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Preface

The great response to the publication of the book Classical and Modern Fourier
Analysis has been very gratifying. I am delighted that Springer has offered to publish
the second edition of this book in two volumes: Classical Fourier Analysis, 2nd
Edition, and Modern Fourier Analysis, 2nd Edition.

These volumes are mainly addressed to graduate students who wish to study
Fourier analysis. This second volume is intended to serve as a text for a second-
semester course in the subject. It is designed to be a continuation of the first vol-
ume. Chapters 1-5 in the first volume contain Lebesgue spaces, Lorentz spaces and
interpolation, maximal functions, Fourier transforms and distributions, an introduc-
tion to Fourier analysis on the n-torus, singular integrals of convolution type, and
Littlewood—Paley theory.

Armed with the knowledge of this material, in this volume, the reader encounters
more advanced topics in Fourier analysis whose development has led to important
theorems. These theorems are proved in great detail and their proofs are organized
to present the flow of ideas. The exercises at the end of each section enrich the
material of the corresponding section and provide an opportunity to develop addi-
tional intuition and deeper comprehension. The historical notes in each chapter are
intended to provide an account of past research but also to suggest directions for
further investigation. The auxiliary results referred to the appendix can be located
in the first volume.

A web site for the book is maintained at

http://math.missouri.edu/~loukas/Fourier Analysis.html

I am solely responsible for any misprints, mistakes, and historical omissions in
this book. Please contact me directly (loukas@math.missouri.edu) if you have cor-
rections, comments, suggestions for improvements, or questions.

Columbia Missouri, Loukas Grafakos
June 2008
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Chapter 6
Smoothness and Function Spaces

In this chapter we study differentiability and smoothness of functions. There are
several ways to interpret smoothness and numerous ways to describe it and quantify
it. A fundamental fact is that smoothness can be measured and fine-tuned using
the Fourier transform, and this point of view is of great importance. In fact, the
investigation of the subject is based on this point. It is not surprising, therefore, that
Littlewood—Paley theory plays a crucial and deep role in this study.

Certain spaces of functions are introduced to serve the purpose of measuring
smoothness. The main function spaces we study are Lipschitz, Sobolev, and Hardy
spaces, although the latter measure smoothness within the realm of rough distri-
butions. Hardy spaces also serve as a substitute for L” when p < 1. We also take
a quick look at Besov—Lipschitz and Triebel-Lizorkin spaces, which provide an
appropriate framework that unifies the scope and breadth of the subject. One of
the main achievements of this chapter is the characterization of these spaces us-
ing Littlewood—Paley theory. Another major accomplishment of this chapter is
the atomic characterization of these function spaces. This is obtained from the
Littlewood—Paley characterization of these spaces in a single way for all of them.

Before one embarks on a study of function spaces, it is important to under-
stand differentiability and smoothness in terms of the Fourier transform. This can
be achieved using the Laplacian and the potential operators and is discussed in the
first section.

6.1 Riesz Potentials, Bessel Potentials, and Fractional Integrals

Recall the Laplacian operator
A=0}+-+37,

which may act on functions or tempered distributions. The Fourier transform of
a Schwartz function (or even a tempered distribution f) satisfies the following

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 6, 1
(© Springer Science+Business Media, LLC 2009



2 6 Smoothness and Function Spaces

identity: .
—A(f)(&) =4m*|ELF(E).

Motivated by this identity, we replace the exponent 2 by a complex exponent z and
we define (—A)z/ 2 as the operator given by the multiplication with the function
(27|€1)? on the Fourier transform. More precisely, for z € C and Schwartz functions
f we define

(=8)72(f)(x) = (ml&]) (€)Y (x).- (6.1.1)

Roughly speaking, the operator (—A)Z/ 2 is acting as a derivative of order z if z is
a positive integer. If z is a complex number with real part less than —n, then the
function |&|? is not locally integrable on R” and so (6.1.1) may not be well defined.
For this reason, whenever we write (6.1.1), we assume that either Rez > —n or
Rez < —n and that f vanishes to sufficiently high order at the origin so that the

expression |E|2f (&) is locally integrable. Note that the family of operators (—A)?
satisfies the semigroup property

(—A(=A) = (=A),  forallzwe C,

when acting on spaces of suitable functions.
The operator (—A)Z/ 2 is given by convolution with the inverse Fourier transform
of (27)*|€ . Theorem 2.4.6 gives that this inverse Fourier transform is equal to

73 F(n-zi-z)

2r) (6] (X)=(27r)znz;n r) [ = (6.1.2)

The expression in (6.1.2) is in L} .(R") only when —Rez —n > —n, that is when
Rez < 0. In general, (6.1.2) is a distribution. Thus only in the range —n < Rez < 0
are both the function |£|° and its inverse Fourier transform locally integrable

functions.

6.1.1 Riesz Potentials

When z is a negative real number, the operation f — (—A)¥2(f) is not really “dif-
ferentiating” f, but “integrating” it instead. For this reason, we introduce a slightly
different notation in this case by replacing z by —s.

Definition 6.1.1. Let s be a complex number with Res > 0. The Riesz potential of
order s is the operator
L= (—A)"2

Using identity (6.1.2), we see that [ is actually given in the form

—s _gr(nfs) —n+s
WO =27m L by,
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and the integral is convergent if f is a function in the Schwartz class.

We begin with a simple, yet interesting, remark concerning the homogeneity of
the operator ;.

Remark 6.1.2. Suppose that for s real we had an estimate

[15£| oy < C(p>m,5)]|f]

) (6.1.3)

for some positive indices p,q and all f € L?(R"). Then p and ¢ must be related by
- = . (6.1.4)

This follows by applying (6.1.3) to the dilation 6%(f)(x) = f(ax) of the function
f, a >0, in lieu of f, for some fixed f, say f(x) = eI, Indeed, replacing f by
6%(f) in (6.1.3) and carrying out some algebraic manipulations using the identity

L(89(f)) = a—*8(I,(f)), we obtain

a0 ()| ey < € @508 2| £ oy (6.1.5)
Suppose now that 11, > ; + 7. Then we can write (6.1.5) as
s oy < €55 6.16)

and let ¢ — oo to obtain that I;(f) = 0, a contradiction. Similarly, if 11, < ; +7, we
could write (6.1.5) as

aatr ||1s(f)||Lq(R") < Cp-g.n.9)| |

L (RY) 6.1.7)
and let a — 0 to obtain that H f H L = again a contradiction. It follows that (6.1.4)
must necessarily hold.

We conclude that the homogeneity (or dilation structure) of an operator dictates
a relationship on the indices p and g for which it (may) map L? to L9.

As we saw in Remark 6.1.2, if the Riesz potentials map L” to L? for some p,q,
then we must have g > p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy—Littlewood—
Sobolev theorem on fractional integration, which we now formulate and prove.

Theorem 6.1.3. Let s be a real number with 0 < s < nand let 1 < p < g < o satisfy
(6.1.4). Then there exist constants C(n,s,p) < e such that for all f in L?(R") we
have

10| 10 < Clnys,p)]| f]

when p > 1, and also Hls(f)HLq»m < C(n,s)HfHLl when p = 1.

Lr
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We note that the L” — L?* estimate in Theorem 6.1.3 is a consequence of The-
orem 1.2.13, for the kernel |x|~""* of I lies in the space L™ when r = nfs, and
(1.2.15) is satisfied for this r. Applying Theorem 1.4.19, we obtain the required
conclusion. Nevertheless, for the sake of the exposition, we choose to give another

self-contained proof of Theorem 6.1.3.

Proof. We begin by observing that the function I;(f) is well defined whenever f
is bounded and has some decay at infinity. This makes the operator I; well defined
on a dense subclass of all the L? spaces with p < e. Second, we may assume that
£ 20, since |(f)] < (| f1).

Under these assumptions we write the convolution

[ FE=)bE T dy = (1)) + (1))

where, in the spirit of interpolation, J; and J, are defined by

BN = [ Feht

D (f)x) = ‘y‘>Rf(x—y)|y|“"”dy,

for some R to be determined later. Observe that J; is given by convolution with the
function [y|~"** Y, <g(v), which is radial, integrable, and symmetrically decreasing
about the origin. It follows from Theorem 2.1.10 that

J(F)() < M(f)() /H bl dy = T RM() ), 6.18)

where M is the Hardy-Littlewood maximal function. Now Holder’s inequality gives

that
(/o "*‘ﬂdy) I
>R
= () wls

and note that this estimate is also valid when p = 1 (in which case g = f ;)» provided

M2 () ()]

IN

LP(R)
(6.1.9)

Lr (R”

1
the L' norm is interpreted as the L™ norm and the constant (qp” ! ) " is replaced
by 1. Combining (6.1.8) and (6.1.9), we obtain that

L(f)(x) < Cpy p (RM(F)(x) + R 4||f]

) (6.1.10)

for all R > 0. A constant multiple of the quantity

(M) ()"
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minimizes the expression on the right in (6.1.10). This choice of R yields the esti-
mate

L(f)(X) < s p MCF) (@)% | ]| 15 6.1.11)

The required inequality for p > 1 follows by raising to the power ¢, integrating over
R”, and using the boundedness of the Hardy-Littlewood maximal operator M on
LP(R"). The case p=1, ¢ = " also follows from (6.1.11) by the weak type (1,1)
property of M. Indeed,

n

2 ns
’{M(f) > (Cn,s,IHf 21) }‘
(S,

- C(n,s)(Hf)”Ll)”nS.

We now give an alternative proof of the case p = 1 that corresponds to g =

{CusaM ()" || £]|7: > 2}

f

IN

n
n—s’

Without loss of generality we may assume that f > 0 has L' norm 1. Once this case
is proved, the general case follows by scaling. Observe that

/Rnf(x—y)lyls‘"dyg ZzU‘”(H)/ flx—y)dy. (6.1.12)

j€z ly|<2/

Let E; = {x: L(f)(x) > A}. Then

1
3 B

1 —n
= /1/ / V[ f(x—y)dydx
El Rn
< [z [ e y)dvas
A Ey jez

|EA|

IN

y| <2/
1 ji—1)(s—n
JEZ Ey Jy|<2 6.1.13)
LS 51 1 n h
<, v min(|E; |,v,2/")
A jez
_ i T ol Ea|+;f Y Ui
27> |Ey | 2|y n

IN

C s—n s
;L(|EA| |Ey |+ |Ep ")

2C s
= Eqln.
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It follows that |Ey|"»" < zf, which implies the weak type (1, " ) estimate for I.
Here C is a constant that depends on n and s. 0

6.1.2 Bessel Potentials

While the behavior of the kernels |x| "5 as |x| — 0 is well suited to their smooth-
ing properties, their decay as |x| — o gets worse as s increases. We can slightly
adjust the Riesz potentials so that we maintain their essential behavior near zero but
achieve exponential decay at infinity. The simplest way to achieve this is by replac-
ing the “nonnegative” operator —A by the “strictly positive” operator / — A. Here
the terms nonnegative and strictly positive, as one may have surmised, refer to the
Fourier multipliers of these operators.

Definition 6.1.4. Let s be a complex number with 0 < Re s < eo. The Bessel potential

of order s is the operator
f? = (I_A)_S/zv

whose action on functions is given by

() =(FG,)" = f*Gy,

where
Go(x) = ((1+47%E) ™) (x).

Let us see why this adjustment yields exponential decay for Gy at infinity.

Proposition 6.1.5. Let s > 0. Then Gy is a smooth function on R"\ {0} that sat-
isfies Gs(x) > 0 for all x € R". Moreover, there exist positive finite constants
C(s,n),c(s,n),Cs, such that

Gs(x) <C(s,n)e” I;I7 when |x| > 2, (6.1.14)

and such that

< < h <2,
clom) = Hy(x) S c(s,n), when |x| <

where H; is equal to

[X[S7" + 1T+ O(|x]*"2)  for0<s<n,
H(x) = | log ‘)2(‘ +14+0(]xP) fors=n,
1+ 0(|x]*™") fors>n,

and O(t) is a function with the property |O(t)| < Cy ,|t| for 0 <t < 4.
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Proof. For A,s > 0 we have the gamma function identity

s 1 bl s dt
A2 = / e
F(;) 0 t

which we use to obtain

K 1 *° 2 s dt
| am2IER) 3 — / —t g—nl2ym 5 4t
(ramlefy i = ) [Tee ,

Note that the previous integral converges at both ends. Now take the inverse Fourier

. . 2. . .
transform in & and use the fact that the function e el is equal to its Fourier trans-
form (Example 2.2.9) to obtain

Gs(x) =

—n oo X2 s—n
(2ym) / o=t dt
re) t
This proves that G(x) > 0 for all x € R” and that G is smooth on R"\ {0}. Now

2 2
suppose |x| > 2. Then ¢ + ‘Z‘z >t+ | andalsot+ ‘Z‘t > |x|. This implies that

W21

T ST T

from which it follows that when |x| > 2,

2v/m) " ® r 1 s—n dt A _ lal
|Gs(x)] < ( 1{(5)) </0 e 2e 2t t)e 2 =Cspe 2.
This proves (6.1.14).

Suppose now that |x| < 2. Write G,(x) = G! (x) + G?(x) + G3(x), where

“n 2 2 ,
1 @2y/m)™ (R kR dt
G, (x) = re) /0 e e ()2 p
= |X|S_n (2\/7[)_" /1 g—t\x\ze_ﬂfrtbsn i )
ra) Jo t
2 (2\/77: )_n /4 —t - |Z|2 s—n dl
- t 2
Gs(x) F(;) Mze e ; ,
3 2ym)T” /°° o P e d
Gs ('x) - F(%) A e ‘e 4t ;e

In G! we have e~ = 1+ O(¢|x]?), since |x|> < 4; thus we can write

—-n 1 s—n dl‘ 10) s—n+2 1 o
Gsl(x) - |x|an( V) / e*41rt 5 ; n (|x| )/ .
0

2 s s e 4t 2 dt
rQ) rQ)

= Coul "+ O(x ) as |x[ — 0.
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17 2
Since 0 < I ‘ and0<t<41nG2 wehavee™ 4 <e '~ 4 <1;thusas|x] -0
we obtain
2 s—n 2.cfn+l
2 4 dt W= T fors <n,
G;(x) =~ i ={2log 2 for s = n,
§ |x|2 t ||
Joostl 2 xS for s > n.

2
Finally, we have e h<e o < 1in G?, which yields that G3(x) is bounded above
and below by fixed positive constants. Combining the estimates for G!(x), G2(x),
and G2 (x), we obtain the required conclusion. O

We end this section with a result analogous to that of Theorem 6.1.3 for the
operator _Z;.

Corollary 6.1.6. (a) For all 0 < s < oo, the operator ¥ maps L"(R") to itself with
norm 1 forall 1 <r < oo,

(b) Let 0 < s <nand 1 < p < q < oo satisfy (6.1.4). Then there exist constants
Cp.gn,s < oo such that for all f in LP(R") with p > 1 we have

1250 < Cognsl £
and also ||jy(f)||”m < ClwqwanHfHLl when p = 1.
Proof. (a) Since a(O) =1 and G, > 0, it follows that G has L! norm 1. The oper-
ator ¢ is given by convolution with the positive function Gy, which has L' norm

1; thus it maps L"(R") to itself with norm 1 for all 1 < r < oo (see Exercise 1.2.9).
(b) In the special case 0 < s < n we have that the kernel G, of _¢Z; satisfies

) |x| 7" when |x| <2,
) ~
i when |x| > 2.

Then we can write
/‘(f)('x) S Cn,s|:/7 |f(x—y)||y|*”+‘dy_|_/ |f(X—y)|e’ g‘ dy:|
<Cnv[ (/D) (x +/ |[f(x—y)|e Zdy]

We now use that the function y — e M/ is in L’ for all r < oo, Theorem 1.2.12
(Young’s inequality), and Theorem 6.1.3 to complete the proof of the corollary. [
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Exercises

6.1.1. (a) Let 0 < s, < o be such that s + ¢ < n. Show that I;J; = I, .
(b) Prove the operator identities

s

Is(—A)z = (—A)zls =1y, = (_A)Z72

whenever Res > 2Rez.
(c) Prove that for all z € C we have

(A7 UNI(=2)"(g)) = (flg)
whenever the Fourier transforms of f and g vanish to sufficiently high order at the
origin.
(d) Given Res > 0, find an o € C such that the identity
2

(LN = =%
is valid for all functions f as in part (c).
6.1.2. Use Exercise 2.2.14 to prove that for —eo < o0 < n/2 < § < e we have

—n/2 n/2—o
—o

B
1y < I i 1452

where C depends only on o, n, 3.

6.1.3. Show that when 0 < s < n we have

sp (Al gy = sup (LA

HfHLl(Rn)Zl ”f”Ll(Rn):

n =
Ln—s (R”)

Thus Iy and _Z are not of strong type (1, " ).

' n—s
[Hint: Consider an approximate identity.]
6.1.4. Let 0 < s < n. Consider the function i(x) = |x|~*(log ‘i‘ )~ nH8) for x| < 1/e
and zero otherwise. Prove that when 0 < § < " * we have h € L' (R") but that
lim,_o I;(h)(x) = eo. Conclude that ; does not map L5 (R") to L=(R").

6.1.5. For 1 < p < and 0 < 5 < o define the Bessel potential space £ (R") as
the space of all functions f € L”(R") for which there exists another function fp in
L?(R") such that _Z:(fy) = f. Define a norm on these spaces by setting H f |
H fo || 1»- Prove the following properties of these spaces:

(a) ||f‘ < HnggP? hence .} (R") is a subspace of L” (R").

(b) For all 0 < t,s < oo we have Gy * G; = G+ and thus

7

2P (R") 21 (R") € Z],,(R"),
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where 1 §p,q,r§ooand11,+; = 14—1.

(c) The sequence of norms H f H p increases, and therefore the spaces ZP(R") de-
crease as s increases.

(d) The map .# is an isomorphism from the space .#} (R") onto .Z7, ,(R").

[Note: Note that the Bessel potential space .Z (R") coincides with the Sobolev
space L (R"), introduced in Section 6.2.]

6.1.6. For 0 < s < n define the fractional maximal function

M@ =sp
>0 (vut) n

1 a=y)ldy,
Iyl<t

where v,, is the volume of the unit ball in R”".
(a) Show that for some constant C we have

M’ (f) < CIL(f)

for all f > 0 and conclude that M* maps L? to L? whenever I does.
(b) (Adams [1])Lets>0,1 < p<",1<q<cobesuchthat | = b~ o . Show
that there is a constant C > 0 (depending on the previous parameters) such that for

all positive functions f we have

17
L

f]

()], <M (et

[Hint: For f # 0, write I;(f) = I, + I, where

Iy :/ fO) I "dy, 12=/ FO) I dy.
x—y|<8 r—y[>3

Show that I; < C8*M°(f) and that I,(f) < C8*~ » M"/?(f). Optimize over 8 > 0 to
obtain . .
I(f) < CMYP(f)n MO ()~

from which the required conclusion follows easily.}

6.1.7. Suppose that a function K defined on R” satisfies |[K(y)| < C(1+ |y|)~5t"~¢,
where 0 < s <nand 0 < C, € < . Prove that the maximal operator

sup t7n+s

t>0

[ =K/ dy
Rl‘l

maps L?(R") to L4(R") whenever I; maps L (R") to L4(R").
[Hint: Control this operator by the maximal function M* of Exercise 6.1.6.}

6.1.8. Let 0 < s < n. Use the following steps to obtain a simpler proof of Theorem
6.1.3 based on more delicate interpolation.

(a) Prove that ||I;(xz) ||, < |E|» for any set E of finite measure.

(b) For any two sets E and F' of finite measure show that
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J e )1 < |ET
(c) Use Exercise 1.1.12 to obtain that

Gl e, e < CoslEL

(d) Use parts (a), (c), and Theorem 1.4.19 to obtain another proof of Theorem 6.1.3.
[Hint: Parts (a) and (b): Use that when A > 0, the integral [y ly|~* dy becomes
largest when E is a ball centered at the origin equimeasurable to E ]

6.1.9. (Welland [329]) Let 0 < o < n and suppose 0 < € < min(c,n — o). Show
that there exists a constant depending only on o, €, and n such that for all compactly
supported bounded functions f we have

o (f)| < Cy/MOE€(f)MOTE(f)

where MP (f) is the fractional maximal function of Exercise 6.1.6.
[H int: Write

1F()]dy [f()]dy
Ha(f)] < /‘H‘q -y /\H\z‘v e —y[=

and split each integral into a sum of integrals over annuli centered at x to obtain the
estimate
Lo ()] S C(s*M*E(f) +5~ M*TE(f)) -

Then optimize over s.

6.1.10. Show that the discrete fractional integral operator

{aj}jezn — { > (|j_k|aj_ ) }jezn

keZn

maps ¢*(Z") to ¢'(Z") when 0 < @ < n, 1 <s<t,and
6.1.11. Show that the bilinear operator

Balf.9)) = [ [ F0)8()(jv—y|+[x—2l) " “dydz

maps LP(R") x L1(R") to L"(R") when 1 < p,g < e and

[Hint: Control B,(f,g) by the product of two fractional integrals. |
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6.1.12. (Grafakos and Kalton [148]/Kenig and Stein [189]) (a) Prove that the bi-
linear operator
S = [ et igt—nla
maps L' (R") x LI (R") to L2 (R").
(b) For 0 < a0 < n prove that the bilinear fractional integral operator

)0 = [ f gl

maps L' (R") x L' (R") to L2« (R").

[Hint: Part (a): Write f = Y1z fx, where each fj is supported in the cube k+ [0, 1]"
and similarly for g. Observe that the resulting double sum reduces to a single sum
and use that (¥; aj)'? < Y a;-/z for a; > 0. Part (b): Use part (a) and adjust the
argument in (6.1.13) to a bilinear setting.]

6.2 Sobolev Spaces

In this section we study a quantitative way of measuring smoothness of functions.
Sobolev spaces serve exactly this purpose. They measure the smoothness of a given
function in terms of the integrability of its derivatives. We begin with the classical
definition of Sobolev spaces.

Definition 6.2.1. Let k be a nonnegative integer and let 1 < p < e. The Sobolev
space Ly (R") is defined as the space of functions f in L”(R") all of whose distribu-
tional derivatives @ f are also in L? (R") for all multi-indices ¢ that satisfy |of| < k.
This space is normed by the expression

1l = 2 110 Fl» (6.2.1)
|| <k

where 900 f = f.

Sobolev spaces measure smoothness of functions. The index k indicates the “de-
gree” of smoothness of a given function in L,’; . As k increases the functions become
smoother. Equivalently, these spaces form a decreasing sequence

P~TP~TP TP
LPOLI DL, DL5D -,
meaning that each Ly, | (R") is a subspace of Ly (R"). This property, which coincides
with our intuition of smoothness, is a consequence of the definition of the Sobolev
norms.

We next observe that the space Lg (R") is complete. Indeed, if f; is a Cauchy

sequence in the norm given by (6.2.1), then {0 f;}; are Cauchy sequences for all
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|t| < k. By the completeness of L?, there exist functions fy such that 9% f; — fy in
LP. This implies that for all ¢ in the Schwartz class we have

(0 [ f0%0ydx= [ %) pdi— [ fupds

Since the first expression converges to

(0 [ h(%p)dx,

it follows that the distributional derivative % fj is fi. This implies that f; — fp in
L? (R") and proves the completeness of this space.

Our goal in this section is to investigate relations between these spaces and
the Riesz and Bessel potentials discussed in the previous section and to obtain a
Littlewood—Paley characterization of them. Before we embark on this study, we
note that we can extend the definition of Sobolev spaces to the case in which the
index k is not necessarily an integer. In fact, we extend the definition of the spaces
L? (R") to the case in which the number k is real.

6.2.1 Definition and Basic Properties of General Sobolev Spaces

Definition 6.2.2. Let s be a real number and let 1 < p < oo. The inhomogeneous
Sobolev space LY (R") is defined as the space of all tempered distributions u in
' (R") with the property that

(1+]€»)2m)" (6.2.2)

is an element of LP(R"). For such distributions # we define

el = [+ 12 @ -
Note that the function (14 |E[?)2 is € and has at most polynomial growth at
infinity. Since & € ./ (R"), the product in (6.2.2) is well defined.

Several observations are in order. First, we note that when s = 0, LY = L. It is
natural to ask whether elements of L are always L? functions. We show that this is
the case when s > 0 but not when s < 0. We also show that the space L? coincides
with the space L given in Definition 6.2.1 when s = k and k is an integer.

To prove that elements of L? are indeed L functions when s > 0, we simply note
that if f, = ((1+|&|?)*/2F)Y, then

f=(KE)G,(E/2m))" = fix 2m)" Gs(2m (")),
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where Gy is given in Definition 6.1.4. Thus a certain dilation of f can be expressed
as the Bessel potential of itself; hence Corollary 6.1.6 yields that

CileHLp < Hf?HLP = Hf

Ly

for some constant c.

We now prove that if s = k is a nonnegative integer and 1 < p < oo, then the norm
of the space LY as given in Definition 6.2.1 is comparable to that in Definition 6.2.2.
Suppose that f € L according to Definition 6.2.2. Then for all |o| < k we have

o \
= cal O —ea(FO+IEDE B ) 62
(1+1[E[%)2
Theorem 5.2.7 gives that the function
éot
(1+15Py2

is an L multiplier. Since by assumption (f(&)(1+ |€[?) : ) Yis in LP(R™), it follows
from (6.2.3) that 0% f is in L” and also that

>, 119 llyp < Comall(11-PY2 )

<k

Conversely, suppose that f € Lf according to Definition 6.2.1; then

2L gD = K « &
(I+&+--4E&) ‘Eékalg...aﬂ!(k—mm (1+|5|2)§'

As we have already observed, the functions mq (&) = E%*(1+ € |2)_§ are LP multi-
pliers whenever |ot| < k. Since

(1+1EPEF) = 3 cax(ma(@EF) = 3 cyilma(&)aerf)’,

o<k o <k

it follows that

[(FEA+IEDY ) < Comie T FEEN .-

lv|<k

Example 6.2.3. Every Schwartz function lies in L} (R") for s real. Sobolev spaces
with negative indices s can indeed contain tempered distributions that are not lo-
cally integrable functions. For example, Dirac mass at the origin dy is an element of
L? (R") for all s > n/p’. Indeed, when 0 < s < n, Proposition 6.1.5 gives that G
[i.e., the inverse Fourier transform of (1 + |€ |2)’5] is integrable to the power p as
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long as (s —n)p > —n (i.e., s >n/p’). When s > n, G is integrable to any positive
power.

We now continue with the Sobolev embedding theorem.

Theorem 6.2.4. (a) Let 0 < s <} and 1 < p < co. Then the Sobolev space LY (R™)
continuously embeds in L1(R") when

1 1 s

p q n

(b) Let 0 < s = 7 and 1 < p < oo. Then LY (R") continuously embeds in L1(R") for
any 'l < q < oo.

(c) Let | <s <eoand 1 < p < -eo. Then every element of LY (R™) can be modified
on a set of measure zero so that the resulting function is bounded and uniformly
continuous.

Proof. (a)If f € LY, then f,(x) = ((1+|&|?)2 £ )Y (x) is in L?(R"). Thus
FO) = (+1EP) /) ()3
hence f = G, * f;. Since s < n, Proposition 6.1.5 gives that
|Gs(x)] < Conlx|™™

for all x € R". This implies that |f| = |G, * fi| < Cs,Ls(|f5|). Theorem 6.1.3 now
yields the required conclusion

1Al < CalltsUAD e < Callf

v

(b) Given any ' < g < o we can find 7 > 1 such that

Then 1 <7 + }, which implies that (—n+s)r > —n. Thus the function |x|~""* |, <,
is integrable to the rth power, which implies that Gy is in L. Since f = Gy * f;,
Young’s inequality gives that

1 ] oy < 151

LP(R") GS”U(Rn) = C”vSHfHLﬁ/p'

(c) As before, f = G, * f;. If s > n, then Proposition 6.1.5 gives that the function
G, isin L (R"). Now if n > s, then Gy(x) looks like |x| "% near zero. This function
is integrable to the power p’ near the origin if and only if s > n/p, which is what
we are assuming. Thus f is given as the convolution of an L?” function and an LY
function, and hence it is bounded and can be identified with a uniformly continuous
function (cf. Exercise 1.2.3). O
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We now introduce the homogeneous Sobolev spaces LY. The main difference
with the inhomogeneous spaces L{ is that elements of Lf may not themselves be
elements of L”. Another difference is that elements of homogeneous Sobolev spaces
are not tempered distributions but equivalence classes of tempered distributions.

We would expect the homogeneous Sobolev space L} to be the space of all dis-
tributions u in .#”(R") for which the expression

(IEFa)” (6.2.4)

is an L? function. Since the function |£|® is not (always) smooth at the origin, some
care is needed in defining the product in (6.2.4). The idea is that when u lies in
! /&, then the value of & at the origin is irrelevant, since we may add to u a
distribution supported at the origin and obtain another element of the equivalence
class of u (Proposition 2.4.1). It is because of this irrelevance that we are allowed
to multiply # by a function that may be nonsmooth at the origin (and which has
polynomial growth at infinity).

To do this, we fix a smooth function 17(£) on R” that is equal to 1 when |£]| > 2
and vanishes when |&| < 1. Then for s € R, u € .//(R")/ 7, and ¢ € .7 (R") we

define
(185, 9) = tim (@,n(3)[E 1 9(5)).

provided that the last limit exists. Note that this defines |£ |*% as another element of
'/ 2, and this definition is independent of the function 7, as follows easily from
(2.3.23).

Definition 6.2.5. Let s be a real number and let 1 < p < oo. The homogeneous
Sobolev space L (R") is defined as the space of all tempered distributions modulo
polynomials u in ./ (R") / £ for which the expression

(1&Fa)"
exists and is an L” (R") function. For distributions « in L (R") we define
(el (RN

As noted earlier, to avoid working with equivalence classes of functions, we iden-
tify two distributions in L (R") whose difference is a polynomial. In view of this
identification, the quantity in (6.2.5) is a norm.

R (6.2.5)

6.2.2 Littlewood—Paley Characterization of Inhomogeneous
Sobolev Spaces

We now present the first main result of this section, the characterization of the inho-
mogeneous Sobolev spaces using Littlewood—Paley theory.
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For the purposes of the next theorem we need the following setup. We fix a radial
Schwartz function ¥ on R” whose Fourier transform is nonnegative, supported in
the annulus 1 — } < || <2, equal to 1 on the smaller annulus 1 < || <2—2, and

satisfies ¥(£) 4+ ¥(£/2) = 1 on the annulus 1 < [£| < 4 — 7. This function has the
property o
Y wRE) =1 (6.2.6)

JEZ
for all & # 0. We define the associated Littlewood—Paley operators A; given by
multiplication on the Fourier transform side by the function ¥ (27/&), that is,

Ai(f)=AF(f) =W i*f. (6.2.7)
Notice that the support properties of the A;’s yield the simple identity
Aj= (Aj_l +A; —|—Aj+1)Aj

for all j € Z. We also define a Schwartz function @ so that

(€)= {Z;<0¢I(2Jg) when & #0, 6.2.8)

1 when & = 0.

Note that & (&) is equal to 1 for || <2 — 2, vanishes when || > 2, and satisfies
2 (277¢) = (6.2.9)

for all £ in R". We now introduce an operator Sy by setting
So(f) = @xf. (6.2.10)

Identity (6.2.9) yields the operator identity

So+ Y, Aj=1,
j=1

in which the series converges in ./ (R"); see Exercise 2.3.12. (Note that So(f) and
Aj(f) are well defined functions when f is a tempered distribution.)

Having introduced the relevant background, we are now ready to state and prove
the following result.

Theorem 6.2.6. Let @, V¥ satisfy (6.2.6) and (6.2.8) and let A}, Sy be as in (6.2.7)
and (6.2.10). Fix s € R and all 1 < p < o. Then there exists a constant C| that
depends only on n,s, p, @, and ¥ such that for all f € LY we have

O+ |(Eea?)’], <als

IS0

- (6.2.11)
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Conversely, there exists a constant C, that depends on the parameters n, s, p, @, and
W such that every tempered distribution f that satisfies

[|So(f <o

oo 1
i 2
o +|( X Ma0002) 7|,
j=1
is an element of the Sobolev space LY with norm

171

174 < CZ(HSO(]C)

|L,7+H(§<2ff|4\j<f>|>2); Y e

Proof. We denote by C a generic constant that depends on the parameters n, s, p, @,
and ¥ and that may vary in different occurrences. For a given tempered distribution
f we define another tempered distribution f; by setting

L= (+]-P)2f)",

so that we have || f||,» = || fs]| , if f € L£.

We first assume that the expression on the right in (6.2.12) is finite and we show
that the tempered distribution f lies in the space LY by controlling the L” norm of
fs by a multiple of this expression. We begin by writing

= (@) +((1-d)4)",

and we plan to show that both quantities on the right are in L”. Pick a smooth
function with compact support 1y that is equal to 1 on the support of @. It is a
simple fact that for all s € R the function (1 +|&[?)2n0(€) is in .#,(R") (i.e., it is
an L? Fourier multiplier). Since

(@ 7)) (0 = {((1+1EP) 3 n0(8)) So(H(E)} (), (6.2.13)
we have the estimate R
(@) |,y < ClISo(Pler - (62.14)

We now introduce a smooth function 7., that vanishes in a neighborhood of the
origin and is equal to 1 on the support of 1 — @. Using Theorem 5.2.7, we can easily
see that the function .

(1+1€P)>

is in .#,(R") (with constant depending on n, p, 1., and s). Since

(1+]EP)3n.(8)

ep T EPO =) ) (),

(1+1EP)2 (1= B(E)F) () = (

we obtain the estimate
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[((1-®) 7))

where f. is another tempered distribution defined via

= (JEF(1- (&) F)".

is finite using Littlewood—Paley

< €|/

(6.2.15)

Lr p>

We are going to show that the quantity || fw‘ I

theory. To achieve this, we introduce a smooth bump { supported in the annulus

5 < |&| < 4 and equal to 1 on the support of ¥. Then we define 6(&) = |§|YZ(§)
and we introduce Littlewood—Paley operators

Af(g) =g#6y,
where 6,;(t) = 2/"0(2/t). Recalling that

=Y vt

k>1

we obtain that
Zléls 277E)C27E)f zzf“mfé) Qe f

and hence

Using estimate (5.1.20), we obtain

<c|\<2|w GRH

J—

[ £o]] < oo, (6.2.16)

Ly

Combining (6.2.14), (6.2.15), and (6.2.16), we deduce the estimate in (6.2.12). (In-
cidentally, this argument shows that f.. is a function.)

To obtain the converse inequality (6.2.11) we essentially have to reverse our
steps. Here we assume that f € L and we show the validity of (6.2.11). First, we
have the estimate

[1So(f)]

< ||

(6.2.17)

Lr =

since we can obtain the Fourier transform of So(f) = @ * f by multiplying fs by the
L? Fourier multiplier (14 |&|?)"2® (). Second, setting G (&) = |& |7*¥(&) and
letting Al‘-’ be the Littlewood—Paley operator associated with the bump 6(27/&), we

have
2P(2TIE) f =52 TE)ELf=5(2E)EF(1-D(E))S,

when j > 2 [since @ vanishes on the support of G(27/&) when j > 2]. This yields
the operator identity
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2PA;(f) = AT (f.) . (6.2.18)
Using identity (6.2.18) we obtain
oo 1 = 1
s A 22 _ o 2\ 2
H(jzzw AP, = H(jzzm,- R), <l ©2:19)

where the last inequality follows by Theorem 5.1.2. Notice that

EP-BE) -\
=Cliseps )

and since the function |€[5(1 — ®(&))(1 +|&[*)~ 2 is in .#,(R") by Theorem 5.2.7,
it follows that

fo= (1P =D(E)) )

1fellps < €lIAL
which combined with (6.2.19) yields

(S pranf)’],, <

P
Ly’

(6.2.20)

Finally, we have
PAf) =2 (PUEAHIEP 2 +EP)2 F) =2 (PAEA+[EP 2 /),

and since the function ‘1?’( ; E)(1+1¢ |2)’5 is smooth with compact support and thus
in .#, it follows that

12°A1()]|» < || f5| iz (6.2.21)
Combining estimates (6.2.17), (6.2.20), and (6.2.21), we conclude the proof of
(6.2.11). d

6.2.3 Littlewood—-Paley Characterization of Homogeneous Sobolev
Spaces

We now state and prove the homogeneous version of the previous theorem.

Theorem 6.2.7. Let ¥ satisfy (6.2.6) and let A; be the Littlewood—Paley operator
associated with ¥'. Let s € R and 1 < p < co. Then there exists a constant C| that
depends only on n,s, p, and ¥ such that for all f € L (R") we have

[ox ZMA |))% <cis| (6.2.22)
JjE

1 L{) .
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Conversely, there exists a constant Cy that depends on the parameters n,s, p, and ‘¥
such that every element f of /' (R")/ P that satisfies

H( 3. (2¥14;() )%

< o
Lr

lies in the homogeneous Sobolev space LY and we have

(6.2.23)

7

I, <<l (gZ(zfﬂAj(f>|>2)5

Proof. The proof of the theorem is similar but a bit simpler than that of Theorem
6.2.6. To obtain (6.2.22) we start with f € L2 and we note that

21A;(f) =27 (IE1IEI P2 TE) F) = (6276 ) = A7 (f),

where 6(&) = ¥(&)|€|* and A7 is the Littlewood—Paley operator given on the
Fourier transform side by multiplication with the function 6(27/&). We have

(S Peatnr) ], = (S asenr) ], <cla

= CHﬂ

L Lo
where the last inequality follows from Theorem 5.1.2. This proves (6.2.22).

Next we show that if the expression on the right in (6.2.23) is finite, then the
distribution f in .%/(R")/ < must lie the in the homogeneous Sobolev space LY
with norm controlled by a multiple of this expression.

Define Littlewood—Paley operators AJT.] given by convolution with 1,-;, where 7

is a smooth bump supported in the annulus ‘5‘ < |€] < 2 that satisfies

Y nete) =1, E40, (6.2.24)

keZ

or, in operator form,

Y Al=1,

keZ

where the convergence is in the sense of .’/ in view of Exercise 2.3.12. We
introduce another family of Littlewood—Paley operators Af given by convolution
with 6, ;, where 8(&) = 1(€)|E|". Given f € #/(R")/ 2, we set f; = (|E['f)",
which is also an element of ./ (R")/ 2. In view of (6.2.24) we can use the reverse
estimate (5.1.8) in Theorem 5.1.2 to obtain for some polynomial Q,

p=e(Zawr)

i =I5-0l

7

)
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Recalling the definition of A; (see the discussion before the statement of Theorem
6.2.6), we notice that the function

~

P(38)+ (&) +P(28)

is equal to 1 on the support of 0] (which is the same as the support of 7). It follows
that
Aje = (Aj,1 +Aj +A]'+1)Af .

We therefore have the estimate

[(Zrraiinf)’

1 1
0 4. is £\ 12 2
DA 3 1474;1,(21) )

'

and applying Proposition 5.1.4, we can control the last expression (and thus || f ‘ ’ L’?)
by a constant multiple of

1
[(Z1a@nP)| .
j€z L
This proves that the homogeneous Sobolev norm of f is controlled by a multiple of
the expression in (6.2.23). In particular, the distribution f lies in the homogeneous
Sobolev space L. This ends the proof of the converse direction and completes the
proof of the theorem. O

Exercises

6.2.1. Show that the spaces I[P and LY are complete and that the latter are decreasing
as s increases.

6.2.2. (a) Let 1 < p < e and s € Z". Suppose that f € L} (R") and that ¢ is in
Z(R™). Prove that @ f is also an element of L] (R").

(b) Let v be a function whose Fourier transform is a bounded compactly supported
function. Prove that if f is in L2(R"), then so is vf.

6.2.3. Let s > 0 and o a fixed multi-index. Find the set of p in (1,0) such that the
distribution 9% &) belongs to L .

6.2.4. Let I be the identity operator, /; the Riesz potential of order 1, and R; the
usual Riesz transform. Prove that

n
1= IiR;0;,
j=1

and use this identity to obtain Theorem 6.2.4 when s = 1.
[Hint: Take the Fourier transform. |
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6.2.5. Let f be in L for some 1 < p < . Prove that 9*f is in L”

s—|oe|*

6.2.6. Prove that for all ' functions f that are supported in a ball B we have
1 ' —
FWI< IVl
Wp—1 JB
where @, 1 = |S"!|. For such functions obtain the local Sobolev inequality

11l o) < CaranllVE o)

where l < p<g<ooand1/p=1/g+1/n.
[Hint: Start from f(x) = [;°Vf(x—16)- 6dr and integrate over 6 € S"~! |

6.2.7. Show that there is a constant C such that for all "' functions f that are
supported in a ball B we have

1

| Jy @S @dz<C /B VFO) " dy

for all B balls contained in B and all x € B'.
[Hint: Start with f(z) — f(x) = [y Vf(x+1(z—x)) - (z—x)dt.]
6.2.8. Let 1 < p < ooand s > 0. Show that

feELl < fel? and fell.

Conclude that Lf N LP = L{ and obtain an estimate for the corresponding norms.
[Hinz: If f is in LY N L use Theorem 5.2.7 to obtain that || f||,, is controlled by a

multiple of the L7 norm of (f(£)(1+ |€|*))". Use the same theorem to show that
1Az <€l Al o]

6.2.9. (Gagliardo [139]/Nirenberg [249]) Prove that all Schwartz functions on R"
satisfy the estimate

171k = X121

where 1/g+1/n=1.

[Hint: Use induction beginning with the case n = 1. Assuming that the inequality is
valid forn—1,set Ij(x;) = [ga-1 |0 f(x1,x")|dx for j=2,...,n,wherex = (x;,x") €
R xR 'and I} (x') = [g1 |01 f(x1,%")|dx;. Apply the induction hypothesis to obtain

£ Ger, ) < TTE )Y Y
j=2

and use that |7 < I; (x')"/("=1)| f| and Holder’s inequality to calculate | f||,.]
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6.2.10. Let f € L2(R"). Prove that there is a constant ¢, > 0 such that

. . x X — — X 2 <
// et )+ fe=1) = 2f (x)] dxdtzcn/ 3 10;£ ()P dx.
n n an:]

|t|n+2
6.2.11. (Christ [61]) Let 0 < B < oo and let

Co= [, [RER(+ ) (oz2 +1D) P az.

(a) Prove that there is a constant C(n, ,C) such that for every ¢ > 2 we have

B+1

HgHLq(Rn) <C(n,B,Co)q 2 .

(b) Conclude that for any compact subset K of R” we have
/ 2OV gy < oo
K

whenever y < Bil .
[Hint: Part (a): For g > 2 control ||g||,, &) DY 18] . (rey @nd apply Holder’s in-

(q—

equality with exponents ;, and 2q_21)' Part (b): Expand the exponential in a Taylor

series. |

6.2.12. Suppose that m € L2(R") for some s > 5 and let A > 0. Define the operator

T), by setting Ty, () (&) =m(A&) f(&). Show that there exists a constant C = C(n, s)
such that for all f and u > 0 and A > 0 we have

| TP a0 < C [ 1) M) (0 dx.

6.3 Lipschitz Spaces

The classical definition says that a function f on R” is Lipschitz (or Holder) contin-
uous of order y > 0 if there is constant C < oo such that for all x,y € R" we have

|f(x+y) = f(x)| <Clyl". (6.3.1)

It turns out that only constant functions satisfy (6.3.1) when y > 1, and the corre-
sponding definition needs to be suitably adjusted in this case. This is discussed in
this section. The key point is that any function f that satisfies (6.3.1) possesses a
certain amount of smoothness “measured” by the quantity y. The Lipschitz norm of
a function is introduced to serve this purpose, that is, to precisely quantify and ex-
actly measure this smoothness. In this section we formalize these concepts and we
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explore connections they have with the orthogonality considerations of the previ-
ous chapter. The main achievement of this section is a characterization of Lipschitz
spaces using Littlewood—Paley theory.

6.3.1 Introduction to Lipschitz Spaces

Definition 6.3.1. Let 0 < y < 1. A function f on R” is said to be Lipschitz of order
y if it is bounded and satisfies (6.3.1) for some C < eo. In this case we let

) [fx+h) = f ()]
A iy = 11l + sup sup 550

and we set

Ay(R") ={f:R" — C continuous : HfH/xy(R") < oo},

Note that functions in Ay(R") are automatically continuous when y < 1, so we did
not need to make this part of the definition. We call A,(R") the inhomogeneous
Lipschitz space of order y. For reasons of uniformity we also set

Ao(R") =L"(R")NC(R"),
where C(R") is the space of all continuous functions on R”". See Exercise 6.3.2.

Example 6.3.2. The function A(x) = cos(x - a) for some fixed a € R" is in A, for all
v < 1. Simply notice that |a(x) — h(y)| < min(2, |a||x — y|).

We now extend this definition to indices y > 1.
Definition 6.3.3. For i € R” define the difference operator Dy, by setting
Dy(f)(x) = f(x+h) — f(x)

for a continuous function f : R" — C. We may check that

Di()(x) = Du(Duf)(x) = fx+2h) = 2f (x+ 1) + f (x),
Dj(f)(x) = Dyp(Dyf)(x) = f(x+3h) = 3f(x+2h) +3f (x+h) - f(x),
and in general, that D’;l+l (f) = Dk(Dy(f)) is given by
k1
D (f)x) = i(—l)"“’” (kt 1)f(xjtsh) (6.3.2)
5s=0

for a nonnegative integer k. See Exercise 6.3.3. For y > 0 define
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D () ()]
f— m—’_ )
1L, = 1171 ey Al

where [y] denotes the integer part of 7, and set

Ay ={f:R" — C continuous : HfHAy < oo},

We call Ay(R") the inhomogeneous Lipschitz space of order y € RT.
For a tempered distribution # we also define another distribution D’;l(u) via the
identity
<D§(”)7 (P> = <u7Dk—h((p)>

for all ¢ in the Schwartz class.

We now define the homogeneous Lipschitz spaces. We adhere to the usual con-
vention of using a dot on a space to indicate its homogeneous nature.

Definition 6.3.4. For ¥ > 0 we define

D () )]
i = Su su
HfHAV xelg’heR”{){O} |h[Y

and we also let Ay be the space of all continuous functions f on R” that satisfy
H f H A < oo. We call Ay the homogeneous Lipschitz space of order y. We note that

elements of Ay have at most polynomial growth at infinity and thus they are elements
of &' (R").

A few observations are in order here. Constant functions f satisfy D, (f)(x) =0
for all h,x € R", and therefore the homogeneous quantity || - || 4, is insensitive to
constants. Similarly the expressions Dﬁ“ (f) and H f H Ay do not recognize polyno-
mials of degree up to k. Moreover, polynomials are the only continuous functions
with this property; see Exercise 6.3.1. This means that the quantity || f H Ay is not a
norm but only a seminorm. To make it a norm, we need to consider functions mod-
ulo polynomials, as we did in the case of homogeneous Sobolev spaces. For this
reason we think of Ay as a subspace of .%/(R")/ 2.

We make use of the following proposition concerning properties of the difference
operators D’,‘l.

Proposition 6.3.5. Let f be a €™ function on R" for some m € Z". Then for all
h=(hy,...,h,) and x € R" the following identity holds:

Dy(f)(x) = /01 Zlh, (9;f)(x+sh)ds. (6.3.3)
=

More generally, we have that
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D (f N, hj, - 3j, - 0j f) (x4 (s14 - +sm)h)dsy - dsy. (6.3.4)
o o

Proof. 1dentity (6.3.3) is a consequence of the fundamental theorem of calculus
applied to the function # — f((1 —¢)x+1(x+h)) on [0,1], while identity (6.3.4)
follows by induction. g

6.3.2 Littlewood—Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood—Paley
operators A ;. As in the previous section, we fix a radial Schwartz function ¥ whose
Fourier transform is nonnegative, supported in the annulus 1 — ; < €] <2,is equal
to one on the annulus 1 < || <2 — %, and that satisfies

S P2E) =1 (6.3.5)

J€Z
for all £ # 0. The Littlewood—Paley operators A; = AJ'-’U associated with ¥ are given

by multiplication on the Fourier transform side by the smooth bump ‘1?’(2_j &).

Theorem 6.3.6. Let A; be as above and y > 0. Then there is a constant C = C(n,y)
such that for every f in Ay we have the estimate

sup 2714, < €|, (636)
JEZ

Conversely, every element f of ' (R")/ P that satisfies

sup277(| A (f)]] ;. < o0 (6.3.7)
JEZ

is an element of Ay with norm

6.3.8)

1£14, < € sup27"[|A;()]] -
JEZL

Jor some constant C' = C'(n,y).

Note that condition (6.3.7) remains invariant if a polynomial is added to the func-
tion f; this is consistent with the analogous property of the mapping f — || f H Ay

Proof. We begin with the proof of (6.3.8). Let k = [y] be the integer part of 7.
Let us pick a Schwartz function 11 on R” whose Fourier transform is nonnegative,
supported in the annulus § < €] <2, and that satisfies
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Y aEiEr=1 (6.3.9)

JEZ

for all & # 0. Associated with 17, we define the Littlewood-Paley operators A}-’ given

by multiplication on the Fourier transform side by the smooth bump 7)(27/&). With
W as in (6.2.6) we set

OE)=P(IE)+P(E)+P(28),

and we denote by AJ@ =A; | +A;+Aj the Littlewood—Paley operator given by

multiplication on the Fourier transform side by the smooth bump é(2‘j &).
The fact that the previous function is equal to 1 on the support of 7] together with
the functional identity (6.3.9) yields the operator identity

1= 3 (4] =F apajal,
JEZL JEZ

with convergence in the sense of the space .’ (R")/ 2. Since convolution is a linear
operation, we have D} ™! (F + G) = F + D} *1(G), from which we deduce

DIZH(f) = 2 A?(f) * Dﬁ“(nzf/‘) * Mp-j
JEL
(6.3.10)
= 2 DHAP ()« (nxm)y
JezZ
for all tempered distributions f. The convergence of the series in (6.3.10) is in the
sense of ./ /&7 in view of Exercise 5.2.2. The convergence of the series in (6.3.10)
in the L™ norm is a consequence of condition (6.3.7) and is contained in the follow-
ing argument.
Using (6.3.2), we easily obtain the estimate

1D AP () * (M 0)gi | <2 x| p AP (D] - (63.1D)

We first integrate over (sq,...,s¢1) € [0, 1]*! the identity

2 Z hrl"'hfk+1(af|"'afk+1n2*!')(x+(51+"'+5k+l)h)

We then use (6.3.4) with m = k+ 1, and we integrate over x € R” to obtain

[CANCENIFEE Ll ) YETID W AR L 7

=1 =l
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We deduce the validity of the estimate

A2 (DK (1) #15--

< AP O =125 (12-5) * | (6.3.12)
< AP =127 e X (o] al[nll, -
|or| <k+1

Combining (6.3.11) and (6.3.12), we obtain

HAJO (f) *DIZH (M=) * My HL°°

. (6.3.13)
< Coui||A? ()| ;o min (1, [27R[1) .

We insert estimate (6.3.13) in (6.3.10) to deduce

125 - _ €

iz < €5 23110 (1) min 275 2541 T,

jez

from which it follows that

c 4 .
< 2J7||A© min (2777, 20 (kF1=1) ket
171, < o0y Z 212 )] min i)
< C'sup277||A? (f)]|, sup Y min (|h| 7277, 20017 keI
jez 10 jcz,
<

C'sup27||AP (f)] -
JEZL

since the last numerical series converges (Y < k+ 1 = [y] + 1). This proves (6.3.8)
with the difference that instead of A; we have AJ@ on the right. The passage to A; is
a trivial matter, since Aj@ =Aj 1 +Aj+Aj.

Having established (6.3.8), we now turn to the proof of (6.3.6). We first consider
the case 0 <y < 1, which is very simple. Since each A; is given by convolution with
a function with mean value zero, we may write

4j(N)&) = | Soe=y)¥-i(y)dy

[ (=)= 1@ () dy

o D_, . . .
= 27/7/ >| ({Y) (x) [27y|727"¥ (27y) dy,
n y
and the previous expression is easily seen to be controlled by a constant multiple of
2*”’Hf||Ay. This proves (6.3.6) when 0 < y < 1. In the case ¥ > 1 we have to work
a bit harder.
As before, set k = []. Notice that for Schwartz functions g we have the identity
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. £ v
Dﬁ“(g) — (g(g) (627:15 h_ 1)k+1) )
To express Aj(g) in terms of Dﬁ“ (g), we need to introduce the function
Es lf/(zfjé) (eme-h _ 1)7(k+1) '

But as the support of ¥(2/&) may intersect the set of all & for which & - / is an
integer, the previous function is not well defined. To deal with this problem, we pick
a finite family of unit vectors {u,}, so that the annulus ) < |§| < 2 is covered by
the union of sets

U={EeR": }<[g|<2, [ <|&-u|<2}

—_— —

Then we write ¥ as a finite sum of smooth functions ¥(), where each ¥() is
supported in U,. Setting

1.
h, = 82 Tu,
we note that

le@ «f = ({,(7) (277¢) (ezm'g.h,. B 1)—(k+1)(ezmg.h,. _ 1)k+1f(§))\/

o . . (6.3.14)
— (PO(27TE) (225 1)~ DE () (£))

and observe that the exponential is never equal to 1, since
—J 1 —jg .1 1
2778l = 5, <2778 qu | <y

Since the function E(r\) —y0) (&) (ez’”f'é“’ —1)~®+1) is well defined and smooth
with compact support, it follows that

‘1"2@- wf= (), *Dl;rfléu,(f)’
which implies that

[EACEN PN

IN

1€zl 1247y, -
6 151L5,2 77

IN

Summing over the finite number of r, we obtain the estimate
145Nl < ClLAIL;, 277

which concludes the proof of the theorem. 0
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6.3.3 Littlewood—Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood—Paley operators A; character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous spaces.

As in the Littlewood-Paley characterization of inhomogeneous Sobolev spaces,
we need to treat the contribution of the frequencies near zero separately. We recall
the Schwartz function @ introduced in Section 6.2.2:

P2 h 0,
o) {20707 whent 2 6215
1 when & = 0.
Note that @ (&) is equal to 1 for |E| <2 — 2 and vanishes when |£| > 2. We also
recall the operator So(f) = @ * f. One should not be surprised to find out that a
result analogous to that in Theorem 6.2.6 is valid for Lipschitz spaces as well.

Theorem 6.3.7. Let ¥ and A; be as in the Theorem 6.3.6, @ as in (6.3.15), and
v > 0. Then there is a constant C = C(n,y) such that for every f in Ay we have the
estimate

[So(Hl.- +sup2" 4 ()], < €Iy, (6.3.16)
=

Conversely, every tempered distribution f that satisfies

||So(f)HLm+sl1;1132”’HA.,-(f)HLw < oo (6.3.17)
J=

can be identified with an element of Ay. Moreover, there is a constant C' = C'(n, )
such that for all f that satisfy (6.3.17) we have

111, =€ (IS0 =+ sup2[A;(£)]] - ) - (6.3.18)
Jj=1

Proof. The proof of (6.3.16) is immediate, since we trivially have
1SoN = = Il @l = < [|@]] 1[I = < €l 1,

and also '
sup27[|4; ()| - < €|l 74, < Clflla,
=1

by the previous theorem.

Therefore, the main part of the argument is contained in the proof of the converse
estimate (6.3.18). Here we introduce Schwartz functions {, 1 so that

iﬁzfé
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and such that 7] is supported in the annulus ‘5‘ <|é|<2and Zis supported in the ball
|€| < 1. We associate Littlewood—Paley operators A}-’ given by convolution with the

functions 7,-, and we also let Aj@ =Aj_1+A;+A;; . Note that @ is equal to one

on the support of {. Moreover, Aj@ Ajn = A?; hence for tempered distributions f we
have the identity

[=CxCx@xf+ Y Ny xmy i+ A (f), (6.3.19)
j=1

where the series converges in .’ (R"). With k = [y] we write

D (f) D (&)

= (€]
|h[Y =6 |h|Y *AY(f),  (6.3.20)

d D
*<I)>kf+2nz,j* In|r j
j=1

J

. . Dt
and we use Proposition 6.3.5 to estimate the L™ norm of the term § x ”‘ WE;) *Dx f
in the previous sum as follows:

IN

D (0)
1 =16 @ £
) k1
Cmm(‘hlw, m\; )@= £ - (63.21)

Clo=1],-.

pl+l
[rss h\h\ég) *‘p*fHLw

IN

IN

The corresponding L™ estimates for Aj@ (f) % Myj % DIZH (1M,-;) have already been
obtained in (6.3.13). Indeed, we obtained

[DEF (My) %My s % AP (f)|| = < Crpnik||AP (F)]] - min (1, [27R[1)

from which it follows that

|| ’

- D (.
H ZTIZ*j * h (nz /) *A@(f) .
=1

IN

C(sup2-77||Aj@(f)‘]Lw) i 27|~ min (1,]27/h[*)
jz1 j=1 (6.3.22)

IN

C(sup2jy||Aj(f)||Lm) imin(|2jh|_y,|2jh|k+1_7)
jz1 =

IN

Csup277||A;(f)]] -
=

where the last series is easily seen to converge uniformly in # € R", since k+ 1 =
[y]+1 > 7. We now combine identity (6.3.20) with estimates (6.3.21) and (6.3.22)
to obtain that the expression on the right in (6.3.19) has a bounded L™ norm. This
implies that f can be identified with a bounded function that satisfies (6.3.18). [
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Next, we obtain consequences of the Littlewood—Paley characterization of Lip-
schitz spaces. In the following corollary we identify Ay with L™.

Corollary 6.3.8. For 0 <y < 6 < o there is a constant C,, , s < * such that for all
f € As(R") we have

114, = Gzl 1Ly
In other words, the space Ag(R"™) can be identified with a subspace of Ay(R").

Proof. 1f 0 < y< & and j > 0, then we must have 2/7 < 279 and thus

I

sup277||A;(f)|] - < sup27®]|A;(f)
> >

Adding |[So(f)||,~ and using Theorem 6.3.7, we obtain the required conclusion.
The case y =0 is trivial. g

Remark 6.3.9. We proved estimates (6.3.18) and (6.3.8) using the Littlewood—Paley
operators A; constructed by a fixed choice of the function ¥'; @ also depended on V.
It should be noted that the specific choice of the functions ¥ and @ was unimportant
in those estimates. In particular, if we know (6.3.18) and (6.3.8) for some choice
of Littlewood—Paley operators A; and some Schwartz function @ whose Fourier
transform is supported in a neighborhood of the origin, then (6.3.18) and (6.3.8)
would also hold for our fixed choice of A; and @. This situation is illustrated in the
next corollary.

Corollary 6.3.10. Let ¥ > 0 and let o be a multi-index with [ot| <. If [ € Ay,
then the distributional derivative 0% f (of f) lies in A,._ . Likewise, if f € Ay, then

d%f € Ay_‘a‘ . Precisely, we have the norm estimates

1971115
19114

<Cralfl4, (6.3.23)
< Cralfll,,- (6.3.24)

v=lof T
v=lof T
In particular, elements of Ay and Ay are in € for all || < .

Proof. Let o be a multi-index with |of| < 7. We denote by Aa ¥ the Littlewood—
Paley operator associated with the bump (d*¥),-;. It is stralghtforward to check
that the identity

4;(9%f) =217 ()

is valid for any tempered distribution f. Using the support properties of ¥, we obtain
2D (9% F) = 277AT™ (Ajoy + Aj+ A (f), (6.3.25)
and from this it easily follows that

sup2/T1D|4;(9% £)| . < (27 +2) 97| sup 2| A(f)]] -
JEZ JEZ
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and also that
sup2/ 1| A, (9% 1) = < (27 +2)||0* ||, sup2”||A; () ;= (6.3.26)
j>1 Jj=1
Using Theorem 6.3.6, we deduce that if f € Ay, then 0% f € Ay_‘a‘, and we also
obtain (6.3.24). To derive the inhomogeneous version, we note that

S0(9%f) = B+ (9%f) = (9@ f) = (P + (D + ¥y 1)+ f),

since the function ® + ‘f/’z: is equal to 1 on the support of (%‘(\D Taking L™ norms,
we obtain

1500 A)ll,~ < 0% @[[,i (|| @Al -+ [ % 7]-)
< [l @l (Isot)|] .+ sup 411l
which, combined with (6.3.26), yields |0 || , o <Cra 1], 0
r—lo
Exercises

6.3.1. Fix k € Z". Show that
Di(f)(x) =0

for all x, /4 in R” if and only if f is a polynomial of degree at most k — 1.
[Hint: One direction may be proved by direct verification. For the converse direc-

tion, show that fis supported at the origin and use Proposition 2.4.1 }

6.3.2. (a) Extend Definition 6.3.1 to the case ¥ = 0 and show that for all continuous
functions f we have

1l < 1L g < 311113

hence the space Ag(R") can be identified with L~ (R") NC(R").
(b) Given a measurable function f on R” we define

£z = inf {[Lf + ¢l = e < €}

Let £(R") be the space of equivalent classes of bounded functions whose differ-
ence is a constant, equipped with this norm. Show that for all continuous functions
f on R" we have

(£l = < sup [flx+h)— f(x)] <2]||f]];--
x,heR"

In other words, Ag(R") can be identified with L= (R") N C(R").
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6.3.3. (a) For a continuous function f prove the identity

k+1
Dy e = X0 (T st ot

s=0
forall x,h € R" and k € ZT U{0}.
(b) Prove that DXD!, = Df ™ for all k,1 € Z*+ U {0}.
6.3.4. Forx € R let B
ik
f(x) _ z 2—k827r12 X
k=1

(a) Prove that f € Ay(R) forall 0 <y < 1.
(b) Prove that there is an A < oo such that

sup |f(x+1)+ flx—1) = 2f ()] |r|7' < A;
x,t#0

thus f € A;(R).
(c) Show, however, that for all x € [0, 1] we have

sup |f(x+1) — )| |~ = oo

0<r|<1

thus f is nowhere differentiable.
[Hint: Part (c): Use that f(x) is 1-periodic and thus

1 hd ik
176 = @) Pax = 3 2 12
k=1

Observe that when 2¢|t| < ) we have 272t 1| > 221 ]

6.3.5. For 0 < a,b <« and x € R let

i bk
gab(x) _ z 2—ak627r12 X
k=1

Show that ggp lies in A« (R).

[Hint: Use the estimate [DL (22" ¥)| < Cmin (1,(2%*|h|)F) with L= [a/b] + 1 and
split the sum into two parts.]

6.3.6. Let y > 0 and let k = [7].

(a) Use Exercise 6.3.3(b) to prove that if | Df (f)(x)| < C|h|” for all x,h € R", then
IDETL(f)(x)| < C2!|h|? forall I > 1.

(b) Conversely, assuming that for some [ > 1 we have

wp IPED)

< oo
x,heR" |h|}’ ’
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show that f € Ay.
[Hint: Part (b): Use (6.3.14) but replace k+ 1 by k+ l.]

6.3.7. Let ¥ and A; be as in Theorem 6.3.7. Define a continuous operator Q; by
setting

Q(f)=rf+¥%, W) =r"¥(1"x).

Show that all tempered distributions f satisfy

supt 7| Qi (f)|| 1 = sup277(|A; (£) |-
>0 JEZL

with the interpretation that if either term is finite, then it controls the other term by
a constant multiple of itself.
[Hint: Observe that Oy = Qy(Aj >+ Aj_1+Aj+Aj1) when 27/ <1 <217/ ]

6.3.8. (a) Let 0 < y < 1 and suppose that 8j fe Ay for all 1 < j < n. Show that for
some constant C we have

n
I71,., =€ X Nlowrls,

and conclude that f € Ay1.
(b) Let y > 0. If we have 9% f € Ay for all multi-indices o with |¢¢| = r, then there

18 an estimate
1£1l4,.., SCYHZ [0 4,
o|=r

and thus f € AHr-

(c) Use Corollary 6.3.10 to obtain that the estimates in both (a) and (b) can be
reversed.

[Hint: Part (a): Write

Di(f / i [0;f(x+1th+2h) — 0;f (x+1th+h)| h;dt.

Part (b): Use induction.]

6.3.9. Introduce a difference operator

B oy () 12 ]
P =| [, e ]

n

where 3 > 0. Show that for some constant co(n, ) we have

1P () 2y = o B) [ 1FE)R1EPP ag

for all functions f € L% (R™).
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6.4 Hardy Spaces

Having been able to characterize LP spaces, Sobolev spaces, and Lipschitz spaces
using Littlewood—Paley theory, it should not come as a surprise that the theory can
be used to characterize other spaces as well. This is the case with the Hardy spaces
HP(R"), which form a family of spaces with some remarkable properties in which
the integrability index p can go all the way down to zero.

There exists an abundance of equivalent characterizations for Hardy spaces, of
which only a few representative ones are discussed in this section. A reader inter-
ested in going through the material quickly may define the Hardy space H” as the
space of all tempered distributions f modulo polynomials for which

1l = | (]_Ezzm,(fﬂz)é

< oo (6.4.1)
Ly

whenever 0 < p < 1. An atomic decomposition for Hardy spaces can be obtained
from this definition (see Section 6.6), and once this is in hand, the analysis of these
spaces is significantly simplified. For historical reasons, however, we choose to de-
fine Hardy spaces using a more classical approach, and as a result, we have to go
through a considerable amount of work to obtain the characterization alluded to in
(6.4.1).

6.4.1 Definition of Hardy Spaces

To give the definition of Hardy spaces on R”, we need some background. We say
that a tempered distribution v is bounded if ¢ xv € L*(R") whenever ¢ is in . (R").
We observe that if v is a bounded tempered distribution and h € L' (R"), then the
convolution % * v can be defined as a distribution via the convergent integral

(h*v, @)= <6*V,Z> = /l;n(é*v)(x)h(x)dx,

where ¢ is a Schwartz function, and as usual, we set ¢(x) = @(—x).
Let us recall the Poisson kernel P introduced in (2.1.13):

1) 1
1 n+l

(14 [xP)"s

r

n

6.4.2)

Nt o+

P(x) =

Fort >0, let P;(x) =t "P(¢+'x). If v is a bounded tempered distribution, then P, v
is a well defined distribution, since P, is in L!. We claim that P, v can be identified
with a well defined bounded function. To see this, write 1 = @(&) + 1 (&), where @
has compact support and 1 is a smooth function that vanishes in a neighborhood of
the origin. Then the function y defined by $(&) = e=275In (&) is in the Schwartz
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class, and one has that
P(E) = el = 2 RIG(E) + 918
is a sum of a compactly supported function and a Schwartz function. Then
Poxv="P* (@ +v)+ Y %V,

but @, *v and y; * v are bounded functions, since ¢ and y; are in the Schwartz class.
The last identity proves that P; x v is a bounded function.
Before we define Hardy spaces we introduce some notation.

Definition 6.4.1. Let a,b > 0. Let @ be a Schwartz function and let f be a tempered
distribution on R". We define the smooth maximal function of f with respect to @
as

M(f;@)(x) = sup |[(Pr  f)(x)] .

t>0

We define the nontangential maximal function (with aperture a) of f with respect to
D as

M (f;@)(x) =sup sup [(Prxf)(y)]-
=0 \v{exl\inut

We also define the auxiliary maximal function

L - (D, f)(x—y)|
Mo (AP =080 " (e

and we observe that
M(f; @) <M;(f;®) < (1+a)’M;*(f; D) (6.4.3)

for all a,b > 0. We note that if @ is merely integrable, for example, if @ is the
Poisson kernel, the maximal functions M(f; @), M} (f; @), and M, (f; @) are well
defined only for bounded tempered distributions f on R".

For a fixed positive integer N and a Schwartz function ¢ we define the quantity

M(g)= [ 1k 3 10%p()dx. (6.4.4)
R || <N+1
We now define
TN = {ﬁoey(R"): Ny (@) < 1}, (6.4.5)

and we also define the grand maximal function of f (with respect to N) as

AN(f)(x) = sup Mi(f;0)(x).
PETN
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Having introduced a variety of smooth maximal operators useful in the develop-
ment of the theory, we proceed with the definition of Hardy spaces.

Definition 6.4.2. Let f be a bounded tempered distribution on R” and let 0 < p < oo.
We say that f lies in the Hardy space HP (R") if the Poisson maximal function

M(fP)(x) = sup (P, * f) (x)] (6.4.6)

t>0

is in LP(R™). If this is the case, we set

£l = 1MCF: )] -

At this point we don’t know whether these spaces coincide with any other known
spaces for some values of p. In the next theorem we show that this is the case when
1 <p <o,

Theorem 6.4.3. (a) Let 1 < p < oo. Then every bounded tempered distribution f in

HP is an element of LP. Moreover, there is a constant C, , such that for all such f
we have

11l < 11l < Gl £]

and therefore HP (R") coincides with LP (R").
(b) When p = 1, every element of H' is an integrable function. In other words,
H'(R") C LY(R") and for all f € H' we have

e < 1L - (64.7)

Proof. (a)Let f € HP(R"). The set {P, x f : ¢ > 0} lies in a multiple of the unit ball
of L?. By the Banach—Alaoglu—Bourbaki theorem there exists a sequence t; — 0
such that F;; x f converges to some L” function fj in the weak™ topology of L”. On
the other hand, we see that P, x ¢ — ¢ in .’(R") ast — 0 for all ¢ in . (R"). Thus

L])J

Psf—f in ' (R"), (6.4.8)

and it follows that the distribution f coincides with the L? function fj. Since the
family { P, },~ is an approximate identity, Theorem 1.2.19 gives that

P f—fll,, =0 ast — 0,
from which it follows that
11l < 5091210, = (649)

The converse inequality is a consequence of the fact that

sup | B+ f| < M(f),

t>0

where M is the Hardy-Littlewood maximal operator. (See Corollary 2.1.12.)
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(b) The case p = 1 requires only a small modification of the case p > 1. Embed-
ding L' into the space of finite Borel measures .# whose unit ball is weak* compact,
we can extract a sequence 7; — 0 such that F; = f converges to some measure [ in
the topology of measures. In view of (6.4.8), it follows that the distribution f can be
identified with the measure U.

It remains to show that u is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L! function. Let || be the total
variation of (1. We show that i is absolutely continuous by showing that for all sub-
sets E of R” we have |[E| =0 = |u|(E) =0. Given an € > 0, there existsa § > 0
such that for any measurable subset F' of R” we have

|[F| <6 = /sup|P,>f<f|dx<£.
F >0

Given E with |E| =0, we can find an open set U such that E C U and |U| < 8. Then
for any g continuous function supported in U we have

/ gd,u‘ = lim

R” j—o | JR?
P

||g||Lw/U§gg| 5 fdox

ellg]] -

8(x) (B f)(x) dx

IN

A

But we have

lu(U)| = sup{‘/ gd,u‘ : g continuous supported in U with [|g||,.. < 1},
Rn

which implies that |u(U)| < €. Since € was arbitrary, it follows that |u|(E) = 0;
hence u is absolutely continuous with respect to Lebesgue measure. Finally, (6.4.7)
is a consequence of (6.4.9), which is also valid for p = 1. O

We may wonder whether H! coincides with L!. We show in Theorem 6.7.4 that
elements of H' have integral zero; thus H' is a proper subspace of L'.
We now proceed to obtain some characterizations of these spaces.

6.4.2 Quasinorm Equivalence of Several Maximal Functions

It is a fact that all the maximal functions of the preceding subsection have compara-
ble L? quasinorms for all 0 < p < o. This is the essence of the following theorem.

Theorem 6.4.4. Let 0 < p < oo. Then the following statements are valid:
(a) There exists a Schwartz function @ with [gn @(x)dx # 0 and a constant C,
(which does not depend on any parameter) such that

[M(£: @) < Cillf ]l o (6.4.10)
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for all bounded f € ' (R").
(b) For every a > 0 and @ in .7 (R") there exists a constant Cy(n, p,a, @) such that

M (£:@)]|,, < Ca(n,p,a,®@)|M(f; D), (6.4.11)

forall f € ' (R").
(c) Foreverya>0,b>n/p, and @ in .7 (R") there exists a constant C3(n, p,a,b, @)
such that

M5 (f; D) (6.4.12)

forall f € ' (R").

(d) For every b > 0 and @ in 7 (R") with [g. @ (x)dx # 0 there exists a constant
C4(b, D) such that if N = [b] + 1 we have

< Cs(n,p,a,b,®)||M; (f;D)|

Lp L

||-2n ()|

< Cu(b,@)|| My (f; D)

(6.4.13)

Ly Ly

forall f € &' (R").
(e) For every positive integer N there exists a constant Cs(n,N) such that every

tempered distribution f with ||///N (f) ‘ ’ 1 <e°is abounded distribution and satisfies

1£1l,p < Cs(n,N) || tn(£) (6.4.14)

i

that is, it lies in the Hardy space HP.

We conclude that for f € HP(R"), the inequality in (6.4.14) can be reversed, and
therefore for any Schwartz function @ with [, @(x)dx # 0, we have

MG (f: @] < Clasn,p, @) f] -
Consequently, there exists N € Z™ large enough such that for f € .#/(R") we have

|- 2n ()|

~ || My (f; @)

~ ||M (f; )|

L17"‘HMf¢|

LP = ™~ Hf ||HI’

for all Schwartz functions @ with [g. @(x)dx # 0 and constants that depend only
on @,a,b,n, p. This furnishes a variety of characterizations for Hardy spaces.

The proof of this theorem is based on the following lemma.

Lemma 6.4.5. Let m € Z" and let @ in .7 (R") satisfy [gn @ (x)dx = 1. Then there
exists a constant Co(®@,m) such that for any ¥ in #(R"), there exist Schwartz
functions 0l 0 < s <1, with the properties

¥(x) = /O 1(@“) * @) (x)ds (6.4.15)

and
/ (14 |])"10%) (x)| dx < Co(P,m) " N (¥). (6.4.16)
RVl

Proof. We start with a smooth function § supported in [0, 1] that satisfies



42 6 Smoothness and Function Spaces

2 m
0<E(s) < forall0<s<1,
m!
. forall 0 <s< .
C(s) = m! orall0<s< ,
dr
df(l): 0 foral 0 <r<m+1.
We define
] m+1/t\erms
o — =t _ 4" E() Dok kDA, (6.4.17)
dSerl
where

aerl m+2 terms
<S> = (_l)erlC(s) asm+l ((DS H ek (I)S) *lfla

and we claim that (6.4.15) holds for this choice of eY). To verify this assertion, we
apply m + 1 integration by parts to write

[1]

m+2 terms
A~

o L d"{(s) . h
/()@‘”*@ds:/o =)« Dy ds + o (O)SlirglJr((D*...*(D)s*'P

—(—1)'"“/ C(s)amﬂ(d)s*---*d)s)*‘f’ds,
0 §

noting that all the boundary terms vanish except for the one in the first integration
by parts at s = 0. The first and the third terms in the previous expression on the right
add up to zero, while the second term is equal to ¥, since @ has integral one, which
implies that the family {(® *--- % @)}~ is an approximate identity as s — 0.
Therefore, (6.4.15) holds.

We now prove estimate (6.4.16). Let Q2 be the (m—+1)-fold convolution of @. For
the second term on the right in (6.4.17), we note that the (m+ 1)st derivative of {(s)
vanishes on [0, H , so that we may write

L™ 59 g vl

< Cm%[é‘l](s)/l{n(l+|x|)m|:/l{n Sln
Cor ) [ [ 1+ v+ 550" 190 dyds
Cogy @) [, [+ 155D+ bl dyds

Goity ) ([ @l [ 1+ b olay)
< C(@,m)" (),

a¢y)| |‘P<y>|dy] dx

IN

IN

IN
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since 1 ) (s) <2™s™. To obtain a similar estimate for the first term on the right in
2
(6.4.17), we argue as follows:

[Lasmme| 8 @) ax

” Jamtl 1 x—y
= [ s E | o [ w2( )01y
dm-‘rllfl xX—sy
= [ aenmico| [ eo) dmﬂ ay

<G [ A+ "EO] [ 12001 X (0% 0= )| bl dyax

loe|<m+1

dx

dx

<GUEWI [ [ A+brslmee)] T 107 @I(1+ )" dydx

\a\§m+l

<GS [ BRI+ by [ ()" 3 (0" ax

loe|<m+1
< CH(D,m)s"™ Nyu(P).
We now set Co(@,m) = C)(®@,m) + Cj (@, m) to conclude the proof of (6.4.16). [
Next, we discuss the proof of Theorem 6.4.4.

Proof. (a) We pick a continuous and integrable function y/(s) on the interval [1, )
that decays faster than the reciprocal of any polynomial (i.e., |w(s)| < Cys™ for all
N > 0) such that

e 1 ifk=0
k )
ds = 6.4.18
/1 S ylsds {0 ifk=1,2,3,.... (64.18)
Such a function exists; in fact, we may take
el V2
_ (=i )(s—1)4
yls)=© Im (e % ) (6.4.19)

See Exercise 6.4.4. We now define a function

x) = /1 T ()P (x)ds, (6.4.20)

where P; is the Poisson kernel. The Fourier transform @ is

@ g):/I.W‘V(S)ﬁs(g)dsz/lml//(s)e*Z”S\‘?\ds

(cf. Exercise 2.2.11), which is easily seen to be rapidly decreasing as || — oo.

The same is true for all the derivatives of @. The function @ is clearly smooth on
R"\ {0}. Moreover,
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= & EF & [ g L L
2;@(&) =Y (—2m)*! sHy(s)ds+0(1&") = 0(1&]")
k=0 k! |§| 1

as |€| — 0, which implies that the distributional derivative 8,{1'3 is continuous at the
origin. Since

98 (7 2mIEl) = ol (£)) g | e 2

for some mqy € Z" and some polynomial py, choosing L sufficiently large gives
that every derivative of @ is also continuous at the origin. We conclude that the
function @ is in the Schwartz class, and thus so is @. It also follows from (6.4.18)
and (6.4.20) that

D(x)dx=1+#0.
RV!
Finally, we have the estimate

M(f;@)(x) = sup|(®; + f)(x)]

t>0

= sup
>0

| ws)ldsMr:P) ),

| v <RI ds

IN

and the required conclusion follows with C; = [}” |y/(s)|ds. Note that we actually
obtained the stronger pointwise estimate

M(f;®@) < CiM(f:P)
rather than (6.4.10).

(b) The control of the nontagential maximal function M} (-; @) in terms of the
vertical maximal function M(-;®) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (6.4.11) as a consequence of the estimate

( /R M @)S*N(xV’dx) " <o p, N, @) |M(f; D) (6.4.21)

Lr>

where N is a large enough integer depending on f, 0 < € < 1, and

(F- D &N — (pt ! ! l '
M@0 = s, s [@ONON ) 1y

Let us a fix an element f in .%’/(R") such that M(f; @) € LP. We first show that
M;(f; @)8N lies in LP(R")NL™(R"). Indeed, using (2.3.22) (with & = 0), we obtain
the following estimate for some constants Cy, m, and / (depending on f):
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(D= f)(v)] < Cf% sulg(lyl’“rIZI’”)I((W@)(Z)I

<]zeR"

< Cr(1+p™) Y, sup(1+[2™)[(0P &r)(—2)]
|B|<12€R"

(T4 [y™) m

< fmmOmﬂH)£E£$%1+k|”@ﬂ¢x_dﬂ|
! m(iilgnwr?fl) (L+1") %ﬂseulg( 1+ |z/t™)[ (9P @) (—z/1)]

< C(f, @) (1 +ely)me (A +™) "+,

Multiplying by (, /)" (1 +¢|y|)™" for some 0 <t < ! and |y — x| < yields

t
t+€
(1 _|_£7m)(£n7N+£n+lfN)

t \N 1 e
(@5 A0, ) (1 4 <) (1 ely V- ,

t+e/ (1+e¢ly])
and using that 1+ &|y| > ) (1+ €x|), we obtain for some C(f, ®@,&,n,1,m,N) < o,

C(f7 @,8,”, l7m7N)

Mif(f;(p)&N(x)S (1+8|x|)N—m

Taking N > (m-+n)/p, we deduce that M; (f; @) lies in LP(R") NL™(R").
We now introduce a parameter L > 0 and functions

1

U(f;@)N(x)= sup sup f|v((p‘*f)(y)|( t )N(1+8|y|)N

O<r< ! y—xl<t t+e€

and

V(@) ) = sup sup [(@x )| (] )N< : ( : )L'

0<r< ) yeR" I+ T4+ely)¥ \ 1+ |x — |

We fix an integer L > n/p. We need the norm estimate

V(£ @)NE|,, < Cop M (F: )|, (6.4.22)
and the pointwise estimate
U(f; @) <A(®,N,n,p)V(f; )N, (6.4.23)

where
A(@,N,n,p) =2-Co(d;®;N + L) Ny11(9; D).

To prove (6.4.22) we observe that when z € B(y,t) C B(x,|x —y| +1t) we have
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@0, L) (1 e <MD

from which it follows that for any 0 < ¢ < e and y € R”,

AN 1
[(@# )()] (,+g) (1+eyN

1 % . eN >q
M ;D)™ 9d
<(|B<y,t>|/3<y,t> {3 @) (@)
|x—y|+r)3< 1 - N )
< M (f; D)% 9d
( / 1Bt b — 3] 4 0)] Sy ™1 P @72

< ('x_ty|+I)LM([Mf(f;<D)£’N}q)‘l’(x),

where we used that L > n/p. We now take 0 < ¢ < p and we use the boundedness
of the Hardy-Littlewood maximal operator M on L?/4 to obtain (6.4.22).

In proving (6.4.23), we may assume that @ has integral 1; otherwise we can
multiply @ by a suitable constant to arrange for this to happen. We note that

V(@5 )| = |(VO), # £| < v/ 3 [(3;0), % £1.

J=1

and it suffices to work with each partial derivative d;® of @. Using Lemma 6.4.5
we write

1
0P :/ OY) x d,ds
0

for suitable Schwartz functions @), Fix x € R", 1 > 0, and y with [y —x| <7 < 1/e.
Then we have

(@l )N( :

t+¢ 1+ €ly|)V
N 1
( g) 1+8|y| ((@(S))z*%*f)(y)ds (6.4.24)
" —1 | ?l*f )‘
t+e) / /n ‘@ | (1+ely)V dzds.

Inserting the factor 1 written as

L e (e

in the preceding z-integral and using that
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1 - (1+¢lz))V
(I+elyD¥ = (1 +ely—z)V

and the fact that |x — y| < ¢ < 1/¢€, we obtain the estimate
/ / 7n|@ 71 }‘( St*f)y Z)|dZdS
t+8 n (1+¢€ly))V
L
t -(- d
vt [ e (CTR DT oo ac
0 JR" ts N

1
V(f; @) (x) /0 /R TN etz V(s 1+ 12)H 0 (2)| dzds
2LC0(8j(15;N+L) (ﬁNJrL(aj(D)V(f; (p)s,N,L(x)

IN

IN

A

in view of conclusion (6.4.16) of Lemma 6.4.5. Combining this estimate with
(6.4.24), we deduce (6.4.23). Having established both (6.4.22) and (6.4.23), we con-
clude that

U @) M|, < CapA(DN,n,p)||M (f:0)Y [ . (6.4.25)
We now set
Ee = {xeR": U(f;@)"N (x) <KM;(f;@)"N (x)}
for some constant K to be determined shortly. With A = A(®,N,n, p) we have

£ BN (1117 1 NP
/(Eg)f (M; (f; @) ()] dx < K /(EE)C [U(f; @) (x)]” dx

< oo o W@V ) ax

CrpAP [ o e
< T | M () ()] d

; /R (M (f: @)= (x)] dx,

(6.4.26)

IN

provided we choose K such that K = 2C,’,’7PAP. Obviously K = K(®,N,n,p), i.e.,
it depends on all these variables, in particular on N, which depends on f.

It remains to estimate the contribution of the integral of [M; (f; @)V (x)]” over
the set E;. We claim that the following pointwise estimate is valid:

M (f; @)%Y (x) < Can e M(M(f; ®)") 7 (x) (6.4.27)

for any x € E¢ and 0 < g < oo. Note that C,, y ¢ depends on K. To prove (6.4.27) we
fix x € E and we also fix y such that |y — x| < 1.

By the definition of M; (f; @) (x) there exists a point (yo,) € R%"! such that
|x—yo| <t < é and
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N 1 1
@=nool(, ) ,) Lt ey = 29N, (6.4.28)

Also by the definitions of E¢ and U (f; @)&", for any x € E we have

V@ NEN(, L) (e KM (6429)

for all & satisfying | —x| <t < .. It follows from (6.4.28) and (6.4.29) that

1+sI&I>N

(6.4.30)
1+ €yol

V(@ 1(E)] < 2610 1))

for all & satisfying |€ —x| <t < é We let z be such that |z — x| < ¢. Applying the
mean value theorem and using (6.4.30), we obtain, for some & between yg and z,

(@£~ (@x £)00)| = V(@ x £)E) Il
2K 1+elE]\"
Flen@l ([ 75 el
N+l

=S |(D, = £)(v0)] |z — ol

IN

< l@«)0o).

provided z also satisfies |z — yo| < 2~V ~"2K~!# in addition to |z — x| < t. Therefore,
for z satisfying |z —yo| < 27V"2K~!t and |z — x| < ¢ we have

1 |
(@)@ =, [(@x )| = M (f; )" (x),
where the last inequality uses (6.4.28). Thus we have

1
|B(x,1)[ JB(xa)
1
~ |B(x,1)] B(x.0)NB(yo,2-N-2K~11)
1 1
*(f- &N q
el |B(X,t)| B(x,t)ﬂB(yo,ZﬁNfszlt) 411 [Ml (f’ ) (X)] dW
B(x,t)NB(yo,2 V2K~ 't)| 1 . .
= o |§3((.)x 1) )|4q [M{(f; @) (x)]
Congd™? [Mik (f@)eN (x)]q,

M(M(f;®)7)(x) > [M(f:®)(w)]?dw

[M(f: @) (w)]*dw

V

where we used the simple geometric fact that if |x —yo| <t and § > 0, then
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|B(x,1) N B(y0, 1))

>c,5>0,
|B(x,1)] =ne

the minimum of this constant being obtained when |x — yo| = ¢. See Figure 6.1.

D

Fig. 6.1 The ball B(yy, 6t)
captures at least a fixed pro-
portion of the ball B(x,t).

This proves (6.4.27). Taking r < p and applying the boundedness of the Hardy—
Littlewood maximal operator yields

/E (M (f: @) (x)]"dx < Copy g np /R M(f;®)(x)" dx. (6.4.31)

Combining this estimate with (6.4.26), we obtain

1
Jo D)) < Ch [ MO [ (0]

and using the fact (obtained earlier) || M; (f; @) || 1» < o0, we obtain the required
conclusion (6.4.11). This proves the inequality

M5 (f: @) ||y < 2Y7Co k| M(f: )|

- (6.4.32)

The previous constant depends on f but is independent of €. Notice that
Mgz 2 ) s @0
15 T x) = sup ( ) sup % f)(y
(1 +elx|)¥ o<t<l/e \TE/ |y i<t
and that the preceding expression on the right increases to
27 VM (f: @) (x)

as € | 0. Since the constant in (6.4.32) does not depend on &, an application of the
Lebesgue monotone convergence theorem yields
1
M5 (£ @], <2V P Coygenp|[MF: )|, - (6.4.33)
The problem with this estimate is that the finite constant 2YCq y & 4., depends on
N and thus on f. However, we have managed to show that under the assumption
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|M(f: @) ;p < °°, One must necessarily have |M; (f; D) 1p <o This is a signifi-
cant observation that allows us now to repeat the preceding argument from the point
where the functions U (f;¢)&" and V(f;¢)&N are introduced, setting € = N = 0.
Since the resulting constant no longer depends on the tempered distribution f, the
required conclusion follows.

(c) As usual, B(x,R) denotes a ball centered at x with radius R. It follows from
the definition of M} (f; @) that

(@ o+ )W <My (f: @) (z)  if z€B(yar).

But the ball B(y,ar) is contained in the ball B(x, |x — y| + at); hence it follows that

\ 1 RO
(@O < ) o M @)@z

1 / .
< M (f;@)(z) dz
|B(y,at)| JB(x,lx—y|-+ar)

(|x_y|+at>nM(M,f(f;<P)Z)(x)

at

IN

n
max(l,a”)(lxtyl—i—l) MM (f:®)%) (v),
from which we conclude that for all x € R” we have

n

My (@) (3) < max(1,a™) {M (M (£:0)8) ()}

Raising to the power p and using the fact that p > n/b and the boundedness of the

Hardy-Littlewood maximal operator M on L?/", we obtain the required conclusion
(6.4.12).

(d) In proving (d) we may replace b by the integer by = [b] + 1. Let @ be a

Schwartz function with nonvanishing integral. Multiplying @ by a constant, we can

assume that @ has integral equal to 1. Applying Lemma 6.4.5 with m = by, we write
any function @ in .Zy as

00)= [ (O @) ()ds

for some choice of Schwartz functions © ). Then we have

o) = [ (0= @)0)ds

for all ¢ > 0. Fix x € R". Then for y in B(x,t) we have
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oenols [ RnI(@(”)r(Z)II(q’rs*f)(y—Z)ldzds

< [ [ 1@ m )()('x_(s);_Z”—H)bodzds

b =yl ld Y
S/S‘O A |(@(S))t(z)|MZ§(f;d§)(x)< , + ) —|—1) dz ds
<2b0M** (f; D)( / 7}:0/ (|w|—|—1) dw ds

1
<2033 (15 @) () [ 50Co(@.00) 0 Wy () ds
0

where we applied conclusion (6.4.16) of Lemma 6.4.5. Setting N = by = [b] + 1, we
obtain for y in B(x,7) and ¢ € Zy,

(@ ) ()] < 27Co( @, bo) My, (f3 P) ().

Taking the supremum over all y in B(x,t), over all # > 0, and over all ¢ in Fy, we
obtain the pointwise estimate

AN (f)(x) < 200Co(P,bo) My (3 D) (x) x€R",
where N = by + 1. This clearly yields (6.4.13) if we set Cy = 220Cy(®, by).

(e) We fix an f € .%/(R") that satisfies ||.#Zy(f)||,, < e for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ¢

and we observe that for some positive constant ¢ = ¢y, we have that ¢ ¢ is an element
of Zy and thus M (f;c@) < #n(f). Then

(@)X < inf sup [(cof)(z)]”

ly—x|<1),—y|<1

< inf Mi(f;co)(y)”
[y—x|<1

1
o o M Ge0)0) ay

IN

1
< [ i Fieo)0) dy

1
< AN (F) ()P dy <o,
vn Rl‘l
which implies that ¢ * f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of H”. We fix a smooth
function with compact support 6 such that

1 if 1
0(x) = 1 b <1,
0 if |x>2.
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We observe that the identity

P(x) = P(x)0(x) + i (627 x)P(x) — 62~ Dx)P(x))

k=1
_ g s TURD 5,k 6()—02(-)
- P+ 8 S0 ((2%“_'2)";,)%()
is valid for all x € R”". Setting
¥ (x) = (6(x) — 6(2x ! ,
(=00 =0@0) |y

we note that for some fixed constant ¢y = co(n,N), the functions ¢y 6 P and co®@®
lie in Z#y uniformly in k = 1,2,3,.... Combining this observation with the identity
for P(x) obtained earlier, we conclude that

lr(n+1) oo B
sup|P, * f| < sup|(0P); * f|+ nfl sup ) 2 k|(co<1)(k))2kt*f}
t>0 t>0 €O w2 >0k
< Cs(n,N).4n(f),

which proves the required conclusion (6.4.14).
We observe that the last estimate also yields the stronger estimate

M (f:P)(x) = sup sup |(P+ f))] < Cs(n,N).Atn(f)(x). (6.4.34)
>0 yeR"
[y—x|<at

It follows that the quasinorm ||M1* (f;P)‘ Lr(RY) is also equivalent to HfHH,,. This
fact is very useful. O

Remark 6.4.6. To simplify the understanding of the equivalences just proved, a
first-time reader may wish to define the H” quasinorm of a distribution f as

Al = M3 (5P

and then study only the implications (a) = (c), (c) = (d), (d) = (e), and

(e) = (a) in the proof of Theorem 6.4.4. In this way one avoids passing through

the statement in part (b). For many applications, the identification of H f H pp With

HM (f <D)| 1» for some Schwartz function @ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 6.4.4 yields

1 2o ey 2 |- )]

Lr (R”) )

where N = [7]+ 1.
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6.4.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 6.4.4. In many appli-
cations we need to be working with dense subspaces of H”. It turns out that both
HP NL?* and H? N L' are dense in H?.

Proposition 6.4.7. Let 0 < p < 1 and let r satisfy p < r < eo. Then L' NH? is dense
in HP. Hence, H” N L* and H? NL" are dense in HP.

Proof. Let f be a distribution in H”(R"). Recall the Poisson kernel P(x) and set
N =[]+ 1. For any fixed x € R" and > 0 we have

[(Box f)(x)] < M{(f3P)(y) < Cttn(f)() (6.4.35)

for any |y — x| < z. Indeed, the first estimate in (6.4.35) follows from the definition
of M;(f;P), and the second estimate by (6.4.34). Raising (6.4.35) to the power p
and averaging over the ball B(x,t), we obtain

e <

Cl’
P < 1 /77.
S it gy DOy < 1

It follows that the function P, * f is in L= (R") with norm at most a constant multiple
of t=/P H flzp. Moreover, this function is also in L?(R"), since it is controlled by
M(f;P). Therefore, the functions P,  f lie in L"(R") for all r < p < . It remains
to show that P * f also lie in H? and that P, f — fin H? ast — O.

To see that P,  f lies in H?, we use the semigroup formula P, x Py = P, for the
Poisson kernel, which is a consequence of the fact that P (&) =e 2™ €] by applying
the Fourier transform. Therefore, for any r > 0 we have

sup Py« Py + f| = sup [Pyt = f| < sup [Py f|,
s>0 s>0 s>0

which implies that
1B o < 1L

for all # > 0. We now need to show that P; x f — f in H? as t — 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup|(Psx P f — Pox f)(x)| — 0 as 1—0 (6.4.36)

s>0

pointwise for all x € R” and also

sup | P x P f — Py f| < 2sup|Ps+ f| € LP(R"). (6.4.37)
>0

s>0 s

Statement (6.4.37) is a trivial consequence of the Poisson semigroup formula. As
far as (6.4.36) is concerned, we note that for all x € R" the function

s |(Pox Pox f) (x) = (Pox ) ()| = [ (Poga ) () = (Pox ) ()]
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is bounded by a constant multiple of s~"/7 and therefore tends to zero as s — oo.
Given any € > 0, there exists an M > 0 such that for all £ > 0 we have

sup (P s Pox f— P ()] < & - (64.38)
s>M 2

Moreover, the function ¢ +— supy< <y |(Ps % B * f — Py + f)(x)| is continuous in 7.
Therefore, there exists a 7y > 0 such that for ¢ < #y we have

€
sup |(Pox Bx f—Pox f)x)[ < - (6.4.39)
0<s<M
Combining (6.4.38) and (6.4.39) proves (6.4.36). ]

Next we observe the following consequence of Theorem 6.4.4.

Corollary 6.4.8. For any two Schwartz functions @ and © with nonvanishing inte-
gral we have

[sup|@: = £1[| ,, ~ [[sup|@: = £ &~ [| £ s
>0 t>0

forall f € ' (R"), with constants depending only on n,p, ®, and ©.
Proof. See the discussion after Theorem 6.4.4. O

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:

x—xo\N
‘JIN((p;xo,R):/ 1+ Y RY9%(x)|dx.
R”( ’ R D ot <N+1
Note that 9y (¢;0,1) = Ny (o).

Corollary 6.4.9. (a) For any 0 < p < 1, any f € HP(R"), and any ¢ € /(R") we
have

(£ 0)] < 9(g) inf Ax(£)(2), (6.4.40)
where N = [Z] + 1. More generally, for any xy € R" and R > 0 we have
(£, 0)] < M (@:x0,R) . in‘f<R///N(f)(z). (6.4.41)
—X0|=

(b) Let 0 < p < 1l and p < r < oo. Forany f € H? we have the estimate

o= f

o < Cp. )M ()| fllr
where N = [n/p]+ 1.

Proof. (a) Set y(x) = @(—Rx+xp). It follows directly from Definition 6.4.1 that
for any fixed z with |z —xp| < R we have
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[(f,@)| = R"|(f* wr)(x0)]
< sup RY|(f*wr)()I

yi [y—zI<R

R"U,.{n(”'W')N 3 |8°‘w(w)|dw]///N(f)(Z)a

|| <N+1

IN

from which the second assertion in the corollary follows easily by the change of
variables x = —Rw + x¢. Taking the infimum over all z with |z — x| < R yields the
required conclusion.

(b) For any fixed x € R"” and ¢ > 0 we have

(0= NI <Mw(@)Mi (13, & )0) <M(@LM(N))  (6442)

N(P)

for all y satisfying |y — x| < 1. Hence
o=l < o [ a1 0)dy < w01 Ch 1]
X

This implies that ||¢ * fHLw < CpnMN(9)||f]| »- Choosing y = x in (6.4.42) and
then taking L” quasinorms yields a similar estimate for || * f]|,,. By interpolation
rs mN((P)HfHHP' .
Proposition 6.4.10. Let 0 < p < 1. Then the following statements are valid:

(a) Convergence in HP implies convergence in ..
(b) H? is a complete quasinormed metrizable space.

Proof. Part (a) says that if a sequence f; tends to f in H”(R"), then f; — f in
< (R"). But this easily follows from the estimate

C o
(£ @) < Co inf M(F)) < 7 | A(F) 2 < CoCup|f[0-
n
which is a direct consequence of (6.4.40) for all ¢ in .7 (R"). As before, here N =

I+1
To obtain the statement in (b), we first observe that the map (f, g ||f 8 HHI’

is a metric on H” that generates the same topology as the quasmorm Fe -
To show that H? is a complete space, it suffices to show that for any sequence of
functions f; that satisfies

2 %N(f/')pdx<°°v

. Rl‘l

J

the series Y ; f; converges in H”(R"). The partial sums of this series are Cauchy in

HP(R") and therefore are Cauchy in .’/ (R") by part (a). It follows that the sequence
Sk « [ converges to some tempered distribution f in .#”/(R"). Sublinearity gives
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sy [ (B) ax <Y [ () dx <o,
J J

R”

which implies that f € H?. Finally,

/};n///zv(f—jikﬁ)l’dx< D /Rn///zv(fj)”dx—m

| j|>k+1

as k — oo; thus the series converges in H”. O

6.4.4 Vector-Valued HP and Its Characterizations

We now obtain a vector-valued analogue of Theorem 6.4.4 crucial in the charac-
terization of Hardy spaces using Littlewood—Paley theory. To state this analogue
we need to extend the definitions of the maximal operators to sequences of distri-
butions. Let a,b > 0 and let @ be a Schwartz function on R”. In accordance with
Definition 6.4.1, we give the following sequence of definitions.

Definition 6.4.11. For a sequence f = {f;} jez of tempered distributions on R” we
define the smooth maximal function of f with respect to @ as

M(f;®)(x) = fggH{(@;*fj)(x)}jHﬁ'

We define the nontangential maximal function (with aperture a) of f with respect to
D as

My (f;@)(x) =sup sup [[{(@+f;) ()} -
=0 \y}iiﬁzat

We also define the auxiliary maximal function

sk (7. _ H{((pl*fj)(x_y)}JHEZ
M7 (f:®)(x) =supsup T Ly

We note that if the function @ is not assumed to be Schwartz but merely inte-
grable, for example, if @ is the Poisson kernel, the maximal functions M( f ; D),
M:(f; @), and M;*(f; @) are well defined for sequences f = {f;}; whose terms
are bounded tempered distributions on R”.

For a fixed positive integer N we define the grand maximal function of f (with
respect to N) as . .

Mn(f)= sup Mi(f:0), (6.4.43)
PEFN
where
Ty = {(p e SR : Ny(p) < 1}
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is as defined in (6.4.5).
We note that as in the scalar case, we have the sequence of simple inequalities
M(F;®@) < M:(F: @) < (1+a)’ M (3 @). (6.4.44)
We now define the vector-valued Hardy space H”(R",¢?).

Definition 6.4.12. Let f = {f;}, be a sequence of bounded tempered distributions

on R" and let 0 < p < co. We say that f lies in the vector-valued Hardy space
HP(R" (%) if the Poisson maximal function

M(F:P) @) = sup[{(B £)(0), o

lies in LP(R™). If this is the case, we set

LP(R")

1
1 = M2 ey = s (S5

The next theorem provides a vector-valued analogue of Theorem 6.4.4.

Theorem 6.4.13. Let 0 < p < 0. Then the following statements are valid:
(a) There exists a Schwartz function @ with [p. @(x)dx # 0 and a constant C,
(which does not depend on any parameters) such that

[p1(f: )|

Ll’(R”,£2> S Cl "f||H17(R’1,£2) (6445)

for every sequence f ={f;}; of tempered distributions.
(b) For every a > 0 and @ in 7 (R") there exists a constant Cy(n, p,a, @) such that

M (f; @) <Ca(n,p,a,®)||M(f; @)

e (6.4.46)

Ll’(R”,[z)
for every sequence f ={f;}; of tempered distributions.

(c) Foreverya>0,b>n/p, and @ in 7 (R") there exists a constant C3(n, p,a,b, ®)
such that

M5 (F: @) 1 o 2) < C3(1,p,0,b,®) [M(F3D)|| o) (6:4:47)

for every sequence f = {fj}; of tempered distributions.
(d) For every b > 0 and @ in .7 (R") with [g. @ (x)dx # 0 there exists a constant
Cu(b, @) such that if N = [[]+ 1 we have

(6.4.48)

[ (f)] < Ca(b, @) || M}’ (f 1 @)

LP(R”,fz) Lr (Rn’€2>

for every sequence f ={f;}; of tempered distributions.
(e) For every positive integer N there exists a constant Cs(n,N) such that every
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sequence fz {fj}; of tempered distributions that satisfies ||///N(f)‘ R 2) <
consists of bounded distributions and satisfies '
Hf ||H1’(R”752) S CS (l’l,N) ||%N(f)‘ U’(R”,[z) 9 (6449)

that is, it lies in the Hardy space HP (R", (?).

Proof. The proof of this theorem is obtained via a step-by-step repetition of the
proof of Theorem 6.4.4 in which the scalar absolute values are replaced by £> norms.
This is small notational change in our point of view but yields a significant improve-
ment of the scalar version of the theorem. Moreover, this perspective provides an
example of the power of Hilbert space techniques. The verification of the details of
this step-by-step repetition of the proof of Theorem 6.4.4 are left to the reader. [

We end this subsection by observing the validity of the following vector-valued
analogue of (6.4.41):

(Z\<ﬁafp>|2)2§%v(<p;xo,R) inf . Zn(F)(z). (6.4.50)
J

lz—xo|<R

The proof of (6.4.50) is identical to the corresponding estimate for scalar-valued
functions. Set y(x) = @(—Rx+ xo). It follows directly from Definition 6.4.11 that
for any fixed z with |z —xp| < R we have

(Sl50)F)

Rn”{(fj * IIIR)(XO)}j||€2

< sup R'{(fixwr) )}l

y: [y—zI<R

< RNy () 4 n(f)(2),
which, combined with the observation
R" Ny () = Ny (@;x0,R),

yields the required conclusion by taking the infimum over all z with |z —xo| < R.

6.4.5 Singular Integrals on Hardy Spaces

To obtain the Littlewood—Paley characterization of Hardy spaces, we need a multi-
plier theorem for vector-valued Hardy spaces.

Suppose that K;(x) is a family of functions defined on R" \ {0} that satisfies the
following: There exist constants A, B < oo and an integer N such that for all multi-
indices o with |er| < N we have
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| Y 07Kj(x)| <Al < oo (6.4.51)
JEZL
and also .
sup | ¥ Kj(&)| < B <. (6.4.52)
EeR jez,

Theorem 6.4.14. Suppose that a sequence of kernels {K;}; satisfies (6.4.51) and
(6.4.52) with N = [Z] +1, for some 0 < p < 1. Then there exists a constant Cy , that
depends only on the dimension n and on p such that for all sequences of tempered
distributions { f;} j we have the estimate

|25
J

Hl’(R’l> S Cn,P(A+B)H{fj}jHHp(Rn’[2) .

Proof. We fix a smooth positive function @ supported in the unit ball B(0,1) with
Jrn @ (x)dx = 1 and we consider the sequence of smooth maximal functions

MY Kj*fj;®) = sup\ng*z[(,-*fj
j >0 j

)

which will be shown to be an element of L”(R”", £2). We work with a fixed sequence
of integrable functions f = {f;},, since such functions are dense in L”(R",¢?) in
view of Proposition 6.4.7.

We now fix a 4 > 0 and we set N = [7]+ 1. We also fix 7 > 0 to be chosen later
and we define the set

Q, ={xeR": An(f)x)>7yA}.

The set 2, is open, and we may use the Whitney decomposition (Appendix J) to
write it is a union of cubes Q; such that

(a) Ur Qr = 2, and the Q)’s have disjoint interiors;

(b) /nl(Qr) <dist (O, (21)°) < 4y/nl(Ox).

We denote by c¢(Qy) the center of the cube Q. For each k we set
di = dist (Q, (21)) +2vnl(Qk) = £(Qr)

so that
B(c(Qx),di) N (£2,) #0.

We now introduce a partition of unity { ¢y}, adapted to the sequence of cubes {Qy }«
such that

(©) xa, = Xk ¢ and each @ satisfies 0 < ¢ < 1;

(d) each ¢y is supported in g Oy and satisfies [p, Qxdx ~ dJ;
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(e) Ha"‘(pkH - < Cod, % for all multi-indices o and some constants Cy.

We decompose each f; as
fi=8j+ bk,
k

where g; is the good function of the decomposition given by

_ Jrn fiordx
and bj = 3 b« is the bad function of the decomposition given by

Jro £ 9k dX> .

biv=(fi—
Jk <fj fRn(Pkd.x

We note that each b ; has integral zero. We define g = {g;}; and b= {b,} ;. At this
point we appeal to (6.4.50) and to properties (d) and (e) to obtain

( ¥ ,,fj(pkdx‘z)i - Ny (@ c(Q), d)

=1 G inf An(f)(z). (6.4.53)

Jre Grdx  Jz—c(Qp)|<dy
But since

. e —|ef
N ; 2 — N d, " 'Cyd
N (P c(Qx), d) < [/ (1+ |x C(Qk)|) v % %l <o,
fR” Prdx Ok dy || <N+1 fR" Prdx

it follows that (6.4.53) is at most a constant multiple of A, since the ball B(c(Qy),d)
meets the complement of 2, . We conclude that
18/l (2, 2) < Cvan ¥ (6.4.54)

We now turn to estimating M (X.; K; * b x; @). For fixed k and € > 0 we have

(<D(9 * ZKj * bj,k) (x)

= Jo P *;KJ (x—y) [fj(y)wk(y) - fj‘-;{gf';ix (Pk()’)] dy
_ _ _ Px(y) _
- /n 2]‘ { (@ +K;) (x—2) — /Rn (®e %K) (x—y) fRnkgokdx dy}(pk(z)f, (z)dz

_ / YR k(x)9k(2) f(2) dz,

where we set R; x(x,z) for the expression inside the curly brackets. Using (6.4.41),
we obtain
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/Rn ZRN‘ (x,2)px(2)fj(2) dz

<2‘ﬁN Rjx(x, )o:c(Qr),di)  inf  n(fj)(z)  (6.4.55)

[z—c(Op) | <dy
< Z‘ﬂN (Rjk(x, ) @ic(Qu)di) — inf  Mn(F)().
z—c(Qk)|<dy
Since @ (z) is supported in 3 0y, the term (1 + le= L(Q")‘) contributes only a constant

factor in the integral defining My (R; x (x, - ) @x; ¢ (Qk) ), and we obtain
NN (R (x, ) @r;c(Qx), dy)

< CNn/ 2 d\a\+n

$Ok o <N+1

g ( k(6 2) o (2 ))‘dz. (6.4.56)

For notational convenience we set K; £ = @+ K;. We observe that the family {K £}
satisfies (6.4.51) and (6.4.52) with constants A’ and B’ that are only multiples of
A and B, respectively, uniformly in €. We now obtain a pointwise estimate for
mN(Rj’k (x, -)(pk;C(Qk),dk) when x € R” \ Q)L' We have

Rt 9o = [ @ {Ki9 ke w)} PO

from which it follows that

o

s { oK) - K5 )] | £

aoc
. < '
‘aza R./,k(X,Z)(Pk(Z)‘ < /R” Jrn Predx

Using hypothesis (6.4.51), we can now easily obtain the estimate

3] foftie-a- e e, 460

for all || < N and for x € R"\ Q,, since for such x we have |x — ¢(Qy)| > cpdy. It
follows that

n 2% X y
AT S @ <0t (G )
J

Inserting this estimate in the summation of (6.4.56) over all j yields

dn+1
Sw(Rjale Jouic (Qk>,dk)ch,nA(|x_c(ka)|,,+l). (64.57)

Combining (6.4.57) with (6.4.55) gives for x € R"\ Q,,
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CyAdH! , .
inf 7).
= = Q)" e <d; v(H)E)

ljk X Z)(Pk( )f/( )dZ

This provides the estimate

CnaAd!T!

SUP}ZK #bjg) (x |7 |x—ch)|”+1y

>0

for all x € R"\ Q,, since the ball B(c(Qx),dy) intersects (€2 )¢. Summing over k
results in

CnaAyAdt! CnAyrdi™!
M(Y Kjxb;;®)( <
(; S ) Z|X—C Q)" 7; (dic+|x —c( Q/<)|)”Jr1

forall x € (£2;)¢. The last sum is known as the Marcinkiewicz function. It is a simple

fact that
dn+l

dx <C, =C,|Q;|;
/Z (di+ [x — (@)1 = n§,|Qk| €2,

see Exercise 4.6.6. We have therefore shown that

M(K xb; ®)(x)dx < Cy,AYA|Q2;], (6.4.58)
Rn

where we used the notation K b = 2jKj*b;.
We now combine the information we have acquired so far. First we have

{M(K * ;@) > A} < {M(K > M+ MK «b; @) > 4}

For the good function g we have the estimate

— = 4 = =
{M(Kxg:@)>4}| < )LZ RnM(K*g;d))(x)de

IN

an2 - 5
(x)[*d
s /Rn;|g,<x>| x
C,,BZ/' ) C,B* [ )
gi(x)|"dx+ / fi(x)|“dx
22 m%" ()] 12 (QA)L;A ()]

2 CuB? 2V(1)2
BOaP |+ 5, [ (P
(£23)°

IN
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where we used Corollary 2.1.12, the L? boundedness of the Hardy-Littlewood max-
imal operator, hypothesis (6.4. 52), the fact that f; = g; on (£2;)¢, estimate (6.4.54),
and the fact that || f'|| ,» < .#/x(f) in the sequence of estimates.

