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Chapter contents guide
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Learning outcomes
summarise what you

should have learned by
the end of the chapter.

Cearning | By the end of this chapter you should be able tor
outcomes i it iments [e.g th

o recop e
die)can be described as a random variable;

o appreciate by
a probabilly disribuion 3 mathemaical formulal

 recognise the most commn prababily distibutions and be aware of their

‘@ solve a range of probabiliy problems using the appropriate probability
distribution.
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aditional supporting resources
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Chapter introductions set the scene for
learning and link the chapters together.

Introduction

(‘Introduction )

In this chapter the probability concepts introduced in Chapter 2 are generalised.
by using the idea of a probability distribution. A probability distribution lists
in some form, all the possible outcomes of a probability experiment and th
probability associated with each one. For example, the simplest experiment
is tossing a coin, for which the possible outcomes are heads or tails, each with
probability one-half. The probability distribution can be expressed in a varicty
of ways: in words, or in a graphical or mathematical form, For tossing a coin, the
‘graphical form is shown in Figure 3.1, and the mathematical form is

Pt
P

The different forms of presentation are equivalent, but one might be more
suited to a particular purpose.

os
"
2
Jo
Figure 3.1 o1
= o

Some probability distributions occur often and so are well known. Because of
ehis they have names so we can refer to them asily; for example, the Binomial
distribution o the Normal distribution. In fact, each constitutes a family of dis-
eributions. A single t0ss of a coin gives rise o one member of the Binomial
distribution family; two tosses would give rise to another member of that fam-
ily. These two distributions differ in the number of tosses. If a biased coin were
tossed, this would lead to yet another Binomial distribution, but it would differ
from the previous two because of the different probability of heads

Members of the Binomial family of distributions are distinguished ither by

or by the probability of These are the

two parameters of the distribution and tell us all we need to know about the
distribution v
different meanings. Some distributions, for example, have only one parameter.
‘We will come across examples of different types of distribution throughout the
est of this book.

In order to understand fully the idea of a probability distribution a new.
‘concept is first introduced, that of a random variable. As will be seen later in the
chapter, an important random variable is the sample mean, and to understand

109

( Practising and testing your understanding)

Xii

Chapter & « Estimation and confidence intervals

20198 BT 1012

=[-1405,-195]

“The estimate is that school 2's average mark is between 1.95 and 14.05 per-
centage points above that of school 1. Notice that the confidence interval does
not include the value zero, which would imply equality of the two schools’
‘marks. Equalty of thus be ruled out with

| Worked example 4.3 )

A survey of holidaymakers found that on average women spent 3 hours
per day sunbathing, men spent 2 hours. The sample sizes were 36 in each
case and the standard deviations were 1.1 hours and 1.2 hours respectively.
Estimate the true difference between men and women in sunbathing habits
Use the 999 confidence level

For

the confidence interval we have

[@—m—zv Fn‘»gwsr’wmtzw Fn.’E]

3oz L1
s

T oneas 12
1Z Ly ca-neasr|IE }

=1030,1.70]

(zero

s not in the confidence interval). Note that we might worry the samples

‘might not be independent here - it could represent 36 couples. If so, the
idence is likel Famyth I

are likely to spend time sunbathing together.

{7 Estimating the difference between two proportions

the analysis of this type of problem. Suppose that a survey of 80 Britons showed
that 60 owned personal computers. A similar survey of 50 Swedes showed 30

Here the alm i to estimate x, - , the difference between the two population
proportions, so the prabability distribution of p; - p, is needed, the difference
of the sample proportions. The derivation of this follows similar lines to those
set out abave for the difference of two sample means, so is not repeated. The
probability distribution is

m-x

pepN(m M] @i
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—— Worked examples break down
statistical techniques step-by-step
and illustrate how to apply an
understanding of statistical
techniques to real life.




Hypothesi tests with small samples

Oxford Internet Surveys. [http://www.oi.ox.ac.ukimicrosites/oxis/] asked a
sample of 1578 people if they multi-tasked while on-line [e.g. lstening to music,
using the phonel. 69% of men said they did compared to 57% of women. Is this
difference statistically significant?

The published survey does not give precise numbers of men and women
respondents for ths question, so we will assume equal numbers (the answer is
ot very sensitive to this assumption). We therefore have the test statistic

PRSI 1= 0 S R
Jnszxu 63 063x01-063

10,63 s the overall proportion of multi-taskers) The evidence is significant and
clearly suggests this is a genuine difference: men are the mult-taskers!

Exercise 5.6 | A survey of 80 voters finds that 65% are in favour of a particular policy. Test the

” ypothesis that the true proportian is 50%, against the alternative that a majority is
? in favour.

Exercise 5.7 ] A survey of 50 teenage girls found that on average they spent 3.6 hours per week
” chatting with friends over the internet. The standard deviation was 1.2 haurs. A sim-

ilar survey of 90 teenage boys found an average of 3.9 hours, it
2.1 hours. Test fthere is any difference between boys”ant

tandard deviation
ehaviour.

Exercise 5.8 | One gambler on horse racing won on 23 of his 75 bets. Another won on 34 out of 95
. Is the second person a better judge of horses, o just luckier?

(_fypothesis tests with small samples )

As with estimation, slightly different methods have to be employed when the
sample size

3 small <29 and th populaton varance & nkown. When
sfed the f distribution must be used rather than

s methods will be applied to hypotheses about sample
means only, since they are inappropriate for tests of a sample proportion, as was.
the case in estimation.

Testing the sample mean
Alarge chain of supermarkets sells 5000 packets of cereal in each of its stores

each month. It decides 1o test-market a different brand of cereal in 15 of its
stores. After a month the 15 stores have sold an average of 5200 packets each,

187

57, Are women better at multi-tasking? | Pt R R
Gl — Statistics in practice

provide real and
interesting applications
of statistical techniques
in business practice.

hints on how to use
different software
packages such as Excel
and calculators to solve
statistical problems and
help you manipulate
data.

Exercises throughout the chapter allow you to stop and check your
understanding of the topic you have just learnt. You can check the
answers at the end of each chapter. Exercises with an icon (2 have
a corresponding exercise in MathXL to practise.

( Reinforcing your understanding)

They also provide helpful —

Guided tour of the book
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Exercise 1.1

3
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Summarising data using graghical techniques
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5 i seon
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Educational auaicators
aualfcations afthe o
unemployed

contrasted with Figure 1.6, which shows a similar chart for the unemployed (the
second row of Table 1.1)

The ‘ther quilifcaton’ a little larger in this case, but the ‘no
qualification’ group now accounts for 20% of t nployed, a big increase
Further, the proportion with a degree approsimately halves from 32% to 15%

73, Producing charts using Microsoft Excel

With-
out wishing to dictate a precise style, you should aim for a similar, uncluttered
ook Some fips you might find useful are:

‘@ Make the grid lines dashed in a light grey colour [they are not actually part of
the chart, hence should be discreet] or eliminate altogether.

‘@ Got i of the background fll [grey by default,alter to ‘No flC. It does not look.
great when printed.

@ On the x-axis, make the labels horizontal or verlical, not slanted - it i then
difficult to
x-ais then click the alignment tab.

‘@ Colour charts look great on-screen but unclear f printed in black and white.
Change the styte type of the lines or markers e.g. make some dashed] to
distinguish them on paper.

‘o Both axes start at zero by default. I allyour observations are large numbers
this may result in the data points being crowded into one corner of the graph.
Alter the scale on the axes to fx this: set the minimum value on the axis to be
slightly less than the minimum observation.

Otherwise, Excel's dafault options will usually give a good result

The following table shows the total numbers lin millions) of tourists visiting each
Country and the numbers of English tourists isiting each country:

France Germany Ty Spain
Altourats 2% 2 s o8
English tourists 27 02 0 3

al Draw a bar chart showing the total numbers visiting each country.
(b) Draw a stacked bar chart, which shows English and non-English tourists making
up the total visitors to each country.

15

Problems at the end of each chapter range in difficulty to
provide a more in-depth practice of topics.

Chapter 2 + Prababiliy

L —— (‘summary

Chapter summaries

recap all the important
topics covered in the
chapter.

 The theory of probability forms the basis of statistical inference: the drawing
of inferences on the basis of a random sample of data. The reason for this is
the probability basis of random sampling.

o A convenient definition of the probability of an event is the number of times.
the event occurs divided by the number of trials (occasions when the event
could occur).

For mote complex events, their probabilities can be calculated by combining
probabilities, using the addition and multiplication rules,

The probability of events A or B occurring i calculated according to the addi-
tion rule.

The probability of A and B accurring is given by the multiplication rule.

If A and B are not independent, then Pr(4 and B) = Pr(4) x Pr(B4), where
Pr(BIA) s the probability of B occurring given that A has occurred (the con-
ditional probability).

Tree diagrams are a useful technique for enumerating all the possible paths in
series of probability trials, but for large numbers of trials the huge number of
possibilities makes the technique impractical

 Forexpeiments with 2 aige numberofttals e, obtaining 20 heads i S0
tosses o sed.

o o formuls m ¥ ives the umber of ways of mmmmm{
similar objects n obie er of orderings of three girls
{amd hened mpickly e by s i e hildren

o nutation formula nPr gives the number of orderings of r distinct
objects among 1, ¢.g. three named girls among five children.

Bayes' theorem provides a formula for 1 g

the probability of someone being a smoker, en diagnosed

with cancer. It forms the basis of Bayesian tatistics, all s o calculate
the probability of a hypothesis being truc, based on the sample evidence and
prior beliefs. Classical statistics disputes this approach.

150 be used as the basis for decision making in conditions of
as decision criteria expected value maximisation, maximin,

{(Key terms and concepts

Key terms and concepts
are highlighted when
they first appear in the
text and are brought
together at the end of
each chapter.

additon rule
Bayes’ theorem

combinations

complement

compound event.

conditional probability

exhaustive

expected value of perfect informatian
frequentist approach

independent events

minimax regret
multiplcation rule
mutually exclusive
outcome or event
permutations
probabiliy experiment.
probabiliy of an event
sample space
subjective approach
tree diagram

Problems
Problems

number incolour.

21 Givena standard pack o cards,calculate th folowing probabiles:

(e} drawing an ace

(6] drawing a court card .. jack,queen or ingl

(el drawing a red card

6) drawing three aces without replacement;

(6] drawing three aces with rplacement

22 The following daa give duraton of unemployment by age, in July 1986

Ao Total

revavr——— ) o0s)
(Percentage figures)
z2  we @m0 w0 2n4k 2
w2 w1 w3 e was 2000
s ws  m2 w2 @ 3600
w2 s 1 sz sz 500
8 w4 1se g2 e 2560
s w7 w1 a4 me 1o
employed

The
in each age category.
(a) In what sense may these figures be regarded as probabilties? What does the figure
272 top-teft celll mean following ths interprtation?
) Assuming the valdiy of the probabily interpretation, which of the following state-
ments are true?
(il The probabily of an economically active adult aged 25-34, drawn at random,
being unemployed s 531.4/3600
(il 1f someone who has been unemployed for over one year is drawn at random, the
probabily that they are aged 16-19 is 19%
() For those aged 35-49 who became unemployed before July 1985, the probatilty
of thei still being unemployed is 56.2%
1 1f someone aged 50-59 is drawn at random from the ecanomically actve popula-
the probabily of their being unemployed for eght weeks or less s 8.9%
4] The prababilty of someons aged 35-49 drawn at random from the economically
active population being unemplayed for between 8 and 26 weeks is 0.166 x
521.2/4900.
]

for over one year. What i the probabily that they are aged between 16 and 197
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This fifth edition of Statistics for Economics, Accounting and Business Studies comes with a new computer
package called MathXL, which is a new personalised and innovative online study and testing resource providing
extensive practice questions exactly where you need them most. In addition to the exercises interspersed in the
text, when you see this icon {2 you should log on to this new online tool and practise further.

To get started, take out your access kit included inside this book to register online.

Registration and log in

Go to www.pearsoned.co.uk/barrow and follow the

instructions on-screen using the code inside your access
kit, which will look like this:

The login screen will look like this:

* A Code

SIMPLE - | EDGAR - |HAMPS |- | FLEET - | DOOR
Gsmwmamgp box for pasting your access code

- EIGHT

First Time User? Established User? MyMathLab User?
Mngiiter with your Accees Code i Create your Log In Mame and I you hawe already regiutsred, log in here: Asem pas harewah, tets,
ety e i e

Lognfome ‘ Loan

(@) pogs

P e e

o
T Myscaitas I
vy ye— Math yy

[yr——

* tewn and Crenta

Now you should be registered with your own password ready to log directly into your own course.

When you log in to your course for the first time, the course home page will look like this:

Mathay
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et Fon ol menlunments
h F& .
s Runthe 10 maks sure you bave o he cemposarts e SRV o Yo
naed to view the sxarcees and multimada in your course, ‘mll‘mw
« Wiew Haw b o far o ath cctitn aircie o She
.
el | e
 This couese i now vailable en the Mae. [l B Ol Seere
Instructor
et e |
B Tos Manager |
(oo )

Now follow these steps for the chapter you are studying.
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Step 1 Take a sample test

Sample tests (two for each chapter) enable you to test
yourself to see how much you already know about a
particular topic and identify the areas in which you need
more practice. Click on the Study Plan button in the
menu and take Sample test a for the chapter you are
studying. Once you have completed a chapter, go back
and take Sample test b and see how much you have
learned.

Step 2 Review your study plan

The results of the sample tests you have taken will be
incorporated into your study plan showing you what
sections you have mastered <5 and what sections you
need to study further_é\ helping you make the most
efficient use of your self-study time.

Step 3 Have a go at an exercise

From the study plan, click on the section of the book
you are studying and have a go at the series of inter-
active Exercises. When required, use the maths panel
on the left hand side to select the maths functions you
need. Click on more to see the full range of functions
available. Additional study tools such as Help me solve
this and View an example break the question down
step-by-step for you helping you to complete the
exercises successfully. You can try the same exercises
over and over again, and each time the values will
change, giving you unlimited practice.

Step 4 Use the E-book and additional
multimedia tools to help you
If you are struggling with a question, you can click on

the textbook icon to read the relevant part of your
textbook again.

You can also click on the animation icon to help you
visualise and improve your understanding of key
concepts.

Good luck getting started with MathXL.

Getting started with statistics using MathXL

Homework and Tests: Quizaes & Tests
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For an online tour go to www.mathxl.com. For any help and advice contact the 24-hour online support at

www.mathxl.com and click on student support.
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This text is aimed at students of economics and the closely related disciplines of
accountancy and business, and provides examples and problems relevant to
those subjects, using real data where possible. The book is at an elementary level
and requires no prior knowledge of statistics, nor advanced mathematics. For
those with a weak mathematical background and in need of some revision,
some recommended texts are given at the end of this preface.

This is not a cookbook of statistical recipes: it covers all the relevant concepts
so that an understanding of why a particular statistical technique should be used
is gained. These concepts are introduced naturally in the course of the text as they
are required, rather than having sections to themselves. The book can form the
basis of a one- or two-term course, depending upon the intensity of the teaching.

As well as explaining statistical concepts and methods, the different schools
of thought about statistical methodology are discussed, giving the reader some
insight into some of the debates that have taken place in the subject. The book
uses the methods of classical statistical analysis, for which some justification is
given in Chapter 5, as well as presenting criticisms that have been made of these
methods.

Changes in this edition

There have been changes to this edition in the light of my own experience and
comments from students and reviewers. The main changes are:

e The chapter on Seasonal adjustment, which was dropped from the previous
edition, has been reinstated as Chapter 11. Although it was available on the
web, this was inconvenient and referees suggested restoring it.

e Where appropriate, the examples used in the text have been updated using
more recent data.

e Accompanying the text is a new website, MathXL, accessed at www.pearsoned.
co.uk/barrow which will help students to get started with statistics. For this
edition the website contains:

For lecturers

© PowerPoint slides for lecturers to use (these contain most of the key tables,
formulae and diagrams, but omit the text). Lecturers can adapt these for
their own use.

© Answers to even-numbered problems.

O An instructor’s manual giving hints and guidance on some of the teaching
issues, including those that come up in response to some of the problems.

For students
O Sets of interactive exercises with guided solutions which students may
use to test their learning. The values within the questions are randomised,
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so the test can be taken several times, if desired, and different students
will have different calculations to perform. Answers are provided once the
question has been attempted and guided solutions are also available.

Mathematics requirements and texts

No more than elementary algebra is assumed in this text, any extensions being
covered as they are needed in the book. It is helpful if students are comfortable
at manipulating equations so if some revision is required I recommend one of
the following books:

I. Jacques, Mathematics for Economics and Business, 2009, Prentice Hall,
5th edn.

G. Renshaw, Maths for Economics, 2008, Oxford University Press, 2nd edn.
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Figure 1.1
Alcohol consumption
in the UK

Statistics is a subject which can be (and is) applied to every aspect of our lives.
A glance at the annual Guide to Official Statistics published by the UK Office
for National Statistics, for example, gives some idea of the range of material
available. Under the letter ‘S’, for example, one finds entries for such disparate
subjects as salaries, schools, semolina(!), shipbuilding, short-time working, spoons
and social surveys. It seems clear that, whatever subject you wish to investigate,
there are data available to illuminate your study. However, it is a sad fact that
many people do not understand the use of statistics, do not know how to draw
proper inferences (conclusions) from them, or mis-represent them. Even (espe-
cially?) politicians are not immune from this — for example, it sometimes
appears they will not be happy until all school pupils and students are above
average in ability and achievement.

People’s intuition is often not very good when it comes to statistics — we did
not need this ability to evolve. A majority of people will still believe crime is
on the increase, even when statistics show unequivocally that it is decreasing.
We often take more notice of the single, shocking story than of statistics, which
count all such events (and find them rare). People also have great difficulty
with probability, which is the basis for statistical inference, and hence make
erroneous judgements (e.g. how much it is worth investing to improve safety).
Once you have studied statistics you should be less prone to this kind of error.

Two types of statistics

The subject of statistics can usefully be divided into two parts, descriptive stat-
istics (covered in Chapters 1, 10 and 11 of this book) and inferential statistics
(Chapters 4-8), which are based upon the theory of probability (Chapters 2
and 3). Descriptive statistics are used to summarise information which would
otherwise be too complex to take in, by means of techniques such as averages
and graphs. The graph shown in Figure I.1 is an example, summarising drinking
habits in the UK.
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The graph reveals, for instance, that about 43% of men and 57% of women
drink between 1 and 10 units of alcohol per week (a unit is roughly equivalent
to one glass of wine or half a pint of beer). The graph also shows that men tend
to drink more than women (this is probably not surprising), with higher pro-
portions drinking 11-20 units and over 21 units per week. This simple graph
has summarised a vast amount of information, the consumption levels of about
45 million adults.

Even so, it is not perfect and much information is hidden. It is not obvious
from the graph that the average consumption of men is 16 units per week,
of women only 6 units. From the graph, you would probably have expected
the averages to be closer together. This shows that graphical and numerical
summary measures can complement each other. Graphs can give a very useful
visual summary of the information but are not very precise. For example, it is
difficult to convey in words the content of a graph: you have to see it. Numerical
measures such as the average are more precise and are easier to convey to others.
Imagine you had data for student alcohol consumption; how do you think
this would compare to the graph? It would be easy to tell someone whether the
average is higher or lower, but comparing the graphs is difficult without actually
viewing them.

Statistical inference, the second type of statistics covered, concerns the
relationship between a sample of data and the population (in the statistical
sense, not necessarily human) from which it is drawn. In particular, it asks what
inferences can be validly drawn about the population from the sample.
Sometimes the sample is not representative of the population (either due to
bad sampling procedures or simply due to bad luck) and does not give us a true
picture of reality.

The graph was presented as fact but it is actually based on a sample of indi-
viduals, since it would obviously be impossible to ask everyone about their
drinking habits. Does it therefore provide a true picture of drinking habits? We
can be reasonably confident that it does, for two reasons. First, the government
statisticians who collected the data designed the survey carefully, ensuring that
all age groups are fairly represented, and did not conduct all the interviews in
pubs, for example. Second, the sample is a large one (about 10 000 households)
so there is little possibility of getting an unrepresentative sample. It would
be very unlucky if the sample consisted entirely of teetotallers, for example. We
can be reasonably sure, therefore, that the graph is a fair reflection of reality and
that the average woman drinks around 6 units of alcohol per week. However,
we must remember that there is some uncertainty about this estimate. Statistical
inference provides the tools to measure that uncertainty.

The scatter diagram in Figure 1.2 (considered in more detail in Chapter 7)
shows the relationship between economic growth and the birth rate in 12 develop-
ing countries. It illustrates a negative relationship — higher economic growth
appears to be associated with lower birth rates.

Once again we actually have a sample of data, drawn from the population
of all countries. What can we infer from the sample? Is it likely that the
‘true’ relationship (what we would observe if we had all the data) is similar,
or do we have an unrepresentative sample? In this case the sample size is quite
small and the sampling method is not known, so we might be cautious in our
conclusions.
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Statistics and you

By the time you have finished this book you will have encountered and, I hope,
mastered a range of statistical techniques. However, becoming a competent
statistician is about more than learning the techniques, and comes with time
and practice. You could go on to learn about the subject at a deeper level and
learn some of the many other techniques that are available. However, I believe
you can go a long way with the simple methods you learn here, and gain insight
into a wide range of problems. A nice example of this is contained in the
article ‘Error Correction Models: Specification, Interpretation, Estimation’, by
G. Alogoskoufis and R. Smith in the Journal of Economic Surveys, 1991 (vol. 5,
pp- 27-128), examining the relationship between wages, prices and other vari-
ables. After 19 pages analysing the data using techniques far more advanced
than those presented in this book, they state ‘the range of statistical techniques
utilised have not provided us with anything more than we would have got
by taking the [. . .] variables and looking at their graphs’. Sometimes advanced
techniques are needed, but never underestimate the power of the humble graph.

Beyond a technical mastery of the material, being a statistician encompasses
a range of more informal skills which you should endeavour to acquire. I hope
that you will learn some of these from reading this book. For example,
you should be able to spot errors in analyses presented to you, because your
statistical ‘intuition’ rings a warning bell telling you something is wrong. For
example, the Guardian newspaper, on its front page, once provided a list of the
‘best’ schools in England, based on the fact that in each school, every one of its
pupils passed a national exam — a 100% success rate. Curiously, all of the schools
were relatively small, so perhaps this implies that small schools achieve better
results than large ones? Once you can think statistically you can spot the fallacy
in this argument. Try it. The answer is at the end of this introduction.

Here is another example. The UK Department of Health released the following
figures about health spending, showing how planned expenditure (in £m) was
to increase.

1998-99 1999-00 2000-01 2001-02 Total increase over
3-year period

Health spending 37 169 40 228 43129 45 985 17 835
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The total increase in the final column seems implausibly large, especially
when compared to the level of spending. The increase is about 45% of the level.
This should set off the warning bell, once you have a ‘feel’ for statistics (and,
perhaps, a certain degree of cynicism about politics!). The ‘total increase’ is the
result of counting the increase from 98-99 to 99-00 three times, the increase
from 99-00 to 00-01 twice, plus the increase from 00-01 to 01-02. It therefore
measures the cumulative extra resources to health care over the whole period,
but not the year-on-year increase, which is what many people would interpret
it to be.

You will also become aware that data cannot be examined without their
context. The context might determine the methods you use to analyse the
data, or influence the manner in which the data are collected. For example, the
exchange rate and the unemployment rate are two economic variables which
behave very differently. The former can change substantially, even on a daily
basis, and its movements tend to be unpredictable. Unemployment changes
only slowly and if the level is high this month it is likely to be high again next
month. There would be little point in calculating the unemployment rate on a
daily basis, yet this makes some sense for the exchange rate. Economic theory
tells us quite a lot about these variables even before we begin to look at the data.
We should therefore learn to be guided by an appropriate theory when looking
at the data — it will usually be a much more effective way to proceed.

Another useful skill is the ability to present and explain statistical concepts
and results to others. If you really understand something you should be able to
explain it to someone else — this is often a good test of your own knowledge.
Below are two examples of a verbal explanation of the variance (covered in
Chapter 1) to illustrate.

Good explanation

The variance of a set of observations ex-
presses how spread out are the numbers.

Bad explanation

The variance is a formula for the deviations,
which are squared and added up. The dif-

A low value of the variance indicates that | ferences are from the mean, and divided by
the observations are of similar size, a high | n or sometimes by n — 1.

value indicates that they are widely spread
around the average.

The bad explanation is a failed attempt to explain the formula for the vari-
ance and gives no insight into what it really is. The good explanation tries to
convey the meaning of the variance without worrying about the formula (which
is best written down). For a (statistically) unsophisticated audience the explana-
tion is quite useful and might then be supplemented by a few examples.

Statistics can also be written well or badly. Two examples follow, concerning
a confidence interval, which is explained in Chapter 4. Do not worry if you do
not understand the statistics now.
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Good explanation Bad explanation
The 95% confidence interval is given by 95% interval = X — 1.96./s*/n =
2 ls2/ X +1.964s*/n =0.95
££1.96x 5 \
Inserting the sample values X = 400, s> = | =400 - 1.961600/30 and

1600 and n = 30 into the formula we obtain
=400 + 1.96/1600/30

400 +1.96 x |[16007 ) so we have [385.7, 414.3]

yielding the interval [385.7, 414.3]

In good statistical writing there is a logical flow to the argument, like a
written sentence. It is also concise and precise, without too much extraneous
material. The good explanation exhibits these characteristics whereas the
bad explanation is simply wrong and incomprehensible, even though the final
answer is correct. You should therefore try to note the way the statistical argu-
ments are laid out in this book, as well as take in their content.

When you do the exercises at the end of each chapter, ask another student to
read your work through. If they cannot understand the flow or logic of your work
then you have not succeeded in presenting your work sufficiently accurately.

Answer to the ‘best’ schools problem

A high proportion of small schools appear in the list simply because they are
lucky. Consider one school of 20 pupils, another with 1000, where the average
ability is similar in both. The large school is highly unlikely to obtain a 100%
pass rate, simply because there are so many pupils and (at least) one of them
will probably perform badly. With 20 pupils, you have a much better chance of
getting them all through. This is just a reflection of the fact that there tends to
be greater variability in smaller samples. The schools themselves, and the pupils,
are of similar quality.
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By the end of this chapter you should be able to:

@ recognise different types of data and use appropriate methods to summarise
and analyse them;

® use graphical techniques to provide a visual summary of one or more data
series;

® use numerical techniques (such as an average) to summarise data series;
® recognise the strengths and limitations of such methods;

@ recognise the usefulness of data transformations to gain additional insight into a
set of data.

Complete your diagnostic test for Chapter 1 now to create your personal study
plan. Exercises with an icon(? are also available for practice in MathXL with
additional supporting resources.

[Introduction
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The aim of descriptive statistical methods is simple: to present information in a
clear, concise and accurate manner. The difficulty in analysing many phenom-
ena, be they economic, social or otherwise, is that there is simply too much
information for the mind to assimilate. The task of descriptive methods is there-
fore to summarise all this information and draw out the main features, without
distorting the picture.
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Consider, for example, the problem of presenting information about the
wealth of British citizens (which follows later in this chapter). There are about
17 million adults for whom data are available: to present the data in raw form
(i.e. the wealth holdings of each and every person) would be neither useful nor
informative (it would take about 30 000 pages of a book, for example). It would
be more useful to have much less information, but information that was still
representative of the original data. In doing this, much of the original informa-
tion would be deliberately lost; in fact, descriptive statistics might be described
as the art of constructively throwing away much of the data!

There are many ways of summarising data and there are few hard and fast
rules about how you should proceed. Newspapers and magazines often provide
innovative (although not always successful) ways of presenting data. There are,
however, a number of techniques that are tried and tested, and these are the
subject of this chapter. These are successful because: (a) they tell us something
useful about the underlying data; and (b) they are reasonably familiar to many
people, so we can all talk in a common language. For example, the average tells
us about the location of the data and is a familiar concept to most people. For
example, my son talks of his day at school being ‘average’.

The appropriate method of analysing the data will depend on a number of
factors: the type of data under consideration; the sophistication of the audience;
and the ‘message’ that it is intended to convey. One would use different methods
to persuade academics of the validity of one’s theory about inflation than one
would use to persuade consumers that Brand X powder washes whiter than
Brand Y. To illustrate the use of the various methods, three different topics are
covered in this chapter. First we look at the relationship between educational
attainment and employment prospects. Do higher qualifications improve your
employment chances? The data come from people surveyed in 2004/5, so we
have a sample of cross-section data giving a picture of the situation at one point
in time. We look at the distribution of educational attainments amongst those
surveyed, as well as the relationship to employment outcomes. In this example
we simply count the numbers of people in different categories (e.g. the number
of people with a degree qualification who are employed).

Second, we examine the distribution of wealth in the UK in 2003. The data
are again cross-section, but this time we can use more sophisticated methods
since wealth is measured on a ratio scale. Someone with £200 000 of wealth
is twice as wealthy as someone with £100 000 for example, and there is a
meaning to this ratio. In the case of education, one cannot say with any pre-
cision that one person is twice as educated as another (hence the perennial
debate about educational standards). The educational categories may be ordered
(so one person can be more educated than another, although even that may be
ambiguous) but we cannot measure the ‘distance’ between them. We refer to
this as education being measured on an ordinal scale. In contrast, there is not
an obvious natural ordering to the three employment categories (employed,
unemployed, inactive), so this is measured on a nominal scale.

Third, we look at national spending on investment over the period 1973 to
2005. This is time series data, as we have a number of observations on the vari-
able measured at different points in time. Here it is important to take account
of the time dimension of the data: things would look different if the observa-
tions were in the order 1973, 1983, 1977, . . . rather than in correct time order.

9
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We also look at the relationship between two variables — investment and output
— over that period of time and find appropriate methods of presenting it.

In all three cases we make use of both graphical and numerical methods
of summarising the data. Although there are some differences between the
methods used in the three cases these are not watertight compartments: the
methods used in one case might also be suitable in another, perhaps with slight
modification. Part of the skill of the statistician is to know which methods of
analysis and presentation are best suited to each particular problem.

[Summarising data using graphical techniques ]
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) Education and employment, or, after all this, will you get a job?

We begin by looking at a question which should be of interest to you: how does
education affect your chances of getting a job? It is now clear that education
improves one’s life chances in various ways, one of the possible benefits being
that it reduces the chances of being out of work. But by how much does it
reduce those chances? We shall use a variety of graphical techniques to explore
the question.

The raw data for this investigation come from the Education and Training
Statistics for the U.K. 2006." Some of these data are presented in Table 1.1 and
show the numbers of people by employment status (either in work, unem-
ployed, or inactive, i.e. not seeking work) and by educational qualification
(higher education, A-levels, other qualification or no qualification). The table
gives a cross-tabulation of employment status by educational qualification and
is simply a count (the frequency) of the number of people falling into each of
the 12 cells of the table. For example, there were 8 541 000 people in work who
had experience of higher education. This is part of a total of just over 36 million
people of working age. Note that the numbers in the table are in thousands, for
the sake of clarity.

Table 1.1 Economic status and educational qualifications, 2006  (numbers in 000s)

Higher A levels Other No Total

education qualification qualification
In work 8541 5501 10 702 2260 27 004
Unemployed 232 247 758 309 1546
Inactive 1024 1418 3150 2284 7876
Total 9797 7166 14 610 4853 36 426

! This is now an internet-only publication, available at http://www.dcsf.gov.uk/rsgateway/
DB/VOL/v000696/Vweb03-2006V1.pdf.



Figure 1.1

Educational
qualifications of people
in work in the UK, 2006
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Note: The height of each bar is determined by the associated frequency. The first bar is
8541 units high, the second is 5501 units high and so on. The ordering of the bars could be
reversed (‘no qualifications’ becoming the first category) without altering the message.

The bar chart

The first graphical technique we shall use is the bar chart and this is shown
in Figure 1.1. This summarises the educational qualifications of those in work,
i.e. the data in the first row of the table. The four educational categories are
arranged along the horizontal (x) axis, while the frequencies are measured on
the vertical (y) axis. The height of each bar represents the numbers in work for
that category.

The biggest group is seen to be those with ‘other qualifications’, although
this is now not much bigger than the ‘higher education’ category (the numbers
entering higher education have been increasing substantially in the UK over
time, although this is not evident in this chart, which uses cross-section data).
The ‘no qualifications’ category is the smallest, although it does make up a
substantial fraction of those in work.

It would be interesting to compare this distribution with those for the
unemployed and inactive. This is done in Figure 1.2, which adds bars for these
other two categories. This multiple bar chart shows that, as for the ‘in work’
category, among the inactive and unemployed, the largest group consists of
those with ‘other’ qualifications (which are typically vocational qualifications).
These findings simply reflect the fact that ‘other qualifications’ is the largest cat-
egory. We can also begin to see whether more education increases your chance
of having a job. For example, compare the height of the ‘in work’ bar to the
‘inactive’ bar. It is relatively much higher for those with higher education than
for those with no qualifications. In other words, the likelihood of being inactive
rather than employed is lower for graduates. However, we are having to make
judgements about the relative heights of different bars simply by eye, and it is
easy to make a mistake. It would be better if we could draw charts that would
better highlight the differences. Figure 1.3 shows an alternative method of
presentation: the stacked bar chart. In this case the bars are stacked one on top
of another instead of being placed side by side. This is perhaps slightly better

1"
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and the different overall sizes of the categories is clearly brought out. However,
we are still having to make tricky visual judgements about proportions.

A clearer picture emerges if the data are transformed to (column) percentages,
i.e. the columns are expressed as percentages of the column totals (e.g. the
proportion of graduates are in work, rather than the number). This makes it easier
directly to compare the different educational categories. These figures are shown
in Table 1.2.

Having done this, it is easier to make a direct comparison of the different
education categories (columns). This is shown in Figure 1.4, where all the bars

12
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Table 1.2 Economic status and educational qualifications: column percentages

Higher A levels Other No All
education qualification qualification
In work 87% 77% 73% 47% 76%
Unemployed 2% 3% 5% 6% 4%
Inactive 10% 20% 22% 47% 22%
Totals 99% 100% 100% 100% 100%

Note: The column percentages are obtained by dividing each frequency by the column total.
For example, 87% is 8541 divided by 9797; 77% is 5501 divided by 7166, and so on. Columns
may not sum to 100% due to rounding.

100%
80%
60% T
O Inactive
[ Unemployed
40% O In work
20% 1
0%
Higher Advanced Other No
education level qualifications qualifications

are of the same height (representing 100%) and the components of each bar
now show the proportions of people in each educational category either in work,
unemployed or inactive.

It is now clear how economic status differs according to education and the
result is quite dramatic. In particular:

e The probability of unemployment increases rapidly with lower educational
attainment (this interprets proportions as probabilities, i.e. if 10% are out of
work then the probability that a person picked at random is unemployed
is 10%).

e The biggest difference is between the no qualifications category and the other
three, which have relatively smaller differences between them. In particular,
A-levels and other qualifications show a similar pattern.

Notice that we have looked at the data in different ways, drawing different
charts for the purpose. You need to consider which type of chart of most
suitable for the data you have and the questions you want to ask. There is no
one graph that is ideal for all circumstances.

13
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Can we safely conclude therefore that the probability of your being un-
employed is significantly reduced by education? Could we go further and argue
that the route to lower unemployment generally is through investment in
education? The answer may be ‘yes’ to both questions, but we have not proved
it. Two important considerations are as follows:

e Innate ability has been ignored. Those with higher ability are more likely to
be employed and are more likely to receive more education. Ideally we would
like to compare individuals of similar ability but with different amounts of
education.

e Even if additional education does reduce a person’s probability of becoming
unemployed, this may be at the expense of someone else, who loses their job
to the more educated individual. In other words, additional education does
not reduce total unemployment but only shifts it around among the labour
force. Of course it is still rational for individuals to invest in education if they
do not take account of this externality.

The pie chart

Another useful way of presenting information graphically is the pie chart, which
is particularly good at describing how a variable is distributed between different
categories. For example, from Table 1.1 we have the distribution of people by
educational qualification (the first row of the table). This can be shown in a pie
chart as in Figure 1.5.

The area of each slice is proportional to the respective frequency and the
pie chart is an alternative means of presentation to the bar chart shown in
Figure 1.1. The percentages falling into each education category have been
added around the chart, but this is not essential. For presentational purposes it
is best not to have too many slices in the chart: beyond about six the chart tends
to look crowded. It might be worth amalgamating less important categories to
make a chart look clearer.

The chart reveals that 40% of those employed fall into the ‘other
qualification’ category, and that just 8% have no qualifications. This may be

8%

32%

[ Higher education
O Advanced level
40% [0 Other qualifications
E No qualifications

20%
Note: If you have to draw a pie chart by hand, the angle of each slice can be calculated as
follows:
frequency

angle = ——————— x 360.
total frequency

The angle of the first slice, for example, is

ST as0=113.9°.
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20% 15%
[ Higher education
16% [0 Advanced level
[ Other qualifications
E No qualifications
49%

contrasted with Figure 1.6, which shows a similar chart for the unemployed (the
second row of Table 1.1).

The ‘other qualification’ category is a little larger in this case, but the ‘no
qualification” group now accounts for 20% of the unemployed, a big increase.
Further, the proportion with a degree approximately halves from 32% to 15%.

Producing charts using Microsoft Excel

Most of the charts in this book were produced using Excel’s charting facility. With-
out wishing to dictate a precise style, you should aim for a similar, uncluttered
look. Some tips you might find useful are:

® Make the grid lines dashed in a light grey colour (they are not actually part of
the chart, hence should be discreet) or eliminate altogether.

® Get rid of the background fill (grey by default, alter to ‘No fill'). It does not look
great when printed.

® On the x-axis, make the labels horizontal or vertical, not slanted - it is then
difficult to see which point they refer to. If they are slanted, double click on the
x-axis then click the alignment tab.

® Colour charts look great on-screen but unclear if printed in black and white.
Change the style type of the lines or markers (e.g. make some dashed) to
distinguish them on paper.

® Both axes start at zero by default. If all your observations are large numbers
this may result in the data points being crowded into one corner of the graph.
Alter the scale on the axes to fix this: set the minimum value on the axis to be
slightly less than the minimum observation.

Otherwise, Excel’s default options will usually give a good result.

The following table shows the total numbers (in millions) of tourists visiting each
country and the numbers of English tourists visiting each country:

France Germany Italy Spain
All tourists 12.4 3.2 7.5 9.8
English tourists 2.7 0.2 1.0 3.6

(a) Draw a bar chart showing the total numbers visiting each country.

(b) Draw a stacked bar chart, which shows English and non-English tourists making
up the total visitors to each country.

15
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(c) Draw a pie chart showing the distribution of all tourists between the four
destination countries.

(d) Do the same for English tourists and compare results.

[Looking at cross-section data: wealth in the UK in 2003 ]

16

() Frequency tables and histograms

We now move on to examine data in a different form. The data on employment
and education consisted simply of frequencies, where a characteristic (such as
higher education) was either present or absent for a particular individual. We
now look at the distribution of wealth — a variable that can be measured on a
ratio scale so that a different value is associated with each individual. For ex-
ample, one person might have £1000 of wealth, another might have £1 million.
Different presentational techniques will be used to analyse this type of data. We
use these techniques to investigate questions such as how much wealth does the
average person have and whether wealth is evenly distributed or not.

The data are given in Table 1.3, which shows the distribution of wealth in the
UK for the year 2003 (the latest available at the time of writing), available at
http://www.hmrc.gov.uk/stats/personal_wealth/menu.htm. This is an example
of a frequency table. Wealth is difficult to define and to measure; the data shown
here refer to marketable wealth (i.e. items such as the right to a pension, which
cannot be sold, are excluded) and are estimates for the population (of adults) as
a whole based on taxation data.

Wealth is divided into 14 class intervals: £0 up to (but not including)
£10 000; £10000 up to £24 999, etc.,, and the number (or frequency) of

Table 1.3 The distribution of wealth, UK, 2003

Class interval (£) Numbers (thousands)
0-9999 2448
10 000-24 999 1823
25 000-39 999 1375
40 000-49 999 480
50 000-59 999 665
60 000-79 999 1315
80 000-99 999 1640
100 000-149 999 2151
150 000-199 000 2215
200 000-299 000 1856
300 000-499 999 1057
500 000-999 999 439
1 000 000-1 999 999 122
2 000 000 or more 50
Total 17 636

Note: It would be impossible to show the wealth of all 18 million individuals, so it has been
summarised in this frequency table.
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individuals within each class interval is shown. Note that the widths of the
intervals (the class widths) vary up the wealth scale: the first is £10 000, the
second £15 000 (= 25 000 — 10 000); the third £15 000 also and so on. This will
prove an important factor when it comes to graphical presentation of the data.

This table has been constructed from the original 17 636 000 observations
on individuals’ wealth, so it is already a summary of the original data (note that
all the frequencies have been expressed in thousands in the table) and much of
the original information is lost. The first decision to make if one had to draw up
such a frequency table from the raw data is how many class intervals to have,
and how wide they should be. It simplifies matters if they are all of the same
width but in this case it is not feasible: if 10 000 were chosen as the standard
width there would be many intervals between 500 000 and 1 000 000 (S0 of them
in fact), most of which would have a zero or very low frequency. If 100 000
were the standard width, there would be only a few intervals and the first
(0-100 000) would contain 9746 observations (55% of all observations), so
almost all the interesting detail would be lost. A compromise between these
extremes has to be found.

