4.6.4)

which describes the oscillations of a material point P of mass m which
moves on the Oz axis under the action of two forces: the first, an elastic
one F(x) = —kx for x € R, and the second, a periodic one of the form
G(t) = mf(t) for t € R. We recall that w? = k/m. We emphasize that
here we have two systems: the first one characterized by the elastic force
called receptor, and the second one called ezcitatory and characterized by
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the perturbing force G, exterior to the receptor system. Equation (4.6.4)
describes the action of the excitatory system on the receptor system. Due to
the evident signification of the action of the force G, the equation above is
called the equation of forced oscillations of the material point P. We recall
that here x(t) represents the elongation of the point P at the moment ¢. Let
us remark that, by Theorem 4.6.1, the general solution of the corresponding
homogeneous equation is given by z(¢) = ¢1 sin wt+cp cos wt for every t € R,
where ¢1,¢c2 € R. We analyze next the case in which the excitatory force
G is itself a solution of the homogeneous equation, situation in which G
amplifies the oscillations of the material point. The well-understanding of
the mechanism of this phenomenon, known under the name of resonance,
represents a first step through the explanation of many other phenomena
much more complex, but essentially of the same nature. More precisely, let
us assume that f(t) = kqsinwt + ky coswt for t € R, where at least one of
the numbers kq, ks € R is non-zero. In view of the variation of constants
method, presented at the end of the preceding section, we conclude that
the general solution of (4.6.4) is of the form z(t) = ¢ (¢) sin wt +ca(#) cos wt,
where c1, ¢z are functions of class C' which satisfy

i (t) sinwt + ¢h(t) coswt =0
wch (t) coswt — wey (t) sinwt = ky sinwt + kg coswt.

Solving this system, after a simple integration, we get

c1(t) = o7 (—k1 cos 2wt + ko sin 2wt) + -é%t + k3
ca(t) = 1oz (K1 sin 2wt + ky cos 2wt) — Z%})t + ky

for t € R, where k3, k4 € R. Accordingly, the solution of equation (4.6.4) is
z(t) = (& + k3) sinwt + ftsinwt + (22 + k3) coswt — Etcoswt. One
can easily see that, unlike the solution of the homogeneous equation which
is bounded on R, this is unbounded. This observation is very important in
practice. Namely, it shows that the components of any structure subjected
to vibrations have to be chosen such that their own frequencies be different
from any rational multiplier of the frequency of the excitatory force.

We conclude this section with the presentation of a class of n*!-order
linear differential equations with variable coefficients which, by a simple
substitution, reduce to n*t'-order linear differential equations with constant
coefficients. More precisely, let us consider the equation

try() i layy D 4 gy = F(2), (4.6.5)
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with ay,ay,...,0, € R and f : R} — R, equation known as the Euler
equation.

Theorem 4.6.2 By means of the substitutions
{ t=e°
y(t) = 2(s)
for s € R, (4.6.5) reduces to an n'i-order linear differential equation with

constant coefficients with the new unknown function z depending on the
new argument §.

Proof. Let us remark that, for k = 1,2,...,n, the k**-order derivative
of y is of the form
d*y ks { dz d*z d*z
o e hasd — aiid 4.6.6
gk~ ° ("1 gs Tega Tt g (4.6.6)
with ¢1,¢,...,c, constants. Indeed, for k = 1, we have
dy _.az
— =e %=,
dt ds

Assuming that (4.6.6) holds true for some k£ < n—1 and differentiating side
by side, we deduce
d*ly _ o~ (k+1)s (Clﬁz_ &z dkHZ)

sy ds? T g T TS

dz d*z d*z
—ke— (et 1)s [ 22 o T hutliod
ke (cl Is +c2 7o +ooteg ds’“)

d? d?z dktlz

—e s (g 2 LS —

e <1ds+ 2dsz+ + k1 kT
with di,da, ..., dgs1 real constants. By consequence (4.6.6) holds true for
every k = 1,2,...,n. Computing the derivatives of y, substituting these
in (4.6.5) and taking into account that, for every k = 1,2,...,n, we have
the=ks = 1, we easily conclude that z is the solution of an n'P-order linear

differential equation with constant coefficients. The proof is complete. [l

Remark 4.6.2 Analogously, by means of the transformations

{ at+ 8 =e¢°
y(t) = z(s)
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for at + 0 > 0 and s € R, the equation
(et +B)"y™ (1) + (at + B)* tary™ D (E) + - + any(t) = f(),

with o > 0 and 8 € R, reduces to an n'P-order linear differential equation
with constant coefficients.

4.7 Exercises and Problems

Problem 4.1 Let a,b: Ry — R be two continuous functions with . 1irl1 a(t) =1
— 4+
and b absolutely integrable on R4. Let us consider the system

' =aft
{ Yy = b((t))g )

Prove that
(1) #f (z,y) is a solution of the system (8) with z bounded on R, then

(il) there exists at least one solution of the system (8) which is unbounded
on Ri.

Problem 4.2 Let f : I x R® — R™ be a function of class C* with the property
that
=~ Of;

i=1 awl

div, f(t,z) = (t,z) =0

on I xR™. Fora <€l and € € R", we denote by S(-)¢ : [a,b) — R™ the unique
saturated solution of the problem CP(L,R", f,a,£). Let D be a domain of finite
volume in R™ and let D(t) = S(t)D for t € [a,b). Prove that the volume of D(t)

ie. Vol (D(&)) = //___/Ddet (Q%—a(ci)—a-:) dzidzs ... dzn

is constant on [a,b). This result is known as Liouville’s theorem and is especially
useful in Statistical Physics.

Problem 4.3 Let H : R* x R® — R be a function of class C* and let us consider
the Hamiltonian system

dpi  OH

dt - aqi(p,q)
1=1,2,...,n

do; _ 0H

dt - 6]91, (pyq)
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Let §,n € R™ and let S()(€,n) = (p(-),q(")), where (p,q) : [a,b) = R™ x R™ is
the unique saturated solution of the system which satisfies p(a) = £ and q(a) = 1.
Prove that, for each domain D of finite volume Vol(D) in R™ x R", we have
Vol(S(t)D) = Vol(D) for every t € [a,b).

Problem 4.4 Let A € Maxn(R) be a matriz whose transpose A™ = —A. Show
that, for every t € R, the matriz e is orthogonal. We recall that a matriz B is
orthogonal if it is non-singular and B™ = B!,

Problem 4.5 Let A € Maxn(R) be a matriz whose transpose A” = —A. Show
that every fundamental matriz X of the system

!
r = Az,

which is orthogonal at t = 0, is orthogonal at every t € R.

Problem 4.6 Let A: R — Mnxn(R) be a continuous function with the property
that, for every t € R, A" (t) = —A(t). Prove that every fundamental matriz X of
the system

z' = A(t)z,

which is orthogonal at t = 0, is orthogonal at every t € R.

Problem 4.7  Let A € Muxa(R). Show that, if A € C is a root of the equation
det(A — XJ) = 0, then, for every t € R, e** is a root of det(e"* — uJ) = 0.
Problem 4.8 If A € Mpxn(R) is symmetric, i.e. A" = A then and et s
symmetric for every t € R.

Problem 4.9 Let A: R — Mnxn(R) be a continuous function with the property
that A*(t) = A(t) for every t € R. Prove that every fundamental matriz X of the
system

' = A(t)z,

which is symmetric at t = 0, is symmetric at every t € R.

Problem 4.10  Let A € Mpxn(R). A necessary and sufficient condition in order
that all the elements of the matriz e be positive for every t > O is that all the
non-diagonal elements of the matriz A be positive. ([Halanay (1972)], p. 190)

Problem 4.11 Let A,B,€C € Mnxn(R). Prove that the solution of the Cauchy
problem

X' = AX+XB

X(0) =€

is given by X(t) = e Ce*®. ([Halanay (1972)], p. 191)
Problem 4.12  Let A, B, € € Mpxn(R). Prove that if the integral

+o0
X= —/ e Ce*Bds
0

is convergent, then it satisfies AX + XB = €. ([Halanay (1972)}, p. 191)



156 Systems of Linear Differential Equations

Problem 4.13 Let A € Mpxn(R) and let

s N AZk
cos A = —1)" —=
20"
. _ i & A2k+1
sinA = I;('—-l) m

d d .
(1) Compute T (costA) and 7 (sintA) ;

(2) Show that the 2n x 2n matriz

costA  sintA
2(t) = ( —AsintA Acos t.A)

18 an associated matriz of a certain system of solutions for the first-
order system of linear differential equations with 2n unknown functions:
T1,T2, - Ty Y1, Y2, -, Yn

Under what circumstances is this o fundamental matriz?
([Halanay (1972)}, p. 191)
Problem 4.14 Let f : I x R* — R"™ be continuous on I x R™ and Lipschitz on

R", let £ € R", a € I and A € Muxn(R). We define the following sequence of
successive approzimations: To is the unigue global solution of the system

{Zale

while Tm s the unique global solution of the system

{x;n = Azm + (6, Zm-1(t)) — ATm-1(t)
zm(a) = €.

Prove that, for every b > a with [a,b] C I, (Tm)men converges uniformly on [a,b]
to the unique solution x : [a,b] — R" of the Cauchy problem

ot

({Halanay (1972)], p. 196)
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Exercise 4.1  Solve the following systems of linear differential equations:

! /
I, =1I + 225 Ty = X2
W { x5 = 4z + 3z2 @) {x'z = —2.
/ /
] =11 + 522 T =21+ 22
4
(3){x'2=—m1—3m2 (){m’zzml—}-mg-l—t.
(5) 4 + 221 + 22 = sint ©) 2h + 20 +dze =1+ 4t
zh — 4xy — 225 = cost. Th + T1 — T3 = 3t°.
Ty =1 Th = T2+ x3
(7) m’z =3 (8) 33’2 =3+ x1
xézml. :cf;:zl-i-xz.

Exercise 4.2 Solve the following second-order linear differential equations:

(1) " - ba' + 4z = 0. 2)z"+22'+x=0 3z +4z=0.
(4) =" — 4z = t?e*. (5) " + 9z = cos 2t. 6) " +z = 1*31;
(T) 2" + z = 2tcostcos2t. (8) 2 — 4z’ + 4z = te?. (9) 2" — 2z = 4t%e ¢

Exercise 4.3 Solve the following higher-order linear differential equations:

(1) " = 132" + 122" = 0. (2) ="’ — 2’ = 0. (3) " +z=0.
4) 2’V + 4z = 0. (5) 2 — 32" + 3z ~x =t. (6) 2’V + 22" + x = 0.

1"t

(1) &'V =2z + o =€t (8) 2’ +a" +a' +x=1te' (9) 2" +62" + 92" =t

Exercise 4.4  Solve the following Euler, or reducible to Euler equations:

(1) ?2" + 3tz’ + = = 0. (2) t?z" —tz' — 3z = 0.
(3) t?2" + ta’ 4- 4x = 0. (4) t3 " tzz” + 6tz’ — 6z = 0.
(5) 3t+2)z" +72' =0. (6) =
/
(7)m”+€—+%=0. (8) t2¢" — dtz' + 6z = t.

(9) (1 +t)%2" ~3(1 4+ )z’ + 4z = (1 +t)3. (10) t%z” — tz’ + = = 2t.
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Chapter 5

Elements of Stability

This chapter is entirely dedicated to the study of the stability of solutions to
certain systems of differential equations. In the first section we introduce and
illustrate the main concepts referring to stability. The second one is concerned
with several necessary and sufficient conditions for various types of stability in
the particular case of first-order systems of linear differential equations. In the
third section we present some sufficient conditions under which the asymptotic
stability of the null solution of a first-order differential system is inherited by the
null solution of a certain perturbed system, provided the perturbation is small
enough. In the fourth section we prove several sufficient conditions for stability
expressed by means of some functions decreasing along the trajectories, while
in the fifth section we include several results regarding the stability of solutions
of dissipative systems. In the sixth section we analyze the stability problem
referring to automatic control systems, while the seventh section is dedicated to
some considerations concerning instability and chaos. As each chapter of this
book, this one also ends with an Exercises and Problems section.

5.1 Types of Stability

In its usual meaning, stability is that property of a particular state of a
given system of preserving the features of its evolution, as long as the
perturbations of the initial data are sufficiently small. This meaning comes
from Mechanics, where it describes that property of the equilibrium state
of a conservative system of being insensitive “d la longue” to any kind of
perturbations of “small intensity”. Mathematically speaking, this notion

159
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has many other senses, all coming from the preceding one, and describing
various kinds of continuity of a given global solution of a system as function
of the initial data, senses which are more or less different from one another.
The rigorous study of stability has its origins in the works of Celestial
Mechanics of both Poincaré and Maxwell, and has culminated in 1892 with
the doctoral thesis of the founder of this modern branch of differential
equations, Lyapunov.

As we have already shown in Theorem 2.5.2, under certain regularity
conditions on the function f, the map 1 — (-, a,7) — the unique saturated
solution of the Cauchy problem

{z' =fte) CP(D)
z(a) =7
— is locally Lipschitz from Q to C([a,b]; R"), for each b € (a, b¢), where
[a, be) is the domain of definition of the saturated solution z(-, a, ¢). A much
more delicate problem, and of great practical interest, is that of finding
sufficient conditions on the function f such that, on one hand, z(:,q,§)
be defined on [a, +o0) and, on the other hand, the map n — z(-,a,n) be
continuous from a neighborhood of £ to the space of continuous functions
from [a, +oo) to R™, endowed with the uniform convergence topology.

Let € be a nonempty and open subset in R™, let f: R, x & — R" be
continuous on R x ) and either locally Lipschitz, or dissipative on €2, and
let us consider the differential system

' = f(t,x). (5.1.1)
Let us assume that (5.1.1) has a global solution ¢ : Ry — Q.
Definition 5.1.1 The solution ¢ : Ry — Q of (5.1.1) is stable if:

(i) for every a > 0 there exists u(a) > 0 such, that for every £ €
with [[§ — ¢(a)|| < u(a), the unique saturated solution z(-, a,£), of
the system (5.1.1), satisfying z(a, a,£) = &, is defined on [a, +00)
and

(i) for every @ > 0 and every € > 0, there exists 6(¢, a) € (0, u(a) ] such
that, for each £ € Q with ||€ —¢(a)| < (e, a), the unique saturated
solution z(-,a,§), of the system (5.1.1), satisfying z(a,q,&) = &,
also satisfies ||z(t,a, &) — ¢(t)]| < € for every ¢ € [a,+00).

For a suggestive illustration of the situation described in Definition 5.1.1,
in the case n = 2, see Figure 5.1.1.
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............... the graph of ¢
——— the graph of x

Figure 5.1.1

Definition 5.1.2 The solution ¢ : Ry — Q of (5.1.1) is uniformly stable
if it is stable and both p(a) > 0 and &{¢,a) > 0 in Definition 5.1.1 can be
chosen independent of @ > 0, i.e. p{a) = u and (¢, a) = §(¢).

Definition 5.1.3 The solution ¢ : Ry — Q of (5.1.1) is asymptotically
stable if it is stable and, for every a > 0, u(a) > 0 in Definition 5.1.1 can
be chosen such that, for each £ € Q with {|€ — ¢(a)|| < u(a), the unique
saturated solution z(-,a, ) of the system (5.1.1), satisfying z(a,q,£) = &,
also satisfies t_lgpoo lz(t, a,&) — ¢(£)|| = 0.

The situation described in Definition 5.1.2 is illustrated in Figure 5.1.2.

................... the graph of ¢
the graph of x

Figure 5.1.2

Definition 5.1.4 The solution ¢ : Ry — Q of (5.1.1) is uniformly asymp-
totically stable if it is uniformly stable and, for every £ > 0, there exists
r(€) > 0 such that, for every a > 0, every £ € Q with ||€ — ¢(a)|| < p (where
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p > 0 is given by Definition 5.1.2), and every t > a + r(¢), we have

lz(t,a,8) — ¢(t)|| < e.

Remark 5.1.1 These four concepts of stability refer to a property of a
certain solution of (5.1.1), and not to a property of the system itself. More
precisely, there exist systems which have both stable and unstable solutions.
Indeed, let us consider the differential equation

z' = az(p - z),

where ¢ > 0 and p > 0 are constants. As we have seen in Section 1.4,
this equation describes the spread of a disease within a population p, z(t)
representing the number of the infected individuals at the moment t. We
recall that for every 7 > 0 and every £ € R the unique global solution
z(-,7,€) : [7,+00) — R of this equation, which satisfies z(r,7,£) =&, is

pfeap(t—‘r)
P+ E(etT - 1)

2(t,7,€) =

fort € [T, +00). Among the two stationary solutions £ = 0 and z = p of the
equation, the first one is unstable, while the second one is uniformly stable.
Rephrasing this observation in the terms of the modelled phenomenon, we
can say that: in an isolated biological system, the state of health (z = 0) is
fragile to small perturbations, i.e. unstable, while the state of illness (z = p)
s uniformly stable.

Remark 5.1.2 Every solution ¢ of the system (5.1.1) which is uniformly
asymptotically stable is both uniformly stable and asymptotically stable.
Moreover, every uniformly, or asymptotically stable solution is stable. We
emphasize that: (1) stability does not imply uniform stability; (2) the
concepts of uniform stability and asymptotic stability are independent; (3)
uniform stability does not imply uniform asymptotic stability. See the
example below.

Example 5.1.1 In order to prove the item (1) in Remark 5.1.2, let us
consider the equation z’ = a(¢t)x, where
d
a(t) = 7 [t(1 — tcost) cost].

It is not difficult to see that a satisfies the condition (1) in Problem 5.1
with M : Ry — R defined by M(to) = (tocosty — §)* for every to € Ry,
but it satisfies none of the other three conditions. Hence the null solution
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of the equation above is stable but is neither uniformly, nor asymptotically
stable, which proves (1).

The identically zero solution of the equation z’ = 0 is uniformly stable
but it is neither asymptotically stable, nor uniformly asymptotically stable.
This observation proves (3) and the fact that uniformly stability does not
imply asymptotic stability. In order to complete the proof of item (2) in
Remark 5.1.2, we will show that the asymptotic stability does not imply
uniformly stability. To this aim let us consider the equation =’ = a(t)z,
where

a(t) = dit [t (sint — at)]

for every t > 0, where o € (0,1/7). We leave to the reader the proof of
the fact that a satisfies condition (3) in Problem 5.1 but does not satisfy
condition (2) in the same problem. Hence the null solution of the equation
is asymptotically stable, but it is not uniformly stable.

Remark 5.1.3 By means of the transformation y = z—¢ the study of any
type of stability, referring to the solution ¢ of the system (5.1.1), reduces
to the study of the same type of stability referring to the identically zero
solution of the system y' = f(t,y+¢(t)) —¢'(¢). Therefore, in the following,
we will assume that 0 € , f(¢,0) = 0, and we will confine ourselves only
to the study of the stability of the identically zero solution of the system
(5.1.1).

A stationary point or equilibrium point of (5.1.1) is an element z* in
1 with the property that f(¢,z*) = 0 for every ¢ € Ry. Obviously, if
T* is a stationary point for the system (5.1.1), the function z = z* is a
constant solution of (5.1.1), called stationary solution. Let us observe that
the identically zero solution of the system (5.1.1) is in fact a stationary
solution or an equilibrium point for that system in the just mentioned
sense. In the case of autonomous systems, i.e. of systems (5.1.1) for which
f does not depend explicitly on the variable ¢ € R4, we have the following
result on the behavior of the solutions as ¢ approaches +oo.

Theorem 5.1.1 Let f : Q@ — R™ be continuous and let z : [a,+00) — Q
be a solution of

z’' = f(z). (5.1.2)
If there exists . lil_gl z(t) = 2* and z* € Q, then z* is an equilibrium point
T
for the system (5.1.2).
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We mention that a rather similar result has already been established in
Section 3.4. See Lemma 3.4.1.

Proof. From the mean-value theorem applied to the component x; of the
solution on the interval [m, m+1], with m € NN[a,+o0) andi =1,2...,n,
it follows that there exists 6, in (m, m + 1) such that

a:z(m + 1) - l’z(m) = mi(gzm) = fz(m(gzm))

fori=1,2,...,n and m € NN [a,+00). As lim,, (z;(m + 1) —z;(m)) =0
and lim,, f;{z(6:m)) = fi(z*), it follows that

Jim fi(a(t)) = fi(z") =0
for i =1,2,...,n and therefore f(z*) = 0. The proof is complete. O

For the sake of simplicity we will restate the preceding definitions in the
particular case ¢ = 0.

Definition 5.1.5 The null solution of (5.1.1) is stable if:

(i) for every a > 0 there exists p(a) > 0 such that, for every £ € Q
with ||¢]] € wp(a), the unique saturated solution z(:,a,€), of the
system (5.1.1), satisfying z(a,a,£) = £, is defined on [a, +00) and

(ii) for every a > 0 and every € > 0, there exists é(g,a) € (0, p(a)]
such that, for each & €  with ||¢|| < é(e, a), the unique saturated
solution z(-,a,£), of the system (5.1.1), satisfying z(a,q,§) = &,
also satisfies ||z(¢, a,&)|| < e for every t € [a, +00).

Definition 5.1.6 The null solution of (5.1.1) is uniformly stable if it is
stable and both p{a) > 0 and é(¢,a) > 0 in Definition 5.1.5 can be chosen
independent of a > 0, i.e. u(a) = and §(e,a) = d(e).

Definition 5.1.7 The null solution of (5.1.1) is asymptotically stable if
it is stable and, for every a > 0, u(a) > 0 in Definition 5.1.1 can be chosen
such that, for each £ € Q with ||| < u(a), the unique saturated solution
z(-,a,€) of the system (5.1.1), which satisfies z(a,a,£) = ¢, also satisfies
Jm_z(t,0,8)] = 0.

Definition 5.1.8 The null solution of (5.1.1) is uniformly asymptotically
stable if it is uniformly stable and, for every € > 0, there exists r(¢) > 0
such that, for every a > 0, every £ € Q2 with ||£|| € ¢ (where p > 0 is given
by Definition 5.1.6), and every t > a + r(g), we have

l2(t,a,€)|| < e
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We conclude this section with the definition of a stability concept which,
this time, describes a property of the system (5.1.1) and not one of a certain
solution.

Definition 5.1.9 The system (5.1.1) is globally asymptotically stable if,
for every a > 0 and every & € (1, its unique saturated solution, z(-,a,¢)
which satisfies z(a, a,£) = £, is defined on [a, +o0) and

t_l}lgloo z(t,a,&) = 0.

5.2 Stability of Linear Systems

The aim of this section is to present several results referring to various types
of stability in the particular case of first-order systems of linear differential
equations. More precisely, let us consider the system

' = A(t)z, (5.2.1)

where A = (aj)nxn is 8 matrix whose elements a;; are continuous functions
from Ry in R.

Theorem 5.2.1 The null solution of (5.2.1) is stable (asymptotically
stable), (uniformly stable), (uniformly asymptotically stable) if and only
if each one of its saturated solutions is stable (asymptotically stable),
(uniformly stable), (uniformly asymptotically stable).

Proof. 1f x = ¢ is a saturated solution of the system (5.2.1), by the
transformation y = x—¢, this solution corresponds to the saturated solution
y = 0. The conclusion of theorem follows from the simple observation that
¢ satisfies the conditions in Definition 5.1.1, (5.1.2), (5.1.3), (5.1.4) if and
only if y = 0 satisfies the corresponding conditions in Definition 5.1.5,
(5.1.6), (5.1.7), (5.1.8). O

Remark 5.2.1 According to Theorem 5.2.1, in the case of linear systems,
the stability of one saturated solution is equivalent to the stability of any
one saturated solution. Therefore, within this framework, we will speak
about the stability, or instability of the system itself, understanding by this
the stability, or instability, of the null solution, or of any one of its saturated
solutions.

We continue with a fundamental result referring to stability.

Theorem 5.2.2 The following assertions are equivalent:



166 Elements of Stability

(i) the system (5.2.1) is stable;
(i) the system (5.2.1) has a fundamental system of solutions which are
bounded on Ry ;
(ili) all saturated solutions of the system (5.2.1) are bounded on R ;
(iv) all fundamental matrices of the system (5.2.1) are bounded on R ;
(v) the system (5.2.1) has a bounded fundamental matriz on R .

Proof. 1If (5.2.1) is stable, then for € = 1 and a = 0 there exists § > 0
such that, for every £ € R™ with ||{|| < §, the unique saturated solution
z(-,0,€) of the system (5.2.1) satisfies

(0,8l <1

for every t € R;. Take n linear independent vectors in the ball B(0,d),
and let us observe that the n saturated solutions, which have as initial
data at ¢ = 0 those n chosen vectors, are bounded on R, and constitute
a fundamental system of solutions for (5.2.1). Hence (i) implies (ii). If
(5.2.1) has a fundamental system of solutions, bounded on R,, as every
solution is a linear combination of elements in the fundamental system, it
is bounded and therefore (ii) implies (iii). Obviously (iii) implies (iv) which
in its turn implies (v). Finally, let us consider a fundamental matrix X(¢) of
the system (5.2.1) and let us recall that, for every a > 0 and every ¢ € R™,
the unique saturated solution z(-, a,§) of the system (5.2.1) is given by

z(t, a,€) = X(t) X" (a)¢

for every ¢ > a. Assuming that (v) holds true, we can choose X(¢) such
that there exists M > 0 with the property

[X@)llve < M

for every ¢t € Ry, where | X(t)||5¢ is the norm defined in Section 8.1, norm
which, according to Remark 8.1.1, is equivalent to the Euclidean norm of a
matrix X(t), i.e. with the square root of the sum of its squared elements.
From the last two relations, we have

lz(t, 0, Il < MIX™ (@) lacli€]

for every t > a. Consequently, for every ¢ > 0 and every a > 0, there exists

8(e,0) = (MIJX™ (@) lm) " > 0
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such that, for every € € R™ with ||£]] < d(¢,a) we have

lz(t,a,8) <€
for every t > a. Hence (v) implies (i) and this completes the proof. O

In the linear case, a necessary and sufficient condition of the asymptotic
stability is:

Proposition 5.2.1  The system (5.2.1) is asymptotically stable if and only
if for every a > O there exists u(a) > 0 such that for every £ € R™ with
1€l < u(a), we have

t_l}gloo:c(t, a,§) =0.

Proof. The necessity is obvious. In order to prove the sufficiency let
us observe that, for a = 0 there exists u > 0 such that all the saturated
solutions of the system (5.2.1), which have as initial data at ¢ = 0 vectors in
B(0, u), tends to 0 as t approaches +00. Counsequently, all these solutions
are bounded on Ry. In particular, every fundamental system of solutions
of the system (5.2.1), which have as initial data at ¢ = 0 vectors in B(0, u),
contains only functions which are bounded on R, . From the equivalence of
the assertions (i) and (ii) in Theorem 5.2.2, it follows that (5.2.1) is stable,
which completes the proof. a

Concerning the asymptotic stability of linear systems, we have:
Theorem 5.2.3 The following assertions are equivalent:

(i) the system (5.2.1) is asymptotically stable;

(ii) the system (5.2.1) has a fundamental system of solutions which tend
to 0 as t approaches +oo;

(iil) the system (5.2.1). is globally asymptotically stable;

(iv) the norm of any fundamental matriz of the system (5.2.1) tends to
0 ast approaches +00;

(v) there exists a fundamental matriz of the system (5.2.1) whose norm
tends to 0 as t approaches +00.

Proof. If (5.2.1) is asymptotically stable, for a = 0, there exists u > 0
such that, for every £ € R™ with ||£]| < u, the unique saturated solution
z(-,0,€) of the system (5.2.1), which satisfies (0,0,€) = £, tends to 0 as
t approaches 4+00. Let us consider a fundamental system of solutions of
(5.2.1) consisting of functions whose values at ¢t = 0 belong to B(0, u), and
let us observe that, from the manner of choice of u > 0, this fundamental
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system contains only functions which tend to 0 as t approaches +00. So
(i) implies (ii). If (5.2.1) has a fundamental system of solutions which tend
to 0 as t approaches +oc, then every solution of (5.2.1) enjoys the same
property, being a linear combination of elements in the fundamental system
considered. Hence (ii) implies (iii). Obviously (iii) implies (iv) which, in
its turn, implies (v). Finally, if X(¢) is a fundamental matrix of the system
(5.2.1) with

Jim X)) =0,

from the representation formula of the solution: z(t,a,&) = X(t)X~!(a)¢
for every t > a, we deduce that every saturated solution of the system
(5.2.1) tends to 0 as t approaches +00. According to Proposition 5.2.1, the
system (5.2.1) is stable, and therefore (v) implies (i), and this completes
‘the proof. O

Theorem 5.2.4 The system (5.2.1) is uniformly stable if and only if it
has a fundamental matriz X(t) for which there exists M > 0 such that

X)X (s)lm < M (5.2.2)
for everyt,s e R, 5 <t.

Proof. In order to prove the sufficiency let us assume that the system
(5.2.1) has a fundamental matrix which satisfies (5.2.2). Let ¢ € R™ and
a € R;. Since the unique saturated solution of (5.2.1), z(-,a,§), is given
by

z(t,a,€) = X()X ™ (a)é,
from (5.2.2), it follows that
(¢, a &)1l < 1XOX () lEll < ME|

for every t > a. Let € > 0. From the preceding inequality we deduce that,
for every ¢ € €, with ||¢]| < eM ™!, we have

x(t,a, )| <€

for every t > a. So (5.2.1) is uniformly stable.
In order to prove the necessity, let us assume that (5.2.1) is uniformly
stable. Then, for € = 1 there exists § > 0 such that, for every a € R} and
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every € € Q with ||¢]| < §, the unique saturated solution z(-, a, &) of (5.2.1),
which satisfies z(a, a, §) = &, satisfies the inequality

z(t,a, Il <1

for every t > a. Let X(t) be that fundamental matrix of the system (5.2.1)
which satisfies X(0) = J,. Let A € (0,6) and t,s € Ry with s <t. Let us
remark that the matrix AX(¢)X~!(s) has as column of rank i € {1,2,...,n}
that saturated solution z* of the system (5.2.1) which for ¢ = s takes the
value £, where £* is the vector with all components zero, excepting that one
on the row ¢ which equals A. Then ||€}|| = A < § and therefore ||zi(¢)|| < 1
for every i € {1,2,...,n} and every t > s. Since, from Remark 8.1.1, we
have

n 1/2
MX)X ()l < MXBXT(5)]le = (Z llwi(t)ll2>
i=1

for every t > s, from the preceding inequalities, we get
1% (5)llae < A2
for every t,s € R, s < t. The proof is complete. 0
With regard to the uniform asymptotic stability we prove:

Theorem 5.2.5 The system (5.2.1) s uniformly asymptotically stable if
and only if it has a fundamental matriz X(t) which satisfies

lim (XX ()|l = 0. (5.2.3)

t—s—+o0

Proof. Let us remark that (5.2.1) is uniformly asymptotically stable if
and only if it is at the same time uniformly stable, and asymptotically
stable. The conclusion follows from Theorems 5.2.3 and 5.2.4. a

Now, let us consider the system
' = Az (5.2.4)
where A € M, «»(R) is a constant matrix.

Definition 5.2.1 The matrix A is hurwitzian' if all the roots of the
characteristic equation det(A — AJ) = 0 have strictly negative real parts.

!The name of this property comes from the name of the German mathematician Adolf
Hurwitz (1859-1919) which has defined and studied this class of matrices.
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Lemma 5.2.1 If A is hurwitzian then there exist the constants M > 1
and w > 0 such that

”et/{”M < Me—tw
for every t > 0.

Proof. According to Theorem 4.4.1, all the elements of e** are of the
form Yy _; [pk(t)e**® cos(Bxt) + qi(t)e®*! sin(Bit)], where ay +i8y is a root
of the characteristic equation det(A — AJ) = 0, of order of multiplicity
mg, while pr and ¢, are polynomials with real coefficients, of degree not
exceeding my — 1. If A is hurwitzian then there exists w > 0 such that
every root a + 1 of the characteristic equation satisfies

a < —w.
Indeed, let A1, Aa, ..., As be the roots of the characteristic equation, ordered
like their real parts: @) < oz < -+ < o < 0. Then w = —J oy satisfies the

property mentioned above. So we have
lle I = e B,

where all the elements of the matrix B are of the form

8

Z [Px(t)e™ " cos(Bet) + qi(t)e™P* sin(Bxt)] ,

k=1
where v, > 0, while p, and ¢ are polynomials. Accordingly, there exists
M > 1 such that

IBE)lIm < M

for every t > 0. This inequality along with the relation above completes
the proof. O

Theorem 5.2.6 If the system (5.2.4) is asymptotically stable then the
matriz A is hurwitzian. If the matriz A is hurwitzian then the system
(5.2.4) is globally and uniformly asymptotically stable.

Proof. Inorder to prove the first assertion, let us assume by contradiction
that, although the system (5.2.4) is asymptotically stable, the matrix A
is not hurwitzian. This means that there exists at least one root of the
characteristic equation det(A — AJ) = 0 with nonnegative real part. Let
A = «a + i be that root. Then the matrix A, thought as an element
in Myxn(C), has at least one eigenvector z € C™ corresponding to the
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eigenvalue A. We denote this vector by z = & + in, where &,7 € R™. If
the eigenvalue A is real, then the corresponding eigenvector has only real
components (z = £) and in this case the function z(¢,0,cf) = ceM¢, with
c € R, is a solution of the system (5.2.4). Since ¢, as an eigenvector of
the matrix A, is nonzero, while A > 0, it follows that for every c € R* the
function z(-,0,c{) cannot tend to 0. So, the null solution of the system
(5.2.4) cannot be asymptotically stable. If A is not real, then its complex
conjugate X is also an eigenvalue of A, while 7 = £ — in is a corresponding
eigenvector. Moreover, let us observe that 1 # 0. Indeed if 7 would be zero,
then z € R™ and from Az = Az would follow A € R, in contradiction with
the initial supposition. In these conditions, let us observe that the function
y(,0,¢cn) : R — R™, defined by

y(t,0,en) = -2% (e’\tz - eX‘E) = ce™(sin Bt - € + cos Bt - )

for every ¢ € R, where ¢ € R*, is nonzero being the imaginary part of
the function ce*z, which at t = 0 equals cn. But this function y(-,0,¢n),
which is a solution of the system (5.2.4), cannot tend to 0 for any choice of
¢ € R*. Hence the null solution of the system is not asymptotically stable.
This contradiction can be eliminated only if A is hurwitzian. The proof of
the first assertion is complete.

On the other hand, if the matrix A is hurwitzian, from Lemma 5.2.1, it
follows that

. tA —3A — |lpt—8)A —
lim_[ehe g = €M g =,

relation which, by virtue of Theorem 5.2.5, completes the proof of the
second assertion. O

Remark 5.2.2 Theorem 5.2.6 shows that, for systems of first-order linear
differential equations with constant coefficients, the asymptotic stability is
equivalent to both global, and uniform asymptotic stability. Moreover, all
these are equivalent to the property of A of being hurwitzian.

A useful completion of Theorem 5.2.6 is:

Theorem 5.2.7  If the characteristic equation det(A—AJ) = 0 has at least
one root with strictly positive real part, then the system (5.2.4) is unstable.
If all the roots of the characteristic equation have non-positive real parts
and the Jordan cells corresponding to all those roots having the real parts 0
are of first-order, then the system (5.2.4) is uniformly stable. In particular,
if all the roots of the characteristic equation have non-positive real parts
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and all the roots having the real part O are simple, then the system (5.2.4)
is uniformly stable.

Proof. Using similar considerations as those in the proof of the first part
of Theorem 5.2.6, we deduce that, if o + i3 is a root of the characteristic
equation and £+in € C™ is a corresponding eigenvector, then, at least one of
the functions z(¢,0, c€) = ce¢ or y(t,0, cn) = ce*!(sin Bt-E+cos ft-1), with
¢ € R*, is a nontrivial solution of system. Obviously, if a > 0, that solution
is unbounded. In accordance with Theorem 5.2.2, the system (5.2.4) is
unstable. If all the roots of the characteristic equation have non-positive
real parts and the Jordan cells corresponding to those roots A, having 0
real part are of first-order, i.e. €% = ()\,;) for j = 1,2,...,h(p) (the
notations are those in Section 4.4), it follows that all the elements of the
matrix e are bounded on R,. As a consequence, there exists M > 0 such
that ||t e~ = [le®" | < M for every t,s € Ry, s < t. By virtue
of Theorem 5.4.5, the system (5.2.4) is uniformly stable. O

Example 5.2.1 The condition that all Jordan cells corresponding to
those roots with 0 real part are of first-order is less restrictive than the
condition that all those roots are simple. Indeed, the roots of the equation
det(A — AJ) = 0, where the matrix A, in Jordan form, is given by

000 0
000 0
A=loo-11 |
000 -1

are A = 0 and XA = —1, both having the order of multiplicity 2. Nevertheless,
the Jordan cells corresponding to the double root 0 are of first-order. In
this case the matrix e is

10 0 0
w |01 0 o
00(1+t)et 0
00 0 et

We conclude this section with a necessary and sufficient condition in
order that a given matrix A be hurwitzian or, equivalently, in order that
a polynomial with real coefficients have all the roots with strictly negative
real parts. Let p(z) = apz™ + 12"~ + -+ + @, be a polynomial with real
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coefficients. To this polynomial we associate the so-called Hurwitz matrix

a1 Qg 0 0 ... 0
a3 Qo (03] ap ... 0

Qg1 Q2k—2 A2k—3 Xk—4 ... A2k—n

0 0 0 0 ... a4
where oy =0if1 <0Qor¢>n.

Theorem 5.2.8 (Hurwitz) A polynomial p(z) = apz"+a12" 1+ -4y
has all the roots with strictly negative real parts if and only if all the principal
minors of the associated Hurwitz matriz are positive, i.e.

o Ozlaoo
1 a0
D1=a1>0) D2= >01 D3= Qg3 Qg Q1 >07"'a
3 (2
Qs (4 O3

D, = det(H) > 0.

For the proof of this theorem see [Nistor and Tofan (1997)], p. 176.

5.3 The Case of Perturbed Systems

Let £ be an open neighborhood of 0 € R™ and let F' : Ry x Q — R™ be
continuous on Ry x Q and locally Lipschitz on Q with F'(¢,0) = 0 for every
teRy. Let A € Mpxn(R) and let us consider the system

' = Az + F(t, z). (5.3.1)

Since, in what follows this system will be thought of as a modified version
of the linear and homogeneous system

' = Az (5.3.2)

obtained by adding the so-called perturbing function F(t, z), it will be called
perturbed system.

In this section, we present some sufficient conditions in order that the
stability properties of the system (5.3.2) be inherited by the system (5.3.1).
As we will see later, if (5.3.2) is asymptotically stable and F' is “dominated
in a certain sense” by A, then the null solution of the system (5.3.1) is
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asymptotically stable. This is no longer the case for the stability, which
is fragile to perturbations. Indeed, (5.3.2) may be stable if all the roots
of the characteristic equation have 0 real parts. On the other hand, one
can construct linear perturbations “as small as we wish” leading to a linear
system governed by a matrix for which at least one of the roots of the
characteristic equation has a strictly positive real part, situation generating
instability. For instance, the scalar equation z’(f) = 0 is stable, while the
perturbed equation z/(t) = ex(t), with £ > 0, is not, and this regardless of
how small € > 0 is.
We begin with the following fundamental result.

Theorem 5.3.1 (Poincaré-Lyapunov) Let A € Mpxna(R), let Q be a
neighborhood of 0 € R™, and let F : Ry x 8 — R™ be continuous on Ry x
and locally Lipschitz on Q2. If there exist M > 1, w > 0 and L > 0 such
that

e v < Me™* (5.3.3)
for every t € Ry,
|F (¢ )l < Lilz| (5.3.4)
for every (t,x) € Ry x Q and
LM - w <0, (5.3.5)

then the null solution of the system (5.3.1) is asymptotically stable.

Proof. Let £ €, aeRy and let 2(-,a,€) : [a,Tn) — Q be the unique
saturated solution of the system (5.3.1) which satisfies the initial condition
z(a,a,&) = €. To begin with, we will show that, if ||¢|| is sufficiently small,
then z(-, a,§) is defined on | a, +00). In order to do this, let us observe that,
by virtue of the variation of constants formula (4.3.5), with b(t) = F(t, z(t))
for t € [a,Ty), we have

¢
z(t,a,€) = et~DA¢ +/ e P(s, z(s,a,¢)) ds

a

for every ¢ € [a,Ty,). From this relation we deduce

t
(2,0, )11 < [l |acé] +/ le®= M x|l F (s, 2(s,a, €))]| ds
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from where, by virtue of conditions (5.3.3) and (5.3.4), it follows that

t
It 0, )l < Me™=)jg] +/ LMe™t9 (s, a,€)|| ds

a

for every t € [a,Ty,). Multiplying both sides of this inequality by et > 0,
we get

t
e alt,a, )l < Mewlel + [ Lea(s, o, ds
a
for every t € [a,Ty,). Denoting by v : [a,T,) — Ry the function defined
by

y(t) = e*'|z(t,a,8)]|

for ¢ € [a,Ty), the preceding inequality rewrites equivalently in the form

y(t) < Mg + / LMy(s) ds

a

for every t € [a,Tm). From Gronwall’s Lemma 1.5.2, it follows
y(t) < Mewo|glletMm)
from where, recalling the definition of the function y, we deduce
2t 0,€)| < Mg elEM)=e) (5.3.6)

for every t € [a,Tm).
Now, let p > 0 be such that B(0, p) C € and let u(a) > 0 be defined by

ula) = 55

Then, according to the inequality (5.3.6), for every & € 2 with {|€]| < u(a),
we have

llz(, a, f)” <

for every t € [a,Ty,). Assuming that T}, < 400, from this inequality and
Proposition 2.4.1, it follows that there exists

[ Rt

li t =z
t%az( @, €)=t

and z* € B(0,4) C € relation which, by virtue of (iii) in Theorem 2.4.3,
contradicts the fact that z(-,q,€) is saturated. This contradiction can be
eliminated only if, for every £ € Q satisfying ||£]| < u(a), we have T, = +00.
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Finally let us observe that, from what we have already shown combined
with (5.3.6), it follows that, for every & € Q with ||€]| < u(a), we have

li =
tTl-ll:I(l)o .’E(t, a, 6) 07
which achieves the proof. O

A useful consequence is stated below.

Theorem 5.3.2 Let A € M,xn(R) be hurwitzian, let 2 be a neighborhood
of 0 € R%, and let F : Ry x 8 — R™ be continuous on Ry x Q and locally
Lipschitz on Q. If there exists a function o : Ry — R such that

1Et o) < e(ll=])
for every (t,z) € Ry x Q and

lim 9@

=0,
rlo T

then the null solution of the system (5.3.1) is asymptotically stable.

Proof. Since A is hurwitzian, by virtue of Lemma 5.2.1, there exists
M > 1 and w > 0 such that (5.3.3) holds. Fix L > 0 with the property
(5.3.5), and choose & > 0 such that

a(r) < Lr

for every r € [0,8). Clearly both the matrix A and the restriction of F to
Ry x {z € Q;||z|| < §} satisfy the hypotheses of Theorem 5.3.1, and this
completes the proof. O

Now, we proceed to the study of the stability by the first approximation
method, which proves very useful in applications. Let f : & — R™ be a
function of class C! with f(0) = 0 and let us consider the system

' = f(x) (5.3.7)
which obviously has the identically zero solution.

Theorem 5.3.3 Let Q) be a neighborhood of 0 e R™. If f: Q - R™ is a
function of class C* with f(0) = 0 and whose Jacobian matriz A = f,(0)
18 hurwitzian, then the null solution of the system (5.3.7) is asymptotically
stable.
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Proof. Since f is of class C1, it is differentiable and therefore
f(x) = f(0) + f=(0)z + F(z) = Az + F(z)

for every x € Q, where

o IF@)
2 T

So, we are in the hypotheses Theorem 5.3.2 with

a(r) = sup{[| fz(6) — fo(0){lm; O €, (6]l <r}
for r > 0. l

The next example shows that, though it is a corollary of Theorem 5.3.1,
Theorem 5.3.3 proves effective even in situations in which Theorem 5.3.1 is
not directly applicable.

Example 5.3.1 Let us consider the Liénard equation
2"+ ¢'(2)d +2 =0,

where g : R — R is a function of class C! with g(0) = 0. This equation
rewrites as a first-order differential system

{z:=y—g(Z)
Y =—z.

The system above is of the form (5.3.1) with n = 2,

= (2)r A=(51) wa rem= (729).

Since the matrix A is not hurwitzian, the condition (5.3.3) in Theorem 5.3.1

is not fulfilled and therefore Theorem 5.3.1 is not directly applicable.
Nevertheless, let us observe that the system above may be regarded as

a system of the form (5.3.7) in which the function f : R? — R? is defined

by
f(z) = <y - g(Z))

—Z

for every z € R? and whose Jacobian matrix at (0,0) is
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Since this matrix is hurwitzian if ¢’(0) > 0, in view of Theorem 5.3.3, it
follows that, in this case (¢'(0) > 0), the null solution of the system above is
asymptotically stable. As a consequence of this result, we deduce that the
null solution of the Van der Pol equation, i.e. the equation corresponding to
the particular case g(z) = z — 23 for every z € R, is asymptotically stable.

We state without proof a completion of Theorem 5.3.3. For details see
[Malkin (1953)], Chapter 4.

Theorem 5.3.4 Let f: QQ — R™ be a function of class C! with f(0) =0
and let A = f(0). If there exist « > 1, M > 0 and v > 0 such that
|f(z) —Az|| < M||z||* for every z € R™ with ||z|| < r and at least one root
of the characteristic equation det(A —XJ) = 0 has strictly positive real part,
then the null solution of the system (5.3.7) is unstable.

The case when at least one of the characteristic roots of the matrix f,(0)
has 0 real part needs a much more delicate analysis involving the signs of
the higher order derivatives of the function f at z = 0. See also [Malkin
(1953)], loc. cit.

5.4 The Lyapunov Function Method

A very refined and powerful method of establishing sufficient conditions
of stability consists in finding a certain real-valued function, decreasing
along the trajectories of a given system, function which may increase only
with the norm of the argument. Suggested by the evolution of certain
phenomena in Classical Mechanics, where this function represents, in some
sense, the potential energy of the system, this method, invented by the
Russian mathematician Lyapunov in 1892, proves extremely effective and
useful and is still far of being obsolete.

Let €2 be an open neighborhood of 0 € R™, and let f: R, x Q — R” be
continuous on R4 x € and locally Lipschitz on €, with f(z,0) = 0 for every
t € R,. This last condition shows that ¢ = 0 is a solution of the system

z' = f(t,z). (6.4.1)

Definition 5.4.1 A function V' : Ry x Q — Ry is positive definite on
R, x Q if there exists a function w : R, — R, continuous, nondecreasing,
with w(r) = 0 if and only if 7 = 0, and such that

V(t,z) > w(]z|) (5.4.2)
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for every (t,z) € Ry x Q. A function V : Ry x Q — R_ is negative definite
on Ry x Q if —V is positive definite on Ry x Q.

Definition 5.4.2 A function V : Ry x Q — Ry is a Lyapunov function
for the system (5.4.1) if:

(i) Vis of class C* on Ry x  and V(t,0) = 0 for every t € Ry;
(ii) V is positive definite on Ry x Q;
(iii) for every (t,z) € R, X Q we have

6—V(t,av) + Zfi(t,m)z‘i(t,x) <0. (5.4.3)

t 81'7;
Theorem 5.4.1 (Lyapunov) If (5.4.1) has a Lyapunov function then its
null solution is stable.

Proof. Leta e Ry, €€ Qandlet x(-,0,€) : {a,Tr,) — Q be the unique
saturated solution of the system (5.4.1) which satisfies the initial condition
z(a,a,§) = & First we will show that, if ||£| is sufficiently small, then
T = +o00. To this aim let us define the function ¢ : [a,T) — Ry by

g(t) = V(ta .’L’(t, a, 5))

for every ¢t € [a,Tm), where V is a Lyapunov function for the system (5.4.1).
Obviously g is of class C! on [a,T},). In addition, from (5.4.3), it follows
that

1y - Y kil dz;
gt = > (t,z(t,a,s))+;3mi(t,m(t,a,£)) —(6,0,6)

;1%
- %‘t{(t,a:(t, a,8)) + ; 70, b2t @, O)filt 2t a,0)) <0

for every t € [a,T},). So g is non-increasing, and hence g(t) < g(a) for
every t € [a,Tp,). Recalling the definition of the function g, this inequality
rewrites equivalently in the form V(¢,z(t,a,£)) < V(a,&) for t € [a,T},).
From (5.4.2) and the preceding inequality, we deduce

w(llz(t,a, Ol < V{a,&)

for every t € [a,T;,).
Let p > 0 with B(0,p) C Q. Since V(a,-) is continuous at 0 and
V(a,0) =0, for w(p) > 0, with p > 0 as above, there exists r = r(a) € (0, p)
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such that V'(a, §) < w(p) for every £ €  with ||£]| < r. From this inequality
and from the preceding one, we deduce w(||z(t,a,£)|) < w(p) for every
t € [a,Tn). Recalling that w is nondecreasing, we deduce

Izt a, ) < p

for every t € [a,T}). Since B(0,p) C Q and z(-,a,€) is saturated, this
inequality proves that, for every € € Q with ||£|| < r(a), T}, = +oo. Finally,
a similar argument shows that, for every a € R, and every £ > 0 there exists
8(a,e) > 0 such that

lz(t,a, Ol < e

for every £ € Q with ||¢]| < é(a,€) and every t > a. Hence the null solution
of the system (5.4.1) is stable, which completes the proof. O

Theorem 5.4.2 (Lyapunov) If (5.4.1) has a Lyapunov function V and
there exist A,n: Ry — Ry continuous, nondecreasing, satisfying A(r) =0
if and only if r =0, n(s) = 0 if and only if s = 0,

V(t.z) < All=l) (5.4.4)
and
(o) + > 76,9 5 (6,9) < (el (5.45)

for every (t,z) € Ry x Q, then its null solution is asymptotically stable.

Proof. By virtue of Theorem 5.4.1 the null solution of the system (5.4.1)
is stable. So, for every a € Ry, there exists pu(a) > 0 such that, for every
£ € Q with ||€|| < u(a), the unique saturated solution of the system (5.4.1),
with initial data @ and &, is defined on [ a, +00). Let 2(-,a,&) : [a, +00) —
be such a solution and let us define the function ¢ : [a,+00) — R, by
9(t) = V{(t,z(t,a,€)) for t € [a,+00), where V is a Lyapunov function with
the properties (5.4.4) and (5.4.5). The function g is of class C* and

d:cz-

9(0) = S 62(t,0,0) + Y o(62(6,0,6) 2 (1,0,8)
i=1 "¢

= Pt alt0,0) + > S (6:3(t,0, ) fit,2(4,0,) < —n(lat,0,)])
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for every ¢ € [a, +00). Integrating this relation both sides from a to t, we
deduce

/ n(lo(s,0,€)])) ds + V(t, 5(t,0,€)) < V(a,€),

for every ¢t € [a,+00). Since both n and V are positive, this inequality
ensures, on one hand, that the integral

+00
| nlizts.a, 60 ds
a
is convergent and, on the other hand, that there exists the finite limit

lim V(¢ 2(t,a,€)) = L.
Jim V(¢ 2(t,a,¢))

Now, let us observe that, from the positivity of the function 7 and the
convergence of the integral above, it follows that there exists at least one
sequence {t,)nen with

lim t, = +0
'n.—voo
lim n(||z(t,,a,£)|]) = 0.
n—od
Since 7 is nondecreasing and n(r) = 0 if and only if r = 0, it follows that
lim o (tn,a,€)]| = 0.
n—o

Recalling that V satisfies (5.4.4) and that A is continuous and vanishes at
0, we deduce that £ = 0. From the remark above and from (5.4.2), we have

limsupw(lz(t,a,€)|]) £ lim V(¢ 2(t,a,6))=0
tT+o0 tf+oo

and therefore

Jim w(le(t,a,€)l) = 0.
Since w is nondecreasing and w(r) = 0 if and only if r = 0, the relation
above holds true only if lim;14 o ||2(t, @, §)|| = 0. The proof is complete. [

As concerns the global asymptotic stability of the system (5.4.1), we
have:

Theorem 5.4.3  Let us assume that 0 = R™ and that the system (5.4.1)
has a Lyapunov function V : Ry x R™ — R, satisfying all the hypotheses
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of Theorem 5.4.2. If, in addition, w : Ry — R, in Definition 5.4.1 satisfies

lim w(r) = +oo,
rT4+00

then the system (5.4.1) is globally asymptotically stable.

Proof. The only difference from the proof of Theorem 5.4.2 consists in
that all the evaluations there performed are still valid for every € € R*. We
emphasize that the hypothesis imposed on the function w is needed only
in proving that, for every a € R, and every £ € R™, the unique saturated
solution z(:, a,£) of (5.4.1), satisfying xz(a, q,€) = &, is global, i.e. defined
on |a, +00). O

For autonomous differential systems, i.e. for systems of the type
z' = f(z), (5.4.6)

where f : Q@ — R™, we look for autonomous Lyapunov functions, i.e. we
look for functions V : € — R which do not depend on t. Lemma 5.4.1
below gives a sufficient condition in order for such a function be positive
definite.

Lemma 5.4.1 IfV:Q — R is continuous on &, V(0) =0 and V(z) >0
for every x € Q, & # 0, then there exists a neighborhood of the origin,
Qo C Q, such that V is positive definite on Q.

Proof. 1t suffices to show that V is positive definite on a set of the form
B(0,p) C Q, with p > 0 suitably chosen. To this aim, let p > 0 such that
B(0,p) C Q, and let w: Ry — R, be defined by
inf{V(z); r <zl < p}for0<r<p
w(r) =
w(p) for r > p.

Clearly the function w is continuous and nondecreasing on R, . In addition,
one can easily see that w(r) = 0 if and only if r = 0. Consequently V is
positive definite, which completes the proof of the lemma. ]

Corollary 5.4.1 IfV :Q — R satisfies

(i) V is of class C* on Q and V(0) = 0;
(ii) for every z € §, z # 0, we have V(z) > 0;
(iii) for every x € Q we have

Z fil 6% 0,
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then there ezists a neighborhood of the origin, Qy C €, such that V is a
Lyapunov function for the autonomous equation (5.4.6) on Q.

The image of the trajectory of an autonomous differential system in R?
through a Lyapunov function V is illustrated in Figure 5.4.1 below. The

Figure 5.4.1

sense indicated corresponds to the sense of increase of the argument t. The
practical effectiveness of Corollary 5.4.1 is illustrated by the next example.

Example 5.4.1 Check for stability the null solution of the differential
system

) = —x123 — Ta
7
Ty = T1 + T1T2.

Let us observe from the beginning that the system above may be re-
written as a vector differential equation z’ = f(z), where f : R?2 — R?
is defined by f(z) = (fi(z), f2(2)) = (—2122 ~ Z2,21 + 7173), for every
z = (z1,z2) € R% Obviously f is of class C™ while its Jacobian matrix at

0is
0-1
A= .
(1%)

The equation det(A — AJ) = 0 has the roots +i and therefore A is not
hurwitzian. For this reason, none of the stability results proved in the
preceding section can be used in this case. Nevertheless, we will show
that the system above possesses a Lyapunov function defined on a suitably
chosen neighborhood 2 of 0. To this aim, let us observe that the function
V:(-1,1)x(~1,1) - R defined by V(z) = 21 + 22 —In(1+z;) —In(l +xz4)
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for every z = (x1,22) € (—1,1) x (=1,1) is of class C*, V(0) =0, V(z) > 0
for every z # 0 and

f1(e) gon(@) + ala) oo () = 0

for every z € (—1,1) x (—1,1). From Corollary 5.4.1 it follows that V is a
Lyapunov function for the system and therefore, by virtue of Theorem 5.4.1,
the null solution is stable.

We conclude with the remark that the manner, somehow obscure, in
which we have found the function V will be much more understandable and
completely clarified in the next chapter where we will present a necessary
and sufficient condition in order that a function V' remain constant along
the trajectories of an autonomous system. For this reason we do not enter
into details which could distract us from the essence of the problem: the
fact that Theorem 5.4.1 is useful in situations in which Theorem 5.3.3 is
not.