On the other hand, estimate (6.4.58) and Chebyshev’s inequality gives

[{M( (K xb; @) > A < Cnady |,

which, combined with the previously obtained estimate for g, gives
Lo 2 C,B* 212
{(ME i) > 2} <Gy B+ Ty [ ()
e

Multiplying this estimate by pA?~, recalling that 2, = {.#x(f) > YA}, and in-
tegrating in A from O to oo, we can easily obtain

|M(K )| (6.4.59)

rge 2y < Cnn(AY' P+ BP0 |4 n (] )] Ir(Rn2) "

Choosing ¥ = (A+B)~! and recalling that N = [},]+ 1 gives the required conclusion
for some constant C, ,, that depends only on n and p.
Finally, use density to extend this estimate to all f in H?”(R”, (2). O

6.4.6 The Littlewood—Paley Characterization of Hardy Spaces

We discuss an important characterization of Hardy spaces in terms of Littlewood—
Paley square functions. The vector-valued Hardy spaces and the action of singular
integrals on them are crucial tools in obtaining this characterization.

We first set up the notation. We fix a radial Schwartz function ¥ on R" whose
Fourier transform is nonnegative, supported in the annulus ; + 110 <lé|<2- 110
and satisfies o

Y wRE) =1 (6.4.60)
Jjez
for all & # 0. Associated with this bump, we define the Littlewood—Paley operators
A; given by multiplication on the Fourier transform side by the function ‘1?’(2‘f &),
that is,
Ai(f) =AT(f) =W = f. (6.4.61)

We have the following.

Theorem 6.4.15. Let ¥ be a radial Schwartz function on R" whose Fourier trans-
form is nonnegative, supported in 2 0 < €] <2— 10, and satisfies (6.4.60). Let
A; be the Littlewood—Paley operators assoczated with ¥ and let 0 < p < 1. Then
there exists a constant C = Cy, p, w such that for all f € H?(R") we have
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| (%IA.;(J‘)IZ)Z

o S Cl Al (6.4.62)

Conversely, suppose that a tempered distribution f satisfies

(g0

< oo (6.4.63)
Lr

Then there exists a unique polynomial Q(x) such that f — Q lies in the Hardy space
H? and satisfies the estimate

=2l <| (J;Z IAj(f)Iz)%

(6.4.64)

’

Proof. We fix @ € .7 (R") with integral equal to 1 and we take f € H? N L' and M
in Z". Let r;j be the Rademacher functions, introduced in Appendix C.1, reindexed
so that their index set is the set of all integers (not the set of nonnegative integers).
We begin with the estimate

M

] 2 r(@)4)(f)| < sup|@ex Y ri(©)a;(7)

e>0 j=—M

)

which holds since { @ } ¢~ is an approximate identity. We raise this inequality to the
power p, we integrate over x € R” and w € [0, 1], and we use the maximal function
characterization of H? [Theorem 6.4.4 (a)] to obtain

1 p p
/ / ri(@)4;(N))| dxdo <3, / H 2 ri(@a;0)|) do.
0 n j=—M ' M HP
The lower inequality for the Rademacher functions in Appendix C.2 gives
M p
[(X |Aj(f)(x)|) dx < et / H 2 @A) do.
R =M — HP

where the second estimate is a consequence of Theorem 6.4.14 (we need only the
scalar version here), since the kernel

M

Y, (@) (x)

k=—M

satisfies (6.4.51) and (6.4.52) with constants A and B depending only on n and ¥
(and, in particular, independent of M). We have now proved that

(3 wne)

)7 < Cn,p,'f’HfHHpv
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from which (6.4.62) follows directly by letting M — oo. We have now established
(6.4.62) for f € H? NLL. Using density, we can extend this estimate to all f € H?.
To obtain the converse estimate, for r € {0, 1,2} we consider the sets

3Z+r={3k+r: keZ},
and we observe that for j,k € 3Z + r the Fourier transforms of A;(f) and Ax(f) are

disjoint if j # k. We fix a Schwartz function 11 whose Fourier transform is compactly
supported away from the origin so that for all j, k € 3Z we have

A;  when j=
Alp, = A7 Whenj=k (6.4.65)
J 0 when j # k,

where Ajn is the Littlewood—Paley operator associated with the bump 7, that is,
A]T-] (f) = f*n,-,. It follows from Theorem 6.4.14 that the map

{fj}jeZ - Z Ajn (fi)
Jje3z
maps H? (R",¢?) to H?(R"). Indeed, we can see easily that

Y A e)| <8

jesz

and

> 0% (27" (27x)) | < Aglx 1
je3Z

for all multi-indices o and for constants depending only on B and A,,. Applying this
estimate with f; = A;(f) and using (6.4.65) yields the estimate

for all distributions f that satisfy (6.4.63). Applying the same idea with 3Z 4 1 and
3Z + 2 replacing 3Z and summing the corresponding estimates gives

But note that f —3; A;(f) is equal to a polynomial Q(x), since its Fourier transform
is supported at the origin. It follows that f — Q lies in H” and satisfies (6.4.64). O

<G| (X 1a00R)’

je’z

3 40|

je3z H

Lr

> 4(f)]

JEZ

< 3’1’C"vﬂ!5”" (jezimj(fﬂz)i

HP ’

We show in the next section that the square function characterization of H? is
independent of the choice of the underlying function ‘.
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Exercises

6.4.1. Prove that if v is a bounded tempered distribution and %,k are in .7 (R"),
then
(hl *hz)*vzhl *(hz*v).

6.4.2. (a) Show that the H' norm remains invariant under the L! dilation f;(x) =
7t x).

(b) Show that the H” norm remains invariant under the L? dilation *~"/? f,(x) in-
terpreted in the sense of distributions.

6.4.3. (a) Let | < g <eoandletgin L?(R") be a compactly supported function with
integral zero. Show that g lies in the Hardy space H' (R").

(b) Prove the same conclusion when L is replaced by Llog™ L.

[Hint: Part (a): Pick a €;° function @ supported in the unit ball with nonvanishing
integral and suppose that the support of g is contained in the ball B(0,R). For |x| <
2R we have that M(f; @)(x) < Co M(g)(x), and since M(g) lies in LY, it also lies in
L'(B(0,2R)). For |x| > 2R, write (@, xg)(x) = [gn (P(x—y) — ®(x))g(y)dy and
use the mean value theorem to estimate this expression by ¢~"~! HV(IJHL‘” HgHL, <
x| """ 'Co||g| 4~ since > [x—y| > |x| — [y| > |x|/2 whenever |x| > 2R and |y| <R.
Thus M(f; @) lies in L' (R"). Part (b): Use Exercise 2.1.4(a) to deduce that M(g) is
integrable over B(0,2R).]

6.4.4. Show that the function y(s) defined in (6.4.19) is continuous and inte-
grable over [1,), decays faster than the reciprocal of any polynomial, and satisfies

(6.4.18), that is,
oo 1 ifk=0
k 9
d =
/1 S yls)ds {o ifk=1,2,3,....

[Hint: Apply Cauchy’s theorem over a suitable contour. |

6.4.5. Let 0 < a < oo be fixed. Show that a bounded tempered distribution f lies in
H? if and only if the nontangential Poisson maximal function

M (f;P)(x) =sup sup [(Pxf)(y)|
=0 \y{iﬁzat

lies in L?, and in this case we have HfHHP R~ HM;(f;P)HLp.
[Hint: Observe that M(f;P) can be replaced with M, (f;P) in the proof of parts (a)
and (e) of Theorem 6.4.4).|

6.4.6. Show that for every integrable function g with mean value zero and support
inside a ball B, we have M(g; @) € L?((3B)°) for p > n/(n+1). Here @ is in .7.

6.4.7. Show that the space of all Schwartz functions whose Fourier transform is
supported away from a neighborhood of the origin is dense in H?.
[Hint: Use the square function characterization of H”.|
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6.4.8. (a) Suppose that f € HP(R") for some 0 < p < 1 and @ in “(R"). Then
show that for all ¢ > 0 the function &, x f belongs to L"(R") for all p < r < co. Find
an estimate for the L” norm of @ * f in terms of || ||, and # > 0.

(b) Let 0 < p < 1. Show that there exists a constant C, , such that for all f in
H?(R")NL'(R") we have

FEN < Cup €1 " If Lo -

[Hint: Obtain that
[0 £l <P f ]l

using an idea from the proof of Proposition 6.4.7. ]

6.4.9. Show that H?(R", %) = LP(R",¢*) whenever 1 < p < co and that H'(R",¢?)
is contained in L' (R", ¢?).

6.4.10. For a sequence of tempered distributions f = {f;};, define the following
variant of the grand maximal function:

. 1

AP = sup sup sup (T ((@e [)0])
{(pj}jegst>O‘3;€xl‘lig j

where N > [7]+ 1 and

Fu={to; e 7 R): Towie) <1}.

J

Show that for all sequences of tempered distributions f = {f;}; we have

H/ZZN(f)HLp(Rn,eZ) ~ ||%N(f)HLP(R”,£2)

with constants depending only on n and p.
[Hint: Fix @ in .#(R") with integral 1. Using Lemma 6.4.5, write

(o) = [ (O + @) ()

and apply a vector-valued extension of the proof of part (d) of Theorem 6.4.4 to
obtain the pointwise estimate

MN(F) < CupMiyf (f 1 @),

where m > n/p.]
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6.5 Besov-Lipschitz and Triebel-Lizorkin Spaces

The main achievement of the previous sections was the remarkable characteriza-
tion of Sobolev, Lipschitz, and Hardy spaces using the Littlewood—Paley operators
A;. These characterizations motivate the introduction of classes of spaces defined
in terms of expressions involving the operators A;. These scales furnish a general
framework within which one can launch a study of function spaces from a unified
perspective.

We have encountered two expressions involving the operators A; in the charac-
terizations of the function spaces obtained in the previous sections. Some spaces
were characterized by an L” norm of the Littlewood—Paley square function

(SReanr)’.

and other spaces were characterized by an ¢¢ norm of the sequence of quantities
127%4;(f)||,»- Examples of spaces in the first case are the homogeneous Sobolev
spaces, Hardy spaces, and, naturally, L” spaces. We have studied only one example
of spaces in the second category, the Lipschitz spaces, in which case p = g = oo.
These examples motivate the introduction of two fundamental scales of function
spaces, called the Triebel-Lizorkin and Besov—Lipschitz spaces, respectively.

6.5.1 Introduction of Function Spaces

Before we give the pertinent definitions, we recall the setup that we developed in
Section 6.2 and used in Section 6.3. Throughout this section we fix a radial Schwartz
function ¥ on R” whose Fourier transform is nonnegative, is supported in the an-
nulus 1 — } <|&| <2, is equal to one on the smaller annulus 1 < || <2 -3, and
satisfies

S weE) =1, E#0. (6.5.1)
Jjez
Associated with this bump, we define the Littlewood—Paley operators A; = AJT

given by multiplication on the Fourier transform side by the function ‘f’(Z‘j £). We
also define a Schwartz function @ such that

B(E) = {Z;<o P(277E)  when & #£0,

6.5.2
1 when & = 0. ( )

Note that @(&) is equal to 1 for || <2 — 2 and vanishes when |£| > 2. It follows
from these definitions that

So+ Y, Aj=1, (6.5.3)
j=1
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where S = Sg’ is the operator given by convolution with the bump @ and the con-
vergence of the series in (6.5.3) is in ./ (R"). Moreover, we also have the identity

Y Aj=1, (6.5.4)
jeZ

where the convergence of the series in (6.5.4) is in the sense of ' (R")/ 2.

Definition 6.5.1. Let & € R and 0 < p,q < . For f € ./ (R") we set

1

[ »)")’

ss = 150N + (T @7)1450)]
j=1

with the obvious modification when p,q = eo. When p,g < oo we also set

’

Il = 5l + (3, 1,00)7)’

The space of all tempered distributions f for which the quantity || f|| yeuq is finite
P

is called the (inhomogeneous) Besov—Lipschitz space with indices «,p,q and is

denoted by B,‘i“q. The space of all tempered distributions f for which the quantity

|| £|| eua is finite is called the (inhomogeneous) Triebel-Lizorkin space with indices
P

@, p,q and is denoted by F,"?.
We now define the corresponding homogeneous versions of these spaces. For an
element f of ' (R")/ % we let

[F »)")’

s = (X @)|a,00)

jez

and

’

I7lgee = (5, a0

The space of all £ in ./ (R")/ 22 for which the quantity H f || poa 18 finite is called the
P

(homogeneous) Besov—Lipschitz space with indices o, p,q and is denoted by BZ“”.
The space of f in .#'(R")/ < such that H f H poa < o is called the (homogeneous)
P

Triebel-Lizorkin space with indices o, p,q and is denoted by F,;"/.

We now make several observations related to these definitions. First we note that

the expressions || . ‘ Feas || ‘ Fe || ‘ B and H . || B are built in terms of L?

quasinorms of ¢4 quasinorms of 2/A; or /4 quasinorms of L” quasinorms of the
same expressions. As a result, we can see that these quantities satisfy the triangle
inequality with a constant (which may be taken to be 1 when 1 < p,g < o). To de-
termine whether these quantities are indeed quasinorms, we need to check whether
the following property holds:
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|flly=0= f=0, (6.5.5)

where X is one of the £,"%, F;"%, B;?, and B};*. Since these are spaces of distribu-
tions, the identity f = 0 in (6.5.5) should be interpreted in the sense of distributions.
If HfHX = 0 for some inhomogeneous space X, then So(f) = 0 and A;(f) = 0 for

all j > 1. Using (6.5.3), we conclude that f = 0; thus the quantities || - || ,a.q and
P

H . H B are indeed quasinorms. Let us investigate what happens when H f H x = 0for
some homogeneous space X. In this case we must have A;(f) = 0, and using (6.5.4)
we conclude that fmust be supported at the origin. Proposition 2.4.1 yields that f
must be a polynomial and thus f must be zero (since distributions whose difference
is a polynomial are identified in homogeneous spaces).

Remark 6.5.2. We interpret the previous definition in certain cases. According to
what we have seen so far, we have

F,?Jz F,?’zzLP, 1< p<oo,
FX* ~ HP, 0<p<l,
F?~ LP, 1 < p < oo,
B2~ L, 1< p <o,
BY” ~ Ay, y>0,
BI” ~ A, y>0,

where =~ indicates that the corresponding norms are equivalent.

Although in this text we restrict attention to the case p < oo, it is noteworthy
mentioning that when p = oo, F2 can be defined as the space of all f € .’/ 2 that
satisfy

1
1 > . q
g = 2IXIA . q oo,
||fHF°° Qdy:(lilifcube/Q |Q| ( 2 ( | ](f)D ) <

j=—1log; £(Q)

In the particular case g =2 and o = 0, the space obtained in this way is called BMO
and coincides with the space introduced and studied in Chapter 7; this space serves
as a substitute for L™ and plays a fundamental role in analysis. It should now be
clear that several important spaces in analysis can be thought of as elements of the
scale of Triebel-Lizorkin spaces.

It would have been more natural to denote Besov—Lipschitz and Triebel-Lizorkin
spaces by Bﬁyq and Fo’;q to maintain the upper and lower placements of the corre-
sponding indices analogous to those in the previously defined Lebesgue, Soboleyv,
Lipschitz, and Hardy spaces. However, the notation in Definition 6.5.1 is more or
less prevalent in the field of function spaces, and we adhere to it.
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6.5.2 Equivalence of Definitions

It is not clear from the definitions whether the finiteness of the quasinorms defining
the spaces By, Fy*Y B}, and F,;"? depends on the choice of the function ¥ (recall
that @ is determined by V). We show that if €2 is another function that satisfies
(6.5.1) and O is defined in terms of €2 in the same way that @ is defined in terms
of ¥, [i.e., via (6.5.2)], then the norms defined in Definition 6.5.1 with respect to
the pairs (@,%¥) and (©,) are comparable. To prove this we need the following
lemma.

Lemma 6.5.3. Let 0 < ¢y < o0 and 0 < r < o. Then there exist constants C and C,
(which depend only on n, co, and r) such that for all t > 0 and for all €" functions
u on R" whose Fourier transform is supported in the ball |&| < cot and that satisfy
lu(z)] < B(1+|z|) for some B > 0 we have the estimate

LVux=2)] _ o lux=2)]

n — 1
zer (141|z])

1
<CM(Jul")(x)", 6.5.6
cerr b (141[2))" 2M(Ju]") (x) (6.5.6)

n =
r

where M denotes the Hardy-Littlewood maximal operator. (The constants Cy and
C, are independent of B.)

Proof. Select a Schwartz function y whose Fourier transform is supported in the

ball |€| < 2¢g and is equal to 1 on the smaller ball |£| < ¢o. Then l/?(f) is equal to
1 on the support of & and we can write

ur=2) = [ Pylile—z=y)uls)dy.

Taking partial derivatives and using that y is a Schwartz function, we obtain
Vulr—2)| < Cy [ (14— z—3) Mu(y)]dy.
RH

where N is arbitrarily large. Using that for all x,y,z € R" we have

N ER
1< (A +tx—z—y|)r ( 1) s
(L+tfx—yl)r
we obtain
1 V - n
| u(x ZZ' SCN/ t"(l+t|x—z—y|)r_N |u(y)| . ’
t(1+tlz])r R" (I+tlx—y|)r

from which the first estimate in (6.5.6) follows easily.
Let |y| < & for some & > 0 to be chosen later. We now use the mean value theorem
to write
ulx—z)=(Vu)(x—z—-&)-y+ulx—z-y)

for some &, satisfying |&,| < |y| < 8. This implies that
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u(x—z)[ < sup  [(Vu)(x—w)[ &+ [u(x—z—y)|.
[w|<|z|+6

Raising to the power r, averaging over the ball |y| < §, and then raising to the power
1 .
, yields

|u<x—z>|§crl swp_[(Vile—w)la (| /y<5|u<x—z—y>|fdy)']

n
[w|<|z]+6 V6

with ¢, = max(2'/",2"). Here v, is the volume of the unit ball in R". Then

1

|(Vu) (x —w) 5 <an5" /\y\§5+\2\ |u(x_y)|rdy) r] .

Ju(x—2)| l ,
i<+ (1+fz))r (1+1[z])

(L+elz)7 ~

n
r

We now set 6 = ¢/t for some € < 1. Then we have

1 2

)
Wi <lz]+ = < ,
t L+t|z] = 14¢|w|

and we can use this to obtain the estimate

t" / r

. (=)l dy )
lu(x—2z)| < sup 1 |(Vu)(x—w)|8<vn£ y|< !+l

(I+el2))r = " wern t (1+1]w))” (1+1]z))"
with ¢, = max(2!/7,2)2"/" 1t follows that

- 1 V - n

oDl < [sup IV ury ]

zeRe (141|z])r werr T (L+tw|)r

Taking € = % (crn C1)~', where Cj is the constant in (6.5.6), we obtain the second
estimate in (6.5.6) with C, = 2&~"/". At this step we used the hypothesis that

=)l _ o B+l [

e (1+1z])r 7 zern (141]2])

This concludes the proof of the lemma. 0

Remark 6.5.4. The reader is reminded that # in Lemma 6.5.3 may not be a function;
for example, this is the case when u is a polynomial (say of degree [n/r]). If u
were an integrable function, then u would be a bounded function, and condition
lu(x)| < B(1+ |x|)7 would not be needed.

We now return to a point alluded to earlier, that changing ¥ by another bump
€ that satisfies similar properties yields equivalent norms for the function spaces
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given in Definition 6.5.1. Suppose that €2 is another bump whose Fourier transform
is supported in the annulus 1 — ; < |&| < 2 and that satisfies (6.5.1). The support
properties of ¥ and €2 imply the identity

AP = A2 (AT + a7 +AT). (6.5.7)
Let 0 < p < eoand pick r < p and N > " +n. Then we have

A (Hax=2)| 2z

QY
|7 A ()] < CNﬂ/n (1+2j|z|)” (1427|z))N=7

AT (f 2ing 6.5.8
< Cva Sup| 2)| / " (6.5.8)
z€R™ l+2/|z| n (14 24]z)V~
< Cnra(M(AY (f)1) ()7

where we applied Lemma 6.5.3. The same estimate is also valid for AQAJ"I:'H( f)

and thus for AJQ (f), in view of identity (6.5.7). Armed with this observation and
recalling that r < p, the boundedness of the Hardy-Littlewood maximal operator
on LP/" yields that the homogeneous Besov—Lipschitz norm defined in terms of the
bump 2 is controlled by a constant multiple of the corresponding Besov—Lipschitz
norm defined in terms of ¥. A similar argument applies for the inhomogeneous
Besov-Lipschitz norms. The equivalence constants depend on ¥, Q2 n, p,q, and o.

The corresponding equivalence of norms for Triebel-Lizorkin spaces is more
difficult to obtain, and it is a consequence of the characterization of these spaces
proved later.

Definition 6.5.5. For » > 0 and j € R we introduce the notation

g o (B )
Mo 00 = 580 ™ (a0

so that we have
My (f;¥) = sup M3 (f3 ),
t>0
in accordance with the notation in the previous section. The function M;*(f;'¥) is
called the Peetre maximal function of f (with respect to V).

We clearly have
AF () < M5 (f:9),

but the next result shows that a certain converse is also valid.
Theorem 6.5.6. Let b > n(min(p,q)) "' and 0 < p,q < . Let ¥ and Q be Schwartz

functions whose Fourier transforms are supported in the annulus ; <|&| <2 and
satisfy (6.5.1). Then we have
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H( |2’°‘M fQ)|) (6.5.9)

=g

forall f € 7' (R"), where C = Cq p gnp w0

Proof. We start with a Schwartz function © whose Fourier transform is nonnegative,
supported in the annulus 1 — % < |€] <2, and satisfies

YoeiE?=1, EcR"\{0}. (6.5.10)

JEZ

Using (6.5.10), we have

Q) ixf=3 (2450, )% (0% f).

JEZL
It follows that
il (@ ) (x—2)
(1+2|z))P
0, j* f)(x—z—y)|
< 2]{0{/ Q o) |( 2-J d
JEZZ | 2k * - /)( )| (1+2k|z|)b y
L+ 2y +2])" [0, * f) (x—z—)|
. 2]{0{/ 2kn Q @ 2/( ( 2 )
2 (@)@ 4 Lo (1421 +2l)
L+ 2275y +2])" (8- * f) (x—z—Y)]
< 2’<°‘/ Q+0, ;. ( 27 %] d
= ]EZZ R”|( *® 2-( k))( )| (1+2k|Z|)b (1+2J|y+2|)b
14277 Ky +27|2))> .
< 3 k) / ) ( dy2/M (£
z (@50, 4 )0 e M (:0)()

< 3200 | 1250, 6.0) ()| (14275 (142741 dy2 M £:0) ().
JEZL

We conclude that
2M(f:Q)(x) < Y Vi 21OM(£:0) (), (6.5.11)
JEZL
where

V=271 420 [ (@50, )0)](1+2Ty) dy

We now use the facts that both 2 and © have vanishing moments of all orders and
the result in Appendix K.2 to obtain

2—lilL

|(Q *@2’/)()}” S CL,NJL,@,Q (1 +2mm(07]) |y|)N
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for all L,N > 0. We deduce the estimate
Vil < CLyne.02 M
for all M sufficiently large, which, in turn, yields the estimate
3, Vit <
J€Z

We deduce from (6.5.11) that for all x € R" we have

H{zkalejc(f;Q }kH/q <Capqn'f’9H{2kaMﬁ (f:0)( }"HW

We now appeal to Lemma 6.5.3, which gives
XM (f30) < C2RM(IAL (f)I)r = CM(12X%A2 (f)]7)”

with b = n/r. We choose r < min(p,q). We use the LP/"(R",£4/") to LP/"(R",¢4/")
boundedness of the Hardy-Littlewood maximal operator, Theorem 4.6.6, to com-
plete the proof of (6.5.9) with the exception that the function ¥ on the right-hand
side of (6.5.9) is replaced by ©. The passage to ¥ is a simple matter (at least when
p > 1), since

AV =AT (A2, +49+49,)).
For general 0 < p < o the conclusion follows with the use of (6.5.8). ]

We obtain as a corollary that a different choice of bumps gives equivalent
Triebel-Lizorkin norms.

Corollary 6.5.7. Let ', Q be Schwartz functions whose Fourier transforms are sup-
ported in the annulus 1 — ; < €| <2 and satisfy (6.5.1). Let ®@ be as in (6.5.2) and
let

O

Then the Triebel-Lizorkin quasinorms defined with respect to the pairs (Y, ®@) and
(Q,0) are equivalent.

Proof. We note that the quantity on the left in (6.5.9) is greater than or equal to

(5, pearoor)’

JjezZ

Lr

for all f € ./(R"). This shows that the homogeneous Triebel-Lizorkin norm de-
fined using €2 is bounded by a constant multiple of that defined using *¥'. This proves
the equivalence of norms in the homogeneous case.

In the case of the inhomogeneous spaces, we let Sg’ and S(g) be the operators
given by convolution with the bumps @ and O, respectively (recall that these are
defined in terms of ¥ and ). Then for f € .#’(R") we have



76 6 Smoothness and Function Spaces
Oxf=0x%(Pxf)+Ox (Wi xf), (6.5.12)

since the Fourier transform of the function @ + ¥, is equal to 1 on the support of
©. Applying Lemma 6.5.3 (with = 1), we obtain that

1

©x (D= f)| <C,M(|Dxf|")r
and also 1
|©x (o1 x )| <CM(|¥1 % f]")r

for any 0 < r < eo. Picking r < p, we obtain that

|+ (@ )] < ClIS5 ()]

and also

@ (i % 1), < ClAF ()]l

Combining the last two estimates with (6.5.12), we obtain that ||S§(f)||,, is con-
trolled by a multiple of the Triebel-Lizorkin norm of f defined using ¥'. This gives
the equivalence of norms in the inhomogeneous case. 0

Several other properties of these spaces are discussed in the exercises that follow.

Exercises

6.5.1. Let 0 < gg < g1 <o0,0 < p <oo, €>0,and x € R. Prove the embeddings
0,4 oq
B%0 C B,
a, o,q
Fp 9 C F,7 L
ote.q oq
BP 0 C BP L

O+€,q90 0,41
F, C F,
where p and g are allowed to be infinite in the case of Besov spaces.

6.5.2. Let0 < g <oo,0< p<eo, and a € R. Show that

o, min(p,q) : o,max(p,q)
B, C F*1 C B, v,
[Hint: Consider the cases p > g and p < g and use the triangle inequality in the
spaces L/ and ¢4/P, respectively.}

6.5.3. (a) Let 0 < p,g < o and o € R. Show that .’ (R") is continuously embedded
in B;Y(R") and that the latter is continuously embedded in .7/ (R").
(b) Obtain the same conclusion for F,"/(R") when p,q < co.
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6.5.4.0 < p,qg < e and o € R. Show that the Schwartz functions are dense in all
the spaces B, (R") and F,"!(R").

[Hint: Every Cauchy sequence {f; } in By is also Cauchy in .#’(R") and hence
converges to some f in.#’(R"). Then A;(fi) — Aj(f) in .7/ (R"). But A;(fy) is also
Cauchy in L” and therefore converges to A;(f) in L”. Argue similarly for F;"/(R").]

655. Leta cR,let0 < p,g<eo,andlet N =[] + + 1. Assume that m is

a ¢ function on R"\ {0} that satisfies

min(p.q) ]

|07m(&)] < Cylg| ™

for all |y] < N. Show that there exists a constant C such that for all f € ./(R") we
have

H(mf)vHBg“q < CHfHB;hq.

[Hint: Pick r < min(p,q) such that N > 4 +". Write m = ¥ ;m;, where m;(&) =

O(277&)m(E) and O(27J&) is supported in an annulus 2/ < |€| < 2/+!, Obtain the
estimate

|(m;4;())" (x—2)] <Cs

o 2l jm ()| (1+27|y])" d
zeR” (1+2J|z])r ZER" 1 +2/|Z| / j

<e(/, |m,~<2f<->>V<y>|2<1+|y|>2Ndy)2

Then use the hypothesis on m and apply Lemma 6.5.3.]

6.5.6. (Peetre [258] ) Let m be as in Exercise 6.5.5. Show that there exists a constant
C such that for all f € ’'(R") we have

H(mf)vHFlf"q < CHfHF]g,q .
[Hint: Use the hint of Exercise 6.5.5 and Theorem 4.6.6.]

6.5.7. (a) Suppose that B;)?° = B;!" with equivalent norms. Prove that oy =
and po = p;. Prove the same result for the scale of F spaces.

(b) Suppose that By " = By!!' with equivalent norms. Prove that gy = q1. Argue
similarly with the scale of F' spaces.

[Hint: Part (a): Test the corresponding norms on the function ¥(2/x), where ¥ is
chosen so that its Fourier transform is supported in % < |€| < 2. Part (b): Try a func-
tion f of the form (&) = - N L a;@(& —2/,&,...,&,), where @ is a Schwartz func-
tion whose Fourier transform is supported in a small neighborhood of the origin.}
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6.6 Atomic Decomposition

In this section we focus attention on the homogeneous Triebel-Lizorkin spaces
Fpa’q, which include the Hardy spaces discussed in Section 6.4. Most results dis-
cussed in this section are also valid for the inhomogeneous Triebel-Lizorkin spaces
and for the Besov—Lipschitz via a similar or simpler analysis. We refer the interested
reader to the relevant literature on the subject at the end of this chapter.

6.6.1 The Space of Sequences f, ng 4

To provide further intuition in the understanding of the homogeneous Triebel—
Lizorkin spaces we introduce a related space consisting of sequences of scalars.
This space is denoted by f,"¢ and is related to F,,"? in a way similar to that in which
(*(Z) is related to L*([0, 1]).

Definition 6.6.1. Let 0 < g < o and @ € R. Let & be the set of all dyadic cubes in
R". We consider the set of all sequences {50} gc# such that the function

1

§"“({s0}0) = T (1017~ lsol0)")’ 6.6.)
Qe

is in L”(R™). For such sequences s = {sg }o we set

s = 1™

6.6.2 The Smooth Atomic Decomposition of F;*
Next, we discuss the smooth atomic decomposition of these spaces. We begin with
the definition of smooth atoms on R”.

Definition 6.6.2. Let Q be a dyadic cube and let L be a nonnegative integer. A >
function ag on R" is called a smooth L-atom for Q if it satisfies

(a) ag is supported in 3Q (the cube concentric with Q having three times its side
length);

(b) / Hag(x)dx = 0 for all multi-indices |y] < L;
Rn

(c) |d%ag| < 10|~ "3 for all multi-indices v satisfying |y| < L+n+ L.

The value of the constant L+ n+ 1 in (c) may vary in the literature. Any suffi-
ciently large constant depending on L will serve the purposes of the definition.
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We now prove a theorem stating that elements of £,/ can be decomposed as
sums of smooth atoms.

Theorem 6.6.3. Let 0 < p,q < oo, o0 € R, and let L be a nonnegative integer
satisfying L > [nmax(1, ;l’ , [1]) —n—at). Then there is a constant Cy, 4 o such that for
every sequence of smooth L-atoms {ag} pc » and every sequence of complex scalars

{so}oew we have

H 2 SQ"Q‘ cos < Cupaal[{sodol s (6.6.2)
37 P
Conversely, there is a constant Cz,p’q’a such that given any distribution f in Fpa’q

and any L > 0, there exist a sequence of smooth L-atoms {ag}oc o and a sequence
of complex scalars {sg}ocy such that

f=2 spag,

0cy

where the sum converges in . /& and moreover,

{50} 0]

/
54 < Chopgall e 663)
Proof. We begin with the first claim of the theorem. We let AJ'-’U be the Littlewood—
Paley operator associated with a Schwartz function ¥ whose Fourier transform is
compactly supported away from the origin in R". Let ag be a smooth L-atom sup-
ported in a cube 3Q with center Cp and let the side length be £(Q) = 27#. It follows

trivially from Definition 6.6.2 that ay satisfies

oY a2 6.6.4
a < T2 .0.

| y Q(y)| =N (1+2/~‘|y—cQ|)N ( )
for all N > 0 and for all multi-indices 7 satisfying |y| < L+ n+ 1. Moreover, the
function y — ¥, (y — x) satisfies

218 +jn

(1-+ 27y —x))" (062

10 - (v = )| < Cyms

for all N > 0 and for all multi-indices 6. Using first the facts that ap has vanishing
moments of all orders up to and including L = (L+ 1) — | and that the function
y— ¥ i(y —x) satisfies (6.6.5) for all multi-indices § with |6| = L, secondly the
facts that the function y — ¥, ; (y — x) has vanishing moments of all orders up to and
including L+n = (L+n+ 1) — 1 and that a satisfies (6.6.4) for all multi-indices y
satisfying |y| = L+n+ 1, and the result in Appendix K.2, we deduce the following
estimate for all N > 0:

v gn pmin(jp)n—|u—jlL’
h < 12 .0.
}A] (ClQ)()C)| 7CN,n,L 272 (1+2min(j’”)|x—CQ|)N ) (6 66)
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where

, JL+1 when j < U,
L+n when u < j.

Now fix 0 < b < min(1, p,q) so that
L+1>"—n—a. (6.6.7)

This can be achieved by taking b close enough to min(1, p,q), since our assumption
L> [l.amax(l, ;7, [11) —n— a} impliesL—l— 1> nmax(l, ,17, [11) —n—«a.
Using Exercise 6.6.6, we obtain

1
|SQ| —jio" { b
o < comax(u=j0)y ) pr b
Qgﬁ (1 - pmin(j,40) |x — CQ|)N =c¢ ( Qg@ |sQ| XQ) (x)
L(Q)=27+# L(Q)=27*#

whenever N > n/b, where M is the Hardy-Littlewood maximal operator. It follows
from the preceding estimate and (6.6.6) that

TS |A}P(ag)(x)\ <cy omin(j,t)nny—|j—p|L' 5 —pny (j—)e
UEZ Qe Het
uo)=2"*

1

max(u—j,0)} i b

w pmax(i ./,O)b{M( Y, (Isollol™277) %Q)(x)}
09
(e)=2*

Raise the preceding inequality to the power ¢ and sum over j € Z; then raise to the

power 1 /q and take || . || 1 Dorms in x. We obtain

g < |{ 3| Zeo-m{n( T alier 520} ]}

“uo)=27*
where f =3 pcp sgagp and
d(j— ) = c2min(=p0) =)+ (j-ma|j-plL"

We now estimate the expression inside the last L” norm by

1
. min(1,q) p b
{ zd(j)mm(l,t])} v { z {M( z (|SQ||Q|_£_n)bXQ)}b}q’
F= UEZ 0€?

(o)=2"*#

and we note that the first term is a constant in view of (6.6.7). We conclude that
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_1_a\p 5
| P (sollol™*)"z0) }'}
Q€9 UEZ er
/(Q
q
{3 { (|sg||Q|%n>”xQ)}b}
nez er
/(Q
/ _1_o\p Z Z }1’
<cl{s{ 3 wolert )|,
UEZ Qe@ Lb

1
o q
=c’H2 ¥ (|sQ||Q|%n)qu}
UeZ Q€9
Q)y=27H

C'[{so}ol|

Lr

81

where in the last inequality we used Theorem 4.6.6, which is valid under the as-

sumption 1 < 7% < eo. This proves (6.6.2).

We now turn to the converse statement of the theorem. It is not difficult to see that
there exist Schwartz functlons ¥ (unrelated to the previous one) and © such that 'z
is supported in the annulus ! , <E1<2, ¥ is at least ¢ > 0 in the smaller annulus

3 :<EI< 3, and O is supported in the ball |x| < I and satisfies [g. 7O (x)dx =0

for all |y] < L, such that the identity

Y (2862 =

JjezZ

holds for all £ € R"\ {0}. (See Exercise 6.6.1.)
Using identity (6.6.8), we can write

f= 2'}/2,,-*@2,,-”.

jez

Setting 7; ={Q € Z: £(Q) =27/}, we now have

F=3 3 [0t )0d=3 ¥ soto,
JELO<T; JELOEY

where we also set

1
s0 =012 sup| (¥ * )(y)| sup [|976)|
y€Q lvI<L

for Q in &; and

(6.6.8)
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1 7
a9()= [ O3 (¥a-s 1))

It is straightforward to verify that ag is supported in 3Q and that it has vanishing
moments up to and including order L. Moreover, we have

1 i(n _1_
07agl < | 1170]|,,27"* D sup g fl < Q)27

which makes the function ag a smooth L-atom. Now note that

S (o] " 2sxo(x)?
(Q)=2-1
=C Y (27%sup|(Bi*)|xe)’
Ho=2-  ¥0
<C osup (20%(142712)) (B ) (x—2)]) (1 + 272
|z]<y/n27J
C(2/“M*(f,¥)(x)),

IN

where we used the fact that in the first inequality there is only one nonzero term in
the sum because of the appearance of the characteristic function. Summing over all
J € 7", raising to the power 1/¢, and taking L” norms yields the estimate

1
j Kok . q\4
H{SQ}Q| f]t;c,q S CH ( ZZ |2jaMb7j(f,'fl)‘ ) 17 S C||f‘ F]f‘a‘l ’
j€
where the last inequality follows from Theorem 6.5.6. This proves (6.6.3). O

6.6.3 The Nonsmooth Atomic Decomposition of F,

We now discuss the main theorem of this section, the nonsmooth atomic decomposi-
tion of the homogeneous Triebel-Lizorkin spaces F; If‘ . which in particular includes
that of the Hardy spaces H”. We begin this task with a definition.

Definition 6.6.4. Let 0 < p < 1 and 1 < g < . A sequence of complex numbers
r = {rp}oeo is called an co-atom for f, " if there exists a dyadic cube Qp such that

(@) rg=0if 0 Z Qy; 1
®) [|g%4(r)|| - < 1Qol 7.

We observe that every ee-atom r = {rp} for f,‘,x 4 satisfies HrH jaa < 1. Indeed,
P

I

foa = [ 9P dx <00l 100 = 1.
' 0
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The following theorem concerns the atomic decomposition of the spaces f';,x 4,

Theorem 6.6.5. Suppose a €R, 0 < g < o0, 0 < p < oo, and s = {sg}g is in f5 .
Then there exist Cy 4 > 0, a sequence of scalars Aj, and a sequence of eo-atoms
ri={rjo}ofor fp*! such that

s={sglo= D Ai{rioto= lejrj
=1 =

and such that _ 1
(Z4)" < Cuallsl - (6.69)
j=

Proof. We fix o, p,q, and a sequence s = {sg }¢ as in the statement of the theorem.
For a dyadic cube R in & we define the function

g 1(s)(x) = ( 2 (|Q|g_%|SQ|XQ(X))q)q
=

and we observe that this function is constant on R. We also note that for dyadic
cubes R; and R, with R; C R, we have

i (s) < ggl(s).
Finally, we observe that

lim gg =
(im_8x"(9)(x) =0
XER

Jim G 9(5) () = £“9(5) (),
XER

where g%4(s) is the function defined in (6.6.1).
For k € Z we set

g={Re D: gp(s)(x) >2" forallxeR}.
We note that <% | C o7 for all k in Z and that

{xeR": g%4(s)(x) > 2"} = |J R. (6.6.10)
Reg)
Moreover, we have forall k € Z,

1

> (|Q|fﬁ‘fi|SQ|xQ(x))q)q <2%,  forallxeR". (6.6.11)
Qe P\
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To prove (6.6.11) we assume that g®9(s)(x) > 2¥; otherwise, the conclusion is triv-
ial. Then there exists a maximal dyadic cube Rp,x in 7 such that x € Rp,. Letting
R be the unique dyadic cube that contains Rpyax and has twice its side length, we
have that the left-hand side of (6.6.11) is equal to gg(;q(s) (x), which is at most 2,
since Ry is not contained in .27

Since g*4(s) € LP(R"), by our assumption, and g*4(s) > 2k for all x € Q if
0 € 4, the cubes in <7, must have size bounded above by some constant. We set

P={0€P: Qisamaximal dyadic cube in @7 \ F1} .

For J in % we define a sequence (k,J) = {t(k,J)o}oc by setting

(o) JPo TFOCTad 0\,
e 0 otherwise.

We can see that if

o¢ U,ka, then 50 =0,
keZ

and the identity

s=3 Y t(kJ) (6.6.12)

keZJc By
is valid. For all x € R" we have

1

( > (g e |SQ|XQ(X))q) !

0cJ
Q€11

| 8%t (k,J)) (x)]

( 2 (|Q|75’5|sQ|XQ(x))q)q (6.6.13)

0y
0D\ 1

k+1
2,

IN

IN

where we used (6.6.11)in the last estimate. We define atoms r(k,J) = {r(k,J)o }ocz
by setting
1
r(k,J)o =277 rt(k,J)g, (6.6.14)
and we also define scalars 1
Ay =21 |r

To see that each r(k,J) is an co-atom for f,,"7, we observe that r(k,J)p =0if Q Z J
and that 1
|g%9(t(k,J))(x)| < |J|"»,  forallxeR”",

in view of (6.6.13). Also using (6.6.12) and (6.6.14), we obtain that

§= z z )Lk7./r(k7‘])a

keZ Je Py
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which says that s can be written as a linear combination of atoms. Finally, we esti-
mate the sum of the pth power of the coefficients A; ;. We have

Y D gl = X 2% )

keZ Je By keZ Je %y

<2y |J o
kel Qe

=2y 2KP=D2k|fx e R" : g%9(s)(x) > 28}
keZ

2k+1

< 2”2/k 2PN {x e R": g®9(s)(x) > 4 }|dA

keZ 2

2k+1
< 2p2/2k AP {x eR": g%9(s)(x) > A}|dA

keZ

p
Lr

— 22P o.qg
=2 et

2%
="l

L
e
Taking the pth root yields (6.6.9). The proof of the theorem is now complete. O

We now deduce a corollary regarding a new characterization of the space f,fC 4,

Corollary 6.6.6. Suppose oo € R, 0 < p <1, and p < g < oo. Then we have

oo 1 =
||st~;,x,q ~ inf{ ( z |lj|”) "is= z Ajirj, rjisan oo-atomforf;,x’q}.
j=1 Jj=1

Proof. One direction in the previous estimate is a direct consequence of (6.6.9). The

other direction uses the observation made after Definition 6.6.4 that every co-atom r

for f,ﬁx’q satisfies Her'a,q < 1 and that for p < 1 and p < ¢ the quantity s — HsH;a,q is
P Jp

subadditive; see Exercise 6.6.2. Then each s = 37 A;r; (with r; co-atoms for e
and 37, |2j|P < o0) must be an element of f,"7, since

H 2 A
=1

P o =
aq < 2 il [Irillfee < 312,17 <o
fp j=1 Jp j=1

This concludes the proof of the corollary. O

The theorem we just proved allows us to obtain an atomic decomposition for the
space F If‘ 1 a5 well. Indeed, we have the following result:

Corollary 6.6.7. Letc e R, 0< p<1,L> [; —n— o and let q satisfy p < g < oo
Then we have the following representation:
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HfHFpa}qzinf{(ZM |p) p Df= ZlAlv Aj= Y rpag, agare

(37

smooth L-atoms for F}4 and {rg} is an e-atom for f,f“q} )

Proof. Let f =37, AjA; as described previously. Using Exercise 6.6.2, we have

s < 2P
j=1

Fea < Cup ]; 1P| e

where in the last estimate we used Theorem 6.6.3. Using the fact that every co-atom
r={ro} for fy'? satisfies HrH jeq < 1, we conclude that every element f in <! (R")
P

that has the form 37, AjA; lies in the homogeneous Triebel-Lizorkin space F; sz,q

1
[and has norm controlled by a constant multiple of (X7, |4;[” )71
Conversely, Theorem 6.6.3 gives that every element of Fpa’q has a smooth atomic
decomposition. Then we can write

f=2 spag,

0cy

where each ag is a smooth L-atom for the cube Q. Using Theorem 6.6.5 we can now
. +0L,q .
write s = {59 }¢ as a sum of eo-atoms for f, , that is,

s=Y Ajrj,
j=1

where

0”77

( Jfgwm <clls

where the last step uses Theorem 6.6.3 again. It is simple to see that

f=2 Zl V/QaQ—Z)L ( )y rj,QaQ>a

0€? j= =1 0cy

fp

and we set the expression inside the parentheses equal to A ;. O

6.6.4 Atomic Decomposition of Hardy Spaces

We now pass to one of the main theorems of this chapter, the atomic decomposition
of HP(R") for 0 < p < 1. We begin by defining atoms for H?.

Definition 6.6.8. Let 1 < g < oo. A function A is called an L?-atom for H? (R") if
there exists a cube Q such that
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(a) A is supported in Q;

1_1
o) [[A], <10l 7

© / x"A(x) dx = 0 for all multi-indices y with |y| < bl

Notice that any L"-atom for H” is also an L7-atom for H” whenever 0 < p < 1
and 1 < g < r <o, Itis also simple to verify that an L7-atom A for H?” is in fact in
H?. We prove this result in the next theorem for ¢ = 2, and we refer the reader to
Exercise 6.6.4 for the case of a general g.

Theorem 6.6.9. Let 0 < p < 1. There is a constant Cy ;, < o= such that every [%-atom
A for HP (R") satisfies

4[| < Cop-
Proof. We could prove this theorem either by showing that the smooth maximal
function M(A; @) is in L” or by showing that the square function (¥;]4;(4)[?) 12
is in L”. The operators A; here are as in Theorem 5.1.2. Both proofs are similar; we
present the second, and we refer to Exercise 6.6.3 for the first.

Let A(x) be an atom that we assume is supported in a cube Q centered at the
origin [otherwise apply the argument to the atom A(x — cp), where cg is the center

of Q]. We control the L” quasinorm of (¥;]A;(A)[?) '/2 by estimating it over the
cube Q" and over (Q*)¢, where Q* = 2,/n Q. We have

</Q*(;|AJ( 2dx) (/ ZM |2dx) 0 |,,<z/,, '

1
Using that the square function f +— (X;|A;(f )|2) 2 is L? bounded, we obtain

2\4 ll’ * 2l /
[ (Sia@p) )" < calslo
! o (6.6.15)
< Gi(2v/n)r2|Q]2 P |QP 2
—C.
To estimate the contribution of the square function outside Q*, we use the cancella-
tion of the atoms. Let k = [ —n]+ 1. We have
5 = [ AG)H- s y)dy

_ oin 2 By (i) (—20)P
Y / Aly { W(2/x—2ly) wgk_l(a V@' ]dy
_ pin S (P (2ix— 2 (=2/y)P

—2 /A [Bk V)@x-206n)" ]dy,
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where 0 < 6 < 1. Taking absolute values, using the fact that dPW¥ are Schwartz

functions, and that [x — 8y| > [x| —[y| > ; |x| whenever y € Q and x ¢ 0%, we obtain
the estimate

jn Cn |2jy|k
AW <2 [0S o

1
Cp p 2/ K1) (/ 2 )2< % 2
< A(y)|“dy /y dy
(420l o4O o

CI/Vpnz j(k+n) B Eid
B CN7p,n2j(k+") | |1+k71
(2N

for x € (Q0*)°. For such x we now have

2 2 1pk_1 22j(k+n) 5
(ZIA |> <CypalQ " p<z(1+2f|x|)2N> : (6.6.16)

JEZL JEZ

It is a simple fact that the series in (6.6.16) converges. Indeed, considering the cases
2/ <1/|x| and 2/ > 1/|x| we see that both terms in the second series in (6.6.16) con-
tribute at most a fixed multiple of |x|~2~2", It remains to estimate the L” quasinorm
of the square root of the second series in (6.6.16) raised over (Q*)¢. This is bounded
by a constant multiple of

1 1
g 1 P o P
dx| <C, / poplktn)n—1 dr) ,
</(Q*)‘ [ pkt) ) " ( clo|n

for some constant c and the latter is easily seen to be bounded above by a constant

multlple of |0 “n¥p. Here we use the fact that p(k+n) > n or, equivalently,
k> " —n, which is certainly true, since k was chosen to be [" —n] + 1. Combining
this estimate with that in (6.6.15), we conclude the proof of the theorem. O

We now know that L7-atoms for H” are indeed elements of H”. The main result
of this section is to obtain the converse (i.e., every element of H” can be decomposed
as a sum of L2-atoms for H?).

Applying the same idea as in Corollary 6.6.7 to H?, we obtain the following
result.

Theorem 6.6.10. Let 0 < p < 1. Given a distribution f € HP(R"), there exists a
sequence of L*-atoms for H, {A; }5-1, and a sequence of scalars {A;}7_, such that

N
N AAj— f in HP.
j=1
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Moreover, we have

o | N
1]l ~int { (X 14517)7 2 = tim 3 A4,
=i =i

Ajare [*-atoms for HP and the limit is taken in H”} .

(6.6.17)

Proof. Let Aj be L*>-atoms for H” and Y5 [4;|P < ee. It follows from Theorem
6.6.9 that

N P
|4, <cn, z A7
=1

Thus if the sequence 2?’:1 AjA; converges to f in H”, then

e 1
[l < Can(Z 12417) "
Jj=1

which proves the direction < in (6.6.17). The gist of the theorem is contained in the
converse statement.

Using Theorem 6.6.3 (with L = [ — n]), we can write every element f in F,(,) 2=
HP as a sum of the form f = ¥y sgag, where each ag is a smooth L-atom for the
cube Q and s = {sp }pe is a sequence in fg’z. We now use Theorem 6.6.5 to write
the sequence s = {sp }¢ as

s = z Ajr;,
j=1

. 20,2
i.e., as a sum of co-atoms r; for f,’", such that

nd 1

(%Wﬂ)p <Clsll jo2 < C1F - (6.6.18)

Then we have
f=7Y spap= Y, ZA r,QaQ_ZAA,, (6.6.19)

(037 Q€D j=

where we set

Aj= 2 rjoag (6.6.20)
(S

and the series in (6.6.19) converges in ./ (R"). Next we show that each A is a fixed
multiple of an L?-atom for H”. Let us fix an index j. By the definition of the co-atom
for féj there exists a dyadic cube Q0 such that r; o = 0 for all dyadic cubes Q not
contained in QO Then the support of each ag that appears in (6.6.20) is contained in
30, hence in SQ{). This implies that the function A; is supported in 3Q'(’). The same
is true for the function g*2(r;) defined in (6.6.1). Using this fact, we have
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sl = 114702

el g2

¢ Hg072(rj) ||L2

cllg*0pl-I3041*

: 1,1
c3) P72,

IN

IN A

Since the series (6.6.20) defining A; converges in L? and A j 1s supported in some
cube, this series also converges in L!. It follows that the vanishing moment condi-
tions of A; are inherited from those of each ap. We conclude that each A; is a fixed
multiple of an L?-atom for H”.

Finally, we need to show that the series in (6.6.19) converges in H”(R"). But

M M 1
|3 2 < o (3 1) 0
J=N J=N

as M,N — oo in view of the convergence of the series in (6.6.18). This implies that
the series 2;":1 AjAjis Cauchy in HP, and since it converges to f in ./ (R"), it must
converge to f in H?. Combining this fact with (6.6.18) yields the direction > in
(6.6.17). d

Remark 6.6.11. Property (c) in Definition 6.6.8 can be replaced by
/ YA(x)dx =0 for all multi-indices y with |y] < L,

for any L > [Z — n], and the atomic decomposition of H? holds unchanged. In fact,
in the proof of Theorem 6.6.10 we may take L > [” — n] instead of L = [" —n] and
then apply Theorem 6.6.3 for this L. Observe that Theorem 6.6.3 was valid for all
L> [; —n.

This observation can be very useful in certain applications.

Exercises

6.6.1. (a) Prove that there exists a Schwartz function © supported in the unit ball
|x| < 1 such that [z, x7O (x)dx = 0 for all multi-indices y with |y| < N and such that
10| > > on the annulus ) < |&] < 2.

(b) Prove there exists a Schwartz function ¥ whose Fourier transform is supported
in the annulus ) < |£| <2 and is at least ¢ > 0 in the smaller annulus 3 < |£] < 3

such that we have R o ,
Y #2762 E) =1
J€Z
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forall &£ € R"\ {0}.
[Hint: Part (a): Let 6 be a real-valued Schwartz function supported in the ball

|x| <1 and such that 8(0) = 1. Then for some & > 0 we have 6(&) > é for
all & satisfying |&| < 2e < 1. Set @ = (—A)V(6¢). Part (b): Define the function
—_— ~ ~ . o~ . _1 .

(&) = ALz AR IEO(27)) ™ for asuitable .

6.62.LetacR,0<p<1,p<g<—+oo
(a) For all f,g in .#/(R") show that

17+ 8lliea < 115 + llgllga

(b) For all sequences {sp}pco and {tg}ocs show that

[{se}o +{to}ol[fas < [[{so}ollfas + [{to}ol[ e
[Hint: Use |a+ b|P < |a|? + |b|? and apply Minkowski’s inequality on L%/? (or on

gq/p)_]

6.6.3. Let @ be a smooth function supported in the unit ball of R”. Use the same
idea as in Theorem 6.6.9 to show directly (without appealing to any other theorem)
that the smooth maximal function M(-, @) of an L?-atom for H” lies in L” when
p < 1. Recall that M(f, @) = sup,~o | D; * f].

6.6.4. Extend Theorem 6.6.9 to the case 1 < g < . Precisely, prove that there is a
constant G, p, 4, such that every L?-atom A for H? satisfies

1Al < Cupa-

[Hint: If 1 < g < 2, use the boundedness of the square function on L7, and for
2 < g < o, its boundedness on L?.]

6.6.5. Show that the space HY, of all finite linear combinations of L>-atoms for H”
is dense in H”.
[Hint: Use Theorem 6.6.10.

6.6.6. Show that for all u,j € Z, all N,b > 0 satisfying N > n/b and b < 1, all
scalars s (indexed by dyadic cubes Q with centers cp), and all x € R"” we have

Z sl
o=y (1+2minlm)[x —co )V

LQ)=274
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where M is the Hardy—Littlewood maximal operator and ¢(n,N,b) is a constant.

[Hint: Define Zo ={Q € 2: £(Q) =27*, |cp — x| 2™+ < 1} and for k > 1 de-
fine 7y ={Q € 2: ((Q)=27H, 271 < |co—x|2min(:H) < 2K% Break up the sum
) 1/b

on the left as a sum over the families .7 and use that ¥ o 7, [so| < (Zoc.7, [so|”
and the fact that | Uges, 0| <en2” m‘“(/*’"‘)”k”.}

6.6.7. Let A be an L*-atom for H”(R") for some 0 < p < 1. Show that there is a
constant C such that for all multi-indices o with |a| <k = b n| we have

lo|—k—1]/yo 3> _227[;;(1(#‘*‘%)_1
sup [E[ 7)) < €Al
E n

[Hint: Subtract the Taylor polynomial of degree k — || at O of the function x —
¢ 2 ]

6.6.8. Let A be an L2-atom for H”(R") for some 0 < p < 1. Show that for all multi-
indices ¢ and all 1 < r < o there is a constant C such that

Aol )42

ax2 72271717( n r
H|‘9 Al L’/(R”)SCHAHLZ(R")

[Hint: In the case r = 1 use the L! — L boundedness of the Fourier transform and
in the case r = oo use Plancherel’s theorem. For general r use interpolation.]

6.6.9. Let f be in HP(R") for some 0 < p < 1. Then the Fourier transform of f,
originally defined as a tempered distribution, is a continuous function that satisfies

7 < Copll ll oo €7 "

for some constant C, ,, independent of f.

[Hint: If f is an L*>-atom for HP, combine the estimates of Exercises 6.6.7 and 6.6.8
with & =0 (and r = 1). In general, apply Theorem 6.6.10.]

6.6.10. Let A be an L~-atom for HP(R") for some 0 < p < | and let o = p
Show that there is a constant Cy,, such that for all g in A, (R") we have

A(x)g(x)dx

. < Cup I8l i e -

[Hint: Suppose that A is supported in a cube Q of side length 27 and center cg.
Write the previous integrand as ,;A;(A)A(g) for a suitable Littlewood—Paley op-
erator A; and apply the result of Appendix K.2 to obtain the estimate

2min(j,v)n2— |j—v|D

1
Aj(A))| <cwlol ! - )
| J( )( )} N| | (l+2m1n(j,v)|x_cQ|)N

where D = [0] + 1 when v > j and D = 0 when v < j. Use Theorem 6.3.6. ]
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6.7 Singular Integrals on Function Spaces

Our final task in this chapter is to investigate the action of singular integrals on
function spaces. The emphasis of our study focuses on Hardy spaces, although with
no additional effort the action of singular integrals on other function spaces can also
be obtained.

6.7.1 Singular Integrals on the Hardy Space H'

Before we discuss the main results in this topic, we review some background on
singular integrals from Chapter 4.

Let K(x) be a function defined away from the origin on R” that satisfies the size
estimate

1
sup |K(x)] |x]dx <Ay, (6.7.1)
0<R<oo R [x|[<R

the smoothness estimate, expressed in terms of Hormander’s condition,

sup [ |K(x—y) —K(x)|dx < As, 6.7.2)

VRO S

and the cancellation condition

K(x)dx

R1<\x\<R2

sup <Ajs, (6.7.3)

O<R|<Ry<oo

for some A1,A>,A3 < <. Condition (6.7.3) implies that there exists a sequence €; | 0
as j — oo such that the following limit exists:

lim K(x)dx = Ly.
J—ee Jei<|x<1

This gives that for a smooth and compactly supported function f on R", the limit

lim K(x—y)f(y)dy=T(f)(x) (6.7.4)

Jj—reo

[x—y|>¢;

exists and defines a linear operator 7. This operator T is given by convolution with
a tempered distribution W that coincides with the function K on R"\ {0}.

By the results of Chapter 4 we know that such a 7', initially defined on €;°(R"),
admits an extension that is L” bounded for all 1 < p < o and is also of weak type
(1,1). All these norms are bounded above by dimensional constant multiples of the
quantity A} + A + A3 (cf. Theorem 4.4.1). Therefore, such a T is well defined on
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L'(R") and in particular on H'!(R"), which is contained in L' (R"). We begin with

the following result.

Theorem 6.7.1. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as in

(6.7.4). Then there is a constant C, such that for all f in H'(R") we have
1T, < CalA1+Az+A3)|| f]| 1 - (6.7.5)

Proof. To prove this theorem we have a powerful tool at our disposal, the atomic
decomposition of H'!(R™). It is therefore natural to start by checking the validity of
(6.7.5) whenever f is an L?>-atom for H'.

Since T is a convolution operator (i.e., it commutes with translations), it suffices
to take the atom f supported in a cube Q centered at the origin. Let f = a be such
an atom, supported in Q, and let Q* = 2/n Q. We write

/Q' (@) (x )|dx—/ |dx+/ Wldx  (6.7.6)

and we estimate each term separately. We have

l

[ ir@wias < i ( [ m@mpar)

<oA1 + A+ A7} ( / |a<x>|2dx)
el 11 ,
<Cu(A1+A2+A3)|07]2]0]271 =C, (A1 +A2+A3),

where we used property (b) of atoms in Definition 6.6.8. Now note that if x ¢ Q*
and y € Q, then |x| > 2|y| and x — y stays away from zero; thus K(x —y) is well
defined. Moreover, in this case T'(a)(x) can be expressed as a convergent integral of
a(y) against K(x — y). We have

J T@@lax= [ [

dy‘dx

() (K(x—y) —K(x))a(y)dy } dx

// K(x—y)—K(x)|dx|a(y)|dy
\X\>2b\

<A /Q|a(x)|dx

Q

(x)| dx|a(y)|dy

< A0} (/ Ia(x)|2dx) ’

<AQPP Q]2 =A
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Combining this calculation with the previous one and inserting the final conclusions
in (6.7.6) we deduce that L2-atoms a for H' satisfy

IT(a)||, < (Ch+1)(Ar +A2+A3). 6.7.7)

We now pass to general functions in H'. In view of Theorem 6.6.10 we can write
an f € H' as

=2 Ajaj,
j=1

where the series converges in H', the a; are L?-atoms for H'!, and
1Al = X 1251 (6.7.8)
j=1

Since T maps L' to weak L' (Theorem 4.3.3), T(f) is already a well defined L'
function. We plan to prove that

T(f) = i AT (a)) a.e. (6.7.9)
j=1

We observe that the series in (6.7.9) converges in L'. Once (6.7.9) is established, the
required conclusion (6.7.5) follows easily by taking L' norms in (6.7.9) and using
(6.7.7) and (6.7.8).

To prove (6.7.9), we show that T is of weak type (1,1). For a given § > 0 we
have

{76~ 3 A7) > 6]

<[{IT() ZlTaj\>5/2H+H| Z lTCH>5/2H
N

- 5 HT”LMU H B H %‘Hl T(a HL
< STl |+ 3@ tay) 3 Il

j=N+1

Since le\’:l Aja; converges to f in H' and 71 |4j| < oo, both terms in the sum
converge to zero as N — co. We conclude that

|7(f) 2AjT<a.f>\ > 8} =

for all 6 > 0, which implies (6.7.9). ]
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6.7.2 Singular Integrals on Besov-Lipschitz Spaces

We continue with a corollary concerning Besov—Lipschitz spaces.

Corollary 6.7.2. Let K satisfy (6.7.1), (6.7.2), and (6.7.3), and let T be defined as
in(6.74). Let 1 < p < oo, 0 < g < oo, and o € R. Then there is a constant Cy p 4 o
such that for all f in .7 (R") we have

1T (F)| gz < CalAr + A2+ A3)|| £ g - (6.7.10)

Therefore, T admits a bounded extension on all homogeneous Besov—Lipschitz
spaces Bg’q with p > 1, in particular, on all homogeneous Lipschitz spaces.

Proof. Let ¥ be a Schwartz function whose Fourier transform is supported in the
annulus 1 — ; < €] < 2 and that satisfies

Y PeE) =1, £#£0.

jez

Pick a Schwartz function { whose Fourier transform Z is supported in the annulus
}‘ < |&€| < 8 and that is equal to one on the support of ¥'. Let W be the tempered

distribution that coincides with K on R"\ {0} so that T(f) = f * W. Then we have
& jxWj =¥ for all j and hence

[AH TN = 1] Goi + Fos x W = f |

< (16 # Wil [14;0f)]

Lr 6.7.11)
L])J

since 1 < p < . It is not hard to check that the function ¢, is in H' with norm
independent of j. Therefore, ,-; is in H !. Using Theorem 6.7.1, we conclude that

1T (&)l = 18 #Wll,o < €l sl ="

Inserting this in (6.7.11), multiplying by 2/%, and taking £¢ norms, we obtain the
required conclusion. g

6.7.3 Singular Integrals on HP(R")

We are now interested in extending Theorem 6.7.1 to other H? spaces for p < 1. It
turns out that this is possible, provided some additional smoothness assumptions on
K are imposed.

For the purposes of this subsection, we fix a function K (x) on R"\ {0} that satis-
fies |K(x)| < A|x|™" for x # 0 and we assume that there is a distribution W in ./ (R")
that coincides with K on R"\ {0}. We make two assumptions about the distribution
W first, that its Fourier transform W is a bounded function, i.e., it satisfies
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W(&)| <B, E€R", 6.7.12)

for some B < oo; secondly, that W is obtained from the function K as a limit of
its smooth truncations. This allows us to properly define the convolution of this
distribution with elements of H”. So we fix a nonnegative smooth function 7 that
vanishes in the unit ball of R” and is equal to one outside the ball B(0,2). We assume
that for some sequence ¢; € (0,1) with &; | 0 the distribution W has the form

(W,9) =lim | K()n(v/e))@(y)dy (6.7.13)
for all € . (R"). Then we define the smoothly truncated singular integral associ-
ated with K and n) by

n

T = [ n0/eKG)f(x—y)dy

for Schwartz functions f [actually the integral is absolutely convergent for every
f €LP and any p € [1,0)]. We also define an operator T given by convolution with
W by
T(f) = lim TE)(f) = f+W. (6.7.14)
Jee

This provides a representation of the operator 7. If the function K satisfies condi-
tion (4.4.3), this representation is also valid pointwise almost everywhere for func-
tions f € L2, i.e., lim; .. T&)(f)(x) = T(f)(x) for almost all x € R". This follows
from Theorem 4.4.5, Exercise 4.3.10, and Theorem 2.1.14 (since the convergence
holds for Schwartz functions).

Next we define T'(f) for f € H?. One can write W = W) + K.., where Wy = ®@W
and K.. = (1 — @)K, where @ is a smooth function equal to one on the ball B(0,1)
and vanishing off the ball B(0,2). Then for f in H”(R"), 0 < p < 1, we may define
a tempered distribution T'(f) = W * f by setting

(T(f),0) = (f,¢+Wo)+(xfK.) (6.7.15)

for ¢ in ./ (R"). The function ¢ * W is in ., so the action of S onitis well defined.
Also (5 * fis in L' (see Proposition 6.4.9), while K.. is in L*=; hence the second
term on the right above represents an absolutely convergent integral. Moreover, in
view of Theorem 2.3.20 and Corollary 6.4.9, both terms on the right in (6.7.15) are
controlled by a finite sum of seminorms p, g(¢) (cf. Definition 2.2.1). This defines
T(f) as a tempered distribution.

The following is an extension of Theorem 6.7.1 for p < 1.

Theorem 6.7.3. Let 0 < p < 1 and N = [} —n|+ 1. Let K be a €N function on
R"\ {0} that satisfies
0PK(x)| < Alx| Pl (6.7.16)
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Sor all multi-indices |B| < N and all x # 0. Let W be a tempered distribution that
coincides with K on R"\ {0} and satisfies (6.7.12) and (6.7.13). Then there is a
constant Cy, ;, such that the operator T defined in (6.7.15) satisfies, for all f € H?,

I7(5)]

1 < Cup(A+B)||f]] 5 -

Proof. The proof of this theorem is based on the atomic decomposition of H?.

We first take f = a to be an L?-atom for H”, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let Q* be the
cube with side length 2,/n¢(Q), where £(Q) is the side length of Q. We have

@ [ Ir@wp )

(/ T (a |de) <
< C"BlO|r 2 2d>2
< ¢"Blo| (/Q|a<x>| .
< G,BlQ|» 2|2 »

= C,B

For x ¢ O* and y € Q, we have |x| > 2|y|, and thus x — y stays away from zero
and K (x —y) is well defined. We have

x) = /Q KO (x—y)aly)dy

Recall that N = | ; —n] + 1. Using the cancellation of atoms for H”, we deduce
T@)) = [ av)K(e—)ds
B
= [av)|k6a-n- 3 @k |y

IBl<N-1

Y (PR 0, )B]

o [ﬂ Y B!

for some 0 < 6, < 1. Using that |x| > 2|y| and (6.7.23), we obtain the estimate

A
T@)@] < ean e [ 101y,

from which it follows that for x ¢ QO* we have

A 1N _1
T@)@ < enp v, 0177
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via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Inte-
grating over (Q*)¢, we obtain that

1 1
Y . / ! P
( [, F@0) dx) <eapAlQl (i 4x) <A

We have now shown that there exists a constant C,, , such that

T (@), < Cup(A+B) (6.7.17)

i

whenever a is an L>-atom for H”. We need to extend this estimate to infinite sums
of atoms. To achieve this, it convenient to use operators with more regular kernels
and then approximate 7' by such operators.

Recall the smooth function 1 that vanishes when |x| < 1 and is equal to 1 when
|x| > 2. We fix a smooth function @ with support in the unit ball having integral
equal to 1. We define 65(x) = 6"0(x/9d),

Keu(x) = K(x) (n(x/€) — n(ux))

and
Kseu = 05 % Ke i

for 0 < 108 < & < (10u)~". We make the following observations: first Kseuis €™,
second, it has rapid decay at infinity, and hence it is a Schwartz function; third, it
satisfies (6.7.16) for all || < N with constant a multiple of A, that is, independent

of 6, &, 1. Let Ty ¢ , be the operator given by convolution with K5 . ,, and let T,g*)
be the maximal smoothly truncated singular integral associated with the bump 7.
Then for 1 € L? we have

|Ts.e.0 ()| ,2 < 2[| 757 (85 1) 2 < Cu(A+B)||65 ] 2 < Cu (A+B)| || 2

hence T ¢ , maps L? to L? with norm a fixed multiple of A + B. The proof of (6.7.17)
thus yields for any L*-atom a for H” the estimate

| Ts.2.u(@)],, <Cpp(A+B) (6.7.18)

with a constant Cj, , thatis independent of 6, €, u.
Let f be in L> N HP, which is a dense subspace of H”, and suppose that f =
2 Ajaj, where a; are [?*-atoms for H?, the series converges in H”, and we have

24P <N flr e (6.7.19)
J

We set f = 21;4:1 Ajaj. Then fy, f are in L?but fy — f in HP; hence by Proposition
6.4.10, fyy — f in .. Acting on the Schwartz functions K5 ; , (x—-), we obtain that

Tseu(fu)(x) = T5¢(f)(x) asM — o forallx e R" . (6.7.20)
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Recall the discussion in the introduction of this section defining 7 = lim ;. 7€)
in an appropriate sense. Let 4 € L?(R"). Since & * K5 ¢, is a continuous function,
Theorem 1.2.19 (b) gives that

Ty e; () — Ty () — T/ (h) 6.7.21)

pointwise as 0 — 0, where T,ge) is the smoothly truncated singular integral associ-
ated with the bump 1 (cf. Exercise 4.3.10). The expressions on the right in (6.7.21)

are obviously pointwise bounded by 2T,;*) (h). Since T,g*) is an L% bounded opera-

tor, and Tn(gﬂ (y)— Tn(l/”)(l[/) — T (y) for every y € .7(R"), it follows from The-
orem 2.1.14 that T,;sj)(h) - T,gl/“)(h) — T (h) pointwise a.e. as €, — 0. Thus
Tse; u(h) — T (h) pointwise a.e. as § — 0, 4 — 0, and €; — 0 in this order. Using
this fact, (6.7.20), and Fatou’s lemma, we deduce for the given f, fiy € L% N HP that

I7(7)]

£y < Jimint 5,1

P .. .. p
< 611m1nf lﬁl_ngT&sj#(fMﬂ .

M,e;—0
The last displayed expression is at most (C,Cj, ,)” (A —|—B)”||f||§], using the sublin-
earity of the pth power of the L” norm, (6.7.18), and (6.7.19).

This proves the required assertion for f € H? NL?. The case of general f € HP
follows by density and the fact that 7'(f) is well defined for all f € HP, as observed
at the beginning of this subsection. O

We discuss another version of the previous theorem in which the target space is
H?.

Theorem 6.7.4. Under the hypotheses of Theorem 6.7.3, we have the following con-
clusion: there is a constant Cy ;, such that the operator T satisfies, for all f € H?,

1T o < Crp(a+B)Fl -

Proof. The proof of this theorem provides another classical application of the
atomic decomposition of H”. However, we use the atomic decomposition only for
the domain Hardy space, while it is more convenient to use the maximal (or square
function) characterization of H? for the target H” space.

We fix a smooth function @ supported in the unit ball B(0, 1) in R” whose mean
value is not equal to zero. For ¢ > 0 we define the smooth functions

WO =@ «Ww
and we observe that they satisfy
sup W) (&)| < || D||,..B (6.7.22)
t>0

and that
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sup [0PW ) (x)| < CpA x| "~ IPI (6.7.23)
>0

for all |B| < N, where

Co= sup [ [&]"|B()|dc.

[YI<N

Indeed, assertion (6.7.22) is easily verified, while assertion (6.7.23) follows from
the identity

WO @) = (@ =W))" (x) = / ATE W (E) B(1E ) dE

R”
whenever |x| < 2¢ and from (6.7.16) and the fact that for |x| > 2 we have the integral
representation .
PWO) = [ PRy @) dy.

yl<t

We now take f = a to be an L>-atom for H”, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let Q* be
the cube with side length 2/n¢(Q), where £(Q) is the side length of Q. Recall the
smooth maximal function M(f; @) from Section 6.4. Then M(T (a); @) is pointwise
controlled by the Hardy-Littlewood maximal function of T'(a). Using an argument
similar to that in Theorem 6.7.1, we have

1
ol ([, mr@)erar)’

1

agt( |M<T<a>><x>|2dx)2
clol( |, |T<a><x>|2dx)é
s [ jtorar)’

1_1 1_1
S CnB|Q|p_2 |Q|2_p
= C,B.

1

([ mer@repmra)’

IN

IN

IN

IN

It therefore remains to estimate the contribution of M(T (a); @) on the complement
of Q™.

If x ¢ Q* and y € Q, then |x| > 2|y| and hence x —y # 0. Thus K (x — y) is well
defined as an integral. We have

(T(a) * ®;)(x) = (ax WD) /Idf x—y)aly)dy
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Recall that N = 7} — n] + 1. Using the cancellation of atoms for H” we deduce

' B
(1@ )0 = [ abi)|Kx-3) - 3 @KW o o

B
- a(y>[ Y (9PK)(x— 0,

o " Ligiw P! }dy

for some 0 < 6, < 1. Using that x| > 2|y| and (6.7.23), we obtain the estimate

@+ @)W| < a1, [ a0 "ay.

from which it follows that for x ¢ Q* we have
A 1N _1
[(T(a) * @) (x)] < cnp ([N To

via a calculation using properties of atoms (see the proof of Theorem 6.6.9). Taking
the supremum over all # > 0 and integrating over (Q*)¢, we obtain that

(/ |(T(a) x @) (x)|"d )Il} < cnpAl0] (/ o @ )1]7
su a)* X x Cn, nop x|
) 1> ’ - (07)¢ [x{PtN+m)

and the latter is easily seen to be finite and controlled by a constant multiple of
A. Combining this estimate with the previously obtained estimate for the integral
of M(T (a); @) = sup,~ |(T (a) = &| over Q* yields the conclusion of the theorem
when f = a is an atom.

We have now shown that there exists a constant C,, , such that

|7 (@)|yp < Cup(A+B) (6.7.24)

whenever a is an L2-atom for H”. We need to extend this estimate to infinite sums
of atoms.
Let f be L>* N HP which is a dense subspace of H”, and suppose that f =Y, iAja;

for some L2-atoms a ; for HP, where the series converges in H” and we have

J

We let fis = 2.1,"/[:1 Aja; and we recall the smooth truncations Té,sj, uOfT.As fu — f
in HP?, Proposition 6.4.10 gives that fy; — f in .%’, and since the functions Ks.e;u
are smooth with compact support, it follows that for all 8, €;, i,

T5,sj,/.1(fM) — T5-,€j,l~l (f) in 5” as M — oo, (6.7.26)
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We show that this convergence is also valid for 7. Given € > 0 and a Schwartz
function ¢, we find &y, €j,, o such that

(T (fun), 0) = (T e, 0 (fir), 0)| <€Cp| £y forallM=1,2,.... (6.7.27)

To find such &, €, , Lo, we write

M
(T () @) = (T, ey 0 fin) 0)] < | PR ~W)xa;.9)|

(zm Vo Rayepo = W)+ 0))")

IN

M - )7
O ATCPS AR

< CollF Lo | (K0 = W) < @2

IN

Now pick &, €j,, Ho such that

|(Kayer, 0~ W) 5@ |12 = || (Kayey, )= W) ||, < £
0 0

This is possible, since this expression tends to zero when &,€j,, o — 0 by the
Lebesgue dominated convergence theorem; indeed, the functions (1(50’,9].0 w) W

are uniformly bounded and converge pointwise to zero as &, £j,, lop — 0, while 5
is square integrable. This proves (6.7.27).
Next we show that for this choice of &, €;,, tio we also have

(To.65,.0(F): 0) = (T(f), )] < e[ f]|2- (6.7.28)

This is a consequence of the Cauchy—Schwarz inequality, since

(T 00 (), @) = (T (), 0) | < [[ (K .100) = W) [| 21 ]2
Using (6.7.26) we can find an M, such that for M > M, we have
(T, 0 (1) 0) = (T 0 (), 0)] < & (6.7.29)
Combining (6.7.27), (6.7.28), and (6.7.29) for M > M,, we obtain

(T (fu), ) = (T (f), )| < (1 +Cp|lf |l o + I £l 2)

and this implies that T'(fys) converges to T(f) in ./ (R").
Using the inequality,
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HT(fM) fM’ HHI)SCP A+B> 2 |/,L./'|pv
M<j<M’

one easily shows that the sequence {7 (fyr)}s is Cauchy in H”. Thus T (fys) con-
verges in H? to some element G € H? as M — . By Proposition 6.4.10, T (fy)
converges to G in .. But as we saw, T (fjr) converges to 7(f) in .”" as M — oo,
Hence T(f) = G and we conclude that T(fy) converges to T(f) in H?, i.e., the
series 3,; A;T (a;) converges to T'(f) in H”. This allows us to estimate the H” quasi-
norm of T (f) as follows:

1T 7zo ey = H;%T(a/’)ﬂzam
< S I
< <jc,;,,,>"<A+B>"z|x.,-|"
< (G, ,Cp)P(A+B) ||fHHP(R" :

This concludes the proof for f € H” N L?. The extension to general f € H?” follows
by density and the fact that T(f) is well defined for all f € HP, as observed at the
beginning of this subsection. 0

6.7.4 A Singular Integral Characterization of H' (R")

We showed in Section 6.7.1 that singular integrals map H' to L'. In particular, the
Riesz transforms have this property. In this subsection we obtain a converse to this
statement. We show that if R;(f) are integrable functions for some f € L' and all
j=1,...,n, then f must be an element of the Hardy space H'. This provides a
characterization of H'(R") in terms of the Riesz transforms.

Theorem 6.7.5. For n > 2, there exists a constant C,, such that for f in L (R") we
have

n
Call e < A+ 2 RO - (6.7.30)
k=1
When n = 1 the corresponding statement is

CleHHl < HfHLl + HH(f)HLl (6.7.31)

for all f € L'(R). Naturally, these statements are interesting when the expressions
on the right in (6.7.30) and (6.7.31) are finite.

Before we prove this theorem we discuss two corollaries.
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Corollary 6.7.6. An integrable function on the line lies in the Hardy space H'(R)
if and only if its Hilbert transform is integrable. For n > 2, an integrable function
on R" lies in the Hardy space H'(R") if and only its Riesz transforms are also in
L'(R").

Proof. The corollary follows by combining Theorems 6.7.1 and 6.7.5. 0

Corollary 6.7.7. Functions in H' (R"), n > 1, have integral zero.

Proof. Indeed, if f € H'(R"), we must have R (f) € L'(R"); thus R/-(?) is uni-
formly continuous. But since

A ey 61
it follows that m is continuous at zero if and only if f(é) = 0. But this happens
exactly when f has integral zero. 0

We now discuss the proof of Theorem 6.7.5.

Proof. We consider the case n > 2, although the argument below also works in
the case n = 1 with a suitable change of notation. Let P, be the Poisson kernel.
In the proof we may assume that f is real-valued, since it can be written as f =
fi +if>, where fi are real-valued and R;(fi) are also integrable. Given a real-valued
function f € L'(R") such that R;(f) are integrable over R” for every j = 1,...,n,
we associate with it the n 4 1 functions

i (x,1) = (B xR (f))(x),

ey

un(x,1) = (P *Ra(f))(x).
U1 (1) = (Pox f) (),

which are harmonic on the space R’jfl (see Example 2.1.13). It is convenient to
denote the last variable ¢ by x,,41. One may check using the Fourier transform that
these harmonic functions satisfy the following system:

n+1 8u,-

=0
g’l 8Xj ’
5 / 5 (6.7.32)
uj Uy . .
- =0 k I,... 1 k#j.
an axj 9 7.]6{ ) 7l’l+ }7 75.]

This system of equations may also be expressed as div ¥ = 0 and curl F = 0, where
F = (uy,...,uyy1) is a vector field in R'jfl. Note that when n = 1, the equations
in (6.7.32) are the usual Cauchy—Riemann equations, which assert that the function
F = (u1,up) = uj +iuy is holomorphic in the upper half-space. For this reason, when
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n > 2 the equations in (6.7.32) are often referred to as the system of generalized
Cauchy—Riemann equations.
The function |F| enjoys a crucial property in the study of this problem.

Lemma 6.7.8. Let u; be real-valued harmonic functions on R"! satisfying the sys-
tem of equations (6.7.32) and let F = (uy,. .. ,un+1). Then the function

n+1 q/2
F17 = (X Jui )
j=1

. . . . . 1
is subharmonic when g > (n—1)/n, i.e., it satisfies A(|F|7) > 0, on R,

Lemma 6.7.9. Let 0 < g < p < oo. Suppose that the function |F (x,t)|? defined on
RTI is subharmonic and satisfies

1/p
sup ( |F(x,t)|”dx) <A <oo, (6.7.33)
>0 R"

Then there is a constant Cy p 4 < oo such that the nontangential maximal function
|F[*(x) = sup;q Supjy_ < |F (3,2)], x € R", (cf. Definition 7.3.1) satisfies

1F T 2o oy < CopaA-

Assuming these lemmas, whose proofs are postponed until the end of this section,
we return to the proof of the theorem.

Since the Poisson kernel is an approximate identity, the function x — u,41(x,?)
converges to f(x) in L' as t — 0. To show that f € H!(R"), it suffices to show that
the Poisson maximal function

M(f:P)(x) = fglgl(Pr *f)(x)] = fgglunﬂ(xat)l

is integrable. But this maximal function is pointwise controlled by
n
sup | F(x,1)| < sup [I(Pz )@+ X (PR () )]
t>0 t>0 j=1

and certainly it satisfies

sup [ |F(x,t)]dx <Ay, (6.7.34)
t>0 /R

where

n
Ap =1l +k§1 RO -
We now have

M(fP)(x) < supluy1 (x,1)] < sup|F(x,0)] < |F|*(x), (6.7.35)
>0 t>0
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and using Lemma 6.7.8 with g = ”;1 and Lemma 6.7.9 with p = 1 we obtain that
|| |F|*||Ll (R <GCAy. (6.7.36)

Combining (6.7.34), (6.7.35), and (6.7.36), one deduces that

M5O sy < (151 + 3 R )
k=1

from which (6.7.30) follows. This proof is also valid when n = 1, provided one
replaces the Riesz transforms with the Hilbert transform; hence the proof of (6.7.31)
is subsumed in that of (6.7.30). ]

See Exercise 6.7.1 for an extension of this result to H? for ”;1 < p < 1. We now
give a proof of Lemma 6.7.8

Proof. Denoting the variable 7 by x,,; |, we have

0 oF
g _ —2(F.
ox; IFl qIF| (F 8xj)

and also

9? J*F JF OJF JF \2
q _ 2\ F q—4
e LRl R R L G

forall j=1,2,...,n+ 1. Summing over all these j’s, we obtain
4 2n+1 oF n+1
A(|F|?) = q|F|9*||F ‘ ‘ 2) ‘F ” 6.7.37
e =gl IS0 a2y, (6737

since the term containing F - A(F) = 2"“ A(u;) vanishes because each u; is
harmonic. The only term that could be negatlve in (6.7.37) is that containing the
factor ¢ — 2 and naturally, if ¢ > 2, the conclusion is obvious. Let us assume that
”;1 < g < 2.Since g > ”;1, we must have that 2 — g < ”:lrl . Thus (6.7.37) is non-
negative if

n+1 n+1

Z’F axj’ <t |2Z’axj’ (6.7.38)

This is certainly valid for points (x,#) such that F(x,7) = 0. To prove (6.7.38) for
points (x,7) with F(x,t) # 0, it suffices to show that for every vector v € R"*! with
Euclidean norm |v| = 1, we have

n+1 oF ‘2

ndl n
g‘ ‘ ox; ‘ T n+1 510k (6.7.39)
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Denoting by A the (n+ 1) x (n+ 1) matrix whose entries are a; = duy/dx;j, we
rewrite (6.7.39) as

lav]? < - " la)7, (6.7.40)
where
n+1n+1
lal* =¥ Z Jajul®.
j=1lk=

By assumption, the functions u; are real-valued and thus the numbers a; ; are real.
In view of identities (6.7.32), the matrix A is real symmetric and has zero trace (i.e.,
Z;‘;r% ajj = 0). A real symmetric matrix A can be written as A = PDP', where P
is an orthogonal matrix and D is a real diagonal matrix. Since orthogonal matrices
preserve the Euclidean distance, estimate (6.7.40) follows from the corresponding
one for a diagonal matrix D. If A = PDP', then the traces of A and D are equal;
hence 2” =0, where A; are entries on the diagonal of D. Notice that estimate
(6.7.40) Wlth the matrix D in the place of A is equivalent to

n+1 n+1
DAy, < 1(2 A1), (6.7.41)
j=1 nt
where we set v = (v,...,v,;1) and we are assuming that |v|> = ”H Hvil? =
Estimate (6.7.41) is certainly a consequence of
n+1
sup A7 < (Z A1) (6.7.42)
1<j<n+1 n+1
But this is easy to prove. Let [A,| = max;<j<n+1|4;|. Then
2 2
o2 == X A< (X A1) <n X A4 (6.7.43)

J#Jo J#Jo J#Jo
Adding n|A;, |? to both sides of (6.7.43), we deduce (6.7.42) and thus (6.7.38). [
We now give the proof of Lemma 6.7.9.

Proof. A consequence of the subharmonicity of |F|? is that

[F(xt+e)| < (|F(e)|"+F)(x) (6.7.44)
for all x € R" and ¢, & > 0. To prove (6.7.44), fix € > 0 and consider the functions

Ulet) = [Frit+e)t,  V(xi) = (F(.e)+P)x).

Given 11 > 0, we find a half-ball

Bg, = {(x,1) € R™ ¢ x> +1* < R}}
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such that for (x,7) € R\ B, we have
U(x,t) —V(x,t)<n. (6.7.45)

Suppose that this is possible. Since U (x,0) =V (x,0), then (6.7.45) actually holds on
the entire boundary of Bg,. The function V' is harmonic and U is subharmonic; thus
U —V is subharmonic. The maximum principle for subharmonic functions implies
that (6.7.45) holds in the interior of Bg,, and since it also holds on the exterior, it
must be valid for all (x,7) with x € R” and 7 > 0. Since 1 was arbitrary, letting
n — 0+ implies (6.7.44).

We now prove that R exists such that (6.7.45) is possible for (x,7) € R\ Bg,.
Let B((x,t),1/2) be the (n+ 1)-dimensional ball of radius /2 centered at (x,#). The
subharmonicity of |F|? is reflected in the inequality

|F(x,0)|7 < [F(y,5)|* dyds,

IB((xt t/2) I/ ((x).1/2)

which by Holder’s inequality and the fact p > g gives

Feenl” < <|B((xt ),1/2) |/ e O Wdyds)

From this we deduce that

V4

2n+1/v 4 (t+¢) K
Flut+e q<[ / / s)|Pd ds} (6746
peerer< [0 [0 R rava] " 6140

If 1 4+ € > |x|, using (6.7.33), we see that the expression on the right in (6.7.46) is
bounded by ¢’e "A9~"4/P_ and thus it can be made smaller than 17/2 by taking
t > Ry, for some R; > € large enough. Since Ry > €, we must have 2¢ >t 4 € > ||,
which implies that # > |x|/2, and thus with Rj, = V/5Ry, if | (x,7)| > R}, thent > R;.
Hence, the expression in (6.7.46) can be made smaller than 1/2 for |(x,7)| > R},

If 4+ & < |x| we estimate the expression on the right in (6.7.46) by

ontl 1 Je+e) [ , ¢
F ) S dy|ds N
<V”+1 (f+8)”+1/£<r+s> Uwéx' o)l y} )

and we notice that the preceding expression is bounded by

S ds \ 7
F(ys)|Pd . 6.7.47
<Vn+1 /ée[/w;x' s y} s"“) (74D

Let G;(s) be the function inside the square brackets in (6.7.47). Then Gy (s) —
0 as |x| — oo for all 5. The hypothesis (6.7.33) implies that G| is bounded by a
constant and it is therefore integrable over the interval [%8,00) with respect to the
measure s~ ds. By the Lebesgue dominated convergence theorem we deduce that
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the expression in (6.7.47) converges to zero as |x| — oo and thus it can be made
smaller that /2 for |x| > Ry, for some constant R,. Then with R{j = v/2R, we have
that if |(x,z)| > Ry} then (6.7.47) is at most 17/2. Since U —V < U, we deduce the
validity of (6.7.45) for |(x,7)| > Ry = max(R{,R{)).

Let r = p/q > 1. Assumption (6.7.33) implies that the functions x — |F (x,€)|?
are in L” uniformly in 7. Since any closed ball of L is weak®™ compact, there is a
sequence & — 0 such that |F(x,&)|9 — h weakly in L" as k — o to some function
he L. Since P, € L”, this implies that

([F (&) B)(x) — (h=P)(x)
for all x € R”". Using (6.7.44) we obtain

|F (x,1)|7 = limsup |F (x,t 4 &)|” < limsup (|F(x, &)|? >f<P,) (x)=(h*P)(x),

k—o0 k—so0

which gives for all x € R”,

IF[*(x) < [sup sup (n]=B)(x)] "4 < Com(h) (). (6.7.48)

>0 |y—x|<t

Let g € L’ (R") with L norm at most one. The weak convergence yields

[ IFge)ds— | hGo)sodx

as k — oo, and consequently we have

1
1/ Sup (/ |F(x,t)|”dx) .
>0 \/R"

Since g is arbitrary with L” norm at most one, this implies that

h(x)g(x)dx

<sup [ |P(xe0l7lg()]dx < g
Rn k Rl‘l

17

1
L <sup ( / \F(x,1)]? dx) " (6.7.49)
>0 R”

Putting things together, we have

1717}

< men

1/q
LV

1/q
Lr

. 1/qr
= Cy,p,qSUP (/ |F(x,t)|”dx>
>0 R"

< CupaAs

24
= G[|[m(h)

= Cn,MHh
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where we have used (6.7.48) and (6.7.49) in the last two displayed inequalities. [

Exercises

6.7.1. Prove the following generalization of Theorem 6.7.4. Let ¢ be a nonnegative
Schwartz function with integral one on R” and let ";1 < p < 1. Prove that there
are constants ¢y, c,,C1,C, such that for bounded tempered distributions f on R” (cf.
Section 6.4.1) we have

eal Pl < sp (1055 £llp + 3 05+ R | < Cal £l o
6>0 k=1

when n > 2 and

CleHHP <sup [H%*ﬂ wt ||(P§*H(f)‘ LP} SCleHHP
6>0

whenn = 1.

[Hint: One direction is a consequence of Theorem 6.7.4. For the other direction, de-
fine F5 = (u1 * @5, ..., Unt1 * @), Where uj(x,t) = (B +*R;(f))(x), j=1,...,n,and
Up1(x,1) = (P * f)(x). Each uj * @ is a harmonic function on RTI and continu-
ous up to the boundary. The subharmonicity of |Fg(x,)|? has as a consequence that
|F5(x,t +€)|P < |(F5(-,€)|P x P)(x) in view of (6.7.44). Letting € — 0 implies that
|Fs(x,2)|? <|(Fs(-,0)|? x B)(x), by the continuity of Fs up to the boundary. Since
F5(x,0) = (Ri(f)* @5, ... Ru(f) * 5. f * @), the hypothesis that f 05, R} (f) * 05
are in L” uniformly in 6 > 0 gives that sup, 5 [gn |F5(x,1)|” dx < co. Fatou’s lemma

yields (6.7.33) for F(x,7) = (u1,...,un+1). Then Lemma 6.7.9 implies the required
conclusion. |

6.7.2. (a) Let & be a function on R such that i (x) and xh(x) are in L?(R). Show that
h is integrable over R and satisfies

Il <8 [A] 2 <o) 2

(b) Suppose that g is an integrable function on R with vanishing integral and g(x)
and xg(x) are in L?(R). Show that g lies in H'(R) and that for some constant C we
have

lellzr < Clell 2 llee ]2

[Hint: Part (a): split the integral of |1(x)| over the regions |x| < R and |x| > R and
pick a suitable R. Part (b): Show that both H(g) and H(yg(y)) lie in L*. But since g
has vanishing integral, we have xH(g)(x) = H(yg(y))(x).]

6.7.3. (a) Let H be the Hilbert transform. Prove the identity

H(fg—H(f)H(g)) = fH(g) +gH(f)
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forall f,gin ;<)< L”(R).
(b) Show that the bilinear operators

(f.g)— fH(g)+H(f)g,
(f,g)— fe—H(f)H(g),

map L”(R) x L” (R) — H'(R) whenever | < p < oo.

[Hint: Part (a): Consider the boundary values of the product of the analytic exten-
sions of f+iH(f) and g+ iH (g) on the upper half-space. Part (b): Use part (a) and
Theorem 6.7.5.]

6.7.4. Follow the steps given to prove the following interpolation result. Let 1 <
p1 < o and let T be a subadditive operator that maps H'(R") + L”' (R") into mea-
surable functions on R”. Suppose that there is Ay < oo such that for all f € H'(R")
we have

sup A [{x € R": |T(£)(x)] > A }| < Ao||f]|
A>0

and that it also maps LP! (R") to LP*(R") with norm at most A;. Show that for any
1 < p < p1, T maps LP(R") to itself with norm at most

1_1 -1
P P -p
1

- -
P Pl
CAO A ,

where C = C(n, p, p1).
(a) Fix 1 < g < p < pi <o and f and let Q; be the family of all maximal
dyadic cubes such that 14 < |Q;|! fQj |f|?dx. Write E; = |JQ; and note that

1
Ej, C {M(|f|9)¢ > A} and that |f| < A a.e. on (E;). Write f as the sum of the
good function

8r = fX(Ek)zf + Z(Avgf) XQ;
J j

J

and the bad function

by =S bl where bi = (f—Avef) xo, -
J o

J

(b) Show that gy, lies in L/ (R") NL™(R"), [|g2 [ ;- < 242, and that

lxllzn < [, Wi des2s amigy | < =

(c) Show that for ¢ = 247!, each ¢c=11~! |0/|~'b} is an L-atom for H'. Conclude
that by lies in H'(R") and satisfies

HblHHl < CAZ|QJ| <CA|E| <eo.
j
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(d) Start with
It <pv [ 27 {7 (el > 12} ah
—i—pyp/:?tp‘l}{T(b;Lﬂ > Lya}|da

and use the results in parts (b) and (c) to obtain that the preceding expression is
[

at most C(n, p,q, p1) max(A;y? P, y*~1Ag). Select y= A" "' A, """ to obtain the

required conclusion.

(e) In the case p; = we have |T(g; )| < A;29A and pick ¥ > 24,24 to make the

integral involving g, vanishing.

6.7.5. Let f be an integrable function on the line whose Fourier transform is also
integrable and vanishes on the negative half-line. Show that f lies in H'(R).

HISTORICAL NOTES

The strong type L” — L7 estimates in Theorem 6.1.3 were obtained by Hardy and Littlewood
[157] (see also [158]) when n = 1 and by Sobolev [285] for general n. The weak type estimate L'—
Ln"s first appeared in Zygmund [339]. The proof of Theorem 6.1.3 using estimate (6.1.11) is
taken from Hedberg [161]. The best constants in this theorem when p = nz_fs ,q= nzfs ,and0<s<n
were precisely evaluated by Lieb [213]. A generalization of Theorem 6.1.3 for nonconvolution
operators was obtained by Folland and Stein [132].

The Riesz potentials were systematically studied by Riesz [270] on R" although their one-
dimensional version appeared in earlier work of Weyl [330]. The Bessel potentials were introduced
by Aronszajn and Smith [7] and also by Calder6én [41], who was the first to observe that the
potential space %/ (i.e., the Sobolev space L{) coincides with the space Lf given in the classical
Definition 6.2.1 when s = k is an integer. Theorem 6.2.4 is due to Sobolev [285] when s is a positive
integer. The case p = 1 of Sobolev’s theorem (Exercise 6.2.9) was later obtained independently by
Gagliardo [139] and Nirenberg [249]. We refer to the books of Adams [2], Lieb and Loss [214],
and Maz’ya [229] for a more systematic study of Sobolev spaces and their use in analysis.

An early characterization of Lipschitz spaces using Littlewood—Paley type operators (built from
the Poisson kernel) appears in the work of Hardy and Littlewood [160]. These and other charac-
terizations were obtained and extensively studied in higher dimensions by Taibleson [300], [301],
[302] in his extensive study. Lipschitz spaces can also be characterized via mean oscillation over
cubes. This idea originated in the simultaneous but independent work of Campanato [39], [40] and
Meyers [234] and led to duality theorems for these spaces. Incidentally, the predual of the space
Ay is the Hardy space H? with p = st » s shown by Duren, Romberg, and Shields [118] for the
unit circle and by Walsh [327] for higher-dimensional spaces; see also Fefferman and Stein [130].
We refer to the book of Garcia-Cuerva and Rubio de Francia [141] for a nice exposition of these
results. An excellent expository reference on Lipschitz spaces is the article of Krantz [199].

Taibleson in his aforementioned work also studied the generalized Lipschitz spaces Ay called
today Besov spaces. These spaces were named after Besov, who obtained a trace theorem and em-
beddings for them [24], [25]. The spaces Bg’q, as defined in Section 6.5, were introduced by Peetre
[255], although the case p = g = 2 was earlier considered by Hérmander [166]. The connection
of Besov spaces with modern Littlewood—Paley theory was brought to the surface by Peetre [255].
The extension of the definition of Besov spaces to the case p < 1 is also due to Peetre [256],
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but there was a forerunner by Flett [131]. The spaces Fpa “ with 1 < p,q < o were introduced by
Triebel [316] and independently by Lizorkin [218]. The extension of the spaces Fpa’q to the case
0 < p <eoand 0 < g < oo first appeared in Peetre [258], who also obtained a maximal character-
ization for all of these spaces. Lemma 6.5.3 originated in Peetre [258]; the version given in the
text is based on a refinement of Triebel [317]. The article of Lions, Lizorkin, and Nikol’skij [216]
presents an account of the treatment of the spaces Fpa’q introduced by Triebel and Lizorkin as well
as the equivalent characterizations obtained by Lions, using interpolation between Banach spaces,
and by Nikol’skij, using best approximation.

The theory of Hardy spaces is vast and complicated. In classical complex analysis, the
Hardy spaces H? were spaces of analytic functions and were introduced to characterize bound-
ary values of analytic functions on the unit disk. Precisely, the space H?(ID) was introduced
by Hardy [156] to consist of all analytic functions F' on the unit disk D with the property that
SUPg_, <1 Jo |[F(re2™9)[Pd < o, 0 < p < oo. When 1 < p < oo, this space coincides with the
space of analytic functions whose real parts are Poisson integrals of functions in L”(T"). But for
0 < p <1 this characterization fails and for several years a satisfactory characterization was miss-
ing. For a systematic treatment of these spaces we refer to the books of Duren [117] and Koosis
[195].

With the illuminating work of Stein and Weiss [293] on systems of conjugate harmonic func-
tions the road opened to higher-dimensional extensions of Hardy spaces. Burkholder, Gundy, and
Silverstein [38] proved the fundamental theorem that an analytic function F lies in H ”(Rf_) [i.e.,
supy~o Jr |F(x +iy)|P dx < o] if and only if the nontangential maximal function of its real part
lies in L7 (R). This result was proved using Brownian motion, but later Koosis [194] obtained an-
other proof using complex analysis. This theorem spurred the development of the modern theory
of Hardy spaces by providing the first characterization without the notion of conjugacy and indi-
cating that Hardy spaces are intrinsically defined. The pioneering article of Fefferman and Stein
[130] furnished three new characterizations of Hardy spaces: using a maximal function associ-
ated with a general approximate identity, using the grand maximal function, and using the area
function of Luzin. From this point on, the role of the Poisson kernel faded into the background,
when it turned out that it was not essential in the study of Hardy spaces. A previous character-
ization of Hardy spaces using the g-function, a radial analogue of the Luzin area function, was
obtained by Calderén [42]. Two alternative characterizations of Hardy spaces were obtained by
Uchiyama in terms of the generalized Littlewood—Paley g-function [319] and in terms of Fourier
multipliers [320]. Necessary and sufficient conditions for systems of singular integral operators
to characterize H'(R") were also obtained by Uchiyama [318]. The characterization of H” using
Littlewood—Paley theory was observed by Peetre [257]. The case p = 1 was later independently
obtained by Rubio de Francia, Ruiz, and Torrea [276].

The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [72] and its
higher-dimensional extension to Latter [206]. A simplification of some of the technical details in
Latter’s proof was subsequently obtained by Latter and Uchiyama [207]. Using the atomic de-
composition Coifman and Weiss [86] extended the definition of Hardy spaces to more general
structures. The idea of obtaining the atomic decomposition from the reproducing formula (6.6.8)
goes back to Calderén [44]. Another simple proof of the L?-atomic decomposition for H? (starting
from the nontangential Poisson maximal function) was obtained by Wilson [332]. With only a little
work, one can show that L7-atoms for H” can be written as sums of L”-atoms for H”. We refer
to the book of Garcia-Cuerva and Rubio de Francia [141] for a proof of this fact. Although finite
sums of atoms are dense in H', an example due to Y. Meyer (contained in [233]) shows that the
H' norm of a function may not be comparable to inf Z[;,=1 |A;|, where the infimum is taken over all
representations of the function as finite linear combinations Z’}’Zl Aja; with the a; being L™-atoms
for H'. Based on this idea, Bownik [34] constructed an example of a linear functional on a dense
subspace of H'! that is uniformly bounded on L*-atoms for H! but does not extend to a bounded
linear functional on the whole H'. However, if a Banach-valued linear operator is bounded uni-
formly on all L?-atoms for H” with 1 < g < eeand 0 < p < 1, then it is bounded on the entire H”
as shown by Meda, Sjogren, and Vallarino [230]. This fact is also valid for quasi-Banach-valued
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linear operators, and when g = 2 it was obtained independently by Yang and Zhou [338]. A re-
lated general result says that a sublinear operator maps the Triebel-Lizorkin space Fps,q(R”) toa
quasi-Banach space if and only if it is uniformly bounded on certain infinitely differentiable atoms
of the space; see Liu and Yang [217]. Atomic decompositions of general function spaces were
obtained in the fundamental work of Frazier and Jawerth [135], [136]. The exposition in Section
6.6 is based on the article of Frazier and Jawerth [137]. The work of these authors provides a solid
manifestation that atomic decompositions are intrinsically related to Littlewood—Paley theory and
not wedded to a particular space. Littlewood—Paley theory therefore provides a comprehensive and
unifying perspective on function spaces.

Main references on H” spaces and their properties are the books of Baernstein and Sawyer [12],
Folland and Stein [133] in the context of homogeneous groups, Lu [219] (on which the proofs of
Lemma 6.4.5 and Theorem 6.4.4 are based), Stromberg and Torchinsky [298] (on weighted Hardy
spaces), and Uchiyama [321]. The articles of Calderén and Torchinsky [45], [46] develop and
extend the theory of Hardy spaces to the nonisotropic setting. Hardy spaces can also be defined in
terms of nonstandard convolutions, such as the “twisted convolution” on R?". Characterizations of
the space H ! in this context have been obtained by Mauceri, Picardello, and Ricci [226]

The localized Hardy spaces &), 0 < p < 1, were introduced by Goldberg [146] as spaces of
distributions for which the maximal operator sup,_, 1 |®; * f| lies in L” (R") (here @ is a Schwartz
function with nonvanishing integral). These spaces can be characterized in ways analogous to those
of the homogeneous Hardy spaces H?; in particular, they admit an atomic decomposition. It was
shown by Bui [37] that the space A” coincides with the Triebel-Lizorkin space Fp()‘z(R”); see also
Meyer [232]. For the local theory of Hardy spaces one may consult the articles of Dafni [100] and
Chang, Krantz, and Stein [59].

Interpolation of operators between Hardy spaces was originally based on complex function
theory; see the articles of Calderén and Zygmund [48] and Weiss [328]. The real-interpolation
approach discussed in Exercise 6.7.4 can be traced in the article of Igari [174]. Interpolation be-
tween Hardy spaces was further studied and extended by Riviere and Sagher [271] and Fefferman,
Riviere, and Sagher [128].

The action of singular integrals on periodic spaces was studied by Calderén and Zygmund [47].
The preservation of Lipschitz spaces under singular integral operators is due to Taibleson [299].
The case 0 < o < 1 was earlier considered by Privalov [268] for the conjugate function on the
circle. Fefferman and Stein [130] were the first to show that singular integrals map Hardy spaces to
themselves. The boundedness of fractional integrals on H” was obtained by Krantz [198]. The case
p = 1 was earlier considered by Stein and Weiss [293]. The action of multilinear singular integrals
on Hardy spaces was studied by Coifman and Grafakos [75] and Grafakos and Kalton [149]. An
exposition on the subject of function spaces and the action of singular integrals on them was written
by Frazier, Jawerth, and Weiss [138]. For a careful study of the action of singular integrals on
function spaces, we refer to the book of Torres [315]. The study of anisotropic function spaces and
the action of singular integrals on them has been studied by Bownik [33]. Weighted anisotropic
Hardy spaces have been studied by Bownik, Li, Yang, and Zhou [35].



Chapter 7
BMO and Carleson Measures

The space of functions of bounded mean oscillation, or BM O, naturally arises as
the class of functions whose deviation from their means over cubes is bounded.
L~ functions have this property, but there exist unbounded functions with bounded
mean oscillation. Such functions are slowly growing, and they typically have at
most logarithmic blowup. The space BM O shares similar properties with the space
L™, and it often serves as a substitute for it. For instance, classical singular inte-
grals do not map L™ to L™ but L™ to BMO. And in many instances interpolation
between LP and BMO works just as well between L” and L”. But the role of the
space BMO is deeper and more far-reaching than that. This space crucially arises in
many situations in analysis, such as in the characterization of the L?> boundedness
of nonconvolution singular integral operators with standard kernels.

Carleson measures are among the most important tools in harmonic analysis.
These measures capture essential orthogonality properties and exploit properties of
extensions of functions on the upper half-space. There exists a natural and deep
connection between Carleson measures and BMO functions; indeed, certain types
of measures defined in terms of functions are Carleson if and only if the underlying
functions are in BMO. Carleson measures are especially crucial in the study of L?
problems, where the Fourier transform cannot be used to provide boundedness via
Plancherel’s theorem. The power of the Carleson measure techniques becomes ap-
parent in Chapter 8, where they play a crucial role in the proof of several important
results.

7.1 Functions of Bounded Mean Oscillation

What exactly is bounded mean oscillation and what kind of functions have this
property? The mean of a (locally integrable) function over a set is another word
for its average over that set. The oscillation of a function over a set is the absolute
value of the difference of the function from its mean over this set. Mean oscillation is
therefore the average of this oscillation over a set. A function is said to be of bounded

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 7, 117
(© Springer Science+Business Media, LLC 2009
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mean oscillation if its mean oscillation over all cubes is bounded. Precisely, given a
locally integrable function f on R" and a measurable set Q in R", denote by

1 "
= d
avef= /Qﬂx) x

the mean (or average) of f over Q. Then the oscillation of f over Q is the function
|f — Avg, f|, and the mean oscillation of f over Q is

1
— A dx.
01 o)~ Aveslas

7.1.1 Definition and Basic Properties of BMO
Definition 7.1.1. For f a complex-valued locally integrable function on R”, set
1w =50 oy [ 170~ Aver|x,
o 10l Jo 0

where the supremum is taken over all cubes Q in R". The function f is called of
bounded mean oscillation if ||f|| a0 <« and BMO(R") is the set of all locally
integrable functions f on R" with H f || amo <

Several remarks are in order. First it is a simple fact that BMO(R") is a linear
space, that s, if f,g € BMO(R") and A € C, then f+ g and A f are also in BMO(R")
and

||f+g||BMO HfHBMo+ ||g||BMO’
121 g0 = 121 {1£ ]l gaso -

But || HBMO is not a norm. The problem is that if HfHBMO = 0, this does not imply
that f = O but that f is a constant. See Proposition 7.1.2. Moreover, every constant
function ¢ satisfies ||c|| ,,,, = 0. Consequently, functions f and f + ¢ have the same
BMO norms whenever c is a constant. In the sequel, we keep in mind that elements
of BMO whose difference is a constant are identified. Although H H amo 1s only a
seminorm, we occasionally refer to it as a norm when there is no possibility of
confusion.
We begin with a list of basic properties of BMO.

Proposition 7.1.2. The following properties of the space BUO(R") are valid:
(1) If||fHBM0 =0, then f is a.e. equal to a constant.
(2) L=(R") is contained in BMO(R") and || f | 1,0 < 2||7]| ;-

(3) Suppose that there exists an A > 0 such that for all cubes Q in R" there exists a
constant cg such that
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sup o [ 170 —coldx <4 (7.1.1)
u X)—coldx <A. 1.
o 10 Jo

Then f € BMO(R") and ||f|| 3,0 < 2A.
(4) For all f locally integrable we have

1 1.
o <02 5 inf 1709 = colee < o
(5) If f € BMO(R"), h € R", and ©"(f) is given by t"(f)(x) = f(x — h), then " (f)
is also in BMO(R") and
17" M a0 = £ | saso-

(6) If f € BMO(R") and A > 0, then the function 8*(f) defined by §*(f)(x) =
f(Ax) is also in BMO(R") and
18*(1)

Nlssro = 1l swo-

(7) If f € BMO then so is | f|. Similarly, if f,g are real-valued BMO functions, then
so are max(f,g), and min(f,g). In other words, BMO is a lattice. Moreover,

o < 2041w

3
I max(f. > (1m0 + gl uro)

. 3
[[min(£.2) g0 < ) (||fHBMO+ ||gHBMO) :

(8) For locally integrable functions f define

IN

IN

||BMO

1
HfHBMoballs = S%p 18] /B|f(x) —A;’gf‘d% (7.1.2)

where the supremum is taken over all balls B in R". Then there are positive
constants cy,C, such that

C"HfHBMO < HfHBMoballs < C”HfHBMO'

Proof. To prove (1) note that f has to be a.e. equal to its average cy over every cube
[-N,N]". Since [-N,N]" is contained in [-N — 1, N +1]", it follows that cy = cy 41
for all N. This implies the required conclusion. To prove (2) observe that

Avg|f —Avg f| <2Avg|f| <2|f] -
4 4 4

For part (3) note that
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1
\f—Aggf\ < |f—CQ|+|Aggf—CQ| <|f—col+ 0l /Qlf(t)—CQ|df-

Averaging over Q and using (7.1.1), we obtain that || f||,,,, < 2A. The lower in-
equality in (4) follows from (3) while the upper one is trivial. Property (5) is imme-
diate. For (6) note that Avg,, M (f) = Avg) o f and thus

|Q|/|f7Lx Avg5x )| dx = |)LQ|/ Avgf\dx

Property (7) is a consequence of the easy fact that

|11 — Avglfl\ |f— Avgf\+Avg\f Avgf\

Also, the maximum and the minimum of two functions can be expressed in terms of
the absolute value of their difference. We now turn to (8). Given any cube Q in R”,
we let B be the smallest ball that contains it. Then |B|/|Q| = 27"v,v/n", where v, is
the volume of the unit ball, and

! B 1 e
1 Jo V0 A1 1y gy 100~y aes

171 33104,
It follows from (3) that HfHBMO < 21y \/nn HfHBMObaus' To obtain the reverse

conclusion, given any ball B find the smallest cube Q that contains it and argue
similarly using a version of (3) for the space BM Oyqys. O

Example 7.1.3. We indicate why L=(R") is a proper subspace of BMO(R"). We
claim that the function log |x| is in BMO(R") but not in L*(R"). To prove that it is
in BMO(R"), for every xo € R" and R > 0, we must find a constant Cy, g such that
the average of |log|x| — Cy, r| over the ball {x: |x—xo| <R} is uniformly bounded.
Since

1

. | .
bRV / |log |x| — Cxy.r|dx = . / |log |z| — Cyy.r +10gR| dz,

Pr—xo|<R |lz—R~1xg|<1

we may take Cyy g = Cg-1,, | +10gR, and things reduce to the case that R = I and
Xo is arbitrary. If R = 1 and |xp| < 2, take Cy,,; = 0 and observe that

/ | log||| dx < / |1og|x|| dx = C

Jr—xo|<1 [x<3
When R = 1 and |xg| > 2, take Cy,; = log|xo|. In this case notice that

]

1
%8 1xo|

dx <log2,

‘10g|x|—log|xo|‘dx:v1

Jx—xp|<1 [x—xp|<1
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since when |x — x0| < 1 and |xp| > 2 we have that log ‘\ \‘ < log \x‘oH"l < logg and

log ] < log I ‘ | <log2. Thus log|x| is in BMO.