A useful rule of thumb is that the number of class intervals should equal the
square root of the total frequency, subject to a maximum of about 12 intervals.
Thus, for example, a total of 25 observations should be allocated to five inter-
vals; 100 observations should be grouped into 10 intervals; and 17 636 should
be grouped into about 12 (14 are used here). The class widths should be equal
in so far as this is feasible, but should increase when the frequencies become
very small.

To present these data graphically one could draw a bar chart as in the case of
education above, and this is presented in Figure 1.7. Before reading on, spend
some time looking at it and ask yourself what is wrong with it.

The answer is that the figure gives a completely misleading picture of the
data! (Incidentally, this is the picture that you will get using a spreadsheet
computer program, as I have done here. All the standard packages appear to do
this, so beware. One wonders how many decisions have been influenced by data
presented in this incorrect manner.)

3000
2500 1——
©
3 l o ]
S 2000
©
£
5 15004 [
g
g 10004 | | ot | | | | 1
>
=z
500 - —t 1 e
O T
o o o o o o o o o o o o o o
o o o o o o o o o o o o o
R o o o o o o o o o o o o o
Figure 1.7 o v o o o o o o o o o o o
— (a\] < e} © [ee] o Yo} o o o o o
Bar chart of the -~ ~ « ®» o S} S}
distribution of wealth -«
in the UK, 2003 Income class (lower boundary)



Chapter 1 ¢ Descriptive statistics

Figure 1.8

The wealth distribution
with alternative class
intervals
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Why is the figure wrong? Consider the following argument. The diagram
appears to show that there are few individuals around £40 000 to £60 000 (the
frequency is at a low of 480 (thousand)) but many around £150 000. But this is just
the result of the difference in the class width at these points (10 000 at £40 000
and 50 000 at £150 000). Suppose that we divide up the £150 000-£200 000
class into two: £150 000 to £175 000 and £175 000 to £200 000. We divide the
frequency of 2215 equally between the two (this is an arbitrary decision but
illustrates the point). The graph now looks like Figure 1.8.

Comparing Figures 1.7 and 1.8 reveals a difference: the hump around
£150 000 has now disappeared, replaced by a small crater. But this is disturbing —
it means that the shape of the distribution can be altered simply by altering the
class widths. If so, how can we rely upon visual inspection of the distribution?
What does the ‘real’ distribution look like? A better method would make the
shape of the distribution independent of how the class intervals are arranged.
This can be done by drawing a histogram.

The histogram

A histogram is similar to a bar chart except that it corrects for differences in class
widths. If all the class widths are identical, then there is no difference between
a bar chart and a histogram. The calculations required to produce the histogram
are shown in Table 1.4.

The new column in the table shows the frequency density, which measures
the frequency per unit of class width. Hence it allows a direct comparison of
different class intervals, i.e. accounting for the difference in class widths.

The frequency density is defined as follows

frequency 1.1)

frequency density = class width

Using this formula corrects the figures for differing class widths. Thus 0.2448 =
2448/10 000 is the first frequency density, 0.1215 = 1823/15 000 is the second,
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Table 1.4 Calculation of frequency densities

Range Number or frequency Class width Frequency density
0- 2448 10 000 0.2448
10 000- 1823 15 000 0.1215
25 000- 1375 15 000 0.0917
40 000- 480 10 000 0.0480
50 000- 665 10 000 0.0665
60 000- 1315 20 000 0.0658
80 000- 1640 20 000 0.0820
100 000- 2151 50 000 0.0430
150 000- 2215 50 000 0.0443
200 000- 3524 3800000 0.0009

Note: As an alternative to the frequency density, one could calculate the frequency per
‘standard’ class width, with the standard width chosen to be 10 000 (the narrowest class).
The values in column 4 would then be 2448; 1215.3 (= 1823 + 1.5); 916.7; etc. This would
lead to the same shape of histogram as using the frequency density.

etc. Above £200 000 the class widths are very large and the frequencies small
(too small to be visible on the histogram), so these classes have been combined.

The width of the final interval is unknown, so has to be estimated in order
to calculate the frequency density. It is likely to be extremely wide since the
wealthiest person may well have assets valued at several £m (or even £bn); the
value we assume will affect the calculation of the frequency density and there-
fore of the shape of the histogram. Fortunately it is in the tail of the distribution
and only affects a small number of observations. Here we assume (arbitrarily) a
width of £3.8m to be a ‘reasonable’ figure, giving an upper class boundary of £4m.

The frequency density is then plotted on the vertical axis against wealth on
the horizontal axis to give the histogram. One further point needs to be made:
the scale on the wealth axis should be linear as far as possible, e.g. £50 000
should be twice as far from the origin as £25 000. However, it is difficult to fit
all the values onto the horizontal axis without squeezing the graph excessively
at lower levels of wealth, where most observations are located. Therefore the
classes above £100 000 have been squeezed and the reader’s attention is drawn
to this. The result is shown in Figure 1.9.

The effect of taking frequency densities is to make the area of each block in
the histogram represent the frequency, rather than the height, which now
shows the density. This has the effect of giving an accurate picture of the shape
of the distribution.

Having done all this, what does the histogram show?

e The histogram is heavily skewed to the right (i.e. the long tail is to the right).

@ The modal class interval is £0—£10 000 (i.e. has the greatest density: no other
£10 000 interval has more individuals in it).

e A little under half of all people (45.9% in fact) have less than £80 000 of
marketable wealth.

@ About 20% of people have more than £200 000 of wealth.?

2 Due to the compressing of some class widths, it is difficult to see this accurately on the
histogram. There are limitations to graphical presentation.
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Figure 1.9
Histogram of the
distribution of wealth
in the UK, 2003
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Note: A frequency polygon would be the result if, instead of drawing blocks for
the histogram, lines were drawn connecting the centres of the top of each block.
The diagram is better drawn with blocks, in general.

The figure shows quite a high degree of inequality in the wealth distribution.
Whether this is acceptable or even desirable is a value judgement. It should be
noted that part of the inequality is due to differences in age: younger people
have not yet had enough time to acquire much wealth and therefore appear
worse off, although in life-time terms this may not be the case. To obtain a
better picture of the distribution of wealth would require some analysis of the
acquisition of wealth over the life-cycle (or comparing individuals of a similar
age). In fact, correcting for age differences does not make a big difference to the
pattern of wealth distribution (on this point and on inequality in wealth in
general, see Atkinson (1983), Chapters 7 and 8).

Relative frequency and cumulative frequency distributions

An alternative way of illustrating the wealth distribution uses the relative and
cumulative frequencies of the data. The relative frequencies show the proportion
of observations that fall into each class interval, so, for example, 2.72% of
individuals have wealth holdings between £40 000 and £50 000 (480 000 out
of 17 636 000 individuals). Relative frequencies are shown in the third column
of Table 1.5, using the following formula®

frequency _f (1.2)

Relative frequency = surm of frequencies Z_f

% If you are unfamiliar with the £ notation then read Appendix 1A to this chapter before
continuing.
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Table 1.5 Calculation of relative and cumulative frequencies

Range Frequency Relative frequency (%) Cumulative frequency
0- 2448 13.9 2448
10 000- 1823 10.3 4271
25 000- 1375 7.8 5646
40 000- 480 2.7 6126
50 000- 665 3.8 6791
60 000- 1315 7.5 8106
80 000- 1640 9.3 9746
100 000- 2151 12.2 11897
150 000- 2215 12.6 14112
200 000- 1856 10.5 15 968
300 000- 1057 6.0 17 025
500 000- 439 2.5 17 464
1000 000- 122 0.7 17 586
2 000 000- 50 0.3 17 636

Total 17 636 100.00

Note: Relative frequencies are calculated in the same way as the column percentages
in Table 1.2. Thus for example, 13.9% is 2448 divided by 17 636. Cumulative frequencies
are obtained by cumulating, or successively adding, the frequencies. For example,

4271 is 2448 + 1823, 5646 is 4271 + 1375, etc.

The AIDS epidemic

To show how descriptive statistics can be helpful in presenting information we
show below the ‘population pyramid’ for Botswana (one of the countries most
seriously affected by AIDS), projected for the year 2020. This is essentially two bar
charts (one for men, one for women) laid on their sides, showing the frequencies
in each age category (rather than wealth categories). The inner pyramid (in the
darker colour) shows the projected population given the existence of AIDS; the
outer pyramid assumes no deaths from AIDS.
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Original source of data: US Census Bureau, World Population Profile 2000. Graph adapted from the
UNAIDS web site at http://www.unaids.org/epidemic_update/report/Epi_report.htm#thepopulation.
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One can immediately see the huge effect of AIDS, especially on the 40-60 age
group (currently aged 20-40), for both men and women. These people would
normally be in the most productive phase of their lives but, with AIDS, the country
will suffer enormously with many old and young people dependent on a small
working population. The severity of the future problems is brought out vividly in
this simple graphic, based on the bar chart.

The sum of the relative frequencies has to be 100% and this acts as a check on
the calculations.

The cumulative frequencies, shown in the fourth column, are obtained by
cumulating (successively adding) the frequencies. The cumulative frequencies
show the total number of individuals with wealth up to a given amount; for
example, about 10 million people have less than £100 000 of wealth.

Both relative and cumulative frequency distributions can be drawn, in a sim-
ilar way to the histogram. In fact, the relative frequency distribution has exactly
the same shape as the frequency distribution. This is shown in Figure 1.10. This
time we have written the relative frequencies above the appropriate column,
although this is not essential.

The cumulative frequency distribution is shown in Figure 1.11, where the
blocks increase in height as wealth increases. The simplest way to draw this is to
cumulate the frequency densities (shown in the final column of Table 1.4) and
to use these values as the y-axis coordinates.

13.9%
Class widths squeezed _
10.3%
7.8%
9.3%
2.7%3.8% 7.5%
12.2% 12.6%

Figure 1.10 20.0%

The relative density !
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wealth in the UK, 2003

22

Wealth (£000)



Figure 1.11
The cumulative

frequency distribution of Note: The y-axis coordinates are obtained by cumulating the frequency densities in Table 1.4
above. For example, the first two y coordinates are 0.2448, 0.3663.
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[Worked example 1.1

)

There is a mass of detail in the sections above, so this worked example
is intended to focus on the essential calculations required to produce the
summary graphs. Simple artificial data are deliberately used to avoid the
distraction of a lengthy interpretation of the results and their meaning. The

data on the variable X and its frequencies f are shown in the following table,

with the calculations required:

X Frequency, f Relative frequency Cumulative frequency, F
10 6 0.17 6

1" 8 0.23 14

12 15 0.43 29

13 5 0.14 34

14 1 0.03 35

Total 35 1.00

Notes:

The X values are unique but could be considered the mid-point of a range, as earlier.
The relative frequencies are calculated as 0.17 = 6/35, 0.23 = 8/35, etc.

The cumulative frequencies are calculated as 14=6+8, 29 =6 + 8 + 15, etc.
The symbol F usually denotes the cumulative frequency in statistical work.
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Exercise 1.2

2

The resulting bar chart and cumulative frequency distribution are:

Bar chart of variable X
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Cumulative frequency distribution of X
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Given the following data:
Range Frequency
0-10 20
11-30 40
31-60 30
60-100 20

(a) Draw both a bar chart and a histogram of the data and compare them.

(b) Calculate cumulative frequencies and draw a cumulative frequency diagram.

[Summarising data using numerical techniques

)

24

Graphical methods are an excellent means of obtaining a quick overview of the
data, but they are not particularly precise, nor do they lend themselves to fur-
ther analysis. For this we must turn to numerical measures such as the average.
There are a number of different ways in which we may describe a distribution
such as that for wealth. If we think of trying to describe the histogram, it is
useful to have:
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® A measure of location giving an idea of whether people own a lot of wealth
or a little. An example is the average, which gives some idea of where the dis-
tribution is located along the x-axis. In fact, we will encounter three different
measures of the ‘average”:
the mean;
the median;
the mode.
® A measure of dispersion showing how wealth is dispersed around (usually)
the average, whether it is concentrated close to the average or is generally far
away from it. An example here is the standard deviation.
® A measure of skewness showing how symmetric or not the distribution is, i.e.
whether the left half of the distribution is a mirror image of the right half or
not. This is obviously not the case for the wealth distribution.

We consider each type of measure in turn.

Measures of location: the mean

The arithmetic mean, commonly called the average, is the most familiar measure
of location, and is obtained simply by adding all the observations and dividing
by the number of observations. If we denote the wealth of the ith household by
x; (so that the index i runs from 1 to N, where N is the number of observations;
as an example, x; would be the wealth of the third household) then the mean is
given by the following formula

=N

ng

Xi
=] 1.3
H==g (1.3)

i=N
where u (the Greek letter mu, pronounced ‘myu’*) denotes the mean and z X;

i=1
(read ‘sigma x i, from i = 1 to N’, X being the Greek capital letter sigma) means
the sum of the x values. We may simplify this to

X

< (1.4)

when it is obvious which x values are being summed (usually all the available
observations). This latter form is more easily readable and we will generally use this.

(Worked example 1.2 ]

We will find the mean of the values 17, 25, 28, 20, 35. The total of these five
numbers is 125, so we have N = 5 and > x = 125. Therefore the mean is

_Xx 125
N5 OB

Formula (1.3) can only be used when all the individual x values are known. The
frequency table for wealth does not show all 17 million observations, however,

4 Well, mathematicians pronounce it like this, but modern Greeks do not. For them it is ‘mi’.
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but only the range of values for each class interval and the associated frequency.
In this case of grouped data the following equivalent formula may be used

i=C
z fix;
U= lic (15)
fi
i=1
or, more simply
XX 1.6
H=57 (1.6)

In this formula

x denotes the mid-point of each class interval, since the individual x values are
unknown. The mid-point is used as the representative x value for each class.
In the first class interval, for example, we do not know precisely where each
of the 2448 observations lies. Hence we assume they all lie at the mid-point,
£5000. This will cause a slight inaccuracy — because the distribution is so
skewed, there are more households below the mid-point than above it in every
class interval except, perhaps, the first. We ignore this problem here, and it is
less of a problem for most distributions which are less skewed than this one.
The summation runs from 1 to C, the number of class intervals, or distinct x
values. f times x gives the total wealth in each class interval. If we sum over
the 14 class intervals we obtain the total wealth of all individuals.

>f; = N gives the total number of observations, the sum of the individual
frequencies. The calculation of the mean, u, for the wealth data is shown in
Table 1.6.

Table 1.6 The calculation of average wealth

Range X f fx
0- 5.0 2448 12 240
10 000- 17.5 1823 31902
25 000- 32.5 1375 44 687
40 000- 45.0 480 21 600
50 000- 55.0 665 36 575
60 000- 70.0 1315 92 050
80 000- 90.0 1640 147 600
100 000- 125.0 2151 268 875
150 000- 175.0 2215 387 625
200 000- 250.0 1856 464 000
300 000- 400.0 1057 422 800
500 000- 750.0 439 329 250
1000 000- 1500.0 122 183 000
2 000 000- 3000.0 50 150 000
Total 17 636 2 592 205

Note: The fx column gives the product of the values in the fand x columns (so, for example,
5.0 x 2448 = 12 240, which is the total wealth held by those in the first class interval). The
sum of the fx values gives total wealth.
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From this we obtain

2592205

17636 146.984

Note that the x values are expressed in £000, so we must remember that the
mean will also be in £000; the average wealth holding is therefore £146 984.
Note that the frequencies have also been divided by 1000, but this has no
effect upon the calculation of the mean since f appears in both numerator and
denominator of the formula for the mean.

The mean tells us that if the total wealth were divided up equally between all
individuals, each would have £146 984. This value may seem surprising, since
the histogram clearly shows most people have wealth below this point (approx-
imately 65% of individuals are below the mean, in fact). The mean does not
seem to be typical of the wealth that most people have. The reason the mean
has such a high value is that there are some individuals whose wealth is way
above the figure of £146 984 — up into the £millions, in fact. The mean is the
‘balancing point’ of the distribution - if the histogram were a physical model, it
would balance on a fulcrum placed at 146 984. The few very high wealth levels
exert a lot of leverage and counter-balance the more numerous individuals
below the mean.

(Worked example 1.3 ]

Suppose we have 10 families with a single television in their homes, 12 fam-
ilies with two televisions each and 3 families with three. You can probably
work out in your head that there are 43 televisions in total (10 + 24 + 9)
owned by the 25 families (10 + 12 + 3). The average number of televisions per
family is therefore 43/25 = 1.72.

Setting this out formally, we have (as for the wealth distribution, but simpler):

X f fx
1 10 10
2 12 24
3 3 9
Totals 25 43

This gives our resulting mean as 1.72. Note that our data are discrete values
in this case and we have the actual values, not a broad class interval.

(D The mean as the expected value
We also refer to the mean as the expected value of x and write
E(x) = u=146 984 (1.7)

E(x) is read ‘E of X’ or ‘the expected value of x’. The mean is the expected value
in the sense that, if we selected a household at random from the population
we would ‘expect’, its wealth to be £146 984. It is important to note that this
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is a statistical expectation, rather than the everyday use of the term. Most of the
random individuals we encounter have wealth substantially below this value.
Most people might therefore ‘expect’ a lower value because that is their everyday
experience; but statisticians are different, they always expect the mean value.

The expected value notation is particularly useful in keeping track of the
effects upon the mean of certain data transformations (e.g. dividing wealth by
1000 also divides the mean by 1000); Appendix 1B provides a detailed explana-
tion. Use is also made of the E operator in inferential statistics, to describe the
properties of estimators (see Chapter 4).

The sample mean and the population mean

Very often we have only a sample of data (as in the worked example above), and

it is important to distinguish this case from the one where we have all the pos-
sible observations. For this reason, the sample mean is given by

X = X or x = I

n >f

Note the distinctions between u (the population mean) and x (the sample

mean), and between N (the size of the population) and n (the sample size).

Otherwise, the calculations are identical. It is a convention to use Greek letters,

such as u, to refer to the population and Roman letters, such as X, to refer to

a sample.

for grouped data (1.8)

The weighted average

Sometimes observations have to be given different weightings in calculating the
average, as the following example. Consider the problem of calculating the aver-
age spending per pupil by an education authority. Some figures for spending
on primary (ages 5 to 11), secondary (11 to 16) and post-16 pupils are given in
Table 1.7.

Clearly, significantly more is spent on secondary and post-16 pupils (a gen-
eral pattern throughout England and most other countries) and the overall aver-
age should lie somewhere between 1750 and 3820. However, taking a simple
average of these values would give the wrong answer, because there are different
numbers of children in the three age ranges. The numbers and proportions of
children in each age group are given in Table 1.8.

Table 1.7 Cost per pupil in different types of school (£ p.a.)

Primary Secondary Post-16

Unit cost 1750 3100 3820

Table 1.8 Numbers and proportions of pupils in each age range

Primary Secondary Post-16 Total
Numbers 8000 7000 3000 18 000
Proportion 446% 39% 17%
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As there are relatively more primary school children than secondary, and
relatively fewer post-16 pupils, the primary unit cost should be given greatest
weight in the averaging process and the post-16 unit cost the least. The weighted
average is obtained by multiplying each unit cost figure by the proportion of
children in each category and summing. The weighted average is therefore

0.44 x 1750 + 0.39 x 3100 + 0.17 x 3820 = 2628 1.9)

The weighted average gives an answer closer to the primary unit cost than
does the simple average of the three figures (2890 in this case), which would be
misleading. The formula for the weighted average is

X, =2wx; (1.10)
where w represents the weights, which must sum to one, i.e.
ZiW,- =1 (111)

and x represents the unit cost figures.

Notice that what we have done is equivalent to multiplying each unit cost
by its frequency (8000, etc.) and then dividing the sum by the grand total of
18 000. This is the same as the procedure we used for the wealth calculation.
The difference with weights is that we first divide 8000 by 18 000 (and 7000 by
18 000, etc.) to obtain the weights, which must then sum to one, and use these
weights in formula (1.10).

Calculating your degree result

If you are a university student your final degree result will probably be calculated
as a weighted average of your marks on the individual courses. The weights may
be based on the credits associated with each course or on some other factors. For
example, in my university the average mark for a year is a weighted average of the
marks on each course, the weights being the credit values of each course.

The grand mean G, on which classification is based, is then a weighted average
of the averages for the different years, as follows

~ OxVYear1+40x Year 2+ 60 x Year 3
100

G

i.e. the year 3 mark has a weight of 60%, year 2 is weighted 40% and the first year
is not counted at all.
For students taking a year abroad the formula is slightly different

_ O0xVYear 1+ 40 x Year 2 + 25 x Yabroad + 60 x Year 3
125

G

Note that, to accommodate the year abroad mark, the weights on years 2 and
3 are reduced (to 40/125 = 32% and 60/125 = 48% respectively).

() The median

Returning to the study of wealth, the unrepresentative result for the mean sug-
gests that we may prefer a measure of location which is not so strongly affected
by outliers (extreme observations) and skewness.
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The median is a measure of location which is more robust to such extreme

values; it may be defined by the following procedure. Imagine everyone in a line
from poorest to wealthiest. Go to the individual located halfway along the
line. Ask what their wealth is. Their answer is the median. The median is clearly
unaffected by extreme values, unlike the mean: if the wealth of the richest person
were doubled (with no reduction in anyone else’s wealth) there would be no
effect upon the median. The calculation of the median is not so straightforward

as

for the mean, especially for grouped data. The following worked example

shows how to calculate the median for ungrouped data.

[Worked example 1.4 The median j

Calculate the median of the following values: 45, 12, 33, 80, 77.

First we put them into ascending order: 12, 33, 45, 77, 80.
It is then easy to see that the middle value is 45. This is the median. Note

that if the value of the largest observation changes to, say, 150, the value

O

f the median is unchanged. This is not the case for the mean, which would

change from 49.4 to 63.4.

If there is an even number of observations, then there is no middle observa-

tion. The solution is to take the average of the two middle observations. For
example:

Find the median of 12, 33, 45, 63, 77, 80.

Note the new observation, 63, making six observations. The median value is
halfway between the third and fourth observations, i.e. (45 + 63)/2 = 54.

For grouped data there are two stages to the calculation: first we must first

identify the class interval which contains the median person, then we must
calculate where in the interval that person lies.

M

@)

To find the appropriate class interval: since there are 17 636 000 observa-
tions, we need the wealth of the person who is 8 818 000 in rank order. The
table of cumulative frequencies (see Table 1.5 above) is the most suitable
for this. There are 8 106 000 individuals with wealth of less than £80 000
and 9 746 000 with wealth of less than £100 000. The middle person there-
fore falls into the £80 000-100 000 class. Furthermore, given that 8 818 000
falls roughly half way between 8 106 000 and 9 746 000 it follows that the
median is close to the middle of the class interval. We now go on to make
this statement more precise.

To find the position in the class interval, we can now use formula (1.12)

N+1_
2

—

F

median = x; + (xy— x;) (1.12)

where

x, = the lower limit of the class interval containing the median

xy = the upper limit of this class interval

N =the number of observations (using N + 1 rather than N in the formula
is only important when N is relatively small)
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F = the cumulative frequency of the class intervals up to (but not including)
the one containing the median
f =the frequency for the class interval containing the median.

For the wealth distribution we have

17636 000 6326 990 _ 5 106 000

median = 80 000 + (100 000 — 80 000) 1640000 =£90 829

This alternative measure of location gives a very different impression: it is less
than two-thirds of the mean. Nevertheless, it is equally valid despite having a
different meaning. It demonstrates that the person ‘in the middle’ has wealth of
£90 829 and in this sense is typical of the UK population. Before going on to
compare these measures further we examine a third: the mode.

Generalising the median - quantiles

The idea of the median as the middle of the distribution can be extended:
quartiles divide the distribution into four equal parts, quintiles into five, deciles
into 10, and finally percentiles divide the distribution into 100 equal parts. Generically
they are known as quantiles. We shall illustrate the idea by examining deciles
(quartiles are covered below).

The first decile occurs one-tenth of the way along the line of people ranked from
poorest to wealthiest. This means we require the wealth of the person ranked
1763 600 (= N/10) in the distribution. From the table of cumulative frequencies,
this person lies in the first class interval. Adapting formula (1.12), we obtain

17636000 _ £7203
2 448 000

Thus we estimate that any household with less than £7203 of wealth falls into
the bottom 10% of the wealth distribution. In a similar fashion, the ninth decile can
be found by calculating the wealth of the household ranked 15 872 400 (= N x 9/10)
in the distribution.

first decile = 0 + (10 000 — 0) x{

(D The mode

The mode is defined as that level of wealth which occurs with the greatest
frequency, in other words the value that occurs most often. It is most useful and
easiest to calculate when one has all the data and there are relatively few distinct
observations. This is the case in the simple example below.

Suppose we have the following data on sales of dresses by a shop, according
to size

Size Sales
8 7
10 25
12 36
14 11
16 3
18 1
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Exercise 1.3

?

@

The modal size is 12. There are more women buying dresses of this size than
any other. This may be the most useful form of average as far as the shop is
concerned. Although it needs to stock a range of sizes, it knows it needs to
order more dresses in size 12 than in any other size. The mean would not be so
helpful in this case (it is X = 11.7) as it is not an actual dress size.

In the case of grouped data matters are more complicated. It is the modal
class interval which is required, once the intervals have been corrected for width
(otherwise a wider class interval is unfairly compared with a narrower one). For
this, we can again make use of the frequency densities. From Table 1.4 it can be
seen that it is the first interval, from £0 to £10 000, which has the highest
frequency density. It is ‘typical’ of the distribution because it is the one which
occurs most often (using the frequency densities, not frequencies). The wealth
distribution is most concentrated at this level and more people are like this in
terms of wealth than anything else. Once again it is notable how different it is
from both the median and the mean.

The three measures of location give different messages because of the skewness
of the distribution: if it were symmetric they would all give approximately
the same answer. Here we have a rather extreme case of skewness, but it does
serve to illustrate how the different measures of location compare. When the
distribution is skewed to the right, as here, they will be in the order mode,
median, mean; if skewed to the left the ordering is reversed. If the distribution
has more than one peak then this rule for orderings may not apply.

Which of the measures is ‘correct’ or most useful? In this particular case the
mean is not very useful: it is heavily influenced by extreme values. The median
is therefore often used when discussing wealth (and income) distributions.
Where inequality is even more pronounced, as in some less developed countries,
then the mean is even less informative. The mode is also quite useful in telling
us about a large section of the population, although it can be sensitive to how
the class intervals are arranged. If the data were arranged such that there was
a class interval of £5000 to £15 000, then this might well be the modal class,
conveying a slightly different impression.

The three different measures of location are marked on the histogram in
Figure 1.12. This brings out the substantial difference between the measures for
a skewed distribution such as for wealth.

(a) For the data in Exercise 2, calculate the mean, median and mode of the data.

(b) Mark these values on the histogram you drew for Exercise 2.

Measures of dispersion

Two different distributions (e.g. wealth in two different countries) might have
the same mean yet look very different, as shown in Figure 1.13 (the distributions
have been drawn using smooth curves rather than bars to improve clarity). In
one country everyone might have a similar level of wealth (curve B). In another,
although the average is the same there might be extremes of great wealth and
poverty (curve A). A measure of dispersion is a number which allows us to
distinguish between these two situations.
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Wealth

Note: Distribution A has a greater degree of dispersion than B, where everyone has a similar
level of wealth.

The simplest measure of dispersion is the range, which is the difference
between the smallest and largest observations. It is impossible to calculate
accurately from the table of wealth holdings since the largest observation is not
available. In any case, it is not a very useful figure since it relies on two extreme
values and ignores the rest of the distribution. In simpler cases it might be
more informative. For example, in an exam the marks may range from a low of
28% to a high of 74%. In this case the range is 74 — 28 = 46 and this tells us
something useful.

An improvement is the inter-quartile range (IQR), which is the difference
between the first and third quartiles. It therefore defines the limits of wealth
of the middle half of the distribution and ignores the very extremes of the
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distribution. To calculate the first quartile (which we label Q,) we have to go
one-quarter of the way along the line of wealth holders (ranked from poorest to
wealthiest) and ask the person in that position what their wealth is. Their
answer is the first quartile. The calculation is as follows:

® one-quarter of 17 636 is 4409;
e the person ranked 4409 is in the £25 000-40 000 class;
e adapting formula (1.12)

4409 - 4271

Q, = 25 000 + (40 000 — 25 000) { e } =26 505.5 (1.13)

The third quartile is calculated in similar fashion:

e three-quarters of 17 636 is 13 227;
e the person ranked 13 227 is in the £150 000-200 000 class;
® again using formula (1.12)

13 227 - 11 897
2 ee L O - 180 022.
3T } 80 022.6

Q; =150 000 + (200 000 — 150 000) {
and therefore the inter-quartile range is Q; — Q, = 180 022 — 26 505 = 153 517.
This might be reasonably rounded to £150 000 given the approximations in our
calculation, and is a much more memorable figure.

This gives one summary measure of the dispersion of the distribution: the
higher the value the more spread-out is the distribution. Two different wealth
distributions might be compared according to their inter-quartile ranges there-
fore, with the country having the larger figure exhibiting greater inequality.
Note that the figures would have to be expressed in a common unit of currency
for this comparison to be valid.

[Worked example 1.5 The range and inter-quartile range j

Suppose 110 children take a test, with the following results:

Mark, X Frequency, f Cumulative frequency, F
13 5 5

14 13 18

15 29 47

16 33 80

17 17 97

18 8 105

19 4 109

20 1 110

Total 110

The range is simply 20 — 13 = 7. The inter-quartile range requires calcula-
tion of the quartiles. Q, is given by the value of the 27.5th observation
(=110/4), which is 15. Q4 is the value of the 82.5th observation (=110 x 0.75)
which is 17. The IQR is therefore 17 — 15 = 2 marks. Half the students achieve
marks within this range.
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Notice that a slight change in the data (three more students getting 16 rather
than 17 marks) would alter the IQR to 1 mark (16-15). The result should be
treated with some caution therefore. This is a common problem when there
are few distinct values of the variable (eight in this example). It is often worth
considering whether a few small changes to the data could alter the calcula-
tion considerably. In such a case, the original result might not be very robust.

() The variance

A more useful measure of dispersion is the variance, which makes use of all of
the information available, rather than trimming the extremes of the distribu-
tion. The variance is denoted by the symbol ¢?2. ¢ is the Greek lower-case letter
sigma, so o? is read ‘sigma squared’. It has a completely different meaning from
Y (capital sigma) used before. Its formula is

2 2(x - pw? (1.14)

o N

In this formula, x — u measures the distance from each observation to the mean.
Squaring these makes all the deviations positive, whether above or below the
mean. We then take the average of all the squared deviations from the mean.
A more dispersed distribution (such as A in Figure 1.13) will tend to have larger
deviations from the mean, and hence a larger variance. In comparing two
distributions with similar means, therefore, we could examine their variances to
see which of the two has the greater degree of dispersion. With grouped data the
formula becomes

»_ 2flx - w?
== (1.15)

The calculation of the variance is shown in Table 1.9 and from this we obtain

(e

,_ 1001772 261.83

= 2.
17 636 56 802.69

This calculated value is before translating back into the original units of
measurement, as was done for the mean by multiplying by 1000. In the case of the
variance, however, we must multiply by 1 000 000 which is the square of 1000.
The variance is therefore 56 802 690 000. Multiplying by the square of 1000 is a
consequence of using squared deviations in the variance formula (see Appendix
1B on E and V operators for more details of this).

One needs to be a little careful about the units of measurement therefore.
If the mean is reported at 146.984 then it is appropriate to report the variance
as 56 802.69. If the mean is reported as 146 984 then the variance should be
reported as 56 802 690 000. Note that it is only the presentation that changes:
the underlying facts are the same.

() The standard deviation

In what units is the variance measured? As we have used a squaring procedure
in the calculation, we end up with something like ‘squared’ £s, which is not very
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Table 1.9 The calculation of the variance of wealth

Range Mid-point  Frequency, f  Deviation (x — u)? flx — u)?
x (£000) (x—p)

0 5.0 2448 -142.0 20 159.38 49 350 158.77
10 000- 17.5 1823 -129.5 16 766.04 30 564 482.57
25 000- 32.5 1375 -114.5 13 106.52 18 021 469.99
40 000- 45.0 480 -102.0 10 400.68 4992 326.62
50 000- 55.0 665 -92.0 8461.01 5626 568.95
60 000- 70.0 1315 -77.0 5926.49 7 793 339.80
80 000- 90.0 1640 -57.0 3247.15 5325317.93
100 000- 125.0 2151 -22.0 483.28 1039 544.38
150 000- 175.0 2215 28.0 784.91 1738579.16
200 000- 250.0 1856 103.0 10 612.35 19 696 526.45
300 000- 400.0 1057 253.0 64017.23 67 666 217.05
500 000- 750.0 439 603.0 363 628.63 159 632 966.88
1 000 000- 1500.0 122 1353.0 1830 653.04 223 339 670.45
2 000 000- 3000.0 50 2853.0 8139 701.86 406 985 092.85
Total 17 636 1001772 261.83

convenient. Because of this, we define the square root of the variance to be the
standard deviation, which is therefore back in £s. The standard deviation is
therefore given by

= \EZ(X;] w’ 116
or, for grouped data
- zf("—_ﬂ)z (1.17)

V" N

These are simply the square roots of equations (1.14) and (1.15). The standard
deviation of wealth is therefore 56 802.69 = 238.333. This is in £000, so the
standard deviation is actually £238 333 (note that this is the square root of
56 802 690 000, as it should be). On its own the standard deviation (and the
variance) is not easy to interpret since it is not something we have an intuitive
feel for, unlike the mean. It is more useful when used in a comparative setting.
This will be illustrated later on.

The variance and standard deviation of a sample

As with the mean, a different symbol is used to distinguish a variance calculated
from the population and one calculated from a sample. In addition, the sample
variance is calculated using a slightly different formula from the one for the
population variance. The sample variance is denoted by s* and its formula is
given by equations (1.18) and (1.19) below

2 _ Y(x — X)?

s
n-1

(1.18)
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and, for grouped data

ZZZf(X—)Z)Z

s
n-1

(1.19)

where n is the sample size. The reason n — 1 is used in the denominator rather than
n (as one might expect) is the following. Our real interest is in the population
variance, and the sample variance is an estimate of it. The former is measured
by the dispersion around u, and the sample variance should ideally be measured
around u also. However, u is unknown, so x is used instead. But the variation of
the sample observations around X tends to be smaller than that around u. Using
n — 1 rather than n in the formula compensates for this and the result is an
unbiased® (i.e. correct on average) estimate of the population variance.

Using the correct formula is more important the smaller is the sample size,
as the proportionate difference between n — 1 and n increases. For example, if
n = 10, the adjustment amounts to 10% of the variance; when n = 100 the
adjustment is only 1%.

The sample standard deviation is given by the square root of equation (1.18)
or (1.19).

(Worked example 1.6 The variance and standard deviation j

We continue with the previous worked example, relating to students’ marks.
The variance and standard deviation can be calculated as:

X f fx X— U (x —p)? flx —p)?
13 5 65 -2.81 7.89 39.45
14 13 182 -1.81 3.27 42.55
15 29 435 —-0.81 0.65 18.98
16 &3 528 0.19 0.04 1.20
17 17 289 1.19 1.42 2411
18 8 144 2.19 4.80 38.40
19 4 76 3.19 10.18 40.73
20 1 20 4.19 17.56 17.56
Totals 110 1739 222.99

The mean is calculated as 1739/110 = 15.81 and from this the deviations
column (x — ) is calculated (so -2.81 = 13 — 15.81, etc.).

The variance is calculated as YXfix — u)*/(n — 1) = 222.99/109 = 2.05. The
standard deviation is therefore 1.43, the square root of 2.05. (Calculations are
shown to two decimal places but have been calculated using exact values.)

For distributions which are approximately symmetric and bell-shaped
(i.e. the observations are clustered around the mean) there is an approximate
relationship between the standard deviation and the inter-quartile range.
This rule of thumb is that the IQR is 1.3 times the standard deviation. In this
case, 1.3 x 1.43 = 1.86, close to the value calculated earlier, 2.

® The concept of bias is treated in more detail in Chapter 4.
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(__) Alternative formulae for calculating the variance and
standard deviation

The following formulae give the same answers as equations (1.14) to (1.17) but
are simpler to calculate, either by hand or using a spreadsheet. For the popula-

tion variance one can use

2
o’ = 21\’7‘ 0 (1.20)

or, for grouped data

2 _ NS 2
=57 u (1.21)

The calculation of the variance using equation (1.21) is shown in Figure 1.14.

o

3 Microsafi Excel - wealth data 2003.xls
3] pe £t Yew [wet Fomat Took Dste Windw teb

ey ey

-m-il}“__!’_d.

ARz odl i gﬂlw .

%ot W3

W = & =ENCI0-HE
1A [ B [ ¢ | D | E I F | & owEwm 1 |
[ WEALTH DATA 2003
| Wealth  Mid-point  Frequency
Range x f fx fx squared Summary statistics
0 50 2448 122400 6120000
10 000 175 1823 319025 55820375 Mean 146 984
25000 325 1375 446875 145234375 Vanance
40000 450 480 216000 972 000.00 Siddewn | 238333
50000 550 665 365750 201162500 Coef vam 1621
60 000 700 1315 920500 544350000
&0 000 a00 1640 1476000 13284 000.00
100 000 1250 2151 2688750 3360937500
150 000 175.0 2215 3876250 6783437500
200 000 2500 185 4640000 115000 000.00
300 000 4000 1057 4228000 16512000000
500 000 7500 430 3292500 246937 500.00
1000000 15000 122 1830000 27450000000
2000000 30000 50 1500000 450 00000000
Figure 1.14 Totals 17636 25922050 1382784 21250
Descriptive statistics
calculated using Excel

The sample variance can be calculated using
> x* - nx*
2 _ 1.22
s p— (1.22)
or, for grouped data
Y - nx?
2 _ 1.23
s p—] (1.23)
The standard deviation may of course be obtained as the square root of these
formulae.

Using a calculator or computer for calculation

Electronic calculators and (particularly) computers have simplified the calcula-
tion of the mean, etc. Figure 1.14 shows how to set out the above calculations in
a spreadsheet (Microsoft Excel in this case) including some of the appropriate cell

formulae.
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> fx?

The variance in this case is calculated using the formula ¢? =7—u2, which

is the formula given in equation (1.21) above. Note that it gives the same result as
that calculated in the text.
The following formulae are contained in the cells:

D5: =C5*B5 to calculate f times x
E5: =D5*B5 to calculate f times x?
C20: = SUM(C5:C18) to sum the frequencies
H6: =D20/C20 calculates Y.fix/Xf

H7: =E20/C20 — H6"2  calculates Yfix%/Xf — u?
H8: = SQRT(H7) calculates o

H9: =H8/Hé6 calculates o/u

() The coefficient of variation

The measures of dispersion examined so far are all measures of absolute disper-
sion and, in particular, their values depend upon the units in which the variable
is measured. It is therefore difficult to compare the degrees of dispersion of two
variables which are measured in different units. For example, one could not
compare wealth in the UK with that in Germany if the former uses £s and the
latter euros for measurement. Nor could one compare the wealth distribution
in one country between two points in time because inflation alters the value of
the currency over time. The solution is to use a measure of relative dispersion,
which is independent of the units of measurement. One such measure is the
coefficient of variation, defined as

Coefficient of variation = E (1.24)

i.e. the standard deviation divided by the mean. Whenever the units of measure-
ment are changed, the effect upon the mean and the standard deviation is the
same, hence the coefficient of variation is unchanged. For the wealth distribution
its value is 238.333/146.984 = 1.621, i.e. the standard deviation is 162% of the mean.
This may be compared directly with the coefficient of variation of a different
wealth distribution to see which exhibits a greater relative degree of dispersion.

(__ Independence of units of measurement

It is worth devoting a little attention to this idea that some summary measures are
independent of the units of measurement and some are not, as it occurs quite
often in statistics and is not often appreciated at first. A statistic that is inde-
pendent of the units of measurement is one which is unchanged even when the
units of measurement are changed. It is therefore more useful in general than a
statistic which is not independent, since one can use it to make comparisons, or
judgements, without worrying about how it was measured.

The mean is not independent of the units of measurement. If we are told
the average income in the UK is 20 000, for example, we need to know whether
it is measured in pounds sterling, euros or even dollars. The underlying level of
income is the same, of course, but it is measured differently. By contrast, the rate
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of growth (described in detail shortly) is independent of the units of measure-
ment. If we are told it is 3% per annum, it would be the same whether it were
calculated in pounds, euros or dollars. If told that the rate of growth in the US
is 2% per annum, we can immediately conclude that the UK is growing faster,
no further information is needed.

Most measures we have encountered so far, such as the mean and variance,
do depend on units of measurement. The coefficient of variation is one that
does not. We now go on to describe another means of measuring dispersion that
avoids the units of measurement problem.