In the case of first-order systems of linear differential equations with
constant coefficients

7 = Az, (5.4.7)

where A € M, x,(R), we have the following characterization of global and
uniform asymptotic stability.

Theorem 5.4.4 (Lyapunov) The system (5.4.7) is globally and uniformly
asymptotically stable if and only if there exists a symmetric, positive definite
matric P € Myyn(R) satisfying

AP+ PA =7, (5.4.8)

where A* is the transpose of the matriz A.

Proof. According to Theorem 5.2.6, (5.4.7) is globally and uniformly
asymptotically stable if and only if A is hurwitzian. For the necessity let
us assume that A is hurwitzian. Then, by virtue of the obvious equality
det(A — AJ) = det(A* — AJ), it follows that A* is hurwitzian too. So, from
Lemma 5.2.1, there exist M > 1 and w > 0 such that

“etj{“M < Me—tw and “etA‘ “M < Me—tu
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for every t € Ry. We can then define
+o0 .
P= / e et dt
0

since the integral on the right-hand side is convergent. Let us observe that
the matrix P is symmetric. Indeed, as (e*4)” = et4” and (BC)* = C*B*,
from (ii) in Lemma 8.1.3 we have

+oo - * Foo * * +oo *
P* = (/ et emdt> =/ (em em) dt :/ e etrdt = P.
0 0 0

From (iii) of the same Lemma 8.1.3, we deduce
+o00 . +oo
Pz, ) = / (A" ety ) dt = / etz |2dt.
0 0

So (Pz,z) > 0 for z # 0, and therefore P is positive definite. To conclude
the proof of the necessity let us observe that, from (i) in Lemma 8.1.3, it
follows that
+00 . +o00 d .
A*P =/ Aret et :/ — (em > et dt,
0 o dt

from where, integrating by parts, we get

. +o0 . d
A*P = A7t —/ et — () dt = ~J — PA.

0 dt
The sufficiency follows by observing that, if P is a positive definite and
symmetric solution of (5.4.8), then V : R™ — R defined by V(z) = 3(Pz, z)
is a Lyapunov function for the system (5.4.7). Indeed, we can easily see
that VV(z) = Pz, while from (5.4.8), it follows that (Pz, Az) = —1|z||?
for every x € R™. Hence V is a Lyapunov function for the system (5.4.7).
In addition, because P is positive definite, there exists n > 0 such that
V(z) > nlz||? for every z € R™. From this observation and from the
obvious inequality V(z) < £{|P|)x¢|z||? for every z € R?, we deduce that V
satisfles the conditions of Theorem 5.4.3. Hence the system (5.4.7) is global
and asymptotically stable. According to Theorem 5.2.6, the matrix A is
hurwitzian and therefore, again from the same Theorem 5.2.6, it follows
that the system (5.4.7) is globally and uniformly asymptotically stable.
The proof is complete. |

Remark 5.4.1 The existence of a matrix P, satisfying a more general
equation than (5.4.8), has been considered in Problem 4.12.
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We conclude this section with a direct application of the previously
proved results to the study of stability of the null solution for a class of
autonomous dissipative systems. A much more detailed analysis of the
stability problems in connection with these systems will be done in the
next section.

Let 2 be an open neighborhood of the origin and let A :  — R™. We
recall that A is dissipative if (A(z) — A(y),z — y) <0 for every z,y € Q.
Let us consider the autonomous equation

z’' = A(z). (5.4.9)

Theorem 5.4.5 If A : Q — R" is a continuous dissipative function
with A(0) = 0, then the null solution of (5.4.9) is stable. If, in addition,
Q = R™ and for every x € R", z # 0, (A(z),z) < 0, then the system
(5.4.9) is globally asymptotically stable, i.e., for every & € R™, we have
t%ﬁr;ou(t,o,f) = 0, where u(-,0,€) : [0,+00) — X s the unique global

solution of (5.4.9) satisfying v(0,0,&) =&.
A closely related result has been proved in Section 3.4. See Lemma 3.4.1.

Proof. Since A is dissipative and A(0) = 0 it follows that V :  — R,
defined by V(x) = 3||z||? for every z € ©, is a Lyapunov function for the
system (5.4.9). Indeed, V is of class C!, V(0) = 0 and is positive definite;
the function w being in this case defined by w(r) = 3r? for r € R. In
addition, as for every z € )

ZA —(z Y Aile)z: = (Alz), ),
i=1

from the dissipativity of the function A and from the condition A(0) = 0,
we deduce that V, defined as above, is a Lyapunov function for (5.4.9).
From this observation and Theorem 5.4.1, it follows that the null solution
of the system (5.4.9) is stable. If in addition Q = R™ and (A(x),z) <0 for
every z € R™ with z # 0, then, according to Lemma 5.4.1, the functions
An i R® — R, defined by A(z) = }||z||? and n(z) = —(A(z),z) for every
z € R™, satisfy the conditions of Theorem 5.4.3. The proof is complete. O

5.5 The Case of Dissipative Systems

As we have seen in the preceding section, in the case of dissipative systems
for which 0 is an equilibrium point, the function V : R*® — R, defined by
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V(z) = }||z|? for every = € R™, is a Lyapunov function. Now, we will show
that, due to the particularities of these systems, we can reveal new and
interesting properties of global solutions with regard to their asymptotic
behavior as t approaches +o00.

Let A : R* — R”™ be a continuous and dissipative function and let us
consider the autonomous equation

' = A(z). (5.5.1)

Fora € R, and £ € R®, we denote by z{-, a, £) the unique saturated solution
of equation (5.5.1) which satisfies z(a,a,£) = £. From Theorem 2.4.6, it
follows that this solution is global, i.e. defined on R.

Let t > 0 and let S(t) : R®™ — R™ be defined by S(£)¢ = z(¢,0,£) for
every £ € R™. As we have seen in Theorem 3.4.1 in Section 3.4, the family
of operators {S(t); ¢t > 0}, defined by means of the relation above, satisfies:

(S1) S(t+ s) S(t)S(s), for every t,s > 0;
(S2) 5(0) =

(S3) hm S(t )§ £ for every £ € R™;

(S4)

(55)

Sy I]S(t).f S| < ||€ — 7)) for every ¢t > 0 and every £, € R™;

Ss ltllnoli (S(t)€ — &) = A(¢) for every € € R™.

We recall that this family of operators is the semigroup of non-expansive
operators generated by A.

Definition 5.5.1 Let £ € R™. The set

v(€) = {S(t)§ t = 0}
is the trajectory, or the orbit of the solution of (5.5.1) starting from ¢&.
Definition 5.5.2 Let £ € R™®. The set

w(é) = {P € R™; 3ty — +oo such that klim S(tg)€ = p}
— 00

is the w-limit set of the trajectory v(£). In the specific case n = 2, an w-limit
set which is the trajectory of a periodic solution is called limit cycle.

One trajectory of the dissipative system
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approaching its w-uunit set is illustrated in Figure 5.5.1 (a), which in this
case is even a limit cycle, while Figure 5.5.1 (b) shows the graph of the
corresponding solution.

Figure 5.5.1

We denote by A71(0) = {y € R*; A(y) = 0} and let us recall that a
subset D in R™ is convez if, for every z,y € D and every A € (0,1), we have
A+ (1-MNyeD.

Lemma 5.5.1 Let A:R™ — R" be continuous and dissipative. If the set
A~Y0) is nonempty, then it is closed and convez.

Proof. Since A is continuous, it follows that A~1(0) is closed. In order to
prove the convexity, let z,y € A~1(0) and £ € R™. From the dissipativity
condition, we deduce that

(A(g),§ — z) = (A(§) — Alz),§ — ) < 0.
Analogously

(A€, € —y) <0.

Multiplying both sides of the two inequalities: the first one by A € (0,1),
the second one by 1 — A € (0,1), and adding them side by side, we get

(A(€), € — Az — (1 - Ny <0.
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Denoting by z) = Az + (1 — Ay, the inequality above can be rewritten in
the form

(A€),§ —zx) <0 (5.5.2)
Let now € € (0,1) and 2z € R". Taking £ =& = ez + (1 —€)z in (5.5.2),
we deduce

(1 —¢e){A(L) z—z)) <0.

Dividing this inequality on both sides by 1—¢ > 0, and then passing to the
limit for € tending to 1, we obtain

(A(zr),z—zp) €0

for every z € R™. Taking z = z) + A(z:), we get (A(zy), A(zy)) <0,
which is equivalent to A(zy) = 0. Hence Az + (1 ~ A)y € A~1(0) for every
z,y € A71(0) and every X € (0,1). The proof is complete. a

Lemma 5.5.2 Let A: R" — R" be continuous and dissipative. Then
AH0) = {y e RY; S(t)y =y for each t > 0}, (5.5.3)

where {S(t); t > 0}, is the semigroup of non-expansive operators generated
by A.

Proof. We begin by showing that A71(0) C {y € R™; S(t)y =y, t > 0}.
Let y € A71(0) and let us define the function ¢ : R, — R"™ by ¢(t) =y for
every t > 0. Obviously ¢'(t) = 0 = A(y) = A(¢(t)) for every ¢t > 0. On the
other hand, y = ¢(t) = S(t)y, for every t > 0, and since y is arbitrary in
A~1(0), we have

AH0) € {y € R*; S(t)y =y for every t > 0}.

Let now y € R™ with S(t)y =y for every t > 0. Since S(t)y = z(¢,0,y)
for every t > 0, we deduce 0 = (S(t)y) = A(S(t)y) for every t > 0, equality
which is equivalent to y € A~1(0). It then follows

{y € R™;, S(t)y = y for every t > 0} C A™(0)
and this completes the proof. a
Lemma 5.5.3 Letn € w(€) and let (tg)ken with klirgo(tk+1 —tg) = +o0
and klirr;o S(te)e =n. Then

klingo S{tg+1 —te)n =7 (5.5.4)
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Proof. We denote by s = txy1 — t; and let us observe that, from (S;)
and (Sy), it follows

15(sk)n —nll = 1S (se)n — S(sk + £x)€ + S(si + tr)€ — 7

< 1S (se)n—S(sk)S(te)Ell + 1S (trr1)€ =l < Hln— S (el +[|S(trr1)€ =7

for every £ € N. Since limy_,o S(tx)€ = 7, this inequality completes the
proof of (5.5.4). O

Remark 5.5.1 We mention that, for every nn € w(£), the sequence (t)ken
with the property that limg_ootx = +oo and limg_,o S(tx)é = 7, can
always be chosen in order to satisfy the condition imposed by Lemma 5.5.3,
e limgooo(tky1 — tx) = +oo.

Theorem 5.5.1 Let A: R™ — R" be continuous and dissipative. If the
set A71(0) is nonempty and &€ € R™, then:

(i) w(&) is nonempty, bounded and closed;

(ii) for everyt >0, S(t)w(€) C w(€);

(ili) for every n,v € w(€), we have |S(t)n — S| = |In —v|l;

(iv) for every n € A~L(0), there exists r > 0 such that

w(§) C {z €RY |z —n| =1};
(v) if w(€) C A7Y(0) then w(€) contains only one point n and
t}lgo S(t)E =n.

Proof. In order to prove (i) it suflices to show that the trajectory of
equation (5.5.1) issuing from £, v(£), is bounded. Then, it will follow
that the function ¢ — S(¢)¢ has at least one limit point as ¢ approaches
+00. Since A~!(0) is nonempty, there exists at least one y € R™ such that
A(y) = 0. Taking into account that S(¢)¢ = z(t,0,£), we have

(S()€) = A(S(t)€) — A(y)

for every ¢ > 0. Taking the inner product both sides of this inequality
by S(t)}¢ — y, and using the dissipativity condition and Lemma 8.1.2, we
deduce

2 (Ise —ul) <0

for every t > 0. From here, it follows that ¢ — ||S(t)§ —y|| is non-increasing
on {0,4o00) and by consequence [|S(t)¢ —y|| < ||€ —y|| for every t > 0. But
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this inequality shows that the function t — S(t)¢ is bounded on [0, +00),
or equivalently that v(£) is bounded. From the remark above and Cesard’s
lemma, it follows that w(£) is nonempty, bounded and closed, which shows
that (i) holds true.

Let 7 € w(§) and t > 0. Then there exists (tx)reny with lmg ooty =
+o0 and limg_o S(tx)§ = 7. In order to check (ii) it suffices to show that

lim (¢ +t)€ = S(t)n. (5.5.5)
To this aim, let us observe that, from (S7) and (S4), we have

15(t -+ tx)€ = Sl = [15(6)S ()€ — SE)nll < [[S(Ex)E —7ll

for every k € N, inequality which proves (5.5.5).
In order to prove (iii), we will show first that, for every 1 € w(€), we
have

w(n) = w(). (5.5.6)

From (5.5.4) and Remark 5.5.1, it follows that w(¢) C w(n). In order to
prove the converse inclusion, let v € w(n) and let (¢x)gen with limg_,o0 t =
400 and limg_o S{tx)n = v. Since 1 € w(¢), we conclude that there exists
(Tk)ken With limge 7k = +oo0 and limg_,eo S(7x)§ = 7. Denoting by
By = tx + Tk, we have limy_, o ()¢ = v. From this relation, we deduce
that w(n) C w(&), inclusion which, along with the preceding one, proves
(5.5.6).

Let now n,v € w(€). From (5.5.6), we know that n € w(v), and
therefore there exists a sequence (7g)geny with limg_oo 7% = 400 and
limg o0 S(7k)v = 1. On the other hand, as v € w(€), according to
Lemma 5.5.3, there exists (sx)ren with limg_,o0 S = +00 and

klim 1S(sk)v ~v| = 0. (5.5.7)
Let us remark that

15 (sk)n—nll < 1S5 (sk)n=S(re+si)vl|+11S (ra+sx)v =S (T )Vl 4[| (7 )y —nll

< 2||8(re)v — all + 1S (sk)v — ||
for every k € N, inequality which, along with (5.5.7), shows that
{ lim S(sg)v=v
k00

lim S{sg)n=rn. (5.5.8)
k—oc
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From (5.5.8), (S1) and (S5), we deduce

ln— vl = Jim §S(si)n - S(siv]

= lim ||S(sk —1)S(t)n = S(sx — 1)S(E)v)| < |1S(t)n - Sl < [In — v

for every ¢ > 0, which proves (iii).
Let n € A=1(0). Then the function ¢t — S(t)¢ satisfies

{ (5(t)€) = A(S(8)§) — A(n)
5(0)¢ =¢.

Multiplying both sides of the equation above by S(¢)€—n, from Lemma 8.1.2
and the dissipativity condition, we deduce

22 (It i) <0

for every ¢ > 0. Consequently the function ¢t — {|S(t)€ —nl| is non-increasing

on R, and, as it is bounded from below (being positive), there exists
Jim [[S(0) — )l = r.

This relation shows that, for every v € w(£), we have ||v — 5| = r and

therefore w(¢) C {z € R™; ||z — n|| = 7}, which proves (iv).

Let us remark that, in accordance with (iv), for every n € A~1(0),
there exists r > 0 such that w(¢) C {x € R"*; ||z — 7| = r}. Taking
n € w() ¢ A7H0), it follows 7 = |[p—n|| = 0, which shows that w(¢) = {n}.
Obviously this relation is equivalent to t%lin S(t)¢ = n and this completes

o

the proof. |

5.6 The Case of Controlled Systems

All the equations and systems of differential equations considered by now
were abstract expressions of some mathematical models describing the free
or uninfluenced evolution of some phenomena from Physics, Demography,
Biology, etc. In contrast with these models which offer only a contempla-
tive description of the evolution, there are some others trying to catch the
possible external interventions done during the evolution with the precise
purpose to modify it according to some performance criteria. For instance,
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as we have already seen in Section 1.4, the free evolution of a species of
bacteria is described by the so-called logistic equation

z' = cx(b— x),

where z(t) stands for the number of bacteria at the moment ¢, b > 0 and
¢ > 0. Since the null solution of this equation is unstable (see Remark 5.1.1),
it is clear that, once we intend to make this number z(t) tend to 0 as ¢
approaches +00, we have to intervene in the evolution of the system trying
to minimize, as much as possible, the instantaneous rate of growth of these
bacteria. In order to fix the ideas, let us assume that the case in question is
that of a contagious disease whose complete remission rests heavily on the
action of a certain drug, having the role of bringing the number of bacteria
involved as close to 0 as possible in a fairly reasonable short time. This
external intervention can be expressed by means of the new mathematical
model:

2’ =cx(b-z) + ku. (5.6.1)

More precisely, v : R, — R, is a function which gives a quantitative
description of the intervention, while & < 0 signifies the fact that this
intervention takes place in the desired sense, i.e. in order to minimize z'.
We can imagine, for instance, that u(¢) represents the amount of penicillin
used at the moment ¢t with the scope of diminishing as much as possible
x(t).

At this moment, some observations are needed. Firstly, it is clear that,
from medical reasons, the values of the function u cannot exceed a certain
admissible maximal level. Second, let us remark that, from rather obvious
practical considerations, the function u cannot be continuous. Instead, it
may be (and, in this case, it certainly is) a step function. Finally, we have
to take into consideration a very important economical criteria, i.e. the
total cost of the recovering, amount expressed mathematically as Pu(+o0),
where P > 0 is the per/unit price of the penicillin while u(400) is the total
quantity of penicillin used, be minimal.

We conclude with a special mention on such kind of problems, mention
having a general character. In practice one uses the fact that the function
u*, which enjoys all the required properties, can be expressed in the form
u*(t) = Q(z*(¢)) for every ¢ € R, where z* is the solution of the problem
(6.6.1) corresponding to u = u*, while @ : R — R is the so-called synthesis
operator or feedback operator. Substituting ku by kQ(x) in equation (5.6.1),



194 Elements of Stability

we get
g’ = cz(b~z) + kQ(z), (5.6.2)

called the closed loop system. Recalling once again the fact, of maximal
importance in this context, that the null solution of the logistic equation is
unstable, it is easy to understand why the function @ which, in general, is
neither unique, nor known, has to be chosen such that the null solution of
the closed loop system (5.6.2) be asymptotically stable.

This is an extremely simple example of a control system which, we
believe, is convincing enough with regard to the importance of the study
of this branch of Applied Mathematics which is in a very fast process of
development.

We will now proceed to the statement, within a general abstract frame-
work, of a large class of such control problems. For the sake of simplicity we
will confine ourselves only to the linear case in which the control function,
or controller u, is real valued. Let us consider the system

z' = Az + u(t)b, (5.6.3)

where A € Muxn(R), b € R” and u : Ry — R. Such a system is called
control system. The function u is called controller or input, while x the
state function, or output. In many cases the state is known only in an
indirect form y = n(x), where 7 is the so-called observation operator, while
y is the observed variable or the observed output. For instance, in the case
of the example presented before, the total number of bacteria z cannot be
effectively counted. Nevertheless, we can make a pretty good idea on its
size once we have access to some variable which is “drastically dependent”
on it, as for instance the temperature y = n(z) of the infected subject. In
general, the observation operator 7 depends on z by means of a differential
equation of the type

7'(t) = (e, x(t)) — ap(n(t)), (5.6.4)

where ¢ : R — R is a nonlinear law, usually known, while & > 0, ¢ € R"
and b € R™ are the so-called regulating parameters. The problem in this
context is to find some easy to check sufficient conditions in order that the
system

2’ = Az + p(n(t))b
{ﬂ’(t) = (¢, z(t)) — ap(n(t)) (5.6.5)
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be globally asymptotically stable for any choice of the function ¢ : R — R
which satisfies the conditions

np(n) >0foreveryn € R, n#0 (5.6.6)
and
7
lim / o(r)dr = +oo0. (5.6.7)
N+ Jg

The problem above is the so-called Lurie-Postnikov problem.

Theorem 5.6.1 If A is hurwitzian, then there exist @ > 0, b € R™ and
¢ € R™ such that, for every ¢ : R — R which satisfies (5.6.6) and (5.6.7),
the system (5.6.5) is globally asymptotically stable.

Proof. The idea is to construct a Lyapunov function which satisfies all
conditions of Theorem 5.4.3. More precisely, let V : R® x R — R be defined
by

V= @na) + [ e,

where P is the symmetric and positive definite matrix whose existence is
ensured by Theorem 5.4.4. Also from Theorem 5.4.4 combined with (5.6.6)
and (5.6.7), it follows that V' is positive definite and

lim Viz,n) = +o0.
flzli+in]—+oo (@)

On the other hand, we have

VV(z,n) = (Px)1, (Px)a, - ., (P2)n,s 0(n))

where (Pz); is the component of rank 4 = 1,2,...,n of the vector Pz. Let
us observe that the system (5.6.5) rewrites in the form 2z’ = f(z), where
f iR — R s defined by f(2) = f(x,7) = (Az+p(m)b, {c,z) —ap(n))
for every z € R**1, z = (z,7). Then we have

(VV(z,n), f(z,m)) = (Az, Pz) + 0(n){b, Pz) + p(n){c, z) — axp?(n).

From this relation, taking into account that P is symmetric and satisfies
A*P + PA = -7, it follows that (Az, Pz) = —1||z||%, and therefore

(VV(Q),T]), f(ffyﬂ)) = “%”1'“2 - a‘PZ(T]) + (P(n)(c + be,:c)
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1
< =5 llell® = ap®(n) + p(mie + Pollfiz.

Consequently, if a, b and c satisfy the so-called regulating inequality

[|Pb+cll < V2a,
then V fulfills all the conditions of Theorem 5.4.3, from where it follows
that (5.6.5) is globally asymptotically stable. O

5.7 Unpredictability and Chaos

As we have already noticed occasionally, the study of differential equations
and systems of differential equations owes the main part of its tremendous
development to the efficiency in predicting with great accuracy the future
evolution of many phenomena of practical interest. We emphasize that, in
the mathematical treatment of concrete problems, in general, we cannot
dispose of the exact initial data of the Cauchy problem which models the
phenomenon in question. This inconvenience is due to the technological
impossibility to diminish a certain degree of imprecision in the process of
measurement, and also to the inevitable errors: of reading, of rounding,
random, etc., appearing during both the collection and the processing of
data. So, the user of the techniques and previously established abstract
results has to confine himself, almost at any time, with approximate data.
A fundamental problem raised in this context is to establish the “degree of
credibility” of a conclusion obtained on this basis. It is easy to understand
that, in order to make such a prediction which could be accepted and took
into consideration in getting conclusions with a very low level of ambiguity,
we need:

(i) a mathematical model describing the real phenomenon as accurate
as possible, and whose solutions be stable;

(i) numerical data as close as possible to the real values of the initial
state of the system;

(iii) efficient numerical methods and suitable computing equipment in
order to find as fast as possible the approximating solutions of the
system with an error not exceeding a certain preassigned critical
level imposed by practice.

In order to understand these requirements, let us analyze the following
examples. We begin with one, with no apparent connection with differential
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equations, example adapted from [Hubbard and West (1995)], Example 522,
p. 216.

Example 5.7.1 Let us consider a system in which, to every bit of a
clock a certain angle doubles. The state of the system is the angle and it
doubles again and again at each second. So, the evolution of the system is
completely described by the sequence of angles: 6,01, ..., where 6 is the
initial state, while 8,41 = 26, for n = 0,1, 2,.... Let us remark that, if 8y
is very slightly perturbed, say with 1078, after only 30 seconds, the state of
the system is completely unknown, simply because the degree of uncertainty
grew up to 2%° x 1078 > 1. As a consequence, the evolution of this system,
although extremely simple and ordered, is practically unpredictable even
on short intervals of time.

Example 5.7.2 Let us consider the differential equation ' = z and
we aim to determine the approximating values of the solution z(-,0,7) at
t = 10 with an error not exceeding 10~2. We have chosen the initial data 7
simply because, this one being an irrational number we are forced to replace
it during the numerical processing by some of its rational approximates. Let
us remark that “the exact solution” is given by

£(10%°,0,7) = el

while the approximate solution corresponding to the approximate value m,
of 7 is

2(10'°,0,7) = 7rael°m.

Then, the error is

&(ma) = |m — mq €20,
In order for the error not to exceed 102, the approximate value 7, of =
must satisfy

T —m,| < 1072107,

"To do this we must choose 7, with more than 3, 000, 000 exact digits, a fact
which is very hard to achieve practically.

Let us observe that, if we take as approximate initial data a truncation
7, of 7 satisfying the realistic and feasible condition |7 — m,] < 1073, the
absolute error of the corresponding approximate solution is greater than
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1073 x €19, Since ® > z? for z > 100, the error exceeds 1057 So, the
information thus obtained is completely inaccurate and of no practical use.

Consequently, we may consider that the evolutions described by the
equation =’ = z, although ordered, are unpredictable on long term. This
fact is nothing but a simple consequence of the instability of the linear
differential equation above.

These two examples which reveal the great importance, in the study
of such kind of problems, of the so-called entropy. In this context, the
entropy is the rate at which the information dissipates in time, which may
be identified with the rate of growth of the degree of uncertainty, or with
the minimal time needed to double the uncertainty. For instance, in the
case previously analyzed, the rate of growth of the degree of uncertainty
on an interval of time T is e?. This is due to the fact that an initial
error (uncertainty) € multiplies after the time T by €. In other words,
the remark above asserts that, on every interval of time of length In 2, the
degree of uncertainty doubles.

Besides these very simple situations when the evolution of the system,
although “ordered”, is unpredictable on long term, there are examples of
systems having stationary solutions with very strange behavior, in the sense
that, for initial data very close to the stationary solution, the corresponding
solutions have a highly disordered even chaotic evolution, on relatively short
intervals of time. An example of this kind is the celebrated Lorenz system
in [Lorenz (1963)].

Example 5.7.3  Let us consider the so-called Lorenz nonlinear differential
system

’

¥ =—ox+ oy
y=re—y—uz (5.7.1)
2= -bz+xy

which is a simplified model, deducted from a system of partial differen-
tial equations describing thermal convection within an incompressible fluid
moving in a horizontal plane. Here b > 0, 0 > b+ 1 and r > 0 are
some parameters which characterize the fluid. For r € (0,1), the system
above has a unique stationary solution, namely (0,0,0), which is stable.
For » > 1, the null solution is no longer stable and, in addition, the sys-
tem has two more stationary solutions (1/b(r — 1), /b(r — 1), — 1) and
(=/b(r — 1), ~+/b(r — 1),7 — 1). Actually, these two new stationary solu-
tions mark the beginning of an extremely stirred convection process which
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starts when r crosses from the left the value 1.

(a) (b

Figure 5.7.1

This strange behavior has been observed in 1963, by the meteorologist
Edward N. Lorenz from Massachusetts Institute of Technology, who used
this system in order to get meteorological predictions on short term. More
precisely, during some numerical simulations, he has observed that certain
solutions of the nonlinear differential system (5.7.1), for the specific choice
o =10, r = 28 and b = 8/3, seem to become closer and closer, in a
very disorderly manner — and therefore highly unpredictable — either
to one stationary solution, or to the other. Lorenz has stated that very
small perturbations of the initial data produce considerable modifications
in the evolution of the system. The projection on the 2Oz plane of one
trajectory of the Lorenz system is illustrated in Figure 5.7.1 (a), while the
graph of t — (x(t),z(t)) (the t-axis is vertical) in Figure 5.7.1 (b). One
may easily observe the chaotic evolution of the solution corresponding to
this trajectory which “becomes closer and closer” both to the first and the
second stationary solution.

This disorderly behavior generating unpredictable evolutions on
medium, or even short term, is known in the literature under the name
of chaos, or chaotic behavior.
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In order to understand and to explain what is really hidden behind this
apparently paradoxical phenomenon, we will define the so-called modulus
of continuity of the solution of a Cauchy problem as a function of the initial
data. To this aim let f: R®™ — R™ be a locally Lipschitz function and let
us consider the Cauchy problem

{x/ N f(‘”.) (5.7.2)

Let us assume that for every £ € R™ the unique saturated solution of (5.7.2),
z(-,€), is global and let us observe that, by virtue of Theorem 2.5.2, for every
T > 0, the function € — z(-,£) is continuous from R” to C([0,T'];R?).
This means that, for every £ € R", every T' > 0 and every € > 0 there
exists §(&,T,¢) > 0 such that, for every 5 € R™ with ||€ — 9|l < §(¢,T,¢)
we have [|z(t,£) — z(t,n)|| < & uniformly with respect to £ € [0,T]. We
denote by m(£,T,€) the larger real number 6(¢,T,¢) from (0,1] with the
properties above. The function € — m(£,T,¢) is called the modulus of
continuity of the function n — z(-,7n), from R"™ in C([0,T];R"), at a point
€. One may easily observe that, in general, for £ € R™ and € > 0 fixed,
the function T — m(&,T,¢€) is non-increasing. One may also see that a
stationary solution £ of the system z' = f(z) is stable if and only if, for
every € > 0, inf{m(&,T,e); T > 0} =m(€,e) > 0.

The last two examples dealt with the manner in which m varies as a
function of T. More precisely, the extremely drastic growth of the degree
of uncertainty is caused by the very abrupt decrease of the modulus of
continuity m with respect to T'.

In other situations, which we did not touch upon by now, the unpre-
dictability and chaos are generated by the instability of the solutions with
respect to one or to several parameters. Many mathematical models des-
cribe phenomena whose evolution laws modify as functions of a certain
parameter. So, the evolutions of such a phenomenon are described by a
differential system of the type

' = f(t,z,p), (5.7.3)

where f: R, x R® x P — R" is a continuous function, while IP is an open
subset in R™. We denote by z(-,a,£,p) : {a,T) — R” the unique saturated
solution of the system (5.7.3) which satisfies z(a,q,€,p) = £ and let us
assume that 0 € P and f(t,0,0) = 0 for every ¢t € R, which means that,
for the value 0 of the parameter, (5.7.3) has the null global solution. Let
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us also assume that f is locally Lipschitz on R™ x P. In these conditions,
paraphrasing the definition of stability we introduce:

Definition 5.7.1 The null solution of the system (5.7.3) is persistently
stable, or robust if:

(i) for every a > 0 there exists p(a) > 0 such, that for every p € P with
pll < pla), the unique saturated solution z(-,a,0,p), of (5.7.3),
satisfying z(a,a,0,p) = 0, is defined on [a, +o0) and

(ii) for every a > 0 and every € > 0, there exists d(¢, a) € (0, u(a)] such
that, for each p € P with ||p|| < &(e, a), the unique saturated solu-
tion z(-,a,0,p), of (5.7.3), satistying z(a,a,0,p) = £, also satisfies
|z(t,a,0,p)|| < e for every t € {a, +0o0).

We leave to the reader the definition of an analogous concept referring to
an arbitrary solution of the system (5.7.3) as well as of all other concepts
which paraphrase those of uniform, asymptotic and uniform asymptotic
stability.

As one can easily realize, the lack of robustness of a certain solution
could cause unpredictability and even chaos. A very interesting example of
this sort is that of the nonlinear oscillator.

Example 5.7.4 (Arecchi and Lisi, 1982) Let us consider the second-order
nonlinear differential equation

'’ + k' —z +4z° = Acoswt

where z(t) is the abscissa, at the moment ¢, of a material point of mass 1
moving under the action of a force F(¢,z,2') = —kz' + 1 — 423 + Acoswt
centered at the origin. It has been proved that, for every initial datum, the
solution evolves towards a periodic one, called by extension limit cycle. For
a special choice of k, A and w, the graph of the function t +— (z(t), 2'()),
with z : [0,50] — R the solution of the equation above satisfying z(0) = 10
and z’(0) = 0, is illustrated in Figure 5.7.2 (a), while the graph of ¢t — z(t)
in Figure 5.7.2 (b).

Moreover, one has observed that, the decreasing of the parameter? k,
has as effect the growing up to +oo of the period of the limit cycle. As a
consequence, there exists a sequence (k,, Jnew tending to 0, with the property
that the corresponding sequence of periods (T,)nen satisfies T, = 2T,

2In this model, the parameter k represents the coefficient of friction, while —ka’ the
force of friction.
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(@) ' ®)

Figure 5.7.2

for every n € N. From this reason, for very small values of & the evolution
described by the equation above becomes unpredictable, even chaotic.

In Figure 5.7.3, we reconsider the case in Figure 5.7.2 with the very
same data, excepting for &£ which now is ten times smaller.

A 2

@) : )

Figure 5.7.3

For a detailed and systematic presentation of theory of limit cycles the
interested reader is referred to [Ye et al. (1986)].
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All these examples lead to the conclusion that many phenomena which
evolve according to deterministic laws can be studied on the basis of these
laws only on very short intervals of time, and this because extremely small
perturbations of the initial data produce dramatic changes in the evolution
of the system. For this reason one may assert that “the determinism has
a local character”. On the other hand, some of these phenomena which
evolve towards chaos admit statistical models which may bring some ex-
tra information exactly where the deterministic techniques say nothing,
or very few. In many cases of this kind, the evolution, although chaotic
from a purely deterministic point of view, is, statistically speaking, very
smooth and regular, in the sense of the existence of the mean ergodic, i.e.

1
of Tlim T / z(t) dt. Here, we have in mind first the turbulence in Fluid

Mechanics, but also the disorders of the cardiac rhythm, the noises in the
electric lines, the evolution of a certain society, etc. For details on this
subject, the reader is referred to {Arnold and Avez (1967)].

5.8 Exercises and Problems

Problem 5.1  Let us consider the scalar linear differential equation
z’ = a(t)z, (€

t >0, where a : [0,+00) — R is a continuous function. Prove that:

(1) (&) s stable if and only if there exists a function K : [0, +00) — R such
that:

/t a{s)ds < K(to)

0

for every to > 0 and every t > tg;
(2) (&) is uniformly stable if and only if there exists M € R such that:

/;ta(s)dng

0
for every ta > 0 and every t > to;
(3) (&) is asymptotically stable if and only if
t

lim a(s)ds = —o0;
t—too [



204 Elements of Stability

(4) (&) is uniformly asymptotically stable if and only if there ewists K > 0
and o > 0 such that

i
/ a(s)ds < K — alt — to)
to

for every to > 0 and every t > tq.
([Corduneanu (1977)], p. 117)

Exercise 5.1  Check for stability the null solution of:

(1) ' ==z. (2) ' =0. 3) z' = —=.
(1) ' = -2z +sinz. (5) 2’ =z (6) ' = —z°.
(7) 2’ = —tan z. (8) 2’ = —sinz. (9) &' = —x + 2%

Exercise 5.2 Check for stability the following systems of first-order linear dif-
ferential equations :

/ / '

Ty = —21+ T2 Ty =22 T1 = 1 + 522
1) {z'z = 2x; — 3. ) {:z;'z = —z. 3) { 25 = —x1 — 3x2.

! 1 7

Ty = —Z1 + T2 Ty = —3x1 + 22 Ty = —231 + 42,
(4){:6/2::1:1 +2f1}2. (5){:17’2:4$1—31:2 (6){.’1112‘—".’7)1—-2%2.

.’Ellzccz m11=$2+"113 x’1=m2—m3
(7Y { =5 = x5 ) zo=x3+21 (9)¢ 25 =23 — 21

Th =x,. Th =z + T2, Th =1, — Z2.

Problem 5.2 Letw > 0 and f: {0, +00) — R be a continuous function which is
absolutely integrable on {0, +00). Prove that every global solution of the equation
2" 4wz = f(t), t > 0, is bounded on [0,+00). ([Corduneanu (1977)], p. 152)

Problem 5.3 Letw > 0 and f : [0,4+00) — R be a continuous function which
is absolutely integrable on [0,+00). Prove that the null solution of the equation
' + w?+ f(t)]x =0, t > 0, is uniformly stable. ({Corduneanu (1977)], p. 152)

Problem 5.4  Let A € Muxn(R) be hurwitzian. Let B : [0,4+00) = Muxn(R) be

continuous with tliin I1B(E)||a = 0. Prove that the null solution of the system
— 00

z' = [A+ B(t)|z, t > 0, is asymptotically stable. ([Corduneanu (1977)], p. 153)

Problem 5.5 Let A € Muxn(R) be hurwitzian and let B : [0, +00) — Mpxn(R)
be continuous with

+o0
/0 IB(s)llneds < +oo.
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Prove that there ezist k > 0 and a > 0 such that every solution z : {0, +o00) — R™
of the system ' = [A + B(t)]z, t > 0, satisfies

2@ < ke™**l=(0)]

for every t > 0. In particular the null solution of the system is asymptotically
stable. ([Halanay (1972)], p. 194)

Problem 5.6 Let Ax € Muxa(R), k=0,1,...,m. If Ao is hurwitzian then, for
every a > O there exists 8(a) > 0 such that, for every & € B(0,6(a)), the unigue
global solution z(-, a,£) of the Cauchy problem

{ ' =({t"Ag " AL+ A
z(a) =¢

satisfies
t_l}rfw z(t,a,&) = 0.

Problem 5.7 Let f : R+ xR — R be continuous on Ry x R and locally Lipschitz
on R and let z(-,&) : [0,+00) — R, & < &2, ¢ = 1,2, be two solutions of the
differential equation
= f(t,(ﬂ)
with z(0,&) = &, i = 1,2 and lim z(£,&) = lim z(t,£&2) = z* € R. Prove
t—+oo t— o0
that for every & € (£1,£2), the saturated solution of the equation above, z(-,§),

which satisfies ©(0,€) = &, is globally and asymptotically stable. ([Glivan et al.
(1993)], p. 178)

Problem 5.8 Let f : Q C R® — R™ be a locally Lipschitz function with f(0) = 0.
If all saturated solutions of the differential equation

z' = f(z)
are global and bounded on [0, +00) is the null solution of the equation above stable?

([Glavan et al. (1993)], p. 179)

Problem 5.9 Let f: R — R be a function of class C! with £(0) = 0 and having
the property that f'(0) = A > 0. Then the null solution of the equation z' = f(z)
is not asymptotically stable.

Exercise 5.3 Check for stability the null solution of the following first-order

nonlinear differential systems :

1 2 4 5 ’ .
T = —Zx1 + 23 501:I1+3Z2 $1=‘51n$1+5$2
2
(U{x’z:—z?—m. ( ){xg,z_ﬁ_%z, (3){52:%?_”

z} = 2z, — x5 Ty = —sinz, + z3 z} = 2shz,
() { Th = T1Z2 — Ty, (5) {ac’z = —4x; — bzo. (6) zh = —z% — 3z2.
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Exercise 5.4 Check for stability the null solution of the following first-order
nonlinear differential systems:

' 3 ‘ 5 ’ 3
z] = —x] + 2 Ty = —r] — 3x2 T1 = —x1 + by
o) {x’z = —x; — 223, ) {x'z = 3z; — 423, (3) {x'g = —z3 — 3z,.

= —2shx; + 4x3
= —z3 — 2w,

i

(4){m'1=x1—m§ (5){§:;=—sinz1+mz (6){

/
1
mlz =TTy — T3. —4x; — 3tan xa. 12

See also Problems 6.5 and 6.6 in the next chapter.



Chapter 6

Prime Integrals

This chapter is dedicated to the introduction and study of the concept of prime
integral for a system of first-order differential equations. In the first two sections
we present the main notions and results referring to this problem in the case of
both autonomous and non-autonomous systems. The third section is concerned
with the study of first-order linear and quasi-linear partial differential equations,
while the fourth section contains a fundamental existence and uniqueness theorem
with regard to the Cauchy problem for a class of first-order quasi-linear partial
differential equations. In the fifth section we collect some specific properties of
the so-called conservation law. The chapter ends with an Exercises and Problems
section.

6.1 Prime Integrals for Autonomous Systems

Let €2 be a nonempty and open subset in R", let f : @ — R"™ be a continuous
function and let us consider the autonomous system

z' = f(z). (6.1.1)

In many specific situations, considerations of extra-mathematical nature
based on the physical signification of the functions involved in (6.1.1), prove
the existence of some functions of class C?, U : §2 — R which, although non-
constant on 2, are constant along the trajectories! of the system (6.1.1).
Any family of functionally independent such functions could be of real help

1Here and thereafter, by trajectories of (6.1.1), we mean the trajectories corresponding
to the solutions of (6.1.1).

207
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in obtaining information on the solutions of (6.1.1) which, in most cases,
cannot be explicitly solved. Moreover, the larger is such a family, the big-
ger are the chances to solve (6.1.1) explicitly or, at least, to obtain crucial
information on its solutions. This is because, from a set of relations of the
form U;(zy,22,...,24) = ¢, ¢ = 1,2,...,p, with U; functionally indepen-
dent and ¢; constants, one can express (locally at least) p components of
z as functions of the other n — p. So, (6.1.1) is equivalent (locally) to a
system of n — p equations with n — p unknown functions.

In order to be more specific and explicit, let us analyze the following
example.

Example 6.1.1 Let us consider the second-order differential equation

z" = g(z),
where ¢ : R — R is a continuous function. This equation, obtained from
Newton’s second law, describes the movement of a material point of mass
1, along the Oz axis, under the action of a force parallel to Oz, and whose
intensity at the point of abscissa x is g(x). We mention that z(t) is the
position, z'(t) the speed and z'(t) the acceleration of the point at the
moment . We recall that, in accordance with Remark 2.1.2, the preceding
equation may be equivalently rewritten as a first-order system of differential
equations of the form

o

y' = g(z).

Multiplying the second equality in this system on both sides by y = ', we
deduce

22 ) = ole)e’

for every ¢ in the interval [0,T) of existence of the solution. Integrating
the equality above on both sides from 0 to £, we get

2120 - Gla(0)) = 547(0) ~ G(z(0))

for every t € {0,T), where G is a primitive of the function g.
So, the function U : R? — R, defined by

Ule,y) = 39 - G(2)
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for (z,y) € R?, which is obviously of class C' and nonconstant on R2?,
remains constant along the trajectories of the system.

Let us observe that the preceding equality rewrites in the equivalent
form

1 ,2 1 ,2

5270 - Gla(t) = 52°(0) ~ G(a(0)
for every t € [0,T'), which asserts that the total energy of the material point
remains constant on the trajectories.

An advantage of this observation consists in the possibility to reduce the
order of the equations by one unit, expressing either z, or z’, as a function
of the other one by means of the equality U(z,z') = ¢, where ¢ is a real
constant.

Another situation quite frequently encountered in applications is the
one in which the explicit solving of a system of differential equations is
practically impossible, but the determination of one unknown as a function
of the other one suffices in order to obtain the information we need. We
hope that the next example is convincing enough in this sense.

Example 6.1.2 Let us consider the prey-predator system

{IEI = (a — ky)zx
Y =~ ha)y

and let us assume that we intend to find out the number of individuals from
the predator species to a given moment T' > 0. In order to solve this pro-
blem it suffices to know 2(0) and y(0), and then to determine explicitly the
solution of the corresponding Cauchy problem. Unfortunately, due to the
nonlinearity of the system, this way is not easy to go through. Therefore, it
is of great importance to find a simpler procedure of getting y(T') avoiding
the explicit solving of the Cauchy problem. To this aim, let us assume that
we have at our disposal the technical devices to determine the number z(¢)
of individuals from the prey species at any time ¢ of its evolution. Then, in
order to determine y(T'), it suffices to express y as a function of z, z(0) and
y(0). In the case considered, this is clearly feasible because, considering y
as function of class C! of z, from the system, we get

by yb—hs)
dr ~  z(a—ky)
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This is an equation with separable variables and its general solution is
defined implicitly by

hxt+ky—blmz—alny=c

where £ > 0, y > 0 and ¢ € R. Consequently, in order to find y(7), it
suffices to know z(0) = &, y(0) = n and =(T'). In these circumstances, we
can obtain y(T") solving the equation

hx(T) + ky(T) —blnz(T) —any(T)=hé + knp—bIné —alny.

We emphasize the fact of extreme importance that, in order to solve
this problem by the method described before, we have to determine only
three values z(0) = £, y(0) = n and z(T'). Thereafter, without solving the
corresponding Cauchy problem, we can get y(7) from the equation above.

Definition 6.1.1 Let Qy C € be nonempty and open. A prime, or first
integral of the system (6.1.1) on £ is a function U :  — R satisfying

(i) U is nonconstant on £ ;
(ii) U is of class C! on Qp;
(iii) for every solution z : I — Qg of the system (6.1.1) there exists a
constant ¢ € R such that U(z(t)) = ¢ for every ¢ € L.

For n = 2, the situation described in Definition 6.1.1 is illustrated in
Figure 6.1.1.

q
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Figure 6.1.1
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Remark 6.1.1 Since (6.1.1) is autonomous, (iii) in Definition 6.1.1 is
equivalent to

(iv) for every solution z : [0,T) — §g of the system (6.1.1) there exists
a constant ¢ € R such that U(z(t)) = c for every t € {0,T).

Theorem 6.1.1 Let f : Q — R” be continuous, let Qg be a nonempty and
open subset in Q and let U : Qo — R be a function of class C*, nonconstant
on Qg. The necessary and sufficient condition in order that U be a prime
integral of (6.1.1) on o is that

> A ge (6 =0 (612
i=1 ¢

for every € € Qq.

Proof. Necessity. Let U be a prime integral of the system (6.1.1) on Qg,
let £ € Qp and let z(-,0,€) : [0,T,,) — §o be a saturated solution of the
system (6.1.1) which satisfies (0,0,£) = £. Since U(z(t)) = c for every
t € [0,T), it follows that

(U(x))(t)— x x(t»%(w— 5, OO

Taking ¢t = 0 in equality above, we get (6.1.2).

Sufficiency. Let z : [0,T) — Qo be a solution of the system (6.1.1). Let
us define the function g : [0,T) — R by g(t) = U(z(t)) for every t € [0,T).
Obviously g is of class C! and, by virtue of the relation (6.1.2), we have

6U dzx;

g =7 U ))()— 3z, EO) g ()— Z_(w(t))fi(x(t))=

Hence U(z) is constant on [0,7), and this completes the proof. g

Remark 6.1.2 The condition (6.1.2) has a very suggestive geometrical
interpretation. Essentially, it asserts that, for every £ € Qg for which
VU (&) # 0, the vector f(£) is parallel to the tangent plane to the surface
of equation U(z) = U(£) at £. Indeed, the condition (6.1.2) expresses the
fact that f(£) is orthogonal to VU (&) which, in its turn, is orthogonal to
the surface U(z) = U(€) at the point &.

In view of the preceding observation, we have:
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Theorem 6.1.2 Let f : Q — R™ be continuous, let o be a nonempty
and open subset in Q and let U : o — R be a function of class C* with the
property that VU(z) # 0 on Q. The necessary and sufficient condition in
order that, for each £ € p, every trajectory of (6.1.1), passing through a
point of the surface of constant level

Ze ={z € Qo; U(z) =U()},

remain entirely on this surface is that, for every £ € §}y and every n € X,
f(m) be parallel to the tangent plane to ¢ at 7.

Proof. The condition that, “for every &€ € Qg, all trajectories of equation
(6.1.1) starting from the surface 3¢ remain entirely in X" is equivalent to
the condition that, “the function U be constant on every trajectory of the
differential equation (6.1.1) having the initial datum in ", In accordance
with Theorem 6.1.1, the latter condition is equivalent to (f(¢), VU(€)) =0
which, in its turn, is equivalent to the condition that, for every n € Z¢,
f(n) be parallel to the tangent plane to ¥, at 7, and this completes the
proof of the theorem. O

We recall that a point a € § is a stationary point, or an equilibrium
point for the system (6.1.1) if f(a) = 0.

Definition 6.1.2 Let a €  and let Qo be an open neighborhood of a
included in Q. The prime integrals Uy, Us,...,Ux : &g — R of the system
(6.1.1) are independent at a if

oU;
rank( : a) =k.
8‘Tj( ) kXn

Obviously, (6.1.1) can have at most n prime integrals which are inde-
pendent at a point ¢ € 2. The following theorems bring precise information
in this respect, in the case in which a € Q is not a stationary point of the
system (6.1.1).

Theorem 6.1.3 Let f: Q — R”™ be continuous and let a € 2 be a non-
stationary point of the system (6.1.1). Then, on every open neighborhood
Qo of a included in Q, there exist at most n—1 prime integrals of the system
(6.1.1) independent at a.

Proof. Let us assume, by contradiction, that there exist at least one non-
stationary point a of the system (6.1.1) and one open neighborhood Qg of
a, included in Q, such that (6.1.1) has n prime integrals Uq,Us,...,U, on
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2o, which are independent at a. From (6.1.2) in Theorem 6.1.1, it follows
that

oU: Uy U
(@5 @+ @S @+ + fal@) 5 (@) = 0

n

V@52 @)+ £@F2 @+ + @2 @ =0 (s15)

| A@F2 @)+ B@F2 @)+ + ful

ZU: (a) = 0.

Obviously, (6.1.3) can be interpreted as an algebraic linear homogeneous
system with the unknowns fi(a), fo(a), ..., fn(a). Taking into account that
Uy, Us,...,U, are independent at a, it follows that the determinant of this
system is nonzero. Consequently the system (6.1.3) admits only the trivial
solution fi(a) = f2(a) = -+ = fu(a) = 0, which is in contradiction with
the fact that a is non-stationary. This contradiction can be eliminated only
if Uy, Us,...,U, are not independent at a. The proof is complete. O

If f satisfies some extra-regularity conditions, the preceding result may
be considerably improved. More precisely, we have:

Theorem 6.1.4 Let f: Q — R™ be a function of class C! and leta € Q
be a non-stationary point of the system (6.1.1). Then, there ezists an open
neighborhood g of a, included in 2, on which there are defined n—1 prime
integrals of the system (6.1.1), independent on Q.

Proof. Let a € Q be a non-stationary point of (6.1.1). Relabelling the
components of f and those of x if necessary, we may assume with no loss
of generality that f,(a) # 0. Let

Q(a) = {()\17)‘2a s 71 1) e R"™ ¥ ()‘17/\2a . /\n—l,an) € Q}
We denote by ¢ : [0, T,) x 2(a) — Q the function defined by
¢(t’/\1a>‘2)'-'1 )_I(t )\I)AZ"" n—laan)

for (t,A1,A2,...,An—1) € [0,Tn) x Q(a), where z(-, A1, A2, .., Ap_1,an) is
the unique saturated right solution of (6.1.1) satisfying

Z(OaAhAz:' .. 1An—lyan) = (Ala/\27 e -v)\n~1,an)-
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From the fact that z(:, A1, Ag,...,An—1,a5) is a solution of the system
(6.1.1), and from (2.6.2) in Theorem 2.6.1, we deduce

D(¢17¢27"'7¢’n) (0 a1,as a 1)
Dl Ay hg) 01020y e

9z, Oy 0z
at 9\ .”6)\11_1
8 | e
= ot 0)\1 a)\n—l (O’a).: ' :(—1)n+lfn(a)7é0.
O2n Ozn  Oan fn(a)000...0
TR v

So, we are in the hypotheses of the local inversion theorem, from
where we deduce that there exists an open neighborhood Dg of
(0,a1,a2,...,an_1), included in [0,T,,) x ©(a), such that ¢ is invertible
on Dy, with inverse of class C!'. We denote this inverse by U : Qo — Dy,
U = (Up,Uy,...,U,_1), where Qg is an open neighborhood of a included
in Q. From the definition of the function U, it follows

Uo(ﬂ?(t,)\l,/\z,...,/\n_l,an))=t (614)
Ui(m(t,)\l,)\g,...,)\n_l,an))=)\,~, z=1,2,n——1 -
We will prove in what follows that Uy, Us,...,U,—1 are prime integrals

of the system (6.1.1), defined on 2y and independent at a¢. To this aim,
let us observe that, by virtue of the last n — 1 relations in (6.1.4), these
functions are constants along any solution of (6.1.1) with values in 9, and
which at 0 satisfies z,(0) = a,,. Let £ € Qp. Since U is the inverse of
the function ¢, it follows that (7, A1,...,Ap—1) = U(£) belongs to the set
10,Tn) x Q{a) and £ = z{7, \1,..., dp—1,8y). SO

m(t7€1y§27 e agn) = I(t,.’l)(T, A1, e ,)\n—l,an)) = .’E(t+T,/\1, e ))‘n——lyan)-
From this equality and from (6.1.4), we deduce that
UZ(.’E(t, 617621 sy é-n)) = Uz(x(t + Ty )‘17 ey A7‘2.—1$a"n,)) = >\z

fori=1,2,...,n— 1. Consequently, U;, i = 1,2,...,n — 1 are of class C!
and remain constants on all the trajectories of the system (6.1.1) included
in Qo.
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Finally, as U is a regular transformation on €y, it follows that the
functions U;, i = 1,2,...,n—1 are non-constant and independent at a. See
[Nicolescu et al. (1971a)], p. 677. The proof is complete. O

Theorem 6.1.5 Let f : & — R" be a continuous function, let a € Q
be a non-stationary point of the system (6.1.1) and let Uy, Us,...,U,_1 be
prime integrals of (6.1.1), defined on an open neighborhood Yy of a included
in Q, and independent at a. Then, for every prime integral U : Qo — R of
the system (6.1.1), there exist an open neighborhood Q4 C § of the point
a, an open subset D in R™!, with (U1(a),U2(a),...,Un-1(a)) € D, and a
function of class C* F : D — R, such that

U(I) = F(Ul(x)a UZ("E)’ ey Un—l(w))
for every x € £)4.

Proof. Since Uy,Us,...,Upn_1 are independent at a, it follows that for
every open neighborhood Ql C Qg of a there exists at least one function of
class C1, U, : Q1 — R, such that

det (gg]( ))m £0.

A simple example of such function is Un(z) = x; for each z € Qy, where
j € {1,2,...,n} is so that the determinant obtained from the matrix

()

by cancelling the column j is nonzero.

Clearly the open neighborhood ©; of a can be chosen such that, the
transformation G = (U1, Us,...,Uy) is a diffeomorphism from €, to an
open set A in R™. Let H : A — §; be the inverse of this transformation,
and let us observe that

U(H(Uy(z), Ua(z), . .., Un(2))) = U(x)

for every z € §;. So, denoting by F = U o H, in order to complete the
proof, it suffices to show that F', defined as above, does not depend on the
last variable y,. Let us observe that

Z 511 afi (y). (6.1.5)
1 n
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Recalling that U, Us, ..., Up,_1,U are prime integrals of the system (6.1.1)
on o, by virtue of Theorem 6.1.1, it follows that

(@F @)+ )5t @+ + @) g (5) =0
(:L*)aaU2 (z) + fa(z % () +- ~|*fn(:lt)gU2 (z)=0

| A1) g (@) + Fa@) 5 )+ + (o) g () = 0.

Since a is a non-stationary point, we have f(a) # 0, and therefore we can
choose an open neighborhood Q1 C € of a such that

f(z) #0 and rank(ggj( ))( ) =n-—1
n—1)xn

for every x € 3. In these conditions, interpreting the system above as a
linear and homogeneous system with unknowns fi(z), fa(z),. .., fo(z), it
follows that its determinant is identically zero on ;. Since this determinant
D(x) has at least one minor of order n—1, whose first n—1 rows correspond
to the first n— 1 rows of D(z), which is nonzero, it follows that the last row
of D(z) is a linear combination of the others. More precisely, there exist
the functions a; : 21 — R with i € {1,2,...,n — 1} such that

for every j € {1,2,...,n} and z € Q;. From (6.1.5), using these equalities,
we deduce

n n—1
aU 8H;
Byn Z Z ai(H 3% H(y) m (y)-

j=1i=1

Observing that, from the definition of H, we have x = H(y) if and only if
y = (U1(z), Ua(x), ..., Uy(z)), we conclude that

%}( ) B (y) = By, =0
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fori=1,2,...,n—1. Consequently

oF
a—yn‘(y) =0

for every y € A. Since A can be chosen convex (diminishing the set §2; if
necessary), and D = {(y1,...,Yn-1); (¥1,..,Yn—1,Yn) € A}, this relation
proves that F’ does not depend on y,, which achieves the proof. ]

Remark 6.1.3 If we know p prime integrals of the differential system
(6.1.1) which are independent at a non-stationary point a € , then there
exists one neighborhood of a on which the system (6.1.1) is equivalent to
another differential system with n — p unknown functions. In particular,
for p = n — 1, there exists a neighborhood of a on which the system (6.1.1)
is equivalent to a scalar differential equation, i.e. with only one unknown
function. Indeed, let Uy, Us,...,Up : @y — R be those p prime integrals
of (6.1.1), independent at a, and let z : I — £y be a generic solution
of the system (6.1.1). Taking into account that there exist the constants
C1,C3,...,Cp such that

Uj(l'l,l'g,...,xn) = Cy, ] = 1,2,...,p,

by virtue of the fact that Uy,Us,..., U, are independent at a, and of the
implicit functions theorem, it follows that there exists a neighborhood of
a, on which, p components of x can be uniquely expressed as functions of
class C! of the other n — p components. Relabelling if necessary, we may
assume that those components which express as functions of the others are
the last p. Substituting these components of z in the first n — p equations
of (6.1.1), we get a differential system with n — p unknown functions.