The function log |x| turns out to be a typical element of BMO, but we make this
statement a bit more precise later. It is interesting to observe that an abrupt cutoff of
a BM O function may not give a function in the same space.

Example 7.1.4. The function i(x) = y,~¢log )lc is not in BMO(R). Indeed, the prob-
lem is at the origin. Consider the intervals (—¢,€), where 0 < € < % We have that

1 [te 1 e 1 1+4log !
aveh=, | h(x)dxzzg/o log _dv= Se

(—¢.€) 2e J— 2
But then
1 [te 0 1+log,
IR Avg ] dx > / | Avg h|dx=  °¢
2¢e — ) 2¢e & (—g.) 4

and the latter is clearly unbounded as € — 0.

Let us now look at some basic properties of BMO functions. Observe that if a
cube Q; is contained in a cube Q», then

Ave f— Avg f| < Ave fld
| Qvlgf szgfl <0 |/ |f— vgf\ x
< —Avefld 7.13
< |Q1|/Qz\f szgf\ x (7.1.3)
|0>]

< .
<2 o

The same estimate holds if the sets Q1 and Q, are balls.
A version of this inequality is the first statement in the following proposition.
For simplicity, we denote by || f| 5,,,, the expression given by || f| M0y, 0 (71.2),

since these quantities are comparable. For a ball B and a > 0, aB denotes the ball
that is concentric with B and whose radius is a times the radius of B.

Proposition 7.1.5. (i) Let f be in BMO(R"). Given a ball B and a positive integer
m, we have

| Ave f — Ave f| < 2"m|f| gyso- (7.1.4)
B ompB
(ii) For any 8 > 0 there is a constant C, s such that for any ball B(xo,R) we have

RS/ |f(x) - AVgB(xO,R)f|

Rt engyrts P Cndll Moo (7.1.5)

An analogous estimate holds for cubes with center x( and side length R.
(iii) There exists a constant C, such that for all f € BMO(R") we have
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sup sup | 17(x) = (P )0 P(x =) dx < G| gy (7.1.6)

yeR" >0

Here P, denotes the Poisson kernel introduced in Chapter 2.
(iv) Conversely, there is a constant C), such that for all f € Lloc (R") for which

)l
/R,, (1 eyt X<

we have

Cull Ao < sup sup f 1) = (B S))IBx—y) d. @.17)

Proof. (i) We have

|Avgf—Avef| =
B 2B

(f(t)— Avg f)dt
B 2B

2n
< t)— A dt
< s /ZB\ﬂ) v |

IN

2" #llppso-

Using this inequality, we derive (7.1.4) by adding and subtracting the terms

Avgf, Avgf, ..., Avgf.
2B 22B 2m=1p
(ii) In the proof below we take B(xp,R) to be the ball B = B(0, 1) with radius 1

centered at the origin. Once this case is known, given a ball B(xo,R) we replace the
function f by the function f(Rx+xo). When B = B(0, 1) we have

|f(x) — Avg f]
/ B dx
o (1 |x])+e
|f(x) — Avg f| - |f(x)— Avg f|+ | Avg f — Avgf\
2k+1p 2k+1p
<, (s B2 / (14 |x]yro &

- 2k+lB\2kB

< [[ 176~ Aves]ds

+ 3 2 k) /(\f Avgf\+|Avgf—Avgf|)dx
k=0 Skiip 2k+1p 2k+1p B

<ol llgnro + 2 27 (1427 ket 1) ) ] gy
k=0

Cos 1o
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(iii) The proof of (7.1.6) is a reprise of the argument given in (ii). Set B, = B(y,1).

We first prove a version of (7.1.6) in which the expression (P, x f)(y) is replaced by
Avgp, f. For fixed y,7 we have

t|f(x) — Ave f|
B;

R (2 [y ) "2

tlf(x)—Avgf\
S n+l
Bi (24 [x—y[?) 2
(}f Avg f|+} Avgf Avgf|)
Z/ Zk n+1 dx
j=0/ 24+ 1B\2kB, (t2+|x 32 (7.1.8)
| f(x) — Avg f|
< B dx
By "

oo n—k(nt1)
27 oy (100 s 1| e - el o

< V"HfHBM 2 K1) (1+2n(k+1))(2k+1 HfHBMO

= Gall fllpaso-

Using the inequality just proved, we also obtain

/ |(B*f)(y)_Ang|Pt(x_)’)dx = ‘(P}*f)(y)—Avgf‘
R” B; B,

IN

/ P(x—)|f(x) — Avg f|dx
R” B;

IN

Call#llsaro -

which, combined with the inequality in (7.1.8), yields (7.1.6) with constant 2C,.
(iv) Conversely, let A be the expression on the right in (7.1.7). For |x — y| < we

have P, (x —y) > c,t(2:2)~"3' = /", which gives

Az [ 170 EeNOPE=dr= T [ @)= (Rep0)d
be—yl<t
Proposition 7.1.2 (3) now implies that

||fHBMO <24/(vac),).-

This concludes the proof of the proposition. 0
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7.1.2 The John—Nirenberg Theorem

Having set down some basic facts about BMO, we now turn to a deeper property of
BMO functions: their exponential integrability. We begin with a preliminary remark.
As we saw in Example 7.1.3, the function g(x) = log|x|~! is in BMO(R"). This
function is exponentially integrable over any compact subset K of R” in the sense
that

/ <180 g < oo
K

for any ¢ < n. It turns out that this is a general property of BMO functions, and this
is the content of the next theorem.

Theorem 7.1.6. For all f € BMO(R"), for all cubes Q, and all & > 0 we have
‘{x €0 |f(x)—Avef| > a}‘ < e|Q]e= A%/ Wfllsuo (7.1.9)
0

with A = (2"e) ™.

Proof. Since inequality (7.1.9) is not altered when we multiply both f and « by the
same constant, it suffices to assume that H f H BMO = 1. Let us now fix a closed cube
Q and a constant b > 1 to be chosen later.

We apply the Calderén-Zygmund decomposition to the function f — Avg, f in-
side the cube Q. We introduce the following selection criterion for a cube R:

L
|R|/R|f(x)—Aggf|dx>b. (7.1.10)

Since |
o) Jo )= Ave sl [l =1 <,

the cube Q does not satisfy the selection criterion (7.1.10). Set 0 = 0 and sub-
divide Q{9 into 2" equal closed subcubes of side length equal to half of the side
length of Q. Select such a subcube R if it satisfies the selection criterion (7.1.10).
Now subdivide all nonselected cubes into 2" equal subcubes of half their side length
by bisecting the sides, and select among these subcubes those that satisfy (7.1.10).
Continue this process indefinitely. We obtain a countable collection of cubes {Qg.1> +i
satisfying the following properties:

(A-1) The interior of every Qﬁl) is contained in Q(O).
(B-1) b< Q]! / |£(x) — Avg f] dx < 2"b.
. (1)
Qj Q(O)

(C-1) |Avgf—Avgf| <2"b.
Q;I) 00
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o) T < I [ 1)~ Avesldr< |10
LI5S & SIS I
J j7C 0O
(E-1) |f—Avgf| <bae.ontheset 00\ U,-QE.I).
00) '

We call the cubes Q;l) of first generation. Note that the second inequality in (D-1)
requires (B-1) and the fact that Qm) does not satisfy (7.1.10).

We now fix a selected first-generation cube Q;l) and we introduce the following
selection criterion for a cube R:

|R|/ | f(x) Avgf|dx>b (7.1.11)

Observe that Qy) does not satisfy the selection criterion (7.1.11). We apply a similar
Calderén—Zygmund decomposition to the function

f—Avgf
oV

inside the cube Q;l). Subdivide Q;l) into 2" equal closed subcubes of side length
equal to half of the side length of Qi.l) by bisecting the sides, and select such a
subcube R if it satisfies the selection criterion (7.1.11). Continue this process indef-
initely. Also repeat this process for any other cube Qi.l) of the first generation. We

obtain a collection of cubes {Q,(2>}1 of second generation each contained in some

Qﬁl) such that versions of (A-1)—(E-1) are satisfied, with the superscript (2) replac-
ing (1) and the superscript (1) replacing (0). We use the superscript (k) to denote
the generation of the selected cubes.

For a fixed selected cube Q,(2> of second generation, introduce the selection cri-
terion

|R|/|f Avgf‘dx>b

and repeat the previous process to obtain a collection of cubes of third generation
inside Q,(2>. Repeat this procedure for any other cube Q5.2> of the second generation.
Denote by { Q§3> }s the thus obtained collection of all cubes of the third generation.
We iterate this procedure indefinitely to obtain a doubly indexed family of cubes
®) e . .
Q;" satisfying the following properties:

(A-k) The interior of every Qﬁk) is contained in a unique ny_l).

(k=1)
j,

(B-k) b<|Q / |f(x) — Avg f|dx < 2"D.
0
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(C-k) |Avgf Avg f| <2"h.
o kD)
J il

1 _
(D-h) Z\Qﬁ-’” < bZ|Q§-’f .

(E-k) |f— Avgf‘<baeonthesetQ )\UjQy‘),
Q/

We prove (A-k)—(E-k). Note that (A-k) and the lower inequality in (B-k) are sat-
isfied by construction. The upper inequality in (B-k) is a consequence of the fact
that the unique cube Qﬁ? with double the side length of Q§k> that contains it was not
selected in the process. Now (C-k) follows from the upper inequality in (B-k). (E-k)
is a consequence of the Lebesgue differentiation theorem, since for every point in

\ U;0 “) there is a sequence of cubes shrinking to it and the averages of
|f— /?Vg)f |
k—1
0

over all these cubes is at most b. It remains to prove (D-k). We have

1
ZIQ,E-k)I < bZ/Qw |f(x) — Avg f|dx
J J J

(k1)
Ql
1

:b Z //{)‘f Avgf‘dx
j!j corresp. to Q(kfl)

j,

1
<, ¥ /Q o [F) = Avg fldx
i ey Q;’,"”

1 _
< bZ,\QE’f Y11 swro
J
_ 1 (k=1)
= b%‘Qj, |.

Having established (A-k)—(E-k) we turn to some consequences. Applying (D-k) suc-
cessively k — 1 times, we obtain

Y [0 <b k0. (7.1.12)
21C

For any fixed j we have that |Avg y f— Ang f| < 2"b and |f AVg f‘ <b

a.e. on Qj \U, Qz . This gives
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|f—A(\(f)%f‘§2"b+b ae. on Qﬁl)\UQl(z),
0 I

which, combined with (E-1), yields

|f —Avef| <2"2b ae. on  QO\|Jo". (7.1.13)
o 1

For every fixed / we also have that |f — Ang<2) f| <ba.e.on ng) \ Us Q§3), which
1
combined with \Ang@) f=Avg,m f| £2" and \Angm [ = Avgyo f| <27
1 I 1

yields
|f— A?g;gf‘ <2"3b ae. on Q;Z) \ UQ@.
Q N

In view of (7.1.13), the same estimate is valid on Q() \ Us Q§3>. Continuing this
reasoning, we obtain by induction that for all £ > 1 we have

|f — Avg f| < 2"Kb ae. on 0O\ JoW. (7.1.14)
00 s

This proves the almost everywhere inclusion
{reo: 1w -aver|>2wp} c|Jol
0 i

forall k=1,2,3,.... (This also holds when k =0.) We now use (7.1.12) and (7.1.14)
to prove (7.1.9). We fix an o > 0. If
2"kb < o0 <2M(k+1)b

for some k > 0, then

IN

{xeo: |f—A(\27gf|>oc}‘ {xeo: \f—Aggf\>2"ka

IN

1
lol] < L 10®)
J

— |Q| efklogb

|Q| be—alogb/(z"b)’

IN

since —k <1 — 7. Choosing b = e > 1 yields (7.1.9). O
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7.1.3 Consequences of Theorem 7.1.6

Having proved the important distribution inequality (7.1.9), we are now in a position
to deduce from it a few corollaries.

Corollary 7.1.7. Every BMO function is exponentially integrable over any cube.
More precisely, for any y < 1/(2"e), for all f € BMO(R"), and all cubes Q we have

2y

1
Yfx)—Aveg fI/ N flsmo gy < 1 )
ol ey

Proof. Using identity (1.1.7) with @(¢) = ¢ — 1, we write

1 h oo 1 h _ L= g )
|Q|/Qe dx—1+|Q|/Q(e l)dx—1+|Q|/O fxeQ: [h(x)|> a}|da

for a measurable function /. Then we take & = y|f — Avg,, |/ | Bmo and we use
inequality (7.1.9) with y < A = (2"¢)~! to obtain

|é| / @) =Avep f1/Ifllsmo gy < /°° e® e~ My I lamo)/Ifllmwo gy Coys
0 0 |

where C,, y is a unit less than the constant in the statement of the inequality. O
Another important corollary of Theorem 7.1.6 is the following.

Corollary 7.1.8. For all 0 < p < oo, there exists a finite constant B, , such that

1 »
SZP < |0 /Q |f(x> B Aggﬂpdx) < BP7"HfHBMo(Rn)- (7.1.15)

Proof. This result can be obtained from the one in the preceding corollary or directly
in the following way:

1 p P [T -1 . B
o 10— averas = B [Tarlixe 0 1)~ Avas| > a)da

IN

p e|0| /w o~ 1e=Ao/ | fllBmo g g
10| 0

e
= pF(P)AprHZMo’

1 11

where A = (2"¢)~". Setting B, = (pI'(p) {»)? = (pl"(p))l’ePJr1 2", we conclude
the proof of (7.1.15). O

Since the inequality in Corollary 7.1.8 can be reversed when p > 1 via Holder’s
inequality, we obtain the following important L” characterization of BM O norms.
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Corollary 7.1.9. For all 1 < p < o we have

1oy ’
(1o o110~ Ave 7 8)” % [

Proof. Obvious. O

Exercises

7.1.1. Prove that BMO is a complete space, that is, every BMO-Cauchy sequence
converges in BMO.

[Hint: Use Proposition 7.1.5 (ii) to show first that such a sequence is Cauchy in L'
of every compact set.]

7.1.2. Find an example showing that the product of two BM O functions may not be
in BMO.

7.1.3. Prove that
o
111 | amo < 21/ lzmo

whenever 0 < o < 1.

7.1.4. Let f be a real-valued BMO function on R”". Prove that the functions

K if f(x) <K,
Jre(x) =9 flx) K< f(x) <L,
L iff(x)>L

satisfy || fxr || g0 < 211 | saso-

7.1.5. Let a > 1, let B be a ball (or a cube) in R”, and let aB be a concentric ball
whose radius is a times the radius of B. Show that there is a dimensional constant
C,, such that for all f in BMO we have

\A;gf—A;gﬂ < Gulog(a+1) |||y
a.

7.1.6. Let a > 1 and let f be a BMO function on R". Show that there exist dimen-
sional constants C,,, C;l such that

(a) for all balls By and B, in R” with radius R whose centers are at distance aR we
have

| Avef —Ave f] < Glog(a+1)||f o -
B B,
(b) Conclude that

| Avg f—Avef] <Cilogla+ )|/l o
(a+1)B; By
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[Hint: Part (a): Consider the balls 2/B, and 2/B, for j=0,1,2,... and find the
smallest j such that these intersect. Use (7.1.3) and Exercise 7.1.5. }

7.1.7. Let f be locally integrable on R”. Suppose that there exist positive constants
m and b such that for all cubes Q in R" and for all 0 < p < oo we have

1

P m 1
<bp"|Q|r.

OCH)CE Q: |f(x)—Avgf| > oc}
0
Show that f satisfies the estimate

{re0: 17t - Avgf]> o] < lglee"”

with ¢ = (2b)~!/"1og2.
[Hint: Try p = (0t/2b)"/™]

7.1.8. Prove that | log|x| |p is notin BMO(R) when | < p < e
[Hint: Show that if ‘ log |x| |p were in BMO, then estimate (7.1.9) would be violated
for large o.]

7.1.9. Let f € BMO(R) have mean value equal to zero on the fixed interval . Find
a BMO function g on R such that

(Hhg=fonl
(2)g=00nR\ 31
3) ||¢]lgss0 < ClIf || gaso for some constant C independent of f.

[Hint: Let I be the middle third of I. Let I}, I, be the middle thirds of I\ Iy. Let I3,
Iy, ..., I3 be the middle thirds of 7\ (Ip Ul UL), etc. Also let J; be the reflection of
Iy with respect to the closest endpoint of / and set g = Avg, fonJifork>1,g=f

on I, and zero otherwise. |

7.2 Duality between H' and BMO

The next main result we discuss about BMO is a certain remarkable duality rela-
tionship with the Hardy space H'. We show that BMO is the dual space of H'. This
means that every continuous linear functional on the Hardy space H' can be real-
ized as integration against a fixed BMO function, where integration in this context
is an abstract operation, not necessarily given by an absolutely convergent integral.
Restricting our attention, however, to a dense subspace of H' such as the space of
all finite sums of atoms, the use of the word integration is well justified. Indeed, for
an L? atom for H! a and a BMO function b, the integral
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/|a(x)b(x)|dx <oo

converges absolutely, since a(x) is compactly supported and bounded and b(x) is
locally (square) integrable.

Definition 7.2.1. Denote by H}(R") the set of all finite linear combinations of L
atoms for H!'(R"). For b € BMO(R") we define a linear functional L, on H} (R")
by setting
Ly(g) = - g(x)b(x)dx, gEH). (7.2.1)
Certainly the integral in (7.2.1) converges absolutely and is well defined in this case.
This definition is also valid for general functions g in H'(R") if the BMO function b
is bounded. Note that (7.2.1) remains unchanged if b is replaced by b+ ¢, where c is
an additive constant; this makes this integral unambiguously defined for b € BMO.
To extend the definition of L, on the entire H! for all functions b in BMO we
need to know that

HL;,HH,HC < C,,HbHBMO , whenever b is bounded, (7.2.2)

a fact that will be proved momentarily. Assuming (7.2.2), take b € BMO and let
by (x) = byp|<m for M = 1,2,3,.... Since HbMHBMO < 3‘ bHBMO’ the sequence of
linear functionals {Ly,, }» lies in a multiple of the unit ball of (H')* and there is a
subsequence Ly; that converges weakly to a bounded linear functional L, on H'.
This means that for all f in H'(R") we have

Lij (f) - Zb(f)

as j — co. Observe that for g € H} we also have
Ly, (8) = Lo(8).

and since each L;,Mj satisfies (7.2.2), L;, is a bounded linear functional on H(}. Since

H\ is dense in H', L, is the unique bounded extension of L, on H'.

Having set the definition of L;, we proceed by showing the validity of (7.2.2).
Let b be a bounded BMO function. Given f in H', find a sequence a; of L? atoms
for H' supported in cubes Qy such that

=2 ha (7.2.3)
k=1

and

2 12l < 2| ]
k=1

Since the series in (7.2.3) converges in H it must converge in L', and then we have
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Ly (f)] =

/ f@b(x) d

lglk/gk ag(x) (b(x) —AQ\]/(gb) dx

— 1 2 2
A 1( / b(x) — Avgh d)
< 21| il || ax]] 21Ok o Qk‘ (x) Q\Zg |”dx

k=
2| £l B2 18] agor

A

IN

where in the last step we used Corollary 7.1.8 and the fact that L? atoms for H'
satisty ||a|| 2 < [Qkl™ >. This proves (7.2.2) for bounded functions b in BMO.

We have proved that every BMO function b gives rise to a bounded linear func-
tional L, on H' (R"™) (from now on denoted by Lj) that satisfies

||LhHH1HC < C”HbHBMO' (7.2.4)

The fact that every bounded linear functional on H! arises in this way is the gist of
the equivalence of the next theorem.

Theorem 7.2.2. There exist finite constants C,, and C), such that the following state-
ments are valid:

(a) Given b € BMO(R"), the linear functional Ly, is bounded on H' (R") with norm
at most C,,HbHBMO.

(b) For every bounded linear functional L on H' there exists a BMO function b such
that for all f € H} we have L(f) = Ly(f) and also

HbHBMO < C;lHLbHHlHC'

Proof. We have already proved (a) and so it suffices to prove (b). Fix a bounded
linear functional L on H'(R") and also fix a cube Q. Consider the space L?(Q) of
all square integrable functions supported in Q with norm

el = ( fsoras)

We denote by L3(Q) the closed subspace of L?(Q) consisting of all functions in
L*(Q) with mean value zero. We show that every element in L3(Q) is in H'!(R")
and we have the inequality

gl < enl©12lg]] - (7.2.5)

To prove (7.2.5) we use the square function characterization of H'. We fix a
Schwartz function ¥ on R” whose Fourier transform is supported in the annulus
5 < |&] <2 and that satisfies (6.2.6) for all £ # 0 and we let A;(g) = ¥ * g. To

estimate the L' norm of (¥;(4;(g)[?) Y2 over R”, consider the part of the integral
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over 34/nQ and the integral over (31/n Q). First we use Holder’s inequality and an
L? estimate to prove that

x <cp .
3vnQ B #llez
Now for x ¢ 3,/nQ we use the mean value property of g to obtain

callell 227747 ]n

14j(8) (%) < (14 2x— g2 (7.2.6)

where cg is the center of Q. Estimate (7.2.6) is obtained in a way similar to that we
obtained the corresponding estimate for one atom; see Theorem 6.6.9 for details.
Now (7.2.6) implies that

1
1
Jounor (ZI@WP) ax <ol ]

which proves (7.2.5).
Since L3(Q) is a subspace of H', it follows from (7.2.5) that the linear functional
L:H' — C is also a bounded linear functional on L3(Q) with norm

120l 20)—c < enl @2 [1L]l e (7.2.7)

By the Riesz representation theorem for the Hilbert space L(z) (Q), there is an element
F?in (L3(Q))* = L*(Q)/{constants} such that

L(g) = /QF ©(x)g(x)dx, (7.2.8)
for all g € L3(Q), and this F? satisfies
||FQ||L2(Q) < HLHL%(Q>~>C' (7.2.9)

Thus for any cube Q in R”, there is square integrable function F€ supported in Q
such that (7.2.8) is satisfied. We ,observe that if a cube Q is contained in another
cube Q', then F€ differs from F¢ by a constant on Q. Indeed, for all g € L3(Q) we

have
| F0gtdx=L(g) = [ FOx)g(r)dx
(9] (&)

/Q(FQ/ (x) — F2(x))g(x)dx =0.

and thus

Consequently,
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g [ (F? ()~ FO(x)g()dx
0

is the zero functional on L3(Q); hence F€ — F must be the zero function in the
space (L3(Q))*, i.e., F¢ — F is a constant on Q.

Let Oy = [—m,m]" form =1,2,.... We define a locally integrable function b(x)
on R" by setting

1

101] Jo,
whenever x € Q,,,. We check that this definition is unambiguous. Let 1 < ¢ < m.
Then for x € Qy, b(x) is also defined as in (7.2.10) with £ in the place of m. The
difference of these two functions is

b(x) = F9 (x) — FOn (1) dr (7.2.10)

F9n _ Qe _ AVg(FQ”’ _ FQ/) =0
Q1

)

since the function F@» — F2¢ is constant in the cube Qy (which is contained in Q,,,),
as indicated earlier.

Next we claim that there is a locally integrable function » on R” such that for any
cube Q there is a constant Cp such that

Fe=b-Cp on Q. (7.2.11)

Indeed, given a cube Q pick the smallest m such that Q is contained in Q™ and
let Co = —Avg, (F2")+ D(Q,0Qm), where D(Q,Qy) is the constant value of the
function F9» — F€ on Q.

We have now found a locally integrable function b such that for all cubes Q and
all g € L3(Q) we have

/éb(x)g(x)dx: /Q (F2(x) + Co)g(x) dx = /Q FO(x)g(x)dx=L(g), (7.2.12)

as follows from (7.2.8) and (7.2.11). We conclude the proof by showing that b €
BMO(R"). By (7.2.11),(7.2.9), and (7.2.7) we have

1 _ 1 0
w o b2~ Colax = w0 | Felas

< SZP|Q|_1|Q|£HFQHL2(Q)
1

< sgp|Q| 2HLHL%)(Q)—C

< anl|Lfl e <=

Using Proposition 7.1.2 (3), we deduce that b € BMO and HbHBMO < 2c,,|
Finally, (7.2.12) implies that

]l -
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L(g) = |, b8 dx=L(g)

forall g € H& (R"), proving that the linear functional L coincides with L on a dense

subspace of H!. Consequently, L = L, and this concludes the proof of part (b). [J

Exercises

7.2.1. Use Exercise 1.4.12(a) and (b) to deduce that

HbHBMO;\V’ sup ‘Lb(f)

HfHHl <1

£l = sup [Ly(f)]-

ll6llBMo<1

)

7.2.2. Suppose that a locally integrable function u is supported in a cube Q in R”
and satisfies

/Qu(x)g(x) dx=0

for all square integrable functions g on Q with mean value zero. Show that u is
almost everywhere equal to a constant.

7.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on R" are related to corresponding properties
of associated functions defined on RTI in a natural way. A typical example of
this situation is the relation between an L? (R") function f and its Poisson integral
[+ P, or more generally f x @, where {®; },~ is an approximate identity. Here @
is a Schwartz function on R” with integral 1. A maximal operator associated to the
approximate identity {f * @, },~¢ is

f = sup|f* D],
>0

which we know is pointwise controlled by a multiple of the Hardy-Littlewood max-
imal function M(f). Another example of a maximal operator associated to the pre-
vious approximate identity is the nontangential maximal function

=M (f;®@)(x) =sup sup |(f*P)(y)|-

>0 |y—x|<t

To study nontangential behavior we consider general functions F' defined on R"jl
that are not necessarily given as an average of functions defined on R”. Throughout
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this section we use capital letters to denote functions defined on Rf’ﬁl. When we
write F(x,7) we mean thatx € R" and ¢ > 0.

7.3.1 Definition and Basic Properties of Carleson Measures

Definition 7.3.1. Let F be a measurable function on R, For x in R” let I'(x) be
the cone with vertex x defined by

x)={(,t) eR"xR": |y—x| <t}

A picture of this cone is shown in Figure 7.1. The nontangential maximal function
of F is the function
F')= sup [F(u1)]
()€l (x)
defined on R”. This function is obtained by taking the supremum of the values of F
inside the cone I'(x).

We remark that if F*(x) = 0 for almost all x € R”, then F is identically equal to
zero on R,

a4

Fig. 7.1 The cone I"(x) trun-
cated at height 7.

Definition 7.3.2. Given a ball B = B(xy,r) in R" we define the tent or cylindrical
tent over B to be the “cylindrical set”

T(B)={(x,t) R : xeB, 0<t<r}.
For a cube Q in R” we define the tent over Q to be the cube
T(Q)=0x(0,{Q)].

A tent over a ball and over a cube are shown in Figure 7.2. A positive measure L on
RTI is called a Carleson measure if
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ol =sup  u(7(Q) <= @3
o 9]

where the supremum in (7.3.1) is taken over all cubes Q in R". The Carleson func-
tion of the measure U is defined as

% (1)(x) = sup

1
7(0)), 732
sup |Q|u( (0)) (73.2)

where the supremum in (7.3.2) is taken over all cubes in R" containing the point x.
Observe that || (u)|| .. = ||tt],-
We also define
1

where the supremum is taken over all balls B in R”. One should verify that there
exist dimensional constants ¢, and C, such that

cylinder 1
. =su T(B)), (7.3.3)

cylinder
4

<Gl

enllully < flu %
for all measures (t on RTI, that is, a measure satisfies the Carleson condition (7.3.1)
with respect to cubes if and only if it satisfies the analogous condition (7.3.3) with
respect to balls. Likewise, the Carleson function € (1) defined with respect to cubes

is comparable to €¥'"%r (1) defined with respect to cylinders over balls.

B(xo,r) 0

Fig. 7.2 The tents over the ball B(xy, ) and over a cube Q in R?.

Examples 7.3.3. The Lebesgue measure on R’jfl is not a Carleson measure. Indeed,
it is not difficult to see that condition (7.3.1) cannot hold for large balls.

Let L be aline in R%. For A measurable subsets of R% define it (A) to be the linear
Lebesgue measure of the set LNA. Then u is a Carleson measure on R%r. Indeed,
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the linear measure of the part of a line inside the box [xo — r,x9 + 7] x (0, 7] is at most
equal to the diagonal of the box, that is, /57.

Likewise, let P be an affine plane in R"*! and define a measure v by setting
V(A) to be the n-dimensional Lebesgue measure of the set A N P for any A C R"".
A similar idea shows that v is a Carleson measure on R

We now turn to the study of some interesting boundedness properties of functions
on RTI with respect to Carleson measures.

A useful tool in this study is the Whitney decomposition of an open set in R".
This is a decomposition of a general open set €2 in R" as a union of disjoint cubes
whose lengths are proportional to their distance from the boundary of the open set.
For a given cube Q in R”, we denote by £(Q) its length.

Proposition 7.3.4. (Whitney decomposition) Let 2 be an open nonempty proper
subset of R". Then there exists a family of closed cubes {Q;} ; such that

(a) U j Q; = Q and the Q;’s have disjoint interiors;

(b) \/né(Qj) < dllsl‘(Qj,Qc) < 4\/n€(Qj);

(c) if the boundaries of two cubes Q; and Qy touch, then
I €(Qj)
47 Q)

(d) for a given Q; there exist at most 12" Qy’s that touch it.

<4;

The proof of Proposition 7.3.4 is given in Appendix J.

Theorem 7.3.5. There exists a dimensional constant C,, such that for all oo > 0, all
measures [L > 0 on Rf’:rl, and all L-measurable functions F on R'J’FH, we have

p({(er) R F(x)] > a}) <Gy /{Fw}%(u)(x) dx. (7.3.4)

In particular, if W is a Carleson measure, then

w({IFl > a}) < Gf|ufl,{HF* > a}l.

Proof. We prove this theorem by working with the equivalent definition of Carleson
measures and Carleson functions using balls and cylinders over balls. As observed
earlier, these quantities are comparable to the corresponding quantities using cubes.
We begin by observing that for any function F the set Q, = {F* > o/} is open,
and in particular, F* is Lebesgue measurable. Indeed, if xg € €, then there is a
(yo,t0) € R%! such that |F (yo,f)| > e If dy is the distance from y to the sphere
formed by the intersection of the hyperplane 7o + R" with the boundary of the cone
I (x0), then |xg — yo| < to — dy. It follows that the open ball B(xg,dy) is contained in
Qy, since for z € B(xo,dp) we have |z — yo| < 9, hence F*(z) > |F (yo,t0)| > ct.
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Let {Qx} be the Whitney decomposition of the set €. For each x € Q,, set
0o (x) = dist (x, 2). Then for z € Q; we have

80 (2) < v/nl(Qx) + dist (Qk, Q25) < 5v/nl(Qx) (7.3.5)

in view of Proposition 7.3.4 (b). For each Oy, let By be the smallest ball that contains
Oy. Then the radius of By is v/n¢(Qy)/2. Combine this observation with (7.3.5) to
obtain that

z€0r = B(z,00(z)) C12B;.

This implies that

U T(B(z,8a(2)) €| JT(12By). (7.3.6)
7EQy k

Next we claim that
{IF|>a}C |J T(B(z,6u(2)))- (7.3.7)

7€Qq

Indeed, let (x,7) € R%"! such that |F(x,t)| > a. Then by the definition of F* we

have that F*(y) > o for all y € R”" satisfying |x — y| < ¢. Thus B(x,#) C £ and so

8a(x) > 1. This gives that (x,7) € T (B(x, 8¢(x))), which proves (7.3.7).
Combining (7.3.6) and (7.3.7) we obtain

{IF| > o} C|JT(12By).
k

Applying the measure pt and using the definition of the Carleson function, we obtain

u{lIFl>a}) < 2u(T(128)

2 | 123](' xleank (gcylinder(‘u) ()C)
k

IA

i lind
12n cgcyln er x dx
z |O«| Jo, (1))

C, /Q )

since |By| = 2’”n”/2v,,|Qk|. This proves (7.3.4). O

IN

IN

Corollary 7.3.6. For any Carleson measure |1 and every [L-measurable function F
on Rf’:rl we have

Jo 0P antn < Gl [ 0 s

forall0 < p < oo

Proof. Simply use Proposition 1.1.4 and the previous theorem. 0
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A particular example of this situation arises when F(x,t) = f x @, (x) for some
nice integrable function @. Here and in the sequel, @ (x) = t"®(t~'x). For in-
stance one may take @; to be the Poisson kernel P,.

Theorem 7.3.7. Let ®@ be a function on R" that satisfies for some 0 < C,8 < oo,

c

PENS (1 s

(7.3.8)

Let | be a Carleson measure on R’jjl. Then for every 1 < p < oo there is a constant
Cp (1) such that for all f € LP(R") we have

Joo (@ NI ) < Contr) [ 1P e, 239)

where C, , (1) < C(p,n) ||,u o~ Conversely, suppose that @ is nonnegative and sat-
isfies (71.3.8) and [y @(x)dx > 0. If p is a measure on R such that for some

1 < p < o there is a constant Cp, (1) such that (7.3.9) holds for all f € LP(R"),
then | is a Carleson measure with norm at most a multiple of C,, n ().

Proof. 1f i is a Carleson measure, we may obtain (7.3.9) as a consequence of Corol-
lary 7.3.6. Indeed, for F(x,t) = (&, * f)(x) we have

F*(x) =sup sup |(@xf)(y)]-
>0 yeR"
[y—x|<t

Using (7.3.8) and Corollary 2.1.12, this is easily seen to be pointwise controlled by
the Hardy-Littlewood maximal operator, which is L” bounded. See also Exercise
7.3.4.

Conversely, if (7.3.9) holds, then we fix a ball B = B(xy,r) in R" with center xg
and radius r > 0. Then for (x,¢) in T(B) we have

(D * x08) (x /(Dt )dy > /CDt )dy = / D(y)dy=c, >0,
x-2B B(04) B(0,1)

since B(0,¢) C x — 2B(xg,r) whenever t < r. Therefore, we have
1
wr®) < |, /R 1@ ) @) duxn)

Cpnl
P /|X23 )P dx

2" C 7n(u)
= ir]: |B|

IN

This proves that  is a Carleson measure with ||,qu <2"¢,PCpu(p). O
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7.3.2 BMO Functions and Carleson Measures

We now turn to an interesting connection between BMO functions and Carleson
measures. We have the following.

Theorem 7.3.8. Let b be a BMO function on R" and let ¥ be an integrable function
with mean value zero on R" that satisfies

¥ (x)| <A(1 4 |x])™° (7.3.10)

for some 0 < A,§ < oo. Consider the dilations ¥ =t "V (t~'x) and define the
Littlewood—Paley operators Aj(f) = f *¥y-;.
(a) Suppose that
sup Y [P 7E)P <B? < oo (7.3.11)
EeR" jeZ

and let 8,-(t) be Dirac mass at the point t = 27J. Then there is a constant C,, 5
such that

dp(x,t) =3, |(Fys +b) (x)Pdx 8,5 (1)

jez
is a Carleson measure on R with norm at most C,, 5(A + B)* ||b||§M0.
(b) Suppose that
= dt
sup [ |V (é§)|2 ? < oo, (7.3.12)

Ecrn /0

Then the continuous version dv(x,t) of du(x,t) defined by

dv(xt) = (% b)) dx "

. . 2

is a Carleson measure on R with norm at most Cps(A —|—B)2||b||BM0 for some
constant C,, s.

(c) Let 8,A > 0. Suppose that {K; };~ are functions on R" x R" that satisfy

At

(t+ oy (7.3.13)

|Kt ()C,y)| S
forallt > 0andall x,y € R". Let R; be the linear operator
/ Kt -x y dya

which is well defined for all f € U,<,<..L?(R"). Suppose that R;(1) = 0 for all
t > 0 and that there is a constant B > 0 such that

/°°/ > dxdt
O n

RN < Bl 2w (7.3.14)
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forall f € L*>(R"). Then for all b in BMO the measure

> dxdt
LICIE]

is Carleson with norm at most a constant multiple of (A + B)2||bH123M0.

We note that if in addition to (7.3.10), the function ¥ has mean value zero and
satisfies |V¥(x)] < A(1 + |x|)~"9, then (7.3.11) and (7.3.12) hold and therefore
conclusions (a) and (b) of Theorem 7.3.8 follow.

Proof. We prove (a). The measure p is defined so that for every p-integrable func-
tion F on R%"! we have

/ Fx,1)du(x,1) Z/ (W, #b)(x) 2 (x,277) dx. (7.3.15)

JEZL

For a cube Q in R” we let O be the cube with the same center and orientation whose
side length is 31/n£(Q), where £(Q) is the side length of Q. Fix a cube Q in R”, take
F to be the characteristic function of the tent of Q, and split b as

b= (b—Avgb)xo- + (b— Avgb) x(o-)c + Avgb.
o 9] o

Since ¥ has mean value zero, ¥y * Avg, b = 0. Then (7.3.15) gives

wrE)= Y / 14,(B) (¥)Pdx < 251 +25,,
2/<f
where
2 = Z/ (- Avgb)xQ* x)|2dx,
JEZL "
n= Y /|A (0~ Aveb)z) () dx.
2/<[

Using Plancherel’s theorem and (7.3.11), we obtain

Z

IN

sup Y [P(277€) |2/ |((b— Avgb Vo) (&) dé

¢ jez

B? /

Q*
282 /
B? /

1 e

IN

b(x) —Avgb\ dx
9]

IN

b(x) — Avgb|* dx +24%|Q"| | Avgb — Avgb|®
Ox Ox o

IN

blox) = Aveb[ dx .8 ] 3010

IN
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in view of Proposition 7.1.5 (i) and Corollary 7.1.8. To estimate X,, we use the size
estimate of the function ¥'. We obtain

A277%|b(y) — Avgy b|

‘('PZ*J'*(b_Aggb)X(Q*)‘)(x)‘ S/( qe (277 + [x—y|)nte dy.  (13.16)
But note that if ¢y is the center of Q, then
27 =yl 2 [y —a
> |y—col—lcg—~
> leo 31+ V" Q) ~leg 1
> Jleo—y1+ " tt0) -V 1(0)

= (ko —y1+ Y 4@)

when y € (Q*)¢ and x € Q. I_nserting this estimate in (7.3.16), integrating over Q,
and summing over j with 277 < ¢(Q), we obtain

Pt A At A

2-78<((Q)

) - 0(0)°%|b(y) — Avgyb|  \?
Al (/R (€0) + [y — el dy)

Cp 10118200

in view of (7.1.5). This proves that

>Y))

IN

IN

IN

5+ < Cn,s(Az +B%)|0| HszMO’

which implies that (4(T(Q)) < G, 5(A+ B)?||b|[24,0/€-
The proof of part (b) of the theorem is obtained in a similar fashion. Finally, part
(c) is a generalization of part (b) and is proved likewise. We sketch its proof. Write

b= (b—Avgb)xo-+ (b— Avgb) y(o-)c + Avgh
o Qo o

and note that R, (Avg, b) = 0. We handle the term containing R, (- Avgyb)xor)
using an L? estimate over Q* and condition (7.3.14), while for the term containing
R ((b— Avgyb)x(o-)-) we use an L' estimate and condition (7.3.13). In both cases
we obtain the required conclusion in a way analogous to that in part (a). O
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Exercises

7.3.1. Let aj, b; be sequences of positive real numbers such that 3 ;b; < . Define
ameasure (£ on R""! by setting

= Y blEN{(x,a;): xR},
J

where E is a subset of R"J:rl and | | denotes n-dimensional Lebesgue measure on the
affine planes t = a;. Show that u is a Carleson measure with norm

lind
el = Nl = X5
J

7.3.2. Let xo € R" and u = §,, 1) be the Dirac mass at the point (xo, 1). Show that
cyllnder and H,U

@ Which of these norms is
larger?

7.3.3. Define conical and hemispherical tents over balls in R” as well as pyrami-

dal tents over cubes in R" and define the expressions H[J Hcone, Hhem“phere
. Show that
a7 a7 27

where all the implicit constants in the previous estimates depend only on the dimen-
sion.

7.3.4. Suppose that @ has a radial, bounded, symmetrically decreasing integrable
majorant. Set F(x,t) = (f * @;)(x), where f is a locally integrable function on R".
Prove that

F*(x) < CM(f)(x),

where M is the Hardy-Littlewood maximal operator and C is a constant that depends
only on the dimension.

[Hint: If @(|x]) is the claimed majorant of @(x), then the function y(|x|) = ¢(0)
for |x| < 1 and w(|x|) = ¢(Jx| — 1) for |x| > 1 is a majorant for the function ¥'(x) =

supj <1 | @ (x—u)|]

7.3.5. Let F be a function on RTI, let F* be the nontangential maximal function
derived from F, and let 4 > 0 be a measure on R’jfl. Prove that

1/r

[l ey )<c)/’( l;n%(u)(x)F*(x)’dx> ,

where C,, is the constant of Theorem 7.3.5 and 0 < r < oo,
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7.3.6. (a) Given A a closed subset of R” and 0 < y < 1, define

. JANB(x,r)|
Al = R": inf > .
v { SRR e T
Show that A* is a closed subset of A and that it satisfies
. 3n .
AN < AC|.
@<, A

[Hint: Consider the Hardy-Littlewood maximal function of )(Ac.}
(b) For a function F on R%"! and 0 < a < o, set

F (x)=sup sup [|F(y,2)].

t>0 |y—x|<at
Let 0 < a < b < o be given. Prove that for all A > 0 we have
{F, > A < HFy > A} <3%"(a+b)"{F; > A}

7.3.7. Let u be a Carleson measure on R”"!. Show that for any zo € R” and t > 0
we have

n+1

T2
T oy e e < a2 22
R (0,0) (lz =20+ +52) 2

[Hint: Begin by writing
t  dr
o =0 [0
(lo— 202 +12+52)"2 o 2
where Q = /|z—z0|? +2+ 2. Apply Fubini’s theorem to estimate the required

expression by

el g dr lind it n o dr
) [ [ ) <o a2 [C ot T

T(B(zg,\/r27t2)>

where v, is the volume of the unit ball in R”. Reduce the last integral to a beta
function.}

7.3.8. (Verbitsky [325]) Let u be a Carleson measure on R’jfl. Show that for all
p > 2 there exists a dimensionless constant C,, such that

cyllnder/ |f(x)|”dx.

L e @ dutn <,
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[Hint: It suffices to prove that the operator f — P, x f maps L>(R") to L*> (Rffrl ,du)
with a dimensionless constant C, since then the conclusion follows by interpolation
with the corresponding L™ estimate, which holds with constant 1. By duality and
Exercise 1.4.7 this is equivalent to showing that

/ [//Pz(x—y)du(y,t)/ .Ps(x—z)du(z,s)] dx < Cu(E)
E 5

for any set E in R with y(E) < . Apply Fubini’s theorem, use the identity
[ Bx=)Rx=2)dx = Psly=2).

and consider the cases t < s and s < t.]

7.4 The Sharp Maximal Function

In Section 7.1 we defined BMO as the space of all locally integrable functions on
R” whose mean oscillation is at most a finite constant. In this section we introduce
a quantitative way to measure the mean oscillation of a function near any point.

7.4.1 Definition and Basic Properties of the Sharp Maximal
Function

The local behavior of the mean oscillation of a function is captured to a certain
extent by the sharp maximal function. This is a device that enables us to relate
integrability properties of a function to those of its mean oscillations.

Definition 7.4.1. Given a locally integrable function f on R", we define its sharp
maximal function M* (f) as

Mm* —Avefld
(f)(x Zg€|Q|/|f ggf\ 1,

where the supremum is taken over all cubes Q in R” that contain the given point x.

The sharp maximal function is an analogue of the Hardy-Littlewood maximal
function, but it has some advantages over it, especially in dealing with the endpoint
space L*. The very definition of M*(f) brings up a connection with BMO that is
crucial in interpolation. Precisely, we have

BMO(R") = {f € Lio(R") : M*(f) € L”(R")},
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and in this case
Hf”BMo = HM#(f)HL‘”

We summarize some properties of the sharp maximal function.

Proposition 7.4.2. Let f, g be a locally integrable functions on R". Then

(1) M*(f) < 2M_.(f), where M, is the Hardy—Littlewood maximal operator with
respect to cubes in R".

(2) For all cubes Q in R" we have

M) < supinf o [ 1F0) —aldy < (1))

eraEC

(3) M*(|f]) < 2M*(f).
(4) We have M* (f 4 g) < M*(f) + M*(g).

Proof. The proof of (1) is trivial. To prove (2) we fix € > 0 and for any cube Q we
pick a constant ag such that

1 PR B
o L0 —aglay<int o [ 17) —aldye.
Then

1 1 |
0 Jp ) Agedy < o 1) —acldr o [ [Aves —aclds

1 1
o /Q 70) ~aolay+ ) /Q £(y) —agldy

1

2 inf / —aldy+2e.
inf oy 170 —aldy

Taking the supremum over all cubes Q in R”, we obtain the first inequality in (2),
since € > 0 was arbitrary. The other inequality in (2) is simple. The proofs of (3)
and (4) are immediate. O

IN

We saw that M*(f) < 2M_,(f), which implies that

1M ()|, < Carlp =17 £] (7.4.1)

for 1 < p < 0. Thus the sharp function of an L? function is also in L” whenever
1 < p < eo. The fact that the converse inequality is also valid is one of the main
results in this section. We obtain this estimate via a distributional inequality for the
sharp function called a good lambda inequality.
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7.4.2 A Good Lambda Estimate for the Sharp Function

A useful tool in obtaining the converse inequality to (7.4.1) is the dyadic maximal
function.

Definition 7.4.3. Given a locally integrable function f on R", we define its dyadic
maximal function My(f) by

1
MW= s /Q £ d.
Q dyadic cube

The supremum is taken over all dyadic cubes in R” that contain a given point x.
Recalling the expectation operators Ey from Section 5.4, we have

Ma(f)(x) = supEx(f)(x).

keZ

Obviously, one has the pointwise estimate

My(f) < M.(f) (7.4.2)

for all locally integrable functions. This yields the boundedness of M; on L? for
1 < p < oo and the weak type (1, 1) property of M,. More precise estimates on the
norm of M, can derived. In fact, in view of the result of Exercise 2.1.12, M, is of
weak type (1,1) with norm at most 1. By interpolation (precisely Exercise 1.3.3(a)),
it follows that M; maps L”(R") to itself with norm at most

HMdHLP(R")—»LP(R") < pli 1
when 1 < p < oo,

One may wonder whether an estimate converse to (7.4.2) holds. But a quick ob-
servation shows that for a locally integrable function f that vanishes on certain open
sets, My (f) could have zeros, but M. (f) never vanishes. Therefore, there is no hope
for My(f) and M.(f) to be pointwise comparable. Although the functions M/(f)
and M(f) are not pointwise comparable, we will show that they are comparable in
norm.

The next result provides an example of a good lambda distributional inequality.

Theorem 7.4.4. For all v > 0, all A > 0, and all locally integrable functions f on
R”, we have the estimate

[{x eR": Ma(f)(x) > 24, M¥(f)(x) < YA} <2"y[{x €R": Ma(f)(x) > A }].

Proof. We may suppose that the set 2, = {x € R" : M,(f)(x) > A} has finite mea-
sure; otherwise, there is nothing to prove. Then for each x € €2, there is a maximal
dyadic cube Q" that contains x such that
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1 /
If)ldy > A; (7.4.3)
|0*] Jo

otherwise, £2; would have infinite measure. Let Q; be the collection of all such
maximal dyadic cubes containing all x in 2y, i.e., {Q;}; ={0Q": x € 2, }. Maximal
dyadic cubes are disjoint; hence any two different Q;’s are disjoint; Moreover, we
note that if x,y € Q;, then Q; = Q" = (. It follows that £, = J; Q;. To prove the
required estimate, it suffices to show that for all Q; we have

{x€Qj: My(f)(x) > 24, M*(f)(x) < yA}| < 2"y|Q;], (7.4.4)

for once (7.4.4) is established, the conclusion follows by summing on j.
We fix j and x € Q; such that M,(f)(x) > 2A4. Then the supremum

M) = sup o [ 17001y (745)

is taken over all dyadic cubes R that either contain Q; or are contained in Q; (since
QiNR#0).IfR 2 Q;, the maximality of Q; implies that (7.4.3) does not hold for
R; thus the average of |f| over R is at most A. Thus if M;(f)(x) > 24, then the
supremum in (7.4.5) is attained for some dyadic cube R contained (not properly)
in Q;. Therefore, if x € Q; and My(f)(x) > 2A, then we can replace f by fxp; in
(7.4.5) and we must have My (fxg,)(x) > 2. We let Q’; be the unique dyadic cube
of twice the side length of Q;. Therefore, for x € Q; we have

Ma((F = Mve )10, ) ) = Ma(F 10, ~lAef|> 24 =2 =2,

J

since | Avgy f| < Avgy |f| < A because of the maximality of Q;. We conclude that
J J

, (7.4.6)

{xe Q) Ma(F)(x) > 22} < er 0 :Md((f—AQ\jgf)ij)(x) >A}

J

and using the fact that M, is of weak type (1, 1) with constant 1, we control the last
expression in (7.4.6) by

270 1
AL )~ Asesliy < 2 o1 1700~ Aver|as
ite; 9 (7.4.7)
2"|0j

< TTM (&)

for all &; € Q;. In proving (7.4.4) we may assume that for some &; € Q; we have
M*(f)(&;) < yA; otherwise, there is nothing to prove. For this &;, using (7.4.6) and
(7.4.7) we obtain (7.4.4). ]

Good lambda inequalities can be used to obtain L” bounds for quantities they
contain. For example, we use Theorem 7.4.4 to obtain the equivalence of the L?
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norms of M;(f) and M*(f). Since M*(f) is pointwise controlled by 2M,(f) and
1Ml < Com)|| £ o < C0.1)|[Ma(F)]] s

we have the estimate

1)

<2C(p,n)||Ma(f)]

Lr(RY) Lr(RY)

for all f in L?(R"). The next theorem says that the converse estimate is valid.

Theorem 7.4.5. Let 0 < pg < oo. Then for any p with pg < p < oo there is a constant
Cu(p) such that for all functions f with My(f) € LP°(R") we have
<)1)

|Ma(f)] (7.4.8)

LP(R") LP(RY) "

Proof. For a positive real number N we set
N
IN:/ pAP M {x € R": My(f)(x) > A} dA..
0
We note that Iy is finite, since p > po and it is bounded by

NP—Po (N o
p . /O po/'LI’O*IHxER";Md(f)(x)>k}}dl§p . ||Md(f)|P0 < oo

LPO
We now write
5
Iv= 21’/ pAP T {x R My(f)(x) > 24 }|dA
0

and we use Theorem 7.4.4 to obtain the following sequence of inequalities:

IN

Iy <27 [ pAr | {x e R Ma()(x) > 22, MH (1)) < 7A} | aA
20 [ g (e R M) > 7A}|ai

zpzny/(;z pﬂ’_1|{x€Rni Ma(f)(x) >A}“M

IN

+21’/02 pAP | {x e R": M (F)(x) > YA }|dA

IN

p N
2P2"y1N+?/p/()2 pAP  {x e R : MH(f)(x) > 2}|dA.

At this point we pick a y such that 272"y = 1 /2. Since Iy is finite, we can subtract
from both sides of the inequality the quantity %IN to obtain
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Ny
Iy < 2p+12p(n+p+1)/ ’ plp_l‘{x eR": M*(f)(x) > A}|da,
0
from which we obtain (7.4.8) with C,(p) = P2t letting N — oo, O

Corollary 7.4.6. Let 0 < py < 0. Then for any p with py < p < e and for all locally
integrable functions f with My(f) € LP*(R") we have

”f‘ LP(R") < Cn(P)||M#(f)|

LP(R”) Y (749)

where C,(p) is the constant in Theorem 7.4.5.

Proof. Since for every point in R” there is a sequence of dyadic cubes shrinking to
it, the Lebesgue differentiation theorem yields that for almost every point x in R”
the averages of the locally integrable function f over the dyadic cubes containing x
converge to f(x). Consequently,

|f] < Mqa(f) a.e.

Using this fact, the proof of (7.4.9) is immediate, since

171

L[)(Rn) S HMd(f)‘ LP(R”)’

and by Theorem 7.4.5 the latter is controlled by C,(p)||M*(f)|

Lr (R”) .

Estimate (7.4.9) provides the sought converse to (7.4.1).

7.4.3 Interpolation Using BM O

We continue this section by proving an interpolation result in which the space L™ is
replaced by BMO. The sharp function plays a key role in the following theorem.

Theorem 7.4.7. Let 1 < py < co. Let T be a linear operator that maps LP(R") to
LPo(R™) with bound Ao, and L™ (R") to BMO(R") with bound A,. Then for all p
with pg < p < oo there is a constant Cy , such that for all f € LP we have

PO 1_P0
1Ty < CrvmaA Ay 7 111

(7.4.10)

Lr (R”) Lr (R”) .

Remark 7.4.8. In certain applications, the operator 7 may not be a priori defined
on all of LP0 + L™ but only on some subspace of it. In this case one may state that
the hypotheses and the conclusion of the preceding theorem hold for a subspace of
these spaces.

Proof. We consider the operator
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S(f) =M*(T(f))

defined for f € LP0 4 L. It is easy to see that S is a sublinear operator. We prove
that S maps L0 to itself and L™ to itself. For f € L0 we have

IS o = 1M* TN o < 2IMe(T )| 1o
CnvPOHT(f)HLPO < CnvPOAOHfHLPO )

IN

while for f € L™ one has

IS = 1M @D = (T paso < All ]

Interpolating between these estimates using Theorem 1.3.2, we deduce
Po 1_Po
||M#(T(f))‘ = ||S(f)| < CI’J’OAOP Al 3 Hf|
forall f € L?, where py < p < oo. Consider now a function z € LP N LP0. In the case
po > 1, My(T(h)) € LP°; hence Corollary 7.4.6 is applicable and gives

L Lp

Po

o
HT(h)| Lr S Cn(p)CF,POAOp Al : ||h‘

Lr-

Density yields the same estimate for all f € LP(R"). If py = 1, one applies the same
idea but needs the endpoint estimate of Exercise 7.4.6, since My(T (h)) € L', O

7.4.4 Estimates for Singular Integrals Involving the Sharp
Function

We use the sharp function to obtain pointwise estimates for singular integrals. These
enable us to recover previously obtained estimates for singular integrals, but also to
deduce a new endpoint boundedness result from L™ to BMO.

Let us recall some facts from Chapter 4. Suppose that K is defined on R"\ {0}
and satisfies

K(x)| < Arlx|™", (7.4.11)

|K(x—y) —K(x)| < Aaly|®|x|™""%  whenever |x| >2[y| >0, (7.4.12)

sup / K(x)dx| < As. (7.4.13)
r<R<eo ! Jr<|x|<R

Let W be a tempered distribution that coincides with K on R"”\ {0} and let T be the
linear operator given by convolution with W.

Under these assumptions we have that T’ is L? bounded with norm at most a
constant multiple of A| + A + A3 (Theorem 4.4.1), and hence it is also L” bounded
with a similar norm on L? for 1 < p < o (Theorem 4.3.3). Furthermore, under
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the preceding conditions, the maximal singular integral T™) is also bounded from
LP(R") to itself for 1 < p < oo (Theorem 4.3.4).

Theorem 7.4.9. Let T be given by convolution with a distribution W that coincides
with a function K on R"\ {0} satisfying (7.4.12). Assume that T has an extension
that is L* bounded with a norm B. Then there is a constant C,, such that for any s > 1
the estimate

M*(T(f))(x) < Cu(Az + B) max(s, (s— 1))y M(|f|) ; (x) (7.4.14)
is valid for all f in U< <. L' and almost all x € R".

Proof. In view of Proposition 7.4.2 (2), given any cube Q, it suffices to find a con-
stant a such that

o LTI —aldy < Catha +BIMUSN ) (415)

for all x € Q. To prove this estimate we employ a theme that we have seen several
times before. We write f = fg + /> where fg = fX6yno and f5 = fX(6\np)-- Here
6+/n Q denotes the cube that is concentric with Q, has sides parallel to those of Q,
and has side length 6,/n¢(Q), where £(Q) is the side length of Q.

We now fix an f in U< p<..L” and we select a = T (f7)(x). Then a is finite for
almost all x € Q. It follows that

|;| [ 17 —alay

1 1 )
< o TR+ o [ITUZ)0 - T(E)0ldy. (7416

In view of Theorem 4.3.3, T maps L* to L* with norm at most a dimensional constant
multiple of max(s, (s — 1) ~!)(B+A;). The first term in (7.4.16) is controlled by

1

(| 0 /éIT(fS)(y)I“'dyy

To estimate the second term in (7.4.16), we first note that

IN

Cymax(s, (s— 1)"1)(B+As) <|Q|/ oI dy)s
< Cymax(s,(s— 1)) (B+A)M (|f|)°(x)

Lrimm-rugwias [| [ K- -Ka-2) e av.

(6v/nQ)*

We make a few geometric observations. Since both x and y are in 0, we have
|x —y| < +/nl(Q). Also (see Figure 7.3), since z ¢ 6,/nQ and x € Q, we must have

2] > dist (0, (6v/Q)%) > (3 ) 0(Q) > 2vn(Q) > 2lx .
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Therefore, we have |x — z| > 2|x — y|, and this allows us to conclude that

d
xX=y
[Kly=9)~K(s=3) = [K((s =) = (=) =K x| <2 "
using condition (7.4.12). Using these observations, we bound the second term in
(7.4.16) by

I / / Aol —y° A (Q)?
[f(2)dzdy < Gy [f(2)|dz
0l Jo Ji6ynoy [x—z|"+? O] J6yng) [x— 2|2
(0)°
< CA / d
= 2 o 1(0) - zres VN
< GiAxM(f)(x)
s 1
< GAM(f1) (X)),
where we used the fact that |x — z] is at least £(Q) and Theorem 2.1.10. This proves
(7.4.15) and hence (7.4.14). ]
z,
x.
d
o v
Fig. 7.3 The cubes Q and 6Jn QO

6y/n Q. The distance d is
equal to (3y/n— ;)K(Q)

The inequality (7.4.14) in Theorem 7.4.9 is noteworthy, since it provides a point-
wise estimate for 7'(f) in terms of a maximal function. This clearly strengthens the
L? boundedness of T. As a consequence of this estimate, we deduce the following
result.

Corollary 7.4.10. Let T be given by convolution with a distribution W that coin-
cides with a function K on R"\ {0} that satisfies (7.4.12). Assume that T has an
extension that is L* bounded with a norm B. Then there is a constant C, such that
the estimate

1Tl paro < A2+ B)||f]] - (7.4.17)
is valid for all f € L™ (Uj<pcel?).
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Proof. We take s =2 in Theorem 7.4.9 and we observe that

1
|7 (s [

[agex < Gi(A2+B)[M(fP)?

Plsuo = |

and the last expression is easily controlled by C,(A2 + B) || f|| Lo O

At this point we have not defined the action of T'(f) when f lies merely in L*; and
for this reason we restricted the functions f in Corollary 7.4.10 to be also in some
L?. There is, however, a way to define 7 on L™ abstractly via duality. Theorem 6.7.1
gives that T and thus also its adjoint 7* map H' to L'. Then the adjoint operator
of T* (i.e., T) maps L™ to BMO and is therefore well defined on L. In this way,
however, T (f) is not defined explicitly when f is in L*. Such an explicit definition
is given in the next chapter in a slightly more general setting.

Remark 7.4.11. In the hypotheses of Theorem 7.4.9 we could have replaced the
condition that 7 maps L? to L? by the condition that 7 maps L” to L"*> with norm B
for some 1 < r < oo,

Exercises

7.4.1. Let 0 < g < co. Prove that for every p with g < p < o there is a constant
Chn,p,q such that for all functions f on R” with M, (f) € LY(R") we have

-0 0
Lp < Cn-,ﬂﬂHinq ||f||BMO’

171

1-6

1
wher = .
ere , q

7.4.2. Let u be a positive Borel measure on R”.
(a) Show that the maximal operator

i = s o [0l

0] dyadlc cube

maps L' (R",du) to L' (R",du) with constant 1.

(b) For a p-locally integrable function f, define the sharp maximal function with
respect to |1,

i =swp o [ L) - Aves|du)
0sx M O.u

where Avg, , f denotes the average of f over Q with respect to 1. Assume that
U is a doubling measure with doubling constant C(ut) [this means that u(30) <
C(u)u(Q) for all cubes QJ. Prove that for all ¥ > 0, all A > 0, and all u-locally
integrable functions f on R" we have the estimate

w(fos ME(F)(x) > 24, M (f)(x) <¥yA}) <C(u)yu({x: ME(f)(x) >A}).
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[Hint: Part (a): For any x in the set {x € R": Mﬁ (f)(x) > A}, choose a maximal
dyadic cube Q = Q(x) such that [, [f(t)|du(t) > Au(Q). Part (b): Mimic the proof
of Theorem 7.4.4.]

7.4.3. Let 0 < pg < oo and let Mﬁ and Mfl be as in Exercise 7.4.2. Prove that for any
p with pg < p < o there is a constant C,(p, i) such that for all locally integrable
functions f with M (f) € L”(R") we have

HMZ(f)‘ Ll’(R”,d/,L) S Cn(pnu)HM/ﬁ(f)‘

7.4.4. We say that a function f on R" is in BM O, (or dyadic BMO) if

LP(Rdu)

1 .
= —A dx < .
HfHBMOd Qdy:(;ligcube |Q| /Q ‘f(X) ggf‘ s

(a) Show that BMO is a proper subset of BMO,.
(b) Suppose that A is a finite constant and that a function f in BMO, satisfies

|Avgf — Avg f| <A
[ [0))

for all adjacent dyadic cubes of the same length. Show that f is in BMO.

[Hint: Consider first the case n = 1. Given an interval /, find adjacent dyadic inter-
vals of the same length /; and I such that I G Iy U1, and |I| < |I] < 2|1y|.]

7.4.5. Suppose that K is a function on R” \ {0} that satisfies (7.4.11), (7.4.12), and
(7.4.13). Let n) be a smooth function that vanishes in a neighborhood of the origin

and is equal to 1 in a neighborhood of infinity. For £ > 0 let K,(f) (x) =K(x)n(x/e)
and let T,g‘g) be the operator given by convolution with K,(f>. Prove that for any

1 <5 < oo there is a constant C, s such that for all p with s < p <o and f in L? we
have

sup M*(T,°)(f))

e>0

L (RY) < Cms(Al +Az +A3)HfHLp(Rn) :

[Hint: Observe that the kernels K,(f) satisfy (7.4.11), (7.4.12), and (7.4.13) uni-
formly in € > 0 and use Theorems 4.4.1 and 7.4.9.

7.4.6. Let 0 < pg < o= and suppose that for some locally integrable function f we
have that My (f) lies in LPo(R"). Show that for any p in (pg,c) there exists a
constant C,(p) such that

171 o ey < 1Ma (A | gy < CaPI[MF ()| 1 s

where C,(p) depends only on n and p.

Hint: With the same notation as in the proof of Theorem 7.4.5, use the hypothesis
‘ My(f) H Lpoe < o to prove that Iy < o whenever p > po. Then the arguments in
the proofs of Theorem 7.4.5 and Corollary 7.4.6 remain unchanged.}
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7.4.7. Prove that the expressions

are uniformly bounded in N and x. Then use Corollary 7.4.10 to prove that
N 2miks

<C <o,
X SC<L

sup
N>1

k=1 BMO

Deduce that the limit of Xy (x) as N — oo can be defined as an element of BMO.
[Hint: Use that the Hilbert transform of sin(27kx) is cos(27kx). Also note that the
series Y, ;; Sm(zkﬂkx) coincides with the periodic extension of the (bounded) function

=n()—x)on|0,1).]

7.5 Commutators of Singular Integrals with BM O Functions

The mean value zero property of H!(R") is often manifested when its elements are
paired with functions in BMO. It is therefore natural to expect that BMO can be
utilized to express and quantify the cancellation of expressions in H'. Let us be
specific through an example. We saw in Exercise 6.7.3 that the bilinear operator

(f.g)— fH(g)+H(f)g

maps L?(R") x L?(R") to H'(R"); here H is the Hilbert transform. Pairing with a
BMO function b and using that H* = —H, we obtain that

(fH(g)+H(f)g,b)=(f H(g)b—H(gh)),

and hence the operator g — H(g)b— H(gb) should be L? bounded. This expression
H(g)b— H(gb) is called the commutator of H with the BMO function b. More
generally, we give the following definition.

Definition 7.5.1. The commutator of a singular integral operator 7 with a function
b is defined as

b, TI(f) =bT(f)=T(bf).

If the function b is locally integrable and has at most polynomial growth at infinity,
then the operation [b, T] is well defined when acting on Schwartz functions f.

In view of the preceding remarks, the L” boundedness of the commutator [b, T
for b in BM O exactly captures the cancellation property of the bilinear expression

(f,8)—=T(f)g—rfT'(g).
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As in the case with the Hilbert transform, it is natural to expect that the commutator
[b,T] of a general singular integral T is L” bounded for all 1 < p < eo. This fact
is proved in this section. Since BM O functions are unbounded in general, one may
surmise that the presence of the negative sign in the definition of the commutator
plays a crucial cancellation role.

We introduce some material needed in the study of the boundedness of the com-
mutator.

7.5.1 An Orlicz-Type Maximal Function

We can express the L” norm (1 < p < o) of a function f on a measure space X by

e = (fisran) =tfaso: [ au<r)

Motivated by the second expression, we may replace the function #” by a general
increasing convex function @(z). We give the following definition.

Definition 7.5.2. A Young’s function is a continuous increasing convex function @
on [0,00) that satisfies @(0) = 0 and lim;_,.. @(¢) = o. The Orlicz norm of a mea-
surable function f on a measure space (X, i) with respect to a Young’s function @
is defined as

1l oey =it {4 >0: [ @(f/2)du <1},

The Orlicz space ®(L)(X, 1) is then defined as the space of all measurable functions
£ on X such that HfH(D(L)(X,u) < oo,

We are mostly concerned with the case in which the measure space X is a cube
in R" with normalized Lebesgue measure |Q|~!dx. For a measurable function f on
a cube Q in R”, the Orlicz norm of f is therefore

. 1
Hf||¢D(L)(Q,‘de‘):1nf{/’L>OZ |Q|/Q<P(|f|/l)dx§1},

which is simply denoted by H f || o(1)(0)’ since the measure is understood to be nor-

malized Lebesgue whenever the ambient space is a cube.
Since for C > 1 convexity gives @(¢/C) < @(¢)/C for all t > 0, it follows that

I lcaw <l lle): (75.1)

which implies that the norms with respect to @ and C @ are comparable.

A case of particular interest arises when @(t) = tlog(e +¢). This function is
pointwise comparable to 7(1 +log™¢) for # > 0. We make use in the sequel of a
certain maximal operator defined in terms of the corresponding Orlicz norm.
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Definition 7.5.3. We define the Orlicz maximal operator
Miiog(er1) (1)) = S0P |l ogie-1 0

where the supremum is taken over all cubes Q with sides parallel to the axes that
contain the given point x.

The boundedness properties of this maximal operator are a consequence of the
following lemma.

Lemma 7.5.4. There is a positive constant c(n) such that for any cube Q in R" and
any nonnegative locally integrable function w, we have

c(n)
HWHLlog(eJrL)(Q)S |Q| /QMC(W)dX, (7.5.2)

where M, is the Hardy-Littlewood maximal operator with respect to cubes. Hence,
for some other dimensional constant c'(n) and all nonnegative w in Ll (R") the
inequality

Mpiog(er)(W)(x) < ¢ () M (w) (x) (7.5.3)

is valid, where M?> = M o M and M is the Hardy-Littlewood maximal operator.

Proof. Fix a cube Q in R" with sides parallel to the axes. We introduce a maximal
operator associated with Q as follows:

o
e =swp o [ 170)ay.

R>ox
RCQO

where the supremum is taken over cubes R in R" with sides parallel to the axes.
The key estimate follows from the following local version of the reverse weak type
(1,1) estimate of Exercise 2.1.4(b). For each nonnegative function f on R" and
o> AVng, we have

1

n 10
a/Qﬂ{f>a}fdx§2 [{re Q: M2(f)(x) > a}]. (7.5.4)

Indeed, to prove (7.5.4), we apply Corollary 2.1.21 to the function f and the num-
ber or. With the notation of that corollary, we have 0\ (U; Q;) C {f < a}. This
implies that QN {f > a} C U; Q;, which is contained in {x € 0: ME(f)(x) > o
Multiplying both sides of (2.1.20) by |Q;|, summing over all j, and using these
observations, we obtain (7.5.4).

Using the definition of My (e11). (7.5.2) follows from the fact that for some
constant ¢ > 1 independent of w we have

w

1 W
log (e+ " Vau <1, 755
|Q|/Q,LQ og (e AQ) u< (7.5.5)
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where
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Ao = |g| /QMC(w)dx: cAggMC(w).

We let f = w/Ap; by the Lebesgue differentiation theorem we have that 0 <

Avgy f < 1/c. Recall identity (1.1.7),

[otnav=[ g 0vixex: ) >)yar.
X 0

where v > 0, (X,Vv) is a measure space, and ¢ is an increasing continuously
differentiable function with ¢(0) = 0. We take X = Q, dv = |Q|"! fxpdx, and

¢(r) =log(e+1) —1to deduce

1 1 1
1 dx = d
o st dx= o [ raxt o |

:10+11+127
where
1
b= [ fix.
10| Jo
1 Avgo f 1
L = /
10| Jo e+t

(EC |
L=

we use estimate (7.5.4). Indeed, one has

| 1
L =

2m e t
<
0] Javey £ e+t

2n
= M2(f)d
10| Jo e (f)dx

2n

1
= M.(w)dx . =
10| /Q ) "o

using the definition of Ap. Combining all the estimates obtained, we deduce that

< 1

( / fdx) dt
e+t \Jon{f>t}

( / fdx) dt,
on{sr>1}

' fdx> di
10| Javgy r e+t </Qm{f>z}

We now clearly have that Iy = Avg,, f < 1/c, while I; < (Avg, f)?<1/c*. Forl

' fdx> dt
10| Javgy f e+t (/Qm{f>z}

[{x e Q:ME(f)(x) > 1}|dt

|2Q"| /OMH’“e Q:M2(f)(x) > A} dA

on
c

n

1 1
h+h+hL< + ,+ <1,
c C c

provided c is large enough.
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7.5.2 A Pointwise Estimate for the Commutator

For 6 > 0, Mg denotes the following modification of the sharp maximal operator
introduced in Section 7.4:

M3(f) = M*(f1°)1°.
It is often useful to work with the following characterization of M* [see Proposition
74221
M*(f)(x) Nsuplnf / |f(y)—c|dy.

0ox ¢

We also need the following version of the Hardy-Littlewood maximal operator:

Me(f) = M(|f1%)"%.

The next lemma expresses the fact that commutators of singular integral op-
erators with BMO functions are pointwise controlled by the maximal function
M?>=MoM.

Lemma 7.5.5. Let T be a linear operator given by convolution with a tempered dis-
tribution on R" that coincides with a function K (x) on R\ {0} satisfying (7.4.11),
(7.4.12), and (7.4.13). Let b be in BMO(R"), and let 0 < § < €. Then there exists
a positive constant C = Cs . , such that for any smooth function f with compact
support we have '

ME(6.T)(f)) < C||b]| gyyo {Me (T () +M*(f)}. (7.5.6)

Proof. Fix a cube Q in R" with sides parallel to the axes centered at the point x.

Since for 0 < § < 1 we have ||oc|5 - |ﬁ|5| < ‘a—ﬁﬁ for a, B € R, it is enough to
show for some complex constant ¢ = c¢ that there exists C = Cg > 0 such that

(Klz' /Q |[b,T1<f><y>—c|5dy)5 <]l g0 {Me (T () (X) M (F) ()} (7.5.7)

Denote by Q* the cube 5+/n(Q that has side length 5+/n times the side length of Q
and the same center x as Q. Let f = f1 + f>, where f| = f yp+. For an arbitrary
constant a we write

b, T](f) = (b—=a)T(f) =T ((b—a)fi) =T((b—a)f).

Selecting
c=AvegT((b—a)f) and a=Avgb,
0 o

we can estimate the left-hand side of (7.5.7) by a multiple of L; 4+ L, + L3, where
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1

L <|Q|/| - Aveb)T ><y>|5dy> ,
Iz = <|;|/Q|T((b—AQV*gb)f1)(y)\5dy> ,

— 1 5 S
oo <|Q|/Q|T(("—Agng>fz)—Aggf((b—zxgggb>fz)| dy) .

To estimate L;, we use Holder’s inequality with exponents r and ' for some

l<r<e/é:
o (f o) (3 frmata)
< C[b| gproMse(T () (x)
< C[b|[ gproMe(T())(),

recalling that x is the center of Q. Since T : L'(R") — L'"**(R") and 0 < § < 1,
Kolmogorov’s inequality (Exercise 2.1.5) yields

C
L < / by) = Avgb)fi()]d
= (b(y) — Avgb) f(y)|dy
|0*| Jor 0"
< 2C/Hb_AQV;gb||(eL—1)(Q*) |fHLlog(1+L)(Q*)’

using Exercise 7.5.2(c).

For some 0 < y < (2"¢)~!, let Cn,y > 2 be a constant larger than that appearing
on the right-hand side of the inequality in Corollary 7.1.7. We set co = C, .y — 1 > 1.
We use (7.5.1) and we claim that

6~ AQ‘ing(eL—U(Q*) <collb— AQV*ngcg' (7.5.8)

0
(eL—1)(Q*) < y ||b||BMO'
Indeed, the last inequality is equivalent to

[EWJ( —Avggs bl/|1bllmo _ 1} dy<1,
|Q*| 0"

which is a restatement of Corollary 7.1.7. We therefore conclude that

Lz < CHbHBMOMLlog(lJrL) (f)(x)
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Finally, we turn our attention to the term L3. Note that if z,y € Q and w ¢ O,
then |z —w| > 2|z —y|. Using Fubini’s theorem and property (7.4.12) succesively,
we control L3 pointwise by

|é| 4\T((b—ggb)fz)(y)—AggT((b—AQ\igb)fz)‘dy
= IQII2 /Q/Q/Rn\Q* (K (y=w) = K(z=w)l| (b(w) —/Z\igb)f(W)|dwdzdy
= IQII2 /Q/Q;/WQ*\W ﬁz_www |b(w) AQV*gb\ |f(w)|dwdzdy
= 2(2 )8n+5 /ZHIQ*

o - s
b(w)— Avg b d
<j§0 2]( /2j+1Q* (W) 2j+1§* ‘ |f(W)| w

/\

b(w) —AQ\igb\ |f(w)ldw

| /\

1
2778 Avg b— AV b / w dw)
Eb | e b=l gy g )

<ClAy Y 2 Ave bl
=0

(eL—1)(2/+1Q%) |fHLlog 14+L)(2/+10%)

OBl 3, 51 M)
J=

<C'A HbHBMoMLlog(HL) (f) (x) +C"A, HbHBMOM(f) (x)
< C"As ||b| gar oM () (),

where we have used inequality (7.5.8), Lemma 7.5.4, and the simple estimate

Avg b— Ang < Caj |6l garo
2]+1Q*

of Exercise 7.1.5. O

7.5.3 L? Boundedness of the Commutator

We note that if f has compact support and b is in BMO, then bf lies in L¢(R")
for all ¢ < e and therefore T'(bf) is well defined whenever T is a singular integral
operator. Likewise, [b,T] is a well defined operator on ¢;;° for all b in BMO.

Having obtained the crucial Lemma 7.5.5, we now pass to an important result
concerning its L boundedness.
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Theorem 7.5.6. Let T be as in Lemma 7.5.5. Then for any 1 < p < oo there exists a
constant C = C, , such that for all smooth functions with compact support f and all
BMO functions b, the following estimate is valid:

6. T o ey < CN1Bllago 1]
Consequently, the linear operator
e[, TI(f)

admits a bounded extension from LP(R") to LP (R") for all 1 < p < oo with norm at
most a multiple obeHBMO.

D) (7.5.9)

Proof. Using the inequality of Theorem 7.4.4, we obtain for functions g, with | g|5
locally integrable,

[{My(|g|%)s > 252} N {ME(g) < yA}| < 2"V |{Ma(lg®)5 > A} (7.5.10)

forall A,7,6 > 0. Then a repetition of the proof of Theorem 7.4.5 yields the second
inequality:

1M(12P%) 5], < Cal[Malgl®)5 |, < Calp)|[ME()]],, (7.5.11)

for all p € (po,°e), provided Md(|g|5)z13 € LPo(R") for some pg > 0.
For the following argument, it is convenient to replace b by the bounded function

ko ifb(x) <k
br(x) =< b(x) if —k<b(x) <k,
& ifb(x) > —k,

which satisfies kuHBMO < ||b||BM0 for any k > 0; see Exercise 7.1.4.

For given 1 < p < oo, select pgy such that 1 < py < p. Given a smooth function
with compact support f, we note that the function by f lies in LP0; thus T (byf)
also lies in L0, Likewise, by T (f) also lies in LP°. Since Mg is bounded on L0 for
0 < 6 < 1, we conclude that

||M5([bk7T] (f))| LPO < C5(||M3 (ka(f))} LPO + HM5(T(bkf))| Ll’o) <o

This allows us to obtain (7.5.11) with g = [bg, T](f). We now turn to Lemma 7.5.5,
in which we pick 0 < & < € < 1. Taking L? norms on both sides of (7.5.6) and using
(7.5.11) with g = [by, T](f) and the boundedness of M, T, and M? on L”(R"), we
deduce the a priori estimate (7.5.9) for smooth functions with compact support f
and the truncated BM O functions by.

The Lebesgue dominated convergence theorem gives that b, — b in L? of every
compact set and, in particular, in L?(suppf). It follows that by f — bf in L? and
therefore T (byf) — T (bf) in L? by the boundedness of T on L?. We deduce that
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for some subsequence of integers k;, T (by; f) — T(bf) a.e. For this subsequence
we have [by;, T|(f) — [b,T](f) ae. Letting j — co and using Fatou’s lemma, we
deduce that (7.5.9) holds for all BMO functions b and smooth functions f with
compact support.

Since smooth functions with compact support are dense in L, it follows that the
commutator admits a bounded extension on L that satisfies (7.5.9). O

We refer to Exercise 7.5.4 for an analogue of Theorem 7.5.6 when p = 1.

Exercises

7.5.1. Use Jensen’s inequality to show that M is pointwise controlled by My jog(141)-

7.5.2. (a) (Young’s inequality for Orlicz spaces ) Let ¢ be a continuous, real-valued,
strictly increasing function defined on [0, <) such that ¢(0) = 0 and lim,_... @(¢) =
co. Let ¥ = ¢~ ! and for x € [0,0) define

o= [Tomdr, W= [ v,
0 0
Show that for s,7 € [0,0) we have
st < D(s)+ V().

(b) (cf. Exercise 4.2.3) Choose a suitable function ¢ in part (a) to deduce for s,7 in
[0,0) the inequality

st <(t+1)log(t+1)—t+e —s—1<rlog(t+1)+e —1.

(c) (Holder’s inequality for Orlicz spaces ) Deduce the inequality

(Al <20 o I8l

[Hint: Give a geometric proof distinguishing the cases r > @(s) and 1 < ¢@(s). Use
that for u > 0 we have [y (z)dt + jg"(” v(s)ds = up(u). |

7.5.3. Let T be as in Lemma 7.5.5. Show that there is a constant C,, < o such that
for all f € LP(R") and g € L? (R") we have

IT()g=FT"®)l 1 ey < Il o igeny

gHLP’(Rﬂ) :

In other words, show that the bilinear operator (f,g) — T(f)g — fT'(g) maps
LP(R") x L' (R") to H' (R").

7.5.4. (Pérez [260]) Let @(t) = tlog(1 +t). Then there exists a positive constant
C, depending on the BMO constant of b, such that for any smooth function with
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compact support f the following is valid:
1 1
b, T >oll<c M2(f) > al].
P o1y BTN > o = Csup o [{M70) > o}

7.5.5. Let Ry, R, be the Riesz transforms in R2. Show that there is a constant C < oo
such that for all square integrable functions g;, g» on R? the following is valid:

|R1(g1)R2(82) — R1(g2)Ra(81) || 1 < Cpllg1ll 2|82l 2 -
[Hint: Consider the pairing (g1,R2([b,R1](g2)) — Ri([b,R2](g2))) with b € BMO.]

7.5.6. (Coifman, Lions, Meyer, and Semmes [78]) Use Exercise 7.5.5 to prove that
the Jacobian J; of amap f = (f1, f») : R? — R?,

_ d1fi dfi
Jp=det (31f2 92f2) ’

lies in H'(R?) whenever f1, f> € L}(R?).
[Hint: Set g; = A'V2(f)).]

7.5.7. Let @(t) =1(1+1log" ¢)%, where 0 < o < oo. Let T be a linear (or sublinear)
operator that maps LP0 (R") to LP0*(R") with norm B for some 1 < py < e and also
satisfies the following weak type Orlicz estimate: for all functions f in @(L),

|{x€RnI |T(f)(x)| > A,}| SA/R"(D(|fELX)|)dX7

for some A < e and all A > 0. Prove that T is bounded from L?(R") to itself,
whenever 1 < p < pyg.

[Hint: Set f* = fx7=2 and f; = f — f*. When py < oo, estimate |{|T(f)| > 24}
by {17 > 21+ HIT ()| > A} <A Sl @ (V5 )drt B0 flg V"
Multiply by p, integrate with respect to the measure A7~ !d from 0 to infinity, apply
Fubini’s theorem, and use that jol ®(1/2)AP~1dA < oo to deduce that T maps L” to

LP*. When po = oo, use that |{|T(f)| > 2BA}| < [{|T(f*)| > BA}| and argue as in
the case pg < e=. Boundedness from L? to L? follows by applying Theorem 1.3.2.}

HISTORICAL NOTES

The space of functions of bounded mean oscillation first appeared in the work of John and
Nirenberg [177] in the context of nonlinear partial differential equations that arise in the study of
minimal surfaces. Theorem 7.1.6 was obtained by John and Nirenberg [177]. The relationship of
BMO functions and Carleson measures is due to Fefferman and Stein [130]. For a variety of issues
relating BM O to complex function theory one may consult the book of Garnett [142]. The duality
of H' and BMO (Theorem 7.2.2) was announced by Fefferman in [124], but its first proof appeared
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in the article of Fefferman and Stein [130]. This article actually contains two proofs of this result.
The proof of Theorem 7.2.2 is based on the atomic decomposition of H'!, which was obtained
subsequently. An alternative proof of the duality between H! and BMO was given by Carleson
[57]. Dyadic BMO (Exercise 7.4.4) in relation to BMO is studied in Garnett and Jones [144]. The
same authors studied the distance in BMO to L™ in [143].

Carleson measures first appeared in the work of Carleson [53] and [54]. Corollary 7.3.6 was
first proved by Carleson, but the proof given here is due to Stein. The characterization of Carleson
measures in Theorem 7.3.8 was obtained by Carleson [53]. A theory of balayage for studying BMO
was developed by Varopoulos [323]. The space BMO can also be characterized in terms Carleson
measures via Theorem 7.3.8. The converse of Theorem 7.3.8 (see Fefferman and Stein [130]) states
that if the function ¥ satisfies a nondegeneracy condition and |f * ¥ |? *¢" is a Carleson measure,
then f must be a BMO function. We refer to Stein [292] (page 159) for a proof of this fact, which
uses a duality idea related to tent spaces. The latter were introduced by Coifman, Meyer, and Stein
[83] to systematically study the connection between square functions and Carleson measures.

The sharp maximal function was introduced by Fefferman and Stein [130], who first used it to
prove Theorem 7.4.5 and derive interpolation for analytic families of operators when one endpoint
space is BMO. Theorem 7.4.7 provides the main idea why L= can be replaced by BM O in this con-
text. The fact that L2-bounded singular integrals also map L™ to BMO was independently obtained
by Peetre [254], Spanne [286], and Stein [290]. Peetre [254] also observed that translation-invariant
singular integrals (such as the ones in Corollary 7.4.10) actually map BMO to itself. Another inter-
esting property of BMO is that it is preserved under the action of the Hardy—Littlewood maximal
operator. This was proved by Bennett, DeVore, and Sharpley [19]; see also the almost simultaneous
proof of Chiarenza and Frasca [60]. The decomposition of open sets given in Proposition 7.3.4 is
due to Whitney [331].

An alternative characterization of BMO can be obtained in terms of commutators of singular
integrals. Precisely, we have that the commutator [b,T](f) is L? bounded for 1 < p < e if and
only if the function b is in BMO. The sufficiency of this result (Theorem 7.5.6) is due to Coifman,
Rochberg, and Weiss [85], who used it to extend the classical theory of H” spaces to higher di-
mensions. The necessity was obtained by Janson [176], who also obtained a simpler proof of the
sufficiency. The exposition in Section 7.5 is based on the article of Pérez [260]. This approach is
not the shortest available, but the information derived in Lemma 7.5.5 is often useful; for instance,
it is used in the substitute of the weak type (1,1) estimate of Exercise 7.5.4. The inequality (7.5.3)
in Lemma 7.5.4 can be reversed as shown by Pérez and Wheeden [263]. Weighted L? estimates for
the commutator in terms of the double iteration of the Hardy—Littlewood maximal operator can be
deduced as a consequence of Lemma 7.5.5; see the article of Pérez [261].

Orlicz spaces were introduced by Birbaum and Orlicz [26] and furher elaborated by Orlicz
[251], [252]. For a modern treatment one may consult the book of Rao and Ren [269]. Bounded
mean oscillation with Orlicz norms was considered by Stromberg [297].

The space of functions of vanishing mean oscillation (VMO) was introduced by Sarason [277]
as the set of integrable functions f on T' satisfying limg_, SUPy|7<5 7L ;| f — Avg, fldx = 0.
This space is the closure in the BMO norm of the subspace of BMO(T!) consisting of all uniformly
continuous functions on T'. One may define VMO(R”") as the space of functions on R” that satisfy
lims_osupg. |g/<s lo|~! Jo|f = Aveg fldx =0, limy_.c SUPy. y(0)>n lo|~! Jo|f —Avgg fldx=0,
and limg.c. SUPg. orp(o.r)=0 || ' J [/ — Avgg f|dx = 0; here I denotes intervals in T' and Q
cubes in R”. Then VMO(R") is the closure of the the space of continuous functions that vanish at
infinity in the BMO(R") norm. One of the imporant features of VM O(R") is that it is the predual of
H'(R"), as was shown by Coifman and Weiss [86]. As a companion to Corollary 7.4.10, singular
integral operators can be shown to map the space of continuous functions that vanish at infinity
into VMO. We refer to the article of Dafni [101] for a short and elegant exposition of these results
as well as for a local version of the VMO-H" duality.



Chapter 8
Singular Integrals of Nonconvolution Type

Up to this point we have studied singular integrals given by convolution with cer-
tain tempered distributions. These operators commute with translations. We are now
ready to broaden our perspective and study a class of more general singular integrals
that are not necessarily translation invariant. Such operators appear in many places
in harmonic analysis and partial differential equations. For instance, a large class of
pseudodifferential operators falls under the scope of this theory.

This broader point of view does not necessarily bring additional complications
in the development of the subject except at one point, the study of L boundedness,
where Fourier transform techniques are lacking. The L? boundedness of convolution
operators is easily understood via a careful examination of the Fourier transform of
the kernel, but for nonconvolution operators different tools are required in this study.
The main result of this chapter is the derivation of a set of necessary and sufficient
conditions for nonconvolution singular integrals to be L? bounded. This result is
referred to as the 7'(1) theorem and owes its name to a condition expressed in terms
of the action of the operator T on the function 1.

An extension of the T'(1) theorem, called the T'(b) theorem, is obtained in Section
8.6 and is used to deduce the L? boundedness of the Cauchy integral along Lipschitz
curves. A variant of the T'(b) theorem is also used in the boundedness of the square
root of a divergence form elliptic operator discussed in Section 8.7.

8.1 General Background and the Role of BMO

We begin by recalling the notion of the adjoint and transpose operator. One may
choose to work with either a real or a complex inner product on pairs of functions.
For f, g complex-valued functions with integrable product, we denote the real inner
product by

(f,g)= - fx)g(x)dx.

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 8, 169
(© Springer Science+Business Media, LLC 2009
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This notation is suitable when we think of f as a distribution acting on a test function
g. We also have the complex inner product

(f18) = [ s0ex)ax,
which is an appropriate notation when we think of f and g as elements of a Hilbert
space over the complex numbers. Now suppose that T is a linear operator bounded
on L?. Then the adjoint operator T* of T is uniquely defined via the identity

(T(Hleg)=(fIT"(g))

for all fin L” and g in L” . The transpose operator T* of T is uniquely defined via
the identity

<T(f)7g> = <f7Tt(g)> = <Tt(g)7f>

for all functions f in L? and g in L” . The name transpose comes from matrix theory,
where if A" denotes the transpose of a complex n x n matrix A, then we have the
identity

n n
(Ax,y) = Y (Ax);y; =Ax-y=x-Aly= ZIX./' (A'y); = (x,Ay)
=1 =

for all column vectors x = (x1,...,%,), ¥y = (¥1,...,ys) in C". We may easily check
the following intimate relationship between the transpose and the adjoint of a linear
operator T

() =T(f),

indicating that they have almost interchangeable use. However, in many cases, it is
convenient to avoid complex conjugates and work with the transpose operator for
simplicity. Observe that if a linear operator T has kernel K (x,y), that is,

1)@ = [ K sy,

then the kernel of 7" is K’ (x,y) = K(y,x) and that of 7* is K*(x,y) = K(y,x).

An operator is called self-adjoint if T = T* and self-transpose if T = T'. For
example, the operator iH, where H is the Hilbert transform, is self-adjoint but not
self-transpose, and the operator with kernel i(x +y) ™! is self-transpose but not self-
adjoint.

8.1.1 Standard Kernels

The singular integrals we study in this chapter have kernels that satisfy size and
regularity properties similar to those encountered in Chapter 4 for convolution-type
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Calderén—Zygmund operators. Let us be specific and introduce the relevant back-
ground. We consider functions K(x,y) defined on R" x R\ {(x,x) : x € R"} that
satisfy for some A > O the size condition

K(x,y)| < (8.1.1)
K< O
and for some 6 > 0 the regularity conditions
Alx—x)°
K (x,y) —K(x',y)| < , (8.1.2)
(e = y[ + | = y[)=+2
whenever |[x — x| < } max (|x—y|,|x'—y|) and
A o+ 1)
K (x,y) — K (x,y')| < b=yl (8.1.3)

(b =yl + e —y)m+e’
whenever [y —y/| < ) max (|x—y|,|x—/|).
Remark 8.1.1. Observe that if
/ l /
b= < max (jx—yl, ) = 1),
then
max (|x — y|,|¥' = y[) < 2 min (]x—y|,|x' = y[),

implying that the numbers |x — y| and |x’ — y| are comparable. This fact is useful in
specific calculations.
Another important observation is that if (8.1.1) holds and we have

V.K(x, VK (x,y)| <
VK (x,9)| + |VyK (x, )] oy

for all x # y, then K is in SK(1,4"71A).

Definition 8.1.2. Functions on R” x R"\ {(x,x) : x € R"} that satisfy (8.1.1),
(8.1.2), and (8.1.3) are called standard kernels with constants 6,A. The class of all
standard kernels with constants §,A is denoted by SK(6,A). Given a kernel K (x,y)
in SK(8,A), we observe that the functions K(y,x) and K (y,x) are also in SK(J,A).
These functions have special names. The function

K'(x,y) = K(y,x)

is called the transpose kernel of K, and the function

K*(xvy) = K(yvx)

is called the adjoint kernel of K.
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Example 8.1.3. The function K(x,y) = |x — y| ™" defined away from the diagonal of
R" x R" is in SK(1,n4"1). Indeed, for

1
=] < max (jx— ], ¥~ )

the mean value theorem gives

/
cn g yen < =X
[pe=y[ ™" =¥ =y 7" < 6y
for some 6 that lies on the line segment joining x and x’. But then we have |6 — y| >
3 max (|x —y|,|x' —y[), which gives (8.1.2) with A = n4"+1.

Remark 8.1.4. The previous example can be modified to give that if K(x,y) satisfies
ViK (x,y) < A'le—y| 7"

for all x # y in R”, then K(x,y) also satisfies (8.1.2) with 6 = 1 and A controlled by
a constant multiple of A’. Likewise, if

VoK ()| S A'pe—y| 7"

for all x # y in R”, then K(x,y) satisfies (8.1.3) with with 6 = 1 and A bounded by
a multiple of A’

We are interested in standard kernels K that can be extended to tempered distribu-
tions on R” x R". We begin by observing that given a standard kernel K (x,y), there
may not exist a tempered distribution W on R” x R” that coincides with the given
K(x,y) on R" x R"\ {(x,x) : x € R"}. For example, the function K(x,y) = [x—y|™"
does not admit such an extension; see Exercise 8.1.2.

We are concerned with kernels K (x,y) in SK(8,A) for which there are tempered
distributions W on R” x R” that coincide with K on R" x R"\ {(x,x) : x € R"}. This
means that the convergent integral representation

<W,F> :/n/l;n K(x,y)F(x,y)dxdy (8.1.4)

is valid whenever the Schwartz function F on R"” x R" is supported away from the
diagonal {(x,x) : x € R"}. Note that the integral in (8.1.4) is well defined and ab-
solutely convergent whenever F is a Schwartz function that vanishes in a neighbor-
hood of the set { (x,x) : x € R"}. Also observe that there may be several distributions
W coinciding with a fixed function K (x,y). In fact, if W is such a distribution, then
50 is W + 8,—,, where §,—, denotes Lebesgue measure on the diagonal of R?". (This
is some sort of a Dirac distribution.)
We now consider continuous linear operators

T:.7(R") — & (R")
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from the space of Schwartz functions . (R") to the space of all tempered distribu-
tions ./ (R"). By the Schwartz kernel theorem (see Hormander [168, p. 129]), for
such an operator T there is a distribution W in ./ (R") that satisfies

(T(f),0)=(W,fR0) when f,¢ € .7(R"), (8.1.5)

where (f ® ¢)(x,y) = f(x)@(y). Furthermore, as a consequence of the same theo-
rem, there exist constants C, N, M such that for all f,g € ./ (R") we have

KNﬁ@N=KWJ®@Vx{ v mwuﬂ[ y mw@ﬂ, (8.1.6)

ol |BI<N ol | Bl<M

where py g (@) = sup,cgn [0 (xB @) (x)| is the set of seminorms for the topology in
<. A distribution W that satisfies (8.1.5) and (8.1.6) is called a Schwartz kernel.

We study continuous linear operators 7' : . (R") — .’/(R") whose Schwartz
kernels coincide with standard kernels K(x,y) on R” x R”\ {(x,x) : x € R"}. This
means that (8.1.5) admits the absolutely convergent integral representation

(1(9).0) = [, [ KGnf6)o)drdy (817

whenever f and ¢ are Schwartz functions whose supports do not intersect.

We make some remarks concerning duality in this context. Given a continuous
linear operator T : . (R") — .%/(R") with a Schwartz kernel W, we can define
another distribution W’ as follows:

(W' F)y=(W,F"),
where F'(x,y) = F(y,x). This means that for all f,p € . (R") we have
(W, foe)y=(W.,p f).
It is a simple fact that the transpose operator 7* of T, which satisfies

(T(9).f)=(T"(f),9) (8.1.8)

for all f,¢ in Z(R"), is the unique continuous linear operator from .(R") to
' (R") whose Schwartz kernel is the distribution W', that is, we have

(T'(f) @) =(T(). f) =W,0a f) =(W'.f2 ). (8.1.9)

We now observe that a large class of standard kernels admits extensions to tem-
pered distributions W on R?".

Example 8.1.5. Suppose that K(x, y) satisfies (8.1.1) and (8.1.2) and is antisymmet-
ric, in the sense that

K(-xvy) = _K(yvx)
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for all x # y in R”. Then K also satisfies (8.1.3), and moreover, there is a distribution
W on R?" that extends K on R" x R".
Indeed, define

) = lim // K(x,y)F (x,y) dydx (8.1.10)
\x y|>€
for all F in the Schwartz class of R?". In view of antisymmetry, we may write
' 1
J| KGyFeydydr= || K (Fen) = Fo0) dyds.
[x—y|>€e [x—y|>¢e
Using (8.1.1), the observation that

2[x—yl sup
(1 + |)C|2 + |y|2)”+1 (x,y)€R21

|F(-x7y)_F(y7x)| <

Voo (LI 4P P ()

and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F, it follows that the limit in (8.1.10) exists and gives a tempered
distribution on R?". We can therefore define an operator T : . (R") — .#/(R")
with kernel W as follows:

(T(f) —hm // K(x,y)f(x)o(y)dydx.

\x y|>e

Example 8.1.6. Let A be a Lipschitz function on R. This means that it satisfies the
estimate |A(x) —A(y)| < L|x—y| forsome L < e and all x,y € R. Forx,y € R, x # y,

we let
1

x—y+i(A(x) —A(y))
and we observe that K (x,y) is a standard kernel in SK (1,44 4L). The details are left
to the reader. Note that the kernel K defined in (8.1.11) is antisymmetric.

K(x,y): (8111)

Example 8.1.7. Let the function A be as in the previous example. For each integer
m > 1 we set

A(x) = A(y)
x—y

Kn(x,y) = ( ) ! , x,y€R. (8.1.12)

x=y

Clearly, K;, is an antisymmetric function. To see that each K, is a standard kernel,
we use the simple fact that

(2m+1)L"

maX(|Vme(-x7y)|7|vyKM(x’y)|) S |X—y|2
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and the observation made in Remark 8.1.1. It follows that K,, lies in SK(8,C) with
8 =1and C = 16(2m+ 1)L™. The linear operator with kernel (i) 'K, is called
the mth Caldercn commutator.

8.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 8.1.8. Let 0 < §,A < e and K in SK(J,A). A continuous linear operator
T from .7 (R") to ./ (R") is said to be associated with K if it satisfies

TN = | Koy f(v)dy (8.1.13)
for all f € 4;° and x not in the support of f. If T is associated with K, then the
Schwartz kernel W of T coincides with K on R” x R"\ {(x,x) : x € R"}.

If T is associated with K and admits a bounded extension on L?(R"), that is, it
satisfies

17(H)|,2 < B||f]l 2 (8.1.14)

for all f € Z(R"), then T is called a Calderén—Zygmund operator associated with
the standard kernel K. In this case we use the same notation for the L? extension.

In the sequel we denote by CZO(J,A,B) the class of all Calderén—Zygmund
operators associated with standard kernels in SK(8,A) that admit L?> bounded ex-
tensions with norm at most B.

We make the point that there may be several Calder6n—Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K (x,y) = 0. We investigate
connections between any two such operators in Proposition 8.1.11. Next we discuss
the important fact that once an operator 7 admits an extension that is L? bounded,
then (8.1.13 ) holds for all f that are bounded and compactly supported whenever x
does not lie in its support.

Proposition 8.1.9. Let T be an element of CZO(8,A, B) associated with a standard
kernel K. Then for all f in L™ with compact support and every x ¢ supp f we have
the absolutely convergent integral representation

T = [ K)o)dy. (8.1.15)

Proof. Identity (8.1.15) can be deduced from the fact that whenever f and ¢ are
bounded and compactly supported functions that satisfy

dist (supp ¢@,supp f) > 0, (8.1.16)
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then we have the integral representation

[ T emdr= [ [ Kexynft)ewdyds. (8.1.17)

To see this, given f and @ as previously, select f;,@; € €;° such that @; are uni-
formly bounded and supported in a small neighborhood of the support of @, @; — ¢
in L2 and almost everywhere, f; — fin [? and almost everywhere, and

1
dist (supp ¢;,supp f;) =, dist (supp ¢, supp f) > 0

for all j. Because of (8.1.7), identity (8.1.17) is valid for the functions f; and ¢; in
place of f and ¢. By the boundedness of T, it follows that T'( f;) converges to T'(f)
in L? and thus

L T0@e@di— [ T(Hx)ewdx.

Now write fj@; — f¢ = (fj —f)(pj +f((Pj — @) and observe that
L | K000 — o) dvax o,

since it is controlled by a multiple of | 7(f)|| 2|/ @; — ¢|| ;2. while

L[ K0 - 167,00 dvex o,

since it is controlled by a multiple of sup; HTt((pj)HLz Hf, - f||L2. This gives that

L [ Kens0edvdx— [ | Kixn)s6)odyax
as j — oo, which proves the validity of (8.1.17). O
We now define truncated kernels and operators.

Definition 8.1.10. Given a kernel K in SK(5,A) and € > 0, we define the truncated
kernel

K(S)(xay) = K(xvy)x\x—ybs .

Given a continuous linear operator 7' from .7 (R") to .#/(R") and € > 0, we define
the truncated operator T'€) by

T (f)(x) = - K© (x,y) f(v)dy

and the maximal singular operator associated with T as follows:

T (f)(x) = sup [T (f) (x)] .

>0
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Note that both 7(¢) and T**) are well defined for f in Ui<p<eL?(R").

We investigate a certain connection between the boundedness of T and the
boundedness of the family {7(€)}.¢ uniformly in & > 0.

Proposition 8.1.11. Let K be a kernel in SK(8,A) and let T in CZO(5,A,B) be
associated with K. For € > 0, let T'¢) be the truncated operators obtained from T.
Assume that there exists a constant B' < oo such that

sup |7 ,_,» <B. (8.1.18)
e>0

Then there exists a linear operator Ty defined on L*(R™) such that

(1) The Schwartz kernel of Ty coincides with K on
R" xR"\ {(x,x): xe R"}.
(2) For some subsequence €; | 0, we have
[ T Wswdr— [ (TNE)s)ds
as j— oo forall f,g in L>(R") .
(3) Ty is bounded on L*(R") with norm
||TOHL2HL2 <B.

(4) There exists a measurable function b on R" with HbHL‘” < B+ B’ such that

T(f)=To(f) =0bf,
forall f € L*(R").

Proof. Consider the Banach space X = %(L? L?) of all bounded linear operators
from L?(R") to itself. Then X is isomorphic to Z((L?)*,(L?)*)*, which is a dual
space. Since the unit ball of a dual space is weak® compact, and the operators T(€)
lie in a multiple of this unit ball, the Banach—Alaoglu theorem gives the existence
of a sequence &; | 0 such that T(€) converges to some Ty in the weak* topology of
HB(L?,1?) as j — oo. This means that

" T(Sf)(f)(x)g(x) dx — - To(f)(x)g(x)dx (8.1.19)

for all f,g in L?(R") as j — 0. This proves (2). The L? boundedness of Tj is a
consequence of (8.1.19), hypothesis (8.1.18), and duality, since

|To(f)||,2 < sup limsup
lgll 2 <1 j—e=

| T () wsx)dx
Rl‘l

<B|f].2-
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This proves (3). Finally, (1) is a consequence of the integral representation

TEEsdr= [ [ KD ) f)dvale)ar
R" n JRn

whenever f, g are Schwartz functions with disjoint supports, by letting j — oo.
We finally prove (4). We first observe that if g is a bounded function with compact
support and Q is an open cube in R”, we have

(1€~ 1) (gx0)(x) = 20() (T~ T) () ¥), (8.1.20)

whenever x ¢ dQ and € is small enough. Indeed, take first x ¢ Q; then x is not in the
support of gx . Note that since gy is bounded and has compact support, we can use
the integral representation formula (8.1.15) obtained in Proposition 8.1.9. Then we
have that for € < dist (x,supp gxp), the left-hand side in (8.1.20) is zero. Moreover,
for x € Q, we have that x does not lie in the support of gyoc, and again because of
(8.1.15) we obtain (T€) —T)(gxo¢)(x) = 0 whenever & < dist (x,supp gxo). This
proves (8.1.20) for all x not in the boundary dQ of Q. Taking weak limits in (8.1.20)
as € — 0, we obtain that

(To—T)(820) = x0(To = T)(8) a.e. (8.1.21)

for all open cubes Q in R”. By linearity we extend (8.1.21) to simple functions.
Using the fact that Ty — T is L? bounded and a simple density argument, we obtain

(To—=T)(gf) =f(To—T)(g) a.e. (8.1.22)

whenever f is in L? and g is bounded and has compact support. If B(0, j) is the open
ball with center 0 and radius j on R”, when j < j' we have

(To —T)(x8(0,j)) = (To — T)(Xp(0.j) XB(0,j")) = XB(0.j) (To — T)(XB(0,j%)) -

Therefore, the sequence of functions (To — T')(¥p(o,j)) satisfies the “consistency”
property
(To —T)(x80,j)) = (To — T)(Xm(0,75)) in B(0, )

when j < j. It follows that there exists a well defined function b such that
b= (T() — T) (%B(OJ)) a.e. in B(O,]) .

Applying (8.1.22) with f supported in B(0, j) and g = x(9 j)» We obtain
(To=T)(f) = (To = T)(fxs(0,5) = f (To—T)(xp0,5)) = f b ae.,

from which it follows that (Ty — T)(f) = b f for all f € L?. Since the norm of T — T
on L? is at most B+ B/, it follows that the norm of the linear map f + b f from L?
to itself is at most B + B’. From this we obtain that HbHL‘*’ <B+B. O



8.1 General Background and the Role of BMO 179

Remark 8.1.12. We show in the next section (cf. Corollary 8.2.4) that if a Calderén—
Zygmund operator maps L? to L?, then so do all of its truncations T(®) uniformly in
€ > 0. By Proposition 8.1.11, there exists a linear operator 7p that has the form

To(f)(x) = lim K(x,y)f(v)dy,

J=e Jx—y|>¢€;

where the limit is taken in the weak topology of L2, so that T is equal to Ty plus a
bounded function times the identity operator.

We give a special name to operators of this form.

Definition 8.1.13. Suppose that for a given T in CZO(8,A,B) there is a sequence
&; of positive numbers that tends to zero as j — oo such that for all f € L*(R"),

TE)(f) = T(f)

weakly in L?. Then T is called a Calderén—Zygmund singular integral operator.
Thus Calderén—Zygmund singular integral operators are special kinds of Calderén—
Zygmund operators. The subclass of CZO(0,A,B) consisting of all Calderén—
Zygmund singular integral operators is denoted by CZSIO(J,A, B).

In view of Proposition 8.1.11 and Remark 8.1.12, a Calder6n—Zygmund operator
is equal to a Calderén—Zygmund singular integral operator plus a bounded function
times the identity operator. For this reason, the study of Calderén—Zygmund oper-
ators is equivalent to the study of Calderén—Zygmund singular integral operators,
and in almost all situations it suffices to restrict attention to the latter.

8.1.3 Calderon-Zygmund Operators Acting on Bounded Functions

We are now interested in defining the action of a Calderén—Zygmund operator 7 on
bounded and smooth functions. To achieve this we first need to define the space of
special test functions %.

Definition 8.1.14. Recall the space Z(R") = %;°(R") of all smooth functions with
compact support on R”. We define Z(R") to be the space of all smooth functions
with compact support and integral zero. We equip Zp(R") with the same topology
as the space Z(R") (cf. Definition 2.3.1). The dual space of Z,(R") under this
topology is denoted by Z)(R"). This is a space of distributions larger than 2'(R").

Example 8.1.15. BMO functions are examples of elements of Zj(R"). Indeed,
given b € BMO(R"), for any compact set K there is a constant Cx = HbHLl ®) such
that

b0 p(x) dx

< cxllol-
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for any @ € Zp(R"). Moreover, observe that the preceding integral remains un-
changed if the BM O function b is replaced by b + c, where c is a constant.

Definition 8.1.16. Let T be a continuous linear operator from . (R") to .%’(R")
that satisfies (8.1.5) for some distribution W that coincides with a standard kernel
K(x,y) satisfying (8.1.1), (8.1.2), and (8.1.3). Given f bounded and smooth, we
define an element 7'(f) of Z)(R") as follows: For a given ¢ in Zy(R"), select 1] in
%, with 0 <71 <1 and equal to 1 in a neighborhood of the support of ¢. Since T
maps . to ., the expression T(fn) is a tempered distribution, and its action on
@ is well defined. We define the action of 7'(f) on ¢ via

((.0) = (1m0 + [ | [, Keey)otas| o)1 -no)ay, 5129

provided we make sense of the double integral as an absolutely convergent integral.
To do this, we pick xp in the support of ¢ and we split the y-integral in (8.1.23)
into the sum of integrals over the regions Iy = {y € R" : |x—xo| > ;|xo —y|} and
L.={y € R": |x—xo| < ;|x0 — y|}. By the choice of 1 we must necessarily have
dist (supp 1, supp @) > 0, and hence the part of the double integral in (8.1.23) when
y is restricted to Ip is absolutely convergent in view of (8.1.1). For y € I, we use
the mean value property of ¢ to write the expression inside the square brackets in
(8.1.23) as

/ (K(x,y) —K(x0,y)) @(x) dx.

With the aid of (8.1.2) we deduce the absolute convergence of the double integral in
(8.1.23) as follows:

I JKC) = K00l 90 (1= n(9) )
S —n—34
< / Al [ ) avlgoa

wnl

A% ol 1] <o

This completes the definition of 7'(f) as an element of 7 when f € €~ NL”
but leaves two points open. We need to show that this definition is independent of N
and secondly that whenever f is a Schwartz function, the distribution 7'(f) defined
in (8.1.23) coincides with the original element of ./ (R") given in Definition 8.1.8.

Remark 8.1.17. We show that the definition of 7'(f) is independent of the choice
of the function 7. Indeed, if { is another function satisfying 0 < { < 1 that is also
equal to 1 in a neighborhood of the support of @, then f(n — {) and ¢ have disjoint
supports, and by (8.1.7) we have the absolutely convergent integral realization

(T =E0.0) = [ [ K@y f0)(n=0)0)dve(x)ds
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It follows that the expression in (8.1.23) coincides with the corresponding expres-
sion obtained when 1) is replaced by .