The standard deviation of the logarithm

Another solution to the problem of different units of measurement is to use the
logarithm® of wealth rather than the actual value. The reason why this works
can best be illustrated by an example. Suppose that between 1997 and 2003 each
individual’s wealth doubled, so that X?°® = 2X!%*7, where X! indicates the wealth
of individual i in year . It follows that the standard deviation of wealth in 2003,
X?9 is therefore exactly twice that of 1997, X'”. Taking logs, we have In X%
=In 2 +In X}*7, so it follows that the distribution of In X?*® is the same as that
of In X", except that it is shifted to the right by In 2 units. The variances (and
hence standard deviations) of the two logarithmic distributions must therefore
be the same, indicating no change in the relative dispersion of the two wealth
distributions.

The standard deviation of the logarithm of wealth is calculated from the data
in Table 1.10. The variance turns out to be

Table 1.10 The calculation of the standard deviation of the logarithm of wealth

Range Mid-point x (£000) n (x) Frequency, f fx x?
0- 5.0 1.609 2448 3939.9 6341.0
10 000- 17.5 2.862 1823 5217.8 14 934.4
25 000- 32.5 3.481 1375 4786.7 16 663.7
40 000- 45.0 3.807 480 1827.2 6955.5
50 000- 55.0 4.007 665 2664.9 10 679.0
60 000- 70.0 4.248 1315 5586.8 23 735.4
80 000- 90.0 4.500 1640 7379.7 33207.2
100 000- 125.0 4.828 2151 10 385.7 50 145.4
150 000- 175.0 5.165 2215 11 440.0 59 085.2
200 000- 250.0 5.521 1856 10 247.8 56 583.0
300 000- 400.0 5.991 1057 6333.0 37 943.8
500 000- 750.0 6.620 439 2906.2 19 239.3
1 000 000- 1500.0 7.313 122 892.2 6524.9
2 000 000- 3000.0 8.006 50 400.3 3205.1
Totals 17 636 74 008.2 345 243.0

Note: Use the ‘In" key on your calculator or the = LN() function in a spreadsheet to obtain
natural logarithms of the data. You should obtain ln 5=1.609, ln 17.5 =2.862, etc.

¢ See Appendix 1C if you are unfamiliar with logarithms. Note that we use the natural
logarithm here, but the effect would be the same using logs to base 10.



Summarising data using numerical techniques

2_ 3452430 _ [74 008.2

2
17 636 17 636 ) = 1.966

and the standard deviation o = 1.402.

For comparison, the standard deviation of log income in 1979 (discussed
in more detail later on) is 1.31, so there appears to have been a slight increase
in relative dispersion over this time period.

Measuring deviations from the mean: z-scores

Imagine the following problem. A man and a woman are arguing over their
career records. The man says he earns more than she does, so is more successful.
The woman replies that women are discriminated against and that, relative
to women, she is doing better than the man is, relative to other men. Can the
argument be resolved?

Suppose the data are as follows: the average male salary is £19 500, the aver-
age female salary £16 800. The standard deviation of male salaries is £4750, for
women it is £3800. The man’s salary is £31 375 while the woman's is £26 800.
The man is therefore £11 875 above the mean, the woman £10 000. However,
women's salaries are less dispersed than men’s, so the woman has done well to
reach £26 800.

One way to resolve the problem is to calculate the z-score, which gives the
salary in terms of the number of standard deviations from the mean. Thus for
the man, the z-score is

_ X-u _31375-19500 _

z o 4750

2.50 1.25)
Thus the man is 2.5 standard deviations above the male mean salary. For the
woman the calculation is

~ 26800 - 16 800

3800 =2.632 (1.26)

The woman is 2.632 standard deviations above her mean and therefore wins
the argument - she is nearer the top of her distribution than is the man and so
is more of an outlier. Actually, this probably will not end the argument, but is
the best the statistician can do! The z-score is an important concept which will
be used again later in the book when we cover hypothesis testing (Chapter 5).

Chebyshev’s inequality

Use of the z-score leads on naturally to Chebyshev’s inequality, which tells us
about the proportion of observations that fall into the tails of any distribution,
regardless of its shape. The theorem is expressed as follows

At least (1 — 1/k%) of the observations in any distribution
lie within k standard deviations of the mean (1.27)

If we take the female wage distribution given above, we can ask what propor-
tion of women lie beyond 2.632 standard deviations from the mean (in both tails
of the distribution). Setting k = 2.632, then (1 — 1/k* = (1 — 1/2.632%) = 0.8556.
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Exercise 1.4

2

So at least 85% of women have salaries within +2.632 standard deviations of
the mean, i.e. between £6 800 (= 16 800 — 2.632 x 3800) and £26 800 (= 16 800
+2.632 x 3800). 15% of women therefore lie outside this range.

Chebyshev’s inequality is a very conservative rule since it applies to any
distribution; if we know more about the shape of a particular distribution (for
example, men’s heights follow a Normal distribution - see Chapter 3) then we
can make a more precise statement. In the case of the Normal distribution, over
99% of men are within 2.632 standard deviations of the average height, because
there is a concentration of observations near the centre of the distribution.

We can also use Chebyshev’s inequality to investigate the inter-quartile
range. The formula (1.27) implies that 50% of observations lie within V2 = 1.41
standard deviations of the mean, a more conservative value than our previous 1.3.

(a) Forthe datain Exercise 2, calculate the inter-quartile range, the variance and the
standard deviation.

(b) Calculate the coefficient of variation.

(c) Check if the relationship between the IQR and the standard deviation stated in the
text is approximately true for this distribution.

(d) Approximately how much of the distribution lies within one standard deviation either
side of the mean? How does this compare with the prediction from Chebyshev’s
inequality?

Measuring skewness

The skewness of a distribution is the third characteristic that was mentioned
earlier, in addition to location and dispersion. The wealth distribution is heavily
skewed to the right, or positively skewed; it has its long tail in the right-hand
end of the distribution. A measure of skewness gives a numerical indication of
how asymmetric is the distribution.

One measure of skewness, known as the coefficient of skewness, is

No* ’

and it is based upon cubed deviations from the mean. The result of applying
formula (1.28) is positive for a right-skewed distribution (such as wealth), zero
for a symmetric one, and negative for a left-skewed one. Table 1.11 shows the
calculation for the wealth data (some rows are omitted for brevity). From this we
obtain

Yfx—w?® 1563796357 499

N = 17636 =88 670 693.89

88 670 693.89
13 537 964
The measure of skewness is much less useful in practical work than measures
of location and dispersion, and even knowing the value of the coefficient does
not always give much idea of the shape of the distribution: two quite different
distributions can share the same coefficient. In descriptive work it is probably
better to draw the histogram itself.

and dividing by o gives = 6.550, which is positive, as expected.



Summarising data using numerical techniques

Table 1.11 Calculation of the skewness of the wealth data

Range Mid-point  Frequency f  Deviation (x —uP® flx —u)®
x (£000) X-q
0 5.0 2448 -142.0 -2 862 304 —7 006 919 444
10 000 17.5 1823 -129.5 -2 170 929 -3 957 603 101
1000 000 1500.0 122 1353.0 2 476 903 349 302 182 208 638
2 000 000 3000.0 50 2853.0 23222 701 860 1161135092 991
Totals 17 636 4457.2 25927 167 232 1563 796 357 499

Comparison of the 2003 and 1979 distributions of wealth

Some useful lessons may be learned by comparing the 2003 distribution with its
counterpart from 1979. This covers the period of Conservative government
starting with Mrs Thatcher in 1979 up until the first six years of Labour admin-
istration. This shows how useful the various summary statistics are when it
comes to comparing two different distributions. The wealth data for 1979 are
given in Problem 1.5 below, where you are asked to confirm the following cal-
culations.

Average wealth in 1979 was £16 399, about one-ninth of its 2003 value. The
average increased substantially therefore (at about 10% per annum, on average),
but some of this was due to inflation rather than a real increase in the quantity
of assets held. In fact, between 1979 and 2003 the retail price index rose from
52.0 to 181.3, i.e. it increased approximately three and a half times. Thus the
nominal’ increase (i.e. in cash terms, before any adjustment for rising prices) in
wealth is made up of two parts: (i) an inflationary part which more than tripled
measured wealth and (ii) a real part, consisting of a 2.5 fold increase (thus
3.5 x 2.5 =9, approximately). Price indexes are covered in Chapter 10 where it
is shown more formally how to divide a nominal increase into price and real
(quantity) components. It is likely that the extent of the real increase in wealth
is overstated here due to the use of the retail price index rather than an index of
asset prices. A substantial part of the increase in asset values over the period is
probably due to the very rapid rise in house prices (houses form a significant
part of the wealth of many households).

The standard deviation is similarly affected by inflation. The 1979 value is
25 552 compared to 2003’s 238 333, which is about nine times larger. The spread
of the distribution appears to have increased therefore (even if we take account
of the general price effect). Looking at the coefficient of variation, however,
shows that it has increased from 1.56 to 1.62 which is a modest difference. The
spread of the distribution relative to its mean has not changed by much. This is
confirmed by calculating the standard deviation of the logarithm: for 1979 this
gives a figure of 1.31, slightly smaller than the 2003 figure (of 1.40).

" This is a different meaning of the term ‘nominal’ from that used earlier to denote data
measured on a nominal scale, i.e. data grouped into categories without an obvious order-
ing. Unfortunately, both meanings of the word are in common (statistical) usage, although
it should be obvious from the context which use is meant.
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The measure of skewness for the 1979 data comes out as 5.723, smaller that
the 2003 figure (of 6.550). This suggests that the 1979 distribution is less skewed
than is the 1994 one. Again, these two figures can be directly compared because
they do not depend upon the units in which wealth is measured. However, the
relatively small difference is difficult to interpret in terms of how the shape of
the distribution has changed.

[The box and whiskers diagram ]

Having calculated these various summary statistics we can now return to a
useful graphical method of presentation. This is the box and whiskers diagram
(sometimes called a box plot) which shows the median, quartiles and other
aspects of a distribution on a single diagram. Figure 1.15 shows the box plot for
the wealth data.

Wealth is measured on the vertical axis. The rectangular box stretches (vertic-
ally) from the first to third quartile and therefore encompasses the middle half
of the distribution. The horizontal line through it is at the median and lies
less than halfway up the box. This tells us that there is a degree of skewness even
within the central half of the distribution, although it does not appear very
severe. The two ‘whiskers’ extend above and below the box as far as the highest
and lowest observations, excluding outliers. An outlier is defined to be any obser-
vation which is more than 1.5 times the inter-quartile range (which is the same
as the height of the box) above or below the box. Earlier we found the IQR to be
153 517 and the upper quartile to be 180 022, so an (upper) outlier lies beyond

Wealth
(£000) M
400 T
300 -
200 o
100 A
Figure 1.15
Box plot of the wealth
distribution
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Time-series data: investment expenditures 1973-2005

180022 + 1.5 x 153 517 =410 298. There are no outliers below the box as wealth
cannot fall below zero. The top whisker is thus substantially longer than the
bottom one, and indicates the extent of dispersion towards the tails of the dis-
tribution. The crosses indicate the outliers and in reality extend far beyond
those shown in the diagram.

A simple diagram thus reveals a lot of information about the distribution.
Other boxes and whiskers could be placed alongside in the same diagram (per-
haps representing other countries) making comparisons straightforward. Some
statistical software packages, such as SPSS and STATA, can generate box plots
from the original data, without the need for the user to calculate the median,
etc. However, spreadsheet packages do not yet have this useful facility.

(Time-series data: investment expenditures 1973-2005 ]

The data on the wealth distribution give a snapshot of the situation at par-
ticular points in time, and comparisons can be made between the 1979 and
2003 snapshots. Often, however, we wish to focus on the time-path of a variable
and therefore we use time-series data. The techniques of presentation and sum-
marising are slightly different than for cross-section data. As an example, we use
data on investment in the UK for the period 1973-2005. These data were taken
from Statbase (http://www.statistics.gov.uk/statbase/) although you can find the
data in Economic Trends Annual Supplement. Investment expenditure is important
to the economy because it is one of the primary determinants of growth. Until
recent years, the UK economy’s growth record had been poor by international
standards and lack of investment may have been a cause. The variable studied
here is total gross (i.e. before depreciation is deducted) domestic fixed capital
formation, measured in £m. The data are shown in Table 1.12.

It should be remembered that the data are in current prices so that the figures
reflect price increases as well as changes in the volume of physical invest-
ment. The series in Table 1.12 thus shows the actual amount of cash that was

Table 1.12 UK investment, 1973-2005

Year Investment Year Investment Year Investment
1973 15227 1984 58 589 1995 118 031
1974 18 134 1985 64 400 1996 126 593
1975 21 856 1986 68 546 1997 133 620
1976 25516 1987 78 996 1998 151 083
1977 28 201 1988 96 243 1999 156 344
1978 32 208 1989 111 324 2000 161 468
1979 38 211 1990 114 300 2001 165 472
1980 43 238 1991 105179 2002 173 525
1981 43 331 1992 101 111 2003 178 751
1982 47 394 1993 101 153 2004 194 491
1983 51 490 1994 108 534 2005 205 843

Note: Time-series data consist of observations on one or more variables over several time
periods. The observations can be daily, weekly, monthly, quarterly or, as here, annually.
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Figure 1.16
Time-series graph of
investment in the UK,
1973-2005
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Note: The X, Y coordinates are the values {year, investment}; the first data point has the
coordinates {1973, 15 227}, for example.

spent each year on investment. The techniques used below for summarising the
investment data could equally well be applied to a series showing the volume of
investment.

First of all we can use graphical techniques to gain an insight into the charac-
teristics of investment. Figure 1.16 shows a time-series graph of investment. The
graph plots the time periods on the horizontal axis and the investment variable
on the vertical.

Plotting the data in this way brings out clearly some key features of the series:

@ The trend in investment is upwards, with only a few years in which there was
either no increase or a decrease.

@ There is a ‘hump’ in the data in the late 1980s/early 1990s, before the series
returns to its trend. Something unusual must have happened around that
time. If we want to know what factors determine investment (or the effect of
investment upon other economic magnitudes) we should get some useful
insights from this period of the data.

® The trend is slightly non-linear — it follows an increasingly steep curve over
time. This is essentially because investment grows by a percentage or propor-
tionate amount each year. As we shall see shortly, it grows by about 8.5% each
year. Therefore, as the level of investment increases each year, so does the
increase in the level, giving a non-linear graph.

® Successive values of the investment variable are similar in magnitude, i.e. the
value in year t is similar to that in t — 1. Investment does not change from
£40bn in one year to £10bn the next, then back to £50bn, for instance. In
fact, the value in one year appears to be based on the value in the previous
year, plus (in general) 8.5% or so. We refer to this phenomenon as serial cor-
relation and it is one of the aspects of the data that we might wish to invest-
igate. The ordering of the data matters, unlike the case with cross-section data
where the ordering is usually irrelevant. In deciding how to model invest-
ment behaviour, we might focus on changes in investment from year to year.



Figure 1.17
Time-series graph of the
change in investment

Time-series data: investment expenditures 1973-2005

Table 1.13 The change in investment

Year A Investment Year A Investment Year A Investment
1973 2880 1984 7099 1995 9497
1974 2907 1985 5811 1996 8562
1975 3722 1986 4146 1997 7027
1976 3660 1987 10 450 1998 17 463
1977 2685 1988 17 247 1999 5261
1978 4007 1989 15 081 2000 5124
1979 6003 1990 2976 2001 4004
1980 5027 1991 -9121 2002 8053
1981 93 1992 —4068 2003 5226
1982 4063 1993 42 2004 15 740
1983 4096 1994 7381 2005 11352

Note: The change in investment is obtained by taking the difference between successive
observations. For example, 2907 is the difference between 18 134 and 15 227.

e The series seems ‘smoother’ in the earlier years (up to perhaps 1986) and
exhibits greater volatility later on. In other words, there are greater fluctua-
tions around the trend in the later years. We could express this more formally
by saying that the variance of investment around its trend appears to change
(increase) over time. This is known as heteroscedasticity; a constant variance
is termed homoscedasticity.

We may gain further insight into how investment evolves over time by focus-
ing on the change in investment from year to year. If we denote investment in
year t by I, then the change in investment, A, is given by I, — I,_,. Table 1.13
shows the changes in investment each year and Figure 1.17 provides a time-
series graph.

The series is made up of mainly positive values, indicating that investment
increases over time. It also shows that the increase grows each year, with perhaps
some greater volatility (of the increase) towards the end of the period. The graph
also shows dramatically the change that occurred around 1990.
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VISTA Outliers
(9

W

- L u,/  Graphing data also allows you to see outliers (unusual observations). Outliers
might be due to an error in inputting the data (e.g. typing 97 instead of 970) or
because something unusual happened (e.g. the investment figure for 1991). Either
of these should be apparent from an appropriate graph. For example, the graph
of the change in investment highlights the 1991 figure. In the case of a straight-
forward error you should obviously correct it. If you are satisfied that the outlier
is not simply a typo, you might want to think about the possible reasons for its
existence and whether it distorts the descriptive picture you are trying to paint.

Another useful way of examining the data is to look at the logarithm of
investment. This transformation has the effect of straightening out the non-
linear investment series. Table 1.14 shows the transformed values and Figure 1.18
graphs the series. In this case we use the natural (base ¢) logarithm.

Table 1.14 The logarithm of investment and the change in the logarithm

Year InInvestment A lnlInvestment Year LInInvestment A lnInvestment Year LnlInvestment A lnInvestment

1973 9.631 0.210 1984 10.978 0.129 1995 11.679 0.084
1974 9.806 0.175 1985 11.073 0.095 1996 11.749 0.070
1975 9.992 0.187 1986 11.135 0.062 1997 11.803 0.054
1976 10.147 0.155 1987 11.277 0.142 1998 11.926 0.123
1977 10.247 0.100 1988 11.475 0.197 1999 11.960 0.034
1978 10.380 0.133 1989 11.620 0.146 2000 11.992 0.032
1979 10.551 0.171 1990 11.647 0.026 2001 12.017 0.024
1980 10.674 0.124 1991 11.563 —-0.083 2002 12.064 0.048
1981 10.677 0.002 1992 11.524 -0.039 2003 12.094 0.030
1982 10.766 0.090 1993 11.524 0.000 2004 12.178 0.084
1983 10.849 0.083 1994 11.595 0.070 2005 12.235 0.057

Note: For 1973, 9.631 is the natural logarithm of 15 227 , i.e. In 15 227 = 9.631.

€
(O]
E
[}
()
>
£
(o))
o
-
R s
Figure 1.18 8BS
Time-series graph Of the 8-0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
logarithm of investment S5 o AN O N D 5 A D AN b A Y AN D b
expenditures ST P FFFF P F S P S S >

48



Figure 1.19
Time-series graph of
the difference of the
logarithmic series

Time-series data: investment expenditures 1973-2005

This new series is much smoother than the original one (as is usually the case
when taking logs) and is helpful in showing the long-run trend, though it tends
to mask some of the volatility of investment. The slope of the graph gives a close
approximation to the average rate of growth of investment over the period
(expressed as a decimal). This is calculated as follows

change in (In) investment _ 12.235 - 9.631

=0.081 1.29
number of years 32 ( )

slope =

i.e. 8.1% per annum. Note that although there are 33 observations, there are only
32 years of growth. A word of warning: you must use natural (base e) logarithms,
not logarithms to the base 10, for this calculation to work. Remember also that
the growth of the volume of investment will be less than 8.1% per annum,
because part of it is due to price increases.

The logarithmic presentation is useful when comparing two different data
series: when graphed in logs it is easy to see which is growing faster — just see
which series has the steeper slope.

A corollary of equation (1.29) is that change in the natural logarithm of
investment from one year to the next represents the percentage change in the
data over that year. For example, the natural logarithm of investment in 1973 is
9.631, while in 1974 it is 9.806. The difference is 0.1735, so the rate of growth is
17.5%. Remember that this is an approximation and the result of a quick and
easy calculation. It is reasonably accurate up to a figure of about 20%.

Finally we can graph the difference of the logarithm, as we graphed the dif-
ference of the level. This is shown in Figure 1.19 (the calculations are in Table 1.14).

This is quite revealing. It shows the series fluctuating about the value of
approximately 0.08 (the average calculated in equation (1.29) above), with a
slight downwards trend. Furthermore, the series does not seem to show increas-
ing volatility over time, as the others did. The graph therefore demonstrates that
in proportionate terms there is no increasing volatility; the variance of the series
around 0.08 does not change much over time (although 1991 still seems to be
an ‘unusual’ observation).
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Figure 1.20

A multiple time-series
graph of investment
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Graphing multiple series

Investment is made up of different categories: the table in Problem 1.14 presents
investment data under four different headings: dwellings; transport; machinery;
intangible fixed assets; and other buildings. Together they make up total invest-
ment. It is often useful to show all of the series together on one graph. Figure 1.20
shows a multiple time-series graph of the investment data.

Construction of this type of graph is straightforward; it is just an extension of
the technique for presenting a single series. The chart shows that all investment
categories have increased over time in a fairly similar way, including the hump
then fall around 1990. It is noticeable, however, that investment in machinery
fell significantly around 2000 while other categories, particularly dwellings, con-
tinued to increase. It is difficult from the graph to tell which categories have
increased most rapidly over time: the 1973 values are relatively small and hard
to distinguish. In fact, it is the ‘intangible fixed assets’ category (the smallest
one) that has increased fastest in proportionate terms. This is easier to observe
with a few numerical calculations (covered later in this chapter) rather than try-
ing to read a cramped graph.

One could also produce a multiple series graph of the logarithms of the vari-
ables and also of the change, as was done for the total investment series. Since
the log transformation tends to squeeze the values (on the y-axis) closer together
(compare Figures 1.16 and 1.18) it might be easier to see the relative rates of
growth of the series using this method. This is left as an exercise for the reader.

Another complication arises when the series are of different orders of magni-
tude and it is difficult to make all the series visible on the chart. In this case you
can chart some of the series against a second vertical scale, on the right-hand
axis. An example is shown in Figure 1.21, plotting the (total) investment data
with the interest rate, which has much smaller numerical values. If the same axis
were used for both series, the interest rate would appear as a horizontal line
coinciding with the x-axis. This would reveal no useful information to the
viewer.

It would usually be inappropriate to use this technique on data such as the
investment categories graphed in Figure 1.20. Those are directly comparable to
each other and to magnify one of the series by plotting it on a separate axis risks



Figure 1.21

Time-series graph using
two vertical scales:
investment (LH scale)
and the interest rate
(RH scale), 1985-2005

Time-series data: investment expenditures 1973-2005
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distorting the message for the reader. However, investment and interest rates are
measured in inherently different ways and one cannot directly compare their
sizes, hence it is acceptable to use separate axes. The graph allows one to observe
the movements of the series together and hence perhaps infer something about
the relationship between them. The rising investment and falling interest rate
possibly suggest an inverse relationship between them.

Overlapping the ranges of the data series

The graph below, taken from the Treasury Briefing, February 1994, provides a nice
example of how to plot multiple time-series and compare them. The aim is to
compare the recessions and recoveries of 1974-78, 1979-83 and 1990-93. Instead
of plotting time on the horizontal axis, the number of quarters since the start of
each recession is used, so that the series overlap. This makes it easy to see the
depth of the last recession and the long time before recovery commenced. By
contrast, the 1974-78 recession ended quite quickly and recovery was quite rapid.
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Figure 1.22

Area graph of
investment categories,
1973-2005

Figure 1.23
Over-the-top graph of
investment
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The investment categories may also be illustrated by means of an area graph,
which plots the four series stacked one on top of the other, as illustrated in
Figure 1.22.

This shows, for example, the ‘dwellings’ and ‘machinery’ categories each take
up about one quarter of total investment. This is easier to see from the area
graph than from the multiple series graph in Figure 1.20.

‘Chart junk’

With modern computer software it is easy to get carried away and produce a chart
that actually hides more than it reveals. There is a great temptation to add some
3D effects, liven it up with a bit of colour, rotate and tilt the viewpoint, etc. This
sort of stuff is generally known as ‘chart junk’. As an example, look at Figure 1.23
which is an alternative to the area graph in Figure 1.22 above. It was fun to
create, but it does not get the message across at all! Taste is of course personal,
but moderation is usually an essential part of it.
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Exercise 1.5

v

Time-series data: investment expenditures 1973-2005

Given the following data:

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Profit 50 60 25 -10 10 45 60 50 20 40
Sales 300 290 280 255 260 285 300 310 300 330

(a) Draw a multiple time series graph of the two variables. Label both axes appro-
priately and provide a title for the graph.

(b) Adjust the graph by using the right-hand axis to measure profits, the left-hand
axis sales. What difference does this make?

Numerical summary statistics

The graphs have revealed quite a lot about the data already, but we can also
calculate numerical descriptive statistics as we did for the cross-section data.
First we consider the mean, then the variance and standard deviation.

The mean of a time series

We could calculate the mean of investment itself, but would this be helpful?
Because the series is trended, it passes through the mean at some point between
1973 and 2005, but never returns to it. The mean of the series is actually
£95.103bn, which is not very informative since it tells nothing about its value
today, for instance. The problem is that the variable is trended, so that the mean
is not typical of the series. The annual increase in investment is also trended, so
is subject to the same criticism (see Figure 1.17).

It is better in this case to calculate the average growth rate, as this is more
likely to be representative of the whole time period. It seems more reasonable to
say that a series is growing at (for example) 8% per annum than that it is growing
at 5000 per annum. The average growth rate was calculated in equation (1.29)
as 8.1% per annum, by measuring the slope of the graph of the log investment
series. That was stated to be an approximate answer. We can obtain an accurate
value in the following way:

(1) Calculate the overall growth factor of the series, i.e. x;/x, where x; is the

final observation and x, is the initial observation. This is X _ 205 843
X 15 227

= 13.518, i.e. investment expenditure is 13.5 times larger in 2005 than in
1973. JE—

(2) Take the T - 1 root of the growth factor. Since T = 33 we calculate }/13.518
= 1.085. (This can be performed on a scientific calculator by raising 13.518
to the power 1/32, i.e. 13.518"*? = 1.085.)

(3) Subtract 1 from the result in the previous step, giving the growth rate as a
decimal. In this case we have 1.085 — 1 = 0.085.

Thus the average growth rate of investment is 8.5% per annum, rather than the
8.1% calculated earlier.
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The power of compound growth

The Economist magazine provided some amusing and interesting examples of
how a $1 investment can grow over time. They assumed that an investor (they
named her Felicity Foresight, for reasons that become obvious) started with $1 in
1900 and had the foresight or luck to invest, each year, in the best performing
asset of the year. Sometimes she invested in equities, some years in gold and so
on. By the end of the century she had amassed $9.6 quintillion ($9.6 x 10'8, more
than world gross domestic product (GDP), so highly unrealistic). This is equivalent
to an average annual growth rate of 55%. In contrast, Henry Hindsight did the
same, but invested in the previous year’s best asset. This might be thought more
realistic. Unfortunately, his $1 turned into only $783, a still respectable annual
growth rate of 6.9%. This, however, is beaten by the strategy of investing in
the previous year’'s worst performing asset (what goes down must come up . . ..
This turned $1 into $1730, a return of 7.7%. Food for thought!

Source: The Economist, 12 February 2000, p. 111.

Note that we could also obtain the accurate answer from our earlier calculation
as follows:

e the slope of the graph is 0.0814 (from equation (1.29) above, but to four
decimal places for accuracy);

e calculate the anti-log (¢*) of this: ¢*%!" = 1.085;

@ subtract 1, giving a growth rate of 1.085 — 1 = 0.085 = 8.5% (p.a.).

Note that, as the calculated growth rate is based only upon the initial and
final observations, it could be unreliable if either of these two values is an outlier.
With a sufficient span of time, however, this is unlikely to be a serious problem.

The geometric mean

In calculating the average growth rate of investment we have implicitly calcu-
lated the geometric mean of a series. If we have a series of n values, then their
geometric mean is calculated as the nth root of the product of the values, i.e.

e
I'n

geometric mean = n‘;“Hx,- (1.30)
i=1
The x values in this case are the growth factors in each year, as in Table 1.15 (the
values in intermediate years are omitted). The ‘T’ symbol is similar to the use of
Y, but means ‘multiply together’ rather than ‘add up’.

The product of the 32 growth factors is 13.518 (the same as is obtained by
dividing the final observation by the initial one — why?) and the 32nd root of
this is 1.085. This latter figure, 1.085, is the geometric mean of the growth factors
and from it we can derive the growth rate of 8.5% p.a. by subtracting 1.

Whenever one is dealing with growth data (or any series that is based on a
multiplicative process) one should use the geometric mean rather than the
arithmetic mean to get the answer. However, using the arithmetic mean in this
case generally gives only a small error, as is indicated below.
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Table 1.15 Calculation of the geometric mean - annual growth factors

Investment Growth factors
1973 15227
1974 18 134 1.191 (=18 134/15 227)
1975 21856 1.205 (=21856/18 134)
1976 25516 1.167 Etc.
2002 173 525 1.049
2003 178 751 1.030
2004 194 491 1.088
2005 205 843 1.058

Note: Each growth factor simply shows the ratio of that year’s investment to the
previous year’s.

Another approximate way of obtaining the average
growth rate

We have seen that when calculating rates of growth one should use the
geometric mean, but if the growth rate is reasonably small then taking the
arithmetic mean of the growth factors will give approximately the right answer.
The arithmetic mean of the growth factors is

1.191+1.205 +...+1.088 + 1.058

=1.087
32

giving an estimate of the growth rate of 1.087 — 1 = 0.087 = 8.7% p.a. — close to
the correct value. Note also that one could equivalently take the average of the
annual growth rates (0.191, 0.205, etc.), giving 0.087, to obtain the same result.
Use of the arithmetic mean is justified in this context if one needs only an
approximation to the right answer and annual growth rates are reasonably
small. It is usually quicker and easier to calculate the arithmetic rather than geo-
metric mean, especially if one does not have a computer to hand.

By now you might be feeling a little overwhelmed by the various methods we
have used, all to get an idea of the average - methods which give similar but not
always identical answers. Let us summarise the findings:

(a) measuring the slope of the log graph: gives approximately the right answer;

(b) transforming the slope using the formula ¢’ — 1: gives the precise answer
(b is the measured slope);

(c) calculating TQ‘J‘X—T — 1: gives the precise answer (as in (b));

| Xl

(d) calculating the geometric mean of the growth factors: gives the precise
answer;

(e) calculating the arithmetic mean of the growth factors: gives approximately
the right answer (although not the same approximation as (a) above).

Remember also that the ‘precise’ answer could be slightly misleading if either
initial or final value is an outlier.
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Compound interest

The calculations we have performed relating to growth rates are analogous to
computing compound interest. If we invest £100 at a rate of interest of 10% per
annum, then the investment will grow at 10% p.a. (assuming all the interest is
reinvested). Thus after one year the total will have grown to £100 x 1.1 (£110), after
two years to £100 x 1.1 (£121) and after t years to £100 x 1.1". The general formula
for the terminal value S, of a sum S, invested for t years at a rate of interest r is

S, =S+ 1) (1.31)

where ris expressed as a decimal. Rearranging (1.31] to make r the subject yields

r=%/ _1 (1.32)
So
which is precisely the formula for the average growth rate. To give a further
example: suppose an investment fund turns an initial deposit of £8000 into
£13 500 over 12 years. What is the average rate of return on the investment? Setting
Sy=8,S,=13.5, t =12 and using equation (1.32) we obtain

r= 12/13% —1=0.045

or 4.5% per annum.

Formula (1.32) can also be used to calculate the depreciation rate and the
amount of annual depreciation on a firm’s assets. In this case, S, represents the
initial value of the asset, S, represents the final or scrap value, and the annual rate
of depreciation (as a negative number] is given by r from equation (1.32).

() The variance of a time series

How should we describe the variance of a time series? The variance of the invest-
ment data can be calculated, but it would be uninformative in the same way as
the mean. As the series is trended, and this is likely to continue in the longer
run, the variance is in principle equal to infinity. The calculated variance would
be closely tied to the sample size: the larger it is, the larger the variance. Again
it makes more sense to calculate the variance of the growth rate, which has
little trend in the long run.
This variance can be calculated from the formula

2_ S(x — %)? _ > x* — nx?

s
n-1 n-1

(1.33)

where X is the average rate of growth. The calculation is set out in Table 1.16
using the right-hand formula in equation (1.33).
The variance is therefore

2= 0.3990 — 32 x 0.087*

=0.0051
31 0.005

and the standard deviation is 0.071, the square root of the variance. The
coefficient of variation is
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Table 1.16 Calculation of the variance of the growth rate

Year Investment Growth rate
X x2

1974 18 134 0.191 0.036
1975 21 856 0.205 0.042
1976 25516 0.167 0.028
2002 173 525 0.049 0.002
2003 178 751 0.030 0.001
2004 194 491 0.088 0.008
2005 205 843 0.058 0.003
Totals 2.7856 0.3990

0.071

cv= =0.816
0.087

i.e. the standard deviation of the growth rate is about 80% of the mean.

Note three things about this calculation: first, we have used the arithmetic
mean (using the geometric mean makes very little difference); second, we have
used the formula for the sample variance since the period 1974-2005 constitutes
a sample of all the possible data we could collect; and third, we could have
equally used the growth factors for the calculation of the variance (why?).

(Worked example 1.7 j
Given the following data
Year 1999 2000 2001 2002 2003
Price of a laptop PC 1100 900 800 750 700

we can work out the average rate of price growth per annum as follows. The
overall growth factor is % =0.6363. The fact that this number is less than

one simply reflects the fact that the price has fallen over time. It has fallen to
64% of its original value. To find the annual rate, we take the fourth root of
0.6363 (four years of growth). Hence we obtain 40.6363 = 0.893, i.e. each
year the price falls to 89% of its value the previous year. This implies price is
falling at 0.893 — 1 = —0.107, or approximately an 11% fall each year.

We can see if the fall is more or less the same, by calculating each year’s
growth factor. These are:

Year 1999 2000 2001 2002 2003
Laptop price 1100 900 800 750 700
Growth factor - 0.818 0.889 0.9375 0.933
Price fall - -19% -11% —6% —7%

The price fall was larger in the earlier years, in percentage as well as abso-
lute terms. Calculating the standard deviation of the values in the final row =
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Exercise 1.6

provides a measure of the variability from year to year. The variance is
given by

2 (191174 A1 - 117+ (6- 117+ (7 - 11 _

30.7
3

and the standard deviation is then 5.54%. (The calculations are shown
rounded but the answer is accurate.)

(a) Using the data in Exercise 1.5, calculate the average level of profit over the time
period and the average growth rate of profit over the period. Which appears more

? useful?
(b) Calculate the variance of profit and compare it to the variance of sales.
[Graphing bivariate data: the scatter diagram ]
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The analysis of investment is an example of the use of univariate methods: only
a single variable is involved. However, we often wish to examine the relation-
ship between two (or sometimes more) variables and we have to use bivariate
(or multivariate) methods. To illustrate the methods involved we shall examine
the relationship between investment expenditures and gross domestic product
(GDP). Economics tells us to expect a positive relationship between these
variables, higher GDP is usually associated with higher investment. Table 1.17
provides data on GDP for the UK.

A scatter diagram (also called an XY chart) plots one variable (in this case
investment) on the y axis, the other (GDP) on the x axis, and therefore shows
the relationship between them. For example, one can see whether high values
of one variable tend to be associated with high values of the other. Figure 1.24
shows the relationship for investment and GDP.

The chart shows a strong linear relationship between the two variables, apart
from a curious dip in the middle. This reflects the sharp fall in investment after
1990, which is not matched by a fall in GDP (if it were, the XY chart would show

Table 1.17 GDP data

Year GDP Year GDP Year GDP

1973 74 020 1984 324 633 1995 719 747
1974 83 793 1985 355 269 1996 765 152
1975 105 864 1986 381 782 1997 811194
1976 125 203 1987 420 211 1998 860 796
1977 145 663 1988 469 035 1999 906 567
1978 167 905 1989 514 921 2000 953 227
1979 197 438 1990 558 160 2001 996 987
1980 230 800 1991 587 080 2002 1048 767
1981 253 154 1992 611974 2003 1110296
1982 277 198 1993 642 656 2004 1176 527
1983 302 973 1994 680 978 2005 1224715




Figure 1.24

Scatter diagram of
investment (vertical
axis) against GDP
(horizontal axis)
(nominal values)

Exercise 1.7

2

Graphing bivariate data: the scatter diagram
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Note: The (x, y) coordinates of each point are given by the values of investment and GDP
respectively. Thus the first (1973]) data point is drawn 15 227 units above the horizontal axis
and 74 020 units from the vertical one.

a linear relationship without the dip). It is important to recognise the difference
between the time-series plot and the XY chart. Because of inflation later observa-
tions tend to be towards the top right of the XY chart (both investment and
GDP are increasing over time) but this does not have to happen; if both variables
fluctuated up and down, later observations could be at the bottom left (or
centre, or anywhere). By contrast, in a time series plot, later observations are
always further to the right.

Note that both variables are in nominal terms, i.e. they make no correction
for inflation over the time period. This may be seen algebraically: investment
expenditure is made up of the volume of investment (I) times its price (B).
Similarly, nominal GDP is real GDP (Y) times its price (P,). Thus the scatter dia-
gram actually charts P, x I against P, x Y. It is likely that the two prices follow a
similar trend over time and that this dominates the movements in real invest-
ment and GDP. The chart then shows the relationship between a mixture of
prices and quantities, when the more interesting relationship is between the
quantities of investment and output.

Figure 1.25 shows the relationship between the quantities of investment and
output, i.e. after the strongly trending price effects have been removed. It is not
so straightforward as the nominal graph. There is now a ‘knot’ of points in the
centre where perhaps both (real) investment and GDP fluctuated up and down.
Overall it is clear that something ‘interesting’ happened around 1990 that mer-
its additional investigation.

Chapter 10, on index numbers, explains in detail how to derive real variables
from nominal ones, as we have done here, and generally describes how to cor-
rect for the effects of inflation on economic magnitudes.

(a) Once again using the data from Exercise 1.5, draw an XY chart with profits on the vert-
ical axis, sales on the horizontal axis. Choose the scale of the axes appropriately.

(b) (If using Excel to produce graphs) Right click on the graph, choose ‘Add trendline’
and choose a linear trend. This gives the ‘line of best fit" (covered in detail in
Chapter 7). What does this appear to show?
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[Data transformations ]
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In analysing employment and investment data in the examples above we have
often changed the variables in some way in order to bring out the important
characteristics. In statistics one usually works with data that have been trans-
formed in some way rather than using the original numbers. It is therefore worth
summarising the main data transformations available, providing justifications
for their use and exploring the implications of such adjustments to the original
data. We briefly deal with the following transformations:

rounding;

grouping;

dividing or multiplying by a constant;
differencing;

taking logarithms;

taking the reciprocal;

deflating.

Rounding

Rounding improves readability. Too much detail can confuse the message, so
rounding the answer makes it more memorable. To give an example, the aver-
age wealth holding calculated earlier in this chapter is actually £146 983.726 (to
three decimal places). It would be absurd to present it in this form, however. We
do not know for certain that this figure is accurate (in fact, it almost certainly is
not). There is a spurious degree of precision which might mislead the reader.
How much should this be rounded for presentational purposes therefore?
Remember that the figures have already been effectively rounded by allocation
to classes of width 10 000 or more (all observations have been rounded to the
mid-point of the interval). However, much of this rounding is offsetting, i.e.
numbers rounded up offset those rounded down, so the mean is reasonably
accurate. Rounding to £147 000 makes the figure much easier to remember, and
is only a change of 0.01% (147 000/146 984 = 1.000 111), so is a reasonable



Data transformations

compromise. In the text above, the answer was not rounded to such an extent
since the purpose was to highlight the methods of calculation.

«P“S’/c&\ Inflation in Zimbabwe

()
;—L W "Zimbabwe's rate of inflation surged to 3731.9%, driven by higher energy and food costs, and
) AC'\\Q amplified by a drop in its currency, official figures show.”

BBC news online, 17 May 2007.

Whether official or not, it is impossible that the rate of inflation is known with such
accuracy (to one decimal place!), especially when prices are rising so fast. It would
be more reasonable to report a figure of 3700% in this case. Sad to say, inflation
rose even further in subsequent months.

Rounding is a ‘trap door’ function: you cannot obtain the original value
from the transformed (rounded) value. Therefore, if you are going to need the
original value in further calculations you should not round your answer.
Furthermore, small rounding errors can cumulate, leading to a large error in the
final answer. Therefore, you should never round an intermediate answer, only
the final one. Even if you only round the intermediate answer by a small
amount, the final answer could be grossly inaccurate. Try the following:
calculate 60.29 x 30.37 — 1831 both before and after rounding the first two
numbers to integers. In the first case you obtain 0.0073, in the second -31.

C ) Grouping

When there is too much data to present easily, grouping solves the problem,
although at the cost of hiding some of the information. The examples relating
to education and unemployment and to wealth used grouped data. Using the
raw data would have given us far too much information, so grouping is a first
stage in data analysis. Grouping is another trap door transformation: once it is
done you cannot recover the original information.