6.2 Prime Integrals for Non-Autonomous Systems

In this section we will extend the preceding considerations to the case of
non-autonomous systems of the form

' = f(t,z), (6.2.1)

where f: I x & — R” is a continuous function, by reducing these to the
autonomous case. More precisely, let D =1 x  C R, let

()
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and let F: D — R be defined by

CRIPH

for every z € D. Obviously, F is of class C* and (6.2.1) may be equivalently
rewritten in the autonomous form

7 = F(z). (6.2.2)

Taking into consideration the equivalence between (6.2.1) and (6.2.2), we
will define the concept of prime integral for (6.2.1) as follows.

Definition 6.2.1 Let Dy C [ x Q be nonempty and open. A function
U : Dy — R is called prime integral of the system (6.2.1) on Dy if

(i) U is nonconstant on Dy
(i) U is of class C* on Dy
(iii) for every solution z : J —  of (6.2.1) with (¢,z(t)) € Dy for every
t € J, there exists ¢ € R such that U(¢,z(t)) = c for every t € J.

We state next some of the most important results referring to prime
integrals for systems of type (6.2.1). Since, due to the equivalence between
(6.2.1) and (6.2.2), all these results are consequences of the theorems proved
in the autonomous case, we do not give proofs.

Theorem 6.2.1 Let f: Ix ) — R™ be continuous, let Dy be a nonempty
and open subset in I x Q and let U : Dy — R be a function of class C*,
nonconstant on Dy. The necessary and sufficient condition in order that U
be a prime integral for (6.2.1) is that

%[ti(s,ﬁ) +Y fils, f)gg (5,6) =0 (6.2.3)
i=1 ’
for every (s, &) € Dy.

Due to the particular form of the function F it follows that every point
in D is non-stationary. So we have:

Theorem 6.2.2 Let f:1x Q — R™ be continuous. Then on every open
neighborhood of any point in I x Q, there erist at most n prime integrals of
the system (6.2.1) which are independent at a.

Theorem 6.2.3 Let f: 1 x Q — R™ be a function of class C*. Then for
every (s,a) € I x Q there exists an open neighborhood Dy of (s, a), included
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in 1 x Q, on which there are defined n prime integrals of the system (6.2.1)
which are independent on Dy.

6.3 First Order Partial Differential Equations

Let Q be a nonempty and open subset in R3, let f : 2 — R3 be a function
of class C! (vector field) and let us consider the following problem with
geometrical character: determine all surfaces £ of class C1 in R3 with the
property that ot any point of coordinates (x1,%2,73) € T, f(r1,Ts,23) is
parallel to the tangent plane to the surface. From the formulation of the
problem itself, we are led to look for these surfaces either explicitly, i.e.

x3 = z3(x1, Z2) (€)
with (z1,z2) in a nonempty and open subset D in R?, or implicitly, i.e.

¢(.’L’1,$2,$3) =c, (J)

where ¢ : @ — R is of class C?, while ¢ € R.

Let us remark that, a necessary and sufficient condition in order that
a surface ¥ have the desired property is that, at every point {x1,xz2,z3)
in ¥, the normal vector to ¥ at that point, n(z1,z2,23), be orthogonal to
f(x1,z2,z3). This condition may be equivalently written as

(f(z1,22,23), N(z1,22,23)) =0

where N(z1,z2,23) is any vector parallel to n(zi,z2,z3). So, if we decide
to find those surfaces in the explicit form (€), taking into account that, in
that case, N(z1,z2,z3) can be taken as

61173 61:3
N(z1,x9,23) = | —(71,%2), =—(z1,T2),—1
(z1,%2,T3) (3x1( 1,T2) 6:52( 1,T2) ;
the necessary and sufficient condition above rewrites in the form

2

Zf($1,$2,$3($1»372))6z (21,2) = fy(21, 20, 23(20,22)  (6:3.1)
i=1

for every (z,,z2) € D.

If we choose the implicit variant (J), as in this case a normal vector to
the surface is

15) 15] le]
N(zy,x2,23) = (62 (%1, %2, Z3), 8d) (z1, 79, T3), B(b (-'ElazZal'S))
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the previous necessary and sufficient condition takes the form

3 6¢)
Zf ($1$$21$3)6z (ml)x27x3) =0 (6-32)

i=1

for every (z1,z2,23) € Q.

So, the determination of these surfaces reduces to the determination,
either of all functions z3, of class C1, satisfying (6.3.1), or of all functions
#, also of class C?, satisfying (6.3.2). Hence, in order to solve the problem,
we have to solve an equation in which the unknown function is involved
together with its first-order partial derivatives. In what follows we will
present the most important results referring to such kind of equations.

Let © be a nonempty and open subset in R?+! and let f;,f: Q — R
with i = 1,2,...,n, be functions of class C?.

Definition 6.3.1 A first-order quasi-linear partial differential equation
is an equation of the form

n

3 i #(0) 5 (0) = (o, 5(2)), (6.3.3)

where

at least for one (z,z) € Q. A solution of (6.3.3) is a function z: D — R of
class C', with D nonempty and open in R", such that (z, 2(z)) € Q and 2z
satisfies (6.3.3) for every z € D. The set of all solutions of equation (6.3.3)
is called the general solution of (6.3.3).

If f=0o0nQand f;, i = 1,2,...,n, do not depend on 2, equation
(6.3.3) is called linear. More precisely, let D be a nonempty and open
subset in R™ and let f; : D - R, i = 1,2,...,n, be functions of class C*
on D.

Definition 6.3.2 A first-order linear partial differential equation is an
equation of the form

Zf (z gf() 0. (6.3.4)
i=1 t
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A solution of this equation is a function ¢ : Dy — R, of class C!, with
Dy nonempty and open in D, such that ¢ satisfies (6.3.4). The set of all
solutions of (6.3.4) is called the general solution of equation (6.3.4).

Obviously every constant function on D is a solution of equation (6.3.4).
Therefore, in all what follows, we will refer only to solutions of equation
(6.3.4) which are nonconstant.

We begin with the study of equation (6.3.4). Then, we will show how
the study of the problem (6.3.3) reduces to that of a problem of the type
(6.3.4). The price we have to pay in order to do that consists in the intro-

ducing of a new unknown function of n + 1 variables, ¢(z1,z,..., 2y, 2),
which by means of ¢(z1,z2,...,Zn,2) = 0 defines implicitly z as function
of 1,29,...,Zn.

Definition 6.3.3 The differential system
z; = filz), 1=1,2,...,n (6.3.5)
is called the characteristic system attached to the linear equation (6.3.4).

Remark 6.3.1 From traditional reasons, very frequently, this system is
formally written under the so-called symmetric form

dz1 dxo dxy

—_ = = 6.3.6

A~ H@ F.(a) (636
We make the convention that whenever, for some ¢ = 1,2,...,n, f; =0
on a certain open subset (g in ©, the “fraction” dz;/0 in (6.3.6) should be

interpreted as dz; = 0 on .
We begin with the following reformulation of Theorem 6.1.1.

Theorem 6.3.1 Let Dy be a nonempty and open subset in D, and let
¢ : Dy — R be a nonconstant function of class C'. The necessary and
sufficient condition in order that ¢ be a solution of equation (6.3.4) is that
¢ be a prime integral, on Dy, of the characteristic system (6.3.5).

An immediate consequence of Theorem 6.1.5 is:

Theorem 6.3.2 Leta € D be a non-stationary point of the characteristic
system (6.3.5), let Dy be an open neighborhood of a, included in D, and
let Uy,Usa,...,Un_1 @ Do — R be prime integrals of the system (6.3.5),
independent at a. Then, there exists an open neighborhood D1 C Dy of a,
such that the general solution of equation (6.3.4) on D is given by

(b(l‘) = F(Ul(a:), U2(.’IJ), ey Un_l(m))
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for x € Dy, where F belongs to the set of all real-valued functions of class
C1, defined on the range of U = (U1, Uy, ...,Un_1) : Dy — R*L,

Example 6.3.1 Find the general solution of the equation

(g — Is)ﬁ + (z3 — $1)% + (zy — 932)%‘
T3

8x1 BIL'Q =0

on the set of all non-stationary points. The characteristic system in the
symmetric form is

dz1 dzo dxs

Tg— T3 T3—Ly L1 — Ty

We have dx; + dxg + dzz = 0 and z1dx; + z2dzo + z3dx3 = 0. So, the
functions Uy, Us : R — R, defined by U;(z1,2,23) = 21 + z3 + 23 and
by Ua(z1,%2,z3) = x? + 13 + 22 respectively, are prime integrals for this
system. The stationary points of the system are of the form (x1,x2,z3)
with z; = x93 = 3. One may easily see that the prime integrals above are
independent at any of the non-stationary points. So, the general solution
of the equation is ¢(x1,z2,23) = F(z1 + x2 + z3,23 + 25 + 23), where
F:R? - R is a function of class C1.

As we can state from the example at the beginning of this section,
a function z3, of class C!, implicitly defined by a relation of the form
@¢(z1,22,23) = ¢ is a solution of the problem (6.3.1) if and only if ¢ is
a solution of the problem (6.3.2). This observation suggests to look for
the solution of the problem (6.3.3) as a function z, implicitly defined by a
relation of the form ¢(z, z) = c. From the theorem on the differentiation of
implicitly defined functions, we have

o9

i} o1,

5, (@) = ~ g (2:2(a)
0z

for every ¢ = 1,2,...,n. Substituting 0z/0z; in (6.3.3) and eliminating the
denominator, we get

> fila, Z)%(w, z) + f(z, Z)g—f(x, z) =0, (6.3.7)
i=1 *

equation which is of the type (6.3.4). From Theorem 6.3.2 we deduce
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Theorem 6.3.3 Let (a,() € Q be a non-stationary point of the charac-
teristic system

A _ ':
{mi_fl(:c,z), 1=12,...,n (6.3.8)

7 = f(:L‘,Z)

attached to equation (6.3.7), let Qo be an open neighborhood of the point
(a,¢), included in Q, and let Uy, Us,...,U, : Qo — R be prime integrals
of the system (6.3.8), independent at the point (a,(). Then there exists
an open neighborhood Q1 C Qo of (a,() such that the general solution of
equation (6.3.3) on Q is defined implicitly by

F(Ui(z, z(z)), Us(z, 2(z)), ..., Un(z, 2(x))) = ¢,

where F belongs to the set of all real-valued functions of class C* defined
on the range of the transformation U = (U1, Us,...,U,) : Q1 — R®, while
¢ belongs to R.

6.4 The Cauchy Problem for Quasi-Linear Equations

In this section we prove an existence and uniqueness result concerning the
solution of a first-order quasi-linear partial differential equation, solution
which satisfies a certain condition reminding the Cauchy condition in the
case of ordinary differential equations. In order to understand the geome-
trical significance of this condition, we will consider first the specific case
corresponding to the dimension n = 2. So, let @ C R3 be a nonempty
and open subset, let f1, f2, f : @ — R be functions of class C! and let us
consider the equation

2
S ilen, 2, 2(m1,02) o (@1, 22) = o, o0, 2(on ). (641)
i=1 t

Let T be a curve of class C!, included in . The Cauchy problem for
equation (6.4.1) on the curve I consists in: the determination of a nonempty
and open subset D C R? and of a surface T of equation z = z(x1,23) with
(z1,22) € D, where z: D — R is a solution of equation (6.4.1) on D with
the property that T" is contained in ¥. See Figure 6.4.1.

Let us observe that this problem has no solution in the case in which
I' is contained in no surface defined by a solution of (6.4.1), and it has
at least two solutions when I' is defined as an intersection of two surfaces
defined by two distinct solutions of equation (6.4.1). Finally, it has exactly
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Figure 6.4.1

one solution when I' is contained in one and only one surface defined by a
solution of (6.4.1). So, the problem above might be successfully approached
only if T" lies in none of the first two situations described above. If this is
the case, the idea to solve the problem is the following. Let (£,{) be a
current point on T, € = (€1, &) and let us consider the Cauchy problem for
the characteristic system attached to equation (6.4.1)

;= fi(z,2), i=1,2
2 = f(z,2) (6.4.2)
z(0) = ¢, 2(0)=¢.

This problem admits a unique local solution, whose graph is, according to
Theorem 6.3.3, a curve I'(¢, {) defined as the intersection of two surfaces
2, = z;(z1,22), with z;, 1 = 1,2, independent solutions of equation (6.4.1).
Such a curve is called characteristic curve. So, if (£,{) moves on I, the
family of characteristic curves I'(§, () describes a surface T, which, as we
shall see later, is explicitly defined by an equation z = 2(z1,z2) with 2 a
solution of (6.4.1), and which, obviously, contains I'. See also Figure 6.4.1.

We can now proceed to the presentation of the problem in the general
case. Let  be a nonempty and open subset in R**1, let f;, f : @ — R with
i =1,2,...,n be functions of class C*, and let us consider the first-order
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quasi-linear partial differential equation

3 e, (o) o (x) = (2, 2(2)). (6.43)
i=1 ¢

Let U be a nonempty and open subset in R”~!, and let us consider the
(n — 1)-dimensional manifold I’ of equations

{m:wm) (6.4.4)

z=0(u), u=(u1,us,..., 1) €U,

where ¢ : U — R™ and 0 : U — R are of class C! and satisfy

rank(a(pi) =n-—1
auj nx(n-1)

We also assume that I' is included in 0, i.e. {(p(u),8(u)); ue U} C Q. The
Cauchy problem (6.4.4) for equation (6.4.3) consists in finding a solution
z: D — R of (6.4.3), which contains the manifold I', i.e.

0(u) = z(p(u)) (6.4.5)

for every u € U. Such a solution z of equation (6.4.3), defined on D C R",
with the property that the set £o = {(z, 2(z)); = € D} is a neighborhood
of the manifold T, is called a local solution of the Cauchy problem (6.4.4)
for equation (6.4.3).

Theorem 6.4.1 Ifp:U — R" and 8: U — R satisfy

01 Opy
f]((p,e) ——gu1 ...6gn_l
2] Y2
falp,8) =— ...
Au) = MO0 Bur  Bunct |y 20
Opn O¢n
fn((P’ 0) 8u1 3un_1

for every u € U, then there exists D C R™ such that the Cauchy problem
(6.4.4) for equation (6.4.3) have a unique local solution defined on D.

Proof. 2 Let u € U be arbitrary, and let us consider the Cauchy prob-
lem for the characteristic system attached to equation (6.4.3) with data

2The method of proof, due to Cauchy, relies on the generation of the surface, i.e.
solution, by the family of characteristic curves supported by the manifold I and, from
this reason, is called the characteristic method or the Cauchy’s method.
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(p(u),0(u)) € Q, ie.

' = f(z,2) (6.4.6)
2(0) = p(u), =(0) = 6(u).
This problem admits a unique saturated solution
Z = Z(:,p(u), 0(u))

defined on a neighborhood of the origin (t,, 7).
Let us consider the map z: {(t,u) ERxU; v e U, t € (¢, T)} — R”
defined by

{:82: fi,2), i=1,2,...,n

z(t,u) = X (¢, p(u),6(u)) (6.4.7)
and let us observe that, in view of Theorem 2.6.2, we have

D(.’El,l‘2, e ,.’L'n)
D(S,'Uq, . ,un_l)

(0,u) = Au) #0

for every u € U. The determinant above being jointly continuous, there
exists an open set V, of the form

{t,u)eRxU; uel, te(t,T)}

ur U
with t, <t* <0< T} <T, for every u € U, such that

D(.’El,ﬂf2, LR ,xn)
D(s,u1,...,Un-1)

(t,u) #0

for every (t,u) € V. From the local inversion theorem, it follows that, the
map (6.4.7) is a local diffeomorphism from V into an open subset D in R™.
We denote by  : D — V the local inverse of this application. Then we
have

{u,-z@i(:c), i=1,2,...,n—1 (6.4.8)

t=®,(z),
for z € D. Substituting u; and ¢ given by (6.4.8) in
2(t,u) = Z(t, ¢ (u), 8(v)),
we obtain the explicit equation

z = 2(21,Z2,...,Zn)
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of a surface I, which obviously contains the manifold I

We will prove in what follows that z is a solution of equation (6.4.3),
and that it is the only one defined on D. To this aim, let us observe that,
for every x € D, z = z(t,u), we have

) = B =3 @5 =3 e ).

which shows that z is a solution of equation (6.4.3) on D.

In order to prove the uniqueness on D of the solution 2z of the Cauchy
problem (6.4.4) for equation (6.4.3), let w : D — R™ be another solution of
this problem. Let us consider the Cauchy problem

{ zi(t) = fulz(®), w(z(t)) i=1,2,...,n
0) = p(u),

which has a unique saturated solution z defined on [0,T). Since w is a
solution of equation (6.4.3), we have

Z 5z, * i . g_:;(f‘)fi(%w(w)) = f(z,w(z))

for every t € [0,7T). Inasmuch as w(z(0, p(u))) = 8(u), it follows that the
pair (z,w) : [0,T) — Q is a solution of the Cauchy problem (6.4.6). But
this problem has the unique solution (z,w) given by

z(t,u) = X(t, p(u),8(w)) and w(t,u) = Z(t, ¢(u), 0(u))

for every t € [0,T,). Hence w(x) = z(z) for every z € D and the proof is
complete. O

6.5 Conservation Laws

In this section we present a first-order partial differential equation which
describes the evolution of several phenomena whose characteristic feature is
the conservation of a certain physical property as for instance: the mass, the
energy, the kinetic momentum, etc., on the whole duration of the evolution.

6.5.1 Some Examples

To fix the ideas, let us analyze:
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Example 6.5.1 Let us consider a highway which, for simplicity, will be
assumed infinite and oriented in the direction of the Oy axis, and lét us
denote by p(t,y) the density of vehicles at the point y € R and moment
t € R,. Let us denote also by v(t,y) the speed of the vehicles in traffic at
the point y and moment ¢. Then, the flux of vehicles at the point y and
moment ¢ is given by

q(t,y) = p(t, y)v(t, v). (6.5.1)

We may assume that the speed is a function of density, i.e. v = V(p).
We emphasize also the fact, very important for the point of view of future
considerations, that on the highway there is a unique sense. Namely, let
us assume that sense allowed is the positive sense of the Oy axis. Then,
by observing that, for every y € R and every § > 0, all the vehicles which
pass through y reach y + & and leave, and that the rate of decrease of the
number of vehicles, situated at the moment ¢ on the part [y,y + §] of the
highway, equals the variation of the flux on that portion, we deduce

y+6
g; (/ p(t,z)dfv) +q(t,y+4) —q(t,y) =0
Y

for every y € R and every ¢t € R,. Dividing the equality above by § > 0
and passing to the limit for § tending to 0, we get

dp Oq

— 4+ = =0.

% " 3y
From this equation and from (6.5.1), denoting by W(p) = V(o) + pV'(p),
it follows

Op op

for every y € R and every ¢t € R4, equation known under the name of the
traffic equation.

0 (6.5.2)

Example 6.5.2 Let us consider an infinite channel which, for simplicity,
is modelled as a straight line having the same direction and sense as the
Oy axis. The channel contains water which is flowing in the positive sense
of the Oy axis. We assume that the transversal section of this channel
is a rectangle whose width equals 1. Let us assume also that, for every
y € R and every t € R, the flux of water per/unit of surface on the section
through the point y and at the moment ¢ is constant on the entire section
and, more than this, the height of the water in the channel at the moment



Conservation Laws 229

t is also constant on the whole section through the point y, i.e. it does not
depend on the z-variable. See Figure 6.5.1. We denote by ¢(t,y) the flux of

Figure 6.5.1

the water through the section at the point y and moment ¢, and by A(t, y)
the height of the water at the same section and same moment.

The mathematical expression of the fact that, for every y € R and
every t € R4, the rate of decrease of the mass of water on the portion of
the channel [y, y + d] equals the variation of the flux at the two endpoints
of the interval, is

y+68
—g—t (/ h(t,a:)da:) +qlt,y+38) —qlt,y) =0

for every y € R and t € Ry. See also Figure 6.5.1.
Dividing by & the equality above and making ¢ tend to 0, we get

dh  Oq

—_— + —_ =

ot Oy
for every y € R and ¢t € R+. Now, taking into account that the flux is a
function of the height h, i.e. ¢ = Q(h), where Q : Ry — R, from the last

equation, it follows

0

on | . Ok _
5+, =0

for every y € R and t € R;. Experimental considerations show that the
function @ is of the form Q(h) = ah®/2 for every h € R, where a > 0. So
the equation above rewrites in the form

oh §h1/2@=0

E + 2Ot 8y (6.5.3)
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for every y € R and t € R;. This is the so-called equation of big waves in
long rivers.

6.5.2 A Local Ezxistence and Uniqueness Result

These examples justify the importance given in the last decades to the
study of the following Cauchy problem for the first-order quasi-linear partial
differential equation, called the conservation law

0z 0z
— +a(z)=—=0
ot % (6.5.4)

Z(O7 y) = ’(p(y)v

for (t,y) € Ry xR, where a : R —» R and ¥ : R — R are of class C.
In order to solve this problem, we shall use the methods and the results
established in the preceding sections. More precisely, we have:

Theorem 6.5.1 Ifa:R — R and ¢ : R —» R are functions of class C*
then there erists a function b: R — R such that the problem (6.5.4) has a
unique solution z : D — R, where D = {(t,y) € Ry xR; t € [0,b(y))}. In
addition, this solution is implicitly defined by

z = Py — ta(2)). (6.5.5)

Proof. With the notations in Section 6.4, we have: n = 2,2z, =1, 3 = v,
Q = R? fi(zy,732,2) =1, fa1,22,2) = a(z), f(z1,22,2) =0, U = R,
01(u) = 0, p2(u) = u and 8(u) = (u) for every u € R. Let us observe
that A(w) in Theorem 6.4.1 is given by

1 0

A0 = | g 1

=120

for every u € R. So, the existence and uniqueness part of Theorem 6.5.1
follows directly from Theorem 6.4.1. In order to prove (6.5.4), let us observe
that the characteristic system attached to the conservation law is

dt dy dz

1T az) 0
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Solving this system, we get the general equation of the characteristic curves

t=1+¢
y=ga({)tr+n, TR
z=(

From here, we deduce that the parametric equations of the surface z are

{yzaw’(”)m”, (r,z) e R xR.

z = (7)
Eliminating the parameter 7 in the system above, we get (6.5.5), which is
the implicit equation of the surface. The proof is complete. O

6.5.3 Weak Solutions

We will present next some qualitative properties specific to the solutions of
the conservation law.

From (6.5.4), it follows that if ¥ is bounded on R, say by M > 0,
then, at the point (¢,y), the solution z depends only on the initial-values
2(0,w) = ¥(w) for w in the interval {w € R : |w —y| < |lallar}, where
llallar = sup{la(z)| : |2] £ M}. From here, it follows that, if the initial
datum 1 vanishes outside the set {y € R; |y| < r}, then 2 vanishes outside
the set {(t,y) € Ry x R; |yl < r + |a]lmt}. This property justifies the
assertion that the solution has finite speed of propagation.

At this point, let us observe that, in order that equation (6.5.5) fulfil
the hypotheses of the implicit functions theorem, we must have

ty/(y — ta(z))a'(z) # —1.

Whenever this condition fails to be satisfied, a certain loss of regularity
of the solution may occur, as a consequence of the loss of its character of
being a classical single-valued function. For instance, for equation (6.5.3), of
big waves in rivers, with the initial condition 1(y) = siny + 1, the solution,
which at ¢ = 0 has the form in Figure 6.5.2 (a), for those values of ¢ for
which tcos(y — Ja4/2) = —$1/Z, takes the form illustrated in Figure 6.5.2
{b), form which corresponds to the overturn of the crest of the wave.

These situations which completely agree with the evolution of the real
phenomenon have imposed the relaxation of the concept of solution for
the conservation law, having as main goal the possibility of handling the
singular cases just mentioned as well. In what follows we will present such
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* (b

Figure 6.5.2

an extension of the class of functions which are candidates to the title of
solution.

Let D = Ry xR. We denote by C}(D) the set of all functions ¢ : D — R
of class C! on D for which there exists a compact set K C D with the
property that ¢(t,y) = 0 for every (¢t,y) € D\ K.

Definition 6.5.1 TLet ¢ : R — R be locally Lebesgue integrable on R.3
A locally Lebesgue integrable function z : D — R is a weak solution of
equation (6.5.4) if, for every ¢ € C}(D), we have

+00
J (w32 + acen$en ) aavs [ swpoma=o

—00
(6.5.6)
where A: R — R is defined by

Alr) = /0 ' a(n) dn

for every r € R.

The precise signification of this apparently strange condition (6.5.6), will
be completely clarified during the proof of Theorem 6.5.2.

3We recall that a function u:  C R® — R is called locally Lebesgue integrable on §2
if its restriction to any closed ball included in Q is Lebesgue integrable on that ball.
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In what follows, by a classical solution of equation (6.5.4) we mean
any solution in the sense of Definition 6.3.2. In order to understand the
relationship between the two types of solution of the problem (6.5.4), the
next auxiliary result is needed.

Lemma 6.5.1 Let Q C R" be a nonempty and open subset andu : ) — R
a locally Lebesgue integrable function. If for every function ¢ : Q& — R of
class C! vanishing outside of a compact subset K C §

// e /Q u(z)p(z) dzidzs .. . dr, =0

then, at every point £ € Q) of continuity of u, we have u(£) = 0.

Proof. Let £ € Q be a point of continuity of the function u, let r > 0 be
such that B(&,7) C Q and let us consider a function ¢ :  — R, of class C!
on 2, which vanishes outside the set B(¢,r) and which satisfies

// / z)dzidzy .. .dz, = 1.

An example of such a function ¢ : § - R is:
_ M=—gy?
o(z) =4 € E=T = for |z —-¢||<r
0 for j|lz —¢|| 2,

where

llz—€(12 -
- (/// o T dzldxg...dxn)
B(¢,r)

For every € € (0,1) let us define ¢, : @ — R by
1 T —
oeta) = v (255 +¢)

en £

for every z € 2. One may easily see that ¢. vanishes outside the ball

B(¢,er) and that
/// ve(z)dzidzs .. . dXy = 1.
Q

From the last relation, the hypothesis and from the fact that u is continuous

at £, we have
= h{g // /(ps(x u(€) dzrdzy ..
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=lim//.../ane(a:)[u(f)—u(z)]dwld:rg...dxn

gl0
= lim // / (@) [ule) — w(z) | dz1dzs . . . don = 0.
elD B(¢,er)
The proof is complete. |

Theorem 6.5.2 A function z : D — R is a classical solution of equation
(6.5.4) if and only if z is of class C' and is a weak solution of the same
equation.

Proof. Necessity. Let z : D — R be a classical solution of equation
(6.5.4). Let ¢ € C3(D) and let us consider a rectangle [0,b] x [¢,d] with
K C [0,b) x (¢,d), where K is the compact set outside of which ¢ vanishes.
Multiplying the first equality in (6.5.4) by o(t,y) and integrating over D,
we get

0= // ( (t,y) + a(z(t, y))a (t, y)) o(t, y) dt dy
_ / / ( o(t,y) + ala(t y))g;(t,y)cp(t, y)) dt dy

dy // ty ty)dtdy

dprd
+ / /0 %(A(z(t,y»)so(t,y) dt dy.

=/c 2(t w)0(t, )

Since ¢ vanishes for t = b, y = ¢, or y = d, from the equality above,
Fubini’s theorem on the interchanging the order of integration (see [Dunford
and Schwartz (1958)], Theorem 9, p. 190) and from the initial condition
2(0,y) = ¢Y(y) for y € R, it follows

/cd/: (62200 + At ) S ) iy / o0, 3) dy = 0.

Since ¢ vanishes outside the rectangle [0,b] x [¢,d], the equality above is
equivalent to (6.5.6).
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Sufficiency. Let z : D — R be a weak solution of equation (6.5.4)
which is of class C!. Starting from (6.5.6), and repeating backward the
calculations done in the necessity part, we deduce that z satisfies

/_/( (t,y) + alz(t, y)) (t y)) o(t, y) dt dy

+o00
+ / (2(0,) — $(¥))0(0,4) dy = 0 (6.5.7)

—00

for every function ¢ € C}(D). Let now ¢ be a function of class C! which
vanishes outside of a compact subset included in the interior of the set D.
Then, for every y € R, ¢(0,y) = 0, and from the last relation, it follows

// ( (t,y) + a(z(t, y))g; (t,y)) p(t,y) dtdy = 0. (6.5.8)

Hence the function v : D — R, defined by
0z 0z
u(t,y) = = (ty) + a(Z(t,y))gg(t,y)

for every (t,y) € D, satisfies the hypotheses of Lemma 6.5.1 on Q = 103

So, z satisfies the first equality in (6.5.4) for every (¢,y) €1°). Let now
n: R — R be a function of class C! which vanishes outside of a compact
interval [c,d]. Let us define ¢ : D — R by

(PO -tn) for (t,y) €[0,1] xR
wlt,y) = { 0 otherwise.

We can easily state that ¢ is of class C! and vanishes outside the compact
set [0,1] x [¢,d]. From (6.5.7) and (6.5.8), it follows

[ 0.0 - smmay=o.

—00

From Lemma 6.5.1, we deduce that z(0,y) = ¥(y) for y € R, which achieves
the proof. O

Remark 6.5.1 Actually, analyzing the proof of the sufficiency, we can
see that, if a function z is a weak solution of the problem (6.5.4) and is of
class C! on an open subset Dy in D, then z is a classical solution on Dy of
the partial differential equation in (6.5.4) and satisfies the initial condition
relative to Dy, i.e., z(0,y) = ¥(y) for every y € R for which (0,y) € Dy.
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The example below illustrates the fact that the conservation law can
have weak solutions which are discontinuous.

Example 6.5.3 ([Barbu (1985)}, p. 184) Let us consider the Cauchy

problem

Oz 9 Oz _

2(0,y) = ¥(y),

where 9 : R — R is defined by

_J0if y<0
’”(y)‘{nf y > 0.

Then, the function z : R4 x R — R, defined by

(oif y<t/3
Z(t’y)“{lif y>t/3,

is a discontinuous weak solution of the Cauchy problem.

Let now z : D — R be a weak solution of the Cauchy problem (6.5.4)
with the property that there exists a simple curve I" of equation y = f(t),
separating D into two sub-domains D_ = {(t,y) € D; y < f(¢)} and
D, = {(t,y) € D; y > f(t)} on which z is of class C'. For the sake of
simplicity, we will assume that the transformation f is a non-increasing
bijection from R} to R. See Figure 6.5.3.

Figure 6.5.3

The next theorem describes the behavior of weak solutions along the
curve I'.
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Theorem 6.5.3 Let z: D — R be a weak solution of the Cauchy problem
(6.5.4) which is of class C' on both domains D_ and D, and for which there
exist finite limits

im  z(r,n) = z4.(t, £(t))
(rym)—{t, F(£))
(r,m€D4

li ——
(T,n)—l»?g,f(t)) 2(r,m) = 2-(t, F(2))
(rmeD-

uniformly for t in bounded subsets in RY. Then, at every pointt € R}, 2
satisfies the jump condition on '

Alz4 (6, F(0)) = A= (&, F(2) = F (O 248, F) — 2 (8, )], (6.5.9)
where A is the function from Definition 6.5.1.

Proof. From Remark 6.5.1, we deduce that z satisfies the first equality in
(6.5.4) both on D_ and Dy. Let ¢ € C}(D). Multiplying the first equality
in (6.5.4) by ¢ and integrating over D_, we get

o=[[ ( (t.9) + a(z(t,y)) ZZ(t,y)) olt,y) dt dy
/mdy/ tw(t y) dt
/ T / ™0 aettu) ety

) +oo i)
dy — / dy/ ty)at(ty)

f(@®)

+o0o
- | (6 0)e(t,)|

-0

+oo f(t)
R / at [ AG(t,9) 22 (ty) dy

+o0
+ /0 A(z(t,y))e(t, y) o 9y

400
= [ U e )~ pw)e0,0) 4

—oC

4This is known under the name of Hugoniot—Rankine’s condition.
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- //D_ 2 ?/)%?(t, y) dt dy

+00

+ [ Ao @) @) dt - //D Gt y))g—ja,y) dt dy

+00
= - Y(¥)9(0,y) dy

-0

- (B + At G ey

+00
-/O (f' ()2 (8, f(2)) — Alz- (&, (1)) (2, f(2)) dt.

A similar calculus leads to

0 = [ (G + At e ) e

+o0o
- /0 ()24 F)) — Az (8, F))) ot (1)) db.

These two relations and (6.5.6) show that f0+°° g(t)e(t, f(t))dt = 0 for
every p € C3, where g is defined by

g(t) = f'[2-(t, F)) — 24:(¢, F(E) ] — A(z—(t, £(£))) + A28, £(B)))

for t > 0.

Finally, we shall prove that the equality above implies (6.5.9). To this
aim let us observe that the functions ¢t — 2_(¢t, f(¢)) and t — 24.(¢, f(¢))
are continuous on R% because the two sequences of functions of class C' 1
(vn)nen+ and (wp)nen+, defined by v, (t) = z(¢, f((1 — 1/n)t)) and respec-
tively by w,(t) = z(¢t, f((1 + 1/n)t)) for n € N* and ¢t € R, are uniformly
convergent on every bounded interval in R% to z_ and respectively to z..
So, the function g : R} — R, defined as above, is continuous on R} . From
Lemma 6.5.1, we deduce that g(t) = 0 for every t € R}, which achieves the
proof. O

We conclude this section with the remark that the uniqueness property
of the classical solution for the problem (6.5.4) is no longer true in the case
of weak solutions, as we can see from the example below.
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Example 6.5.4 ([Barbu (1985)], p. 185) Let us consider the Cauchy
problem in Example 6.5.3. Then, besides the weak solution there men-

tioned, the problem admits a second weak solution w : Ry x R — R,
defined by

0 for%<0 ort=0andy <0
wit,y) = \/gforosgg

1 forth->1 ort=0and y>0.

In order to individualize one weak solution of (6.5.4), customarily one
imposes an extra-qualifying criterium expressing an essential property of
the solutions of the system which, although very important, was not taken
into consideration in the process of the mathematical modelling. Such a
criterium, suggested by the second principle of thermodynamics, is that of
the entropy’s growth. More precisely, it can be proved that, among the
weak solutions of the problem (6.5.4), one and only one evolves in the sense
of the entropy’s growth.

For more details on conservation laws see [Courant and Hilbert (1962)].
A more advanced approach can be found in [Lu (2003)].
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6.6 Exercises and Problems

Exercise 6.1  For each of the following autonomous differential systems, find two
prime integrals which are independent at any non-stationary point:

Ty = T2 — XT3 .’l:'l=.’122
(1) { x5 = 23 — 1 (2) zh =1
T4 = 21 — T2 Th =T — To.
zh = o130 4 =2 + 7123
(3){ zhp = —xf (4) { 25 = 11 + 2273
ITh = TaX3. zh =3 — 1.
ac'l =T .’1,"1 = T1T2
(5) { x5 = x2 (6) ¢ «h = —ax3
T3 = —2T123. zh = —x1(1 + ).
z) = z122 zy = 2x2(2 — 1)
(1) { zh = 23xs (8) { zh =a? — 3 + 25 — 4a1
x5 = z3(z? + 23). T3 = —I2x3.

Problem 6.1  Prove that the function U : R} x R} — R, defined by
U(:v,y) = l‘—by—uehz-i-ky

for every (z,y) € R?, is a prime integral for the prey-predator system, known also
as the Lotka—-Volterra system:

{ ¢’ = (a~ ky)z
Yy =—(b— ha)y,

where a,b, k,h are positive constants. ([Arrowsmith and Place (1982)], p. 145)

Problem 6.2  Prove that all trajectories of the differential system

!

Ty =T33 — T2
Th=1T1 — T3
m§=m2—-$1

are circles.

Problem 6.3  Prove that all trajectories of the prey-predator system which start
in the first quadrant, except for the two semi-azes, remain in the first quadrant
and are closed curves. ([Glivan et ol (1993)], p. 134)

Problem 6.4 Under another formulation, Problem 6.3 says that each solution
of the prey-predator system which starts in the first quadrant, except for the two
semi-azis, is periodic with period T depending on the initial data. Prove that the
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medium populations of both species on an interval whose length equals the period
T, i.e.
1 [T 1 [T
Tm = T/t. z(s)ds and ym = T./t y(s) ds
are independent of the initial data. ({Arrowsmith and Place (1982)], p. 172)

Problem 6.5 Let f:Q C R™ — R" be a locally Lipschitz function. Prove that
all the points of strict local minimum of a prime integral of the differential system

' = f(z),

which are stationary solutions of the system above, are stable. ([Glivan et al.
(1993)], p. 180)

Problem 6.6  Prove that the stationary solution (b/h,a/k) of the prey-predator
system is stable.

Problem 6.7  Find the first-order autonomous differential systems which have in-
Jective prime integrals. Are there non-autonomous systems having injective prime
integrals?

Problem 6.8 Let f: R™ — R"™ be a continuous function. If there exists a prime
integral U : R™ — R of the autonomous system

' = f()

which is coercive, t.e.
lim U(z) = +oo,
el —+o0
then all saturated solutions of the system are global. Does this conclusion remain
valid if the limit is —o0?

Problem 6.9  The evolution of many phenomena in physics is described by the
so-called Hamiltonian systems

dp; oH
e —8—%,(19, q)
i=1,2,...,n

dg: OH

&~ o, (p,9),
where H : Q@ C R™ — R is a function of class C', nonconstant, known as
the Hamilton function, depending on p1,p2,...,Pn, called generalized momenta
and on gi,q2,...,qn, called configuration coordinates. Prove that the Hamilton

Junction is a prime integral for the Hamiltonian system. ([Glivan et al. (1993)]
p. 134)°

5The fact that H is constant along the trajectories of the system represents a special
instance of the conservation law of the energy and this because, in all concrete cases,
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Problem 6.10  Let £ be a nonempty and open subset in R™ and let f :  — R™ be
a continuous function. Prove that, for every X # 0, the set of prime integrals for
the equation *’ = f(x) coincides with the set of prime integrals for the equation

z' = Af(z).

Problem 6.11  Show that, for the decoupled autonomous system below, there s
no prime integral defined on R®

T = 2z
Th = I,

Prove that there exist prime integrals defined on {(x1,z2) € R?* z; > 0}.
([Glavan et al. (1993)], p. 135)

Problem 6.12 Let A : I — Mpxn(R) be continuous, with a:;(t) = —aj(t) for
every 1,5 = 1,2,...,n and every t € I. Prove that every global solution of the
system

z' () = A)=(t)

is bounded on I. In the case in whick I = [0,+0c0), is the system above stable?
([Glavan et al. (1993)], p. 136)

Exercise 6.2 Find the general solutions of the first-order partial differential
equations below:

2 _ 2 0z 2,2 bz 2 _ 2 0z _
(1) (=2 $3)azl + (23 $1)“"3x2 + (21 zz)—azs =
Oz 9z 8z
. zg Yo | U< z2 Y2 _
(2) —zie v + B2s + z3e 52s 0

Oz dz Oz
(3) z1(z2 — Jia)a—xl + z2(z3 — 3':1)6—m2 + z3(z1 — .’I:z)a—ma- =0.

(4) (21— 1‘3)2—:? + (2 —~ xa)g—iz = 2z3.

(5) wagx—a —(133% =3 —T1.
0z Oz
(6) aflgi—::‘ +ng—iz =T34+ nirz
(7) xzmgg—ij +z1z3g—:z = 271T2.
(8) 1+ vz — a1z1 — azzz — asxa)%z—l- + -gmi? + g—; = a; +az + aa.

H(p, g) is nothing else but the energy of the system corresponding to the values of the
parameters (p,q) = (P1,...,Pn\q1,.--,4n)-
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([Craiu and Rosculet (1971)], pp. 48—60)
Exercise 6.3  Solve the following Cauchy problems:

Oz dz 0 Oz 0z

Tr— — Y = m__z__:o
Z(l‘,O) = COSZ. z(a:,:z:z) = z2.
”‘g—:‘y%q'zz%ﬂ I%+(y+w2)%=z
(3) y (4) Y
u(l,y, 2) = sin(y + z). 2(2,9) = (v —4)*

([Glavan et al. (1993)], pp. 188-192)

Problem 6.13 Let f :R xR — R and ¢ : R — R be two functions of class C!
and a € R. Find the solution of the Cauchy problem

0z
ot

2(0,z) = p(z).

Problem 6.14 Let f:RxR — R and ¢ : R — R be two functions of class C*
and a: R — R a continuous function. Find the solution of the Cauchy problem
Oz

Oz
5 taltg- = f(t,2)

8z
+ (1& = f(t,m)

z(0,z) = ().

Problem 6.15 Let f: RxR™ - R and ¢ : R™ — R be two functions of class C!
and a € R™. Find the solution of the Cauchy problem

Oz id Oz
B +;ai6—zi = f(t, )

z(0,z) = ¢(x).
([Barbu (1985)], p. 200)

Problem 6.16  Let f :RxR™ — R and ¢ : R™ — R be two functions of class C*
and a : R — R" a continuous function. Find the solution of the Cauchy problem

0z = 0z
%t i};ai(t)gm—i = f(t,z)

2(0,7) = o(x).
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Problem 6.17 Let f :RXR — R and ¢ : R — R be two functions of class C*
and a € R. Find the solution of the Cauchy problem

8z Oz
B + ar = f(t, )

2(0,z) = o(z).

Problem 6.18 Let f :RXxR — R and ¢ : R — R be two functions of class C!
and a : R — R a continuous function. Find the solution of the Cauchy problem
0z

d
B +a(t)a:6—z = f(t,z)

(0, z) = ¢().

Problem 6.19 Let f:RXxR" — R and ¢ : R™ — R be two functions of class C*
and let A € Muxn(R). Find the solution of the Cauchy problem

oz

2(0,z) = p(z).
([Barbu (1985)], p. 200)

Problem 6.20 Let f : R xR™ — R and ¢ : R® — R be two functions of class
C' and let A : R — Mnxn(R) a continuous function. Find the solution of the

Cauchy problem

8z
57 T Abz Vaz) = f(t2)

2(0,z) = ().

Problem 6.21 Find the surface containing the circle ¥ + 22 = 1, 2o = 2,
orthogonal to the family of cones T1z2 = azi, o € R*. ([Craiu and Rogculet
(1971)], p. 58)



Chapter 7

Extensions and Generalizations

The main goal of this chapter is to present several methods to approach some
Cauchy problems which, from various reasons, do not find their place in the
preceding theoretical framework. In order to extend the concept of solution in
the case of linear differential equations and systems with discontinuous right-hand
sides, in the first three sections we introduce and study the notion of distribution
as a generalization of an infinitely many differentiable function. In the same spirit,
in the fourth section, we present another type of solution suitable for the nonlinear
case when the function f on the right-hand side is discontinuous with respect to
the t variable. In the next two sections, we discuss two variants of approaching
some Cauchy problems for which f is discontinuous as a function of the state
variable z, situation involving much more difficulties than the preceding one. In
both cases, the manner of approach consists in replacing the differential equation
with a so-called differential inclusion. The sixth section is concerned with the
study of a class of variational inequalities, while in the next four sections we
deal with a Cauchy problem in which the function on the right-hand side of the
equation is defined on a set which is not open. In the eleventh section, we present
an existence and uniqueness result referring to the Cauchy problem for a class
of systems of first-order nonlinear partial differential equations of type gradient.
The chapter ends with a section of Exercises and Problems.

7.1 Distributions of One Variable

In many cases, the right-hand side of a differential equation does not satisfy
the minimal requirements ensuring the existence of at least one classical

245



246 Ezxtensions and Generalizations

solution, i.e. of a function of class C™, where n is order of the equation
considered and which satisfy the desired equality for every ¢ in its domain
of definition. In all these situations, in order to recuperate as many as
possible results already established, one has tried to introduce a new type
of solution by enlarging the class of candidates to this title. We emphasize
that all these extensions have been done in such a way that, whenever
we are in the “classical” hypotheses of regularity, the only “generalized”
solutions are the classical ones. As expected, in the process of definition
of the concept of any kind of generalized solution, we have postulated as
characteristic some minimal properties satisfied by all classical solutions.
In this way, a necessary but not sufficient condition, in order that a certain
mathematical object be a classical solution, has been promoted to the rank
of definition,

The aim of this section is to present one of the deepest extension of
this kind, having a great impact in the development of the theory of both
ordinary, but especially of partial differential equations. The main idea of
this extension is very simple and extremely efficient. More precisely, it is
based on the simple remark that, if z : R — R is a solution of class C* of
the first-order differential equation

z' = f(t, ), (€)

with f: Rx R — R continuous, then, for each function, ¢ : R — R, of class
C*, for which there exists [a,b] such that ¢(t) = 0 for every ¢t € R\ [a,b],
we have

/¢'(t)z(t) dt+/¢(t)f(t,z(t))dt=0. (7.1.1)
R R

Indeed, in order to deduce (7.1.1), let us multiply (£) on both sides by ¢(t)
and then, let us integrate the equality thus obtained over R. This is always
possible because, due to the conditions imposed on the function ¢, the
improper integral on R reduces to a proper one on [a,b]. So, integrating
by parts, and taking into account that ¢{a) = ¢(b) = 0 we get (7.1.1).

At this point, let us observe that, through these simple manipulations,
the action of the differential operator has moved from the solution z to
the function ¢. Obviously, (7.1.1) can take place for any function = which
is only Lebesgue integrable on every compact interval, but might fail to
be of class C'. At this moment, (7.1.1) suggests that we may extend the
notion of classical solution by defining, for example, as generalized solution
of the equation (€) any function z : R — R, Lebesgue integrable on every



Distributions of One Variable 247

compact interval and which satisfies (7.1.1) for every function of class C! ¢
which vanishes outside an interval of the form [a4,bs |. This is a very brief
presentation of one of the main ideas which partially motivates the birth of
the distribution theory.

In order to introduce the concept of distribution, some preliminaries are
needed.

Definition 7.1.1  The support of the function ¢ : R — R is the set

supp ¢ = {t; t € R, ¢(t) # 0}.

We denote by
DR) = {¢; ¢ € C®(R;R), ¢ with compact support}
and we call D(R) the space of testing, or test functions on R.
Example 7.1.1 The function ¢ : R — R, defined by

e forte (-1,1)
¢(t) =
0 for t e R\ (-1,1),

is of class C*® and has the compact support [—1,1]. Hence the set D(R)
is nonempty.

Proposition 7.1.1  The set D(R) is a vector space over R with respect to
the usual operations. In addition, for each ¢ € D(R) and ¥ € C°(R;R),
& € D(R).

Proof. Obviously every linear combination of functions of class C*° from
R to R is a function enjoying the same property. In addition, the product
of a function with compact support and an arbitrary function from R to
R is a function with compact support. Hence D(R) is a vector subspace
of C(R;R). Since the last part of the conclusion also follows from the
considerations above, this completes the proof. O

In what follows, we introduce a convergence structure on D(R), allowing
us to define the class of functions which are sequentially continuous from
D(R) in R. We emphasize that this convergence structure is essential in
the process of definition of the concept of distribution.

Definition 7.1.2 A sequence (¢x)ken in D(R) is convergent in D(R) to
¢ € D(R) if there exists a compact interval {a,b] such that:
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(i) supp i C [a,b] for every k € N;
(i) for every p € N, limg_,o0 ¢,(Cp) (t) = ¢ (t) uniformly for ¢ € [a,b],
or equivalently, uniformly for ¢ € R.

. . D(R)
We denote this situation by ¢y ) ¢.
Definition 7.1.3 A distribution on D(R) is a linear continuous functional
z: D(R) — R, i.e. a function z which satisfies:

(i) z(ag + BY) = ax(p) + Bx(y) for every ¢,% € D(R) and every
a,feER

(i) if ¢ —% ¢ then limg_o0 2(d%) = 2(4).

Remark 7.1.1 A linear mapping z : D(R) — R is a distribution if and

only if it is continuous at ¢ = 0, i.e. if and only if from ¢y, ) 0 it follows

limg 00 z(¢px) = 0.

In all what follows we denote by D’(R) the set of all distributions defined
on D(R).

Example 7.1.2 Distributions of type function. Let z : R — R be
a locally Lebesgue integrable function, i.e. a function whose restriction to
each compact interval is Lebesgue integrable on that interval. We define
the map Z : D(R) — R by

%@=Amwawﬁ

for every ¢ € D(R). Since ¢ € D(R), there exists [a,b] with supp¢ C
[a,b] and it follows that Z is well-defined, in the sense that the integral
on the right-hand side, apparently on a set of infinite measure, is in fact
a Lebesgue integral defined on a compact interval. Since Z is obviously
linear and continuous, it follows that it is a distribution on D(R). We call
such a distribution a distribution of type function. Let us remark that, if
z,y : R — R are two locally Lebesgue integrable functions which are almost
everywhere equal on R, then & = §j. Indeed,

/x@ﬂwﬁ=/ywﬂﬂﬁ
R R

for every ¢ € D(R). Let us denote by L} (R) the space of all locally

loc
Lebesgue integrable functions z : R — R, and let us define the relation
p C LL .(R) x LI (R) by zpy if and only if z = y almost everywhere on

loc
R. Then, p is an equivalence relation on L} (R). One may prove that
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any two equal distributions of type function are defined by two functions
which are almost everywhere equal. According to this observations, the set
of distributions of type function can be identified with the quotient space
LL.(R)/p, which is nothing but the well-known space L{ (R). For this
reason, we agree to denote a distribution of type function by %, Z being the
p-equivalence class of the element z, or even by x.

Example 7.1.3 The Dirac Delta. Let § : D(R) — R be defined by

d(¢) = ¢(0)

for every ¢ € D(R). One may easily see that § is linear and continuous.
So, it is a distribution on D(R) called the Dirac delta. We notice that
this distribution has been introduced in 1926 by Paul Dirac! with the aim
of explaining certain phenomena with impulsive character. For the sake
of simplicity, in the example that follows, we will confine ourselves to the
presentation of an extremely simple such physical situation whose descrip-
tion from a rigorous mathematical viewpoint cannot avoid the use of Dirac
delta.

Example 7.1.4 Density of a point of mass m. Let us consider a
material point of mass m whose density we intend to determine. Since the
point has zero measure, at the first glance we could be tempted to assert
that the density is +o0o0. On the other hand, if we think of the point as to
a geometrical object obtained as a “limit of a sequence of objects”, all of
mass m and all having well-defined densities, for which we can give a sense
to the limit of the corresponding sequence of densities, that limit could be
a good candidate for the density of the point, with the condition to be
independent of the sequence of approximates in question. Approximating,
for example, the point by an interval of length 2¢, centered at the origin,

of mass m and of density d : R — R uniformly distributed on the interval
[-£,£], ie.

g ift e [—4¢]
dy(t) =

0 ifteR\[—¢ 4]

1British physicist (1902-1984). He was one of the founders of Quantum Mechanics.
Using the mathematical formalism introduced by himself, he has succeeded to predict
the existence of the positive electron, or positron. Nobel Prize in 1933.
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and expressing the mass as function of density, we deduce

m = / dg(t) dt.

R
At this point, let us observe that there exists
lim dy(t) = do(t)

point-wise on R, where

400 ift=0
do(t) =
0 ifteR\ {0}

On the other hand
/ de(t)dt =m
R

for each ¢ > 0, and therefore we could be tempted to conclude that “dp is
a function from R to R, taking the value +oco at t = 0, and zero otherwise,
but whose integral over R equals m > 0”. Obviously such a conclusion is
unacceptable because there exists no function with the properties above.

However, to give a sense to the limit above (other than the usual one),
let us observe that, by virtue of the mean-value theorem, for every ¢ € D(R)
and every £ > 0 there exists §; € [ —£,£] such that we have

£
i [ du(®0(e)de =t [ T60)dt = mmo(6e) = ma(0) = mi(®).

Thus, the density of a material point of mass m can be identified with
md where § is the Dirac delta.

Proposition 7.1.2  The set D'(R) is a vector space over R with respect
to the usual operations with functions, i.e. addition, and multiplication by
a real number.

If z € D'(R) and ¢ € D(R), we agree to denote by
z(¢) = (z,9) = (z(t), 6(t)).

We emphasize that the notation x(t) is somehow improper because x is not
a function of a real variable t, but is useful whenever we want to specify
which one of the variables of a function ¢ (if many) is that one with respect
to which ¢ is considered as a test function. See Example 7.1.2. We will face
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such situations in some of the next definitions in which, in order to avoid
possible ambiguities, we will be led to use this notation.

Operations with distributions. Besides the usual operations of addition
of two distributions and of multiplying a distribution by a real number,
we can define some other new ones, which endow the space D’'(R) with a
particularly rich and, at the same time, useful structure.

Let z € D'(R) and 7 € C®°(R;R). One can easily see that the function
nz : D(R) — R, defined by

(nz)(8) = (z(t),n(t) (1)) (7.1.2)

for every ¢ € D(R), is a distribution.

Remark 7.1.2 The function nz is well-defined because, if 7 € C*(R; R)
and ¢ € D(R), then n¢ € D(R).

Definition 7.1.4 By definition, the product of the distribution x by the
function of class C*® n is the distribution nz defined by means of the
relation (7.1.2).

If z € D'(R) and « > 0, then the function z(at) : D(R) — R, defined
by

slat)@(0) = & (o(0).6 (%)) (7.13)

for every ¢ € D(R), is a distribution.

Definition 7.1.5 By definition, the omothety of coefficient a > 0 of the
distribution z is the distribution z(at) defined by means of the relation
(7.1.3).

If z € D'(R) and a € R, then the function z(t —a) : D(R) — R, defined
by

z(t — a)(o(t)) = (z(t), &(t + a)) (7.1.4)
for every ¢ € D(R), is a distribution.

Definition 7.1.6 By definition, the translation by a of the distribution x
is the distribution z(t — a), defined by means of the relation (7.1.4).

Example 7.1.5 For instance, the translation by a of the Dirac delta, is
the so-called Dirac delta concentrated at a, i.e. (t — a), defined by

(6(t — a), ¢(1)) = ¢(a)
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for every ¢ € D(R).

Remark 7.1.3 The idea of defining the operations above was suggested
by the particular case of distributions of type function, case in which we
have

(n(t)2(2), $(1)) = /m (e (t)p(t) dt = /R 2EGE) dt = (@(2), 1)),

(w(at) 66) = [ statip(yat = 2 [ at)s (é) it = (=009 (g)) ,

and respectively

(2(t - a),¢(t)) = /}Riv(t —a)¢(t)dt = /Rw(t)¢(t +a)dt = (2(t), 6(t + a))

for the product by a function of class C°°, for the omothety of coefficient
@ > 0 and for the translation by a, respectively.

Let £ € D'(R) and k¥ € N. Taking into account the definition
of the convergence on D(R), we can easily conclude that the function
z®) . D(R) — R, defined by

(@™ (1), (1)) = (-1)F(z(t), o*) (1)) (7.1.5)
for every ¢ € D(R), is a distribution.

Definition 7.1.7 The derivative of order k of the distribution x is the
distribution z(¥) defined by means of the relation (7.1.5).

Remark 7.1.4 The definition of the derivative of a distribution was sug-
gested also by the case of distributions of type function which are of class
C* and for which the equality (7.1.5) follows by a successive application
of k-times by parts integrations. At this point, we are in the position to
notice the advantage of these new mathematical objects, i.e. distributions
versus classical functions. More precisely this advantage consists in that,
unlike the usual functions, the distributions are always infinitely-many dif-
ferentiable. For this reason, the distributional framework is very suitable
to the construction of a general theory of linear differential equations and
systems.