Next, if f is a Schwartz function, then both 1 f and (1 — 1) f are Schwartz func-
tions; by the linearity of 7 one has (T(f),@) = (T(nf), @)+ (T((1—n)f),¢).
and by (8.1.7) the second expression can be written as the double absolutely con-
vergent integral in (8.1.23), since ¢ and (1 — 1) f have disjoint supports. Thus the
distribution 7' (f) defined in (8.1.23) coincides with the original element of .’ (R")
given in Definition 8.1.8.

Remark 8.1.18. When T has a bounded extension that maps L? to itself, we may
define T(f) for all f € L”(R"), not necessarily smooth. Simply observe that under
this assumption, the expression T'(fn) is a well defined L? function and thus

(T(rm.0) = [ T @) dx

is given by an absolutely convergent integral for all ¢ € %.

Finally, observe that although (T(f), ¢) is defined for f in L™ and ¢ in %, this
definition is valid for all square integrable functions ¢ with compact support and
integral zero; indeed, the smoothness of ¢ was never an issue in the definition of

(T(f), ).

In summary, if 7' is a Calderén—Zygmund operator and f lies in L”(R"), then
T(f) has a well defined action {T(f),¢) on square integrable functions ¢ with
compact support and integral zero. This action satisfies

[T <TG 2ll0le + Cusalloll /]l <o @B124)

In the next section we show that in this case, 7'(f) is in fact an element of BMO.

Exercises

8.1.1. Suppose that K is a function defined away from the diagonal on R” x R”" that
satisfies for some 6 > 0 the condition

w2

K(x,y)—KX,y)| <A
Ko~k <4 0L

whenever |x — x| < é|x—y|. Prove that K satisfies (8.1.2) with constant A =
(3)"*+9A’. Obtain an analogous statement for condition (8.1.3).

8.1.2. Prove that there does not exist a tempered distribution W on R?" that extends
the function |x — y| ™" defined on R*"\ {(x,x) : x € R"}.

[Hint: Apply such a distribution to a positive smooth bump that does not vanish at
the origin.}
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8.1.3. Let ¢(x) be a smooth radial function that is equal to 1 when |x| > 1 and van-
ishes when |x| < . Prove that if K lies in SK(§,A), then all the smooth truncations

Ké,e) (x,y) =K(x,y)o(*.”) lie in SK(8,cA) for some ¢ > 0 independent of & > 0.

8.1.4. Suppose that A is a Lipschitz map from R” to R™. This means that there
exists a constant L such that |A(x) — A(y)| < L|x—y| for all x,y € R". Suppose that
F is a ¢ odd function defined on R™. Show that the kernel

K(ry) = | F<A@%ﬂﬂw>

el -y
is in SK(1,C) for some C > 0.

8.1.5. Extend the result of Proposition 8.1.11 to the case that the space L? is re-
placed by L7 for some 1 < g < oe.

8.1.6. Observe that for an operator T as in Definition 8.1.16, the condition T (1) =0
is equivalent to the statement that for all ¢ smooth with compact support and integral
zero we have [p. T'(¢)(x) dx = 0. A similar statement holds for 7".

8.1.7. Suppose that K(x,y) is continuous, bounded, and nonnegative on R” x R”"
and satisfies [p. K(x,y)dy =1 for all x € R". Define a linear operator T by setting
T(£)(x) = Jgo K(x,3) f(3)dy for f € L!(R").

(a) Suppose that % is a continuous and integrable function on R” that has a global
minimum [i.e., there exists xo € R” such that i (xp) < h(x) for all x € R"]. If we have

for all x € R”, prove that & is a constant function.

(b) Show that T preserves the set of integrable functions that are bounded below by
a fixed constant.

(c) Suppose that T (T (f)) = f for some everywhere positive and continuous function
f onR". Show that T (f) = f.

[Hint: Part (c): Let L(x,y) be the kernel of 7 o T. Show that

TN, T
o250 )@= g

T(f)(y)

and conclude by part (a) that (f(y)

is a constant. |

8.2 Consequences of > Boundedness

Calderén—Zygmund singular integral operators admit L> bounded extensions. As in
the case of convolution operators, L? boundedness has several consequences. In this
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section we are concerned with consequences of the L? boundedness of Calderén—
Zygmund singular integral operators. Throughout the entire discussion, we assume
that K(x,y) is a kernel defined away from the diagonal in R*" that satisfies the
standard size and regularity conditions (8.1.1), (8.1.2), and (8.1.3). These conditions
may be relaxed; see the exercises at the end of this section.

8.2.1 Weak Type (1,1) and L Boundedness of Singular Integrals
We begin by proving that operators in CZO(8,A, B) are bounded from L' to weak
L'. This result is completely analogous to that in Theorem 4.3.3.

Theorem 8.2.1. Assume that K(x,y) is in SK(8,A) and let T be an element of
CZO0(6,A,B) associated with the kernel K. Then T has a bounded extension that
maps L' (R") to L' (R") with norm

HTHLIHLLM < C”(A+B)a
and also maps LP (R") to itself for 1 < p < oo with norm

7] < Cymax(p,(p—1)"")(A+B),

LP—LP

where C, is a dimensional constant.

Proof. The proof of this theorem is a reprise of the argument of the proof of Theo-
rem (4.3.3). Fix o > 0 and let f be in L' (R"). Since 7'(f) may not be defined when
f is a general integrable function, we take f to be a Schwartz class function. Once
we obtain a weak type (1, 1) estimate for Schwartz functions, it is only a matter of
density to extend it to all £ in L'.

We apply the Calder6n—Zygmund decomposition to f at height yor, where yis a
positive constant to be chosen later. Write f = g+ b, where b =73 ; b; and conditions
(1)—(6) of Theorem 4.3.1 are satisfied with the constant & replaced by yo. Since we
are assuming that f is Schwartz function, it follows that each bad function b; is
bounded and compactly supported. Thus 7'(b;) is an L? function, and when x is not
in the support of b; we have the integral representation

T(bj)(x) = 0 bj(y)K(x,y)dy
J
in view of Proposition 8.1.9.

As usual, we denote by £(Q) the side length of a cube Q. Let Q; be the unique
cube with sides parallel to the axes having the same center as Q; and having side
length

0(Q3) =2vnl(Q)).

We have
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{xeR":|T(f)(x)| > a}

< erR”: IT(g)(x)| > ;‘H+erknz IT(b)(x)| > ‘;}‘
< Il +[{xeUgs: Iy~ 7}
J
< Bz||gHLz+ZIQ |+ /(U oy TOIa
S 22 2"32 (ya Hf”L + (2y/n)" Hfﬂcu n 2/ ) )(x)| dox
n+1 n f |
- ((2 znliy) 2\4 )H I, Z/ (o)l dx.

It suffices to show that the last sum is bounded by some constant multiple of || f]|,,-
Let y; be the center of the cube Q. For x € (Q7)°, we have |[x —y;| > 1é(Q ) =
Vnt(Q)). Butif y € Q; we have |y — v, < V/nf(Q;)/2: thus |y — v, < Lx—
since the diameter of a cube is equal to /n times its side length. We now estimate
the last displayed sum as follows:

Z/* (x)|dx = Z/(Q* (x,y)dy‘dx
= Z/( e Q_bj(y)(K(x,y)—K(x,y,))dy‘ dx
<X, B0 . K G) =Kyl dxdy

= / bi / K(x,y) —K(x,yj)|dxd
; Qj| 1)l \xfyj\ZZ\yfyj\| (x.7) (x,y;)l dxdy
<MY [ 1bi)ldy

j 79
= 422 ||l

J
< A2"|f]| -

Combining the facts proved and choosing y = B~!, we deduce a weak type (1, 1)
estimate for 7'(f) when f is in the Schwartz class. We obtain that 7 has a bounded
extension from L' to L' with bound at most C, (A + B). The L” resultfor 1 < p <2
follows by interpolation and Exercise 1.3.2. The result for 2 < p < o follows by
duality; one uses here that the dual operator 7" has a kernel K’ (x,y) = K(y,x) that
satisfies the same estimates as K, and by the result just proved, it is also bounded on
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L? for 1 < p < 2 with norm at most C,(A + B). Thus T must be bounded on L? for
2 < p < o with norm at most a constant multiple of A + B. 0

Consequently, for operators T in CZO(8,A, B) and L? functions f, 1 < p < e, the
expressions 7'(f) make sense as L” (or L' when p = 1) functions. The following
result addresses the question whether these functions can be expressed as integrals.

Proposition 8.2.2. Let T be an operator in CZO(5,A,B) associated with a kernel
K. Then for g € LP(R"), 1 < p < oo, the following absolutely convergent integral
representation is valid:

T(g)lx) = /R K(xy)g(y)dy (8.2.1)

for almost all x € R"\ supp g, provided that supp g ; R".

Proof. Set gi(x) = g(x) X|g(x)|<kX|x|<k- These are L” functions with compact support
that is contained in the support of g. Also, the g; converge to g in L” as k — oo. In
view of Proposition 8.1.9, for every k we have

T(e)() = [ K(xy) ) dy

for all x € R"\ supp g. Since T maps L” to L” (or to weak L' when p = 1), it follows
that T (g;) converges to T(g) in weak L? and hence in measure. By Proposition
1.1.9, a subsequence of T(g,) converges to T(g) almost everywhere. On the other
hand, for x € R"\ supp g we have

/ K(x,y)gk(y)dy—>/ K(x,y)g(y)dy
R" R"

when k — oo, since the absolute value of the difference is bounded by B || 8k — g|

L’
which tends to zero. The constant B is the L” norm of the function |x — y|’”’5 on
the support of g; one has |x —y| > ¢ > 0 for all y in the support of g and thus B < .
Therefore T(gx)(x) converges a.e. to both sides of the identity (8.2.1) for x not in
the support of g. This concludes the proof of this identity. 0

8.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is an analogous boundedness result to Theorem
8.2.1 concerning the maximal singular integral operator 7). We note that given
f in LP(R") for some 1 < p < oo, the expression T™) (f)(x) is well defined for all
x € R". This is a simple consequence of estimate (8.1.1) and Holder’s inequality.

Theorem 8.2.3. Let K be in SK(6,A) and T in CZO(J,A, B) be associated with K.
Let r € (0,1). Then there is a constant C(n,r) such that
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T ()] < C(n,r) [M(IT(f)I’)(X) "+ (A+B)M(f)(x) (82.2)

is valid for all functions in \J; < ,<.. LP (R"). Also, there exist dimensional constants
C,,,C), such that

IN

T ey
(O]

Jorall1 < p <eoandall fin LP(R").

Co(A+B)[|£]] 1 gy (8.2.3)
Cu(A+B)max(p, (p—1)"")||£]| (8.2.4)

A

Lp(R”> — Lp(R”>’
Estimate (8.2.2) is referred to as Cotlar’s inequality.

Proof. We fix rsothat 0 < r < 1 and f € LP(R") for some p satisfying 1 < p < eo.
To prove (8.2.2), we also fix € > 0 and we set f(f’x = fXB(xe) and [ = S XB(xe)e
Since x ¢ supp f£* whenever |x — y| > €, using Proposition 8.2.2 we can write

T(f2")(x) = /R K(xy) [t (y)dy = K(x,y) f()dy =T (f)(x).

[x—y[>€

In view of (8.1.2), for z € B(x, §) we have |z — x| < é|x—y| whenever |x —y| > €
and thus

T - = | [ (Ko -Ky)ro)ay

Alf)]
—yze (|x—y|+ |y —z|)"t®

2% ALF0)|
< (0 s et e eyayees®
< CaAM()(),

where the last estimate is a consequence of Theorem 2.1.10. We conclude that for
all z € B(x, §) we have

IN

lz—x]°

A

7@ @) = T2 )
< T2 @) =T () @+ 1T (f2) ()] (8.2.5)
< Cus AM() () + T (f5) @1+ T ()]

For 0 < r < 1 it follows from (8.2.5) that for z € B(x, § ) we have

ITE ()] < C s A™MH ) +IT (S )@ +HIT ()] (8.2.6)

1

o

Integrating over z € B(x, § ), dividing by [B(x, §)|, and raising to the power ,, we

obtain
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TN <3 |CaAM N0+ (oo ey [ OGN
FMITONE! |

Using Exercise 2.1.5, we estimate the middle term on the right-hand side of the
preceding equation by

1 T rl_, 1,00 _ r ’
QmLquif B A7 ) < GBI,
This proves (8.2.2).

We now use estimate (8.2.2) to show that T is L” bounded and of weak type
(1,1). To obtain the weak type (1, 1) estimate for 7(*) we need to use that the Hardy—
Littlewood maximal operator maps L”* to LP>* for all 1 < p < e. See Exercise
2.1.13. We also use the trivial fact that for all 0 < p,q < o> we have

AN e = 2
Take any r < 1 in (8.2.2). Then we have

1
r

1
" 1
Lr

[mM(T ()"

L=

()17,
Gl Iy

Cn,rHT(f)HLLM
Cor(A+B)||f]],+

IN

00

IN

where we used the weak type (1, 1) bound for 7 in the last estimate.
To obtain the L” boundedness of T*) for 1 < p < oo, we use the same argument
as before. We fix r = % Recall that the maximal function is bounded on L?” with

norm at most 32 2/%’11 <2-32 [see (2.1.5)]. We have

72 ||M(|T(f)|%)Hi2P

CER [ GOIEI [
4-3"||T(f)||,
Cnmax(pllap)(A‘FB)Hf}

IM(T(f)]2)?]

IN

IN

IN

L

where we used the L? boundedness of T in the last estimate. O

We end this section with two corollaries, the first of which confirms a fact men-
tioned in Remark 8.1.12.
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Corollary 8.2.4. Let K be in SK(8,A) and T in CZO(8,A, B) be associated with K.
Then there exists a dimensional constant C,, such that

sup [T o Ca(A+ T 2o 2) -
>0

Corollary 8.2.5. Let K be in SK(8,A) and let T = limg; o T'&) be an element of
CZSI10(6,A, B) associated with K. Then for 1 < p < eoand all f € L?(R") we have
that

TE)(f) = T(f)

almost everywhere.

Proof. Using (8.1.1), (8.1.2), and (8.1.3), we see that the alleged convergence holds
(everywhere) for smooth functions with compact support. The general case follows
from Theorem 8.2.3 and Theorem 2.1.14. O

8.2.3 H' — L' and L~ — BMO Boundedness of Singular Integrals

Theorem 8.2.6. Let T be an element of CZO(0,A,B). Then T has an extension that
maps H'(R") to L' (R"). Precisely, there is a constant C, 5 such that

HTHH]HLI <GCus (A+ HT||L2~>L2) :

Proof. The proof is analogous to that of Theorem 6.7.1. Let B = HTHLZHLZ' We

start by examining the action of T on L? atoms for H'. Let f = a be such an atom,
supported in a cube Q. Let c¢ be the center of Q and let Q* = 2,/n Q. We write

/ IT(a) (x)| dx = /Q IT(a) (x)| dx + /(Q*V T(@)®)|dx  (82.7)

and we estimate each term separately. We have
- 2
w11
[ @i < 10 [, i@ ra)

sot( [ |a<x>|2dx)é

o L 1
< B|OQ*]2|Q| 2
= C,B,

IN

A

where we used property (b) of atoms in Definition 6.6.8. Now observe that if x ¢ Q*
and y € Q, then

1
ly—col < 2|X_CQ|§
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hence x — y stays away from zero and T (a)(x) can be expressed as a convergent
integral by Proposition 8.2.2. We have

kwmwmw=lw

/éK (x,y)a(y)dy ‘ dx

'w@w K(x.co))a(y)dy|dx
0

Q*

Aly col®
< // |x_CQ|,,+5dxla(y)|dy

qwéwmw

C, 5A1012|a]l 2
< C 5Al0]2 |02
C:l78A

K(x,cq)|dxla(y)|dy

IN

IN

N

Combining this calculation with the previous one and inserting the final conclusions
in (8.2.7), we deduce that L? atoms for H' satisfy

1T(a)||,) <Cus(A+B). (8.2.8)

"

To pass to general functions in H', we use Theorem 6.6.10 to write an f € H' as
f = z A’jaja
j=1
where the series converges in H 1, the a; are [? atoms for H ! and
||fHH, ~ ) (A (8.2.9)
j=1

Since 7 maps L' to weak L' by Theorem 8.2.1, T(f) is already a well defined L'
function. We plan to prove that

T(f) = i AT (a)) a.e. (8.2.10)
Jj=1

Note that the series in (8.2.10) converges in L' and defines an integrable function
almost everywhere. Once (8.2.10) is established, the required conclusion (6.7.5)
follows easily by taking L! norms in (8.2.10) and using (8.2.8) and (8.2.9).

To prove (8.2.10), we use that T is of weak type (1,1). For a given u > 0 we
have
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H\T(f)—il%'T(ajH > )

=

N
<[l - S arte] > w2+ 1 3 ar)|>u/2)

Jj=N+1

2 N 2 oo

< n [ P f_jzlljajHL, + u H]’%Jrl/le(aj)HLl
2 N 2 oo

< MTlop- f—Z%-ajH o Cus(A+B) X (Al
H j=1 HH JoNt1

Since le\’:l Aja; converges to f in H' and 71 |4j| < eo, both terms in the sum
converge to zero as N — co. We conclude that

[T~ 3 AT (ap)] > u}| =0
j=1

for all u > 0, which implies (8.2.10). 0

Theorem 8.2.7. Let T be in CZO(68,A,B). Then for any bounded function f, the
distribution T (f) can be identified with a BMO function that satisfies

1T garo < CrsA+B)|f] - (8.2.11)
where C, 5 is a constant.

Proof. Let L%’C be the space of all square integrable functions with compact support

and integral zero on R”. This space is contained in H'!(R") (cf. Exercise 6.4.3) and
contains the set of finite sums of L? atoms for H'!, which is dense in H' (cf. Exercise
6.6.5); thus L&C is dense in H'. Recall that for f € L™, T(f) has a well defined action

(T(f), @) on functions ¢ in L3 . that satisfies (8.1.24).
Suppose we have proved the identity

(T(5):9) = |, T(9)X)f(x)dx, (8.2.12)
for all bounded functions f and all ¢ in L(Z)’C. Since such a ¢ is in H!, Theorem

8.2.6 yields that T*(¢) is in L', and consequently, the integral in (8.2.12) converges
absolutely. Assuming (8.2.12) and using Theorem 8.2.6 we obtain that

[T o < T @) [/l]- < Cus@A+B)[[ @] 7]

We conclude that L(¢) = (T(f),¢) is a bounded linear functional on L} . with
norm at most C,, 5(A + B) || f|| .- Obviously, L has a bounded extension on H' with
the same norm. By Theorem 7.2.2 there exists a BMO function by that satisfies
HbeBMO <c, ||L||H1 _ ¢ such that the linear functional L has the form Ly, (using the
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notation of Theorem 7.2.2). In other words, the distribution 7'(f) can be identified
with a BMO function that satisfies (8.2.11) with C,, 5 = C;Cnyg, ie.,

HT(f)HBMO <C,Cy5(A+B) HfHL“"

We return to the proof of identity (8.2.12). Pick a smooth function with compact
support 1) that satisfies 0 <71 < 1 and is equal to 1 in a neighborhood of the support
of ¢. We write the right-hand side of (8.2.12) as

[ T sdvt [ T(@)1-n)fdx=(T(nf).0)+ [ T()(1—m)sdx.

In view of Definition 8.1.16, to prove (8.2.12) it will suffice to show that

T(@)1 - fdx= [ [ (K(xy)~K(0.9) o) del1 = n() £3)dy.

R”

where xq lies in the support of ¢. But the inner integral above is absolutely conver-
gent and equal to

[, K =KGom)o@dr= [ K(000(x)dx =T"(9)0),

since y ¢ supp @, by Proposition 8.1.9. Thus (8.2.12) is valid. g

Exercises

8.2.1. Let T : ./(R") — ./(R") be a continuous linear operator whose Schwartz
kernel coincides with a function K(x,y) on R" x R" minus its diagonal. Suppose
that the function K (x,y) satisfies

sup/ 1K (x,y)|dy < A < oo.
R>0/R<|x—y|<2R

(a) Show that the previous condition is equivalent to

sup o [ ey [K(e)dy < A < oo

R>0 It J|x—y|<R

by proving that A’ < A <24’

(b) For € > 0, let T(®) be the truncated linear operators with kernels K (s)(x,y) =
K(X,y)X|x—y|>e- Show that T(&)(f) is well defined for Schwartz functions.

[Hint: Consider the annuli £2/ < |x| < €2/*! for j > 0.]

8.2.2. Let T be as in Exercise 8.2.1. Prove that the limit 7(¢)(f)(x) exists for all f
in the Schwartz class and for almost all x € R" as € — 0 if and only if the limit
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lim K(x,y)dy

=0 Je<|x—y|<1
exists for almost all x € R".

8.2.3. Let K(x,) be a function defined away from the diagonal in R?" that satisfies

sup/ |K(x,y)|dy <A <eo
R>0JR<[x—y|<2R

and also Hormander’s condition

swu/ IK(x,y) — K(x,y/)] dx < A" < oo,
yy R [x—y[22[y—y|

y2£Y

Show that all the truncations K(¢)(x,y) also satisfy Hormander’s condition uni-
formly in € > 0 with a constant A +-A”.

8.2.4.Let T be as in Exercise 8.2.1 and assume that 7 maps L"(R") to itself for
some 1 < r < oo,

(a) Assume that K(x,y) satisfies Hormander’s condition, Then T has an extension
that maps L! (R") to L!(R") with norm

1Tl 1= < CalA+B),
and therefore T maps L”(R") to itself for 1 < p < r with norm

7] <Cu(p—1)""(A+B),

LP—LP

where C, is a dimensional constant.
(b) Assuming that K’ (x,y) = K(y,x) satisfies Hormander’s condition, prove that T
maps L?(R") to itself for » < p < oo with norm

Tl pp < Cap(A+B),

where C, is independent of p.

8.2.5. Show that estimate (8.2.2) also holds when r = 1.

[Hint: Estimate (8.2.6) holds when r = 1. For fixed € > 0, take 0 < b < [T &) (f)(x)|
and define BS(x) = B(x,5) N{|T(f)| > 5}, B5(x) = B(x,5) N {|T(f5™")| > 5}
and B§(x) = B(x,5) if C,sM(f)(x) > % and empty otherwise. Then |B(x,5)| <
|Bf (x)| + |B5(x)| + |B5(x)|. Use the weak type (1, 1) property of 7' to show that b <
C(n)(M(IT(f)|)(x) +M(f)(x)), and take the supremum over all b < |T®)(f)(x)|.]

8.2.6. Prove that if |f|log™ || is integrable over a ball, then T(*)(f) is integrable
over the same ball.
[Hint: Use the behavior of the norm of 7(*) on L? as p — 1 and use Exercise 1.3.7.}
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8.3 The 7(1) Theorem

We now turn to one of the main results of this chapter, the so-called 7' (1) theorem.
This theorem gives necessary and sufficient conditions for linear operators 7 with
standard kernels to be bounded on L?(R™). In this section we obtain several such
equivalent conditions. The name of theorem 7'(1) is due to the fact that one of the
conditions that we derive is expressed in terms of properties of the distribution 7'(1),
which was introduced in Definition 8.1.16.

8.3.1 Preliminaries and Statement of the Theorem

We begin with some preliminary facts and definitions.

Definition 8.3.1. A normalized bump is a smooth function ¢ supported in the ball
B(0,10) that satisfies
[(0Fp) () <1

for all multi-indices |ct| <2[5]+ 2, where [x] denotes here the integer part of x.

Observe that every smooth function supported inside the ball B(0, 10) is a con-
stant multiple of a normalized bump. Also note that if a normalized bump is sup-
ported in a compact subset of B(0, 10), then small translations of it are also normal-
ized bumps.

Given a function f on R”, R > 0, and x¢ € R", we use the notation fg to denote
the function fz(x) = R™"f(R™'x) and 7%(f) to denote the function 7% (f)(x) =
f(x—xp). Thus

T0(fr)(y) = fr(y—x0) =R "f(R™' (y —x0)).

Set N = [5]+ 1. Using that all derivatives up to order 2N of normalized bumps are
bounded by 1, we easily deduce that for all xo € R”, all R > 0, and all normalized
bumps ¢ we have the estimate

R [ 70006 de
= [ la@la
Rn

= o (y)e 205 dy‘ dE (83.1)
Rn Rl‘l

— _ AWV omiy-E dé

< Gy,

since |(d¢@)(x)| < 1 for all multi-indices o with [et| < [7]+ 1, and G, is indepen-



194 8 Singular Integrals of Nonconvolution Type

dent of the bump ¢. Here I — A denotes the operator

n an)
I1—A = .
-a)(0)=p+ %55

Definition 8.3.2. We say that a continuous linear operator
T: . 7R") — .7 (R")

satisfies the weak boundedness property (WBP) if there is a constant C such that for
all f and g normalized bumps and for all xo € R" and R > 0 we have

(T (t%(fr)), T°(gr))| < CR™". (8.3.2)

The smallest constant C in (8.3.2) is denoted by H THW B

Note that H T0(fR) ||L2 = ||fHL2R’"/2 and thus if 7' has a bounded extension from
L?(R") to itself, then T satisfies the weak boundedness property with bound

17l < 10" T[] 22
where v,, is the volume of the unit ball in R”.
We now state one of the main theorems in this chapter.

Theorem 8.3.3. Let T be a continuous linear operator from . (R") to .’ (R")
whose Schwartz kernel coincides with a function K on R* x R"\ {(x,x) : x € R"}
that satisfies (8.1.1), (8.1.2), and (8.1.3) for some 0 < §,A < . Let K'®) and T®)
be the usual truncated kernel and operator for € > 0. Assume that there exists a
sequence €; | 0 such that for all f,g € /(R") we have

(TE(f),8) = (T(f):8)- (8.3.3)

Consider the assertions:

(i) The following statement is valid:

[||T(€>(ZB>||L2+H (e ||Lz} o

B| = supsup )
|B|2 1B|2

B £>0

where the first supremum is taken over all balls B in R".

(ii) The following statement is valid:

Bzzsup[ /} / K xydy
87N7x0

B(xg,N) |x—y|<N

d

1 : 2 12
+ / / K@(y,X)dy‘ dx] < oo,
B(xg.N) ' |x—y|<N



8.3 The T(1) Theorem 195

where the supremum is taken over all 0 < € < N < oo and all xo € R".

(iii) The following statement is valid:

B3 = sup sup supR? [HT(T"O((pR))HLz + ||T’(T"°((pR))||L2} < oo,
® xg€R"R>0

where the first supremum is taken over all normalized bumps .

(iv) The operator T satisfies the weak boundedness property and the distributions
T(1) and T'(1) coincide with BMO functions, that is,

By = ||T(1)HBM0+ HTt(l)HBM0+ HTHWB <o

(v) For every & € R” the distributions T (e2™()¢) and T'(e*™()¢) coincide with
BMO functions such that

2mi(-)-

Bs = sup HT(e >5)HBM0+ Sup ||Tt(ezm(')'é)HBM0 < e
EcRr EeR”

(vi) The following statement is valid:

Bs = sup sup sup B" || T(2(08)| o |7 (2 (98)) [ ) <=
® xpeR"R>0

where the first supremum is taken over all normalized bumps @.

Then assertions (i)—(vi) are all equivalent to each other and to the L* boundedness
of T, and we have the following equivalence of the previous quantities:

ens(A+Bj) <||T| ;2 <Cus(A+B)),

for all j € {1,2,3,4,5,6}, for some constants c, 5,C, 5 that depend only on the
dimension n and on the parameter & > 0.

Remark 8.3.4. Condition (8.3.3) says that the operator T is the weak limit of a se-
quence of its truncations. We already know that if T is bounded on L2, then it must be
equal to an operator that satisfies (8.3.3) plus a bounded function times the identity
operator. (See Proposition 8.1.11.) Therefore, it is not a serious restriction to assume
this. See Remark 8.3.6 for a version of Theorem 8.3.3 in which this assumption is
not imposed. However, the reader should always keep in mind the following patho-
logical situation: Let K be a function on R" x R\ {(x,x) : x € R"} that satisfies
condition (ii) of the theorem. Then nothing prevents the Schwartz kernel W of T
from having the form
W = K(x,y) + h(x) 8-y,

where /(x) is an unbounded function and ,—, is Lebesgue measure on the subspace
x =Y. In this case, although the T()s are uniformly bounded on L%, T cannot be L?
bounded, since # is not a bounded function.
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Before we begin the lengthy proof of this theorem, we state a lemma that we
need.

Lemma 8.3.5. Under assumptions (8.1.1), (8.1.2), and (8.1.3), there is a constant
C,, such that for all normalized bumps ¢ we have

sup /
xpER"

|x—x0|>20R

C,A?

2
| ke nas| drs Tl 634

Proof. Note that the interior integral in (8.3.4) is absolutely convergent, since
70 (@g) is supported in the ball B(xp, lIOR) and x lies in the complement of the dou-
ble of this ball. To prove (8.3.4), simply observe that since |[K(x,y)| < Alx—y|™",
we have that

CA
T(t*
Tl s
whenever |x — x| > 20R. The estimate follows easily. O

8.3.2 The Proof of Theorem 8.3.3

This subsection is dedicated to the proof of Theorem 8.3.3.

Proof. The proof is based on a series of steps. We begin by showing that condition
(iii) implies condition (iv).

(i) = (iv)

Fix a % function ¢ with 0 < ¢ < 1, supported in the ball B(0,4), and equal to
1 on the ball B(0,2). We consider the functions ¢(-/R) that tend to 1 as R — oo and
we show that 7'(1) is the weak limit of the functions 7(¢(-/R)). This means that for
all g € 2/, (smooth functions with compact support and integral zero) one has

(T(¢(-/R)),g) = (T(1),8) (8.3.5)

as R — oo. To prove (8.3.5) we fix a %;” function 1) that is equal to one on the support
of g. Then we write

(T(0(/R)).g) = (T(MO(/R)).8) +(T((1 = MO(/R)).¢)
= (T(no(-/R)).g)
] (Ky) = K0.)s(0(1 =)o b/R)dydsx,

where x is a point in the support of g. There exists an Ry > 0 such that for R > Ry,
¢(-/R) is equal to 1 on the support of 1, and moreover the expressions
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| [ (K = KGo,)g(0(1 =)0 (3/R) dyd

converge to
// (K(x,y) = K(x0,7))(x)(1 = n(y)) dydx

as R — oo by the Lebesgue dominated convergence theorem. Using Definition
8.1.16, we obtain the validity of (8.3.5).

Next we observe that the functions ¢(-/R) are in L?, since ¢(x/R) = R "¢g(x),
and by hypothesis (iii), ¢ are in L>. We show that

HT /R HBMO <Cn 5(A+B3) (8.3.6)

uniformly in R > 0. Once (8.3.6) is established, then the sequence {T(¢(-/))}7-,

lies in a multiple of the unit ball of BMO = (H')*, and by the Banach-Alaoglou
theorem, there is a subsequence of the positive integers R; such that T(¢(-/R;))
converges weakly to an element b in BMO. This means that

(T(0(-/R})),8) — (b,g) (8.3.7)

as j — oo forall g € %. Using (8.3.5), we conclude that 7'(1) can be identified with
the BM O function b, and as a consequence of (8.3.6) it satisfies

HT(l)HBMO < Cn,5(A+B3)'

In a similar fashion, we identify 77 (1) with a BMO function with norm satisfying

HT[(l)HBMO < Cn-,5(A+B3)'

We return to the proof of (8.3.6). We fix a ball B = B(xg,r) with radius r > 0
centered at xy € R”. If we had a constant cg such that

|119| /B|T(¢('/R))(X)—c3|dx§c,,,533 (8.3.8)

for all R > 0, then property (3) in Proposition 7.1.2 (adapted to balls) would yield
(8.3.6). Obviously, (8.3.8) is a consequence of the two estimates

|B|/|T (5)( )] ()] dx < cu B3, (8.3.9)
|B|/’T (TN ) =T[(1=0(7)9( )] (x0)|dx < CgA. (8.3.10)
We bound the double integral in (8.3.10) by

|113| / /\ X \>zr|K(x’y) K(x0,y)| ¢ (y/R)dydx, (8.3.11)
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since 1 — ¢ ((y —xo)/r) = 0 when |y — xo| < 2r. Since |x —xg| < r < %|y—x0|, con-
dition (8.1.2) gives that (8.3.11) holds with ¢, = @,_1 = |[S"!|.

It remains to prove (8.3.9). It is easy to verify that there is a constant Cy =
Co(n,¢) such that for 0 < € < 1 and for all a € R" the functions

Colo(e(x+a)o(x),  Cylo(x)o(—a+ex) (8.3.12)

are normalized bumps. The important observation is that with @ = xo/r we have

6(3)9( ) =7 [(6(r(+a)9() | ) (83.13)
=R (9()0(—a+%())) (). (8.3.14)

R

and thus in either case » < R or R < r, one may express the product ¢ ()9 (") as
a multiple of a translation of an L'-dilation of a normalized bump.
Let us suppose that » < R. In view of (8.3.13) we write

T[o(7)9(z)](x) = Cor"T [T°(er)] (x)

for some normalized bump ¢. Using this fact and the Cauchy—Schwarz inequality,
we estimate the expression on the left in (8.3.9) by

Cor'/?

1
2
| Vn/2</|T[Tx0((Pr)](x)|2dx> = i Bz=cuBs,
1B B B

where the first inequality follows by applying hypothesis (iii).
We now consider the case R < r. In view of (8.3.14) we write

T[o(7)9(5)](x) = CoR"T (¢r) (x)

for some other normalized bump ¢. Using this fact and the Cauchy—Schwarz in-
equality, we estimate the expression on the left in (8.3.9) by

C Rn/z i C Rn/z
OIRM(ﬂU&WWM)< o By anBs
|B|2 B |B|2

by applying hypothesis (iii) and recalling that R < r. This proves (8.3.9).

To finish the proof of (iv), we need to prove that T satisfies the weak boundedness
property. But this is elementary, since for all normalized bumps ¢ and y and all
x € R" and R > 0 we have

(T (2 (wr) T (or))| < |7 (wr) | 2 |75 (00) | 2
< By (o0
<C,BsR™".
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This gives || THWB < G,B3, which implies the estimate B4 < C, 5(A + B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) = (L? boundedness of T)

We now assume condition (iv) and we present the most important step of the
proof, establishing the fact that 7 has an extension that maps L?(R") to itself. The
assumption that the distributions 7'(1) and 7" (1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T'.

We pick a smooth radial function @ with compact support that is supported in the
ball B(0, é) and that satisfies g, @(x)dx = 1. Fort >0 we define @, (x) =" ®(7).
Since @ is a radial function, the operator

P(f)=f+D (8.3.15)

is self-transpose. The operator F is a continuous analogue of S; = ¥, ; A, where
the A;’s are the Littlewood—Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T'(f).
We begin with the facts, which can be found in Exercises 8.3.1 and 8.3.2, that

T(f) = imPITPY(f),

0 = lim P'TP}(f),
S—ro00

where the limits are interpreted in the topology of .’/ (R"). Thus, with the use of
the fundamental theorem of calculus and the product rule, we are able to write

T(f) = imPCTRI(f) = lim PPTPY(f)

§—00
.l d
= —lim [ s (P’TP?
lim [ s, (BTR)()

ds

N
1

T [s (jSPS) TP(f)+ P2 (TSjSPf) (f)] SRNCERTY
For a Schwartz function g we have
(s0.P2®) (& = a@)s § Bls2)?
= B(E) D(sE) (25& - VO(sE))
= 2(8) 2 W (s€)Ox(sE)

o~ o~

_ i(kaka ©) €)= 3 (0.0:(0) ().

k=1 k=1
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where for 1 <k <n, q’;(é) = 2§k<13(§), é\k(é) = 8,((5(5) and Q s, Q;w are operators
defined by

Qk,x(g) =g* (s, Qk,s (8) = &*(O)s;

here (6y);(x) = s "6 (s~'x) and (%), are defined similarly. Observe that ¥ and
O are smooth odd bumps supported in B(0, é) and have integral zero. Since ¥ and

O are odd, they are anti-self-transpose, meaning that (Qx ;)’ = —Q s and (ékix)t =
—QOy,s- We now write the expression in (8.3.16) as

1 1
L e ~ ds e ~ ds
—lim [ / Ok sOksTRP(f)  + / PsPsT Qg s Ok s (f) ; (8.3.17)
8—>0k:1 € S € N

where the limit converges in ./ (R"). We set
Tk,s = Qk,sTva

and we observe that the operator P,TQy , is equal to —((T")x)".

Recall the notation 7°(h)(z) = h(z —x). In view of identity (2.3.21) and the con-
vergence of the Riemann sums to the integral defining f * @y in the topology of .
(see the proof of Theorem 2.3.20), we deduce that the operator T ; has kernel

Kis(x,9)=—(T(Z (@), T((F)s)) = —(T" (T ((¥)s)), (D)) . (8.3.18)
Likewise, the operator —(7"); ; has kernel

(T'(2" (@), ' ((F)s)) = (T (T ((H)s)), T (D)) -

For 1 <k < n we need the following facts regarding the kernels of these operators:

(T (T((H)s), T (@)
(T (2 ((#)s)), 7 (@)

Cos(|IT |z +A) ps(x—y), (8.3.19)
Cn,S(HTHWB""A)ps(x_y)a (8320)

IAIA

where
1 1

u)=

is the L' dilation of the function p(u) = (1 + u|)~"~9.
To prove (8.3.20), we consider the following two cases: If [x — y| < 5, then the
weak boundedness property gives

(T2 (@), () = [T (e (@) e < 1w,

S}’l

since both ¥, and s (@) are multiples of normalized bumps. Notice here that both
of these functions are supported in B(0, 10), since { |x —y| < 5. This estimate proves
(8.3.20) when |x —y| < 5.
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We now turn to the case |x —y| > 5s. Then the functions 7 (®;) and t*((‘¥)s)
have disjoint supports and so we have the integral representation

(T (T ((%):). T (D)) = / [ =K ) (s (=) dudy

Using that ¥, has mean value zero, we can write the previous expression as
/n - Ds(v—y) (K (u,v) — K(x,v)) (¥)s(u—x)dudv.

We observe that |u — x| < s and |v — y| < s in the preceding double integral. Since
|x —y| > 5, this makes |u —v| > |x —y| — 25 > 3s, which implies that |u — x| <
5|u—v|. Using (8.1.2), we obtain

Alx—ul® " 59

K(u,v) —K(x,v)| < < )
S RIS s emapes = %oyt

where we used the fact that |u — v| = |x — y|. Inserting this estimate in the double
integral, we obtain (8.3.20). Estimate (8.3.19) is proved similarly.

At this point we drop the dependence of Oy ; and Oy ; on the index k, since we
can concentrate on one term of the sum in (8.3.17). We have managed to express
T(f) as a finite sum of operators of the form

/w o) " (8.3.21)
0 s
and of the form ~ 4
/ PT.0s(f) SS, (8.3.22)
0

where the preceding integrals converge in ./ (R") and the 7’s have kernels K;(x, y),
which are pointwise dominated by a constant multiple of

(A+B4)ps(x_)’)-

It suffices to obtain L? bounds for an operator of the form (8.3.21) with constant
at most a multiple of A 4 B4. Then by duality the same estimate also holds for
the operators of the form (8.3.22). We make one more observation. Using (8.3.18)
(recall that we have dropped the indices k), we obtain

LW = [ Kley)dy= (T ) 1) =~ (BT, 6:323)

where all integrals converge absolutely.

We can therefore concentrate on the L2 boundedness of the operator in (8.3.21).
We pair this operator with a Schwartz function g and we use the convergence of the
integral in .’ and the property (Q;)" = —Qy to obtain
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ds

</Omésm(f> is,g>=/(;w<émﬂ(f),g> ) =—/()m<rqu(f),Qv(g)>ds

S
The intuition here is as follows: 7y is an averaging operator at scale s and P;(f) is
essentially constant on that scale. Therefore, the expression TyP;(f) must look like

T;(1)Ps(f). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TP(f) = T()P(f) + [LP(f) = T(D)P(f)] - (8.3.24)
We estimate the terms that arise from this splitting. Recalling (8.3.23), we write
- ~ d
| (o T(l))Py(f),Qs(g)> ; (83.25)
h 2 ds 2 ds
s(/o oo ([1awin )

1 1

2ds \? 0~ 2ds\?
H( ) (F+T(1)))| S) . (/0 10s(3)| s) B (8.3.26)

Since T'(1) is a BMO function, |(*F;*T(1))(x) |2d)c‘ijY is a Carleson measure on R%"'.
Using Theorem 7.3.8 and the Littlewood—Paley theorem (Exercise 5.1.4), we obtain
that (8.3.26) is controlled by

GlITWlgaso 1712 18], < CuBall ] 2 ls ] -

This gives the sought estimate for the first term in (8.3.24). For the second term in
(8.3.24) we have

" [ G@wEA) - R0 RG] W e

- (/0“’ Rn@“‘( ) Pax? ) (/ / (TP(f) = T(V)P(f ))(x”zdxd;)%
<clelle( [, |

2dxdss)2
cinlells ([, ,1Ps(x—y)|Ps(f)(y)—Pv(f)(x)\zdydxisf,

where in the last estimate we used the fact that the measure p;(x —y)dy is a mul-
tiple of a probability measure. It suffices to estimate the last displayed square root.
Changing variables u = x — y and applying Plancherel’s theorem, we express this
square root as

[ KR~ RO W] dy
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</ / L Ps[P() J’"‘u}dudyd)%
) </°w/  Jo P PGE) = DL F(E)| dud d)

1

= (/ow/n [ o) @(s)|"4m? fuf 5] | ()| dug dsy

_27r4</n/ ( [ v ”\Zdu)|q>sg | |s§|§ds| © déj)

and we claim that this last expression is bounded by C, 5” f H ;2- Indeed, we first

bound the quantity [g. ps(u ‘ ‘ 5/2 du by a constant, and then we use the estimate

d
/‘ s§‘|§|[g S—/ (seq) s2S<C;l’5<°°

and Plancherel’s theorem to obtain the claim. [Here ¢; = (1,0,...,0).] Taking g to
be an arbitrary Schwartz function with L> norm at most 1 and using duality, we
deduce the estimate HT( f )H 12 < Cus(A+By) H f H ;2 for all Schwartz functions f
whose Fourier transform does not contain a neighborhood of the origin. Such func-
tions are dense in L?>(R") (cf. Exercise 5.2.9) and thus 7' admits an extension on L?
that satisfies ||THL2HL2 < C,5(A+By).

(L? boundedness of T) = (V)

If T has an extension that maps L? to itself, then by Theorem 8.2.7 we have
Bs < C,s(A+ HTHL2—>L2) < e
Thus the boundedness of 7' on L? implies condition (v).

V) = (v

At a formal level the proof of this fact is clear, since we can write a normalized
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of 7 to obtain

T(e(r) = [ 79 (o) ()T () de, (8.3.27)

The conclusion follows by taking BMO norms. To make identity (8.3.27) precise
we provide the following argument.

Let us fix a normalized bump ¢ and a smooth and compactly supported function
g with mean value zero. We pick a smooth function 11 with compact support that is
equal to 1 on the double of a ball containing the support of g and vanishes off the
triple of that ball. Define 1, (&) = 1n(& /k) and note that 7 tends pointwise to 1 as
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k — 0. Observe that 1,7 (@) converges to 7% (@g) in .7 (R") as k — oo, and by
the continuity of 7 we obtain

Tim (T(meT™(gr)). 8) = (T(T(9x)), 8)-

The continuity and linearity of 7" also allow us to write

—

lim [ 70(qr)(E) (T (me?™0)) g)dE.  (8.3.28)

o k—oo JRI

<T(TX0((pR))7g>
Let W be the Schwartz kernel of 7. By (8.1.5) we have
(T (™™ ), ) = (W, g @ mpe?™ 1)), (8.3.29)

Using (8.1.6), we obtain that the expression in (8.3.29) is controlled by a finite sum
of L™ norms of derivatives of the function

g(x) M (y)e*™=”

on some compact set (that depends on g). Then for some M > 0 and some constant
C(g) depending on g, we have that this sum of L™ norms of derivatives is controlled
by

Clg) (1+]E)Y

uniformly in £ > 1. Since T@) is integrable, the Lebesgue dominated conver-
gence theorem allows us to pass the limit inside the integrals in (8.3.28) to obtain

—

(T(e(gu).8) = [ T0(0r)(E) (T (51)) ) d.

We now use assumption (v). The distributions T (ez’“f'( ’ )) coincide with BMO func-
tions whose norm is at most Bs. It follows that

(7@ (@r)8)] < [To(m)l,r sup 7 O) [ pyollell
EeRr (8.3.30)
< CnB5R7n||g||Hl s

where the constant C,, is independent of the normalized bump ¢ in view of (8.3.1).
It follows from (8.3.30) that

g (T(t°(¢r)),g)

is a bounded linear functional on BMO with norm at most a multiple of BsR™". It
follows from Theorem 7.2.2 that T (7% (¢g)) coincides with a BMO function that
satisfies

R||T (7% (g < C,Bs.

D amo
The same argument is valid for 77, and this shows that
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Bs < C, 5(A+Bs)

and concludes the proof that (v) implies (vi).

(vi) = (iii)

We fix xg € R" and R > 0. Pick zp in R” such that |xg — 79| = 40R. Then if
|y —xo| < 10R and |x — zp| < 20R we have

10R < |z0—2x0| — [x—2z0| — [y—xo|
< x|
< |x—2z0| + |z0—x0| + |x0—y| < TOR.

From this it follows that when |x — z9| < 20R we have

d C.sA
[ K oama < [ Kex) r <
y—xo|<10R 10R<|v—y|<TOR R R
and thus C oA
| Ave T(e0(gr))| < (8:331)
B(z20,20R)

R"

where Avgy g denotes the average of g over B. Because of assumption (vi), the BMO
norm of the function T (7% (@g)) is bounded by a multiple of BsR™", a fact used in
the following sequence of implications. We have

|7 (0 (‘PR))HLZ(B(xO,z()R))
< |7 (o))~ Ave T(e(gr))

B(x0,20R) L?(B(x0,20R))
1 n
i 20R)F| Ave T(T0(gr)— Ave T((gn))|
B(x).20R) B(20,20R)
1 n
+7i (20R)}| Ave T(z(gr)
B(z0,20R)
= C”‘G(Rg T(TXO((”R))HBMO"'Rg T(Txo((pR))||BM0+R_gA)
< C,6R 2 (Bs+A),

where we used (8.3.31) and Exercise 7.1.6. Now we have that
17T (@R[ 123y 20y < Cn.3AR ™2
in view of Lemma 8.3.5. Since the same computations apply to 77, it follows that

R2(

T (T ()| ;2 + || T (T (9r)) | ;2) < Cps5(A+Bs), (8.3.32)
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which proves that B3 < C, 5(A + Bg) and hence (iii). This concludes the proof of the
fact that (vi) implies (iii)

We have now completed the proof of the following equivalence of statements:

(L2 boundedness of T) < (i) <= (iv) <= (V) <= (vi). (8.3.33)

(i) < (i)
We show that the quantities A + B; and A 4 B, are controlled by constant multi-
ples of each other. Let us set
ext)= [ Kaydy ad  fy@= [ Ky,

e<|x—y|<N e<|x—y|<N

We work with a ball B(xp,N). Observe that

en@ =T () = [ Keydy— [ K(uy)dy
e<|x—y|<N e<|x—y|
o—y|<N (8.3.34)

= - / K(xay) dya
S&‘,N(xvxo)

where Se y(x,xp) is the set of all y € R” that satisfy € < |x —y| and |xo — y| < N but
do not satisfy € < |x —y| < N. But observe that when |xo — x| < N, then

Sen(x,x0) C{yeR": N<|x—y| <2N}. (8.3.35)

Using (8.3.34), (8.3.35), and (8.1.1), we obtain

) =T )] < [ KGy)ldy < (@-110g2)A (8336
N<|x—y|<2N

whenever |xg — x| < N. It follows that
[fe.n — T(S)(XB(X03N>)HL2(B()C0,N)) < GAN?,
and similarly, it follows that
HI;N - (T(8>)t(%B(xO,N)) ||L2(B(x0,N)) < G,AN>.
These two estimates easily imply the equivalence of conditions (i) and (ii).

We now consider the following condition analogous to (iii):
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Gy By = sup sup supR? [||7) (2 (ge)[|,2 + [ (T (2 (g))]| 2| <.

¢ xpeR"e>0
0 R>0

where the first supremum is taken over all normalized bumps ¢. We continue by
showing that this condition is a consequence of (ii).

(il) = (iii)’

More precisely, we prove that By < C, 5(A+ By). To prove (iii)’, fix a normalized
bump ¢, a point xg € R”, and R > 0. Also fix x € R” with |x — xy| < 20R. Then we
have

(T (gr)) (x) :/ K () (@) (v) dx = Uy (x) + Ua (),

e<|x—y|<30R

where

0w = [ Ko 0) - T (o) )

V) = ™ (er)(x) | K(x.y)dy

£<|x—y|<30R
But we have that |70 (@g)(y) — 70 (@g)(x)| < C,R~'"|x — y|; thus we obtain
|U; (x)] < C,AR™"

< C,AR 2. Condition (ii) gives that

on B(xo,20R): hence [|U1[| 25y, 20))

HUZHLZ(B(xOJOR)) < Rin||15a30RHL2(B(x0,3OR)) < BZ(30R);R7”'
Combining these two, we obtain

7€) (70 (gr)) 12 550 208)) < Ca(A +By)R 2 (8.3.37)
and likewise for (7®))". It follows from Lemma 8.3.5 that
|7 (2 (¢x)) ||L2(B(x0,zoze)c) <G sARE,
which combined with (8.3.37) gives condition (iii)’ with constant
B; <G, 5(A+By).
This concludes the proof that condition (ii) implies (iii)'.
(i) = [T(®) : L? — L2 uniformly in € > 0]

)

For € > 0 we introduce the smooth truncations Tg(g of T by setting
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10 = [ K@)EC) f0)dy,

where ¢ (x) is a smooth function that is equal to 1 for |x| > 1 and vanishes for |x| < }.
We observe that
70(1) =T (f)] < CaAM(f); (8.3.38)

thus the uniform boundedness of 7(¢) on L2 is equivalent to the uniform bound-

edness of T\°). In view of Exercise 8.1.3, the kernels of the operators TC(S)

lie in
SK(6,cA) uniformly in € > 0 (for some constant ¢). Moreover, because of (8.3.38),
we see that the operators Tg(s) satisfy (iii)’ with constant C,A + B}. The point to be
noted here is that condition (iii) for 7 (with constant B3) is identical to condition
(iii)’ for the operators TC(S) uniformly in & > 0 (with constant C,A + B%).

A careful examination of the proof of the implications
(ili) = (iv) = (L? boundedness of T')

reveals that all the estimates obtained depend only on the constants B3z, B4, and A,

but not on the specific operator T'. Therefore, these estimates are valid for the opera-

tors Tés) that satisfy condition (iii)’. This gives the uniform boundedness of the Tév(g)

on L*(R") with bounds at most a constant multiple of A + B}. The same conclusion
also holds for the operators T,

(T®: 2 > [2 uniformly in € > 0] = (i)
This implication holds trivially.
We have now established the following equivalence of statements:
(i) < (ii) < (i) < [T®: L*> — L% uniformlyin& > 0]  (8.3.39)
(iii) < (iii)’

Finally, we link the sets of equivalent conditions (8.3.33) and (8.3.39). We first
observe that (iii)’ implies (iii). Indeed, using duality and (8.3.3), we obtain

|7 (2 (gr))||,» = sup T (7 (¢r))(x) h(x)dx
he.s R"
o<t
< sup limsup / T(E) (2% (g)) (x) h(x) dx
he. J—eo R”
o<t

/ _n
< BiR 2,
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which gives B3 < B’3. Thus under assumption (8.3.3), (ii) implies (iii) and as we have
shown, (iii) implies the boundedness of 7" on L?. But in view of Corollary 8.2.4, the
boundedness of T on L? implies the boundedness of 7€) on L? uniformly in £ > 0,
which implies (iii)’.
This completes the proof of the equivalence of the six statements (i)—(vi) in such
a way that
1T [|2 e > (A+B))

forall j € {1,2,3,4,5,6}. The proof of the theorem is now complete. O

Remark 8.3.6. Suppose that condition (8.3.3) is removed from the hypothesis of
Theorem 8.3.3. Then the given proof of Theorem 8.3.3 actually shows that (i) and
(ii) are equivalent to each other and to the statement that the T(€)°s have bounded
extensions on L?(R") that satisfy

SUPHT(E)HHHI} < oo
e>0

Also, without hypothesis (8.3.3), conditions (iii), (iv), (v), and (vi) are equivalent to
each other and to the statement that 7 has an extension that maps L?(R") to L>(R").

8.3.3 An Application

We end this section with one application of the 7'(1) theorem. We begin with the
following observation.

Corollary 8.3.7. Let K be a standard kernel that is antisymmetric, i.e., it satisfies
K(x,y) = —K(y,x) for all x # y. Then a linear continuous operator T associated
with K is L* bounded if and only if T (1) is in BMO.

Proof. In view of Exercise 8.3.3, T automatically satisfies the weak boundedness
property. Moreover, T* = —T. Therefore, the three conditions of Theorem 8.3.3 (iv)
reduce to the single condition T'(1) € BMO. O

Example 8.3.8. Let us recall the kernels K, of Example 8.1.7. These arise in the
expansion of the kernel in Example 8.1.6 in geometric series

! S (AW AN
x—y—l—i(A(x)—A(y))_x_yWZtO( . ) (8.3.40)

when L = sup, 4, ‘A(ﬁ:?‘(y < 1. The operator with kernel (ir) ~' K, (x,y), i.e.,
L. 7 Alx)—A(y)\" 1
€ . / dy, 8341
=y [ (TN e, gaan

is called the mth Calderén commutator. We use the T(1) theorem to show that the
operators %, are L> bounded.
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We show that there exists a constant R > 0 such that for all m > 0 we have
1G]] ;2,2 <RL™. (8.3.42)

We prove (8.3.42) by induction. We note that (8.3.42) is trivially true when m = 0,
since 6y = —iH, where H is the Hilbert transform.

Assume that (8.3.42) holds for a certain m. We show its validity for m+ 1. Recall
that K, is a kernel in SK(1,16(2m + 1)L™) by the discussion in Example 8.1.7. We
need the following estimate proved in Theorem 8.2.7:

<G [16(2m+ DL + |Gl 2 (8.3.43)

H%MHL”—»BMO —>L2] )

which holds for some absolute constant C,.
We start with the following consequence of Theorem 8.3.3:

H(gmﬂ HL2~>L2 <G [Hcg”“fl(l)”BMO + H(CMH)I(I)HBMO + HCgmH HWB] ; (8.3.44)

valid for some absolute constant C;. The key observation is that
Gmr1(1) =Cn(A), (8.3.45)

for which we refer to Exercise 8.3.4. Here A’ denotes the derivative of A, which
exists almost everywhere, since Lipschitz functions are differentiable almost every-
where. Note that the kernel of 4, is antisymmetric; consequently, (€)' = —6,
and Exercise 8.3.3 gives that H%m HWB < C316(2m+ 1) L™ for some other absolute
constant C3. Using all these facts we deduce from (8.3.44) that

G122 < CL[2||%m(A +C316(2m+3) L.

/)HBMO

Using (8.3.43) and the fact that HA/ < L we obtain that

-
|Gl o <1 2OL{I6 @mt DL+ [ oo } +C316(2m+3) 71
Combining this estimate with the induction hypothesis (8.3.42), we obtain

Hcgmﬂ (1) ||BMO <RI,
provided that R is chosen so that

R™ > 96C,C,(2m+1),
R > 6CiC,
R™ > 48C,C3(2m +3)

for all m > 0. Such an R exists independent of m. This completes the proof of
(8.3.42) by induction.



8.3 The T(1) Theorem 211

Exercises

8.3.1. Let T be a continuous linear operator from .(R") to .#/(R") and let f be
in Z(R"). Let P, be as in (8.3.15).

(a) Show that P;(f) converges to f in #(R") ast — 0.

(b) Conclude that TE(f) — T(f) in #'(R") as t — 0.

(c) Conclude that BTPR,(f) — T(f) in #/(R") as t — 0.

(d) Observe that (a)—(c) are also valid if P, is replaced by Pf.

[Hint: Part (a): Use that g, — g in . if and only if g — gin Y}

8.3.2. Let T and P, be as in Exercise 8.3.1 and let f be a Schwartz function whose
Fourier transform vanishes in a neighborhood of the origin.

(a) Show that B (f) converges to 0 in .(R") as t — co.

(b) Conclude that TP (f) — 0 in #/(R") as t — oo,

(c) Conclude that TP,(f) — 0in .#'(R") ast — oo.

(d) Observe that (a)—(c) are also valid if P; is replaced by P,z.

[Hint: Part (a): Use the hint in Exercise 8.3.1 and the observation that |®(¢& ) f(£)| <
C(1+41co) " |f(€)] if f is supported outside the ball B(0,co). Part (c): Pair with
a Schwartz function g and use part (a) and the fact that all Schwartz seminorms
of P(g) are bounded uniformly in ¢ > 0. To prove the latter you may need that
all Schwartz seminorms of P,(g) are bounded uniformly in ¢ > 0 if and only if all

Schwartz seminorms of 7, (g) are bounded uniformly in ¢ > 0.]

8.3.3. (a) Prove that every linear operator T from . (R") to .#/(R") associated
with an antisymmetric kernel in SK(0,A) satisfies the weak boundedness property.
Precisely, for some dimensional constant C, we have

Tl < CoA
(b) Conclude that for some ¢ < oo, the Calderén commutators satisfy
|G|y < c16(2m+1)L".

[Hint: Write (T (T (fz)), 7(gr)) as

2 e L KGn) (E0)0)7 (60) )~ 79 ) ) ) 0)) s

and use the mean value theorem. |

8.3.4. Prove identity (8.3.45). This identity is obvious by a formal integration by
parts, but to prove it properly, one should interpret things in the sense of distribu-
tions.

8.3.5. Suppose that a standard kernel K (x, y) has the form k(x —y) for some function
konR"\ {0}. Suppose that k extends to a tempered distribution on R” whose Fourier
transform is a bounded function. Let 7' be a continuous linear operator from . (R")
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to ./ (R") associated with K.

(a) Identify the functions T (¢>%0)) and T* (***0)) and restrict to & = 0 to obtain
T(1)and T'(1).

(b) Use Theorem 8.3.3 to obtain the L? boundedness of 7.

(c) What are H(1) and H'(1) equal to when H is the Hilbert transform?

8.3.6. (A. Calderon) Let A be a Lipschitz function on R. Use expansion (8.3.40)
and estimate (8.3.42) to show that the operator

1 f(y)dy
G()x) = lim yfoe X— Y+ i(A(x) —A(y))

is bounded on L*(R) when ||A’||,.. < R™!, where R satisfies (8.3.43).

I

8.3.7. Prove that condition (i) of Theorem 8.3.3 is equivalent to the statement that

7€) T (&)

(ool Ny
02 02

where the first supremum is taken over all cubes Q in R”.

[Hint: You may repeat the argument in the equivalence (i) <= (ii) replacing the
ball B(x,N) by a cube centered at x with side length N.]

sup sup
Q0 &>0

8.4 Paraproducts

In this section we study a useful class of operators called paraproducts. Their name
suggests they are related to products; in fact, they are “half products” in some sense
that needs to be made precise. Paraproducts provide interesting examples of non-
convolution operators with standard kernels whose L? boundedness was discussed
in the Section 8.3. They have found use in many situations, including a proof of the
main implication in Theorem 8.3.3. This proof is discussed in the present section.

8.4.1 Introduction to Paraproducts

Throughout this section we fix a Schwartz radial function ¥ whose Fourier trans-
form is supported in the annulus é < |€] < 2 and that satisfies

S¥27E) =1, when &eR"\{0}. (8.4.1)
jez

Associated with this ¥ we define the Littlewood—Paley operator A;(f) = f ¥,
where ¥ (x) =t "¥(t~'x). Using (8.4.1), we easily obtain
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S A=1, (8.4.2)

where (8.4.2) is interpreted as an identity on Schwartz functions with mean value
zero. See Exercise 8.4.1. Note that by construction, the function ¥ is radial and thus
even. This makes the operator A; equal to its transpose.

We now observe that in view of the properties of ‘¥, the function

£ Y P(277E) (8.4.3)

J<0

is supported in || < 2, and is equal to 1 when 0 < |&| < }. But ¥(0) = 0, which
implies that the function in (8.4.3) also vanishes at the origin. We can easily fix
this discontinuity by introducing the Schwartz function whose Fourier transform is
equal to
B(E) = {ngo'fl(z_jg) when & #0,
1 when & = 0.

Definition 8.4.1. We define the partial sum operator S; as

Si=3 A (8.4.4)

k<j

In view of the preceding discussion, S; is given by convolution with @,—;, that is,

Si(f)(x) = (f * @yj) (x), (8.4.5)

and the expression in (8.4.5) is well defined for all f in J; < <., L”(R"). Since @ is
a radial function by construction, the operator §; is self-transpose.

Similarly, A;(g) is also well defined for all g in |J; < ,<..L”(R"). Moreover, since
A; is given by convolution with a function with mean value zero, it also follows that
Aj(b) is well defined when b € BMO(R"). See Exercise 8.4.2 for details.

Definition 8.4.2. Given a function g on R", we define the paraproduct operator P,

as follows:
P(f) = Ai()Si3(H) =Y, > Ai(e)Alf), (8.4.6)

jez JEZK<j-3

for f in LlloC (R™). It is not clear for which functions g and in what sense the series in
(8.4.6) converges even when f is a Schwartz function. One may verify that the series
in (8.4.6) converges absolutely almost everywhere when g is a Schwartz function
with mean value zero; in this case, by Exercise 8.4.1 the series Y, j Aj (g) converges
absolutely (everywhere) and S;(f) is uniformly bounded by the Hardy—Littlewood

maximal function M(f), which is finite almost everywhere.

One of the main goals of this section is to show that the series in (8.4.6) converges
in L? when f is in L?(R") and g is a BMO function.
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The name paraproduct is derived from the fact that Py(f) is essentially “half”
the product of fg. Namely, in view of the identity in (8.4.2) the product fg can be

written as
fe=22A;()M(g).
j ok

Restricting the summation of the indices to k < j defines an operator that corre-
sponds to “half” the product of fg. It is only for minor technical reasons that we
take k < j— 3 in (8.4.6).

The main feature of the paraproduct operator P, is that it is essentially a sum

—

of orthogonal L? functions. Indeed, the Fourier transform of the function Aj(g) is
supported in the set . .
{er: 27 <[ <27},

—

while the Fourier transform of the function S;_3(f) is supported in the set

U {g ER": 2k71 < |§| S2k+l}-
k<j-3

This implies that the Fourier transform of the function A;(g)S;_3(f) is supported
in the algebraic sum

[EeR: 2 < g <24 {EER": g <27,
But this sum is contained in the set
{EeR": 2772 < g <277}, (8.4.7)

and the family of sets in (8.4.7) is “almost disjoint” as j varies. This means that
every point in R” belongs to at most four annuli of the form (8.4.7). Therefore, the
paraproduct P,(f) can be written as a sum of functions %; such that the families
{hj: j € 4Z+r} are mutually orthogonal in L, for all » € {0,1,2,3}. This or-
thogonal decomposition of the paraproduct has as an immediate consequence its L?
boundedness when g is an element of BMO.

8.4.2 [? Boundedness of Paraproducts

The following theorem is the main result of this subsection.

Theorem 8.4.3. For fixed b € BMO(R") and f € L>(R") the series

2, Ai(b)Sj-3(f)

ljl<M

converges in L> as M — oo to a function that we denote by P,(f). The operator P,
thus defined is bounded on L*(R"), and there is a dimensional constant C,, such that
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for all b € BMUO(R") we have

HPbHL2—>L2 = C"HbHBMO'

Proof. The proof of this result follows by putting together some of the powerful
ideas developed in Chapter 7. First we define a measure on R"J:rl by setting

dp(x,1) = % A (b)(X)? dx 8,3 (7).
j€

By Theorem 7.3.8 we have that u is a Carleson measure on R’jjl whose norm is

controlled by a constant multiple of ||b||129M0. Now fix f € L*(R") and recall that
D (x) = ,<0 W (x). We define a function F(x,r) on R by setting

F(x,t) = (D * f)(x).

Observe that F(x,27%) = S;(f)(x) for all k € Z. We estimate the L? norm of a finite
sum of terms of the form A;(b)S;_3(f). For M,N € Z* with M > N we have

: 2

[ 3 a0)ws; 0w

N<[jI<M

) (8.4.8)

dE |

~

(4;(b)S;-3(f)) (&)

It is a simple fact that every & € R" belongs to at most four annuli of the form
(8.4.7). It follows that at most four terms in the last sum in (8.4.8) are nonzero. Thus

Je

2

(4;(b)S;-3(f) (&) dé&

N<|jl<M
4y /

N<|jl<M

42/,1

jez
4/ |F(e,) 2 dp(x,0)
Rn

C"HbH123M0 R F*(x)?dx,

(4,(b)S;-3(F)) (&) d&

IN

(8.4.9)

IN

Aj(b)(X)S;3(F) ()| dx

IN

where we used Corollary 7.3.6 in the last inequality.

Next we note that the nontangential maximal function F* of F' is controlled by the
Hardy-Littlewood maximal function of f. Indeed, since @ is a Schwartz function,
we have
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/(@)

8.4.10
1+ \Z;y\ Yt ( )

1
F*(x) < Cysup sup /
R

>0 |y—x|<t

Now break the previous integral into parts such that |z —y| > 3¢ and |z —y| < 3r.
In the first case we have [z —y| > |z —x| —t > )|z —x], and the last inequality is
valid, since |z — x| > |z —y| —¢ > 2¢. Using this estimate together with Theorem
2.1.10 we obtain that this part of the integral is controlled by a constant multiple
of M(f)(x). The part of the integral in (8.4.10) where |z —y| < 3t is controlled by
the integral over the larger set |z — x| < 4¢, and since the denominator in (8.4.10) is
always bounded by 1, we also obtain that this part of the integral is controlled by a
constant multiple of M(f)(x). We conclude that

Frx)2dx<C, | M(f)(x)dx<C, / ()2 dx. 8.4.11)
R” R” R”

Combining (8.4.9) and (8.4.11), we obtain the estimate

43 [ 108,010 ©)PAE < Collb o712 < =

jez

This implies that given € > 0, we can find an Ny > 0 such that

M=N=No = ¥ [ [(3,0)850)E)f g <e.
N<ljl<m R

But recall from (8.4.8) and (8.4.9) that

/1{11

We conclude that the sequence

{ 3 awsa0}

ljl<m

2
av<a ¥ [ (a)s00) @) de.

N<|jl<M

> Aib)(x)S;3(f)(x)

N<[jI<M

is Cauchy in L?>(R"), and therefore it converges in L? to a function P, ( f). The bound-
edness of P, on L? follows from the sequence of inequalities already proved. O

8.4.3 Fundamental Properties of Paraproducts

Having established the L? boundedness of paraproducts, we turn to some proper-
ties that they possess. First we study their kernels. Paraproducts are not operators
of convolution type but are more general integral operators of the form discussed
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in Section 8.1. We show that the kernel of P, is a tempered distribution L; that
coincides with a standard kernel on R” x R"\ {(x,x) : x € R"}.

First we study the kernel of the operator f +— A;(b)S;_3(f) for any j € Z. We
have that

A0S 2N = [ Linf )y
where L; is the integrable function
Lj(x,y) = (b ¥-) (0)2V (2 (x—y)).
Next we can easily verify the following size and regularity estimates for L;:

21
C"HbHBMO(1+2j|x_y|)n+l’
2J(n+|o]+|B])
Cn7oc,l37N||b||BM0(l+2j|x_y|)n+l+N’

IN

|Lj(x,y)] (8.4.12)

0%9PL;(x,y)| < (8.4.13)

for all multi-indices & and 8 and all N > ||+ |B].
It follows from (8.4.12) that when x # y the series

Y Lj(x,y) (8.4.14)
JEZ

converges absolutely and is controlled in absolute value by

21 CullPl| 310
C,||b ) <
"H "BMOJE%(1+2./|X_y|)n+I — |x_y|n

Similarly, by taking N > || + | 3], it can be shown that the series

> 0%9PL;(x,y) (8.4.15)
jez

converges absolutely when x # y and is controlled in absolute value by

24 (n+lel+|B) C;;,a,ﬂHbHBMO
Cn,a,ﬁ,NHbHBMogi (1427 |x —y|)nt1+N = |x — y|nrlel+IB]

for all multi-indices o and .
The Schwartz kernel of P, is a distribution W;, on R?". It follows from the pre-
ceding discussion that the distribution W}, coincides with the function

Lb(xvy) = Z Lj(xvy)

JEZ

on R” x R"\ {(x,x) : x € R"}, and also that the function L, satisfies the estimates
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c b
|a;xa)ﬁLb(x7y)| < n,(x,ﬂ” ||BMO

< el (8.4.16)

away from the diagonal x = y.
We note that the transpose of the operator P, is formally given by the identity

Py(f) = 2. Sj-3(f4;(b)).

jez

As remarked in the previous section, the kernel of the operator P} is a distribution
W/ that coincides with the function

Ly (x,y) = Ly(y,x)

away from the diagonal of R, It is trivial to observe that L}, satisfies the same size
and regularity estimates (8.4.16) as L;. Moreover, it follows from Theorem 8.4.3
that the operator P; is bounded on L?(R") with norm at most a multiple of the BMO
norm of b.

We now turn to two important properties of paraproducts. In view of Definition
8.1.16, we have a meaning for P, (1) and P; (1), where P, is the paraproduct operator.
The first property we prove is that P,(1) = b. Observe that this statement is trivially
valid at a formal level, since S;(1) =1 for all j and ¥ ;A;(b) = b. The second
property is that P{(1) = 0. This is also trivially checked at a formal level, since
S;j—3(A;j(b)) = 0 for all j, as a Fourier transform calculation shows. We make both
of these statements precise in the following proposition.

Proposition 8.4.4. Given b € BMO(R"), let P, be the paraproduct operator defined
as in (8.4.6). Then the distributions P,(1) and P} (1) coincide with elements of BMO.
Precisely, we have

P(1)=b and  Pi(1)=0. (8.4.17)

Proof. Let ¢ be an element of %)(R"). Find a uniformly bounded sequence of
smooth functions with compact support {ny}%_, that converges to the function
1 as N — oo. Without loss of generality assume that all the functions 1y are equal
to 1 on the ball B(yg,3R), where B(yg,R) is a ball that contains the support of @. As
we observed in Remark 8.1.17, the definition of P, (1) is independent of the choice
of sequence 1My, so we have the following identity for all N > 1:

(P(1).0) = [ 3 A0)®)S;-2(m) () 9 dx
=/
(8.4.18)

+ | b oea a-monas

Since ¢ has mean value zero, we can subtract the constant Ly (yg,y) from Ly (x,y)
in the integral inside the square brackets in (8.4.18). Then we estimate the absolute
value of the double integral in (8.4.18) by
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[yo — x|
A I x)|dxdy,
\/‘},,y0‘23R\/“,67y0‘§R |y0_y|n+l| nN(y)H(p( )| y

which tends to zero as N — oo by the Lebesgue dominated convergence theorem.

It suffices to prove that the first integral in (8.4.18) tends to [p. b(x)®(x)dx as
N — oo. Let us make some preliminary observations. Since the Fourier transform of
the product A;(b)S;_3(nw) is supported in the annulus

{EeR": 22 <[] <2/, (8.4.19)

we may introduce a smooth and compactly supported function Z(é) such that for
all j € Z the function Z(27/&) is equal to 1 on the annulus (8.4.19) and vanishes
outside the annulus {& € R : 2/73 < || < 2/73}. Let us denote by Q; the operator
given by multiplication on the Fourier transform by the function Z (277&).

Note that S;(1) is well defined and equal to 1 for all j. This is because @ has
integral equal to 1. Also, the duality identity

[rSit@)1dx= [ gs(r)ax (8.4.20)

holds for all f € L' and g € L™. For ¢ in Zy(R") we have

/ D Aj(b)S;_3(ny) @dx

JEZL
= 2 Si3(ny) pdx (series converges in L? and (XS Lz)
jez Rn
- 2 R” j 3(nN)Qj( ) [Qj(¢)=g30nthe
JEZL
support of ((4;(b)S;3(ny)) "]
=% [ v sia(aee)ds (it
JEZL
= / ny z Si- 3 (go)) dx (series converges in L' and ny € L™).

JEZL

We now explain why the last series of the foregoing converges in L'. Since ¢ is in
Z0(R"), Exercise 8.4.1 gives that the series ¥,z Q;j(¢) converges in L!. Since S;
preserves L' and

sup ||Aj(b)HL°°
j

< Gal|Bl[ g0
by Exercise 8.4.2, it follows that the series ¥ jczS;-3(4;(0)Q;(¢)) also converges
inL'.

We now use the Lebesgue dominated convergence theorem to obtain that the
expression
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/R N ZSJ 3(4;(0)Q;(9)) dx

JjeZ

converges as N — oo to

/ > 83 Q0j(p)) dx

JEZL

=Y | S;-3(4;(6)0j(9))dx (series converges in L')
jez’'R"

-y / S;-3(1) A;(b) Qj(¢) dx (in view of (8.4.20))
jez’R"

=Y | Aj(b)Q;(¢)dx (since S;_3(1) =1)
iz R

=Y | Aj(b)pdx (Q/j(\(p):(ﬁonsupportAT\(b))
jez’R"

=Y (b,A;(9)) (duality)
jez

= (b, Aj(9)) (series converges in H', b € BMO)

JEZ
= <b, (p> (Exercise 8.4.1(a)).

Regarding the fact that the series ¥;A;(¢) converges in H !, we refer to Exercise
8.4.1. We now obtain that the first integral in (8.4.18) tends to (b, @) as N — co. We
have therefore proved that

(Py(1),0) = (b, 0)

for all ¢ in Zy(R"). In other words, we have now identified P,(1) as an element of
2, with the BMO function b.
For the transpose operator P} we observe that we have the identity

0)= [ 35} 5(4(6) ) () o)

B (8.4.21)
+/Rn/RnL?’("vY>(1—nN(y>> o(x)dydsx.

As before, we can use the Lebesgue dominated convergence theorem to show that
the double integral in (8.4.21) tends to zero. As for the first integral in (8.4.21), we
have the identity

/P}Z(nN)(de:/ Ny Py (@) dx.
R” R

Since ¢ is a multiple of an Z?-atom for H', Theorem 8.2.6 gives that P,(¢) is an L!
function. The Lebesgue dominated convergence theorem now implies that
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/nNP,, dx—>/ Py(o dx—/ )S;_3(p)dx

jEZ

as N — oo, The required conclusion would follow if we could prove that the function
P, (@) has integral zero. Since A;(b) and S;_3(¢) have disjoint Fourier transforms,
it follows that
[ 4(6)5,-a(p)dx =0

for all j in Z. But the series

>, Ai(b)Sj-3(9) (8.4.22)

J€Z
defining P,(¢) converges in L?> and not necessarily in L', and for this reason we
need to justify the interchange of the following integrals:

/ o)dx=3 (9 dx. (8.4.23)

jEZ JjeZ Rn

To complete the proof, it suffices to show that when ¢ is in Z(R"), the series in
(8.4.22) converges in L'. To prove this, pick a ball B(yo, R) that contains the support
of @. The series in (8.4.22) converges in L?(3B) and hence converges in L' (3B). It
remains to prove that it converges in L' ((3B)). For a fixed x € (3B)¢ and a finite
subset F of Z, we have

/ Li(x,y)o(y)dy = Z/ Li(x,y0)) @ (y)dy. (8.4.24)

JEF JEF

Using estimates (8.4.13), we obtain that the expression in (8.4.24) is controlled by
a constant multiple of

/ |y — o[22/

L
dy < — dy.
e o0y <e o vl o0y

jEF

Integrating this estimate with respect to x € (3B)“, we obtain that

Z}F HAJ(b)Sj%(‘P)HLI((33)C) <Gillolly <
je

for all finite subsets F of Z. This proves that the series in (8.4.22) converges in L!.
We have now proved that (P;(1),¢) = 0 for all ¢ € Z,(R"). This shows that the

distribution Pj(1) is a constant function, which is of course identified with zero if

considered as an element of BMO. O

Remark 8.4.5. The boundedness of P, on L? is a consequence of Theorem 8.3.3,
since hypothesis (iv) is satisfied. Indeed, P,(1) = b, P;(1) = 0 are both BMO func-
tions, and see Exercise 8.4.4 for a sketch of a proof of the estimate HPbHWB <

Cu||B|| 50 This provides another proof of the fact that ||Py||,> ;> < Gul|b| gys0-



222 8 Singular Integrals of Nonconvolution Type

bypassing Theorem 8.3.3. We use this result to obtain a different proof of the main
direction in the 7'(1) theorem in the next section.

Exercises

8.4.1. Let f € .(R") have mean value zero, and consider the series

> Ai(f)-

jez

(a) Show that this series converges to f absolutely everywhere.
(b) Show that this series convergesin L!.
(b) Show that this series converges in H I
[Hint: To obtain convergence in L' for j > 0 use the estimate ||A i f)|| o <

27 [on Jrn 27" (279)|1279] | (V) (x — Oy)| dydx for some 6 in [0, 1] and consider
the cases |x| > 2|y| and |x| < 2|y|. When j < 0 use the simple identity [« ¥, ; =

(foj *¥),-; and reverse the roles of f and V. To show convergence in H', use that
14,(0) |1 ~ || (Zk44;(9)[2)2 | .1 and that only at most three terms in the square
function are nonzero.]

8.4.2. Without appealing to the H'-BMO duality theorem, prove that there is a di-
mensional constant C, such that for all > € BMO(R") we have

SUP||Aj(b)"Lw < C”HbHBMO'
JEZL

8.4.3. (a) Show that for all 1 < p,q,r < e with 11, + ; = i there is a constant Cpg,
such that for all Schwartz functions f,g on R"” we have

1P ()] < Cparll |

(b) Obtain the same conclusion for the bilinear operator

Po(f) =Y > Aj(g) Ac(f).

J k<)

L gHL‘i'

[Hint: Part (a): Estimate the L” norm using duality. Part (b): Use part (a).|

8.4.4. (a) Let f be a normalized bump (see Definition 8.3.1). Prove that
14;(fr)] = < C(n,¥)min (277R=("F1) 2n7)

for all R > 0. Then interpolate between L! and L* to obtain

14;(fe) |2 < COn,¥ymin (272875 2%)
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(b) Observe that the same result is valid for the operators Q; as defined in Proposi-
tion 8.4.4. Conclude that for some constant C,, we have

3 |0i(gr)|| 2 <CuR 2.
JEZ

(c) Show that there is a constant C,, such that for all normalized bumps f and g we
have

[(Po(T0(f2)), T (gR))| < CuR ||| pysor-

[Hint: Part (a): Use the cancellation of the functions f and V. Part (c): Write
(5 (), 70(e0) =3 [ 204500, el

Apply the Cauchy—Schwarz inequality, and use the boundedness of S;_3 on L2,
Exercise 8.4.2, and part (b).]

8.4.5. (Continuous paraproducts) (a) Let @ and ¥ be Schwartz functions on R”
with [pe @(x)dx =1 and [z, ¥(x)dx = 0. For t > 0 define operators P, (f) = @, * f
and Q,(f) =¥+ f. Let b € BMO(R") and f € L*(R"). Show that the limit

dt
t

N
lim Or (Qt(b)Pt(f))

et
converges in L?(R") and defines an operator IT,(f) that satisfies

1361l 212 < Callbllparo

for some dimensional constant C,,.
(b) Under the additional assumption that

lim / Q2 dl

SHO

identify IT,(1) and I, (D).
[Hint: Suitably adapt the proofs of Theorem 8.4.3 and Proposition 8.4.4.]

8.5 An Almost Orthogonality Lemma and Applications

In this section we discuss an important lemma regarding orthogonality of operators
and some of its applications.

It is often the case that a linear operator 7 is given as an infinite sum of other lin-
ear operators 7; such that the 7;’s are uniformly bounded on L?. This sole condition
is not enough to imply that the sum of the T}’s is also L? bounded, although this is
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often the case. Let us consider, for instance, the linear operators {7} jcz given by
convolution with the smooth functions ¢*™/ on the circle T'. Each T; can be written
as Ti(f) = (fos i)Y, where f is the sequence of Fourier coefficients of f; here 0;
is the infinite sequence consisting of zeros everywhere except at the jth entry, in
which it has 1, and ® denotes term-by-term multiplication of infinite sequences. It
follows that each operator 7} is bounded on L?(T") with norm 1. Moreover, the sum
of the T;’s is the identity operator, which is also L? bounded with norm 1.

It is apparent from the preceding discussion that the crucial property of the 7;’s
that makes their sum bounded is their orthogonality. In the preceding example we
have T;T; = 0 unless j = k. It turns out that this orthogonality condition is a bit too
strong, and it can be weakened significantly.

8.5.1 The Cotlar—-Knapp—Stein Almost Orthogonality Lemma

The next result provides a sufficient orthogonality criterion for boundedness of sums
of linear operators on a Hilbert space.

Lemma 8.5.1. Let {T}} jcz be a family of operators mapping a Hilbert space H to
itself. Assume that there is a a function y: Z — R such that

HT/'*HHHHH"_HTJ'TI(HHHH v(j—k) 8.5.1)

forall j,kin Z. Suppose that

A=Y /1)) <

JEZ
Then the following three conclusions are valid:

(i) For all finite subsets A of Z. we have

;ZIITJ-(x)Hi < A7l

(iii) For all x € H the sequence Y, <y Tj(x) converges to some T (x) as N — o in
the norm topology of H. The linear operator T defined in this way is bounded
from H to H with norm

3 7 H <A
jE/\ H—H

(ii) For all x € H we have

17l <4

Proof. Asusual we denote by S* the adjoint of a linear operator S. It is a simple fact
that any bounded linear operator S : H — H satisfies

=||s5* (8.5.2)

HSHH—>H HH—>H'
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See Exercise 8.5.1. By taking j = k in (8.5.1) and using (8.5.2), we obtain

Tl ey < V/7(0) (8.5.3)

for all j € Z. It also follows from (8.5.2) that if an operator S is self-adjoint, then

HSHHHH = ||SZHHHH, and more generally,

IS1[zz—r = 15"l (8.54)
for m that are powers of 2. Now observe that the linear operator
( 2 T.i) ( 2 Tj*)
JEA JEA
is self-adjoint. Applying (8.5.2) and (8.5.4) to this operator, we obtain
2 m
|20l = CED(Em) e @59
jea H—H jeA jeA ’ H—H

where m is a power of 2. We now expand the mth power of the expression in (8.5.5).
So we write the right side of the identity in (8.5.5) as

1
m

, (8.5.6)
H—H

* *
H Z Ty T;, - Ty, 15,
J1s s jom€A

which is controlled by

( z H 1T Ty ]2m||H~>H) . (8.5.7)

J1s s jam€A

We estimate the expression inside the sum in (8.5.7) in two different ways. First we
group ji with jo, j3 with ja, ..., jo,—1 With jp,, and we apply (8.5.3) and (8.5.1) to
control this expression by

YUt = j2)Y(s = ja) -+ Y(jam—1 — Jom)-
Grouping j, with jz, js with js, ..., jou—2 with jo,,—1 and leaving j; and j,,, alone,

we also control the expression inside the sum in (8.5.7) by

VYO)Y(j2 = j3)Y(ja = js) -+ Y(jam—2 = jam—1)v/7(0)
Taking the geometric mean of these two estimates, we obtain the following bound

for (8.5.7):

( S VO = )V Y= 53) Yot — sz)m.
Jis

< J2mEA
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Summing first over jj, then over j,, and finally over j,,,—1, we obtain the estimate

1

roa (3 1)

Jom€A

for (8.5.7). Using (8.5.5), we conclude that

IS 717 < 7(0)mA ™ [A]m,
JEA

and letting m — oo, we obtain conclusion (i) of the proposition.

To prove (ii) we use the Rademacher functions r; of Appendix C.1. These func-
tions are defined for nonnegative integers j, but we can reindex them so that the
subscript j runs through the integers. The fundamental property of these functions
is their orthogonality, that is, jol ri(@)ri(@)dw = 0 when j # k. Using the fact that
the norm H . H  comes from an inner product, for every finite subset A of Z and x in
H we obtain

1 2
f | Zreme], e
=2 ||T./'(JC)Hi+/O1 Y, ri(@)n(0)(Ti(x), L) do  (g5s3)
e M
AL
JEA

For any fixed @ € [0,1] we now use conclusion (i) of the proposition for the oper-
ators rj(@)T;, which also satisfy assumption (8.5.1), since rj(@) = £1. We obtain
that

2
3 @), <47
JjE

which, combined with (8.5.8), gives conclusion (ii).
We now prove (iii). First we show that given x € H the sequence

N

{ 2 pw},
is Cauchy in H. Suppose that this is not the case. This means that there is some
€ > 0 and a subsequence of integers 1 < N; < N, < N3 < --- such that

1T)|, > e. (8.5.9)
where we set

L= T

N <|jI<Ngt1
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For any fixed o € [0, 1], apply conclusion (i) to the operators S; = ry(®)T; whenever
Ni < |j] < Ngy1, since these operators clearly satisfy hypothesis (8.5.1). Taking
Ni <|j| € Nk41, we obtain

|Zn@ 3 5], | S n@ie], <ald,

Np<|jI<Niy1

Squaring and integrating this inequality with respect to @ in [0, 1], and using (8.5.8)
with T} in the place of T} and {1,2,...,K} in the place of A, we obtain

K ~
> 11700} 77 < A%l
k=1

But this clearly contradicts (8.5.9) as K — oo.

We conclude that every sequence {21}’:_1\, Ti(x)} y is Cauchy in H and thus it
converges to Tx for some linear operator 7. In view of conclusion (i), it follows that
T is a bounded operator on H with norm at most A. g

Remark 8.5.2. At first sight, it appears strange that the norm of the operator 7 is
independent of the norm of every piece 7; and depends only on the quantity A in
(8.5.1). But as observed in the proof, if we take j = k in (8.5.1), we obtain

T3l = T |y < 7(0) < A%

thus the norm of each individual 7} is also controlled by the constant A.

We also note that there wasn’t anything special about the role of the index set Z
in Lemma 8.5.1. Indeed, the set Z can be replaced by any countable group, such as
ZF¥ for some k. For instance, see Theorem 8.5.7, in which the index set is Z2". See
also Exercises 8.5.7 and 8.5.8, in which versions of Lemma 8.5.1 are given with no
group structure on the set of indices.

8.5.2 An Application

We now discuss an application of the almost orthogonality lemma just proved con-
cerning sums of nonconvolution operators on L*(R"). We begin with the following
version of Theorem 8.3.3, in which it is assumed that 7(1) = T*(1) = 0.

Proposition 8.5.3. Suppose that K(x,y) are functions on R" x R" indexed by j € Z

that satisfy
A2M
Ki(x,y)| < . , 8.5.10
K;(x,y) — Kj(x,)')| < A2Y2" |y —y/|7, (8.5.11)
J J

IK(x,y) — K;j(x',y)] §A27’-"2"j|)c—)c’|7’7 (8.5.12)
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for some 0 < A,y,6 < o and all x,y,x',y' € R". Suppose also that

/I{Kj(z,y)dz:O:/RK,-(x,z)dz, (8.5.13)

forallx,y € R" and all j € Z. For j € Z define integral operators
T = [, K 0)dy

for f € L>(R"). Then the series

2 Ti(0)

JEZL
converges in L* to some T (f) for all f € L>(R"), and the linear operator T defined
in this way is L* bounded.

Proof. 1t is a consequence of (8.5.10) that the kernels K; are in L' (dy) uniformly
in x € R" and j € Z and hence the operators T; map L?(R") to L?(R") uniformly
in j. Our goal is to show that the sum of the 7;’s is also bounded on L*(R"). We
achieve this using the orthogonality considerations of Lemma 8.5.1. To be able to
use Lemma 8.5.1, we need to prove (8.5.1). Indeed, we show that for all k, j € Z we
have

T7T || o e < CA22™ 4uls min(r )ik (8.5.14)
T Ti| oo < CAZ2™ 4als minrOH] (8.5.15)

for some 0 < C = C, 5 < e. We prove only (8.5.15), since the proof of (8.5.14)
is similar. In fact, since the kernels of T; and Tj* satisfy similar size, regularity,
and cancellation estimates, (8.5.15) is directly obtained from (8.5.14) when 7} are
replaced by 77"

It suffices to prove (8.5.15) under the extra assumption that k£ < j. Once (8.5.15)
is established under this assumption, taking j < k yields

||Tj*Tk||L2—>L2 = H(Tk*Tj)*HLL.LZ = HTk*TJ'HLZ_.L2 = CAZT%min(%S)‘jik"

thus proving (8.5.15) also under the assumption j < k.
We therefore take k£ < j in the proof of (8.5.15). Note that the kernel of 7}* Ty is

Li(x) = [ Kj(en)Kilzy)dz
We prove that

CA22~ 4 S5 min(.8) k=i ’ (8.5.16)

IN

sup | |Lgj(x,y)|dy
xeR" JR"

CA22~ 4 nls min(v.8)k—jl (8.5.17)

IN

sup |Lj(x,y)|dx
yeR” R
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Once (8.5.16) and (8.5.17) are established, (8.5.15) follows directly from the classi-
cal Schur lemma in Appendix I.1.
We need to use the following estimate, valid for k < j:

njmi k
/ 20min(l, 2D)T) 4 ¢ s dmintra) 0 (8.5.18)
v (1 2[uf)+d

Indeed, to prove (8.5.18), we observe that by changing variables we may assume
that j = 0 and k < 0. Taking r = k— j < 0, we establish (8.5.18) as follows:

min(1, (2"u])) .~ _ min (1, (2 ]u[)2™in(%:5))

u du
R (14 [uf)rto TR (1+ [u[)+9
r 'min(}/ﬁ)
[ @i, / L
- (1+|u|)”+‘S (1+ [uf)+9
lu|<2—r [u]>2~
< 22m1n(%8)/ du+ /
- n+5
<1+|u| e
S Cn,5 [22 mln(% ) 28r]

IN

1 .
G522 min(y,8)[r|

We now obtain estimates for L in the case k < j. Using (8.5.13), we write

Lo = | [, Kelens (et

} /Rn [Kk(z,y) - Kk(x,y)]Kj(z,x) dz

2 J
(1 427z —x|)r+8

IN

A2/ 2" min(1, (2Fx — z|)?)
< CA2 ko= min(1,8)(j—k)

using estimate (8.5.18). Combining this estimate with

L; X, K; Z,X K Z, dZ )
Tk Y R" J k Y ( 2k|x y|)n 8

which follows from (8.5.10) and the result in Appendix K.1 (since k < j), yields

52 . ) 2kn
ILj(x6,3)] < Cpy6 A2 2= uls min(1,8)(j—k) .
(14 2¥x —y|)" 2

which easily implies (8.5.16) and (8.5.17). This concludes the proof of the
proposition. 0
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8.5.3 Almost Orthogonality and the T (1) Theorem

We now give an important application of the proposition just proved. We re-prove
the difficult direction of the T'(1) theorem proved in Section 8.3. We have the fol-
lowing:

Theorem 8.5.4. Let K be in SK(8,A) and let T be a continuous linear operator
from & (R") to /' (R") associated with K. Assume that

HT(I)HBM0+ HTt(I)HBM0+ HTHWB =By <o

Then T extends to bounded linear operator on L*(R™) with norm at most a constant
multiple of A+ By.

Proof. Consider the paraproduct operators Pr () and Pr:(1) introduced in the previ-
ous section. Then, as we showed in Proposition 8.4.4, we have

Pray(1) =T(1), (Pray)'(1) =0,
Priy(1) = T'(1), (Pre(iy) (1) = 0.

Let us define an operator

L=T —Pruy— (Ppr(yy)
Using Proposition 8.4.4, we obtain that
L(1)=L'(1)=0.

In view of (8.4.16), we have that L is an operator whose kernel satisfies the estimates
(8.1.1),(8.1.2), and (8.1.3) with constants controlled by a dimensional constant mul-
tiple of

A+ T W) gaso + 1T D)o -
Both of these numbers are controlled by A + B4. We also have

Lt

IN

C”(||THWB+ HPT(I)HLZHLz + ||(PTt(1))t||L2~>L2)
Ca([IT [l + 1T W ago + [T ()| o)
< Cn(A+B4)7

IN

which is a very useful fact.

Next we introduce operators A; and S;; one should be cautious as these are not
the operators A; and S; introduced in Section 8.4 but rather discrete analogues of
those introduced in the proof of Theorem 8.3.3. We pick a smooth radial real-valued
function @ with compact support contained in the unit ball B(0, %) that satisfies
Jre @(x)dx =1 and we define

W(x) = D(x) —2"D(3). (8.5.19)
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Notice that ¥ has mean value zero. We define
D, ;(x) =2 D (2/x) and W, j(x) =2 (27x)

and we observe that both @ and ¥ are supported in B(0,1) and are multiples of
normalized bumps. We then define A; to be the operator given by convolution with
the function ¥,-; and §; the operator given by convolution with the function @,-;.
In view of identity (8.5.19) we have that A; = §; —§;_;. Notice that

S;LS;=8; 1LS; 1 +A;LS; +S; 1LA;,

which implies that for all integers N < M we have

M
SuLSy—Sy—1LSy—1 = Y, (S;LS; —S;j—1LSj-1)
Jj=N
” ” (8.5.20)
= Y ALS;— Y S;_1LA;.
Jj=N Jj=N

Until the end of the proof we fix a Schwartz function f whose Fourier trans-
form vanishes in a neighborhood of the origin; such functions are dense in Lz; see
Exercise 5.2.9. We would like to use Proposition 8.5.3 to conclude that

sup sup ||SyLSw (f)—Sn—1LSn—1(f)]| ;2 < Cu(A2+Ba) || f]| 2 (8.5.21)
MEZN<M

and that Sy LSy (f)—Sy_1LSy_1(f) — L(f) in L? as M — o0 and N — —oo. Once

these statements are proved, we deduce that L(f) = L(f). To see this, it suffices to
prove that Sy LSy (f) — Sy_1LSy_1(f) converges to L(f) weakly in L?. Indeed, let
g be another Schwartz function. Then

(SMLSM(f)~Sn—1LSn—1(f),g) — (L(f).&)
= (SuLSu(f) = L(f):&) — (Snv—1LSn-1(f),8)- (8.5.22)

We first prove that the first term in (8.5.22) tends to zero as M — oo. Indeed,

(SMLSu(f) —L(f).8) = (LSm(f).Smg) — (L(f),8)
= (L(Sm(f) = £):Sm()) + (L(f),Sm(g) — &)

and both terms converge to zero, since Sy(f) — f — 0 and Sy (g) — g tend to zero
in ., L is continuous from . to .¥’, and all Schwartz seminorms of Sy(g) are
bounded uniformly in M; see also Exercise 8.3.1.

The second term in (8.5.22) is (Sy—1LSy—1(f).8) = (LSny—1(f),Sn—1(g) ). Since
fis supported away from the origin, Sy(f) — 0 in . as N — —oo; see Exer-
cise 8.3.2. By the continuity of L, LSy_;(f) — 0 in .%’, and since all Schwartz
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seminorms of Sy_1(g) are bounded uniformly in N, we conclude that the term
(LSn—1(f),Sn—1(g)) tends to zero as N — —co. We thus deduce that L(f) = L(f).
It remains to prove (8.5.21). We now define

Lj = AjLSj and L; = Sj_lLAj

for j € Z. In view of identity (2.3.21) and the convergence of the Riemann sums
to the integral defining f * @,-; in the topology of .# (see the proof of Theorem
2.3.20), we have

(L @y ) ) () = [ (L2 (@s). 75 (H5) S ()

n

where 77(g)(u) = g(u—y). Thus the kernel K; of L; is
Kj(x,y) = (L(7'(Pr-1)), T"(¥5-i))

and the kernel K’ j’ of L;. is

Kj(x,y) = (L(' (#5-)), T (P 1)) -
We plan to prove that
K (e, 3)|+277| VK (x,y)] < Ca(A+Ba)2" (1427 x—y)) ™%, (85.23)

noting that an analogous estimate holds for K; (x,y). Once (8.5.23) is established,
Exercise 8.5.2 and the conditions
Lj(1)=A;LS;(1) = A;L(1) =0, Lj(1) =S;-1L4;(1) =0,

yield the hypotheses of Proposition 8.5.3. Recalling (8.5.20), the conclusion of this
proposition yields (8.5.21).

To prove (8.5.23) we quickly repeat the corresponding argument from the proof
of Theorem 8.3.3. We consider the following two cases: If [x —y| <5- 2-J. then the
weak boundedness property gives

(L2 (@), T (H-))] = [T (0 (@)5), T (%)
CollE a2

IN

since ¥ and 7' =9 (@), whose support is contained in B(0, ) +B(0,5) C B(0, 10),
are multiples of normalized bumps. This proves the first of the two estimates in
(8.5.23) when |x —y| <5-27/.

We now turn to the case |x —y| > 5-27/. Then the functions 7%(®,-,) and
(¥, ;) have disjoint supports, and so we have the integral representation

K;(x,y) :/n - Dy j(v—y)K(u,v)¥p-j(u—x)dudv.
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Using that ¥ has mean value zero, we can write the previous expression as
/ @, ;(v—y)(K(u,v) — K(x,v)) ¥y (u—x)dudv.
n R"l

We observe that |u —x| < 27/ and |v —y| < 27/ in the preceding integral. Since
|x—y| >5-27/, this makes |u —v| > |[x—y| —2-27/ > 227/, which implies that
|u— x| < ) |u—v|. Using the regularity condition (8.1.2), we deduce

lx — ul® 2-J8

< Cn’(gA |x—y|”+6 .

K(u,v) —K(x,v)| <A <

Inserting this estimate in the preceding double integral, we obtain the first estimate
in (8.5.23). The second estimate in (8.5.23) is proved similarly. O

8.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 8.5.1 regarding pseudodiffer-
ential operators. We first introduce pseudodifferential operators.

Definition 8.5.5. Letm € Rand 0 < p, 6 < 1. A € function o(x,£) on R” x R" is
called a symbol of class S’ s if for all multi-indices o and 3 there is a constant By, g
P, )
such that
9792 (3. )| < Ba(1+[E))" POl (8.5.24)

m .
ForoeS§ 0.5 the linear operator

To(N) = [ ox.E)F @) g

n

initially defined for f in . (R") is called a pseudodifferential operator with symbol

o(x,8).

Example 8.5.6. The paraproduct P, introduced in the previous section is a pseudo-
differential operator with symbol

op(x,E) = Y, A;(b)(x)P(27E). (8.5.25)

JEZL

It is not hard to see that the symbol o}, satisfies
1020F 0y (x,&)| < B p|E[ 1P+ (8.5.26)

for all multi-indices o and f3. Indeed, every differentiation in x produces a factor

of 2/, while every differentiation in & produces a factor of 27/, But since ¥ is
supported in ) -2/ < |§| < 2-2/, it follows that |§| ~ 2/, which yields (8.5.26).



234 8 Singular Integrals of Nonconvolution Type

It follows that o), is not in any of the classes S”)”‘ 5 introduced in Definition 8.5.5.

However, if we restrict the indices of summation in (8.5.25) to j > 0, then || &~
1+ |&| and we obtain a symbol of class S{ . Note that not all symbols in S? | give

rise to bounded operators on L. See Exercise 8.5.6.
An example of a symbol in S, is (1 +|&?) 2(m+i) when m,t € R.

We do not plan to embark on a systematic study of pseudodifferential operators
here, but we would like to study the L? boundedness of symbols of class 5870'

Theorem 8.5.7. Suppose that a symbol o belongs to the class 58‘0. Then the pseu-
dodifferential operator Ty with symbol o, initially defined on .#(R"), has a bounded
extension on L*(R").

Proof. In view of Plancherel’s theorem, it suffices to obtain the L? boundedness of
the linear operator

To(F)@) = [ ol E)f(E)e™ e, (8527)

We fix a nonnegative smooth function ¢ (&) supported in a small multiple of the unit
cube Qp = [0,1]" (say in [—é, 190]") that satisfies

Y o(x—j)=1, xeR" (8.5.28)

JEZ"

For j,k € Z" we define symbols

Ojk(x,6) = @(x—j)o(x,§)p(§ —k)

and corresponding operators 7j; given by (8.5.27) in which o(x,&) is replaced by
0;k(x,&). Using (8.5.28), we obtain that

To= Y Tk,
jkezr

where the double sum is easily shown to converge in the topology of . (R"). Our
goal is to show that for all N € Z* we have

5T w2y S OV L=+ k=K ]) 72N, (8.5.29)

T35 a2 < O (11 = S+ k=K7Y, (8.5.30)

where Cy depends on N and 7 but is independent of j, j/, k, k.
We note that

T Tpp(f)(xX) = | Kjrjwxy)f(y)dy,
R”

where
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K jr e (x,y) = /R 0 1(2,%) 0 (2,y)e*™ 09 dz. (8.5.31)
We integrate by parts in (8.5.31) using the identity

(I _ AZ)N (ezmz-(yfx) )

ezmz-(yfx) _
(1+4m2x—y2)N ~’

and we obtain the pointwise estimate

P(x—k)o(y—K) N , ’
I-A —Jj)o(z,x)o(z, —

(1 —|—47r2|x—y|2)N ( Z) ((P(Z ]) (Z )C) (Z y)(P(Z J ))‘

for the integrand in (8.5.31). The support property of ¢ forces |j— j'| < ¢, for some

dimensional constant ¢,; indeed, ¢, = 2+/n suffices. Moreover, all derivatives of ¢

and ¢ are controlled by constants, and ¢ is supported in a cube of finite measure.

We also have 1 + |x—y| ~ 1+ |k — K/|. Tt follows that

Cvo(x—k)o(y—K)
Kk jr ke (x,9)] < (1+ |k —K[)2N
0 otherwise.

when |j — j/| < cn,

We can rewrite the preceding estimates in a more compact (and symmetric) form as

Cun@(x—k)o(y—K)

Ko (x, < .. )
| ik, j ,k( )l (1+|]—]’|+|k—k/|)2N

from which we easily obtain that

CnN
su K i (x,y)|dy < o , 8.5.32
xeRR’ R”| Jok,J -,k( y)| Yy (1+|j—j/|+|k—k/|)2N ( )
. Cn,N
Sup | K. jr e (x,3) [dx < ' (8.5.33)

yeR? (L [j =+ [k=K])2N

Using the classical Schur lemma in Appendix I.1, we obtain that
% Cn,N
HTi,kTJ’7k’HL2—»L2 S (14 |j— j/| + [k—K|)2N

which proves (8.5.29). Since p = & = 0, the roles of the variables x and & are sym-
metric, and (8.5.30) can be proved in exactly the same way as (8.5.29). The almost
orthogonality Lemma 8.5.1 now applies, since

1 1 1

> <>y < oo

sz (LT KDN = G0 &G (1414 (1+ k)2

for N > 2n+ 2, and the boundedness of TG on L? follows. O
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Remark 8.5.8. The reader may want to check that the argument in Theorem 8.5.7
is also valid for symbols of the class Sg’p whenever 0 < p < 1.

Exercises

8.5.1. Prove that any bounded linear operator S : H — H satisfies

81— = 155l

8.5.2. Show that if a family of kernels K satisfy (8.5.10) and

A2(n+1)j

VxK' ) VVK ? S j
VK (x,y) [+ VK (x, )| (1427]x —y[)n+o

for all x,y € R", then conditions (8.5.11) and (8.5.12) hold with y = 1.

8.5.3. Prove the boundedness of the Hilbert transform using Lemma 8.5.1 and with-
out using the Fourier transform.

[Hint: Pick a smooth function 1 supported in [1/2,2] such that ¥ ez n(2/x) = 1
for x # 0 and set K (x) = x~'1(277|x|) and H;(f) = f * K;. Note that H; = —H. Es-
timate ||HeHj |2 2 by ||Ki# K|, < ||Ki* K|, |supp (K % K;)|. When j < k, use
the mean value property of K and that || K |,.. <2 to obtain that || Ky + K |,.. <
C272%J._ Conclude that || HiHj|,,_,» < C27 VK ]

8.5.4. For a symbol o(x, &) in S(l),O’ let k(x,z) denote the inverse Fourier transform
(evaluated at z) of the function o (x, -) with x fixed. Show that for all x € R”, the
distribution k(x, -) coincides with a smooth function away from the origin in R”
that satisfies the estimates

|07 0P k(x,2)| < Co 1l 1P,

and conclude that the kernels K (x,y) = k(x,x —y) are well defined and smooth func-
tions away from the diagonal in R?" that belong to SK(1,A) for some A > 0. Con-
clude that pseudodifferential operators with symbols in S?‘O are associated with stan-
dard kernels. '

[Hint: Consider the distribution (d7o(x, -))Y = (—2miz)?k(x, -). Since ago(x,g)
is integrable in & when |y| > n+ 1, it follows that k(x, -) coincides with a smooth
function on R"\ {0}. Next, set 0;(x,&) = o(x, 5)@(2’-’&), where W is as in Section
8.4 and k; the inverse Fourier transform of o in z. For |y| = M use that

(~2mie) 0ol ky(x,2) = [ 91 ((2miE)P a0 (x.£))22 < d

to obtain |8x“8?kj(x,z)| < By 0,522/ (27nz[) ™™ and sum over j € Z.]
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8.5.5. Prove that pseudodifferential operators with symbols in S(l) o that have com-
pact support in x are elements of CZO(1,A, B) for some A, B > 0.
[Hint: Write

a0 = [, ( [, Sl 87@0 g e da

where G(a, ) denotes the Fourier transform of o(x, &) in the variable x. Use inte-
gration by parts to obtain supg |6(a,&)| < Cn(1+ la])~N and pass the L? norm in-
side the integral in a to obtain the required conclusion using the translation-invariant
case. |

8.5.6. Let 7)(&) be a smooth bump on R that is supported in 272 < €] < 22 and is
equal to 1 on 275 < €] < 24, Let

o(xg) =Y e tE).
k=1
Show that ¢ is an element of S(l) , on the line but the corresponding pseudodifferen-

tial operator Ty is not L bounded.
[Hint: To see the latter statement, consider the sequence of functions fy(x) =

P 1 22t *h(x), where h(x) is a Schwartz function whose Fourier transform
is supported in the set || < }. Show that ||fNHL2 < C||h||L2 but ||To’(fN)||L2 >
clogNHhHL2 for some positive constants c, C.]

8.5.7. Prove conclusions (i) and (ii) of Lemma 8.5.1 if hypothesis (8.5.1) is replaced
by
HTJ'*TI‘HHHH + ||T.ka*HHM < F(jak)v

where I' is a nonnegative function on Z X Z such that

sup Y VT (k) =A< oo.
I kez

8.5.8. Let {T; },cr+ be a family of operators mapping a Hilbert space H to itself.
Assume that there is a function y: Rt x R™ — R U {0} satisfying

y—sup/ \/yts P <o
>0 s

such that
1T Tl + BT |y < 7(209)

for all 7,5 in R™. [An example of a function with A, < e is y(z,s) = min (?, ’?)8 for
some £ > 0.] Then prove that for all 0 < € < N we have

dt H

<A,.
H—H 4
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8.6 The Cauchy Integral of Calderon and the 7(») Theorem

The Cauchy integral is almost as old as complex analysis itself. In the classical
theory of complex analysis, if I" is a curve in C and f is a function on the curve, the

Cauchy integral of f is given by
Lo &)
dg.
2mi /r -z 4

One situation in which this operator appears is the following: If I" is a closed simple
curve (i.e., a Jordan curve), Q. is the interior connected component of C\ I", Q_
is the exterior connected component of C\ I', and f is a smooth complex function
on I', is it possible to find analytic functions F; on €2 and F_ on Q_, respectively,
that have continuous extensions on I" such that their difference is equal to the given
f on I'? It turns out that a solution of this problem is given by

= [ 1%t wea,
nd
' F_(w)= ! /f(C) g, weQ
- 2niJr E—w 77 o

We are would like to study the case in which the Jordan curve I" passes through
infinity, in particular, when it is the graph of a Lipschitz function on R. In this case
we compute the boundary limits of . and F_ and we see that they give rise to a
very interesting operator on the curve I". To fix notation we let

A: R—R

be a Lipschitz function. This means that there is a constant L > 0 such that for all
x,y € Rwe have |A(x) —A(y)| < L|x—y|. We define a curve

y: R—C

by setting
Y(x) = x+iA(x)

and we denote by
I'={y(x): xeR} (8.6.1)

the graph of y. Given a smooth function f on I" we set
Lo f©)
F(w) = r. .6.2
(w) zm/rc_wdg, weC\ (8.6.2)

We now show that for z € I', both F(z+i6) and F(z—i6) have limits as 0 | 0,
and these limits give rise to an operator on the curve I" that we would like to study.
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8.6.1 Introduction of the Cauchy Integral Operator along a
Lipschitz Curve

For a smooth function f on the curve I and z € I" we define the Cauchy integral of
fatzas

_ o | f(6)
Cr(f)(z) = slg(l)l+ T /1_ C—de’ (8.6.3)
€
[Re{—Rez|>¢e

assuming that f({) has some decay as |{| — oo. The latter assumption makes the
integral in (8.6.3) converge when |[Re { —Rez| > 1. The fact that the limit in (8.6.3)
exists as € — O for almost all z € I' is shown in the next proposition.

Proposition 8.6.1. Let I be as in (8.6.1). Let f({) be a smooth function on T" that
has decay as || — oo. Given f, we define a function F as in (8.6.2) related to f.
Then the limit in (8.6.3) exists as € — 0 for almost all z € I" and gives rise to a well
defined operator € (f) acting on such functions f. Moreover, for almost all z € T’
we have that

1 1

imF(z+i0) =, €r(f)@) =, f(), (8.6.4)
1 1

ISi?&F(z—iS) =, Cr(f)(z)+ 2f(z). (8.6.5)

Proof. We show first that the limitin (8.6.3) existsas € — 0. Forze I'and0 < e < 1
we write

1 / f(&ag 1 / f(&)dg

i {—z i -z
fer Ler
[Re{—Rez|>¢e [Re{—Rez|>1
1 (f(8) = f(2))d¢
t o / {—z (8.6.6)
ter
e<|Re{—Rez|<1
f(2) d¢
R / -z’
ger

e<|Re{—Rez|<1

By the smoothness of f, the middle term of the sum in (8.6.6) has a limit as € — 0.
We therefore study the third (last) term of this sum.

We consider two branches of the complex logarithm: first log,,,.,.(z) defined for
zin C\ {0} minus the negative imaginary axis normalized so that log,,,,,(1) = 0;
this logarithm satisfies log,,, .., (i) = 7 and 10g,per(—1) = mi. Second, log,,,,,,(2)
defined for z in C\ {0} minus the positive imaginary axis normalized so that
10g),,er (1) = 0; this logarithm satisfies 10g;,,,..(—i) = — 5 and log;,,,.,(—1) = —i.
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Let t=Rezandt =Re(; then z = y(7) = t+iA(7) and § = y(¢). The function
A is Lipschitz and thus differentiable almost everywhere; consequently, the function
y(t) = T+IiA(7) is differentiable a.e. in T € R. Moreover, ¥ (1) = 1 +iA’(1) #0
whenever 7 is differentiable at 7. Fix a T = Rez at which v is differentiable.