C D Dividing/multiplying by a constant

This transformation is carried out to make numbers more readable or to make
calculation simpler by removing trailing zeros. The data on wealth were divided
by 1000 to ease calculation; otherwise the fx* column would have contained
extremely large values. Some summary statistics (e.g. the mean) will be affected
by the transformation, but not all (e.g. the coefficient of variation). Try to
remember which are affected! E and V operators (see Appendix 1B) can help. The
transformation is easy to reverse.

(D Differencing

In time-series data there may be a trend, and it is better to describe the features
of the data relative to the trend. The result may also be more economically
meaningful, for example governments are often more concerned about the growth
of output than about its level. Differencing is one way of eliminating the trend
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(see Chapter 11 for other methods of detrending data). Differencing was used
for the investment data for both of these reasons. One of the implications of
differencing is that information about the level of the variable is lost.

() Taking logarithms

Taking logarithms is used to linearise a non-linear series, in particular one that
is growing at a fairly constant rate. It is often easier to see the important features
of such a series if the logarithm is graphed rather than the raw data. The loga-
rithmic transformation is also useful in regression (see Chapter 9) because it
yields estimates of elasticities (e.g. of demand). Taking the logarithm of the
investment data linearised the series and tended to smooth it. The inverses of
the logarithmic transformations are 10* (for common logarithms) and e* (for
natural logarithms) so one can recover the original data.

D Taking the reciprocal

The reciprocal of a variable might have a useful interpretation and provide a
more intuitive explanation of a phenomenon. The reciprocal transformation
will also turn a linear series into a non-linear one. The reciprocal of turnover
in the labour market (i.e. the number leaving unemployment divided by the
number unemployed) gives an idea of the duration of unemployment. If a half of
those unemployed find work each year (turnover = 0.5) then the average dura-
tion of unemployment is 2 years (= 1/0.5). If a graph of turnover shows a linear
decline over time, then the average duration of unemployment will be rising, at
a faster and faster rate. Repeating the reciprocal transformation recovers the
original data.

D Deflating

Deflating turns a nominal series into a real one, i.e. one that reflects changes
in quantities without the contamination of price changes. This is dealt with in
more detail in Chapter 10. It is often more meaningful in economic terms to talk
about a real variable than a nominal one. Consumers are more concerned about
their real income than about their money income, for example.

Confusing real and nominal variables is dangerous! For example, someone’s
nominal (money) income may be rising yet their real income falling (if prices
are rising faster than money income). It is important to know which series you
are dealing with (this is a common failing among students new to statistics and
economics). An income series that is growing at 2-3% per annum is probably a
real series; one that is growing at 10% per annum or more is likely to be nominal.

[Guidance to the student: how to measure your progress J

Now you have reached the end of the chapter your work is not yet over! It is
very unlikely that you have fully understood everything after one read through.
What you should do now is:
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® Check back over the learning outcomes at the start of the chapter. Do
you feel you have achieved them? For example, can you list the various
different data types you should be able to recognise (the first learning
outcome)?

e Read the chapter summary below to help put things in context. You should
recognise each topic and be aware of the main issues, techniques, etc., within
them. There should be no surprises or gaps!

e Read the list of key terms. You should be able to give a brief and precise
definition or description of each one. Do not worry if you cannot remember
all the formulae (although you should try to memorise simple ones such as
that for the mean).

e Try out the problems (most important!). Answers to odd-numbered problems
are at the back of the book, so you can check your answers. There is more
detail for some of the answers on the book’s web site.

From all of this you should be able to work out whether you have really mas-
tered the chapter. Do not be surprised if you have not — it will take more than
one reading. Go back over those parts where you feel unsure of your knowledge.
Use these same learning techniques for each chapter of the book.

(Summary

)

@ Descriptive statistics are useful for summarising large amounts of informa-
tion, highlighting the main features but omitting the detail.

e Different techniques are suited to different types of data, e.g. bar charts for
cross-section data and rates of growth for time series.

e Graphical methods, such as the bar chart, provide a picture of the data. These
give an informal summary but they are unsuitable as a basis for further
analysis.

e Important graphical techniques include the bar chart, frequency distribution,
relative and cumulative frequency distributions, histogram and pie chart. For
time-series data a time-series chart of the data is informative.

@ Numerical techniques are more precise as summaries. Measures of location
(such as the mean), of dispersion (the variance) and of skewness form the
basis of these techniques.

e Important numerical summary statistics include the mean, median and
mode; variance, standard deviation and coefficient of variation; coefficient of
skewness.

e For bivariate data the scatter diagram (or XY graph) is a useful way of illus-
trating the data.

e Data are often transformed in some way before analysis, for example by
taking logs. Transformations often make it easier to see key features of the
data in graphs and sometimes make summary statistics easier to interpret.
For example, with time-series data the average rate of growth may be more
appropriate than the mean of the series.
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Reference
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(Key terms and concepts

bar chart

box and whiskers plot
coefficient of variation
compound growth
cross-section data
cross-tabulation

data transformation
frequencies
frequency table
histogram

mean

median

Atkinson, A. B. The Economics of Inequality, 1983, 2nd edn., Oxford University

Press.

mode

outliers

pie chart

quantiles

relative and cumulative frequencies
scatter diagram (XY chart)
skewness

standard deviation
time-series data

variance

z-score



Problems

Problems

1.1

1.2

1.3

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

The following data show the education and employment status of women aged 20-29
(from the General Household Survey):

Higher A levels Other No Total

education qualification qualification
In work 209 182 577 92 1060
Unemployed 12 9 68 32 121
Inactive 17 34 235 136 422
Sample 238 225 880 260 1603

(a) Draw a bar chart of the numbers in work in each education category. Can this be
easily compared with the similar diagram for in Figure 1.1?

(b] Draw a stacked bar chart using all the employment states, similar to Figure 1.3.
Comment upon any similarities and differences from the diagram in the text.

Convert the table into (column) percentages and produce a stacked bar chart similar
to Figure 1.4. Comment upon any similarities and differences.

(c

(d) Draw a pie chart showing the distribution of educational qualifications of those in
work and compare it to Figure 1.5 in the text.

The data below show the median weekly earnings (in £s) of those in full-time employment
in Great Britain in 1992, by category of education.

Degree Other higher A level GCSE A-C GCSE D-G None

education
Males 433 310 277 242 226 220
Females 346 278 201 183 173 146

(a) In what fundamental way do the data in this table differ from those in Problem 1.1?

(b] Construct a bar chart showing male and female earnings by education category. What
does it show?

(c) Why would it be inappropriate to construct a stacked bar chart of the data? How
should one graphically present the combined data for males and females? What extra
information is necessary for you to do this?

Using the data from Problem 1.1:

(a) Which education category has the highest proportion of women in work? What is the
proportion?

(b) Which category of employment status has the highest proportion of women with a
degree? What is the proportion?
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1.4

1

Using the data from Problem 1.2:

(a) What is the premium, in terms of median earnings, of a degree over A levels? Does
this differ between men and women?

(b) Would you expect mean earnings to show a similar picture? What differences, if any,
might you expect?

The distribution of marketable wealth in 1979 in the UK is shown in the table below (taken
from Inland Revenue Statistics, 1981, p. 105):

Range Number Amount
000s £m
0- 1606 148
1000- 2927 5985
3000- 2562 10 090
5000- 3483 25 464
10 000- 2876 35 656
15 000- 1916 33 134
20 000- 3425 104 829
50 000- 621 46 483
100 000- 170 25763
200 000- 59 30 581
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1.6

1.7

Draw a bar chart and histogram of the data (assume the final class interval has a width
of 200 000). Comment on the differences between the two. Comment on any differences
between this histogram and the one for 1994 given in the text.

The data below show the number of manufacturing plants in the UK in 1991/92 arranged
according to employment:

Number of employees Number of firms
1- 95 409
10- 15 961
20- 16 688
50- 7229
100- 4504
200- 2949
500- 790
1000- 332

Draw a bar chart and histogram of the data (assume the mid-point of the last class
interval is 2000). What are the major features apparent in each and what are the differences?

Using the data from Problem 1.5:

(a] Calculate the mean, median and mode of the distribution. Why do they differ?

(b

Calculate the inter-quartile range, variance, standard deviation and coefficient of
variation of the data.

(c) Calculate the skewness of the distribution.
(d) From what you have calculated, and the data in the chapter, can you draw any con-

clusions about the degree of inequality in wealth holdings, and how this has changed?



1.8

1.9

Problems

(c) What would be the effect upon the mean of assuming the final class width to be £10m?
What would be the effects upon the median and mode?

Using the data from Problem 1.6:
(a) Calculate the mean, median and mode of the distribution. Why do they differ?

(b] Calculate the inter-quartile range, variance, standard deviation and coefficient of
variation of the data.

(c) Calculate the coefficient of skewness of the distribution.

A motorist keeps a record of petrol purchases on a long journey, as follows:

Petrol station 1 2 3
Litres purchased 88 40 25
Price per litre 55.7 59.6 57.0

Calculate the average petrol price for the journey.

Demonstrate that the weighted average calculation given in equation (1.9) is equivalent to
finding the total expenditure on education divided by the total number of pupils.

On a test taken by 100 students, the average mark is 65, with variance 144. Student A
scores 83, student B scores 47.

(a) Calculate the z-scores for these two students.

(b) What is the maximum number of students with a score either better than A’s or worse
than B's?

(c) What is the maximum number of students with a score better than A’s?

The average income of a group of people is £8000. 80% of the group have incomes within
the range £6000-10 000. What is the minimum value of the standard deviation of the
distribution?

The following data show car registrations in the UK during 1970-91 (source: ETAS, 1993,
p. 57):

Year Registrations Year Registrations Year Registrations
1970 9.4 1978 131.6 1986 156.9
1971 108.5 1979 142.1 1987 168.0
1972 177.6 1980 126.6 1988 184.2
1973 137.3 1981 124.5 1989 192.1
1974 102.8 1982 132.1 1990 167.1
1975 98.6 1983 150.5 1991 133.3
1976 106.5 1984 146.6 - -

1977 109.4 1985 (5815 - -

(a) Draw a time-series graph of car registrations. Comment upon the main features of
the series.

(b) Draw time-series graphs of the change in registrations, the (natural) log of registra-
tions, and the change in the In. Comment upon the results.
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1.14

The table below shows the different categories of investment, 1986-2005.

Year Dwellings Transport Machinery Intangible Other buildings
fixed assets
1986 14 140 6527 25218 2184 20 477
1987 16 548 7872 28 225 2082 24 269
1988 21097 9227 32 614 2592 30 713
1989 22771 10 624 38 417 2823 36 689
1990 21 048 10 571 37776 3571 41 334
1991 18 339 9051 35 094 4063 38 632
1992 18 826 8420 35 426 3782 34 657
1993 19 886 9315 35316 3648 32 988
1994 21155 11 395 38 426 3613 33 945
1995 22 448 11 036 45012 3939 35596
1996 22516 12519 50 102 4136 37 320
1997 23 928 12 580 51 465 4249 41 398
1998 25222 16 113 58 915 4547 46 286
1999 25 700 14 683 60 670 4645 50 646
2000 27 394 13 577 63535 4966 51996
2001 29 806 14 656 60929 5016 55 065
2002 34 499 16 314 57 152 5588 59 972
2003 38 462 15592 54 441 5901 64 355
2004 44 299 14 939 57 053 6395 71 805
2005 48 534 15 351 57 295 6757 77 906

Use appropriate graphical techniques to analyse the properties of any one of the invest-
ment series. Comment upon the results.

Using the data from Problem 1.13:
(a) Calculate the average rate of growth of the series.
(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used in
the chapter? Suggest reasons.

Using the data from Problem 1.14:
(a] Calculate the average rate of growth of the series for dwellings.
(b) Calculate the standard deviation around the average growth rate.

(c) Does the series appear to be more or less volatile than the investment figures used in
the chapter? Suggest reasons.

How would you expect the following time-series variables to look when graphed?
(e.g. Trended? Linear trend? Trended up or down? Stationary? Homoscedastic? Auto-
correlated? Cyclical? Anything else?)

(a) Nominal national income.
(b) Real national income.

(c) The nominal interest rate.



1.18

1.20

1.21

1.22

1.23

1.24

1.25

Problems

How would you expect the following time-series variables to look when graphed?
(a) The price level.

(b] The inflation rate.

(c) The £/$ exchange rate.

(a) A government bond is issued, promising to pay the bearer £1000 in five years’ time.
The prevailing market rate of interest is 7%. What price would you expect to pay now
for the bond? What would its price be after two years? If, after two years, the market
interest rate jumped to 10%, what would the price of the bond be?

(b) Abond is issued which promises to pay £200 per annum over the next five years. If the
prevailing market interest rate is 7%, how much would you be prepared to pay for the
bond? Why does the answer differ from the previous question? (Assume interest is
paid at the end of each year.)

A firm purchases for £30 000 a machine that is expected to last for 10 years, after which
it will be sold for its scrap value of £3000. Calculate the average rate of depreciation per

annum, and calculate the written-down value of the machine after one, two and five years.

Depreciation of BMW and Mercedes cars is given in the following table:

Age BMW 525i Mercedes 200E
Current 22 275 21900
1 year 18 600 19 700
2 years 15 200 16 625
3 years 12 600 13 950
4 years 9750 11 600
5 years 8300 10 300

(a) Calculate the average rate of depreciation of each type of car.

(b) Use the calculated depreciation rates to estimate the value of the car after 1, 2, etc.,
years of age. How does this match the actual values?

(c) Graph the values and estimated values for each car.
A bond is issued which promises to pay £400 per annum in perpetuity. How much is the
bond worth now, if the interest rate is 5%? (Hint: the sum of an infinite series of the form

LI S S
T+r O+ 00+ "

is 1/r, as long as r>0.)
Demonstrate, using X notation, that E(x + k) = E(x) + k.
Demonstrate, using X notation, that V(kx) = k*V(x).

Criticise the following statistical reasoning. The average price of a dwelling is £54 150.
The average mortgage advance is £32 760. So purchasers have to find £21 390, that is,
about 40% of the purchase price. On any basis that is an enormous outlay which young
couples, in particular, who are buying a house for the first time would find incredibly
difficult, if not impossible, to raise.
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1.26

1.27

1.28

Criticise the following statistical reasoning. Among arts graduates 10% fail to find
employment. Among science graduates only 8% remain out of work. Therefore, science
graduates are better than arts graduates. (Hint: imagine there are two types of job:
popular and unpopular. Arts graduates tend to apply for the former, scientists for the
latter.)

Project 1: Is it true that the Conservative government in the UK 1979-1997 lowered taxes,
while the Labour government 1997-2007 raised them?

You should gather data that you think are appropriate to the task, summarise them
as necessary and write a brief report of your findings. You might like to consider the
following points:

® Should one consider tax revenue, or revenue as a proportion of gross national product
(GNP)?

® Should one distinguish between tax rates and the tax base (i.e. what is taxed)?
® Has the balance between direct and indirect taxation changed?

@ Have different sections of the population fared differently?

You might like to consider other points, and do the problem for a different country.
Suitable data sources for the UK are: Inland Revenue Statistics, UK National Accounts,
Annual Abstract of Statistics or Financial Statistics.

Project 2: Is the employment and unemployment experience of the UK economy worse
than that of its competitors? Write a report on this topic in a similar manner to the pro-
ject above. You might consider rates of unemployment in the UK and other countries;
trends in unemployment in each of the countries; the growth in employment in each coun-
try; the structure of employment (e.g. full-time/part-time) and unemployment (e.g. long-
term/short-term).

You might use data for a number of countries, or concentrate on two in more depth.
Suitable data sources are: OECD Main Economic Indicators; European Economy (published
by the European Commission); Employment Gazette.
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Exercise 1.1

(a)
14

All tourists

12 4
10
8_,
64
4l
ol

France

France

Germany ltaly Spain

| @ English tourists [ Non-English tourists

(c) All tourists

[J France
O Germany
O ltaly

[ Spain

(d) English tourists

It is clear the English are more likely to visit Spain than are other nationalities.

[ France
O Germany
O Italy

E Spain
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Exercise 1.2

(@)

Bar chart

45
40 T----- oo ey - - - snono oo
35 - R
R e T
25 - oooeeoe- - -]
204 - -- --
15 -- -- --
10 -- -- --

0 T T T
0-10 11-30 31-60 61-100

Histogram

Frequency
density

0 10 30 60 100

Exercise 1.3

(a)

Midpoint, x Frequency, f fx

0-10 5 20 100
11-30 20 40 800
31-60 45 30 1350
60-100 80 20 1600

- - 110 3850

Hence the mean = 3850/110 = 35.

The median is contained in the 11-30 group and is 35/40 of the way through
the interval (20 + 35 moves us to observation 55). Hence the median is 11 + 35/40
x 19 = 27.625.

The mode is anywhere in the 0-30 range; the frequency density is the same
throughout this range.



Answers to exercises

(b) Median Mean
Frequency , :
density
0 10 30 60 100
Exercise 1.4

(a) Q1 relates to observation 27.5 (= 110/4). This observation lies in the 11-30 range.
There are 20 observations in the first class interval, so Q1 will relate to observa-
tion 7.5 in the second interval. Hence we need to go 7.5/40 of the way through
the interval. This gives 11 + (7.5/40) x 19 = 14.6. Similarly, Q3 is 22.5/30 of the
way through the third interval, yielding Q3 = 31 + 22.5/30 x 29 = 52.8. The IQR
is therefore 38, approximately. For the variance we obtain Y fx = 3850 and X fx*=
205 250. The variance is therefore 6 =205 250/110 — 35% = 640.9 and the standard
deviation 25.3.

(b) CV =25.3/35=0.72.
(c) 1.3 x 25.3 =32.9, not far from the IQR value of 38.

(d) 1 standard deviation either side of the mean takes us from 9.7 up to 60.3. This
contains all 70 observations in the second and third intervals plus perhaps one
from the first interval. Thus we obtain approximately 71 observations within this
range. Chebyshev’s inequality does not help us here as it is not defined for k < 1.

Exercise 1.5
(a) Profits and sales 1990-1999
400 A
3
= 300 -
(%]
° 2007 —o— Profit
g 100 F--- - —o— Sales
5 T,
i 0 T T T T T T T T T 1
100 11990 1991 1992 1993 1994 1995 1996 1997 1998 1999
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(b) Profits and sales 1990-1999
350
300 v -
250
8 200 - £ [-e-sales
& 150 2 |-+ Profit

100 ~
50 A

T T T T T T T T T
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
Year

Using the second axis brings out the variability of profits relative to sales.

Exercise 1.6
(a) The average profit is 35. The average rate of growth is calculated by comparing

the end values 50 and 40, over the 10-year period. The ratio is 0.8. Taking the
ninth root of this (nine years of growth) gives 0.8 =0.926 so the annual rate of
growth is 0.976 — 1 = -2.4%.

(b) The variances are (using the sample variance formula): for profits, > (x — u)* = 4800
and dividing by 9 gives 533.3. For sales, the mean is 291 and X (x — u)* = 4540.
The variance is therefore 4540/9 = 504.4. This is similar in absolute size to the
variance of profits, but relative to the mean it is much smaller.

Exercise 1.7
(a/b) Profits vs Sales

80 -
60 -
40 -

Profits

20 A

O T T T T 1
20290 ¢ 270 290 310 330 350

Sales

The trend line seems to show a positive relationship between the variables:
higher profits are associated with higher sales.

74



Appendix 1A: ¥ notation

IS LAV > notation

The Greek symbol X (capital sigma) means ‘add up’ and is a shorthand way of
writing what would otherwise be long algebraic expressions. Instead of writing
out each term in the series, we provide a template, or typical term of the series,
with instructions about how many terms there are.

For example, given the following observations on x:

X X, X; X, X5

3 5 6 4 8

then

S
N X=X+ X+ X+ X+ X5 =3+5+6+4+8=26
i=1
The template is simply x in this case, representing a number to be added in
the series. To expand the sigma expression, the subscript i is replaced by succes-
sive integers, beginning with the one below the X sign and ending with the one
above it (1 to 5 in the example above). Hence the instruction is to add the terms
X; to xs. Similarly

4
Yxi=x+x+x=5+6+4=15
=

The instruction tells us to add up only the second, third and fourth terms of
the series. When it is clear what range of values i takes (usually when we are to
add all available values), the formula can be simplified to ZX,- or Y x; or even . X.

1
When frequencies are associated with each of the observations, as in the data

below:

i 1 2 3 4 5
X; 3 5 6 4 8
f 2 2 4 3 1
then

i=5
Shti=fixi+.. . +fx=2x3+2x5+...+1x8=60
i=1

And also
2i=2+2+4+3+1=12

Thus the sum of the 12 observations is 60 and the mean is

If_60 g
X120
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We are not limited just to adding the x values. For example, we might wish
to square each observation before adding them together. This is expressed as

Sx2=x+x3+...+x%=150

Note that this is different from
CEx)? =@ +X,+ ...+ %) =676

Part of the formula for the variance calls for the following calculation
S =X+ X5+ [ XE=2%x 3P+ 2x 5%+, . +1x8 =324

Using X notation we can see the effect of transforming x by dividing by 1000,
as was done in calculating the average level of wealth. Instead of working with
x we used kx, where k = 1/1000. In finding the mean we calculated

ka_kx1+kx2+..._k(x1+x2+...)_k§
N N N N -

(1.34)

So, to find the mean of the original variable x, we had to divide by k again, i.e.
multiply by 1000. In general, whenever each observation in a sum is multiplied
by a constant, the constant can be taken outside the summation operator, as in
equation (1.34) above.

[Problems on X notation )

76

1A

1A.2

1A.3

1A.4

1A.5

Given the following data on x;: {4, 6, 3, 2, 5}, evaluate

4
X, 3x2 (Ex)% Tl - 3), Tx, -3, Y x,
i=2

Given the following data on x;: {8, 12, 6, 4, 10}, evaluate

4
Sx, 3k, (Ex)%, Zlx - 3), 2x, -3, Y x,

i=2

Given the following frequencies, f, associated with the x values in Problem 1A.1: {5, 3, 3,
8, 5}, evaluate

Six, Xfx?, Yflx - 3), Xfx -3

Given the following frequencies, f, associated with the x values in Problem 1A.2: {10, 6, 6,
16, 10}, evaluate

Six, Y2 YfAx—3), Xfx -3

Given the pairs of observations on x and y

X 4 3 6 8 12

3 9 1 4 3

evaluate Xxy, Xx(y — 3], Zlx + 2)ly - 1)



1A.6

1A.7

1A.8

Appendix 1B: E and V operators

Given the pairs of observations on x and y

X 3 7 4 1 9
y 1 2 5 1 2

evaluate Xxy, Xxly — 2), x - 2)(y + 1).

Demonstrate that

Sx-K _ Sh
>f >f

where k is a constant.

Demonstrate that

Ifx—p? X,
>f >f H

Appendix 1B

E and V operators

These operators are an extremely useful form of notation that we shall make use
of later in the book. It is quite easy to keep track of the effects of data trans-
formations using them. There are a few simple rules for manipulating them that
allow some problems to be solved quickly and elegantly.

E(x) is the mean of a distribution and V(x) is its variance. We showed above
in equation (1.34) that multiplying each observation by a constant k multiplies
the mean by k. Thus we have

E(kx) = kE(x) (1.35)

Similarly, if a constant is added to every observation the effect is to add that
constant to the mean (see Problem 1.23)

E(x+a)=E(x) +a (1.36)

(Graphically, the whole distribution is shifted a units to the right and hence
so is the mean.) Combining equations (1.35) and (1.36)

E(kx + a) = kE(x) + a (1.37)
Similarly for the variance operator it can be shown that

V(x + k) =V(x) (1.38)
Proof

T((x+k)—(u+k)*  E((x—p+k-k)* _ Xx-w?

Vx+k)= N N N

=V(x)

(A shift of the whole distribution leaves the variance unchanged.) Also

V(kx) = KV(x) (1.39)
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Appendix 1C
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(See Problem 1.24 above.) This is why, when the wealth figures were divided
by 1000, the variance became divided by 10002, Applying (1.38) and (1.39)

V(kx + a) = k*V(x) (1.40)
Finally we should note that V itself can be expressed in terms of E
V(x) = E(x — E(x))? (1.41)

Using logarithms

Logarithms are less often used now that cheap electronic calculators are avail-
able. Formerly logarithms were an indispensable aid to calculation. However,
the logarithmic transformation is useful in other contexts in statistics and eco-
nomics so its use is briefly set out here.

The logarithm (to the base 10) of a number x is defined as the power to which
10 must be raised to give x. For example, 10? = 100, so the log of 100 is 2 and we
write log;, 100 = 2 or simply log 100 = 2.

Similarly, the log of 1000 is 3 (1000 = 10%), of 10 000 it is 4, etc. We are not re-
stricted to integer (whole number) powers of 10, so for example 10> =316.227766
(try this if you have a scientific calculator), so the log of 316.227766 is 2.5. Every
number x can therefore be represented by its logarithm.

Multiplication of two numbers

We can use logarithms to multiply two numbers x and y, based on the property®
log xy =1log x + log y

For example, to multiply 316.227766 by 10

10g(316.227766 x 10) = log 316.227766 + log 10
=25+1
=3.5

The anti-log of 3.5 is given by 10*° = 3162.27766 which is the answer.

Taking the anti-log (i.e. 10 raised to a power) is the inverse of the log transforma-
tion. Schematically we have

x — take logarithms — a (= log x) — raise 10 to the power a — x

Division
To divide one number by another we subtract the logs. For example, to divide
316.227766 by 100

10g(316.227766/100) = log 316.227766 — log 100
=25-2
=0.5

and 10°° = 3.16227766.

8 This is equivalent to saying 10* x 10" = 10*7.
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() Powers and roots
Logarithms simplify the process of raising a number to a power. To find the
square of a number, multiply the logarithm by 2, e.g. to find 316.227766%
10g(316.227766% = 2 10g(316.227766) = 5
and 10° = 100 000.
To find the square root of a number (equivalent to raising it to the power )
divide the log by 2. To find the nth root, divide the log by n. For example, in the
text we have to find the 32nd root of 13.518
log(13.518) 1.1309
= =0.0353
32 32
and 10%%%% = 1.085.
() Common and natural logarithms
Logarithms to the base 10 are known as common logarithms but one can
use any number as the base. Natural logarithms are based on the number
e (=2.71828 .. .) and we write In x instead of log x to distinguish them from
common logarithms. So, for example
In 316.227766 = 5.756462732
since e>7%6462732 = 316.227766.
Natural logarithms can be used in the same way as common logarithms and
have the similar properties. Use the ‘In’ key on your calculator just as you would
the ‘log’ key, but remember that the inverse transformation is e*rather than 10*.
[Problems on logarithms j
1C.1  Find the common logarithms of: 0.15, 1.5, 15, 150, 1500, 83.7225, 9.15, —-12.
1C.2 Find the log of the following values: 0.8, 8, 80, 4, 16, -37.
1C.3 Find the natural logarithms of: 0.15, 1.5, 15, 225, —4.
1C.4 Find the Ln of the following values: 0.3, e, 3, 33, —1.
1C.5 Find the anti-log of the following values: —0.823909, 1.1, 2.1, 3.1, 12.
1C.6 Find the anti-log of the following values: —0.09691, 2.3, 3.3, 6.3.
1C.7 Find the anti-ln of the following values: 2.70805, 3.70805, 1, 10.
1C.8 Find the anti-ln of the following values: 3.496508, 14, 15, —1.
1C.9 Evaluate: 310,4/3.7, 4", 127, 257
1C.10 Evaluate: §30,4/17, 8", 15°, 120, 3%,
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@ understand the essential concept of the probability of an event occurring;

L : By the end of this chapter you should be able to:
earning
( outcomes J

® appreciate that the probability of a combination of events occurring can be
calculated using simple arithmetic rules (the addition and multiplication rules);

@ understand that a probability can depend upon the outcome of other events
(conditional probability);

® know how to make use of probability theory to help make decisions in situations
of uncertainty.

Complete your diagnostic test for Chapter 2 now to create your personal study
@ plan. Exercises with an icon (7 are also available for practice in MathXL with
additional supporting resources.
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The definition of probability

( Probability theory and statistical inference j

In October 1985 Mrs Evelyn Adams of New Jersey, USA, won $3.9 m in the State
lottery at odds of 1 in 3 200 000. In February 1986 she won again, although this
time only (!) $1.4 m at odds of 1 in 5 200 000. The odds against both these wins
were calculated at about 1 in 17 300 bn. Mrs Adams is quoted as saying ‘They
say good things come in threes, so .. .".

The above story illustrates the principles of probability at work. The same
principles underlie the theory of statistical inference, which is the task of draw-
ing conclusions (inferences) about a population from a sample of data drawn
from that population. For example, we might have a survey which shows that
30% of a sample of 100 families intend to take a holiday abroad next year. What
can we conclude from this about all families? The techniques set out in this and
subsequent chapters show how to accomplish this.

Why is knowledge of probability necessary for the study of statistical infer-
ence? In order to be able to say something about a population on the basis of
some sample evidence we must first examine how the sample data are collected.
In many cases, the sample is a random one, i.e. the observations making up the
sample are chosen at random from the population. If a second sample were
selected it would almost certainly be different from the first. Each member of the
population has a particular probability of being in the sample (in simple random
sampling the probability is the same for all members of the population). To
understand sampling procedures, and the implications for statistical inference,
we must therefore first examine the theory of probability.

As an illustration of this, suppose we wish to know if a coin is fair, i.e. equally
likely to fall heads or tails. The coin is tossed 10 times and 10 heads are recorded.
This constitutes a random sample of tosses of the coin. What can we infer about
the coin? Ifit is fair, the probability of getting ten heads is 1 in 1024, so a fairly
unlikely event seems to have happened. We might reasonably infer therefore
that the coin is biased towards heads.

( The definition of probability )

The first task is to define precisely what is meant by probability. This is not
as easy as one might imagine and there are a number of different schools of
thought on the subject. Consider the following questions:

e What is the probability of ‘heads’ occurring on the toss of a coin?

e What is the probability of a driver having an accident in a year of driving?

e What is the probability of a country such as Peru defaulting on its inter-
national loan repayments (as Mexico did in the 1980s)?

We shall use these questions as examples when examining the different schools
of thought on probability.
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Figure 2.1

The proportion of
heads in 250 tosses
of a fair coin
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The frequentist view

Considering the first question above, the frequentist view would be that the
probability is equal to the proportion of heads obtained from a coin in the long
run, i.e. if the coin were tossed many times. The first few results of such an
experiment might be

HTTHHHTHT,...

After a while, the proportion of heads settles down at some particular fraction
and subsequent tosses will individually have an insignificant effect upon the
value. Figure 2.1 shows the result of tossing a coin 250 times and recording the
proportion of heads (actually, this was simulated on a computer: life is too short
to do it for real).

This shows the proportion settling down at a value of about 0.50, which
indicates an unbiased coin (or rather, an unbiased computer in this case!). This
value is the probability, according to the frequentist view. To be more precise,
the probability is defined as the proportion of heads obtained as the number
of tosses approaches infinity. In general we can define Pr(H), the probability of
event H (in this case heads) occurring, as

number of occurrences of H

Pr(H) =
1) number of trials

, as the number of trials approaches infinity.

In this case, each toss of the coin constitutes a trial.

This definition gets round the obvious question of how many trials are
needed before the probability emerges, but means that the probability of an
event cannot strictly be obtained in finite time.

Although this approach appears attractive in theory, it does have its prob-
lems. One could not actually toss the coin an infinite number of times. Or, what
if one took a different coin, would the results from the first coin necessarily
apply to the second?

Perhaps more seriously, the definition is of less use for the second and third
questions posed above. Calculating the probability of an accident is not too



Exercise 2.1

Exercise 2.2

The definition of probability

problematic: it may be defined as the proportion of all drivers having an accid-
ent during the year. However, this may not be relevant for a particular driver,
since drivers vary so much in their accident records. And how would you answer
the third question? There is no long run that we can appeal to. We cannot re-
run history over and over again to see in what proportion of cases the country
defaults. Yet this is what lenders want to know and credit-rating agencies have
to assess. Maybe another approach is needed.

The subjective view

According to the subjective view, probability is a degree of belief that someone
holds about the likelihood of an event occurring. It is inevitably subjective and
therefore some argue that it should be the degree of belief that it is rational
to hold, but this just shifts the argument to what is meant by ‘rational’. Some
progress can be made by distinguishing between prior and posterior beliefs.
The former are those held before any evidence is considered; the latter are the
modified probabilities in the light of the evidence. For example, one might
initially believe a coin to be fair (the prior probability of heads is one-half), but
not after seeing only five heads in fifty tosses (the posterior probability would be
less than a half).

Although it has its attractions, this approach (which is the basis of Bayesian
statistics) also has its drawbacks. It is not always clear how one should arrive
at the prior beliefs, particularly when one really has no prior information.
Also, these methods often require the use of sophisticated mathematics, which
may account for the limited use made of them. The development of more
powerful computers and user-friendly software may increase the popularity of
the Bayesian approach.

There is not universal agreement therefore as to the precise definition of prob-
ability. We do not have space here to explore the issue further, so we will ignore
the problem! The probability of an event occurring will be defined as a certain
value and we will not worry about the precise origin or meaning of that value.
This is an axiomatic approach: we simply state what the probability is, without
justifying it, and then examine the consequences.

(a) Define the probability of an event according to the frequentist view.

(b) Define the probability of an event according to the subjective view.

For the following events, suggest how their probability might be calculated. In each
case, consider whether you have used the frequentist or subjective view of probability
(or possibly some mixture).

(a] The Republican party winning the next US election.

(b) The number 5 being the first ball drawn in next week's lottery.

(c) A repetition of the 2004 Asian tsunami.

(d) Your train home being late.
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| Probability theory: the building blocks )

Figure 2.2

The sample space for
drawing from a pack
of cards

84

We start with a few definitions, to establish a vocabulary that we will subse-

qu

ently use.

An experiment is an action such as flipping a coin, which has a number of
possible outcomes or events, such as heads or tails.

A trial is a single performance of the experiment, with a single outcome.
The sample space consists of all the possible outcomes of the experiment. The
outcomes for a single toss of a coin are {heads, tails}, for example, and these
constitute the sample space for a toss of a coin. The outcomes in the sample
space are mutually exclusive, which means that the occurrence of one rules
out all the others. One cannot have both heads and tails in a single toss of a
coin. As a further example, if a single card is drawn at random from a pack,
then the sample space may be drawn as in Figure 2.2. Each point represents
one card in the pack and there are 52 points altogether. (The sample space
could be set out in alternative ways. For instance, one could write a list of all
the cards: ace of spades, king of spades, . . ., two of clubs. One can choose the
representation most suitable for the problem at hand.)

With each outcome in the sample space we can associate a probability, which
is the chance of that outcome occurring. The probability of heads is one-half;
the probability of drawing the ace of spades from a pack of cards is one in 52, etc.

There are restrictions upon the probabilities we can associate with the outcomes

in
sel

the sample space. These are needed to ensure that we do not come up with
f-contradictory results; for example, it would be odd to arrive at the conclu-

sion that we could expect heads more than half the time and tails more than

ha

If the time. To ensure our results are always consistent, the following rules

apply to probabilities:

The probability of an event must lie between 0 and 1, i.e.
0 < Pr(A) < 1, for any event A 2.1)

The explanation is straightforward. If A is certain to occur it occurs in 100%
of all trials and so its probability is 1. If A is certain not to occur then its prob-
ability is 0O, since it never happens however many trials there are. As one
cannot be more certain than certain, probabilities of less than O or more than
1 can never occur, and equation (2.1) follows.

The sum of the probabilities associated with all the outcomes in the sample
space is 1. Formally

2h=1 2.2)
A K Q J 10 9 8 7 6 5 4 3 2
A ° ° ° ° ° ° ° ° ° ° ° ° °
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where P, is the probability of event i occurring. This follows from the fact that
one, and only one, of the outcomes must occur, since they are mutually
exclusive and also exhaustive, i.e. they define all the possibilities.

e Following on from equation (2.2) we may define the complement of an event
as everything in the sample space apart from that event. The complement of
heads is tails, for example. If we write the complement of A as not-A then it
follows that Pr(A) + Pr(not-A) = 1 and hence

Pr(not-A) =1 - Pr(A) 2.3)

Compound events

Most practical problems require the calculation of the probability of a set of
outcomes rather than just a single one, or the probability of a series of outcomes
in separate trials. For example, the probability of drawing a spade at random
from a pack of cards encompasses 13 points in the sample space (one for each
spade). This probability is 13 out of 52, or one-quarter, which is fairly obvious;
but for more complex problems the answer is not immediately evident. We refer
to such sets of outcomes as compound events. Some examples are getting a five
or a six on a throw of a die or drawing an ace and a queen to complete a ‘straight’
in a game of poker.

It is sometimes possible to calculate the probability of a compound event by
examining the sample space, as in the case of drawing a spade above. However,
in many cases this is not so, for the sample space is too complex or even imposs-
ible to write down. For example, the sample space for three draws of a card from
a pack consists of over 140 000 points! (A typical point might be, for example,
the ten of spades, eight of hearts and three of diamonds.) An alternative method
is needed. Fortunately there are a few simple rules for manipulating probabilities
which help us to calculate the probabilities of compound events.

If the previous examples are examined closely it can be seen that outcomes
are being compounded using the words ‘or’ and ‘and’: ‘. . . five or six on a single
throw...; ‘... an ace and a queen . ... ‘And’ and ‘or’ act as operators, and
compound events are made up of simple events compounded by these two
operators. The following rules for manipulating probabilities show how to use
these operators and thus how to calculate the probability of a compound event.

The addition rule

This rule is associated with ‘or’. When we want the probability of one outcome
or another occurring, we add the probabilities of each. More formally, the
probability of A or B occurring is given by

Pr(A or B) = Pr(A) + Pr(B) (2.4)
So, for example, the probability of a five or a six on a roll of a die is
Pr(5 or 6) = Pr(5) + Pr(6) = 1/6 + 1/6 = 1/3 (2.5)

This answer can be verified from the sample space, as shown in Figure 2.3. Each
dot represents a simple event (one to six). The compound event is made up of
two of the six points, shaded in Figure 2.3, so the probability is 2/6 or 1/3.
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Figure 2.3
The sample space for
rolling a die

Figure 2.4

The sample space for
drawing a queen or

a spade
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However, equation (2.4) is not a general solution to this type of problem, i.e.
it does not always work, as can be seen from the following example. What is the
probability of a queen or a spade in a single draw from a pack of cards? Pr(Q) =
4/52 (four queens in the pack) and Pr(S) = 13/52 (13 spades), so applying equa-
tion (2.4) gives

Pr(Q or S) = Pr(Q) + Pr(S) = 4/52 + 13/52 = 17/52 (2.6)

However, if the sample space is examined, the correct answer is found to be
16/52, as in Figure 2.4. The problem is that one point in the sample space (the
one representing the queen of spades) is double-counted, once as a queen and
again as a spade. The event ‘drawing a queen and a spade’ is possible, and gets
double-counted. Equation (2.4) has to be modified by subtracting the probab-
ility of getting a queen and a spade, to eliminate this double counting. The
correct answer is obtained from

Pr(Q or S) = Pr(Q) + Pr(S) — Pr(Q and S) 2.7)
=4/52+13/52 - 1/52
=16/52

The general rule is therefore
Pr(A or B) = Pr(A) + Pr(B) — Pr(A and B) (2.8)

Rule (2.4) worked for the die example because Pr(5 and 6) = O since a five
and a six cannot simultaneously occur. The double counting did not affect the
calculation of the probability.

In general, therefore, one should use equation (2.8), but when two events are
mutually exclusive the rule simplifies to equation (2.4).

The multiplication rule

The multiplication rule is associated with use of the word ‘and’ to combine
events. Consider a mother with two children. What is the probability that they
are both boys? This is really a compound event: a boy on the first birth and a
boy on the second. Assume that in a single birth a boy or girl is equally likely,
so Pr(boy) = Pr(girl) = 0.5. Denote by Pr(B1) the probability of a boy on the first
birth and by Pr(B2) the probability of a boy on the second. Thus the question
asks for Pr(BI and B2) and this is given by
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Pr(B1 and B2) = Pr(B1) x Pr(B2) = 0.5 x 0.5 2.9
=0.25

Intuitively, the multiplication rule can be understood as follows. One-half of
mothers have a boy on their first birth and of these, one-half will again have a boy
on the second. Therefore a quarter (a half of one-half) of mothers have two boys.

Like the addition rule, the multiplication rule requires slight modification
before it can be applied generally and give the right answer in all circumstances.
The example assumes first and second births to be independent events, i.e. that
having a boy on the first birth does not affect the probability of a boy on the
second. This assumption is not always valid.

Write Pr(B2|B1) to indicate the probability of the event B2 given that the
event BI has occurred. (This is known as the conditional probability, more pre-
cisely the probability of B2 conditional upon B1.) Let us drop the independence
assumption and suppose the following

Pr(BI) = Pr(G1) = 0.5 (2.10)
i.e. boys and girls are equally likely on the first birth, and
Pr(B2|B1) = Pr(G2|G1) = 0.6 (2.11)

i.e. a boy is more likely to be followed by another boy, and a girl by another girl.
(It is easy to work out Pr(B2|G1) and Pr(G2|BI). What are they?)