Next, we prove a simple but useful result which completely clarifies the
relationship between the distributional derivative of a function, i.e. the
derivative of a distribution of type function in the sense of Definition 7.1.7,
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and the classical derivative of that function. In order to avoid possible
confusion, we denote by & the distributional derivative of the function z,
i.e. the derivative given by Definition 7.1.7, and by z’ the classical derivative
of the function x, i.e. in the usual sense of Real Analysis.

Proposition 7.1.3 Let z: R — R be a function of class C* on R\ {a}
with the property that x' is locally Lebesgue integrable. If a is a discontinuity
point of the first kind® of x then

i(t) = 7' (t) + w(z,a)d(t — a), (7.1.6)

where w(z,a) = z(a +0) — z(a — 0) is the jump of the function x at the
point a. In particular, if w(z,a) =0, then

T=x.

Proof. Since 7' is locally Lebesgue integrable, it generates a distribution
of type function. Let ¢ € D(R). According to Definition 7.1.7, we have

(&(t), (1)) = —(2(t), (1) = — / 2(6)8/(¢) dt

a o0
—_ / o(t)d' (t) dt — / z(t)¢'(t) dt

—o0 a

a 400
= (8Ol + [ @60 & -0+ [ S0 dr

—0o0 a

Since ¢ has compact support, we deduce that

lim z(#)¢(t) = lim z(t)é(t) =0

t]—oo tT+oo

and therefore
(1), $(8)) = /m 2(0)$(2) dt + w(z, a)b(a).

Since this equality is obviously equivalent to (7.1.6), this completes the
proof. [

2We recall that a discontinuity point of the first kind of a function z : R — R is a
discontinuity point @ € R at which there exist both one-sided limits z(a+0) and z{a—0).
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Corollary 7.1.1 Letn € C*°(R;R) and x € D'(R). Then, the derivative
of the distribution nx is given by the Leibniz rule

(nz) = 'z + 0.
Proof. Let ¢ € D(R). We have
((nz),0) = — (12, ¢') = —(z,7¢')

=—(z,(n9)' —1'¢) = —(z,(np)") + (z,7'$)
= (z,19) + ('z,¢) = (n'z, ¢) + (£, ¢)

= (n'z +nt, ¢),

relation which achieves the proof. a

7.2 The Convolution Product

We denote by D, (R) the set of all distributions = with the property that
for every ¢ € D(R) with supp¢ C (—00,0), we have (z(t),¢(t)) = 0. In
other words, D', (R) is the set of all distributions which “depend” only of
the values at ¢ € [0,+00) of the test functions. Indeed, z € D/, (R) if and
only if for every ¢,9 € D(R) with ¢(t) = ¥(t) for every t € [0,+00), we
have (2(t), ¢(2)) = (z(t), ¥(?))-

Lemma 7.2.1 Letz € D\ (R), b € R and n,u, ¥ € C®(R;R) be such
that n(t) = p(t) = 1 for every t € [—1,+00), n(t) = u(t) = 0 for every
t € (—00,—2] and suppy C (—00,b]. Then m,up € D(R) and

(2(t), n(t)p(t)) = (2(t), u(t)¥(t))-
The graph of such function 7, with the properties in Lemma 7.2.1, is
illustrated in Figure 7.2.1.
Proof. Obviously ny, up € C®(R;R). If b < -2, then n¢p = uyp = 0.
If b > —2, supp(ny) C [—2,b] and supp(pp) C [—2,b], which shows that

mp, up € D(R). On the other hand, supp((n—p)y) C (—o0,—1] C (—00,0)
and, as x € D/, (R), it follows that

(@), (n(t) — p(£)¥(t)) = 0.
The proof is complete. 0
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Figure 7.2.1

Lemma 7.2.2 Ify € D (R) and ¢ € D(R) satisfies supp ¢ C [a,b], then
the function t — (y(s), d(t + s)) is of class C*° and its support is included
in (—oo,b].

Proof. Since y is linear and continuous and ¢ is of class C*°, by a simple
inductive argument, we deduce that the function ¢t — (y(s), ¢(t + s)) is of
class U™ because

k k
T 00).9(t +.9) = (w(e) 700+ 9)

for every k € N.

In order to prove that the support of this function is included in (—o0, b],
let us observe that, for each ¢t € R, supp ¢(¢+-) C la—t,b~t]. So, ifb—t < 0,
we have supp ¢(t + -) C (—00,0) and, by consequence (y(s), ¢(t + s)) = 0.
But this relation shows that the support.of the function t — (y(s), #(¢t +s))
is included in (—o0, b] and this completes the proof. O

Corollary 7.2.1 Let z,y € D) (R) and n,u € C®(R;R) be such that
n(t) = u(t) =1 for every t € [—1,+00) and n(t) = p(t) = 0 for every
t € (~00,—2]. Then, for every ¢ € D(R)

((t), n(t) (y(s), 6t + 5))) = (2(t), u(t)(y(s), B(t + 5))).-

Proof. In view of Lemma 7.2.2, it follows that the function v : R — R,
defined by ¥(t) = (y(s),d(t + s)) for every t € R is of class C* and its
support is included in (—o0,b]. So we are in the hypotheses of Lemma, 7.2.1,
from where the conclusion follows. The proof is complete. O

Corollary 7.2.1 allows us to introduce:
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Definition 7.2.1 Let z,y € D) (R). The convolution product of the
distributions « and ¥ is the functional z * y : D(R) — R, defined by

((z % y) (@), 6(t)) = (@), n(t)(y(s), B(t + 5)))

for every ¢ € D(R), where n € C* is a function with n(f) =1 for ¢ > —1
and 7(t) =0 for t < —2.

Remark 7.2.1 For every z,y € D/, (R) the convolution product = %y is
well-defined because, according to Corollary 7.2.1, (z(t), n(t)(y(s), #{t+5)))
is independent of the choice of the function 7. Moreover, we can show that
z * y is a distribution.

Example 7.2.1 Let z,y : R — R be two locally Lebesgue integrable
functions with the property that z(t) = y(¢) = 0 a.e. for t < 0. Then, the
distributions of type function z and y belong to D (R} and their convolu-

tion product z * y is a distribution of type function, z *x y : R — R, defined
by

(z*xy)(t) = ./o z(n)y(t —7)dr (7.2.1)

for every t € R. In order to prove the equality above, let us observe that,
for every ¢ € D(R), we have

((@*y)(8), 6(2)) = (@(t),n(t) (y(s), b(s + 1))

= (altrn®) [ a(1006+ is) = [ atemte ([ atopots+ as)

/ / n(t)y(s)¢(t + s) ds dt,

where 7 is a function of class C* with n(¢) = 1 for t € [~1,+00) and
n(t) = 0 for t € (—o0,—2]. Making the substitution ¢ + 5 = 7 and using
Fubini’s theorem (see [Dunford and Schwartz (1958)], Theorem 9, p. 190)
in order to interchange the order of integration, we get

((z*y)(t), 0(t)) = /RfRSC(t)n(t)y(T — t)o(r)dr dt

- / / () (r — t)p(r) dt dr
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_ /]R 6(r) ( /_ Ooo S(E)n(E)y(r — t) dt

T +0o0
+ /0 z(t)nt)y(r —t)dt + / z(t)n(t)y(r —t) dt) dr

/¢T)/ y(r —t)dtdr,

equality which proves that z * y is of the form (7.2.1).

We notice that we have already used the convolution product of two
functions, as expressed by formula (7.2.1), without naming it explicitly.
Indeed, let us consider the Cauchy problem for the linear non-homogeneous
differential equation

{ z'(t )—aw(t)+b()
0) =

where a € R and b € C(R;R). We know that the solution of this problem
is given by the variation of constants formula

t
z(t) = e*te -f—/ e*t=9)p(s) ds
0

for every t € R. Let us observe that this formula can be rewritten under
the form

z(t) = ™€ + b(t) * e**

where b(t) * e*® is given by (7.2.1). This observation suggests to define
the solution of the equation above by the very same formula, even in the
case when b is no longer a function but a distribution in D’, (R). We shall
develop this idea in the next section.

Proposition 7.2.1  The convolution product has the following properties:

() ex(y+2)=x*xy+2zx*2z for every z,y,2z € D' (R);
(ii) €% 6 =6z =z for every z € D (R);
(iii) (z*y) =z g for every z, y € D (R).

Proof. The property (i) follows from the definition of the convolution
product combined with the linearity of the distribution z.
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Let ¢ € D(R) and 7 be a function as in Definition 7.2.1. We have

((@*0)(t), $(2)) = (=(2), n(t)(6(s), $(t +5))) = (z(t), n(t)¢(t)) = (z(t), p(t))
because 7(t)¢(t) = ¢(t) for every t > 0 and

(8% z)(2), (1)) = (6(), n(t)(z(s), (s + 1)) = ((5), 8(5)),

equalities which prove (ii).
Finally, let us observe that

(@ *9)(2), $(1) = (@ * 9)(2), ¢ (1) = —(@(®), n()(¥(5), §'(s + 1))

= (z(t), n(t)(9(s), (s + 1)) = ((z x §)(1), (£))
for every ¢ € D(R), relation which achieves the proof. O

Remark 7.2.2 One can show that, for every z,y € D/ (R), we have
T %y = y % = (the commutativity of the convolution product). The proof
of this property is not elementary and therefore we will not include it here,
especially because we will not make use of it in this book.

7.3 Generalized Solutions

In this section, we will present a distributional approach to those equa-
tions, or systems of linear non-homogeneous differential equations which,
due to the lack of regularity of the right-hand side(s), cannot be handled
by classical methods. We begin with the first-order system of linear non-
homogeneous differential equations with constant coefficients:

t=Azx+f (7.3.1)

where A € M,x,(R) and f € [D'(R)]*. Since the right-hand side of
the equation is an n-tuple whose components are distributions, we have to
clarify from the very beginning what do we mean by a sclution of equation

(7.3.1).

Definition 7.3.1 A generalized solution, or solution distribution of the
equation (7.3.1) is an element z = (23, Z2,...,Zn) € [ D'(R)]™ which satis-
fies the relation

T =Azx+ f,
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where £ = (1,%,...,Tn), while &; stands for the derivative of =z,
i =1,2,...,n in the sense of the Definition 7.1.7, i.e., the distributional
derivative.

Example 7.3.1 Let us consider the first-order linear differential scalar
equation

Z =2z + 4,

where § is the Dirac delta. Here and in all that follows, we denote by
# : R — R the function defined by

0 ift<0
9(”:{1 ift >0,

called the unit function, or the Heaviside function, and let us observe that
6(t) = 6(t). Then, a generalized solution for this equation is a distribution
z, of type function,

() = e26(t),

where €2:0(t) represents the product of the function of class C> €* by the
distribution of type function 6(t).

Indeed, using Leibniz rule, established in the preceding section, one can
easily state that

& = (€)' 8(t) + e = 2e™6(t) + e*8(2),

where €2t5(t) denotes the product of the function of class C™ e? by the
distribution §. See Definition 7.1.4. In order to calculate this product, let
us observe that

(€*5(t), (1)) = (8(t),€*¢(t)) = €°$(0) = $(0) = (4(t), $(t))

for every ¢ € D(R). Hence e%§(t) = §(t) in the sense of distributions.
We mention that, in general, for every function of class C*°, 1, and for
every a € R, we have

n(t)é(t — a) = n(a)é(t — a).
It then follows that
T =2z +94,

which means that z is a generalized solution of the equation considered.
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The next two lemmas will prove useful in the sequel.
Lemma 7.3.1 A function n € D(R) is of the form
n=4¢, (7.3.2)
with ¢ € D(R), +f and only if

/ n(s)ds = 0. (7.3.3)
R

Proof. Let us assume that 7 is of the form (7.3.2). As ¢ is with compact
support, there exists [a,b] such that ¢(t) = 0 for every t € R\ [a,b]. So

Amnm=4wwawmﬁg=a

which proves (7.3.3).
Conversely, if (7.3.3) holds true, then taking ¢ : R — R, defined by

mw=[;ma¢

and taking into account the fact that there exists [a, b] such that n(t) =0
for every t € R\ [a,b], we deduce that ¢ is with compact support. More
precisely

¢(t) =0
for every t € R\ [a,b]. Since ¢ is obviously of class C™, it follows that
¢ € D(R), and it satisfies (7.3.2). The proof is complete. a

Lemma 7.3.2 The only generalized solutions of the first-order linear
scalar differential equation

=g, (7.3.4)
where g : R — R is a continuous function, are the primitives of g.

Proof. We begin by showing that the only generalized solutions of the
differential scalar equation

£=0 (7.3.5)

are the constant functions. To this aim, let ¢ € D(R), with [, ¥(s)ds = 1.

Then
w(0) [ 9(s)ds + o(0) - ult) [ o(s)ds
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and, by consequence

o ) - )
Since
/m <¢(t) —¥() /R é(s) d8> dt =

from Lemma 7.3.1, it follows that there exists u € D(R) such that

8(t) — B(t) / &(s) ds = (1)

for every £ € R. Then, from (7.3.5), we deduce that

(0(8), 66 = 9(0) [ $(s) ds) = (@(0),'(6) = ~(0), (0) =
Hence

(.66 = (s(0.000) [ o(s)ds) = (al0) 0 [ o(6)ds

Denoting by ¢ = (z(t), ¥(¢)), the last equality rewrites

(2(t), 6(1)) = /R c(s) ds

which proves that z is the distribution generated by the function z(t) = c
for t € R. Consequently, the only generalized solutions of equation (7.3.5)
are the constant functions.

Now, let us consider equation (7.3.4). Let G : R — R be a primitive of
the function g and let us observe that (7.3.4) rewrites in the form ¢ = G’
equality which, by virtue of Proposition 7.1.3, is equivalent to & = G. Since

N
the last relation may be written in the form z — G = 0, from what we have
previously proved, it follows that z — G = ¢ with ¢ € R, which achieves the

proof of the lemma. O
Theorem 7.3.1  If f = (f1, fo, ..., fn), where f; are distributions of type
function generated by continuous functions from R to R, i = 1,2,...,n,

then the only generalized solutions of equation (7.3.1) are the classical ones.

Proof. From Lemma 7.3.2 we deduce that the only generalized solutions
of the system

Ti=g;
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with g; : R — R continuous, ¢ = 1,2,...,n, are of the form z; = G;, with
G; a primitive of the function ¢;, 1 =1,2,...,n.

Let y € [D'(R)]™ be a generalized solution of the system (7.3.1). We
emphasize that, by e **y(t) we mean the n-tuple of distributions formally
obtained by multiplying the matrix e~** by the vector y(t), with the speci-
fication that the product of one element p;;(t) of the matrix by a component
y;(t) of the solution y(t) should be understood as the product of the function
of class C*°, py;(t), by the distribution y;(t). See Definition 7.1.4.

Then, taking into account that A commutes with e~**, we deduce

N
e My(t) = —Ae My(t) + e Hy(2)

= —Ae™ My (t) + e A (Ay(t) + f(t)) = e A £ (t).

So, y satisfies

————
e My(t) = e 1 (1),

Since the right-hand side of this equation is a continuous function, according
to what we have already proved, it follows that

¢
e ty(t) =c+ / e A f(s)ds
0

or equivalently

t
y(t) = ette +/ et~ £(s) ds.
0
The proof is complete. O
Let us consider now the n*"-order linear differential equation
¥ (@) + a1 (Oy TV (@) + -+ an(B)y(t) = F(2), (7.3.6)

where ay,as,...,a, are functions of class C*™ from R to R and f € D'(R).
For simplicity, we denote by L : D'(R) — D'(R) the n*t-order differential
operator associated to (7.3.6), i.e. the operator defined by

Lly1(t) = ™ () + a1y V() + -+ + an(t)y ()

for every y € D'(R), where a(t)y™*)(t) is the product of the function of
class C™ a; by the distributional derivative of order n — k, y~*}, of the
distribution y. See Definitions 7.1.4 and 7.1.7.
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Definition 7.3.2 By a generalized solution of equation (7.3.6), we mean
a distribution y which satisfies

Lly] =1,
where L is the n**-order differential operator associated to equation (7.3.6).

Remark 7.3.1 By Proposition 7.1.3, we have L (C™(R;R)) C C(R;R).
Then, if f : R — R is a continuous function, every classical solution of
equation (7.3.6) is a generalized solution. We recall that (7.3.6) can be
rewritten as a first-order linear differential system. So, if a; are constants,
i=1,2,...,n, and f is continuous, by virtue of Theorem 7.3.1, it follows
that the only generalized solutions of equation (7.3.6) are the classical ones.

Definition 7.3.3 By an elementary solution of the n*"-order differential
operator £ we mean a distribution € which satisfies

L[E] =4, (7.3.7)
where ¢ is the Dirac delta (concentrated at 0).

The next theorem is fundamental in order to understand the mechanism
of solving equation (7.3.6).

Theorem 7.3.2 If€ € D', (R) is an elementary solution of the n'™-order
differential operator L, then, for every f € D/, (R), the distribution

y=f*E& (7.3.8)
s a solution of equation (7.3.6).
Proof. In accordance with Proposition 7.2.1, we have
Lly]=L[f+€]=f+L[€]=fxb=f,
which achieves the proof. O

Remark 7.3.2 Essentially, Theorem 7.3.2 asserts that if one knows the
response of the system to a “unitary impulse” concentrated at ¢ = 0, then
one can find out the response of the system to any perturbation f.

In Example 7.3.1 we have determined an elementary solution for a first-
order differential operator. In what follows we will present a method of
determination of an elementary solution to the ntt-order differential ope-
rator L, associated to equation (7.3.6), whenever the latter has constant
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coefficients. More precisely, let £ : D'(R) — D’(R) be defined by
L[y] —_ y(n) + aly(n_l) + -4 any,

where a; € R, fori =1,2,...,n. In order to find out an elementary solution
€ € D, (R) of this operator, we shall use an extension of the variation of
constants formula to the framework of generalized solutions. More precisely,
let y1,¥2,- - -, Yn be a fundamental system of solutions for the homogeneous
equation L[y] = 0. By analogy with the method presented in Section 4.5,
we will look for an elementary solution of the form

n
E=> wici,
i=1
where ¢; € D'(R), for i = 1,2,...,n, satisfy the system

yicit+y2Ca + -+ yYncn =0
Yic1 +yaca+ o+ Ypch =0
; (7.3.9)

yWa+u Vg4 g Ve =0

g Ve 4y Ve 44y =6
in a distributional sense. See Theorem 4.5.7. We emphasize that in the
system (7.3.9) y("~*)¢; is the product of the function of class C* yn=k)
by the distribution ¢;, for £ =1,2,...,nand i =1,2,...,n.

This system with unknowns ¢&;, ¢ = 1,2,...,n has the solution
. W;(t)
() = a(t 7.3.10
&(0) = ) (73.10)

for ¢t = 1,2,...,n, where W is the Wronskian of the fundamental system
of solutions y1,¥2,...,Yn, while W; is a determinant obtained from W by
substituting the column of rank i by a column containing n — 1 zeros on
the first n — 1 rows and 1 on the last row. As we have already observed in
Example 7.3.1, the product of the function of class C° 5 by the distribution
8 is n(¢)6(t) = n(0)4(¢). So
Wi(t)

W;(0)
W(0) (1)

and the relation (7.3.10) rewrites in the form

_ Wi(0)

Gi(t) = W(S(t)-



Carathéodory Solutions 265

At this moment, let us observe that if we choose y1,%0,...,yn so that
y:(0) = ¢; for i = 1,2,...,n, where e, eq,...,e, are the vectors of the
canonical basis in R”, then W(0) =1 and

Ofori=1,2,...,n—-1
Wi(0) = {l for 1 = n.
Hence, a possible solution of the system aboveis ¢y =cp =+ - =¢,_1 =0

and cp(t) = 6(t), where @ is the distribution generated by the Heaviside
function. So, we have

E(t) = yn(t)8(2), - (7.3.11)
where y,, is the unique global solution, of the homogeneous Cauchy problem

{um:o
y(0) =y'(0) =--- =y=D(0) = 0, y"~V(0) = 1.

Obviously € € D/, (R).

Remark 7.3.3 From Theorem 7.3.2 and from the preceding arguments,
it follows that the general solution of the non-homogeneous linear equation
Lly] = f with f € D) (R) is given by

n
y= ki + fx&,

i=1

where ki, ke, ...,k € R, y1,¥02,..., ¥y, is the fundamental system of solu-
tions of equation L[y] = 0 satisfying (y:(0), %}(0), . ‘.yl(”_l)(O)) = ¢; for
1=1,2,...,n, where ej,es,...,e, are the vectors of the canonical basis in
R™, while € is given by (7.3.11).

7.4 Carathéodory Solutions

As we have already seen in Section 2.2, there are Cauchy problems which
do not admit solutions of class C'. We recall that, if f : R — R is defined
by

~1 if 220
ﬂ@_{ 1 if z<0,



266 FEzxtensions and Generalizations

then the Cauchy problem

(7 =5
z(0)=0

has no C? local solution to the right. See Example 2.2.1. This phenomenon
is a consequence of the fact that the right-hand side f of the equation is
discontinuous with respect to “the state variable” z. One may easily see
that not only the discontinuity of f with respect to x might be incompatible
with the existence of C? solutions. Actually, the discontinuity of f with
respect to t is equally responsible for such nonexistence phenomena. For
instance, for f : R — R defined by

1 i £>0
f(t)“{ 1 if t <0,

the Cauchy problem

{0 o

has no C? local right solutions. On the other hand, instead of C! functions,
we may allow as candidates for solutions continuous functions z : J — R
which are almost everywhere differentiable. Furthermore, we may impose as
a qualification criterion for solutions to satisfy the differential equation for
every t € J\E, where E is a set of Lebesgue null measure. If this is the case,
the second equation above has as solution the function z : R — R defined by
z(t) = —|t| for every t € R. One may easily see that the function z, which is
obviously continuous, satisfies the differential equation for every t € R\ {0}.
So, in the second example, in which the function f is discontinuous only
with respect to the t variable, by suitably redefining the concept of solution
and by paying the price of some slight modifications, we may completely
rebuild the whole theory referring to C! solutions developed previously
for the continuous right-hand side case.® We recall that we have already
done such a construction for systems of linear differential equations, when
we have introduced the generalized solutions, i.e. solutions distributions.

3The situation is completely different in the case of the first example in which the
discontinuity of the function f with respect to the state variable x leads to a law of
evolution which is contradictory by itself. In this case, only the redefinition of the
concept of solution in the class of continuous functions cannot ensure the existence. As
we shall see in the next sections, in such situations, besides the introduction of a new
concept of solution, a “minimal correction” of the evolution law f is necessary, and this
in order to eliminate the existential self-contradiction.
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See Section 7.3. Unfortunately, due to its “starting linear philosophy”, the
theory there developed can be adapted only to very few nonlinear cases and
therefore, in the general nonlinear setting, the construction of a completely
different theory is needed. The aim of this section is to present briefly
such a theory, initiated at the beginning of the XX century by Constantin
Carathéodory by using the framework offered by the very new (at that
moment) Lebesgue integral.

More precisely, we begin with the definition of the class of functions
allowed as right-hand sides in the differential equation corresponding of the
Cauchy problem

' = f(t,z)
! CP(D
(o le )
Definition 7.4.1 The function f : IxQ — R" is a Carathéodory function
if:
(i) for almost all ¢ € I, the function z — f(¢,z) is continuous from Q
to R”;
(i1) for every z € §, the function t — f(t,) is Lebesgue measurable
on I,

(iii) for every (a,£) € I x § there exist r > 0, § > 0 and a Lebesgue
integrable function h : [a,a + 6] — Ry such that B(€,7) C £,
[a,a+4d] CIand

17 ) < ) (7.4.1)
for every x € B(£,r) and for almost all ¢ € [a,a+4].
Let a € I and let 6 > 0 be such that [a,a + 6] C L

Definition 7.4.2 A function z : [a,a+d]| — Q is a Carathéodory solution
of the problem CP(D) if z is absolutely continuous? on [a,a+ 8], z(a) = ¢
and z satisfles z'(t) = f(¢,z(t)) for almost all t € [a,a + §].

In what follows we will show that, if f is a Carathéodory function, then,
for every (a,&) € I x §, there exists § > 0 such that €P(D) has at least one
Carathéodory solution defined on [a,a + §].

4We recall that a function z : [a,a + 6] — R" is absolutely continuous if for each
€ > 0 there exists 7(¢) > 0 such that, for all points t;, 8; € [a,a+d},i=1,2,...,m, with
iy Iti — s3] < n(e), we have 372, ||2(t;) — 2(s;)|| < €. It is known that each abso-
lutely continuous function is almost everywhere differentiable, its derivative is Lebesgue
integrable on [a,a + ] and, for each t,s € [a,a + 5], z(2) — z(s) = f: z'(r) dr.
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We begin with the particular case in which € = R” and f is a
Carathéodory function which satisfies (7.4.1) for every z € R™, and then
we will show how the general case reduces to the latter.

So,let f:IxR™ - R”? let a €1, £ € Q and let us consider the integral
equation with the delay A > 0

£, forte{a—Aa]

malt) = €+/tf(r,wA(T—A))dT» for t € (a,a+4].

(ET)x

We begin with the following copy of Lemma 2.2.1. First we recall that
a function A : I — R™ is locally Lebesque integrable if its restriction to any
compact interval included in I is Lebesgue integrable on that interval.

Lemma 7.4.1 Let f:IxR™ — R” be a Carathéodory function for which
there ezists a locally Lebesgue integrable function h: 1 — Ry, such that

£, z)|| < A(t) (7.4.2)

for every z € R™ and for almost allt € I. Then for every (a,€) € IXR™ and
every 6 > 0 such that [a,a+ 8] C 1, (€J)x has one and only one absolutely
continuous solution defined on [a — A a + 4.

Proof. Let us remark that, if y : [ — R™ is a continuous function, then
the function t +— f(t,y(t)) is Lebesgue measurable on I and, by virtue of
the inequality (7.4.2), it satisfies

IF (8 y (O < Ale)

for almost all ¢ € I. It follows then that t — f(¢,y(¢)) is locally Lebesgue
integrable. From here, it follows that if z) is defined and continuous on an
interval of the form [a—A, a+iA | with a+iX < a+4, then s — f(s,zx(s—A))
is Lebesgue integrable on [a,a+ (i +1)A] and therefore z) can be uniquely
extended to [a — A,a + (i + 1)A].

Clearly z) is uniquely determined on [a — A, a] from equation (£J),
itself. Let then t € [a,a + A]. Let us remark that, for every 7 € [a,t], we
have 7 — X € [a — A, a] and therefore z (7 — X) = €. Therefore

ZA(t) =€ + / fre)dr

and z is uniquely determined on [a,a + A]. Similarly, we can uniquely
determine zy on [a+ A, a+2)], [a+2X,a+3)], a.s.0. After m steps, with
mA > a+4d, we can define z on the whole interval [a,a+J]. Observing that
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x) is absolutely continuous, being the primitive of a Lebesgue integrable
function, this completes the proof of the lemma. 0

As we have already mentioned, we shall prove first the following auxili-
ary existence result which is interesting by itself.

Lemma 7.4.2 Let f:IxR" — R™ be a Carathéodory function with the
property that there exists a locally Lebesque integrable function h: I — Ry,
such that (7.4.2) is satisfied. Then, for every (a,€) € I x R™ and every
§ > 0 such that [a,a+ 8] C I, (CP) has at least one Carathéodory solution
defined on [a,a + 4.

Proof. Let (a,§) € IxR™ and § > 0 such that [a,a+ 6] C I, let m € N*
and let us consider the integral equation “with the delay é,, = §/m”

£, fort€a—6m,a]

wm{t) = E+/tf(7,xm(r—5m))d7, for t € (a,a +4}.

(ED)m

Let us remark that, by virtue of Lemma 7.4.1, for every m € N*, (&€J),,
has a unique absolutely continuous solution &, : [a — p,,a + &] — R™.

We will show in what follows that the family of functions {z,,; m € N*}
is uniformly bounded and equicontinuous on [a,a + é]. For the beginning
let us observe that, by virtue of the inequality (7.4.2), we have

a+68

lzm (O] < lI€] +/ h(s)ds < H£H+/ h(s) ds

for every m € N* and t € [a,a+6]. So {z;n; m € N*} is uniformly bounded
on [a,a+4].
Next, let us observe that, also from (7.4.2), we have

/: h(r)dr

for every m € N* and t,s € [a,a + &]. Since h is Lebesgue integrable on
[a,a+4d), the function t — fat h(r)dr is absolutely continuous on [a,a+4§]
and, by consequence, the preceding inequality shows that {z,,; m € N*} is
equicontinuous on {a,a+ §]. By virtue of Arzeld-Ascoli’s Theorem 8.2.1, it
follows that (z,,)men- has at least one subsequence, denoted for simplicity
again by (Zm)men+, uniformly convergent on {a,a + 6] to a continuous
function x. Obviously, we have

[2m(2) = Zm ()l <

n}i_l’noo T (7 — Om) = z(7),
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uniformly for 7 € [a,a + §]. Since f is a Carathéodory function on I x R™,
we have

lim f(7,zm (7 — 65)) = f(7,2(7)),

m—o0

for almost all T € [a,a + §]. From this relation, from (7.4.2) and the
Lebesgue’s dominated convergence theorem, see [Dunford and Schwartz
(1958)], Theorem 7, p. 124, it follows that we can pass to the limit in
(€T)y, for m — oco. We deduce that z satisfies

t
o) = €+ / f(r5(r))ydr

for every t € [a,a+§], and therefore z is absolutely continuous on [a,a+4)
and z(a) = €. Thus, 2'(t) = f(¢,z(t)) for almost all ¢t € {a,a + §], and this
achieves the proof of the lemma. O

Remark 7.4.1 In the hypotheses of Lemma 7.4.2, we can prove that for
every initial data (a,£) € I x R®, CP(D) has at least one global solution.

We can now proceed to the formulation of the main result in this section.
To this aim, let I be a nonempty and open interval in R, let £ be a nonempty
and open subset in R™ and f: I x  — R™ a given function.

Theorem 7.4.1 (Carathéodory). If f : I x Q@ — R" is a Carathéodory
function then, for every (a,£&) € Ix Q, there exists § > 0 with {a,a+8) C 1
and such that CP(1,Q, f,a, &) has at least one Carathéodory solution defined
on [a,a+46].

Proof. Let (a,£) € I x €. Since both I and  are open, there exist d > 0
and 7 > 0 such that [a ~d,a +d] C I and

Br)={neR" |n-¢| <r}cq.

Taking into account that f is a Carathéodory function, diminishing r if
necessary, we may assume that there exists a Lebesgue integrable function
h:[a,a+d] — R4, such that (7.4.1) be satisfied. Let us define p : R® — R"
by

Y for y € B(¢,7)
ply) =

= §“(y §)+¢ forye R*\ B(,r).

One can easily see that p maps R™ in B(£,r) and is continuous on R™.
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Now, let us define g : (¢ — d,a + d) x R® — R", by

gt,y) = f(t, p(y)

for every (t,y) € (a —d,a +d) x R™,

Since f is a Carathéodory function , while r, d and h are chosen such that
(7.4.1) holds, it follows that g satisfies all the hypotheses of Lemma 7.4.2.
So, for every k € (0,d), the Cauchy problem

{-’El = g(t, 117)
z(a) =¢

has at least one Carathéodory solution z : [a,a + k] — R™. Since z({a) = £
and z is continuous at ¢t = @, for r > 0, there exists § € (0, k] with the
property that for every t € [a,a + 8], |[z(t) — €|| < r. But, in this case,
g(t, z(t)) = f(t,z(t)) and therefore z : [a,a + §] — Q is a Carathéodory
solution of CP(L, R, f,a,£). The proof is complete. a

Remark 7.4.2 We mention that, whenever f is continuous, then the
only Carathéodory solutions of CP(D) are the classical ones, i.e. of class
C*. Indeed, in this case, if z : [a,b] — Q is a Carathéodory solution then
it is continuous. Since f is continuous, it follows that z’ is continuous too,
which shows that z is of class C!. If f is discontinuous as function of the
t variable, even at a single point, then €P(D) might have Carathéodory
solution but no classical solution, as we can see from the example below.

Example 7.4.1 The Cauchy problem

{x'=xsgn(t-—1)
z(0) =1

has as unique saturated Carathéodory solution the function z : R, — R,

defined by z(t) = e*~1=! for every t € R, function which is not of class
Cl.

7.5 Differential Inclusions

The evolutions of certain phenomena which present one or more states
of ambiguity cannot have in general as satisfactory mathematical models
differential equations, or systems of differential systems. Some of these phe-
nomena can be fairly well described by the so-called differential inclusions.
Roughly speaking, these are generalizations of differential equations in that,
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instead of a single-valued function, they have, on the right-hand side, a set-
valued function (called for this reason multi-valued function). The next
simple but very instructive model of pursuit-evasion due to [Brezis (1975)]
is lluminating in this respect.

Example 7.5.1 A policeman P chases a gangster G. The policeman’s
strategy is to run as fast as he can towards the gangster. So, if g(t) and
p(t) are the position vectors, at the moment ¢, of the gangster and of the
policeman respectively, then the policeman’s speed p/(¢) is given by

_ . 9() —p(t)
() ~ p(®)]|

if p(t) # g(t) and p'(t) € B(0,V) if p(t) = g(t), where V represents the
maximal speed which P can reach. See Figure 7.5.1 below.

P'(t)

x (1)

0 x,(1)
Figure 7.5.1

Introducing the set-valued function A : R? — 28" by

Az) = {‘V”—iﬂ} if 2 #0

B(0,V)  ifz=0

and the new unknown functions v = p — g, the relations above rewrites in
the form

u' € A(u) + h(t),

where & = ¢g’. One may easily see that, on R? \ {0}, A can be identified
with a continuous and dissipative function. Let us observe that in fact A
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constitutes, up to a multiplicative constant, a generalization of the signum
function. We emphasize that, in this example the state of ambiguity of the
system is that one at which p(t) = g(¢), where the sense of the displacement
has no relevance. It should also be noticed that, exactly at this state, one
has to consider as value of the right-hand side a set and not a single point.

Another situation, which may suggest the consideration of some diffe-
rential inclusions as alternative models, is that one in which, from various
reasons, the corresponding “single-valued differential models” has no “clas-
sical solutions”. For instance, let us consider the Cauchy problem

2’ = f(z)
{;r:(O) o (7.5.1)

where f : R — R is defined by

1 ifz<0
f(x)_{—1 if £ >0,

As we have already seen in Example 2.2.1, this problem has no local
classical right solution. More precisely, there exists no function of class C*
x, defined on a right neighborhood of 0, to satisfy (7.5.1). For this reason,
in order to give a “reasonable sense” to this problem, we must first enlarge
the class of all possible candidates to the title of solution of (7.5.1), and
second to replace the right-hand side of the equation in (7.5.1) by a “less
discontinuous function”, but “as close as possible” to the initial one. In
this respect, we might replace (7.5.1) by

z' € F(x)
{2(0) o (7.5.2)
where F : R — 2R is defined by
{1} ifr<0
F(z)={[-1,1] ifz=0 (7.5.3)

{=1} ifz>0.

We leave to the reader to find out the similarities as well as the differences
between the graph of the function f and that one of the set-valued function
F as illustrated in Figure 7.5.2 (a) and (b), respectively.

In this context, we might accept as solution of equation (7.5.1) any
almost everywhere differentiable function = : [0,8) — R which satisfies
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[} )
x x
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0 t 0 t
(@) ®)
Figure 7.5.2

both the differential inclusion in (7.5.2) for almost all ¢ € [0,4), and the
initial condition.

In view of a rigorous development of these ideas, some concepts and
results concerning multi-valued functions are needed first. In order not to
complicate the notations, we will confine ourselves to the autonomous case,
leaving to the interested reader the extension to the general case. Let
be a nonempty subset in R™. A multi-valued, or set-valued function, or
multifunction, defined on © with values in R™, is a function F : Q — 28",

Definition 7.5.1 The multi-valued function F : @ — 2R" is upper semi-
continuous (u.s.c.) at z € Q if for every open subset D with F(z) c D
there exists an open subset V' C R”™ such that for every vy € V N Q, we
have F(y) C D. A multi-valued function which is upper semi-continuous
at every z € 0 is called upper semi-continuous on 1.

Remark 7.5.1 In the case in which a multi-valued function F has as
values only singletons it can be identified in a natural way with a single-
valued function from  in R” denoted, for simplicity, also by F. In this
case F is u.s.c. on Q if and only if F is continuous on {2 in the usual sense.

Remark 7.5.2 Let us observe that the multi-valued function defined by
means of the relation (7.5.3) is u.s.c. on R™.

In what follows, if A, B are two subsets in R™, we denote by A+ B their
sum, i.e. the set of all elements 2 in R™ of the form z =z +y withz € A
and y € B. By §(0,¢) we denote the open ball centered at 0 and of radius
€ in R™,
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Proposition 7.5.1 Let F: Q — 28" and z € Q. If F(z) is compact then
F is w.s.c. at z if and only if for every € > O there exists § > 0 such that
F(y) C F(z) + S(0,¢) for every y € Q with ||y — z|| < 4.

Proof. The necessity follows from the simple observation that for every
g > 0, F(z)+5(0, ¢) is an open set which includes F(z). For the sufficiency,
let us remark that, if D is open with F(z) C D, then F(z)NdD = . Since
F(z) is compact and 9D is closed, in view of Lemma 2.5.1, it follows that
the distance d from F(z) to 8D is strictly positive. Taking ¢ = d/2, from
the hypothesis and the preceding remark, it follows that there exists § > 0
such that F(y) C F(z) + S(0,e) C D for each y € Q with |ly — z|| < 9,
which achieves the proof of the sufficiency. O

Definition 7.5.2 The multi-valued function F : Q — 28" is bounded on
Qif

{y; ye F(z), € Q}
is bounded.
The next lemma is an extension of Weierstrass theorem in Real Analysis.

Lemma 7.5.1 IfQ C R™ is nonempty and compact and F : Q — 28" 4s

u.s.c. on ) and, for every x € Q, F(z) is a bounded set, then F is bounded
on §.

Proof. Let us assume the contrary. Then there would exist a nonempty
and compact subset 2 in R” and a u.s.c. multi-valued function, F, on €,
with bounded values, which is not bounded on Q. This means that for
every n € N* there exist x, €  and y,, € F(z,) such that

lyall = n. (7.5.4)

Since © is compact, we may assume without loss of generality that there
exists x € Q such that, on a subsequence at least, we have

lim z, =z.
n—00

By virtue of Proposition 7.5.1 combined with the relation above, it follows
that for € = 1 there exists ng € N* such that, for every n > ng, we have
F(zxy) C F(z)+8(0,1). Since F(z)+S5(0,1) is bounded and y,, € F(xy) for
every n € N*, the preceding inclusion is in contradiction with the inequality
(7.5.4). This contradiction is a consequence of the initial supposition that
there would exist a nonempty and compact subset 0 in R" and a u.s.c.
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multi-valued function, F, on £, with bounded values, which is unbounded
on §. The proof is complete. O

Let F : Q — 28" be a multi-valued function, £ € Q and let us consider
the Cauchy problem with data D = (F,Q,0,£)

z' € F(z)
{xm)=s. (D)

Definition 7.5.3 An a.e. solution of CP(D) is a function z : I — £, with
I a right neighborhood of 0, which is absolutely continuous on I and which
satisfies both z(0) = € and z'(¢) € F(z(t)) a.e. fort €.

Let A >0 and ay : [0, +00) — R defined by
ax(t) = (i — 1A
ifte[(i—1)A\ir),i €N.
Let us consider the differential inclusion with the delay A > 0

zy(t) € F(za(ar(t))) fort €[0,4)
{xi(t) =¢ AA for t € [-A,0]. CPA(D)

By an a.e. solution of €P,(D) on [0,5) we mean an absolutely con-
tinuous function z : [-A,d) — R™ which satisfies z,(t) = £ for every
t €[-A,0] and

) (t) € F(za(ax(1)))
a.e. t € [0,8). We begin with the following simple, but useful lemma.

Lemma 7.5.2 If F:R™ — 28" is nonempty-valued and A > 0 then, for
every & € R™ and every § > 0, CPx(D) has at least one a.e. solution defined
on [0,8].

Proof. Obviously x is uniquely determined on [—A,0] from “the initial
condition” itself. Let then ¢t € [0,A). Let us remark that a)(¢t) = 0 and
therefore xx(ax(t)) = £. Fix y; in F(£) and let us define z, : [0,)] — R™
by

TA(t) =€ +tyr

fort € [0,A]. One may easily see that z is a.e. solution of €P»(D) on [0, A).
Taking ¢ € [ A, 2]X), let us observe that, ax(t) = A and, by consequence, we
have

Tx(ar(t)) = za(A) = £+ Ay
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Let us fix y2 in F(€ + Ay;) and let us define z) : [A,2A] — R™ by
zA(t) = £+ Ayr + (6 — Nye

for t € [A,2A]. Similarly, we can uniquely determine z) successively on
[2),3)], [3X,4)], a.s.o. After m steps, with mA > §, we can define z on
the whole interval [0, 4], and this achieves the proof of the lemma. O

By analogy with the single-valued case, we shall prove first the following
existence result which, although auxiliary, is interesting by itself.

Lemma 7.5.3 If F : R* — 28" is a nonempty compact conver valued
multi-valued function which is u.s.c. and bounded on R", then for every
£ ¢ R"™ and every § > 0, CP(F,R",0,€) has at least one a.e. solution
defined on [0,4]. '

Proof. Let £ € R® and § > 0, let m € N*, and let us consider the
differential inclusion with the delay d,, = §/m

T () € F(zm(am(t)))
{wm(t) = ¢ for t € [0, 0], CPm (D)

where a, : [0, +00) — R is given by
am(t) = (1 —1)0m

ift € [(i—1)dn,90pm), i € N. By virtue of Lemma 7.5.2, for every m € N*,
CP,,(D) has at least one a.e. solution z,, : [—6n,d] — R™. For every
m € N* let us fix such an a.e. solution z,, with the property that its a.e.
derivative is a step function. We can do that thank to the construction
described in Lemma 7.5.2.

We will show in what follows that {zm; m € N*} is uniformly bounded
and equicontinuous on [0, ¢ ]. Since F' is bounded on R™, there exists M > 0
such that

e @)l < M (7.5.5)
for every m € N* and a.e. t € [0,4]. Since
t
on) =€+ [ ann(s)ds
0

for every t € [0,8], we conclude that |z, (t)]| < €|l + 6M, for every
m € N* and t € [0,4]. Consequently, {z,,; m € N*} is uniformly bounded
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on [0,d]. Next, let us observe that, from (7.5.5), we have

n%m—%@ms/wmmmwSMle (7.5.6)

for every m € N* and t,s € [0,4]. So, {zm; m € N*} is equicontinuous on
[0,0]. By virtue of Theorem 8.2.1, it follows that (Z; )men- has at least one
subsequence, denoted for simplicity again by (z,)men=, which is uniformly
convergent on {0,d] to a continuous function z. From (7.5.6), we deduce
that

llz(t) — z(s)|| < Mt — s|

for every t,s € {0,4], and therefore z is absolutely continuous on [0,6]. In
order to complete the proof it suffices to show that

z'(t) € F(z(t))

a.e. t € [0,d]. To this aim let D be the set of all points t € {0,4] at which,
both z, and =z, are differentiable for every m € N*. One may easily see
that the Lebesgue measure of the set D equals §. Let t € D, m € N* and
h > 0. Let us observe that

t+h
FEntm—on@) = [ enle)ds

Since z,, is a step function, it follows that the right-hand side of the equality
above is a convex combination of elements in

U F(zm(am(s)))-
s€[t,t+h]

In other words,

% @m(t+h) —zm(t)) €conv | ) F(zm(am(s)))- (7.5.7)
se€[t,t+h]

We recall that conv (F') is the set of all convex combinations of elements
of the set F'. Let ¢ > 0. Since F is u.s.c. at z(¢) and F(z(t)) is compact,
by virtue of Proposition 7.5.1 it follows that there exists = n(e) > 0 such
that, for every y € R™ with [|y—z(t)(| < 1, we have F(y) C F(z(t))+S5(0,¢€).
Since

[Zm(am(s)) 2B} < [ Zm(am(s)) —2m ()| +|zm (s) —2(s)]|+ |l z(s) —2(D)]]
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for every m € N* and t, s € [0, §], recalling that

"%gnoo zm(s) = z(s) and m%gnoo am(8) =5

uniformly on [0,6] and that the family {zn,; m € N*} is equicontinuous,
we deduce that, for n = n{e) > 0, there exist h. > 0 and m, € N* such that

&m (am(s)) — z()| <7 (7.5.8)

for every m € N*, m > m, and every s € [¢,t + h,]. From the definition of
7 and from (7.5.8), it follows

U  Flenlen(s) ¢ Fle() + 5(0,¢)

3€(t,t+h]

for every m € N*, m > m, and h € (0,h.]. Since F(z(t)) + S(0,¢) is
convex, we deduce

conv | ) F(zm(am(s))) C F(z(t)) + 5(0,¢)
s€lt,t+h)

for every m € N*, m > m, and h € (0, h.]. Using this inclusion and passing
to the limit in (7.5.7) first for m — co and second for h | 0, we deduce

2/(t) € F(a(t) + S(0,e)
for every £ > 0. Since F(z(t)) is closed, this relation implies
z'(t) € F(z(¢t)).

Recalling that the relation above is satisfied for every t € D and that
[0,6]\ D has null measure, this completes the proof. O

The main result in this section is the following generalization of Peano’s
Theorem 2.2.1.

Theorem 7.5.1 Let Q C R™ be nonempty and open. If F: Q — 2R" s
uw.s.c. on 1 and has nonempty compact and convex values then, for every
& from Q, CP(D) has at least one local a.e. solution.

Proof. Let £ € Q. Since  is open, there exists r > 0 such that

B r)={neR® |n-¢l<r}cQ.



280 Eztensions and Generalizations

We define p: R™ — R” by
y for y € B(&, 1)

S P
—(y — &) + £ for y € R*\ B(&, 7).
fly =€l
One can easily see that p maps R” in B(¢,r) and is continuous on R™.
Let us define G : R® — 28" by

G(y) = F(p(y)), for every y € R™.

Since F'is u.s.c. and has bounded values, from Lemma 7.5.1, it follows that
its restriction to B(€,r) is bounded. So, G is bounded on R™. In addition, G
is u.s.c. on R™ being the superposition of two functions with this property.
From Lemma 7.5.3 we know that, for every d > 0, the Cauchy problem

{x’ € G(z)
z(0) = ¢

has at least one a.e. solution z : [0,d] — R”™. Since 2(0) = £ and z is
continuous at t = 0, for r > 0, there exists § € (0,d] such that, for every
t€[0,6], [|z(t) — €| <r. Butin this case G(z(t)) = F(z(t)) and therefore
z:[0,6] — §Q is a solution of €P(D). The proof is complete. O

For more details on such kind of problems, the reader is referred to
[Aubin and Cellina (1984)], [Carjs (2003)] and [Vrabie (1995)].

7.6 Variational Inequalities

The evolution of certain systems from chemistry, physics, biology, socio-
logy etc. is described by mathematical models expressed by differential
inequalities with state constraints of the.type

z(t) e K
(@'(t) - f(z(t)) — 9(t),z(t) —u) <0 (7.6.1)
2(0) =¢

for every v € K and a.e. ¢t € [0,7T], where K is a nonempty convex and
closed subset in R™, f : K — R" is Lipschitz continuous, ¢ : [0,7'] — R”
is continuous and ¢ € K. Problems of this kind have been considered and
studied for the first time by Jaques-Louis Lions and Guido Stampacchia,
under the name of evolution variational inequalities.
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In order to illustrate the importance of such mathematical models, let
us analyze an example in population dynamics.

Example 7.6.1 Let us consider a species of fish living in a lake and
whose free evolution, i.e. non-influenced by external factors, is described
by means of the Cauchy problem associated to the logistic equation

(e

where z(t) represents the fish population at the time ¢, ¢ and b are two
positive constants, and £ is the initial fish population. See Subsection 1.4.6.
Now, let us assume that, at each moment ¢ > 0, one harvests a constant
number of fishes in such a way that the remaining number of fishes in the
lake belongs to a given interval K = [¢1,¢2], with 0 < ¢1 < ¢ < b. In
these conditions, it is easy to see that z has to satisfy

z(t) € K for every t > 0
z'(t) — cx(t)(b—2z(t)) =0 if z(t) € (c1,¢2)
z'(t) —cx(t)(b—z(t)) >0 ifz(t)=c
') —cx(t)(b—z(t) <0 ifz(t)=co
z(0) =

Let us observe that the system above may be equivalently rewritten in the
form (7.6.1), with f: [c1, 2] — R defined by

flx) =cx(b—1x)

for every = € [c1,¢2] and g = 0. So, the problems of the form (7.6.1) are
completely justified by practice, in the sense that they furnish a better des-
cription of the evolution of those phenomena when the state z is subjected
to a point-wise restriction of the form z(t) € K for every t > 0.

Let £ € K and let us denote by
N(z) = {w e R™; {w,z—u) >0 for every u € K},

set called the normal cone to the set K ot the point x. Let us observe that
the problem (7.6.1) may be equivalently rewritten as a Cauchy problem for
a differential inclusion of the form

{x’ € f(@) +9(t) - N(x)

2(0) = ¢ (7.6.2)



282 Ezxtensions and Generalizations

One may easily see that, for every z in the interior of the set K, we
have N(z) = {0}. So, in the case K = R", we have N(z) = {0} for
every z € R™ and the differential inclusion above reduces to the differential
equation z’' = f(z) + g.

The main result referring to (7.6.2) is:

Theorem 7.6.1 Let K C R™ be a nonempty closed and convez subset,
let f: K — R™ be a Lipschitz continuous function and g : [0,T] —» R™ a
function of class C*. Then, for every € € K there erists a unique absolutely
continuous function x : [0,T] — K which satisfies (7.6.2). In addition
satisfies

'(t) = f(z(t)) + 9(t) — Praeen (F(@(t)) + 9(¢)) (7.6.3)
a.e. t€[0,T)5.

Proof. First let us observe that we may assume with no loss of generality
that f is defined and Lipschitz continuous on R™. Indeed, if this is not the
case, let us replace f by fx = foPg, where Py : R® — K is the projection
operator on the set K (see Definition 8.3.1). According to Lemma 8.3.2,
Sk is well-defined, Lipschitz continuous on R™ and coincides with f on K.
If we succeed to prove the theorem for f replaced by fg, from the fact that
z(t) € K for every t > 0, we can conclude that fx(z(t)) = f(z(t)) for every
t > 0, and this will achieve the proof in the general case, i.e. f: K — R".

Hence, let f : R® — R™, let € > 0 and let us consider the e-approximate
problem

7, = fole) + 90t
{mE(O) —¢ (7.6.4)

where fe : R® — R" is defined by

£:2) = §(2) + 2 (Puc(a) ~ 2)

for every x € R™. From the hypothesis and Lemma 8.3.2, it follows that
the function f, is Lipschitz continuous on R™ with Lipschitz constant L,
and satisfies

I fe(2)+9@ < 1 fe(@) = Fe O+ £ O +Ng@N < Lelizl|+]| £ O} +llg ()]

5We recall that Py (qs)) (f(2(t)) + g(t)) is the projection of the vector f(z(2)) + g(t)
on the set N(z(t)). See Definition 8.3.1.
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for every z € R™ and every t € [0,T]. Accordingly, the problem (7.6.4)
has a unique global solution z. : [0,T'] — R™. See Theorem 2.4.5.

The idea of proof consists in showing that there exists one sequence

(ek)ken, of positive numbers, tending to 0, such that the corresponding
sequence of solutions of the ex-approximate problems (7.6.4) is uniformly
convergent on {0,T] to an absolutely continuous function z, which is a
solution of the differential inclusion (7.6.2). We have to show next (7.6.3)
and to prove the uniqueness of the solution. For the sake of simplicity we
divide the proof into four steps.
First step. The family {z.; ¢ > 0} satisfies the hypotheses of Arzela-
Ascoli’s Theorem 8.2.1. Indeed, taking the inner product on both sides in
(7.6.4) by x.(t) — ¢ and taking into account the inequality (8.3.2) which
characterizes the projection, we get

1d

5 llee(t) ~ 61 < (Fe(®) + 9(t), 2e(6) — €)

< N f(ze(®) = F©Olllze @) — &l + UFEON + 9@ D e () — £

for every t € [0,T]. Let M = || f(&)| + sup{|lg(¢)|l; ¢t € [0,T]} and let L
be the Lipschitz constant of the function f. From the preceding inequality,
we get

o)~ €l < Mo+ [ le(s) ~ €l
for every t € [0,T]. Using Gronwall’s Lemma 1.5.2, we conclude that
llze(s) — €| < Mel't < MelTt,
Taking s = ¢ in this inequality, we deduce
lze(t) — €] < MeFTe (7.6.5)

for every ¢t € [0,T']. From (7.6.5) it follows that [z (t)|| < ||€]| + MeLTT
for every € > 0 and every t € [0,T'], and therefore the family {z.; ¢ > 0}
is uniformly bounded. Let now h > 0 and ¢t € [0,T — h|. Taking the inner
product on both sides in the equality

':_t(mE(t +h) ~ze(t)) = felze(t + h)) - fs(-’re(t)) +g(t+h) - g(t)
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by zc(t + h) — z(t) and recalling that (P — J) is dissipative (see
Lemma 8.3.2), we deduce
d

T et +h) — 2 ()]

< (I (ze(t + R)) = flze @ + llg(t + B) — g(®)ID |z (t + h) — z(2)]]

for every h > 0 and every t € [0,T — h]. From here, from the fact that f
is Lipschitz continuous of constant L and from Lemma 1.5.3, it follows

N b=

t
lze(t + h) — ze(®)]| < llze(h) — £l +L/0 lze(s + h) — zc(s)| ds

T /O lg(s + ) — g(s)]] ds.

In view of Gronwall’s Lemma 1.5.2, we get

T
lze(t + 1) — 2 ()] < (||x€(h) - ¢l + / llg(s + h) — g(s)|| ds) e,
0
for every h > 0 and every t € [0,T — h]. This inequality, along with (7.6.5)
and with the fact that g is of class C!, implies
lze(t + h) — ze(t)]| < Ch (7.6.6)

for every h > 0 and every ¢t € [0,T — h], where C > 0 is independent of
€ > 0. But (7.6.6) implies

lzz(@®)] < C (7.6.7)

for every € > 0 and every ¢ € [0,T']. Since

t
ze(t) — z:(s) = / z.(7) dr,
for every t,s € [0,T'], from the last inequality, we deduce
llze(t) — ze(s)]| < CJt — s (7.6.8)

for every t,s € [0,T]. Obviously, (7.6.8) shows that the family {z; ¢ > 0}
is equicontinuous on [0,7T]. According to Arzeld-Ascoli’s Theorem 8.2.1,
it follows that there exists at least one sequence (ej)ren, convergent to 0,
such that the corresponding sequence of ex-approximate solutions, denoted
for simplicity by (zk)ken, converges uniformly on [0,T'] to a continuous
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function z : [0,T] — R”. Passing to the limit for k¥ tending to +o0 in
(7.6.7) with ¢ = e, we deduce that z is Lipschitz continuous on [0,T]. So,
it is absolutely continuous on [0,T'].