We rewrite the last term in the sum in (8.6.6) as

! V(t) —€ )/(l‘)
/e Yt +1)—7(7) dr+/_1 y(t+ 1) — (1) dr. (8.6.7)

The curve t — y(t+ 1) — y(1) =t +i(A(t + ) — A(7)) lies in the complex plane mi-
nus a small angle centered at the origin that does not contain the negative imaginary
axis. Using the upper branch of the logarithm, we evaluate (8.6.7) as

ffé) {10g,,ppe, (Y(1+7) = Y(7)) —10g,per (¥(+T) — 1(7))

- 10gupper (}/(_1 + T) - Y(T)) + 10gupper (}/(_8 + T) - }/(T)):|
= logupper (Y(T - 8) - Y(T)) - logupper (}/(8 + T) - ’}/(T))

Y(z—&)— (1)
= %uper e 1) y(e)
€

(1)

This expression converges to log,, ., (— y,(r)) =108, per(—1) = i as € — 0. Thus
the limit in (8.6.6), and hence in (8.6.3), exists as € — 0 for almost all z on the curve.
Hence € (f) is a well defined operator whenever f is a smooth function with decay
at infinity.

We proceed with the proof of (8.6.4). For fixed 6 > 0 and 0 < € < 1 we write

rerio) = [T a

27 §—2z—1id
ter
[Re{—Rez|>¢e
1 (&) =12
d
+27ri / §—z—1id ¢ (8.6.8)
fer
[Re{—Rez|<e
@, [ s
o C—z—i8"7
ter
[Re{—Rez|<e

With 7 = Rez, the last term in the sum in (8.6.8) is equal to

Y () ¢ Y1)

1
/s Yt+1) - (o) +ie) " /_1 Y +7)— (r() +i6) " (8.6.9)
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Since 6 > 0, the curve ¥(¢t + 1) — (y(7) +i0) lies below the curver — y(r+ 1) — (1)
and therefore outside a small angle centered at the origin that does not contain the
positive imaginary axis. In this region, log,,,,., 1S an analytic branch of the loga-
rithm. Evaluation of (8.6.9) yields

f(2) v(e+1)—y(1)—ib
@i SO y(—g 4 T) —y(1) —id

So, taking limits as 0 | 0 in (8.6.8), we obtain that

. o 9
lim P (:+i8) =, / o
ter
[Re{—Rez|>¢e (8.6.10)
T B L GO IO (i s T
2mi -z 27i g"’w”y(r—s)—y(r)’
ter
[Re{—Rez|<e

in which z = y(7) = 7+ iA(7) and both integrals converge absolutely.

Up until this point, € € (0, 1) was arbitrary and we may let it tend to zero. In doing
so we first observe that the middle integral in (8.6.10) tends to zero because of the
smoothness of f. But for almost all 7 € R, the limit as € — 0 of the logarithm in
(8.6.10) is equal to log;,, ., (— 3,/,8) =10g;,,,.r(—1) = —mi. From this we conclude

that for almost all z € I" we have
/‘ f(6)
{—z
fer
[Re{—Rez|>¢e

: o1 Lo
lsl?gF(z—I—ﬁ)—hm d¢+f(z) 27[1,( i), (8.6.11)

e—0 27

which proves (8.6.4).
The only difference in the proof of (8.6.5) is that log,,, .., is replaced by 1og;,, .,
and for this reason (— i) should be replaced by 7i in (8.6.11). O

Remark 8.6.2. If we let F; be the restriction of F' on the region above the graph I"
and let F_ be the restriction of F on the region below the graph I', we have that F
and F_ have continuous extensions on I", and moreover,

F,~F.=—f,

where f is the given smooth function on the curve. We also note that the argument
given in Proposition 8.6.1 does not require f to be smoother than %'
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8.6.2 Resolution of the Cauchy Integral and Reduction of Its 1>
Boundedness to a Quadratic Estimate

Having introduced the Cauchy integral € as an operator defined on smooth func-
tions on the graph I" of a Lipschitz function A, we turn to some of its properties. We
are mostly interested in obtaining an a priori L? estimate for €. Before we achieve
this goal, we make some observations. First we can write Cr as

H(y+iA(y))(1+iA'(y))
y+iA(y) —x—iA(x) 4y, (8.6.12)

where the integral is over the real line and H is a function on the curve I'. (Recall
that Lipschitz functions are differentiable almost everywhere.) To any function H
on I' we can associate a function 4 on the line R by setting

h(y) = H(y+iA(y))-

We have that
[ HOPay= [ o)1+ WP dy= [ h)Pdy

for some constants that depend on the Lipschitz constant L of A. Therefore, the
boundedness of the operator in (8.6.12) is equivalent to that of the operator

er(e =tim [ y—hx(iz(iz A_E)i;‘/—():izx))dy (8.6.13)

[x—y|>€

acting on Schwartz functions /4 on the line. It is this operator that we concentrate on
in the remainder of this section. We recall that (see Example 8.1.6) the function

1
y—x+i(A(y) —Ax))

defined on R x R\ {(x,x) : x € R} is a standard kernel in SK(1,cL) for some ¢ > 0.
We note that this is not the case with the kernel

1+iA'(y)

y—x+i(A(y) —A(x))’ (8.6.14)

for conditions (8.1.2) and (8.1.3) fail for this kernel, since the function 1 +iA’ does
not possess any smoothness. [Condition (8.1.1) trivially holds for the function in
(8.6.14).] We note, however, that the L” boundedness of the operator in (8.6.13) is
equivalent to that of
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Cr(h)(x) = lim / y—x+i(hA((yy))—A(x))dy’ (8.6.15)

|x—y|>€

since the function 1+ iA’ is bounded above and below and _can be absorbed in #.
Therefore, the L2 boundedness of Cr is equivalent to that of Cr, which has a kernel
that satisfies standard estimates. This equivalence, however, is not as useful in the
approach we take in the sequel. We choose to work with the operator Cr, in which
the appearance of the term 1+ iA’(y) plays a crucial cancellation role.

In the proof of Theorem 8.3.3 we used a resolution of an operator T with standard

kernel of the form 4
*° s
| pno
0 S

where P; and Qy are nice averaging operators that approximate the identity and
the zero operator, respectively. Our goal is to achieve a similar resolution for the
operator Cr defined in (8.6.13). To achieve this, for every s > 0 we introduce the
auxiliary operator

1 h(y)(1+iA(y))
Cr(h)(x:s) = / , d 8.6.16

r(h)(xs) iy y—x+i(A(y) —A(x)) +is Y ( )
defined for Schwartz functions 4 on the line. We make two preliminary observations
regarding this operator: For almost all x € R we have

lim € (1) (x;5) = 0, (8.6.17)
lir%(i'r(h)(x;s) = Cr(h)(x)+h(x). (8.6.13)

Identity (8.6.17) is trivial. To obtain (8.6.18), for a fixed € > 0 we write

h(y)(1+iA'(y))
y—x+i(A(y) —A(x)) +is

erims) = [

i
[x—y|>¢

! (h(y) — h(x))(1+iA"(y))
i / y—x+i(A(y)_A(x))+isdy (8.6.19)

|x—y[<e

dy

+

1 eti(A(x+¢e)—A(x))+is
Fh0) 2 O8umper g ia(x—g) — A(x)+is”

where log,,, . denotes the analytic branch of the complex logarithm defined in the
proof of Proposition 8.6.1. We used this branch of the logarithm, since for s > 0,
the graph of the function y — y +i(A(y +x) — A(x)) + is lies outside a small angle
centered at the origin that contains the negative imaginary axis.

We now take successive limits first as s — 0 and then as € — 0 in (8.6.19). We
obtain that
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lim € () (x:s) = lim / h(y)(1+iA'(y))

5s—0 e—0 ﬂl‘x_ybe y—x+ Z(A(y) —A(x))
1 e+i(A(x+e)—A(x))
) B i 8w e 4 A e) ~ AG)

Since this expression inside the logarithm tends to —1 as € — 0, this logarithm tends
to mi, and this concludes the proof of (8.6.18).
We now consider the second derivative in s of the auxiliary operator Cr (k) (x;s).

d? ds
2 h .
|2 gatrintes

0o d2
=, sdszer(h)(x,s)ds
— tims ¢ er () (xs) —tims ¢ e (h) (x: - [ Lo () (x:5)d
= lims, Cr(t)(us)—lims , Cr(t)(xs)— |, Crh)(xs)ds
= 0—0+1in})€r(h)(x;s) — lim Cr(h)(x;s)
= Cr(h)(x) +h(x),

where we used integration by parts, the fact that for almost all x € R we have

lim s d Cr(h)(x;s) = lims d Cr(h)(x;s) =0, (8.6.20)
s—eo ds s—0 ds
and identities (8.6.17) and (8.6.18) whenever 4 is a Schwartz function. One may
consult Exercise 8.6.2 for a proof of the identities in (8.6.20). So we have succeeded
in writing the operator Cr- (k) + h as an average of smoother operators. Precisely, we
have shown that for & € .7(R) we have

Cr (1) (x) +h(x) —/ 2L o)) P 8.621)
r - 0 ds ’ s bl b
and it remains to understand what the operator
d2 "
452 Cr (W) (x:5) = Cr(A)"(x:5)

really is. Differentiating (8.6.16) twice, we obtain

er(hW)+ht) = [ e )
= 4/ "(x;25) dSs

_ Sh(y)(1+iA(y)) ds
- _m'/ / (y— x+i(A( )—A(x))+2is)3dy s

ds
= d
m/ / —z+21s 4 s’
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where in the last step we set z = x +iA(x), H(z) = h(x), and we switched to com-
plex integration over the curve I'. We now use the following identity from complex
analysis. For §,z € I" we have

1 1 1 1
(§—z+2is) _47ti/r (& —wtis)? (w—z+is)? dw, (8.6.22)

for which we refer to Exercise 8.6.3. Inserting this identity in the preceding expres-
sion for Cr(h)(x) + h(x), we obtain

Cr () +hlx) =~ 7?2 /: [/r (w— zs +is)2 (/r & S—Ijv(f—)is)z dc) dw} dss ’

recalling that z = x + iA(x). Introducing the linear operator

/ 0s(x,y) h(y)dy, (8.6.23)

where
s

0s5(x,y) = (y—x+i(A(y) —A(x)) +is)?’

(8.6.24)

we may therefore write

Cr (h)(x) +h(x) = — 7?2 /: 0, ((14iA")0,((1+iA")h)) (x) ‘is . (8.6.25)
We also introduce the multiplication operator
My(h) = bh,
which enables us to write (8.6.25) in a more compact form as
Cr(h) = —h— ;2 /0 " OM, i OMy i () ‘is . (8.6.26)

This gives us the desired resolution of the operator Cr. It suffices to obtain an L?
estimate for the integral expression in (8.6.26). Using duality, we write

o ds o ds
</0 OM, s OsM, s (h) s ag>:/0 (My ;0 OM, i (h),0%(g)) i

which is easily bounded by

\/l+L2/0°°H@sM1+iA’(h)HL2||@§(8)HL2dss

d d
< ¢1+L2</ @My i () |7 :) (/ les)]|; :)

We have now reduced matters to the following estimate:
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- I
(/0 X1 ss) <]l (8.6.27)

We derive (8.6.27) as a consequence of Theorem 8.6.6 discussed in Section 8.6.4.

8.6.3 A Quadratic T (1) Type Theorem

We review what we have achieved so far and we introduce definitions that place
matters into a new framework.

For the purposes of the subsequent exposition we can switch to R”, since there
are no differences from the one-dimensional argument. Suppose that for all s > 0,
there is a family of functions 6; defined on R” x R” such that

1 A

10s(x, )| <, ntd (8.6.28)
s (1+ \xsy\)
and Al "
y=y
165 (x,y) — 65(x,y)| < o (8.6.29)

for all x,y,y’ € R" and some 0 < y,8,A < o=. Let O be the operator with kernel 6,
that is,

Os(h)x) = [ Os(x.y)h(y)dy, (8.6.30)

which is well defined for all & in {J; < <. L” (R") in view of (8.6.28).

At this point we observe that both (8.6.28) and (8.6.29) hold for the 6, defined
in (8.6.24) with y= 0 = 1 and A a constant multiple of L. We leave the details of
this calculation to the reader but we note that (8.6.29) can be obtained quickly using
the mean value theorem. Our goal is to figure out under what additional conditions
on O the quadratic estimate (8.6.27) holds. If we can find such a condition that is
easily verifiable for the @, associated with the Cauchy integral, this will conclude
the proof of its L? boundedness.

We first consider a simple condition that implies the quadratic estimate (8.6.27).

Theorem 8.6.3. For s > 0, let 65 be a family of kernels satisfying (8.6.28) and
(8.6.29) and let Oy be the linear operator whose kernel is 0. Suppose that for all

s > 0 we have
O,(1) =0. (8.6.31)

Then there is a constant C, 5 such that for all f € L? we have

- d ]
([ 10l ) <cusalil 8632
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We note that condition (8.6.31) is not satisfied for the operators ©; associated
with the Cauchy integral as defined in (8.6.23). However, Theorem 8.6.3 gives us
an idea of what we are looking for, something like the action of ©; on a specific
function. We also observe that condition (8.6.31) is “basically” saying that © (1) =

0, where
o= / 0, %
0 s

Proof. We introduce Littlewood—Paley operators O, given by convolution with a
smooth function '¥; = Sl,, ¥( ;) whose Fourier transform is supported in the annulus
5/2 < |E| < 25 that satisfies

/:Qf - lm/ des (8.6.33)

£—0

where the limit is taken in the sense of distributions and the identity holds in
' (R")/ 2. This identity and properties of @, imply the operator identity

© ,ds b ds
o-6[ o[ 00
0 s 0 s
The key fact is the following estimate:
. s \€
180,22 <ACywmin (t,s) , (8.6.34)

which holds for some € = £(y,6,n) > 0. [Recall that A, 7, and § are as in (8.6.28)
and (8.6.29).] Assuming momentarily estimate (8.6.34), we can quickly prove The-
orem 8.6.3 using duality. Indeed, let us take a function G(x,) such that

o dt
//|G(x,t)|2dx <1. (8.6.35)
0 JR? t

Then we have

/OW/RH G(x,1) O (f)(x)dx it
[ o [ ocias

_/ / RnG“ )0,0%(f)(x)dx dtds
<Lk |G(x,,)|zdmm(j,§)s "y
(/ / / 1©:0:(0s(f ()|2dxmin(:’i)_eitdss)i.

But we have the estimate
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© /S t\¢ds
sup mln( , ) <Cg,
~0 70 t s Ky

which, combined with (8.6.35), yields that the first term in the product of the two
preceding square functions is controlled by 1/Ce. Using this fact and (8.6.34), we
write

I [ ewnemnwa:
RV!

e [ [ [ i0odmmpamn(5 1) 44
enve [ [ et amn () w4
el [ [ L oimorams(.

<ca( [ [ letnwha )

S Cn,SAHfHL27

where in the last step we used the continuous version of Theorem 5.1.2 (cf. Exercise
5.1.4). Taking the supremum over all functions G(x,¢) that satisfy (8.6.35) yields
estimate (8.6.32).

It remains to prove (8.6.34). What is crucial here is that both ©, and Q; satisfy
the cancellation conditions (1) = 0 and Q;(1) = 0. The proof of estimate (8.6.34)
is similar to that of estimates (8.5.14) and (8.5.15) in Proposition 8.5.3. Using ideas
from the proof of Proposition 8.5.3, we quickly dispose of the proof of (8.6.34).

The kernel of ©;Q; is seen easily to be

Ly s(x,y) = /1.{” 0:(x,2)¥(z—y)dz.

Notice that the function (y,z) — ¥;(z —y) satisfies (8.6.28) with § =1 and A = Cy
and satisfies

Cy |z—7
(e ) (| <

for all z,7/,y € R" for some Cy < oo. We prove that

N

1 min(6,1) .
t n+min mm(}/ﬁ,l)
sup | [Lis(e.y)ldy < cq,Amin( ,s)“ +aio(5.1 , (8.6.36)
xcR” st
t s ‘l*nrrlr‘:l(néw 1) m1n(7/5 1)
sup | |Lis(x,y)|dx < CpA min( , ) . (8.6.37)
yeR” R” ' st
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Once (8.6.36) and (8.6.37) are established, (8.6.34) follows directly from the lemma
. . . in(6,1 .

in Appendix I.1 with € = inf;:i(n(&% min(y,3d,1).

We begin by observing that when s < ¢ we have the estimate

/ s~ min(2, (t~ul)?) (8.6.38)

s)imin(%l)
(1+ s~ Yu|)nt :

duSCn(t

Also when ¢ < s we have the analogous estimate

t~"min(2,s~ " |u|) £ 5 min(8,1)
du<C . 8.6.39
/n (1411 yrtd () (8.6.39)

Both (8.6.38) and (8.6.39) are trivial reformulations or consequences of (8.5.18).
We now take s <t and we use that Q,(1) = 0 for all s > 0 to obtain

[Lis(x,3)] =

/ 6, (x,2)¥(z—y)dz
R

/n 6 (x,2) — 6,(x,y)| Wi (z —y) dz

min(2, (r~"z—y[)?) s
R ™ (I+s7Hz—y[)m*!

1 } min(y,1)
C;A (S)z 1
"\t

, .1 1N\
CnAmm( , ) min
r s

IN

CA dz

IN

IN

)

(t S) ) min(,8,1)

using estimate (8.6.38). Similarly, using (8.6.39) and the hypothesis that ©;(1) =0
for all + > 0, we obtain for ¢ <,

Lses)] = | [ 802 ¥le=y)ds

/R” 6 (x,2) [H(z—y) — W(x—y)] dz

t" min(2,s~x —z|)
< xCA dz
- R" (1_|_t71|x_z|)n+5 s
< C;A 1 (t)émin(&l)

s \s

1 1\n t s\ 2min(7,8.1)
C;Amin( , ) min( ,s)2 )
t s st

IN

Combining the estimates for |L; s(x,y)| in the preceding cases ¢ < s and s < ¢ with
the estimate
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o1
CAmin(,, )"

(H—min(1 Dx—y

t’s

L) < [ 18102)] ¥ele )] dz < g

which is a consequence of the result in Appendix K.1, gives

Cmin(’,$)2min(8D1-B)A min( 1, Ly

st t’s

Lste)| < e
((l +m1n(; 7 i)|x_y|)n+m1n(5,l))

forany 0 < 8 < 1. Choosing 8 = (n+ % min(3,1))(n-+min(8,1))~! and integrating

over x or y yields (8.6.36) and (8.6.37), respectively, and thus concludes the proof
of estimate (8.6.34). O

We end this subsection with a small generalization of the previous theorem that
follows by an examination of its proof. The simple details are left to the reader.

Corollary 8.6.4. For s > 0 let Oy be linear operators that are uniformly bounded on
L*(R™) by a constant B. Let ¥ be a Schwartz function whose Fourier transform is
supported in the annulus 1/2 < |x| < 2 such that the Littlewood—Paley operator Qg
given by convolution with W(x) = s "W (s~ 'x) satisfies (8.6.33). Suppose that for
some Cpyp,A, € < oo,

10,042, <AC,ymin (j ;) (8.6.40)

is satisfied for all t,s > 0. Then there is a constant Cy, y ¢ such that for all f € L? (R")
we have

(/OwH@v(f)Hiz isf <Cowe(A+B)|f]|,2-

8.6.4 A T (b) Theorem and the L> Boundedness of the Cauchy
Integral

The operators O, defined in (8.6.23) and (8.6.24) that appear in the resolution of
the Cauchy integral operator Cr do not satisfy the condition ©;(1) = 0 of Theorem
8.6.3. It turns out that a certain variant of this theorem is needed for the purposes of
the application we have in mind, the L? boundedness of the Cauchy integral operator.
This variant is a quadratic type T (b) theorem discussed in this subsection. Before
we state the main theorem, we need a definition.

Definition 8.6.5. A bounded complex-valued function b on R” is said to be accretive
if there is a constant ¢y > 0 such that Reb(x) > ¢ for almost all x € R".

The following theorem is the main result of this section.
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Theorem 8.6.6. Let 6; be a complex-valued function on R" x R" that satisfies
(8.6.28) and (8.6.29), and let Oy be the linear operator in (8.6.30) whose kernel
is 6. If there is an accretive function b such that

O,(h) =0 (8.6.41)

for all s > 0, then there is a constant C,(b) such that the estimate

. N
(/0 e :) <G| £],2 (8.6.42)

holds for all f € L.
Corollary 8.6.7. The Cauchy integral operator Cr maps L*(R) to itself

The corollary is a consequence of Theorem 8.6.6. Indeed, the crucial and impor-
tant cancellation property
O,(1+iA")=0 (8.6.43)

is valid for the accretive function 1+ iA’, when @, and 6 are as in (8.6.23) and
(8.6.24). To prove (8.6.43) we simply note that

N s(1+iA'(y))dy
Os(1+iA)(x) = /R (v —x+i(AQY) — A(x)) +is)?
_s y=rteo
N [y—x+i<A<y>—A(x>>+is

=0-0=0.

This condition plays exactly the role of (8.6.31), which may fail in general. The
necessary “internal cancellation” of the family of operators ©; is exactly captured
by the single condition (8.6.43).

It remains to prove Theorem 8.6.6.

Proof. We fix an approximation of the identity operator, such as
RUNE) = [ lx=3) )y,

where @ (x) = s "® (s 'x), and @ is a nonnegative Schwartz function with integral
1. Then P is a nice positive averaging operator that satisfies P;(1) = 1 for all s > 0.
The key idea is to decompose the operator O as

O, = (6, — Mg, (1\Py) + Mo, (1)Ps , (8.6.44)

where Mg,(1) is the operator given by multiplication by ©;(1). We begin with the
first term in (8.6.44), which is essentially an error term. We simply observe that

(@s_M@S(l)Ps)(l) = @s(l) _@s(l)Ps(l) = @s(l) _@s(l) =0.
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Therefore, Theorem 8.6.3 is applicable once we check that the kernel of the operator
O — Mg, (1)P; satisfies (8.6.28) and (8.6.29). But these are verified easily, since the
kernels of both ©; and P; satisfy these estimates and ©;(1) is a bounded function
uniformly in s. The latter statement is a consequence of condition (8.6.28).

We now need to obtain the required quadratic estimate for the term Mg, (1)Fs.
With the use of Theorem 7.3.7, this follows once we prove that the measure

‘zdxds
s

|65(1)(x)
is Carleson. It is here that we use condition (8.6.41). Since O;(b) = 0 we have
Py(b)B5(1) = (Py(b) O5(1) — OsPy(b)) + (O5P;(b) — B4(b)) - (8.6.45)

Suppose we could show that the measures

O3(6)(x) ~ OB () ) (8.6.46)
0P, (b)(x) ~ A(B) W) 0,10 (8.6.47)

are Carleson. Then it would follow from (8.6.45) that the measure

2dxds
s

[B(6)(x) ©,(1) ()

is also Carleson. Using the accretivity condition on b and the positivity of P, we
obtain
|Ps(b)| Z RePS(b) = Ps(Reb) 2 PS(CO) = Cg,

from which it follows that |©;(1)(x)|> < cg 2|Ps(b)(x) ©5(1)(x)[?. Thus the measure
|©4(1)(x)|>dxds/s must be Carleson.

Therefore, the proof will be complete if we can show that both measures (8.6.46)
and (8.6.47) are Carleson. Theorem 7.3.8 plays a key role here.

We begin with the measure in (8.6.46). First we observe that the kernel

Lixy) = [ 60 -y)d:

of O,P; satisfies (8.6.28) and (8.6.29). The verification of (8.6.28) is a straightfor-
ward consequence of the estimate in Appendix K.1, while (8.6.29) follows easily
from the mean value theorem. It follows that the kernel of

Ry = O — O,P;

satisfies the same estimates. Moreover, it is easy to see that Ry(1) = 0 and thus
the quadratic estimate (8.6.32) holds for R in view of Theorem 8.6.3. Therefore,
the hypotheses of Theorem 7.3.8(c) are satisfied, and this gives that the measure in
(8.6.46) is Carleson.
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We now continue with the measure in (8.6.47). Here we set

T(f)(x) = O5L5(f) (x) = P(f) (x)O5 (1) (x) .

The kernel of Ty is Ls(x,y) — O5(1)(x)Ds(x — y), which clearly satisfies (8.6.28)
and (8.6.29), since O,(1)(x) is a bounded function uniformly in s > 0. We also ob-
serve that T;(1) = 0. Using Theorem 8.6.3, we conclude that the quadratic estimate
(8.6.32) holds for T;. Therefore, the hypotheses of Theorem 7.3.8(c) are satisfied;
hence the measure in (8.6.46) is Carleson. O

We conclude by observing that if we attempt to replace ©, with 0, = OM 1A’
in the resolution identity (8.6.26), then O4(1) = 0 would hold, but the kernel of O
would not satisfy the regularity estimate (8.6.29). The whole purpose of Theorem
8.6.6 was to find a certain balance between regularity and cancellation.

Exercises

8.6.1. Given a function H on a Lipschitz graph I, we associate a function % on the
line by setting h(z) = H(t +iA(t)) . Prove that for all 0 < p < e we have

1]

) < 14|

ip(r) < V1422

P
LP(R)’
where L is the Lipschitz constant of the defining function A of the graph I'.

8.6.2. Let A: R — Rusatisfy |A(x) —A(y)| < L|x—y| forall x,y € R for some L > 0.
Also, let & be a Schwartz function on R.
(a) Show that for all s > 0 and x,y € R we have

s?+ =yl

<41>42.
I —y[2+]A(x) —A(y) +52 —

(b) Use the Lebesgue dominated convergence theorem to prove that

Al
/ SAHAGYRO)
(= x+i(A(y) —A(x)) +is)?
e=y[>/s
as s — 0.
(c) Integrate directly to show that as s — 0,
s(1+iA’(y))
d 0
/ (y—x+i(A(y) —A@) +is2 @
le—yl<v/s

for every point x at which A is differentiable.
(d) Use part (a) and the Lebesgue dominated convergence theorem to show that as
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s—0,

y—0.

/ s(L4+iA'()) (k) = h(x)
L o rriam Ay i

(e) Use part (a) and the Lebesgue dominated convergence theorem to show that as

T s(1+iA'(y))h(y) -
/R()’—x+i(A(y)_A(x))+is)2dy 0.

Conclude the validity of the statements in (8.6.20) for almost all x € R.

8.6.3. Prove identity (8.6.22).
[Hint: Write the identity in (8.6.22) as

1
—2 1 (we(eis)?
(& +is) — (z—is))3 27ri/r (w— (L +is))? d

and interpret it as Cauchy’s integral formula for the derivative of the analytic func-
tion w — (w — (z —is)) 2 defined on the region above I'. If I" were a closed curve
containing { + is but not z — is, then the previous assertion would be immediate. In
general, consider a circle of radius R centered at the point { + is and the region Ug
inside this circle and above I'. See Figure 8.1. Integrate over the boundary of Ug
and let R — oo

Fig. 8.1 The region Uy inside the circle and above the curve.

8.6.4. Given an accretive function b, define a pseudo-inner product

(1:8)= [, 708l b)dx
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on L2, For an interval I, set b; = J;b(x)dx. Let I denote the left half of a dyadic

interval I and let I denote its right half. For a complex number z, let = ¢2 1°%rigi 2
where log,;,, is the branch of the logarithm defined on the complex plane minus the
negative real axis normalized so that log, ., 1 = 0 [and log, ., (i) = 7 i]. Show
that the family of functions

_ -l (bR b1
hy = b([)% <b([L)é X b(IR)é X1R> )

where I runs over all dyadic intervals, is an orthonormal family on L?(R) with re-
spect to the preceding inner product. (This family of functions is called a pseudo-
Haar basis associated with b.)

8.6.5. Let I = (a,b) be a dyadic interval and let 37 be its triple. For a given x € R,
let
di(x) = min (|Jx—al, [x — b|,|x — “erb|) .

Show that there exists a constant C such that

_1 10|1]
Cr(hpx)| <Cl|II"210
er(n)eo] <ClilHog
whenever x € 31 and also
3
Cl|I|2
h <
OIS gy oy

for x ¢ 31I. In the latter case, d;(x) can be any of a, b, “;b.

8.6.6. (Semmes [281]) We say that a bounded function b is para-accretive if for all
s > 0 there is a linear operator R; with kernel satisfying (8.6.28) and (8.6.29) such
that |Rs(b)| > ¢o for all s > 0. Let ©; and P; be as in Theorem 8.6.6.

(a) Prove that

2 dxds
|Rs(b)(x) = Rs(1) (x) Ps(b) (%) | s
is a Carleson measure.

(b) Use the result in part (a) and the fact that sup,.|Rs(1)| < C to obtain that

X0 (x,s)dxds/s is a Carleson measure, where

Q={@s): RE))| < (suplRy())'}.

s>0

(c) Conclude that the measure |O;(1)(x) |2 dxds/s is Carleson, thus obtaining a gen-
eralization of Theorem 8.6.6 for para-accretive functions.

8.6.7. Using the operator éy defined in (8.6.15), obtain that Cr is of weak type
(1,1) and bounded on LP(R) forall 1 < p < eo.
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8.7 Square Roots of Elliptic Operators

In this section we prove an L? estimate for the square root of a divergence form
second-order elliptic operator on R”. This estimate is based on an approach in the
spirit of the T'(b) theorem discussed in the previous section. However, matters here
are significantly more complicated for two main reasons: the roughness of the vari-
able coefficients of the aforementioned elliptic operator and the higher-dimensional
nature of the problem.

8.7.1 Preliminaries and Statement of the Main Result

For & = (&4,...,&,) € C" we denote its complex conjugate (&;,...,&,) by . More-
over, for £, € C" we use the inner product notation

£0=3 &6,

k=1

Throughout this section, A = A(x) is an n X n matrix of complex-valued L™ func-
tions, defined on R”, that satisfies the ellipticity (or accretivity) conditions for some
0 <A <A <oo, that

AEPP < Re(A()&-8),
[Ax) S -Cl < AlS]IS],

forall x e R" and &, { € C". We interpret an element & of C" as a column vector in
C" when the matrix A acts on it.

Associated with such a matrix A, we define a second-order divergence form op-
erator

IN

(8.7.1)

L(f) = —div(AVf) = 2 9;((AVY))), (8.7.2)
j=1

which we interpret in the weak sense whenever f is a distribution.

The accretivity condition (8.7.1) enables us to define a square root operator
L'/2 = \/L so that the operator identity L = /Ly/L holds. The square root oper-
ator can be written in several ways, one of which is

dt

_16 /Oer(I+t2L)’3t3L2(f) . (8.7.3)

T

VL(f)

We refer the reader to Exercise 8.7.3 for the existence of the square root operator
and the validity of identity (8.7.3).
An important problem in the subject is to determine whether the estimate

VL) 2 < Cuan V1 2 (8.7.4)
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holds for functions f in a dense subspace of the homogeneous Sobolev space
L3(R"), where G, ; 4 is a constant depending only on n, A, and A. Once (8.7.4)
is known for a dense subspace of L% (R"), then it can be extended to the entire space
by density. The main purpose of this section is to discuss a detailed proof of the
following result.

Theorem 8.7.1. Let L be as in (8.7.2). Then there is a constant C, ), 5 such that for
all smooth functions f with compact support, estimate (8.7.4) is valid.

The proof of this theorem requires certain estimates concerning elliptic operators.
These are presented in the next subsection, while the proof of the theorem follows
in the remaining four subsections.

8.7.2 Estimates for Elliptic Operators on R"

The following lemma provides a quantitative expression for the mean decay of the
resolvent kernel.

Lemma 8.7.2. Let E and F be two closed sets of R" and set
d =dist(E,F),

the distance between E and F. Then for all complex-valued functions f supported
in E and all vector-valued functions f supported in E, we have

[la+rny (WP ar < et [ 7@Pax, (8.7.5)
F E
[Wvurny  (NwPas < et [ I, (8.7.6)
F E
/F|(I+t2L)_1(tdivf)(x)|2dx < Ce—c?l/E|f(x)|2dx, (8.7.7)

where ¢ = ¢(A,A), C =C(n,A,A) are finite constants.

Proof. Tt suffices to obtain these inequalities whenever d >t > 0. Let us set u; =
(I+1>L)~'(f). Forall v € L}(R") we have

/ uvdx+1> | AVu, -Vvdx = fvdx.
n RV! Rﬂ
Let 1 be a nonnegative smooth function with compact support that does not meet E

and that satisfies ||n||z~ = 1. Taking v = u, 7 and using that f is supported in E,
we obtain

/ |ut|2n2dx—|—t2/ AVu, -Vu, nzdx=—2t2/ A(MVu)-u,Vndx.
Rl‘l Rn Rl‘l
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Using (8.7.1) and the inequality 2ab < g|a|? + £~ '|b|?, we obtain for all £ > 0,

/ |ut|2n2dx+7tt2/ Vi, 2 1 dx
R” R”

§A£t2/ |Vut|2n2dx+A£’1t2/ g 2|V P dx,
R” R”

and this reduces to
A%?
[ taPmPar< ™" [ uPvnPax
R" R"

by choosing € = /){ . Replacing 1 by ¢k — 1 in (8.7.8), where

o VA
2A1[|Vn =

yields
n 1 n
/R” g |1 — 12 dx < 4 /R” |ug |51 [ dx.

Using that |7 — 1]? > %|ek” |> — 1, we obtain

/ |u,|2|ek"|2dx§4/ |ut|2dx§4C/|f|2dx,
R" R" E

(8.7.8)

(8.7.9)

where in the last estimate we use the uniform boundedness of (I+¢2L)~! on L?(R")

(Exercise 8.7.2). If, in addition, we have 1 = 1 on F, then
P [P dr< [Pl P,
F Rl‘l

and picking 1 so that ||V1 |1~ ~ 1/d, we conclude (8.7.5).
Next, choose € = A /2A and 7 as before to obtain

/|tVut|2dx g/ |tVu,|*n? dx
F Rl'l

2472
ol vnPax

a
Crd2e <" / f2dx,
E

IN

IN

which gives (8.7.6). Finally, (8.7.7) is obtained by duality from (8.7.6) applied to

L* = —div(A*V) when the roles of E and F are interchanged.

O

Lemma 8.7.3. Let My be the operator given by multiplication by a Lipschitz func-
tion f. Then there is a constant C that depends only on n, A, and A such that

1+~ My [l < C[[ V1]

(8.7.10)
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and

IVIU+2L) ™ Mp] || o < CI[VS e (8.7.11)
forallt > 0. Here [T,S] = TS — ST is the commutator of the operators T and S.

Proof. Set b = AV f, d=AV f and note that the operators given by pointwise
multiplication by these vectors are L?> bounded with norms at most a multiple of
C||Vf|| - Write

[(I+2L)"" M| = —(I+L)" ' [(I+2L), My ] (I +12L)""
= —(I+2L) " (divhb+d-V)(1+7°L)"!
The uniform L? boundedness of (I +#2L)~' tV(I+¢*L)~" and (I +¢2L)"'tdiv on

L? (see Exercise 8.7.2) implies (8.7.10). Finally, using the L?> boundedness of the
operator 12V (I + L)~ 'div yields (8.7.11). O

Next we have a technical lemma concerning the mean square deviation of f from

(I+*L)~!

Lemma 8.7.4. There exists a constant C depending only onn, A, and A such that for
all Q cubes in R" with sides parallel to the axes, for all t < £(Q), and all Lipschitz
functions f on R" we have

IN

1
|Q|/|(I+t2L)’1(f)—f|2dx c||ve|s., (8.7.12)

IN

/|V ((I+22L)7'(f) — f)Pdxx < C||Vr|.. (8.7.13)

¢
Proof. We begin by proving (8.7.12), while we omit the proof of (8.7.13), since it is
similar. By a simple rescaling, we may assume that ¢(Q) = 1 and that |V f||;~ = 1.
Set Qg =20 (i.e., the cube with the same center as Q with twice its side length) and
write R” as a union of cubes Oy of side length 2 with disjoint interiors and sides
parallel to the axes. Lemma 8.7.2 implies that

(I+70L)7 (1) =1

in the sense that

lim (I+12L)"Y(mgr) =1
in L2 (R"), where 1g(x) = 1(x/R) and 7 is a smooth bump function with n = 1
near 0. Hence, we may write

I+2L) " (@) = f0) = X T+2L) 7 ((f = FO)xe) () = Y, elx

keZ! keZn

The term for k = 0 in the sum is [(7+#*L) ', M¢](xo,)(x). Hence, its L?(Q) norm
is controlled by Ct|| g, ||, by (8.7.10). The terms for k # 0 are dealt with using the
further decomposition
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ge(x) = (1+2L) 1 ((f = f(u))xo) (0) + (f (w) = )T +2°L) " (x0,) (x).

where x; is the center of Q. Applying Lemma 8.7.2 for (I +1*L)~! on the sets
E = Oy and F = Q and using that f is a Lipschitz function, we obtain

P <cre? o oot i,

The desired bound on the L2(Q) norm of (I 4 ¢*L)~'(f) — f follows from these
estimates, Minkowski’s inequality, and the fact that r < 1 = £(Q). O

8.7.3 Reduction to a Quadratic Estimate

We are given a divergence form elliptic operator as in (8.7.2) with ellipticity con-
stants A and A in (8.7.1). Our goal is to obtain the a priori estimate (8.7.4) for
functions f in some dense subspace of L2(R").

To obtain this estimate we need to resolve the operator \/L as an average of
simpler operators that are uniformly bounded from L2 (R") to L*(R"). In the sequel
we use the following resolution of the square root:

vin =20 [Caven ez

0 t

in which the integral converges in L*(R") for f € ;°(R"). Take g € ;" (R") with
llgll;2 = 1. Using duality and the Cauchy—Schwarz inequality, we can control the

quantity |<\/L(f) |g> ‘2 by

256 [ [= PN "
2 (/0 l+220) ()3 )(/0 Vi(o)]l7- ) (8.7.14)

where we set
V, =L (1 +1°L%) 72

Here L* is the adjoint operator to L and note that the matrix corresponding to L*
is the conjugate-transpose matrix A* of A (i.e., the transpose of the matrix whose
entries are the complex conjugates of the matrix A). We explain why the estimate

= d
/OHVr )72 t<CHgHiz (8.7.15)

is valid. Fix a real-valued function ¥ € %;°(R") with mean value zero normalized

so that i
2~ s

JAECI
0 s
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for all & € R" and define ¥;(x) = Sl,, ¥ (7). Throughout the proof, Oy denotes the
operator
Os(h) = hx*¥;. (8.7.16)

oo ds
| les@l: S = el

Obviously we have

for all L? functions g.

We obtain estimate (8.7.15) as a consequence of Corollary 8.6.4 applied to the
operators V; that have uniform (in ¢) bounded extensions on L2 (R"). To apply Corol-
lary 8.6.4, we need to check that condition (8.6.40) holds for &, = V;. Since

V,Qs = —(I+12L") 22 divA*V Qy,
we have
HVzQsHLzﬂLz < H(I+IZL*)72t2diVA*HL2HL2 HVQSHLZHL2 < c; , (8.7.17)

with C depending only on 1, 4, and A. Choose ¥ = A¢ with ¢ € ¢;°(R") radial so
that in particular, ¥ = div /. This yields Q; = sdiv R, with R, uniformly bounded;
hence

* *\—2 12 = S
HVIQSHLZ—LZ < thL (1+1°L") 2d1VHL2—>L2HSRSHL2—>L2 = € (8.7.18)
with C depending only on n, A, and A.
Combining (8.7.17) and (8.7.18) proves (8.6.40) with ©; = V;. Hence Corollary
8.6.4 is applicable and (8.7.15) follows.

Therefore, the second integral on the right-hand side of (8.7.14) is bounded, and
estimate (8.7.4) is reduced to proving

[ la+en a3 <c [ viras (87.19)

for all f € 65°(R").

8.7.4 Reduction to a Carleson Measure Estimate

Our next goal is to reduce matters to a Carleson measure estimate. We first intro-
duce some notation to be used throughout. For C"-valued functions f = (f1,..., f)
define

k=1j

I+l2L (ajJ(fk) .

M:

1
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In short, we write Z, = —(I +¢>L)"'tdivA. With this notation, we reformulate
(8.7.19) as
*° 2 dt 2
/O lz5 gc/Rn V£ dx. (8.7.20)
Also, define

10 =200 = (= XU+ 10(a00)

1<k<n

where 1 is the n X n identity matrix and the action of Z; on 1 is columnwise.
The reduction to a Carleson measure estimate and to a 7 (b) argument requires
the following inequality:

2 dxdt
t

L] -2V -z wP © " <c [ VePar, @120
I‘lo Rn

where C depends only on n, A, and A. Here, P; denotes the operator
P(h) =hxpy, (8.7.22)

where p,(x) =t "p(t~'x) and p denotes a nonnegative smooth function supported
in the unit ball of R"” with integral equal to 1. To prove this, we need to handle
Littlewood—Paley theory in a setting a bit more general than the one encountered in
the previous section.

Lemma 8.7.5. For t > 0, let U, be integral operators defined on L*(R") with mea-
surable kernels L,(x,y). Suppose that for some m > n and for all y € R" and t > 0
we have

. _ 2m
/ (1 4+ t y') L (xy) P dx < 17", (8.7.23)
RV!

Assume that for any ball B(y,t), U, has a bounded extension from L*(R") to
L?(B(y,t)) such that for all f in L*(R") and y € R" we have

o o, @R A < 1] (8.7.24)
Finally, assume that U;(1) = 0 in the sense that

U(xsor) —0  in  L*(B(y,1)) (8.7.25)
asR— oo forally e R" andt > 0.

Let Qs and P; be as in (8.7.16) and (8.7.22), respectively. Then for some o > 0
and C depending on n and m we have

o
|URO|,>,> < Cmin (Z :) (8.7.26)

and also
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o
HUzQsHLLLZSC(Z) . t<s. (8.7.27)

Proof. We begin by observing that U;*U; has a kernel K; (x,y) given by

Ki(x,y) = /Rn Li(z,x)Ls(z,y)dz.

The simple inequality (1 +a+b) < (1+a)(1+b) for a,b > 0 combined with
m

the Cauchy-Schwarz inequality and (8.7.23) yield that (1+"1)" K, (xy) is

bounded by

m m
Lo (T o (1457 ay <o

We conclude that o
1 x =yl
Kyl <, (147 : (8.7.28)

Hence U;*U; is bounded on all L”, 1 < p < 4o, and in particular, for p = 2. Since
L? is a Hilbert space, it follows that U, is bounded on L?(R") uniformly in ¢ > 0.

For s <t we use that ||U; | 122 < B < eoand basic estimates to deduce that

Ky o
[0R0 2 < BlIPQ 2 <CB(])
Next, we consider the case r < s. Since P, has an integrable kernel, and the kernel
of U/U; satisfies (8.7.28), it follows that W; = U;*U, P, has a kernel that satisfies a

similar estimate. If we prove that W;(1) = 0, then we can deduce from standard
arguments that when ¢ < s we have

r\2a
W02, <C (s) (8.7.29)
for 0 < oo < m —n. This would imply the required estimate (8.7.26), since
|UPO|[2 s = | QU UPO| oo < ClIUFUROS |5 po -

We have that W, (1) = U U, (1). Suppose that a function ¢ in L?(R") is compactly
supported. Then ¢ is integrable over R” and we have

(U1 ] o) = lim (U Ui(xgor) @) = 1%2130<Ut (XBo.R) Ui (@)
We have
(Utom)|Ui9)) = [ [ UGtaom) U )00) dydx,

and this is in absolute value at most a constant multiple of
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—2m é 1
(,n L] <1+ 'x?y') |u,<xB(O,R>><x>|2|<p<y>|dydx) loll;,

by (8.7.23) and the Cauchy—Schwarz inequality for the measure |@(y)|dydx. Using
a covering in the x variable by a family of balls B(y + ckt,t), k € Z", we deduce
easily that the last displayed expression is at most

Cy (kzz J 0+ |k|>—2'"cR<y,k)|<p<y>|dy> ,

where Cy, is a constant that depends on ¢ and

erd) =1 [ (U mor) WP dx.
B(y+ckt t)

Applying the dominated convergence theorem and invoking (8.7.24) and (8.7.25) as
R — oo, we conclude that (U;U;(1)| @) = 0. The latter implies that U;*U; (1) = 0.
The same conclusion follows for W, since P (1) = 1.

To prove (8.7.27) when ¢ < s we repeat the previous argument with W, = U;*U;,.
Since W;(1) = 0 and W, has a nice kernel, it follows that (8.7.29) holds. Thus

200
[Vl = UV < U e <€ ()

This concludes the proof of the lemma. O

Lerllma 8.7.6. Let P, ﬂbe as in Lemma 8.7.5. Then the operator U; defined by
Ui(f)(x) = 0(x)- B (f)(x) = ZP(f)(x) satisfies

it = dt -
| e @ <l

where C depends only on n, A, and A. Here the action of P, on f is componentwise.

Proof. By the off-diagonal estimates of Lemma 8.7.2 for Z; and the fact that p has
support in the unit ball, it is simple to show that there is a constant C depending on
n, A, and A such that for all y € R”,

1

/ % (x)[Pdx<C (8.7.30)
" JB(y1)

and that the kernel of C~'U; satisfies the hypotheses in Lemma 8.7.5. The conclu-
sion follows from Corollary 8.6.4 applied to U;F,. O

We now return to (8.7.21). We begin by writing

1) - P2 (Ve)(x) = Z(Vg) (x) = UP(Vg) (x) + Z (P} —T)(Ve) (%),
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and we prove (8.7.21) for each term that appears on the right. For the first term we
apply Lemma 8.7.6. Since P, commutes with partial derivatives, we may use that

|2V ]|pope = U+ 2D 2L o s C

and therefore we obtain for the second term

Jo e =R < @ [ [T D@ a
2 (P)HVgH;

by Plancherel’s theorem, where C depends only on n, A, and A. This concludes the
proof of (8.7.21).

IN

IN

Lemma 8.7.7. The required estimate (8.7.4) follows from the Carleson measure es-

timate
dxdt
sup|Q|// WP <o, (8.7.31)

where the supremum is taken over all cubes in R" with sides parallel to the axes.

Proof. Indeed, (8.7.31) and Theorem 7.3.7 imply

* dxdt
L[ e wwr ST <c [ vePar

and together with (8.7.21) we deduce that (8.7.20) holds. O

Next we introduce an auxiliary averaging operator. We define a dyadic averaging
operator StQ as follows:

S0 = (g [, 7000 )20,

where Q) is the unique dyadic cube contained in Q that contains x and satisfies
10(QL) <t < £(Q)). Notice that S is a projection, i.e., it satisfies S2S2 = S2. We
have the following technical lemma concerning S,Q .

Lemma 8.7.8. For some C depending only on n, A, and A, we have

Q) - -
L[ e @2 fwp Y < [ 17pas @132
0J0 t R"

Proof. We actually obtain a stronger version of (8.7.32) in which the 7-integration
on the left is taken over (0,4-). Let Q; be as in (8.7.16). Set €, = ¥ - (S¢ — P2).
The proof of (8.7.32) is based on Corollary 8.6.4 provided we show that for some
o >0,

|22 < cmin((7)"
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Suppose first that ¢ < s. Notice that @,(1) = 0, and thus (8.7.25) holds. With the
aid of (8.7.30), we observe that ©; satisfies the hypotheses (8.7.23) and (8.7.24) of
Lemma 8.7.5. Conclusion (8.7.27) of this lemma yields that for some & > 0 we have

leell<c(})"

We now turn to the case s <. Since the kernel of £ is bounded by ¢7™" x|x_ </
condition (8.7.30) yields that %P, is uniformly bounded on L? and thus

(5Bl <ClPQ 2 <€

It remains to consider the case s < ¢ for the operator U; = -S,Q. We begin by
observing that U; is L? bounded uniformly in ¢ > 0; this follows from a standard
U;*U; argument using condition (8.7.23). Secondly, as already observed, StQ is an
orthogonal projection. Therefore, we have

10r-5200s 2z < (10 SP)SEQs oo

IN

< 18Pl 2
< ISPl oz 10l iz 2
< Cs%t™ %,

The last inequality follows from the facts that for any o in (0, ;), O, maps the
homogeneous Sobolev space L%( to L? with norm at most a multiple of Cs* and
that the dyadic averaging operator S2 maps L*(R") to L%(R") with norm Ct~%.
The former of these statements is trivially verified by taking the Fourier transform,
while the latter statement requires some explanation.

Fixan o € (0, }) and take /1, g € L*(R"). Also fix j € Zsuchthat 2/~ <t <27/,
We then have

(S2-a)i.g) = T ((~4)F (), () (Avee))

TikSQ ik

where J;j x = T10_ 277k, 27/ (k. + 1)) and k = (ki,...,k,). It follows that

(SP-2)i.8) = 3 (n(Avee) (-4)2 (0,)()
JixC0 ik
= (h, ¥ 2%(Aveg) (~4)% (o) (2() k) ).
JikE0 ik

Set yo = (—A)2 ( X[o,1))- We estimate the L? norm of the preceding sum. We have
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Je

Y 2%(Avgg) xa(2/x—k)| dx
JixE0 Jjk
xS0 ik

— 22(1]*”]\/

o . 2

=it [ ]S e (ave ) [ 7a(E)Pa
R 170 Ik

o . 2 o~
Spwn | ]S e[ 3 T ofae

Jj,ng Jj’k lez
) . . 2 —~
< 22in / Y e (Aveg)| de sup Y [FalE+D)P
[0,1]” Jj}ng Jj,k 56[0,1]”1€Zn
— p20j-nj z }Avgg|2C(n,OC)2,
kezr Jjk

‘ 2

2
‘dx

Y, (Avgg) xalx—k)

where we used Plancherel’s identity on the torus (Proposition 3.1.16) and we set

Cln,a)> = sup Y |xa(§+1)
&elo,1] jezn

Since ‘
no1_ efzm?jr

G© =TT e

it follows that C(n, &) < e when 0 < @ < }. In this case we conclude that

1
(S2(=2) 2 (h),g)| < Clm,)|[h]p27(27 Y |Aveg|’)
kezn  Jik
< Clall 2t lgll 2
and this implies that HS,Q || il < Ct~* and hence the required conclusion. O

8.7.5 The T (b) Argument

To obtain (8.7.31), we adapt the T(b) theorem of the previous section for square
roots of divergence form elliptic operators. We fix a cube Q with center cg, an
€ €(0,1), and a unit vector w in C". We define a scalar-valued function

fow = (14 (e£(Q))’L) " (Pg - w), (8.7.33)

where
Dp(x) =x—cp.



268 8 Singular Integrals of Nonconvolution Type

We begin by observing that the following estimates are consequences of Lemma
8.7.4:

/ |~ @ wPdx < Cie2(Q)10) (8.7.34)
50 ’

and _
| V(g — @0 wPdr < Calel, (8739)
50 ’

where C1,C, depend on n, A, A and not on €, Q, and w. It is important to observe
that the constants Cy,C; are independent of €.

The proof of (8.7.31) follows by combining the next two lemmas. The rest of this
section is devoted to their proofs.

Lemma 8.7.9. There exists an € > 0 depending on n, A, A, and a finite set F of
unit vectors in C" whose cardinality depends on € and n, such that

sup / / )2 dxdt
0|
2 dxdt

chS“P|Q|// @) (SPVLE WP T

weF Q

where C depends only on €, n, A, and A. The suprema are taken over all cubes Q in
R” with sides parallel to the axes.

Lemma 8.7.10. For C depending only on n, A, A, and € > 0, we have

dxd
// 1) 52V 15,00 “ <clol (8.7.36)

We begin with the proof of Lemma 8.7.10, which is the easiest of the two.

Proof of Lemma 8.7.10. Pick a smooth bump function 2y localized on 4Q
and equal to 1 on 20 with || 2p ||, +£(Q)||V20|,~ < ca. By Lemma 8.7.5 and
estimate (8.7.21), the left-hand side of (8.7.36) is bounded by

2 dxdt
t

c [ v %QfQW|dx+2// %) - PRV (2015,,) ()]

> dxdt
.

<c [ [V(Zosg) dx+4// V(Zof5.,)) )

It remains to control the last displayed expression by C|Q|.
First, it follows easily from (8.7.34) and (8.7.35) that

[ V(Zof5, )P <clol.

where C is independent of Q and w (but it may depend on €). Next, we write
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ZV(ZofGu) =W + W2+ W7,
where
W! = (I1+2L)7"t (2oL(f5,0))
W2 = —(I+°L) "t (div(Af5,,V 20)),
WP = —(I+L) AV, -V 2p).,

and we use different arguments to treat each term W,j .
To handle W,!, observe that

e\ Jow—Pow
L(fQ,w) = ngé(Q)z )

and therefore it follows from (8.7.34) that

/Rn |'%QL(f5,w)|2 < C|Q|(g,€(Q))—2 7

where C is independent of Q and w. Using the (uniform in #) boundedness of the
operator (I +t*L)~! on L?(R"), we obtain

(0) dxdt Q) c|o|? dt _ C|Q|
1 2
< <
Lh Pt s [ ot S e

which establishes the required quadratic estimate for W,!.

To obtain a similar quadratic estimate for W?, we apply Lemma 8.7.2 for the
operator (I +°L)~'tdiv with sets F = Q and E = supp (f§,,,V Zp) C 40\ 20. We
obtain that

€(Q) Q) ¢
L[ weep ®<e [T g vagPa.
2Jo ! 0 I J40\20 ’

The first integral on the right provides at most a constant factor, while we handle the
second integral by writing

fé,w = (fé’w_(DQ'W)—F(DQ'W.

Using (8.7.34) and the facts that HV‘%QHL‘*’ < ¢,0(Q)~" and that |®p| < ¢,£(Q) on
the support of 2y, we obtain that

O AfE, V2uldr < O],
Lgiag A6V ZeP dx < Clel

where C depends only on 1, A, and A. This yields the required result for W2
To obtain a similar estimate for W,3, we use the (uniform in 7) boundedness of
(I+1*L)~! on L?(R") (Exercise 8.7.2) to obtain that
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) Q)
// |W,3(x)|2dx‘”gc/ = ‘”/ AV £S5, -V 25| dx.
0Jo t 0 I J40\20 '

But the last integral is shown easily to be bounded by C|Q| by writing fé‘w, as in
the previous case, and using (8.7.35) and the properties of 2y and @p. Note that C
here depends only on n, A, and A. This concludes the proof of Lemma 8.7.10. [

8.7.6 The Proof of Lemma 8.7.9

It remains to prove Lemma 8.7.9. The main ingredient in the proof of Lemma 8.7.9
is the following proposition, which we state and prove first.

Proposition 8.7.11. There exists an € > 0 depending on n, A, and A, and N =
n(&) > 0 such that for each unit vector w in C" and each cube Q with sides parallel
to the axes, there exists a collection %, = {Q'} of nonoverlapping dyadic subcubes

of Q such that
U ¢

e,

<(I-mlQl, (8.7.37)

and moreover, if ) is the collection of all dyadic subcubes of Q not contained in
any Q' € 7], then for any Q" € 7)) we have

1 3
Re (Vf5 -w)dy > 8.7.38
|Q//| o e( me/(y) W) y_4 ( )
and 1 s
o Q,,lVfé,w(y>|2dy§(4e>‘2. (8.7.39)
Proof. We begin by proving the following crucial estimate:
}/Q(I—Vféw(x)-w)dx <ce2|Q), (8.7.40)

where C depends on 11, A, and A, but not on €, Q, and w. Indeed, we observe that
V(®g-w)(x)-w=[w]*=1,
so that
I Vfé,w('x) W= vgaw('x) "W,
where we set
gSQ,w('x) = (I)Q('x) W= f(iw(x) .

Next we state another useful lemma, whose proof is postponed until the end of
this subsection.
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Lemma 8.7.12. There exists a constant C = C,, such that for all h € I;% we have

‘/QVh(x)dx <cr)" (/Q|h(x)|2dx>i (/Q|Vh(x)|2dx>}‘.

Applying Lemma 8.7.12 to the function gaw, we deduce (8.7.40) as a conse-
quence of (8.7.34) and (8.7.35).

We now proceed with the proof of Proposition 8.7.11. First we deduce from
(8.7.40) that

1 r . .
10| /QRe(va,w(x)'W)de g

provided that € is small enough. We also observe that as a consequence of (8.7.35)
we have

1
o /Q IV£5,, (0P dx < Cs,

where Cj is independent of €. Now we perform a stopping-time decomposition to
select a collection ., of dyadic subcubes of Q that are maximal with respect to
either one of the following conditions:

IN

1 t
o /Q/ Re (V£5,,(x)-w)dx, (8.7.41)

1
o1 o VI Pax

Y

(4e)72. (8.7.42)

This is achieved by subdividing Q dyadically and by selecting those cubes Q' for
which either (8.7.41) or (8.7.42) holds, subdividing all the nonselected cubes, and
repeating the procedure. The validity of (8.7.38) and (8.7.39) now follows from the
construction and (8.7.41) and (8.7.42).

It remains to establish (8.7.37). Let B; be the union of the cubes in ., for which
(8.7.41) holds. Also, let B, be the union of those cubes in ., for which (8.7.42)
holds. We then have

U 2| <iBil+18al.
Q'es

The fact that the cubes in ., do not overlap yields
B2l < (4e)” | V15,0 dx < (4e)°Colel

Setting b3, (x) = 1 —Re(Vf§,(x) -w), we also have
|Bl|§42/ be‘wdx:4/ b, dx—4 £ L dx, (8.7.43)
o o 0\B;

where the sum is taken over all cubes Q' that comprise By. The first term on the right
in (8.7.43) is bounded above by Ce? |Q| in view of (8.7.40). The second term on the



272 8 Singular Integrals of Nonconvolution Type
right in (8.7.43) is controlled in absolute value by
410\ Bi|+410\ Bi|* (C3101)? <40\ By| +4Cse|0] +&72[Q\ Bil.
Since |Q \ Bi| = |Q| — |B1|, we obtain
(5+&2)|Bi| < (4+Ce2 +e2)0|,
which yields |B;| < (1—£2 +o(g2))|Q| if € is small enough. Hence
Bl < (1-n(e))|Ql

with n(€) ~ €2 for small £. This concludes the proof of Proposition 8.7.11. O
Next, we need the following simple geometric fact.

Lemma 8.7.13. Let w,u,v be in C" such that |w| = 1 and let 0 < € < 1 be such that

lu—(u-ww| < glu-wl, (8.7.44)
Re(v-w) > i, (8.7.45)
| < (4e)7"'. (8.7.46)

Then we have |u| < 4|u-v|.

Proof. Tt follows from (8.7.45) that
i lu-w| <|(u-w)(v-w)|. (8.7.47)
Moreover, (8.7.44) and the triangle inequality imply that
lul < (1 4¢e)|u-w| <2u-w|. (8.7.43)
Also, as a consequence of (8.7.44) and (8.7.46), we obtain
[(u— (u-w)w) v < }u-w|. (8.7.49)

Finally, using (8.7.47) and (8.7.49) together with the triangle inequality, we deduce
that

v > (- w) (v w)| = (= (- w)w) v > (= ) |- wl > g [ul,

where in the last inequality we used (8.7.48). O

We now proceed with the proof of Lemma 8.7.9. We fix an € > 0 to be chosen
later and we choose a finite number of cones %, indexed by a finite set .% of unit
vectors w in C" defined by

Go={ueC": [u—(u-ww| <elu-wl}, (8.7.50)
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so that

=%

weF

Note that the size of the set .# can be chosen to depend only on € and the dimension
n.

It suffices to show that for each fixed w € .% we have a Carleson measure estimate
for % (%) = x4, (% (x)) % (x), where y¢, denotes the characteristic function of 4.
To achieve this we define

() dxdt
A, = sup / / o (P 8.7.51)
o 10l JoJo t

where the supremum is taken over all cubes Q in R” with sides parallel to the axes.
By truncating ¥ ,,(x) for ¢ small and ¢ large, we may assume that this quantity is
finite. Once an a priori bound independent of these truncations is obtained, we can
pass to the limit by monotone convergence to deduce the same bound for 7 ,, (x).

We now fix a cube Q and let ., be as in Proposition 8.7.11. We pick Q" in .7}/
and we set

1 /
V= Vs, (y)dyeC".
|Q//| o .fQ7 (y) Yy

It is obvious that statements (8.7.38) and (8.7.39) in Proposition 8.7.11 yield condi-
tions (8.7.45) and (8.7.46) of Lemma 8.7.13. Set u = ¥ ,,(x) and note that if x € Q"

and }£(Q") <t < £(Q"), then v = SZ(Vf§ ) (x); hence
[ ()] < 430 (%) -SE(V S, ) )] <40 (0)-SP(VfE,)W)|  (8.7.52)

from Lemma 8.7.13 and the definition of ¥ ,,(x).

We partition the Carleson region Q x (0, £(Q)] as a union of boxes Q' x (0,£(Q’)]
for Q' in ., and Whitney rectangles Q" x (3£(Q"),£(Q")] for Q" in .. This
allows us to write

- Q) dxdt - UQ) dxdt
2 _ 2

Q" % dxdt
/ / %0 ()]
Q”E B /(Q”

First observe that

o) dxdt
L0 me@P ST < 3 adoian-miol
gesy,

o'esy

Second, using (8.7.52), we obtain
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dxdt
<1 // . 9005209 75, ) (P t
Q"Ey” Q

<16 [ [ 152 sger .

Altogether, we obtain the bound

(Q) dxdt
// Y ()2
0Jo t

{(9) dxd
Au=mlel+16 [ [ )-S5, P T

We divide by |Q|, we take the supremum over all cubes Q with sides parallel to
the axes, and we use the definition and the finiteness of A,, to obtain the required
estimate

_ 1 [ HQ dxdt
Av<tontsup o [ (o) SOV G ) @)
o 10l JoJo f
thus concluding the proof of the lemma. 0
We end by verifying the validity of Lemma 8.7.12 used earlier.

Proof of Lemma 8.7.12. For simplicity we may take Q to be the cube [—1,1]".
Once this case is established, the case of a general cube follows by translation and

rescaling. Set
1 1
2 2
- (/ |h(x)|2dx> . M= (/ |Vh(x)|2dx)
0 0

If M > M’, there is nothing to prove, so we may assume that M < M’. Take t € (0,1)
and @ € 65°(Q) with @(x) =1 when dist (x,dQ) >rand 0 < ¢ < 1, ||Vo||;~ <C/1,
C = C(n); here the distance is taken in the L norm of R”. Then

/QVh(x)dx: /Q (1= o(x))VA(x)dx— /Q h(x) Vo (x) dx

and the Cauchy—Schwarz inequality yields

‘4wmw

Choosing t = M /M’, we conclude the proof of the lemma. 0

gC(M’t5+Mt*§).

The proof of Theorem 8.7.1 is now complete. O
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Exercises

8.7.1. Let A and L be as in the statement of Theorem 8.7.1.
(a) Consider the generalized heat equation

du .
o div(AVu) =0

on RTI with initial condition #(0,x) = ug. Assume a uniqueness theorem for solu-
tions of these equations to obtain that the solution of the equation in part (a) is

u(t,x) = e " (up).
(b) Take up = 1 to deduce the identity
e (1) =1

for all > 0. Conclude that the family of {¢~"*},~ ¢ is an approximate identity, in the
sense that

lime ™t =1.
t—0

8.7.2. Let L be as in (8.7.2). Show that the operators

Ly = (I+L)",
Ly, = tV(I+’L)7",
Ly = (I+°L) "tdiv

are bounded on L?(R") uniformly in # with bounds depending only on 7, A, and A.
[Hint: The L? boundedness of L3 follows from that of L, via duality and integra-
tion by parts. To prove the L? boundedness of L; and Ly, let u, = (I +*L) ' (f).
Then u; +t*L(u;) = f, which implies Jrn |u|? dx + 1 Jre e L(u ) dx = [gouy f dx.
The definition of L and integration by parts yield [gn |u;|* dx + 1> [gu AVity Vi, dx =
Jrn tt f dx. Apply the ellipticity condition to bound the left side of this identity from
below by [ga |ue|>dx+ A Jgu [tVus|* dx. Also [guu fdx is at most €~ [pu | f]? dx +
€ [gn |ur|* dx by the Cauchy—Schwarz inequality. Choose & small enough to com-
plete the proof when ||u,|| ;2 <o In the case H“fH ;2 = o, multiply the identity
u; +1°L(u;) = f by ung, where ng is a suitable cutoff localized in a ball B(0,R),
and use the idea of Lemma 8.7.2. Then let R — oo.]

8.7.3. Let L be as in the proof of Theorem 8.7.1.
(a) Show that for all # > 0 we have

(I+217) 72 = / e gy
0

by checking the identities
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/M(I—I— IZL)zefl’(I”zL)udu = /w e uHL) (I+1°L)*udu=1.
0 0

(b) Prove that the operator
4 =
T — / LU +L)2dt
TJo

satisfies TT = L.
(c) Conclude that the operator

16 [+
s 16 / P+
T Jo t

satisfies SS = L, that is, S is the square root of L. Moreover, all the integrals converge
in L*(R") when restricted to functions in f € ¢5°(R").

[Hint: Part (a): Write (I +12L)euIHL) = -4 (e~#+L)) | apply integration by
parts twice, and use Exercise 8.7.1. Part (b): Write the integrand as in part (a) and
use the identity

/ / ef(utervsz)LLZdtdS: n(uv)fé/ g*rzLLZZrdr.
o Jo 4 0

Setp =r?and use e PLL = d‘; (e~PL). Part (c): Show that T = S using an integration
by parts starting with the identity L= ¢ (¢L).]

8.7.4. Suppose that U is a measure on R’jfl. For a cube Q in R” we define the tent
T(Q) of Q as the set O x (0,4(Q)). Suppose that there exist two positive constants

o < 1 and B such that for all cubes Q in R” there exist subcubes Q; of Q with
disjoint interiors such that

L|e\ue > alal.
2. 1(T(@\U;T(0)) < Bl

Then u is a Carleson measure with constant

B

lufl, < B

[Hint: We have

IN

u(r(@) < n(T(@\UT(@))+Xu(r(e))

Blol+ ull, Slo)l.
J

IN
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and the last expression is at most (8 + (1 — )| u +)|0|. Assuming that |u v <
oo, we obtain the required conclusion. In general, approximate the measure by a
sequence of truncated measures.}

HISTORICAL NOTES

Most of the material in Sections 8.1 and 8.2 has been in the literature since the early develop-
ment of the subject. Theorem 8.2.7 was independently obtained by Peetre [254], Spanne [286], and
Stein [290].

The original proof of the 7'(1) theorem obtained by David and Journé [103] stated that if 7'(1),
T'(1) are in BMO and T satisfies the weak boundedness property, then 7 is L> bounded. This proof
is based on the boundedness of paraproducts and is given in Theorem 8.5.4. Paraproducts were first
exploited by Bony [28] and Coifman and Meyer [81]. The proof of L? boundedness using condition
(iv) given in the proof of Theorem 8.3.3 was later obtained by Coifman and Meyer [82]. The
equivalent conditions (ii), (iii), and (vi) first appeared in Stein [292], while condition (iv) is also due
to David and Journé [103]. Condition (i) appears in the article of Nazarov, Volberg, and Treil [245]
in the context of nondoubling measures. The same authors [246] obtained a proof of Theorems
8.2.1 and 8.2.3 for Calder6n—Zygmund operators on nonhomogeneous spaces. Multilinear versions
of the T(1) theorem were obtained by Christ and Journé [70], Grafakos and Torres [154], and
Bényi, Demeter, Nahmod, Thiele, Torres, and Villaroya [20]. The article [70] also contains a proof
of the quadratic T (1) type Theorem 8.6.3. Smooth paraproducts viewed as bilinear operators have
been studied by Bényi, Maldonado, Nahmod, and Torres [21] and Dini-continuous versions of
them by Maldonado and Naibo [225].

The orthogonality Lemma 8.5.1 was first proved by Cotlar [94] for self-adjoint and mutually
commuting operators 7}. The case of general noncommuting operators was obtained by Knapp and
Stein [190]. Theorem 8.5.7 is due to Calderdn and Vaillancourt [49] and is also valid for symbols
of class Sg’p when 0 < p < 1. For additional topics on pseudodifferential operators we refer to
the books of Coifman and Meyer [81], Journé [180], Stein [292], Taylor [309], Torres [315], and
the references therein. The last reference presents a careful study of the action of linear operators
with standard kernels on general function spaces. The continuous version of the orthogonality
Lemma 8.5.1 given in Exercise 8.5.8 is due to Calderdén and Vaillancourt [49]. Conclusion (iii) in
the orthogonality Lemma 8.5.1 follows from a general principle saying that if 3 x; is a series in a
Hilbert space such that || ¥ jc x;|| < M for all finite sets F, then the series ¥ x; converges in norm.
This is a consequence of the Orlicz—Pettis theorem, which states that in any Banach space, if 3.x,;
converges weakly for every subsequence of integers n;, then ¥ x; converges in norm.

A nice exposition on the Cauchy integral that presents several historical aspects of its study is
the book of Muskhelishvili [243]. See also the book of Journé [180]. Proposition 8.6.1 is due to
Plemelj [265] when I is a closed Jordan curve. The L? boundedness of the first commutator %}
in Example 8.3.8 is due to Calderén [42]. The L? boundedness of the remaining commutators %,
m > 2, is due to Coifman and Meyer [80], but with bounds of order m! HA’ ||'an These bounds are
not as good as those obtained in Example 8.3.8 and do not suffice in obtaining the boundedness
of the Cauchy integral by summing the series of commutators. The L boundedness of the Cauchy
integral when ||A’ is small enough is due to Calderdn [43]. The first proof of the boundedness
was obtained by Coifman, M°Intosh, and Meyer [79].
[Gnll 212 < Com* A"
The quantity m* was improved by Christ and Journé [70] to m'*® for any & > 0; it is announced
in Verdera [326] that Mateu and Verdera have improved this result by taking & = 0. Another proof
of the L? boundedness of the Cauchy integral was given by David [102] by employing the fol-
lowing bootstrapping argument: If the Cauchy integral is L> bounded whenever ||A’ H 1~ < €, then

[

of the Cauchy integral with arbitrary HA/H I

This proof is based on an improved operator norm for the commutators
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it is also L bounded whenever ||A’ H = < 190 €. A refinement of this bootstrapping technique was
independently obtained by Murai [241], who was also able to obtain the best possible bound for

the operator norm ||ér||L2—>L2 < C(l + ||A’HL,,) "2 in terms of HA’HLW. Here Cr is the operator
defined in (8.6.15). Note that the corresponding estimate for Cr involves the power 3/2 instead of
1/2. See the book of Murai [242] for this result and a variety of topics related to the commutators
and the Cauchy integral. Two elementary proofs of the L? boundedness of the Cauchy integral
were given by Coifman, Jones, and Semmes [77]. The first of these proofs uses complex variables
and the second a pseudo-Haar basis of L? adapted to the accretive function 1+ iA’. A geometric
proof was given by Melnikov and Verdera [231]. Other proofs were obtained by Verdera [326]
and Tchamitchian [310]. The proof of boundedness of the Cauchy integral given in Section 8.6 is
taken from Semmes [281]. The book of Christ [67] contains an insightful exposition of many of
the preceding results and discusses connections between the Cauchy integral and analytic capacity.
The book of David and Semmes [105] presents several extensions of the results in this chapter to
singular integrals along higher-dimensional surfaces.

The T(1) theorem is applicable to many problems only after a considerable amount of work;
see, for instance, Christ [67] for the case of the Cauchy integral. A more direct approach to many
problems was given by M¢Intosh and Meyer [224], who replaced the function 1 by an accretive
function b and showed that any operator 7 with standard kernel that satisfies 7'(b) = T*(b) =0
and HM,, TM;,HW p < comust be L? bounded. (M, here is the operator given by multiplication by b.)
This theorem easily implies the boundedness of the Cauchy integral. David, Journé, and Semmes
[104] generalized this theorem even further as follows: If b; and b, are para-accretive functions
such that T maps b1 65> — (b2%°)’ and is associated with a standard kernel, then 7 is L? bounded
if and only if T(b) € BMO, T'(by) € BMO, and ||My, TMy, ||, < e=. This is called the T (b)
theorem. The article of Semmes [281] contains a different proof of this theorem in the special case
T(b) =0and T'(1) = 0 (Exercise 8.6.6). Our proof of Theorem 8.6.6 is based on ideas from [281].
An alternative proof of the 7'(b) theorem was given by Fabes, Mitrea, and Mitrea [121] based on a
lemma due to Krein [200]. Another version of the 7'(b) theorem that is applicable to spaces with
no Euclidean structure was obtained by Christ [66].

Theorem 8.7.1 was posed as a problem by Kato [181] for maximal accretive operators and re-
formulated by M¢Intosh [222], [223] for square roots of elliptic operators. The reformulation was
motivated by counterexamples found to Kato’s original abstract formulation, first by Lions [215]
for maximal accretive operators, and later by M¢Intosh [220] for regularly accretive ones. The
one-dimensional Kato problem and the boundeness of the Cauchy integral along Lipschitz curves
are equivalent problems as shown by Kenig and Meyer [188]. See also Auscher, MIntosh, and
Nahmod [8]. Coifman, Deng, and Meyer [73] and independently Fabes, Jerison, and Kenig [119],
[120] solved the square root problem for small peturbations of the identity matrix. This method
used multilinear expansions and can be extended to operators with smooth coefficients. M¢Intosh
[221] considered coefficients in Sobolev spaces, Escauriaza in VMO (unpublished), and Alexopou-
los [3] real Holder coefficients using homogenization techniques. Peturbations of real symmetric
matrices with L™ coefficients were treated in Auscher, Hofmann, Lewis, and Tchamitchian [10].
The solution of the two-dimensional Kato problem was obtained by Hofmann and M¢Intosh [164]
using a previously derived T (b) type reduction due to Auscher and Tchamitchian [9]. Hofmann,
Lacey, and M“Intosh [165] extended this theorem to the case in which the heat kernel of e 'L sat-
isfies Gaussian bounds. Theorem 8.7.1 was obtained by Auscher, Hofmann, Lacey, M€Intosh, and
Tchamitchian [11]; the exposition in the text is based on this reference. Combining Theorem 8.7.1
with a theorem of Lions [215], it follows that the domain of v/L is L%(R”) and that for functions f
in this space the equivalence of norms H VL(f) H 2~ ||V f H 72 is valid.



Chapter 9
Weighted Inequalities

Weighted inequalities arise naturally in Fourier analysis, but their use is best jus-
tified by the variety of applications in which they appear. For example, the theory
of weights plays an important role in the study of boundary value problems for
Laplace’s equation on Lipschitz domains. Other applications of weighted inequali-
ties include extrapolation theory, vector-valued inequalities, and estimates for cer-
tain classes of nonlinear partial differential equations.

The theory of weighted inequalities is a natural development of the principles and
methods we have acquainted ourselves with in earlier chapters. Although a variety
of ideas related to weighted inequalities appeared almost simultaneously with the
birth of singular integrals, it was only in the 1970s that a better understanding of
the subject was obtained. This was spurred by Muckenhoupt’s characterization of
positive functions w for which the Hardy-Littlewood maximal operator M maps
LP(R",w(x)dx) to itself. This characterization led to the introduction of the class
A, and the development of weighted inequalities. We pursue exactly this approach
in the next section to motivate the introduction of the A, classes.

9.1 The A, Condition

A weight is a nonnegative locally integrable function on R” that takes values in
(0,00) almost everywhere. Therefore, weights are allowed to be zero or infinite only
on a set of Lebesgue measure zero. Hence, if w is a weight and 1/w is locally
integrable, then 1/w is also a weight.

Given a weight w and a measurable set E, we use the notation

w(E):/Ew(x)dx

to denote the w-measure of the set E. Since weights are locally integrable functions,
w(E) < o for all sets E contained in some ball. The weighted L? spaces are denoted
by LP(R",w) or simply L?(w). Recall the uncentered Hardy-Littlewood maximal

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 9, 279
(© Springer Science+Business Media, LLC 2009
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operators on R” over balls
1
M) =supAvelf| =sup o [ 1)y,
Box B Bax [B| /B
and over cubes

1
M) @) =supavelf| =sup [ 1£(5)ldy,

03x 0 05x Q] Jo
where the suprema are taken over all balls B and cubes Q (with sides parallel to the
axes) that contain the given point x. It is a classical result proved in Section 2.1 that
forall 1 < p < oo there is a constant C,(n) > 0 such that

M(f)(x)? dx < Gy /|f )P dx ©.1.1)
Rn

for all functions f € LP(R"). We are concerned with the situation in which the mea-
sure dx in (9.1.1) is replaced by w(x) dx for some weight w(x).

9.1.1 Motivation for the A, Condition

The question we raise is whether there is a characterization of all weights w(x) such
that the strong type (p, p) inequality

MU Wiy <€ [ 170 wds 9.12)
R R”
is valid for all f € LP(w).

Suppose that (9.1.2) is valid for some weight w and all f € LP(w) for some
1 < p < eo. Apply (9.1.2) to the function fyp supported in a ball B and use that
Avgg |f| <M(fyxs)(x) for all x € B to obtain

W) (Ayelr)” /MfXB Pde<C”/|f|”wdx 9.1.3)
It follows that
1 r Cg
<|B|/B|f(t)|df> = W(B)/Blf(X)l”W(x)dx 9.1.4)

for all balls B and all functions f. At this point, it is tempting to choose a function
such that the two integrands are equal. We do so by setting f = wP'/P_ which gives
fPw= w~P'/P_Under the assumption that infg w > 0 for all balls B, it would follow
from (9.1.4) that
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) (g o)
su w(x)dx w(x)” r=1dx <C?. (9.1.5)
Bba%s(lBl A |B| JB ® g

If infg w = O for some balls B, we take f = (w+ 8)*"//” to obtain

( I;I /z;w(x)dx> ( I;I /z;(w(x) +‘°’)71;/ dx)p< |;| /B (Wv(vgid;,,,)lg Ch (9.1.6)

for all € > 0. Replacing w(x)dx by (w(x) + €)dx in the last integral in (9.1.6) we
obtain a smaller expression, which is also bounded by Cb. Since —p'/p = —p'+ 1,
(9.1.6) implies that

<|113| /Js;w(x)dx> <|119| /B(W(x)“)_l;’, dX> "o cr, 9.1.7)

from which we can still deduce (9.1.5) via the Lebesgue monotone convergence
theorem by letting € — 0. We have now obtained that every weight w that satisfies
(9.1.2) must also satisfy the rather strange-looking condition (9.1.5), which we refer
to in the sequel as the A, condition. It is a remarkable fact, to be proved in this chap-
ter, that the implication obtained can be reversed, that is, (9.1.2) is a consequence
of (9.1.5). This is the first significant achievement of the theory of weights [i.e., a
characterization of all functions w for which (9.1.2) holds]. This characterization is
based on some deep principles discussed in the next section and provides a solid
motivation for the introduction and careful examination of condition (9.1.5).

Before we study the converse statements, we consider the case p = 1. Assume
that for some weight w the weak type (1, 1) inequality

w({x eR": M(f)(x) > a}) < /|f ) Iw(x) (9.1.8)

holds for all functions f € L' (R"). Since M(f)(x) > Avgg | f| for all x € B, it follows
from (9.1.8) that for all & < Avgg|f| we have

w(B) <w({x eR": M(f)(x) > a}) < / (0 w(x) (9.1.9)
Taking fxp instead of f in (9.1.9), we deduce that
avelfli= o [1folas O [lfeiwoae o010
= x)|w(x)dx 1.
0B ) S
for all functions f and balls B. Taking f = s, we obtain
1 o ¢, W) 9.1.11)
|B| w(B)

where S is any measurable subset of the ball B.
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Recall that the essential infimum of a function w over a set E is defined as

essb._inf(w) =inf{b>0: [{x€E: w(x) <b}|>0}.

Then for every a > ess.infg(w) there exists a subset S, of B with positive measure
such that w(x) < a for all x € S,;. Applying (9.1.11) to the set S,, we obtain

w(t)dt < Cia, (9.1.12)
|B| / IS | Js.
which implies
1
8] / w(t)dt < Cyw(x) for all balls B and almost all x € B. (9.1.13)
B

It remains to understand what condition (9.1.13) really means. For every ball B,
there exists a null set N(B) such that (9.1.13) holds for all x in B\ N(B). Let N be
the union of all the null sets N(B) for all balls B with centers in Q" and rational
radii. Then N is a null set and for every x in B\ N, (9.1.13) holds for all balls B with
centers in Q" and rational radii. By density, (9.1.13) must also hold for all balls B
that contain a fixed x in R" \ N. It follows that for x € R" \ N we have

M(w)(x) = sup “19' /B w(t)dt < Crw(x). (9.1.14)

B>x

Therefore, assuming (9.1.8), we have arrived at the condition
M(w)(x) < Ciw(x) for almost all x € R", (9.1.15)

where C| is the same constant as in (9.1.13).

We later see that this deduction can be reversed and we can obtain (9.1.8) as a
consequence of (9.1.15). This motivates a careful study of condition (9.1.15), which
we refer to as the A; condition. Since in all the previous arguments we could have
replaced cubes with balls, we give the following definitions in terms of cubes.

Definition 9.1.1. A function w(x) > 0 is called an A; weight if
M(w)(x) < Ciw(x) for almost all x € R" (9.1.16)

for some constant C;. If w is an A| weight, then the (finite) quantity

b= 20 (g 0 )b g 00

is called the A Muckenhoupt characteristic constant of w, or simply the A| charac-
teristic constant of w. Note that A| weights w satisfy
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t)dr < [w]a, ess.infw 9.1.18
|Q|/ Al Ve0 ( ) ( )

for all cubes Q in R”.
Remark 9.1.2. We also define

1
WE™S = sup <|B|/Bw(t)dt>leHLw<B>. (9.1.19)

Bhballs in R”

Using (9.1.13), we see that the smallest constant C; that appears in (9.1.16) is equal
to the A characteristic constant of w as defined in (9.1.19). This is also equal to the
smallest constant that appears in (9.1.13). All these constants are bounded above
and below by dimensional multiples of [w]4,

We now recall condition (9.1.5), which motivates the following definition of A,
weights for 1 < p < eo,

Definition 9.1.3. Let 1 < p < o. A weight w is said to be of class A, if

1 1 o p-l
chiipian<|Q|/QW(x)dx)<|Q|/QW("> ’ ldx) <= 0120

The expression in (9.1.20) is called the A, Muckenhoupt characteristic constant of
w (or simply the A, characteristic constant of w) and is denoted by [w]a »

Remark 9.1.4. Note that Definitions 9.1.1 and 9.1.3 could have been given with the

set of all cubes in R” replaced by the set of all balls in R". Defining [w]gi‘}ls as in
(9.1.20) except that cubes are replaced by balls, we see that
e Wla, 2. A—n\P

(w2™)F < [W]bal[ls < (027" (9.1.21)

4

9.1.2 Properties of A, Weights

It is straightforward that translations, isotropic dilations, and scalar multiples of A,
weights are also A, weights with the same A, characteristic. We summarize some
basic properties of A, weights in the following proposition.

Proposition 9.1.5. Let w € A, for some 1 < p < oo. Then
(1) [6* (W)la, = [Wla,, where S*(w)(x) = w(Axy, ..., Ax,).
(2) [T%(W)]a, = [W]a,, where T5(w)(x) = w(x—z), z € R".
(3) [Aw]a, = [Wla, for all A > 0.
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— l . . . . .
(4) When 1 < p < oo, the functionw »-! is in A,y with characteristic constant

1 1

[W_IH ]A,,/ = [W]X;l .

Therefore, w € Ay if and only if w=' € Ay and both weights have the same A,
characteristic constant.

(5) [Wla, > 1 for all w € Ap,. Equality holds if and only if w is a constant.

(6) The classes A, are increasing as p increases, precisely, for 1 < p < g < o we
have

Wla, < [Wla,-

(7) lim [W]Aq = [W]Al lfWEA].
g—1+

(8) The following is an equivalent characterization of the A, characteristic con-
stant of w:

(\é\ jQ|f(t)|dt)p }

[W]AP = sup sup { w(lQ) jQ |f(l‘)|PW(t)dt

Qcubes fin LP(Q,wdx)
inR" | f|>0ae. onQ
(9) The measure w(x)dx is doubling: precisely, for all A > 1 and all cubes Q we

have

w(AQ) < l"p[w]Ap w(Q).
(AQ denotes the cube with the same center as Q and side length A times the
side length of Q.)

Proof. The simple proofs of (1), (2), and (3) are left as an exercise. Property (4) is
also easy to check and plays the role of duality in this context. To prove (5) we use
Holder’s inequality with exponents p and p’ to obtain

1 1 1 1 ]‘7
1= o Jy = g Jpr ) ras <l

1
with equality holding only when w(x)» = cw(x)™ » for some ¢ > 0 (i.e., when w is a
constant). To prove (6), observe that 0 < ¢’ — 1 < p’ — 1 < e and that the statement

W]a, < W,
is equivalent to the fact

)< [

[[w™! HL‘J’*I(Q,l‘IQxl 0.5

Property (7) is a consequence of part (a) of Exercise 1.1.3.
To prove (8), apply Holder’s inequality with exponents p and p’ to get
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e (IQI/ I ldx)
- <IQI/ 7 <x>lw<x>fiw<x)—,£dx>"
= IQI”(/ MOl >dx)( /Q w(x) dx>/f/

<w(Q) /Q|f(x)|1’w(x)dx) <|Q| /QW(x)dx) <|;| /QW(X)Plldx>pl
= MA”((»(IQ) /Q|f(x)|”W(x)dx),

This argument proves the inequality > in (8) when p > 1. In the case p = 1 the
obvious modification yields the same inequality. The reverse inequality follows by
taking f = (w-+€)~?"/? as in (9.1.6) and letting £ — 0.

Applying (8) to the function f = ¢ and putting A Q in the place of Q in (8), we

obtain
w(AQ) < A" [w]s,w(Q),

which says that w(x) dx is a doubling measure. This proves (9). O

Example 9.1.6. A positive measure d is called doubling if for some C < eo,
w(2B) < Cu(B) (9.1.22)

for all balls B. We show that the measures |x|?dx are doubling when a > —n. We
divide all balls B(x¢,R) in R” into two categories: balls of type I that satisfy |xo| > 3R
and type II that satisfy |xo| < 3R. For balls of type I we observe that

2R)*  wh >0,
/ x| dx < va(2R)" (lxo| +2R)* whena >
B(x0,2R) (lxo| =2R)* when a <0,

—R)¢ h >
/ X[ dx > vuR” (Jxo| —R)* whena >0,
B(xo.R) (|xo] +R)* whena < 0.

Since [xo| > 3R, we have |xo| + 2R < 4(|xo| —R) and |xo| — 2R > | (|xo| + R), from
which (9.1.22) follows with C = 23"4lal,
For balls of type II, we have x| < 3R and we note two things: first

/ |x|“dx < / |x|“dx = ¢, R"*,
B(x0,2R) |x|<5R

and second, since |x|* is radially decreasing for a < 0 and radially increasing for
a > 0, we have
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/ |x|“ dx when a > 0,
B(O.R)

/ |x|“dx >
B(XO7R)

|x|“dx whena < 0.

X0
B3R 0| R)

For x € B(3R°|,R) we must have |x| > 2R, and hence both integrals on the right

xol’

are at least a multiple of R"™, This establishes (9.1.22) for balls of type II.

Example 9.1.7. We investigate for which real numbers a the power function |x|* is
an A, weight on R". For 1 < p < oo, we need to examine for which a the following
expression is finite:

P
1 1 _a? I

sup /x“dx)( /x de) ) (9.1.23)

Bbaus(|B| B| | |B| B| |

As in the previous example we split the balls in R” into those of type I and those of
type IL. If B = B(xo,R) is of type I, then the presence of the origin does not affect
the behavior of either integral in (9.1.23), and we see that the expression inside the
supremum in (9.1.23) is comparable to

P
ol (Jxol 7 ) 7 = 1.

If B(xo,R) is a ball of type II, then B(0,5R) has size comparable to B(xo,R) and
contains it. Since the measure |x|* dx is doubling, the integrals of the function |x|*
over B(xo,R) and over B(0,5R) are comparable. It suffices therefore to estimate the
expression inside the supremum in (9.1.23), in which we have replaced B(xo,R) by
B(0,5R). But this is

P
1 g 1 » P
ay / ~a?
(vn(SR)" /B<0,5R>|x| x) (vn(SR)" B(0,5R) a x)

/ 0
_ <(5;)n /SRra+n—1dr) ((SZ)n /SRr—a’; +n—1dr>17 7
0 0

which is seen easily to be finite and independent of R exactly when —n < a <n 11:"
We conclude that |x| is an A, weight, 1 < p < eo, if and only if —n <a <n(p—1).

The previous proof can be suitably modified to include the case p = 1. In this case
we obtain that |x|* is an A; weight if and only if —n < a < 0. As we have seen, the
measure |x|* dx is doubling on the larger range —n < a < . Thus fora > n(p— 1),
the function |x|* provides an example of a doubling measure that is not in A,,.

Example 9.1.8. On R” the function

u(x) = log \;1(\ when |x| < !,
1 otherwise,
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is an A; weight. Indeed, to check condition (9.1.19) it suffices to consider balls of
type I and type II as defined in Example 9.1.6. In either case the required estimate
follows easily.

We now return to a point alluded to earlier, that the A, condition implies the
boundedness of the Hardy-Littlewood maximal function M on the space L?(w). To
this end we introduce four maximal functions acting on functions f that are locally
integrable with respect to w:

M) = sup / |Flwdy,

where the supremum is taken over open balls B that contain the point x and

W 1

s>0W

MY (f)(x) = SQL;p /Iflwdy,

where Q is an open cube containing the point x, and

oy
\flwdy,
5>0 W(Q(x,8)) Jo(x.)
where Q(x,0) = H;*Zl(xj —8,x;+ ) is a cube of side length 28 centered at
x = (x1,...,%,). When w = 1, these maximal functions reduce to the standard ones
M(f), M(f), Mc(f), and M,(f), the uncentered and centered Hardy-Littlewood
maximal functions with respect to balls and cubes, respectively.

Theorem 9.1.9. Let w € A, (R") for some 1 < p < oo. Then there is a constant Cp, ,
such that

1
[| V| < Cuplwli " (9.1.24)

LP(w)—LP(w) =

Since the operators M., M., M, and M are pointwise comparable, a similar conclu-
sion holds for the other three as well.

Proof. Fix a weight w and let 6 = w™ ph be the dual weight. Fix an open cube
0 = QO(xp,r) in R" with center x¢ and side length 2r and write

PIALS |IQ|:(3Q){ o Loa0) /'f|dY>p_l}p]'. 9.125)

For any x € Q, consider the cube Q(x,2r). Then Q € Q(x,2r) € 30 = O(x,3r) and

thus
1 1 . »
c(30) /Q'f = 5(0(,2) /Q<x,2,> ldy < M (Iflo™)(x)

for any x € Q. Inserting this expression in (9.1.25), we obtain
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1
- 'G(3Q { 1 / o ~1yp—1 }”'
> M; o )P 7d . (9.1.26)
AL |p£ wio) | MEro™ )y ay

Since one may easily verify that

w(Q)o(30)"!
0P

<3"wla,
it follows that

o1 iy <375 g (30621 )” v )
since xp is the center of Q. Hence, we have

Me(r) <37 bilg,! (M [ 1) W 1])

Applying L? (w) norms, we deduce

M)y < 37 b, DL I0™) w120
<35 lp,! e g,,;Hp loe i) w20,
O TN Yo [N V(1 a1
<3505 1219 Doyt L
and conclusion (9.1.24) follows, provided we show that
V] o ) oy < Clan) <o (9.1.27)

for any 1 < g < e and any weight w.
We obtain this estimate by interpolation. Obviously (9.1.27) is valid when g = oo
with C(eo,n) = 1. If we prove that

| v <C(1,n) < oo, (9.1.28)

||Ll (w)—=Lb=(w) =

then (9.1.27) will follow from Theorem 1.3.2.
To prove (9.1.28) we fix f € L' (R", wdx). We first show that the set

Ep ={M(f) > 1}

is open. For any r > 0, let Q(x,r) denote an open cube of side length 2r with center
x € R". If we show that for any r > 0 and x € R” the function
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— d 9.1.29
T w0, ) /Q(X-,r) flwdy ( )

is continuous, then M}'(f) is the supremum of continuous functions; hence it is
lower semicontinuous and thus the set £, is open. But this is straightforward. If
Xy = %o, then w(Q(xs,)) — w(Q(xo, 7)) and also foy,,  [Flwdy = Jog,y ) |flwely
by the Lebesgue dominated convergence theorem. Since w(Q(xo,r)) # 0, it follows
that the function in (9.1.29) is continuous.

Given K a compact subset of E,, for any x € K select an open cube Q, centered

at x such that |
wdy > 1.
(00 Jo 11

Applying Lemma 9.1.10 (proved immediately afterward) we find a subfamily
{ij "_ of the family of the balls {Q: : x € K} such that (9.1.30) and (9.1.31)
hold. Then

u LN 24"
w(K) < 3w(0y) < 3y /Q Away <= [ 17lway,

where the last inequality follows by multiplying (9.1.31) by |f|w and integrating
over R”. Taking the supremum over all compact subsets K of £, and using the inner
regularity of wdx, which is a consequence of the Lebesgue monotone convergence
theorem, we deduce that M maps L' (w) to L' (w) with constant at most 24”. Thus
(9.1.28) holds with C(1,n) = 24". O

Lemma 9.1.10. Let K be a bounded set in R" and for every x € K, let Qx be an open
cube with center x and sides parallel to the axes. Then there are an m € Z U {co}
and a sequence of points {x;}_ in K such that

K 0;, (9.1.30)

N
TCs

and for almost all y € R" one has

Y Xo,, () < 24" (9.1.31)
=1

Proof. Let
so =sup{f(Qyx): x€K}.

If 59 = oo, then there exists x; € K such that £(Qy,) > 4L, where [—L,L]" contains
K. Then K is contained in Qy, and the statement of the lemma is valid with m = 1.
Suppose now that sy < . Select x| € K such that £(Qy, ) > so/2. Then define

Ky =K\ Qy,, s1 =sup{l(Qy): x €Ki},

and select x, € K such that £(Qy,) > s1/2. Next define
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K> :K\(Qx| UQXz)v SZZSUP{é(Qx) : XEKZ},

and select x3 € K> such that £(Qx,) > s2/2. Continue until the first integer m is
found such that K,, is an empty set. If no such integer exists, continue this process
indefinitely and set m = co.

We claim that for all i # j we have éQx,» N éij = (. Indeed, suppose that i > j.
Thenx; € K;_ | = K\ (Qx] U--- UQX:‘—I); thus x; ¢ Qj. Alsox; € K;_ g Kl'*l’ which
implies that £(Qy;) < sj-1 < 26(Qx;). If x; ¢ Q; and £(Qy;) > 20(Qy,), it easily
follows that ;Qx,» N éij =0.

We now prove (9.1.30). If m < o, then K, = 0 and therefore K & U7 Qy;. If
m = oo, then there is an infinite number of selected cubes ij. Since the cubes ;ij
are pairwise disjoint and have centers in a bounded set, it must be the case that
some subsequence of the sequence of their lengths converges to zero. If there exists
ay€eK\ U7=1 Qy;, this y would belong to all K;, j=1,2,..., and then s; > £(Qy)
for all j. Since some subsequence of the s;’s tends to zero, it would follow that
£(Qy) =0, which would force the open cube Qy to be the empty set, a contradiction.
Thus (9.1.30) holds.

Finally, we show that 3", Xo,; (y) < 24" for almost every point y € R". To
prove this we consider the n hyperplanes H; that are parallel to the coordinate
hyperplanes and pass through the point y. Then we may write R"” as a union of
2" higher-dimensional open “octants” O, and n hyperplanes H; of n-dimensional
Lebesgue measure zero. We show that there are only finitely many points x; in a
given such open “octant” O,. Indeed, let us fix an O, and pick an x;, € KN O, such
that kao contains y and the distance from x;, to y is largest possible. If x; is another
point in KN O, such that Qy; contains y, then ¢ (kao) > £(Qx;), which yields that
xj € kao. As previously observed, one must then have j < kg, which implies that
LY (Qx,) < £(Qx;). Thus all cubes Qy; with centers in K N O, that contain the fixed
point y have side lengths comparable to that of kao. A simple geometric argument
now gives that there are at most finitely many cubes Q; of side length between

and 2o that contain the given point y such that ;Qx ; are pairwise disjoint. Indeed,
letar =3¢ (Qx,, ) and let {Ox, }rer be the cubes with these properties. Then we have

=|U30x] < |UQx| < (4a)",

rel rel rel

o"|1|
W<y,

since all the cubes Qy, contain the point y and have length at most 2 and they
must therefore be contained in a cube of side length 40 centered at y. This observa-
tion shows that |I| < 12", and since there are 2" sets O,, we conclude the proof of
(9.1.31). O

Remark 9.1.11. Without use of the covering Lemma 9.1.10, (9.1.28) can be proved
via the doubling property of w (cf. Exercise 2.1.1(a)), but then the resulting constant
C(g,n) would depend on the doubling constant of the measure wdx and thus on
[w]a,; this would yield a worse dependence on [w]s, in the constant in (9.1.24).
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Exercises

9.1.1. Let k be a nonnegative measurable function such that k,k~! are in L*(R").
Prove that if w is an A, weight for some 1 < p < o, then so is kw.

9.1.2. Let wy, wy be two A| weights and let 1 < p < oo. Prove that wlwé_p isanA,
weight by showing that

1— -1
wiwy Pla, < [wila, [wal},

9.1.3. Suppose that w € A, for some p € [1,0) and 0 < § < 1. Prove that w® € Ay,
where ¢ = §p+ 1 — 8, by showing that

)

%la, < 13, -

[w

9.1.4. Show that if the A, characteristic constants of a weight w are uniformly
bounded for all p > 1, then w € A;.

9.1.5. Letwy € Ap, and wy € A, for some 1 < pg, py <eo. Let 0 < 6 < 1 and define

1 1-6 6 1 16 6
= + and  wr =w," w/'.
p Po P1
Prove that
< (1_9)15:) 9157] .
[W]A,, = [WO]A,,O [WI]A,,I ;

thus wisin A,,.

9.1.6. Let 1 < p < . A pair of weights (u,w) that satisfies

o <l/d)(1/_]ld)p_l
U, Wla, A,) = Sup udx w r-ldx < oo
(4p45) Qmﬁ)es |Q| 0] |Q| 0]
in n

is said to be of class (A;,Ap). The quantity [u,w](4, 4, is called the (4,,A,) char-
acteristic constant of the pair.

(a) Show that for any f € L} .(R") with 0 < f < e a.e., the pair (f,M(f)) is of class
(Ap,A,) for every 1 < p <o with characteristic constant independent of f.

(b) If (u,w) is of class (A,,A,), then the Hardy-Littlewood maximal operator M
may not map L? (w) to L” (u).

[Hint: Try the pair (M(g)' 7, |g|' ") for a suitable g.]

9.1.7. In contrast to part (b) of Exercise 9.1.6, show that if the pair of weights (u, w)
is of class (A,,A,) for some 1 < p < o, then M must map L”(w) to L”*(u) with
1

norm at most C(n, p)[u, w] (”AP )

[Hint: Show first using Holder’s inequality that for all functions f and all cubes Q'
we have
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| P '
dx ) u(Q) <[u,w / Pywdx.
(1o, 17148) (@) < e, [ 17
Replacing f by fxo, where Q C Q', obtain that

Jolf1Pwdx

(fQ |f| dx)P .

Then use Exercise 4.3.9 to find disjoint cubes Q; such that the set E, = {x € R" :
M.(f)(x) > a} is contained in the union of 3Q; and f < ‘Qlj‘ fQj |f()|dt < 5.
Then u(Eq) < 3;u(3Q;), and bound each u(3Q;) by taking Q' =3Q;and Q= Q;
in the preceding estimate.}

u(Q") < [u,wlia, 4,107

9.1.8. Use Exercise 9.1.7 to prove that for all 1 < g < oo there is a constant C; < oo
such that for all f,g > 0 locally integrable functions on R" we have

M)W g dr <€, [ 7007 M(g)(0)dx.

RV!
[Hint: Take 1 < p < g and interpolate between L” and L*.]

9.1.9.Let w € A, for some 1 < p < e and k > 1. Show that min(w,k) is in A, and
satisfies
[mln(w7 k)]Ap S CP ([W]Ap + 1)7

where ¢, = 1 when p <2 and ¢, = 27~2 when p > 2.

, o .o _ 1
[Hint: Use that ‘é‘ Jomin(w,k)" »~1dx < ‘é‘ Jow »~'dx+k r-1,raise to the power
p— 1, and multiply by min (k, 5, [owdx).]

9.1.10. Suppose that w; € Ap; with 1 < j <m forsome 1 < py,...,pyu < e and let
0<6y,...,6, <1besuchthat ; +---+ 6, = 1. Show that
]
wit W € Amax{p1,...pm} -

[Hint: First note that each weight w; lies in Apax(p, ... p,} and then apply Holder’s
inequality.}

9.1.11. Let w; € Ap, and w, € A, for some 1 < py, py < eo. Prove that
Wi +wala, < [wila,, +[woa,, .

where p = max(pi, p2).

9.1.12. Prove the claim of Example 9.1.8.
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9.2 Reverse Holder Inequality for A, Weights and Consequences

An essential property of A, weights is that they assign to subsets of balls mass
proportional to the percentage of the Lebesgue measure of the subset within the
ball. The following lemma provides a way to quantify this statement.

Lemma 9.2.1. Let w € A}, for some 1 < p < oo and let 0 < o < 1. Then there exists
B < 1 such that whenever S is a measurable subset of a cube Q that satisfies |S| <
o|Q|, we have w(S) < Bw(Q).

Proof. Taking f = y4 in property (8) of Proposition 9.1.5, we obtain

() s
We write S = O\ A to get
(1 10) <t (1-2g)): 022
Given 0 < a < 1, set
B=1- (1= a)? (9.2.3)
[Wla,
and use (9.2.2) to obtain the required conclusion. O

9.2.1 The Reverse Holder Property of A, Weights

We are now ready to state and prove one of the main results of the theory of weights,
the reverse Holder inequality for A, weights.

Theorem 9.2.2. Let w € A, for some 1 < p < oo. Then there exist constants C and
Y > 0 that depend only on the dimension n, on p, and on [w] A, such that for every
cube Q we have

(@ /Qw(t)1+7dt) "< |g| /Qw(t)dt. (9.2.4)

Proof. Let us fix a cube Q and set

1
o = |Q|/Qw(x)dx.

We also fix 0 < o < 1. We define an increasing sequence of scalars

0 <O <0 <o <O < -n
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for k > 0 by setting
__nn—1 _ (An,—1\k
g1 =2"0 o or o= (2"a"") o,

and for each k > 1 we apply a Calderén—Zygmund decomposition to w at height 0.
Precisely, for dyadic subcubes R of Q, we let

1
R| /Rw(x)dx> (o7} (9.2.5)

be the selection criterion. Since Q does not satisfy the selection criterion, it is not
selected. We divide the cube Q into a mesh of 2" subcubes of equal side length, and
among these cubes we select those that satisfy (9.2.5). We subdivide each unselected
subcube into 2" cubes of equal side length and we continue in this way indefinitely.
We denote by {Q ;}; the collection of all selected subcubes of Q. We observe that
the following properties are satisfied:

1
1) oy < / w(t)dt <2"oy.
|O.jl o,
(2) For almost all x ¢ Uy we have w(x) < oy, where Uy = |J Ok ;.
J
(3) Each Qi1 ; is contained in some QO ;.

Property (1) is satisfied since the unique dyadic parent of Oy ; was not chosen in the
selection procedure. Property (2) follows from the Lebesgue differentiation theorem
using the fact that for almost all x ¢ Uy there exists a sequence of unselected cubes
of decreasing lengths whose closures’ intersection is the singleton {x}. Property (3)
is satisfied since each Qy ; is the maximal subcube of Q satisfying (9.2.5). And since
the average of w over Oy ; is also bigger than o, it follows that QO ; must be
contained in some maximal cube that possesses this property.

We now compute the portion of Oy ; that is covered by cubes of the form Q1 ;
for some j. We have

1
2"y > w(t)dt
|Qk71| Ok 1NUk+1

1

1
- Qiil [ wa
|Qk,l|j:Qk+12,;ngJ POkl o,

| Ok MUk |
|Ox.1] s
_ |Qk,lﬁUk+l‘ 2ol

Ok

It follows that |Qk,z NUg+1 | < ot|Qk,|; thus, applying Lemma 9.2.1, we obtain

w(Qri NUky1)
w(Qk,1)

(1-a)

Wla,

<B=1-

)
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from which, summing over all /, we obtain
W(Ukr1) < Bw(Us).

The latter gives w(Uy) < B*w(Up). We also have |U 1| < a|Uy; hence |Ui| — 0 as
k — oo. Therefore, the intersection of the Uy’s is a set of Lebesgue measure zero. We
can therefore write

0= (0\Uo) J (| U\ Uis)
k=0
modulo a set of Lebesgue measure zero. Let us now find a ¥ > 0 such that the reverse

Holder inequality (9.2.4) holds. We have w(x) < oy for almost all x in Q\ Uy and
therefore

L ;
/Q w(t) T dr = /Q\Uow(t)yw(t)dt—i—];b /U L M)

ogw(Q\Uo)+ Y, ot w(Us)
k=0

IN

IN

(@ \ Vo) + 3 (2" )Y Brw(U)
k=0
(1+ (2" Vz (2" Vkﬁ) Q)

(s (5, )

provided y > 0 is chosen small enough that (2”0~ !)7B < 1. Keeping track of the
constants, we conclude the proof of the theorem with

| /\

—1 lo —1lo —(1—a)?
/e ogh _ log([wla,) —log([wla, — (1-0)") ©92.6)
log2" —loga log2" —loga
and Iy .
2"o~ %o~
co1y ZO) g (2" 9.2.7)

1= (2"a")"B - I—(2rat) (1_([W]A)”) .

Note that up to this point, & was an arbitrary number in (0, 1), and it may be chosen
to maximize (9.2.6). O

Remark 9.2.3. It is worth observing that for any fixed 0 < o < 1, the constant in
(9.2.6) decreases as [w]4, increases, while the constant in (9.2.7) increases as [w]4,,
increases. This allows us to obtain the following stronger version of Theorem 9.2.2:

Forany 1 < p < eoand B > 1, there exist positive constants C = C(n, p,B) and y=
¥(n, p, B) such that for all w € A, satisfying [w]4, < B the reverse Holder condition
(9.2.4) holds for every cube Q. See Exercise 9.2.4(a) for details.
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Observe that in the proof of Theorem 9.2.2 it was crucial to know that for some
0<a,B < 1wehave

S| < |Q] = w(S) < Bw(Q) (9.2.8)

whenever S is a subset of the cube Q. No special property of Lebesgue measure was
used in the proof of Theorem 9.2.2 other than its doubling property. Therefore, it is
reasonable to ask whether Lebesgue measure in (9.2.8) can be replaced by a general
measure U satisfying the doubling property

1(30) < Cup(Q) < 9.2.9)

for all cubes Q in R". A straightforward adjustment of the proof of the previous
theorem indicates that this is indeed the case.

Corollary 9.2.4. Let w be a weight and let L be a measure on R" satisfying (9.2.9).
Suppose that there exist 0 < o, B < 1, such that

u(S) < apu(Q) — /S w(t)du(r) < B /Q w(t)du(r)

whenever S is a [L-measurable subset of a cube Q. Then there exist 0 < C,y < oo
[which depend only on the dimension n, the constant C, in (9.2.9), o, and B] such
that for every cube Q in R" we have

1
(uigr L@ wann) "< O [ wtaut 92.10)
1(Q) Jo Q) Jo ' o
Proof. The proof of the corollary can be obtained almost verbatim from that of
Theorem 9.2.2 by replacing Lebesgue measure with the doubling measure du and
the constant 2" by C,,.

Precisely, we define o4 = (C, 00~ !)* 0, where oy is the p-average of w over Q;
then properties (1), (2), (3) concerning the selected cubes {Qy ; } ; are replaced by

1
(o) o4 < | winydu(o < G
H u(Okj) O "
(2) On 0\ U, we have w < o p-almost everywhere, where Uy, = |J Ok,
J
(3u) Each Oy, ; is contained in some Q.

To prove the upper inequality in (1) we use that the dyadic parent of each selected
cube Qy ; was not selected and is contained in 30y ;. To prove (2,,) we need a dif-
ferentiation theorem for doubling measures, analogous to that in Corollary 2.1.16.
This can be found in Exercise 2.1.1. The remaining details of the proof are trivially
adapted to the new setting. The conclusion is that for

—logf

0<y<
4 logC, —loga

(9.2.11)
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and

2a~)”
1— (G~ )7B’
(9.2.10) is satisfied. ]

C=1+ 9.2.12)

9.2.2 Consequences of the Reverse Holder Property

Having established the crucial reverse Holder inequality for A, weights, we now
pass to some very important applications. Among them, the first result of this section
yields that an A, weight that lies a priori in Ll (R") must actually lie in the better

loc
space LIIOJEG(R") for some ¢ > 0 depending on the weight.

Theorem 9.2.5. If w € A, for some 1 < p < oo, then there exists a number y > 0
(that depends on [wa,, p, and n) such that wit? e A,

Proof. The proof is simple. When p = 1, we apply the reverse Holder inequality of
Theorem 9.2.2 to the weight w to obtain

1+y
| él / w(t)*Tdr < <|g| / w(t)dt) < C1 ] () Y
0] 0]

for almost all x in the cube Q. Therefore, witVisan A, weight with characteristic
constant at most Clﬂ’[w]/lhﬂ. (C is here the constant of Theorem 9.2.2.) When p >
1, there exist y;,7% > 0 and C;,C; > 0 such that the reverse Holder inequality of

Theorem 9.2.2 holds for the weights w € A, and w™ l’l*' €Ay, that is,

1
(|é|/gw(”1”‘dt> g o

1
(|é| /QW(”_”I'M@ - |C<22| wlay .

Taking Y = min(¥1, ¥»), both inequalities are satisfied with v in the place of y;, 1. It
follows that w7 is in A, and satisfies

IN

w7, < (Y)W 9.2.13)

This concludes the proof of the theorem. g

Corollary 9.2.6. For any 1 < p < e and for everyw € Ap thereis aq = q([wla,, p,n)
with q < p such that w € Ay. In other words, we have

A= U A
q&(L.p)
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Proof. Givenw € A, let y,Cy,C, be as in the proof of Theorem 9.2.5. In view of
the result in Exercise 9.1.3 (with § = 1/(1+7),if w77 € A, and
1 1 +
I+y I+y 1+vy

thenw € A; and

1 ! _
Wla, = (W) 157]y, < W07 <G CY "Wla, ,

where the last estimate comes from (9.2.13). Since 1 < g = ’1’:: < p, the required

conclusion follows. Observe that the constants C;C} !, g, and ! , increase as [wiy,
increases. O

Another powerful consequence of the reverse Holder property of A, weights is
the following characterization of all A; weights.