Now what is the probability of two boys? Half of all mothers have a boy first,
and of these, 60% have another boy. Thus 30% (60% of 50%) of mothers have
two boys. This is obtained from the rule

Pr(B1 and B2) = Pr(B1) x Pr(B2|B1) (2.12)
=0.5x0.6
=03

Thus in general we have

Pr(A and B) = Pr(A) x Pr(B|A) (2.13)
which simplifies to

Pr(A and B) = Pr(A) x Pr(B) (2.149)

if A and B are independent.

Independence may therefore be defined as follows: two events, A and B, are
independent if the probability of one occurring is not influenced by the fact of
the other having occurred. Formally, if A and B are independent then

Pr(B|A) = Pr(B|not A) = Pr(B) (2.15)
and
Pr(A|B) = Pr(A|not B) = Pr(A) (2.16)

The concept of independence is an important one in statistics, as it usually
simplifies problems considerably. If two variables are known to be independent
then we can analyse the behaviour of one without worrying about what is happen-
ing to the other variable. For example, sales of computers are independent of
temperature, so if one is trying to predict sales next month one does not need to
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worry about the weather. In contrast, ice cream sales do depend on the weather,
so predicting sales accurately requires one to forecast the weather first.

Intuition does not always work with probabilities!

Counter-intuitive results frequently arise in probability, which is why it is wise to
use the rules to calculate probabilities in tricky situations, rather than rely on
intuition. Take the following questions:

® What is the probability of obtaining two heads (HH) in two tosses of a coin?

® What is the probability of obtaining tails followed by heads (TH)?

o If a coin is tossed until either HH or TH occurs, what are the probabilities of
each sequence occurring first?

The answers to the first two are easy: /2 x '/2= "4 in each case. You might there-
fore conclude that each sequence is equally likely to be the first observed, but you
would be wrong!

Unless HH occurs on the first two tosses, then TH must occur first. HH is therefore
the first sequence only if it occurs on the first two tosses, which has a probability
of . The probability that TH is first is therefore %. The probabilities are unequal,
a strange result. Now try the same thing with HHH and THH and three tosses of a coin.

(D Combining the addition and multiplication rules

More complex problems can be solved by suitable combinations of the addition
and multiplication formulae. For example, what is the probability of a mother
having one child of each sex? This could occur in one of two ways: a girl
followed by a boy or a boy followed by a girl. It is important to note that these
are two different routes to the same outcome. Therefore we have (assuming
non-independence according to equation (2.11))

Pr(1 girl, 1 boy) = Pr((GI and B2) or (BI and G2))
=Pr(G1) x Pr(B2|G1) + Pr(B1) x Pr(G2|B1)

(0.5x0.4) + (0.5 x 0.4)

=0.4

The answer can be checked if we remember equation (2.2) stating that prob-
abilities must sum to 1. We have calculated the probability of two boys (0.3)
and of a child of each sex (0.4). The only other possibility is of two girls. This
probability must be 0.3, the same as two boys, since boys and girls are treated
symmetrically in this problem (even with the non-independence assumption).
The sum of the three possibilities (two boys, one of each or two girls) is there-
fore 0.3 + 0.4 + 0.3 = 1, as it should be. This is often a useful check to make,
especially if one is unsure that one’s calculations are correct.

Note that the problem would have been different if we had asked for the
probability of the mother having one girl with a younger brother.

Tree diagrams

The preceding problem can be illustrated using a tree diagram, which often
helps to clarify a problem. A tree diagram is an alternative way of enumerating



Figure 2.5
Tree diagram for a
family with two children
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2 boys: 0.5x0.6=0.3

Boy, girl: 0.5x0.4=0.2
1 girl and 1 boy
02+02=04
Girl, boy: 0.5x0.4=0.2

2 qirls: 0.5x 0.6 =0.3

all possible outcomes in the sample space, with the associated probabilities.
The diagram for two children is shown in Figure 2.5.

The diagram begins at the left and the first node shows the possible altern-
atives (boy, girl) at that point and the associated probabilities (0.5, 0.5). The next
two nodes show the alternatives and probabilities for the second birth, given the
sex of the first child. The final four nodes show the possible results: {boy, boy};
{boy, girl}; {girl, boy}; and {girl, girl}.

To find the probability of two girls, using the tree diagram, follow the lowest
path, multiplying the probabilities along it to give 0.5 x 0.6 = 0.3. To find the
probability of one child of each sex it is necessary to follow all the routes which
lead to such an outcome. There are two in this case: leading to boy, girl and to
girl, boy. Each of these has a probability of 0.2, obtained by multiplying the prob-
abilities along that branch of the tree. Adding these together (since either one or
the other leads to the desired outcome) yields the answer, giving 0.2 + 0.2 = 0.4.
This provides a graphical alternative to the formulae used above and may help
comprehension.

The tree diagram can obviously be extended to cover third and subsequent
children although the number of branches rapidly increases (in geometric pro-
gression). The difficulty then becomes not just the calculation of the probab-
ility attached to each outcome, but sorting out which branches should be taken
into account in the calculation. Suppose we consider a family of five children
of whom three are girls. To simplify matters we again assume independence
of probabilities. The appropriate tree diagram has 2° = 32 end-points, each with
probability 1/32. How many of these relate to families with three girls and two
boys, for example? One can draw the diagram and count them, yielding the
answer 10, but it takes considerable time and is prone to error. Far better
would be to use a formula. To develop this, we use the ideas of combinations and
permutations.

Combinations and permutations

How can we establish the number of ways of having three girls and two boys
in a family of five children? One way would be to write down all the possible
orderings:
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GGGBB GGBGB GGBBG GBGGB GBGBG
GBBGG BGGGB BGGBG BGBGG BBGGG

This shows that there are 10 such orderings, so the probability of three girls
and two boys in a family of five children is 10/32. In more complex problems
this soon becomes difficult or impossible. The record number of children born
to a British mother is 39 (!) of whom 32 were girls. The appropriate tree diagram
has over five thousand billion ‘routes’ through it, and drawing one line (i.e. for
one child) per second would imply 17 433 years to complete the task! Rather
than do this, we use the combinatorial formula to find the answer. Suppose there
are n children, r of them girls, then the number of orderings, denoted nCr, is
obtained from'

n!
nCr=———
rl(n —r)!

- nxm-1)x...x1
Trx@-Dx.. . xlx{m-Hxm-r-1)x...x1} (2.17)

In the above example n =5, r = 3 so the number of orderings is

S5x4x3x2x1
= =10 2.18
5C3 {3x2x1}x{2x1} ( )

If there were four girls out of five children then the number of orderings or
combinations would be

Sx4x3x2x1
4x3x2x1}x1"

5C4 = 5 (2.19)
This gives five possible orderings, i.e. the single boy could be the first, second,
third, fourth or fifth born.

Why does this formula work? Consider five empty places to fill, correspond-
ing to the five births in chronological order. Take the case of three girls (call
them Amanda, Bridget and Caroline for convenience) who have to fill three
of the five places. For Amanda there is a choice of five empty places. Having
‘chosen’ one, there remain four for Bridget, so there are 5 x 4 = 20 possibilities
(i.e. ways in which these two could choose their places). Three remain for
Caroline, so there are 60 (= 5 x 4 x 3) possible orderings in all (the two boys take
the two remaining places). Sixty is the number of permutations of three named
girls in five births. This is written SP3 or in general nPr. Hence

SP3=5x4x3
or in general

nPr=nxm-1)x...x(n-r+1) (2.20)
A simpler formula is obtained by multiplying and dividing by (n —r)!

_hx@m-nx.. xm-r+hxm-n!__ n

ner -1l G

(2.21)

! n! is read ‘n factorial’ and is defined as the product of all the integers up to and includ-

ing n. Thus, for example, 3! =3 x2x1=6.



Bayes’ theorem

What is the difference between nPr and nCr? The latter does not distinguish
between the girls; the two cases Amanda, Bridget, Caroline, boy, boy and Bridget,
Amanda, Caroline, boy, boy are effectively the same (three girls followed by two
boys). So nPr is larger by a factor representing the number of ways of ordering
the three girls. This factor is given by 7l =3 x 2 x 1 = 6 (any of the three girls
could be first, either of the other two second, and then the final one). Thus to
obtain nCr one must divide nPr by 1!, giving (2.17).

Exercise 2.3 (a) Adartis thrown at a dartboard. What is the sample space for this experiment?

(b) An archer has a 30% chance of hitting the bull’'s eye on the target. What is the
complement to this event and what is its probability?

(c) What is the probability of two mutually exclusive events both occurring?

(d) A spectator reckons there is a 70% probability of an American rider winning the
Tour de France and a 40% probability of Frenchman winning. Comment.

Exercise 2.4 (a) For the archer in Exercise 2.3(b) what is the probability that she hits the target
5 with one (and only one) of two arrows?
: (b) What is the probability that she hits the target with both arrows?

(c) Explain the importance of the assumption of independence for the answers to
both parts (a) and (b) of this exercise.

(d) If the archer becomes more confident after a successful shot (i.e. her probability
of a shot on target rises to 50%) and less confident (probability falls to 20%) after
a miss, how would this affect the answers to parts (a) and (b)?

Exercise 2.5 (a) Draw the tree diagrams associated with Exercise 2.4. You will need one for the
case of independence of events, one for non-independence.

(b) Extend the diagram (assuming independence] to a third arrow. Use this to mark
out the paths with two successful shots out of three. Calculate the probability of
two hits out of three shots.

(c) Repeat part (b) for the case of non-independence. For this you may assume that
a hit raises the problem of success with the next arrow to 50%. A miss lowers it
to 20%.

Exercise 2.6 (a) Show how the answer to Exercise 2.5(b) may be arrived at using algebra, includ-
% ing the use of the combinatorial formula.
: (b) Repeat part (a) for the non-independence case.
[ Bayes’ theorem ]

Bayes’ theorem is a factual statement about probabilities, which in itself is
uncontroversial. However, the use and interpretation of the result is at the heart
of the difference between classical and Bayesian statistics. The theorem itself is
easily derived from first principles. Equation (2.22) is similar to equation (2.13)
covered earlier when discussing the multiplication rule
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Pr(A and B) = Pr(A|B) x Pr(B) (2.22)
hence
Pr(A|B) = % (2.23)

Expanding both top and bottom of the right-hand side

Pr(B|A) x Pr(A)

Pr(A|B) = Pr(B|A) x Pr(A) + Pr(B|not A) x Pr(not A)

(2.24)

Equation (2.24) is known as Bayes’ theorem and is a statement about the
probability of the event A, conditional upon B having occurred. The following
example demonstrates its use.

Two bags contain red and yellow balls. Bag A contains six red and four yellow
balls, bag B has three red and seven yellow balls. A ball is drawn at random from
one bag and turns out to be red. What is the probability that it came from bag
A? Since bag A has relatively more red balls to yellow balls than does bag B, it
seems bag A ought to be favoured. The probability should be more than 0.5. We
can check if this is correct.

Denoting

Pr(A) =0.5 (the probability of choosing bag A at random) = Pr(B)
Pr(R|A) = 0.6 (the probability of selecting a red ball from bag A), etc.

we have
Pr(R|A) x Pr(A)
Pr(A|R) = 2.25
TAIR) = 5L R1A) % Pr(A) + Pr(R|B) x Pr(B) (2.25)
using Bayes’ theorem. Evaluating this gives
0.6 x 0.5
PrAIR) = 5 6% 05+03%05 (2.26)

(You can check that Pr(B|R) = '/3 so that the sum of the probabilities is 1.) As
expected, this result is greater than 0.5.

Bayes’ theorem can be extended to cover more than two bags: if there are five
bags, for example, labelled A to E, then

Pr(R|A) x Pr(A)

PrAR) = B RIA) % Pr(A) + Pr(RIB) x Pr(B) + . + PrRIE) x Pr(E)

(2.27)

In Bayesian language, Pr(A), Pr(B), etc., are known as the prior (to the drawing
of the ball) probabilities, Pr(R|A), Pr(R|B), etc., are the likelihoods and Pr(A|R),
Pr(B|R), etc., are the posterior probabilities. Bayes’ theorem can alternatively be
expressed as

likelihood x prior probability

2.28
likelihoods x prior probabilites) ( )

posterior probability = 5

This is illustrated below, by reworking the above example.



Decision analysis

Prior probabilities Likelihoods Prior x likelihood Posterior probabilities

A 0.5 0.6 0.30 0.30/0.45 = 2/3
B 0.5 0.3 0.15 0.15/0.45=1/3
Total 0.45

The general version of Bayes’ theorem may be stated as follows. If there are n
events labelled E, . . ., E, then the probability of the event E; occurring, given
the sample evidence S, is

Pr(S|E; x Pr(E)
2 (Pr(S|E) x Pr(E))

Pr(E;|S) = (2.29)
As stated earlier, dispute arises over the interpretation of Bayes’ theorem.
In the above example there is no difficulty because the probability statements
can be interpreted as relative frequencies. If the experiment of selecting a bag at
random and choosing a ball from it were repeated many times, then of those
occasions when a red ball is selected, in two-thirds of them bag A will have been
chosen. However, consider an alternative interpretation of the symbols:

A: a coin is fair;
B: a coin is unfair;
R: the result of a toss is a head.

Then, given a toss (or series of tosses) of a coin, this evidence can be used to
calculate the probability of the coin being fair. But this makes no sense accord-
ing to the frequentist school: either the coin is fair or not; it is not a question of
probability. The calculated value must be interpreted as a degree of belief and be
given a subjective interpretation.

Exercise 2.7 (a) Repeat the ‘balls in the bag’ exercise from the text, but with bag A containing five
red and three yellow balls, bag B containing one red and two yellow balls. The
single ball drawn is red. Before doing the calculation, predict which bag is more
likely to be the source of the drawn ball. Explain why.

2

(b) Bag A now contains 10 red and six yellow balls [i.e. twice as many as before, but
in the same proportion). Does this alter the answer you obtained in part (a)?

(c) Set out your answer to part (b) in the form of prior probabilities and likelihoods,
in order to obtain the posterior probability.

(Decision analysis ]

The study of probability naturally leads on to the analysis of decision making
where risk is involved. This is the realistic situation facing most firms and the
use of probability can help to illuminate the problem. To illustrate the topic, we
use the example of a firm facing a choice of three different investment projects.
The uncertainty that the firm faces concerns the interest rate at which to
discount the future flows of income. If the interest/discount rate is high then
projects which have income far in the future become less attractive relative to
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Table 2.1 Data for decision analysis: present values of three investment projects at
different interest rates (£000)

Project Future interest rate

4% 5% 6% 7%
A 1475 1363 1200 1115
B 1500 1380 1148 1048
C 1650 1440 1200 810
Probability 0.1 0.4 0.4 0.1

projects with more immediate returns. A low rate reverses this conclusion. The
question is: which project should the firm select? As we shall see, there is no
unique, right answer to the question but, using probability theory we can see
why the answer might vary.

Table 2.1 provides the data required for the problem. The three projects are
imaginatively labelled A, B and C. There are four possible states of the world, i.e.
future scenarios, each with a different interest rate, as shown across the top of
the table. This is the only source of uncertainty, otherwise the states of the
world are identical. The figures in the body of the table show the present value
of each income stream at the given discount rate.

Present value

The present value of future income is its value today and is obtained using the
interest rate. For example, if the interest rate is 10%, the present value (i.e. today)
of £110 received in one year’s time is £100. In other words, one could invest
£100 today at 10% and have £110 in one year’s time. £100 today and £110 next year
are equivalent.

The present value of £110 received in two years’ time is smaller since one has
to wait longer to receive it. It is calculated as £110/1.1* = 90.91. Again, £90.91
invested at 10% per annum will yield £110 in two years’ time. After one year it is
worth £90.91 x 1.1 = 100 and after a second year that £100 becomes £110. Notice
that, if the interest rate rises, the present value falls. For example, if the interest
rate is 20%, £110 next year is worth only £110/1.2 = 91.67 today.

The present value of £110 in one year’s time and another £110 in two years’
time is £110/1.1 + £110/1.12 = £190.91. The present value of more complicated
streams of income can be calculated by extension of this principle. In the example
used in the text you do not need to worry about how the present value is arrived
at. Before reading on you may wish to do Exercise 2.8 to practise calculation of
present value.

Thus, for example, if the interest rate turns out to be 4% then project A has a
present value of £1 475 000 while B’s is £1 500 000. If the discount rate turns
out to be 5% the PV for A is £1 363 000 while for B it has changed to £1 380 000.
Obviously, as the discount rate rises, the present value of the return falls.
(Alternatively, we could assume that a higher interest rate increases the cost of
borrowing to finance the project, which reduces its profitability.) We assume
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Decision analysis

that each project requires a (certain) initial outlay of £1 100 000 with which the
PV should be compared.

The final row of the table shows the probabilities which the firm attaches to
each interest rate. These are obviously someone’s subjective probabilities and are
symmetric around a central value of 5.5%.

(a) Ataninterest or discount rate of 10%, what is the present value of £1200 received
in one year's time?

(b) If the interest rate rises to 15%, how is the present value altered? The interest
rate has risen by 50% (from 10% to 15%]): how has the present value changed?

(c) At an interest rate of 10% what is the present value of £1200 received in (i) two
years’ time and (ii) five years’ time?

(d) An income of £500 is received at the end of years one, two and three (i.e. £1500
in total). What is its present value? Assume r = 10%.

(e Project A provides an income of £300 after one year and another £600 after two
years. Project B provides £400 and £488 at the same times. At a discount rate of
10% which project has the higher present value? What happens if the discount
rate rises to 20%?

Decision criteria: maximising the expected value

We need to decide how a decision is to be made on the basis of these data. The
first criterion involves the expected value of each project. Because of the uncer-
tainty about the interest rate there is no single present value for each project.
We therefore calculate the expected value, using the E operator which was intro-
duced in Chapter 1. In other words, we find the expected present value of each
project, by taking a weighted average of the PV figures, the weights being the
probabilities. The project with the highest expected return is chosen.

The expected values are calculated in Table 2.2. The highest expected present
value is £1 302 000, associated with project C. On this criterion therefore, C is
chosen. Is this a wise choice? If the business always uses this rule to evaluate
many projects then in the long run it will earn the maximum profits. However,
you may notice that if the interest rate turns out to be 7% then C would be the
worst project to choose in this case and the firm would make a substantial loss
in such circumstances. Project C is the most sensitive to the discount rate (it has
the greatest variance of PV values of the three projects) and therefore the firm
faces more risk by opting for C. There is a trade-off between risk and return.

Table 2.2 Expected values of the three projects

Project Expected value
A 1284.2
B 1266.0
C 1302.0

Note: 1284.2 is calculated as 1475 x 0.1 + 1363 x 0.4 + 1200 x 0.4 + 1115 x 0.1. This is the
weighted average of the four PV values. A similar calculation is performed for the other
projects.
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Table 2.3 The maximin criterion

Project Minimum
A 1115
B 1048
C 810
Maximum 1115

Perhaps some alternative criteria should be looked at. These we look at next, in
particular the maximin, maximax and minimax regret strategies.

Maximin, maximax and minimax regret

The maximin criterion looks at the worst-case scenario for each project and then
selects the project which does best in these circumstances. It is inevitably a
pessimistic or cautious view therefore. Table 2.3 illustrates the calculation.
This time we observe that project A is preferred. In the worst case (which occurs
when r = 7% for all projects) then A does best, with a PV of £1 115 000 and
therefore a slight profit. The maximin criterion may be a good one in busi-
ness where managers tend to over-optimism. Calculating the maximin may be
a salutary exercise, even if it is not the ultimate deciding factor.

The opposite criterion is the optimistic one where the maximax criterion
is used. In this case one looks at the best circumstances for each project and
chooses the best-performing project. Each project does best when the interest
rate is at its lowest level, 3%. Examining the first column of Table 2.1 shows that
project C (PV = 1650) performs best and is therefore chosen. Given the earlier
warning about over-optimistic managers, this may not be suitable as the sole
criterion for making investment decisions.

A final criterion is that of minimax regret. If project B were chosen but the
interest rate turns out to be 7% then we would regret not having chosen A, the
best project under these circumstances. Our regret would be the extent of the
difference between the two, a matter of 1115 — 1048 = 67. Similarly, the regret
if we had chosen C would be 1115 — 810 = 305. We can calculate these regrets
at the other interest rates too, always comparing the PV of a project with the
best PV given that interest rate. This gives us Table 2.4.

The final column of the table shows the maximum regret for each project.
The minimax regret criterion is to choose the minimum of these figures. This is

Table 2.4 The costs of taking the wrong decision

Project 4% 5% 6% 7% Maximum
A 175 77 0 0 175
B 150 60 52 67 150
C 0 0 0 305 305
Minimum 150




Exercise 2.9

2

Decision analysis

given at the bottom of the final column; it is 150 which is associated with pro-
ject B. A justification for using this criterion might be that you do not want to
fall too far behind your competitors. If other firms are facing similar investment
decisions, then the regret table shows the difference in PV (and hence profits)
if they choose the best project while you do not. Choosing the minimax regret
solution ensures that you will not fall too far behind. During the internet bubble
of the 1990s it was important to gain market share and keep up with, or surpass,
your competitors. The minimax regret strategy might be a useful tool during
such times.

You will probably have noticed that we have managed to find a justification
for choosing all three projects! No one project comes out best on all criteria.
Nevertheless, the analysis might be of some help: if the investment project is
one of many small, independent investments the firm is making, then this
would justify use of the expected value criterion. On the other hand, if this is a
big, one-off project which could possibly bankrupt the firm if it goes wrong,
then the maximin criterion would be appropriate.

The expected value of perfect information

Often a firm can improve its knowledge about future possibilities via research,
which costs money. This effectively means buying information about the future
state of the world. The question arises: how much should a firm pay for such
information? Perfect information would reveal the future state of the world with
certainty — in this case, the future interest rate. In that case you could be sure of
choosing the right project given each state of the world. If interest rates turn out
to be 4%, the firm would invest in C, if 7% in A, and so on.
In such circumstances, the firm would expect to earn

(0.1 x 1650) + (0.4 x 1440) + (0.4 x 1200) + (0.1 x 1115) = 1332.5

i.e. the probability of each state of the world is multiplied by the PV of the best
project for that state. This gives a figure which is greater than the expected value
calculated earlier, without perfect information, 1302. The expected value of per-
fect information is therefore the difference between these two, 30.5. This sets a
maximum to the value of information, for it is unlikely in the real world that any
information about the future is going to be perfect.

(a) Evaluate the three projects detailed in the table below, using the criteria of
expected value, maximin, maximax and minimax regret. The probability of a 4%
interest rate is 0.3, of 6% is 0.4 and of 8% is 0.3.

Project 4% 6% 8%
A 100 80 70
B 90 85 75
C 120 60 40

(b) What would be the value of perfect information about the interest rate?
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® The theory of probability forms the basis of statistical inference: the drawing
of inferences on the basis of a random sample of data. The reason for this is
the probability basis of random sampling.

e A convenient definition of the probability of an event is the number of times
the event occurs divided by the number of trials (occasions when the event
could occur).

e For more complex events, their probabilities can be calculated by combining
probabilities, using the addition and multiplication rules.

e The probability of events A or B occurring is calculated according to the addi-
tion rule.

e The probability of A and B occurring is given by the multiplication rule.

e If A and B are not independent, then Pr(A and B) = Pr(A) x Pr(B|A), where
Pr(B|A) is the probability of B occurring given that A has occurred (the con-
ditional probability).

® Tree diagrams are a useful technique for enumerating all the possible paths in
series of probability trials, but for large numbers of trials the huge number of
possibilities makes the technique impractical.

e For experiments with a large number of trials (e.g. obtaining 20 heads in 50
tosses of a coin) the formulae for combinations and permutations can be used.

® The combinatorial formula nCr gives the number of ways of combining r
similar objects among n objects, e.g. the number of orderings of three girls
(and hence implicitly two boys also) in five children.

e The permutation formula nPr gives the number of orderings of r distinct
objects among n, e.g. three named girls among five children.

@ Bayes’ theorem provides a formula for calculating a conditional probability, e.g.
the probability of someone being a smoker, given they have been diagnosed
with cancer. It forms the basis of Bayesian statistics, allowing us to calculate
the probability of a hypothesis being true, based on the sample evidence and
prior beliefs. Classical statistics disputes this approach.

e Probabilities can also be used as the basis for decision making in conditions of
uncertainty, using as decision criteria expected value maximisation, maximin,
maximax or minimax regret.

(Key terms and concepts )

addition rule

Bayes’ theorem
combinations
complement
compound event
conditional probability
exhaustive

expected value of perfect information
frequentist approach
independent events
maximin

minimax

minimax regret
multiplication rule
mutually exclusive
outcome or event
permutations
probability experiment
probability of an event
sample space
subjective approach
tree diagram



Problems

Problems

2.1

2.2

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Given a standard pack of cards, calculate the following probabilities:
(a) drawing an ace;

(b) drawing a court card (i.e. jack, queen or king);

(c) drawing a red card;

(d) drawing three aces without replacement;

(e] drawing three aces with replacement.

The following data give duration of unemployment by age, in July 1986.

Age Duration of unemployment (weeks) Total Economically active

<8 8-26 26-52 52 (000s) (000s)
(Percentage figures)

16-19 27.2 29.8 24.0 19.0 273.4 1270
20-24 24.2 20.7 18.3 36.8 442.5 2000
25-34 14.8 18.8 17.2 49.2 531.4 3600
35-49 12.2 16.6 15.1 56.2 521.2 4900
50-59 8.9 14.4 15.6 61.2 388.1 2560
=60 18.5 29.7 30.7 21.4 74.8 1110

The ‘economically active’ column gives the total of employed (not shown) plus unemployed

in each age category.

(a] In what sense may these figures be regarded as probabilities? What does the figure
27.2 (top-left cell] mean following this interpretation?

(b] Assuming the validity of the probability interpretation, which of the following state-
ments are true?

(i) The probability of an economically active adult aged 25-34, drawn at random,
being unemployed is 531.4/3600.

(ii) If someone who has been unemployed for over one year is drawn at random, the
probability that they are aged 16-19 is 19%.

(iii) For those aged 35-49 who became unemployed before July 1985, the probability
of their still being unemployed is 56.2%.

(iv) If someone aged 50-59 is drawn at random from the economically active popula-
tion, the probability of their being unemployed for eight weeks or less is 8.9%.

(v] The probability of someone aged 35-49 drawn at random from the economically
active population being unemployed for between 8 and 26 weeks is 0.166 x
521.2/4900.

(c) Apersonisdrawn at random from the population and found to have been unemployed
for over one year. What is the probability that they are aged between 16 and 197
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2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

‘0dds’ in horserace betting are defined as follows: 3/1 (three-to-one against) means a
horse is expected to win once for every three times it loses; 3/2 means two wins out of five
races; 4/5 [five to four on] means five wins for every four defeats, etc.

(a] Translate the above odds into ‘probabilities’ of victory.

(b) In a three-horse race, the odds quoted are 2/1, 6/4, and 1/1. What makes the odds
different from probabilities? Why are they different?

(c) Discuss how much the bookmaker would expect to win in the long run at such odds,
assuming each horse is backed equally.

(a] Translate the following odds to ‘probabilities™: 13/8, 2/1 on, 100/30.
(b) In the 2.45 race at Plumpton on 18/10/94 the odds for the five runners were:

Philips Woody 11
Gallant Effort 5/2
Satin Noir 11/2
Victory Anthem 9/1
Common Rambler 16/1

Calculate the ‘probabilities” and their sum.

(c) Should the bookmaker base his odds on the true probabilities of each horse winning,
or on the amount bet on each horse?

How might you estimate the probability of Peru defaulting on its debt repayments next year?
How might you estimate the probability of a corporation reneging on its bond payments?

Judy is 33, unmarried and assertive. She is a graduate in political science, and involved in
union activities and anti-discrimination movements. Which of the following statements do
you think is more probable?

(a] Judy is a bank clerk.

(b) Judy is a bank clerk, active in the feminist movement.

In March 1994 a news item revealed that a London ‘gender’ clinic (which reportedly
enables you to choose the sex of your child) had just set up in business. Of its first six
births, two were of the ‘wrong’ sex. Assess this from a probability point of view.

A newspaper advertisement reads ‘The sex of your child predicted, or your money back!
Discuss this advertisement from the point of view of (a) the advertiser and (b) the client.

‘Roll six sixes to win a Mercedes!" is the announcement at a fair. You have to roll six dice.
If you get six sixes you win the car, valued at £20 000. The entry ticket costs £1. What
is your expected gain or loss on this game? The organisers of the fair have to take out
insurance against the car being won. This costs £250 for the day. Does this seem a fair
premium? If not, why not?

At another stall, you have to toss a coin numerous times. If a head does not appear in
20 tosses you win £1 bn. The entry fee for the game is £100.

(a] What are your expected winnings?

(b) Would you play?



2.12

2.13

2.14

2.15

2.16

2.17

Problems

A four-engine plane can fly as long as at least two of its engines work. A two-engine plane
flies as long as at least one engine works. The probability of an individual engine failure
is 1in 1000.

(a) Would you feel safer in a four- or two-engine plane, and why? Calculate the probab-
ilities of an accident for each type.

(b) How much safer is one type than the other?

(c) What crucial assumption are you making in your calculation? Do you think it is
valid?

Which of the following events are independent?
(a] Two flips of a fair coin.

(b] Two flips of a biased coin.

(c) Rainfall on two successive days.

(d] Rainfall on St Swithin’s day and rain one month later.

Which of the following events are independent?

(a) A student getting the first two questions correct in a multiple-choice exam.
(b] A driver having an accident in successive years.

(c) IBM and Dell earning positive profits next year.

(d] Arsenal Football Club winning on successive weekends.

How is the answer to (b) reflected in car insurance premiums?

Manchester United beat Liverpool 4-2 at soccer, but you do not know the order in which
the goals were scored. Draw a tree diagram to display all the possibilities and use it to
find (a) the probability that the goals were scored in the order L, MU, MU, MU, L, MU, and
(b] the probability that the score was 2-2 at some stage.

An important numerical calculation on a spacecraft is carried out independently by
three computers. If all arrive at the same answer, it is deemed correct. If one dis-
agrees, it is overruled. If there is no agreement then a fourth computer does the
calculation and, if its answer agrees with any of the others, it is deemed correct. The
probability of an individual computer getting the answer right is 99%. Use a tree diagram
to find:

(a) the probability that the first three computers get the right answer;
(b) the probability of getting the right answer;
(c) the probability of getting no answer;

(d) the probability of getting the wrong answer.

The French national lottery works as follows. Six numbers from the range 0 to 49 are
chosen at random. If you have correctly guessed all six you win the first prize. What
are your chances of winning if you are only allowed to choose six numbers? A single entry
like this costs €1. For €210 you can choose 10 numbers and you win if the six selected
numbers are among them. Is this better value than the single entry?
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2.18 The UK national lottery works as follows. You choose six (different) numbers in the range

2.19

2.20

2.21

1 to 49. If all six come up in the draw (in any order) you win the first prize, expected to be
around £2m (which could be shared if someone else chooses the six winning numbers).

(a) What is your chance of winning with a single ticket?

(b) You win a second prize if you get five out of six right, and your final chosen number
matches the ‘bonus’ number in the draw (also in the range 1 to 49). What is the
probability of winning a second prize?

(c) Calculate the probabilities of winning a third, fourth or fifth prize, where a third prize
is won by matching five out of the six numbers, a fourth prize by matching four out of

six and a fifth prize by matching three out of six.

(d) What is the probability of winning a prize?

(e] The prizes are as follows:
Prize Value
First £2m (expected, possibly shared)
Second £100 000 (expected, for each winner)
Third £1500 (expected, for each winner)
Fourth £65 (expected, for each winner)
Fifth £10 (guaranteed, for each winner)

Comment upon the distribution of the fund between first, second, etc., prizes.
(f) Why is the fifth prize guaranteed whereas the others are not?

(g) In the first week of the lottery, 49 million tickets were sold. There were 1 150 000
winners, of which 7 won (a share of] the jackpot, 39 won a second prize, 2139 won a
third prize and 76 731 a fourth prize. Are you surprised by these results or are they
as you would expect?

A coin is either fair or has two heads. You initially assign probabilities of 0.5 to each
possibility. The coin is then tossed twice, with two heads appearing. Use Bayes’ theorem
to work out the posterior probabilities of each possible outcome.

A test for AIDS is 99% successful, i.e. if you are HIV+ it will detect it in 99% of all tests, and
if you are not, it will again be right 99% of the time. Assume that about 1% of the popula-
tion are HIV+. You take part in a random testing procedure, which gives a positive result.
What is the probability that you are HIV+? What implications does your result have for
AIDS testing?

(a] Your initial belief is that a defendant in a court case is guilty with probability 0.5.
A witness comes forward claiming he saw the defendant commit the crime. You know
the witness is not totally reliable and tells the truth with probability p. Use Bayes’
theorem to calculate the posterior probability that the defendant is guilty, based on
the witness’s evidence.

(b

A second witness, equally unreliable, comes forward and claims she saw the defendant
commit the crime. Assuming the witnesses are not colluding, what is your posterior
probability of guilt?

(c) If p < 0.5, compare the answers to (a) and (b]. How do you account for this curious

result?
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Problems

A man is mugged and claims that the mugger had red hair. In police investigations of such
cases, the victim was able correctly to identify the assailant’s hair colour 80% of the time.
Assuming that 10% of the population have red hair, what is the probability that the
assailant in this case did, in fact, have red hair? Guess the answer first, then find the
right answer using Bayes’ theorem. What are the implications of your results for juries’
interpretation of evidence in court, particularly in relation to racial minorities?

A firm has a choice of three projects, with profits as indicated below, dependent upon the
state of demand.

Project Demand

Low Middle High
A 100 140 180
B 130 145 170
© 110 130 200
Probability 0.25 0.45 0.3

(a] Which project should be chosen on the expected value criterion?
(b] Which project should be chosen on the maximin and maximax criteria?
(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

A firm can build a small, medium or large factory, with anticipated profits from each
dependent upon the state of demand, as in the table below.

Factory Demand

Low Middle High
Small 300 320 330
Medium 270 400 420
Large 50 250 600
Probability 0.3 0.5 0.2

(a) Which project should be chosen on the expected value criterion?
(b] Which project should be chosen on the maximin and maximax criteria?
(c) Which project should be chosen on the minimax regret criterion?

(d) What is the expected value of perfect information to the firm?

There are 25 people at a party. What is the probability that there are at least two with a
birthday in common?

Hint: the complement is (much) easier to calculate.

This problem is tricky, but amusing. Three gunmen, A, B and C, are shooting at each
other. The probabilities that each will hit what they aim at are respectively 1, 0.75, 0.5.
They take it in turns to shoot (in alphabetical order]) and continue until only one is left
alive. Calculate the probabilities of each winning the contest. (Assume they draw lots for
the right to shoot first.)

Hint 1: Start with one-on-one gunfights, e.g. the probability of A beating B, or of B beating C.

Hint 2: You'll need the formula for the sum of an infinite series, given in Chapter 1.
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2.27

2.28

The BMAT test (see http://www.ucl.ac.uk/lapt/bmat/) is an on-line test for prospective
medical students. It uses ‘certainty based marking’. After choosing your answer from the
alternatives available, you then have to give your level of confidence that your answer is
correct: low, medium or high. If you choose low, you get one mark for the correct answer,
zero if it is wrong. For medium confidence you get +2 or —2 marks for correct or incorrect
answers. If you choose high, you get +3 or —6.

(a) If you are 60% confident your answer is correct [i.e. you think there is a 60% probability
you are right), which certainty level should you choose?

(b) Over what range of probabilities is ‘medium’ the best choice?

(c) If you were 85% confident, how many marks would you expect to lose by opting for one
of the wrong choices?

A multiple choice test involves 20 questions, with four choices for each answer.

(a] If you guessed the answers to all questions at random, what mark out of 20 would you
expect to get?

(b) If you know the correct answer to eight of the questions, what is your expected score
out of 20?7

(c) The examiner wishes to correct the bias due to students guessing answers. They
decide to award a negative mark for incorrect answers (with 1 for a correct answer
and 0 for no answer given). What negative mark would ensure that the overall mark
out of 20 is a true reflection of the student’s ability?
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Exercise 2.1
Answer in text.

Exercise 2.2

(a) A subjective view would have to be taken, informed by such things as opinion polls.

(b) 1/49, a frequentist view. Some people do add their own subjective evaluations
(e.g. that 5 must come up as it has not been drawn for several weeks) but these
are often unwarranted according to the frequentist approach.

(c) A mixture of objective and subjective criteria might be used here. Historical data on
the occurrence of tsunamis might give a (frequentist) baseline figure, to which might
be added subjective considerations such as the amount of recent seismic activity.

(d) A mixture again. Historical data give a benchmark (possibly of little relevance)
while immediate factors such as the weather might alter one’s subjective judge-
ment. (As I write it is snowing outside, which seems to have a huge impact on
British trains!)

Exercise 2.3
(@ 1,2,3,...,20, 21 (a triple seven), 22 (double eleven), 24, 25 (outer bull), 26, 27, 28,
30, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60. Or it could miss altogether!

(b) The complement is missing the target, with probability 1 — 0.3 = 70%.
(c) Zero, it is impossible.

(d) Impossible, the probabilities sum to more than one.

Exercise 2.4

(@) 0.3x0.7+0.7 x 0.3 =0.42. This is a hit followed by a miss or a miss followed by
a hit.

(b) 0.3 x 0.3 = 0.09.

(c) It is assumed that the probability of the second arrow hitting the target is the
same as the first. Altering this assumption would affect both answers.

(d) Part (a) becomes 0.3 x (1 — 0.5) + 0.7 x 0.2 = 0.29. Part (b) becomes 0.3 x 0.5
=0.15.

Exercise 2.5
(a) Independent case:

Hit Two hits, P=0.09

One hit, P=0.21

One hit, P=0.21

No hits, P=0.49
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Dependent case:

Hit One hit, P=0.15

One hit, P=0.15

One hit, P=0.14

Miss ™~ No hits, P=0.56

(b)

Two hits, P=0.3 x0.3 x0.7 =0.063

Two hits, P=0.3 x0.7 x 0.3 =0.063

Two hits, P=0.7 x 0.3 x 0.3 =0.063

P(two hits) = 0.063 + 0.063 + 0.063 = 0.189

Two hits, P=0.3x0.5x0.5=0.075

Two hits, P=0.3 x0.5x0.2=0.03

Two hits, P=0.7 x0.2 x 0.5 = 0.07

P(two hits) = 0.075 + 0.03 + 0.07 =0.175

Exercise 2.6
(a) Pr(2 hits) = Pr(H and H and M) x 3C2 =0.3 x 0.3 x 0.7 x 3 =0.189.

(b) This cannot be done using the combinatorial formula, because of the non-
independence of probabilities. Instead one has to calculate Pr(H and H and M)
+ Pr(H and M and H) + Pr(M and H and H), yielding the answer 0.175.
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Exercise 2.7
(a) Bag A has proportionately more red balls than bag B, hence should be the favoured
bag from which the single red ball was drawn. Performing the calculation

Pr(R|A) x Pr(A)

Pr(A|R) =
TAIR) Pr(R|A) x Pr(A) + Pr(R|B) x Pr(B)

0.625 x 0.5

=- =0.556
0.625x0.5+0.5%x0.5

(b) The result is the same, as Pr(R|A) = 0.625 as before. The number of balls does not
enter the calculation.

(o) Prior probabilities  Likelihoods  Prior x likelihood  Posterior probabilities
A 0.5 0.625 0.3125 0.3125/0.5625 = 0.556
B 0.5 0.5 0.25 0.25/0.5625 = 0.444
Total 0.5625

Exercise 2.8
(a) 1200/1.1 = 1090.91.

(b) 1200/1.15 = 1043.48. The PV has only changed by 4.3%. This is calculated as
1.1/1.15 - 1 =-0.043.

(c) 1200/1.1>=991.74; 1200/1.1° = 745.11.
(d) PV =500/1.1 + 500/1.1% + 500/1.1° = 1243.43.

(e) At 10%: project A yields a PV of 300/1.1 + 600/1.1* = 768.6. Project B yields
400/1.1 + 488/1.1* = 766.9. At 20% the PVs are 666.7 and 672.2, reversing
the rankings. A’s large benefits in year 2 are penalised by the higher discount
rate.

Exercise 2.9

(a) Project Expected value Minimum Maximum
A 0.3x 100+ 0.4 x80+0.3%x70=283 70 100
B 0.3x90+0.4x85+0.3x75=83.5 75 90
C 0.3x120+0.4x60+03x40=72 40 120

The maximin is 75, associated with project B and the maximax is 120, associated
with project C. The regret values are given by

4% 6% 8% Max

A 20 5 5 20
B 30 0 0 30
C 0 25 35 35
Min 20

The minimax regret is 20, associated with project A.

(b) With perfect information the firm could eam 0.3 x 120 + 0.4 x 85 + 0.3 x 75 =
92.5. The highest expected value is 83.5, so the value of perfect information is
92.5-83.5=09.
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L . By the end of this chapter you should be able to:
earning
[ outcomes J @ recognise that the result of most probability experiments (e.g. the score on a

die) can be described as a random variable;

@ appreciate how the behaviour of a random variable can often be summarised by
a probability distribution (a mathematical formula);

® recognise the most common probability distributions and be aware of their
uses;

® solve a range of probability problems using the appropriate probability
distribution.