Second step. Now, we will prove that the function z is a solution of the
evolution variational inequality (7.6.1). To begin with, let us observe that,
from (7.6.4), from the definition of f, and from (7.6.7), we have

2k (t) — Pre(ze(t)ll < Crex

for every k € N and every t € [0,T], where Cy7 > 0 depends neither on
k nor on t. Passing to the limit for £ — oo in this inequality, we deduce
lz(t) — Pr(z(t))|| = O for every ¢t € [0,T], which shows that z(t) € K
for every t € [0,T]. From (7.6.4) and from the characterization of the
projection of the point xx(s) — see (8.3.2) — it follows

%EdE (lze(s) —ull®) < (f(zk(s)) + g(s) zr(s) —w)

for every s € [0,T'] and every u € K. Now, let us consider a point ¢t € [0,T)
at which z is differentiable and let A > 0 with ¢t + h € [0,T']. Integrating
the inequality above from t to t + h, we get

5 (la(e + ) = 2u(@” = lzi(t) ~ i)

t+h
< / (Fzr(s)) + g(s), zi(s) — ) ds
t

for every u € K. At this point, let us observe that, in view of Schwarz
inequality, it follows
1

—vv—u) <
(w—wv,v u)w2

(llw = ull® = flv - uf?)

for every u,v,w € R™. Taking w = zx(t+h) and v = z4(¢) in this inequality,
using the preceding one, and then dividing by h > 0, we deduce

1 1 itk
Flettm) a0, me) ~0 < 5 [ (el + (0 mu(s) — wyds

for every u € K. Passing to the limit for k tending to oo we get

| =

1 t+h
(@t +h) —2(t),2(t) —u) < /t (f(z(s)) + g(s), 2(s) —u) ds
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for every u € K. Finally, passing to the limit for i tending to 0, we conclude
that z satisfies

(@'(t) — f(=(t)) — 9(t),z(t) —u) <O

for every u € K and a.e. t € [0,T]. So z is a solution of the problem
(7.6.1).

Third step. In order to prove the uniqueness, let x and y be two solutions
of the problem (7.6.1), and let s € [0,T] be a point of differentiability of
both = and y. Taking successively u = y(s) € K in the inequality (7.6.1)
satisfied by z, and u = z(s) € K in the inequality (7.6.1) satisfied by y, we
get

Ed; (lz(s) — y(s)1%) < (f(2(s)) = F(y(s)), z(s) = y(s)) < Liiz(s) - y(s)If*.

Integrating this relation from 0 to ¢ and using Gronwall’s Lemma, 1.5.2, we
deduce that z(t) = y(t) for every t € [0,T], which achieves the proof of
the uniqueness part.

Fourth step. In order to prove (7.6.3), let us observe that, from (7.6.2),
we have

%(x(t +8)) = F(a(t+8)) — glt + ) € —N(a(t +9))

for every t € [0,T) and a.e. s € R% with t+s € [0,T]. From the definition
of the set N{xz(t + s)), it follows that

(v—u,z(t+s)—=z()) >0

for every v € N{z(t + s)) and every u € N(z(t)). So

<gg(w(t +5)),z(t +s) — x(t)>

< (fx(t+5)) +g(t+ ) —u,z(t +5) — z(t))

for every u € N(z(t)). Integrating with respect to s from 0 to 2 > 0, we
get

h
-;—“m(t +h)—z@®)|? < /0 (f(z(t+38)) +g(t + 8) —u,z(t + 5) — z(t)) ds
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for every t € [0,T], h > 0 with t+h € [0,T'] and every u € N(z(t)). From
Schwarz inequality and Lemma 1.5.3, it follows

h
flz(t +A) — @) S/O [f(z(t+s)) + g(t +s) —ull ds

for every t € [0,T], h > 0 with t + h € [0,T], and every u € N(z(t)).
Taking a point ¢ of differentiability of the function z, dividing by h, and
passing to the limit for ~ tending to 0, we deduce

="l < [1f () + g(¢) — ull

a.e. for t € [0,T] and for every u € N(z(t)), relation equivalent to (7.6.3).
The proof is complete. 0

For some extensions and generalizations of Theorem 7.6.1, we refer to
(Barbu (1976)].

7.7 Problems of Viability

In accordance with Theorem 2.2.1, if 2 is a nonempty and open subset in
R™ and f : @ — R™ is a continuous function, then for every £ € 1, the
Cauchy problem with data D = (R, , £,0,€)

o = 1(a)
{x(O) —¢ (D)

has at least a local solution z : [0,T] — Q. The condition which assumes
that € is open is essential and cannot be removed, unless some other com-
pensating extra-condition is added, as we can see from the simple example
below.

Example 7.7.1 Let us consider the plane ¥ = {(x;,z2,23); 3 =1} and
the function f : £ — R3, defined by f(z1,%2,23) = (2 + T3, —21,—71)
for every (x1,x2,z3) € . Then, if £ is the projection of the origin on this
plan {(i.e. & = (0,0,1)), €P(D) has no local solution. Indeed, assuming
by contradiction that there exists such a solution z : [0,T'] — X, we have
(z'(t), z(t)) = (f(z(t)),z(t)) = 0 and therefore ||z(t)]| = [|€]] = 1 for every
t € [0,7']. Hence z(t) lies on the sphere of center 0 and radius 1 which has
only one point in common with ¥, namely £. Then, necessarily z(t) = £
for every ¢ € [0,T], which is impossible, because, in this case, one would
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have x;(t) = 0 and #{(t) = z2(t) + x3(t) = 1 for every ¢t € [0,T]. This
contradiction can be eliminated only if €P(D) has no local solution.

We have already seen in Theorem 6.1.2, that if U : ) — R is a function of
class C' with VU(z) # 0 on Q and if £ : @ — R" is continuous and parallel
to the tangent plane to every level surface X, = {z € Q; U(z) = U(n)}
at every point of this surfaces, then, the restriction of the function f to
any surface ¥, has the property that, for every £ € £,, €P(D) has at least
one local solution z : {0,T'] — Z,. This condition constitutes a first step
through a partial answer to the question: what extra-conditions must satisfy
the set & C R™ and the continuous function f : % — R™, in order that,
for every £ € T to exist at least one function of class C1, z: [0,T] — %,
such that z(0) = & and 2/(t) = f(x(t)) for each t € [0,T]. However, the
conditions offered by Theorem 6.1.2 have three weak points. First, they
ask f to be defined on the union of all surfaces ,, and not on a single one.
Second, f must satisfy the mentioned “tangency condition” on each of the
surfaces of the family. Finally, the set X is in this case of a very specific
type, namely it is a surface of constant level for a function U : @ — R, of
class C! and satisfying VU (z) # O for every = € Q0.

The possibility of removing the already mentioned three weak points is
suggested even by Theorem 6.1.2 which we reformulate below.

Theorem 7.7.1 Let & be a regular surface in R® and f : £ — R™ @
continuous function. The necessary and sufficient condition in order that,
for every € € & to exist T > 0 and a function of class C*, z : [0,T] — X,
such that £(0) = § and &’(t) = f(z(t)) for everyt € [0,T], is that for every
n €%, f(n) be tangent to 3 at 7.

We will obtain this theorem as a consequence of a more general result
which we will present in what follows.

We begin with some background material we will need subsequently. For
the sake of simplicity, we will confine our considerations to the autonomous
case, although all the results we shall prove can be extended to the non-
autonomous case as well.

Definition 7.7.1 Let ¥ C R™ be nonempty and f: X — R™. Theset &
is viable with respect to the differential equation z’ = f (z)ifforevery§ € &
there exist T > 0 and at least one function of class C1, z : [0,T] — £,
such that z(0) = £ and 2/(¢t) = f(z(t)) for every ¢t € [0,T].

Definition 7.7.2 The set 3 C R" is locally closed if for every € € ¥ there
exists > 0 such that ¥ N B(&,r) be closed.
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Remark 7.7.1 Obviously every closed set is locally closed. Furthermore,
every open set X is locally closed too. Indeed, if 3l is open, for every £ € &
there exists 7 > 0 such that B(,r) C ¥ which proves the assertion. There
exist however locally closed sets which are neither open, nor closed, as for
example ¥ C R? defined by © = {(z1,22,23) € R%; 23 =0, 22 + 22 < 1}.
This set, which is in fact the set of points in the interior of the disk of center
O and radius 1 in the plane ;05 is a locally closed set which is neither
open, nor closed.

The next concept has been introduced independently by [Bouligand (1930)]
and [Severi (1930)].

Definition 7.7.3 Let ¥ € R” and £ € £. The vector n € R™ is tangent
in the sense of Bouligand-Severi to the set ¥ at the point € if

1 .
livp nf - dist (€ + n, %) = 0. (7.7.1)

The set of all vectors which are tangent in the sense of Bouligand-Severi
to the set © at the point € is a closed cone® (see Problem 7.9) and is called
Bouligand-Severi tangent cone to the set T at the point £&. We denote this
cone by Tx(¢).

Proposition 7.7.1 A vectorn € R™ belongs to the cone Tx(€) if and only
if for every € > 0 there exist h € (0,¢) and p,, € B(0,¢) with the property

E+h(n+pn) €X.

Proof. Obviously € Tx(£) if and only if, for.every € > 0 there exists
h € (0,¢) and zp € ¥ such that $]|€ + hn — z,|| < e. Now, let us define
Ph = %(2n — £ — hn), and let us observe that we have both ||ps|| < ¢, and
£+ h(n+pr) = 2z, € %, thereby completing the proof. a

Remark 7.7.2 We notice that, if £ is an interior point of the set X, then
T5(€) = R™. Indeed, if there exists » > 0 such that B(£,r) C L, it follows
that, for each 7 € R™ and t € (0,7|n||™!), € +tn € B(€,7) C L. In these
circumstances, we have dist (€ +tn,X) = 0. So, the condition (7.7.1) in
Definition 7.7.3 is satisfied, and therefore n € Tg(£), as claimed.

We can now proceed to the main result in this section.

Theorem 7.7.2 (Nagumo) Let £ C R™ be a nonempty and locally closed
set and f : X — R™ a continuous function. The necessary and sufficient

6We recall that a cone is a set € C R®, such that, for each 5 € € and A > 0, we have
A € C.
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condition in order that ¥ be viable with respect to ' = f(x) is that, for
every £ € B, f(£) € Tx(§)-

The necessary and sufficient condition for viability in Theorem 7.7.2
can be expressed equivalently as the so-called Nagumo tangency condition
below

lispint % dist (€ + AF(€),5) = 0 (7.7.2)

for each £ € 3.
7.8 Proof of Nagumo’s Viability Theorem

Proof. In order to prove the necessity let £ € . Then, there exist 7' > 0
and a function of class C*, z : [0,T] — £, with z(0) = £ and o'(t) = f(z(t))
for every ¢t € [0,T]. Since z(t) € & we deduce that

dist (€ +tf(€),Z) = dist (z(0) + ¢t£(x(0)),X)

< 2(0) + t£(2(0) — =(H)] =t I

oy - XA,

Since z is differentiable at ¢t = 0 and z'(0) = f(z(0)), we have

z(t) — z(0)

: =0.

f(z(0)) -

Hm
10

From the last relation and the preceding inequality, we deduce
lm %dist (€ +1£(€),%) = 0. (7.8.1)

But this relation shows that, for every £ € 3, f(€) € Tx(€). The proof of
the necessity is complete.

Remark 7.8.1 We have shown that the set Tx(£) in Theorem 7.7.2 can
be replaced by the set Fn(£) of all vectors n € R™ which are tangent to &
at € in the sense of Federer, i.e. of all vectors 7 satisfying

1
ltllr(r)l ?dlSt E+1tn,2)=0.

It should be noticed that Fg(£) is, in general, strictly smaller than Ty (€).
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For the sake of simplicity, we will divide the proof of the sufficiency into
three steps. In the first one, we shall prove the existence of a family of
approximate solutions for the Cauchy problem

o' = f(z)
{ 2(0) = ¢ (7.8.2)

defined on intervals of the form [0,a], with a > 0. In the second step we
will show that the problem (7.8.2) admits such approximate solutions, all
defined on an interval [0,T] independent of the “approximation order”.
Finally, in the last step, we shall prove the uniform convergence on [0, 7]
of a sequence of such approximate solutions to a solution of the problem
(7.8.2).

Let £ € ¥ be arbitrary and let us choose 7 > 0, M > 0 and T > 0, such
that B(¢,r) N 2 be closed,

If(@)l < M (7.8.3)
for every x € B(€,r) N X and
T(M+1)<r. (7.8.4)

The existence of these three numbers is ensured: by the fact that ¥ is locally
closed (from where it follows the existence of r > 0), by the continuity of f
which implies its boundedness on B(€,r) (and so the existence of M > 0)
and by the fact that T > 0 may be chosen as small as we wish. In the
first step, we will show that, once fixed an € € (0,1) and r, M and T as
above, there exist three functions: ¢ : [0,T] — [0,T] — nondecreasing,
9:[0,T] — R™ — Lebesgue integrable, and z : [0,7] — R™ — continuous,
satisfying

(i) o(t) <tandt-o(t) <e for every t € [0,T];

(i) lgt)l| < € for every t € [0,T];
(iii) z(o(t)) € B(§,r) N for every t € [0,T] and z(T) € B(&,7) N %;
(iv) z(t) =€+ fot flz(o(s))) ds + fg g(s)ds for every t € [0,T].

For the sake of simplicity, in all that follows, we will call such a triple
(0,9,x) an e-approzimate solution of the Cauchy problem (7.8.2) on the
interval (0,T].

The first step. Let £ € X and let 7 > 0, M > 0 and T > 0 be fixed as
above. We begin by showing that, for each ¢ € (0,1), there exists at least
one g-approximate solution on an interval {0, a], with @ < T. Since for every
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£ € T we have f(£) € Tx(£), from Proposition 7.7.1, it follows that there
exist a € (0,T], a < £ and p € R™ with |[p|| < e such that {+af(€)+ap € T.
At this point, we can define the functions o : [0,a] — [0,a], g: [0,a] — R"
and z:[0,a] — R™ by

o(t)=0 fort € [0,a]
g{t)=p fort €0,a]
z(t)=E+tf(€)+tp forte0,a].

One can readily see that triple (o, g,2) is an e-approximate solution of the
Cauchy problem (7.8.2) on the interval [0,a]. Indeed the conditions (i),
(ii) and (iv) are obviously fulfilled, while (iii) follows from (7.8.3), (7.8.4)
and (i), by observing that z(o(t)) = £ € B(£,r) N X for every t € [0,a],
z{a) =€+ af(€) +ap € X, and

lz(a) = &Il = llaf(€) + apll < @]l f(E)I + ae < a(M +1) <.

The second step. Now, we will prove the existence of an e-approximate
solution defined on the whole interval [0,7]. To this aim we shall make use
of Zorn’s lemma, as follows. Let 8 be the set of all e-approximate solutions
of the problem (7.8.2) having the domains of definition of the form [0,a]
with a < T. On 8§ we define the relation “xX” by (o1,91,21) X (02,92, 22)
if the domain of definition of the first triple, [0,a4], is included in the
domain of definition, [0, as], of the second triple and the two e-approximate
solutions coincide on the common part of the domains. Clearly “<” is a
partial order relation on 8. Let us observe that the set 8 endowed with “<”
is inductively ordered, i.e. every totally ordered subset in § has a majorant.
Indeed, let L = {(04, ga,Zo); @ € T'} be such a totally ordered subset. Since
L is totally ordered, we may assume with no loss of generality that T is
the set of those elements a € (0,7 with the property that (c,,gq,2s) is
defined on [0,a]. If T’ has one last element a*, then the corresponding
e-approximate solution is a majorant for £. If sup T = a*, which is clearly
in [0,T], does not belong to I', we will define a majorant for £ as follows.
First, let us observe that, because all the functions in the set {g,; a € T'}
are nondecreasing, with values in [0,7'] and satisfy o,(a) < 0(b) for every
a,b € T with a < b, there exists ilrg] 0,(a) and this limit belongs to [0,T].

From the fact that L is totally ordered, we deduce that, if a,b € T" and
a < b, then z,(a) = z(a). Taking into account (iii), (iv) and (7.8.3), we
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deduce

b b
[2a(a) — 25(b)| S/ £ (zs(os(s))ll d5+/ lgs(s)ll ds < (M + €)[b - af

for every a,b € T, and thus there exists liTn£ zo(a). As for every a € T,

z4(a) € B(§,r)NE, and the latter is closed, we have liTm zq(a) € B(E,r)NZ.
ata*

Then, we can define (o*, g*,z*) : [0,a*] — [0,a*] x R™ x R™ by

. oa(t) fort € [0,a], a el
g \t)= liTrQ oq(a) for t = a*

wror | 9a(t) fort € [0,a}, a €T
g(t)—{o for t = a*

. () fort € [0,a], aeT
T (t) = liTrq zq(a) for t =a”.

Obviously (¢*,g*,z*) is an e-approximate solution which majorizes every
element in L. According to Zorn’s lemma, it follows that § has maximal
elements. Let (o, g,z) be such an element having the domain of definition
[0,a]. We will show that a ="T. Indeed, let us assume by contradiction
that a < T. Then, taking into account the fact that z(a) € B(§,7) N X, we
deduce that

lota)-¢l < [ "7 (o ()] ds+ / "llo(s)l| ds < a(M+e) < a(M+1) <.

As z(a) € ¥ and f(z(a)) € Te(z(a)), there exist § € (0,T —a), § < ¢
and p € R™ such that |jp|] < ¢ and z(a) + 6f(z(a)) + ép € E. Then,
from the inequality above, it follows that we can diminish ¢ if necessary, in
order to have ||z(a) + §(f(z(a)) + p) — €|l < r. Let us define the functions
7:[0,a+8]—[0,a+ 48] and §:[0,a+ 8] - R™ by

~pn_ Jo@) forte[0,a]
U(t)—{a fort € (a,a + ]
o [g(t) forte(0,a]
g(t)_{p for t € (a,a +48].

It is no difficult to see that ¢ is nondecreasing, g is Lebesgue integrable on
[0,a + ¢] and |jg(t)|| < € for every ¢t € [0,a + &]. In addition, for every
t € [0,a+4d], 5(t) € [0,a] and therefore z(5(t)) is well-defined and belongs
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to the set B({,7) N . Accordingly, we can define 7 : [0,a + 8] — R” by

t t
F(t) = € + /0 F(x(@(s))) ds + /0 5(s) ds

for every t € [0,a + §]. Clearly & coincides with z on [0,a] and then it
readily follows that &, § and Z satisfy all the conditions in (i) and (ii). In
order to prove (iii) and (iv), let us observe that

E(t)—{x(t) fort € [0,a]
 lz(a) + (t —a)f(z(a)) + (¢t —a)p forte (a,a+d].

Then 7 satisfies (iv). Since

z(o(t)) for t€[0,a]

z(a(t)) = {z(a) for t € (a,a+ 6],

it follows that Z(c(t)) € B(§,7}) N L for each t € [a,a + §]. Furthermore,
from the choice of § and p, we have both Z(a+6) = z(a)+6f(z(a))+dp € T,
and

[Z(a + 8) — &Il = llz(a) + 6(F(z(a)) +p) — &l < 7

Consequently 7 satisfies (iii). It follows that (7,7,%) € 8 and is a strict
upper bound for the maximal element (o, g,z). But this is absurd. This
contradiction can be eliminated only if each maximal element in the set §
is defined on [0,T'].

The third step. Let (¢x)ren be a sequence in (0,1) decreasing to 0 and
let ((ok, gk, Zk))ken be a sequence of eg-approximate solutions defined on
[0,T]. From (i) and (ii), it follows that

lim ok(t) =t and lim gx(t) =0 (7.8.5)
k—oo k—o0

uniformly on {0,7]. On the other hand, from (iii), (iv) and (7.8.4) we have
T T
lzx () < llze(t) — &+ 161 < / £ (zi(or(s))I d6‘+/ llgx(s)ll ds + [I¢]]
0 0

STM+ 1)+l <r+ €l

for every k € N and every ¢t € [0,T]. Hence the sequence (zx)ken is
uniformly bounded on (0,7]. Again from (iii), (iv) and (7.8.4), we have

llzx(8) — ()]l < / llf(fck(dk(f)))lld7+/ lgr ()l dr| < (M+1)|t—s|
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for every t,s € [0,T]. Consequently, the set {zx; k € N} is equicontinuous
on [0,T]. From Theorem 8.2.1, it follows that, at least on a subsequence,
(2 )ken is uniformly convergent on [0,T] to a function z : [0,T] — R™.
Taking into account (iii), (7.8.5) and the fact that B(¢,7) N X is closed, we
deduce that z(t) € B(£,7) N T for every t € [0,T']. Passing to the limit in
the equation

mmhﬁ+ﬁfmwmmw+ﬁ%@m

and using (7.8.5), we deduce that

t
o(t) =€+ [ flals))ds
0
for every t € [0,T'], which achieves the proof of the theorem. O

From Remark 7.7.2 combined with Theorem 7.7.2, we deduce a variant
of Peano’s local existence Theorem 2.2.1 referring to the case of autonomous
systems. More precisely, we have

Corollary 7.8.1 Let £ C R™ be nonempty and open and let f : ¥ — R
be continuous. Then T is viable with respect to ' = f(z).

We have to mention that Theorem 7.7.1 too is a direct consequence
of Theorem 7.7.2, combined with the remark that the classical notion of
tangency there used is equivalent to the tangency notion introduced in
Definition 7.7.3. See also Problem 7.10.

The readers which are interested in the study of viability problems are
referred to [Aubin (1991)], [Carja (2003)], [Carjs and Vrabie (2004)] and
[Pavel (1984)].

7.9 Suflicient Conditions for Invariance

Let © C R”™ be given, let £ C Q be nonempty, and let us consider the
differential equation

z' = f(z), (7.9.1)

where f: Q — R™ is a continuous function. Since, throughout this section,
we are dealing with autonomous equations, we may assume that, for all
initial conditions considered, the initial time 7 = 0. See Proposition 2.1.3.
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Definition 7.9.1 Let Q@ C R™ be given, and let f : & — R™. The
nonempty subset ¥ C  is invariant with respect to 2’ = f(x) if, for every
€ € ¥, and every solution = : [0,c] — Q of (7.9.1) satisfying z(0) = ¢,
there exists 7' € (0, ¢] such that z(t) € I for every t € [0,T]. It is globally
invariant if it is invariant and T = c.

The relationship between viability and invariance is clarified in:

Remark 7.9.1 If f is continuous on 2 which is open, and % is invariant
with respect to the differential equation =’ = f(z), then X is viable with
respect to 2’ = f,(z). The converse of this assertion is no longer true as we
can see from Example 7.9.1 below. Nevertheless, if ¥ is viable with respect
to 2’ = f.(z) and 2’ = f(z), z(0) = £ has the uniqueness property, then
¥ is invariant with respect to =’ = f(z).

Example 7.9.1 Let Q =R, X = {0} and let f : £ — R be defined by
f(z) = 3v/x2 for every z € R. Then ¥ is viable with respect to z’ = fis(T)
but ¥ is not invariant with respect to 2/ = f(z), because the differential
equation z’ = f(z) has at least two solutions which satisfy both z(0) = 0,
and z(t) # y(t) for each ¢ > 0, ie. = = 0 and y(t) = t3. See also
Problem 7.8.

A simple necessary and sufficient condition of invariance is stated below.

Theorem 7.9.1 Let  C R™ be open, ¥ C Q a nonempty and locally
closed subset and f : & — R™ a continuous function with the property
that the associated Cauchy problem has the uniqueness property. Then, a
necessary and sufficient condition in order that the set ¥ be tnvariant with
respect to ¥’ = f(x) is that, for every £ € T, f(£) € Tx(£).

Proof. The conclusion follows from Theorem 7.7.2 and Remark 7.9.1. O

Theorem 7.9.1 says that, if ¥ is viable with respect to x’ = fi.(z), and
z' = f(x), £(0) = £ has the uniqueness property, then X is invariant with
respect to f. The preceding example shows that this is no longer true if we
assume that ¥ is viable with respect to =’ = f|(z) and merely z’ = f|_(z),
z(0) = £ has the uniqueness property.

Remark 7.9.2 Moreover, if f: @ — R™ is continuous and there exists
one point £ € Q such that the differential equation z’ = f(z) has at least
two solutions, = and y, satisfying both z(0) = y(0) = &, and z(t) # y(t)
for each t € (0,T], then the set £ = {z(¢); t € [0,T]} is viable, but not
invariant, with respect to ' = f(z).
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The next example reveals another interesting fact about local invariance.
It shows that £ could be invariant with respect to f even though ' = f| (z)
does not have the uniqueness property.

Example 7.9.2 Let us consider ¥ = {(z1,z2) € R?; o > 0} and let
f: R? = R? be defined by

(1,0) if (z1,22) € RZ\ &
(1,3Y/x3) if (21,22) € L.

Clearly ¥ is invariant with respect to z’ = f, (), but ' = fi (z), x(0) = ¢
does not have the uniqueness property. The latter assertion follows from
the remark that, from each point (£,0) (on the boundary of ), we have
at least two solutions of z’ = f(z), z(t) = (t + &,0) and y(t) = (¢ + &, ¢3)
satisfying z(0) = y(0) = (£,0).

F(@1,22)) = {

In order to formulate the main sufficient condition for local invariance, we
need some preliminaries.

We denote by [Dz](t) the right lower Dini derivative of the function z
at ¢, i.e.

[Dyz](t) = lir}llllionf x—(ti%ﬁ(i)

If z,y € R", we denote by [z,y]+ the right directional derivative of the
norm || - || calculated at z in the direction y. Similarly, (z,y)+ denotes the
right directional derivative of 7||- ||? calculated at z in the direction y. More
precisely

1
[z,9]+ = lﬂg E(Hw + Ayl — ||zl

@9+ =lim 57 (o + byl = ol

One may easily see that
@9)+ = llzllz, yl+

for each z,y € R™ and, if | - || = +/(:,-), where {,-) is the inner product on
R”, we have

(xay)+ = (I,y).
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Definition 7.9.2 A function ¢ : [0,a) — R is a comparison function if
¢(0) = 0, and the only continuous function z : [0,T) — [0, a), satisfying

{ [D+z](t) < p(z(t)) for all t € [0,T)
z(0) =0,

is the null function.

Now, we can introduce the following exterior tangency condition: there
exists an open subset V of  with ¥ C V such that

lirillionf% (dist (€ + B (£); 5) — dist (& )] < p(dist (&%) (7.9.2)

for each £ € V, where ¢ is a certain comparison function. Clearly, this
condition reduces to the classical Nagumo’s tangency condition (7.7.2) when
applied to £ € X, and this simply because, at each such point £ € I,
dist (¢; £) = 0. The main result in this section is:

Theorem 7.9.2 (Carji~Necula~Vrabie) Let ¥ C Q C R", with X locally
closed and 2 open, and let f : Q — R™. If (7.9.2) is satisfied, then ¥ is
tnvariant with respect to o' = f(x).

Proof. Let V C Q be the open neighborhood of ¥ whose existence is
ensured by (7.9.2) and let ¢ : [0,a) — R the corresponding comparison
function. Let £ € £ and let z : [0,¢] — V be any local solution of (7.9.1)
satisfying x(0) = £. Diminishing ¢ if necessary, we may assume that there
exists p > 0 such that B(£,p) N X is closed, z(t) € B(£,p/2) and, in
addition, dist (z(¢); ) < a for each t € [0,¢). Let g : [0,¢] — Ry be
defined by g(t) = dist (z(¢); £) for each t € [0,c]. Let t € [0,c) and h > 0
with ¢ + h € [0,¢]. We have

t+h

g(t + h) = dist (z(t + h); T) = dist (:c(t) + f(z(s)) ds; Z>

t+h
<hlz [ o o)ds— f(ee)

+ dist (z(t) + hf(z(t)); ).

Therefore

glt+h) —g(®) _ a(h) + dist (z(t) + hf(x(t)); ¥) — dist (2(t); T)
h - h ’
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where

a(h) =

t+h
'% [ e ds - ftete)

Since limpjoa(h) = 0, passing to the liminf for A | 0, and taking into
account that V, £ and f satisfy (7.9.2), we get

[D+9](t) < ¢(g(2))

for each t € [0,7). So, g{t) = 0 which means that z(t) € ¥ N B(¢, p/2).
But N B(£, p/2) C TN B(E, p) for each t € [0,T), and this completes the
proof. O

Remark 7.9.3 Let V C Q be an open neighborhood of £. It is easy
to see that (7.9.2) is satisfied with ¢ = ¢y, the function ¢f : [0,a) — R,
a = supgey dist (¢; X), being defined by

prle)= sup limint —;;[dist (€+hF(E);T) — dist (63)]  (7.9.3)
334
dist (£;X)=x

for each z € [0, a).
So, Theorem 7.9.2 can be reformulated as:

Theorem 7.9.3 Let ¥ C Q, with X locally closed, and let f : Q1 — R"™ be
continuous. If there erists an open neighborhood V of ¥ with V C Q such
that vy, defined by (7.9.3), is a comparison function, then ¥ is invariant
with respect to z’' = f(x).

7.10 Necessary Conditions for Invariance

We say that £ € R™ has projection on ¥ if there exists n € ¥ such that
l€ —n|l = dist (§;X). Any n € L enjoying the above property is called a
projection of € on I, and the set of all projections of £ on ¥ is denoted by
= (¢).

Definition 7.10.1 An open neighborhood V of T, with IIx(¢) # @ for
each £ € V, is called a prozimal neighborhood of ¥, If V is a proximal
neighborhood of X, then every single-valued selection, 7 : V — X, of Iy,
i.e. mn(€&) € Il (€) for each £ € V, is a projection subordinated to V.
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The next lemma, proved in [Carj3 and Ursescu (1993)], essentially shows
that each locally closed set ¥ has one proximal neighborhood.

Lemma 7.10.1 (Carjd and Ursescu) Let & be locally closed. Then the
set of all £ € R™ such that Il (£) is nonempty is a neighborhood of T.

Proof. Let ¢ € £. Since ¥ is locally closed, there exists p > 0 such
that X N B(&, p) is closed. We will show that, for every n € I satisfying
l€ — 1|l < p/2, IIx(n) is nonempty, which justifies our conclusion. Indeed,
given 7 as above, there exists a sequence ({1 ), in 3 such that the sequence
(lI¢k — nll}x converges to dist (; £). We can suppose, taking a subsequence
if necessary, that the sequence ({x)x converges to a point ¢ € R™. So we
have dist (7; X) = [|(—nl|. Further [|¢x—¢| < [|Ge—nll+[n—€]| for all k € N,
and consequently ¢ — €] < dist (%) + 7 — €] < 2|1 — ]l < p. Finally,
Kk — nll < p for all & € N sufficiently large. Hence {, € ¥ N B(¢, p), and
since the latter is closed, it follows that { € . Thus IIx(n) is nonempty,
and this achieves the proof. O

Definition 7.10.2 Let X C © C R™. We say that a function f: Q — R"”
has the comparison property with respect to (2, L) if there exist a proximal
neighborhood V C Q of &, one projection 7y : V — ¥ subordinated to V,
and one comparison function ¢ : [0,a) — R, with a = supgcy dist (§; X),
such that

[ = m=(£), f(§) — F(m=(€))]+ < e(ll€ = m=(E)]) (7.10.1)
for each £ € V.

Let us observe that (7.10.1) is automatically satisfied for each & € I,
and therefore, in Definition 7.10.2, we have only to assume that (7.10.1)
holds for each £ € V'\ 3.

Definition 7.10.3 The function f: Q — R" is called:

(i) (Q,X)-Lipschitz if there exist a proximal neighborhood V C Q of
3., a subordinated projection 7y : V — X, and L > 0, such that

[£(&) = Flrs @Il < LI — m=(©)|]

foreach £ e V\ I;
(il) (2, X)-dissipative if there exist a proximal neighborhood V C §2 of
2, and a projection, g : V — X, subordinated to V, such that

[€ — 72(£), £(€) — f(m2(E)]+ <O



Necessary Conditions for Invariance 301

for each £ € V\ L.

Let V be a proximal neighborhood of ¥, and let 7y : V — ¥ be a
projection subordinated to V. If f : V — ¥ is a continuous function with
the property that, for each n € Z, its restriction to the “segment”

Vp ={€ e VAX; 72(£) = n}

is dissipative, then f is ({2, £)-dissipative.

It is easy to see that if f is either (€, ¥)-Lipschitz, or (2, X)-dissipative,
then it has the comparison property with respect to (£2, £). We notice that
there are examples showing that there exist functions f which, although nei-
ther (€2, £)-Lipschitz, nor (€1, X)-dissipative, do have the comparison prop-
erty. Moreover, there exist functions which, although (£2, ¥)-Lipschitz, are
not Lipschitz on Q, as well as, functions which although (2, ¥)-dissipative,
are not dissipative on €. In fact, these two properties describe merely the
local behavior of f at the interface between ¥ and Q \ . We include be-
low two examples: the first one of an (Q, ¥)-Lipschitz function which is
not locally Lipschitz, and the second one of a function which, although
non-dissipative, is (2, X)-dissipative.

Example 7.10.1 The graph of an (Q, ¥)-Lipschitz function f : R — R
which is not Lipschitz is illustrated in Figure 7.10.1. Here X = [ —a,a] and

Figure 7.10.1

() is any open subset in R including ¥.

Example 7.10.2 The graph of a function f : R — R which is (2, ©)-
dissipative but not dissipative is illustrated in Figure 7.10.2. This time, ¥
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is either (—o0, 8], or [a, +00), or [a, 8] with @ £ —a < a < B, and Q is
any open subset in R including ¥.

"G 0 4 x

Figure 7.10.2

Theorem 7.10.1 (Carji-Necula-Vrabie) Let & C Q@ C R™, with ¥ locally
closed and Q open, and let f: Q — R™. If f has the comparison property
with respect to (U, L), and (7.7.2) is satisfied, then (7.9.2) is also satisfied.

Proof. Let V C € be a proximal neighborhood of I, let £ € V, and let
7z 1 V — ¥ be the projection subordinated to V as in Definition 7.10.2.
Let h > 0. Since ||§ — g (€)| = dist (§; X), we have

dist (¢ + hf(£); ) — dist (& Z) < (€ — m=(§) + A[f(E) — f(m=(E))]

=[1§ = w2 (&)l + dist (= (€) + hf (r=(£)); X).
Dividing by h, passing to the liminf for h | 0, and using (7.7.2), we get

i {dist (€ + R/ () B) = dist (6 D)) < [¢ ~ ma(€), /) ~ F(mal€))s

< o(ll€ = T
This inequality shows that (7.9.2) holds, and this completes the proof. O

From Theorems 7.7.2 and 7.10.1, we deduce the following necessary
condition for invariance.
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Theorem 7.10.2 (Céarji-Necula-Vrabie) Let ¥ C Q C R®, with X lo-
cally closed and Q0 open, and let f : Q@ — R™ be continuous. If f has the
comparison property with respect to (2, X) and X is invariant with respect
to ' = f(x), then (7.9.2) holds true.

Proof. As X is invariant with respect to &’ = f(z) and f is continuous, it
follows that ¥ is viable with respect to ' = f(z). In view of Theorem 7.7.2
we conclude that (7.7.2) is satisfied, and thus we are in the hypotheses of
Theorem 7.10.1. The proof is complete. a

Combining Theorems 7.7.2 and 7.10.1, we deduce:

Theorem 7.10.3 (Carji-Necula-Vrabie) Let ¥ C @ C R", with ¥ lo-
cally closed and Q open, and let f : Q@ — R™ be continuous. If f has the
comparison property with respect to (2, L), and (7.7.2) is satisfied, then X
is invariant with respect to (7.9.1).

For details on invariance problems see [Aubin (1991)], [Carjd, Necula
and Vrabie (2004)] and [Carji and Vrabie (2004)].

7.11 Gradient Systems. Frobenius Theorem

Let U € R™ and § € R™ be nonempty and open, let X* : U x § — R”,

i=1,2,...,m, be functions of class C! and let us consider the gradient
system
m
dyzZXi(x,y) dzx;. (7.11.1)
i=1

Definition 7.11.1 Let 7€ Uand £ € §. A solution of the system (7.11.1)
subjected to the Cauchy condition y(7) = £ is a function y : V C U — G,
where V is a neighborhood of the point 7, which satisfies

&ri
y(r) =&

If V = U, the solution y is global.

{ 9y (z) = X(z,y(x)) for z€V,i=1,2,...,m

The existence problem for such equations has been encountered in some
particular cases, ie. (n=1m=1),{n=1,m =2)and (n = 1,m =
3). For n = 1,m = 1 equation (7.11.1) reduces to dy = X(z,y)dz, or
equivalently to y’ = X (z, y), situation completely clarified by Peano’s local
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existence Theorem 2.2.1. In the case n = 1, m = 2 the equation has the form
dy = X(z,y)dz1 + X?(z,y) dzs, while the local existence problem equi-
valently rephrases as the problem of finding sufficient conditions, or even
necessary and sufficient, in order that the right-hand side of the equation
above be an exact differential. In this case, the continuity of the functions
X1, X? is no longer sufficient for existence. Moreover, now, even under the
very restrictive hypothesis that X1, X2 do not depend on y and are of class
C® on G, the problem considered may have no solution. We recall that,
if X1, X? are independent of y and are of class C! on § which is simply
connected, then a necessary and sufficient condition for the existence of a
function y, of class C* on § such that dy = X(z1, z2) dz1 + X?(z1, z2) dz2,
is that

X'  8x?

8132 3.771

on the set G. See [Nicolescu et al. (1971b)], Theorem 5, p. 187.

In the case n = 1,m = 3, again in the hypothesis that the functions
X1, X?% X3 do not depend on y, are of class C' and that G is a paral-
lelepiped, a necessary and sufficient condition in order for

Xl(iL‘l,.’L‘z,:E;;) diEl -+ X2(.’E1,1112, Ig) dzrg + X3(1'1,.’E2,.’L'3) d.’L‘3
to be an exact differential is that

oX' 8Xx2 08X _9X3 8X® _ ax!

dzy  Ozy' Ozs  Ozy' Ory  Oxs

(7.11.2)

on the set G. See [Nicolescu et al. (1971b)], Theorem 4, p. 181.

The results we just have recalled, from which the last two ones refer to
the case in which X® for i = 1,2,...,m are independent of y, reveal the
difficulty of finding sufficient conditions of existence for the general case of
equation (7.11.1), when at least one of the functions X*, ¢ = 1,2,...,m
depends on y.

We will consider first the case in which X* is independent of the variable
zel, fori=1,...,m, called homogeneous, and we shall prove a necessary
and sufficient condition in order that (7.11.1) have the local existence and
uniqueness property. We will then extend this result to the fully general
case.
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So, let X*: G — R®, i=1,2,...,m, be functions of class C' and let us
consider the homogeneous system with exact differentials
dy

ax(:c) = Xi(y(z)) for z€V,i=1,2,...,m
y(r) = ¢
One may easily see that, if y : V C U — G is a solution of the system
(7.11.3), then y is of class C? and, by virtue of Schwarz theorem, one has
9%y 8%y
3.721'6.’)2‘3' (IL‘) N 8:c3-8xi (II?)

(7.11.3)

for every z € V. It then follows that, a necessary condition in order that
the system (7.11.1) have the local existence property is that

oxt : 8xI :

X7 — —(y) X" =0 f € q. 7.11.4

5y (W)X (y) 3 (¥)X*(y) or y €9 ( )
Definition 7.11.2 The Lie-Jacobi bracket associated to the vector fields
X%, X9 G — R™, of class C! on G, is the function [X* X7] : § — R,
defined by

(x5, %9 ) = iy xi) - ) xiw) for ye s
Oy Oy

Remark 7.11.1 One may easily state that, for all vector fields X¢, X7,
of class C!, we have

X4, X7 =—-[X7,X%].

This property shows that [X?, X7] = [X7, X*] if and only if [X*, X7] =0,
which justifies the definition that follows.

Definition 7.11.3 The family {X*: § - R"; i = 1,2,...,m} commutes
on G if

[X, X%] (y) =0
for every i,j € {1,2,...,m} and y € G.

The main local existence and uniqueness result referring to the homo-
geneous system (7.11.3) is:

Theorem 7.11.1 Let X*: G — R%?, ¢ = 1,2,...,m be of class Ct on
G. The necessary and sufficient condition in order that the system (7.11.3)
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have the local existence and uniqueness property is that the family of vector
fields {X1,X2,...,X™} commute on G.

Proof. The necessity was already proved when we have shown the rela-
tion (7.11.4).

Sufficiency. The system being homogeneous, we may assume without
loss of generality that 7 = 0. Let £ € G be arbitrary, and let us denote by
0i(-,€) 1 (—oy¢,Bse) — R™ the unique saturated bilateral solution of the
Cauchy problem

{wﬁ)=X%Mﬂ)
¢(0) =¢&.

Leta = -% min{os¢, Bie; = 1,2,...,m} and let us observe that, in view of
Theorem 2.5.1, it follows that there exists 7 > 0 such that S(&,7) C G and,
for every A € S(£,7), the unique saturated solution ¢;(-, A) of the Cauchy
problem

{ ¢'(t) = X*(p(t))
p(0) = A
is defined at least on (—a,a). Let us define y : (—a,a)™ x S(§,r) — R” by

Y1, s Tmy A) = 1(z1, ) 0 2(z2,7) 0+ - 0 P (Tm, A), (7.11.5)

where by “o” we denoted the superposition of functions. We will prove, by
induction over m, that y(-,£), defined by (7.11.5), is the desired solution.
For m = 1 we have one vector field and y(z1,£) = ¢1(z1,&) is obviously
a solution of the problem (7.11.3). Let us assume then that, for every
family of m — 1 vector fields of class C* which commutes, y(-, £), defined by
(7.11.5), is a solution of the Cauchy problem (7.11.3). In particular, since
{X2,X3,...,X™} commutes, the function

37(5152, R xmaf) = pa2(z2, ) o p3(z3, ) 00 ‘Pm(xMag)
is the solution of the gradient system
]

OY _ yiga(s .
8373‘ X (y(l‘,é)), J 2,3,...,m’

where & = (z2,23,...,Zm). We will prove that the function

y(z, &) = p1(21,§(%,€)) = p1(x1,") o p2(T2,") 0+ - 0 P (Tm, §)  (7.11.6)
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is a solution of the problem (7.11.3). We have

Oy

3991
By BA) =

Ba, @LH) = XY pr(z1, m)) = X (y(=, A)),
where

= ‘P2(x27 ) o (P3(x37 ) g.-+0 (Pm(xma )‘)

From the semigroup property, we have

e1(=21,y(x,8)) = p1(—21, 01(21, (%, £))) = pr(—z1+21, §(Z, €)) = §(%, £).

Differentiating both sides of the equality above with respect to z;, we de-
duce

g 0 0j
T CE U@ )5 w8 = 5LEE, j=28,..m

From this relation, by observing that

(1@ = F -, u(w,©),

and taking into account Theorem 2.6.1, we get

[3901 ~oj

By (=21, y(a, e»] )

= Hi(~z1,y(z, €)X (§(%,€)) = Hi(~z1,9) X (p1(~21,9)), (7.1L.7)

for y = y(x,&), and j = 2,3,...,m, where

Op1 !
Hi(t,5) = |00
satisfies
{ M2 = -aa—f(mt, N (1,2)
Hi(0,2) = I,
It then follows that H;(—z;,y) satisfies

dH ax1
d-xf-(“—mh'y) = “W(‘Pl(‘mlay))Hl(_mlvy)-
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In view of Leibniz—Newton formula, the right-hand side of (7.11.7), denoted
by Y?(zy,y), can be rewritten as

) . . @ g
Yiler,y) = Hi—a, )X (e —o1,) = Y 0,0) + [ ¥i(ry)dr
0

= X(y) + /OII Hi(—7,9) [ X1, X7 (p1(~7,y)) dr = X(y)  (7.11.8)

because, by hypothesis, [X', X7] () = 0 for every z € §. In particular,
taking y = y(z,€) in (7.11.8), we get

Yj(ajl,y(:z;, £) = Xj(y(a:7£)), J=23,...,m,
from where, using (7.11.7), we deduce

Oy

B—%(x,£)=Xf(y(z,é)), i=2,3,...,m

and the proof of the local existence part is complete.

In order to prove the uniqueness part, let y,z : (—a,a)™ — R"™ be two
solutions of the Cauchy problem (7.11.3). Let € (—a,a)™ and let us
define the functions w,v:[0,1] — R™ by

u(t) = y(t8) and wv(t) = z(t6)

for every t € [0,1]. Further, let us define the function f : § — R™ by
fi(w) = (X*(w),0) for every i = 1,2,...,m and every w € G. From the
hypothesis, we know that X*, i = 1,2,...,m are vector fields of class C!
and therefore f has the same property. On the other hand, one can easily
see that u and v are solutions of the Cauchy problem

tow 26,

which has the uniqueness property. Then we have u(1) = v(1), which is
equivalent to y(f) = z(6). Since 8 is arbitrary in (—a,a)™, this completes
the proof. O

We will now proceed to the general non-autonomous case.

Theorem 7.11.2 (Frobenius) Let X*: U x § — R®, i =1,2,...,m be
of class C! on U x G. The necessary and sufficient condition in order that
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the system (7.11.1) have the local existence and uniqueness property is that
the family of vector fields {X*, X?,..., X™} satisfy the relations

oxt ax:t ; ox? oX7 ;

—(z,y)+ —(2,9) X (z,7y) = —(2,9) + —(z, v) X*(z,y) (7.11.9

5 @ U+ T, @YX @) = o)+ G (@)X (@) (1119)
for every 4,5 = 1,2...,m and every (z,y) € U x G, called the Frobenius
integrability conditions.

Proof. The idea of proof is the same as that one used to rewrite a
non-autonomous system as an autonomous one by introducing an extra-
unknown function and an extra-equation. To begin with, let us denote by
z = (z,y) € R®*™, and let us define Z¢: U x G — R**™ by

7'e) = (Xi(e;,y)>

for i = 1,2,...,m and z = (z,y) € U x G, where ej,es,...,e, is the
canonical basis in R™. Let us observe that the system (7.11.1) admits
a solution y satisfying the Cauchy condition y(7) = £, if and only if the
system

0z

8_aci:Z(z)

i=1,2,...,m admits the solution z(z) = ( ) satisfying the condition

z
y(z)
z(T) = n, where n = (2) . Finally, because

Ome Omxn

o7 _
o =\ ox oxt |
Oz dy
we have
. Omxl
YA .
(Y
g2 A7) = | oy 80X

L j
7z, (z,y)+ By (z,9) X7 (2,y)

for every z = (z,y) € U x §. Accordingly, {X?, X2,..., X™} fulfils the
Frobenius integrability conditions if and only if {Z1, Z2,..., Z™} commutes
on U x G which, by virtue of Theorem 7.11.1, completes the proof. 0
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Remark 7.11.2 If n =1, m = 3 and the vector fields X!, X2, X3 do not
depend on y, the Frobenius integrability conditions reduce to the conditions
(7.11.2).

7.12 Exercises and Problems

Exercise 7.1  Let ¢ € D(R). Which one of the sequences below are convergent
in D(R)?

W 380 @ 1ok © 36(3). k=12....

(I[Vladimirov et al. (1981)], p. 101)

Exercise 7.2  Find the derivatives in the sense of Definition 7.1.7 for the follow-
ing distributions of type function:

(1) z(t) =sgn(t) (2) z(t) = costsgn(t)
(3) z(t) =tsgn(t) (4) z(t) =tsgn(t—1)
(5) z(t) = sint O(t) (6) z(t) = €*0(t).

Problem 7.1  Prove that the product of the function of class C*° n by 5(t) is
given by

n(t)o(t) = —n'(0)8(2) + n(0)3(2).
Prove that:

(1) t6™ (1) = —ms™ (), m=1,2,...
(2) t™8™ () = (~1)™mlé(t), m=0,1,...
(3) t*6™ () =0, m=1,2,...,k— 1.

([Vladimirov et al. (1981)], p. 110).

Problem 7.2 Letz: R — R be a locally Lebesgue integrable function, let n € N
and let us define T, : R — R by zn(t) = nx(nt) for every t € R. Prove that
the sequence of distributions of type function (Tn)nen is point-wise convergent in
D(R) and find its limit.

Exercise 7.3  Find an elementary solution for the differential operator L if:

D Llyl=9"+3y"+2y. () Llyl=v"+20" +y. 3) L[y] =v" + 4.
@) Lly)=v"+4" +44. 5) Lly)=v" - ¥ . (6) Lly]=v" -3y +2y.
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Exercise 7.4  Using the elementary solutions found in Ezercise 7.3, solve the
following differential equations:
(1) " +3y +2y=e'0(t). (4) ¢ +4y” +4y = sint(t).

(2" +2 +y=1t6(t). (B)yy" —y =468(2).
(3) v + 4y =cos2t0(t).  (6) ¥ — 3y + 2y = te’' O(¢t).

Exercise 7.5  Find the Carathéodory solutions of the Cauchy problems below:

(1) {m': —z+0(t-1) (4){:2’ = (1+2%)0(t — Z)sint

z(0) = 1. :cl(%) =0. ,
@) { i(s ia:0+ t9(t — 3) 5) { :((;—; s=g111(t — Z)cos®z
ol oS

Problem 7.3 Indicate the points at which the following multi-valued function
F:R — 2R is upper semi-continuous if:”

0 if <0 0 if <0
(1) Fz)={ [0,1]if z=0 (2) F(z)= ¢ [L,2]if z=0
1 if z>0. 1 if 2z>0.
0 if z<0 0 ifz<0
@B)Fz)=¢ (0,1)if =0 (4) F(z)={ [0,1] if z=0
1 if z>0. 22+ 1if >0,
0 if z<0 0 if z<0
(5) Pz) =< [0,1]if z=0 (6) F(z)=¢ [0,1]if z=0
z? if z>0. z+2if z>0.

Problem 7.4  Let K be a nonempty and closed subset in R™ and let F' : K — oR™
be a multi-valued function with closed values, which is upper semi-continuous on
K. Then its graph is a closed subset in R™ x R™.

Problem 7.5 Let K C R™ be nonempty and let F: K — X" be o multi-valued
function whose values are included in a compact subset H in R™. If the graph of
F is closed in R™ x R™ then F' is upper semi-continuous on K.

Problem 7.6 Let K C R™ be nonempty and let F : K — 22" be o multi-valued
function having compact values. If F is upper semi-continuous on K then conv F°

7To simplify the writing we agree that, whenever the value of one multi-valued func-
tion F at a point z is a set containing a single element y, to use the notation F(z) = y,
instead of F(z) = {y}.

8We recall that conv F(z) is the closed convex hull of the set F(z), i.e. the intersection
of all closed convex subsets in R™ which include it.
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18 upper semi-continuous on K.

Problem 7.7 Let K C R™ bennonempty and let f : K — R™ be a bounded
function. We define F: K — 2% by F(z) = Lim f(z), where Lim f(z) is the set
of all limit points of the function f at x € K. Then F is upper semi-continuous
on K.

Problem 7.8  Find two nonempty sets Q@ € R, T C Q, and a continuous function
f: Q= R, such that T is viable with respect to ' = f;(z), but ¥ is not invariant
with respect to =’ = f(x).

Problem 7.9 A subset € in R™ is a cone if for every n € € and every s > 0, we
have sn € C. Let . be a nonempty subset in R™ and £ € L. Prove that Tx(§) is
a closed cone.

Problem 7.10 Let 2 be a nonempty and open subset in R" and let U : Q@ — R
be a function of class C* with VU(z) # 0 on . Let ¢ € R and let us assume
that £ = {z € Q; U(z) = c} is nonempty. Prove that n € R™ is tangent to ¥ at
the point £ € X if and only if (n, VU(E)) = 0. In other words, in this case, T(£)
coincides with the set of vectors parallel to the tangent plane to ¥ at &.

Problem 7.11  Prove that the set £ = {(z1,%2,23) € R%; 23+ 25 + 25 =1} is
invariant for the differential system

’ 2
Ty = —T2+ %3
Th = a1
Th = —T173.

Problem 7.12  Prove that each of the two coordinate azes is an invariant set for
the Lotka—Volterra system

{ z' = (a — ky)z
y' = —(b— hz)y.

Using this, prove that every solution of the system issued from the first quadrant
remains there on the whole interval of existence.

Problem 7.13  Prove the following interesting consequence of Theorem 7.7.2 :
Theorem A Let ¥ C R”™ be nonempty and locally closed and let f : ¥ — R"
be continuous. A sufficient condition in order that ¥ be viable with respect to
z' = f(z) is that, for every £ € 0%, f(£) € Tsx(f), where OX denotes the
boundary of the set .

Is this condition necessary?



Chapter 8

Auxiliary Results

8.1 Elements of Vector Analysis

For n € N* we denote by R™ the set of all n-tuples z = (z1,a,...,Zn) of
real numbers which, with respect to the operations “+” (internal composi-
tion law) and “” (external composition law) defined by

z+y=(z1,22,.. ., Zn) + Y1, ¥2,- - ¥n) = (L1 + Y1, T2 + Y2, .-, Zn + Yn)
for every x,y € R, and respectively by
Az = AT1,2T2:- . Tn) = (AT1, AZ2,. .., AZy)

for every A € R and every z € R", is an n-dimensional vector space over R.
In all that follows, (-,-), : R® x R™ — R is the standard inner product on
R™, i.e.

(‘T) y>n = Z Y
=1

and || - l, : R® — R4 is the induced Euclidean norm, i.e.

n 1/2
Ilin = 4/ (z,2), = (Z w?)
i=1

for every z,y € R™. Whenever no confusion may occur, we will cancel the
index n, writing (z,y) instead of (z,y),, and (x| instead of {|z||,. Also, we
will cancel “” by simply writing Az instead of A - z.

Let M, xm(R) be the set of all n x m-matrices with real elements. In
many situations we will identify an element A € Mpxm(R) by a linear

313
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operator {denoted for simplicity by the same symbol) A : R™ — R", defined
by

Alz) = Az

for every x € R™, where z is a column vector.
On the set M, xm (R), which clearly is an n x m-dimensional vector space
over R, we define the function || - |i, by

[Allw = sup{||Az|ln; = € R™, [zfm <1}

for every A € M, xm(R). The next simple lemma is particularly useful in
what follows.

Lemma 8.1.1 The function || - flm : Mpxm(R) — Ry is @ norm on
Maxm(R), i.e. it satisfies:

(N1) |Mllwe = 0 if and only if A is the null matriz;
(N2) | Ml = |AI|A]v for every A € R and every A € Muym(R);
(Ns) A+ Bllm < [Allve + [|Blive for every A, B € Mnxm(R).

Moreover, for every x € R™ and every A € Myxm(R)
(Ng) | Az|ln < [ Allmllzlim-

In addition, for every A € M, xm(R) and every B € M, (R), we have
(Ns) ABlx < [|AllvelIBllve-

Proof. Since (N;) and (N;) are obvious, we will confine ourselves to
the proof of the remaining three properties. In order to check (N3), let
us observe that the operator A 4+ B is continuous from R™ to R™. Since
Il - IIx is continuous on R™, it follows that the function z ~ ||(A + B)z||n is
continuous on R™. Furthermore, the set B(0,1) = {x € R™; |||, < 1}
is compact and then, according to Weierstrass’ theorem, it follows that the
function above attains its supremum on B(0,1). So, there exists £ € B(0,1)
such that

A+ Bllm = sup{{|(A + B)zlln; l|zllm <1} = [[(A+ B)lln.
But
I(A + B)élln < |AL]ln + [ BElln < [|Allxv + || Bl

which achieves the proof of item (N3).
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In order to prove (N4}, let us observe that, for £ = 0, it is obviously
satisfied. Let thenz € R™, z # 0. We have ||z|;.lz € B(0, 1), and therefore

LAzl 2)lle = Nllnt Az la < 1A,

which shows that (IV4) holds true for every z € R™. Finally, from (Ny),
we deduce that, for every A € My n(R), every B € My, xp(R) and every
z € RP, we have

[ABz|ln < |4l Bellm < [[Alv|Bllvlll-

Passing to the supremum for z € B(0, 1) in the inequality above, we deduce
(Ns). The proof is complete. O

Corollary 8.1.1  For every A € Mpyn(R) and every k € N we have
(Ns) [1AF|[v < (ALl

Proof. The conclusion follows by a simiple inductive argument reiterating
the property (Ns). O

Remark 8.1.1 The norm || - ||, defined on M, . (R), is equivalent on
the isomorphic space R™*™ with the Euclidean norm. More precisely, there
exists two constants k1 > 0 and k2 > 0, such that

k1Al < |Alle < k2llAllm (8.1.1)

for every A € Mpxm(R), where

Al = En: iafk-

i=1 k=1

Indeed, if ey, e3,...,en are the vectors of the canonical basis in R™, we
have

T
>l = |l Aerll2 < Al for k=1,2,...,m.

i=1

Adding side by side these inequalities, we deduce

A2 < ml|Al3.