Theorem 9.2.7. Let w be an Ay weight. Then there exist 0 < € < 1, a nonnegative
function k such that k,k=' € L, and a nonnegative locally integrable function f
that satisfies M(f) < oo a.e. such that

w(x) =k(x)M(f)(x)®. (9.2.14)

Conversely, every weight w of the form (9.2.14) for some k, f as previously is in A
with

C _
by <l
where C, is a universal dimensional constant.

Proof. In view of Theorem 9.2.2, there exist 0 < y,C < o such that the reverse
Holder condition

<|;|/Qw(t)1+?’dt> |Q|/ £)dt < Cwla, w(x) 9.2.15)

holds for all cubes Q for all x in Q \ Ep, where E is a null subset of Q. We set

1
14y

1

and  f(x) =wx)"T =w(x)e.

Letting N be the union of Eg over all Q with rational radii and centers in Q", it fol-
lows from (9.2.15) that the uncentered Hardy-Littlewood maximal function M, (f)
with respect to cubes satisfies

Mc(f)(x) < CHY W] T () forx € R"\ N.

This implies that M(f) < C,,CHY[W]j‘TYf a.e. for some constant C,, that depends
only on the dimension. We now set
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and we observe that C™!C, #[w]; | <k <1ae.
It remains to prove the converse. Given a weight w = kM(f)¢ in the form (9.2.14)
and a cube Q, it suffices to show that

< gM(f)s(x) for almost all x € Q, (9.2.16)

|;| /QM(f)(t)sdt< G

since the corresponding statement for kM (f)¢ follows trivially from (9.2.16) using
that k,k~! € L. To prove (9.2.16), we write

f=Trx0+fxco):-

Then

1 C, 1 v €
M(fiao)(t)Edr < ( / ; tdt) 9.2.17)
ol hMumawtas 7 (o [ Urso)©
in view of Kolmogorov’s inequality (Exercise 2.1.5). But the last expression in
(9.2.17) is at most a dimensional multiple of M(f)(x)¢ for almost all x € Q, which
proves (9.2.16) when f is replaced by f 3¢ on the left-hand side of the inequality.
And for f¥30)c we only need to notice that

M(fx0))(t) < 2"M(f 30y ) () < 2"n2M(f)(x)

for all x,¢ in Q, since any ball B centered at ¢ that gives a nonzero average for
S X(30)c must have radius at least the side length of Q, and thus v/nB must also
contain x. (Here M is the centered Hardy-Littlewood maximal operator introduced
in Definition 2.1.1.) Hence (9.2.16) also holds when f is replaced by f30)c on the
left-hand side. Combining these two estimates and using the subbaditivity property
M(f1+ f2)¢ <M(f1)*+ M(f2)€, we obtain (9.2.16). O

Exercises

9.2.1.Let w € A, for some 1 < p < o and let 1 < g < 0. Prove that the sublinear
operator

S(f) = (Ml 1w ) o
is bounded on L'4(w).

9.2.2. Let v be a real-valued locally integrable function on R” and let 1 < p < oo.
Prove that e” is an A, weight if and only if the following two conditions are satisfied
for some constant C < oo:
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sup / Vodr <
chbe% |Q|
sup / () =vo) - 'dt <
Q cubes |Q|

[Hint: If ¢” € A, use that

_ v Pl
/ Vth< Avge 1’*') (Avgev)
10 0

and obtain a similar estimate for the second quantity.]

AN
a

A
a

9.2.3. Let v be a real-valued locally integrable function on R” and let 1 < p < oo.
(a) Use the result of Exercise 9.2.2 to show that ¢” is in A, if and only if for some
constant C < o, we have

sup 1/e‘v(”*VQ‘dtSC.
chbes|Q| o

Conclude that ||10g @] 5, < [@]a,: thus if ¢ € A, then logp € BMO.
(b) Use part (a) and Theorem 7.1.6 to prove the converse, namely that every BMO
function is equal to a constant multiple of the logarithm of an A, weight.
(c) Prove that if ¢ is in A}, for some 1 < p < oo, then log ¢ is in BMO by showing
that

[Pla, when 1 < p <2,

1 < :
| Og(pHBMO* (p—l)[(P]X;I when2 < p <eo.

1
[Hint: Use that ¢ »~! € A,y when p > 2.]

9.2.4. Prove the following quantitative versions of Theorem 9.2.2 and Corollary
9.2.6.

(a) For any 1 < p < eo and B > 1, there exist positive constants C = Cj(n, p,B) and
¥ = ¥(n, p,B) such that for all w € A, satisfying [w]a, < B, (9.2.4) holds for every
cube Q.

(b) Given any 1 < p < e and B > 1 there exist constants C = C»(n,p,B) and 6 =
6(n, p,B) such that for all w € A, we have

[W]AP SB —— [W]AI,,g < C.

9.2.5. Given a positive doubling measure ¢ on R”, define the characteristic constant
[Wla,(u) and the class A,(p) for 1 < p < eo.

(a) Show that statement (8) of Proposition 9.1.5 remains valid if Lebesgue measure
is replaced by .

(b) Obtain as a consequence that if w € A,(u), then for all cubes Q and all u-
measurable subsets A of Q we have
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)\ w(A)
(u(Q)) < as 0)

Conclude that if Lebesgue measure is replaced by tt in Lemma 9.2.1, then the lemma
is valid forw € A, (u).

(c) Use Corollary 9.2.4 to obtain that weights in A, (i) satisfy a reverse Holder
condition.

(d) Prove that given a weight w € A,,(1), there exists 1 < ¢ < p [which depends on
[Wla, (u)] such that w € Ag(p).

9.2.6. Let 1 < g <eoand u a positive measure on R"”. We say that a positive function
K on R" satisfies a reverse Holder condition of order g with respect to t [symboli-
cally K € RH,(u)] if

1
o) JoKdu)
(K)RH,(u) = sup (“(Ql> y )
Qcubes in R” 1(0) fQKd[J
For positive functions u,v on R” and 1 < p < e, show that

1
[VM_I]RHP/(udx) = [”V_l]/[;p(vdx)’

that is, vu~! satisfies a reverse Holder condition of order p’ with respect to udx if
and only if uv~! is in A, (vdx). Conclude that
w € RH,y(dx) <= wl €A, (wdx),
wEA(dx) —= w'e RH,y(wdx).
9.2.7. (Gehring [145]) Suppose that a positive function K on R” lies in RH,,(dx)
for some 1 < p < co. Show that there exists a § > 0 such that K lies in RH,, , 5(dx).

[Hint: By Exercise 9.2.6, K € RH,(dx) is equivalent to the fact that K~ € A (K dx),
and the index p’ can be improved by Exercise 9.2.5(d).}

9.2.8. (a) Show that for any w € A| and any cube Q in R” and @ > 1 we have

ess.infw < a"[wl4, ess.infw.
0 aQ

(b) Prove that there is a constant C,, such that for all locally integrable functions f
on R” and all cubes Q in R” we have

essinfM(f) < C, essinfM(f),
0 30
and an analogous statement is valid for M.

[Hint: Part (a): Use (9.1.18). Part (b): Apply part (a) to M(f)é, which is an A,
weight in view of Theorem 9.2.7.]
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9.2.9. (Lerner, Pérez, and Ombrosi [211] ) For a weight w € A|(R") define a quan-
tity ry = 14 0] , - Show that
1

W]

1
MW" ) <2[wla, w.

[Hint: Fix a cube Q and consider the family .7 of all cubes obtained by subdividing
Q into a mesh of (2")™ subcubes of side length 27"¢(Q) for all m = 1,2,.... Define
M (f)(x) = supge 7, ks« |[RI " g |f1dy. Using Corollary 2.1.21, adapt the result of

Exercise 2.1.4(b) to the maximal function M<; i.e., obtain an{Mg( - w(x)dx <

w
2"Al{x € Q1 My(w)(x) > A}| for & > wg = 5 [owdr. Multiply by A°~" and

integrate to obtain [, Mg(w)5wdx < (wg)® Jowdx+ (%161 fQMg(w)‘Sde. Setting
1)

, deduce that g, [ow®'dx < || foM§(w)owdx < 2(wg)?*. ]

_ 1
2 lwlla,

9.3 The A.. Condition

In this section we examine more closely the class of all A, weights. It turns out that
A, weights possess properties that are p-independent but delicate enough to char-
acterize them without reference to a specific value of p. The A, classes increase
as p increases, and it is only natural to consider their limit as p — co. Not surpris-
ingly, a condition obtained as a limit of the A, conditions as p — oo provides some
unexpected but insightful characterizations of the class of all A, weights.

9.3.1 The Class of A.. Weights

Let us start by recalling a simple consequence of Jensen’s inequality:

</x |h(t)|qdl.1(t)>‘l’ > exp </x 10g|h(t)|du(t)) , 9.3.1)

which holds for all measurable functions & on a probability space (X,u) and all
0 < g < o. See Exercise 1.1.3(b). Moreover, part (c) of the same exercise says that
the limit of the expressions on the left in (9.3.1) as ¢ — 0 is equal to the expression
on the right in (9.3.1).

We apply (9.3.1) to the function 4 = w~! for some weight w in A, with ¢ =
1/(p—1). We obtain

"o (g o ‘”)H 2"lg 0 ( gy fylowm ). 032
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and the limit of the expressions on the left in (9.3.2) as p — oo is equal to the ex-
pression on the right in (9.3.2). This observation provides the motivation for the
following definition.

Definition 9.3.1. A weight w is called an A.. weight if

e = { ( 2 /QW(”‘”) P <|;| Jyloewie)” ‘”) } <

The quantity [w]a,, is called the A., characteristic constant of w.

It follows from the previous definition and (9.3.2) that for all 1 < p < oo we have
[W]Aw S [W]Ap :

This means that
U Ap CAx, (9.3.3)

1<p<oo

but the remarkable thing is that equality actually holds in (9.3.3), a deep property
that requires some work.

Before we examine this and other characterizations of A.. weights, we discuss
some of their elementary properties.
Proposition 9.3.2. Let w € A... Then
(1) [6*(W))a.. = [W]a., where 8*(w)(x) = w(Ax1,...,Ax,) and A > 0.
(2) [T*(W)]a. = [W]a.., where T(w)(x) = w(x—z), z€ R".
(3) [Aw]a., = [Wla.., forall A > 0.
(4) Wla. > 1.

(5) The following is an equivalent characterization of the A characteristic con-
stant of w:

_ w(Q) (1 N d)}
Ml = S g ot gt ostronar) §

|[f|>0ae onQ

(6) The measure w(x)dx is doubling; precisely, for all A > 1 and all cubes Q we
have

w(AQ) < 2*' WX w(Q).

As usual, A Q here denotes the cube with the same center as Q and side length
A times that of Q.

We note that estimate (6) is not as good as A — oo but it can be substantially
improved using the case A = 2. We refer to Exercise 9.3.1 for an improvement.
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Proof. Properties (1)—(3) are elementary, while property (4) is a consequence of
Exercise 1.1.3(b). To show (5), first observe that by taking f = w1, the expression
on the right in (5) is at least as big as [w]4... Conversely, (9.3.1) gives

exp (g Joroe (s ar) < o 700t

which, after a simple algebraic manipulation, can be written as

JQTJ(fﬁv)dr e""<|Q|/ tog|f "”) |(QQ|) ""p( ol 1°g'w"”)

whenever f does not vanish almost everywhere on Q. Taking the supremum over all
such f and all cubes Q in R”, we obtain that the expression on the right in (5) is at
most [w]a.,

To prove the doubling property for A.. weights, we fix A > 1 and we apply prop-
erty (5) to the cube AQ in place of Q and to the function

_Jc on 0,
f= {1 onR"\ 0, (9.3.4)

where c is chosen so that ¢!/*" = 2[w],_. We obtain

w(A0) ex (logc
w(A0\ Q) +cw(Q)

which implies (6) if we take into account the chosen value of c. O

9.3.2 Characterizations of A.. Weights

Having established some elementary properties of A., weights, we now turn to some
of their deeper properties, one of which is that every A., weight lies in some A, for
p < oo. It also turns out that A., weights are characterized by the reverse Holder
property, which as we saw is a fundamental property of A, weights. The following
is the main theorem of this section.

Theorem 9.3.3. Suppose that w is a weight. Then w is in A« if and only if any one
of the following conditions holds:
(a) There exist 0 < y,0 < 1 such that for all cubes Q in R" we have

{x€Q: w(x) <yAvgow}| <510

(b) There exist 0 < o, B < 1 such that for all cubes Q and all measurable subsets A
of Q we have
Al < at|Q] = w(A) < Bw(Q).
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(c) The reverse Holder condition holds for w, that is, there exist 0 < Cy,€ < oo such
that for all cubes Q we have

<|é| /Q.w(t)I%dI) " |CQ1| w(t)dt .

(d) There exist 0 < Cy, €y < oo such that for all cubes Q and all measurable subsets

AOwiehaVe W(A) C2<|A|>80
w(@) ~ \l2

(e) There exist 0 < o, B’ < 1 such that for all cubes Q and all measurable subsets
A of Q we have
w(A) <a'w(Q) = |A| < B'|Q].

(f) There exist p,Cs < o such that [w]|a, < Cs. In other words, w lies in A, for some
p € [1,00).

All the constants C1,Cy,Cs,0.,8,7,6,0a',B',€,&9, and p in (a)—(f) depend only
on the dimension n and on [w)a... Moreover, if any of the statements in (a)—(f) is
valid, then so is any other statement in (a)—(f) with constants that depend only on
the dimension n and the constants that appear in the assumed statement.

Proof. The proof follows from the sequence of implications
WEAw = (a) = () = (¢) = (d) = (e) = () = W€ Aws.

At each step we keep track of the way the constants depend on the constants of the
previous step. This is needed to validate the last assertion of the theorem.

weEAo, = (a)

Fix a cube Q. Since multiplication of an A.. weight with a positive scalar does
not alter its A, characteristic, we may assume that fQ logw(t)dt = 0. This implies
that Avg,w < [w]4,.. Then we have

‘{er: w(x) SyAgng < |{x€Q: w(x) S’)/[W]Aw}‘
= |{xeQ: 10g(1+W( )_1)>10g(1+(7[ )"}

< /1 1+w
- log(l+

= log(1
log(l+ / ogll+wit

IN

g1+ riwla) ) /QW(”‘”
Wa.. |0
log(1+ (yiwla.) )

"ol
2 b

IN
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which proves (a) with y = [w], ' (2= — 1)~ and § = >

(@) = (b)

Let Q be fixed and let A be a subset of Q with w(A) > Bw(Q) for some f3 to be
chosen later. Setting S = O\ A, we have w(S) < (1 —B)w(Q). We write S =S US>,
where

Si={xeS: wx)>7yAvgow} and Sr={xeS: w(x) < yAvgow}.
For S, we have |S;| < 8|Q| by assumption (a ). For S we use Chebyshev’s inequality

to obtain
_lolw(s) _1-B

|sl|<yAggW/Sw<>dr S S ol

Adding the estimates for |S;| and |S>|, we obtain

1-B B 1-B
sl<lsil+ls:l < Flel+slol=(5+ 7)ol

Choosing numbers o,  in (0, 1) such that § + 173 = 1— «, for example a = 155
andf=1-— (1725”/, we obtain |S| < (1 — a)|Q|, that is, |A| > o] Q).
(b) = (c)

This was proved in Corollary 9.2.4. To keep track of the constants, we note that
the choices

(2}1 o~ 1 )8
1- (2o )P

—%logﬁ

log2" —log o an ! +

as given in (9.2.6) and (9.2.7) serve our purposes.

() = (d)
We apply first Holder’s inequality with exponents 1 + € and (1 + €) /€ and then
the reverse Holder estimate to obtain

/Aw(x)dx < (/Aw(x)l”dx> - A 1fe

Loy l+€ e ! €
[wtorea) lopte apte
10l Jo
< o il s,
Q] Jo

which gives
w(A)

w(Q)

This proves (d) with g = lis and G, = Cj.

|A|)1i£

<ai(jg



9.3 The A.. Condition 307

(d) = (e)
Pick an 0 < &” < 1 small enough that 8" = Cy(&/")% < 1. It follows from (d)
that
Al < o"|Q] = w(A) < B"W(Q) (9.3.5)

for all cubes Q and all A measurable subsets of Q. Replacing A by Q \ A, the impli-
cation in (9.3.5) can be equivalently written as

Al > (1-a")|0] = w(4) > (1-B")w(Q).
In other words, for measurable subsets A of Q we have
w(A) < (1-B")w(Q) = [A] < (1-0a")[0], (9.3.6)

which is the statement in (e) if we set o' = (1 — ") and B’ = 1 — &”. Note that
(9.3.5) and (9.3.6) are indeed equivalent.

() = (f)

We begin by examining condition (e ), which can be written as
/ w(t)dt < o / w(t)di —> / w(t)""w(t)d < B' / w(t)""w(t)dt,
A Q A o
or, equivalently, as
pA) <au(@) = [ wly du() <B [ wiy du()

after defining the measure du(t) = w(t)dt. As we have already seen, the asser-
tions in (9.3.5) and (9.3.6) are equivalent. Therefore, we may use Exercise 9.3.2 to
deduce that the measure u is doubling [i.e., it satisfies property (9.2.9) for some
constant C, = C, (&, )] and hence the hypotheses of Corollary 9.2.4 are satisfied.
We conclude that the weight w™! satisfies a reverse Holder estimate with respect to
the measure u, that is, if ,C are defined as in (9.2.11) and (9.2.12) [in which « is
replaced by o', B by B, and C, is the doubling constant of w(x)dx], then we have

1 —1- Ly C .
(.U(Q)/QW(I) Vdu(t)) < .U(Q)/QW(I) du(r) 9.3.7)

for all cubes Q in R”. Setting p =1+ 71/ and raising to the pth power, we can rewrite
(9.3.7) as the A, condition for w. We can therefore take C3 = C” to conclude the
proof of (f).

(f) = we€A

This is trivial, since [w]a., < [W]a,. O

An immediate consequence of the preceding theorem is the following result re-
lating Ao, t0 A,.
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Corollary 9.3.4. The following equality is valid:

A= |J A,

1<p<ee

Exercises

9.3.1. (a) Show that property (6) in Proposition 9.3.2 can be improved to

1+ Wt —1
W(AQ)gmin( +e)" Wi,
£>0 €

w(Q).

(b) Take A =2 in property (6) of Proposition 9.3.2 and iterate the estimate obtained
to deduce that
w(AQ) < (22)F (el Q).

[Hint: Part (a): Take c in (9.3.4) such that ¢'/*" = (1+¢)[w]a_.]

9.3.2. Suppose that u is a positive Borel measure on R” with the property that for
all cubes Q and all measurable subsets A of QO we have

Al <ofQ] = u(A) <Bu(Q)

for some fixed 0 < ¢, 3 < 1. Show that u is doubling [i.e., it satisfies (9.2.9)].
[Hint: Choose A = (1+ /2)"/" such that [AQ\ Q| < &|Q|. Write AQ as the union
of ¢, shifts Q; of Q, for some dimensional constant c,,. Then u((AQ\ Q) N Q;)| <

BU(Q,) < Bu(Q) + BL((AQ\ Q) N Qy). Conclude that 1(AQ) < ¢y, P51 (Q) and

from this derive an estimate for (1(3Q). |

1
9.3.3. Prove that a weight w is in A, if and only if both w and w™ -1 are in A...
[Hint: You may want to use the result of Exercise 9.2.2.]

9.3.4. (Stein [291]) Prove that if P(x) is a polynomial of degree k in R”, then
log|P(x)| is in BMO with norm depending only on k and n and not on the coef-
ficients of the polynomial.

[Hint: Use that all norms on the finite-dimensional space of polynomials of degree
at most k are equivalent to show that |P(x)| satisfies a reverse Holder inequality.
Therefore, |P(x)| is an A.. weight and thus Exercise 9.2.3(c) is applicable. |

9.3.5. Show that the product of two A; weights may not be an A.. weight.

9.3.6. Let g be in L7 (w) for some 1 < p < coand w € A,. Prove that g € L} _(R").

1 1
[Hint: Let B be a ball. In the case p < oo, write [;|g|dx = [5(|g|w™ »)wr dx and
apply Holder’s inequality. In the case p = oo, use that w € A, for some pg < oo.}
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9.3.7. (Pérez [262]) Show that a weight w lies in A., if and only if there exist
7, C > 0 such that for all cubes Q we have

w({xeQ: wx)>21}) SC?LHXEQ: w(x)>J//'L}|

forall A > Avg,w.
[Hint: The displayed condition easily implies that

U [ ree w(Q)\e+l | C'8 1
dx <
|Q|/QW'< x< ( IQI) 7+ (0] Jo

where k > 0, w, = min(w, k) and 6 = /(1 + €). Take € > 0 small enough to obtain
the reverse Holder condition (¢ ) in Theorem 9.3.3 for wy. Let k — o to obtain the
same conclusion for w. Conversely, find constants ¥,6 € (0,1) as in condition (a) of
Theorem 9.3.3 and for A > Avg, w write the set {w > 4} N Q as a union of maximal
dyadic cubes Q; such that A < Avg, w < 2"A for all j. Then w(Q;) < 2"A[Q;| <

122‘3 |0jN{w > yA}| and the required conclusion follows by summing on j.|

I+e
w, o dx,

9.4 Weighted Norm Inequalities for Singular Integrals

We now address a topic of great interest in the theory of singular integrals, their
boundedness properties on weighted L? spaces. It turns out that a certain amount of
regularity must be imposed on the kernels of these operators to obtain the aforemen-
tioned weighted estimates.

9.4.1 A Review of Singular Integrals

We begin by recalling some definitions from Chapter 8.

Definition 9.4.1. Let 0 < §,A < . A function K(x,y) defined for x,y € R" with
x # y is called a standard kernel (with constants & and A) if

K (x,y) xX#Y, 9.4.1)

<
S ey
and whenever [x —x'| < J max (Jx—yl,|x' —y|) we have

Alx—x'|®

|K()C,y) _K(-xlay” <
(e =yl + [ —y|)m+e

9.4.2)

and also when [y —y'| < ) max (|x—y|,|x—y'|) we have
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Aly—y'®

K (x,y) =K (x,))| < .
(e = y[+ [x = y'[)m+2

9.4.3)

The class of all kernels that satisfy (9.4.1), (9.4.2), and (9.4.3) are denoted by
SK(5,A).

Definition 9.4.2. Let 0 < §,A < o and K in SK(0,A). A Calder6n-Zygmund opera-
tor associated with K is a linear operator T defined on . (R") that admits a bounded
extension on L?(R"),

IT(H)|,» <B|£],2 (9.4.4)
and that satisfies

TN = [ Keeys)dy 045

for all f € 4;° and x not in the support of f. The class of all Calderén—Zygmund
operators associated with kernels in SK(8,A) that are bounded on L? with norm
at most B is denoted by CZO(8,A,B). Given a Calder6n—Zygmund operator T in
CZO(8,A,B), we define the truncated operator T (¢) as

TEO(f)(x) = / K(x,y) f(v)dy

[x—y|>€e

and the maximal operator associated with T as follows:

T (f)(x) = sup [T (f) (x)].

>0

We note that if 7 is in CZO(8,A, B), then T f and T™)(f) is well defined for
all fin ;<< L¥ (R"). It is also well defined whenever f is locally integrable and
satisfies [j,_y s, [£(V)[[x—y[~"dy < eoforall x € R" and £ > 0.

9.4.2 A Good Lambda Estimate for Singular Integrals

The following theorem is the main result of this section.

Theorem 9.4.3. Let w € A. and T in CZO(0,A,B). Then there exist positive con-
stants Cy = Co(n, [W]a..), & = &(n,[w]a..), and % = y(n,8,A) such that for all
0 <y < 1 we have

w({T(f) > 303N {M(f) < 7A}) < Cor®(A+B)ow({TH)(f) > A}), (9.4.6)

for all locally integrable functions f for which f\x—y\zs lf )| |x—y|"dy < oo for all
x € R"and € > 0. Here M denotes the Hardy-Littlewood maximal operator.

Proof. We write the open set

Q={rY(H>21r=J0;,
J
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where Q; are the Whitney cubes of Proposition 7.3.4. We set

05 = 10v/nQ;,
0F = 10VnQ},

where a Q denotes the cube with the same center as Q whose side length is a£(Q),
where £(Q) is the side length of Q. We note that in view of Proposition 7.3.4, the
distance from Q; to Q€ is at most 4,/n ¢(Q;). But the distance from Q; to the bound-
ary of Q7 is (5v/n— 3)€(0Q;), which is bigger than 4\/n¢(Q;). Therefore, Q7 must
meet 2 and for every cube Q; we fix a point y; € 2N Qj. See Figure 9.1.

(50n-5vn) Q)

tl T
(5vA-1)1Q)
|
o X
ZjO Q
__/
Q.f* Y

Fig. 9.1 A picture of the proof.

We also fix f in U <,<.L?(R"), and for each j we write
f=f+ 1

where f()i is the part of f near Q; and fi is the part of f away from Q; defined as
follows:

R = fxoy
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We now claim that the following estimate is true:
0N {T™(f) > 321N {M(f) < YA} < Cuy(A+B)[Q)]. 9.4.7)

Once the validity of (9.4.7) is established, we apply Theorem 9.3.3 part (d) to obtain
constants &,C, > 0 (which depend on [w]4., and the dimension ) such that

w(Q; AT (f) >34} N{M(f) < 7A}) < G (G)P ¥ (A+ B)®w(Q)).

Then a simple summation on j gives (9.4.6) with Cy = C>(C,,)®, and recall that C,
and & depend on n and [w]4...
In proving estimate (9.4.7), we may assume that for each cube Q; there exists a
zj € Qj such that M(f)(z;) < yA; otherwise, the set on the left in (9.4.7) is empty.
We invoke Theorem 8.2.3, which states that 7(*) maps L' (R") to L' (R") with
norm at most C(n)(A + B). We have the estimate

|0; " {TW () > 30 N {M(f) <yA}| < I} + 12, (9.4.8)
where

= |Q; P {TY(f]) > Ay n{M(f) < 72},
= |0;n{TW (1) > 22} N {M(f) < yA}|.

To control I} we note that f({ is in L' (R") and we argue as follows:
Iy < {T9(f) > 1)

() S
17 [ 1 wlax
97 1
Aoleyl o

< Cm)(A+B) 'Qlf M()(z) 9.49)

Sa(n)(A+B)| M(f)(z))

[% **I

C(n)(A+B) /{
Gy (A+B)Y|Qj|'

IN

C(n)(A+B) x)|dx

IN

Ay

Next we claim that /A = 0 if we take v sufficiently small. We first show that for all
x € Qj we have

sup [ T® (£1)(x) = T (£1) (v)| < CaAM(F)(z)).- (9.4.10)

e>0
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Indeed, let us fix an € > 0. We have

TOUDW-TOUD )] = | [ Keofia- [ Kopofed

[t—x|>€ [t=yjl>e

Li+ L)+ L3,

IN

where

Li=| [ K=Kl e,

[t—yjl>e

L=| [ Ko
e
Li=| [ Kwofi@a),

[r—x|<e
lt—yj|>¢

)

in view of identity (4.4.6).
We now make a couple of observations. For 7 ¢ 07", x,zj € Qj,and y; € O} we
have

3 t— 5 48 t— 50
< = s < Jr=al 50 (9.4.11)
47 t—y;| — 4 49 ~ |t—z;| — 49
Indeed,
[t —yj| > (50n—35v/n)L(Q}) > 44nl(Q;)
and | ]
=yl <, Vnl(Q)) +Vn10Vnl(Q)) < 11nl(Q)) < | —yjl.
Using this estimate and the inequalities
3 5
Gyl S le=yil ==yl sl —al <l —yil+ =yl <l =l
we obtain the first estimate in (9.4.11). Likewise, we have
x—zj] < Vnl(Q)) <nt(Q))
and
|t —zj| > (50— ))0(Q;) > 49nL(Q;),
and these give
8 50
=zl <lt—zjl—lx—zl St —x<|r—zj|+x—zg[ < =zl

49 49
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yielding the second estimate in (9.4.11).
Since [x —y;| < ; |t —y;| < ymax (|t — x|, |t —}|), we have

Alx—y;[° < A 0(Q))°

K(x,t 1) < S 5
| ( ) (y/ )| (|t—x|+|t—yj|)”+5 n,& |t_zj|n+5

hence, we obtain

©Q))°

ns [ G s 0l < ClaAM( ()

lt—z;|>49n0(Q;)

|t —
using Theorem 2.1.10. Using (9.4.11) we deduce

L

IN

A j /
/ o g[nKirize \fL(t)|dt < CLAM(f)(z;).

5 49
l—zjl<3-4s €

Again using (9.4.11), we obtain

A )
L [ g 0l < GAM(E).

[t— z,\<4ge

This proves (9.4.10) with constant c! g = C;l’5 +C,+Cl.
Having established (9.4.10), we next claim that

S“P}T (D) 0)| < TO) )+ CPAM(f) (z5). (9.4.12)

To prove (9.4.12) we fix a cube Q; and € > 0. We let R; be the smallest number such
that

Q5" CB(yj,R;).

See Figure 9.2. We consider the following two cases.
Case (1): € > R;. Since Q7" C B(y;, ), we have B(y;,€)¢ C (Q7")¢ and therefore

D) =T ) )),
s0 (9.4.12) holds easily in this case.

Case (2): 0 <& <R;. Note that if 7 € (Q}")°, then |t —y;| > 40n/(Q;). On the
other hand, R; < diam(Q}") = 10003 £(Q;). This implies that

5yn sk
Ry < Y"lr—y;l,  when te(QF).
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Fig. 9.2 The ball B(y;,R;).

Notice also that in this case we have B(y;,R;)° C (Q7")¢, hence

TR () = TR (f)(v;)-

Therefore, we have

ITE 0] < [TOU) ) = TR D)+ TR (1) )]

K .0 A0l de + T () (3)

IN

IN

Sg‘yjfl‘SRj

[ KOOI+ T ))

2 . .
SJHRjS‘)/j_t‘SRj

A(s2,)
< W[ r@la (00

lej—11<3- 28 R
CPAM(F)(z)) + TP (F) ;)

where in the penultimate estimate we used (9.4.11). The proof of (9.4.12) follows

with the required bound C,(,Z)A.
Combining (9.4.10) and (9.4.12), we obtain

IA

—n

IN
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T () (x) < TOF) ) + (C) + CP) AM()(z))

Recalling that y; ¢ Q and that M(f)(z;) < yA, we deduce

TO(f)(x) <2+ (Clh+CP) ara.

1

Setting % = ( r(“%—kC( )) A~!, for 0 < y < 19, we have that the set

0;N{TW (L) > 24} N{M(f) < yA}

is empty. This shows that the quantity /%, vanishes if y is smaller than }. Returning
to (9.4.8) and using the estimate (9.4.9) proved earlier, we conclude the proof of
(9.4.7), which, as indicated earlier, implies the theorem. OJ

Remark 9.4.4. We observe that for any 6 > 0, estimate (9.4.6) also holds for the
operator

137 (f)() = sup | T () (x)

£>6

with the same constant (which is independent of J).
To see the validity of (9.4.6) for T(*), it suffices to prove

1T () 0)| < T () ) + CPAM(f) (z)), (9.4.13)

which is a version of (9.4.12) with T(*) replaced by TS(*). The following cases arise:
Case (1'): R; < 6 < eord <Rj <e.Here, as in Case (1) we have

ITE () = TE o) < T () )
Case (2'): § < & <R;. As in Case (2) we have TF/ (f’)(y,) TR (£)(y;), thus

ITE D7) < [TOUD) ) = TE D))+ TR () )]

As in the proof of Case (2), we bound the first term on the right of the last displayed
expression by C,(,Z)AM(f) (z;) while the second term is at most Té*) (Hvj)-

9.4.3 Consequences of the Good Lambda Estimate

Having obtained the important good lambda weighted estimate for singular inte-
grals, we now pass to some of its consequences. We begin with the following lemma:

Lemma 9.4.5. Let 1 <p <o, 6 >0,we A, xcR", and f € LP(w). Then we have
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f]

/‘ |f(y)| dygcoo([w]Am,n,p,x75) [W]xil)p

x—y|>6 |x —y[" Lrw)

for some constant Cyg depending on the stated parameters. In particular, T(%) (f)
and T (f) are defined for f € LP (w).

Proof. Foreach d > 0 and x pick a cube Qp = Qg (x, 8) of side length ¢, 8 (for some
constant ¢,) such that Qy € B(x, 8). Set Q; = 2/Qy for j > 0. We have

i MO ay<c 3@ [ ey

-8 [x—y[" ) 0j+1\0;

=

1 1
1 P 1 P 4
<Cn P d v d
= _1<|Q,~|/Q,-'f(”'”) (|Qj|/Q-W y)
1

< Gl [l 3 (9(2)) 7

But Theorem 9.3.3 (d) gives for some & = &y(n, [w]a..) that

w(Qo Qo|®
( ) S C(I’l, [W]Aw)| |8 ’
w(Qj) |Q)[%
from which it follows that
w(Q;)~t <27,
In view of this estimate, the previous series converges. Note that C' and hence Cyo
depend on [w]a..,n,p,x,0.

This argument is also valid in the case p = 1 by an obvious modification. 0

Theorem 9.4.6. Let T be a CZO(6,A,B), 1 < p <eoo, and w € A,. Then there is a
constant Cp = Cp(n,0,A+ B, [W]a.., [W]a,) such that

||T<*)(f)||u>m(w) =G ||f||Ll (w) ©.4.14)
whenever w € Ay and f € L' (w); and also

1Tl oy < ol ooy (94.15)
whenever w € A, and f € LP (w).

Proof. This theorem is a consequence of the estimate proved in the previous theo-
rem. For technical reasons, it is useful to fix a 6 > 0 and work with the auxiliary
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maximal operator Té*) instead of 7(*). We begin by taking 1 < p < e and f € LP(w)
for some w € A,. We write

|73 (£)]

D = [, AT (0) > AY)
_ 3”/()mpl”’1w({T5(*)(f) >32})dA
which we control by
3 [ oA (T (1) > 30 () < 7))
3 [“parw({M(f) > 7a}) dh
Using Theorem 9.4.3 (or rather Remark 9.4.4), we estimate the last terms by
Cpa+8) [ parw({Ty() > 2)) da
o [ToAr () > 1) da
which is equal to

3oy (A+B)® || TS (f)||?

HM Iz

Lr(w) Lr(w)-

1
Taking y = min (} %, 3 (2Co37)” % (A+B)~!), we conclude that

p

1757 (7)] 0o

(9.4.16)
)7

+Cp(n,8,A+B,[wla.) | M(f)]|7

Lr(w) L(w)

<

We now prove a similar estimate when p = 1. For f € L' (w) and w € A; we have

3aw({T(F) > 34))
<3aw({T3)(f) > 323 N {M(f) < yA) +3Aw({M(f) > 72}),

and this expression is controlled by
* 3
3GV (A+B)ow({T{ () > 1Y) + M

It follows that
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()
1757 1o

T ~ 9.4.17)
S 2 HT(S (f)||Ll,w(w)+Cl (}’l,é,A—f—B, [W]Am)HM(f)HLI,w(W)'

Estimate (9.4.15) would follow from (9.4.16) if we knew that || 7\ ()|, ) <
whenever 1 < p < e, w € A, and f € L”(w), while (9.4.14) would follow from
(9.4.17) if we had HTS(*)(f)HLLM(W) < oo whenever w € Ay and f € L! (w). Since we
do not know that these quantities are finite, a certain amount of work is needed.

To deal with this problem we momentarily restrict attention to a special class
of functions on R”, the class of bounded functions with compact support. Note
that in view of Exercise 9.4.1, such functions are dense in L”(w) when w € A
and 1 < p < eo. Let h be a bounded function with compact support on R”. Then

TS(*> (h) < C187"||hl|,, and Té*)(h) (x) < Cy(h)|x| ™" for x away from the support of
h. It follows that

T (h)(x) < Ca(h, 8) (1+[x]) ™"
for all x € R”". Furthermore, if /4 is nonzero, then

Ca(h)

M =

and therefore for w € Ay,

T80 1y < G5 (BB M) |1y <

while for 1 < p <eoandw € A,

T )P0 dx < Cs(hp.8) [ M) () w()d < o

in view of Theorem 9.1.9. Using these facts, (9.4.16), (9.4.17), and Theorem 9.1.9
once more, we conclude that for all > 0 and 1 < p < o we have

1757 )7y < 26 MW,y < CllA -

i N (9.4.18)
HTS( )(h)HL'»‘”(w) = 2C1||M(h)||u,w(w) = CthHLI(W)’
whenever i a bounded function with compact support. The constants 6,, and 51
depend only on the parameters A + B, n, 6, and [w]s,., while C,, also depends on
Wla,, 1 <p<eo
We now extend estimates (9.4.14) and (9.4.15) to functions in L”(R" wdx).
Given 1 < p <oo,w€Ap, and f € LP(w), let

In(x) = F) X 1<N X xj<n -
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Then fy is a bounded function with compact support that converges to f in LP(w)
G.e., ||fn—f | o 0 as N — oo) by the Lebesgue dominated convergence theo-

rem. Also |fn| < |f] for all N. Sublinearity and Lemma 9.4.5 give for all x € R",

T8 () () = T8 (A )] < T8 (F — fn) ()

1
S ACOO([W]Amvnvpaxa 6) [W]Zl,

fn—f|

LP(w)>

and this converges to zero as N — oo. Therefore Ts(*) (f) = limy_e TSM (fv) point-
wise, and Fatou’s lemma for weak type spaces [Exercise 1.1.12(d)]gives for w € A;
and f € L' (w),
(%) — N iminf7™
|75 (f)||L1"’°(w) =| h]{,njngs (fN)HLl»‘”(w)

< Timinf || 75" () 31

=G lglljgf||M(fN)"lew(w)
<M 1oy

since | fiy| < |f| for all N. An analogous argument gives the estimate

1737 (r)] i) < Collf Nl oy

forweApand f € LP(w) when 1 < p < o,
It remains to prove (9.4.15) and (9.4.14) for T™). But this is also an easy con-
sequence of Fatou’s lemma, since the constants C, and C; are independent of 1)

and

lim 737 (1) =70 ()

for all f € L?(w). O

Corollary 9.4.7. Let T be a CZO(0,A,B). Then for all 1 < p < e and for every
weight w € A, there is a constant C,, = Cp(n,[w]a.., 0,A + B) such that

1T 1my < Ctll s

and
1T oy < Coll o

for all smooth functions f with compact support.

Proof. We use the fact that any element of CZO(5,A,B) is a weak limit of a se-
quence of its truncations plus a bounded function times the identity operator, that is,
T = Ty + al, where ||a||Lm < Cy(A + B) (cf. Proposition 8.1.11). Then T &) (f) —

To(f) weakly for some sequence &; — 0+ and we have |Ty(f)| < T (f). Therefore,
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IT(f)] < T™(f) 4 Cu(A+ B)|f]|, and this estimate implies the required result in
view of the previous theorem. O

9.4.4 Necessity of the A, Condition

We have established the main theorems relating Calderén—Zygmund operators and
A, weights, namely that such operators are bounded on L”(w) whenever w lies in
Ap. Itis natural to ask whether the A, condition is necessary for the boundedness of
singular integrals on L”. We end this section by indicating the necessity of the A,
condition for the boundedness of the Riesz transforms on weighted L? spaces.

Theorem 9.4.8. Let w be a weight in R" and let 1 < p < oo. Suppose that each of
the Riesz transforms R; is of weak type (p, p) with respect to w. Then w must be an
A, weight. Similarly, let w be a weight in R. If the Hilbert transform H is of weak
type (p, p) with respect to w, then w must be an A, weight.

Proof. We prove the n-dimensional case, n > 2. The one-dimensional case is essen-
tially contained in following argument, suitably adjusted.

Let O be a cube and let f be a nonnegative function on R” supported in Q that
satisfies Avg, f > 0. Let Q' be the cube that shares a corner with Q, has the same
length as Q, and satisfies x; > y; forall 1 < j <n wheneverx € Q" and y € Q. Then
for x € Q' we have

1

rh rofy)
' .Z/Q lx— yl”+1 B)dy= " /Q

T x — y|

1"}1

+

2

n
T2

But if x € Q' and y € Q we must have that [x —y| < 2\/n£(Q), which implies that
=y > (2y/n) Q" Let G, = T'("11)(2y/n)™"x~"2" . It follows that for all
0 <o <C,Avg, f we have

0 C {xeR": ‘iRj(f)(xH >oc}.

Jj=1
Since the operator 3}_; R; is of weak type (p, p) with respect to w (with constant
C), we must have
cr oy
w@) <o, [ rwtds
oP Jo
for all oo < Cy, Avg, f, which implies that

_P
(Avgf cr / F0)Pwlx (9.4.19)

We observe that we can reverse the roles of Q and Q' and obtain
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c,’cr

w(0) Q,g(x)”w(x) dx (9.4.20)

(Avgg)’ <
Q/

for all g supported in Q'. In particular, taking g = ¥ in (9.4.20) gives that w(Q) <
C,"CPw(Q"). Using this estimate and (9.4.19), we obtain

(G 7er)?
Avgf)? < / F(x)Pw(x)dx. (9.4.21)
( 0 ) w(@) Jo
Using the characterization of the A, characteristic constant in Proposition 9.1.5 (8),
it follows that [w]4, < (C, "CP)? < eo; hence w € A,. O
Exercises

9.4.1. Show that € is dense in L (w) for all w € A...

9.4.2. (Cordoba and Fefferman [92]) Let T be in CZO(5,A, B). Show that for all
€>0and all 1 < p < oo there exists a constant C¢ ,, , such that for all functions u
and f on R" we have

J TN udx < Ceyy [ 177 MG ) ke as
n Rl‘l

whenever the right-hand side is finite.
[Hint: Obtain this result as a consequence of Theorem 9.4.6.

9.4.3. Use the idea of the proof of Theorem 9.4.6 to prove the following result.
Suppose that for some fixed A, B > 0 the nonnegative (1-measurable functions f and
T(f) satisfy the distributional inequality

u({T(f) > a}n{f <ca}) <Au({T(f) > Ba})

for all o > 0. Given 0 < p < eeand A < B, if ||T(f)|
is valid:

() < then the following

< C(c,p,A,B)||f|

HT(f)‘ LP (1) LP(u)’

for some constant C(c, p,A, B) that depends only on the indicated parameters.

9.4.4. Let f bein L' (R",w), where w € A;. Apply the Calder6n—Zygmund decom-
position to f at height o > 0 to write f = g + b as in Theorem 4.3.1. Prove that

||gHL1(w) < W, HfHLl(w)’ HbHLl(w) <2[wla, || W)

9.4.5. Assume that T has a kernel in SK(5,A) and suppose that T maps L?(w) to
L?(w) for every w € A;. Prove that T maps L' (w) to L= (w) for every w € A;.
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[Hint: Use Theorem 4.3.1 to write f = g+ b, where b =¥ ;b; and each b; is sup-
ported in a cube Q; with center c;. To estimate T(g) use an L?(w) estimate and
Exercise 9.4.4. To estimate T'(b) use the mean value property, the fact that

y=eil® /
w(x)dx < Cs ,M(w < C% [wla, w(y),

/R"\Q; lx — ¢ |t (x)dx < Cs ,M(w)(y) < Cs ,[w]a, w(y)
and Exercise 9.4.4 to obtain the required estimate.}

9.4.6. Recall that the transpose T of a linear operator 7 is defined by

<T(f)7g> = <f7 Tt(g)>

for all suitable f and g. Suppose that T is a linear operator that maps L” (v) to itself
for some 1 < p < e and some v € A,. Show that the transpose operator 7' maps
L” (w) to L (w) with the same norm, where w = v! 7' ¢ Ay

9.4.7. Suppose that T is a linear operator that maps L?(v) to itself for all v such
thatv=! € A;. Show that the transpose operator 7 of T maps L*(w) to L*(w) for all
weEA].

9.4.8. Let 1 < p < c. Suppose that T is a linear operator that maps L”(v) to itself
for all v satisfying v=! € A »- Show that the transpose operator 7 of 7 maps L (w)
to itself for all w satisfying w™! € A o

9.4.9. Let w € Ao, and assume that for some locally integrable function f we have
M(f) € LPo(w) for some 0 < pg < oo. Show that for all p with py < p < o there is
a constant C(p,n, [w]a..) such that

HMd(f)‘ LP(w) < C(p,n, [W]Aw)||M#(f)|

Lr(w)>

where M, is the dyadic maximal operator given in Definition 7.4.3. Conclude the
same estimate for M.

[Hint: Let Q; be as in the proof of Theorem 7.4.4. Combine estimate (7.4.4) with
property (d) of Theorem 9.3.3,

w(Q;N{My(f) > 22, M*(f) <yA}) <G (2"0) P w(Q)),

where both C, and & depend on the dimension n and [w]4... Obtain the result of
Theorem 7.4.4 in which the Lebesgue measure is replaced by w in A.. and the quan-
tity 2"y is replaced by C,(2"y)%. Finally, observe that Theorem 7.4.5 can be adapted
to a general weight w in A(X,.}
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9.5 Further Properties of A, Weights

In this section we discuss other properties of A, weights. Many of these properties
indicate certain deep connections with other branches of analysis. We focus atten-
tion on three such properties: factorization, extrapolation, and relations of weighted
inequalities to vector-valued inequalities.

9.5.1 Factorization of Weights

Recall the simple fact that if w,w; are A| weights, then w =wy wé_P isan A, weight

(Exercise 9.1.2). The factorization theorem for weights says that the converse of
this statement is true. This provides a surprising and striking representation of A,
weights.

Theorem 9.5.1. Suppose that w is an A, weight for some 1 < p < oo. Then there
exist A weights wi and wy such that

1-
w=wiw, .

Proof. Letus fixa p >2and w € A,. We define an operator T as follows:

T(P) = (™ MO ) P w M),

where M is the Hardy-Littlewood maximal operator. We observe that T is well
1
defined and bounded on L”(R"). This is a consequence of the facts that w™ r-!

is an A, weight and that M maps LY (w™ 1’1*') to itself and also L”(w) to itself.
Thus the norm of 7 on L? depends only on the A, characteristic constant of w.
Let B(w) = HTHLP_U, the norm of T on LP. Next, we observe that for f,g > 0 in
LP(R") and A > 0 we have

T(f+8) <T(f)+T(g), TAf)=AT(f). (9.5.1)

To see the first assertion, we need only note that for every ball B, the operator

<|B|/ il 1wpdx> -

is sublinear as a consequence of Minkowski’s integral inequality, since p — 1 > 1.
We now fix an L function fy with H fo| 1» = | and we define a function ¢ in
LP(R") as the sum of the L? convergent series

(2B(w)) T/ (fy)- (9.5.2)

Ms

Q=
1

J
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We define )

1 —
WIZWP(PP_la wWy=w 7@,

so that w = w w;" . It remains to show that wy,w; are A| weights. Applying 7 and
using (9.5.1), we obtain

T(p) < 2B(w) Y, (2Bw)) 7~ T+ (fo)

j=1
T(fo)
= 2B —
( )<(P ZB(W))
< 2B(w) 9,
that is,
1 1 1 1 1
(W™ P M(P~"wr)) P 4 wr M(@w ™ 7) < 2B(w) 9.
Using that ¢ = (w™ ll’wl) PRT— wy, we obtain

M(wy) < (2B(w))P 1w and M(wp) <2B(w)ws.

These show that w; and w, are A; weights whose characteristic constants depend
on [w]s, (and also the dimension n and p). This concludes the case p > 2.

We now turn to the case p < 2. Given a weightw € A, for 1 < p < 2, we consider
the weight w—/(?=1)_which is in A, Since p’ > 2, using the result we obtained, we
write w1/(P=1) = vlvéf”l, where vy, v, are A| weights. It follows that w = v}f”vz,
and this completes the asserted factorization of A, weights. 0

Combining the result just obtained with Theorem 9.2.7, we obtain the following
description of A, weights.

Corollary 9.5.2. Let w be an A, weight for some 1 < p < oo. Then there exist locally
integrable functions fi and f,» with

M(fi)+M(f2) <oo a.e.,

constants 0 < €;,& < 1, and a nonnegative function k satisfying k,k~' € L™ such
that
w=kM(f1)SM(f>)2=P). (9.5.3)

9.5.2 Extrapolation from Weighted Estimates on a Single L°

Our next topic concerns a striking application of weighted norm inequalities. This
says that an estimate on L”0(v) for a single pg and all A, weights v implies a similar
LP estimate for all p in (1,0). This property is referred to as extrapolation.
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Surprisingly the operator T is not needed to be linear or sublinear in the following
extrapolation theorem. The only condition required is that 7 be well defined on
Ur<g<eUnea, L(w). If T happens to be a linear operator, this condition can be
relaxed to T being well defined on %" (R").

Theorem 9.5.3. Suppose that T is defined on U <y Uyven, L (w) and takes values
in the space of measurable complex-valued functions. Let 1 < pg < oo and suppose
that there exists a positive increasing function N on [1,e0) such that for all weights
vin Ap, we have

|7

LPO HLPO (v) S N([V]Apo) ° (954)

Then for any 1 < p < oo and for all weights w in A, we have
HTHLP(W)_.LP(W) < K(n7p7p07 [W]A,,) ) (9.5.5)

where

ro—1
2N (s ppo) Wl ) whenp < po,
K(”vpvaa[W]Ap) =

pP—PQ

2170(P—1)N(K2(n’p,p0) [W]Ap) when p > po,

and xi(n,p, po) and K2(n, p, po) are constants that depend on n, p, and py.

Proof. Let1 < p <eoand w € A,. We define an operator

where M is the Hardy-Littlewood maximal operator. We observe that since wi=ris
. / . .
in Ay, the operator M’ maps L? (w) to itself; indeed, we have

|7

= v

Lp 1’1’,>~>Ll7/(w1’1’/>
< Cuplw' 7 o (9.5.6)
= Cmp[W]Ap

LV (w)—L¥ (w)

A

in view of Theorem 9.1.9 and property (4) of Proposition 9.1.5.

We introduce operators M°(f) = |f| and MK = MoMo--- oM, where M is the
Hardy-Littlewood maximal function and the composition is taken k times. Likewise,
we introduce powers (M’)* of M for k € Z*+ U {0}. The following lemma provides
the main tool in the proof of Theorem 9.5.3. Its simple proof uses Theorem 9.1.9
and (9.5.6) and is omitted.

Lemma 9.5.4. (a) Let 1 < p < oo and w € A,,. Define operators R and R’

< M- (f)
R(f) = Z
ZHMHLP (w)—LP(w ))k
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for functions f in LP(w) and also

/ = (M)(f)
R(f)=2
k=0 (2||M/HLP/(W)—>LP'(W))]C

for functions f in LV (w). Then there exist constants Cy(n, p) and C»(n, p) that de-
pend on n and p such that

Ifl < R(f), 9.5.7)
IR(f)] o =2 /] LP(w) (9.5.8)
M(R(f)) < Ci(n.p) W3 " R(f), (9.5.9)

Sor all functions f in LP(w) and such that

|h| < R'(h), (9.5.10)
I < 2l ©5.11)
M'(R'(h)) < Ca(n,p)[wla, R (), (9.5.12)

for all functions h in L (w).

We now proceed with the proof of the theorem. It is natural to split the proof into

the cases p < po and p > pyg.
po

Case (1): p < po. Assume momentarily that R(f) #o/?" is an A, weight. Then we
have
P

T2y
= /R IT(F)PR(f) 20/o! R(F) 0o/ welx

P

< (/ |T(f)|P°R(f) (17(])771))/ de) ro < R(f)pwdx> (po/pY
R" -
N

V4

1
_ P U
R(f)POR(f) W/ w dx) ) ( R(F)w dx) (po/p)
Rn

L)) ",
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where we used Holder’s inequality with exponents po/p and (po/p)’, the hypothesis
of the theorem, (9.5.7), and (9.5.8). Thus, we have the estimate

1T(f)] (9.5.13)

sy <28 (IR w1, )]

LP(w)

_ om0
and it remains to obtain a bound for the A, characteristic constant of R(f) *o/?",
In view of (9.5.9), the function R( f) is an A; weight with characteristic constant at

most a constant multiple of [w ]” '. Consequently, there is a constant Cj such that

R el (g fR0e)

for any cube Q in R". Thus we have

R(f (1’0/1’ wdx
10| /
. (9.5.14)

<@blg, ) (g [rnas) " (g fpra).

Next we have

-1

/

1 / _ 1-p)) >P0—1
R (1’0/17) w dx
<|Q| (R0 w)
Po po—1) , po—1
_ (|Q| / R(f) toln 1”0dx> (9.5.15)

(101 7o) " <|é|/gwl"/)pl’

where we applied Holder’s inequality with exponents
/1 4 /1
(p , ) and P , ,
Po— 1 Po— 1

(po—1) (P -1\ _ -1
p(zpl;(}p)’ <§6—1> = (PO/ 11) (pf/op)"

Po—

IN

and we used that

Multiplying (9.5.14) by (9.5.15) and taking the supremum over all cubes Q in R"
we deduce that

10] :| 1 PO po—1

“(po/pY T 1w 271 (po/p) = -l
[R(p) mlr S (L) ey = ki po) ),
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Combining this estimate with (9.5.13) and using the fact that N is an increasing
function, we obtain the validity of (9.5.5) in the case p < po.

Case (2): p > po. In this case we set r = p/po > 1. Then we have

::(A;|TU)Vanh>r (9.5.16)

for some nonnegative function & with L (w) norm equal to 1. We define a function

17Nl

1z = 117 ()

]7

H= [R%hp)}r.
Obviously, we have 0 < h < H and thus

[ r(ommwar < / IT ()| H wdx
RV!

IN

N([Ewla,, )" I 1I77

oot (9.5.17)
< N([HW ) H |f|l’0 L (w) ||H r’ (w)
S 2,/ N([HWAP())pOHf‘ LP(w)>

noting that

]y = [ RO wax <2 [ wax=2,

R" R"

which is valid in view of (9.5.11). Moreover, this argument is based on the hypoth-
esis of the theorem and requires that Hw be an A, weight. To see this, we observe
that condition (9.5.12) implies that H "/Pwis an A, weight with characteristic con-
stant at most a multiple of [w]s,. Thus, there is a constant C} that depends only on n
and p such that

/

|Q|/HP wdx < Ch[w ]A[,Hﬂw

for all cubes Q in R”. From this it follows that

o
(Hw)™" < xa(n, p, po) [w (|Q|/Hp wdx) T

where we set K2 (n,p,po) = (C5)P '/ We raise the preceding displayed expression
to the power po 1, we average over the cube Q, and then we raise to the power
po — 1. We deduce the estimate
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<|;| /Q<Hw>‘ﬂadx)p01

1)/’ 1 J —]:// 1 L po—1
<walnpp bl (o [H7war) (g [t )

where we use the fact that

(9.5.18)

/
(5-4)@4—1):1—pﬁ

Note that ¥/ /p’ > 1, since pg > 1. Using Holder’s inequality with exponents '/ p’
and (#'/p')~! we obtain that

/ po—1

4 Py

1 " 1 v I 1 " p-1
Hwdx < HY'wd d , 9.5.19
o x<|Q|/Q i ) (|Q|/QW ) ©>19

where we used that
1 - pPo— 1

/

(yy p-1
Multiplying (9.5.18) by (9.5.19), we deduce the estimate

p, l’()*I
[HW}AP() S KZ(”aPaPO) [W]Arp [W]Al;;l = KZ(”aPaPO) [W]A[, .

Inserting this estimate in (9.5.17) we obtain

S T hwdx <27 Nwaln,p.po) b, )" 713

and combining this with (9.5.16) we conclude that

HT(f)HZP(w) < ZIZJVN(Kz(n,p,P()) [W]AP)I’oerHZ))ZW).

This proves the required estimate (9.5.5) in the case p > py. O

There is a version of Theorem 9.5.3 in which the initial strong type assumption
is replaced by a weak type estimate.

Theorem 9.5.5. Suppose that T is a well defined operator on J; y<eUyea, Li(w)
that takes values in the space of measurable complex-valued functions. Fix 1 <
po < o and suppose that there is an increasing function N on [1,) such that for all
weights v in A, we have

1T o )20 < N ([1ay0)- (9.5.20)

Then for any 1 < p < oo and for all weights w in A, we have
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I7]

LP (w)—LP=(w) < K(l’l,p,po, [W]AI’) ) (9.5.21)
where K(n,p,po, [W]AP) is as in Theorem 9.5.3.
Proof. For every fixed A > 0 we define

T.(f) = AXr(f) > -

The operator T), is not linear but is well defined on U; ;<o Uyvea, LY (w), since T is
well defined on this union. We show that 7) maps L0 (v) to LP0(v) for every v € Ap,.
Indeed, we have

</R T (f)IP de) "

1
pPo
( Rnl”OXT(fMVCIX)
1

= (Amv({IT(5)] > 2))"
< N(Wap) 11l o o)

N

using the hypothesis on T'. Applying Theorem 9.5.3, we obtain that T) maps L (w)
to itself for all 1 < p < o and all w € A, with a constant independent of A. Precisely,
for any w € A, and any f € LP(w) we have

T2 () oy < K (1200, W], ) ] oo -
Since
|‘T(f)|‘mw(w) = i‘il(’)HTl(f)HLp(w)v
it follows that 7 maps L? (w) to L”**(w) with the asserted norm. O

Assuming that the operator T in the preceding theorem is sublinear (or quasi-
sublinear), we obtain the following result that contains a stronger conclusion.

Corollary 9.5.6. Suppose that T is a sublinear operator on ) g<eUyea, Li(w)
that takes values in the space of measurable complex-valued functions. Fix 1 <
po < o and suppose that there is an increasing function N on [1,°) such that for all
weights v in A, we have

7] (9.5.22)

L0 (v)—LP0=(v) < N([V]A,,O) .

Then for any 1 < p < oo and any weight w in A, there is a constant K' (n, p, po, Wla, )
such that

17

Proof. The proof follows from Theorem 9.5.5 and the Marcinkiewicz interpolation
theorem. O

LP(w) S K/(n7p7p07 [W]Ap)Hf| LP(w) "
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We end this subsection by observing that the conclusion of the extrapolation The-
orem 9.5.3 can be strengthened to yield vector-valued estimates. This strengthening
may be achieved by a simple adaptation of the proof discussed.

Corollary 9.5.7. Suppose that T is defined on U)<g<eUyvea, L(w) and takes val-
ues in the space of all measurable complex-valued functions. Fix 1 < pg < e and
suppose that there is an increasing function N on [1,0) such that for all weights v
in Ap, we have

HTHLPO(V)HLPO(V) S N([V]Apo) .

Then for every 1 < p < oo and every weight w € A, we have

H(glnmvm)"; o !(ZI 5 |,,0)m

< K(n,p,po,[wla,

LP(w)

for all sequences of functions f; in LP (w), where K(n, D, Po, [W]Ap) is as in Theorem
9.5.3.

Proof. To derive the claimed vector-valued inequality follow the proof of Theorem
1 1
9.5.3 replacing the function f by (X;[f;|0) 70 and T(f) by (X;|T(f;)[P°)». O

9.5.3 Weighted Inequalities Versus Vector-Valued Inequalities

We now turn to the last topic we are going to discuss in relation to A, weights:
connections between weighted inequalities and vector-valued inequalities. The next
result provides strong evidence that there is a nontrivial connection of this sort. The
following is a general theorem saying that any vector-valued inequality is equivalent
to some weighted inequality. The proof of the theorem is based on a minimax lemma
whose precise formulation and proof can be found in Appendix H.

Theorem 9.5.8. (a) Let 0 < p < q,r < co. Let {T}j}; be a sequence of sublinear
operators that map LI(1) to L"(v), where L and v are arbitrary measures. Then
the vector-valued inequality

|[Zimry

(9.5.23)

L <CH Zm'p

holds for all f; € L1() if and only if for every u > 0 in Lr» (V) there exists U > 0
inLa'r (1) with

< ell,

T;(f)|Pudv < CP PUdu.
sup [ TP udv < € [ 1rPu du

)

Wl e,
(9.5.24)
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(b) Let 0 < q,r < p < oo. Let {T;}; be as before. Then the vector-valued inequality
(9.5.23) holds for all f; € L1(u) if and only if for every u > 0 in L' () there exists
U > 0in L (v) with

&,z < llul

T;(f)PU"d
sup [ 11,1170~ av

)

q
LP—4

5.2

IN

Proof. We begin with part (a). Given f; € LY(R", ), we use (9.5.24) to obtain

H@'Tﬂfﬂ'”)"’ o HZ|T.,-<m|" '

[ u <1</nZ|T (f7) |pudv>

1
4
sup C(/an_mlpvdu)
J

HuH r <1

IN

IN

sup CHZ|f1|p

el 1,

(i)

IN

La(u)’

which proves (9.5.23) with the same constant C as in (9.5.24). To prove the converse,
given a nonnegative u € L™ (v) with H“Hy—rp =1, we define

A:{a:(ao,al):ao—zm, Z|Tf, , fielf ()}

and

B={beLor(u): 20, |b] o <1=ul

L ]7}'

Notice that A and B are convex sets and B is weakly compact. (The sublinearity of
each Tj is used here.) We define the function @ on A x B by setting

®(a,b) — /aludv—C”/aobdu -3y (/|Tj(fj)|f’udv —c"/ |fj|”bdu) .
J
Then @ is concave on A and weakly continuous and convex on B. Thus the minimax

lemma in Appendix H is applicable. This gives

minsup @(a,b) = supmin ®(a,b). (9.5.26)
bEB ;A acA bEB
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At this point observe that for a fixed a = (X; |7, X;|7;(f;)|?) in A we have
T )P
[Zimmr],;

H;mm)" ) v)—c"H;mV’ g

min ®(a,b)
beB

IN

LT —Cpmax/2|fj|”bdu

IN

<0

using the hypothesis (9.5.23). It follows that sup,, minyep @(a,b) < 0 and hence
(9.5.26) yields minpegsup,c4 P(a,b) < 0. Thus there exists a U € B such that
®(a,U) <0 for every a € A. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 9.5.1 and (9.5.25),
given f; € L(R", u) we have

H(zv ")’

= HZW i

Ju || q <1</,,Z|f/|”u ldu)

1

1
. " B ]7
Z ™ < </nZ|TJ(fj)I”U 1dv>
L17£r_ J
! )
CH;mwv

()

L9()

v)

Lr(v)

To prove the converse direction in part (b), given a fixed u > 0 in L P (1) with
H”HL,,iq =1, we define A as in part (a) and

P
B={beLr(v): b=0, ||p] » <1=ul| o}

We also define the function @ on A X B by setting
@(a,b) = /dlb_ldV—Cp/aou_ldu
=3 (fmwe av-c i aw).
J

Then @ is concave on A and weakly continuous and convex on B. Also, using Exer-
cise 9.5.1, forany a = (X; |17, X; |Tj(f)|?) in A, we have

<0.

LP (u)

@( b<H T:(f)|P
mip ®(a.6) < || 2ILUIY,

ro Izl
J
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Thus sup,c4 minyep @(a,b) < 0. Using (9.5.26), yields minyepgsup,c4 P(a,b) <0,
and the latter implies the existence of a U in B such that ®@(a,U) <0 for all a € A.
This proves (9.5.25). O

Example 9.5.9. We use the previous theorem to obtain another proof of the vector-
valued Hardy-Littlewood maximal inequality in Corollary 4.6.5. We take T; = M

for all j. For given 1 < p < g < e and u in Lo’ we set s = qu and U =

M)

M (u). In view of Exercise 9.1.8 we have

lu

<

. and M(f)P udx < CP/ f17U dx.
R” R”

Using Theorem 9.5.8, we obtain

|(Z My

(9.5.27)
14

o Cona[(SU)
J

whenever 1 < p < g < oo, an inequality obtained earlier in (4.6.17).

It turns out that no specific properties of the Hardy—Littlewood maximal function
are used in the preceding inequality, and we can obtain a general result along these
lines. For simplicity we take the operators 7} in the next theorem to be linear.

Exercises
9.5.1.Let0 < s < 1 and f bein L*(X, u). Show that

LS:inf{/Xlﬂu_ldﬂ: el 5, Sl}

and that the infimum is attained.
[Hint: Try u = c|f|'~* for a suitable constant c.

171

9.5.2. Use the same idea of the proof of Theorem 9.5.1 to prove the following gen-
eral result: Let u be a positive measure on a measure space X and let 7 be a bounded
sublinear operator on L” (X, it) for some 1 < p < oo. Suppose that T(f) > 0 for all f
in LP(X, ). Prove that for all fy € LP(X, 1), there exists an f € L (X, i) such that

(@) fo(x) < f(x) for u-almost all x € X.
®) [[£llpx) =211 0]
© T(f)(x) <2||T||,»_»f(x) for u-almost all x € X.

Lr(x)’

[Hint: Try the expression in (9.5.2) starting the sum at j = 0.]
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9.5.3. (Duoandikoetxea [116]) Suppose that T is a well defined operator on the
union U;<gceUpen, L7 (w) that satisfies I o)) S N([v]a,) for some in-
creasing function N : [1,00) — R*. Without using Theorem 9.5.3 prove that for
l <g<randallveA;, T maps L?(v) to L4(v) with constant depending on ¢, r, n,
and [v]a,

[Hint: Holder’s inequality gives that

r—q
q

7 < ( o NI s ([, M)

r—=gq

Then use the fact that the weight M(f) 1 is in A and Exercise 9.1.2.]

9.5.4. Let T be a sublinear operator defined on < <..L?. Suppose that for all
functions f and u we have

J T Puds< [ 17PM(dx
Rn Rl‘l

Prove that 7 maps L? (R") to itself for all 2 < p < .
[Hint: Use that

HT(f)‘ ) | sup < - |T(f)|2udx)2

Ul (p/2) <o

and Holder’s inequality.}

9.5.5.(X. C. Li) Let T be a sublinear operator defined on U<z Uyea, L7(W).

Suppose that T maps L?(w) to L?(w) for all weights w that satisfy w=! € A;. Prove
that 7 maps L? to itself forall 1 < p < 2.
[Hint: We have

< </ IT(f 2M -(2- P)dx) ( RnM(f)de> 2p

by Holder’s inequality. Apply the hypothesis to the first term of the product.]

(1)l

HISTORICAL NOTES

Weighted inequalities can probably be traced back to the beginning of integration, but the
A, condition first appeared in a paper of Rosenblum [272] in a somewhat different form. The
characterization of A, when n = 1 in terms of the boundedness of the Hardy-Littlewood maximal
operator was obtained by Muckenhoupt [237]. The estimate on the norm in (9.1.24) can also be
reversed, as shown by Buckley [36]. The simple proof of Theorem 9.1.9 is contained in Lerner’s
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article [209] and yields both the Muckenhoupt theorem and Buckley’s optimal growth of the norm
of the Hardy-Littlewood maximal operator in terms of the A, characteristic constant of the weight.
Another proof of this result is given by Christ and Fefferman [69]. Versions of Lemma 9.1.10 for
balls were first obtained by Besicovitch [23] and independently by Morse [235]. The particular
version of Lemma 9.1.10 that appears in the text is adapted from that in de Guzmadn [109]. Another
version of this lemma is contained in the book of Mattila [227]. The fact that A.. is the union of
the A, spaces was independently obtained by Muckenhoupt [238] and Coifman and Fefferman
[74]. The latter paper also contains a proof that A, weights satisfy the crucial reverse Holder
condition. This condition first appeared in the work of Gehring [145] in the following context: If F
is a quasiconformal homeomorphism from R” into itself, then |det(VF)| satisfies a reverse Holder
inequality. The characterization of A; weights is due to Coifman and Rochberg [84]. The fact that
M(f)? is in A., when 8 < 1 was previously obtained by Cérdoba and Fefferman [92]. The different
characterizations of A, (Theorem 9.3.3) are implicit in [237] and [74]. Another characterization of
Ao in terms of the Gurov-Reshetnyak condition sup,, ‘ (lz‘ Jolf —Avey fldx < eAvg, f for f >0
and 0 < € < 2 was obtained by Korenovskyy, Lerner, and Stokolos [196]. The definition of A..
using the reverse Jensen inequality herein was obtained as an equivalent characterization of that
space by Garcia-Cuerva and Rubio de Francia [141] (p. 405) and independently by Hruscev [169].
The reverse Holder condition was extensively studied by Cruz-Uribe and Neugebauer [98].

Weighted inequalities with weights of the form |x| for the Hilbert transform were first obtained
by Hardy and Littlewood [159] and later by Stein [288] for other singular integrals. The necessity
and sufficiency of the A, condition for the boundedness of the Hilbert transform on weighted L?
spaces was obtained by Hunt, Muckenhoupt, and Wheeden [172]. Historically, the first result re-
lating A, weights and the Hilbert transform is the Helson-Szeg6 theorem [162], which says that
the Hilbert transform is bounded on L?(w) if and only if logw = u+ Hv, where u,v € L(R) and
Hv” 1= < 5. The Helson-Szegd condition easily implies the A, condition, but the only known direct
proof for the converse gives HVH 1= < T; see Coifman, Jones, and Rubio de Francia [76]. A related
result in higher dimensions was obtained by Garnett and Jones [143]. Weighted L? estimates con-
trolling Calderé6n—Zygmund operators by the Hardy—Littlewood maximal operator were obtained
by Coifman [71]. Coifman and Fefferman [74] extended one-dimensional weighted norm inequali-
ties to higher dimensions and also obtained good lambda inequalities for A., weights for more gen-
eral singular integrals and maximal singular integrals (Theorem 9.4.3). Bagby and Kurtz [14], and
later Alvarez and Pérez [4], gave a sharper version of Theorem 9.4.3, by replacing the good lambda
inequality by a rearrangement inequality. See also the related work of Lerner [208]. The result of
Exercise 9.4.9 relating the weighted norms of f and M*(f) is also valid under weaker assumptions
on f; for instance, the condition M(f) € L0 can be replaced by the condition w({|f| > t}) < oo
for every ¢ > 0; see Kurtz [201]. Using that min(M,w) is an A., weight with constant indepen-
dent of M and Fatou’s lemma, this condition can be relaxed to |{|f| > ¢}| < e for every 7 > 0. A
rearrangement inequality relating f and M*(f) is given in Bagby and Kurtz [13].

The factorization of A, weights was conjectured by Muckenhoupt and proved by Jones [178].
The simple proof given in the text can be found in [76]. Extrapolation of operators (Theorem 9.5.3)
is due to Rubio de Francia [274]. An alternative proof of this theorem was given later by Garcia-
Cuerva [140]. The value of the constant K (n, p, po, [w]a,) first appeared in Dragicevi¢, Grafakos,
Pereyra, and Petermichl [110]. The present treatment of Theorem 9.5.3, based on crucial Lemma
9.5.4, was communicated to the author by J. M. Martell. One may also consult the related work
of Cruz-Uribe, Martell, and Pérez [97]. The simple proof of Theorem 9.5.5 was conceived by J.
M. Martell and first appeared in the treatment of extrapolation of operators of many variables; see
Grafakos and Martell [151]. The idea of extrapolation can be carried to general pairs of functions,
see Cruz-Uribe, Martell, and Pérez [96]. The equivalence between vector-valued inequalities and
weighted norm inequalities of Theorem 9.5.8 is also due to Rubio de Francia [275]. The difficult
direction in this equivalence is obtained using a minimax principle (see Fan [122]). Alternatively,
one can use the factorization theory of Maurey [228], which brings an interesting connection with
Banach space theory. The book of Garcia-Cuerva and Rubio de Francia [141] provides an excellent
reference on this and other topics related to weighted norm inequalities.
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A primordial double-weighted norm inequality is the observation of Fefferman and Stein [129]
that the maximal function maps L? (M (w)) to L? (w) for nonnegative measurable functions w (Exer-
cise 9.1.8). Sawyer [278] obtained that the condition sup,, ( Jo vl*”/a'x) 71fQM(V1 d Xo)’wdx < oo
provides a characterization of all pairs of weights (v,w) for which the Hardy-Littlewood maximal
operator M maps L” (v) to L”(w). Simpler proofs of this result were obtained by Cruz-Uribe [95]
and Verbitsky [324]. The fact that Sawyer’s condition reduces to the usual A, condition when v =w
was shown by Hunt, Kurtz, and Neugebauer [171]. The two-weight problem for singular integrals
is more delicate, since they are not necessarily bounded from L” (M (w)) to L” (w). Known results
in this direction are that singular integrals map L?(M[71*!(w)) to L (w), where M” denotes the rth
iterate of the maximal operator. See Wilson [333] (for 1 < p < 2) and Pérez [259] for the remaining
p’s. A necessary condition for the boundedness of the Hilbert transform from L? (v) to L? (w) was
obtained by Muckenhoupt and Wheeden [239]. A necessary and sufficient such condition is yet to
be found. A class of multiple weights that satisfy a vector A, condition has been introduced and
studied in the article of Lerner, Ombrosi, Pérez, Torres, and Trujillo-Gonzalez [210].

For an approach to two-weighted inequalities using Bellman functions, we refer to the article of
Nazarov, Treil, and Volberg [247]. The notion of Bellman functions originated in control theory;
the article [248] of the previous authors analyzes the connections between optimal control and
harmonic analysis. Bellman functions have been used to derive estimates for the norms of classical
operators on weighted Lebesgue spaces; for instance, Petermichl [264] showed that for w € A» (R),
the norm of the Hilbert transform from L?(R,w) to L?>(R,w) is bounded by a constant times the
characteristic constant [w]y, .

The theory of A, weights in this chapter carries through to the situation in which Lebesgue
measure is replaced by a general doubling measure. This theory also has a substantial analogue
when the underlying measure is nondoubling but satisfies t(dQ) = 0 for all cubes Q in R" with
sides parallel to the axes; see Orobitg and Pérez [253]. A thorough account of weighted Littlewood—
Paley theory and exponential-square function integrability is contained in the book of Wilson [334].



Chapter 10

Boundedness and Convergence of Fourier
Integrals

In this chapter we return to fundamental questions in Fourier analysis related to
convergence of Fourier series and Fourier integrals. Our main goal is to understand
in what sense the inversion property of the Fourier transform

1= [ Feemea

holds when f is a function on R". This question is equivalent to the corresponding
question for the Fourier series

f&) =%, flm)emem

meZ"

when f is a function on T”. The main problem is that the function (or sequence) f
may not be integrable and the convergence of the preceding integral (or series) needs
to be suitably interpreted. To address this issue, a summability method is employed.
This is achieved by the introduction of a localizing factor @ (& /R), leading to the
study of the convergence of the expressions

[ @@/ a
as R — co. Here @ is a function on R” that decays sufficiently rapidly at infinity and
satisfies @(0) = 1. For instance, we may take @ = y(o,1), Where B(0, 1) is the unit
ball in R". Analogous summability methods arise in the torus.

An interesting case arises when @ (&) = (1 —|&[)%, 1 > 0, in which we obtain
the Bochner—Riesz means introduced by Riesz when n = 1 and A = 0 and Bochner
for n > 2 and general A > 0. The question is whether the Bochner—Riesz means

~

2 2\ A
1 n 27i(my X1 41X,
z (1_ R2 ) f(mlv"'amn)e (11 )
2 2 2
m34--+my <R
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converge in L”. This question is equivalent to whether the function (1 — |&|*)% is
an L” multiplier on R" and is investigated in this chapter. Analogous questions con-
cerning the almost everywhere convergence of these families are also studied.

10.1 The Multiplier Problem for the Ball

In this section we show that the characteristic function of the unit disk in R? is not
an L? multiplier when p # 2. This implies the same conclusion in dimensions n > 3,
since sections of higher-dimensional balls are disks and by Theorem 2.5.16 we have
that if xp ) ¢ #,(R?) for all r > 0, then yp(o 1) ¢ .#,(R") for any n > 3.

10.1.1 Sprouting of Triangles

We begin with a certain geometric construction that at first sight has no apparent
relationship to the multiplier problem for the ball in R”. Given a triangle ABC with
base b = AB and height hy we let M be the midpoint of AB. We construct two other
triangles AMF and BME from ABC as follows. We fix a height 1y > hy and we
extend the sides AC and BC in the direction away from its base until they reach a
certain height /1;. We let E be the unique point on the line passing through the points
B and C such that the triangle EMB has height i;. Similarly, F is uniquely chosen
on the line through A and C so that the triangle AMF has height A;.

hl A
N
hy A
G H
hy
hy
Fig. 10.1 The sprouting of vy

the triangle ABC. A M B
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The triangle ABC now gives rise to two triangles AMF and BME called the
sprouts of ABC. The union of the two sprouts AMF and BME is called the sprouted
figure obtained from ABC and is denoted by Spr(ABC). Clearly Spr(ABC) contains
ABC. We call the difference

Spr(ABC) \ ABC

the arms of the sprouted figure. The sprouted figure Spr(ABC) has two arms of equal
area, the triangles EGC and FCH as shown in Figure 10.1, and we can precisely
compute the area of each arm. One may easily check (see Exercise 10.1.1) that

b (hy — ho)?
Area (each arm of Spr(ABC)) = ( 21111 B ;2) , (10.1.1)
where b = AB.
h2
hl
hO

Fig. 10.2 The second step of
the construction.

We start with an isosceles triangle A = ABC in R? with base AB of length by = €
and height MC = hy = €, where M is the midpoint of AB. We define the heights

|
hy :(1+2)s,
11

m= (14,4 5)e

2 —|—2—|—3 £

1 1
h:(l )g.
' ot
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We apply the previously described sprouting procedure to A to obtain two sprouts
A; =AMF and Ay = EMB, as in Figure 10.1, each with height /; and base length
bo/2. We now apply the same procedure to the triangles A} and A,. We then obtain
two sprouts Aj; and Ay, from A; and two sprouts Ay and A, from A, a total of
four sprouts with height i,. See Figure 10.2. We continue this process, obtaining at
the jth step 2/ sprouts Apyrjs Tyeos T € {1,2} each with base length b; = 27/b,
and height /1;. We stop this process when the kth step is completed.

hy

Fig. 10.3 The third step of
the construction.

We let E(g,k) be the union of the triangles A, over all sequences r; of 1’s
and 2’s. We obtain an estimate for the area of E (&, k) by adding to the area of A the
areas of the arms of all the sprouted figures obtained during the construction. By
(10.1.1) we have that each of the 2/ arms obtained at the jth step has area

bj-1(hj—hj-1)?
2 2h;—hjy

Summing over all these areas and adding the area of the original triangle, we obtain
the estimate
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j=1 (hj—hj1)?

1 &b
E(e,k)| = & 277

1, & _27U-Dp, g2
< et 4 ) 2/ .

2 ; 2 (j+1)%

1, ¢ /1 = )
< € <( —1)8
<, +,,-§2j2 <(,+%

3 2
<
<€

where we used the fact that 2h; —h;_; > e forall j > 1.

Having completed the construction of the set E(g,k), we are now in a position
to indicate some of the ideas that appear in the solution of the Kakeya problem.
We first observe that no matter what k is, the measure of the set E(g,k) can be
made as small as we wish if we take € small enough. Our purpose is to make a
needle of infinitesimal width and unit length move continuously from one side of
this angle to the other utilizing each sprouted triangle in succession. To achieve this,
we need to apply a similar construction to any of the 2 triangles that make up the
set E(&,k) and repeat the sprouting procedure a large enough number of times. We
refer to [99] for details. An elaborate construction of this sort yields a set within
which the needle can be turned only through a fixed angle. But adjoining a few such
sets together allows us to rotate a needle through a half-turn within a set that still
has arbitrarily small area. This is the idea used to solve the aforementioned needle
problem.

10.1.2 The counterexample

We now return to the multiplier problem for the ball, which has an interesting con-
nection with the Kakeya needle problem.

Fig. 10.4 A rectangle R and
its adjacent rectangles R'.

In the discussion that follows we employ the following notation. Given a rectan-
gle R in R?, we let R’ be two copies of R adjacent to R along its shortest side so that
RUR’ has the same width as R but three times its length. See Figure 10.4.

We need the following lemma.
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Lemma 10.1.1. Let § > 0 be a given number. Then there exists a measurable subset
E of R? and a finite collection of rectangles R;in R? such that

(1) The R;’s are pairwise disjoint.

(2) We have 1/2 < |E| <3/2.

(3) We have |[E| < 8%, |R;l.

(4) For all j we have |R;NE| > LIR;|-

Proof. We start with an isosceles triangle ABC in the plane with height 1 and base
AB, where A = (0,0) and B = (1,0). Given 6 > 0, we find a positive integer k such
that k+2 > ¢!/%. For this k we set E = E(1,k), the set constructed earlier with & = 1.
We then have 1/2 < |E| < 3/2; thus (2) is satisfied.

3 log (k+2)

Fig. 10.5 The rectangles R;.

Recall that each dyadic interval [j27%,(j+1)27%] in [0,1] is the base of ex-
actly one sprouted triangle A;B;C;, where j € {0,1,...,2¥ — 1}. Here we set
A; = (j27%,0), B; = ((j+1)27%,0), and C; the other vertex of the sprouted tri-
angle. We define a rectangle R; inside the angle ZA;C;B; as in Figure 10.6. The
rectangle R; is defined so that one of its vertices is either A; or B; and the length of
its longest side is 3log(k+2).

We now make some calculations. First we observe that the longest possible length
that either A;C; or B;C; can achieve is v/5/;/2. By symmetry we may assume that
the length of A;C; is larger than that of B;C; as in Figure 10.6. We now have that
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V5

3 1 1
h (1
S < (I, +

3
k+1) < (1+1og(k+1) < 3log(k+2),

since k > 1 and e < 3. Hence R, contains the triangle A;B;C;. We also have that

1 1
hk—1+2+---+k+1 > log(k+2).

Using these two facts, we obtain

1
IR;NE| > Area(A;B;C;) = 22"‘hk > 275 og(k+2). (10.1.2)

3 log (k+2)

Fig. 10.6 A closer look at R;.

Denote by |XY| the length of the line segment through the points X and Y. The
law of sines applied to the triangle A ;B;D; gives

sin(ZA;B;D;) 27k

< . 10.1.3
sin(ZA;D;Bj) ~ cos(£A;C;Bj) ( )

|AjDj[ =2~

But the law of cosines applied to the triangle A;B;C; combined with the estimates
he < |A;Cj|,|B;C;| < v/5hi/2 give that
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h§+h,§—(2—’<)2>4 2 11

cos(ZA;C;Bj) > 255 > a2, (10.1.4)

Combining (10.1.3) and (10.1.4), we obtain
AD;| <27 =2|A;By].

Using this fact and (10.1.2), we deduce

1 1
27 M 1310g(k+2) > IR/,

R.NE|>27%F1] 2) =
IR;NE| > og(k+2) 12 Z R

which proves the required conclusion (4).

Conclusion (1) in Lemma 10.1.1 follows from the fact that the regions inside
the angles ZA;C;B; and under the triangles A;C;B; are pairwise disjoint. This is
shown in Figure 10.5. This can be proved rigorously by a careful examination of the
construction of the sprouted triangles A ;C; B}, but the details are omitted.

It remains to prove (3). To achieve this we first estimate the length of the line
segment A ;D from below. The law of sines gives

oy _ 2t
sin(ZA;B;D;)  sin(ZA;D;B;)’
from which we obtain that
|A;D;| >27%sin(£A;B;D;) > 27" 1 /A;B;D; > 27" 1 /B;AC; .

(All angles are measured in radians.) But the smallest possible value of the angle
ZBjA;C; is attained when j = 0, in which case ZByAgCy = arctan2 > 1. This gives
that

|Aij| > k=1,

It follows that each R; has area at least 2%~ !31log(k + 2). Therefore,

2k_1

2k—1
E
U Ri|= 3 IRj| =2 27% 3log(k+2) > |E|log(k+2) > |5|,
Jj=0 j=0
since |E| < 3/2 and k was chosen so that k +2 > e!/%. O

Next we have a calculation involving the Fourier transforms of characteristic
functions of rectangles.

Proposition 10.1.2. Let R be a rectangle whose center is the origin in R* and let v
be a unit vector parallel to its longest side. Consider the half-plane

H={xeR*: x-v>0}

and the multiplier operator
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Sa(f) = (far)"
Then we have |S»(xr)| > |, xr'-

Remark 10.1.3. Applying a translation, we see that the same conclusion is valid for
any rectangle in R? whose longest side is parallel to v.

Proof. Applying a rotation, we reduce the problem to the case R = [—a,a] X [—b, b],
where 0 < a < b < oo, and v = e, = (0, 1). Since the Fourier transform acts in each
variable independently, we have the identity

S (xr)(x1,X2) = X[fa,a](xl)(m%[o,m))v(XZ)
I+iH
= X-aa(*1) 5 (X=b,p)) (x2)-

It follows that
1
[Soe ()1 x2) 2 a0 H (-p.17) (22))
1 X2 +b
= 2n%[7a,a](-xl) log )Q—b‘ ‘

But for (x1,x2) € R' we have y[_,4(x1) = 1 and b < |x2| < 3b. So we have two
cases, b < xp < 3b and —3b < xp < —b. When b < x» < 3b we see that

xz—l—b‘ _X2—|—b

= 2
)Cz—b )Cz—b> ’

and similarly, when —3b < xp < —b we have

Xy — b _ b— X2 >0
Xy+b —b—xp
It follows that for (x,x2) € R’ the lower estimate is valid:

log2 1
# > > .
1S (Xr) (x1,%2)| > e =10
]

Next we have a lemma regarding vector-valued inequalities of half-plane multi-
pliers.

Lemma 10.1.4. Let vi,v2,...,Vvj,... be a sequence of unit vectors in R2. Define the
half-planes
H={xER*: x-v; >0} (10.1.5)

and linear operators
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Assume that the disk multiplier operator

T(f) = (f 2s0.1)"

maps LP (R?) to itself with norm B, < . Then we have the inequality

[(Zismone)’],,

for all bounded and compactly supported functions f;.

<8 (ZUAF)

(10.1.6)

Proof. We prove the lemma for Schwartz functions f; and we obtain the general
case by a simple limiting argument. We define disks D; g = {x € R*: |[x—Rv;| <R}
and we let

TJ'VR(f) = (fXDj,R)\/

be the multiplier operator associated with the disk Dj . We observe that yp, , —
X pointwise as R — oo, as shown in Figure 10.7.

Fig. 10.7 A sequence of disks
converging to a half-plane.

For f € .7 (R?) and every x € R? we have
lim 7jr(f)(x) = S, () (x)

by passing the limit inside the convergent integral. Fatou’s lemma now yields

|(Siss®)?]| <timint[(Smecp)?] - 01
J J

LrP
Next we observe that the following identity is valid:
TLR(f) (x) _ eZm‘RVj-xTR(eme'Rvj.(.)f) (x)7 (10. 1.8)

where T is the multiplier operator Tz(f) = (fxB(Om)V. Setting g; = e 2R () f;
and using (10.1.7) and (10.1.8), we deduce
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H(Z|S%}(fj)|2)i‘ (10.1.9)

1
o < liminf | (X 17(2))* -
J

Observe that the operator T is L” bounded with the same norm B), as T in view of
identity (2.5.15). Applying Theorem 4.5.1, we obtain that the last term in (10.1.9)
is bounded by

liminf || Tx |
R—o

LP—LP p*

<;|g.,-|2>%|m:Bpu@mﬂ

Combining this inequality with (10.1.9), we obtain (10.1.6). O

We have now completed all the preliminary material we need to prove that the
characteristic function of the unit disk in R? is not an L” multiplier if p # 2.

Theorem 10.1.5. The characteristic function of the unit ball in R" is not an L?P
multiplier when 1 < p # 2 < oo,

Proof. As mentioned earlier, in view of Theorem 2.5.16, it suffices to prove the
result in dimension n = 2. By duality it suffices to prove the result when p > 2.
Suppose that xp(q 1) € .#,(R?) for some p > 2, say with norm B, < ee.

Suppose that 6 > 0is given. Let £ and R be as in Lemma 10.1.1. We let f; = x;
Let v; be the unit vector parallel to the long side of R; and let H; be the half-plane
defined as in (10.1.5). Using Proposition 10.1.2, we obtain

/E;|Sﬁéﬁ(ﬁ)(X)|2dx = ;/Ii|5%(ﬁ)(x)|2dx

1
> /E g (D) dx
J

1 /
- 100%"“”2/'|

1
:>
= 1200;|R/|’

(10.1.10)

where we used condition (4) of Lemma 10.1.1 in the last inequality. Holder’s in-
equality with exponents p/2 and (p/2)" = p/(p —2) gives

[ Xl @ Par < 18 (I )P
J J
2

1
|(z|fj|2)2 | Ly
S (10.1.11)

p—2
= BIEI"" (ZIR)])”

J

—2
B25'r Y IR,
J

p—2
BJIE| »

IN

IN
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where we used Lemma 10.1.4, the disjointness of the R;’s, and condition (3) of
Lemma 10.1.1 successively. Combining (10.1.10) with (10.1.11), we obtain the in-
equality

-2
3 IR;| < 1200B,8 7 3 IR},
J J

which provides a contradiction when J is very small. O

Exercises

10.1.1. Prove identity (10.1.1).
[Hint: With the notation of Figure 10.1, first prove

hy—hy _ NC height (NGC) NC
hy b2’ ho " NC+b)2

using similar triangles.}

10.1.2. Given a rectangle R, let R” denote either of the two parts that make up R’
Prove that for any k € Z" and any 6 > 0, there exist rectangles S ;in R2,0< j< 2k
with dimensions proportionate to 2% x log(k + 1),

261

Us;
j=0

<9,

such that for some choice of S}’ , the S’]-/ ’s are disjoint.

[H int: Consider the 2 triangles that make up the set E (&, k) and choose each rectan-
gle S; inside a corresponding triangle. Then the parts of the S}’s that point downward

are disjoint. Choose € depending on 5.]

10.1.3. Is the characteristic function of the cylinder

{(61,6,8) e R’ : §1+ &5 < 1}
a Fourier multiplier on L?(R?) for 1 < p < e and p # 2?

10.1.4. Modify the ideas of the proof of Lemma 10.1.4 to show that the character-

istic function of the set
{(&1,6) eR*: & > &}

is not in .#,(R?) when p # 2.
[Hint: Let #; = {(&1,&) €R?: & >s;&] } for some s; > 0. The parabolic regions

2 .
{(6,86)eR*: &+R] > L& +RY )2} are contained in .57, are translates of
the region {(&,&) € R?: & > ; &2}, and tend to 7 as R — o



10.2 Bochner-Riesz Means and the Carleson—Sjolin Theorem 351

10.1.5. Let ay, . ..,a, > 0. Show that the characteristic function of the ellipsoid

{6.ener: 51 ot o 1)
n
is not in .#,(R") when p # 2.
[Hint: Think about dilations. |

10.2 Bochner—Riesz Means and the Carleson-Sjolin Theorem

We now address the problem of norm convergence for the Bochner—Riesz means.
In this section we provide a satisfactory answer in dimension n = 2, although a key
ingredient required in the proof is left for the next section.

Definition 10.2.1. For a function f on R"” we define its Bochner—Riesz means of
complex order A with ReA > 0 to be the family of operators

BH(N@) = [ (1= IE/RPEFE)™EdE, R >o0.

We are interested in the convergence of the family Bﬁ (f) as R — oo. Observe that
when R — o and f is a Schwartz function, the sequence Bfg (f) converges pointwise
to f. Does it also converge in norm? Using Exercise 10.2.1, this question is equiva-
lent to whether the function (1 —|&|?)* is an L multiplier [it lies in .#,(R")], that
is, whether the linear operator

BN = [ (1= EPAF§)ems e

maps L”(R") to itself. The question that arises is given A with ReA > 0 find the
range of p’s for which (1 —|&[?)* is an LP(R”") Fourier multiplier; this question is
investigated in this section when n = 2.

The analogous question for the operators Bﬁ on the n-torus introduced in Defi-
nition 3.4.1 is also equivalent to the fact that the function (1 —|&[?)% is a Fourier
multiplier in .#,(R"). This was shown in Corollary 3.6.10. Therefore the Bochner—
Riesz problem for the torus T” and the Euclidean space R" are equivalent. Here we
focus attention on the Euclidean case, and we start our investigation by studying the
kernel of the operator B*.

10.2.1 The Bochner—Riesz Kernel and Simple Estimates

In view of the last identity in Appendix B.5, B is a convolution operator with kernel
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C(A+1) 7152 (2m[x])

o 3 (10.2.1)

Kj (x) =

Following Appendix B.6, we have for |x| < 1,

K, ()] = IC(A41)| M1422mlx])] TReA+1) o comap
AU x[3tRed = gRed 0 ’

where Cy is a constant that depends only on n/2 + ReA. Consequently, Kj (x) is
bounded by a constant (that grows at most exponentially in [Im A|?) in the unit ball
of R".

For |x| > 1, following Appendix B.7, we have

|F()L+1)||J"+;L(27f|x|)|< emA T ImAR P (Re A 1)

K (x)] = <G
|n/1| |x|2 5+Rel ITRC)L(27'E|)C|)£ |x|2 5+Rel

where Cj depends only on n/2 4+ ReA. Thus Kj (x) is pointwise bounded by a con-

stant (that grows at most exponentially in [Im A |) times |x|~"2 ~R¢4 for |x| > 1.
Combining these two observations, we obtain that for Re 7L > 2 . , K is a smooth
integrable function on R". Hence B is a bounded operator on L? for 1 < p < co.

Proposition 10.2.2. For all 1 < p < eoand A > ", ! B* is a bounded operator on
LP(R") with norm at most C e°! [mA[2 , where Cy,cy depend only on n,Re .

Proof. The ingredients of the proof have already been discussed. |

We refer to Exercise 10.2.8 for an analogous result for the maximal Bochner—
Riesz operator.

According to the asymptotics for Bessel functions in Appendix B.8, K; is a
smooth function equal to

T'(A41) cos(2m|x "H) o n
T+ 1) cos(rix| - 2) 4 o) (10.2.2)
nk-‘rl |x| ”Jr] +)L

for x| > 1. It is natural to examine whether the operators B* are bounded on certain
L? spaces by testing them on specific functions. This may provide some indication
as to the range of p’s for which these operators may be bounded on L?.

Proposition 10.2.3. When A > 0 and p <
are not bounded on LP (R").

2n 2n 2
nilaon 0T P =, "5, the operators B

Proof. Let h be a Schwartz function whose Fourier transform is equal to 1 on the
ball B(0,2) and vanishes off the ball B(0,3). Then

Ao = [ CIERV R gy — Ko (x
B = [, (118D =K (),
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and it suffices to show that K3 is not in L (R") for the claimed range of p’s. Notice
that

V2/2 < cos(2mlx| = "D — 7y < (10.2.3)

for all x lying in the annuli

22 24 1
Ak:{XERnZk+n_|—8 §|X|Sk+n+ + },

keZt,
g8 T4 <

Since in this range, the argument of the cosine in (10.2.2) lies in 27k, 27wk + 7].
Consider the range of p’s that satisfy

2n 2n

>p> . 102.4
n+14+20 =77 ni34oa ( )

If we can show that B* is unbounded in this range, it will also have to be unbounded
in the bigger range | +21 > p. This follows by interpolation between the values

r=, +M —dandp=, +M+6 6 >0, for A fixed.
In v1ew of (10.2.2) and (10 2.3), we have that

K|z, >C 2 / x| P"3 ~Prax " — c’”/ [P Prax, (10.2.5)
k=n+22 [x[>1

where C” is the integral of K in the unit ball. It is easy to see that for p in the
range (10.2.4), the integral outside the unit ball converges, while the series diverges
in (10.2.5).

The unboundedness of B* on LP(R") in the range of p > ,,,lzf ,; follows by
duality. g

Fig. 10.8 The operator B? is
unbounded on L (R") when .
(1/p, 1) lies in the shaded 0 n=1 | o+l 1
region. 2

1 2
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In Figure 10.8 the shaded region is the set of all pairs ([1, ,A) for which the oper-
ators B* are known to be unbounded on L” (R").

10.2.2 The Carleson-Sjolin Theorem

We now pass to the main result in this section. We prove the boundedness of the
operators B, 4 > 0, in the range of p’s not excluded by the previous proposition in
dimension n = 2.

Theorem 10.2.4. Suppose that 0 < ReA < 1/2. Then the Bochner-Riesz operator
B* maps LP(R?) to itself when 3+2‘;ek <p< 1—2Ai{ex' Moreover, for this range of
p’s and for all f € LP(R?) we have that

Bx(f)— f
in LP (RZ) as R — oo,

Proof. Once the first assertion of the theorem is established, the second assertion
will be a direct consequence of it and of the fact that the means Bl’% (h) converge
to & in LP for h in a dense subclass of L”. Such a dense class is, for instance, the
class of all Schwartz functions & whose Fourier transforms are compactly supported
(Exercise 5.2.9). For a function 4 in this class, we see easily that Bﬁ (h) — h point-
wise. Butif 1 is supported in || < ¢, then for R > 2c¢, integration by parts gives that
the functions B} (h)(x) are pointwise controlled by the function (1 + |x[)~" with
N large; then the Lebesgue dominated convergence theorem gives that the B%(h)
converge to h in L”. Finally, a standard £/3 argument, using that

s 5, = [0 -18PE <

yields B} (f) — f in L for general L” functions f.

It suffices to focus our attention on the first part of the theorem. We therefore fix
a complex number A with positive real part and we keep track of the growth of all
involved constants in ImA.

We start by picking a smooth function ¢ supported in | 0]

—5,,]) and a smooth

function y supported in [é, g] that satisfy
- 11—t
o)+ Y v(, ) =1
k=0
for all # € [0, 1). We now decompose the multiplier (1 — |&|?)% as

(1= EP = moo(E) + 3 2 omy (£, (10.2.6)
k=0
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where moo(&) = @(|€])(1 — |E]*)* and for k > 0, my is defined by
m@) = (" (' a g

Note that myqy is a smooth function with compact support; hence the multiplier m
lies in %p(Rz) for all 1 < p < . Each function m; is also smooth, radial, and
supported in the small annulus

1-327F<jg|<1- 127

and therefore also lies in .#); nevertheless the ./, norms of the my’s grow as k
increases, and it is crucial to determine how this growth depends on k so that we can
sum the series in (10.2.6).

Next we show that the Fourier multiplier norm of each m; on L*(R?) is at most
C(1+1k))'/?(1 +ImA|)®. Summing on k implies that B* maps L*(R?) to itself
with norm at most a multiple of (1+ [ImA|)? when Re A > 0. Given this bound, we
conclude the first (and main) statement of the theorem via Theorem 1.3.7 (precisely
Exercise 1.3.4), which permits interpolation for the analytic family of operators A +—
B* between the estimates

HBlHL4(R2)_,L4(R2) <C(1+[mAl)’ when Re A > 0,

181 gy ey < €1 e when Red > }.
where C,C,c; depend only on Re A. The second estimate above is proved in Propo-
sition 10.2.2 while the set of points (1/p,A) obtained by interpolation can be seen
in Figure 10.8.

To estimate the norm of each my, in .#4(R?), we need an additional decomposi-
tion of the operator my, that takes into account the radial nature of my. For each k > 0
we define the sectorial arcs (parts of a sector between two arcs)

Le={r™eR: 90273 <272, 1-327%<r<1—127%)

forall £ € {0,1,2,...,[2¥/2] — 1}. We now introduce a smooth function @ supported
in [—1,1] and equal to 1 on [—1/4,1/4] such that for all x € R we have

Y ox—0)=1.

leZ

Then we define my ¢(re*™0) = my(re®™0)(25/20 — ¢) for integers ¢ in the set
{0,1,2,..., [Zk/ 2] —1}.If k is an even integer, it follows from the construction that

[2K/2]-1

mi(§) = 2 my (&) (10.2.7)
(=0
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for all & in R2. If k is odd we replace the function 6 — @(2%/26 — ([2/2] — 1)) by
a function wy(0) supported in the bigger interval [([2"/ 2] —2)27k/2, 1] that satisfies
@ (0) + @(2¥/2(6 — 1)) = 1 on the interval [([2¥/2] — 1)27%/2,1]. This leads to a
new definition of the function My 12/2) 1 SO that (10.2.7) is satisfied.

This provides the circular (angular) decomposition of my. Observe that for all
positive integers o and B there exist constants C, g such that

1020 my 1 (re?719)| < (14 |A])HP2k*23P

and such that each my ¢ is a smooth function supported in the sectorial arcs Iy ¢.

We fix k > 0 and we group the set of all {my }, into five subsets: (a) those whose
supports are contained in Q = {(x,y) € R*: x>0, [y| < |x|}; (b) those my , whose
supports are contained in the sector Q' = {(x,y) € R*: x <0, |y| < |x|}; (c) those
whose supports are contained in Q" = {(x,y) € R>: y >0, [y| > |x|}; (d) the my
with supports contained in Q" = {(x,y) € R?: y <0, |y| > |x|}; and finally (e)
those my , whose supports intersect the lines |y| = |x|.

There are only at most eight m ¢, in case (e), and their sum is easily shown to be
an L* Fourier multilpier with a constant that grows like (1 + |A|)?, as shown below.
The remaining cases are symmetric, and we focus attention on case (a).

Let I be the set of all indices ¢ in the set {0,1,2,..., [2k/2] — 1} corresponding to
case (a), i.e., the sectorial arcs Iy ; are contained in the quarter-plane Q. Let Ty ; be
the operator given on the Fourier transform by multiplication by the function my .
We have

4
> Trelf) 4= /R2 ZTk,E(f)‘ dx
el el
2
= [ |33t mots ‘dx (10.2.8)
R Vyerper
2
=/ ZZTM ) * T f)‘ dé,
R0 irer

where we used Plancherel’s identity in the last equality. Each function m is sup-

ported in the sectorial arc Iy ¢. Therefore, the function Ty ¢(f) * Ty ¢ (f) is supported
in I o + I} » and we write the last integral as

e

In view of the Cauchy—Schwarz inequality, the last expression is controlled by

/(zsz )+ T DF) (Z I e en o) dé. (10.2.9)

leltel lelv'el

2

dé .

2> (Tkﬁ * Tkj'(\f))lncﬁru,

lelvel
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At this point we make use of the following lemma, in which the curvature of the
circle is manifested.

Lemma 10.2.5. There exists a constant Cy such that for all k > 0 the following

estimate holds:
z z XI';'(}[JrT]'(,// <G.
Lelvel

We postpone the proof of this lemma until the end of this section. Using Lemma
10.2.5, we control the expression in (10.2.9) by

6 [ 33 1D de = 6| (S manr) L, ao210)

Lelt'el el

We examiine each T; ¢ a bit more carefully. We have that my g is supported in a
rectangle with sides parallel to the axes and dimensions 27 (along the &;-axis) and
2’§+1 (along the &;-axis). Moreover, in that rectangle, 851 ~ 0, and 852 ~ dg, and
it follows that the smooth function my ¢ satisfies

k
10808 mio(&1,6)] < Cop(1-+|A])*HF2Re23P
for all positive integers o and 3. This estimate can also be written as
_ _k
1029 [mio(27481,272&)] | < Cop(1+ AN,
which easily implies that
3 k
22K my (21, 2222)| < Co g (1 A1 (14 x| + ) 72

2mie2=k/2

Let V; be the unit vector representing the point e and VéL the unit vector

2mif2—k

representing the point ie 2, Applying a rotation, we obtain that the functions

my , satisfy

Il (e1,2)| < COL+ A3 (1427 -V [+272 - V)2 (10.2.11)

and hence
supsup||my ||, < C(1+]A])>. (10.2.12)
k>0 tel
The crucial fact is that the constant C in (10.2.12) is independent of ¢ and k.
At this point, for each fixed k > 0 and ¢ € I we let J; ¢ be the &-projection of
the support of my ¢. Based on the earlier definition of my ¢, we easily see that when
£>0,

12Ky sin(2m2 72 (04 1))].

Joo=[(1= 327Ky sin@r2 2 (0—1)),(1— !

8
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A similar formula holds for ¢ < 0 in /. The crucial observation is that for any fixed
k > 0 the sets Jy ¢ are “almost disjoint” for different £ € 1. Indeed, the sets J; ¢ are
contained in the intervals

Joo=[(1=327F)sin(2n2720) = 10273, (1 = 327 K)sin(2w2720) +10-273] ,

which have length 20 - 2% and are centered at the points (1 — g 27 %) sin(2mw 2~ : ).
Foro € Zand 7t € {0,1,...,39} we define the strips

Stor={(E1,&): & E[A00272 +1272,40(6+1)272 +7272) ).

These strips have length 40 - 2% and have the property that each j;p is contained in
one of them; say J; ¢ is contained in some Sy 5, ¢,, Which we call By ¢. Then we have

Tio(f) = T o (fre)

where we set v
Jie = (XBk,z;f) = Xl\i'/k,/ «f

As a consequence of the Cauchy—Schwarz inequality (with respect to the measure
Imy/ ;| dx), we obtain

IN

el o (el 1 frel?)
C(L+ AL (I gl = | feel?)

in view of (10.2.12). We now return to (10.2.10), which controls (10.2.9) and hence
(10.2.8). Using this estimate, we bound the term in (10.2.10) by

(Zmane)

o (fior)?

IN

S T (fe))? ’

lel o el L
< C (1A X i ¢ i
lel
2
= ([, Zml+1 P >gdx)
/e[
- 1+|7L|( Jo ) )
el
2
< CE(1+(A)) ( sup |mkp|*g|)2|fkp|2dx>
el
_— 2
< (1 e sup (et + )| (2 1)
tel BN e

where g is an appropriate nonnegative function in L? (Rz) of norm 1.
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If we knew the validity of the estimates

[ sup (2l +2) |, < O+ 1A+ ] (10.2.13)
€
and 1
[(Z1eP) ]|, <Cllls (102.14)
lel L
then we would be able to conclude that
3 1
lmel] , < C(+IA1(1+k)2 (10.2.15)

and hence we could sum the series in (10.2.6).
Estimates (10.2.13) and (10.2.14) are discussed in the next two subsections. [

10.2.3 The Kakeya Maximal Function

We showed in the previous subsection that m)’, is integrable over R? and satisfies
the estimate

3 k C(1+A])3
22Ky o (2%x1,2200)| < .
|mk70( X1, x2)| = (l + |X|)3
Since
1 o 278
(l + |X|)3 < C ZO 22s ?C[fz~‘,2-?]x[72-?,2~‘] ('x)v
S=|
it follows that
— i |
o ()| <C'(1+[A])* Y 27 IR |XRS(X),
s=0 s

k k . —. . —
where Ry = [—252F,22k] x [-2522,2522]. Since a general i ; is obtained from 7z o
via a rotation, a similar estimate holds for it. Precisely, we have

__ < s 1
()] < C'(1+]A])° 32

xR, (%), (10.2.16)
5s=0 |RS7£| '

where R;/ is a rectangle with principal axes along the directions V; and Vf and

side lengths 22% and 225 , respectively. Using (10.2.16), we obtain the following
pointwise estimate for the maximal function in (10.2.13):

- .
sup (|mee|*g) < €'Y, 27 sup / g(x—y)dy, (10.2.17)
lel =0 Lel |Rs,£| Ry

e . Ak
where R, ¢ are rectangles with dimensions 2° 2k and 2522.
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Motivated by (10.2.17), for fixed N > 10 and a > 0, we introduce the Kakeya
maximal operator without dilations

' (8)(x —Sup|R|/|g ) dy, (10.2.18)

Rox

acting on functions g € L] ., where the supremum is taken over all rectangles R in R
of dimensions a and aN and arbitrary orientation. What makes this maximal opera-
tor interesting is that the rectangles R that appear in the supremum in (10.2.19) are
allowed to have arbitrary orientation. We also define the Kakeya maximal operator
JEn by

Jn(w)(x) = sup Ay (w), (10.2.19)

a>0

for w locally integrable. The maximal function Zy(w)(x) is therefore obtained as
the supremum of the averages of a function w over all rectangles in R? that contain
the point x and have arbitrary orientation but fixed eccentricity equal to N. (The
eccentricity of a rectangle is the ratio of its longer side to its shorter side.)

We see that J#y(f) is pointwise controlled by a c N M(f), where M is the Hardy—
Littlewood maximal operator M. This implies that #y is of weak type (1,1) with
bound at most a multiple of N. Since #y is bounded on L with norm 1, it follows
that .#y maps L”(R?) to itself with norm at most a multiple of N'/?. However, we
show in the next section that this estimate is very rough and can be improved sig-
nificantly. In fact, we obtain an L” estimate for .y with norm that grows logarith-
mically in N (when p > 2), and this is very crucial, since N = 2%/2 in the following
application.

Using this new terminology, we write the estimate in (10.2.17) as

s+k/2
sﬁup(|mkp|>kg) < C'(1+]a])° 22 L (g). (10.2.20)
el 5s=0

The required estimate (10.2.13) is a consequence of (10.2.20) and of the follow-
ing theorem, whose proof is discussed in the next section.

Theorem 10.2.6. There exists a constant C such that for all N > 10 and all f in
L2 (R?) the following norm inequality is valid:
sup || 3/ (f)
a>0

HL2(R2) < C(logN) HfHLZ(RZ

Theorem 10.2.6 is a consequence of Theorem 10.3.5, in which the preceding
estimate is proved for a more general maximal operator x,,, which in particular
controls .#y and hence %) for all a > 0. This maximal operator is introduced in
the next section.
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10.2.4 Boundedness of a Square Function

We now turn to the proof of estimate (10.2.14). This is a consequence of the follow-
ing result, which is a version of the Littlewood—Paley theorem for intervals of equal
length.

Theorem 10.2.7. For j € Z, let I; be intervals of equal length with disjoint interior
whose union is R. We define operators Pj with multipliers ;. Then for 2 < p <o,
there is a constant C,, such that for all f € LP(R) we have

|(zip0r)

LP(R) SCPHfHLP(R)' (10.2.21)

In particular, the same estimate holds if the intervals I; have disjoint interiors and
equal length but do not necessarily cover R.

Proof. Multiplying the function f by a suitable exponential, we may assume that the
intervals /; have the form ((j— })a, (j+ 3 )a) for some a > 0. Applying a dilation to
f reduces matters to the case a = 1. We conclude that the constant C,, is independent
of the common size of the intervals /; and it suffices to obtain estimate (10.2.21) in
the case a = 1.