Complete your diagnostic test for Chapter 3 now to create your personal study
@ plan. Exercises with an icon (?  are also available for practice in MathXL with
additional supporting resources.
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(Introduction

)

Figure 3.1
The probability distribution
for the toss of a coin

In this chapter the probability concepts introduced in Chapter 2 are generalised
by using the idea of a probability distribution. A probability distribution lists,
in some form, all the possible outcomes of a probability experiment and the
probability associated with each one. For example, the simplest experiment
is tossing a coin, for which the possible outcomes are heads or tails, each with
probability one-half. The probability distribution can be expressed in a variety
of ways: in words, or in a graphical or mathematical form. For tossing a coin, the
graphical form is shown in Figure 3.1, and the mathematical form is

The different forms of presentation are equivalent, but one might be more
suited to a particular purpose.

0.5 1
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o

Heads Tails

Some probability distributions occur often and so are well known. Because of
this they have names so we can refer to them easily; for example, the Binomial
distribution or the Normal distribution. In fact, each constitutes a family of dis-
tributions. A single toss of a coin gives rise to one member of the Binomial
distribution family; two tosses would give rise to another member of that fam-
ily. These two distributions differ in the number of tosses. If a biased coin were
tossed, this would lead to yet another Binomial distribution, but it would differ
from the previous two because of the different probability of heads.

Members of the Binomial family of distributions are distinguished either by
the number of tosses or by the probability of the event occurring. These are the
two parameters of the distribution and tell us all we need to know about the
distribution. Other distributions might have different numbers of parameters, with
different meanings. Some distributions, for example, have only one parameter.
We will come across examples of different types of distribution throughout the
rest of this book.

In order to understand fully the idea of a probability distribution a new
concept is first introduced, that of a random variable. As will be seen later in the
chapter, an important random variable is the sample mean, and to understand
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how to draw inferences from the sample mean it is important to recognise it as
a random variable.

[Random variables J

110

Examples of random variables have already been encountered in Chapter 2, for
example, the result of the toss of a coin, or the number of boys in a family of
five children. A random variable is one whose outcome or value is the result of
chance and is therefore unpredictable, although the range of possible outcomes
and the probability of each outcome may be known. It is impossible to know
in advance the outcome of a toss of a coin for example, but it must be either
heads or tails, each with probability one-half. The number of heads in 250 tosses
is another random variable, which can take any value between zero and 250,
although values near 125 are the most likely. You are very unlikely to get 250
heads from tossing a fair coin!

Intuitively, most people would ‘expect’ to get 125 heads from 250 tosses of
the coin, since heads comes up half the time on average. This suggests we could
use the expected value notation introduced in Chapter 1 and write E(X) = 125,
where X represents the number of heads obtained from 250 tosses. This usage
is indeed valid and we will explore this further below. It is a very convenient
shorthand notation.

The time of departure of a train is another example of a random variable.
It may be timetabled to depart at 11.15, but it probably (almost certainly!) will
not leave at exactly that time. If a sample of ten basketball players were taken,
and their average height calculated, this would be a random variable. In this
latter case, it is the process of taking a sample that introduces the variability
which makes the resulting average a random variable. If the experiment were
repeated, a different sample and a different value of the random variable would
be obtained.

The above examples can be contrasted with some things which are not
random variables. If one were to take all basketball players and calculate their
average height, the result would not be a random variable. This time there is no
sampling procedure to introduce variability into the result. If the experiment
were repeated the same result would be obtained, since the same people would
be measured the second time (this assumes that the population does not change,
of course). Just because the value of something is unknown does not mean it
qualifies as a random variable. This is an important distinction to bear in mind,
since it is legitimate to make probability statements about random variables
(‘the probability that the average height of a sample of basketball players is over
195 cm is 60%’) but not about parameters (‘the probability that the Pope is
over six feet is 60%’). Here again there is a difference of opinion between fre-
quentist and subjective schools of thought. The latter group would argue that it
is possible to make probability statements about the Pope’s height. It is a way of
expressing lack of knowledge about the true value. The frequentists would say
the Pope’s height is a fact that we do not happen to know; that does not make
it a random variable.
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[The Binomial distribution ]

One of the simplest distributions which a random variable can have is the
Binomial. The Binomial distribution arises whenever the underlying probability
experiment has just two possible outcomes, for example heads or tails from the
toss of a coin. Even if the coin is tossed many times (so one could end up with
one, two, three . . ., etc., heads in total) the underlying experiment has only two
outcomes, so the Binomial distribution should be used. A counter-example
would be the rolling of die, which has six possible outcomes (in this case
the Multinomial distribution, not covered in this book, would be used). Note,
however, that if we were interested only in rolling a six or not, we could use the
Binomial by defining the two possible outcomes as ‘six’ and ‘not-six’. It is often
the case in statistics that by suitable transformation of the data we can use
different distributions to tackle the same problem. We will see more of this later
in the chapter.

The Binomial distribution can therefore be applied to the type of problem
encountered in the previous chapter, concerning the sex of children. It provides
a general formula for calculating the probability of r boys in n births or, in more
general terms, the probability of r ‘successes’ in n trials.! We shall use it to
calculate the probabilities of O, 1, .. ., 5 boys in five births.

For the Binomial distribution to apply we first need to assume independence
of successive events and we shall assume that, for any birth

Pr(boy) =P = %
It follows that
Pr(girl) =1 — Pr(boy) =1 -P =%

Although we have P = % in this example, the Binomial distribution can be applied
for any value of P between 0 and 1.

First we consider the case of r= 35, n =35, i.e. five boys in five births. This prob-
ability is found using the multiplication rule

Pr(r=5)=PxPxPxPxP=P=(3)°=1/32
The probability of four boys (and then implicitly one girl) is
Prr=4)=PxPxPxPx(1-P)=1/32

But this gives only one possible ordering of the four boys and one girl. Our
original statement of the problem did not specify a particular ordering of the
children. There are five possible orderings (the single girl could be in any of
five positions in rank order). Recall that we can use the combinatorial formula
nCr to calculate the number of orderings, giving 5C4 = 5. Hence the probability
of four boys and one girl in any order is 5/32. Summarising, the formula for four
boys and one girl is

Pr(r = 4) = 5C4 x P* x (1 - P)

! The identification of a boy with ‘success’ is a purely formal one and is not meant to be
pejorative!
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Figure 3.2

Probability distribution of
the number of boys in five
children
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For three boys (and two girls) we obtain
Pr(r=3)=5C3xP*x (1 -P)>*=10x 1/8 x 1/4 =10/32
In a similar manner
Pr(r=2)=5C2 x P*x (1 - P)*=10/32
Pr(r=1)=5C1 xP'x (1 -P)*=5/32
Pr(r=0)=5C0 x P’ x (1 - P> =1/32

As a check on our calculations we may note that the sum of the probabilities
equals 1, as they should do, as we have enumerated all possibilities.
A fairly clear pattern emerges. The probability of r boys in n births is given by

Pr(r) =nCrx P"x (1 - P)""

and this is known as the Binomial formula or distribution. The Binomial distribu-
tion is appropriate for analysing problems with the following characteristics:

® There is a number (n) of trials.

e Each trial has only two possible outcomes, ‘success’ (with probability P) and
‘failure’ (probability 1 — P) and the outcomes are independent between trials.

o The probability P does not change between trials.

The probabilities calculated by the Binomial formula may be illustrated in a
diagram, as shown in Figure 3.2. This is very similar to the relative frequency
distribution which was introduced in Chapter 1. That distribution was based on
empirical data (to do with wealth) while the Binomial probability distribution
is a theoretical construction, built up from the basic principles of probability
theory.

As stated earlier, the Binomial is, in fact, a family of distributions and
each member of this family is distinguished by two parameters, n and P. The
Binomial is thus a distribution with two parameters, and once their values are
known the distribution is completely determined (i.e. Pr(r) can be calculated for
all values of r). To illustrate the difference between members of the family of the
Binomial distribution, Figure 3.3 presents three other Binomial distributions,
for different values of P and n. It can be seen that for the value of P = % the
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distribution is symmetric, while for all other values it is skewed to either the left
or the right. Part (b) of the figure illustrates the distribution relating to the
worked example of rolling a die, described below.

Since the Binomial distribution depends only upon the two values n and P, a
shorthand notation can be used, rather than using the formula itself. A random
variable r, which has a Binomial distribution with the parameters n and P, can
be written in general terms as

r~B(n, P) 3.1)

Thus for the previous example of children, where r represents the number of
boys

r~B(S, 1

This is simply a brief and convenient way of writing down the information
available; it involves no new problems of a conceptual nature. Writing

r~ B(n, P)
is just a shorthand for

Pr(r) =nCrx P"x (1 - P)""

Teenage weapons

This is a nice example of how knowledge of the Binomial distribution can help our
interpretation of events in the news.

‘One in five teens carry weapon'. (link on main BBC news web site 23 July 2007)
Following the link to the text of the story, we read:

‘One in five young teenagers say that their friends are carrying knives and weapons, says a
major annual survey of schoolchildren’s health and wellbeing'.

With concerns about knife crime among teenagers, this survey shows that a
fifth of youngsters are ‘fairly sure’ or ‘certain’ that their male friends are carrying
a weapon.’

Notice, incidentally, how the story subtly changes. The headline suggests 20%
of teenagers carry a weapon. The text then says this is what young teenagers
report of their friends. It then reveals that some are only ‘fairly sure” and that it
applies to boys, not girls. By now our suspicions should be aroused. What is
the truth?

Note that you are more likely to know someone who carries a weapon than
to carry one yourself. Let p be the proportion who truly carry a weapon. Assume
also that each person has 10 friends. What is the probability that a person,
selected at random, has no friends who carry a weapon? Assuming independence,
this is given by (1 — p)'™. Hence the probability of at least one friend with a weapon
is 1 — (1 — p)'™ This is proportion of people who will report having at least one
friend with a weapon. How does this vary with p? This is set out in the following
table:



The Binomial distribution

P(= 1 friend with weapon)

p 1 _ [1 _p]10
0.0% 0%
0.5% 5%
1.0% 10%
1.5% 14%
2.0% 18%
2.5% 22%
3.0% 26%
3.5% 30%
4.0% 34%

Thus a true proportion of just over 2% carrying weapons will generate a report
suggesting 20% know someone carrying a weapon! This is much less alarming
(and less newsworthy) than in the original story.

You might like to test the assumptions. What happens if there are more than
10 friends assumed? What happens if events are not independent, i.e. having one
friend with a weapon increases the probability of another friend with a weapon?

() The mean and variance of the Binomial distribution

In Chapter 1 we calculated the mean and variance of a set of data, of the dis-
tribution of wealth. The picture of that distribution (Figure 1.9) looks not too
dissimilar to one of the Binomial distributions shown in Figure 3.3 above. This
suggests that we can calculate the mean and variance of a Binomial distribution,
just as we did for the empirical distribution of wealth. Calculating the mean
would provide the answer to a question such as ‘If we have a family with five
children, how many do we expect to be boys?’. Intuitively the answer seems
clear, 2.5 (even though such a family could not exist!). The Binomial formula
allows us to confirm this intuition.

The mean and variance are most easily calculated by drawing up a relative
frequency table based on the Binomial frequencies. This is shown in Table 3.1
for the values n = 5 and P = 5. Note that r is equivalent to x in our usual nota-
tion and Pr(r), the relative frequency, is equivalent to f(x)/Xf(x). The mean of
this distribution is given by

_XrxPr(r) 80/32 _

BN =550 " 3232 =20 (3.2)

Table 3.1 Calculating the mean and variance of the Binomial distribution

r Pr(r) rxPrlr) r2x Pr(r)
0 1/32 0 0
1 5/32 5/32 5/32
2 10/32 20/32 40/32
3 10/32 30/32 90/32
4 5/32 20/32 80/32
5 1/32 5/32 25/32
Totals 32/32 80/32 240/32
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and the variance is given by

X’ xPr(r) ., 240/32

VO = =5 = 32732

-2.5*=1.25 3.3)
The mean value tells us that in a family of five children we would expect, on
average, two and a half boys. Obviously no single family can be like this; it
is the average over all such families. The variance is more difficult to interpret
intuitively, but it tells us something about how the number of boys in different
families will be spread around the average of 2.5.

There is a quicker way to calculate the mean and variance of the Binomial
distribution. It can be shown that the mean can be calculated as nP, i.e. the
number of trials times the probability of success. For example, in a family with
five children and an equal probability that each child is a boy or a girl, then we
expect nP =5 x 2= 2.5 to be boys.

The variance can be calculated as nP(1 — P). This gives 5 x 2 x 2 =1.25, as
found above by extensive calculation.

[Worked example 3.1 Rolling a die j

If a die is thrown four times, what is the probability of getting two or more
sixes? This is a problem involving repeated experiments (rolling the die)
with but two types of outcome for each roll: success (a six) or failure (any-
thing but a six). Note that we combine several possibilities (scores of 1, 2, 3,
4 or 5) together and represent them all as failure. The probability of success
(one-sixth) does not vary from one experiment to another, and so use of the
Binomial distribution is appropriate. The values of the parameters are n = 4
and P = 1/6. Denoting by r the random variable ‘the number of sixes in four
rolls of the die’ then

r~B(4, )
Hence
Pr(r) = nCr x P'(1 — P)*™"
where P = % and n = 4. The probabilities of two, three and four sixes are then
given by
Pr(r = 2) = 4C2(p)*2)* = 0.116
Pr(r = 3) = 4C3(9)*()' = 0.015
Pr(r = 4) = 4C4()*(2)" = 0.00077
Since these events are mutually exclusive, the probabilities can simply be
added together to achieve the desired result, which is 0.132, or 13.2%. This is
the probability of two or more sixes in four rolls of a die.
This result can be illustrated diagrammatically as part of the area under the
appropriate Binomial distribution, shown in Figure 3.4.
The shaded areas represent the probabilities of two or more sixes and
together their area represents 13.2% of the whole distribution. This illustrates

an important principle: that probabilities can be represented by areas under
an appropriate probability distribution. We shall see more of this later.



Figure 3.4
Probability of two or more
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Exercise 3.1 (a) The probability of a randomly drawn individual having blue eyes is 0.6. What is the
5 probability that four people drawn at random all have blue eyes?
: (b) What is the probability that two of the sample of four have blue eyes?
(c) For this particular example, write down the Binomial formula for the probability
of rblue-eyed individuals, for r=0. . . 4. Confirm that the probabilities sum to one.
Exercise 3.2 (a) Calculate the mean and variance of the number of blue-eyed individuals in the
5 previous exercise.
: (b) Draw a graph of this Binomial distribution and on it mark the mean value and the
mean value +/— one standard deviation.
Having introduced the concept of probability distributions using the Binomial,
we now move on to the most important of all probability distributions - the
Normal.
(The Normal distribution j

The Binomial distribution applies when there are two possible outcomes to an
experiment, but not all problems fall into this category. For instance, the
(random) arrival time of a train is a continuous variable and cannot be analysed
using the Binomial. There are many probability distributions in statistics, devel-
oped to analyse different types of problem. Several of them are covered in this
book and the most important of them is the Normal distribution, which we
now turn to. It was discovered by the German mathematician Gauss in the
nineteenth century (hence it is also known as the Gaussian distribution), in the
course of his work on regression (see Chapter 7).

Many random variables turn out to be Normally distributed. Men’s (or
women’s) heights are Normally distributed. IQ (the measure of intelligence) is
also Normally distributed. Another example is of a machine producing (say)
bolts with a nominal length of 5 cm which will actually produce bolts of slightly
varying length (these differences would probably be extremely small) due to
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Figure 3.5
The Normal distribution
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f(x)

factors such as wear in the machinery, slight variations in the pressure of the
lubricant, etc. These would result in bolts whose length varies, in accordance
with the Normal distribution. This sort of process is extremely common, with
the result that the Normal distribution often occurs in everyday situations.

The Normal distribution tends to arise when a random variable is the result
of many independent, random influences added together, none of which
dominates the others. A man’s height is the result of many genetic influences,
plus environmental factors such as diet, etc. As a result, height is Normally dis-
tributed. If one takes the height of men and women together, the result is not
a Normal distribution, however. This is because there is one influence which
dominates the others: gender. Men are, on average, taller than women. Many
variables familiar in economics are not Normal however — incomes, for example
(although the logarithm of income is approximately Normal). We shall learn
techniques to deal with such circumstances in due course.

Having introduced the idea of the Normal distribution, what does it look
like? It is presented below in graphical and then mathematical forms. Unlike the
Binomial, the Normal distribution applies to continuous random variables such
as height and a typical Normal distribution is illustrated in Figure 3.5. Since the
Normal distribution is a continuous one it can be evaluated for all values of x,
not just for integers. The figure illustrates the main features of the distribution:

e It is unimodal, having a single, central peak. If this were men’s heights it
would illustrate the fact that most men are clustered around the average
height, with a few very tall and a few very short people.

e It is symmetric, the left and right halves being mirror images of each other.

e [t is bell-shaped.

e It extends continuously over all the values of x from minus infinity to plus
infinity, although the value of f(x) becomes extremely small as these values
are approached (the pages of this book being of only finite width, this last
characteristic is not faithfully reproduced!). This also demonstrates that most
empirical distributions (such as men’s heights) can only be an approximation
to the theoretical ideal, although the approximation is close and good enough
for practical purposes.

Note that we have labelled the y-axis ‘f(x)’ rather than ‘Pr(x)’ as we did for the
Binomial distribution. This is because it is areas under the curve that represent
probabilities, not the heights. With the Binomial, which is a discrete distribu-
tion, one can legitimately represent probabilities by the heights of the bars. For
the Normal, although f(x) does not give the probability per se, it does give an



The Normal distribution

indication: you are more likely to encounter values from the middle of the
distribution (where f(x) is greater) than from the extremes.

In mathematical terms the formula for the Normal distribution is (x is the
random variable)

1( x—u ’
o - —L_ 37 (3.4)
o2m

The mathematical formulation is not so formidable as it appears. u and o are
the parameters of the distribution, such as n and P for the Binomial (though
they have different meanings); m is 3.1416 and e is 2.7183. If the formula is
evaluated using different values of x the values of f(x) obtained will map out a
Normal distribution. Fortunately, as we shall see, we do not need to use the
mathematical formula in most practical problems.

Like the Binomial, the Normal is a family of distributions differing from one
another only in the values of the parameters 4 and o. Several Normal distribu-
tions are drawn in Figure 3.6 for different values of the parameters.

Whatever value of u is chosen turns out to be the centre of the distribution.
As the distribution is symmetric, ¢ is its mean. The effect of varying o is to
narrow (small o) or widen (large o) the distribution. o turns out to be the stand-
ard deviation of the distribution. The Normal is another two-parameter family
of distributions like the Binomial, and once the mean p and the standard devia-
tion ¢ (or equivalently the variance, 6?) are known the whole of the distribution
can be drawn.
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Figure 3.6(c)
The Normal distribution,
u=0,0=4

Figure 3.7
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The shorthand notation for a Normal distribution is
x ~ N(u, 0?) (3.5)

meaning ‘the variable x is Normally distributed with mean u and variance o%.
This is similar in form to the expression for the Binomial distribution, though
the meanings of the parameters are different.

Use of the Normal distribution can be illustrated using a simple example. The
height of adult males is Normally distributed with mean height ¢ =174 cm and
standard deviation o= 9.6 cm. Let x represent the height of adult males; then

x ~ N(174, 92.16) (3.6)

and this is illustrated in Figure 3.7. Note that equation (3.6) contains the variance
rather than the standard deviation.

What is the probability that a randomly selected man is taller than 180 cm?
If all men are equally likely to be selected, this is equivalent to asking what pro-
portion of men are over 180 cm in height. This is given by the area under the
Normal distribution, to the right of x = 180, i.e. the shaded area in Figure 3.7.
The further from the mean of 174, the smaller the area in the tail of the dis-
tribution. One way to find this area would be to make use of equation (3.4), but
this requires the use of sophisticated mathematics.

Since this is a frequently encountered problem, the answers have been set out
in the tables of the standard Normal distribution. We can simply look up the
solution. However, since there is an infinite number of Normal distributions
(one for every combination of y and ¢?) it would be an impossible task to tabulate

f(x)

140 150 160 170 180 190 200 210
Men'’s heights, x



The Normal distribution

them all. The standard Normal distribution, which has a mean of zero and
variance of one, is therefore used to represent all Normal distributions. Before
the table can be consulted, therefore, the data have to be transformed so that
they accord with the standard Normal distribution.

The required transformation is the z score, which was introduced in Chapter
1. This measures the distance between the value of interest (180) and the mean,
measured in terms of standard deviations. Therefore we calculate

z=2X"H (3.7)
o}
and z is a Normally distributed random variable with mean 0 and variance 1, i.e.
z ~ N(0, 1). This transformation shifts the original distribution u units to the left
and then adjusts the dispersion by dividing through by o, resulting in a mean
of 0 and variance 1. z is Normally distributed because x is Normally distributed.
The transformation in equation (3.7) retains the Normal distribution shape,
despite the changes to mean and variance. If x followed some other distribution
then z would not be Normal either.
It is easy to verify the mean and variance of z using the rules for E and V oper-
ators encountered in Chapter 1

_p(x-m)_1 ) = - _
E(z)_E( 5 j_a(E(X) w) =0 (since E(x) = u)

0.2
0.2

[ X R Ly 2O
V(z)—V[ p j—GZV(x)— =1

Evaluating the z score from our data we obtain

180 - 174
Z="——"

=0. 3.8
96 0.63 3.8)

This shows that 180 is 0.63 standard deviations above the mean, 174, of the
distribution. This is a measure of how far 180 is from 174 and allows us to look
up the answer in tables. The task now is to find the area under the standard
Normal distribution to the right of 0.63 standard deviations above the mean.
This answer can be read off directly from the table of the standard Normal dis-
tribution, included as Table A2 in the appendix to this book. An excerpt from
Table A2 (see page 414) is presented in Table 3.2.

The left-hand column gives the z score to one place of decimals. The appro-
priate row of the table to consult is the one for z = 0.6, which is shaded. For the
second place of decimals (0.03) we consult the appropriate column, also shaded.
At their intersection we find the value 0.2643, which is the desired area and

Table 3.2 Areas of the standard Normal distribution (excerpt from Table A2)

z 0.00 0.01 0.02 0.03 . 0.09

0.0 0.5000 0.4960 0.4920 0.4880 S 0.4641
0.1 0.4602 0.4562 0.4522 0.4483 S 0.4247
0.5 0.3085 0.3050 0.3015 0.2981 S 0.2776
0.6 0.2743 0.2709 0.2676 0.2643 S 0.2451
0.7 0.2420 0.2389 0.2358 0.2327 S 0.2148
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therefore probability, i.e. 26.43% of the distribution lies to the right of 0.63 standard
deviations above the mean. Therefore 26.43% of men are over 180 cm in height.

Use of the standard Normal table is possible because, although there is an
infinite number of Normal distributions, they are all fundamentally the same,so
that the area to the right of 0.63 standard deviations above the mean is the same
for all of them. As long as we measure the distance in terms of standard devia-
tions then we can use the standard Normal table. The process of standardisation
turns all Normal distributions into a standard Normal distribution with a mean
of zero and a variance of one. This process is illustrated in Figure 3.8.

The area in the right-hand tail is the same for both distributions. It is the
standard Normal distribution in Figure 3.8(b), which is tabulated in Table A2. To
demonstrate how standardisation turns all Normal distributions into the standard
Normal, the earlier problem is repeated but taking all measurements in inches. The
answer should obviously be the same. Taking 1 inch = 2.54 c¢m the figures are

x=70.87 0=3.78 u=68.50

What proportion of men are over 70.87 inches in height? The appropriate
Normal distribution is now

x ~ N(68.50, 3.78?) 3.9
The z score is

_70.87 - 68.50

=0. 3.10
3.78 0.63 ( )

which is the same z score as before and therefore gives the same probability.

f(x)
26.43%
Figure 3.8(a)
The Normal distribution 140 150 160 170 180 190 200 210
X
f(2) :
Figure 3.8(b) I
The standard Normal 1
distribution corresponding '
to Figure 3.8(a) 0 0.63 z
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The proportion of men
between 174 cm and
180 cm in height

The Normal distribution

(Worked example 3.2 ]

Packets of cereal have a nominal weight of 750 grams, but there is some
variation around this as the machines filling the packets are imperfect. Let
us assume that the weights follow a Normal distribution. Suppose that the
standard deviation around the mean of 750 is 5 grams. What proportion of
packets weigh more than 760 grams?

Summarising our information, we have x ~ N(750, 25), where x represents
the weight. We wish to find Pr(x > 760). To be able to look up the answer,
we need to measure the distance between 760 and 750 in terms of standard
deviations. This is

= 760 — 750
S
=2.0

Looking up z = 2.0 in Table A2 reveals an area of 0.0228 in the tail of the
distribution. Thus 2.28% of packets weigh more than 760 grams.

Since a great deal of use is made of the standard Normal tables, it is worth
working through a couple more examples to reinforce the method. We have so
far calculated that Pr(z > 0.63) = 0.2643. Since the total area under the graph
equals one (i.e. the sum of probabilities must be one), the area to the left of
z=0.63 must equal 0.7357, i.e. 73.57% of men are under 180 cm. It is fairly easy
to manipulate areas under the graph to arrive at any required area. For example,
what proportion of men are between 174 and 180 cm in height? It is helpful to
refer to Figure 3.9 at this point.

The size of area A is required. Area B has already been calculated as 0.2643.
Since the distribution is symmetric the area A + B must equal 0.5, since 174 is at
the centre (mean) of the distribution. Area A is therefore 0.5 — 0.2643 = 0.2357.
23.57% is the desired result.

174 180 X
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Figure 3.10

The proportion of men
between 166 cm and
178 cm in height
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Exercise 3.3

2

Using software to find areas under the standard Normal distribution

If you use a spreadsheet program you can look up the z-distribution directly and
hence dispense with tables. In Excel, for example, the function '=NORMSDIST(0.63)’
gives the answer 0.7357, i.e. the area to the left of the z score. The area in the right-
hand tail is then obtained by subtracting this value from 1, i.e. 1 —0.7357 = 0.2643.
Entering the formula ‘= 1 — NORMSDIST(0.63)" in a cell will give the area in the
right-hand tail directly.

As a final exercise consider the question of what proportion of men are
between 166 and 178 cm tall. As shown in Figure 3.10 area C + D is wanted. The
only way to find this is to calculate the two areas separately and then add them
together. For area D the z score associated with 178 is

178 - 174
=96

=0.42 (3.11)

7

166 174178 X
Table A2 (see page 414) indicates that the area in the right-hand tail, beyond
z=0.42,is 0.3372, so area D = 0.5 — 0.3372 = 0.1628. For C, the z score is

Zg = % - 083 (3.12)

The minus sign indicates that it is the left-hand tail of the distribution, below the
mean, which is being considered. Since the distribution is symmetric, it is the same
as if it were the right-hand tail, so the minus sign may be ignored when con-
sulting the table. Looking up z =0.83 in Table A2 gives an area of 0.2033 in the tail,
so area C is therefore 0.5 — 0.2033 = 0.2967. Adding areas C and D gives 0.1628
+0.2967 =0.4595. So nearly half of all men are between 166 and 178 cm in height.

An alternative interpretation of the results obtained above is that if a man is
drawn at random from the adult population, the probability that he is over
180 cm tall is 26.43%. This is in line with the frequentist school of thought.
Since 26.43% of the population is over 180 cm in height, that is the probability
of a man over 180 cm being drawn at random.

(a) The random variable x is distributed Normally, with x ~ N(40, 36). Find the prob-
ability that x > 50.

(b) Find Prlx < 45).
(c) Find Pr(36 < x < 44).



Exercise 3.4

2

Exercise 3.5

2

The sample mean as a Normally distributed variable

The mean +/- 0.67 standard deviations cuts off 25% in each tail of the Normal dis-
tribution. Hence the middle 50% of the distribution lies within +/— 0.67 standard
deviations of the mean. Use this fact to calculate the inter-quartile range for the
distribution x ~ N(200, 256).

As suggested in the text, the logarithm of income is approximately Normally dis-
tributed. Suppose the log (to the base 10) of income has the distribution x ~ N(4.18, 2.56).
Calculate the inter-quartile range for x and then take anti-logs to find the inter-
quartile range of income.

(The sample mean as a Normally distributed variable j

Theorem

One of the most important concepts in statistical inference is the probability
distribution of the mean of a random sample, since we often use the sample
mean to tell us something about an associated population. Suppose that, from
the population of adult males, a random sample of size n = 36 is taken, their
heights measured and the mean height of the sample calculated. What can we
infer from this about the true average height of the population? To do this, we
need to know about the statistical properties of the sample mean. The sample
mean is a random variable because of the chance element of random sampling
(different samples would yield different values of the sample mean). Since the
sample mean is a random variable it must have associated with it a probability
distribution.

We therefore need to know, first, what is the appropriate distribution and,
second, what are its parameters. From the definition of the sample mean we have

X:%(x1+x2+...+xn) (3.13)

where each observation, x;, is itself a Normally distributed random variable,
with x; ~ N(u, c?), because each comes from the parent distribution with such
characteristics. (We stated earlier that men’s heights are Normally distributed.)
We now make use of the following theorem to demonstrate that X is Normally
distributed:

Any linear combination of independent, Normally distributed random
variables is itself Normally distributed.

A linear combination of two variables x; and x, is of the form w;x;, + w,x,
where w; and w, are constants. This can be generalised to any number of x
values. It is clear that the sample mean satisfies these conditions and is a linear
combination of the individual x values (with the weight on each observation
equal to 1/n). As long as the observations are independently drawn, therefore,
the sample mean is Normally distributed.

We now need the parameters (mean and variance) of the distribution. For this
we use the E and V operators once again

E(x) = %(E(xl) + E(x,) +...+E(x,)) = %(u +U+. .oty = %nu =U (3.149)
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Figure 3.11

The parent distribution
and the distribution of
sample means
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V() = V(l[x1+x2+. ..+x,l]j (3.15)

n
1

= F(V(Xl) + V(xy) +...+ V(x,))
— 1 2 2 2
—F(G +0°+...+0°
2 0

n
Putting all this together, we have?

2
X~N(#,%j

This we may summarise in the following theorem:

(3.16)

The sample mean, X, drawn from a population which has a Normal
distribution with mean g and variance o2 has a sampling distribution
which is Normal, with mean y and variance o?/n, where n is the
sample size.

The meaning of this theorem is as follows. First of all it is assumed that the
population from which the samples are to be drawn is itself Normally distributed
(this assumption will be relaxed in a moment), with mean g and variance o, From
this population many samples are drawn, each of sample size n, and the mean
of each sample is calculated. The samples are independent, meaning that the
observations selected for one sample do not influence the selection of observations
in the other samples. This gives many sample means, X,, X,, etc. If these sample
means are treated as a new set of observations, then the probability distribution
of these observations can be derived. The theorem states that this distribution is
Normal, with the sample means centred around p, the population mean, and
with variance o%/n. The argument is set out diagrammatically in Figure 3.11.

Intuitively this theorem can be understood as follows. If the height of adult
males is a Normally distributed random variable with mean u = 174 cm and

fx) Distribution of sample means

Parent distribution

Note: The distribution of X is drawn for a sample size of n =9. A larger sample size would
narrow the X distribution; a smaller sample size would widen it.

* Don't worry if you didn’t follow the derivation of this formula, just accept that it is correct.



The sample mean as a Normally distributed variable

variance ¢* = 92.16, then it would be expected that a random sample of (say)
nine males would yield a sample mean height of around 174 cm, perhaps a little
more, perhaps a little less. In other words, the sample mean is centred around
174 cm, or the mean of the distribution of sample means is 174 cm.

The larger is the size of the individual samples (i.e. the larger n), the closer the
sample mean would tend to be to 174 cm. For example, if the sample size is only
two, a sample of two very tall people is quite possible, with a high sample mean
as a result, well over 174 cm, e.g. 182 cm. But if the sample size were 20, it is
very unlikely that 20 very tall males would be selected and the sample mean is
likely to be much closer to 174. This is why the sample size n appears in the
formula for the variance of the distribution of the sample mean, ¢?/n.

Note that, once again, we have transformed one (or more) random variables,
the x; values, with a particular probability distribution into another random
variable, X, with a (slightly) different distribution. This is common practice in
statistics: transforming a variable will often put it into a more useful form, for
example one whose probability distribution is well known.

The above theorem can be used to solve a range of statistical problems.
For example, what is the probability that a random sample of nine men will
have a mean height greater than 180 cm? The height of all men is known to be
Normally distributed with mean u = 174 c¢cm and variance o* = 92.16. The
theorem can be used to derive the probability distribution of the sample mean.
For the population we have

% ~N(u, 6?), i.e. X ~ N(174, 92.16)
Hence for the sample mean
X ~ N(u, o*/n), i.e. X ~ N(174, 92.16/9)

This is shown diagrammatically in Figure 3.12.

To answer the question posed, the area to the right of 180, shaded in Figure 3.11,
has to be found. This should by now be a familiar procedure. First the z score is
calculated

A 180 - 174 4 gg (3.17)
Join  V92.16/9

f(x)
Figure 3.12
The proportion of sample T T T T T T t T T T T T T 1
means greater than 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188
x=180 X
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Note that the z score formula is subtly different because we are dealing with the
sample mean X rather than x itself. In the numerator we use X rather than x and
in the denominator we use ¢*/n, not ¢ This is because ¥ has a variance o*/n,
not o2, which is the population variance. y o%/n is known as the standard error,
to distinguish it from o, the standard deviation of the population. The principle
behind the z score is the same however: it measures how far is a sample mean
of 180 from the population mean of 174, measured in terms of standard deviations.

Looking up the value of z = 1.88 in Table A2 gives an area of 0.0311 in the
right-hand tail of the Normal distribution. Thus 3.11% of sample means will
be greater than or equal to 180 cm when the sample size is nine. The desired
probability is therefore 3.11%.

As this probability is quite small, we might consider the reasons for this.
There are two possibilities:

(a) through bad luck, the sample collected is not very representative of the
population as a whole;

(b) the sample is representative of the population, but the population mean is
not 174 cm after all.

Only one of these two possibilities can be correct. How to decide between them
will be taken up later on, in Chapter 5 on hypothesis testing.

It is interesting to examine the difference between the answer for a sample
size of nine (3.11%) and the one obtained earlier for a single individual (26.43%).
The latter may be considered as a sample of size one from the population. The
examples illustrate the fact that the larger the sample size, the closer the sample
mean is likely to be to the population mean. Thus larger samples tend to give
better estimates of the population mean.

Oil reserves

An interesting application of probability distributions is to the estimation of oil
reserves. The quantity of oil in an oil field is not known for certain, but is subject
to uncertainty. The proven oil reserve of a field is the amount recoverable with
probability of 90% (known as P90 in the oil industry). One can then add up the
proven oil reserves around the world to get a total of proven reserves.

However, using probability theory we can see this might be misleading.
Suppose we have 50 fields, where the recoverable quantity of oil is distributed as
x ~ N(100, 81) in each. From tables we note that x — 1.28s cuts off the bottom 10%
of the Normal distribution, 88.48 in this case. This is the proven reserve for a field.
Summing across the 50 fields gives 4424 as total reserves. But is there a 90%
probability of recovering at least this amount?

Using the first theorem above, the total quantity of oil y is distributed Normally,
with mean Ely) = E(x,) + . . . + Elxs,) = 5000 and variance Vly) = V(x;) + . . . + Vlxs,) =
4050, assuming independence of the oil fields. Hence we have y ~ N(5000, 4050).
Again, the bottom 10% is cut off by y— 1.28s, which is 4919. This is 11% larger than
the 4424 calculated above. Adding up the proven reserves of each field individu-
ally underestimates the true total proven reserves. In fact, the probability of total
proven reserves being greater than 4424 is almost 100%.

Note that the numbers given here are for illustration purposes and don't reflect
the actual state of affairs. The principle of the calculation is correct however.
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) Sampling from a non-Normal population

Theorem

The previous theorem and examples relied upon the fact that the population
followed a Normal distribution. But what happens if it is not Normal? After all,
it is not known for certain that the heights of all adult males are exactly
Normally distributed, and there are many populations which are not Normal
(e.g. wealth, as shown in Chapter 1). What can be done in these circumstances?
The answer is to use another theorem about the distribution of sample means
(presented without proof). This is known as the Central Limit Theorem:

The sample mean X, drawn from a population with mean p and
variance ¢? has a sampling distribution which approaches a Normal
distribution with mean g and variance o?/n, as the sample size
approaches infinity.

This is very useful, since it drops the assumption that the population is Norm-
ally distributed. Note that the distribution of sample means is only Normal as
long as the sample size is infinite; for any finite sample size the distribution is
only approximately Normal. However, the approximation is close enough for
practical purposes if the sample size is larger than 25 or so observations. If the
population distribution is itself nearly Normal then a smaller sample size would
suffice. If the population distribution is particularly skewed then more than 25
observations would be desirable. Twenty-five observations constitutes a rule of
thumb that is adequate in most circumstances. This is another illustration of
statistics as an inexact science. It does not provide absolutely clear-cut answers
to questions but, used carefully, helps us to arrive at sensible conclusions.

As an example of the use of the Central Limit Theorem, we return to the
wealth data of Chapter 1. Recall that the mean level of wealth was 146.984
(measured in £000) and the variance 56 803. Suppose that a sample of n = 50
people were drawn from this population. What is the probability that the
sample mean is greater than 160 (i.e. £160 000)?

On this occasion we know that the parent distribution is highly skewed so it
is fortunate that we have 50 observations. This should be ample for us to justify
applying the Central Limit Theorem. The distribution of X is therefore

X ~N(u, o*/n) (3.18)
and, inserting the parameter values, this gives®

X ~ N(146.984, 56 803/50) 3.19)
To find the area beyond a sample mean of 160, the z score is first calculated

, _ 160 - 146.984

56 803/50

Referring to the standard Normal tables, the area in the tail is then found to
be 34.83%. This is the desired probability. So there is a probability of 34.83% of
finding a mean of £160 000 or greater with a sample of size 50. This demonstrates

=0.39 (3.20)

* Note that if we used 146 984 for the mean we would have 56 803 000 000 as the variance.
Using £000 keeps the numbers more manageable. The z score is the same in both cases.
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Figure 3.13

The probability of x lying
within £66 000 either side

of £146 984

Exercise 3.6
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80 984 146 984 212984 X

that there is quite a high probability of getting a sample mean which is a rela-
tively long way from £146 984. This is a consequence of the high degree of
dispersion in the distribution of wealth.

Extending this example, we can ask what is the probability of the sample
mean lying within, say, £66 000 either side of the true mean of £146 984
(i.e. between £80 984 and £212 984)? Figure 3.13 illustrates the situation, with
the desired area shaded. By symmetry, areas A and B must be equal, so we only
need find one of them. For B, we calculate the z score

;- 212.984 - 146.984 - 1958 (3.21)

/56 803/50

From the standard Normal table, this cuts off approximately 2.5% in the upper
tail, so area B = 0.475. Areas A and B together make up 95% of the distribution,
therefore. There is thus a 95% probability of the sample mean falling within the
range [80 984, 212 984] and we call this the 95% probability interval for the
sample mean. We write this

Pr(80 984 < x < 212 984) =0.95 (3.22)
or, in terms of the formulae we have used*
Pr(u—1.96\yo¥n<2x<u+1.96c*n) =095 (3.23)

The 95% probability interval and the related concept of the 95% confidence
interval (which will be introduced in Chapter 4) play important roles in statistical
inference. We deliberately designed the example above to arrive at an answer of
95% for this reason.

(a) If x is distributed as x ~ N(50, 64) and samples of size n = 25 are drawn, what is
the distribution of the sample mean x?

(b) If the sample size doubles to 50, how is the standard error of X altered?

(c) Using the sample size of 25, (i) what is the probability of x > 5172 (ii) What is
Prix < 48)7 (iii) What is Pr(49 < x < 50.5)?

*1.96 is the precise value cutting off 2.5% in each tail.
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(The relationship between the Binomial and Normal distributions j

Many statistical distributions are related to one another in some way. This
means that many problems can be solved by a variety of different methods
(using different distributions), though usually one is more convenient or more
accurate than the others. This point may be illustrated by looking at the rela-
tionship between the Binomial and Normal distributions.

Recall the experiment of tossing a coin repeatedly and noting the number of
heads. We said earlier that this can be analysed via the Binomial distribution.
But note that the number of heads, a random variable, is influenced by many
independent random events (the individual tosses) added together. Furthermore,
each toss counts equally, none dominates. These are just the conditions under
which a Normal distribution arises, so it looks like there is a connection between
the two distributions.

This idea is correct. Recall that if a random variable r follows a Binomial
distribution then

r ~ B(n, P)

and the mean of the distribution is nP and the variance nP(1 — P). It turns out
that as n increases, the Binomial distribution becomes approximately the same
as a Normal distribution with mean »nP and variance nP(1 — P). This approxima-
tion is sufficiently accurate as long as nP > 5 and n(1 — P) > 5, so the approxima-
tion may not be very good (even for large values of n) if P is very close to zero
or one. For the coin tossing experiment, where P = 0.5, 10 tosses should be
sufficient. Note that this approximation is good enough with only 10 observa-
tions even though the underlying probability distribution is nothing like a
Normal distribution.