1A% denotes the k-times product of the matrix A by itself. For k = 0, by definition
A® =17, where J is the unit matrix in My, xn» (R).
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Hence, for ky = 1/m, the second inequality in (8.1.1) is satisfied. On the
other hand, as we have already seen in the proof of Lemma 8.1.1, there
exists £ € R™, with ||£||,n < 1, such that

2
n

A5 = A81% = D7 [ D aisg
j=1

i=1

Using the Cauchy-Schwarz inequality? in order to majorize the sum over
j, we deduce

m n

&1 =3 aliel < A2
/ ;

i=1 j=1

n m
Al <> 1D el
=1 \j=1 j

This inequality shows that, for k; = 1, the first inequality in (8.1.1) holds
true also.

We emphasize that (8.1.1) expresses the invariance of boundedness, con-
tinuity, differentiability of functions with values in M, xn (R), with respect
to the two norms || - |l and || - ||e-

Let now D be a nonempty subset in R and let f : D — R” be a function,

f(t) = (fl(t)7f2(t)7 s 1fn(t))

for every t € D. In all that follows, we shall say that f has a certain
property if all the partial functions fi, fa,..., fn have that property. For
instance, we will say that f is differentiable at t € D if all the functions f;,
with ¢ = 1,2,...,n, are differentiable at t. If f is differentiable at ¢t € D,
we denote by f'(t) its derivative at t, i.e.

f'(@) = (fi®), £2(), - .., Fo (2))-

By analogy, we shall say that f : [a,b] — R"™ is Riemann integrable on [a,b]
if all the partial functions f; with ¢ = 1,2,...,n are Riemann integrable

2We recall that the Cauchy—Schwarz inequality asserts that, for every system of real
numbers x1,2,...,Lm and y1,y2,...,Ym, We have



Elements of Vector Analysis 317

over [a,b]. In the case in which f has this property, we denote by

/:f(t)dt: </abf1(t)dt,/abf2(t)dt,...,/abfn(t)dt)

its Riemann integral over [a,b]. The next lemma extends to arbitrary
n € N* two well-known results for n = 1.

Lemma 8.1.2 Let f:[a,b] > R" and g: [a,b] —» R™

() If f and g are differentiable at ty € [a,b], then (f,g) : [a,b] = R
is differentiable at tg, and

gt-((f,g))(t) (f(t0), g(to)) + (f(to), ' (to))- (8.1.2)

In particular, if f is differentiable at to € [a,b], then the function
IFI%: [a,b) — Ry is differentiable at ty, and

L 01717) (t0) = 207" (t0), £t0). (8.1.3)

(i) If f: {a,b] — R” is Riemann integrable on {a,b], then the function
If])l : [a,b] = Ry is Riemann integrable on [a,b], and

/a b F(2) dt

Proof. Inorder to prove (i), let us recall that (f, g) : [a,b] — Ris defined
by

b
< / LF®) dt. (8.1.4)

({f,90)(8) = (f(£), 9(t)) = Z Fi(t)g:(t)

for every t € [a,b]. Since all functions f; and g;, with 2 = 1,2,...,n, are
differentiable at to, by the relation above, it follows that (f,g) is differen-
tiable at ¢g. In addition, we have

(f 9))(to) Z[f (ta)gi(ta) + fi(to)gi(to)]

i=1

= (f'(to), 9(to)) + {f(to), ¢'(to)),

which proves (8.1.2). Clearly, (8.1.3) follows from (8.1.2) by taking f = g.
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In order to prove (ii), let us observe that the function ||f]| : [a,b] —» R4
is defined by

n 1/2

1A = 1F @l = <Z f?(t)>
i=1
for every t € [a,b]. Since all functions f;, with i = 1,2, ..., n, are Riemann
integrable, it follows that || f|| has the same property. Furthermore, let us
consider A :a =ty < t; < .-+ <ty = b, a partition of the interval [a,b],
and let & € [ti,tit1), 1 =0,1,...,k — 1, be arbitrary intermediate points.
We have

k-1 k-1
HO'A(L 62)“ = Z( i+1 =t )f Ez Z i+1 —t ”f gl)” - O'A(“f” fz)
i=0 i=0

Taking a sequence of partitions of the interval [a,b], with the sequence
of norms tending to zero, and a sequence of corresponding intermediate
points, and passing to the limit in the inequality above, we get (8.1.4). The
proof is complete. O

In the next lemma, all vectors considered are column vectors.

Lemma 8.1.3 Let us consider f : [a,b] — R", A € M,x,(R) and
B:la,b] = Muxn(R).

(i) If f is Riemann integrable over [a,b] then Af is Riemann inte-
grable over [a,b] and

A (/abf(t)dt) - /ab/lf(t)dt

(ii) If B is Riemann integrable over [a,b] then B* is Riemann inte-
grable over [a,b] and

(/:B(t)dt)* = /abg*(t)dt

where B* denotes the adjoint of the matriz B.
(iif) IfB is Riemann integrable over [a,b] and z,y € R™ then (B(:)z,y)
is Riemann integrable over [a,b] and

<</b‘B(t) dt) x,y> = /b(‘B(t)x,y)dt.
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Proof. Let A:a =1y <t; < - <t =>b be a partition of the interval
[a,b] and let & € [ti,ti1), ¢ = 0,1,...,k — 1, be arbitrary intermediate
points. We have

k—1
Aloa(f,&) =D (i1 — t)AF (&) = oalAf &),
=20
(0a(B, &))" Z(tm B*(&) = 0a(B",&)
1=0
and
k-1
(0a(B, &)z, y) = > _(tix1 — t:)(B(€)z, ¥) = oa((B()z,¥), &).
=0

Taking a sequence of partitions of the interval [a,b], with the sequence
of norms tending to zero, and a sequence of corresponding intermediate
points, and passing to the limit in the equalities above, we get (i), (ii) and
(iii). The proof is complete. O

8.2 Compactness in C({a,b];R™)

In this section we shall prove an analogue of Cesaro’s lemma referring
to sequences of continuous functions from [a,b] to R®. We denote by
C([a,b); R™) the space of all continuous functions from [a, b] to R™ and we
endow this space with the uniform convergence topology on [a,b].

Definition 8.2.1 A family F in C({a,b]; R") is relatively compact if every
sequence in F has at least .one subsequence which is uniformly convergent
on {a,b].

Definition 8.2.2 A family ¥ in C([a,b];R™) is equicontinuous at a point
€ [a,b] if for every € > O there exists d(e,t) > 0 such that, for every
s € [a,b] with |t — s| < d(e,t) we have

1f@) = F(s)ll <,

for all f € J.
A family F is equicontinuous on ja,b] if it is equicontinuous at each
€ [a,b], in the sense described above.
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A family F is uniformly equicontinuous on [a,b] if it is equicontinuous
on [a,b) and 4(e,t) can be chosen independent of £ € [a,b].

Lemma 8.2.1 A family F in C([a,b);R™) is equicontinuous on [a,b)] if
and only if it is uniformly equicontinuous on {a,b].

Proof. Clearly, each family which is uniformly equicontinuous on [a,b]
is equicontinuous on [a,b]. In order to prove the converse of this state-
ment, we shall proceed by contradiction. So, let us assume that there
exists a family F which is equicontinuous on [a,b], but is not uniformly
equicontinuous on [a,b]. This means that there exists € > 0 such that, for
every & > 0, there exist ¢5,s5 € [a,b] and f5 € F, with |ts — s5| < § and
| 5(t5) — fs(ss)|| > €. Taking § = 1/m with m € N*, and denoting by
tm = ts, Sm = 85, and [, = f5, we have

{ |tm - 5m| < —

m
[fn(tm) = fm(sm)ll 2 €
for every m € N*. Since the sequence (tm)men+ is bounded, from Cesaro’s
lemma, it follows that it has one subsequence, convergent to an element
t € {a,b]. We denote by (tn,)pen+ this subsequence, and we observe that,
from the first inequality above, it follows that (sy,,)pen+ is convergent to t
too. On the other hand, the family J is equicontinuous at ¢ and therefore,
for € > 0 as above, there exists 6(g,t) > 0 such that, for every s € [a,b]
with |s —¢| < (e, t) and every f € F, we have ||f(s) — f(t)]| < /3. Since
both (tm,)pen+ and (spm,)pen+ converge to t, for p € N* large enough, we
have [t,,, —t| < (e, t) and |sy, —t| < d(e,t). Then

£ < ||y (try) = Frnp (5
<ty = SO+ [ i (6) = Frng (5 ) < 5

This contradiction can be eliminated only if F is uniformly equicontinuous
on [a,b]. The proof is complete. a

Definition 8.2.3 A subset F is uniformly bounded on [a, b] if there exists
M > 0 such that for every f € F and every ¢ € [a,b], we have || f(¢)]| < M.

Theorem 8.2.1 (Ascoli-Arzeld) A family F in C([a,b]; R™) is relatively
compact if and only if:

(i) F is equicontinuous on [a,b];
(i) F is uniformly bounded on [a,b].
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Proof. We begin with the necessity of the conditions (i) and (ii). To this
aim, let F be a relatively compact subset in C({a,b]; R™) and let € > 0. Let
us assume by contradiction that F is not uniformly bounded. Then there
would exist one sequence (tm)men in [a,b] and one sequence (fr,)men in
F such that || fm(tm)]| > m. Since F is relatively compact, the sequence
(fm)men has at least one subsequence (fm,)pen Which is uniformly con-
vergent to a continuous function f. Then, there exists p; € N such that
| frm, (£) = F(E))} < 1 for every p > p; and every t € [a,b]. On the other
hand, by virtue of Welerstrass’ theorem, it follows that there exists M > 0
such that ||f(¢)|| < M for every t € [a,b]. So, we have

mp < ”fmp(tmp)” < “fmp(tmp) - f(tm,,)ll + “f(tmp)” <1+ M

for every p > p;. But this inequality contradicts limy_,oo mp = 4+00. This
contradiction can be eliminated only if ¥ is uniformly bounded. Hence the
condition (ii) is necessary for the relative compactness of the set F.

Next, let us assume by contradiction that there exists a relatively com-
pact set F which is not equicontinuous, or equivalently, who is not uniformly
equicontinuous on [a,b]. See Lemma 8.2.1. This means that there exists
€ > 0 with the property that, for every § > 0 there exist t5,s5 € [a,b] and
fs € F with |ts — ss| < § and || fs(ts) — fs5(ss)|| > €. Taking § = 1/m with
m € N*, and denoting by t,, = ts5, 8y = ss, and f,,, = fs5, we have

{ ]tm - Sm] < —

m
I fm(tm) — fm(sm)ll = €
for every m € N*. Since JF is relatively compact there exist f € C([a,b];R")
and one subsequence, (fm,)pen+ Of (fm)men- which is uniformly convergent
on [a,b] to a certain function f. It then follows that there exists p;(e) € N*
such that, for every p > pi(g), we have || fim, (t) — f(t)|| < /4. Since f is
uniformly continuous on [a,b] and limp e [tm, — Sm,| = 0, there exists
pa2(€) > 0 such that, for every p > pa(e), we have || f(tm,) — f(sm,)|l < /4.
Accordingly, for every p > max{p;(¢), pa(e)}

€< ”fmp(tmp) - fmp(smp)H < “fm,, (tmp) - f(tmp)”

3¢

T

This contradiction can be eliminated only if ¥ is uniformly equicontinuous
on [a,b]. Hence (i) is also a necessary condition of relative compactness

Hf Cmy) = Fsm )l + 11/ (smp.) = fomy (s, )| <



322 Auziliary Results

for the set F. The proof of the necessity part is complete.

Sufficiency. The proof of the sufficiency is based on Cantor’s diagonal
procedure. More precisely, let F be a set in C([a,b]; R™) which satisfies
(i) and (ii). Let {tm; m € N*} be a countable dense subset in [a,b].
For instance, this could be the set of all rational numbers in [a,b]. Let
(fm)men« be a sequence of elements in F, and let us observe that the
sequence (fm(t1))men+ is bounded in R", because F satisfies (ii). From
Cesaro’s lemma, it follows that it has at least one subsequence which con-
verges to a certain element f(¢,) € R™. We fix and denote by (fm, (t1))men+
such a subsequence. Let us consider now the sequence (fm(t2))men-,
and let us observe that, again from Cesaro’s lemma, this has at least
one subsequence, (fn,(t2))men+, convergent to an element f(t2) € R™.
Moreover, as (fm,(t1))men= is a subsequence of (fm, (t1))men+, we have
limyy, fm,(t1) = f(t1). Repeating this procedure, we get a family of subse-
quences (fm, )men- of the sequence (fm)men+ and one sequence (f(tp))pen-
in R™, with the property

lgnfmp(ti) = f(ti)

for every p € N* and i = 1,2,...,p. Let us consider now the diagonal
sequence (i, Jmen and let us observe that, in accordance with the choice
of the subsequences above, we have

hnl;n fmm (tp) = f(tp)

for every p € N*. In order to complete the proof, it suffices to show that
(fm, )men~ satisfies the Cauchy’s condition for the existence of the uniform
limit on [a,b]. Hence, we will show that, for every ¢ > 0 there exists
m = m(e) € N* such that, for every m > m(e), every p > m(e) and every
t € |a,b], we have

I (8) = Fo, (DIl < €.

Let € > 0. Since the family J is equicontinuous on [a,b], it is uniformly
equicontinuous on [a,b]. See Lemma 8.2.1. Then, there exists d(¢) > 0
such that, for every t,s € [a,b] with |t — s| < d(g) and every f € F, we
have

£
1£6) - £ < 5.

Since the interval [a,b] is compact and the set {t,,; m € N} is dense,
it contains a finite subfamily {t;; i = 1,2,...,p(¢)} such that for every
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t € [a,b] there exists ¢ € {1,2,...,p(e)} with the property
]t — ti, < 6(6)

As the family of convergent sequences {(fm,. (ti))men+; 7 =1,2,...,p(e)}
is finite, there exists a natural number m(e) such that, for every m > m(e)
and every i = 1,2,...,p(¢), we have

| frm (t) — f(EI] <

Wl M

It then follows

[ frmm (&) = f, (B)]]

S W () = Frng Gl 4 [ (83) = Fop (G + 1 frp (83) = S (DI S €

for every m > m(e) and every p > m(e). Hence (fin,,)men~ satisfies
Cauchy’s condition of uniform convergence on [a,b]. The proof is com-
plete. O

Several useful consequences of Ascoli~Arzela’s theorem are listed below.

Corollary 8.2.1 Let F be a relatively compact subset in C({a,b];R").
Then

F(la,b]) = {f(t); f€T, te[abl} (8.2.1)
is relatively compact in R™.

Proof. Let (fm(tm))men+ be a sequence in F([a,b]). Since [a,b] and F
are relatively compact in R and C{([a, b]; R™) respectively, we may assume
without loss of generality that, on one subsequence at least, we have

lim ¢, =t and lim f,=7Ff
m—o0 m—oo

uniformly on [a,b]. Let us observe that

[fm(tm) = FON < [ fn(tm) = FEm)| + 17 (En) — £

for every m € N*. Since the family {f,,; m € N*} is equicontinuous, the
first term on the right-hand side of the inequality above tends to 0 for m
tending to +oo. Finally, since f is continuous, the second term tends to 0
too, for m tending to 400, which shows that, on one subsequence at least,
we have limpy, o0 fi(tm) = f(¢t). Hence F([a,b]) is relatively compact in
R"™, and this achieves the proof. O
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Corollary 8.2.2 LetU C R™ be nonempty and closed, g : [a,b]xU — R"™
a continuous function,

U= {u;u € C([a,b};R™),u(t) € U for t € [a,b]}

and let G : U — C{[a,b];R?) be the superposition operator associated to
the function g, i.e.

Gu)(t) = g(t, u(t))

for every u € U and t € [a,b]. Then G is continuous from U in
C([a,b];R™), both the domain and the range being endowed with the uni-
form convergence topology.

Proof. Let (um)men be a sequence in U which converges uniformly
on [a,b] to v € U. Obviously {um;m € N} is relatively compact in
C([a,b];R™). Then, according to Corollary 8.2.1, the set

K={un(t); meN, te€la,b]}cU

is compact in R®. As a consequence, the restriction of g to [a,b] x K
is uniformly continuous, i.e., for each € > 0 there exists d(g) > 0, such
that, for each (t,v),(s,w) € [a,b] x K with |t — 5| + |jlv —w|| < d(e),
we have |jg(t,v) — g(s,w)|| < e. Since (Um)men converges uniformly on
[a,b] to u, there exists m(e) € N such that, for each m € N, m > m(e),
and each t € [a,b], we have ||un(t) — u(t)|| < d(¢). So, for each m € N,
m > m(e), and each t € [a,b], we have ||g(t,um(t)) — g(t,u(®))| < e,
thereby completing the proof. ]

8.3 The Projection of a Point on a Convex Set

Let K be a nonempty closed and convex subset in R™ and z € R™. In
what follows, we shall prove the existence of a unique point £ € K with the
property that |z — &|| equals the distance between z to K. More precisely
we have:

Lemma 8.3.1 Let K be a nonempty, closed and convex subset in R™.
Then, for every x € R™ there exists one and only one element £ € K such
that

dist (z, K) = ||z = ¢ (8.3.1)
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In addition, £ € K engjoys the property (8.3.1) if and only if
(z—-§¢—u) 20 (8.3.2)
for everyu € K.

Proof. Since dist (z, K) = inf{||z—yl|; v € K}, there exists one sequence
(Tk)ken+, of elements in K, with the property

dist (2, K) < ||z — ax]| < dist (z, K) + %

for every k € N*. As |jzx|| < lzx —2| + (2| < dist (z, K)+]|z]|+ ¢ for every
k € N*, it follows that (z }ren is bounded. Since K is closed, from Cesaro’s
lemma, it follows that there exists £ € K such that, on one subsequence at
least, we have

lim z, = €.
k—oo

Obviously dist (z, K) = ||z — £||, which proves the existence part. In order
to prove the uniqueness of the point &, let n € K be another point with the
property dist (z, K) = ||z — n||. Since K is convex, 4 = %é + -;-?7 € K and

1 .
e —pll < 5 (e =&l + llz = nll) = dist (z, K).
We denote by d = dist (z, K). Let us observe that
1 , 1 . 1
HEE e RPTCEEN (T R P

for every y, 2 € R™. Taking y = € ~ z and z = 1y — z in the equality above,
we get

1 1
I = zl|* + 2le= nl|? = 3 (N ~ =) + |ln — =||?) = .
Since |[u — z||? = d?, by virtue of the preceding relation, we deduce that
1
d* + 2l - nll* = &,

which proves that £ = 7.
In what follows, we will show that (8.3.1) implies (8.3.2). From the
definition of the point £, we have

Iz~ €)? < flz — ol
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for every v € K. This inequality is equivalent to
(€ —v,—€+2x—v) 20

for every v € K. Let u € K, A € (0,1) and v = A{ + (1 — A)u. Since
K is convex, it follows that v € K, and therefore it satisfies the preceding
inequality, i.e.

(1= A€ —u), —(1 + X)€ — (1 = Nu+2z) > 0.
Dividing by 1 — X and passing to the limit for ) tending to 1, we get
(€ — u, —2€ +22) > 0,
inequality which proves (8.3.2). g

Definition 8.3.1 Let K be a nonempty, convex and closed subset in R
and let x € R®. The vector Px(z) = £ in K with the property (8.3.1) is
called the projection of the vector x on the set K. The function Pg : R™ —
K, defined by Px(z) = £, where ¢ is the projection of the vector z on the
set K, is called the projection operator on the set K.

Lemma 8.3.2 The projection operator on the set K is non-erpansive,
i.e.

[Pk (z) = P ()l < ||z - yll (8.3.3)
for every x,y € R™. In addition, the operator Px — 7 is dissipative, i.e.
{(Pr(z) —2) — (Pr(y) —y),z—y) <0 (8.3.4)
for every z,y € R™.
Proof. Take £ = Px(x) and u = Pk (y) in (8.3.2). We have

(x — Pr(z), Px(z) — Pr(y)) 2 0.
Similarly, we get
(¥ —Px(¥), Px(y) — Px(2)) = (P (y) — 4, P (z) = Px(y)) 2 0

for every z,y € R™. Adding side by side the two inequalities, we deduce

1Pk (z) = Px @) < (z — v, Pr(z) — Px(y))
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for every z,y € R™. From this relation and Cauchy—Schwarz inequality, it
follows

1Pk (2) = PeWI® < 1Pk () ~ Px@)lllz - vll,

for every z,y € R™, which proves (8.3.3).
Finally, let us observe that (8.3.4) is equivalent to

(Pr(z) ~ Pr(y) 2 —y) < |z —y|?

for every z,y € R™ But the latter relation follows from the Cauchy-
Schwarz inequality and (8.3.3), and this achieves the proof. ]
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Solutions

Chapter 1

Problem 1.1 Let z : [a,b] — R be the curve we are looking for. The condition
in the problem reads as
z(t) k

z(t)/z'(t)  x(t) -t

or equivalently

20 =
(t)

for every ¢ € [a,b]. This is a differential equation reducible to one with separable
variables. The change of unknown function ¥ = z — ¢ leads to

’ . k" - y(t)
®= y(t)

for every t € [a,b], whose general solution is defined by y+In|k—y|+t+c=0
with ¢ an arbitrary constant. It then follows that the family of curves with the
desired property is implicitly defined by z +In|lk~z+¢t|+¢c=0,c€R.
Problem 1.2 Let = : I — R be the curve we are looking for with 3 € I; and let
Ala,0) and B(0,b) be the intersection points of the tangent to the curve at the
point (¢, z(t)) with the coordinate axes. Since (t,z(t)) is the middle point of the
segment AB, we have a = 2t and b = 2z. See Figure 9.1.1.

X

Figure 9.1.1
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On the other hand, the slope of the tangent at the current point (¢, z{t)) is
z'(t). The condition in the problem expresses by z'(t) = —2, or equivalently
by tz'(t) = —z(t). The equation above is with separable variables and has the
general solution tx = ¢, with ¢ real constant. Since z(3) = 2, we deduce c = 6.
Consequently, the desired curve is the hyperbola of equation tz = 6.

Exercise 1.1 (1) This is an equation with separable variables having the general

solution defined by z(t) = :l:arcsin,/HffTS;‘Srt for t € L., where the interval

I. C ((2k—1)%,(2k +1)%) depends on the constant ¢ € R.

(2) This is a Bernoulli equation, but with separable variables too. The general
solution is defined by z(t) = ct(1 — ct)™! for t € I,, where I, depends on the
integration constant ¢ € R. The equation also admits the stationary solution
z(t) = —1 for every t € R.

(3) This is an equation with separable variables having the general solution
z(t) = £+/2In|t| — t2 + c for every t € I,, where I is an interval which does not
contain 0 and depends on the integration constant ¢ € R.

(4) The substitution y = ¢ + z leads to the equation with separable variables
v’ = 1+ y° Solving this equation and coming back to the function z, we get
a(t) =tan(t +c) —tforeveryt € (-3 —¢, 2 —¢),ceR

(5) The substitution y = 8¢ + 2z + 1 leads to an equation with separable
variables. The general solution of the initial equation is z(t) = tan(4t+c)—4t— 3
foreveryt € (-5 — %, 2 - %), c€R

(6) The substitution y = 2¢t + 3z + 1 leads to an equation with separable
variables. The general solution of the initial equation, after suitably denoting the
constant of integration, is given in the implicit form by t+2x+7 In|2t+3z—-13| = ¢
with ¢ € R.

(7) The substitution y = 2¢ — z leads to an equation with separable variables.
The general solution of the initial equation, after suitably denoting the constant
of integration, is given in the implicit form by 5¢+ 10z —3 In |10t — 5z +6| = ¢ with
¢ € R. The equation also has the solution z : R — R defined by z(t) = 2t + ¢,
eliminated during the integration process of the equation with separable variables.

(8) This is an equation with separable variables having the general solution

z(t) = =, /7> — 1 for every t € I, where L is an interval, depending on the

constant ¢ € R and which does not contain 1.
Problem 1.3 As in the case of Problem 1.2, let z : I, — R be the curve to be
found out with 1 € I; and let A(a,0) and B(0,b) be the intersection points of the
normal to the curve at the point (¢, z(t)) with the coordinate axes. Since (t,z(t))
is the middle of the segment AB, we have a = 2t and b = 2z. See Figure 9.1.2,
On the other hand, the slope of the normal to the curve at the current
point (¢,z(t)) is —[z'(t)]”'. The condition in the problem expresses then by
~[z’'@®)]7* = =%, or equivalently by z(t)z’(t) = t. The latter equation is with
separable variables, and has the general solution z° — t* = ¢, with ¢ constant.
But z(1) = 2, and then ¢ = 3. Consequently, the curve we are looking for is a
hyperbola of equation z* — t* = 3.
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x(1)

Figure 9.1.2

Problem 1.4 Let z : I; — R be the curve we are looking for. The required
condition takes the equivalent form

2(t)/2'(t) = a,

equation which has the general solution z(t) = ce*/® for t € R, with ¢ € R.
Problem 1.5 In this case we get the equation

z(t)/2' (t) = 2t,

for ¢ > 0, which has the general solution z(t) = ¢/t with ¢ > 0.
Exercise 1.2 (1) Dividing by t # 0, the equation reduces to a homogeneous one
having the general solution x(t) = —t In|t| + ct for t € I, where I, is an interval
which does not contain 0, and ¢ € R.

(2) Dividing by t # 0, the equation reduces to a homogeneous one whose

general solution is z(t) = § — % for t € I, where I is an interval which does not
contain 0, and ¢ € R*. The equation also admits the solution z(t) = —£ for every

teR.

(3) Dividing by t?, we get a homogeneous equation whose general solution is
defined by z(t) = t(In|t| + ¢)~* for every ¢t € I, where I, is an interval which
depends on the constant ¢ € R and does not contain 0. The equation also admits
the solution z(¢) = 0 for every t € R.

(4) Dividing by 2tx, we get a homogeneous equation whose general solution,

x: I; — R, is defined by
2(t) = t4 /t—zf—c,

where ¢ € R and [ depends on ¢ and does not contain 0. At the same time the
equation also admits the solution 1,2(t) = %t for every ¢t € R.

(5) Obviously z : R — R, z(¢) = 0 forevery t € R, is a solution of the equation.
Dividing the equation by t # 0, we get a homogeneous equation whose solution
is given in the implicit form: ln|z| — \/%_z cfort € (—00,0) and Inx + ﬁ =c
for t € (0, +00).
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(6) Dividing by ¢ # 0, we get a homogeneous equation. The general solution
of the initial equation is z : R — R, z(t) = (c*t2 —1){2¢)"? for every t € R, where
c ERY.

(7) Dividing by 42% + 3tz + t2, and simplifying the fraction thus obtained
by t* # 0, we get a homogeneous equation. The general solution of the initial
equation is implicitly defined by (22 +2)%/2(z + t) = ¢, where c € R.

(8) Dividing by 2tz # 0 the equation reduces to a homogeneous one. The
general solution of the initial equation is z : [; — R, z(t) = +t/1 + ct for every
t € I, where ¢ € R, and I, depends on c.

Problem 1.6 Let z : I; — R be the curve we are looking for, with 1 € I,. The
required condition expresses as

— ‘/t2+$2,

T
-2

or equivalently as
T F TR
t— ; =+ t2 + 332.

See Figure 9.1.3.

Figure 9.1.3

These equations are reducible to homogeneous equations. Analyzing the two
cases, we deduce that only the equation t—z/z’ = v/t2 + z2 has a suitable solution
(z(1) =0), ie. z(t) = £2+/1 — t.

Problem 1.7 Imposing the condition that z = t™y satisfy the equation, we
deduce

mtm—ly + tmyl = f(t»tmy) = tm—lf(l)y)!
or equivalently

y = ~(F(1,v) — my).

t
For the considered equation, we have f(t,z) = z® — %. Let us observe that

FA, Ay = XL f(t, x) for every (t,z) € Ry x Ry and A € Ry if and only if

2m 2 2 m-1f 2 2
)\m—/\zt2=)\ :v—t—z.
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‘We observe that this condition is satisfied if and only if m = —1. Imposing
z = t"ly, we get y' = %(y2 + y — 2), equation which has the general solution
y(t) = C—C'E%t; with ¢ € R. The general solution of the initial equation is then

z: I; - Ry, z(t) = %;—*_z—ﬁ-, where ¢ € R and I, is an interval which does not
contain 0 and ¥/c.

Exercise 1.3 (1) The equation is reducible to a linear equation. Also, the equation
is with separable variables. The general solution is  : R — R, z(t) = cte’, for
every I € R, where ¢ € R.

(2) The equation is reducible to a linear one. The solutions are z : R — R,
z(t) = % foreveryt € Rand ¢ : I, — R, z(t) = % + 55 for every t € Iy, where
c € R* and I; = (0, +00) or (—o0,0).

(3) This is an equation reducible to a linear one, with solutions z; : R — R,
defined by

et —1 N
nt)=4 7 > 'EK
1 t=0,

and z3 : [ — R, defined by z,(t) = (e* +¢)t™" for every ¢ € I, where c € R\ {~1}
and I = (0, +00) or {(—00,0).

(4) The equation has the solution z = 0. For = # 0 we will look for t as a
function of z. We obtain the equation

which is both Bernoulli and homogeneous and which, by integration, leads to the
implicit form of the general solution for the initial equation: cz® + z® — 12 = 0,
with ¢ € RY.

(5) The equation is reducible to a Bernoulli equation with o = 2. The general
solution is z(t) = (¢ In|t| + ct)~! for every ¢t € I, where I, depends on ¢ € R.
The equation also has the solution z = 0.

(6) The substitution z°> = y leads to an equation reducible to a linear one.
The general solution of the initial equation is z : I, — R, z(t) = £+/t(c— In|t|)
for every t € [, where [, does not contain 0 and depends on ¢ € R.

{7) We observe that z = 0 is a solution. For z # 0 we determine ¢ as a
function of z. We conclude that ¢ satisfies the Bernoulli equation

dt 2 2
= a:t + 7.
The general solution z of the initial equation is given in the implicit form by
(cz? + )t = 1, where c € R.
(8) The equation is reducible to a Bernoulli equation whose general solution,
z : I, — R, is defined by z(t) = (2t + ctz)_1 for every t € I, where I, depends
on ¢ € R. The equation also has the solution z = 0.
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Problem 1.8 We have

R() = (@2 () = 2’ (1) (2(t) = 21(t)) — (w2(t) — x(t))(z'(t) — 21(¢))
(2(t) — 21 (1))?

_ alt)(z2(t) — () (z(t) — 21(1)) — (22(t) — 2(t))a(t)(x(t) — z1(t))
(2(t) — z:1(1))?

for every t € 1. Hence R is constant on I. The geometric meaning of this

result is the following: if z1,z2 are two distinct solutions of the linear equation

z'(t) = a(t)z(t)+b(¢) and z is another solution, then A(¢,z(t)) lies on the straight

=0

A
line passing through the points A:(¢,z1(t)) and Az(t,z2(t)) and the ratio Aﬁl
2

is constant.
Problem 1.9 We have

J0) = BB — 2Oz

z3(t)
_ la®)za(t) + b(t)zi()]z2(t) — za (8)[a(t)za(t) + b(t)z3(2)]
z3(t)
— b(t)ml(t)xz(t)[ml(t) _ 332<t)] — b(t)[$1(t) . mz(t)]y(t)

z3(t)
which shows that () = b(¢){z1(¢) — z2(¢)]y(t).
Problem 1.10 We denote by
z2(t) — z(t)

AW = 2 =)

and let us observe that

A(t) = (5(t) — &' () (z2(t) — 21(8) — (25 (t) — 21 () (w2(t) — z(1))
(2(t) — 31 (1))?
_ (2(t) — a(8))[a(t) + b(t)(22(t) + 2(t))](22(t) ~ (1))
(z2(t) — z1(1))?
 (m2(t) — 21 () [a(t) + b(t)(22(t) + 21 (1)) (z2(t) — x(8))
(z2(t) — 21(2))?

_ d()(z2(t) — 2(8))(z(t) — 21 (1)
x2(t) — 21 (t)

Similarly, ® (t)
=zl mm(l)
0= =20
satisfies b(t) (23 (t) ) (z1(t) — z(2))
, _ T3 — 1 (5} -
C'(t) = ws(t) — 2(2) '
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But
B'(t) = A'(t)C(t) + A(t)C' ()

= W) (z2(t) — 2(t)(=(t) — 21(2)  =3(t) =z ()

.’Ez(t) - (El(t) 323(t) — z(t)
o) —2(t)  b(O)(@s(t) ~ @i (D)) (@ (t) —=(t) _
.’L'z(t) — :E1(t) a:s(t) - :I:(t)

for every t € [. Hence B is constant on I.
Exercise 1.4 (1) This is an exact differential equation. The general solution is
given in the implicit form by t* 4 2tz + 22° = ¢, where ¢ > 0.

(2) This is an exact differential equation. The general solution is given in the
implicit form by: 3 + 6tz 4 3t2 = ¢, where c € R.

(3) This is an exact differential equation. The general solution is given in the
implicit form by: 2¢° — 9¢2® + 12¢ + 22° = ¢, where c € R.

(4) This is an exact differential equation having the general solution given in
the implicit form by —t* + 2¢t%x? + 4zt + 2* = ¢, with c € R.

(5) This is an equation reducible to an exact differential one by means of
the integrand factor p(z) = z—ﬁ- The general solution is given in the implicit
form by t? — 22 — cz® = 0, where ¢ € R. The equation also admits the solution
z = 0 eliminated during the reducing process of the initial equation to an exact
differential one.

(6) This is an equation reducible to an exact differential one by means of the
integrand factor p(t) = ;17 The general solution is given in the implicit form by
z* —t In|t} — ct = 0, where ¢ € R. From here, we deduce that =z : I — R is
defined by z(t) = ++/t(c + In[t]) for every t € I, where [, depends on ¢ € R.

(7) This is an equation reducible to an exact differential one by means of the
integrand factor p(z) = ;17 We have the solutions ¢ = 0 and z : [; — R, defined
by z(t) = 2¢(2c — t*)~" for every t € I, where [, depends on ¢ € R.

(8) This is an equation reducible to an exact differential one by means of the
integrand factor p(f) = % The general solution is given in the implicit form by
zlnt+ x—} = ¢ for every ¢t > 0, where c € R.

Exercise 1.5 (1) This is a Lagrange equation having the general solution in the
parametric form:

{t(p)=6p2+cp
2>p€R7

1
z(p) = 4p° + 5ep
where ¢ € R. The equation also admits the solution z = 0.

(2) This is a Lagrange equation having the general solution in the parametric
form:

{tm(g)z—_-l;_'f'«_/laicjznp+ C: pcE ('—1,0) or (0’ 1),

where ¢ € R. The equation also admits the solution = 1.
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(3) This is a Lagrange equation having the general solution in the parametric

form:
t(p) =ce ? — 2p + 2
{93(1))=C(1+p)e-v_p2+2, PER,
where c € R.
{4) This is a Lagrange equation having the general solution in the parametric
form:

) = —3p+ —
3 VP p>o0,

_ 1,
z(p) = —c\/P &P
or 1
(o3
tp)=—zp+ —
3 V‘pz,p<0,
z(p) = cv/=P - ¢p

where ¢ € R. The equation also has the solution ¢ = 0.
{5) Clairaut equation having the general solution z : R — R, z(t) = ct + >
with ¢ € R, and the singular solution in the parametric form:

{2 Trrer

Eliminating p € R, we get z(t) = —% for every t € R.

(6) Clairaut equation, but with separable variables too. The general solution,
z: R — R, is given by z(t) = ct + ¢, with ¢ € R. The equation does not admit
singular solution.

(7) Clairaut equation. The general solution is z : R — R, z2(¢) = ct++/1 + 2,
with ¢ € R. The singular solution is

P
tHp) = ——e
(p) o

1 y PER.
z(p) = ———

1+ p?

Eliminating p, we obtain = : (=1,1) — R, z(¢) = V1 — t2.
(8) Clairaut equation having the general solution z : R — R, z(t) = ct + %,
with ¢ € R*, and the singular solution

Eliminating the parameter p, we get z : (0, +00) — R, #(t) = £2v/%.
Problem 1.11 Let us choose a Cartesian system of coordinates with the origin at
the fixed point. Let z : I; — R be the function whose graph is the curve we are
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looking for. The equation of the tangent to the curve at the current point (¢, z(t))
is X — z(t) = 2’ (t)(T — t), while the distance from the origin to this tangent is
constant if and only if there exists ¢ € R* such that

tr'(t) — z(t)

1+ 22(1)

Solving this with respect to z(t), we get a Clairaut equation having the general
solution z(t) = kt — cv/1 + k2, with £ € R, and the singular solution

p
Hp) = ——=—=
) V14 p?
, PER
. p

z(p) = —ﬁ

Eliminating p, we get the implicit equation of the curve: z? + 1% = ¢?, equation
which represents a circle centered at the origin (at the fixed point considered)
and of radius |¢|, i.e. the distance from point to the tangent. Other solutions, of
class C' only, can be obtained concatenating any arc of the circle with the two
“semi-tangents” at the two endpoints of the arc. See Figure 9.1.4.

LV

Figure 9.1.4

Problem 1.12 Let = : [; — R be the function whose graph is the curve we are
looking for. The equation of the tangent to the current point of the curve (¢, z(t))
is X — z(t) = z'(t)(T — t), while the intersection points of the tangent with the

coordinate axes are A <t - %%%,O), and B(0,z(t) — tz'(t)). See Figure 9.1.5.

The condition imposed expresses analytically in the form

(t - f—((%) (@(t) - ta'(t)) = —c,

where ¢ € R*. Rearranging, we get a Clairaut equation with the general solution
z(t) = kt + v/ck, with k € R*, ck > 0, and the singular solution tz = —g. We
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Figure 9.1.5

get other solutions, of class C* only, by concatenating an arc of hyperbola with
the semi-tangent(s) at the end(s) of the arc.

Problem 1.13 We observe that the resultant of the two forces, gravitational and
centrifugal, has the direction of the normal to the surface at the point considered.
Taking Oy as rotational axis, and denoting by w the angular speed, we get, for
the axial plane section of the surface, the differential equation

dy _ .2
95 (z) = w'z.

Problem 1.14 According to the Boyle-Mariotte law, the density is proportional
with the pressure. So, the variation of the pressure from the altitude t to altitude
t + h is p(t + h) — p(t) = —kp(t)h. The equation obtained is p'(t) = —kp(t). We
deduce p(t) = ¢~0:000267¢,

Problem 1.15 The variation of the length on the portion z, z 4+ h is given by
s(z + h) — s(z) = kW(l — z)I"'h. We get s'(z) = kW (l — 2)I~'. It then follows
that s(l) = 0.5kW1.

Problem 1.16 Let y : {a,b] — R4 be the function defined by

¢
y(t) =/ k(s)z(s)ds

for t € [a,b]. Obviously y is differentiable on [a,b] and y'(t) = k(¢) z(t) for every
t € [a,b]. Taking into account the inequality in the hypothesis and the fact that
the function k is positive, we deduce

y'(s) < k(s) y(s) + k(s) h(s)

for every s € [a,b]. Multiplying both sides of the inequality above by

oxp (— / “k(r) d7> :
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we deduce

% (y(s) exp (_ /as k(7) dr)) < k(s) h(s) exp (_ /: k(7) d’T) .

Integrating from a to ¢, we get

y(t) < /: k(s) h(s)exp (/j k() d‘r) ds.

Since z(t) < h(t) + y(t) for every t € [a,b], this completes the proof.
Problem 1.17 From the Bellman's inequality, it follows

m(t)su[v(s)dw/:k(s) (f-t-/:v(r)dr) exp ([k(f)df) ds

=§+[v(s)ds~/: (§+£v(7)dr) ad;exp (/:k(f)df) ds
=£+[v(s)ds— (f+/:*v(7)d7) exp ([wm) t
+ / “o(s)exp ( / “k(r) dr) ds
~ texp ( / k(o) ds) + f " u(s)exp ( / “k(r) dT) ds.

Problem 1.18 The proof follows, with minor modifications, the same way as that
one used for establishing Lemma 1.5.3.

Problem 1.19 Let us assume by contradiction that there exists t; € (0,T), such
that z(t1) > y(t1). Since z and y are continuous and z(0) < y(0), there exists
to € [0,T] with to < t1, such that z(to) = y(to), and z(t) > y(t) for every
t € [to,%1). Since f is nondecreasing, we have

a

dx dy
s AN 4 - <
(20-%0) 60 - <o
for every t € [to,t1]. Integrating this inequality over [to,t1], we get

(2(t1) — ¥(t1))? < (2(to) — y(to))* =0,

relation which contradicts the inequality z(¢1) > y(t1).
Chapter 2

Exercise 2.1 () 2(t) = (2 — )™ for t € [1,2). (b) a(t) = te*~"/2 for

t €[2,+00). (c) z(t) =tan 4t—4t— % for t € [0, F). (d) z(t) = +/5(1 —t2)~1 -1
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for every t € [0,1). (e) z(t) = —t Int+2t fort € [1,+00). (f) z(t) = (1-t3)(2t)~!
for t € [1,400). (g) z(t) = t(Int +1)7" for t € [1,+00). (h) z(t) = vI+ 3t
for t € [1,+00). (i) z(t) = te’ for t € [1,+00). (§) (t) = (¢° + 11)(6¢2)~! for
te[1l,+00). (k) a(t) = (" —e)t™" for t € [1,+00). (1) z(t) = (t Int — 1)™*
for ¢t € [1,t”), where t" is the root of the transcendental equation ¢ Int — 1 = 0.
(m) z(t) = ,/t(4 Int) for t € [1,e*). (n) z(t) = t™! for t € [1,+00). (0)
z(t) = (2t — ¢*)~! for every t € [1,2). (p) z is implicitly defined by the equation
z® —z* 4+t =0 for t € [1,+00).
Problem 2.1 One may easily state that the function z is continuous on [a,c],
differentiable on [a,c] \ {b}, and satisfies z(a) = ¢, and 2'(t) = f(t,2(t)) for
every t € [a,c]\ {b}. From the continuity of the functions f and z and the last
equality, we deduce that 2’ can be extended by continuity at the point b. But
this means that z is of class C' on [a,c] and, in addition, that it is a solution of
CP(LQ, f,a,8).
Problem 2.2 According to Lemma 2.2.2, for every a € I and every § > 0 with
[a,a+ 8] C I, CP(D) has at least one solution z : [a,a + §] — R™. Let (dk)ken
be a sequence of positive numbers, with (a + 6k )xen, strictly increasing to supl,
and let z : {@,a + 6] — R™ be a fixed sequence of solutions of CP(D) satisfying
Zk(t) = xr+1(t) for every £ € N and every t € [a,a + §x]. By Lemma 2.2.2
combined with Proposition 2.1.2, we can always find such a sequence. More
precisely, let us take first the solution z; defined on [a,a + 6:]. Then the Cauchy
problem

{y’ = f(t,v)

yla+81) = zi(a + 81)

has at least one solution y; : [a+81,a+82) — R"*. We define z2 : [2,a+d2] » R™
by concatenating the functions z; and y,. We continue the procedure inductively.
Let us observe that the function z : [a,supI) — R", defined by z(t) = zx(t) for
t € {0, a+6k], is well-defined and, more than this, it is a global solution of €P(D).
Problem 2.3 If £ > 0, then z : [a,+00) — R, z(t) = +/t% +£2 — a?, is the
unique global right solution of CP(R,R, f,a,£). Similarly, if ¢ < 0 then the
function x : [a,+o0) — R, defined by z(t) = —/t? + £€2 — a2, is the unique right
global solution of CP(R, R, f,a,£). If £ =0, then = : [a,+00) — R, z(t) = 0, is
the global solution we are locking for. Obviously the function f is not continuous
at (1,0) because f(1,0) = 0, while limgyo f(1,z) = +oo.

Problem 2.4 Let z : (¢,0] — R be a saturated left solution of €P(R,R,0,0).
Then we have z'(t) = f(t,z(2)) for every t € (c,0]. Since z'(0) = f(0,0) = —
and z is of class C*, z’ can take only the value —1. We recall that f has only
the values 1. So z(t) = —¢t + k with kK € R. Since z(0) = 0, it follows that
k =0, and by consequence the unique saturated left solution of €P(R,R,0,0) is
the function z : (—00,0] — R, defined by z(t) = —t.

Problem 2.5 Let us assume by contradiction that this would not be the case.
Then there would exist a compact set X C I x Q such that for every L > 0
there exist (tr,zr),{(tr,yr) € X with || f(tL,zr) — fltr,vo)ll > Lllzr = vzl
Taking L = n with n € N, and denoting by tn = L, zn = zr and yn = yr,
we have ||f(tn,Zn) — f{tn,yn)|| > nllzn — ynl] for every n € N. Since X is
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compact and f is continuous on I x £, it is bounded on X. So there exists
M > 0 such that |[f(t,z)]] < M for every (t,z) € K. From this inequality and
from the preceding one, we deduce that nllz, — yn]| < 2M for every n € R. It
follows that limn—oo ($n — yn) = 0. Using once again the compactness of X,
we may assume without loss of generality that there exists (t*,z*) € X such
that limp—oeo(tn, Tn, ¥n) = (", 2, 2). By hypothesis, we have that there exist a
neighborhood V of (t*,z*), and L = L(V) > 0, such that for every (t,z),(t,y) € V,
we have ”f(t)w) - f(t!y)“ < L“:E - '!,’” Since hmn—*oo(tn:mn;yn) = (t*ym*»w*)x
we deduce that there exists n(V) € N such that for every n > n(V) we have
(tn,Zn), (tn,yn) € V. Consequently, for every n > n(V), we necessarily have
nllzn — Yull < [1fEn,2n) = Ftn,yn)ll € L|jzn — ynll which, by virtue of the
fact that z, # yn for every n € N, leads to a contradiction: (n < L) for every
n > n(V).

Problem 2.6 According to Problem 2.5, it suffices to prove that, for every (a,§)
in I x Q, there exist a neighborhood V of (a,¢) and L > 0, such that, for every
(t,z), (t,y) €V, we have || f(t,z) — f(t,y)|| < L|jz — y|. Let (a,€) € I x Q and let
V be a closed ball centered at (g, £) included in I x Q. Let (¢,z),(t,%) € V, and
let us observe that the function 8 — (¢, 8y -+ (1 — 8)z) is continuous from [0,1]
and takes its values in V, and this because V is convex. Then the function

8f

0 Gy +(1-02) = 3 5oy + (1= 0)(w; —29)

is continuous from {0,1] in R™ too, and

/0 Edé(f(”y +(1 - 6)z))do = f(t,y) - f(t,2).

From the hypothesis, we know that 8f;/0xz;, 1,5 = 1,2,...,n, are continuous on
I x ©, and therefore they are bounded on the compact set V. This means that
there exists M > 0 such that

<M

8fi
'8% (s,2)

for every 4,5 = 1,2,...,n and every (s, z) € V. Then, we have

1#ta) = sl = | [ 45 .00+ 1= 02 a8

< [ von s a -0 w

</

and therefore L = /nM.

Za—ftew (1~ 0)2)(y; — ;)
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Problem 2.7 The substitution o — ¢ = y in the equation z’ = g(¢, z) leads to the
equation y' = h(y), where h : R — R is defined by h(y) = 1+ 23/y2 for every
y € R. This equation is with separable variables, while the associated Cauchy
problem has the uniqueness property. Indeed, according to Theorem 1.3.1, the
solution of CP(R,R, h,q,&) is

y(t,€) = H '(t—a)

2 dy
Hz) /g 14+23/y2

In order to complete the proof, let us remark that the functions z1,z2 : R — R,
defined by x1(t) = ¢ and z2(t) = 5 (t —a)® +t for t € R, are distinct solutions of
CP(R,R, f,a,a).

Problem 2.8 We begin by observing that both functions z V y and z A y satisfy
the initial condition. Also, it is easy to see that zVy and z Ay are continuous on
J, differentiable on the open set {f; t € J, x(t) # y(t)}, and satisfy the differential
equation at every point in this set. This follows from the fact that the set above
is at most a countable union of open intervals and, on each interval Ji from
this union, we have either z(t) < y(t) for every t € Ji, or z(t) > y(t) for every
t € Jx. In order to complete the proof, it suffices to show that z Vy and z Ay
are differentiable at every point ¢t € J at which z(t) = y(t). Let ¢ be such a point.
Then, we have

for every ¢t € R, where

g 2220 _ o1(0) = pt,2(6) = Ft,0(0) = /1) = i LI=YE

s s—t s—t  s—t

which shows that zVy and z Ay are differentiable at ¢t and both derivatives at this
point are equal, i.e. z'(t) = ¥/(t). From this simple remark, and from the fact
that (z V y)(t) = (z A y)(t) = z(t) = y(t), it follows that both functions satisfy
the differential equation at ¢, which achieves the proof.

Problem 2.9 Let us assume by contradiction that there exists to € [a, b¢)N[a,by)
such that z(to,£) > z(to,n). Since (z(to,&) — z(ta,n))(z(a, &) — x(a,n)) < 0 and
t — x(t,&) — z(¢,m) has the Darboux property being continuous, there exists
t1 € |a,to) such that z(t1,£) = z(t1,7). From the uniqueness property, we deduce
that z(t,€) = z(t,n) for every t € [t1,b¢) N [t1,b7). We get z(to,§) = x(to,n)
which is in contradiction with the supposition made. This contradiction can be
eliminated only if z(t,£) < z(t,n) for every t € [a,be) N {a, by).

Problem 2.10 First, we will analyze the particular case in which f is continuous
on [ x  and locally Lipschitz on , and then, we will show that the general
case reduces to the former one. In addition, let us observe that it suffices to
prove the inequality only locally to the right of the point a. More precisely, if,
in the hypotheses of the problem, there exists ¢ € (a,b) such that y(t) < z(¢)
for every t € [a,¢], then b = ¢* = sup{c € [a,b); y(t) < z(t) for t € [q,cl}.
Indeed, if this is not the case, we must have ¢* < b and y(c*) < z(c"). Now,
from the fact that the inequality y(t) < z(t) holds locally to the right of c”,
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we get a contradiction, i.e. ¢*, which is the supremum of a set, is strictly less
than an element in that set. Let then ¢ € (a,b) and let us define the function
z : [a,b) — § by z(t) = y(t) — =(¢) for every t € [a,c]. Let us assume by
contradiction that there exists s € [ e, c] such that z(s) > 0. Since z is continuous
and z(a) < 0, the set {t € [a,s]; 2(t) = 0} is nonempty, bounded and closed. So
it has a last element 7. Obviously z(7) = 0. Also z(t) > 0 for every t € (7,s].
Indeed, assuming by contradiction that this is not the case, it follows that there
exists a point ¢; € (7,s) with 2(t1) < 0. Since z has the Darboux property,
it follows that there exists t2 € (ti,s) with z(t2) = 0, which is absurd because
T < t2 < s and 7 is the biggest number in {¢,s] for which 2(r) = 0. The
contradiction we got can be eliminated only if z(t) > 0 for every t € (7,s]. Let
now L > 0 be the Lipschitz constant of the function f corresponding the compact
set K = {(t,z(t)); t € [a,c]} U{(t,y(t)); t € [a,c¢]}. Then, we have

2 () < f(t,y(®) - F(t,2(0) < |f(t2(t) = £t u(O)] < Lly(t) — z(t)| = La(t)

for every t € [7,s]. Since z(7) = 0, integrating the inequality 2'(n) < Lz(n) over
[7,t], we get

2(t) < /t Lz(n)dny

for every t € [1,s]. From Gronwall’s Lemma 1.5.2, it follows that z(¢) < 0 for
every t € [7,s], relation in contradiction with z(t) > 0 for every t € (7,s). This
contradiction originates in the supposition that there exists s € {a,c] such that
z(s) > 0. So, z(t) < 0 for every t € [a,c], which solves the problem in the
particular case when f is locally Lipschitz on €.

We can now proceed to the general case. To this aim, let us fix ¢ € (a,b) and
let r > 0 be such that B(¢,r) C . Let us also fix M > 0 such that

ftz) <M (%)

for every {t,z) € [a,c], and let us observe that the set C = [a,c] x B({,7) is
compact and included in I x 2. From Weierstrass’ approximation theorem, it
follows that, for every ¢ > 0, there exists a polynomial f¢ : I x @ — R with the
property that

[f(t,2) ~ fe(t,z)[ < e
for every (t,z) € C. Since f. is of class C*°, it is Lipschitz on C. Let us consider
the Cauchy problem

z:(a) = £.

Let § = min{c — a, 555} and let us observe that, for every ¢ € (0,1), (CP).

{mg(t) = fe(t,ze(t)) +e (EP)e

has a unique saturated solution z. : [a,b:) — 1?3’ (¢,7) with the property that
be 2> a-+ 6. Indeed, if we would assume by contradiction that b < a+ 4, from (*)
it would follow that fe(-,zc(-)) is bounded on [a,b:) by M + 1. This means that
[fe(t, ) < | fe(t,2)—F (¢, 2)|+|f(t, z)| < e+M < 14+ M, and, by Proposition 2.4.1,
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there would exist 311}1 ze(t) = . In addition, in view of (iii) in Theorem 2.4.3,

z* must belong to the boundary of the set B(¢,r), i.e. [z* —¢] = r. On the other
hand, we have

r=|z"-£| < /bs [fe(s, ze(8))| ds+(be—a)e < (be—a)[(M41)+e] < 6(M+2) <7,

i.e. r <7, which is absurd. Consequently, z. is defined at least on [a,a +§]. Let
us observe that f(t,z) < fe(t,z) + ¢ for every (t,z) € [a,a + 8], and therefore
we have y'(t) < fe(t,y(t)), zL(t) = f:(t,z(t)), and y(a) € z.(a) = €. According
to the preceding item, we have that y(t) < z.(t) for every ¢t € [a,a+6]. On the
other hand, we can observe that the family {z¢; ¢ € (0,1)} is uniformly bounded
and equicontinuous on {a,a + é§]. According to Thecrem 8.2.1, there exists one
sequence (&x)xen tending to 0, such that the corresponding sequence of solutions
of (CP)c,, denoted for simplicity by (zx)xen, be uniformly convergent on [a, a+§]
to a function Z. Passing to the limit in (CP)¢,, we deduce that & is a solution of
the problem z’(t) = f(t,z(t)), x(a) = £. Since this problem has the uniqueness
property, Z = z. Passing to the limit in the inequality y(¢) < z(t) for every
t € [a,a + 8] we get the required inequality.

Problem 2.11 Let z,y : J — © be two solutions of @P(L, 2, f,a,£). Taking the
inner product on both sides of the equality z’(t) —y'(t) = f(t,z(t)) — f(t, () by
z(t) — y(¢), using (i) in Lemma 8.1.2 and the condition in hypothesis, we deduce

%%Hm(t) -y < wit, lz(t) — v Dllz) — vl

for every t € J. Denoting by 2(t) = 1(|z(t) — y(¢)||, the inequality above rewrites
in the form 2'(t) < w(t, /22(t))1/22(t), or equivalently (v2z)'(t) < w(t, 1/2z(t))
for every t € J. Since 4/2z(a) = 0 and the unique solution of €P(I, R+, w,a,0) is
the identically null function, from Problem 2.10, it follows that 1/2z(t) < 0 for
every t € J, which shows that z(t) = y(t) for every ¢ € J.

Theorem 2.3.1 follows from the previous result by taking w : R — R, defined
by w(n) = Ly for every 5 € R, where L > 0 is the Lipschitz constant corresponding
to the function f on the set [a,a + 8] x B(§,7). See the proof of Theorem 2.3.1.
Theorem 2.3.3 follows from the preceding considerations by taking w = 0.
Problem 2.12 We begin by observing that, for every a > 0, we have

'/Oaw—i%;=+oo.