We assume therefore that /; = (j — é, Jj+ é) for all j € Z. Next, our goal is to
replace the operators P; by smoother analogues of them. To achieve this we intro-
duce a smooth function y with compact support that is identically equal to 1 on the
interval [— %, %] and vanishes off the interval [— i, i] We introduce operators S; by
setting

Si()(&) = F(E)Ww(E — )

and we note that the identity
P;=P;S; (10.2.22)

is valid for all j € Z. For t € R we define multipliers m; as

mi(8) =3 e y(& - ),

jez

and we set k; =m,’. With Ih = (—1/2,1/2), we have
—2mijt 2
2 e S ()| dr

[ s pwpar = [
Io o' jez (10.2.23)
P GICI

JEZ

where the last equality is just Plancherel’s identity on Iy = [— ;, %] In view of the

last identity, it suffices to analyze the operator given by convolution with the family
of kernels k;. By the Poisson summation formula (Theorem 3.1.17) applied to the
function x +— y/(x)e*™™, we obtain
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m (&) = e 2mist 2 v(é _j)ezm'(é*j)t

jez
_ z (w(_)82ni(~)t)’\(j) eZm’jf;' e—27ri§t
jez
= 3 s ).
jez

Taking inverse Fourier transforms, we obtain
k=Y W(j—1)8_j4,
jEZ

where &, denotes Dirac mass at the point b. Therefore, k; is a sum of Dirac masses
with rapidly decaying coefficients. Since each Dirac mass has Borel norm at most
1, we conclude that

kel , < S lwGi—0)l < Y (1+]j—t))""*< 10, (10.2.24)
JEZL JEZL

which is independent of 7. This says that the measures k; have uniformly bounded
norms. Take now f € L?(R) and p > 2. Using identity (10.2.22), we obtain

K(Z ey as = [ (Zns(1F) ds

o [ (ISP e,

JEZ

IN

and the last inequality follows from Exercise 4.6.1(a). The constant ¢, depends only
on p. Recalling identity (10.2.23), we write

c,,/R(je%|Sj(f)(x)|2)gdx§ c,,/R(/IO|(kt*f)(x)|2dt)gdx

o fo (106 *f)(X)I”dtydx

cp [ [olkon £

10c, / / £ ()P dxd
I /R
= 10¢, || fII7»,

where we used Holder’s inequality on the interval Iy (together with the fact that
p > 2) and (10.2.24). The proof of the theorem is complete with constant C, =
(10c,) /7. O

IN

IN

We now return to estimate (10.2.14). First recall the strips
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_k _k
Stor=1{(1.&): & €[400272+17,40(0+1)272 + 1)}

defined for 0 € Z and 7 € {0, 1,...,39}. These strips have length 40 - 2_15, and each
J;,g is contained in one of them, which we called Sy g, 1, = B ¢.

The family {Bk’g}gel does not consist of disjoint sets, but we split it into 40 sub-
families by placing By ¢ in different subfamilies if the indices 7, and 7y are different.
We now write the set I as

I=1"UrPU---uUI*,

where for each £,¢' € I the sets By ¢ and By, are disjoint.

We now use Theorem 10.2.7 to obtain the required quadratic estimate (10.2.14).
Things now are relatively simple. We observe that the multiplier operators f —
(x8,.f)" on R? obey the estimates (10.2.21), in which L? (R) is replaced by L” (R?),
since they are the identity operators in the &;-variable.

We conclude that

|(2 manp)

tell

L17(R2> S CprHLP(RZ) (10.2.25)

holds for all p > 2 and, in particular, for p = 4. This proves (10.2.14) for a single
I/, and the same conclusion follows for I with a constant 40 times as big.

10.2.5 The Proof of Lemma 10.2.5

We finally discuss the proof of Lemma 10.2.5.

Proof. If k=0,1,... ko up to a fixed integer ko, then there exist only finitely many
pairs of sets I'; + Iy depending on kg, and the lemma is trivially true. We may there-
fore assume that k is a large integer; in particular we may take § = 2% < 240072,
In the sequel, for simplicity we replace 2% by & and we denote the set I;¢byI;. In
the proof that follows we are working with a fixed § € [0,2400~2]. Elements of the
set Iy + I'» have the form

rezm(z+a)6'/2 + r/ezm(e’+a/)6'/2 ’ (10.2.26)

where o, 0 range in the interval [—1,1] and r,# range in [1 — 38,1 — § 8]. We set
w0y = 262y 2mil'SE o s (mle — 0|8 2)em U8 (10.2.27)
where the last equality is a consequence of a trigonometric identity that can be found
in Appendix E. Using similar identities (see Appendix E) and performing algebraic

manipulations, one may verify that the general element (10.2.26) of the set I} + I'»
can be written as
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1 rol .
w(t, 0 + {rcos(Zna52)+;os(27roc 02) Z}W(&ﬂ)
. 1 . rol
{r s1n(27wc62);s1n(27ra 02) }iw(é,é’)

+E(rn0,0 a,d,8),
where
E(nt.0 0,0 ,8) = (r—1) (esz‘s'/2 +e2nie’3'/2)
(- r)ezm(euraf)gl/z
+ r(ezmesl/z _ ezmz’gl/Z) (cos(znaaé) —2005(27:05’55) )

N r(ez’”m]/z 3 eZ”"‘”‘S'/z) (sin(2noc5 2) —sin(2ma/§2) )
) :

The coefficients in the curly brackets are real, and E(r,£,¢' 0,0, §) is an error of
magnitude at most 23 + 872|¢ — ¢'|5. These observations and the facts |sinx| < |x|
and |1 — cosx| < |x|?/2 (see Appendix E) imply that the set I} + I is contained in
the rectangle R(¢,¢') centered at the point w(¢, £') with half-width

2728 + (28 + 8720 —0'|8) <80 (1 + |0 —1'))S
in the direction along w(¢, ') and half-length
282 + (28 + 8130 — 1']8) < 3082

in the direction along iw(¢,¢’) [which is perpendicular to that along w(¢,¢')]. Since
27|l — €/|5% < 7, this rectangle is contained in a disk of radius 1050 > centered at
the point w(¢,¢') .

We immediately deduce that if |w(¢,£") — w(m,m’)| is bigger than 21082, then
the sets Iy + I'» and I, + I,,; do not intersect. Therefore, if these sets intersect, we

should have ]
[w(l, 0" —w(m,m')| <21052 .

In view of Exercise 10.2.2, the left-hand side of the last expression is at least

22 cos(T) (0 + ) — m(m+m')|5?

(here we use the hypothesis that |277:£65| < 7 twice). We conclude that if the sets
I; + Iy and T, + I,y intersect, then

|(040") — (m+m')| <210/2v/2 < 150. (10.2.28)

In this case the angle between the vectors w(¢,£') and w(m,m’) is



10.2 Bochner-Riesz Means and the Carleson—Sjolin Theorem 365
1
Pt = 7|(LH L) — (m+m')[52,

which is smaller than 77/16, provided (10.2.28) holds and § < 240072 This says
that in this case, the rectangles R(¢,¢’) and R(m,m’) are essentially parallel to each
other (the angle between them is smaller than r/16).

Let us fix a rectangle R(¢,¢'), and for another rectangle R(m,m’) we denote by

R(m,m’) the smallest rectangle containing R(m,m’) with sides parallel to the corre-
sponding sides of R(¢,¢"). An easy trigonometric argument shows that R(m,m’) has
the same center as R(m,m’) and has half-sides at most

3062 cOS(Qp. g1 ) +80(1 + £ — £)) 8 Sin(Pp g1 )
8O(1+ € — £'1)8 CoS(@y 0 ) + 3082 S0Py 07yt ) 5

in view of Exercise 10.2.3. Then R(m,m') has half-sides at most 6000052 and
18000(1 4 |[¢ — £'|)& and is therefore contained in a fixed multiple of R(m,m'). If
I} + Iy and I, + I,y intersect, then so do R(m,m’) and R(¢,¢’), and both of these
rectangles have sides parallel to the vectors w(¢,£') and iw(¢,¢'). But in the direc-
tion of w(¢, ¢'), these rectangles have sides with half-lengths at most 80(1+ £ —£'|) &
and 16000(1+ [m —m'|)8. Note that the distance of the lines parallel to the direction
iw(¢,¢") and passing through the centers of the rectangles R(m,m’) and R(¢, /') is

2| cos(x|¢ — £152) —cos(m|m—m'|52)]

as we easily see using (10.2.27). If these rectangles intersect, we must have
2| cos(r|( — £]52) —cos(n|m—m’|65)| < 16080 (2+ ¢ — 1|+ |m—m'|)5.
We conclude that if the sets R(m,m’) and R(¢,¢') intersect and (¢, ¢') # (m,m’), then
| cos(m|t — £']82) — cos(x|m —m'|82 )| < 50000 (| — €| + [m—m'|)$
But the expression on the left is equal to
2[sin(x =1 )m 82 ) sin(z 83

which is at least

21—~ m || (|£— €| +|m —n]) 6

in view of the simple estimate |sin#| > 2 |¢| for |¢| < 7. We conclude that if the sets
R(m,m') and R(¢,¢") intersect and (£,¢') # (m,m’), then

|[€— | — |m—m'|| < 25000. (10.2.29)
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Combining (10.2.28) with (10.2.29), it follows that if I, + I, and I; + I » intersect,
then

max min(m7m/) —min([,é’) ’ max(m,m/) . max(é,ﬁ/) < 25150
2

We conclude that the set I;, + T, intersects the fixed set I + I» for at most (25151)?
pairs (m,m’). This finishes the proof of the lemma. O

Exercises
10.2.1. For A > 0 show that for all f € LP(R") the Bochner—Riesz operators
BA _ l_gRZAAg 2m’x':§d§
k(N0 = | (A=IS/RILS(E)e

converge to f in LP(R") if and only if the function (1 —|&|?)* lies in .2, (R").
[Hint: In the beginning of the proof of Theorem 10.2.4 it was shown that if
(1—|€|*)* lies in .#,(R"), then the B} (f) converge to f in L”(R"). Conversely,
if for all f € LP(R") the B}(f) converge to f in LP as R — oo, then for every f
in LP(R") there is a constant Cy such that supg. HB% (f)HU, < Cy < oo, It fol-
lows that supg-||B%||,, ., < e by the uniform boundedness principle; hence
18y <]

LP—LP
10.2.2. Let |61],]6,] < } be two angles. Show geometrically that

|r1e® — rye'®| > min(ry,r,) sin |6; — 6,
. . 2 .
and use the estimate |sinz| > ,Lt | for |t| < 7 to obtain a lower bound for the second
expression in terms of |0; — 6,|.

10.2.3. Let R be a rectangle in R? having length b > 0 along a direction ¥ = (£;,&,)
and length a > 0 along the perpendicular direction ¥ = (—&, &;). Let w be another
vector that forms an angle ¢ < 7 with V. Show that the smallest rectangle R’ that
contains R and has sides parallel to w and W has side lengths asin(¢) + bcos(@)
along the direction w and acos(@) + bsin(¢@) along the direction w.

10.2.4. Prove that Theorem 10.2.7 does not hold when p < 2.
[Hint: Try the intervals I; = [}, j+ 1] and f = yjo x) as N — oo.]

10.2.5. Let {I; } be a family of intervals in the real line with |I;| = |Iy| and I, N[y =
0 for all k # k'. Define the sets

SkZ{(gl,...,gn)ERnZ & Elk}.

Prove that for all p > 2 and all f € L?(R") we have
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|(Sizs )’

LP(R") = C/’ HfHLp(Rn> s

where C), is the constant of Theorem 10.2.7.

10.2.6. (a) Let {I; }, {J¢}¢ be two families of intervals in the real line with || =
[l |, NIy =0 for all k # k', and |Jy| = |Jp|, Jy NIy = 0 for all £,¢'. Prove that for
all p > 2 there is a constant C}, such that

(S 1200

for all f € LP(R?).
(b) State and prove an analogous result on R”.
[Hint: Use the Rademacher functions and apply Theorem 10.2.7 twice.}

<G|l

Ll’(Rz) Lh(RZ) )

10.2.7. (Rubio de Francia [273]) On R" consider the points x; = (V8. ¢ € 2" Fix
a Schwartz function 2 whose Fourier transform is supported in the unit ball in R".

Given a function f on R”, define f;(&) = f(é)Z(S‘é (€& —x¢)). Prove that for some
constant C (which depends only on % and n) the estimate

(% 150)" <cmrp)!

i<y /4

holds for all functions f. Deduce the L”(R") boundedness of the preceding square
function for all p > 2.
[Hint: For a sequence Ay with ¥, |A,|* = 1, set

xpy
G0 = T aafio) = [ | 3 2™ | rlx= g m00as.
ez R" Lyezn

Split R” as the union of Qg = [, }]" and 2/*1Qy \ 2/Qy for j > 0 and control the
integral on each such set using the decay of / and the L?(2/7'Qg) norms of the other
two terms. Finally, exploit the orthogonality of the functions e>™? to estimate the
L*(27+1Qp) norm of the expression inside the square brackets by C2"//2, Sum over
Jj > 0 to obtain the required conclusion. |

10.2.8. For A > 0 define the maximal Bochner-Riesz operator

B%(f)(x) = sup
R>0

[ (1= E/RPEFE)e™ ag).

Prove that B* maps L”(R") to itself when A > ”51 for 1 < p <.
[Hint: Use Corollary 2.1.12.]
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10.3 Kakeya Maximal Operators

We recall the Hardy-Littlewood maximal operator with respect to cubes on R" de-
fined as 1
M) = sup o [ IF)ldy. (103.1)
QcF |Q| 0
0>x
where .7 is the set of all closed cubes in R” (with sides not necessarily parallel to
the axes). The operator M, is equivalent (bounded above and below by constants) to
the corresponding maximal operator M. in which the family .# is replaced by the
more restrictive family .%’ of cubes in R" with sides parallel to the coordinate axes.
It is interesting to observe that if the family of all cubes .% in (10.3.1) is replaced
by the family of all rectangles (or parallelepipeds) % in R”, then we obtain an op-
erator My that is unbounded on L?(R"); see also Exercise 2.1.9. If we substitute
the family of all parallelepipeds %, however, with the more restrictive family %’
of all parallelepipeds with sides parallel to the coordinate axes, then we obtain the
so-called strong maximal function

MW = swp 170l (1032)

Re#'

R>x
which was introduced in Exercise 2.1.6. The operator M; is bounded on L? (R") for
1 < p < eobut it is not of weak type (1, 1). See Exercise 10.3.1.

These examples indicate that averaging over long and skinny rectangles is quite
different than averaging over squares. In general, the direction and the dimensions
of the averaging rectangles play a significant role in the boundedness properties of
the maximal functions. In this section we investigate aspects of this topic.

10.3.1 Maximal Functions Associated with a Set of Directions

Definition 10.3.1. Let X be a set of unit vectors in RZ, i.e., a subset of the unit
circle S!. Associated with X, we define Z5 to be the set of all closed rectangles in
R? whose longest side is parallel to some vector in X. We also define a maximal
operator My associated with X as follows:

1
M= 28 1rwlay.
o>x

where f is a locally integrable function on R2.
We also recall the definition given in (10.2.19) of the Kakeya maximal operator

v (w)(x) = sup |R|/|W )|dy, (10.3.3)

Rox
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where the supremum is taken over all rectangles R in R? of dimensions a and aN
where a > 0 is arbitrary. Here N is a fixed real number that is at least 10.

Example 10.3.2. Let ¥ = {v} consist of only one vector v = (a,b). Then
My (f)(x) = sup sup / / x—t(a,b) — s(—b,a))| dsdt.
0<r<iN>0 'N? —rN

If ¥ ={(1,0),(0,1)} consists of the two unit vectors along the axes, then
My =M,
where M is the strong maximal function defined in (10.3.2).

It is obvious that for each ¥ C S!, the maximal function s maps L°°(R2) to
itself with constant 1. But 9ty may not always be of weak type (1, 1), as the example
M, indicates; see Exercise 10.3.1. The boundedness of 9tx on L? (Rz) in general
depends on the set X.

An interesting case arises in the following example as well.

Example 10.3.3. For N € Z™, let

2 =3y ={(cos(*F),sin(*F’)): j=0,1,2,....,N—1}

be the set of N uniformly spread directions on the circle. Then we expect My, to
be L? bounded with constant depending on N. There is a connection between the
operator My, previously defined and the Kakeya maximal operator .#y defined in
(10.2.19). In fact, Exercise 10.3.3 says that

Jn(f) <2095, (f) (10.3.4)
for all locally integrable functions f on R?.

We now indicate why the norms of .#y and My, on L?(R?) grow as N — . We
refer to Exercises 10.3.4 and 10.3.7 for the corresponding result for p # 2.

Proposition 10.3.4. There is a constant c such that for any N > 10 we have

Bz > ¢ (logN) (10.3.5)

le2gee) —r2e2) =

and 1
[N 2 g2 122y = € (l0gN) 2 (103.6)

Therefore, a similar conclusion follows for Ms,,.

Proof. We consider the family of functions fy(x) = ‘)1(‘ X3<|x|<n defined on R? for
N > 10. Then we have
1
14| 2 g2y < c1(logN)2. (10.3.7)
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On the other hand, for every x in the annulus 6 < |x| < N, we consider the rectangle

Ry of dimensions |x| —3 and ‘X‘Af, one of whose shorter sides touches the circle
|y] = 3 and the other has midpoint x. Then

N dyldyz 10g|x|

|x]
6<y]<‘x‘
i<
It follows that
log [x[ 2 5
0og|x 3
H%fv(fzv)||L2(R2>ZC3< / ( Iil )dx) >ci(logN)3 . (10.3.8)

6<[x|<N

Combining (10.3.7) with (10.3.8) we obtain (10.3.5) with ¢ = ¢4 /c;.
We now turn to estimate (10.3.6). Since for all 6 < |x| < N we have

log |x| N logN

Jn(fv)(x) > c3 3 N

Jx

it follows that ‘{Jﬁv(ﬁv) > c3 IOI%N }| > m(N? — 6%) > csN? and hence

A2 sup [ {Hi(f) > A}

Il ci(logN)>
logN [{ o (fv) >C31°gNH
N c1(logN)>
> SV (10g )}
C1
This completes the proof. O

10.3.2 The Boundedness of My, on L”(R?)

It is rather remarkable that both estimates of Proposition 10.3.4 are sharp in terms
of their behavior as N — oo, as the following result indicates.

Theorem 10.3.5. There exist constants 0 < B,C < oo such that for every N > 10 and
all f € L*(R?) we have

1905y ()] 2y < B (102N 2| ]| 2 g (10.3.9)

and
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||9:n21v (f)||L2(R2) S C(logN)HfHLZ(R2> . (10310)
In view of (10.3.4), similar estimates also hold for Hy.

Proof. We deduce (10.3.10) from the weak type estimate (10.3.9), which we rewrite
as

Il

[{x €R*: My, (f)(x) > 2 }| <B*(logN) (10.3.11)

We prove this estimate for some constant B > 0 independent of N. But prior to doing
this we indicate why (10.3.11) implies (10.3.10).

Using Exercise 10.3.2, we have that 9y, maps L?(R?) to L”(R?) (and hence
into L") with constant at most a multiple of N'/7 for all 1 < p < eo. Using this
with p = 3/2, we have

2
3

HmZNHLz_.L’z < HmZNHLz_.Lz <AN (10.3.12)
for some constant A > 0. Now split f as the sum f = f] + f» + f3, where
h o= fx\f\gﬂ’
fa= fluqf\gzvzw
3 = Fxnea<y-
It follows that
{5, () > A} < [{Mn, () > A+ {0, () > 4} (10313
since the set {SDI);N (fi)> } is empty To obtain the required result we use the L>>

estimate (10.3.11) for f; and the L3 estimate (10.3.12) for f3. We have

||9nZN(f)H12‘2
- 2/0 Ay (F) > A} dA

IN

/OM2A|{EDYZN(f2) > g}\dm/wzu{m;]v(ﬁ) > 21 dA

/()wz)LBZ;]zogN) / | d7L+/ 2/'LA N / #13 drdi

JA<IfIN2A f|>N2A
@1 g, ; s 9 g
28(10gN) [ 1700 | avr2ain [ 1wt [
R2 lj;\%)l A R2 0 24

(4B2(log2N) (logN) +443) | ||
CllogN 2|72,

IN

IN
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using Fubini’s theorem for integrals. This proves (10.3.10).

To avoid problems with antipodal points, it is convenient to split Xy as the union
of eight sets, in each of which the angle between any two vectors does not exceed
21 /8. It suffices therefore to obtain (10.3.11) for each such subset of Zy. Let us fix
one such subset of Xy, which we call 2]{]. To prove (10.3.11), we fix a A > 0 and
we start with a compact subset K of the set {x € R? : 93?21{] (f)(x) > A}. Then for
every x € K, there exists an open rectangle R, that contains x and whose longest side
is parallel to a vector in X),. By compactness of K, there exists a finite subfamily
{Ro } qeor Of the family {R,} ek such that

[ 1£0)ldy > A [Ral
for all ¢ € & and such that the union of the R,’s covers K.

We claim that there is a constant C such that for any finite family {Ry} e Of
rectangles whose longest side is parallel to a vector in Xy, there is a subset % of &/
such that

/ (Z XRg (x ) deC‘ U RB‘ (10.3.14)
Be# Be#
and that
| U Ra| < Cllog)| U Rs|. (103.15)
Be#

Assuming (10.3.14) and (10.3.15), we easily deduce (10.3.11). Indeed,

U Rs| < 3 IRgl

Be# Be#
< / ()| dy
aﬂé
ﬁeﬂ
1
1 2 2
s m; m» dx> e
< Hf|| 2
2 \M .
from which it follows that
‘ U Rﬂ‘ < A2 HfHL2

Bes

Then, using (10.3.15), we obtain
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K <| U Ra
acd

CZ
< C(logN)‘ U Rﬁ‘ < Az(logN)Hinza
Be#r

and since K was an arbitrary compact subset of {x : SDIZ]{/ (f)(x) > A}, the same

estimate is valid for the latter set.

We now turn to the selection of the subfamily {Rg}gcs and the proof of
(10.3.14) and (10.3.15).

Let Rg, be the rectangle in {Rq }qc.s With the longest side. Suppose we have
chosen Rg, ,Rg, ;- ,RBH for some j > 2. Then among all rectangles R, that satisfy

i1 1
Y IRg, NRal < Ral, (10.3.16)
k=1

we choose a rectangle Rpg, such that its longer side is as large as possible. Since the
collection {Ry } o is finite, this selection stops after m steps. Define

B = {ﬁlvBZa"'vﬁm}-
Using (10.3.16), we obtain

/1{2( Z]{Rﬁ)zdx <

Be#

|Rﬁk mRﬁj|

AN
e
M\

~

Il
—_
>~

I
—_

|
ﬁag

(g IRg, (Rg ) + IRy,

|Rﬁj| + |Rﬁj|}

(10.3.17)

AN
N ~
Msu

.
Il
—_

I
(98]
E
E)
=

~.
I
R

A consequence of this fact is that

,i'RB"' = /m (iXRﬁj)dx

i=1Rp;  j=1
m 1
: ‘;‘UlRﬁj 2</R” (BE%’XRB)de>
<[ Ums| V3 (Ems)'
j=1 j=1

which implies that
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> IR <3| URg| (103.18)
j=1 j=1

Using (10.3.18) in conjunction with the last estimate in (10.3.17), we deduce the
desired inequality (10.3.14) with C = 9.

We now turn to the proof of (10.3.15). Let M. be the usual Hardy—Littlewood
maximal operator with respect to cubes in R” (or squares in R?; recall n = 2). Since
M, is of weak type (1,1), (10.3.15) is a consequence of the estimate

U RaC{xeR*: Mc( Y Xry))(x) >c(logN)~'} (10.3.19)
acd\RB Be#

for some absolute constant ¢, where (Rg)* is the rectangle Rg expanded 5 times in
both directions. Indeed, if (10.3.19) holds, then

[ URd < |URs[+| U
oacd Bex ocd\AB
10
< | U Rp|+ , (1ogN) 3 [(Rp)'|
Be# Bex
250
< | U Rp|+ . (logN) > |Rg|
Bex Bes
< CllogN)| U Ry
Bes

where we just used (10.3.18) and the fact that N is large.

It remains to prove (10.3.19). At this point we need the following lemma. In the
sequel we denote by 6, the angle between the x axis and the vector pointing in the
longer direction of Ry, for any o € o7. We also denote by [, the shorter side of Ry,
and by L the longer side of R, for any o € <. Finally, we set

w_2n2"
kTN

for k € Z* and ay = 0.

Lemma 10.3.6. Let Ry be a rectangle in the family {Ry}oecos and let 0 < k <

[]Oél’(()gé& ] Suppose that B € A is such that

w, < |9a_9ﬂ| < W41

and such that Lg > Lg. Let s¢ = 8max(ly, xLe ). For an arbitrary x € Re, let Q be
a square centered at x with sides of length s, parallel to the sides of Ry. Then we

have Re AR R
n N
RgNRal _ o |(R) MOl

10.3.20
R =% o] (10320
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Assuming Lemma 10.3.6, we conclude the proof of (10.3.19). Fix o € &7 \ A.
Then the rectangle R, was not selected in the selection procedure. This means that
forall/ € {2,...,m+ 1} we have exactly one of the following: either

-1
1
Rg.NR R 10.3.21
j:1| B; al > 2| al ( )
or
-1 1
1|Rﬁij,,£| < IRa| and Lo <Lp. (10.3.22)

J

If (10.3.22) holds for [ = 2, we let u < m be the largest integer such that (10.3.22)
holds for all I < u. Then (10.3.22) fails for / = u + 1; hence (10.3.21) holds for
[ = u+1; thus

1 J
2|Ra|<Z|Rﬁija|g Y. IRgNRq|. (10.3.23)
Jj=1 Be®
Lg>Lo

If (10.3.22) fails for [ = 2, then (10.3.21) holds for / = 2, and this implies that

1

2|1'em|<|R,31m'eo,|g Y IRgNRa|.
Be#
Lg>Lo

In either case we have

1
2|Ra|< Y, IRgNRql,

Ber
Lg>Ly
and from this it follows that there exists a k with 0 < k < [10%(()1;]48)} such that
log?2
|Ra| < |Rg MRy . (10.3.24)
2log(N/8) ¢ ﬁ;, pr e
Lg>Ly

0 <|05 — B[ <y

By Lemma 10.3.6, for any x € Ry, there is a square Q such that (10.3.20) holds for
any Rg with B € 9 satistying Lg > Lq and o < |6 — 8y| < @y41. It follows that

log2 Rg)*N
N (]
2og(N/8) Py 0
Lg>Ly

(DkS‘eﬁ—ea‘<(Dk+1

which implies
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c log2 /
< )* dx.
logN ~ 4log(N/8) |Q| Qﬁg’/c Rp)

This proves (10.3.19), since for a € & \ %, any x € R, must be an element of the
set {x e R?: Mc(zﬁegx(Rw*)(x)>c(logN)_1}. O

It remains to prove Lemma 10.3.6.

h
—
0
T

Ra
Fig. 10.9 For angles 7 less
than that displayed, the strip
R‘E meets the upper side of Q.
The length of the intersection
of R‘E’ with the lower side of RO
Q is denoted by b. p

Proof. We fix Ry and Rg so that Lg > Lo and we assume that Rp intersects Ry;
otherwise, (10.3.20) is obvious. Let 7 be the angle between the directions of the
rectangles R, and R[;, that is,

T:|9a_9ﬂ|.

By assumption we have T < @y, < Z, since k+1 < [bg(g&] < 10%(()2[48).

Let R;;’ denote the smallest closed infinite strip in the direction of the longer side
of Rg that contains it. We make the following observation: if

I

—1
tant < ? Sa—la (10.3.25)
2Sa + La
then the strip R} intersects the upper side (according to Figure 10.9) of the square
Q. Indeed, the worst possible case is drawn in Figure 10.9, in which equality holds
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in (10.3.25). For 7 < /4 we have tanT < 37/2, and since T < 2ay, it follows that
tan T < 3@y. Our choice of s, implies

ésa—la
280+ Lo

hence (10.3.25) holds.
We have now proved that R; meets the upper side of Q. We examine the size
of the intersection R°B° N Q. According to the picture in Figure 10.9, this intersection

contains a parallelogram of base b = [g / cos T and height so — h and a right triangle
with base b and height 4 (with 0 < h < s4). Then we have

RENQOI 1 1 1 1 Ig /1 11
P P (Soc_h+ h)zz P (sa)z B
|0 s2, cosT 2 52, cosT\2 2 sq

Since (Rg)" has length 5SLg and Rg meets Ry, we have that RzNQ € (Rg)*NQand

therefore i
(Rg)"NQI _ 1 1p
o] =250

On the other hand, let R, g be the smallest parallelogram two of whose opposite
sides are parallel to the shorter sides of R, and whose remaining two sides are
contained in the boundary lines of R‘E’. Then

(10.3.26)

!
IRu NRg| < |Ryp| < CO‘;TLO, <2Ugly.

Another geometric argument shows that

la T T la lﬂ
RoNRz| <1 <yl <yl <2 .
[Ra ﬂ|_ﬁsin(r)_aﬁ21_aﬁ2wk_ [0
Combining these estimates, we deduce
Ry NR l l l
[Ro ﬂ|§2min(ﬂ, p )§16 B (10.3.27)
|Roc| lo,” Lo Sa
Finally, (10.3.26) and (10.3.27) yield (10.3.20). O

We end this subsection with an immediate corollary of the theorem just proved.

Corollary 10.3.7. For every 1 < p < oo there exists a constant c, such that

2 L
[ Pre——— Nr(logN) 7 when 1 <p <21 3 g,
(logN)» when 2 < p < oo,
Proof. We see that
[0 |1 g2y 122y S CN (10.3.29)
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by replacing a rectangle of dimensions a x aN by the smallest square of side length
aN that contains it. Interpolating between (10.3.9) and (10.3.29), we obtain the first
statement in (10.3.28). The second statement in (10.3.28) follows by interpolation
between (10.3.9) and the trivial L™ — L* estimate. (In both cases we use Theorem
1.3.2) O

10.3.3 The Higher-Dimensional Kakeya Maximal Operator

The Kakeya maximal operator without dilations 7,/ on L*(R?) was crucial in the
study of the boundedness of the Bochner—Riesz operator B* on L*(R?). An analo-
gous maximal operator could be introduced on R”.

Definition 10.3.8. Given fixed a > 0 and N > 10, we introduce the Kakeya maximal
operator without dilations on R" as

a _ 1
AN =swp . [ 170)]dy,

where the supremum is taken over all rectangular parallelepipeds (boxes) of arbi-
trary orientation in R” that contain the point x and have dimensions

axax---xaxaN.
N~ ~ 4
n—1 times

We also define the centered version £, of 7y as follows:

R0 =5 o [ 10)lay.

where the supremum is restricted to those rectangles among the previous ones that
are centered at x. These two maximal operators are comparable, and we have

Ry <y <2"RY
by a simple geometric argument.

We also define the higher-dimensional analogue of the Kakeya maximal operator
Sy introduced in (10.3.3).

Definition 10.3.9. Let N > 10. We denote by Z(N) the set of all rectangular paral-
lelepipeds (boxes) in R” with arbitrary orientation and dimensions

axax---xaxaN
~ ~ 4
n—1 times

with arbitrary a > 0. Given a locally integrable function f on R”, we define
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L
A = sup [ 0|y
R>x

and

1
Sy = swp [ 150 ay:
rez) Rl JR

R has center x

R and Hjy are called the centered and uncentered nth-dimensional Kakeya maximal
operators, respectively.

For convenience we call rectangular parallelepipeds, i.e., elements of Z(N),
higher-dimensional rectangles, or simply rectangles. We clearly have

sup Ay = Hy and sup Ry = A ;

a>0 a>0

hence the boundedness of 7} can be deduced from that of %y ; however, this de-
duction can essentially be reversed with only logarithmic loss in N (see the refer-
ences at the end of this chapter). In the sequel we restrict attention to the operator
¢, whose study already presents all the essential difficulties and requires a novel
set of ideas in its analysis. We consider a specific value of a, since a simple dilation
argument yields that the norms of ;¢ and %}’ on a fixed L”(R") are equal for all
a,b>0.
Concerning .#;!, we know that

o4 || <N (10.3.30)

(R")—L!=(R")

n—1 times
A~

This estimate follows by replacing a rectangle of dimensions T x 1 x -+ x 1 xN by
the smallest cube of side length N that contains it. This estimate is sharp; see Exer-
cise 10.3.7.

It would be desirable to know the following estimate for ¢ :

(B, < ¢, (logN)"+ (10.3.31)

LM(R?)—L"=(R")
for some dimensional constant ¢,. It would then follow that

|4 < clllogN (10.3.32)

o (R” ) —n (R”)

for some other dimensional constant ¢/ ; see Exercise 10.3.8(b). Moreover, if esti-
mate (10.3.31) were true, then interpolating between (10.3.30) and (10.3.31) would
yield the bound

n 1
[=7 < pN? ™ (logN) 7, l<p<n. (10.3.33)

Lr (R”)—>L17(R”)
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It is estimate (10.3.33) that we would like to concentrate on. We have the follow-
ing result for a certain range of p’s in the interval (1,n).

Theorem 10.3.10. Let p,, = " ' and N > 10. Then there exists a constant C, such
that

H%ﬁ HLP""(R”)HLPW"(R”) <GNm!, (10.3.34)
n 1

A 1| o () m =y < C,N 7~ (logN)rh (10.3.35)

4 | o ) m ey < GV~ (logN) (10.3.36)

Moreover, for every 1 < p < p, there exists a constant Cy ,, such that

n 1
| < CupN?~'(logN)?' . (10.3.37)

HLP(R")—>LP(R")
Proof. We begin by observing that (10.3.37) is a consequence of (10.3.30) and
(10.3.35) using Theorem 1.3.2. We also observe that (10.3.36) is a consequence
of (10.3.35), while (10.3.35) is a consequence of (10.3.34) (see Exercise 10.3.8).
We therefore concentrate on estimate (10.3.34).

We choose to work with the centered version ﬁ}v of %!, which is comparable to
it. To make the geometric idea of the proof a bit more transparent, we pick § < 1/10,
we set N = 1/8, and we work with the equivalent operator ﬁf /67 whose norm is the

same as that of #;!. Since the operators in question are positive, we work with
nonnegative functions.

The proof is based on a linearization of the operator Jifl‘; s+ Letus call arectangle
of dimensions 6 x 6 x --- x & x 1 a O-tube. We call the line segment parallel to
the longest edges that joins the centers of its two smallest faces, a d-tube’s axis of
symmetry.

For every x in R" we select (in some measurable way) a §-tube 7(x) that contains

x such that
l
1/6( = |T |/

Suppose we have a grid of cubes in R" each of side length 6’ = §/(2+/n), and let
Q; be a cube in that grid with center cg,. Then any §-tube centered at a point z € Q
must contain the entire Q;, and it follows that

2
85(0Q) < Ao < |0 / 0[O (103.38)

This observation motivates the introduction of a grid of width 6’ = 6/(2+/n) in
R” so that for every cube Q; in the grid there is an associated §-tube 7; satisfying

7;NQ; # 0.

Then we define a linear operator
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1
8
20 =31 [ 1008 ) 10,
J T

which certainly satisfies
L2(f) <275 (f) < 4"R175 (1),
and in view of (10.3.38), it also satisfies

R)5(f) <2L°(f).

It suffices to show that L? is bounded from LP! to LPr* with constant C, (8 1) m !,
which is independent of the choice of §-tubes T;.

Our next reduction is to take f to be the characteristic function of a set. The space
LP»* is normable [i.e., it has an equivalent norm under which it is a Banach space
(Exercise 1.1.12)]; hence by Exercise 1.4.7, the boundedness of L% from LP»! to
LPv* is a consequence of the restricted weak type estimate

1 n
<&y m YAl (10.3.39)

supA|{L%(xa) > A}
A>0

for some dimensional constant C,, and all sets A of finite measure. This estimate can
be written as "

A" 8" B < Gl (10.3.40)

where

Ep={xeR": L°(pa)(x) > A} = {L(xa) > 1}

Our final reduction stems from the observation that the operator L? is “local.”
This means that if f is supported in a cube Q, say of side length one, then Ld (f) is
supported in a fixed multiple of Q. Indeed, it is simple to verify that if x ¢ 10Q and
f is supported in Q, then L% (f)(x) = 0, since no §-tube containing x can reach Q.
For “local” operators, it suffices to prove their boundedness for functions supported
in cubes of side length one; see Exercise 10.3.9. We may therefore work with a
measurable set A contained in a cube in R” of side length one. This assumption has
as a consequence that E; is contained in a fixed multiple of O, such as 10Q.

Having completed all the required reductions, we proceed by proving the re-
stricted weak type estimate (10.3.40) for sets A supported in a cube of side length
one. In proving (10.3.40) we may take A < 1; otherwise, the set E, is empty. We
consider the cases ¢o(n) 6 < A and co(n) § > A, for some large constant ¢y (n) to be
determined later. If ¢o(n) § > A, then

A

1 (10.3.41)

Exl <G, (1/8)"

by the weak type (1,1) boundedness of L with constant C} §'~". It follows from
(10.3.41) that
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n—1 n+l
ColA| > [E3|8"'A > co(n)™ 2 [Ez|A 2 &2

which proves (10.3.40) in this case.

We now assume co(1) § < A < 1. Since L%(x4) is constant on each Q;, we have
that each Q; is either entirely contained in the set E, or disjoint from it. Conse-
quently, setting

&={j: Qi CE},

we have

Ey=J0;.

jeé
Hence
&l =#{j: je &} =E|(8)"

and for all j € & we have
|TiNA| > Alt)| = A8

It follows that

|A] sup { > xr(x / > 2 dx

X Cje& jeé“
= > [tiNA|
je€
> A8 &)

— 18" 1|E7L|

(")
(2\/) A|El|

Therefore, there exists an xq in A such that

A|E
#{je&:xe1}>(2vn)" | A'.
SA|
Let S(xo, ; ) be a sphere of radius ; centered at the point xo. We find on this sphere
a finite set of points © = {6y}, that is maximal with respect to the property that the
balls B(6, 8) are at distance at least 10+/n8 from each other. Define spherical caps

S = st! ﬂB(Gk,5).

Since the S)’s are disjoint and have surface measure a constant multiple of &1 it
follows that there are about ' =" such points 6.

We count the number of §-tubes that contain xy and intersect a fixed cap Sy. All
these O-tubes are contained in a cylinder of length 3 and diameter ¢ (n)6 whose
axis of symmetry contains x( and the center of the cap Sy. This cylinder has volume
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3w,—1c1(n)"~18"!, and thus it intersects at most c;(n)8 ! cubes of the family Q;,
since the Q;’s are disjoint and all have volume equal to (8’)". We deduce then that
given such a cap Sy, there exist at most c3(n)8~! §-tubes (from the initial family)
that contain the point xo and intersect Sk.

Let us call a set of §-tubes g-separated if for every 7 and 7’ in the set with 7 # 7/
we have that the angle between the axis of symmetry of 7 and 7’ is at least € > 0.

Since we have at least (2‘/"5) | A)L‘ 2l §-tubes that contain the given point xg, and each

cap Sy is intersected by at most c3(1)8 ! 8-tubes that contain xg, it follows that at
least c4(n) )L“AE‘“
intersect different caps Sy and contain x( are §-separated. We have therefore shown
&
contain the point xg. Call 7 the family of these J-tubes.

We find a maximal subset @' of the 6;’s such that the balls B(6y,d), 6; € ©’,

have distance at least 30\}{"6 from each other. This is possible if /0 > ¢o(n) for
some large constant co(n) [such as co(n) = 1000/n]. We “thin out” the family .7
by removing all the §-tubes that intersect the caps Sy with 6, € © \ @'. In other
words, we essentially keep in .7 one out of every 1/A”~! §-tubes. In this way we

extract at least cs(n) " ‘LE‘U O-tubes from .7 that are 60‘){”5

the point xg. We denote these tubes by {7;: j € .Z}.
We have therefore found a subset .# of & such that

of these J-tubes have to intersect different caps Sy. But 8-tubes that

that there exist at least c4(n) O-separated tubes from the original family that

-separated and contain

xp€t; forall je.Z, (10.3.42)
é
T, T; are 60\/n)L - separated when j ke.Z, j#£k, (10.3.43)
E; |A"
|-Z| > cs(n)l |)1L4|| . (10.3.44)

Notice that ’
[ANTNB(xo, 3)] < |7NB(xo, 3)] < 548",

and since for any j € & (and thus for j € .#) we have |[ANT;| > A8"~!, it must be
the case that

1
ANt NB(xo, %) | > JAem (10.3.45)
Moreover, it is crucial to note that the sets
ANT;NB(x0, %), je .z, (10.3.46)

are pairwise disjoint. In fact, if x; and x; are points on the axes of symmetry of two
60\/nf-separated O-tubes 7; and 7 in .# such that |x; —xp| = |xx —xo| = é‘, then
the distance from x; to x; must be at least 10,/n 8. This implies that the distance
between 7; N B(xo, %)C and 7, N B(xo, %)C is at least 64/n6 > 0. We now conclude
the proof of the theorem as follows:



384 10 Boundedness and Convergence of Fourier Integrals

Al = ]an {J (5nB(xo.5))]
JjEF
= 2 [AngNB(x, )|
JjEF
ASn—l
>
JjEF 3
/’116}171
3
|E; |A" A6m!
Z C5(}’l) |A| 3 )

= |7

using that the sets in (10.3.46) are disjoint, (10.3.45), and (10.3.44). We conclude

that
1

3

since, as observed earlier, the set E, is contained in a cube of side length 10. Taking
square roots, we obtain (10.3.40). This proves (10.3.39) and hence (10.3.36). O

AP > | es(n) A" 8" Y E; | > co(m) A8 E, 2,

Exercises

10.3.1. Let & be the characteristic function of the square [0, 1] in R2. Prove that for
any 0 < A < 1 we have

|{x6R2: M(h)(x) > A}| > ilogi .

Use this to show that M; is not of weak type (1,1). Compare this result with that of
Exercise 2.1.6.

10.3.2. (a) Given a unit vector v in R? define the directional maximal function along
V by
1 r+e
M) =sup [ Ife=r)lds
>0 <€ J—¢
wherever f is locally integrable over R?. Prove that for such f, My(f)(x) is well
defined for almost all x contained in any line not parallel to V.
(b) For 1 < p < o, use the method of rotations to show that My maps L? (Rz) to itself
with norm the same as that of the centered Hardy-Littlewood maximal operator M
on L”(R).
(c) Let X be a finite set of directions. Prove that for all 1 < p < oo, there is a constant
Cp > 0 such that

Hmz(f)HLp(R2> <G |Z|’I’Hf||Lp(R2)
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for all f in L”(R?).
[Hint: Use the inequality Mz (f)? < ¥ MMy (f))".]
vex
10.3.3. Show that
%\] < 20 EIRZN ;

where Xy is a set of N uniformly distributed vectors in S'.
[Hint: Use Exercise 10.2.3.]

10.3.4. This exercise indicates a connection between the Besicovitch construction
in Section 10.1 and the Kakeya maximal function. Recall the set E of Lemma 10.1.1,
which satisfies % <|E|I< %

(a) Show that there is a positive constant ¢ such that for all N > 10 we have

{x€R?: Jy(xe)(x) > 1, }| = cloglogh.
(b) Conclude that for all 2 < p < oo there is a constant ¢, such that

H%fv| > c,,(loglogN)le

LP(R%)—LP(R?)

[Hint: Using the notation of Lemma 10.1.1, first show that

[{xeR?: 7, 2K log(k+2) (XE)(X) > 3¢ o f| > log(k+2),

by showing that the previous set contains all the disjoint rectangles R for j =

1,2,...,2K; here k is a large positive integer. To show this, for x in U 1R con-
s1der the unique rectangle R;, that contains x union (R )’ and set R, = R W U(R;).
Then [Ry| =3|R;,| =32~ "log(k+2) and we have

1 ENR _ [ENR,)| _ 1
dy = > s
g Jy ey = 2

in view of conclusion (4) in Lemma 10.1.1. Part (b): Express the L” norm of .y (k)
in terms of its distribution function.}

10.3.5. Show that My is unbounded on LP(R?) for any p < co.
[Hint: You may use Proposition 10.3.4 when p < 2. When p > 2 one may need
Exercise 10.3.4.]

10.3.6. Consider the n-dimensional Kakeya maximal operator .#x. Show that there
exist dimensional constants ¢, and c/, such that for N sufficiently large we have

|-

L”(R”)HL”(R’Q Z Cn (IOgN) )

||<%7v} ch (logN)”;1

o R”)HL”‘”(R”) Z

[Hint: Consider the functions fy(x) = ‘i‘ X3<|x<n and adapt the argument in Propo-
sition 10.3.4 to an n-dimensional setting.]
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10.3.7. For all 1 < p < n show that there exist constants ¢, , such that the n-
dimensional Kakeya maximal operator %y satisfies

> p!

>cppNr .

3 = |l

HLp(Rn)HLp(Rn "Lﬂ(R”)aLP»”(R”)

n+1
[Hint: Consider the functions /iy (x) = |x| ’ X3<|xj<n and show that y (hy)(x) >
c/|x| for all x in the annulus 6 < [x| < N.]

10.3.8. (Carbery, Herndndez, and Soria [51] ) Let T be a sublinear operator defined
on L'(R") 4+ L~(R") and taking values in a set of measurable functions. Let 10 <
N < oo, 1 < p<oo,and 0 < a,M < oo.

(a) Suppose that

IN

Ci N°,
M,
1.

1Tl 1o

N

HTHLP>1—>LP~°° =

IN

[ P—
Show that

|7 C(a7P,C1)M(logN)1:/.

LP P> S
(b) Suppose that

IN

Ci N°,
M,
1.

1T [l g1
1]

A

LP—LpP> —

IN

(Ll

Show that

7] <C'(a,p,Ci)M(logN) ;.

LP—LP

[Hint: Part (a): Split f = fi + f>+ f3, where f3 = f%mgi’fl :fx’}qf\guu and
fi = fXf|>Lr> Where LP~1 = N¢, Use the weak type (1,1) estimate for f; and the
restricted weak type (p,p) estimate for f, and note that the measure of the set
{IT(f3)| > A/3} is zero. One needs the auxiliary result

1
1 Xasi 1<l s < C(P) (1 +1og )7 [|f]]

which can be proved as follows. First use the identity of Proposition 1.4.9. Then
note that the distribution function dyy, _ ., (s) is equal to dy(a) for s <a, to dy(s)
for a < s < b, and vanishes for s > b. It follows that

I b 1 a 1 b I
| Zastnsollipn <adpi@)yr+ [ dgeyrar <2 [ dgeyrai+ [ apoyiar,
a 2 a
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from which the claimed estimate follows by Holder’s inequality and Proposition
1.1.4. Part (b): Use the same splitting and the method employed in the proof of
Theorem 10.3.5.]

10.3.9. Suppose that 7T is a linear operator defined on a subspace of measurable
functions on R” with the property that whenever f is supported in a cube Q of side
length s, then T (f) is supported in aQ for some a > 1. Prove the following:

() If T is defined on L”(R") for some 0 < p < e and

1T < Bl

for all f supported in a cube of side length s, then the same estimate holds (with a
larger constant) for all functions in L? (R").
(b) If T satisfies for some 0 < p < oo,

17 ()| e < BlA]?

for all measurable sets A contained in a cube of side length s, then the same estimate
holds (with a larger constant) for all measurable sets A in R”.

10.4 Fourier Transform Restriction and Bochner-Riesz Means

If g is a continuous function on R", its restriction to a hypersurface S C R” is a well
defined function. By a hypersurface we mean a submanifold of R" of dimension
n—1.So, if f is an integrable function on R", its Fourier transform f is continuous
and hence its restriction f | g on S is well defined.

Definition 10.4.1. Let 1 < p,q < oo. We say that a compact hypersurface S in R”
satisfies a (p, q) restriction theorem if the restriction operator

f—=Fflg:

which is initially defined on L!(R") N L”(R"), has an extension that maps L” (R")
boundedly into L4(S). The norm of this extension may depend on p,q,n, and S. If §
satisfies a (p,q) restriction theorem, we write that property R,_.4(S) holds. We say
that property R,—.,(S) holds with constant C if for all f € L'(R")NLF (R") we have

171|245y <l

Lp Rn .
Example 10.4.2. Property R|_...(S) holds for any compact hypersurface S.

We denote by Z(f) = f g1 the restriction of the Fourier transform on a hy-
persurface S. Let do be the canonically induced surface measure on S. Then for a
function ¢ defined on § we have
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t o~ o~ \/ t —_—
[ fodo=| Fpdo)dc= | redsas.
Sn—1 R" R?
which says that the transpose of the linear operator & is the linear operator

%' (@) = @do . (10.4.1)

By duality, we easily see that a (p, g) restriction theorem for a compact hypersurface
S is equivalent to the following (¢, p') extension theorem for S:

' 17(S)— LV (R").

Our objective is to determine all pairs of indices (p, q) for which the sphere S"~!
satisfies a (p,q) restriction theorem. It becomes apparent in this section that this
problem is relevant in the understanding of the norm convergence of the Bochner—
Riesz means.

10.4.1 Necessary Conditions for R,_.,(S"~') to Hold

We look at basic examples that impose restrictions on the indices p,q in order
for Rp—.4(S"~!) to hold. We first make an observation. If R,_.,(S"~!) holds, then
R,—s(S""1) forany s < g.

Example 10.4.3. Let do be surface measure on the unit sphere "~ !. In view of the
identity in Appendix B.4, we have

-~ 2

do(&)= 1, dna(2mlE)).

NEE

Using the asymptotics in Appendix B.8, the last expression is equal to

2V/21

| n;l

n+1

cos(2r(&|— ™" V) +0(1E[7"7)

as |E| — oo. It follows that #' (1)(&) = do (&) does not lie in L' (R") if mip<n
and "3'p' > n. Thus R,_4(S"") fails when 2", < p < 2. Since Ri_,(S"")
holds for all g € [1,e], by interpolation we deduce that R,_.,(S"~!) fails when

p> nﬁ’l . We conclude that a necessary condition for R,_.,(S"") to hold is that

2n

. 10.4.2
< n+1 ( )

I<p

In addition to this condition, there is another necessary condition for R,_.,(S" 1)
to hold. This is a consequence of the following revealing example.
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Example 10.4.4. Let ¢ be a Schwartz function on R” such that ¢ > 0 and ¢(&) > 1
for all £ in the closed ball || < 2. For N > 1 define functions

X1 X2 Xn—1 xn)

fN(x17x27~~~7-xn717-xn):(p(NaNa"'7 N 7N2

To test property R,Hq(S”’l), instead of working with §"~!, we may work with the
translated sphere S = S"~! 4-(0,0,...,0,1) in R” (cf. Exercise 10.4.2(a)). We have

f/};(g) :NnJrl(/ﬁ(NglngZv"'aNgn—lszgn)'
We note that for all & = (&, ...,&,) in the spherical cap
S=SN{EcR": E -+ &2 <N? and §&,<1}, (10.4.3)
we have &, <1—(1— ]\}2 )5 < ]\}2 and therefore
|(N€15N€25"'7N§n—17N2€n)| Sz

This implies that for all £ in §” we have ?;(5) > N"*!. But the spherical cap S’ in
(10.4.3) has surface measure ¢(N~')"~!. We obtain

— — 1 1-n
||fN ||L‘7(S) Z ||fN ||Lf/(S’) >N IN

On the other hand,
we must have

fNHLp(Rn) = H(pHL,,(Rn)Nn;I . Therefore, if R,_.,(S"~!) holds,

ol 2 G IN'T

and letting N — oo, we obtain the following necessary condition on p and ¢ for
Rp—q(S"™1) to hold:
1 S n+11

> . (10.4.4)
g n—1p

We have seen that the restriction property R, .4 (8"~1) fails in the shaded region
of Figure 10.10 but obviously holds on the closed line segment CD. It remains to
investigate the validity of property R,—,(S""!) for (,17, ;) in the unshaded region of
Figure 10.10.

It is a natural question to ask whether the restriction property R p_.q(S"‘l) holds
on the line segment BD minus the point B in Figure 10.10, i.e., the set

(10.4.5)

1 11 2
:n—|— 1<p< n}
q n—1p n+1

{(r.0):

If property R, (S"=1) holds for all points in this set, then it will also hold in the
closure of the quadrilateral ABDC minus the closed segment AB.
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L
q

1

n+1
2n

Fig. 10.10 The restriction 2
property R, .,(S"™!) fails

in the shaded region and on

the closed line segment AB

but holds on the closed line

segment CD and could hold

on the open line segment

BD and inside the unshaded 0
region.

10.4.2 A Restriction Theorem for the Fourier Transform

In this subsection we establish the following restriction theorem for the Fourier
transform.

Theorem 10.4.5. Property R,_.,(S"~') holds for the set

I n+l11

g n—1p’ T<p

IN

2n+ 1)} (10.4.6)

{(p,q): n+3

and therefore for the closure of the quadrilateral with vertices E, G, D, and C in
Figure 10.10.

Proof. The case p =1 and g = o is trivial. Therefore, we need to establish only the

case p = 2n+1) and g = 2, since the remaining cases follow by interpolation.
14 n+3 q g y Ip

Using Plancherel’s identity and Holder’s inequality, we obtain
~ 2 ~ o~
1w = [, F&F&do)
- / F(0) (f +do”) (x)dx
Rn

Sy

To establish the required conclusion it is enough to show that

f*do-v”LP,(R”) .

2(n+1) '

10.4.
n+3 (10.4.9

Hf*dGVHLP’(Rn) = C"”f”LP(R") when  p=
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To obtain this estimate we need to split the sphere into pieces. Each hyperplane
& = 0 cuts the sphere $"! into two hemispheres, which we denote by H,' and H7.
We introduce a partition of unity {¢;}; of R" with the property that for any j there
existk € {1,2,...,} and l € {1,2} such that

(support@;) N st! g H,ﬁ;

that is, the support of each ¢; intersected with the sphere S~ is properly contained
in some hemisphere H, ,é Then the family of all ¢; whose support meets S~ forms
a finite partition of unity of the sphere when restricted to it. We therefore write

do =Y ¢;do,
Jer

where F is a finite set. If we obtain (10.4.7) for each measure ¢;do instead of do,
then (10.4.7) follows by summing on j. We fix such a measure ¢; do, which, without
loss of generality, we assume is supported in {& € $"~': &, > ¢} S H,! for some
¢ € (0,1). In the sequel we write elements x € R" as x = (¥',¢), where ¥ € R*~! and

t € R. Then for x € R" we have

2minE 0; (&, V/1-8']?) a8’

(prdo)" ()= | e

Sn—1

o) e doE) = [
gleRn—l
‘é/‘2§17L.2

where & = (&',&,); for the last identity we refer to Appendix D.5. Writing x =
(x',1) e R""1 xR, we have

. / _ 2
(9jdo)V (¥ 1) = e’ prin/1-jgp @€ V1=1¢] ) ger
! 712
Elern! \/1_|§ |
Epst-c (10.4.8)

- (ezwlw <Pf(é¢¢1—|é/|2))v<x/>
VI=1E? |

where V indicates the inverse Fourier transform in the &’ variable. For each t € R
we introduce a function on R"~! by setting

K(x') = (¢;do)"(,1).

We observe that identity (10.4.8) and the fact that 1 —|&’|> > ¢? > 0 on the support
of ¢; imply that

sup sup |(K)2 ()] < Cp < o, (10.4.9)
teR g/eRn—l

where 2 indicates the Fourier transform on R"~!. We also have that

K (X) = (p;jdo)’ (1) = ((,ojv xdc”)(x',1).
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Since ¢ is a Schwartz function on R” and the function |[dc " (x',1)| is bounded by

(1+|(x,0)])~ "2' (see Appendices B.4, B.6, and B.7), it follows from Exercise 2.2.4
that

K ()] <CO+|(,0) "2 <c+[])~" (10.4.10)
for all ¥ € R*~!. Estimate (10.4.9) says that the operator given by convolution with
K; maps L*>(R"1) to itself with norm at most a constant, while (10.4.10) says that
the same operator maps L' (R"~!) to L*(R"~!) with norm at most a constant multi-

ple of (14 ¢])~ e Interpolating between these two estimates yields

1K %81y < Gkt~ 2 ]

Lp Rn I) Lp R I)

for all 1 < p <2, where x denotes convolution on R*! (and * convolution on R").
We now return to the proof of the required estimate (10.4.7) in which doV

replaced by (@;do)". Let f(x) = f(x',) be a function on R". We have

Hf*((pjdG)VHLP'(R”) = HH/Rf('vr)*Kt‘ch

CPM

) (Ry’*l) LY (R)

IN

/R ’f("r)*K’_T oy 4"

/ Hf Lp R” ll) dr
R |t 2)

Iﬂ(Hf('vf)|

LY (R)

IN

L” (R)

= Cp,n

L”(R”’l)) HLP’ (Radr)’

where B =1—(n— l)(ll7 — ) and Ig is the Riesz potential (or fractional integral)

given in Definition 6.1.1. Using Theorem 6.1.3 with s = , n =1, and g = p/, we
obtain that the last displayed equation is bounded by a constant multiple of

H”f( 7t)HLp(Rn—1) L2 (Rdr) = HfHLP(R") !
The condition ;1, — ; =, ontheindices p,q,s,n assumed in Theorem 6.1.3 translates
exactly to
11 B L 1 n-—1
p P11 P 2
which is equivalent to p = 2(":31) This concludes the proof of estimate (10.4.7)

in which the measure 6" is replaced by (¢;do)". Estimates for the remaining
(pjdo)V follow by a similar argument in which the role of the last coordinate is
played by some other coordinate. The final estimate (10.4.7) follows by summing j
over the finite set F'. The proof of the theorem is now complete. O



10.4 Fourier Transform Restriction and Bochner-Riesz Means 393

10.4.3 Applications to Bochner—Riesz Multipliers

We now apply the restriction theorem obtained in the previous subsection to the
Bochner—Riesz problem. In this subsection we prove the following result.

Theorem 10.4.6. For Re A > 2{‘";11), the Bochner—Riesz operator B* is bounded on

LP(R") for p in the optimal range

2n < pe 2n
nt1+2Red P n_1-2Rer"

Proof. The proof is based on the following two estimates:

. 2 —
1B ||t )1 ey < C1 (Red) eollm] whenReld > "', (104.11)

< Cy(Re ) ecolmaf whenRed > 7L, (10.4.12)

1B o e e n+1

where p = z(nnj;) and Cy, G, are constants that depend on n and Re A, while ¢ is an
absolute constant. Once (10.4.11) and (10.4.12) are known, the required conclusion
is a consequence of Theorem 1.3.7. Recall that B* is given by convolution with the
kernel K defined in (10.2.1). This kernel satisfies

(0] < Cy(Re ) e mAP (1 4 [x))="2' - (10.4.13)
K A{ Co‘lml‘ b Rel 04 3

in view of the estimates in Appendices B.6 and B.7. Then (10.4.11) follows easily
from (10.4.13) and we focus our attention on (10.4.12).

The key ingredient in the proof of (10.4.12) is a decomposition of the kernel.
But first we isolate the smooth part of the multiplier near the origin and we focus
attention on the part of it near the boundary of the unit disk. Precisely, we start with
a Schwartz function 0 < 1 < 1 supported in the ball B(0, Z) that is equal to 1 on the
smaller ball B(0, ;) Then we write

m (&) = (1= 1§ = (1= [EPin (&) + (1~ 1EAE (1 =n(E)).

Since the function (1 —|&[?)A 1 (&) is smooth and compactly supported, it is an L?
Fourier multiplier for all 1 < p < e, with norm that is easily seen to grow poly-
nomially in |A|. We therefore need to concentrate on the nonsmooth piece of the
multiplier (1— |€[%)* (1 —n(&)), which is supported in B(0, })°. Let

K0 = (- 18P0 -n(8) @)

be the kernel of the nonsmooth piece of the multiplier.
We pick a smooth radial function ¢ with support inside the ball B(0,2) that is
equal to 1 on the closed unit ball B(0,1). For j = 1,2,... we introduce functions

vi(x) =9(277x) — @27/ x)
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supported in the annuli 2/~ ! < |x| < 2/7!. Then we write

where T07L is given by convolution with (pK’L and each TJ?L is given by convolution
with y;K*.

We begin by examining the kernel oK A . Introducing a compactly supported func-
tion § that is equal to 1 on B(0, ; ) we write

K = (0= Pra-me)
= (=1 Ph) = (1 =m)”
= K+ ((1-m)¢)".

Using this and (10.4.13) implies that K* is a bounded function, and thus (pK)L is
bounded and compactly supported. Thus the operator To)L is bounded on all the L?
spaces, 1 < p < e, with a bound that grows at most exponentially in |[Im A |2.

Next we study the boundedness of the operators TJ?L; here the dependence on the
index j plays a role. Fix p < 2 as in the statement of the theorem. Our goal is to
show that there exist positive constants C,6 (depending only on n and Re 1) such
that for all functions f in LP(R") we have

177 Dl < €M F 2772 ]

(10.4.15)

LP(R”) Lp Rn .

Once (10.4.15) is established, the L” boundedness of the operator f — K* x f fol-
lows by summing the series in (10.4.14).
As a consequence of (10.4.13) we obtain that

n+l

C3(ReA) eomAR (1 4 [x))~
< /("3 4Red)j

IN

K} ()| Ry ()

(10.4.16)

since y;(x) = w(27/x) and y is supported in the annulus ) < [x| < 2. From this
point on, the constants containing a prime are assumed to grow at most exponentially
in [ImA|2. Since Kf is supported in a ball of radius 2/*! and satisfies (10.4.16), we
deduce the estimate

A2, = ||KEH|[, < cra-tmeaRehigni — crp=(142Re)] - (10.4.17)

We need another estimate for K;1 We claim that for all M > n+ 1 there is a
constant Cy, such that

4‘M%Wm*&g%wrwmmﬂ<n (10.4.18)
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Indeed, since 121(5) is supported in || > } [recall that the function 17 was chosen
equal to 1 on B(0, ;)], we have

—

KHOI= K @) <27 [ (-] 0Pl 0)lda.

2 <lE-ol<1
Suppose that |&| < . Since |§ — @| > }, we must have |@| > 3. Then
V(2 0)| < Cu(2o) ™ < (8/3)"Cn2 M,
from which it follows easily that

sup [K*(&)] < Cp27 /M) (10.4.19)

El<i

Then (10.4.18) is a consequence of (10.4.19) and of the fact that the function |& |*[3
is integrable near the origin.

We now return to estimate (10.4.15). A localization argument (Exercise 10.4.4)
allows us to reduce estimate (10.4.15) to functions f that are supported in a cube of
side length 2/. Let us therefore assume that f is supported in some cube Q of side
length 2/. Then Tj’1 (f) is supported in 5Q and we have for 1 < p < 2 by Hélder’s
inequality

1_1
1T Dll7se) < 15QP 2T 2

L (10.4.20)
G2V,

IN

Having returned to L2, we are able to use the L — L? restriction theorem obtained
in the previous subsection. To this end we use polar coordinates and the fact that K j)L
is a radial function to write

||E}f||§2=/m|1?}(re1)|2(/ |f(re)|2de) " (10.4.21)
0 Srz—l

where e; = (1,0,...,0) € §"~!. Since the restriction of the function x — r~"f(x/r)
on the sphere 8"~ ! is f(r@), we have

2n
p/

2
/S freyPas <c3, { /Rn | f(x/r)|”dx} T A2, 10422

where C), ,, is the constant in Theorem 10.4.5 that holds whenever p < 2t S0

n+3
41 and inserting estimate (10.4.22) in (10.4.21) yields

. 2
assuming p < i3
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KA F|% < 2]

00~ _1_2n
b I Gen P ar
0
(10.4.23)

IN

cz,
ol

b [ K @PIEl Fag

where ,_| = |S"~!|. Appealing to estimate (10.4.18) for |&| < 213 with § = i’,’ <n
(since p < 2) and to estimate (10.4.17) for |&| > é, we obtain

2

KA F|[2 < e 0+2%ebi )2

Combining this inequality with the one previously obtained in (10.4.20) yields
(10.4.15) with
_n+1

0=,

+Rel—n.
p

This number is positive exactly when | +’£Re 5 < p- This was the condition as-

sumed by the theorem when p < 2. The other condition Re A > 2(';111) is naturally

imposed by the restriction p < 2(::31). Finally, the analogous result in the range

p > 2 follows by duality. 0

10.4.4 The Full Restriction Theorem on R>

In this section we prove the validity of the restriction condition R,—.,4(S') in dimen-
sion n = 2, for the full range of exponents suggested by Figure 10.10.

To achieve this goal, we “fatten” the circle by a small amount 2. Then we obtain
a restriction theorem for the “fattened circle” and then obtain the required estimate
by taking the limit as 6 — 0. Precisely, we use the fact

1+6

-~ 1 + -~

w)|dw = lim r0)|1dO rdr 10.4.24
[ l@)rdo=1tim o [ [ |fo) (10424
to recover the restriction theorem for the circle from a restriction theorem for annuli
of width 26.

Throughout this subsection, & is a number satisfying 0 < § < 10100, and for sim-
plicity we use the notation

1) =x0-s.1+6)E]), EER?.

We note that in view of identity (10.4.24), the restriction property Rp_.q(Sl) isa
trivial consequence of the estimate

’ (10.4.25)

1 Oo o~
25/0 gl |X5(79)f(r9)|qd9rdr§CQHf}




10.4 Fourier Transform Restriction and Bochner-Riesz Means 397

or, equivalently, of
~ 1
127 ey < @) e - (10.4.26
We have the following result.

Theorem 10.4.7. (a) Given 1 < p < g, set q = ’g,. Then there is a constant C), such
that for all L functions f on R and all small positive § we have

~ 1
12°F ey < €8 I ey - (10.4.27)

(b) When p = q = 4/3, there is a constant C such that for all L*3 functions f on R?
and all small § > 0 we have

1287+, <C8iog §)4||f] 4 (10.4.28)

L3 (R?) L3 R2

Proof. To prove this theorem, we work with the extension operator
E%(g)=x%8 =10 +%,
which is dual (i.e., transpose) to f — x‘sz, and we need to show that

IES(f) < €89(10g )Pl e, (10.4.29)

||LP'(R2)
where 8 =} when p = ‘3‘ and B =0 when p < ‘3‘.

We employ a splitting similar to that used in Theorem 10.2.4, with the only dif-
ference that the present partition of unity is nonsmooth and hence simpler. We define
functions

1) 1)
%0 (8) = 2°(E) Xores < vy & <am(e41)51/2
for £ € {0,1,...,[8"/?]}. We suitably adjust the support of the function y?2

5112 50
that the sum of all these functions equals ¥°. We now split the indices that appear
in the set {0,1,...,[6'/2]} into nine different subsets so that the supports of the

functions indexed by them are properly contained in some sector centered at the ori-
gin of amplitude 7w /4. We therefore write E % a5 a sum of nine pieces, each properly
supported in a sector of amplitude 7 /4. Let I be the set of indices that correspond
to one of these nine sectors and let

=3
lel

It suffices therefore to obtain (10.4.29) for each E15 in lieu of E%. Let us fix such an
index set I and without loss of generality we assume that

1=10,1,...,[L671/7)}.



398 10 Boundedness and Convergence of Fourier Integrals

Since the theorem is trivial when p = 1, to prove part (a) we fix a number p with
I<p< ‘3‘. We set
r=(p'/2)

and we observe that this r satisfies 1 = ,l/ + ql, . We note that 1 < r <2 and we apply

the Hausdorff— o < ||nY]|,,- We have
5 4 LS 20
|EP 2 ) = [, IEP ORI dx
J
6 r "
< ( o (Ei ()] dx) (10.4.30)
J
:</ ZZ%/f (xof ‘ )
telvel
We obtain the estimate
; 4 /
(/ SN Xl (xif) ‘ ) <G8 ||fl7y e (10.4.31)
lelvel

which suffices to prove the theorem.
Denote by Sg ¢ the support of xlfs + xlfs, Then we write the left-hand side of

(10.4.31) as

which, via Holder’s inequality, is controlled by

/

rdx) " (10.4.32)

Z S (1) ) Xsis

Lelvel

A

(/ (ZZ\%M wa)\r):(zz\XSMZ,\”);dx)r. (10.4.33)

leltel Lelvel

We now recall Lemma 10.2.5, in which the curvature of the circle was crucial. In
view of that lemma, the second factor of the integrand in (10.4.33) is bounded by a
constant independent of §. We have therefore obtained the estimate

IEZ (|7, <c (22/ |2 1)* S| dx> . (10.4.34)

telt'el
We prove at the end of this section the following auxiliary result.

Lemma 10.4.8. With the same notation as in the proof of Theorem 10.4.7, for any
1 < r < o, there is a constant C (independent of & and f) such that

3

1
62 v
C<|£—£’|+1>

(10.4.35)

1),

Lr
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forall .0 € 1 =10, 1,...,[%5’1/2]}.

Assuming Lemma 10.4.8 and using (10.4.34), we write
Az, )]
PN (e—e)+1)7

R A1 )S]
L”] L%,(E‘,(w—mﬂ)r ’

where we used Holder’s inequality for some 1 < s < co. We now recall the discrete
fractional integral operator

£l <ot 3 s
tel (10.4.36)

/

gcﬁ[

lel

a;

S O

which maps £5(Z) to ¢ (Z) (see Exercise 6.1.10) when
I 1
- =, O<a<l. (10.4.37)

s 8

When 1 < p < ‘3‘, we have | <r <2, and choosingax =2—r=1— r’,, we obtain
from (10.4.36) that

/

r’ 7
IEP (P < C'§> {Z} :] ‘ [Z| Z] :
lel el
v
:c@i{ZH%? fr] . (10.4.38)
lel

The unique s that solves equation (10.4.37) is seen easily to be s = ¢’ /r. Moreover,
since ¢ = p’/3, we have 1 < s < 2. We use again Holder’s inequality to pass from

22£]l, to ||[x2f||,- Indeed, recalling that the support of x¢ has measure ~ 52,
we have

C(E) 7 [
Inserting this in (10.4.38) ylelds
2/

IEZ ()7, < c8? [Z(C(‘S%)l_‘}'H%?f}lm/)r“} m
el

- cat@ D 3 1) ‘

8| 1l7y

IN

— Sl
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. . . . . 1 1 1 / / . .
which is the required estimate since , = sty and p’ = 2r'. In the last inequality

we used the fact that the supports of the functions x? are disjoint and that these add
up to a function that is at most 1.

To prove part (b) of the theorem, we need to adjust the previous argument to
(r)/btain the/ casze p= g. Here we repeat part of the preceding argument taking r =

=5=5 = 2.

Using (10.4.34) with p = g (which forces r to be equal to 2) and Lemma 10.4.8
with r = 2 we write

oW

4 5 (15 /12 lxérze
I ey < €88 | Bl S 0,
. _ 1
st z[ (5 JEE Y]
= -EZ‘EIHX[fHLZ- ;el EZE‘IM £/|—|—1
3 F) 4 % 1
AR AN
-Eel lel Lel
< cs2 ZHXZfHLZ log(872)
Lier

IN

SHEI [z||x,f||L4]log5

C6* (log ) | /Il

IN

We now prove Lemma 10.4.8, which we had left open.

Proof. The proof is based on interpolation. For fixed £, ¢’ € I we define the bilinear
operator

Ty0(8.h) = (gxf) = (hxf) .

As we have previously observed, it is a simple geometric fact that the support of xf

27§/

is contained in a rectangle of side length &~ § in the direction e and of side

. TS Ty 1751 .

length ~ &2 in the direction e2mis! e, Any two rectangles with these dimensions
in the aforementioned directions have an intersection that depends on the angle be-
tween them. Indeed, if £ # ' this intersection is contained in a parallelogram of

. . 1 . . .
sides & and 8/sin(2md2|¢ — ¢'|), and hence the measure of the intersection is seen
easily to be at most a constant multiple of

. B
sin(2r82|¢—¢|)

. . 1 ..
As for £, in the index set I we have 27162 | — ¢'| < /4, the sine is comparable to
its argument, and we conclude that the measure of the intersection is at most
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3
cs2(1+ 10—
It follows that

cs?

I 22, = sup e supp () nsupp NI < 3y -

which implies the estimate
2 22 - gl =[] -

cs? (10.4.39)
< o oyl

||T€,£/(g7h)HL°°

IN

Also, the estimate
[ Teer (gl < [lex 1l ln22]]
<l [l

holds trivially. Interpolating between (10.4.39) and (10.4.40) yields the required
estimate (10.4.35). Here we used bilinear interpolation (Exercise 1.4.17). O

(10.4.40)

Example 10.4.9. The presence of the logarithmic factor in estimate (10.4.28) is nec-
essary. In fact, this estimate is sharp. We prove this by showing that the correspond-
ing estimate for the “dual” extension operator E? is sharp. Let / be the set of indices
we worked with in Theorem 10.4.7 (i.e., I = {0,1,...,[§ 6~ /?]}.) Let

=Y
el
Then 1
172l o = 85
However,

ES(f5) =Y 4,
lel

and we have

5/ 48 ' 5512 '
I8 = ([ 3 3 el ae)

(fo B2 2 o2l as)

lelvel

1

(S5 [l niras)

lelvel

Y
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At this point observe that the function x,fs * xg is at least a constant multiple of
52 (J¢—¢'|+1)~! on a set of measure 8> (|£—¢'|+1). (See Exercise 10.4.5.) Using
this fact and the previous estimates, we deduce easily that

IE2 )= e (X (e €’|+1) 82 (1~ £1+1))" ~ 8(log )+,

Eelﬁ’el

since || &~ 5~ 2. It follows that

O( 6
120t 5 5 10g 1):
172]] 4

which justifies the sharpness of estimate (10.4.28).

Exercises

10.4.1. Let S be a compact hypersurface in R” and let do be surface measure on it.
Suppose that for some 0 < b < n we have

do(&)| <c(1+(§)7"
for all £ € R". Prove that R,.,(S) does not hold for any 1 < g <eowhenp > ", .

10.4.2. Let S be a compact hypersurface and let 1 < p,g < co.

(a) Suppose that R,,.,(S) holds for S. Show that R, _.,(7+S) holds for the translated
hypersurface 7+ S.

(b) Suppose that the hypersurface S is compact and its interior contains the origin.
Forr > 0letrS = {r&: & € S}. Suppose that R,,_.,(S"~!) holds with constant C .

n—1_ n

Show that R—.4(rS"!) holds with constant Cpg,r ¢ 7.

10.4.3. Obtain a different proof of estimate (10.4.7) (and hence of Theorem 10.4.5)
by following the sequence of steps outlined here:
(a) Consider the analytic family of functions

n2 2mlE))
HERE

and observe that in view of the identity in Appendix B.4, (K;)Y (&) reduces to
doV (&) when z =0, where do is surface measure on S"~!.
(b) Use for free that the Bessel function J 1 4igo 0 € R, satisfies

(K:)' (&) =2m'"

1
U100 < Colal 2,
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where Cg grows at most exponentially in ||, to obtain that the family of operators
given by convolution with (K.)" map L' (R") to L*(R") when z = —"," + 0.
(c) Appeal to the result in Appendix B.5 to obtain that for z notequal to 0, —1,—2,...

we have
2

I'(z)

Use this identity to deduce that for z = 1 4 i0 the family of operators given by
convolution with (K;)" map L?(R") to itself with constants that grow at most expo-
nentially in |6|. (Appendix A.6 contains a useful lower estimate for |I" (1 +i6)|.)

(d) Use Exercise 1.3.4 to obtain that for z = 0 the operator given by convolution

with do" maps L? (R") to LY (R") when p = 2(nn++3l)'

K= - -k

10.4.4. Suppose that 7 is a linear operator given by convolution with a kernel K
that is supported in the ball B(0,2R). Assume that there is a constant C such that for
all functions f supported in a cube of side length R we have

I7(r)]

for some 1 < p < co. Show that this estimate also holds for all L? functions f with
constant 5" B.
[Hint: Write f =3.; fxo,, where each cube Q; has side length R.]

<B||/|

Lr Lr

10.4.5. Using the notation of Theorem 10.4.7, show that there exist constants c,c’
such that the function x? * 752 is at least /82 (|6 —¢'|+1)~" on a set of measure
82 (|0—0|+1).

[Hint: Prove the required conclusion for characteristic functions of rectangles with
the same orientation and comparable dimensions. Then use that the support of each
xf contains such a rectangle.]

10.5 Almost Everywhere Convergence of Bochner—Riesz Means

We recall the Bochner—Riesz means Bﬁ of complex order A given in Definition
10.2.1. In this section we study the problem of almost everywhere convergence of
Bﬁ (f) — f as R — eo. There is an intimate relationship between the almost ev-
erywhere convergence of a family of operators and boundedness properties of the
associated maximal family (cf. Theorem 2.1.14).!

For f € L?(R"), the maximal Bochner—Riesz operator or order A is defined by

BL(f) = sup|Bx (/)]
R>0

! In certain cases, Theorem 2.1.14 can essentially be reversed. Given a 1 < p <2 and a family of
distributions u; with the mild continuity property that u; * fi — u;* f in measure whenever f; — f
in L”(R") such that the maximal operator .# (f) = sup; |f *u;| < e whenever f € L”(R"), then
# maps LP(R") to L7~ (K) for any compact subset K of R". See Stein [289], [292].
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10.5.1 A Counterexample for the Maximal Bochner—Riesz
Operator

We have the following result.

Theorem 10.5.1. Letn > 2, A > 0, and let | < p <2 be such that

2n—1 n
< —

AR

Then B does not map LP(R") to weak LP(R™).

Proof. Figure 10.11 shows the region in which B? is known to be unbounded; this
region contains the set of points (1/p,A) strictly below the line that joins the points
(I,(n—1)/2)and (n/(2n—1),0).

A A
n-1 n-=1
2 2
Fig. 10.11 The operators B 1
are unbounded on L”(R") 2: >
when (1/p,A) lies in the 0 n-l 1 n+l 11
interior of the shaded region. 2n 2n-12n p

We denote points x in R” by x = (¥, x,,), where ¥’ € R"~!, and we fix M > 100 and

€ < 1/100. We let w(y) = xjy|<1(y') §(ya), where { is a smooth bump supported
in the interval [—1, 1] that is equal to 1 on [—1/2,1/2] and satisfies 0 < § < 1. We
define

_ 1] PR
Vem(y) = y(e ly/73 'M 2)’n)=)qy/\§£(y/)é(€ "M 2y,)

and we note that W, (y) is supported in the set of y’s that satisfy |y'| < € and
lyn| < €M 2. We also define

fiu(y) = ™ e (y)

and
Sy ={(',x,): M<|X|<2M, M < |x,| < 2M}.
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Then

full,, M2red  and [y~ M. (10.5.1)

Every point x € Sy must satisfy M < |x| <3M. We fix x € Sy and we estimate
B (fu)(x) = supg-o |Bx(fu)(x)| from below by picking R = R, = |x|/x,. Then
1/2 <R, <3 and we have

r(A+1)

Ju42 (2R |x — y[)
ﬂ")L /n

2miyy
n e ) dy|.
(R —ypien © veuId

B (fu)(x) >

We make some observations. First [x' —y'| > J|x'|, since [x| > M and |y/| < €.
Second, |x;, — ya| > |xn| — [yn| > é|x,,|, since |x,| > M and |y,| < eM'/2. These facts
imply that |x —y| > é|x|; thus |x — y| is comparable to |x|, which is of the order of
M. Since 2R, |x — y| is large, we use the asymptotics for the Bessel function J )
in Appendix B.8 to write

J;+)L(27[Rx|)€—y|) Cy 2R =) oip n Cy e 2Ryl o =i Ly (R | |)
n = n n n, A \Ilx X—Y),
Rebe =32 (Rx—y)"2 H (Refr—y)) "3+

where ¢ = —7 (5 +A) — 7 and

| Cu - Coa

Voo (Ry|x — < ’ ,
| n,?u( | DI < (Rx|x—y|)n§3+l > Mn?HL

(10.5.2)

since Ry = ‘;j ~ 1 and |x—y| > ) M. Using the preceding expression for the Bessel
function, we write

B(fu)(x) > C,

/ eZm’Rx\x\ el
" Vem(y)dy
R' (Ry[x—y[)"2 +*

/ (eZHI(Rx\x—yHy,,) — 2MiR|x] )ei(p
C Ry
/‘ e2”i<—Rx‘x—)"+)’lz)e—i(P
+1
R' (Refx—y[)"2 ™

- } /R Vi (Relx =y )€™ e (y) dy‘ :

_CSL

Ve () dy‘

_CSL

Ve () dy‘

The positive term is the main term and is bounded from below by

|
c1E"M2

e (10.5.3)

_ntl
Gy (6M)" > ’L/RHW&M(y)dy:

The three terms with the minus signs are errors and are bounded in absolute value
by smaller expressions. We notice that
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)

X Xny X
R+ — el = P eyl 2 — s = ¥ 1) - £(0)

where Fy(y) = |x — y| + |x|~'x,y,. Taylor’s expansion yields

Fu(y) = Fx(0) = V,F(0) -y + O(ly[? sup|9; k()

and a calculation gives V,F,(0) = (—[x|~1¥,0), while |d;0;F:(y)| < Clx—y| 71 It
follows that

|x] -y / |y| i ('SMI/Z)Z 7
F(y)—F(0)] <3 C <C'|¢e <2C"e
xn| H(y) — F(0)] < o ey | Sy S
Using this fact and the support properties of y, we obtain
e27ri(Rx\x—y\+yn) _ eZm’Rx\x\ £lP crE E"Mé
Ci / ( w1 ) Vem(y)dy| < (,,H ) (1054
! (Refx—y|)"2 4 M3+

Next we examine the phase Ry|x — y| 4y, as a function of y,. Its derivative with
respect to y,, is

) Xn—Yn
R |x— =R
yn ( X|x y| +)’n) ! lx—yl

since x, > M and |y,| < eM"/2, which implies that x, — y, > 0. Also note that

+1>1,

J < >1 1
R, "1 <
'9% x— yl
and that
a 1 C///
‘ayn |x—y|”§l+ﬂ' —_ M1142r3+l )

. . . 1 . .
while the derivative of {(e~!M~2y,) with respect to y, gives only a factor of
1 . . . . .
£~ 'M~2. We integrate by parts one time with respect to y, in the integral

27” —R, ‘X yH'yn *l‘(P ,
dy,d
AII l/ R |X y| IlJrl_,'_)L WS‘M(y) Yndy

. .. 1
to obtain an additional factor of e~ !M~ 2. Thus

c3e"M2 (eI M 2)

2”i(*Rx‘x7¢V‘+,Vn) —iQ
/ ¢ ¢ e (105.5)
" M2 A

n+1
(Relx—y[)"3' +2

Ws,M(y) d)" <

Finally, using (10.5.2) we obtain that
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1
c4 €"M?2

I (10.5.6)

[ Yo Ry ) ) <

We combine (10.5.3), (10.5.4), (10.5.5), and (10.5.6) to deduce for x € Sy,

c1 & o gntl c3 enl cy €

A
> - - _ .
B* (fM)('x) = Mng)L M’21+)L MngrlJrl Mn§2+l
We pick ¢ sufficiently small, say € < ¢1/(2¢3), and My sufficiently large (depending
on the constants ¢y, ¢, c3,c4) that

1

A
x€Sy = Bi(fu)(x) >COM§+1

whenever M > M. This fact together with (10.5.1) gives

A _n_ !
1B Ai0ll o, cob™2 l.|SM' Y
sl M
and the required conclusion follows by letting M — oo. g

10.5.2 Almost Everywhere Summability of the Bochner—Riesz
Means

We now focus attention on the case p > 2 and we investigate whether the Bochner—
Riesz means converge almost everywhere outside the range in which they are known
to be unbounded on L”. Our goal is to prove the following result.

Theorem 10.5.2. Let A >0 andn > 2. Then forall f in LP(R") with2 < p < n—lzﬁZX
we have

lim B} (f)(x) = f(x)

R—oo

for almost all x € R™.

Since the almost everywhere convergence is obvious for functions in the Schwartz
class, to be able to use Theorem 2.1.14 to derive almost everywhere convergence for
general L? functions, it suffices to know a weak type (p, p) estimate for B*. How-
ever, instead of proving a weak type (p, p) estimate, we prove an L? and a weighted
L? estimate for Bf}. Precisely, we prove the following result.

Proposition 10.5.3. Let A > 0 and 0 < o < 1 +2A < n. Then there is a constant
C =C(a,A,n) such that

LB @PR*dx < [ 1P ax
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for all functions f € L*(R", |x|~%dx).
Assuming the result of Proposition 10.5.3, given p such that

2n

ISPSPT gy

choose o satisfying

O<n<l—2><a<l+21:n<l— 2).
V4 P

Then the maximal operator B? is bounded on L? and also on L?(|x|~“dx). Hence
the almost everywhere convergence of the family {BI% (f)}& holds on L? and also on
L?(|x|~%dx). Since 0 < & < n, we have

PSP+ L (x| 7%),

and thus B%(f) converges almost everywhere for functions f € LP(R"). See Exer-
cise 10.5.1 for this inclusion.

To prove Proposition 10.5.3, we decompose the multiplier (1 —|£|?)% as an in-
finite sum of smooth bumps supported in small concentric annuli in the interior of

the sphere |£] = 1 as we did in the proof of Theorem 10.2.4.

We pick a smooth function ¢ supported in [—;, ;] and a smooth function y

supported in [, 3] and with values in [0, 1] that satisfy
— 11—t
w(t)+2w( ok ) =1
k=0
forall £ € [0, 1). We decompose the multiplier (1 —|&|?)* as
(1= 187 =moo() + X, 27 mi(8), (10.5.7)
k=0

where moo(&) = @(|€])(1 — |&|*)*, and for k > 1, my is defined by
I=[EN\A (1—1[E]
m(@) = (", ) w( L)+t
Then we define maximal operators associated with the multipliers mgo and my,

() (x) = sup | (F(E)me(E/R))" (%)

R>0

for k > 0, and analogously we define S5'®. Using (10.5.7) we have

BX(f) < ST (f) + i 2K (7). (10.5.8)
k=0
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Since 53, $°, S¥'' and any finite number of them are pointwise controlled by the
Hardy-Littlewood maximal operator, which is bounded on L?(|x|*) whenever —n <
o < n (cf. Theorem 9.1.9 and Example 9.1.7), we focus attention on the remaining
terms.

We make a small change of notation. Thinking of 2% as roughly being & (pre-
cisely § = 27%73), for § < 1/10 we let m® (¢) be a smooth function supported in the
interval [1 —58,1 — 0] and taking values in the interval [0, 1] that satisfies

4

sup dﬁm5(z‘)‘ <5t (10.5.9)

1gzg2‘ [

forall £ € Z* U{0}. We define a related function

() = 51 ¢

5

which obviously satisfies estimates (10.5.9) with another constant @ in place of Cy.
Next we introduce the multiplier operators

SS(f)(x) = (F(EmP(t]E]) " (), S () = (FEme(t1ED)" (x),

and the L?(|x|~*)-bounded maximal multiplier operator

S2(f) =sup|S2(f),

t>0

as well as the continuous square functions

o= (e )’ o= (["gomry)

The operators S and S? are related. For f € L2(|x|~*) and ¢ > 0 we have

d
dt

S5 = 4, S5,

Indeed, this operator identity is obvious for Schwartz functions f by the Lebesgue
dominated convergence theorem, and thus it holds for f € L?(|x|~*) by density.

The quadratic operators G and G% make their appearance in the application of
the fundamental theorem of calculus in the following context:

S =2Re [ 83010 3 S3du= 2 Re [ 8310 U

u

which is valid for all functions f in L?(|x|~*) and almost all x € R". This identity
uses the fact that for almost all x € R” we have
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limS? (f)(x) =0 (10.5.10)

t—0

when f € L?(|x|~%). To see this, we observe that for Schwartz functions, (10.5.10)
is trivial by the Lebesgue dominated convergence theorem, while for general f in
L2(|x|~%) it is a consequence of Theorem 2.1.14, since S%(f) < Cs M(f), where M
is the Hardy-Littlewood maximal operator. Consequently,

du 2 ~
157 (f) / 152 (F) 1S5 () ()] = 3|G5(f)(X)||G‘3(f)(X)I
for all # > 0, for f € L?(|x|~*) and for almost all x € R". It follows that
EINTE: 26 =6
R (f)HLZ(\xra) =5 |G (f)HLZ(\xw) G (f)HH(\xra)’ (10.5.11)

and the asserted boundedness of % reduces to that of the continuous square func-
tions G® and G® on weighted L? spaces with suitable constants depending on 8.
The boundedness of G® on L?(|x|~%) is a consequence of the following lemma.

Lemma 10.5.4. For 0 < 6§ < 1/10and 0 < o < n we have

2 6 L dt dx 5 dx
S [ ISP G < Cuadatd) [ 1F0P G 0512

for all functions f in L*(|x|~%), where for € > 0, Ag(€) is defined by

g2¢ when 1 < o < n,
Ao(e) =< e(|loge|+1) whena =1, (10.5.13)
€ when 0 < o < 1.

Assuming the statement of the lemma, we conclude the proof of Proposition
10.5.3 as follows. We take a Schwartz function y such that W vanishes in a
neighborhood of the origin with Y(§) = 1 whenever 1/2 < || < 2 and we let
Woi (x) = 2%y (27K x). We make the observation that if 1 —58 <¢|&| < 1— & and
2k=1 <t <2k then 1/2 < 2k|&| < 2, since § < 1/10. This implies that (2K&) = 1
on the support of the function & — m® (¢|£]). Hence

SO(f) = S2 (wye % f)

whenever 28-1 <7 < 2K and Lemma 10.5.4 (in conjunction with Exercise 10.5.2)

yields
s ,dt dx 5 dx
S o 1P NP T (< Cuaald) [ s FOP 5

Summing over k € Z we obtain
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16 N7-e) = Cnata®)| (T 1ye s /1 )

keZ L3 (e

A randomization argument relates the weighted L?> norm of the square function to
the L? norm of a linear expression involving the Rademacher functions as in

(S, e 1)

keZ

= T dt,
L2<\X\°‘ /‘ke%k Wt 1) e

where r; denotes a renumbering of the Rademacher functions (Appendix C.1) in-
dexed by the entire set of integers. For each 7 € [0, 1] the operator

zrk (Wor * f)

keZ

is associated with a multiplier that satisfies Mihlin’s condition (5.2.10) uniformly in
t. It follows that M; is a singular integral operator bounded on all the L? spaces for
1 < p < o, and in view of Corollary 9.4.7, it is also bounded on Lz(w) whenever
w € Ay. Since the weight |x|~% is in A, whenever —n < a < n, it follows that M, is
bounded on L?(|x|~%) with a bound independent of ¢ > 0. We deduce that

162z IG° D2 -y < G ()21l 4

We now recall estimate (10.5.11) to obtain
Hsf(f)HLZ(‘x‘—a) < C/(n,Ot) (671A 1/ZHfHL2 (Jx]=%) *

Taking § = 27%73, recalling the value of Ay(8) from Lemma 10.5.4, and inserting
this estimate in (10.5.8), we deduce Proposition 10.5.3. We note that the condition
o < 1+ 2A is needed to make the series in (10.5.8) converge when 1 < o < n.

10.5.3 Estimates for Radial Multipliers

It remains to prove Lemma 10.5.4. Since all subsequent estimates concern linear
operators on weighted L? spaces, in the sequel we will be working with functions in
the Schwartz class, unless it is otherwise specified.

We reduce estimate (10.5.12) to an estimate for a single ¢ with the bound
Ay (6)/8, which is worse than Ay (8). The reduction to a single ¢ is achieved via
duality. Estimate (10.5.12) says that the operator f — {S®(f)}i<;<> is bounded
from L2(R", |x|~%dx) to L*(L*(*'),|x|~%dx). The dual statement of this fact is that
the operator

2 dr
lahaza— [ 80(s)
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maps L?(L*(“"), |x|*dx) to L*(R", |x|%dx). Here we use the fact that the operators S;

are self-transpose and self-adjoint, since they have real and radial multipliers. Thus
estimate (10.5.12) is equivalent to

/ / 56 gl
Rn

which by Plancherel’s theorem is also equivalent to

/” @%(/12m5(t|-|)§z(-)it>(§) dE < CpoAa(d //}92 2dt g

Here B4 |
Dy ) ()2 2
Aww=| [17 7 o]

o 2 2dt | g
|x| dx < CyoAdl )/R/l a0 [ [W%ax, (105.149)

where D, (f)(x) = f(x+y) — f(x) is the difference operator encountered in Section

6.3 and D’y‘ =Dyo---0Dy (k times). The operator 2B obeys the identity (see Exercise
6.3.9)

|9P @) = <ol B) [ 1) P .

Using the definition of 2%/ we write

25 ([nternao )] = [,

If the inner integrand on the right is nonzero, expressing Dly<+1 asin (6.3.2) and using

2
[ o weaaen@ Y| Al

the support properties of m®, we obtain that 1 — 58 < t|E +sn| < 1 — & for some
s €4{0,1,...,[0r/2] 4 1}; thus for each such s, 7 belongs to an interval of length
48|E +sn|71 <461(1-58)"". Since r <2 and § < 1/10, it follows that ¢ lies in a
set of measure at most 2([cr/2] 4+ 2)0. The Cauchy—Schwarz inequality then yields

25 ([neu-va0 )@

2
s, ]
R" J1

In view of the preceding reduction, we deduce that (10.5.14) is a consequence of

2dt dn
tnjrre”

D (1] & () (€)

2
| md(e]- &) () ‘ﬁ’m‘fladé
<anA(x /n/ |@ 2dt de

which can also be written as
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2

t

592 2t D&i()(6)

n

This estimate is a consequence of

/ zdé < Cn,aAa(S)/

cq¢ O
for all # € [1,2]. A simple dilation argument reduces (10.5.15) to the single estimate

A

which is equivalent to
2 Cro A 1) 2
[ 1530 @ a4 [ g e ax
R” Co 0 R"

and also equivalent to

e

by duality. We have now reduced estimate (10.5.12) to (10.5.17).

We denote by K 8 (x) the kernel of the operator 55, i.e., the inverse Fourier trans-
form of the multiplier m® (|€|). Certainly K? is a radial kernel on R”, and it is con-
venient to decompose it radially as

[02

2%(@) ()7 dE  (105.15)

2% (m®(t] - )& () (&)

2% (m® (- &) (&) dé<c”:‘A°‘ /\@ &)[Pde, (105.16)

) dx (10.5.17)

e[

ST (f) ()]

2 d.x <Cn7aAa(6)/

x| = ¢cq O

5 28 . N pd
K° =K§+ Y K¢,
=1

where K¢ (x) = K° (x)¢(6x) and K? (x) = K® (x) (¢(27/6x) — ¢(2' 7/ 6x)), for some

radial smooth function ¢ supported in the ball B(0,2) and equal to one on B(0, 1).
To prove estimate (10.5.17) we make use of the subsequent lemmas.

Lemma 10.5.5. For all M > 2n there is a constant Cyy = Cy(n, @) such that for all
j=0,1,2,... we have

sup |K5(§)| <Ccy2M (10.5.18)
EcR? !

and also e
K3(E)] < G2 UHIM (10.5.19)

whenever | |E| — 1| > 2k and k > 4. Also
K (&) < Cu2~ M sM (1 + &)™ (10.5.20)

whenever |E| < 1/8 or |E] > 15/8.
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Lemma 10.5.6. Let 0 < o < n. Then there is a constant C(n, ) such that for all
Schwartz functions f and all € > 0 we have

/ \F(E)Pae SC(n,a)sa”Aa(s)/ |f(x)[? x| %dx (10.5.21)
€| -1]<e R

and also for M > 2n there is a constant Cy(n, @) such that

1
(1+1EN

Assuming Lemmas 10.5.5 and 10.5.6 we prove estimate (10.5.17) as follows.
Using Plancherel’s theorem we write

IF(E) dé SCM(n,a)/ |£(x) % |x|%dx. (10.5.22)
R” R”

KD <) (0Pdx = [ K2E)PIFE)PdE <1+114111,

Rl‘l
where
= K3 () PIF(E) e,
[N
llogy 1567 1]+1 N
= K¢ 2 7(EVd ’
—4 /2"6<H5‘ 1‘<2k+15| j(€)| |f(€)| 5

5 2
= dg .
/m s KT P
Using (10.5.20) and (10.5.22) we obtain that
1< G2 MM [ 1002 .
RV!

In view of (10.5.19) and (10.5.21) we have
[logy 6 1]+1
< S Clna)(218)% 14,281 5)2 Mok / (0 x| %dx
k=4
< Gl )2 6% 146(8) [ £ 1x%dx.
Rl'l
Finally, (10.5.18) and (10.5.21) yield
I < Cly(n, )2 M 891 4,(5) / ()2 x| %l
Rl'l

Summing the estimates for 7, I1, and I1] we deduce

1D« )P < Cun, 002 M6% 44 (8) [ 1700
R” R
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By duality, this estimate can be written as

dx
Al

Given a Schwartz function f, we write fo = fx0,, where Qo is a cube centered at
the origin of side length C2//§ for some C to be chosen. Then for x € Qy we have
|x] < C+/n2’/8, hence

LIS NWP &% < Cun,a)2 M5 44(8) [ 17@Pax.  (10523)

. " (n oa—1 o x
g & < SO (BN g ¢

[

— O (n, )it Aa(d) / AR P (10524)
0 Qo |x|oc

Now write R"\ Qp as a mesh of cubes Q;, indexed by i € Z\ {0}, of side lengths
2/2/§ and centers cg,. Since Kf is supported in a ball of radius 2/ /8§, if f; is

supported in Q;, then f; * KJ‘.S is supported in the cube 24/nQ;. If the constant C is
large enough, say C > 1000n, then for x € Q; and ¥’ € 2,/n Q; we have

il = g = ¥

which says that the moduli of x and x” are comparable in the following inequality:

dx' dx
/zx/nQ‘|(Kf*ﬁ)(x’)|2| o S C2” /M/ i) 2 e (10.5.25)
Thus (10.5.25) is a consequence of
L A& pPaY <cu2 M [ [fiwPar, (10.5.26)
2\/nQ,’ Qi

which is certainly satisfied, as seen by applying Plancherel’s theorem and using
(10.5.18). Since for 6 < 1/10 we have A¢(8)/6 > 1, it follows that

dx A dx
[ O R@P < G2 al / A (10.5.27)

whenever f; is supported in Q;. We now pick M = 2n and we recall that oc < n. We
have now proved that

o, £ 2 dx 1 —jn AOC(S) ) 2 dx
Jo JF =A@ G < a5 |17

for functions f; supported in Q;.
Given a general f in the Schwartz class, write

=Y where  fi= fxo,-

i€Z
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Then

HKJ('S*fHZ(\xra) < 2||KJ§*fOHZ(\xra)+2H§6K}S*ﬁui2(\xra)

2 2
= 2||K;§*fOHLz(\xra)+2Cn§6HKf*ﬁHL2(\xra)
L

Ao (8)

< C”’(n,a)zijn s [HfoHiz(xa)+§6HfiHiz(xa)}

nAa(8
_ C///(n,a)2_jn oc5( ) Hf”]zﬁ(\x\*a)a

where we used the bounded overlap of the family {K; * f;};o in the second dis-
played inequality (cf. Exercise 10.4.4). Taking square roots and summing over
j=0,1,2,..., we deduce (10.5.17).

We now address the proof of Lemma 10.5.5, which was left open.

Proof. For the purposes of this proof we set y/(x) = ¢(x) — ¢(2x). Then the inverse
Fourier transform of the function x — (277 8x) is & + 2/1§ ="y (2/E /§). Convolv-
ing the latter with the function & — m®(|&|), we obtain Kf(&) We may therefore
write for j > 1,

o~

K3(E) = [ mP(E =27 8n)i(nyan, (10.5.28)

while for j = 0 an analogous formula holds with ¢ in place of y. Since |m5| <
1, (10.5.18) follows easily when j = 0. For j > 1 we expand the function & —
m®(|& —27/8n]) in a Taylor series and we make use of the fact that i has vanishing
moments of all orders to obtain

K@< [ 3 Marmd (Dl s wm)ldn
"yl=m ¥
p=m

< cns 82 [ M fpnlan.

This proves (10.5.18).
We turn now to the proof of (10.5.19). Suppose that ||| — 1| > 2% and k > 4.
Then for |&| < 1, recalling that m® is supported in [1 — 58,1 — §], we write

2778m| > [E—2778n| — |€] > (1-58) — (1-2"8) > 215,
since k > 4. For |£| > 1 we have
2778n| > |&| - |E—2778n| > (1+2%8) — (1—§) > 2%5.

In either case we conclude that |1| > 2%+/=! and using (10.5.28) we deduce

KIOI< [ ()ldn < G2 U

[n|>2k+i-1



10.5 Almost Everywhere Convergence of Bochner-Riesz Means 417

The proof of (10.5.20) is similar. Since |§ —2778n| > 158 > 1/2,if || < 1/8,
it follows that [27/6n| > 1/4. Likewise, if |&| > 15/8, then [277/6n| > || — 1 >
|E|/4. These estimates imply

iy 1 1
2798mI 2 (1 +IE) = [nl 22/ o (14 &)

in the support of the integral in (10.5.28). It follows that
SIGIEY . [m)]dn < G2 MEM(1 4 ¢]) M
! In|=2/3(1+(¢))/
whenever |£| < 1/8 or || > 15/8. O
We finish with the proof of Lemma 10.5.6, which had been left open.

Proof. We reduce estimate (10.5.21) by duality to

5 2 dé n o—1 X 2 X
[JEOIP h, < Clnae aate) [ | lePa

for functions g supported in the annulus ||x| — 1| < €. Using that (|]&]7*)(x) =
Cnox| %" (cf. Theorem 2.4.6), we write

dg

N2
[JEOP e,

e~ 1
= [ BORE) g a8
= o @) e, ax

= [ @ o,
R’ Al

~ Cna
- g(x)gly), T, dxdy
/H}’\*I\SS/\‘\X\fl\gg |x — y|r—e
2
S B(l’l,a) ||g||L2’

where g(x) = g(—x) and

Cn,o
B(n,o0) = sup / o dy.
x|—1|<e /| b1 —1]<e |y —x["~¢

The last inequality is proved by interpolating between the L' — L! and L™ — L~
estimates with bound B(n, o) for the linear operator

L)) = [ g0, "o dy.

n |X — y|n—OC
It remains to establish that

B(n,a) < C(n,a)e* 'Agle).
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Applying a rotation and a change of variables, matters reduce to proving that

sup / e gy < C(n, 0)e Aa(e),
| x|—1]<e | |

[y—Ixler|~1]<e ¥

where e; = (1,0,...,0). This, in turn, is a consequence of

/b —e|—1]<2¢ |)’|” « Yo dy < Cln0)e Ale), (10.5.29)
1

since ||y —ej|x|| — 1] < € and ||x| — 1] < € imply ||y —e;| — 1| < 2¢&. In proving
(10.5.29), it suffices to assume that € < 1/100; otherwise, the left-hand side of
(10.5.29) is bounded from above by a constant, and the right-hand side of (10.5.29)
is bounded from below by another constant. The region of integration in (10.5.29)
is a ring centered at e; and width 4. We estimate the integral in (10.5.29) by the
sum of the integrals of the function ¢, ¢|y|* ™" over the sets

SO:{yeRn: |y|§£7 ||y—€1|—1|§28},
Se={yeR": te<y[<({+1)e, [ly—e|—1]<2e},
Se={yeR": =1, [y—el-1]<2e},

where { =1,..., [;] + 1. The volume of each S, is comparable to
e[(L+1)e) " —(Le)" ] meme" 2.

Consequently,

" d € pn-l Oy
/ Y < wn—l/ dr=" : e,
e SOty e

whereas
2/e enpn— 2 2/e

Z/S|y|na—naz noc— aZgZoc'

Finally, the volume of S.. is about &; hence

' dy 7
| g <151 < Clae

Combining these estimates, we obtain
2/e

Cn.o 1
" ody <G [8 +e% s},
/\y—ew—usze [yfr-e &= 282 “

and it is an easy matter to check that the expression inside the square brackets is at
most a constant multiple of ¥~ A4 (¢).

We now turn attention to (10.5.22). Switching the roles of f and f, we rewrite
(10.5.22) as
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WP o) [ (BTG
dx < Cy(n,o —A)4 d
/Rn (14 M “* = mma) | 1(=4)4 ()" dE
— Cyma) [ 1(-2) ¢ (1) (0)Pdx,

n

recalling the Laplacian introduced in (6.1.1). This estimate can also be restated in
terms of the Riesz potential operator I, /, = (—A)~%/* as follows:

/ [ 2(8) (x)?

(14 )M dewa(n,a)/Rn g(x)[* dx. (10.5.30)

To show this, we use Holder’s inequality with exponents ¢/2 and n/a, where g > 2
satisfies

Then we have

Lo /2(8) () dx a
o e 4= (e bep) Vo

< Cl’w(n,a)HgH;(R")

in view of Theorem 6.1.3 and since M > n and o < n. This finishes the proof of the
lemma. g

Exercises

10.5.1. Let 0 < r < p <eoand n(1— 1) < <n. Show that L”(R") is contained in
L' (R") 4 L"(R",|x|7B).

[Hint.' Write f = f1 + f», where f] = f%m>1 and fp, = f}ﬂf\gl }

10.5.2. (a) With the notation of Lemma 10.5.4, use dilations to show that the esti-

mate ) & d d
S ) t X / 7 ax
<
o s Py < [ R 4
implies
2a dt dx dx
0 2 2
<
/R”/a |SI (f)(x)| t |.X|a —CO /R" |f(x)| |X|a

for any @ > 0 and f in the Schwartz class.
(b) Using dilations also show that (10.5.16) implies (10.5.15).

10.5.3. Let /& be a Schwartz function on R”. Prove that

1

/ h(x)dx_>2|s"—1|/ h(6)d6
& Jlnj-1<e g
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as € — 0. Use Lemma 10.5.6 to show that for 1 < o < n we have

L F@)de <clne [ 170" ax.
St R

n

10.5.4. Let w € A>. Assume that the ball multiplier operator BY(f) = (fxB(()J))V
satisfies

| Bl dx < o [ 1) i)

for all f € L*(w). Prove the same estimate for () = supycz [BY, (f)|.

[Hint: Argue as in the proof of Theorem 5.3.1. Pick a smooth function with
compact support @ equal to one on B(0,1) and vanishing in B(0,2) and define

P(&) = B(&) — D(28). Then xp(0.1) (P(E) — P(28)) = Ap(0.1) — P(28); hence

B) < supl@yx fl+ (T 1B ()~ Pywon = )

keZ

< CoM(f)+ (X 1By (f < #0P)°

keZ
and show that each term is bounded on L?(w).]

10.5.5. Show that the Bochner—Riesz operator B* does not map L”(R") to L"*(R")
when A = ”51 — ;’, and 2 < p < . Derive the same conclusion for B?.

[Hint: Suppose the contrary. Then by duality it would follow that B* maps L”*! (R")
to LP(R") when I <p <2and A = — "#1. To contradict this statement test the
operator on a Schwartz function whose Fourier transform is equal to 1 on the unit
ball and argue as in Proposition 10.2.3.}

HISTORICAL NOTES

The geometric construction in Section 10.1 is based on ideas of Besicovitch, who used a similar
construction to answer the following question posed in 1917 by the Japanese mathematician S.
Kakeya: What is the smallest possible area of the trace of ink left on a piece of paper by an
ink-covered needle of unit length when the positions of its two ends are reversed? This problem
puzzled mathematicians for several decades until Besicovitch [22] showed that for any € > 0 there
is a way to move the needle so that the total area of the blot of ink left on the paper is smaller than
€. Fefferman [125] borrowed ideas from the construction of Besicovitch to provide the negative
answer to the multiplier problem to the ball for p # 2 (Theorem 10.1.5). Prior to Fefferman’s
work, the fact that the characteristic function of the unit ball is not a multiplier on L”(R") for
| L - ; | > 21n was pointed out by Herz [163], who also showed that this limitation is not necessary
when this operator is restricted to radial L functions. The crucial Lemma 10.1.4 in Fefferman’s
proof is due to Y. Meyer.

The study of Bochner—Riesz means originated in the article of Bochner [27], who obtained
their L? boundedness for A > ";1. Stein [287] improved this result to A > ”;1 | 11) - é\ using
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interpolation for analytic families of operators. Theorem 10.2.4 was first proved by Carleson and
Sjolin [58]. A second proof of this theorem was given by Fefferman [127]. A third proof was
given by Hormander [167]. The proof of Theorem 10.2.4 given in the text is due Cérdoba [90].
This proof elaborated the use of the Kakeya maximal function in the study of spherical summation
multipliers, which was implicitly pioneered in Fefferman [127]. The boundedness of the Kakeya
maximal function %y on L?(R?) with norm C(logN)? was first obtained by Cérdoba [89]. The
sharp estimate Clog N was later obtained by Stromberg [296]. The proof of Theorem 10.3.5 is
taken from this article of Stromberg. Another proof of the boundedness of the Kakeya maximal
function without dilations on L2 (Rz) was obtained by Miiller [240]. Barrionuevo [17] showed that
for any subset X of S! with N elements the maximal operator My maps L*>(R?) to itself with

norm CN21°eM) ™" for some absolute constant C. Note that this bound is O(N¥) for any € > 0.
Katz [183] improved this bound to Clog N for some absolute constant C; see also Katz [184]. The
latter is a sharp bound, as indicated in Proposition 10.3.4. Katz [182] also showed that the maximal
operator MMk associated with a set of unit vectors pointing along a Cantor set K of directions is
unbounded on L?(R?). If X is an infinite set of vectors in S' pointing in lacunary directions, then
Mis was studied by Stromberg [295], Cérdoba and Fefferman [93], and Nagel, Stein, and Wainger
[244]. The last authors obtained its L” boundedness for all 1 < p < e. Theorem 10.2.7 was first
proved by Carleson [56]. For a short account on extensions of this theorem, the reader may consult
the historical notes at the end of Chapter 5.

The idea of restriction theorems for the Fourier transform originated in the work of E. M. Stein
around 1967. Stein’s original restriction result was published in the article of Fefferman [123],
which was the first to point out connections between restriction theorems and boundedness of the
Bochner—Riesz means. The full restriction theorem for the circle (Theorem 10.4.7 for p < ‘3‘) is due
to Fefferman and Stein and was published in the aforementioned article of Fefferman [123]. See
also the related article of Zygmund [340]. The present proof of Theorem 10.4.7 is based in that of
Coérdoba [91]. This proof was further elaborated by Tomas [314], who pointed out the logarithmic
blowup when p = g for the corresponding restriction problem for annuli. The result in Example
10.4.4 is also due to Fefferman and Stein and was initially proved using arguments from spherical

harmonics. The simple proof presented here was observed by A. W. Knapp. The restriction property
in Theorem 10.4.5 for p < /! is due to Tomas [313], while the case p = )
[291]. Theorem 10.4.6 was first proved by Fefferman [123] for the smaller range of A > ”;1 using

the restriction property R, (S"~!) for p < 3:":’_1 . The fact that the R,,_,> (S"~!) restriction property

is due to Stein

(for p < 2) implies the boundedness of the Bochner—Riesz operator B* on L”(R") is contained in
the work of Fefferman [123]. A simpler proof of this fact, obtained later by E. M. Stein, appeared in
the subsequent article of Fefferman [127]. This proof is given in Theorem 10.4.6, incorporating the
Tomas—Stein restriction property R,_>(S"~!) for p < 2(”"1'3” . It should be noted that the case n =3
of this theorem was first obtained in unpublished work of Sjélin. For a short exposition and history
of this material consult the book of Davis and Chang [106]. Much of the material in Sections 10.2,
10.3, and 10.4 is based on the notes of Vargas [322].