To demonstrate, the following problem is solved using both the Binomial and
Normal distributions. Forty students take an exam in statistics which is simply
graded pass/fail. If the probability, P, of any individual student passing is 60%,
what is the probability of at least 30 students passing the exam?

The sample data are

P=0.6
1-P=04
n =40

(D Binomial distribution method

To solve the problem using the Binomial distribution it is necessary to find the prob-
ability of exactly 30 students passing, plus the probability of 31 passing, plus the
probability of 32 passing, etc., up to the probability of 40 passing (the fact that
the events are mutually exclusive allows this). The probability of 30 passing is

Pr(r=30) =nCr x P'(1 - P)"”
=40C* x 0.6* x 0.4°
=0.020

(Note: This calculation assumes that the probabilities are independent, i.e. no
copying!) This by itself is quite a tedious calculation, but Pr(31), Pr(32), etc., still
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have to be calculated. Calculating these and summing them gives the result of
3.52% as the probability of at least 30 passing. (It would be a useful exercise for
you to do, if only to appreciate how long it takes.)

) Normal distribution method

As stated above, the Binomial distribution can be approximated by a Normal dis-
tribution with mean nP and variance nP(1 — P). nP in this case is 24 (40 x 0.6)
and n(1 — P) is 16, both greater than 5, so the approximation can be safely used. Thus

r ~ N(nP, nP(1 — P))
and inserting the parameter values gives
r~ N(24, 9.6)

The usual methods are then used to find the appropriate area under the dis-
tribution. However, before doing so, there is one adjustment to be made (this only
applies when approximating the Binomial distribution by the Normal). The
Normal distribution is a continuous one while the Binomial is discrete. Thus 30
in the Binomial distribution is represented by the area under the Normal dis-
tribution between 29.5 and 30.5. 31 is represented by 30.5 to 31.5, etc. Thus it
is the area under the Normal distribution to the right of 29.5, not 30, which
must be calculated. This is known as the continuity correction. Calculating the
Z score gives

29.5 - 24
7=""

V9.6

This gives an area of 3.75%, not far off the correct answer as calculated by the
Binomial distribution. The time saved and ease of calculation would seem to be
worth the slight loss in accuracy.

Other examples can be constructed to test this method, using different values
of P and n. Small values of n, or values of nP or n(1 — P) less than 5, will give poor
results, i.e. the Normal approximation to the Binomial will not be very good.

=1.78 (3.24)

Exercise 3.7 (a) Acoinis tossed 20 times. What is the probability of more than 14 heads? Perform
5 the calculation using both the Binomial and Normal distributions, and compare
. results.

(b) A biased coin, for which Pr(H) = 0.7 is tossed 6 times. What is the probability of
more than 4 heads? Compare Binomial and Normal methods in this case. How
accurate is the Normal approximation?

(c) Repeat part (b) but for more than 5 heads.

[The Poisson distribution j

The section above showed how the Binomial distribution could be approximated
by a Normal distribution under certain circumstances. The approximation does
not work particularly well for very small values of P, when nP is less than 5. In
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these circumstances the Binomial may be approximated instead by the Poisson
distribution, which is given by the formula

pret

Pr(x) = 1

(3.25)

where u is the mean of the distribution (similar to u for the Normal distribution
and nP for the Binomial). Like the Binomial, but unlike the Normal, the Poisson
is a discrete probability distribution, so that equation (3.25) is only defined for
integer values of x. Furthermore, it is applicable to a series of trials which are
independent, as in the Binomial case.

The use of the Poisson distribution is appropriate when the probability of
‘success’ is very small and the number of trials large. Its use is illustrated by
the following example. A manufacturer gives a two-year guarantee on the TV
screens it makes. From past experience it knows that 0.5% of its screens will be
faulty and fail within the guarantee period. What is the probability that of
a consignment of 500 screens (a) none will be faulty, (b) more than three are
faulty?

The mean of the Poisson distribution in this case is u = 2.5 (0.5% of 500).
Therefore

0,-2.5
Pr(x=0) = 250—6' =0.082 (3.26)
giving a probability of 8.2% of no failures. The answer to this problem via the
Binomial method is

Pr(r = 0) = 0.995% = 0.0816

Thus the Poisson method gives a reasonably accurate answer. The Poisson
approximation to the Binomial is satisfactory if nP is less than about 7.
The probability of more than three screens expiring is calculated as

Prx>3)=1-Pr(x=0) - Pr(x=1) - Pr(x =2) — Pr(x = 3)

1,-2.5

Pr(x=1) = Zsl—f = 0.205
2,-2.5

Pr(x =2) = zsz—f -0.256
3,-2.5

Pr(x = 3) = 253—f -0.214

So
Pr(x>3)=1-0.082 -0.205 - 0.256 — 0.214 = 0.242

Thus there is a probability of about 24% of more than three failures. The Binomial
calculation is much more tedious, but gives an answer of 24.2% also.

The Poisson distribution is also used in problems where events occur over
time, such as goals scored in a football match (see Problem 3.25) or queuing-
type problems (e.g. arrivals at a bank cash machine). In these problems, there
is no natural ‘number’ of trials but it is clear that, if we take a short interval
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of time, the probability of an event occurring is small. We can then consider
the number of trials to be the number of time intervals. This is illustrated by the
following example. A football team scores, on average, two goals every game
(you can vary the example by using your own favourite team plus their scoring
record!). What is the probability of the team scoring zero or one goal during
a game?

The mean of the distribution is 2, so we have, using the Poisson distribution

0,-2
Pr(x=0) =25 = 0.135

ol

1,-2
Pr(x=1) = 21@' =0.271

You should continue to calculate the probabilities of 2 or more goals and verify
that the probabilities sum to 1.

A queuing-type problem is the following. If a shop receives, on average,
20 customers per hour, what is the probability of no customers within a five-
minute period while the owner takes a coffee break?

The average number of customers per five-minute period is 20 x 5/60 = 1.67.
The probability of a free five-minute spell is therefore

_1.67% "

o1 =0.189

Pr(x =0)
a probability of about 19%. Note that this problem cannot be solved by the
Binomial method since n and P are not known separately, only their product.

(a) The probability of winning a prize in a lottery is 1 in 50. If you buy 50 tickets, what
is the probability that (i) 0 tickets win, [ii) 1 ticket wins, (iii) 2 tickets win. (iv) What
is the probability of winning at least one prize?

(b) On average, a person buys a lottery ticket in a supermarket every 5 minutes.
What is the probability that 10 minutes will pass with no buyers?

Railway accidents

Andrew Evans of University College, London, used the Poisson distribution to
examine the numbers of fatal railway accidents in Britain between 1967 and 1997.
Since railway accidents are, fortunately, rare, the probability of an accident in any
time period is very small and so use of the Poisson distribution is appropriate. He
found that the average number of accidents has been falling over time and by
1997 had reached 1.25 per annum. This figure is therefore used as the mean u of
the Poisson distribution, and we can calculate the probabilities of 0, 1, 2, etc.,
accidents each year. Using u=1.25 and inserting this into equation 3.26 we obtain
the following table:

Number of accidents 0 1 2 3 4 3 6
Probability 0.287 0.358 0.224 0.093 0.029 0.007 0.002

and this distribution can be graphed:



Summary

Poisson distribution of railway accidents
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Thus the most likely outcome is one fatal accident per year and anything over
four is extremely unlikely. In fact, Evans found that the Poisson was not a perfect
fit to the data: the actual variation was less than that predicted by the model.

Source: A. W. Evans, Fatal train accidents on Britain’s mainline railways, J. Royal Statistical Society,
Series A, 2000, 163 (1), 99-119.

(Summary

)

@ The behaviour of many random variables (e.g. the result of the toss of a coin)

can be described by a probability distribution (in this case, the Binomial
distribution).

e The Binomial distribution is appropriate for problems where there are only

two possible outcomes of a chance event (e.g. heads/tails, success/failure) and
the probability of success is the same each time the experiment is conducted.

e The Normal distribution is appropriate for problems where the random

variable has the familiar bell-shaped distribution. This often occurs when
the variable is influenced by many, independent factors, none of which
dominates the others. An example is men’s heights, which are Normally
distributed.

e The Poisson distribution is used in circumstances where there is a very low

probability of ‘success’ and a high number of trials.

e Fach of these distributions is actually a family of distributions, differing in

the parameters of the distribution. Both the Binomial and Normal distribu-
tions have two parameters: n and P in the former case, u and o? in the latter.
The Poisson distribution has one parameter, its mean u.

® The mean of a random sample follows a Normal distribution, because it is

influenced by many independent factors (the sample observations), none of
which dominates in the calculation of the mean. This statement is always
true if the population from which the sample is drawn follows a Normal
distribution.
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e If the population is not Normally distributed then the Central Limit Theorem
states that the sample mean is Normally distributed in large samples. In this
case ‘large’ means a sample of about 25 or more.

(Key terms and concepts

Binomial distribution
Central Limit Theorem
Normal distribution
parameters of a distribution
Poisson distribution

probability distribution
random variable

standard error

standard Normal distribution



Problems

Problems

&1l

3.2

3.3

3.4

3:5

3.6

3.7

3.8

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Two dice are thrown and the sum of the two scores is recorded. Draw a graph of the
resulting probability distribution of the sum and calculate its mean and variance. What is
the probability that the sum is 9 or greater?

Two dice are thrown and the absolute difference of the two scores recorded. Graph the
resulting probability distribution and calculate its mean and variance. What is the proba-
bility that the absolute difference is 4 or more?

Sketch the probability distribution for the likely time of departure of a train. Locate the
timetabled departure time on your chart.

A train departs every half hour. You arrive at the station at a completely random moment.
Sketch the probability distribution of your waiting time. What is your expected waiting
time?

Sketch the probability distribution for the number of accidents on a stretch of road in
one day.

Sketch the probability distribution for the number of accidents on the same stretch of
road in one year. How and why does this differ from your previous answer?

Six dice are rolled and the number of sixes is noted. Calculate the probabilities of
0, 1,... 6sixes and graph the probability distribution.

If the probability of a boy in a single birth is 1 and is independent of the sex of previous
babies then the number of boys in a family of 10 children follows a Binomial distribution
with mean 5 and variance 2.5. In each of the following instances, describe how the
distribution of the number of boys differs from the Binomial described above.

(a) The probability of a boy is <.

(b] The probability of a boy is % but births are not independent. The birth of a boy makes
it more than an even chance that the next child is a boy.

As (b) above, except that the birth of a boy makes it less than an even chance that the
next child will be a boy.

(c

(d

The probability of a boy is% on the first birth. The birth of a boy makes it a more than
even chance that the next baby will be a boy.
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3.9

3.10

3.1

3.12

343

3.14

G815

A firm receives components from a supplier in large batches, for use in its produc-
tion process. Production is uneconomic if a batch containing 10% or more defective
components is used. The firm checks the quality of each incoming batch by taking
a sample of 15 and rejecting the whole batch if more than one defective component
is found.

(a] If a batch containing 10% defectives is delivered, what is the probability of its being
accepted?

(b) How could the firm reduce this probability of erroneously accepting bad batches?

(c) If the supplier produces a batch with 3% defective, what is the probability of the firm
sending back the batch?

(d) What role does the assumption of a ‘large’ batch play in the calculation?

The UK record for the number of children born to a mother is 39, 32 of them girls.
Assuming the probability of a girl in a single birth is 0.5 and that this probability is
independent of previous births:

(a) Find the probability of 32 girls in 39 births (you'll need a scientific calculator or a
computer to help with this!).

(b) Does this result cast doubt on the assumptions?

Using equation (3.5) describing the Normal distribution and setting u=0and o?=1, graph
the distribution for the values x =-2, 1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2.

Repeat the previous Problem for the values y= 2 and ¢? = 3. Use values of x from -2 to
+6 in increments of 1.

For the standard Normal variable z, find
(a) Pr(z>1.64)

(b) Pr(z>0.5)

(c) Pr(z>-1.5)

(d) Pr(-2<z<1.5)

(e) Pr(z=-0.75).

For (a) and (d), shade in the relevant areas on the graph you drew for Problem 3.11.

Find the values of z which cut off
(a) the top 10%

(b) the bottom 15%

(c) the middle 50%

of the standard Normal distribution.

If x ~ N(10, 9) find
(a) Pr{x>12)

(b) Prix<7)

(c) Pr(8<x<15)
(d) Prlx=10).



3.16

3.17

3.18

3.19

3.20

3.21

Problems

IQ (the intelligence quotient) is Normally distributed with mean 100 and standard
deviation 16.

(a) What proportion of the population has an IQ above 1207
(b) What proportion of the population has 1Q between 90 and 110?

(c) In the past, about 10% of the population went to university. Now the proportion is
about 30%. What was the I1Q of the ‘marginal’ student in the past? What is it now?

Ten adults are selected at random from the population and their IQ measured. (Assume
a population mean of 100 and s.d. of 16 as in Problem 3.16.]

(a) What is the probability distribution of the sample average 1Q?
(b) What is the probability that the average 1Q of the sample is over 110?

(c) If many such samples were taken, in what proportion would you expect the average 1Q
to be over 1107

(d) What is the probability that the average IQ lies within the range 90 to 110? How
does this answer compare to the answer to part (b) of Problem 16? Account for the
difference.

(e] What is the probability that a random sample of ten university students has an average
IQ greater than 110?

(f] The first adult sampled has an 1Q of 150. What do you expect the average 1Q of the
sample to be?

The average income of a country is known to be £10 000 with standard deviation £2500.
A sample of 40 individuals is taken and their average income calculated.

(a) What is the probability distribution of this sample mean?
(b) What is the probability of the sample mean being over £10 5007
(c) What is the probability of the sample mean being below £8000?

(d] If the sample size were 10, why could you not use the same methods to find the
answers to (a)-(c)?

A coin is tossed 10 times. Write down the distribution of the number of heads:
(a) exactly, using the Binomial distribution;
(b) approximately, using the Normal distribution;

(c) Find the probability of four or more heads, using both methods. How accurate is the
Normal method, with and without the continuity correction?

A machine producing electronic circuits has an average failure rate of 15% (they're
difficult to make). The cost of making a batch of 500 circuits is £8400 and the good ones
sell for £20 each. What is the probability of the firm making a loss on any one batch?

An experienced invoice clerk makes an error once in every 100 invoices, on average.
(a) What is the probability of finding a batch of 100 invoices without error?
(b] What is the probability of finding such a batch with more than two errors?

Calculate the answers using both the Binomial and Poisson distributions. If you try to
solve the problem using the Normal method, how accurate is your answer?
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3.22

3.23

3.24

A firm employing 100 workers has an average absenteeism rate of 4%. On a given day,
what is the probability of (a) no workers, (b) one worker, (c) more than six workers being
absent?

(Computer project) This problem demonstrates the Central Limit Theorem at work. In
your spreadsheet, use the =RAND() function to generate a random sample of 25 observa-
tions (I suggest entering this function in cells A4:A28, for example). Copy these cells
across 100 columns, to generate 100 samples. In row 29, calculate the mean of each
sample. Now examine the distribution of these sample means.

(Hint: you will find the RAND() function recalculates automatically every time you perform
an operation in the spreadsheet. This makes it difficult to complete the analysis. The solu-
tion is to copy and then use ‘Edit, Paste Special, Values’ to create a copy of the values of
the sample means. These will remain stable.)

(a) What distribution would you expect them to have?

(b) What is the parent distribution from which the samples are drawn?

(c) What are the parameters of the parent distribution and of the sample means?
(d) Do your results accord with what you would expect?

(e] Draw up a frequency table of the sample means and graph it. Does it look as you
expected?

(f) Experiment with different sample sizes and with different parent distributions to see
the effect that these have.

(Project) An extremely numerate newsagent (with a spreadsheet program, as you will
need) is trying to work out how many copies of a newspaper he should order. The cost to
him per copy is 15p, which he then sells at 45p. Sales are distributed Normally with an
average daily sale of 250 and variance 625. Unsold copies cannot be returned for credit or
refund; he has to throw them away, losing 15p per copy.

(a) What do you think the seller’s objective should be?
(b) How many copies should he order?
(c) What happens to the variance of profit as he orders more copies?

(d) Calculate the probability of selling more than X copies. (Create an extra column in the
spreadsheet for this.) What is the value of this probability at the optimum number of
copies ordered?

(e] What would the price-cost ratio have to be to justify the seller ordering X copies?

(f) The wholesaler offers a sale or return deal, but the cost per copy is 16p. Should the
seller take up this new offer?

(g) Are there other considerations which might influence the seller’s decision?
Hints:

Set up your spreadsheet as follows:

Col. A: (cells A10:A160) 175, 176, . .. up to 325 in unit increments (to represent
sales levels).
Col. B: (cells B10:B160) the probability of sales falling between 175 and 176,

between 176 and 177, etc., up to 325 — 326. (Excel has the ‘= NORMDIST()’
function to do this - see the help facility.)

Col. C: (cells C10:C160) total cost (= 0.15 x number ordered. Put the latter in cell
F3 so you can reference it and change its value).



3.25

Problems

Col. D: (cells D10:D160) total revenue ('=MIN(sales, number ordered) x 0.45).
Col. E: profit (revenue — cost).
Col. F: profit x probability (i.e. col. E x col. B).

Cell F161: the sum of F10:F160 (this is the expected profit).

Now vary the number ordered (cell F3) to find the maximum value in F161. You can also
calculate the variance of profit fairly simply, using an extra column.

(Project) Using a weekend’s football results from the Premier (or other) league, see if
the number of goals per game can be adequately modelled by a Poisson process. First
calculate the average number of goals per game for the whole league, then derive the
distribution of goals per game using the Poisson distribution. Do the actual numbers of
goals per game follow this distribution? You might want to take several weeks’ results to
obtain more reliable results.
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Exercise 3.1
(a) 0.6*=0.1296 or 12.96%.

(b) 0.6% x 0.4% x 4C2 = 0.3456.
(c) Pr(r) = 0.6" x 0.4*74Cr. The probabilities of r = 0

0.1536, 0.3456, 0.3456, 0.1296, which sum to one.

Exercise 3.2

(a) r P(r) rxPlr) rxPlr)
0 0.0256 0 0
1 0.1536 0.1536 0.1536
2 0.3456 0.6912 1.3824
3 0.3456 1.0368 3.1104
4 0.1296 0.5184 2.0736
Totals 1 2.4 6.72

... 4 are respectively 0.0256,

The mean = 2.4/1 = 2.4 and the variance = 6.72/1 — 2.4*> = 0.96. Note that these
are equal to nP and nP(1 - P).

(b)
Pr(x)

Exercise 3.3

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

Binomial distribution, P(r)

Mean -1 s.d.

Mean

Mean + 1 s.d.

(a) z = (50 — 40)//36 = 1.67 and the area beyond z = 1.67 is 4.75%.
(b) z=-0.83 so area is 20.33%.

(c) This is symmetric around the mean, z = £0.67 and the area within these two
bounds is 49.72%.

Exercise 3.4

To obtain the IQR we need to go 0.67 s.d.s above and below the mean, giving
200 £ 0.67 x 16 = [189.28, 210.72].

Exercise 3.5

The IQR (in logs) is within 4.18 + 0.67 x ¥2.56 = [3.11, 5.25]. Translated out of logs
(using 10%) yields [1288.2, 177 827.9].



Answers to exercises

Exercise 3.6

(a) e ~ N(50, 64/25).

(b) The s.e. gets smaller. It is 1/\2 times its previous value.

(c) () z=(51- 50)/«\5(64/25) = 0.625. Hence area in tail = 26.5%. (ii) z=-1.25, hence
area = 10.56%. (iii) z values are —0.625 and +0.3125, giving tail areas of 26.5% and
37.8%, totalling 64.3%. The area between the limits is therefore 35.7%.

Exercise 3.7

(a) Binomial method: Pr(r) = 0.5" x 0.5%°" x 20Cr. This gives probabilities of 15,
16, etc., heads of 0.0148, 0.0046, etc., which total 0.0207 or 2.1%. By the Normal
approximation, r ~ N(10, 5) and z = (14.5 — 10)/N5 = 2.01. The area in the tail
is then 2.22%, not far off the correct value (a 10% error). Note that nP = 10 =
n(l - P).

(b) Binomial method: Pr(5 or 6 heads) = 0.302 + 0.118 = 0.420 or 42%. By the
Normal, r ~ N(4.2, 1.26), z = 0.267 and the area is 39.36%, still reasonably close
to the correct answer despite the fact that n(1 — P) = 1.8.

(c) By similar methods the answers are 11.8% (Binomial) and 12.3% (Normal).

Exercise 3.8

(@) (i) u =1 in this case (1/50 x 50) so Pr(x = 0) = 1% /0! = 0.368. (ii) Pr(x = 1) =
1'e'/1! = 0.368. (iii) 1%¢7!/2! = 0.184. (iv) 1 — 0.368 = 0.632.

(b) The average number of customer per 10 minutes is 2 (= 10/5). Hence Pr(x = 0)
=2%72/0! = 0.135.
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construct estimates of parameters of interest from sample data, in a variety of

different circumstances;

appreciate that there is uncertainty about the accuracy of any such estimate;

provide measures of the uncertainty associated with an estimate;

recognise the relationship between the size of a sample and the precision of an

estimate derived from it.

Complete your diagnostic test for Chapter 4 now to create your personal study
plan. Exercises with an icon (7 are also available for practice in MathXL with

additional supporting resources.
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Point and interval estimation

(Introduction

)

We now come to the heart of the subject of statistical inference. Until now the
following type of question has been examined: given the population parameters
u and o?, what is the probability of the sample mean X, from a sample of size n,
being greater than some specified value or within some range of values? The
parameters u and o are assumed to be known and the objective is to try to form
some conclusions about possible values of X. However, in practice it is usually
the sample values ¥ and s? that are known, while the population parameters u
and o? are not. Thus a more interesting question to ask is: given the values of X
and s? what can be said about u and ¢*? Sometimes the population variance is
known, and inferences have to be made about p alone. For example, if a sample
of 50 British families finds an average weekly expenditure on food (¥) of £37.50
with a standard deviation (s) of £6.00, what can be said about the average
expenditure (u) of all British families?
Schematically this type of problem is shown as follows:

Sample information Population parameters

X, s? inferences about u, o*

e

This chapter covers the estimation of population parameters such as u and o
while Chapter 5 describes testing hypotheses about these parameters. The two
procedures are very closely related.

(Point and interval estimation ]

There are basically two ways in which an estimate of a parameter can be
presented. The first of these is a point estimate, i.e. a single value which is the
best estimate of the parameter of interest. The point estimate is the one which
is most prevalent in everyday usage; for example, the average Briton surfs the
internet for 30 minutes per day. Although this is presented as a fact, it is actu-
ally an estimate, obtained from a survey of people’s use of personal computers.
Since it is obtained from a sample there must be some doubt about its accuracy:
the sample will probably not exactly represent the whole population. For this
reason interval estimates are also used, which give some idea of the likely
accuracy of the estimate. If the sample size is small, for example, then it is quite
possible that the estimate is not very close to the true value and this would be
reflected in a wide interval estimate, for example, that the average Briton spends
between 5 and 55 minutes surfing the net per day. A larger sample, or a better
method of estimation, would allow a narrower interval to be derived and thus
a more precise estimate of the parameter to be obtained, such as an average
surfing time of between 20 and 40 minutes. Interval estimates are better for the
consumer of the statistics, since they not only show the estimate of the parameter
but also give an idea of the confidence which the researcher has in that estimate.
The following sections describe how to construct both types of estimate.
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In order to estimate a parameter such as the population mean, a rule (or set of
rules) is required which describes how to derive the estimate of the parameter
from the sample data. Such a rule is known as an estimator. An example of an
estimator for the population mean is ‘use the sample mean’. It is important to
distinguish between an estimator, a rule and an estimate, which is the value
derived as a result of applying the rule to the data.

There are many possible estimators for any parameter, so it is important to be
able to distinguish between good and bad estimators. The following examples
provide some possible estimators of the population mean:

(1) the sample mean;
(2) the smallest sample observation;
(3) the first sample observation.

A set of criteria is needed for discriminating between good and bad estimators.
Which of the above three estimators is ‘best’? Two important criteria by which
to judge estimators are bias and precision.

Bias

It is impossible to know if a single estimate of a parameter, derived by applying
a particular estimator to the sample data, gives a correct estimate of the para-
meter or not. The estimate might be too low or too high and, since the parameter
is unknown, it is impossible to check this. What is possible, however, is to say
whether an estimator gives the correct answer on average. An estimator which
gives the correct answer on average is said to be unbiased. Another way of ex-
pressing this is to say that an unbiased estimator does not systematically mislead
the researcher away from the correct value of the parameter. It is, however,
important to remember, that even using an unbiased estimator does not
guarantee that a single use of the estimator will yield a correct estimate of the
parameter. Bias (or the lack of it) is a theoretical property.

Formally, an estimator is unbiased if its expected value is equal to the para-
meter being estimated. Consider trying to estimate the population mean using
the three estimators suggested above. Taking the sample mean first, we have
already learned (see equation (3.195)) that its expected value is u, i.e.

E®) =
which immediately shows that the sample mean is an unbiased estimator.

The second estimator (the smallest observation in the sample) can easily be
shown to be biased, using the result derived above. Since the smallest sample

observation must be less than the sample mean, its expected value must be less
than u. Denote the smallest observation by x,, then

E(x) <u

so this estimator is biased downwards. It underestimates the population mean.
The size of the bias is simply the difference between the expected value of the
estimator and the value of the parameter, so the bias in this case is



Rules and criteria for finding estimates

Bias = E(x,) — u @.1)

For the sample mean X the bias is obviously zero.

Turning to the third rule (the first sample observation) this can be shown to
be another unbiased estimator. Choosing the first observation from the sample
is equivalent to taking a random sample of size one from the population in the
first place. Thus the single observation may be considered as the sample mean
from a random sample of size one. Since it is a sample mean it is unbiased, as
demonstrated earlier.

Precision

Two of the estimators above were found to be unbiased, and, in fact, there
are many unbiased estimators (the sample median is another). Some way of
choosing between the set of all unbiased estimators is therefore required, which
is where the criterion of precision helps. Unlike bias, precision is a relative
concept, comparing one estimator to another. Given two estimators A and B,
A is more precise than B if the estimates it yields (from all possible samples) are
less spread out than those of estimator B. A precise estimator will tend to give
similar estimates for all possible samples.

Consider the two unbiased estimators found above: how do they compare on
the criteria of precision? It turns out that the sample mean is the more precise
of the two, and it is not difficult to understand why. Taking just a single sample
observation means that it is quite likely to be unrepresentative of the population
as a whole, and thus leads to a poor estimate of the population mean. The
sample mean on the other hand is based on all the sample observations and it
is unlikely that all of them are unrepresentative of the population. The sample
mean is therefore a good estimator of the population mean, being more precise
than the single observation estimator.

Just as bias was related to the expected value of the estimator, so precision can
be defined in terms of the variance. One estimator is more precise than another
if it has a smaller variance. Recall that the probability distribution of the sample
mean is

X ~ N(u, o*/n) 4.2)
in large samples, so the variance of the sample mean is
V(%) = 62/n

As the sample size n becomes larger, the variance of the sample mean
becomes smaller, so the estimator becomes more precise. For this reason large
samples give better estimates than small samples, and so the sample mean is
a better estimator than taking just one observation from the sample. The two
estimators can be compared in a diagram (see Figure 4.1) which draws the
probability distributions of the two estimators.

It is easily seen that the sample mean yields estimates which are on average
closer to the population mean.

A related concept is that of efficiency. The efficiency of one unbiased estimator,
relative to another, is given by the ratio of their sampling variances. Thus the
efficiency of the first observation estimator, relative to the sample mean, is given by
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Figure 4.1

The sampling
distribution of two
estimators

Figure 4.2
The trade-off between
bias and precision
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f(x)

Note: Curve A shows the distribution of sample means, which is the more precise estimator.
B shows the distribution of estimates using a single observation.

f(x)

var(X) _o?*/n _1

- 4.3)

Efficiency = p

var(x,) o>
Thus the efficiency is determined by the relative sample sizes in this case. Other
things being equal, a more efficient estimator is to be preferred.

Similarly, the variance of the median can be shown to be (for a Normal

distribution) 7/2 x o?/n. The efficiency of the median is therefore 2/r = 64%.

The trade-off between bias and precision: the Bill Gates effect

It should be noted that just because an estimator is biased does not necessarily
mean that it is imprecise. Sometimes there is a trade-off between an unbiased,
but imprecise, estimator and a biased, but precise, one. Figure 4.2 illustrates this.

Although estimator A is biased it will nearly always yield an estimate which
is fairly close to the true value; even though the estimate is expected to be wrong,
it is not likely to be far wrong. Estimator B, although unbiased, can give estim-
ates which are far away from the true value, so that A might be the preferred
estimator.



Estimation with large samples

As an example of this, suppose we are trying to estimate the average wealth
of the US population. Consider the following two estimators:

(1) use the mean wealth of a random sample of Americans;
(2) use the mean wealth of a random sample of Americans but, if Bill Gates is
in the sample, omit him from the calculation.

Bill Gates is the Chairman of Microsoft and one of the world’s richest men.
Because of this, he is a dollar billionaire (about $50bn according to recent
reports — it varies with the stock market). His presence in a sample of, say,
30 observations would swamp the sample and give a highly misleading result.
Assuming Bill Gates has $50bn and the others each have $200 000 of wealth, the
average wealth would be estimated at about $1.6bn, which is surely wrong.

The first rule could therefore give us a wildly incorrect answer, although the
rule is unbiased. The second rule is clearly biased but does rule out the possib-
ility of such an unlucky sample. We can work out the approximate bias. It is
the difference between the average wealth of all Americans and the average
wealth of all Americans except Bill Gates. If the true average of all 250 million
Americans is $200 000, then total wealth is $50 000bn. Subtracting Bill’s $50bn
leaves $49 950bn shared among the rest, giving $199 800 each, a difference of
0.1%. This is what we would expect the bias to be.

It might seem worthwhile therefore to accept this degree of bias in order to
improve the precision of the estimate. Furthermore, if we did use the biased rule,
we could always adjust the sample mean upwards by 0.1% to get an approxim-
ately unbiased estimate.

Of course, this point applies to any exceptionally rich person, not just Bill
Gates. It points to the need to ensure that the rich are not over- (nor under-)
represented in the sample. Chapter 9 on sampling methods investigates this
point in more detail. In the rest of this book only unbiased estimators are con-
sidered, the most important being the sample mean.

[Estimation with large samples j

For the type of problem encountered in this chapter the method of estimation
differs according to the size of the sample. ‘Large’ samples, by which is meant
sample sizes of 25 or more, are dealt with first, using the Normal distribution.
Small samples are considered in a later section, where the t distribution is used
instead of the Normal. The differences are relatively minor in practical terms and
there is a close theoretical relationship between the t and Normal distributions.

With large samples there are three types of estimation problem we will
consider.

(1) The estimation of a mean from a sample of data.

(2) The estimation of a proportion on the basis of sample evidence. This would
consider a problem such as estimating the proportion of the population
intending to buy an iPhone, based on a sample of individuals. Each person
in the sample would simply indicate whether they have bought, or intend
to buy, an iPhone. The principles of estimation are the same as in the first
case but the formulae used for calculation are slightly different.
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(3) The estimation of the difference of two means (or proportions), for example
a problem such as estimating the difference between men and women'’s
expenditure on clothes. Once again, the principles are the same, the formulae
different.

(D Estimating a mean

To demonstrate the principles and practice of estimating the population mean,
we shall take the example of estimating the average wealth of the UK popula-
tion, the full data for which were given in Chapter 1. Suppose that we did not
have this information but were required to estimate the average wealth from
a sample of data. In particular, let us suppose that the sample size is n = 100, the
sample mean is ¥ = 130 (in £000) and the sample variance is s> = 50 000.
Obviously, this sample has got fairly close to the true values (see Chapter 1) but
we could not know that from the sample alone. What can we infer about the
population mean u from the sample data alone?

For the point estimate of u the sample mean is a good candidate since it is
unbiased, and it is more precise than other sample statistics such as the median.
The point estimate of u is simply £130 000, therefore.

The point estimate does not give an idea of the uncertainty associated with the
estimate. We are not absolutely sure that the mean is £130 000 (in fact, it isn’t —
itis £146 984). The interval estimate gives some idea of the uncertainty. It is centred
on the sample mean, but gives a range of values to express the uncertainty.

To obtain the interval estimate we first require the probability distribution of
x, first established in Chapter 3 (equation (3.18))

X ~ N(u, o*/n) 4.4)

From this, it was calculated that there is a 95% probability of the sample mean
lying within 1.96 standard errors of u', i.e.

Pr(pu - 1.96 Jo?/n < X < p+ 1.96 \/o*/n) = 0.95

We can manipulate each of the inequalities within the brackets to make p the
subject of the expression

p-1.96.c*n<3x implies u<23x+1.960%n
Similarly
X< u+1.96,c*n implies X-1.96,c*/n<p

Combining these two new expressions we obtain
[X - 1.96 Jo?/n < u < % + 1.96 \c%/n] 4.5)
We have transformed the probability interval. Instead of saying X lies within
1.96 standard errors of u, we now say u lies within 1.96 standard errors of Xx.
Figure 4.3 illustrates this manipulation. Figure 4.3(a) shows u at the centre of a
probability interval for x. Figure 4.3(b) shows a sample mean X at the centre of
an interval relating to the possible positions of u.

! See equation (3.23) in Chapter 3 to remind yourself of this. Remember that +1.96 is the
z score which cuts off 2.5% in each tail of the normal distribution.



Figure 4.3(a)

The 95% probability
interval for x around the
population mean u

Figure 4.3(b)

The 95% confidence
interval for y around
the sample mean x

Estimation with large samples

H_H_l
2 2
1.96 |Z 1.96 |Z
n n

The interval shown in equation (4.5) is called the 95% confidence interval and
this is the interval estimate for 4. In this example the value of o? is unknown,
but in large (n = 25) samples it can be replaced by s* from the sample. s* is here
used as an estimate of ¢* which is unbiased and sufficiently precise in large
(n = 25 or so) samples. The 95% confidence interval is therefore

[ — 1.96~s%/n < u < x + 1.96+/s%/n]

=[130 - 1.96+/50 000/100, 130 + 1.96/50 000/100]
=[86.2, 173.8] (4.6)

Thus we are 95% confident that the true average level of wealth lies between

£86 200 and £173 800. It should be noted that £130 000 lies exactly at the

centre of the interval® (because of the symmetry of the Normal distribution).
By examining equation (4.6) one can see that the confidence interval is wider

e the smaller the sample size;
e the greater the standard deviation of the sample.

2 The two values are the lower and upper limits of the interval, separated by a comma.
This is the standard way of writing a confidence interval.
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Exercise 4.1

2

Exercise 4.2

2

The greater uncertainty which is associated with smaller sample sizes is
manifested in a wider confidence interval estimate of the population mean. This
occurs because a smaller sample has more chance of being unrepresentative (just
because of an unlucky sample).

Greater variation in the sample data also leads to greater uncertainty about
the population mean and a wider confidence interval. Greater sample variation
suggests greater variation in the population so, again, a given sample could
include observations which are a long way off the mean. Note that in this exam-
ple there is great variation of wealth in the population and hence in the sample
also. This means that a sample of 100 is not very informative (the confidence
interval is quite wide). We would need a substantially larger sample to obtain a
more precise estimate.

Note that the width of the confidence interval does not depend upon the
population size — a sample of 100 observations reveals as much about a popula-
tion of 10 000 as it does about a population of 10 000 000. This point will be
discussed in more detail in Chapter 9 on sampling methods. This is a result that
often surprises people, who generally believe that a larger sample is required if
the population is larger.

[Worked example 4.1 j

A sample of 50 school students found that they spent 45 minutes doing
homework each evening, with a standard deviation of 15 minutes. Estimate
the average time spent on homework by all students.

The sample data are X = 45, s = 15 and n = 50. If we can assume the sample
is representative we may use X as an unbiased estimate of u, the population
mean. The point estimate is therefore 45 minutes.

The 95% confidence interval is given by equation (4.6)

[X—1.96s*/n < pu<x+1.96\s*/n]

= [45 - 1.96+/152/50 < u < 45 + 1.96+/152/50 ]

=[40.8, 49.2]

We are 95% confident the true answer lies between 40.8 and 49.2 minutes.

(a) A sample of 100 is drawn from a population. The sample mean is 25 and the
sample standard deviation is 50. Calculate the point and 95% confidence interval
estimates for the population mean.

(b) If the sample size were 64, how would this alter the point and interval estimates?

A sample of size 40 is drawn with sample mean 50 and standard deviation 30. Is it
likely that the true population mean is 607
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(Precisely what is a confidence interval? j

Figure 4.4
Confidence intervals
calculated from 20
samples

There is often confusion over what a confidence interval actually means. This
is not really surprising since the obvious interpretation turns out to be wrong.
It does not mean that there is a 95% chance that the true mean lies within
the interval. We cannot make such a probability statement, because of our
definition of probability (based on the frequentist view of a probability). That
view states that one can make a probability statement about a random variable
(such as X) but not about a parameter (such as ). u either lies within the inter-
val or it does not - it cannot lie 95% within it. Unfortunately, we just do not
know what the truth is.

It is for this reason that we use the term ‘confidence interval’ rather than
‘probability interval’. Unfortunately, words are not as precise as numbers or
algebra, and so most people fail to recognise the distinction. A precise explana-
tion of the 95% confidence interval runs as follows. If we took many samples (all
the same size) from a population with mean u and calculated a confidence inter-
val from each, we would find that u lies within 95% of the calculated intervals.
Of course, in practice we do not take many samples, usually just one. We do not
know (and cannot know) if our one sample is one of the 95% or one of the 5%
that miss the mean.

Figure 4.4 illustrates the point. It shows 95% confidence intervals calculated
from 20 samples drawn from a population with a mean of 5. As expected, we see
that 19 of these intervals contain the true mean, while the interval calculated
from sample 18 does not contain the true value. This is the expected result, but
is not guaranteed. You might obtain all 20 intervals containing the true mean,
or fewer than 19. In the long run (with lots of estimates) we would expect 95%
of the calculated intervals to contain the true mean.

A second question is, why use a probability (and hence a confidence level)
of 95%? In fact, one can choose any confidence level, and thus confidence

B mean
= lower limit

T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Sample
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interval. The 90% confidence interval can be obtained by finding the z score
which cuts off 10% of the Normal distribution (5% in each tail). From Table A2
(see page 414) this is z = 1.64, so the 90% confidence interval is

[X - 1.64+s*/n < pu < X+ 1.64s*/n] 4.7)

=[130 — 1.644/50 000/100, 130 + 1.64+/50 000/100]
=1[93.3, 166.7]

Notice that this is narrower than the 95% confidence level. The greater the
degree of confidence required, the wider the interval has to be. Any confidence
level may be chosen, and by careful choice of this level the confidence interval
can be made as wide or as narrow as wished. This would seem to undermine
the purpose of calculating the confidence interval, which is to obtain some idea
of the uncertainty attached to the estimate. This is not the case, however,
because the reader of the results can interpret them appropriately, as long as
the confidence level is made clear. To simplify matters, the 95% and 99% con-
fidence levels are the most commonly used and serve as conventions. Beware of
the researcher who calculates the 76% confidence interval — this may have been
chosen in order to obtain the desired answer rather than in the spirit of scientific
enquiry! The general formula for the (100 — @)% confidence interval is

[x - za\% X+ Za\/%] (4.8)

where z, is the z score which cuts off the extreme % of the Normal distribution.

Estimating a proportion

It is often the case that we wish to estimate the proportion of the population

that has a particular characteristic (e.g. is unemployed), rather than wanting

an average. Given what we have already learned this is fairly straightforward

and is based on similar principles. Suppose that, following Chapter 1, we wish

to estimate the proportion of educated men who are unemployed. We have a

random sample of 200 men, of whom 15 are unemployed. What can we infer?
The sample data are

n =200, and
p =0.075 (= 15/200)

where p is the (sample) proportion unemployed. We denote the population pro-
portion by the Greek letter 7 and it is this that we are trying to estimate using
data from the sample.

The key to solving this problem is recognising p as a random variable just
like the sample mean. This is because its value depends upon the sample drawn
and will vary from sample to sample. Once the probability distribution of this
random variable is established the problem is quite easy to solve, using the same
methods as were used for the mean. The sampling distribution of p is®

- N[;r, @) 4.9)

* See the Appendix to this chapter (page 170) for the derivation of this formula.
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This tells us that the sample proportion is centred around the true value but will
vary around it, varying from sample to sample. This variation is expressed by
the variance of p, whose formula is (1 — n)/n. Having derived the probability
distribution of p the same methods of estimation can be used as for the sample
mean. Since the expected value of p is x, the sample proportion is an unbiased
estimate of the population parameter. The point estimate of x is simply p, there-
fore. Thus it is estimated that 7.5% of all educated men are unemployed.