Let us assume by contradiction that there exists a non-identically zero solution
z:[0,T) — R. Since w(r) > 0, it follows that z(t) > 0. Consequently, there exists
t € (0,T) such that x(t) > 0. From here, it follows that there exist o, 3 € [0, T)
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with o < § and z{a) = 0 < z(t) for every t € (@, ). Then, we have

)
L= 0G0

for every t € («, 8). Integrating this equality from « to 3, we get

B8 z(8)
z'(t) dt dn
ﬂ —x = / —_— / —_—— = 400
o @@t) Jo  wn)
which is absurd. The contradiction we got can be eliminated only if the unique

saturated solution of the Cauchy problem considered is x = 0.
Problem 2.13 Since f is Lipschitz and ¢ is dissipative, we have

(Ft,z) +g(t,z) — f(t,9) — g(t, ),z —y) < Lflz — y||®

for every t € [ and every z,y € Q. We are in the hypotheses of Problem 2.11,
with w(r) = r for every 7 € Ry.
Problem 2.14 We have

(ft,2) = f(t o)z —y) Sw(llz—yl)llz -yl

for every t € I and every z,y € 1, and we are in the hypotheses of Problem 2.11.
Problem 2.15 Let [a,a + 8}, B(§,7) and L > 0 be chosen as in the proof of
Theorem 2.3.1. We denote by u(t) = e~ *(=9g(t) and by v(t) = e~ F{E=Ny(t),
and let us observe that u,v are solutions of CP(IL, Qo, g, a, ), where the function
g(t, z) = e F179) f(4, L) 2y Le™L(E=0) 2 for every (¢, 2) in Ix 2 with 2o C
suitably chosen. Since g satisfies the hypotheses of Theorem 2.3.3 (see the proof
of Theorem 2.5.2), it follows that u = v, or equivalently that z = y on J.
Problem 2.16 The functions z1,22 : R — R, defined by z1(¢) = 0 for every ¢t € R,
and

3
M if t < —1
2a(t) = £ 0 ifte[—1,0]
t .
2—7 ift>0

are two distinct saturated solutions of CP(R, R, f, —1,0).

Problem 2.17 Let [ =R, @ = (—%,%) and f : Ix 0 — R, f(¢,z) = tan z for
every (t,z) € I x 2. One may easily see that f does not map bounded subsets in
I x  into bounded subsets in R.

Problem 2.18 The proof follows the same way as that of Theorem 2.4.4, excepting
the phrase preceding the inequality (2.4.4), which in this case should read : “Since
for every compact subset J in I and every bounded subset B in Q, f(J x Q) is
bounded, as [a,b] is compact and included in I and C is bounded, it follows
that there exists M > 0 such that...”. In addition, it is easy to see that the
function f : (—%,%) X (—g,%) — R, defined by f(t,z) = tant - tan z for
(t,z) € (—%, Z) x (—%, %) has the property in the problem, but it does not map
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bounded subsets in I x  in bounded subsets in R. Hence, the class of functions
with the property described in this problem is strictly broader than that one of
the functions f which map bounded subsets in I x 2 into bounded subsets in R™.
Problem 2.19 The answer is in the negative as we can see by taking the sets

X ={(z1,22) ER*, 21 >0, z2 =0}, F = {(wl,wz) €R* 21>0, 3= L}

Z1

which are closed in R? and X N JF = 0, but dist(X, F) = 0.
Problem 2.20 Let z : [0,b) — R be a saturated solution of the Cauchy problem
considered. This means that the vector-valued function z : [0,b) — R?, defined
by z(t) = (x(t),2'(t)) for every t € [0,b), is a saturated solution of the Cauchy
problem

=y

¥ =—g(z) - f(v) (€P)

z(0) = &1, y(0) = &a.

Multiplying the equation £/ + f(z') + g(z) = 0 by =/, integrating the equality
thus obtained over [0, t], and recalling that G(z) > az? and yf(y) > 0, we get

S @F + ale (@) < Saf + aleof?

for every t € [0,b). Since a > 0, it follows that the function z, defined as above, is
a saturated bounded solution of CP(D). According to Corollary 2.4.3, b = +oo,
which achieves the proof.

Problem 2.21 The uniqueness follows from Problem 2.13. We show that every
saturated solution of CP(R4, R”, f+g,a,£) is global. By virtue of Corollary 2.4.3,
in order to do this, it suffices to prove that, if z : [a,b) — R™ is a solution of
CP(R+,R", f +g,a,t) with b < +o0, then x is bounded on {a,b). Let us observe
that, since f is Lipschitz g is dissipative on R™, we have

%iliﬂf:(S)H2 < Liiz())f* + [i1£ (s, 0l + Hlg(s, O] hx()]

S

for each s € [a,b). Integrating on both sides from a to ¢ and using Lemma. 1.5.3,
we get

b t
le()ll < li¢] + / [17(5,0)| + llg(s, 0) [} ds + L / la(s)]| ds

for every t € [a,b). From Gronwall’s Lemma 1.5.2, it follows that

b
=01 < (161 + [ 1705,0)1+ hats, Ol as ) 4

for every t € [a,b), which achieves the proof.

Problem 2.22 Since z is bounded on [a,b), the set of its limit points for ¢ T b
is nonempty and compact. In order to complete the proof it suffices to show
that this set contains exactly one element. To this aim, as z is saturated and
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b < t2, by (iii) in Theorem 2.4.3, we deduce that the set of these limit points
is included in the boundary of the set (w1, ws) which is {wi,w2}. Assuming by
contradiction that both wi and ws are limit points of x for ¢ T b, it follows that
there exist two sequences (tx)ken and (sk)ren, both strictly increasing to b and
such that limg_,o z(tx) = wi and limg—eo Z(Sk) = wa. In addition, we may
assume without loss of generality (taking two subsequences and relabelling, if
necessary) that tx < si for every & € N. Let now w € (w1, wsz). Then there exists
k, € N such that z(¢;) € (w1,w) and z(sx) € (w,w2) for every k > k,. Since
z is continuous, it has the Darboux property, and therefore, for every k > k.,
there exists rx € (tk, sk) such that z(ri) = w. Obviously limg_.o 7% = b and by
consequence w € (w1,ws) is also a limit point of = for ¢t T b. This contradiction
can be eliminated only if the set of all limit points of z for ¢ T b is a singleton.
The generalization to the n-dimensional case reads as follows: i#f @ C R™ s an
open set whose boundary contains only isolated points, f : (t1,t2) x & — R" is
continuous, a € (t1,tz), £ € Q and z : [a,b) — Q is a saturated solution of
CP({t1,22),9, f,a,€) with b < tz and z is bounded on [a,b), then there exists
limeps 2(2) = z*. The proof follows the same way as before, by observing that the
line segment joining any two distinct points in the boundary of  contains the
whole nontrivial subsegment (which does not reduce to a single point) included
in Q.

Problem 2.23 Multiplying the equation =’ = f(z) by z’, integrating side by side
over [a,b), and taking into account that z(a) = x(b), we get

b b b
/ (b dt = / F(a()z'(¢) dt = / 3 (F(e(t) di = Pa()) - Flz(a) =0,

where F' : R — R is a primitive of the function f. Since z’ ? is continuous and non-
negative, its integral over [a,b] equals zero if and only if 2’ = 0 on [a,b]. Hence
x is constant on [a,b]. The result does no longer hold in the case f : R™ — R" for
n > 1, as we can state by observing that the function x : (0,27] — R?, defined
by «(t) = (z1(t),z2(t)) = (sint,cost) for t € [0,2n], is a nonconstant solution of

the problem
z’ = f(z)
ol *

where [a,b] = [0,27] and f : R* — R? is given by f(z1,z2) = (22, —a;) for
(z1,z2) € RY. However, we can prove, by using very similar arguments, that if
f:R™ — R" is the gradient of a function of class C* & : R® — R, then every
solution z : {a,b] — R", of class C?, of the problem (?P) is constant.® In this case
we have

[0 [ e .oa- "

3This condition is automatically satisfied for n = 1 because every continuous function
f : R — R admits primitives, and thus it is the gradient of any of its primitives.

n

g§;<m<mm;<t)) at

=1
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= &(z(b)) — $(z(a)) = 0.

Problem 2.24 Let [a,b] C I. From Lemma 2.2.2 and the uniqueness assumption,
it follows that, for every £ € R", €P(I,R", f,a,£) has a unique solution z(-,¢) :
[a,b] = R™. Let (&)sen be a sequence of points in R™ with my_co &k = ¢&.
Since the function f is bounded, it follows that there exists M > 0 such that
It 2)| < M for every (t,z) € I x R®. Also there exists m > 0 such that
[l€x]] < m for every k € N. Then, we have

(e, €e)ll < Nell + /t £ (s, 2(s, &Nl ds <m+ (b—a)M

and

le(t, &) — (s, &Il < / £ (7, (r, &) dr| < M]t — s|

for every k € N and every ¢,5 € [a,b]. According to Theorem 8.2.1, it follows
that the family of functions {z(:,&k); k € N} is relatively compact in the space
C([a,b];R™) endowed with the uniform convergence topology. Therefore, in order
to conclude the proof, it suffices to show that the only limit point of the sequence
(2(-, €% ))ren, in this topology, is z(-,£). Let then y be such a limit point. For
the sake of simplicity, let us denote again by (z(:, £x))xen the subsequence which
is uniformly convergent to y. Then, according to Corollary 8.2.1, it follows that
the set U = {z(t,&k); k €N, t € [a,b]} is compact. Passing to the limit in the
equality

2(t, €)= &k + / " f(s,2(s, ) ds

for k tending to +o00, and using Corollary 8.2.2 with

U={a(t,&); k€N, t € [a,b]},

we deduce that y is a solution of CP(L,R", f,a,£). As, by hypothesis this problem
has the uniqueness property, it follows that y(t) = z(t,£) for every t € [a,b],
which achieves the proof.

Problem 2.25 As we have seen in the proof of Problem 2.3, if £ > 0, then the
function z(-, &) : [0, +00) — R, defined by z(¢,£) = 1/t% + £2, is the unique global
right solution for CP(R, R, f,0,£). Then

2
j2(t,6) =t < VP +E — ] = ——\/zf—g R

for every t > 0 and every £ > 0. Hence lim¢joz(t,€) = t uniformly for ¢t > 0.
Nevertheless, the function y(t) = ¢ for t > 0 is not a solution of CP(R, R, f,0,0),
because y'(0) = 1 # f(0,0) = 0. This discontinuity with respect to the initial
data is a consequence of the discontinuity of the function f at the points of the
form (t,0) with t € R.
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Problem 2.26 For every p > 0, the unique solution of CP(R, R, f,0,0), is z(-,p) :
[0,+00) — R, defined by z(t,p) = 1/t2 + p? — p for every t € [0, +00). We have

2 t

t
- —1<1
/t2 +p2 /tz +p2 -

for every p > 0 and every t € {0,1]. So, the family of functions {z(-,p); p > 0} is
relatively compact in C([0,1}];R). From this observation and from the fact that
limp o 2(t, p) = ¢ point-wise on [0,1], it follows that the convergence above is in
fact uniform on [0, 1]. But the function v : [0,1] — R, defined by y(¢) = ¢, is not
a solution of CP(R, R, f,0,0)o because y'(0) = 1 # £(0,0,0) = 0. In this case too,
the discontinuity of the solution with respect to the parameter p is caused by the
discontinuity of the function f at the points of the form (¢,z,p) with z + p = 0.
Problem 2.27 For every fixed p # 0, the function z — 33/22 + p? is locally
Lipschitz on R, being of class C*. Then, according to Theorem 2.3.1, it follows
that, for every p > 0, (i’iP(‘D)p has the uniqueness property. On the other hand,
as we have already seen in Example 2.3.1, CP(D), does not have the uniqueness
property.

lz(t,p)| = ‘ <1 and |2'(t,p)| =

Chapter 3

Exercise 3.1 (1) We look for the solution as a power series of the form

o0
z(t) = chtk.
k=0

Imposing the condition that z satisfies the equation, we deduce

oo oo oo
chktk—l — chktk =1+4t— chtk.
k=1 k=1 k=0

From the initial condition and identifying the coefficients, we get
co=0
ca=1, cp= 1/2,
cet1 =ce(k—1)/(k+1), k=2,3,...
from where it follows

z(t) = t+Z +1)

the series being uniformly and absolutely convergent on [—1,1}.
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(2) Proceeding as in the preceding exercise, we find

o tP+1

o0 = L Gy

p=0

the series being absolutely convergent on R and uniformly convergent on every
compact interval.
(3) Similarly, we have

o(t) = Z( 1) (t/?))j ,

the series being absolutely convergent on R and uniformly convergent on every
compact interval.
(4) The solution of the equation is

z(t) = Z( 1)F 2p+ 1)'

for every t € R, i.e.

_ [ (sint)/t for t # 0
a(t) = { 1 fort=0.

(5) The solution of the equation is

z(t) = Zg

=0

for every t € R, i.e. z(t) = €' for every t € R.
{(6) The solution of the equation is

o<
%P

z(t) = —_
2

for every t € R, L.e. z(t) = et for every teR.

Problem 3.1 We look for z as z(t) = Y 5o, ckt”. Asking that « satisfy the
equation, we obtain ¥ 4o, k(k — D)cxth™ -2 Ef 1 2kepth + Yo ZAcktk = 0. By
identifying the coefficients, we get

2-1cy + 2o =0
3:2c3—2c1+2x1 =0
(k+ 2){(k + V)ckqa — 2kek + 2hcr, =0
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for every k € N. From these equalities, we deduce

ey = (~1p 222 2) @-))(!A —2%+2)
PP —-1(A=3)...(A-2p+1
CZp+1=(—1) ( )( (22711)'( D+ )CI

for every p € N. Taking successively (co,¢1) = (1,0) and (co,c1) = (0,1), we get
the solutions

A=2)..A=2p+2) o

() =1+ 3 (-1)P 22

(2p)!
and
CL‘2(t) =t Z(—"l)p 21’()\ — 1)()\(;1731 1)'(/\ —2p+ 1) t2p+1,

both series being absolutely convergent on R, and uniformly convergent on every
compact interval. Since the Wronskian of this system of solutions is nonzero
at t = 0, it follows that {z1,z} is a fundamental system of solutions for the
Hermite equation. If A € N, one can easily see that one of the two solutions is
a polynomial. More precisely, if X is even, z; is a polynomial of even degree,
while if X is odd, z3 is a polynomial of odd degree. Conversely, if there exists a
non-identically null polynomial which satisfies the equation, then this is a linear
combination of 1 and z2. Since the first series contains only even powers of ¢,
while the second one only odd powers, al least one of these must be a polynomial.
From here it follows that there exists a first null coefficient in the series, which
can happen only if A € N.

Problem 3.2 For A = 0 the equation takes the equivalent form 2” +(1—t*)z = 0.
Let us remark that a solution of this equation is z(t) = et*/2_ For this reason
it follows that, for every A € R, the function z(t) = y(t)e—tz/2 satisfies the
equation —z” + t?z = (2X\ + 1)z if and only if y satisfies the Hermite equation
y" — 2ty + 22y = 0. Accordingly, the general solution of the equation is of the
form z(t) = [z (t) + czmg(t)]e“tz/z, with ¢1,¢2 € R, and z1,z2 determined in
the solution of Problem 3.1. Then, if A € N, again from Problem 3.1, we have that
at least one of the two solutions is a polynomial. So, at least one of the solutions
2(t) = z1(t)e /2, or z(t) = za(t)e™*/? is non-identically zero and bounded on
Ry.

Exercise 3.2 According to Theorem 3.1.1 the solution of the equation is an
analytic function. Consequently z(t) = 3%  cxt®. Then a'(t) = 350, kext® ™!
and z/(t) = 52, k(k — 1)cxt® 2. Substituting in the equation and identifying
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the coeflicients, we get

4...(3k—5) (3k—2)

Cak = @8)! -co for every k € N*
2:5...(3tk—4) Bk—1
C3k+1 = ((3k+i)!( ) -1 for every k € N*
C3k+2 =10 for every k € N.
Hence
~14...(3k=5)-Bk—2) )
z(t) = co (1 +
;; (3k)!
o0
2:5...(3k—4)-Bk—1) g
te (1 + ; Bk ) 't

for every ¢ € R (the two series converge on R).

Problem 3.3 We look for z(t) = t* 30  cxt®. Termwise differentiation yields
both z'(t) = Zk—o (k+a)ckt* ™ =1 and m”(t) YR olk+a)(k+a—1)cpt*tr2,
Substituting in the equation and identifying the free term, taking into account
that co # 0, it follows o = +n. For a = n, we get cap4+1 = 0 and

!
O Y N (LA
cak = (—1) 22k k. (n+k:)!co
for every k € N. Taking co = 1/(n!-2"), we deduce that a non-identically null
solution, corresponding to a = n, is given by

st t 2 n+2k
za(t) = 3 (1) k(! -/(T)L R

for every ¢t € R (the radius of convergence of the series above is R = +o0). For
a=-—n, weget copr1 =0 forevery k € N, cop =0for k=0,1,...,n—~1 and

x n!
Caky2n = (—1) mczn

for every £ € N. Let us remark that, in this case, (& = —n), every non-zero
solution is of the form Az, with A € R*. Indeed, taking ca, = 1/(n!- 2"), we
deduce that the solution corresponding to this coefficient and to a = —n coincides
with zn.

Exercise 3.3 We look for the solution of the form z(t) = 33> cxt*. Substituting
in the equation and identifying the coefficients, we get

(@t )b+k)
H = et D+ k)
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for every k € N*. By virtue of the conditions z(0) = 1 and z'(0) = (ab)/c, it
follows that co = 1 and ¢1 = (ab)/c. Then the solution is given by the sum of the
Gauss hypergeometric series

tk

[ o]
2(t) = 1+Z(a+k—1)(a+k—2)...a(b+k—-1)(b+k—2)...b.
Pt allc+k—Dlc+k—-2)...{c+1)c
for every t € (—1,1) (the radius of convergence of the series above is R = 1).
Problem 3.4 The solutions about 0 are of the form z(t) = 352  cxt*. Asking z
o satisfy the equation and identifying the coeflicients, we get

A+

Cp = ——T0TC1

_0Eho+y)

(A 31"1?)(,\ +k+1)
k+2)(k+1)

C3 —

Ck42 = —

Then we have

Czk=(_1);€A(A—2)...()\—2k+2)(/\2;—ll)(/\+3).,.()\+2k—1)60

(2k)!
(-1 (A=A =3)...00=2k+ DA+ 2)A+4) ... (A +2k)
cars1 = (1) 2k +1)! e
for every k = 1,2,.... From here, it follows that a necessary and sufficient

condition in order that a local solution about 0 be a polynomial is that A € N.
Problem 3.5 From Lemma 3.2.2, it follows that, for every “starting” continuous
function zg : [a,a + 6] — B(¢,r), the sequence of successive approximations:

Tr(t) = £+ /‘t f(s,ze—1(s))ds

for every k € N* and ¢ € [a,a + 6] is well-defined. Let z : [a,a+ ] — B(£,7)
be the unique solution of €P(D) and let m > 0 such that [|zo(t) — z(t)|| < m for
every t € [a,a + 8]. Using the fact that f is Lipschitz on B(£,r), one proves by
complete induction that

LE(t — a)*

llze(t) — ()l <m px

for every k € N and every t € [a,a + §]. From here, we deduce that the error
evaluation formula, in this general case, is

ksk

lex(®) - (0]l < mE

for every k € N and every t € [a,a+ 5].
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Problem 3.6 Let (zz)ren be the sequence of successive approximations defined
on [a,a+ 8] with values in B(£,7): zo(t) = ¢ and

t
wrlt) =€+ [ fls,men(e) ds
for every k € N* and ¢ € {a,a + §). One shows by mathematical induction that

M [L(t — a)]Ft!

t) — < DI
s 6) = sl < Z= s *)
for every k € N and every t € [a,b]. From the inequality above, we deduce that

lass(8) — 2a(6)] < 22 3 IL(b — a)]"™

for every k,p € N and every ¢ € [a,b]. Since ) 7., Léjb_k—_!glL" = el®=a) it follows
that the sequence (zx)ken is uniformly Cauchy on {a,b]. So it is uniformly con-
vergent on [a, b] to a continuous function z. Passing to the limit in the recurrence
relation which defines the sequence and taking into account Corollary 8.2.1, we

deduce that z is the solution of the integral equation

x(t) =5+/ f(s,z(s)) ds

and implicitly of @P(D). This achieves the proof of the existence part of The-
orem 2.3.2. Since f is Lipschitz on B(£,r), it follows that every two solutions
z,y:a,a+ 8] — B(g,r) of CP(D) satisfy

lz(t) - w(®)l| < / Lijz(s) - y(s)|| ds

for every t € [a,a + §]. From Gronwall’'s Lemma 1.5.2, it follows that z = y
which proves the uniqueness too.

Problem 3.7 Let us define the sequence of functions: zx : [a,b] — R™ by
zo(t) = f(t) for every t € a,b], and

w0 = 10+ [ (e () d

for every k € N* and every t € [a,b]. Obviously all the terms of this sequence
are continuous functions on [a,b]. Since [a,b] is compact, there exists M > 0
such that ||g(t, s, f(s))il < M for every (¢,s) € [a,b] x [a,b]. Then, we have
lz1(t) —zo(t)l| < M(t—a) for every t € [a,b]. Using the fact that the function g
is Lipschitz on R™, one proves by mathematical induction that (zx)zen satisfies
the inequality () established in the solution of Problem 3.6. From this point, the
proof follows that of Problem 3.6.
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Problem 3.8 One shows for the beginning that « : {a,b] — R is a solution of the
Cauchy problem for the integro-differential equation if and only if z is continuous
on [a,b] and

o(t) = £ + /:f(s,x(s))ds+ /: (/asg(s,r,x(r))dv') ds

for every t € [a,b]. We define the sequence zx : [a,6] — R" of successive
approximations: zo(t) = £ and

wt) = ¢+ [ fls.maoas+ [ ([ staraesrar) as

for every k € N* and every t € [a,b]. Let us observe that all the terms of
this sequence are continuous functions. Also, there exist My > 0 and My > 0
such that |[f(t,€)|| £ My and ||g(¢,s,€) < M, for (t,s) € [a,b] x [a,b]. Let
M = My + (b - a)My, and let us observe that ||z1(t) — zo{t)|| < M(¢t — a) for
every t € [a,b]. Let Ly > 0 and Ly > 0 be the Lipschitz constants corresponding
to the functions f and g, and let L = Ly + (b — a)L,. Majorizing if necessary
the double integral over [a,t] x [a,s] by the double integral over [a,b] X [a,t]
and using the complete induction method, one shows that the sequence (zx)ren
satisfies the inequality () established in the solution of Problem 3.6. In what
follows, one proceeds by analogy with the case of Problem 3.6.

Problem 3.9 Let h : [0,7] — R"™ be a continuous function and let £ € R™.
According to Corollary 2.4.1, €P(D) has at least one saturated solution z defined
either on [0,T'} or on [0, T3n), with Ty < T. We will show in what follows that
is defined on [0, T']. To this aim, let us assume by contradiction that z is defined
on [0,Tr). Then, for every s € [0,T) and § > 0 with s + 6 < Trn we have

z'(s+8) —z'(s) = Az(s + &) — Az(s) + h(s + §) — h(s).

Taking the inner product on both sides of this equality by z(s + §) — z(s), using
the dissipativity condition and (i) in Lemma 8.1.2, we deduce

% (H:v(s +8) — z(s)llz) < (h(s+8) — h(s),z(s + &) — z(s)).

DOl

Integrating this inequality over [0,t] with ¢t + 6§ < Tr, we get
¢
llz(t +8) — 2(t)]* < l=(8) - &]1* + 2/ (h(s + 6) — h(s),z(s + 6) — z(s))ds.
0

From the Cauchy-Schwarz inequality, we have that

(h(s +8) — h(s), x(s + 8) — z(s)) < [|A(s + &) — h(s)llllz(s + &) — z(s)I|.
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From this relation, the preceding one, and from Lemma 1.5.3, we deduce that
t
lz(t + &) — z(}| < 11=(8) — &Il + / lh(s + &) — h(s)|| ds.
0

Since « is continuous at t = 0, z(0) = £ and h is uniformly continuous on [0, T],
from this inequality, we conclude that z satisfies the Cauchy’s condition of the
existence of finite limit to the right at the point T,,. So, z can be extended
to [0,Tm], which is absurd. This contradiction can be eliminated only if z is
defined on [0,7"]. The uniqueness follows from the second inequality formulated
in the problem, which we prove below. Let z1, 22 be two saturated solutions
corresponding to the initial data §; and to the functions h; with ¢ = 1,2. Taking
the inner product on both sides of 71 (t) — 25 (¢) = Az1(t) — Azz(t) + h1(t) — h2(t)
by z1(t) — z2(t), taking into account the dissipativity of the function A and using
(i) in Lemma 8.1.2, we deduce

| =

(2 (t) = 22(B)1*) < (ha(8) = ha(t), 21 (t) — z2(t))

N =
sy

t

for every t € [0,T']. Integrating this inequality over [0,t], we get

llz1(t) = z2()11* < 161 — & + 2]() (h1(s) — ha(s),z1(s) — z2)ds

for every t € [0,T]. From this inequality, the Cauchy-Schwarz inequality and
from Lemma 1.5.3, it follows that

lox(t) - zat)] < 16 — &l + / a(s) — hallds

for every t € [0,T], which completes the proof.

Problem 3.10 Since the function z; is continuous on [0, T}, it follows that there
exists M > 0 such that ||z1(t) — €]} £ M for every t € [0,T]. From the second
inequality established in Problem 3.9, and from the fact that f is Lipschitz on
R™ of constant L > 0, we deduce

t
leksr(t) — zx(t)]) < / Lllax(s) — zxor(s)]| ds

for every k € Nand every t € [0,7]. From this inequality, and from the preceding
one, using the method of complete induction, one shows that

L%tk
k!

ke (t) — ()} < M
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for every k € N and every ¢t € [0,T]. So,

—1

lk4n(t) — zR(®)] < MZ _Lib_a_)l’i*_’

(k +2)!

for every k,p € N and every t € [a,b]. Since 35>/ Ll‘(—b;,i)]-k- = elt-a) it follows
that the sequence (zx)ren is uniformly Cauchy on [a,b], and hence uniformly
convergent on this interval to a continuous function z. Passing to the limit in
the recurrence relation (in the integral form) which defines the sequence and
taking into account Corollary 8.2.1, we deduce that z is a solution of the integral

equation
o(t) = € + / [Ax(s) + (5, 2(s))] ds

and implicitly of CP(D). This completes the proof of the existence part of the
problem 3.10. Since f is Lipschitz on B(€,r), from the second inequality estab-
lished in Problem 3.9, it follows that every two solutions z,y : [a,a+8] — B(&,7)
of CP(D) satisfy

o) ~u(0l < [ Lii(e) -~ w(6)l s

for every ¢t € [a,a + ). From Gronwall’s Lemma 1.5.2, it follows that z = y
which completes the proof of the uniqueness part.

Problem 3.11 We begin by observing that, from the hypothesis imposed on the
function A, it follows that this is dissipative on R™. From Problem 3.9, we deduce
that for every £ € R® CP(€) has a unique global solution and therefore P is well-
defined. Let £,7 € R™ and let us denote by = and y the two global solutions
of CP(¢) and CP(n) respectively. Taking the inner product on both sides of the
equality z'(t) — ¥'(t) = Az(t) — Ay(t) by z(t) — y(¢t), taking into account the
dissipativity condition satisfied by A and using (i) in Lemma 8.1.2, we obtain

S () ~ vOI?) < ~*lla®) - v

for every t € Ry. Multiplying both sides of this inequality by the integrant factor

2
et we deduce

d (1 Q2w 2
<
4 (3 =0 —ver?) <o
for every ¢ € Ry. From here, integrating over [0,T], we get
1 su2r 2 _ 1 2
€ (™) —y(MI” < 51=(0) —y(O)II".
2 2

Recalling that z(0) = &, y(0)
inequality implies

m z(T) = P(§) and y(T) = P(n), the last

Il

1P(€) = P(ml < qlig -l
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for every £, € R™, where ¢ = e=“*T. From this property it follows by mathe-
matical induction that [[€k+1 — &kl < ¢¥||&1 — &o|| for every k € N and therefore
ki — Exll < €1 — o)l 52 ¢** for every k,p € N*. Finally, by observing
that the geometric series 37> ,¢* is convergent because ¢ € (0,1), it follows
that the sequence (£x)ren is convergent to an element n € R™. Passing to the
limit in the recurrence relation £, = P(xx—1) and taking into account the con-
tinuity of the function P, we conclude that n = P(n), which is equivalent to
n = x(0,0,n) = z(T,0,7n). The proof of (1) and (2) is complete. Finally, if f is
T-periodic and z is a global solution of the equation z'(t) = Axz(t) + f(¢), then
the function zr : Ry — R™, defined by zr(¢) = z(t + T) is also a solution of
the same equation. Since z(T,0,n) = n, from the uniqueness property, it follows
that z(¢t + T,0,n) = z(¢,0,7n) for every t € Ry. This means that z(-,0,7) is
periodic of period T, which completes the proof of (3). In order to prove (4),
let us observe that if x : Ry — R"™ is a T-periodic solution of the differential
equation z’'(t) = Az(t) + f(t) then £ = z(0) is a fixed point of the function P, i.e.
& = P(£).* Since P is a strict contraction (|P(£) — P(n)ll < gl — 7| for every
¢,mn € R™, where g € (0,1)), it follows that P has at most one fixed point. The
proof is complete.

Chapter 4

Problem 4.1 If z is bounded on Ry, there exists m > 0 such that
lz(t)] < m

for every t € Ry.. From the second equation in (8), we deduce

[ e

for every t,s € Ry. Since b is absolutely integrable over R, for every € > 0 there
exists 8(¢) > 0 such that
¢
f 1b(m)| dr
k]

for every t,5 € Ry, with ¢ > §(¢) and s > 8(¢). From the inequality previously
established, it follows that y satisfies the Cauchy’s condition of the existence of the
finite limit at +00. Let £ = lim;— o0 ¥(t). It follows then that lim,—, oo 2(2) = £.
Assuming by contradiction that ¢ # 0, we deduce that z is unbounded. Indeed,
to fix the ideas, let us assume that £ > 0. Then, there exists to > 0 such that, for

() —yl(s) < m

<e

4Under the extra-assumption that f is T-periodic, the converse of this assertion also
holds true, as we have already seen.



Solutions — Chapter 4 359

every t > to, we have z(t) € [£(t — to) + z(to), ¥ (t — to) + z(to) ] Accordingly =
is unbounded on R.. This contradiction can be eliminated only if £ = 0, which
proves (i).

In order to prove (ii), let us observe that the Wronskian of the system (8) is
constant, Let us consider then a fundamental system of solutions of (8). Assum-
ing that both solutions are bounded on Ry, from what we have already proved,
it follows that

c= lim W(t)=0
t—+00
relation in contradiction with the fact that the system of solutions is fundamental.
This contradiction can be eliminated only if at least one of the two solutions is
unbounded on Ry, which shows (ii).
Problem 4.2 By virtue of Theorem 2.6.1

is the solution of the Cauchy problem

{ X'(t) = fa(t, S(t)z)X(t)
X(a) = In.

According to Liouville Theorem 4.1.5, we have

det(X(t)) = det(X(a))exp ( / t tr fz(s, S(s)§) ds)

— det(X(a))exp [ /a t <i=1 3;; (s,S(s)g)) ds] = det(X(a))

for every t € {a,b), which achieves the proof.

Problem 4.3 Since H is of class C?, from Schwarz theorem (on the equality
of the second order mixed partial derivatives), we conclude that the function
f : R*™ — R?", defined by

f(pq)z(_Q[i _oH oH  OH
> aqli"') 8qn’8p1’.“’3pn )

where p, ¢ € R”, is divergence free. The conclusion follows from Problem 4.2,

Problem 4.4 From the definition of the matrix ¢ and from the continuity of
the mapping A — A7, it follows that

tA\” tAT . ta) 7!
() e e o)

which shows that e*** is orthogonal.
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Problem 4.5 Let X be a fundamental matrix of the system z’ = Az which is
orthogonal at t = 0. Obviously X satisfies X' = AX, and therefore

d T —_— T T
L@@ =X WA
Hence X7 is a solution of the Cauchy problem

{Hf —= ‘H‘A‘r
9(0) = X7(0)

On the other hand X(t)X™*(t) = Jn, which implies (X(t)x_l(t))’ = 0. Then we
have

X'@E)X7E) = -X@) (X7 @)

or

(X)) = —XT X' OXTHE) =X E) (—A) = XA

It follows that X! is also a solution of the Cauchy problem above, while from
the uniqueness part of Theorem 4.1.1, we deduce that X(t)™ = X~*(¢) for every
teR

Problem 4.6 The proof follows the same lines as those in the proof of the pre-
ceding problem.

Problem 4.7 We have

A = 2Fg, = (A= AT ART AR 4 )

for every k € N*. From here, one observes that every root of the characteristic
equation det(A — AJ,) = 0 is also a root of the equation

k

k
tP AP tPAP
det (}: - —Z > Jn) =0.

p=1 p=1

Since the function det is continuous, passing to the limit in the equality above for
k tending to +o00, we deduce that, if A is a root of the equation det(A— \J,,) =0,
then, for every ¢t € R, e is a root of the equation det (e — pJn) = 0.
Problem 4.8 The matrix A is symmetric if and only if (Az,y) = (z,Ay) for
every z,y € R™. So, if A is symmetric, we have

(5= = (250

Passing to the limit for k tending to 4-co in this equality and taking into account
that the inner product is a continuous function of both variables, we deduce
(e"z,y) = (z,e™y) for every z,y € R™ and ¢t € R, which shows that €' is
symmetric for every ¢ € R.
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Problem 4.9 Let X : R — Maxn(R) be a fundamental matrix of the system
with the property that X(0) is symmetric. Since the inverse of every self-adjoint
matrix is symmetric, while X~ (t) = X(—t) for every ¢ € R, it suffices to consider
only the case ¢ > 0. Let then ¢ > 0, and let us choose a > 0 with the property
that t € [0,a]. Let k € N*. Let us divide the interval [0,e] in k equal parts
0=ty <ty < <tp-1 <ty = a and let us define Ax : [0,a] = Maxn(R),
by .Ak(t) = .A(ti) for t € [ti,ti+1), 1= 0, 1, N ,]C — 1 and Ak(a) = .A(tk_1). Let
us define the function Xk : [0,a] = Muxn(R) by Xi(t) = e~ 4CI Y, (1) for
t € (ti,tig1), i =0,1,...,k — 1 and Xx(0) = X(0). One may easily see that Xi
is continuous on [0, a], differentiable on the set [0,a}\ {t;; ¢ = 1,2,.. .k}, and
satisfies

X (8) = A ()X (2) (%)
at every point of differentiability. Let us observe that Xj is obtained by the
concatenation of the solutions of the Cauchy problems of the type

ZQ = A(t,-_l)zi

Zi(ti-1) = Zi—1(ti-1), Zo(0) = X(0)
for i =1,2,...,k. From the previous problem, we successively deduce that Z;(t)
is symmetric for every t € [¢t;-1,t;] and ¢ = 1,2,..., k. So, Xk(¢) has the same
property for every t € [0,a]. Finally, let us observe that the sequence of func-

tions (Xk)ken+ is uniformly bounded and equicontinuous on [0,a]. This is an
immediate consequence of the fact that X satisfies

Xi(t) = X(0) + / A ()X (5) ds

for every k € N* and every t € [0,a], and of the boundedness of the function A
on the interval [0,a]. By virtue of Theorem 8.2.1, it follows that, at least one
subsequence, (Xx)ren+ is uniformly convergent on [0,a] to a function Y. Since
limg 00 Ax = A uniformly on [0, a], passing to the limit in (), we deduce that
Y(t) = X(t) for every t € [0,a]. We conclude the proof with the remark that
Y(t) is symmetric for every t € [0,a] being the uniform limit of a sequence of
functions having the same property.

Problem 4.10 Since ™ = J+tA+3Y 5, 3’% it follows that, for ¢ > 0 sufficiently
small, all the elements of the matrix e**, which are not on the diagonal, have the
same sign with the corresponding ones of the matrix t.A. Hence the condition is
necessary. In order to prove the sufficiency, let us observe that, by virtue of (ii) in
Proposition 4.3.1, for every t,s € R+, we have e** = ¢!+ ¢~ Moreover, if
s is large enough and A satisfies the condition of the problem, (A + sJ) has only
positive elements. Then e***+*?) has the same property too. Since e~ %7 = ¢=¢J
has only positive elements and the product of two matrix with positive elements
is a matrix with positive elements, this completes the proof.

Problem 4.11 Let us define f : Muxn(R) — Maxn(R) by f(X) = AX + XB
for every X € Mnxn(R). Following the same way as that one used in the proof
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of Corollary 2.4.4, one concludes that f is globally Lipschitz and therefore the
Cauchy problem considered has one unique global solution. To complete the
proof, it suffices to show that X : R — Mnaxx(R), defined by X(t) = e Ce??,
is a solution of the Cauchy problem. We have X(0) = ¢°*Ce’®? = €. From
Theorem 4.3.1 it follows

tA 3, ad B otA d (3
(x)(t) &t (e )ee Tt g CeT edt( )

= AeCe’® + e B = AX(t) + X(t)B.

The proof is complete.
Problem 4.12 Let us observe that

+o00 +0oo
AX + XB = —/ At eetBds — / e ee*B B ds
0 0

= —f+°0 d% (em) Re*Bds — /+°° eSAGdiS (esg) ds
0 0

A
ses'B

/ Ae*Pee’Bds + / e Ce’PBds = 2€ — AX — XB,
4]

the last equality being satisfied if and only if lims— 400 e**€e®® = 0. Since there
exists 1ims_, o0 €°*Ce®®?, in order to complete the proof it suffices to show that,
the inf-limit, for s tending to +oo, of each element of the matrix e**Ce® is 0.
To this aim let us observe that, by virtue of the convergence of the integral

O ap B
/ e Ce®Pds,
0

m+1 5
lim e ee"Pds = 0.

—
m+oom

it follows that

Also, from the mean-value theorem, it follows that, for every element «;; of the
matrix e**Ce’® there exists ¢ (ij) € [m, m + 1] such that

m+1
/ @ij(s) ds = aij(tm(i7)).

m

From this relation and from the preceding one, it follows that
mai(tm (i) = 0

for every 4,7 = 1,2,...,n, which achieves the proof.
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Problem 4.13 The power series which define both functions t +— costA and
t — sintA are termwise differentiable. From this observation, we deduce that

% (costA) = —AsintA = —(sintA)A and % (sintA) = AcostA = (costA)A,

which proves (1). From here, it follows that

costA  sintA \' _ 0 7J costA  sintA
—AsintA AcostA) ~ \-A%0) \ —AsintA AcostA

which proves the first part of (2). The matrix Z(t) is fundamental for the system
if and only if det Z(0) 5 0, relation which holds true if and only if det A # 0.
Problem 4.14 Let us remark that, from the variation of constants formula (see
Remark 4.3.3), it follows

zi(t) = D¢ 4 / et=na [£(5,Zk~1(3)) — Azr—1(5)] ds

a

for every m € N* and every ¢t € {a,b]. Let Ly > 0 be the Lipschitz constant
corresponding to the function f, let M > 0 be such that ||z1(t) — zo(2)]| < M for
every t € [a,b], and let us define L = e®=®MAlx [L; 4 ||A]|5]. Using the fact
that || An]| < || Allmlnl] for every n € R™ (see (N4), from Lemma 8.1.1), and by
observing that [|e"=*4 |5 < e®~®Mix¢ for every t,s € [a,b] with s < t, one
shows by mathematical induction that
MLt — a)*
s (6) — ooy < L=
for every k € N and every t € [a,b]. From this point, the proof follows the same

arguments as those used in the solution of Problem 3.10.
Exercise 4.1 The general solutions of the systems are:

(1) z1(t) = cre™" + coe®
Za(t) = —cre”" + 2c2e"
z1(t) = c1cost + casint
z2(t) = —ci1sint + ¢z cost.

3) z1(t) = cle tcost + cpe tsint

za(t) = £(c2 — 2c1)e"*cost — §(c1 + 2c2)e sint.

@) z1(t) = 1(c1e2‘+c:2—2t2-2t—1)

zo(t) = 8(616 —co+2t>~2t—1).

1 t) = 2sint ~ (2¢1 + &)t + 1

z2(t) = —2cost — 3sint + (de1 + 2c2)t + ca.
{ z1(t) = (c1 — dea)e® + 4(c1 + ea)e ™ + 12 + ¢

(6) za(t) = (“‘C] + 402)621 + (Cl + Cz)e 3t __ %
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((21(t) = c1e® + cze™ % cos ‘/_t + C3e % sin —‘Ct
z2(t) = cref + (—502 + %@) e % cos %t
(7) { - (@cz + %c;;) e~ % sin ‘/Tgt

1 (t) = —cie "t + 262€2t
(8) ivz(t) = —Cae_t + 2626%
z3(t) = (c1 + c3)e™ + 2cze?

Here ¢1,c3,cs e Rand t € R.
Exercise 4.2 The general solutions of the equations are:

(1) z(t) = c1e’ + cze™
(2) z(t) = cie™ " + cate ™.
(3) z(t) = c1cos 2t + casin 2t.

&l

(4) z(t) = cre™ % + cpe + (% — I_; + 4 ﬁ) )
(5) x(t) = c1cos3t + casin3t + % cos 2t.

(6) (t) = cicost+cosint +sint In|sint| —tcost, for t € (km,(k+ L)n),
ke Z

(N m(t) =cicost+casint + £ " sint 4 & L(4sin2tsint + cos3t) — 75 sin 3t
+ 4cosZtsmt

(8) z(t) = c1e® + cote® + %eu
(9) z(t) = creV® + cre V2t 4 et’

Here c1,c2,c3 € R and, with the exception of item (6), t € R.
Exercise 4.3 The general solutions of the equations are:

(1) z(t) = c1 + cae® + czet?

(2) z(t) = c1 + o™t + cae’,

(3) z(t) = cre”t + cze? cos ‘/-t + cze’ sin 2 ‘/_

(4) z(t) = cie’sint + cae’ cost + cze~tsin ¢ + cse~tcost.
(5) z(t) = cre* + cote® + cat?et — £ — 3.

(6) x(t) = c1cost+ casint + cztcost + catsint.

(7) =(t) = c1 + cat 4 cae® + cate’ + & £t — 2tet + 3¢t

(8) z(t) = cre™" 4 cocost + casint + Z2et,

(9) 2(t) = c1 + coe™ + cate ™ + B — 2L,
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Here ¢1,¢2,c3 E Rand t € R.
Exercise 4.4 (1) This is an Euler equation. The general solution, z : I — R, is
defined by z(t) = c1t™!+cot™* In|t| for every t € I, where I = (—o0,0) or (0, +00)
and ¢1,c2 € R, ¢ + ¢2 # 0. The equation also admits the solution z : R — R,
z=0.

(2) Euler equation. The general solution is z : I — R, z(t) = cit™! + ¢t
for every t € I, where I = (—o00,0) or (0, +00), where ¢; € R* and ¢z € R. The
equation also admits the solution z : R — R, defined by

fat*, t20 .
z(t)—{cztg 120 with ¢1,¢2 € R.

(3) This is an Euler equation whose general solution, z : I — R, is defined by
z(t) = c1cos(Int?) + casin(In ¢2) for every t € I, where I = (—o0,0) or (0, +o0)
and ci,c2 € R, ¢ 4+ ¢ # 0. The equation also admits the solution z : R — R,
z=0.

(4) This is an Euler equation whose general solution, z : R — R, is defined
by z(t) = it + cat? + cst? for every t € R, where ¢1,¢2,c3 € R.

(5) The equation is reducible to one of Euler type by means of the substitution
3t+2 = 7. The general solution is z : I — R, defined by z(¢) = ¢, (3t + 2)_% +c2
for every t € I, where I = (—o0,—3), or (—%,400), while c1 € R*, c; € R. The
equation also admits the solution z : R — R, defined by z(t) = ¢ for every t € R,
where c € R.

(6) The equation is reducible to one of Euler type. The general solution,
7 : 1 — R, of the initial equation is defined by 2(t) = c1t™' + c2t? for every t €1,
where I = (—00,0) or (0,+00), while ¢1,¢2 € R.

(7) This is an equation reducible to one of Euler type having the general
solution = : [ — R, defined by z(t) = ¢1 cos(In [¢]) + czsin(ln [¢]) for every ¢ € I,
where I = (—00,0) or (0,+0c0) and c1,c2 € R.

(8) This is a non-homogeneous Euler equation. The general solution is

t

1 2 3
_Jat+at+cat® fort>0
z(t) = { §t+clt2 +catd fort <0’ with ¢, ¢2,¢3 € R.

(9) The substitution 1+t = 7 leads to a non-homogeneous Euler equation with
the general solution defined by x(t) = c1(1+t)* +c2(14-t)* In |14+t + (1 +¢)° for
every t € I, where [ = (—o0, —1) or (—1, +00), ¢1 € R and ¢; € R*. The equation
also has the solution z : R — R, defined by z(t) = ¢(1 4+ )% + (1 + t)? for every
t € R, where c € R.

{10) The equation is of Euler type, non-homogeneous, having the general
solution « : I — R, defined by z(t) = cit + cat In|t| + ¢ In? |¢] for every t € 1,
where [ = (~00,0) or (0,+00) and ¢1,¢c2 € R.
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Chapter 5

Problem 5.1 Before proceeding to the proof of the four assertions, let us observe
that, in the case of the equation considered, every fundamental matrix is of type
1 x 1 and of the form

I)C(t) — fefot a(s)ds

for every t € R, where £ € R*.

(1) In view of Theorem 5.2.2, the null solution of the equation considered
is stable if and only if there exists a fundamental matrix bounded on R4, or
equivalently every fundamental matrix is bounded on R;. According to the
remark from the beginning, this happens if and only if

z(t) = elS a1 ds _ J5® als) ds o Ji als) ds <M (%)

for every t,tp € R4, to < t. If the mentioned inequality is satisfied, we have
x(t) < eX© for every t € Ry, and therefore x is bounded on R,. Hence the
null solution is stable. Conversely, if there exists M > 0 such that z(t) < M for
every t € Ry, then from (*), one observes that the function K : Ry — R, which
satisfies the inequality in question, can be taken

K(to) =InM — /to a(s) ds

for every to € R+.

(2) By virtue of Theorem 5.2.4, the null solution of the equation is uniformly
stable if and only if there exists a fundamental matrix X(¢) and there exists M > 0
such that |X(t)X™ (to)||m £ M for every t,to € Ry, tg < t. According to the
initial remark, the null solution is uniformly stable if and only if

ef“‘to a(s) ds <M

for every £,to € Ry, tp < t, or equivalently

t
/ a(s)ds<InM =K
t

Q

for every t,to € Ry, to < t.
(3) According to Theorem 5.2.2, the null solution is asymptotically stable if
and only if
lim o () ds — 0,

t— 400

which happens if and only if

i ds = —o0.
i, [ ao)ds = o0
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(4) According to Theorem 5.2.5, the null solution of the equation is uniformly
asymptotically stable if and only if

lim elseMdr — g
t—s—+o0

It is evident that the mentioned inequality implies the relation above and therefore
the uniform asymptotic stability of the null solution. Conversely, let us assume
that the null solution is uniformly asymptotically stable. Then, there exists u > 0,
and for every ¢ > 0, there exists T, > 0, such that, for every to > 0, every
t > to + 1. and every £ € R with |¢] < u, we have

|§|eftt0 ss)ds o o

Let us fix g € (0,1), let us take £ = pu, € = gu and let us denote by T = T,,. The
preceding inequality rewrites, in this particular case, in the equivalent form

/t a(s)ds < Ingq (%)

0

for every to > 0 and every t > to +T. On the other hand, the null solution is
uniformly stable, being uniformly asymptotically stable. According to (2), there
exists K > 0 such that
t
/ a(s)ds < K (% * *)
to

for every to > 0 and every t > to. Let t > to. Let us observe that there exists
m € N such that t € [to + mT,to + (m + 1)T). We have

/tt a(s)ds = "‘Z‘l /t0+(p+1)T a(s)ds + /tt a(s) ds.

0 p=0 Yto+pT o+mT

Let us remark that, by virtue of the inequality (%), each of the first m terms in
the sum above does not exceed In g, while the last term is bounded from above
by K (see (* * x)). We deduce that

¢
/ a(s)ds < K +mIng.
to
Since t — to < mT, it follows that m > %(t — to), and by consequence
t Ing
a(s)ds < K + == (t - to),
to T

for every t,to € R with ¢ > tp. Hence, the mentioned inequality holds true for
K>0and o = —liTq determined as above,
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Exercise 5.1 (1) The unique saturated solution z(-,a,£) of equation (1), satis-
fying the initial condition z(a,a,£) = £, is z(-,a,€) : [a,+o0) — R, defined by
z(t,a,€) = €' for t > a. So, limy14oo [T(2,€)] = +00 for every € € R*, and by
consequence, the null solution is unstable.

(2) The unique saturated solution, z(-,a,£), of equation (2), which satisfies
the condition z(a,a,§) = &, is z(,a,€) : [a,+o0) — R, defined by z(t,a,£) = ¢
for t > a. Then, for every € > 0 and every a > 0 there exists §(¢,a) = £ > 0 such
that, for every £ € R with |¢] < (e, a) we have |z(t,a,£)| < € for every t > a.
Hence, the null solution is uniformly stable.

(3) The unique saturated solution z(:, a, §) of equation (3) which satisfies the
condition z{a,a,£) = £ is z(-,0,£) : [a,+00) = R, z(t,a,€&) = £e~¢® for t > a.
So, limit 400 [2(2, €)| = O for every ¢ € R* and, by consequence, the null solution
of equation {3} is globally and uniformly asymptotically stable.

(4) The function f : R — R, defined by f(z) = ~2zx 4 sinz, is of class C! and
satisfies f(0) = 0 and f(0) = —1. We are in the hypotheses of Theorem 5.3.3,
and consequently the null solution of equation (4) is asymptotically stable.

(6) Let a > 0 and £ € R. The unique saturated solution z : I, — R of
equation (5), which satisfies z(a,a,£) = £, is defined by

£
1—¢(t—a)

for every t € Io ¢, where I, ¢ = [a,+00) if £ < 0 and L, ¢ = [a,a + —51-) if £ > 0.
Since z(-,a,£) is not global for £ > 0, the null solution is not stable. We notice,
however, that the continuity property (ii) required by Definition 5.1.5 is satisfied
in this case “from the left” of £ = 0. Indeed, this follows from the inequality

€]
lz(t,a,&)| < m

m(t)a')é) =

<l

for every £ < 0 and every t > a.
(6) The unique saturated solution z : I, ¢ — R of equation (6), which satisfies
z(a,a,&) = &, is defined by

£
a(ta,8) = 1+&(t—a)

for every ¢ € I¢, where In¢ = [a,a— 2) if € <0 and [ ¢ = [a,a + 00) if € > 0.
Since z(-, a,£) is not global for ¢ < 0, the null solution is not stable. Again, the
continuity property (ii) required by Definition 5.1.5 is satisfied in this case “from
the left” of £ = 0.

(7) The function f : (—%,%) — R defined by f(z) = —tan z is of class C*,
f(0) = 0 and f,(0) = —1. We are in the hypotheses Theorem 5.3.3 and therefore
the null solution of equation (7) is asymptotically stable.

(8) The function f : R — R, defined by f(z) = —sinz, is of class C*, f(0) =0
and f,(0) = —1. We are, also, in the hypotheses Theorem 5.3.3 and therefore the
null solution of equation (7) is asymptotically stable.
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(9) The same arguments used in the last two exercises lead to the conclusion
that the null solution of equation {9) is asymptotically stable.

Exercise 5.2 (1) The roots of the characteristic equation det(A — AJ) = 0 are
A12 = —1£+/2. Since —14++/2 > 0, the system (1) is unstable. See Theorem 5.2.7.

(2) The roots of the characteristic equation det(A — AJ) = 0 are Ay, = .
Since both these roots have the real part 0 and are simple, the system (2) is
uniformly stable. See Theorem 5.2.7.

(3) The roots of the characteristic equation det(A—AJ) = 0 are A\; 2 = —1%14.
Hence the matrix A is hurwitzian and therefore the system (3) is uniformly and
globally asymptotically stable. See Theorem 5.2.6.

(4) Since the roots of the characteristic equation det(A — AJ) =0 are A\; 2> =
1(1£+/13), and (1 ++/13) > 0, the system (4) is unstable. See Theorem 5.2.7.

(5) The matrix A is hurwitzian and, by consequence, the system (5) is uni-
formly and globally asymptotically stable. See Theorem 5.2.6.

(6) The roots of the characteristic equation det(A — AJ) = 0 are Ay = —4
and Az = 0. Since A2 = 0 is simple, the system (6) is uniformly stable. See
Theorem 5.2.7.

(7) We may use Theorem 5.2.7, but we may also conclude directly, by observ-
ing that every global solution of the system (7), having equal components, is of
the form z(t) = c(e', €', e*) for every t € R, where ¢ € R. From this observation,
it follows that the system is unstable.

(8) Let us observe that every global solution of the system (8) having equal
components, is of the form xz(t) = c(e*, e**, e®) for every ¢t € R, where c € R. It
follows that the system is unstable.

(9) The roots of the characteristic equation det(A — AJ) = 0 are A; = 0 and
A2,z = +4+/3. Since all these roots have the real part 0 and are simple, the system
{9) is uniformly stable. See Theorem 5.2.6.

Problem 5.2 Using the variation of constants method — see Theorem 4.5.7 —
we deduce that the general solution of the equation considered is

z(t, &1, &2) = &1 coswt + Ezsinwt + 1 /t F(s)sinw(t — s) ds,
w Jo

where &;,£2 € R. Then we have

el <lel+iel+ 5 [ Lields

for every t € R+.

Problem 5.3 We begin by noticing that, in the case of the second-order equation,
the uniform stability of the null solution is equivalent to the uniform stability of
the null solution of the first-order system

z'(t) = y(t)
{y’(t) = —[w? + f(t))x(t). (8)
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Also, the equation being linear, every saturated solution is global. So, its unique
saturated solution, z(-,a,£1,&2), with z(a,a,£1,&2) = &1, 2'(a,a,£1,8) = &, is
defined on [a,+00). By the variation of constants method (see Theorem 4.5.7),
we deduce that

z(t,a,€1,&) =& cosw(t—a)—lri—z s‘mw(t—a)—&-% /t f(s)x(s,a,é1,&) sinw(t—s)ds

for every t > a. It follows that

[€2]

ot 0,60, 6)1 < foal + 2+ 5 [ @lIn(s, 0,1, 62) s

and

t
[z’ (t, a, €1, &2)| < wlér] + |2 +/ [F(s)llz(s,a, &1, €2) ds

for every t > a. From Gronwall’s Lemma 1.5.2, we get

ott 0,661 < (Jel + 2 ) exp (2 t e de)

w
and

12/ (1,63, £2)] < (w]€s] + |€2]) exp ( / e ds)

for every £1,€2 € R and every ¢t > a. Since f is absolutely integrable over R,
there exists m > 0 such that

[1ends<m

for every a,t € Ry, t > a. From the last three inequalities, recalling that z’ =y,
we deduce

z2(t,a,61,&2) + y7(t,a,€1,62) < M (& + &)

for every &1,€2 € R and every a,t € Ry, t > a, where M > 0 depends only on m
and on w, but not on a,t,&;,€2. This inequality shows that the null solution of
the system (8) is uniformly stable.