There is an extensive literature on restriction theorems for submanifolds of R". It is noteworthy
to mention (in chronological order) the results of Strichartz [294], Prestini [267], Greenleaf [155],
Christ [62], Drury [112], Barcel6 [15], [16], Drury and Marshall [114], [115], Beckner, Carbery,
Semmes, and Soria [18], Drury and Guo [113], De Carli and Iosevich [107], [108], Sj6lin and Soria
[284], Oberlin [250], Wolff [337], and Tao [306].

The boundedness of the Bochner—Riesz operators on the range excluded by Proposition 10.2.3
implies that the restriction property R), .4 (8" is valid when (11 = Zﬂ 1}, and 1 <p < nzfl , as
shown by Tao [305]; in this article a hierarchy of conjectures in harmonic analysis and interrela-
tions among them is discussed. In particular, the aforementioned restriction property would imply
estimate (10.3.33) for the Kakeya maximal operator .#y on R”, which would in turn imply that
Besicovitch sets have Minkowski dimension n. (A Besicovitch set is defined as a subset of R” that
contains a unit line segment in every direction.) Katz, Laba, and Tao [185] have obtained good
estimates on the Minkowski dimension of such sets in R3.
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A general sieve argument obtained by Cérdoba [89] reduces the boundedness of the Kakeya
maximal operator J#y to the one without dilations .. For applications to the Bochner—Riesz
multiplier problem, only the latter is needed. Carbery, Herndndez, and Soria [51] have proved
estimate (10.3.31) for radial functions in all dimensions. Igari [175] proved estimate (10.3.32) for
products of one-variable functions of each coordinate. The norm estimates in Corollary 10.3.7
can be reversed, as shown by Keich [187] for p > 2. The corresponding estimate for 1 < p < 2

in the same corollary can be improved to N 12’71. Coérdoba [90] proved the partial case p <2 of
Theorem 10.3.10 on R”. This range was extended by Drury [111] to p < :f{ using estimates
for the x-ray transform. Theorem 10.3.10 (i.e., the further extension to p < ”;’1 ) is due to Christ,
Duoandikoetxea, and Rubio de Francia [68], and its original proof also used estimates for the x-ray
transform; the proof of Theorem 10.3.10 given in the text is derived from that in Bourgain [29].
This article brought a breakthrough in many of the previous topics. In particular, Bourgain [29]
showed that the Kakeya maximal operator %y maps L?(R") to itself with bound CcN 1€ for
all € > 0 and some p, > ”;1 . He also showed that the range of p’s in Theorem 10.4.5 is not sharp,

(n+1)
n+3

. . P —1 . .
10.4.6 is not sharp, since there exist indices A,, < 2('; +1) for which the Bochner—Riesz operators are

since there exist indices p = p(n) > 2 for which property R,,_,,(S"~!) holds, and that Theorem

bounded on L”(R") in the optimal range of p’s when A > A,,. Improvements on these indices were
subsequently obtained by Bourgain [30], [31]. Some of Bourgain’s results in R? were re-proved
by Schlag [279] using different geometric methods. Wolff [335] showed that the Kakeya maximal
operator .#y maps L”(R") to itself with bound C;N P 1€ for any € > 0 whenever p < ”*2'2. In
higher dimensions, this range of p’s was later extended by Bourgain [32] to p < (14-¢)7 for some
dimension-free positive constant €. When n = 3, further improvements on the restriction and the
Kakeya conjectures were obtained by Tao, Vargas, and Vega [308]. For further historical advances
in the subject the reader is referred to the survey articles of Wolff [336] and Katz and Tao [186].
Regarding the almost everywhere convergence of the Bochner—Riesz means, Carbery [50] has
shown that the maximal operator B*(f) = supg.q |Bx(f)] is bounded on L”(R?) when A > 0 and
2<p< 1:‘2 4 » obtaining the convergence Bﬁ (f) — £ almost everywhere for f € L”(R?). Forn > 3,

2<p< nilzfm ,and A > 2(’;;11 the same result was obtained by Christ [63]. Theorem 10.5.2 is due
to Carbery, Rubio de Francia, and Vega [52]. Theorem 10.5.1 is contained in Tao [304]. Tao [307]
also obtained boundedness for the maximal Bochner—Riesz operators B} on L”(R?) whenever

1 < p < 2 for an open range of pairs (L,l) that lie below the line A = ;(11) - ;)
On the critical line A = ; — ”;l , boundedness into weak L? for the Bochner—Riesz operators

is possible in the range 1 < p < nzfl . Christ [65], [64] first obtained such results for 1 < p < 23’:31)

in all dimensions. The point p = 2(:Ll) was later included by Tao [303]. In two dimensions, weak
boundedness for the full range of indices was shown by Seeger [280]; in all dimensions the same
conclusion was obtained by Colzani, Travaglini, and Vignati [87] for radial functions. Tao [304]
has obtained a general argument that yields weak endpoint bounds for B} whenever strong type

bounds are known above the critical line.



Chapter 11

Time-Frequency Analysis and the
Carleson-Hunt Theorem

In this chapter we discuss in detail the proof of the almost everywhere convergence
of the partial Fourier integrals of L? functions on the line. The proof of this theo-
rem is based on techniques involving both spatial and frequency decompositions.
These techniques are referred to as time—frequency analysis. The underlying goal is
to decompose a given function at any scale as a sum of pieces perfectly localized
in frequency and well localized in space. The action of an operator on each piece
is carefully studied and the interaction between different parts of this action are an-
alyzed. Ideas from combinatorics are employed to organize the different pieces of
the decomposition.

11.1 Almost Everywhere Convergence of Fourier Integrals

In this section we study the proof of one of the most celebrated theorems in Fourier
analysis, Carleson’s theorem on the almost everywhere convergence of Fourier se-
ries of square integrable functions on the circle. The same result is also valid for
functions f on the line if the partial sums of the Fourier series are replaced by the
(partial) Fourier integrals
F(§)emeds.
JIgI<N
The equivalence of these assertions follows from the transference methods discussed
in Chapter 3.
For square-integrable functions f on the line, define the Carleson operator

% (f)(x) = sup | (f%[fN,N])v ‘ = sup
N>0 N>0

/‘éKNf(aj)eZ"“')“g dE |. (11.1.1)

We note that the operators (fx[mb])v are well defined when —ee < a < b < oo for f
in L?(R), and thus so is €’(f). We have the following result concerning %

L. Grafakos, Modern Fourier Analysis, DOI: 10.1007/978-0-387-09434-2 11, 423
(© Springer Science+Business Media, LLC 2009
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Theorem 11.1.1. There is a constant C > 0 such that for all square-integrable func-
tions f on the line the following estimate is valid:

1€ 2w <l 2

It follows that for all f in L*(R) we have

im [ F(E)eFEdE = f(x) (11.1.2)

N=e JIE|<N

for almost all x € R.

Proof. Because of the simple identity
~ . N . -N .
[, J@ewcas= [ foemcaz - [ feenia,
<N —oo —oo

it suffices to obtain L?> — L** bounds for the one-sided maximal operators

Al = sop| [ Feresac|,
e = s [ feenag|.

Once these bounds are obtained, we can use the simple fact that (11.1.2) holds for
Schwartz functions and Theorem 2.1.14 to obtain (11.1.2) for all square-integrable

functions f on the line. Note that 6> (f) = %1 (f), where f(x) = f(—x) is the usual
reflection operator. Therefore, it suffices to obtain bounds only for %) . Just as is the
case with €, the operators %, and %> are well defined on L?(R).

For a > 0 and y € R we define the translation operator 7, the modulation operator
M?, and the dilation operator D“ as follows:

() = flx—y),
D(f)x) = a2 fla ),
() = F(x)e2™,

These operators are isometries on L?(R).
We break down the proof of Theorem 11.1.1 into several steps.

11.1.1 Preliminaries

We denote rectangles of area 1 in the (x,&) plane by s, £, u, etc. All rectangles
considered in the sequel have sides parallel to the axes. We think of x as the time
coordinate and of & as the frequency coordinate. For this reason we refer to the (x, &)
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coordinate plane as the time—frequency plane. The projection of a rectangle s on the
time axis is denoted by I;, while its projection on the frequency axis is denoted by
@s. Thus a rectangle s is just s = I; X wy. Rectangles with sides parallel to the axes
and area equal to one are called tiles.

The center of an interval I is denoted by c(I). Also for a > 0, al denotes an
interval with the same center as I whose length is a|l|. Given a tile s, we denote by
s(1) its bottom half and by s(2) its upper half defined by

S(l) =I; X (a)s N (—OO,C(COS)), S(2) =1y x (me [C(w‘?)’_'_oo)) ’

These sets are called semitiles. The projections of these sets on the frequency axes
are denoted by @) and @), respectively.

s(2)

Fig. 11.1 The lower and the
. s(1)
upper parts of a tile s.

A dyadic interval is an interval of the form [m2*, (m+ 1)2*), where k and m are
integers. We denote by D the set of all rectangles I x @ with I, @ dyadic intervals
and |I| || = 1. Such rectangles are called dyadic tiles. We denote by D the set of all
dyadic tiles.

We fix a Schwartz function ¢ such that @ is real, nonnegative, and supported in
the interval [—1/10,1/10]. For each tile s, we introduce a function @; as follows:

os(x) = |IS|_%§0<X _|IC|(IS))e2”iC(a’.c(1))x' (11.1.3)

This function is localized in frequency near c(a)sm). Using the previous notation,
we have
(Ps — MC(wY(I))TC(IY)D‘IY‘ ((p) .

Observe that

- wy TN _ .
<ﬁs(€)=|ws|‘%<5(éj fé)"‘“)))ez”’(‘(“*v“ﬂ Elells) (11.1.4)

from which it follows that @; is supported in é @y(1)- Also observe that the functions
@; have the same L?(R) norm.
Recall the complex inner product notation for f,g € L*(R):

(flg) :/Rf(X)g(X)dx. (11.1.5)

Given a nonzero real number £, we introduce an operator
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Ae(f) = 2 Xog E)(f10s) @5 (11.1.6)

seD

initially defined for f in the Schwartz class. We show in the next subsection that
the series in (11.1.6) converges absolutely for f in the Schwartz class and thus A¢
is well defined on this class. Moreover, we show in Lemma 11.1.2 that Ag admits
an extension that is L? bounded, and therefore it can thought of as well defined on
L*(R).

For every integer m, let us denote by D,, the set of all tiles s € D such that
|Is] = 2™. We call these dyadic tiles of scale m. Then

Ag(f) = 2 AE(f),

meZ

where

AL() = X Xow &) (fles) s, (11.1.7)

seDy,

and observe that for each scale m, the second sum above ranges over all dyadic rect-
angles of a fixed scale whose tops contain the line perpendicular to the frequency
axis at height £. The operators A’g‘ are discretized versions of the multiplier operator
[ (fx(,m@)v. Indeed, the Fourier transform of A%”( f) is supported in the fre-

quency projection of the lower part s(1) of the dyadic tiles s that appear in (11.1.7).
But the sum in (11.1.7) is taken over all dyadic tiles s whose frequency projection
of the upper part s(2) contains . So the Fourier transform of A’g”( f) is supported

in (—eo,&]. On the other hand, summing over all s in (11.1.7) yields essentially the
identity operator; cf. Exercise 11.1.9. Therefore, A% can be viewed as the “part”
of the identity operator whose frequency multiplier consists of the function y(_.. ¢
instead of the function 1. As m becomes larger, we obtain a better and better approx-
imation to this multiplier. This heuristic explanation motivates the introduction and
study of the operators A’é” and Ag.

Lemma 11.1.2. For any fixed &, the operators A’g” are bounded on LZ(R) uniformly

in m and &; moreover, the operator Ag is L? bounded uniformly in E.

Proof. We make a few observations about the operators A%'. First recall that the
adjoint of an operator T is uniquely defined by the identity

(T(f)lg)={(fIT*(g))

for all f and g. Observe that Ag’ are self-adjoint operators, meaning that (A’g)* = Ag’.
Moreover, we claim that if m # n?/, then

Aty = g yag =o.

Indeed, given f and g we have
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(AL YAL(F)]g) = (AL(HIAY () (11.1.8)
= ZD D (Flos)(gloe) (0] 0v) Xoyn (§)Xayy (§)-
€D s'ED,

Suppose that (@s | @) Xo, . (§) Xo, () is nonzero. Then (@s| @y ) is also nonzero,
which implies that @y(;) and @y(y) intersect. Also, the function Yo, (&) Xw, o &)
is nonzero; hence ;) and @y ;) must intersect. Thus the dyadic intervals s and
@y are not disjoint, and one must contain the other. If @, were properly contained
in @y, then it would follow that a; is contained in @y1) or in @y (7). But then either
Wg(1) N Wy (1) OF Wy(2) N Oy (2) would have to be empty, which does not happen, as
observed. It follows that if (@] @y ) Koy (&)xo, o (€) is nonzero, then @; = @y,
which is impossible if m # m’. Thus the expression in (11.1.8) has to be zero.
We first discuss the boundedness of each operator Ag’. We have

A2D)7 = 2 X (Flod(F1ov) (o]0 2oy (€)X (E)

s€Dy, s'eDy,

= Z Z <f| (ps><f | (Ps’><§0s | (Ps’>lws(2> (é)st/(z) (5)

s€Dy, S/EDm
Wy =05

Y Y e rae (el o)l

SEDy S'EDm
(,05/ =Wy

<G X 1) Ko (©) (11.1.9)

seD,,

IN

where we used an earlier observation about s and s, the Cauchy—Schwarz inequality,
and the fact that

. ~10
(ps (ps/ S C l + dlSt (ISJIS/) S C] ,
R "

s'€Dyy, s'€Dy,
Wy =0y Wy =Ws

which follows from the result in Appendix K.1. To estimate (11.1.9), we use that

—-10
[(fle)] < Cz/le(y)lllsl5<1+|Y—|Z|(1s)l) dy

_onth ey Ry
= GI /le(y)|<1+ 1| ) |I|
C4|Is|;M(f)(Z)v

IN

for all z € I, in view of Theorem 2.1.10. Since the preceding estimate holds for all
z € I, it follows that
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1(flos))? < (Cs)zllslz'}gI{M(f)(z)2 < (C3)? IVM(f)(x)zdx. (11.1.10)

Next we observe that the rectangles s € D, with the property that £ € y(2) are all
disjoint. This implies that the corresponding time intervals I are also disjoint. Thus,
summing (11.1.10) over all s € D,,, with & € Oy(2), We obtain that

1103 2o (8) < T o (6) [ MUF) (0P d

SE€EDy SEDy
< (@) [ ()P,

which establishes the required claim using the boundedness of the Hardy-Littlewood
maximal operator M on L*(R).
Finally, we discuss the boundedness of Az = ZmeZA%". For every fixed m € Z,

m

the dyadic tiles that appear in the sum defining A £ (f) have the form
s=[k2", (k+1)2") x [27" (£ 4+1)27™),

where (€4 )27 < & < ((+1)27™. Thus ¢ = [2"&], and since @; is supported in
the lower part of the dyadic tile s, we may replace f by f;,, where

I = FXg-mame) 2-m(2me 4. 1))

As already observed, we have <A'5"( f) |A’g’ (f)) = 0 whenever m # m'. Conse-
quently,

IS a2 = X 1Azl

meZ meZ

= 3 Az Umllz:

meZ

<G 3 |lfnllz2

meZ

=€ Y, |[Fullz2
meZ

< Gl

since the supports of f,; are disjoint for different values of m € Z. O

11.1.2 Discretization of the Carleson Operator

We let h € Z(R), &€ € R\ {0}, and for each m € Z, y,n € R, and A € [0,1] we
introduce the operators
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BY 5 (h Zwa HE+m) (DY M) |9 )MTD (gy).

It is not hard to see that for all x € R and A € [0, 1] we have
BY oy a D) =BY s (W) =BY s, (D():

in other words, the function (y,n) — BY 0a (h)(x) is periodic in R? with period

(2m=* 2-"+4) See Exercise 11.1.1.
Using Exercise 11.1.2, we obtain that for |m| large (with respect to &) we have

> Xog @ HE+M) (DY OM ()| @) MDY (9)(x)
seDy,
Sompa  (FFY— (L)
< Gumin) . g0 246 oo (1)
) _ +y—k2M
< Gmin2"227) ¥ o (T )|

keZ
< Cpmin(2™/2,27m/2)

since the last sum is seen easily to converge to some quantity that remains bounded
in x, y, 11, and A. It follows that for & € .7 (R) we have

supsup sup sup |BY. ., (h)(x)| < Cmin(2"/%,27"/%). (11.1.11)
psupsup sup |Bf

.1, 7L
xeR yeR neR 0<A<1

Using Exercise 11.1.3 and the periodicity of the functions B%"y _— (h), we conclude

that the averages
1 L K pl . e
B
4KL/—L/_K/0 £y (h) dAdydn

converge pointwise to some Hg”(h) as K,L — oo. Estimate (11.1.11) implies the
uniform convergence for the series , Bg’y A (h) and therefore
meZ >

lim M DA o D' M (h)dA dydn (11.1.12)
4KL 5

K*}oo
K—»oo4KL/ / / ZB‘?W ) dhdydn

”%ZIIS% 4KL /*L/fK/() £y (h) dAdydn
>, 1 (h)

meZ
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We now make a few observations about the operator I1: defined on .#’(R) in terms
of the expression in (11.1.12), that is:

= Y 12w

meZ

First we observe that in view of Lemma 11.1.2 and Fatou’s lemma, we have that
II; is bounded on L? uniformly in &. Next we observe that I1I; commutes with all
translations 7¢ for z € R. To see this, we use the fact that 72M 1 = ¢~ 2FMpf—N 72
to obtain

> Ko 27HE ) (DY M T () o) TM DY (@)
seDy,

Y dog @ HEEM) (BT TDY  (9)) TM 11D (@)

seDy,

= 3 Ko @ HETM)(BIM YD (9)) MY D ().

seDy,

Recall that 77211 g'rz(h) is equal to the limit of the averages of the preceding ex-
pressions over all (y,n,A4) € [-K,K] x [-L,L] x [0,1]. But in view of the previous
identity, this is equal to the limit of the averages of the expressions

> Ao @HEFM) DY MU B) o) YD () (11113)
seDy,

over all (y,n,A) € [-K+2z,K+z] x [-L,L] x [0,1]. Since (11.1.13) is periodic
in (y',n), it follows that its average over the set [—K +z,K +z] x [-L,L] x [0,1] is
equal to its average over the set [—K, K| x [—L, L] x [0, 1]. Taking limits as K, L — oo,
we obtain the identity 7 *IT'7? (h) = I (k). Summing over all m € Z, it follows
that T_ZH;; Tz(h) = Hg (h)

A similar argument using averages over shifted rectangles of the form [—K, K] x
[-L+ 6,L+ 0] yields the identity

M1z oM® =TI, (11.1.14)

for all £,0 € R. The details are left to the reader. Next, we claim that the opera-
tor M _’SH,SM’g commutes with dilations D**, a € R. First we observe that for all
integers k we have

Ag(h)=D* Ay s D¥ (h), (11.1.15)

which is simply saying that A¢ is well behaved under change of scale. This identity
is left as an exercise to the reader. Identity (11.1.15) may not hold for noninteger
k, and this is exactly why we have averaged over all dilations 21, 0<A<1,in
(11.1.12).

Let us denote by [a] the integer part of a real number a. Using the identities
DPM" = M"/°DP and DP1% = 122DP, we obtain
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—a - Ay a
D> ‘MDY Ag,, DY P METN D? (11.1.16)
21

:M_za(g_,'_n)T_z—ayDz—(aJrl) D2a+l Tz—ayMza(g_H])

Aé+n
2),
a 7 -2 —la+A a+A A a
=M E Y p2 p2 ey p2 T Rt )
oA/ plata]
MM Y D2 Ay DY 1 M M
2
/ / - A / /
=M MO (MDD Ay DY MM )MOME, (11.1.17)
2

where we set y =279, ' =21, A’ =a+A —[a+A],and 6 = (2 —1)&. The
average of (11.1.16) over all (y,n,4) in [—K,K] x [—-L,L] x [0, 1] converges to the
operator szaM"gHgM‘gDza as K,L — oo. But this limit is equal to the limit of
the averages of the expression in (11.1.17) over all (y/,n’,A’) in [-279K,279K] x
[—29L,29L] x [0, 1], which is

MM O oMo M-
Using the identity (11.1.14), we obtain that
D* ‘MMM D* = M SII: M5,

saying that the operator M -¢ e ¢ commutes with dilations.

Next we observe that if / is supported in [0,0), then M"gl'I,SM‘5 (h) =0. This is
a consequence of the fact that the inner products

(D MM ()] gu) = (M2 (1) | M0 ()

vanish, since the Fourier transform of t—*M ™" prt @s is supported in the set
(—e0,2%c(wy1)) — M + %g |s]), which is disjoint from the interval (&, +o0) when-
ever 2‘}”(5 +1) € Wy). Finally, we observe that Il is a positive semidefinite op-

erator, that is, it satisfies
<H5(h)|h>20. (11.1.18)

This follows easily from the fact that the inner productin (11.1.18) is equal to

(5D oM ()| @)} dAdydn. (11.1.19
KHW4KL/ / /g‘ﬂw J(D* &M ()| )] ydn. (11.1.19)
This identity also implies that IT; is not the zero operator; indeed, notice that

> Ko (DY PMT ()| 00)]* = (R] B, 5 ()

s€Dg



432 11 Time-Frequency Analysis and the Carleson—Hunt Theorem

is periodic with period (2=*,2%) in (y,n), and consequently the limit in (11.1.19)
is at least as big as

24 oA
// /Zxco (55 (D MM ()| ) [*ddydn

seDy

(cf. Exercise 11.1.3). Since we can always find a Schwartz function % and a dyadic
tile s such that <D21 ©M" (h)| @y) is not zero for (y,1,4) near (0,0,0), it follows
that the expression in (11.1.19) is strictly positive for some function 4. The same
is valid for the inner product in (11.1.18); hence the operators and M _’gﬂ,g ME are
nonzero for every &.

Let us summarize what we have already proved: The operator M "51'1‘;§M‘5 is
nonzero, is bounded on L2 (R), commutes with translations and dilations, and van-
ishes when applied to functions whose Fourier transform is supported in the positive
semiaxis [0, o). In view of Exercise 4.1.11, it follows that for some constant cg # 0
we have

M=E M () (x) = c: / ()™ an
which identifies Iz with the convolution operator whose multiplier is the function
CeX(—w &) Using the identity (11.1.14), we obtain
Ceto = C¢

for all £ and 6, saying that c¢ does not depend on &. We have therefore proved that
for all Schwartz functions 4 the following identity is valid:

O (h) =c (hy—we))” (11.1.20)
for some fixed nonzero constant c. This completely identifies the operator I1¢. By
density it follows that

1
W zu%mé(m (11.1.21)
>

G(f) =

forall f € Uj<p<wl?(R).

11.1.3 Linearization of a Maximal Dyadic Sum

Our goal is to show that there exists a constant C > 0 such that for all f € L*(R) we
have

90 14 Dl 2y = 2w (11.1.22)

Once (11.1.22) is established, averaging yields the same conclusion for the operator
f = supg.g [Tz (f)], establishing the required bound for 4. Let us describe this
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averaging argument. Identity (11.1.12) gives

) 1 L oK pl
() = fim o [ [ [ Geynalriahdyan,

K—so0
L—oo

where N N
Geyna(f) =M "D "Ac DY M (f).

21

This, in turn, implies

1 L K gl
sup |IT: (£)| < liminf / / /su Ge . dhdydn. (11.1.23
5€£| e(f)] 0 ke ) §e§| gyma(f)ldAdydn.  ( )

We now take the L?* quasinorms of both sides, and we use Fatou’s lemma for weak
L? [Exercise 1.1.12(d)]. We thus reduce the estimate for the operator supe o [Tz (f)]
to the corresponding estimate for supgq|Ag(f)|. In this way we obtain the L>
boundedness of supe ..o [I1¢ ()| and therefore that of €7 in view of identity (11.1.21).

Matters are now reduced to the study of the discretized maximal operator
supgq |A¢ (f)| and, in particular, to the proof of estimate (11.1.22). It will be conve-
nient to study the maximal operator sups . |Ag (f)| via a linearization. Here is how
this is achieved. Given f € L?(R), we select a measurable real-valued function'
Ny : R — R" such that for all x € R we have

sup A< (1)) < 21w (1))

For a general measurable function N : R — R, we define a linear operator Dy by
setting for f € L*(R),

DN (f) (%) = Angy (1) (%) = X (Koo ON) ) (1 05) 5(x) (11.1.24)

seD

where the sum on the right converges in L?(R) [and also uniformly for f € .%(R)].
To prove (11.1.22), it suffices to show that there exists C > 0 such that for all
f € L*(R) and all measurable functions N : R — R* we have

PN 2 < Clf ],z (11.1.25)

Applying (11.1.25) to the measurable function Ny and using the estimate

sup A (f)] < 2D, (f)
£>0

yields the required conclusion for the maximal dyadic sum operator supg ..o |A¢ (f)]
and thus for % (f).

! The range & > 0 may be replaced by a finite subset of the positive rationals by density; in this
case Ny could be taken to be the point & at which the supremum is attained.
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To justify certain algebraic manipulations we fix a finite subset P of D and we
define
Dwp(f)(x) = 21,)(%@%2) oN)(x) (f] @s) @s(x) . (11.1.26)
se

To prove (11.1.25) it suffices to show that there exists a C > 0 such that for all
f € L*(R), all finite subsets P of D, and all real-valued measurable functions N on

the line we have
[Ox ()] 2 <CII S]] 2 (11.1.27)

The important point is that the constant C in (11.1.27) is independent of f, P, and
the measurable function V.

To prove (11.1.27) we use duality. In view of the results of Exercises 1.4.12(c)
and 1.4.7, it suffices to prove that for all measurable subsets E of the real line with
finite measure we have

T (Ko N5 xe )05 )] < CIER A2 (11.1.28)

seP

}/E’DMP(f) dx

We obtain estimate (11.1.28) as a consequence of

> [ (age oM@ 22 ) (| 95)| < CIEI2|f]] 2 (11.1.29)

scP

for all f in L%, all measurable functions N, all measurable sets E of finite measure,
and all finite subsets P of D. It is estimate (11.1.29) that we shall concentrate on.

11.1.4 Iterative Selection of Sets of Tiles with Large Mass and
Energy

We introduce a partial order in the set of dyadic tiles that provides a way to organize
them. In this section, dyadic tiles are simply called tiles.

Definition 11.1.3. We define a partial order < in the set of dyadic tiles D by setting
s<§ <= LCIl; and wy C .

If two tiles 5,5" € D intersect, then we must have either s < s’ or s’ < s. Indeed,
both the time and frequency components of the tiles must intersect; then either /; C
Iy or Iy C I;. In the first case we must have || > |@y |, thus @y C @, which gives
s < ', while in the second case a similar argument gives s’ < s. As a consequence of
this observation, if R is a finite set of tiles, then all maximal elements of Ry under
< must be disjoint sets.

Definition 11.1.4. A finite set of tiles P is called a tree if there exists a tile t € P such
that all s € P satisfy s < r. We call ¢ the top of P and we denote it by ¢ = top(P).
Observe that the top of a tree is unique.
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We denote trees by T, T/, T, T», and so on.

We observe that every finite set of tiles P can be written as a union of trees whose
tops are maximal elements. Indeed, consider all maximal elements of P under the
partial order <. Then every nonmaximal element s of P satisfies s < ¢ for some
maximal element ¢ € P, and thus it belongs to a tree with top ¢.

Tiles can be written as a union of two semitiles Iy X @) and Iy X @3). Since
tiles have area 1, semitiles have area 1/2.

Definition 11.1.5. A tree T is called a 1-tree if

Wrop(T)(1) < Os(1)

all s € T. A tree T' is called a 2-tree if for all s € T” we have

rop(T)(2) & Ds(2) -

We make a few observations about 1-trees and 2-trees. First note that every tree
can be written as the union of a 1-tree and a 2-tree, and the intersection of these
is exactly the top of the tree. Also, if T is a 1-tree, then the intervals @p(t)(2) and
@y(2) are disjoint for all s € T, and similarly for 2-trees. See Figure 11.2.

Fig. 11.2 A tree of seven
tiles including the darkened
top. The top together with the
three tiles on the right forms a
1-tree, while the top together
with the three tiles on the left
forms a 2-tree.

Definition 11.1.6. Let N : R — R™ be a measurable function, let s € D, and let E
be a set of finite measure. Then we introduce the quantity
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|L,| "' dx

M (E, .
s<u ENN~ay] ‘ ‘

We call . (E;{s}) the mass of E with respect to {s}. Given a subset P of D, we
define the mass of E with respect to P as

A (E;P) =sup 4 (E;{s}).

seP

We observe that the mass of E with respect to any set of tiles is at most

1 / e dx < 1
ElJ—ee (1+|x])'0 ~ |E|
Definition 11.1.7. Given a finite subset P of D and a function f in L?(R), we intro-
duce the quantity

1

£(f:P) = HfHLzsup(hop ZI(fI(ps)\),

seT

where the supremum is taken over all 2-trees T contained in P. We call &(f;P) the
energy of the function f with respect to the set of tiles P.

We now state three important lemmas which we prove in the remaining three
subsections, respectively.

Lemma 11.1.8. There exists a constant Cy such that for any measurable function
N : R — R, for any measurable subset E of the real line with finite measure, and
for any finite set of tiles P there is a subset P' of P such that

M (E;P\P) < i///(E;P)

and P’ is a union of trees T j satisfying

G

;Ilmpa,-)l < HEP) (11.1.30)

Lemma 11.1.9. There exists a constant Cy such that for any finite set of tiles P and
for all functions f in L*(R) there is a subset P of P such that

1
E(fP\P) < E(f;P)
and P" is a union of trees T satisfying
G
< .
Z'Itop(Tj)| = é()(f;P)z

J

(11.1.31)
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Lemma 11.1.10. (The basic estimate) There is a finite constant C3 such that for all
trees T, all functions f in L*(R), for any measurable function N : R — R™, and for
all measurable sets E we have

3 1190 e 1o 190
seT (11.1.32)

<G |It0p(T)|g(f;T)%(E;T)HfHLZ |E|

In the rest of this subsection, we conclude the proof of Theorem 11.1.1 assuming
Lemmas 11.1.8,11.1.9, and 11.1.10.

Given a finite set of tiles P, a measurable set E of finite measure, a measurable
function N : R — R™, and a function f in L?>(R), we find a very large integer n
such that

>
oy
=
A

< 2%,
M (E;P) < 2210,

We shall construct by decreasing induction a sequence of pairwise disjoint sets
Pn()a Pno—lv Pn0—27 Pn0—37 et

such that
no
U P,=P (11.1.33)

J=—o0

and such that the following properties are satisfied:
(1) &(f;P;) <2/ forall j < np;

(2) A (E;P;) <2%2 forall j < ng;

3) g(f;P\ (PnOU---UPj)) <2/ forall j < ng;
(4) A (E;P\ (Py,U---UP;)) < 2% forall j < n;

(5) P;is a union of trees T j; such that for all j < ng we have
2 |It0p(Tjk)| <G 272]‘ )
k

where Cy = C; + C; and C; and C, are the constants that appear in Lemmas
11.1.8 and 11.1.9, respectively.

Assume momentarily that we have constructed a sequence {P;};<,, with the
described properties. Then to obtain estimate (11.1.29) we use (1), (2), (5), the ob-
servation that the mass of any set of tiles is always bounded by |E|~!, and Lemma
11.1.10 to obtain
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X [ les) (Keav10 |(Ps>‘

seP

=»> \<f|<ps><xEmN 21195

J s€P;
SIS |<f|q)s><XEﬂN*'[wS<2)] 03|

Jj k SET j.
< C322|1t0p |£) 13 T/k) E;Tjk)Hf||L2|E|
< c322|1mp 127 min(|E| 71, 22742)| | £]| 2| E|
< 632002 2027 min(|E| !, 2%12)|| £ - |E]

J
< 8CoC3 Y min(27|E| "2, 20|E|2) || ]| 2 |E|?
J

< CIE]? ||f]| -

This proves estimate (11.1.29).

It remains to construct a sequence of disjoint sets P; satisfying properties (1)—(5).
The selection of these sets is based on decreasing induction. We start the induction
at j = ng by setting P,,, = 0. Then (1), (2), and (5) are clearly satisfied, while

E(fiP\Pyy) = &(f;P) < 2",
M(E;P\Py) = 4 (E;P) < 27
hence (3) and (4) are also satisfied for P,,.

Suppose we have selected pairwise disjoint sets Py, P, _1,...,P, for some n <
ng such that (1)—(5) are satisfied for all j € {ng,no—1,...,n}. We construct a set of
tiles P,,_; disjoint from all P; with j > n such that (1)—(5) are satisfied for j =n—1.

We define first an auxiliary set P),_ . If .4 (E;P\ (P, U---UP,)) < 22(n=1) get

P, =0.1f #(E;P\ (Py,U---UP,)) > 22" apply Lemma 11.1.8 to find a
subset P! | of P\ (P,,U---UP,) such that

2n
M (E;P\ (PyyU---UP,UP),_ 1))§i//l(E;P\(PnOU~-UPn))§24 = 22(n=1)

[by the induction hypothesis (4) with j =n] and P],_, is a union of trees T}, satisfying

3 lhopryy| < Crodt (FiP\ (P U+ UP,)) ' <C272070 0 (11.1.34)
k

Likewise, if & (f;P\ (Py,U---UP,)) < 2"~ ! set P/_| = 0; otherwise, apply Lemma
11.1.9 to find a subset P}, of P\ (P, U---UP,) such that

E(fiP\ (PyyU---UP,UP;_))) < ;éa‘(f;P\(Pnou---uP,,)) < ;2" =
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[by the induction hypothesis (3) with j = n] and P)/_, is a union of trees T} satisfy-
ing

3 lhopepy| < C2E(fiP\ (P U+ UP,)) 2 < 272070, (11.1.35)
k

Whether the sets P/, _, and P//_, are empty or not, we note that

A (E;P\ (P, U---UP, UP,_)) < 22D (11.1.36)
E(f;P\ (Py,U---UP,UP)_)) < 2" 1. (11.1.37)

We set P,_; =P/ JP/_,, and we verify properties (1)—(5) for j =n— 1. Since

n—1°

P, is contained in P\ (P,, U--- UP,) we have
E(fiPuo1) <E(fiP\ (PyU---UP,) <2" = =D+

where the last inequality is a consequence of the induction hypothesis (3) for j = n;
thus (1) holds with j =n — 1. Likewise,

M(E;Py_1) < M(E;P\ (PyyU---UP,) < 221 _ 92(n—1)+2

in view of the induction hypothesis (4) for j = n; thus (2) holds with j =n — 1.

To prove (3) with j = n— 1 notice that P\ (P,,U---UP,UP,_;) is contained
in P\ (P,,U---UP,UP”_,), and the latter has energy at most 2"~! by (11.1.37).
To prove (4) with j = n— 1 note that P\ (P,, U---UP,UP,_;) is contained in
P\ (P,,U---UP,UP. ) and the latter has mass at most 22"~ by (11.1.36).
Finally, adding (11.1.34) and (11.1.35) yields (5) for j =n — 1 with Cy = C| + C>.

Pick j € Z with 0 < 2%/ < minsep .# (E;{s}). Then .4 (E;P\ (P, U---UP;)) =
0, and since the only set of tiles with zero mass is the empty set, we conclude that
(11.1.33) holds. It also follows that there exists an n; such that for all n < n;, P, = 0.
The construction of the P;’s is now complete.

11.1.5 Proof of the Mass Lemma 11.1.8

Proof. Given a finite set of tiles P, we set u = .# (E;P) to be the mass of P. We
define
P'={seP: #(E:{s}) > u}

and we observe that . (E;P\P') < . We now show that P’ is a union of trees
whose tops satisfy (11.1.30).

It follows from the definition of mass that for each s € P’, there is a tile u(s) € D
such that u(s) > s and
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1 |Iu(s)|71 dx u
|E| / ( \xfc(lum)\)lo > 4 (11.1.38)
] ‘Iu(s)‘

ENN—L[a,
Let U = {u(s) : s € P'}. Also, let Unax be the subset of U containing all maximal
elements of U under the partial order of tiles <. Likewise define P}, as the set of
all maximal elements in P’. Tiles in P’ can be groupedin trees T; = {s € P': s <1;}
with tops #; € Py,,. Observe that if 7; < u and 1 < u for some u € Unay, then o
and a, intersect, and since ¢; and ¢ are dlSJOlnt sets, it follows that I, and 1,, are
disjoint subsets of [,,. Consequently, we have

ler,l— Y Xl Yl

u€Umax J: 1j<u u€Upax
Therefore, estimate (11.1.30) will be a consequence of

S o nl<cu! (11.1.39)

u€Unax

for some constant C. For u € Uy, we rewrite (11.1.38) as

1 & |Iu|7ldx m o »
|E| k—ZO / (1 + ‘X*C(Iu)‘)l() > 8 kgoz
ENN~Hau]N (2k[u\2k—11u) ||

with the interpretation that 2-11, = 0. 1t follows that for all u in Up,y there exists an
integer k > 0 such that

/ dx _E NN, N2,

(1+ |x ‘;‘(‘Iu)‘)]() - (‘51)10(1_,_2k—2)10

IE| ‘g |27 <
EAN~= o )N (240,251, )

We therefore conclude that

Umax = U Uk )
k=0

where
Up = {u € Unax 2 L] <8-5"27% =Y E| Y ENN [w,) N 25L,|} .
The required estimate (11.1.39) will be a consequence of the sequence of estimates

S <c2 ¥t k>0. (11.1.40)

ucUy

We now fix a k > 0 and we concentrate on (11.1.40). Select an element vy € Uy
such that |1,,,| is the largest possible among elements of Uy. Then select an element
vi € U\ {vo} such that the enlarged rectangle (2*I,,) x w,, is disjoint from the
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enlarged rectangle (2¢1,)) x ®,, and |I,, | is the largest possible. Continue this pro-
cess by induction. At the jth step select an element of Uy \ {vo,...,v;_1} such that
the enlarged rectangle (2"Ivj) X @y; is disjoint from all the enlarged rectangles of
the previously selected tiles and the length |1, j.| is the largest possible. This process
will terminate after a finite number of steps. We denote by V, the set of all selected
tiles in Uy.

We make a few observations. Recall that all elements of U, are maximal rectan-
gles in U and therefore disjoint. For any u € Uy there exists a selected v € V; with
|1,] < |I,| such that the enlarged rectangles corresponding to u and v intersect. Let
us associate this u to the selected v. Observe that if u and u are associated with the
same selected v, they are disjoint, and since both @, and ®,, contain m,, the intervals
I, and I, must be disjoint. Thus, tiles u € Uy associated with a fixed v € V; have
disjoint 7,,’s and satisfy

L, C 2K,

Consequently,
Z |Iu| < |2k+21v|:2k+2|1v|-

ucUy
u associated with v

Putting these observations together, we obtain

> nl < Y > |4

ucUy veVy ucUy
u associated with v

< 2k+2 z |Iv|
veVy

< 2k+5510‘u—1 |E|—1 2—9k z |EﬁN_l[0)V] ﬁ2k1v|
veVy

< 32.510“71 28k

since the enlarged rectangles 2X1, x @, of the selected tiles v are disjoint and there-
fore so are the subsets ENN~![w,] N2*I, of E. This concludes the proof of estimate
(11.1.40) and therefore of Lemma 11.1.8. O

11.1.6 Proof of Energy Lemma 11.1.9

Proof. We work with a finite set of tiles P. For a 2-tree T', let us denote by

L S lteor)

|It0p(T/)| sET!

1
A(f;T) =
(T HfuLz{

the quantity associated with T’ appearing in the definition of the energy. Consider
the set of all 2-trees T’ contained in P that satisfy
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1
A(f;T) > 2ef(f;P) (11.1.41)

and among them select a 2-tree T with c(a)top(T/1 )) as small as possible. We let T;

be the set of s € P satisfying s < top(T}). Then T} is the largest tree in P whose top
is top(T} ). We now repeat this procedure with the set P\ T;. Among all 2-trees con-
tained in P\ T that satisfy (11.1.41) we pick a 2-tree T, with c(a)top(T/2>) as small

as possible. Then we let T, be the s € P\ T satisfying s < top(T}). Then T; is the
largest tree in P\ T; whose top is top(T}). We continue this procedure by induction
until there is no 2-tree left in P that satisfies (11.1.41). We have therefore constructed
a finite sequence of pairwise disjoint 2-trees T, T, T}, ..., T, , and a finite sequence
of pairwise disjoint trees Ty, T2, T3, ..., Ty, such that T, C T, top(T;) = top(T}),
and the T; satisfy (11.1.41). We now let

P// _ U Tj,
J
and observe that this selection of trees ensures that
1
E(FP\P") <, E(f:P).

It remains to prove (11.1.31). Using (11.1.41), we obtain that

1 1
4éo(f;P)22|Itop(Tj)| < Hsz z z |<f|(Pv>|2
J

: /
2 J SETj

» 2 X (flosy(fles)

=

L UIST (flede)

S et

Z 2 <(Ps|f>(Ps

< ! )
1112 14 seT’ Lz

1

(11.1.42)

and we use this estimate to obtain (11.1.31). We set U =J I T;. We shall prove that

1
11,2

Once this estimate is established, then (11.1.42) combined with (11.1.43) yields
(11.1.31). (All involved quantities are finite, since P is a finite set of tiles.)
We estimate the square of the left-hand side in (11.1.43) by

%U|<<pv|f><<pu|f><¢s|<pu>|+2S%U|<<pv|f><<pu|f><<pv|<pu>, (114

Os = oSy

2 <(Ps|f>(Ps} P

seU

< C(E(FPP Y lhopiry)]) (11.1.43)
J
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since (| @, ) = O unless @, contains @, or vice versa. We now estimate the quan-
tities ‘ <(ps |f> ‘ and ‘<(pu |f>‘ by the larger one and we use Exercise 11.1.4 to obtain
the following bound for the first term in (11.1.44):

Sledl” X [ovlon)]

seU uclU
1 e — () '
c / (1+ dx
2 ) "

Wy =05

< 31! o))

uelU u
W=
<" Y [{flo)
= (11.1.45)
="y ¥ [(flon)
J SET;.
SC//ZVIOP(T/')'|ItOP(Tj)|7l Z |<f|(Ps>‘2
J sET’
<C”Z|Imp<T R RV

where in the derivation of the second inequality we used the fact that for fixed s € U,
the intervals [, with @, = wy are pairwise disjoint.

Our next goal is to obtain a similar estimate for the second term in (11.1.44).
That is, we need to prove that

S Lo (flou){es| o) <CE(f;P) ||fHL22|1mp (11.1.46)

s,uelU
oGy

Then the required estimate (11.1.43) follows by combining (11.1.45) and (11.1.46).
To prove (11.1.46), we argue as follows:

> [(Flos) (o) (o] ou)|

o
=22 [fle)| X [(flow)(oslou)]
J seT’ ugU
a)S;twu

< 2|Itop(T AT ||fHL2{ )y ( )y }<f|‘p”><(PS|(P">|>2}2

seT”. uclU
! oo,

Pl Sty 2 (3 rloala) |
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where we used the Cauchy—Schwarz inequality and the fact that if wy ; w, and
<(px|(pu> # 0, then @5 C @,(). The proof of (11.1.46) will be complete if we
can show that the expression inside the curly brackets is at most a multiple of

E(f; P)2Hf||i2 |lop(r)|- Since any singleton {s} C P is a 2-tree, we have

&(fi{u}) =

U (e (e .
) =euR

1] (Vi PRRTAE

hence ]
[(Flow)| < ||F|| 210l 2 € (fP)

and it follows that

5[ 3 Kriaetodl] <ewwri [ 5 witlelod]

se€T’; uclU seT’, uclU
7 osCay ! oo,

Thus (11.1.46) will be proved if we can establish that

2
Z( > |1u|5\<<pv|<pu>\) < Clhop(r) |- (11.1.47)

seT, ucU
J wb'gwu(l)

We need the following crucial lemma.

Lemma 11.1.11. Let T}, T be as previously. Let s € T'; and u € T} Then if @; C
@,(1), we have I, Nlop(t;) = 0. Moreover, if u € T and v € T} are different tiles and

satisfy o5 C @, (1) and o5 C @,y for some fixed s € T, thenI,NI, = 0.

have different tops and therefore they cannot be the same tree; thus j # k.
Next we observe that the center of @, is contained in @y, which is contained
J

Proof. We observe that if s € T, u € T}, and @; C @,(1), then the 2-trees T’; and T},

in @,(1y. Therefore, the center of @y,(r) is contained in @, (1), and therefore it must
J
be smaller than the center of Orop(T,)» since T} is a 2-tree. This means that the 2-

tree T; was selected before T;(, that is, we must have j < k. If I, had a nonempty
intersection with Liop(r;) = top(T})> then since

1 1 1 2

= = = = :2|1Ll|7
|@opery| @] J@un] ol

|1top(T}) |

1, would have to be contained in fi,,(p). Since also @) € @5 © 0y, it follows
J J

that u < top(T’;); thus u would belong to the tree T [which is the largest tree with
top top(T;)], since this tree was selected first. But if u belonged to T, then it could
not belong to T}, which is disjoint from T;; hence we get a contradiction. We con-
clude that [, Nlop(r;) = 0.
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Next assume that u € T, v € T}, u # v, and that w; C (1) N @y(1) for some fixed
S T;-. Since the left halves of two dyadic intervals w, and w, intersect, three things
can happen: (a) @, C ®,(y), in which case 1, is disjoint from Itop(T;( y and thus from
I,; (b) w, C Oy (1) in which case I, is disjoint from Itop(T;) and thus from 7,; and
(¢) @, = ®,, in which case |I,| = |I,|, and thus I, and I, are either disjoint or they
coincide. Since u # v, it follows that I, and I, cannot coincide; thus I, N1, = 0. This
finishes the proof of the lemma. O

We now return to (11.1.47). In view of Lemma 11.1.11, different u € U that
appear in the interior sum in (11.1.47) have disjoint intervals I, and all of these are
contained in (Itop(T ))¢. Set t; = top(T};). Using Exercise 11.1.4, we obtain

(3 whiele)

seT} w.qléeag(l)
LN f I
<CZ ( Z <|I| / Pe—c(ls)[ 20
S‘ET/ ueclU ( + ‘ ‘ )
DS 0y(1)
|I;| =" dx 2
<CZ|I|< z / \x cIY 20
s€T ucl )
[ONS0) u(1)
| ~tdx  \?
<CQ Ik |</ et
seT’ ( + )
|I| ldx
<cz|1|/ L ety
S‘ET/ |Is| )

since [g(1+]x|)~2°dx < 1. Foreach scale k >0 the sets I, s € T, with [Is| = 2*"|I,j |
are pairwise disjoint and contained in /;; therefore, we have

L]~ dx = 2k dx
> 1] 0 <2 > sl f 20
= ()¢ (1 \x ‘c(‘lv)\) =6 |Itj| e, ( + |x ‘c(‘lv)\)
\15\:2*\1,.\
CE2 T [
k= 0|If/ seT/ I J (1) x “ 20 %
[s|=2~ "\If
<N ok _—1//
7Ck§‘)2 ;| @) ‘x_y‘ )20 dxdy
B to Kl |

<Y 2ty | 27 )
k=0
— C//|Itj | )
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in view of Exercise 11.1.5. This completes the proof of (11.1.47) and thus of Lemma
11.1.9. -

11.1.7 Proof of the Basic Estimate Lemma 11.1.10

Proof. In the proof of the required estimate we may assume that || f||,, = 1, for
we can always replace f by f/ H f H ;2- Throughout this subsection we fix a square-
integrable function with [? norm 1, a tree T contained in P, a measurable function
N: R — RT, and a measurable set E with finite measure.

Let 7' be the set of all dyadic intervals J such that 3J does not contain any I
with s € T. It is not hard to see that any point in R belongs to a setin _#'. Let ¢
be the set of all maximal (under inclusion) elements of #'. Then ¢ consists of
disjoint sets that cover R; thus it forms a partition of R. This partition of R is shown
in Figure 11.3 when the tree consists of two tiles.

J J
} } } } —— 1 } }

<«+—— dyadic —»<4—— dyadic —»4—— dyadic —>»

Fig. 11.3 A tree of two tiles and the partition _# of R corresponding to it. The intervals J and J/
are members of the partition ¢ .

For each s € T pick an & € C with |&| = 1 such that

‘<f|(PS><XEﬁN*1[wS(2)] | (PS>| = 8S<f|(pS><q)S|XEﬂN"[a)S<2)]>'

We can now write the left-hand side of (11.1.32) as

z8S<f|(pS><QOS|XEmN*1[an<2)]> < %8S<f|¢S>XEmN*1[@Y(2)]%

seT Ll(R)
- Jez;‘%‘ g&gdﬂ(PS>XEQN7][“’S<2>](PS L)
< X+,

where
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11.1.4
oy (11.1.48)

3 = H & f|(Ps>ZEmN Hayo)] 7s
‘Is‘<2"]‘

2 = 2 H & f|(Ps>?CEmN gy Ps

Vc\>2\f\

(11.1.49)

Ly

We start with X;. Observe that for every s € T, the singleton {s} is a 2-tree contained
in T and we therefore have the estimate

[(Flo)| < L12E(fT). (11.1.50)

Using this, we obtain

5< Y zéwmAEN UHNNM

, o
T "
<cY S &L 7
© Jes seT JNENN ! ay)] (l-l— . Cm)‘)zo
52} 1|
1
<cC T) |E|.# (E;T)|I| su
= JEZ/} 2 E(fs | | ( )| |x€5) (1+ ‘x,c(ls)‘)m
\IS\SZ\J\ ‘IY‘

log, 2|J] 1 1

< CEFT) [ELA(ET) .
Jezjf k:z_w gl‘ (1_’_(]191(.]13))5 (1+

dist (J,15) )5
IZs ‘:zk

2k

But note that all I; with s € T and |I5| = 2* are pairwise disjoint and contained in
Lop(t)- Therefore, 27*dist (J,15) > |Lop(r)| ™" dist (J,Jp(r)). and we have the esti-

mate s ) s
<1+dist(i,ly)) < (1+d15t(1,1mp<T))> .
2 |It0p(T)|

Moreover, the sum
1
Z dist (J,Is)\ 5
seT (1—|— 15t2<k7‘>)
‘IS‘=2k

(11.1.51)

is controlled by a finite constant, since for every nonnegative integer m there exist
at most two tiles s € T with |I;| = 2% such that I; are not contained in 3J and m2* <
dist (J,1;) < (m -+ 1)2*. Therefore, we obtain
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log, 2|J| 2k
3 < CE(fT)|E[4(E;T) Y, Y, dist (JJop (1)) 5
o (1+ o IOP(‘ ) )
/|
< CE(f;T)|E|# (E;T) Z dist (.1,
ey (11152
< CE M) ELA(ET) Y / e s 4
IS ‘Ilop(T)‘ )
< C|Itop(T)|g(f;T) |E|%(E’T)’

since _# forms a partition of R. We need to justify, however, the penultimate in-
equality in (11.1.52). Since J and /o,(1) are dyadic intervals, there are only two pos-
sibilities: (a) J Nligp(r) = 0@ and (b) J C i) [The third possibility fiy,r) C J is
excluded, since 3J does not contain /op(1).] In case (a) we have |J| < dist(J, Liop(T))>
since 3J does not contain ). In case (b) we have |J| < |fopcr)|- Thus in both
cases we have |J| < dist (J,/iop(t)) + [fiop(T)|- Consequently, for any x € J one has

. 1
|'x - C(Itop(T))| < |J| +dist (‘Ia Itop(T)) + 2 |Itop(T)|

] 3
< 2dist(/, Jop(m)) +  lhop(r)| -

Therefore, it follows that

[ s Bl
J (1+ ‘Xfc(llop(T)ﬂ)S - (5 ZdiSt(J!Itup(T)))S - (1 diSt(JvIl()p(T)>)5 ’

‘Itop(T) ‘ 2 ‘Itop(T)‘ ‘Itop(T)‘

In case (b) we have J C Ji,p(1), and therefore any point x in J lies in /iop(t); thus
|x — c(Lop(t))| < ;|Imp(T) |. We conclude that

/ dx < |7 _(2)5 |7
x—c(l 5 — dist (/op(T))\ 5
J(l-f—‘ ‘Il(tp(‘ )) (3/2) 3 (l—l— ‘1(1 tp(‘ )))
These observations justify the second-to-last inequality in (11.1.52) and complete
the required estimate for X;.

We now turn attention to X,. We may assume that for all J appearing in the sum
in (11.1.49), the set of s in T with 2|J| < || is nonempty. Thus, if J appears in the
sum in (11.1.49), we have 2|J| < |I,p(r)|, and it is easy to see that J is contained in
3liop(t)- [The intervals J in _# that are not contained in 3/;,,1) have size larger than
|It0p(T) |]

We let T be the 2-tree of all s in T such that @yp(1)(2) C @y (2), and we also let
T, =T\ T,. Then T, is a 1-tree minus its top. We set
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Fiu= Y &{f10) Xpan o)
seT
1>2l

Fu= 3 &U/10) 02w o)

se€T)
|75|>21J]

Clearly

22 3 Fullpg + 3 Pl =22+ 22,
Je 7 Je 7

and we need to estimate both sums. We start by estimating Fy;. If the tiles s and s’
that appear in the definition of Fj; have different scales, then the sets @) and 0y (o)

are disjoint and thus so are the sets E NN~ [ay5)] and ENN~"[wy 3)]. Let us set
Gy=Jn |J EnN o]
seT
|15[>21J]

Then Fj; is supported in the set Gy and we have

1l gy < Rl )Gl
= H z z & <f|§0s> Ps XEAN-[o,(2)] ‘L‘”J Gyl
k>log, 2|J| s€T )
Vx‘=2k
< sup H & (f10s) Ps Xprn-1 Gyl
k>log, 2|J| sezr', (F195) 9 2w o) =)
Vx‘=2k
Z 12 27k/2
< sup sup &(f:T)2 . |G|
k>log2|J] X6 s€T, (1+ |x ;515)\)10
\M:Zk
< CE(fiM)|Gy],

using (11.1.50) and the fact that all the I that appear in the sum are disjoint. We
now claim that for all J € _# we have

|Gj| < C|E|.#(E;T)|J]. (11.1.53)

Once (11.1.53) is established, summing over all the intervals J that appear in the
definition of F; and keeping in mind that all of these intervals are pairwise disjoint
and contained in 3/i,,(t), we obtain the desired estimate for 2.

To prove (11.1.53), we consider the unique dyadic interval J of length 2|J] that
contains J. Then by the maximality of _¢, 3J contains the time interval I;, of a
tile s; in T. We consider the following two cases: (a) If I, is either (J~— |J~|) uJ
or JU (JN—i— |J~|), we let uy = s7; in this case |I,,| = 2|J]. (This is the case for the
interval J in Figure 11.3.) Otherwise, we have case (b), in which Iy, is contained in
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one of the two dyadic intervals J — |J|, J+ |J]. (This is the case for the interval J' in
Figure 11.3.) Whichever of these two dyadic intervals contains Iy, is also contained
in fyop(1), Since it intersects it and has smaller length than it. In case (b) there exists
a tile uy € D with |I,| = |J] such that I, C I, C Loy and @p(r) € @, C ).
In both cases we have a tile u; satisfying s; < uy < top(T) with |e,,| being either
M or AL

Then for any s € T with |Ij| > 2|J| we have || < |y, |. But since both @, and
@y, contain @y,,1), they must intersect, and thus s C @,,. We conclude that any
s € T with |I5| > 2|J| must satisfy N~![e] € N~![@,,]. It follows that

G; CINENN[a,] (11.1.54)
and therefore we have
|E|.# (E;T) = sup sup ™! dx
’ se€T ueD EﬁNil[wu] (1+ ‘X_C(Iu)‘)lo
s<u ‘IL“

Ill 71

z /JﬂEﬁN’l[wu] |‘le(1"])‘ 10

s (1+ | )
> cll,| ' WNENN oy,
> C|1Ll_]|_1 |Gj|,

using (11.1.54) and the fact that for x € J we have |x —c(,)| < 4|J| = 2|L,,|. It
follows that

1 2
Gol < | |ELA(ET)IL,| = |El#(EsT)J],

and this is exactly (11.1.53), which we wanted to prove.

We now turn to the estimate for Xy = Y /c 7 ||F2 JH L) All the intervals @y(2)
with s € T, are nested, since T is a 2-tree. Therefore, for each x € J for which Fy;(x)
is nonzero, there exists a largest dyadic interval w,, and a smallest dyadic interval
oy, (for some uy,vy € ToN{s: |[| > 4|J|}) such that for s € ToN{s: || > 4|J|}
we have N(x) € @) if and only if @,, C &5 C @,,. Then we have

Pyx) = Y £S<f|(PS>((PY%EON*1[(0S(2)])(X)

se€T)
|15 >4/

XE(x) Z & <f| (Ps> @s(x) -
N T2
\wvx\S\i).c\S\wux\

Pick a Schwartz function y whose Fourier transform (z) is supported in |¢| <
1+ 4o and that is equal to 1 on |¢| < 1. We can easily check that for all z € R, if
v, | < o] < |y, . then
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-1

c(@uy) ‘w“)crl C(wvx(Z)) |wvx(2)|
<(Ps*{M D,l (v) _M D B ("’)})(z)Z(ps(z) (11.1.55)

o |2 o, (22

by a simple examination of the Fourier transforms. Basically, the Fourier transform
(in z) of the function inside the curly brackets is equal to

o~ (E—clon)\ o 5—C(wvx(2)))
"’( || ) "’( o0l )
which is equal to 1 on the support of @ for all s in T, that satisfy |@,, | < || < |w,,|
but vanishes on @, (7). Taking z = x in (11.1.55) yields

Fy(x) = Y &(flos) ou(x)xe(x)
S T2
\a»x\s\i)s\ﬁ\wux\

c(@uy) plowy | ! (0,,(2)) plon )
= [ 3 atrloge {0 .

SETZ ‘(qu ‘ 2 ‘va(Z) ‘7 2

Since all s that appear in the definition of F; satisfy || < (4|J])~!, it follows
that we have the estimate

Fy(0)] < 225(x) sup / |3 alfle)e@)] Sv(5)]dz

5>\wu \ ! seT,
< C sup 25 \ Y, &(flos)o(2)|dz. (11.1.56)
5>4| seTy

(The last inequality follows from Exercise 2.1.14.) Observe that the maximal func-
tion in (11.1.56) satisfies the property

)|dt.

sup su dt <2inf su /
X€5)6>4I‘)J‘ 26 /x 1) | X€J6>4I‘?]‘ 25 x—0

Using this property, we obtain

In < D [Pl < X (Pl |Gl
Je 7 Je 7
<C Z |E|.# (E;T)|J|sup sup 25/ | 2 & f|(PX>(ps )‘dz
Jes x€J §>4)J| x=6 seT,
JC3It0p( T)
< 2CIE.#(ET) Y / 25/ Y & (fl o) es(2)| dzdx
Je s 15>4\J\ ¥ yeT,
I3l ()
< CIELA(E:T) [M( T, &(flos)o)

)
seTz z (3hop(r))
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where M is the Hardy-Littlewood maximal operator. Using the Cauchy—Schwarz
inequality and the boundedness of M on L*(R), we obtain the following estimate:

> &(flo) o

s€Ty

1
2 < C|E|//[(E;T) |1top(T) | 2

2

Appealing to the result of Exercise 11.1.6(a), we deduce

2 ES<f| (Ps>(Ps

s€Ty

1
2\ 2 1
L <C( 2 [elf10)]?) < Clhopm | E(FT).
s€T)
The first estimate was also shown in (11.1.43); the same argument applies here, and
the presence of the &’s does not introduce any change. We conclude that
Zyp S CIE[A (E;T) | Lgp(r) | €(f:T),
which is what we needed to prove. This completes the proof of Lemma 11.1.10. O

The proof of the theorem is now complete. 0

Exercises

11.1.1. Show that for every f in the Schwartz class, x,& € R, and A € [0, 1], the
function (y,n) — BE (f)(x) is periodic in y with period 2”~* and periodic in 1

with period 27" *4,
11.1.2. Fix a function % in the Schwartz class, &,y, € R, s € D, and A € [0,1].
Suppose that 274 (€ +-1) € Oy(2)-
(a) Assume that m < 0 and that 27" > 40|&|. Show that for some C that does not
depend on y, 11, and A we have
|<DM oM (h) | (Ps>‘ — Kh |M—nT—yD2ﬂl ((p‘)>|
<c22 | .

y 40,12m JU( 40.12m )

[Hint: Use Plancherel’s theorem, noting that n > 2*c(wy(1)) + 427

(b) Using the trivial fact that |<D2/l ©M" (k)| ;)| < C||h||,2. conclude that when-
ever |m| is large with respect to &, we have

_ A . m
Roysy 2 HE+M)(DF PM(R) | 9)] < Cymin(1,27),
where C;, may depend on % but is independent of y, 17, and 1.

11.1.3. (a) Let g be a bounded periodic function on R with period k. Show that
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im L[ enrar— [ er)a
Jim /ﬁKgm - /0 g(t)dt

(b) Let g be a bounded periodic function on R" that is periodic with period
(Ki,...,K,;). Show that

Kn l K] Kn
lim / / / / g(t)dr
Ki,.. 7K11_'°°K1 Kl---Kn 0 0

11.1.4. Use the result in Appendix K.1 to obtain the size estimate

1
() 2
M I

(sl @u)| < Cu M

<1 |c(1s)—c(1”)|)

+
max (|1, [1])
for every M > 0. Conclude that if |1,| < |I|, then

1
AR |1S|—1dx

e —c()| _ [e(le) — (k)]

|1s] ||

[Hint: Use that
1

<
-2

forall x € Iu.}

11.1.5. Prove that there is a constant C > 0 such that for any interval J and any

b>0,
217112
//( ‘x )‘ 50 dxdy <Cb7|J|".
L+ 5)

[Hint: Translate J to the interval [—}|J|, }|J|] and change variables. The resulting
integral can be computed explicitly.]

11.1.6. Let ¢ be as in (11.1.3). Let T, be a 2-tree and f € L*(R).
(a) Show that there is a constant C such that for all sequences of complex scalars
{As}ser, we have

As Ag 2)
S <0 3 4

(b) Use duality to conclude that

> [Flegf <Al

s€Ty
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[Hint: To prove part (a) define %, = {s € T : |I;| = 2™}. Then for s € &, and
s’ € 4,,, the functions ¢ and @y are orthogonal to each other, and it suffices to
obtain the corresponding estimate when the summation is restricted to a given %,.
But for s in %, the intervals I are disjoint, and we may use the idea of the proof of
Lemma 11.1.2. Use that 3. ,—, | (@5 | @u)| < C for every fixed s.]

11.1.7. Fix A > 1. Let S be a finite collection of dyadic tiles such that for all sy, s
in S we have either @y, N@;, =0 or Al NAl, = 0. Let Ng be the counting function
of S, defined by

Ng = sup#{L;: s €Sandx € L;}.
xeR

(a) Show that for any M > 0 there exists a Cjy > 0 such that for all f € L*>(R) we

have
)y

seS

(b) Let ¢, be as in (11.1.3). Show that for any M > 0 there exists a Cy; > 0 such that
for all finite sequences of scalars {a; }scs we have

Z as Qs ’

2
seS L

dist(+, Iy)

1
2 (14
(£ "

P >
) )| = el

<Cu(1+AYNg) Y |y

seS

(c) Conclude that for any M > 0 there exists a Cyy > 0 such that for all f € L*(R)
we have s s
S f )| < Cu(1+AYNg)||£] 2

seS

[Hint: Use the idea of Lemma 11.1.2 to prove part (a) when Ng = 1. Suppose now
that Ng > 1. Call an element s € S h-maximal if the region in R? that is directly
horizontally above the tile s does not intersect any other tile s’ € S. Let S; be the set
of all h-maximal tiles in S. Then Ng, = 1; otherwise, some x € R would belong to
both I and Iy for s # s’ € S1, and thus the horizontal regions directly above s and
s" would have to intersect, contradicting the h-maximality of S;. Now define S; to
be the set of all A-maximal tiles in S\ S;. As before, we have Ns, = 1. Continue in
this way and write S as a union of at most Ng families of tiles S;, each of which
has the property N5, = 1. Apply the result to each S; and then sum over j. Part (b):
observe that whenever s1,s5, € S and 51 # s, we must have either (¢, ¢s,) =0 or
dist(ly,,1y,) > (A — 1)max(|y, |, |Ls,|), which implies

(1 dist(/s, 1)) )*M <

A (1 dist(ls,,I,) )Jf
max (|1 [, |s,)

max(|Ls, |, |1s5,])
Use this estimate to obtain

2

|ag) dist(x, I;)\~ %
> (e | )

1
seS |Is|2

C
| S el < X laP+ )
s€S seS A2 12
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by expanding the square on the left. The required estimate follows from the dual
statement to part (a). Part (c) follows from part (b) by duality. }

11.1.8. Let ¢, be as in (11.1.3) and let D,, be the set of all dyadic tiles s with
|I;| = 2™. Show that there is a constant C (independent of m) such that for square-
integrable sequences of scalars {a;}sep,, we have

Z as Qs ’ <C 2 |aS|2'

2
seD,, L s€Dy,

Conclude from this that

> [(ronl* <clflliz-

seD,,

11.1.9. Fix a Schwartz function ¢ whose Fourier transform is supported in the in-
terval [~ 3, 2] and that satisfies

~88
Y+ 5P =co
I€Z

for all real numbers 7. Define functions ¢y as follows. Fix an integer m and set
0u(x) =27 p(2 "k — k) "

whenever s = [k2", (k+1)2™) x [I27™,(I41)27™) is a tile in D. Prove that for all
Schwartz functions f we have

z <f|(PS>(Ps:Cof.

s€Dy,

Observe that m does not appear on the right of this identity.
[Hint: First prove that

Z (ps(x)(i)\s(y) =cp g2y

seDy,
using the Poisson summation formula.}

11.1.10. This is a continuous version of Exercise 11.1.9. Fix a Schwartz function ¢
on R” and define a continuous wave packet

Py (x) = @(x — y)e2™e,

Prove that for all f Schwartz functions on R”, the following identity is valid:

lolr= [ | ol o) dvac.

n

[Hint; Prove first that /R” /Rn Oy (x)@(z) dydé = H(pHizeZnix'z']
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11.2 Distributional Estimates for the Carleson Operator

In this section we derive estimates for the distribution function of the Carleson op-
erator acting on characteristic functions of measurable sets. These estimates imply,
in particular, that the Carleson operator is bounded on LP(R) for 1 < p < . To
achieve this we build on the time—frequency analysis approach developed in the
previous section. Working with characteristic functions of measurable sets of finite
measure is crucial in obtaining an improved energy estimate, which is the key to the
proof. Later in this section we obtain weighted estimates for the Carleson operator
% . These estimates are reminiscent of the corresponding estimates for the maximal
singular integrals we encountered in the previous chapter.

11.2.1 The Main Theorem and Preliminary Reductions

In the sequel we use the notation introduced in Section 11.1. The following is the
main result of this section.

Theorem 11.2.1. (a) There exist finite constants C,x > 0 such that for any measur-
able subset F of the reals with finite measure we have

; l—l—log(;‘)) when 0 < o < 1,
[{xeR: €(xr)(x) > a}| <C|F]| (11.2.1)

e K& when o0 > 1.

(b) For any 1 < p < oo there is a constant C, > 0 such that for all f in L?(R) we
have the estimate

Hcg(f)} LP(R) < Cpr| (11.2.2)

Proof. Assuming statement (a), we obtain

LP(R)”

1€ (xr)I2, =P/: {C(xr) > a}[AP " da < pCP|F|/O°°<p(a)ap—lda,

where @(a) = o1 (1+1log(er) ™) for o < 1 and @ (o) = e ¥* for o > 1. The last
integral is convergent, and consequently one obtains a restricted strong type (p, p)
estimate

HCK(XF)HLP R SC;7|F|'I7
(R)

for the Carleson operator. The required strong type (p, p) estimate follows by ap-
plying Theorem 1.4.19. Thus (a) implies (b).

It remains to prove (a). This follows from the corresponding estimate for 4} and
requires a considerable amount of work. The proof of (a) is based on a modification
of the proof of Theorem 11.1.1. Recall that in (11.1.21) we identified the one-sided
Carleson operator %] (f) with
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G0 =sup] [ T dn} sup |11 (7)1, (112.3)
N>0 |c| E>0
where ¢ # 0 and I1¢, & € Ris given by
(1) = fim 4KL/ / / Ge g (f)dAdydn. (11.2.4)
Also recall that Ge ;1 (f) is
Geyna(f) =M T D Ay D7 MO (), (11.2.5)
2

where Ag is defined in (11.1.6). Note that

oy o yrah

Gg»:,m)t(f)(x): Z <f|M Nt yD2 q)u>M 1 “Dz q)u(x)
seD
ieg’u(z)

= z <f|(PS>(Ps(x)a

SED,VJ]JL
Sewyy)

where D, , ; is the set of all rectangles of the form 2*@L—y)x 2 *®@w0,—n),
where u ranges over D. Here a ® I denotes the set {ax: x € I}. For such s, ¢ is
defined in (11.1.3). The rectangles in D, ,, 3 are formed by dilating the dyadic tiles
in D by the amount 2* in the time coordinate axis and by 2=* in the frequency
coordinate axis and then translating them by the amounts y and 7, respectively.

In view of identity (11.1.12), for a Schwartz function f we have

Jm 4KL// /‘eD (f10:) 9:(x)dA dydn.

éew

(e () (x)] =

Since both terms of this identity are well defined L?-bounded operators, (11.2.1)
is also valid for L? functions f. For such functions f, for a measurable function
N:R—R",yn eR,and A € [0,1] we define operators

Onyna(H) = 2 (f105) Koy oN) @5

5€Dy 12

and

O (f) K%4KL///SED (£19s) (Yo oN) @sdAdydn .
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For every square-integrable function f and x € R we pick, in a measurable way, a
positive real number & = Ny(x) such that

ZUEIHJ; (@] < 2[My, () (F) ()] < 2Dw, (F) (x) -

Then

¢ (f) < ISNf( - (11.2.6)

el
We work with functions f = yr, where F is a measurable set of finite measure; cer-
tainly such functions are square-integrable. We show the validity of statement (a) of
Theorem 11.2.1 for Dy, where N : R — R™ is measurable with bounds independent
of N. Then (11.2.6) implies the same statement for % .

We claim that the following estimate is valid for ® . There is a constant C’ such
that for any pair of measurable subsets (E,F) of the real line with nonzero finite
measure there is a subset E’ of E with |[E'| > %|E | such that for any measurable
function N : R — R we have

‘/ D) (x) dx

<2C min(|E|, |F)) <1+‘10g ] ) (11.2.7)

This is a fundamental estimate that implies (11.2.1). We derive this estimate from an
analogous estimate for the operators Dy ,, , ; by picking a set £ " that is independent
of y,n, and A.
We introduce a set
— ; |F|
QEfu—{Aer)>>8nnn(l‘ﬂ)}

It follows that |Qg | < } |E|, since the Hardy-Littlewood maximal operator is of
weak type (1, 1) with norm 2. We conclude that the set

E'=E\Qgr

satisfies |E’| > §|E| (Notice that in the case |F| > |E| the set Qg ¢ is empty.)
Let P be a finite subset of D, 5. The required inequality (11.2.7) will be a con-
sequence of the following two estimates:

/E , xF|<ps><wa<2> o N) g.dx| < C'min(|E], |F|) (112.8)

scP

/E’ xp|(ps>(xw_q(2)oN)(psdx <C'min(|E|,|F|) < —i—‘log ), (11.2.9)

seP
LZQE F

|F|
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where the constant C’ is independent of the sets E, F, of the measurable function N,
and of the finite subset P of D, ;, ; . Estimates (11.2.8) and (11.2.9) are proved in the
next three subsections.

In the rest of this subsection we show that (11.2.7) implies statement (a) of The-
orem 11.2.1. Given o > 0 we define sets

Eé‘ Z{RCDN(XF) > OC}, Eé = {Re@N(XF) < —OC},
Eg( = {ImZDN()(F) > OC}, Eg" = {Im@N(}(F) < —OC}.

We apply (11.2.7) to the pair (EL,F) forany j=1,2,3,4. We find a subset (E7,)’ of
E}, of at least half its measure so that (11.2.7) holds for this pair. Then we have

a . .
SlEdl <aEdy < | [, ovtar))as
(Eq)'

. El
< 2C’min(|E;§|,|F|)<1+‘log||;|| ) (11.2.10)
If |EL| < |F|, this estimate implies that
|EL| < |Flee 40®, (11.2.11)
while if |E},| > |F|, it implies that
F E}
o <4cC | .| <1+log| ""). (11.2.12)
EL| |F|

Case 1: o > 4C'. If |[E}| > |F|, setting t = |E}|/|F| > 1 and using the fact that
SUP; ;.. } (1+1logt) = 1, we obtain that (11.2.12) fails. In this case we must there-

fore have that |EZ,| < |F|. Applying (11.2.11) four times, we deduce
{Dn(xr) > 4a}| < de|Fle s ®. (11.2.13)

Case 2: o < 4C'. If |EL| > |F|, we use the elementary fact that if 7 > 1 satisfies
t(1+1logt)~' < B, thenr < 25(1 +1log ?8); to prove this fact one may use the in-
equalities 7 < 25 (1+1log+/f) and log v/t < logt —log(1 +log/t) <log 28 fors > 1.
Taking t = |EL|/|F| and B = 4C’ in (11.2.12) yields

|EL|  8C 8C’
< 1+1 . 11.2.14
F| — « +log o ( )

If |EL| < |F|, then we use (11.2.11), but we note that for some constant ¢’ > 1 we
have

_ 8C’ 8C’
ee 4}3’a§c‘/ (l+10g >
(04 o
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whenever oo < 4C'. Thus, when o < 4C’ we always have

32¢" 8C’
H{On(xr) > 40} < o |F| (1+log o ) (11.2.15)

Combining (11.2.13) and (11.2.15), we obtain estimate (11.2.7) for Dy. The

same estimate holds for 4} in view of (11.2.6). Since %;\(7) = € (f), where
f(x) = f(—x), the same estimate holds for %> and hence estimate (11.2.7) is valid
for €. O

11.2.2 The Proof of Estimate (11.2.8)

In proving (11.2.8), we may assume that |[F| < |E[; otherwise, the set Qg r is empty
and there is nothing to prove.

Let P be a finite subset of D, VA We denote by .7 (P) the grid that consists of all
the time projections I; of tiles s in P. For a fixed interval J in .# (P) we define

P(J)={seP: [,=J}

and a function u
1 x—c(J)|\
) = (142750

where M is a large integer to be chosen momentarily. We note that for each s € P(J)

we have | (x)| < Cp yy(x).
Foreachk=0,1,2,... we introduce families

Fi={Je IP): 29 C Qpr, 2T Z Qi ).

We begin by writing the left-hand side of (11.2.8) as

2/ 17194) 2oy (N(3) 94 (x)d

) seP(J

Jef
JCQEF

(11.2.16)
L S, (1516) oy (V)0

seP(J

k= OJGI(P
JETy

Using Exercise 9.2.8(b) we obtain the existence of a constant Cy < oo such that
foreach k =0,1,... and J € .%; we have



11.2 Distributional Estimates for the Carleson Operator 461
1,
(xesyu) < V12 infM (xr)

<2 ck inf M(zr)
< 0 XF (11.2.17)

<4ck)> |E|

since 2K/ meets the complement of Q .
For J € .%; we also have that E' N 2%J = 0 and hence

! -
[wavs [ wdy< o™, (112.18)
E' (2J)e
Next we note that for each J € .# (P) and x € R there is at most one s = s, € P(J)

such that N(x) € @y, (2). Using this observation along with (11.2.17) and (11.2.18),
we can therefore estimate the expression on the right in (11.2.16) as follows:

ZZ

<xF | 0s.) X o) (N (x)) @5, (x) dx

k=0Je.7 (P
JE/k
<CMZ > / xF s W)Wy (x)dx
k=0Je.7 (P)
JET
F
< Cy4 : |2C0 |J|2/1I/J dx
k= JETy
<4GC3, Z (Co27™* 3, (11.2.19)
k=0 JeFy

and we pick M > logCy/log?2. It remains to control

Y

JEL“?/(

for each nonnegative integer k. In doing this we let . be all elements of .%; that
are maximal under inclusion. Then we observe that if J € .%;" and J' € % satisfy
J' C J then

dist (J',J¢) =0,

otherwise 2J’ would be contained in J and thus
2kl C ki C Q.

Therefore, for any J in .%;" and any scale m there are at most two intervals J’ from
F contained in J with |J/| = 2™. Summing over all possible scales, we obtain a
bound of at most four times the length of J. We conclude that
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D M= X VIS Y AUI<4196 ],

JeTy JEFL T €T JeT}
Jcy

since elements of .7 are disjoint and contained in Q . Inserting this estimate in
(11.2.19), we obtain the required bound

o IF|

M| Q¢ r| < Cyy [F| = Cyy min(|E], |F|)

for the expression on the right in (11.2.16). This concludes the proof of (11.2.8).

11.2.3 The Proof of Estimate (11.2.9)

For fixed y,n,A we define a partial order in the set of tiles in D, ,, ; just as in

Definition 11.1.3. All properties of dyadic tiles obtained in the previous section also

hold for the tiles in D ;, 3. Throughout this section, P is a finite subset of D, 5.
To simplify notation, in the sequel we set

PE7F: {SEP: Isg.QEJ:}.

Setting N~![A] = {x: N(x) € A} for a set A C R, we note that (11.2.9) is a
consequence of

. E
D ‘<xp,q>s><xE/mN1[QY<2)],(pS>‘<Cm1n(|E|,|F|)(l+‘log:F: ) (11.2.20)
SEPE,F

The following lemma is the main ingredient of the proof and is proved in the next
section.

Lemma 11.2.2. There is a constant C such that for all measurable sets E and F of
finite measure we have

F
& (xr;PeF) §C|F|imin<IEI,1>. (11.2.21)
Assuming Lemma 11.2.2, we argue as follows to prove (11.2.9). Given the finite
set of tiles Pg r, we write it as the union

no
Per= J Py,

J=—o0

where the sets P; satisfy properties (1)—(5) of page 437.
Given the sequence of sets P;, we use properties (1), (2), (5) on page 437, the
observation that the mass is always bounded by |E|~!, and Lemmas 11.2.2 and
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11.1.10 to obtain the following bound for the expression on the left in (11.2.9):

> el o) [Kxeow 1o, @)
SEPE'F
=2 2 [(xrle)] ‘<XE’HN*'[QY<2)]7¢S>|
jEZSEPj
< 22 2 [xrlool|[(eav-11o,) 05|
JEZ k SETjk

1
<C3ZZ|Itop |éa f Tjk) ( /7Tjk) |E/||F|2

F|2
< G zzvtor) |m1n(2/Jrl C| | ,C|F|™ 2) min(|E’|~ ! 221”) |E||F|
JEZ k | |
<Gy Y 2 2 min (27, F|2 |E[Y, [F|"2) min(|E[ !, 2%) [E| |F|2
JEZL

. Fl |EI\ L .
<c52min(2J|E|é,mm(| || ')2>min((2J|E|i)—2,1)|E|%|F|%

2 E|"|F]
) Fl |EIN 2 )
§C62m1n<2’,min(| || |)2)min(221,1)|E|i|F|i
=) IE|"|F|

E
< ¢ min(|E|, |F|)(1 + ‘log IFI D .

The last estimate follows by a simple calculation considering the three cases 1 < 2/,

1 1
o IF] \E\)2< j< j . (\F\ \E\)Z
mm(‘E‘,‘F‘ <2/ <1,and 2’/ < min 7 IF|)

11.2.4 The Proof of Lemma 11.2.2

It remains to prove Lemma 11.2.2.
Fix a 2-tree T contained in Pg r and let t = top(T) denote its top. We show that

2
Z}(xF|¢s>}2<Cmin<|F|,1> (11.2.22)

L= |E|

for some constant C independent of F,E, and T. Then (11.2.21) follows from
(11.2.22) by taking the supremum over all 2-trees T contained in Pg .
We decompose the function yr as follows:

XF = XFr3L + XFn(3L)e -

We begin by observing that for s in P¢  we have
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CualLs|2 int M (xr)

|<XF0(3I,)"|¢S>‘ < (1 dist((3lt)cac(ls)))M
|Ls]

L (F] )<Ilsl)M
< 8Cp|ls|2 min 1 ,
<ttt min(71.1) (1

since I; meets the complement of Qf r for every s € Pr. Square this inequality and
sum over all s in T to obtain

CIFl \?
z|<xm<3,,)u|<ps>|2<C|1z|mm(' | 1) ,

seT |E| ’

using Exercise 11.2.1.

We now turn to the corresponding estimate for the function )rn3;,. At this point
it is convenient to distinguish the simple case |F| > |E| from the difficult case |F| <
|E|. In the first case the set Qg ¢ is empty and Exercise 11.1.6(b) yields

N [ | (Ps>|2 < CH%FmI,Hiz
seT

<Cli|
=C|L| min<|F|,l>2,
E|
since |F| > |E|.

We may therefore concentrate on the case |F| < |E|. In proving (11.2.21) we may
assume that there exists a point xy € I, such that

|F|
M(xr)(xo) <8
|E|
otherwise there is nothing to prove.

We write the set Qg p = {M(xr) >8 }g} } as a disjoint union of dyadic intervals

J} such that the dyadic parent J; of J; is not contained in Qg r and therefore

|F|

[FNJ)| <|FNJj| < 16|E|

1z

Now some of these dyadic intervals may have size larger than or equal to |I;|. Let J;

. N .
be such an interval. Then we split J; into “ A “ intervals J; , each of size exactly |I;|.

Since there is an xy € I; with

|F|

M(xr)(x0) <8 IE|
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if K is the smallest interval that contains x¢ and J| 2 o then

|F| / Fl . IK]
dx<8 | = |FnJ,, |<8! '),
) Jorr S = Ol <
We conclude that
F dist(l;,J} )
|FOJp ) < C:E|| 1A (1+ 0| o ) (11.2.23)
t

We now have a new collection of dyadic intervals {J; } contained in Qf r consisting
of all the previous J;, when |J)| < |I;| and the J; s when |J;| > |I;|. In view of the
construction we have

F
c :EI |Jk| when |Jk| < |1[|,
[FNJi| < (11.2.24)
F dist(Z;,J
() -

for all k. We now define the “bad functions”

—2mic x 1 Co_ ic y
bi(x) = (e 2mie(0) y sy, (x) — e el yp gy (y)dy)xfk@),

il S
which are supported in J;, have mean value zero, and satisfy

dist(Z,, i) )

Joul < 2¢1Fl15l (1+
n

We also set
g(x) = e 2™l y s (x Zbk

the “good function” of this Calderén—Zygmund-type decomposition. We have there-
fore decomposed the function yrns;, as follows:

X () = ()TN LY by ()T, (11.2.25)
3
We show that HgHLm C}E“ Indeed, for x in J;, we have

1
|Jk| Ji

—2mic(awy

g(x) = »y xrzn () dy,

which implies
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FnJ
| U |k| when |Ji| < |k,
|FN3LNJy k
gl < <
FnN3j,
| A ! hen [Ji| = [4],

and both of the preceding are at most a multiple of };‘ ; the latter is because there is

an xo € I, with M(xr)(xp) <8 7l Also, for x € (Ur )¢ = (Qg ) we have

E|
_ |F|
lg(x)] = xrrar (x) <M(xr)(x) <8 £

We conclude that ||g|,.. <C } E“ Moreover,

|F N3 NJg|

F
gl SZ/J et el < clF 3 <clFl
k k

|If|a
|E|

since the J are disjoint. It follows that

F|\2 (|F
Jells < (1) (Jn1) " lE =<l

Using Exercise 11.1.6, we have

3 [(ge2m @0 g)* < C|jg])7>.

seT

from which we obtain the required conclusion for the first function in the decompo-
sition (11.2.25).
Next we turn to the corresponding estimate for the second function,

3 by Pl
k

in the decomposition (11.2.25), which requires some further analysis. We have the
following two estimates for all s and k:

3
ic(en) (- Cu|FIE|™ il || ~>
amic(w)(") M k
|(bre lo)| < (1O (11.2.26)
|Ls]
Cu [FI[E|"|1y|2

o270 )| < | , (11.2.27)
}< 114 |(P >| (1+dISt‘(IﬁJS>)M

for all M > 0, where Cy; depends only on M.
To prove (11.2.26) we use the mean value theorem together with the fact that by
has vanishing integral to write for some &,
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‘<bk e2mc |(p‘>‘

‘ J, bk(y)ehic(w,)y(ps(y) dy‘
k

= | [ 5el) (@ gufy) — 2B g () |
k

Wl [ 1) [m oo (S I8l 2 o (2 i“”)\] dy
k

1|2
Cyll|~2
< |6l [l sup E
ges (14 \5 ¥ (‘ )\)M+1
3

IF| ( diSt(Jsz)) il 152
<
<Cy E| Vil (14 | (1 4 94Uk yars

Is|
3
< Cu[FIE]" Vel 1] 3
- dist (Ji. Is ’
(1 Sy

dist (Jy..I)
|1:

dist (Ji. Iy)

where we used the fact that 1 + |

we note that

<1+ . To prove estimate (11.2.27)
Cor |12 infM(by)
‘<bk 2mic( oy |(P?>| . s
= dist (Jy.,Is)
(14 T
and that

M) < MGze)+

M(XJk) )

and since g Qp p, we have inf;, M(xr) <8 } E}, while the second term in the sum

was observed earlier to be at most C } E“
Finally, we have the estimate

1
Cut |FIIE|™ [ 5] 2

dist (I ;
(1+ lﬂt‘(ls/‘(, ))M

‘<bk62nic(a)[)(') | (Ps>| < (11.2.28)

which follows by taking the geometric mean of (11.2.26) and (11.2.27).

Now for a fixed s € Pg r we may have either J; C I, or Jy NI = 0 (since I; is not
contained in g r). Therefore, for fixed s € Pg ¢ there are only three possibilities
for Ji:

(a) Ji €3I
(b) JyN3L,=0;
©) inly=0,J,N3I;#0, and J;, 7@ 31.

Observe that case (c) is equivalent to the following statement:
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() JkN Iy =0, dist (Ji, Is) = 0, and |Ji| > 2|I|.

Note that in case (c), for each I there exists exactly one Jx = Ji(;) with the previous
properties; but for a given J; there may be a sequence of I’s that lie on the left
of Jy such that |Ji| > 2|L| and dist (Ji,I;) = 0 and another sequence with similar
properties on the right of J;. The I’s that lie on either side of J; must be nested, and
their lengths must add up to |1 |+ I |, where I'. is the largest one among them on
the left of J; and ISIE is the largest one among them on the right of J;. Using (11.2.27),
we obtain

>,

2 ) 2
= 2 [(bane™ @ )

z <bk927ri6(wr)(~) |(Ps>

s€T ' k: JpNL=0 s€T
dist (Ji.Iy)=0
el =211s|
Fl\2
SC(IEI DIIA

seT: JN;=0
dist (Jg.Js)=0
Vel =211s|

IFINA S (172 1R
gc(|E|) AR

But note that ISLk C 2J;, and since ISLk NJ, = 0, we must have Ié( C 2J; \ Ji (and
likewise for IX ). We define sets

1
_ 1
I =I5 = 5 Vil

We have Iéf Ulfi_ C Jk, and hence the sets Iéf are pairwise disjoint for different
k, and the same is true for the Ifi*. Moreover, since ;|Jk| < ;|I,| for all £, all the
shifted sets ILt, IR~ are contained in 3Z;. We conclude that

Sk Sk
PN ARDN HIED NIRRT )
k k k
UL+ UL
k k

2|34,

IN

IN

which combined with the previously obtained estimate yields the required result in

case (c).
2) >

We now consider case (a). Using (11.2.26), we can write

5, temoio)f) <cu(f)(5] 5wt

3
<s€T keJ 3l €T ' k: J,C3l, L5|2
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and we control the second expression by

1
|F| VANE
Cu E z z |Jk| z |I |3
| | s€T \k: JC3Ig k: J C3I 178

1
2
<onp{ 3wz b
|E| k: J; Q3L seT |IS|
T C3I
where we used that the dyadic intervals J; are disjoint and the Cauchy—Schwarz
inequality. We note that the last sum is equal to at most C|J;|~2, since for every
dyadic interval J; there exist at most three dyadic intervals of a given length whose
triples contain it. The required estimate C |F||E|~! |1, > now follows in case (a).
Finally, we deal with case (b), which is the most difficult case. We split the set of

k into two subsets, those for which J;, C 31, and those for which J; g 31 (recall that
|Jk| < |I|). Whenever J; € 31;, we have

dist (Jk, ) dist (Jk,lt)

In this case we use Minkowski’s inequality and estimate (11.2.28) to deduce

2\ 2
<z z <bk 2mic( oy |(P?> >
S€T k: J 31

< 3 (3 lmemip)r)

ke J£31 N s€T
B |
<ol 5 (5 gl
= Cw IZI k:szg_ydlSt (|j:,|1, <s€2f|l - l)
<Cu :g: M2 . sz@b dist (g/]:,'lr)M
S T e

dist (Ji 1t )~2" |1y

where dist (Ji, ;) &~ 2'|I,| means that dist (J, 1) € [2'|I|,2"*1|1;|]. But note that all
the J; with dist (Ji,1,) = 2/|I,| are contained in 2/+21,, and since they are disjoint, we
estimate the last sum by C2/||(2/|I;])~™. The required estimate Cy|F||E|™"! |I,|%
follows.
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Next we consider the case J; C 31, J, N 31, = 0, and |J;| < |I|, in which we use
estimate (11.2.26). We have

1

o 2
(2] 3 temenio))
se€T ' k: J, 31,
JpN31,=0
i <|Ls |
l
|F|< ‘ 1A
I | )
e (2l 2, P i
JN3L= @
| <[]
< Cu |F|{z[ I )M}
a |E| s€T Lk: J, C3I |lV|2 diSt(‘]kvlS)
JpN31,=0
[l <[]

1

x{ > |Jk|(diSt(Jk,lv))‘M]}2

ke icay 1] 18
JpN3L=0

Vel <Is]

3
calt {2 )]

k:JkQ3I, |I‘|
1
x{ ¥ /(ix—c(lm)de]}z
k1 C31 7k || 14

JN3L=0
‘Jk‘g‘ls‘

JN31,=0
i <[]
3 M
gCM|F|{Z[ v |Jk|2(. |I| ) ]
|E| o L it |7 \dist (Jg, L)
JN3L=0
[ <[]

o Cul LY
<o {33 mPn ()

seT k: J,C31;
JN31=0
‘Jk‘g‘ls‘

But since the last integral contributes at most a constant factor, we can estimate the
last displayed expression by
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1

CM:;:{ z WAK z o—2m z (distgrlr,;,ls))—M}z

k: J C31, >log |/, €T
Jkﬂléls=t® mtoe ] \15\:2'"
Vi | <[]
1
F 2
E| k: J 3L m>log |Jy|
JN3L=0
i | <[]
1
F )2
<Cu |E|{ DA 2}
| | k: J C31
JN3I;=0
i | <[]
Fl
<Cu . LI
E|

There is also the subcase of case (b) in which |J;| > |I5|. Here we have the two
special subcases I; N 3J; = @ and I; C 3J;. We begin with the first of these special
subcases, in which we use estimate (11.2.27). We have

1
b 2mic(ay 2\?
z Z (bye |¢S>
s€T’ k: J, C3L

JN3L=0
Vi >|Ls]
1;N3J,=0

1
IF| A ‘2 2
<( Ig|2
— M|E| z z |S| diSt(Jk,IS)M

seT  k: J, C3L

JN3L=0
i[> 15|
1;,N3J,=0
1
|F|{ [ K> LM H el 1M ]}2
<Cu . . .
|E| g‘r k:sz;‘y, [Ji| dist (Jg, I;)M k:szgl, 1| dist (Ji, I;)M
JN3L=0 JpN3L,=0
Vi[> 15| Vi > 15|
I;N3J,=0 I;N3J,=0

Since I; N 3J; = 0, we have that dist (Ji, I;) = |x — c¢(I;)| for every x € J;, and there-
fore the second term inside square brackets satisfies

_ M
Vel LM z/ |X c(I. dx <Cy.
ke iy sl dist (Ji, Iy i |I| 18
T BT =0
| >[5
L,N3J,=0

Using this estimate, we obtain
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F 1.2 .M
CM | | { z [ | S| . | s| M:|
Bl UGSt Lic jecar, Ml dist (Ui, L)

|Jk| |IS|M ] }2
ki, sl dist (Jie, Is)M

JN31=0 JN3L=0
Wie|> 14| i |> 11|
IN3J,=0 1037, =0
1
|F|{ [ L1 LM Hz
<Cum .
|E| _&‘EZT k;_]kzgf)[t |Jk| dlSt(kalS)M
JpN3L=0
Vi[> 115
N3J;=0
1
|F|{ 1 5 M 2
=Cu s .
B 2l 2 i
JN3L=0
i[> 115
1037, =0
IF| ¥ 1 ‘O&i’k‘ wy LMoY
<Cum { 2%m o }
E| k: J C3l Vil mE e SET: |[]=2m dist (J, I, )M
JpN3L=0
i[> 15
I03J,=0
log || ]
|F|{ 1o, }2
<Cum 2
El . szgy, Vil m:z—oo
1
F 1 2
<CM|E|{ z J |Jk|2}
E] . i3, Vil
IF|
<Cum IE| 1|2 .

Finally, there is the subcase of case (b) in which |J;| > |Is| and I; C 3J;. Here
again we use estimate (11.2.27). We have

1

o 2) 2

(2] 3 @emeno)}
seT ' k: J, 31,

JP3L=0
i[> 115
1,C3J;

1
al TACEEE
< Cu " | s
|E] sg‘f ' k:szg[, dlSt(‘]kvlS)M
Ti31=0
Vi[> 15|
I;C3Jk

(11.2.29)

Let us make some observations. For a fixed s there exist at most finitely many
Ji’s contained in 31, with size at least |I5|. Let J} (s) be the interval that lies to the
left of I; and is closest to Iy among all J; that satisfy the conditions in the preceding
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sum. Then |J} (s)| > |I;| and
dist(J} (s),15) > |1

Let J?(s) be the interval to the left of J} (s) that is closest to J} (s) and that satisfies
the conditions of the sum. Since 3J7(s) contains I, it follows that [J7(s)| > 2|I5| and

dist(J7 (s), 1) > 2| .

Continuing in this way, we can find a finite number of intervals JJ (s) that lie to the
left of I; and inside 31, satisfy |J] (s)| > 2"|L| and dist(J] (s),Ls) > 2"|L|, and whose
triples contain I;. Likewise we find a finite collection of intervals J}(s),J3(s), ...
that lie to the right of /; and satisfy similar conditions. Then, using the Cauchy—
Schwarz inequality, we obtain

| |
ke JoC3l, dist (Jk,IS)M
JN3L=0
i[> ]
I,C3J,
oo M o M
< 1|2 Nk 1Ak 1P
— . - M M . r M ™M
r=1dist(J] (s),[;)2 22 r=1dist(Ji(s),Is)2 22
o | A
+ .
Mzmm M M;mmm®AW
MW
<Cu )
k:szgyt dist (Jk,IS)M
JN31,=0
i[> ]
I,C3J,
We use this estimate to control the expression on the left in (11.2.29) by
1
W{ |15 |M 2
|Ls| ,
|E| gf k: szgyt dist (J, I;)M
JN31,=0
i[> 15|
I.vg3jk
1
W{ < e 14 2
< Cu oYy :
|E| kJoC3L,  m=0 s:I,C3J, dist (Ji, I;)M
JN31,=0
s|=27""|Jg |

Since the last sum is at most a constant 1t follows that the term on the left in
(11.2.29) also satisfies the estimate CM | E‘ |I, | 2 . This concludes the proof of Lemma
11.2.2.
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Exercises

11.2.1. Let T be a 2-tree with top I, and let M > 1 and L be such that 2& < |I;|. Show
that there exists a constant Cy; > 0 such that

S LM < ouln™,
seT
M ||
ZT |Is| S CM (2L)M+1 ’
s€
|fs|>2"
> LM < Culn| M
seT
\I:\SZL

[Hint: Group the s that appear in each sum in families %, such that | = 27"|1]
for each s € 4. |

11.2.2. Show that the operator

gr—  sup }@X[mb])v}

—ocola<b<oo
defined on the line is L? bounded for all 1 < p < eo.
11.2.3. On R" fix a unit vector b and consider the maximal operator

T(g)(x) = sup

§(E)mieE g \ .
|b-&|<N

Show that T maps L”(R") to LP (R") for all | < p < eo.
[Hint: Apply a rotation. |

11.2.4. Define the directional Carleson operators by

; dt
fim / 27 f(x — 10)
e<|t|<e! t

e—0

@ (f)(x) = sup

acR

)

for functions f on R”. Here 6 is a vector in 8”1,
(a) Show that %% is bounded on L?(R") for all 1 < p < co.
(b) Let  be an odd integrable function on $"~!. Define an operator

Q(i)dy‘.

¢ (f)(x) = sup |

EeR?

lim / TSV f(x—y)
e<|y|<e!

£—0

Show that €**? is bounded on L”(R") for 1 < p < co.
[Hint: Part (a): Reduce to the case 6 = e¢; = (1,0,...,0) via a rotation and use
Theorem 11.2.1(b). Part (b): Use the method of rotations and part (a).}
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11.3 The Maximal Carleson Operator and Weighted Estimates

Recall the one-sided Carleson operator %) defined in the previous section:

%1(f)(x) = sup

N>0

[ Feremea].

Recall also the modulation operator M¢(g)(x) = g(x)e***. We begin by observing
that the following identity is valid:

iH

o~

1_
(FA(oi) =M

5 1f— iMbHM‘b(f), (11.3.1)

M) = f -

where H is the Hilbert transform. It follows from (11.3.1) that
1 1 £
G1(f) < IfI+ sup [H(M>(f))]
2 2 EeR

and that

sup [H(M ()| < |f|+261(f).

We conclude that the L? boundedness of the sublinear operator f — % (f) is equiv-
alent to that of the sublinear operator

£ sup [H(M(f))].
EeR

Definition 11.3.1. The maximal Carleson operator is defined by
%.(f)(x) = supsup

/ F)emey @
e>0EeR | /|x—y[>¢ X—y

= sup |H™ (M5 (f)) ()],
EeR

(11.3.2)

where H*) is the maximal Hilbert transform. Observe that , (f) is well defined for
all fin Uj<,<.L?(R) and that €, (f) controls the Carleson operator ¢'(f) point-
wise.

We begin with the following pointwise estimate, which reduces the boundedness
of €, to that of ¢

Lemma 11.3.2. There is a positive constant ¢ > 0 such that for all functions f in
U1§p<wU’(R) we have

C(f) <cM(f)+M(E(f)), (11.3.3)

where M is the Hardy-Littlewood maximal function.
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Proof. The proof of (11.3.3) is based on the classical inequality
H™(g) < cM(g)+M(H(g))

obtained in (4.1.32). Applying this to the functions M' § (f) and taking the supremum
over £ € R, we obtain

.(f) < CM(f)+2Hﬁ1‘4’(171(1‘4"5 ()

from which (11.3.3) easily follows by passing the supremum inside the maximal
function. 0

It is convenient to work with a variant of the Hardy—Littlewood maximal opera-
tor. For 0 < r < oo define

M,(f) = M( )"

for f such that |f]" is locally integrable over the real line. Note that M(f) < M,(f)
for any r € (1,00). Our next goal is to obtain the boundedness of the Carleson oper-
ator on weighted L” spaces.

Theorem 11.3.3. For every p € (1,0) and w € A, there is a constant C(p,[w]a,)
such that for all f € LP(R) we have

||(g(f)HLl’(w =
%.(f)]

Q

W) 1o o) (11.3.4)
C( Wla,) (11.3.5)

Lr(w) > LP(w)

Proof. Fix a1 < p < oo and pick an r € (1, p) such that w € A,. We show that for
all f € LP(w) we have the estimate

/% X)dx < Gyl ]AP)/I;M,(f)(x)”w(x)dx. (11.3.6)

Then the boundedness of " on L?(w) is a consequence of the boundedness of the
Hardy-Littlewood maximal operator on L' (w).
If we show that for any w € A, there is a constant C,,([w]a, ) such that

[ M@ () wdx < Cyiwa,) [ M) wax, (113.7)
R R

then the trivial fact € (f) < M(%'(f)), inserted in (11.3.7), yields (11.3.6).
Estimate (11.3.7) will be a consequence of the following two important observa-
tions:
MY (E(f) <CM.(f)  ae. (11.3.8)

and

HM(CK ))HLP(W)SCP([W]AP)HM#(CK ))HLP(W)’ (11.3.9)

where ¢, ([w]a,) depends on [w]4, and C; depends only on r.
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We begin with estimate (11.3.8), which was obtained in Theorem 7.4.9 for sin-
gular integral operators. Here this estimate is extended to maximally modulated
singular integrals. To prove (11.3.8) we use the result in Proposition 7.4.2 (2). We
fix x € R and we pick an interval / that contains x. We write f = fy + f., Where
fo = fxsr and foo = fxape. We set a = % (f)(cr), where ¢ is the center of I.
Then we have

|;|/I|<5(f)( —arldx < | | sup‘H M«ﬁ () — H(Mé(fm))(qﬂdy

lTEer
<B|+B3,
where
Bi = [ sup |HOME(fo) )] dy.
|1 LEcR
B, = sup\H (fu)) () — H(ME (f2))(cr) | dy .
|| lTEeRr
But

1
< JEay

1
< |I|H(g(f0) L Xi L
H% L L
< Uk
<M, (f)(x),

where we used the boundedness of the Carleson operator ¢ from L" to L" and The-
orem 1.4.17 (v).
We turn to the corresponding estimate for B,. We have

1 1 1
By < / / |fm<z>| - \dzdy
1| i Jro — -
1 _
= dzd
| /I/m " (y— z) cr—2) ‘ zdy
< (000 S )
= I\ Jepe T (er =2+ 11)2 )

C
< [ pMneay

< CM(f)(x)
< CM,(f)(x).
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This completes the proof of estimate (11.3.8), and we now turn to the proof of
estimate (11.3.9). We derive (11.3.9) as a consequence of Exercise 9.4.9, provided
we have that

[M(%(£))

Unfortunately, the finiteness estimate (11.3.10) for general functions f in L?(w)
cannot be deduced easily without knowledge of the sought estimate (11.3.4) for
p = r. However, we can show the validity of (11.3.10) for functions f with compact
support and weights w € A, that are bounded. This argument requires a few tech-
nicalities, which we now present. For a fixed constant B we introduce a truncated
Carleson operator

iy < (11.3.10)

GB(f) = sup [H(M(f))!.
|&|<B

Next we work with a weight w in A, that is bounded. In fact, we work with wy, =
min(w, k), which satisfies

Wela, < (142772) (14 [wla,)
for all k£ > 1 (see Exercise 9.1.9). Finally, we take f = & to be a smooth function

with support contained in an interval [—R, R]. Then for |£| < B we have

(||| BC,R
[H(M® (h))(x)] < ZRH(M5 (W) || ;= Xixi<2r + N +L112%\x\>2R < ¥ iR ,

where Cj, is a constant that depends on 4. This implies that the last estimate also
holds for €2 (h). Using Example 2.1.8, we now obtain

It follows that M (% (h)) lies in L" (wy), since r > 1 and wy < k. Therefore,

[M(E7 (1)

Lriw) <

and thus (11.3.10) holds in this setting. Applying the previous argument to ¢’2(h)
and the weight wy [in lieu of € (f) and w], we obtain (11.3.7) and thus (11.3.4) for
M(%8(h)) and the weight wy. This establishes the estimate

(]

4]

L2 (wy) < C(p,wla,) L2 (wy) (11.3.11)
for some constant C(p, [w]a,,) that is independent of B and &, for functions / that are
smooth and compactly supported. Letting k — e in (11.3.11) and applying Fatou’s
lemma, we obtain (11.3.4) for smooth functions & with compact support. From this
we deduce the validity of (11.3.4) for general functions f in L?(w) by density (cf.

Exercise 4.3.11).
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Finally, to obtain (11.3.5) for general f € L?(w), we raise (11.3.3) to the power
p, use the inequality (a + b)P < 2P(aP + bP), and integrate over R with respect to
the measure wdx to obtain

/ Go(f)Pwdx < 2%/ M(f)Pwdx+ 21’/ ME(f)Pwdx.  (11.3.12)
R R R

Then we use estimate (11.3.4) and the boundedness of the Hardy-Littlewood maxi-
mal operator on L”(w) to obtain the required conclusion. 0
Exercises

11.3.1. (a) Let 6 € S"~!. Define the maximal directional Carleson operator

GO =supsup| [ e i0)
e<|t|<e! t

acRe>0

for functions f on R”. Prove that € is bounded on L” (R",w) for any weight w € A,
and 1 < p < oo,

(b) Let Q be an odd integrable function on S"~!1. Obtain the same conclusion for the
maximal operator

()

€ (f)(x) = sup sup i

EeRme>0

Lo ey dy‘ .

e<|y|<e!

[Hint: Part (a): Reduce to the case 6 = e¢; = (1,0,...,0) via a rotation and use
Theorem 11.3.3 with w = 1. Part (b): Use the method of rotations and part (a).]

11.3.2. For a fixed A > 0 write

{xeR: G (f)(x) >)L} :Uljv
J

where I; = (¢, 0j + §;) are open disjoint intervals. Let 1 < r < co. Show that there
exists a yp > 0 such that for every 0 < y < ¥ there exists a constant C, > 0 such that
limy o Cy = 0 and

{xel;: €(f)(x) >34, My(f)(x) S YA} < Gy|1]

for all f for which C..(f) is defined.

[Hint: Note that we must have €.(f)(ct;) < A and €. (f)(a; + 8;) < A for all j.
Set I} = (aj — 58;, 0+ 66;), fi(x) = f(x) for x € I}, fi(x) =0 for x ¢ I}, and
f(x) = f(x) — fi(x). We may assume that for all j there exists a z; in I; such that
M,(f)(z;) < yA. For fixed x € I; estimate |H®) (f2)(x) — H'€) (f2)(c;)| by the three-
fold sum
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: 2 2
2rmiét
t)e — dt
‘/ij—f>€f2() <O‘j_t x—t)

P |
+ ‘/ H(DmE T ar
[x—t|>e>]o;—t| xX—t

: 1
+ / 1)e>mis! dt
\w—tbsg\x—z\fz( ) oj—t

which is easily shown to be controlled by coM(f)(z;) for some constant cg. Thus
o (f2)(x) < C.(fo)(0) +coM(f)(zj) < A+coyA . Select ¥ such that coyy < 3.
Then A +coyA < 3 A for ¥ < Y; hence we have %, (f)(x) < %.(f1)(x)+ 34 for
x €1 and thus I; N {%.(f) > 3A} C {€.(fi) > A}. Using the boundedness of ¢
on L" and the fact that M,(f)(z;) < yA, we obtain that the last set has measure at
most a constant multiple of 7 |/;].]

3

11.3.3. (Hunt and Young [173]) Show that for every w in A. there is a finite con-
stant yp > 0 such that for all 0 < y <y and all 1 < r < oo there is a constant By such
that
for all f for which C,(f) is finite. Moreover, the constants By satisfy By — 0 as
Y — 0.

[Hint: Start with positive constants Cy and § such that for all intervals I and any

measurable set E we have |ENI| < e|I| = w(ENI) < Cye®w(l). Use the estimate
of Exercise 11.3.3 with / = I; and sum over j to obtain the required estimate with

By=Co(Cy)° ]

11.3.4. Prove the following vector-valued version of Theorem 11.2.1:

I(Srewr)’

LP(w) = CN(W)H (;'mr) l Lr(w)

forall 1 < p,r < oo, all weights w € A, and all sequences of functions f; in L7 (w).
[Hint: You may want to use Corollary 9.5.7.]

HISTORICAL NOTES

A version of Theorem 11.1.1 concerning the maximal partial sum operator of Fourier series of
square-integrable functions on the circle was first proved by Carleson [55]. An alternative proof
of Carleson’s theorem was provided by Fefferman [126], pioneering a set of ideas called time—
frequency analysis. Lacey and Thiele [205] provided the first independent proof on the line of the
boundedness of the maximal Fourier integral operator (11.1.1). The proof of Theorem 11.1.1 given
in this text follows closely the one given in Lacey and Thiele [205], which improves in some ways
that of Fefferman’s [126], by which it was inspired. One may also consult the expository article
of Thiele [312]. The proof of Lacey and Thiele was a byproduct of their work [203], [204] on
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the boundedness of the bilinear Hilbert transforms Hy (f1, f2)(x) = )Tp.v. Jri(x=10)fo(x—ar) ‘f’ .
This family of operators arose in early attempts of A. Calderdn to show that the first commutator
(Example 8.3.8, m = 1) is bounded on L? when A’ is in L, an approach completed only using the
uniform boundedness of H,, obtained by Thiele [311], Grafakos and Li [150], and Li [212].

A version of Theorem 11.2.1 concerning the L” boundedness, 1 < p < o, of the maximal par-
tial sum operator on the circle was obtained by Hunt [170]. Sjolin [283] extended this result to
L(log™ L)(log™* log® L) and Antonov [5] to L(log™ L)(log™ log* log™ L). Counterexamples of Kol-
mogorov [191], [192], Korner [197], and Konyagin [193] indicate that the everywhere convergence
of partial Fourier sums (or integrals) may fail for functions in L' and in spaces near L'. The ex-
ponential decay estimate for o > 1 in (11.2.1) and the restricted weak type (p, p) estimate with
constant C p?(p— 1)~ for the maximal partial sum operator on the circle are contained in Hunt’s
article [170]. The estimate for ¢ < 1 in (11.2.1) appears in the article of Grafakos, Tao, and Ter-
willeger [153]; the proof of Theorem 11.2.1 is based on this article. This article also investigates
higher-dimensional analogues of the theory that were initiated in Pramanik and Terwilleger [266].
Theorem 11.3.3 was first obtained by Hunt and Young [173] using a good lambda inequality for
the Carleson operator. An improved good lambda inequality for the Carleson operator is contained
in of Grafakos, Martell, and Soria [152]. The particular proof of Theorem 11.3.3 given in the
text is based on the approach of Rubio de Francia, Ruiz, and Torrea [276]. The books of Jgrsboe
and Melbro [179], Mozzochi [236], and Arias de Reyna [6] contain detailed presentations of the
Carleson—Hunt theorem on the circle.

The subject of Fourier analysis is currently enjoying a surge of activity. Emerging connec-
tions with analytic number theory, combinatorics, geometric measure theory, partial differential
equations, and multilinear analysis introduce new dynamics and present promising developments.
These connections are also creating new research directions that extend beyond the scope of this
book.
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