Problem 5.4 Since A is hurwitzian, according to Lemma 5.2.1, it follows that
there exist M > 0 and w > 0 such that ||e"*||5c € Me™"" for every ¢ > 0. Let
us fix a number L > 0 with the property ML — w < 0. Using the fact that
t_l}r+noo IB(t}» = 0, we conclude that there exists ¢ > 0 such that ||B(t)|jm < L

for every t > ¢, where L > 0 is fixed as above. So, ||B(t)z|| < Ljjz|| for every t > ¢
and every z € R™. The conclusion follows from a simple variant of Theorem 5.3.1
which instead of the hypothesis |F'(¢, z)|| < L||z|| for every (¢,z) € Ry x §, uses
the hypothesis ||F(¢, z)|| < Ll|z| for every ¢t > ¢ and every z € £, where ¢ > 0.
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Problem 5.5 From the variation of constants formula — see Remark 4.3.3 —
we have that the unique global solution z(:,£) : Ry — R™ of the system, which
satisfles (0, &) = ¢, also satisfies

x(t, £) = e + /t e“'aMB(s):z:(s,g) ds
0

for every t € R;. Since A is hurwitzian, according to Lemma 5.2.1, there exist
M > 0 and w > 0 such that ||e** ||y < Me™* for every t € Ry. Then, we have

lz(t, ) < Me™|ig]| + Me™* /Ot e B(s)lIncllz(s, §)ll ds

for every t € Ry. Multiplying both sides of this inequality by e“*, and denoting
by y(t) = |lz(t)]le*?, we deduce

v(o) < Ml + v [ " IB() acu(s) ds

for every t € R4+. From Gronwall’s Lemma 1.5.2, it follows that

v(0) < Milex (1 [ t 1B

for every ¢t € Ry. Since

+o0
/ 1B(s) | eds = m < oo,
0

from the preceding inequality, we deduce that y(t) < k||&|| for every ¢ € R, where
k = Me™™. Multiplying both sides of this inequality with e™*¢, and recalling
the definition of y(t), we get the conclusion.

Problem 5.6 The change of variable s = tm:; leads to a system of the type
considered in Problem 5.4 excepting that, in this case, the interval of definition
of the function B is (0,400) and not [0, +00). Indeed, putting z(t) = y(s), we

have

T0) = L8 (1) = B 5)(m 4 1)s] 7,

and the initial system is equivalent to
dy
2 (s) = [A4+B(s)lyls),

A= Ao, B(s) = [(m+1)s|” F A, +[(m+1)s]" FIT Azt 4 [(m+1)s]” AT A
From the hypothesis, we know that A is hurwitzian. Also, we may easily see that
li? [IB(s)llac = 0. From this point, following the same way as that one used

for solving Problem 5.4, one shows that for every a > 0 there exists 6(a) > 0
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such that , lir_'{xoo y(s,a,€) = 0 for every £ € B(0,5(a)). We conclude the proof by

recalling the relationship between y(s) and z(%).

Problem 5.7 Since £1 < &3, from Problem 2.9, we deduce that z(t, £1) < x(t, &)
for every t > 0 and also that, for every a > 0 and every ¢ € (z(a,&1),z(a, &)),
the unique saturated solution z(-,a, ) of the equation considered, which satis-
fles x(a,a,£) = &, also satisfies x(t,a,£) € (z(¢,£1),z(t, €2)) for every ¢ in the
interval of definition. Assuming that this solution is not global, it follows that
it is bounded on the interval of existence [a,Tm). In view of Corollary 2.4.3, it
follows that it is continuable. This contradiction can be eliminated only if z(-, ¢)
is global. From the condition in the statement and the preceding inequality, it
follows that, for every a > 0 and every € > 0, there exists d(g,a) > 0 such
that for every a > a., every t > ae and every n € (z(a,£1),z(a,&2)) we have
lz(t,a,n) — 2¥| £ e. We distinguish between two cases: a > a. and a < a.. If
a > ae, taking d(e¢,a) = min{z(a,€) — z(a,é1),z(a,&2) — z(a,€)}, we get that
[z(t,a,n) — z(¢,€)| < ¢ for every t > a, which is nothing else but the condition
of stability. If a < a., then, from Theorem 2.5.2, it follows that there exists
8(e,a) > 0 such that, for every n € R with |z(a,£) — | < (¢, a), we have
|z(t,a,&) — z(t,a,n)| < € for every t € [a,ac]. Let us observe that, from the
definition of both a. and 8(¢,a), we have |z(t,a,n) — z(t,£)| < e for every n € R
with |z(a,€) — 7| < 8(e,a) and every t > a. Consequently, the solution z(:,¢)
is stable. Finally, as t—ljr-gloc z(t,a,m) = z* for every € (z(a,&1),z(a,&2)), we

deduce that z(-,£) is asymptotically stable.
Problem 5.9 From the Lagrange formula, we have f(z) = Az + g(z), where

iy 5 = R

Multiplying the equation by z, we get 24 (z%) = Az + g(z)z = 0. From (x),
it follows that there exists » > 0 such that Az + g(z) > 0 for every x € R with
|z| < r. Accordingly, every solution, which “enters or is” in the interval [ —r,7],
tends to leave this interval. From here, it follows that the null solution of the
equation cannot be asymptotically stable.

Exercise 5.3 (1) The function on the right-hand side of the system f : R* — R?
is defined by f(z) = (fi(2), f2(2)) = (—a1+ a3, —23 — 222) for z = (z1,22) € R%.
We can easily see that the matrix

ro=a=(7 %)

has both characteristic roots real and strictly negative. By Theorem 5.3.3, the
null solution is asymptotically stable.
(2) With the notations in the preceding exercise, we have

ro=a=(55)
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Since the matrix above has one strictly positive characteristic root, by virtute of
Theorem 5.3.4, the null solution is unstable.

(3) The matrix
o =a= (74 3)

has both characteristic roots real and strictly negative. In view of Theorem 5.3.3,
the null solution is asymptotically stable.

(4) We have
fo(0) = A= (g _01)

Since this matrix has a strictly positive characteristic root, by Theorem 5.3.4, it
follows that the null solution is unstable.

(5) The matrix
rO=a=(7 %)

has both characteristic roots strictly negative. According to Theorem 5.3.3, the
null solution is asymptotically stable.

(6) The matrix
D 2

has one null characteristic root. In this case, none of the theorems proved in
Section 5.3 can help with respect to stability.

Exercise 5.4 We begin with the remark that, for all systems considered in this
exercise, we will look for Lyapunov functions which are independent of ¢, and this
because all these systems are autonomous.

(1) The system is of the form =’ = f(x), where the function on the right-hand
side, f : R* — R?, is defined by f(z) = (f1(z), f2(z)) = (=23 + 22, —x1 — 223) for
every ¢ = (z1,22) € R?. One observes that V : R* — R, defined by V(z) = 1||z||*
for every = € R?, is of class C', V(z) = 0 if and only if z = 0 and satisfies

fl(x)gz—vl(x) + fz(x)—gm—vz(x) — gt i<

for every € R®. Accordingly, V is a Lyapunov function for the system. From
Theorem 5.4.1, it follows that the null solution is stable. Let us remark that
the function V also has the extra-properties required by Theorem 5.4.2. More
precisely, V satisfies V() < A(||zll) = 1||z|* and

£:@) (@) + fala) G- (@) = —ot = 208 < =2 el* = ~n ()

for every z € R?. Obviously the functions X, 7 : Ry — Ry, defined by A(r )= 27"2
and n(r) = ir* are continuous, nondecreasing and satisfy A(r) = 5(s) = 0 if
and only if r = s = 0. According to Theorem 5.4.2, it follows that the null

solution is asymptotically stable. Moreover, because for every = € R?, we have
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V(z) = 3llz||* = w(||z]l) and lirf w(r) = 400, in Theorem 5.4.3, we conclude

that the system considered is globally asymptotically stable.

(2) In the case of this system the function on the right-hand side, f : R? — R?,
is f(z) = (fi(z), fo(z)) = (—a} — 3x2,371 — 423) for every z = (z1,22) € R,
We remark that V : R — R, defined by V(z) = 1||z||? for every z € R?, is a
Lyapunov function. Indeed, V is of class ', V(z) = 0 if and only if £ = 0 and
satisfies

ov av
fi(@) 5 (@) + fa(z) 5 () = —af - 425 <0

for every & € R?. Let us observe that the restriction of this function to the set
Qo = {(z1,22); |z1]| < 1, |z2| < 1} (which obviously is an open neighborhood of
the origin), satisfies all the hypotheses of Theorem 5.4.3. This follows from the
remark that, on this set, we have %(zf +z§)4 < 28+ 28 < 28 + 423, which implies

11@) e (2) + Fa(0) g 2) < — 3ol

1

for every 2 € R%. In order to complete the proof we only have to observe that the
functions A, n : R — Ry, defined by A(r) = %rz and 7(r) = %7‘8 are continuous,
nondecreasing and satisfy A(r) = n(s) = 0 if and only if r = s = 0. According to
Theorem 5.4.2, it follows that the null solution is asymptotically stable.

(3) The function f : R* — R? on the right-hand side of the system considered
is defined by f(z) = (fi(z), f2(z)) = (—z1+5z3, ~z} —3z2) for z = (71, z2) € R%.
We observe that V : R? — R, defined by V(z) = 1(z1 + 523) for every = € R?, is
a Lyapunov function. Indeed, V is of class C*, V(x) = 0 if and only if z = 0 and
satisfles

(@) Sa) + fal) (@) = —at — 160 < 0

for every x € R2. Let us observe that V satisfies all the hypotheses of both
Theorems 5.4.2 and 5.4.3. Indeed, V is bounded from below by the function
w: Ry — Ry, defined by w(r) = %7“4 for every » € R4, and which satisfies the
condition TETOOW(T) = -+oo. Finally, let us observe that a possible choice of

the functions A,7n : Ry — Ry in Theorem 5.4.2 is A(r) = %r“ and n(r) = 374
According to Theorem 5.4.2, it follows that the null solution of the system is
asymptotically stable, while from Theorem 5.4.3, we deduce that the system is
globally asymptotically stable.

(4) Let us observe that the unique global solution of the system considered
z(-,0,(£,0)), which satisfies z(0,0, (£,0)) = (£,0), is 2(t,0,(£,0)) = &(e*,0) for
every t € Ry. So, the null solution of the system is unstable.

(5) The function f : R*> — R? on the right-hand side of the system considered
is defined by f(z) = (f1(2), f2(z)) = (—sinz; + z9, ~42z; — 3 tan z,) for every
z = (z1,22) € Rx (—%,%). One observes that V : R? — R, V(z) = 2a1 + j3 for
every z € R? is a Lyapunov function for the system on 00 = (—%,%) % (=5, %)-
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Indeed, V is of class C*, V(z) = 0 if and only if = 0 and satisfies
f1 (a:) (x) + fz(m)—(z) —z18inz; — 3z2 tan z2 <0

forevery z € (—%,%) x(—%,3). According to Theorem 5.4.1, the null solution is
stable. Observing that ona sufﬁmently small neighborhood of the origin, (—46,4),
we have ysiny > L and y tan y > %, we deduce that the system satisfies the
hypotheses Theorem 5.4.2 too, with /\(r) = 2r® and n(r) = r? for every r € Ry.
Hence the null solution is asymptotically stable.

(6) The function f : R?2 — R? on the right-hand side of the system considered
is defined by f(z) = (fi(z), f2(z)) = (—2shx; + 4z3, —23 — 225). One observes
that V : R? — R, defined by V(z) = zi 4 423 for every z € R?, is a Lyapunov
function for the system on R?. On Q = {z € R? |z|| < 1}, V satisfies the
hypotheses of Theorem 5.4.2. Hence the null solution is asymptotically stable.

Chapter 6

Exercise 6.1 (1) Adding side by side the three equations, we get z} +z5+ 25 = 0.
Hence every solution of the system satisfies 21 + z2 + 23 = ¢1. So, one prime
integral is the function Uy : R® — R, defined by Ui(z1,x2,23) = 21 + o2 + za.
Multiplying the equation of rank ¢ with x;, 1 = 1,2, 3, and adding the equalities
thus obtained, we deduce z1x} +z2xh+z32s = 0. Hence the function Uz : R® - R
defined by Uz (1,22, 23) = 22 + 2% + z2 is also a prime integral. Since

—a—qi- (x1,22,23) = 111
6.’]’}] a3 1,22,L3) = le 2$2 2:1:3 y

it follows that Uy, U, are independent about any non-stationary point. Indeed,
let us observe that (x1, z2,z3) is non-stationary if and only if 1 # 2, or z; # x3,
or £z # s, situations in which the rank of the matrix above is 2.

(2) From the system, we deduce 7 — z5 -+ 3 = 0 and #17] — z2xh = 0. So,
the functions U; : R® — R, ¢ = 1,2, defined by Ui (z1,22,23) = 21 — 2 + 3,
and Us(z1,z2,23) = x2 — 22 respectively, are prime integrals for the system. The
only stationary points of the system are of the form (0,0, z3). Since the rank of

the matrix
B—Ui (z1,x2,23) = 1o-1
0z ), 0T T\ 230 222 0

is 2 at every point (z1,xz2,z3) with T1 # x2 or T1 = 22 # 0, it follows that the
two prime integrals are independent at any non-stationary point.

(3) From the first two equations, we deduce ziz] + z2z5 = 0, while from
the first and the last equation, we obtain zi/z1 = z%/z3. Then, two prime
integrals are Uy (z1,x2,73) = z7 + z2 and Ua(z1,22,23) = x3/z1 defined on the
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set Q = {(z1,x2,73) € R®; 1 # 0}. We have

2:51 2322 0
8U1~)
(11,332,373 =
(8$i 2%3 ) __% 1
Ty T

Obviously, the rank of this matrix is 2 at every non-stationary point and therefore
the two prime integrals are independent on Q.

(4) Subtracting the first two equations, we deduce z) ~z% = (z1 —z2)(z3 — 1)
equality, which along with the third equation, leads to

x] — 4 T4

1 — T3 T3+ 1"
Hence, the function Ui, defined on Q1 = {(x1,®2,23); z3 # —1} by

o

z3+1"’

Ur(z1,z2,23) =

is a prime integral for the system. Adding the first two equations and re-
peating the manipulations above, we deduce that the function U», defined on
Qo = {(z1,22,23); 23 # 1} by

T1 + T2
1‘3—1’

Uz(x1,z2,23) =

is also a prime integral for the system. A point (z1,z2,3) is stationary for the
system if and only if 1 = ~z2 and z3 = 1, or z; = 29 and z3 = —1. One may
easily state that the rank of the matrix

1 1 1 — To
8U2 3+ 1 z3 +1 (32‘3 ~+ 1)2
<al’) (Ccl,$2,x3) = 1 1
i/ 2x3 1+ Z2
rzz3—1 x3—1 z3—1

is 2 at all non-stationary points.

(5) All solutions satisly ziz2 — 2125 = 0 and zizs + z124 + x5 = 0. Two
prime integrals, on R®, are Ui(z1,x2,23) = 21/22 and Ua(21, T2, 23) = 122+ 23.
The stationary points of the system are of the form (0,0, z3). So, the rank of the

matrix

1
Ty

, o 2
(%> (wlswzywii) =" ™
0z / 403

o xp 1

is 2 at every non-stationary point of the system.
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(6) From the first two equations, we deduce z}z2+ 175 = 0 which shows that
the function Ui : R® — R, defined by Ui(x1, z2,x3) = T122, is a prime integral
for the system. Since “along the solutions” of the system we have 122 = ¢, from
the first and from the last equation, it follows that —z1(1 + x%)x} = cx}. So, we
have cz3 +z3/2+ z1/4 = c2. Then, “along the solutions” of the system, we have
12223 + 23/2 + £3/4 = ¢co. Another prime integral is Uz : R* — R, defined by
Uaz(T2,T2,T3) = 13273 + 23 /2 + 1 /4. The stationary points of the system are
of the form (0,0, x3), while the rank of the matrix

T2 T 0
aU; !
(mlumzyma) -
Oz; /, 3 3
X T2Z3 + T1 + T] T1T3 T1Z2

is 2 at every non-stationary point of the system for which z; # 0.

(7) From the first two equations, we deduce =i s — 125 = 0. So, the function
Ui(z1,22,%3) = 21/2, whose domain is Q1 = {(z1,22,23); R®, 22 # 0}, is a
prime integral for the system. Let us observe that z}/z1+ z5/T2 = z5/%3, which
shows that the function Ua(z1,x2,23) = (z1z2)/z3, whose domain is given by
Qs = {(z1,22,73); R?, z3 # 0}, is also a prime integral for the system. The
stationary points of the system are of the form (x1,0,0) or (0,72,0). At every
non-stationary point of the system for which z1z223 # 0, the rank of the matrix

1 =y
aU; T2 T3
a ($1,$2,m3) =
T/ 2ax3 T2 I —2
22 —mymams
r3 X3
2 T A 12 + T22h + T3Th zh
8) We have both 2= =0 and = ——. From
(8) We have bo 2—z1+ T3 " z2 + 22 + x} 213

these relations, it follows that Ui, Uz : {(#1,Z2,23) € R*; x3 # 0} — R, defined
by Ur{z1, 2, 23) = (2—x1)/x3, and Uz (1,22, x3) = (22 + 2% + %) /x5, are prime
integrals for the system. The stationary points of the system are all the points of
the circle of equations z2 = 0 and (z1 — 2)% + 2§ = 4. The rank of the matrix

1 4—2:1}1
= 0 - 3
AU 73 T3
(6 ) (33115132,373):
i/ s 2w 2z ai+ad - of

T3 T3 zi

is 2 at all non-stationary points, except for (2,0,2) and (2,0, ~2).

Problem 6.1 Let us observe that the function U is a prime integral for the system
if and only if the function V' : (0, +00) x (0, +00) — R, defined by V = In(U) has
the same property. Let us also observe that V is nonconstant, of class C*, and
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satisfies oV ov
8—m(w’y)(a — ky)z + @(ﬂ%y)(—l)(b — hz)y

_ (h_g) (= k)= (k=2) 6 he)y =0,

According to Theorem 6.1.1, it follows that V, or equivalently U, is a prime
integral.

Problem 6.2 One observes that U, Uz : R® — R, Ui(z1,72,23) = 1 + T2 + 3
and Us(z1, %2, 23) = 23 +x}+22 for every (z1,z2,73) € R?, are prime integrals for
the system. So, every trajectory of the system is included in the intersection of the
plane of equation z1 + r2 + 23 = ¢; and the sphere of equation O L
intersection which is a circle. We complete the proof by observing that every
saturated solution is global.

Problem 6.3 Let us observe that the graph of the prime integral V, defined in
the solution of Problem 6.1, is a “paraboloid-like” surface whose vertex has the
coordinates (b/h,a/k,U(b/h,a/k)). So, the intersection of this graph with every
plane, parallel with the zOy-plane, is a simple closed curve. See Figure 9.1.6.

%

Figure 9.1.6

Since the trajectory of any solution of the system is the projection of such a curve
on the zOy-plane, this, in its turn, is a simple closed curve.

Problem 6.4 Dividing the first equation by z, we deduce “?, = a—ky. Integrating
this equality on [¢,t+ 7'] and taking into account that x is periodic of period T',
we deduce

t+T
aT — k/ y(s)ds =0,
t

or equivalently y.m = a/k. Analogously, we obtain zm = b/h.
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Problem 6.5 Let us remark that, if U is a prime integral of the system which has
a strict local minimum at £, then V(z) = U(z) — U(£) is also a prime integral.
By a simple translation argument, we may assume without any loss of generality,
that £ = 0. Obviously, V is positive defined (see Lemma 5.4.1), V(0) = 0, and
satisfies

Zfi(z ——(x =0

So, V is a Lyapunov function for the system. We are then in the hypotheses of
Theorem 5.4.1 from where we get the conclusion.
Problem 6.6 The conclusion follows from Problem 6.5, by observing that the
prime integral, defined in the solution of Problem 6.1 by V(z,y) = In(U(x,¥)),
has local strict minimum at (b/h,a/k).
Problem 6.7 If the autonomous system z’' = f(z) admits an injective prime
integral, it follows that all the solutions of the system are constants. Hence, the
system is of the form z' = 0. Let us assume by contradiction that there exists
a non-autonomous system z’ = f(t,z) which admits an injective prime integral
U. As in the autonomous case, it follows that the graph of each solution reduces
t0 one point which is absurd as long as there exist solutions defined on intervals
containing at least two points. So, under minimal continuity assumptions on f,
the non-autonomous system =’ = f(t,z) cannot admit injective prime integrals.
Problem 6.8 Let z : [a,Tn) — R™ be a solution of the system and let us assume
that T, < +o00. Since U(z(+)) is constant on [a, Trm), while U is coercive, it follows
that z is bounded on {a,T.). According to Corollary 2.4.3, it follows that z is
not saturated. Hence every saturated solution is global. If ' nlini U(z) = —o0
x{— 100

then —U is a coercive prime integral for the system. Hence, the result still holds
true even in this case.
Problem 6.9 It follows that

Z[ gf(p,q)ap (P,q)+ B (p,q) ( )] -0

=1

According to Theorem 6.1.1, H is a prime integral for the system.

Problem 6.10 We observe that, a function of class C!, U : Qs C Q — R, satisfies
the condition (6.1.2) in Theorem 6.1.1 with respect to the function f if and only
if it satisfies the same condition with respect to the function Af.

Problem 6.11 Let us assume by contradiction that there exists a prime integral
for the system, U : R? — R. Since its general solution is z1(t) = e, x2(t) = ne'
for t € R, we have that U(£e%,net) = U(€,n) for every (§,1) € R® and every
t € R. Letting t to approach —oo, we conclude that U(¢,n) = U(0,0) for every
(¢,m) € R?, i.e. U is a constant function. This contradiction can be eliminated
only if there is no prime integral of the system considered, defined on the whole
R2. On the other hand, the function U : {(z1,z2) € R?; 1 > 0} — R, defined
by U(z1,x2) = z2/z1, is a prime integral for the system.

Problem 6.12 The first part of the problem follows from the fact that the function
U :R™ — R, defined by U(z) = ||z||%, is a prime integral for the system. Hence,
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the trajectory of any solution lies on a sphere centered at the origin and with
radius depending on the solution. In addition, if I = [0,+-00), as every saturated
solution of the system is bounded, according to Theorem 5.2.2, it follows that the
system is stable.

Exercise 6.2 (1) The characteristic system in the symmetric form is

dil:l _ d:nz . d:!:3
2 i) 2z 2 7"
I3 — %3 T3—Ty T] I

We have dz1+dzs+dzs = 0 and z3dz1 +13dzs +x3dzs = 0. Hence, the functions
U, Uz : R® — R, defined by Ui(z1,22,73) = 1 + x2 + =3 and respectively by
Us(x1,%2,%3) = 23 + 25 + 23, are prime integrals for this system. The stationary
points of the system are of the form (z1,x2,23) with 1 = *2; = *z3. One
may easily see that the prime integrals above are independent about any non-
stationary point. Therefore, the general solution of the equation is defined by
2(x1, T2, 23) = F(z1 + 22 + 23,23 + 23 + 23), where F : R*> — R is a function of
class C'.
(2) The characteristic system is

dzy _ dzy _ das
—zie®2 1 zgez’

and so, zsdz1 +2z1dzs = 0 and :z:l'ldm +e®2dzy; = 0. We have the prime integrals
Us(z1,22,23) = 2123 and Uz(z1,22,23) = z1e% °, defined on R®. The system
has no stationary points, and the two prime integrals are independent at every
point. The general solution of the equation is z(z1,z2,%3) = F(zizs,z1e% "),
where F : R> — R varies in the set of functions of class C”.

(3) The characteristic system is

dz, _ dz2 _ dzs
zi{zz —x3)  ma(zz —x1) z3(z1 —z2)

We have J . N
dz1 +dzs +dps =0 and b 4 222, 28
1 T2 x3

=0.

Consequently, U1 (1,22, %3) = 21 + 22 + x3 and Ua(z1, 22, 3) = 712223, defined
on R3, are prime integrals for the system. A point (z1,%2,z3) is stationary for
the system if and only f &1 = %2 =zzorzi = z; =0fori,j =1,2,3,1# j. The
two prime integrals are independent at any non-stationary point and therefore
the general solution is z(z1,%2,z3) = F(z1 + x2 + x3, T12223), where F ranges
over the set of all real functions, of class C?, defined on R?.

(4) The equation is quasi-linear. So, we are looking for the solution as a
function zz implicitly defined by a relation of the form ¢(z1,z2,z3(z1,22)) =,
where the function ¢ is the solution of the first-order linear partial differential
equation

d¢ i, _
(z1 — xa)é?c—l- + (z2 — 11:‘3)-—1; + 21‘3—:;3‘ =



Solutions — Chapter 6 381

The characteristic system is

dz1 dzo dzs

1 — T3 T2 — 23 2x3

1l

We have
dzy + dzo dzs dzs z2 1
= = — and === — <.
1+ T2 223 d.’rs 23 2
2
Thus, the functions Ui(z1,x2,23) = 1+ 22 and Ua(z1,z2,23) = (wzmﬂ-,
3

defined on the set {(z1,22,23) € R?; z3 # 0}, are prime integrals for the characte-
ristic system. The only stationary point of the system is the origin. One observes
that the prime integrals above are independent at any non-stationary point for
which z3 # 0 and z2 # —z3. The general solution is implicitly defined by a

2
relation of the form F (ml +z2 (T2 +73)

s = ¢, where F ranges over the set
2$3 X3

of all real functions of class C?, defined on R?, and ¢ € R.

(5) The equation is quasi-linear. So, we are looking for the solution as a
function z3, implicitly defined by a relation of the form ¢(z1,z2, z3(z1,z2)) = ¢,
where the function ¢ satisfies the first~order linear partial differential equation

99 d¢ 9¢ _
%35 "%, + (o2 - “'“)azg =0
The characteristic system is
dz,y _ dr; _ daxs
T3 —T3 Tz —T1

The solutions of the system satisfy 2, — z2 = c¢1 and «f — 2% + 2% = 2, and
therefore the functions Uy, Uy : R? — R, defined by Ui (21,22, 23) = 71 — 22 and
Us(x1, 22, 23) = 27 — 22 + 23, are prime integrals for the characteristic system.
The stationary points of the system are of the form (a, a,0), while the two prime
integrals are independent at every non-stationary point except for the origin.
Hence the general solution of the initial equation is implicitly defined by a relation
of the form F(z; — x2,2% — 22 + 2}) = ¢, where F : R? — R ranges over the set
of all real functions of class C* and ¢ € R.

(6) We look for the solution as a function, implicitly defined by
¢(z1,22,z3(21,22)) = ¢, where ¢ is the solution of the first-order linear partial
differential equation

0B (me22) 2
X1 awz

X3 8.’133

The characteristic system attached is

dz, fdﬂ _ xadzs

1 T2 .’11%-{—(1:122
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Along the solutions of the system we have %1— = ¢1. Therefore, a prime integral

2
of the characteristic system is Uy : {(z1,22,23) € R3; 23 # 0} — R, defined by
T1
Ui(z1,z2,23) = — We also have
2

d(miza) _ _ d(z3)

T1T2 .’L'g +zz2
Denoting by
T1Za =u
z% =,
the equation above rewrites in the form % = £ 4 1. From this equation, we

deduce % —Inju| = ca. So, Uz : {(z1,22,23) € R, 2122 # 0} — R, defined

2
by Uz(z1,z2,2z3) = ;m—;— —In|ziz2| is a second prime integral. The system has

no stationary points, and the two prime integrals are independent at every point
(z1,x2,z3) for which ziz223 # 0. The general solution of the initial equation is
2
implicitly defined by a relation of the form F ( -;2, a:xi —In |$1xz|) = ¢, where
2 142

F :R? > R ranges over the set of all functions of class C*, while ¢ € R.

(7) The general solution is implicitly defined by F(x? — 2,223 — 23) = ¢,
where F : R? — R ranges over the set of all functions of class C*, and ¢ € R.

(8) We look for the solution z, defined by ¢(z1, 2, x3, 2(z1, z2, 23)) = ¢, where

¢ is the solution of the first-order linear partial differential equation

8¢ 0 B¢ 8¢
1 - - = A A Z =0
1+ vz —az) — a2z aawa)aml + Bzs + B, + (a1 + az +a3)az 0
The attached characteristic system is
dny _drz _dos _ dz
1+\/z—a1m1—a2:v2—a39:3 1 1 a1 +az+az’

From the equality of the last three ratios, we deduce that U;,U> : R* — R,
zZ

defined by Ui(z1,z2,%4,2) = z2 — 23 and Ua(x1,22,23,2) = 23 — ——————,
a1+ a2 +as
are prime integrals for the system. From the derived proportion

dza  airdzy + azdxz + asdzs — dz

1 al\/z—alxl—aza:g——ag:z:g ’

we deduce that Us : {(z1,%2,23,2) € R*; z > aiz1 + 6222 + a3x3} — R, defined
by Us(z1, 22,23, 2) = a122 + 2¢/z — a171 — a2%2 — asTs, is also a prime integral.
The system has no stationary points. The three prime integrals are independent
at all points in the common part of the domains of definition. The general solution
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of the initial equation is implicitly defined by

z
a1 +az+as

F (mz — 3,23 — ,a1T2 4+ \/z — a1T1 — G2T2 — azma) =,

where F : R® — R ranges over the set of all functions of class C!, and ¢ € R. The
equation also admits the “special” solution z = aiz; + azx2 + azrs, eliminated
during the determination of the prime integral Us.
Exercise 6.3 (1) The prime integral of the characteristic system is ?+yP=c
So, the general solution is z = w(wz +y?%), and the solution of the Cauchy problem
is z = cos /22 + 3.

(2) The characteristic system is

dx dy dz

T z 0

Two independent prime integrals are

ZzZ=C
ln]ac]—}—g = .
z

Substituting z = s, y = s° and z = s® in the system above and eliminating s, we
get %ln fe| + c{l/ % = ¢,. Finally, substituting ¢; and ¢, from the system, we get
the implicit equation of the solution {In|z| +27%/% = In|z| + ¥.

(3) The characteristic system is

and so, two independent prime integrals are
Ty =1
1‘22 = CZ.

The general solution of the equation is u = p(zy, z2?). From the initial condition,
we deduce ¢(y, z%) = sin(y + z), and consequently, the solution of the Cauchy
problem is u(z,y, z) = sin(zy + z/T).

(4) The characteristic system is

dx dy dz
z y+z2 oz’

Two independent prime integrals are

= 1

w8y

B |w
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Hence, the general solution of the equation is given implicitly by F (%, y—z_z:) =g,

with F of class C'. By the implicit function theorem, we get z = z f (y—_;i)
From the initial condition we deduce that 2f (¥45%) = (y — 4)®. Consequently,

f(s) = 4% and 2(z,y) = 4Mﬁ

Problem 6.13 We consider for the beginning the attached homogeneous problem

o T "
0,2) = ¢(z)
whose characteristic system is
i _do
1 o

A prime integral for this system is U(t,z) = z — at for every (t,z) € R x R.
The general solution of the homogeneous equation is then z2(t,z) = F(z — at),
where F : R — R is of class C!. From the Cauchy condition, it follows that
the unique solution of the homogeneous Cauchy problem is z(¢,z) = ¢(z — at)
for (¢t,z) € R x R. In order to determine the solution of the non-homogeneous
equation, we shall use a variation of constants-like method. More precisely, we
will look for the solution in the form z(t,z) = (¢, — at), where ¢y :Rx R — R
is a function of class C* which will be determined by imposing the condition that
z be the solution of the non-homogeneous problem. We have

%(t,m) = aw(t T — at) —a%(t T — at)

0z _ oy _
8_.’11(t’m) - ay (t:m at)’

and consequently
oY
E(t) y) = f(t7y + at)-

From this equation, we deduce

’l,Z)(t, y) = ¢(O,y) + /0 f(s)y + aS) ds

for every ¢ € R. Finally, the last equality and the initial condition yield

z(t,z) = p(z — at) + /Otf(s,:c —aft —s))ds

for every t € R.
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Problem 6.14 First, let us consider the attached homogeneous problem

9z
ot

2(0,z) = p(z),

+a(t)% =0

whose characteristic system is
dt _ dx

1 afty

A prime integral for this system is

U(t,:z:):x—-/ota(s)ds

for (t,z) € R x R. The general solution of the homogeneous equation is given by
2(t,z) = F (a: — [Sa(s) ds), where F : R — R is of class G'. From the Cauchy
condition it follows that the unique solution of the homogeneous Cauchy problem

* z(t,z) = ¢ (m - /(: a(s) ds)

for (t,z) € R x R. We look for the solution to the non-homogeneous equation in

the form
A7) = ¥ (t,m - /Ot a(s) ds) ,

where 1 : R x R — R is a function of class C' which satisfies

%(t, z) = ‘z;f (t m~/0t a(s) dS) —a(t)%% <t’$— /Ot“(s)ds)
L= (- [[404).

from where .
%—f(t,y) =f (t,y—i—/() a(s) ds) .

From this equation, we deduce

Y{t,y) = ¥(0, %‘)+/ (S,y-l-/os a(r)dr) ds

for every t € R. Finally, from the last equality and the initial condition, it follows

z(t,m)=<p(x—/ota(r)dr)+/Otf<s,x—/:a(f)dr) ds
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for every t € R.
Problem 6.15 The characteristic system attached to the homogeneous equation
is

dt _ dx1 _ dxo _ dzy

1 a1 az an

Its general solution is z2(t,x) = U(z — ta), where U : R™ — R ranges over the set
of all functions of class C! and  — ta = (z1 — a1t, 22 — agt,...,Tn — ant). The
solution of the homogeneous equation which satisfies the corresponding initial
condition is z(¢,z) = ¢(x — ta) for every (t,z) € Rx R". We seek for the solution
of the non-homogeneous equation in the form z(¢,z) = ¥(t,z — ta) for every
(t,z) € R x R", and we deduce

z(t,x) = p(z — ta) +/0 f(s,z—(t—s)a)ds

for every (t,z) € R x R™.
Problem 6.16 By analogy with the solution of Problem 6.14, we deduce that

z(t,w)qu(m—-/ata(r)df) +/0tf(s,:c—/:a(7')d7) ds

for every (t,z) € R x R™.
Problem 6.17 First, we consider the attached homogeneous problem

Oz Oz
-5t—+a:1:$ =0

2(0,z) = p(z)

whose characteristic system is
dt  dz

1 az’

A prime integral for this system is U(t,z) = xe™® for every (t,z) € R x R.
The general solution of the homogeneous equation is z(t,z) = F(ze™°'), where
F : R — R is of class C'. From the Cauchy condition, it follows that the
unique solution of the homogeneous Cauchy problem is z(t,z) = p(ze™*") for
(t,z) € R x R. In order to find the solution of the non-homogeneous equation,
we shall use the variation of constants-like method. More precisely, we will look
for the solution in the form z(t,z) = ¥%(t,ze™*), where ¢y : Rx R — R is a
function of class C!, which will be determined by letting z to be a solution of the
non-homogeneous problem. We have

% — ,8_w —aty —a’t% —at
at(t,ac)— 5t (t,ze™*") — aze ay(t,:z:e )

Q . —ata_w —at
52 {t,z) =¢ oy (¢, ze™ ),
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from where o
B?(t’y) = f(t,ye*).

From this equation, we deduce

1
w(t) = $(0,5) + fo F(s,pe™) ds

for every t € R. Finally, from the last equality and the initial condition, it follows

i
t2) = p(e™5) + [ o,z ) ds

for every t € R.
Problem 6.18 The solution is given by

2(t,z) = (e‘fot o(r) dT:c) + /t

Q

f (s, e~ s a(T)dT:I:) ds

for every (t,z) E R x R.
Problem 6.19 We have

z(t,x) = ¢ (e—mx) + /t f (s,e_(t"s)ﬂw) ds
0

t

for every (t,z) € R x R™, where e~** is the exponential of the matrix —tA.

Problem 6.20 The solution is

t

2(t,2) = o (X (B)z) + /O f (5, X7 ()X (s)z) ds

for every (t,x) € R x R™, where X(t) is a fundamental matrix of the first-order
linear differential system z’ = A(t)z.

Chapter 7

Exercise 7.1 (1) One observes that, for any choice of the function ¢, the sequence
satisfies all the conditions in Definition 7.1.2, and therefore it is convergent to
w =0 in D(R). (2) If ¢ is non-identically zero, the sequence, although uniformly
convergent to 0, is not convergent in D(R) because it does not satisfy the condition
(i1) in the definition 7.1.2. Indeed, in this case, there exists at least one t € R such
that ¢'(t) # 0. Let tx, = t/k for k € N*, and let us observe that ¢} (tx) = ¢'(t) # 0
for every k € N*, which shows that the sequence of the first-order derivatives does
not converge uniformly to 0 on R. (3) If ¢ is non-identically zero, the sequence,
although uniformly convergent to 0, it is not convergent in D(R) because it does
not satisfy the condition (i) in Definition 7.1.2. Indeed, in this case, there exists
at least one t € R* such that (t) # 0. Let us observe that the term of rank k
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of the unbounded sequence (kt)ien- lies in the support of the term of the same
rank of the sequence of functions considered.

Exercise 7.2 (1) &(t) = 26(t). (2) #(t) = cost26(t) — sintsgn (t) = 25(¢) —
sintsgn (t). (3) £(t) = td(t) +sgn (t) = sgn(t). (4) £(t) =t6(t—1) +sgn{t—1) =
0t — 1) +sgn(t —1). (5) ©(¢t) = sintd(t) + costf(t) = costOt. (6) z(t) =
e'o(t) +e'ft = 8(t) + e'ot.

Problem 7.1 For every test function ¢ € D(R), we have

(n(D8(2), (1)) = (6(2), n(t)e(®)) = —(8(2), 7' D)ep(t) + (1)’ ()

= —1'(0)(8(t), () — (n()3(2), ¥'(2)
= (=1 (0)8(t), o()) + (=1(0)3(2), ¢ (1)) = (=n"(0)6(t) + n(0)8' (1), (1)),

which proves the equality.
(1) Let ¢ € D(R). We have

(E™ (1), 0(8) = (™ (), telt)) = (~1)™ (a(t), fjch"“w‘m*“(t)) ,
k=0

where, Ck, = ﬂl‘m—T—w Since t**) = 0 for k= 2,3,...,m and (8(2), 1™ (t)) =0,
we deduce that

(™ (2), 2(8)) = (~1)™(E(1), Crep™ V(1))

= ()™= (m = 1)E™ V@), (1) = ~(m - D)(E™TV @), 0(1)),

which achieves the proof.
(2) Let ¢ € D(R). We have

(™8™ (1), (1) = (-1)™ (suxfjcmtm)(k’w(”-“ (t)) :
k=0
Since (8(t), (t™)F ™= F (1)) =0 for k=1,2,...,m — 1, it follows
™8™ (1), (1)) = (=1)"ml(8(t), '™ (1)),

which achieves the proof.
(3) As before, we have

(5 (1), (8) = (D)™ (mfj Cx, (%)) =2 (t)) .

Since k < m — 1, it follows that (6(t), (t*)P o™ P(£)) = 0 for k = 1,2,...,m.
The proof is complete.
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Problem 7.2 We denote by ¢ = [, z(t) d¢ and we observe that [, zn(t)dt = ¢ for
every n € N. Let ¢ € D(R). We have

1/n 1
[zntopttyae= [ " na(us)ae = [ a(s/mdt - o)

-1/n -1

Hence
lim z, = c6(t)

on D(R). ree
Exerc1se 7.3 (1) z(t) = (e7! — e™2)0(t). (2) z(t) = te *0(t). (3) =(t) =
3sin 2t 6(t). (4) :z:(t) 11— e —2t272)0(2). (5) z(t) = 3(e* +e7* - 2)6(2).
(6) z(t) = 2(1 —2e* +e f)o(t)
Exercise 7.4 (1) z(t) = (' 6(2)) * (e~ —e~2)0(2). (2) z(t) = (£6(2)) * (te™*0(t)).
(3) z(t) = (cos2t6(t)) » (1sin2t 9(t)) (4) z(t) = (sintb(t)) * (3(1 — ™% -
216 )0(0). (5) alt) = (10(0) = (3(e" + e = DB(D). (0) a(t) = (1'0(t)) »
(3(1 — 2¢’ + €*)0(t)) where, according to Example 7.2.1,

(Fra)t) = / f(r)g(t =) dr.

Exercise 7.5 The solutions are:

et fort €{0,1]
(1) z(t) = {e“t —e U 1fort>1.

0 (e I
o R EA
@ 2(t) = { San(~ cost) igi ﬁ S [—0’ d
®) 2= { srcan L lor 15 5
o= (s

Problem 7.3 Using Definition 7.5.1, one observes that the multi-valued functions
in (1), (4) and (5) are upper semi-continuous on R, while the others, only on R*.
Problem 7.4 We denote by graph (F) the graph of the multi-function F'. Let
{(zx, yx))ken be a sequence in graph (F), convergent to (z,y) and let us assume by
contradiction that (z,y) does not belong to the graph of F. Since z € K (because
K is closed), from the assumption made, we have that y does not belong to F(x).
But F(z) is closed and {y} is compact. According to Lemma 2.5.1, we know that
dist (y, F(z)) = 8 > 0. Then, the set D = {z € R"; dist (2, K) < §/2} is open,
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includes F(z), while D does not contain y. Since F is upper semi-continuous,
for k big enough, we have y, € F(zx) C D, which shows that y € D. This
contradiction can be eliminated only if graph (F) is a closed set.

Problem 7.5 Let us assume by contradiction that there exists £ € K with the
property that F' is not upper semi-continuous at x. Then, there exists D C R
with F(z) C D, such that, for every neighborhood V of x, there exists zv € V
such that F(zv) is not included in D. Let k € N*. Take Vi = B(z, 1) and
let us denote by zv, = zx. From the assumption made, it follows that there
exists yx € F(zx) with yx € R® \ D. Since F takes values in a compact set,
(yk)ren+ is convergent (at least on a subsequence) to an element 3. On the other
hand, (zx)ren+ is convergent to z, and therefore (z,y) belongs to the graph of
F. This means that z € K and y € F(x). At the same time, because for every
k € N* yi belongs to the closed set R™\ D, it follows that y € R™ \ D, relation in
contradiction with y € F(z) C D. The contradiction can be eliminated only if F
is upper semi-continuous on K.

Problem 7.6 Let x € K and let D be an open set with conv F(z) C D. Since
F(z) is compact, conv F(z) is compact too, and conv F(z) N dD = §. According
to Lemma 2.5.1, we have that dist (conv F(x),dD) = § > 0. Then, the set Ds,
defined by D5 = {y € R”; dist (y, conv F(z)) < §/2}, is convex, open and satisfies
F(z) ¢ Ds ¢ Ds C D. Since F is upper semi-continuous at z, there exists a
neighborhood V C K of z such that F(z) C Dj for every z € V. Since Ds is
convex, we have conv F(z) C Ds C D for every z € V. Hence, conv F is upper
semi-continuous at z. Since z is arbitrary in K, this completes the proof.
Problem 7.7 Since f is bounded, from Cesaro’s lemma, it follows that F is
nonempty and closed valued. Moreover, F takes the values in a compact set.
According to Problem 7.5, in order to complete the proof, it suffices to show that
graph (F) is closed. So, let ((zp,yp))pen+ be a sequence in graph (F') convergent
to (z,y). From the definition of F', we have that, for every p € N*, there exists a
sequence (Zp,k)een* With limg oo &p,x = Tp and limg_ o f(Tp,x) = yp. Then, for
every p € N, there exists k, > p such that we have both |jzp x, — p|| < 1/p and
I|f(Zp.kp) — Ypll £ 1/p. Then limy o0 Zp,k, =  and limp—oo f{Zp,k,) = y, which
shows that y € F(z). The proof is complete.

Problem 7.8 Let @ =R, & = {0} and f : w — R be defined by f(x) = 3¥z2 for
every z € R. Then I is viable for 2’ = f, (z) but T is not invariant for z’ = f(2),
because the latter equation has at least two solutions which satisfy x(0) = 0. See
Example 2.3.1.

Problem 7.9 Let ¢ € ¥. According to Definition 7.7.3, we have n € Tx(¢) if
lim infy ;o § dist (€ + 9, £) = 0. Let s > 0, and let us observe that

e R
hrgll(l)nf?dlst(ﬁ—i-tsn,ﬂ)—shrﬂénfgdlst(f+tsn,)3)

1
= sliminf — dist ({ + 11, L) = 0.
s 1r:1110n ~ dis (E+ 7, 1)

Hence sn € Tx(€). In order to complete the proof, it remains to show that Tx(£)
is a closed set. To this aim, let (nx)ren~ be a sequence of elements in Tx(£),



Solutions — Chapter 7 391
convergent to 7. We have

3 dist (¢ 4 t7,8) < it — me)l| + 1 dist (€ + i, )

= 19 = el + 7 st (€ + b, %)

for every k € N*. So, limsup,, § dist (£ + ¢, E) < |lp — m|| for every k € N*.
Since limg—co ||7 — nkll = 0, it follows that liminf,yo § dist (¢ + ¢tn,X) = 0, which
achieves the proof.

Problem 7.10 Let us observe that a vector n € Tz(§) if and only if there exists a

function z : {0,1] — & with z(0) = ¢, &ir{lﬂ T_L—(a:(hk) —€) =7, for some sequence
k10 hy

hr | 0. But, in the particular case of the set ¥ in the problem, this relation holds
if and only if (n, VU(£)) = 0, which achieves the proof.

Problem 7.11 Let us consider f : R® — R® and U : R® — R, defined by
flz1,22,23) = (—x2 + 23,21, —2123) and U(x1,22,23) = 23 + 23 + 23 for every
(z1,22,23) € R3. It is easy to see that f is locally Lipschitz being of class
C*. Therefore, the uniqueness hypothesis in Theorem 7.9.1 is satisfied. In order
to check the tangency condition: f(¢) € Tz(€) for every £ € I, according to
Problem 7.10, it suffices to show that {f(£), VU(£)) = 0 for every £ € 3. But this
condition is satisfied because {f(¢), VU (£)) = —2€1&2 426183 + 26162 — 26162 = 0.
Problem 7.12 We will analyze only the case of the Oy-axis. So, let f: R? — R?
and U : R? — R be defined by f(z,v) = ((a — ky)x, —(b — ha)y) and respectively
by U{z,y) = x, for every (z,y) € R®. Since f is locally Lipschitz, the uniqueness
hypothesis in Theorem 7.9.1 is satisfied. We have & = {(z,y) € R?; U(z,y) = 0},
while in order to check the tangency condition in Theorem 7.9.1, in accordance
with Problem 7.10, we must show that (f(£1,£2), VU(£1,€2)) = 0 for every
(&1,€&2) € E. This condition is satisfied because f(£1,&2) = £(0,&2) = (0, —bé2)
and VU(&1,&2) = (1,0), for every (£1,€2) € 2. Similarly, one proves that the
Oz-axis is invariant for the Lotka—Volterra system. By virtue of the remarks
above, in order to show that the first quadrant is an invariant set for the system,
it suffices to observe that every solution, issued at a point of the boundary of this
set, remains there as long as it exists. But this amounts of proving that every
solution, which reaches the origin remains there, assertion which is obvious in
view of the uniqueness property.

Problem 7.13 By virtue of Definition 7.7.3, we deduce that for every £ € 8% we
have Tas(§) € Tz(£) and therefore the condition in the statement implies: for

every £ € 0¥ we have f(£) € Tz(). Since for every ¢ ef}, Te(€) = R™, it follows
that f satisfies the sufficiency part in Theorem 7.7.2.

The condition is not necessary, as we can state from the following simple
example. Let & = {(z,y) € R?; z? +y? < 1}, and let us consider the system

T=—z—y
V=z-y.
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Multiplying the first equality by z and the second by y, we deduce that

32 @O +P0) = - (@O +¥°0)

for every t € [0,T]. Hence z*(t) + y2(t) = e~ *(2?(0) + ¥*(0)) < 1 for every
(z(0),y(0)) € 8. So, although the set £ is invariant for the system, its boundary
8% is not. According to the necessity part of Theorem 7.7.2, it follows that one
cannot have f(¢) € Tox(£) for every £ € 0X. Hence, the condition in Theorem A
is not necessary.
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Index

behavior
chaotic, 199
ergodic, 8

capacity, 44
Cauchy problem, 51
autonomous, 57
chaos, 199
concatenation principle, 56
condition
Frobenius’ integrability, 309
Hugoniot—Rankine, 237
Nagumo tangency, 290
cone, 289, 312
Bouligand—Severi tangent, 289
configuration coordinates, 241
contraction principle, 7
controller, 194
curve
characteristic, 224

derivative, 316

classical, 253

Dini, 297

distributional, 253

right directional, 297
differential inclusion, 271
disintegration constant, 31
distribution, 248

derivative of order k of a, 252

Dirac delta, 249

Dirac delta concentrated at a, 251
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of type function, 248
omothety of a, 251

entropy, 198

growth, 239

equation

Airy, 122
autonomous, 13, 56
Bernoulli, 23
Bessel, 122
characteristic, 150
Clairaut, 27
singular solution, 27
eikonal, 14
Euler, 153
exact, 24
first-order differential in normal
form, 12
first-order linear partial
differential, 220
first-order quasi-linear partial
differential, 220
first-order vector differential, 12
fluxional, 3
Fredholm integral, 106
Gauss, 122
Hermite, 121
homogeneous, 146
integro-differential, 106, 123
Lagrange, 26
parametric equations of the
general solution, 27
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Legendre, 122
Liénard, 44, 177
linear, 20
linear and homogeneous, 20
linear and non-homogeneous, 20
logistic, 35
n*-order scalar differential
incomplete, 28
n*"-order scalar differential, 12
n*R-order scalar differential in
normal form, 12
neutral, 106
non-homogeneous, 146
of big waves in long rivers, 230
of forced oscillations, 152
of the gravitational pendulum, 33
of the harmonic oscillator, 33
of the mathematical pendulum, 33
of the small oscillations of the
pendulum, 34
order of an, 11
ordinary differential, 11
partial differential, 11, 106
pendulum, 29
quasi-homogeneous, 48
Riccati, 24
scalar differential, 11
solved by quadratures, 19
the Van der Pol, 178
traffic, 228
Van der Pol, 44
Volterra integral, 106, 123
with separable variables, 19
evolutor, 131
exterior tangency condition, 298

family

equicontinuous, 319

of straight lines

envelope of, 28
relatively compact in C{[a,b]; R?),
319

uniformly bounded, 320

uniformly equicontinuous, 320
forced harmonic oscillations, 151
formula

Index

exponential, 10, 120
variation of constants, 21, 125, 137
function
absolutely continuous, 267
Carathéodory, 267
cilindrie, 3
coercive, 241
comparison, 298
concatenate, 56
control, 194
differentiable, 316
dissipative, 64
Hamilton, 241
Heaviside, 259
input, 194
locally Lebesgue integrable, 232,
248, 268
locally Lipschitz, 62
lower semi-continuous (1.s.c), 77
Lyapunov, 179
autonomous, 182
matrix-valued, 74
modulus of continuity of a, 200
multi-valued, 272, 274
multi-valued upper
semi-continuous, 274
negative definite, 179
output, 194
perturbing, 173
positive definite, 178
Riemann integrable, 316
sensitivity, 91
set-valued, 274
state, 194
unit, 259
unknown, 11

generalized momenta, 241
homogeneous equation, 21

inductance, 44
inequality
Bellman, 50
regulating, 196
initial
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condition, 18 method
state, 18 Carbon dating, 31
time, 18 Cauchy, 225
initial-value problem, 51 Cauchy-Lipschitz—Peano, 4
integral characteristic, 225
first, 210 comparison, 8
general, 17 Ruler explicit, 99
independent prime, 212 Euler implicit, 99, 115
Kurzweil-Henstock, 8 integrand factor, 2
Lebesgue integral, 8 integrant factor, 25
prime, 210, 218 of majorant series, 4
interval of polygonal lines, 109
nontrivial, 15 of successive approximations, 5, 8,
106
Jordan cell, 142 of tangents, 5
parameter, 26
law polygonal lines, 3
Boyle-Mariotte, 338 small parameter, 91
conservation, 230 stability by the first
Hooke, 50 approximation, 176
Malthus, 34 variation of constants, 2, 149
Newton second, 32 model
of conservation of the energy, 241 Levins, 36
of mass action, 41 Lotka, 41
of radioactive disintegration, 31 pray-predator, 36
lemma pursuit-evasion, 272
Bihari, 45 Verhulst, 35
Brezis, 47 multifunction, 274
Gronwall, 46
Zorn, 68 observed output, 194
Leray—Schauder topological degree, 7 operator
Lie~Jacobi bracket, 305 evolution, 131
limit cycle, 8, 187, 201 feedback, 193
limit point, 69 n*P-order differential, 262
observation, 194
mapping synthesis, 193
nonexpansive, 77
Poincaré, 124 point
matrix equilibrium, 163, 212
associated, 128, 148 stationary, 163, 212
fundamental, 128, 148 polynomial
Hurwitz, 173 characteristic, 150
hurwitzian, 169 predator, 37
Jordan canonical form of a, 142 prey, 37
sensitivity, 91 problem

mean ergodic, 203 Cauchy, 3, 18
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Cauchy for a quasi-linear first
order partial differential
equation, 225
initial value, 3
initial-value, 18
Lurie-Postnikov, 195
of inverse tangents, 1
product
convolution, 256
of a distribution by a function of
class C*°, 251
projection
of a vector on a set, 326
operator on a set, 326
subordinated to V, 299
property
comparison, 300
global uniqueness, 62
local existence and uniqueness, 304
local uniqueness, 62
semigroup, 115
uniqueness, 94
proximal neighborhood, 299

quadrature, 19
quasi-polynomial, 144

rate constant of a reaction, 41
regulating parameters, 194
resonance, 152
rule

Leibniz, 254

second principle of thermoadynamics,
239
semigroup, 115
of non-expansive operators, 187
sequence
convergent in D(R), 247
of successive approximations, 108
series
of matrices, convergent, 138
of matrices, normal convergent, 138
of matrices, uniformly convergent,
138
set

Index

convex, 188
globally invariant, 296
invariant, 296
locally closed, 288
normal cone to a, 281
w-limit, 187
viable, 288
solution

a.e., 276
asymptotically stable, 161, 164
bilateral, 52
blowing up in finite time, 73
Carathéodory, 267
classical, 233, 246
continuable at the left, 52, 66
continuable at the right, 52, 66
distribution, 258
e-approximate, 291
elementary, 263
equilibrium, 38
fundamental system of, 128, 148
general, 17, 220, 221
general of Clairaut equation, 27
generalized, 246, 258, 263
global, 52, 303

at the left, 52

at the right, 52
global at the left, 66
global at the right, 66

left, 52
local, 52, 225
of CP(D), 52

of a first-order linear partial
differential equation, 221

of a first-order quasi-linear partial
differential equation, 220

of a first-order vector differential
equation, 16

of a gradient system, 303

of a system of first-order
differential equations, 16

of an n*"-order scalar differential
equation, 15

of an n'"-order scalar differential
equation in the normal
form, 16



persistently stable, 201
right, 52
robust, 201
saturated at the left, 52
saturated at the right, 52
saturated to the left, 66
saturated to the right, 66
singular, 2
stable, 38, 160, 164
stationary, 38, 163
the orbit, 187
the trajectory, 187
the trajectory of a, 16
uniformly asymptotically stable,
161, 164
uniformly stable, 161, 164
unstable, 38
viscosity, 9
with finite speed of propagation,
231
space
of testing, or test functions, 247
support of a function, 247
system
autonomous, 13
characteristic, 221
closed loop, 194
control, 194
first-order of linear differential
equations, 126
gradient, 303
Hamiltonian, 154, 241
homogeneous, 126
homogeneous attached to, 126
homogeneous with exact
differentials, 305
in symmetric form, 221
in variations, 89
Lorenz, 198
Lotka, 42
Lotka—Volterra, 42, 240
Navier—-Stokes, 10
non-homogeneous, 126
of n first-order differential
equations, 12
perturbed, 173
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pray-predator, 42
robust, 91
Volterra, 37

theorem
Banach’s fixed point, 8
Crandall-Liggett generation, 10
Hille-Yosida, 9
implicit function, 12
Liouville, 154
Nagumo, 289
of structure of the matrix e**, 143
Peano, 60
Poincaré-Lyapunov, 174
theory
bifurcation, 7
dynamical system, 7
of distributions, 9
translation
of a distribution, 251

variable
observed, 194
variational inequality, 280
vector
tangent in the sense of
Bouligand—Severi, 289
tangent in the sense of Ursescu, 290
vector fields
commuting, 305

Wronskian, 129, 148