Given the sampling distribution for p in equation (4.9) above, the formula for
the 95% confidence interval® for 7 can immediately be written down as

p-1.96 M p+1.96 M (4.10)
V'oon V'on

As the value of 7 is unknown, the confidence interval cannot yet be calcu-
lated, so the sample value of 0.075 has to be used instead of the unknown .
Like the substitution of s* for o2 in the case of the sample mean above, this is
acceptable in large samples. Thus the 95% confidence interval becomes

10.075(1 = 0.075) 10.075(1 - 0.075)
-1.96 —2 0 p 11,96, | Y 4.11
[‘D \ 200 P \ 200 (4.11)

=1[0.075 - 0.037, 0.075 + 0.037]
=10.038, 0.112]

We say that we are 95% confident that the true proportion of unemployed,
educated men lies between 3.8% and 11.2%.

It can be seen that these two cases apply a common method. The 95% con-
fidence interval is given by the point estimate plus or minus 1.96 standard errors.
For a different confidence level, 1.96 would be replaced by the appropriate value
from the standard Normal distribution.

With this knowledge two further cases can be swiftly dealt with.

(Worked example 4.2 Music down the phone j

Do you get angry when you try to phone an organisation and you get an
automated reply followed by music while you hang on? Well, you are not
alone. Mintel (a consumer survey company) asked 1946 adults what they
thought of music played to them while they were trying to get through on
the phone. 36% reported feeling angered by the music and more than one
in four were annoyed by the automated voice response.

With these data we can calculate a confidence interval for the true pro-
portion of people who dislike the music. First, we assume that the sample
is a truly random one. This is probably not strictly true, so our calculated
confidence interval will only be an approximate one. With p = 0.36 and
n = 1946 we obtain the following 95% interval

* As usual, the 95% confidence interval limits are given by the point estimate plus and
minus 1.96 standard errors.
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p+1.96 x \/M — 036 +1.96 x | 2301 = 0-36)
n \ 1946

=0.36 £ 0.021 = [0.339, 0.381]
Mintel further estimated that 2800 million calls were made by customers to
call centres per year, so we can be (approximately) 95% confident that between

949 million and 1067 million of those calls have an unhappy customer on
the line!

Source: The Times, 10 July 2000.

(D Estimating the difference between two means

We now move on to estimating differences. In this case we have two samples
and want to know whether there is a difference between their respective popula-
tions. One sample might be of men, the other of women, or we could be com-
paring two different countries, etc. A point estimate of the difference is easy to
obtain but once again there is some uncertainty around this figure, because it is
based on samples. Hence we measure that uncertainty via a confidence interval.
All we require are the appropriate formulae. Consider the following example.

Sixty pupils from school 1 scored an average mark of 62% in an exam, with
a standard deviation of 18%; 35 pupils from school 2 scored an average of 70%
with standard deviation 12%. Estimate the true difference between the two
schools in the average mark obtained.

This is a more complicated problem than those previously treated since it
involves two samples rather than one. An estimate has to be found for u, — u,
(the true difference in the mean marks of the schools), in the form of both point
and interval estimates. The pupils taking the exams may be thought of as
samples of all pupils in the schools who could potentially take the exams.

Notice that this is a problem about sample means, not proportions, even
though the question deals in percentages. The point is that each observation in
the sample (i.e. each student’s mark) can take a value between 0 and 100, and
one can calculate the standard deviation of the marks. For this to be a problem
of sample proportions the mark for each pupil would each have to be of the
pass/fail type, so that one could only calculate the proportion who passed.

It might be thought that the way to approach this problem is to derive
one confidence interval for each sample (along the lines set out above), and
then to somehow combine them; for example, the degree of overlap of the two
confidence intervals could be assessed. This is not the best approach, however.
It is sometimes a good strategy, when faced with an unfamiliar problem to solve, to
translate it into a more familiar problem and then solve it using known methods.
This is the procedure which will be followed here. The essential point is to keep
in mind the concept of a random variable and its probability distribution.

Problems involving a single random variable have already been dealt with
above. The current problem deals with two samples and therefore there are two
random variables to consider, i.e. the two sample means X, and %,. Since the aim
is to estimate u, — u,, an obvious candidate for an estimator is the difference
between the two sample means, X; — X,. We can think of this as a single random



Figure 4.5
The distribution of x, — X,

Precisely what is a confidence interval?

variable (even though two means are involved) and use the methods we have
already learned. We therefore need to establish the sampling distribution of
X, — X,. This is derived in the Appendix to this chapter (see page 170) and
results in equation (4.12)
2 2

Xl_)Zz*N(#l_.Uz; :_11_:_22] (4.12)
This equation states that the difference in sample means will be centred on the
difference in the two population means, with some variation around this as
measured by the variance. One assumption behind the derivation of equation
(4.12) is that the two samples are independently drawn. This is likely in this
example; it is difficult to see how the samples from the two schools could be
connected. However, one must always bear this possibility in mind when com-
paring samples. For example, if one were comparing men’s and women'’s
heights, it would be dangerous to take samples of men and their wives as they
are unlikely to be independent. People tend to marry partners of a similar height
to themselves, so this might bias the results.

The distribution of X, — X, is illustrated in Figure 4.5. Equation (4.12) shows
that X, — X, is an unbiased estimator of u, — u,. The difference between the
sample means will therefore be used as the point estimate of u; — u,. Thus the
point estimate of the true difference between the schools is

% - % =62-70=-8%

The 95% confidence interval estimate is derived in the same manner as
before, making use of the standard error of the random variable. The formula is®

. I s s3
(X - x,) - 1.96 n_+n_' (xl—x2)+1.96,\—+— (4.13)

1 2 nm

As the values of ¢ are unknown they have been replaced in equation (4.13)
by their sample values. As in the single sample case, this is acceptable in large
samples. The 95% confidence interval for u, — u, is therefore

f(X1 = X2) Distribution of X, — X,

Var o2 o3
o1, Q2
ariance - + -

1 { I 1

1 1 Il J
0 10 20 30 40 550 6 70 80 90 100

' - -
g = U X1 =Xz

® The term under the square root sign is the standard error for ¥, — X,
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2 2 11Q2 2
62 -70) - 1.96, 25 12 (62 _70) 4 1.96 15, 120
V6o = 35 V60 ' 35

= [-14.05, -1.95]

The estimate is that school 2’s average mark is between 1.95 and 14.05 per-
centage points above that of school 1. Notice that the confidence interval does
not include the value zero, which would imply equality of the two schools’
marks. Equality of the two schools can thus be ruled out with 95% confidence.

[Worked example 4.3 j

A survey of holidaymakers found that on average women spent 3 hours
per day sunbathing, men spent 2 hours. The sample sizes were 36 in each
case and the standard deviations were 1.1 hours and 1.2 hours respectively.
Estimate the true difference between men and women in sunbathing habits.
Use the 99% confidence level.

The point estimate is simply one hour, the difference of sample means. For
the confidence interval we have

L s 3 . s s3
(X —%)—-257 |—+—==us<(X —-X%)+2.57 | —+—=
n, m n, m

h 122 h 122
=13-2)=257 = + =% < u<@B-2)+257 |~ + ==
l( ) V36 T 36 H=6-2 \ 36 36]
~ [0.30, 1.70]

This evidence suggests women do spend more time sunbathing than men (zero
is not in the confidence interval). Note that we might worry the samples
might not be independent here — it could represent 36 couples. If so, the
evidence is likely to underestimate the true difference, if anything, as couples
are likely to spend time sunbathing together.

() Estimating the difference between two proportions

We move again from means to proportions. We use a simple example to illustrate
the analysis of this type of problem. Suppose that a survey of 80 Britons showed
that 60 owned personal computers. A similar survey of 50 Swedes showed 30
with computers. Are personal computers more widespread in Britain than Sweden?

Here the aim is to estimate 7, — 7,, the difference between the two population
proportions, so the probability distribution of p, — p, is needed, the difference
of the sample proportions. The derivation of this follows similar lines to those
set out above for the difference of two sample means, so is not repeated. The
probability distribution is

n(l-m) , - ﬂz)j

(4.14)
n, n,

pl_P2~N(ﬂl_”2/
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Again, the two samples must be independently drawn for this to be correct (it is
difficult to see how they could not be in this case).

Since the difference between the sample proportions is an unbiased estimate
of the true difference, this will be used for the point estimate. The point estimate
is therefore

p1 — p.=60/80 — 30/50
=0.15

or 15%. The 95% confidence interval is given by

[p _pz_l%\/m(l—ﬂl) L =)
1 . ’

m n,

(4.15)

PP+ 1.96\/"1(1 -m) , - m) }

m n,

n, and m, are unknown so have to be replaced by p, and p, for purposes of
calculation, so the interval becomes

[0.75 0.60 - 1.96 27> 025 0.60 x 0.40

\" 80 50

’

0.75 - 0.60 +1.96 |
\ 80 50

10.75 % 0.25 , 0.60 x 0.40 }

=[0.016, 0.316] (4.16)

The result is a fairly wide confidence interval due to the relatively small sample
sizes. The interval does not include zero, however, so we can be 95% confident
there is a difference between the two countries.

(a) Seven people out of a sample of 50 are left-handed. Estimate the true proportion
of left-handed people in the population, finding both point and interval estimates.

(b) Repeat part (a) but find the 90% confidence interval. How does the 90% interval
compare with the 95% interval?

(c) Calculate the 99% interval and compare to the others.

Given the following data from two samples, calculate the true difference between the
means. Use the 95% confidence level.

X =25 x,=30
5,=18 s5,=25
n,=36 n,=49

A survey of 50 16-year old girls revealed that 40% had a boyfriend. A survey of
100 16-year old boys revealed 20% with a girlfriend. Estimate the true difference in
proportions between the sexes.
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So far only large samples (defined as sample sizes in excess of 25) have been dealt
with, which means that (by the Central Limit Theorem) the sampling distribu-
tion of x follows a Normal distribution, whatever the distribution of the parent
population. Remember, from the two theorems of Chapter 3, that:

e if the population follows a Normal distribution, X is also Normally distributed;
and

e if the population is not Normally distributed, X is approximately Normally
distributed in large samples (n = 25).

In both cases, confidence intervals can be constructed based on the fact that

X=H N, 1) (4.17)
o?/n

and so the standard Normal distribution is used to find the values which cut
off the extreme 5% of the distribution (z = £1.96). In practical examples, we
had to replace ¢ by its estimate, s. Thus the confidence interval was based on
the fact that

XK N©, 1) (4.18)

\s2/n

in large samples. For small sample sizes, equation (4.18) is no longer true.
Instead, the relevant distribution is the t distribution and we have®

Sl (4.19)

VS2/n )

The random variable defined in equation (4.19) has a t distribution with n - 1
degrees of freedom. As the sample size increases, the t distribution approaches
the standard Normal, so the latter can be used for large samples.

The t distribution was derived by W.S. Gossett in 1908 while conducting tests
on the average strength of Guinness beer (who says statistics has no impact on
the real world?). He published his work under the pseudonym ‘Student’, since
the company did not allow its employees to publish under their own names, so
the distribution is sometimes also known as the Student distribution.

The t distribution is in many ways similar to the standard Normal, insofar as
it is:
® unimodal;
® symmetric;

e centred on zero;
@ bell-shaped;
e extends from minus infinity to plus infinity.

® We also require the assumption that the parent population is Normally distributed for
equation (4.19) to be true.



Figure 4.6

The t distribution drawn
for different degrees of
freedom

Estimation with small samples: the t distribution

s g A P

The differences are that it is more spread out (has a larger variance) than the
standard Normal distribution, and has only one parameter rather than two:
the degrees of freedom, denoted by the Greek letter v (pronounced ‘nu”’). In
problems involving the estimation of a sample mean the degrees of freedom
are given by the sample size minus one, i.e. v=n - 1.

The ¢ distribution is drawn in Figure 4.6 for various values of the parameter
v. Note that the fewer the degrees of freedom (smaller sample size) the more
dispersed is the distribution.

To summarise the argument so far, when

e the sample size is small, and
e the sample variance is used to estimate the population variance,

then the ¢ distribution should be used for constructing confidence intervals, not
the standard Normal. This results in a slightly wider interval than would be obtained
using the standard Normal distribution, which reflects the slightly greater uncer-
tainty involved when s? is used as an estimate of o if the sample size is small.

Apart from this, the methods are exactly as before and are illustrated by the
examples below. We look first at estimating a single mean, then at estimating
the difference of two means. The t distribution cannot be used for small sample
proportions (explained below) so these cases are not considered.

Estimating a mean

The following would seem to be an appropriate example. A sample of 15 bottles
of beer showed an average specific gravity of 1035.6, with standard deviation
2.7. Estimate the true specific gravity of the brew.

The sample information may be summarised as

¥ =1035.6
s=2.7
n=15

7 Once again, the Greeks pronounce this differently, as ‘ni’. They also pronounce 7 ‘pee’
rather than ‘pie’ as in English. This makes statistics lectures in English hard for Greeks to
understand!
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The sample mean is still an unbiased estimator of u (this is true regardless of
the distribution of the population) and serves as point estimate of u. The point
estimate of u is therefore 1035.6.

Since o is unknown, the sample size is small and it can be assumed that the
specific gravity of all bottles of beer is Normally distributed (numerous small
random factors affect the specific gravity) we should use the t distribution. Thus

X—p

\s2/n

The 95% confidence interval estimate is given by

- tn—l (4 2 O)

\_)2 —t, 4\ S%n, X + t,,_leszlnj (4.21)

where t,, is the value of the t distribution which cuts off the extreme 5%
(2.5% in each tail) of the t distribution with v degrees of freedom. Table A3
(see page 415) gives percentage points of the t distribution and part of it is
reproduced in Table 4.1.

The structure of the t distribution table is different from that of the standard
Normal table. The first column of the table gives the degrees of freedom. In this
example we want the row corresponding to v =n — 1 = 14. The appropriate
column of the table is the one headed ‘0.025’ which indicates the area cut off in
each tail. At the intersection of this row and column we find the appropriate
value, t,, = 2.145. Therefore the confidence interval is given by

[1035.6 — 2.145+2.72/15, 1035.6 + 2.145+/2.72/15]
which when evaluated gives
[1034.10, 1037.10]

We can be 95% confident that the true specific gravity lies within this range.
If the Normal distribution had (incorrectly) been used for this problem then
the t value of 2.145 would have been replaced by a z score of 1.96, giving a
confidence interval of

[1034.23, 1036.97]

Table 4.1 Percentage points of the t distribution (excerpt from Table A3)

Area (o) in each tail

v 0.4 0.25 0.10 0.05 0.025 0.01 0.005
1 0.325 1.000 3.078 6.314 12.706 31.821 63.656
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012
14 0.258 0.692 1.345 1.761 2.145 2.624 2.977
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947

Note: The appropriate t value for constructing the confidence interval is found at the
intersection of the shaded row and column.
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This underestimates the true confidence interval and gives the impression of a
more precise estimate than is actually the case. Use of the Normal distribution
leads to a confidence interval which is 8.7% too narrow in this case.

Estimating the difference between two means

As in the case of a single mean the f-distribution needs to be used in small
samples when the population variances are unknown. Again, both parent
populations must be Normally distributed and in addition it must be assumed
that the population variances are equal, i.e. 63 = o3 (this is required in the
mathematical derivation of the t distribution). This latter assumption was not
required in the large-sample case using the Normal distribution. Consider the
following example as an illustration of the method.

A sample of 20 Labour-controlled local authorities shows that they spend
an average of £175 per taxpayer on administration with a standard deviation of
£25. A similar survey of 15 Conservative-controlled authorities finds an average
figure of £158 with standard deviation of £30. Estimate the true difference in
expenditure between Labour and Conservative authorities.

The sample information available is

X, =175 x,=158
s;=25 s5,=30
nm=20 n,=15

We wish to estimate u, — u,. The point estimate of this is X, — X, which is an
unbiased estimate. This gives 175 — 158 = 17 as the expected difference between
the two sets of authorities.

For the confidence interval, the t distribution has to be used since the sample
sizes are small and the population variances unknown. It is assumed that the
populations are Normally distributed and that the samples have been independ-
ently drawn. We also assume that the population variances are equal, which
seems justified since s, and s, do not differ by much (this kind of assumption is
tested in Chapter 6). The confidence interval is given by the formula

‘\ 2 2 ‘\ 2 2
()21—)22)—1;,;‘5—+s—sus(il—iz)+tv,fs—+s— 4.22)
\n, n, \n, n,
where
_ 2 _ 2
SZ — (nl 1)51 + (n2 1)52 (423)

ny+n,—2
is known as the pooled variance and
V=n,+n,—-2

gives the degrees of freedom associated with the t distribution.

§%is an estimate of the (common value of) the population variances. It would
be inappropriate to have the differing values si and s3 in the formula for this ¢
distribution, for this would be contrary to the assumption that ¢} = ¢, which is
essential for the use of the t distribution. The estimate of the common popula-
tion variance is just the weighted average of the sample variances, using degrees
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Exercise 4.6

2

Exercise 4.7

2

of freedom as weights. Each sample has n — 1 degrees of freedom, and the total
number of degrees of freedom for the problem is the sum of the degrees of
freedom in each sample. The degrees of freedom is thus 20 + 15 - 2 = 33
and hence the value t = 2.042 cuts off the extreme 5% of the distribution. The
t table in the Appendix does not give the value for v =33 so we have used v =30
instead, which will give a close approximation.

To evaluate the 95% confidence interval we first calculate S*

_ (20— 1) x 252+ (15 - 1) x 30?
B 20+15-2

Inserting this into equation (4.22) gives

17 - 2.042 (7416 7416 10 5 oap [7AL6  TALE T 1 99, 35,99
Y 20 15 20 15

Thus the true difference is quite uncertain and the evidence is even con-
sistent with Conservative authorities spending more than Labour authorities.
The large degree of uncertainty arises because of the small sample sizes and the
quite wide variation within each sample.

One should be careful about the conclusions drawn from this test. The greater
expenditure on administration could be either because of inefficiency or because
of a higher level of services provided. To find out which is the case would require
further investigation. The statistical test carried out here examines the levels of
expenditure, but not whether they are productive or not.

s? =741.6

Estimating proportions

Estimating proportions when the sample size is small cannot be done with
the t distribution. Recall that the distribution of the sample proportion p was
derived from the distribution of r (the number of successes in n trials), which
followed a Binomial distribution (see the Appendix to this chapter (page 170)).
In large samples the distribution of r is approximately Normal, thus giving
a Normally distributed sample proportion. In small samples it is inappropriate
to approximate the Binomial distribution with the t distribution, and indeed is
unnecessary, since the Binomial itself can be used. Small-sample methods for
the sample proportion should be based on the Binomial distribution, therefore,
as set out in Chapter 3. These methods are thus not discussed further here.

A sample of size n =16 is drawn from a population which is known to be Normally
distributed. The sample mean and variance are calculated as 74 and 121. Find the
99% confidence interval estimate for the true mean.

Samples are drawn from two populations to see if they share a common mean. The
sample data are:

X, =45 X,=55
5=18 s5,=21
n,=15 n,=20

Find the 95% confidence interval estimate of the difference between the two popula-
tion means.



Key terms and concepts

(Summary

)

Estimation is the process of using sample information to make good estimates
of the value of population parameters, for example using the sample mean to
estimate the mean of a population.

There are several criteria for finding a good estimate. Two important ones are
the (lack of) bias and precision of the estimator. Sometimes there is a trade-
off between these two criteria — one estimator might have a smaller bias but
be less precise than another.

An estimator is unbiased if it gives a correct estimate of the true value on
average. Its expected value is equal to the true value.

The precision of an estimator can be measured by its sampling variance (e.g.
s*/n for the mean of a sample).

Estimates can be in the form of a single value (point estimate) or a range of
values (confidence interval estimate). A confidence interval estimate gives
some idea of how reliable the estimate is likely to be.

For unbiased estimators, the value of the sample statistic (e.g. X) is used as the
point estimate.

In large samples the 95% confidence interval is given by the point estimate
plus or minus 1.96 standard errors (e.g. X + 1.96\;“32/n for the mean).

For small samples the ¢ distribution should be used instead of the Normal (i.e.
replace 1.96 by the critical value of the t distribution) to construct confidence
intervals of the mean.

(Key terms and concepts )
bias interval estimate
confidence level and interval maximum likelihood
efficiency point estimate
estimator precision
inference
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Problems
Some of the more challenging problems are indicated by highlighting the problem
number in colour.

4.1 (a) Why is an interval estimate better than a point estimate?

(b) What factors determine the width of a confidence interval?

4.2 Is the 95% confidence interval (a) twice as wide, (b) more than twice as wide, (c) less than
twice as wide, as the 47.5% interval? Explain your reasoning.

4.3 Explain the difference between an estimate and an estimator. Is it true that a good
estimator always leads to a good estimate?

4.4 Explain why an unbiased estimator is not always to be preferred to a biased one.

4.5 A random sample of two observations, x; and x,, is drawn from a population. Prove that
WX, + W,X, gives an unbiased estimate of the population mean as long as w; + w, = 1.
Hint: Prove that E(w;x; + wyx,) = L.

4.6 Following the previous question, prove that the most precise unbiased estimate is
obtained by setting w; =w, =+
(Hint: Minimise V(w;x, + w,x,) with respect to w; after substituting w,=1—w;,. You will need
a knowledge of calculus to solve this.)

4.7 Given the sample data

X=40 s=10 n=36
calculate the 99% confidence interval estimate of the true mean. If the sample size were
20, how would the method of calculation and width of the interval be altered?

4.8 A random sample of 100 record shops found that the average weekly sale of a particular
CD was 260 copies, with standard deviation of 96. Find the 95% confidence interval to
estimate the true average sale for all shops. To compile the CD chart it is necessary to
know the correct average weekly sale to within 5% of its true value. How large a sample
size is required?

4.9 Given the sample data p = 0.4, n = 50, calculate the 99% confidence interval estimate of
the true proportion.

4.10 A political opinion poll questions 1000 people. Some 464 declare they will vote
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Conservative. Find the 95% confidence interval estimate for the Conservative share of
the vote.



4.11

4.12

4.13

414

4.15

4.16

4.17

Problems

Given the sample data

X =25 X,=22
;=12 s5,=18
n, =80 n,=100

estimate the true difference between the means with 95% confidence.

(a] A sample of 200 women from the labour force found an average wage of £6000 p.a.
with standard deviation £2500. A sample of 100 men found an average wage of £8000
with standard deviation £1500. Estimate the true difference in wages between men
and women.

(b

A different survey, of men and women doing similar jobs, obtained the following
results:

Xy =£7200 X, =£7600
swi= £1225 5, =£750
nw= 175 ny =50

Estimate the difference between male and female wages using these new data. What
can be concluded from the results of the two surveys?

67% out of 150 pupils from school A passed an exam; 62% of 120 pupils at school B
passed. Estimate the 99% confidence interval for the true difference between the propor-
tions passing the exam.

(a] A sample of 954 adults in early 1987 found that 23% of them held shares. Given
a UK adult population of 41 million and assuming a proper random sample was
taken, find the 95% confidence interval estimate for the number of shareholders in
the UK.

(b] A ‘similar’ survey the previous year had found a total of 7 million shareholders.
Assuming ‘similar’ means the same sample size, find the 95% confidence interval
estimate of the increase in shareholders between the two years.

A sample of 16 observations from a Normally distributed population yields a sample
mean of 30 with standard deviation 5. Find the 95% confidence interval estimate of the
population mean.

A sample of 12 families in a town reveals an average income of £15 000 with standard
deviation £6000. Why might you be hesitant about constructing a 95% confidence interval
for the average income in the town?

Two samples were drawn, each from a Normally distributed population, with the follow-
ing results

X, =45 s,=8 n,=12
X,=52 s,=5 n,=18

Estimate the difference between the population means, using the 95% confidence level.
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4.18

4.19

The heights of 10 men and 15 women were recorded, with the following results:

Mean Variance
Men 173.5 80
Women 162 65

Estimate the true difference between men’s and women’s heights. Use the 95%
confidence level.

(Project) Estimate the average weekly expenditure upon alcohol by students. Ask a
(reasonably) random sample of your fellow students for their weekly expenditure on
alcohol. From this, calculate the 95% confidence interval estimate of such spending by
all students.



Answers to exercises

(Answers to exercises j

Exercise 4.1
(a) The point estimate is 25 and the 95% confidence interval is 25 £ 1.96 x 50/100
=25+9.8=[15.2, 34.8].

(b) The CI becomes larger as the sample size reduces. In this case we would have
25 + 1.96 x 50/N64 = 25 + 12.25 = [12.75, 37.25]. Note that the width of the
Cl is inversely proportional to the square root of the sample size.

Exercise 4.2
The 95% CI is 50 + 1.96 x 30/440 = 50 + 9.30 = [40.70, 59.30]. The value of 60 lies
(just) outside this CI so is unlikely to be the true mean.

Exercise 4.3
(a) The point estimate is 14% (7/50). The 95% CI is given by

0.14 + 1.96 x \‘s‘w - 0.14 + 0.096.

(b) Use 1.64 instead of 1.96, giving 0.14 £+ 0.080.
(¢) 0.14 +0.126.

Exercise 4.4
X, — X, =25 - 30 =-5 is the point estimate. The interval estimate is given by

“ 2 2 2 2
(-1) 196 5L 4+ 52 5+196 |18, 25
\m  m 36 49

= 5+9.14 = [-14.14, 4.14]

Exercise 4.5
The point estimate is 20%. The interval estimate is

0.2 +1.96 x \/0‘4 x06  02X08 _ 540157 =1[0.043, 0.357]
100
Exercise 4.6
The 99% CI is given by 74 + t* x 4121/16 = 74 + 2.947 x 2.75 = 74 + 8.10 = [65.90,
82.10].

Exercise 4.7
The pooled variance is given by

_(15-1)x 18 +(20-1) x 217
15+20-2
The 95% CI is therefore

§? =391.36

1391.36  391.36

V15 7 20

=-10£13.80 = [-3.8, 23.8]

(45 — 55) + 2.042 x
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Appendix

Derivations of sampling distributions

@

Derivation of the sampling distribution of p

The sampling distribution of p is fairly straightforward to derive, given what
we have already learned. The sampling distribution of p can be easily derived
from the distribution of r, the number of successes in n trials of an experiment,
since p = r/n. The distribution of r for large n is approximately Normal (from
Chapter 3)

r ~ N(nP, nP(1 - P)) (4.24)

Knowing the distribution of r, is it possible to find that of p? Since p is
simply r multiplied by a constant, 1/n, it is also Normally distributed. The mean
and variance of the distribution can be derived using the E and V operators. The
expected value of p is

E(p) =E(r/n) = %E(r) = %nP =P=r (4.25)

The expected value of the sample proportion is equal to the population propor-
tion (note that the probability P and the population proportion & are the same
thing and may be used interchangeably). The sample proportion therefore gives
an unbiased estimate of the population proportion.

For the variance

() e lvi - Lapa - py o F1=D)
V(p) = V(n] =5V =—;nP(1 - P)=—— (4.26)
Hence the distribution of p is given by

P~ N(n, @) (4.27)

Derivation of the sampling distribution of x; — X,

This is the difference between two random variables so is itself a random
variable. Since any linear combination of Normally distributed, independent
random variables is itself Normally distributed, the difference of sample means
follows a Normal distribution. The mean and variance of the distribution can be
found using the E and V operators. Letting

E(X)) = u, V(X)) = o3/n, and
E(X,) = 1, V(X,) = 03/n,

then
E(X, — %,) = E(X)) - E(X,) = 1ty — i, (4.28)
And
. _ _. o o3
V(x, —X%,) =V(x) +V(x,) =—+—= (4.29)
n, n,



Appendix: Derivations of sampling distributions

Equation (4.29) assumes ¥, and X, are independent random variables. The
probability distribution of X, — X, can therefore be summarised as
2 2
X -x~ N(#l - L, % + %) (4.30)

1 2

This is equation (4.12) in the text.
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By the end of this chapter you should be able to:
@ understand the philosophy and scientific principles underlying hypothesis testing;

® appreciate that hypothesis testing is about deciding whether a hypothesis is true
or false on the basis of a sample of data;

recognise the type of evidence which leads to a decision that the hypothesis is false;
carry out hypothesis tests for a variety of statistical problems;

recognise the relationship between hypothesis testing and a confidence interval;
recognise the shortcomings of hypothesis testing.

Complete your diagnostic test for Chapter 5 now to create your personal study
@ plan. Exercises with an icon (?  are also available for practice in MathXL with
additional supporting resources.
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The concepts of hypothesis testing

(Introduction

)

This chapter deals with issues very similar to those of the previous chapter on
estimation, but examines them in a different way. The estimation of population
parameters and the testing of hypotheses about those parameters are similar
techniques (indeed they are formally equivalent in a number of respects), but
there are important differences in the interpretation of the results arising from
each method. The process of estimation is appropriate when measurement is
involved, such as measuring the true average expenditure on food; hypothesis
testing is better when decision making is involved, such as whether to accept
that a supplier’s products are up to a specified standard. Hypothesis testing is
also used to make decisions about the truth or otherwise of different theories,
such as whether rising prices are caused by rising wages; and it is here that the
issues become contentious. It is sometimes difficult to interpret correctly the
results of hypothesis tests in these circumstances. This is discussed further later
in this chapter.

(The concepts of hypothesis testing j

In many ways hypothesis testing is analogous to a criminal trial. In a trial there
is a defendant who is initially presumed innocent. The evidence against the defend-
ant is then presented and, if the jury finds this convincing beyond all reasonable
doubt, he is found guilty; the presumption of innocence is overturned. Of
course, mistakes are sometimes made: an innocent person is convicted or a
guilty person set free. Both of these errors involve costs (not only in the monet-
ary sense), either to the defendant or to society in general, and the errors
should be avoided if at all possible. The laws under which the trial is held may
help avoid such errors. The rule that the jury must be convinced ‘beyond all
reasonable doubt’ helps to avoid convicting the innocent, for instance.

The situation in hypothesis testing is similar. First there is a maintained or
null hypothesis which is initially presumed to be true. The empirical evidence,
usually data from a random sample, is then gathered and assessed. If the
evidence seems inconsistent with the null hypothesis, i.e. it has a low probability
of occurring if the hypothesis were true, then the null hypothesis is rejected in
favour of an alternative. Once again there are two types of error one can make,
either rejecting the null hypothesis when it is really true, or not rejecting it
when in fact it is false. Ideally one would like to avoid both types of error.

An example helps to clarify the issues and the analogy. Suppose that you
are thinking of taking over a small business franchise. The current owner claims
the weekly turnover of each existing franchise is £5000 and at this level you are
willing to take on a franchise. You would be more cautious if the turnover is less
than this figure. You examine the books of 26 franchises chosen at random and
find that the average turnover was £4900 with standard deviation £280. What
do you do?

The null hypothesis in this case is that average weekly turnover is £5000 (or
more; that would be even more to your advantage). The alternative hypothesis
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Figure 5.1
The two different
types of error
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is that turnover is strictly less than £5000 per week. We may write these more
succinctly as follows

Hoy: u= 5000
Hy: u <5000

H, is conventionally used to denote the null hypothesis, H; the alternative.
Initially, H, is presumed to be true and this presumption will be tested using
the sample evidence. Note that the sample evidence is not used as part of the
hypothesis.

You have to decide whether the owner’s claim is correct (H,) or not (H,). The
two types of error you could make are as follows:

e Type I error - reject Hy when it is in fact true. This would mean missing a
good business opportunity.

e Type II error — not rejecting H, when it is in fact false. You would go ahead
and buy the business and then find out that it is not as attractive as claimed.
You would have overpaid for the business.

The situation is set out in Figure 5.1.

Obviously a good decision rule would give a good chance of making a correct
decision and rule out errors as far as possible. Unfortunately it is impossible
completely to eliminate the possibility of errors. As the decision rule is changed
to reduce the probability of a Type I error, the probability of making a Type II
error inevitably increases. The skill comes in balancing these two types of error.

Again a diagram is useful in illustrating this. Assuming that the null hypo-
thesis is true, then the sample observations are drawn from a population with
mean 5000 and some variance, which we shall assume is accurately measured by
the sample variance. The distribution of x is then given by

X ~ N(u, o*/n) or (5.1)
% ~ N(5000, 280%/26)

Under the alternative hypothesis the distribution of X would be the same
except that it would be centred on a value less than 5000. These two situations
are illustrated in Figure 5.2. The distribution of X under H, is shown by a dashed
curve to signify that its exact position is unknown, only that it lies to the left of
the distribution under H,.

A decision rule amounts to choosing a point or dividing line on the horizon-
tal axis in Figure 5.2. If the sample mean lies to the left of this point then H, is
rejected (the sample mean is too far away from H,, for it to be credible) in favour
of H, and you do not buy the firm. If X lies above this decision point then H,
is not rejected and you go ahead with the purchase. Such a decision point is

True situation

H, true H, false

Accept H, | Correct decision Type Il error

Decision
Reject Hy Type | error Correct decision




Figure 5.2

The sampling
distributions of x
under Hy and H,

The concepts of hypothesis testing

i

Rejection region  Non-rejection region

shown in Figure 5.2, denoted by X;,. To the left of X, lies the rejection (of Hy)
region; to the right lies the non-rejection region.

Based on this point, we can see the probabilities of Type I and Type II errors.
The area under the H, distribution to the left of X, labelled I, shows the prob-
ability of rejecting H, given that it is in fact true: a Type I error. The area under
the H, distribution to the right of X, labelled II, shows the probability of a
Type II error: not rejecting H, when it is in fact false (and H, is true).

Shifting the decision line to the right or left alters the balance of these prob-
abilities. Moving the line to the right increases the probability of a Type I error
but reduces the probability of a Type II error. Moving the line to the left has the
opposite effect.

The Type I error probability can be calculated for any value of X,. Suppose
we set X, to a value of 4950. Using the distribution of X given in equation (5.1)
above, the area under the distribution to the left of 4950 is obtained using the
z score

X,— 1 4950 — 5000
\$%/n \280%/26

From the tables of the standard Normal distribution we find that the prob-
ability of a Type I error is 18.1%. Unfortunately, the Type II error probability
cannot be established because the exact position of the distribution under H,
is unknown. Therefore we cannot decide on the appropriate position of X, by
some balance of the two error probabilities.

The convention therefore is to set the position of X, by using a Type I error
probability of 5%, known as the significance level' of the test. In other words,
we are prepared to accept a 5% probability of rejecting H, when it is, in fact,
true. This allows us to establish the position of x,. From Table A2 (see page 414)
we find that z =-1.64 cuts off the bottom 5% of the distribution, so the decision
line should be 1.64 standard errors below 5000. The value —1.64 is known as the
critical value of the test. We therefore obtain

X, = 5000 — 1.64/280%/26 = 4910 5.3)

= -0.91 (5.2)

! The term size of the test is also used, not to be confused with the sample size. We use
the term ‘significance level’ in this text.
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Since the sample mean of 4900 lies below 4910 we reject H, at the 5%
significance level or equivalently we reject with 95% confidence. The significance
level is generally denoted by the symbol o and the complement of this, given
by 1 - ¢, is known as the confidence level (as used in the confidence interval).

An equivalent procedure would be to calculate the z score associated with the
sample mean, known as the test statistic, and then compare this to the critical
value of the test. This allows the hypothesis testing procedure to be broken
down into five neat steps.

(1) Write down the null and alternative hypotheses:

Ho: u= 5000
Hj: u <5000

(2) Choose the significance level of the test, conventionally o. = 0.05 or 5%.
(3) Look up the critical value of the test from statistical tables, based on the
chosen significance level. z* = 1.64 is the critical value in this case.

(4) Calculate the test statistic
;- X-u 100
Jsyn 280726

=-1.82 (5.4)

(5) Decision rule. Compare the test statistic with the critical value: if z < —z*
reject H, in favour of H;. Since —-1.82 < -1.64 H, is rejected with 95%
confidence. Note that we use —z* here (rather than +z*) because we are
dealing with the left-hand tail of the distribution.

[Worked example 5.1 ]

A sample of 100 workers found the average overtime hours worked in the
previous week was 7.8, with standard deviation 4.1 hours. Test the hypo-
thesis that the average for all workers is 5 hours or less.

We can set out the five steps of the answer as follows:

(1) Hp:u=5
Hy:u>5
(2) Significance level, o= 5%.
(3) Critical value z* = 1.64.
(4) Test statistic
P 7.8-35 — 68
Jsyn 417100

(5) Decision rule: 6.8 > 1.64 so we reject H, in favour of H;. Note that in this
case we are dealing with the right-hand tail of the distribution (positive
values of z and z*). Only high values of x reject H,,.

() One-tail and two-tail tests

In the above example the rejection region for the test consisted of one tail of the
distribution of ¥, since the buyer was only concerned about turnover being less



Figure 5.3
A two-tail hypothesis
test

The concepts of hypothesis testing

Reject H, Reject H,

than claimed. For this reason it is known as a one-tail test. Suppose now that
an accountant is engaged to sell the franchise and wants to check the claim
about turnover before advertising the business for sale. In this case she would
be concerned about turnover being either below or above 5000.

This would now become a two-tail test with the null and alternative hypo-
theses being

H,: 1t = 5000
H,: u # 5000

Now there are two rejection regions for the test. Either a very low sample mean
or a very high one will serve to reject the null hypothesis. The situation is
presented graphically in Figure 5.3.

The distribution of ¥ under H, is the same as before, but under the alternative
hypothesis the distribution could be shifted either to the left or to the right, as
depicted. If the significance level is still chosen to be 5%, then the complete
rejection region consist of the two extremes of the distribution under H,,
containing 2.5% in each tail (hence 5% in total). This gives a Type I error prob-
ability of 5% as before.

The critical value of the test therefore becomes z* = 1.96, the value which
cuts off 2.5% in each tail of the standard Normal distribution. Only if the test
statistic falls into one of the rejection regions beyond 1.96 standard errors from
the mean is H, rejected.

Using data from the previous example, the test statistic remains z = —1.82 so
that the null hypothesis cannot be rejected in this case, as —1.82 does not fall
beyond —1.96. To recap, the five steps of the test are:

(1) Hy: u=5000

H,: u# 5000
(2) Choose the significance level: o = 0.05.
(3) Look up the critical value: z* = 1.96.
(4) Evaluate the test statistic

z=;00=—1.82

280%/26

(5) Compare test statistic and critical values: if z < —z* or z > z* reject H, in
favour of H,. In this case -1.82 > -1.96 so H, cannot be rejected with 95%
confidence.
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Exercise 5.1

Exercise 5.2

2

Exercise 5.3

2

@

One- and two-tail tests therefore differ only at steps 1 and 3. Note that we
have come to different conclusions according to whether a one- or two-tail test
was used, with the same sample evidence. There is nothing wrong with this,
however, for there are different interpretations of the two results. If the investor
always uses his rule, he will miss out on 5% of good investment opportunities,
when sales are (by chance) low. He will never miss out on a good opportunity
because the investment appears too good (i.e. sales by chance are very high). For
the accountant, 5% of the firms with sales averaging £5000 will not be advert-
ised as such, either because sales appear too low or because they appear too high.

It is tempting on occasion to use a one-tail test because of the sample
evidence. For example, the accountant might look at the sample evidence above
and decide that the franchise operation can only have true sales less than or
equal to 5000. Therefore a one-tail test is used. This is a dangerous practice, since
the sample evidence is being used to help formulate the hypothesis, which is
then tested on that same evidence. This is going round in circles; the hypo-
thesis should be chosen independently of the evidence, which is then used to test
it. Presumably the accountant would also use a one-tail test (with H;: u> 5000 as
the alternative hypothesis) if it was noticed that the sample mean were above the
hypothesised value. In effect therefore the 10% significance level would be used,
not the 5% level, since there would be 5% in each tail of the distribution. A Type I
error would be made on 10% of all occasions rather than 5%.

It is acceptable to use a one-tail test when you have independent information
about what the alternative hypothesis should be, or you are not concerned
about one side of the distribution (such as the investor) and can effectively add
that into the null hypothesis. Otherwise, it is safer to use a two-tail test.

(a) Two political parties are debating crime figures. One party says that crime has
increased compared to the previous year. The other party says it has not. Write
down the null and alternative hypotheses.

(b) Explain the two types of error that could be made in this example and the possible
costs of each type of error.

(a) We test the hypothesis Hy: t1=100 against H;: u> 100 by rejecting H, if our sample
mean is greater than 108. If in fact x ~ N(100, 900/25), what is the probability of
making a Type | error?

(b) If we wanted a 5% Type | error probability, what decision rule should we adopt?

(c) If we knew that u could only take on the values 100 (under Hy) or 112 (under H;)
what would be the Type Il error probability using the decision rule in part (a)?

Test the hypothesis Hy: u= 500 versus H;: u # 500 using the evidence x = 530, s = 90
from a sample of size n = 30.

The choice of significance level

We justified the choice of the 5% significance level by reference to convention.
This is usually a poor argument for anything, but it does have some justification.
In an ideal world we would have precisely specified null and alternative
hypotheses (e.g. we would test Hy: p= 5000 against H;: u = 4500, these being the
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only possibilities). Then we could calculate the probabilities of both Type I and
Type II errors, for any given decision rule. We could then choose the optimal
decision rule, which gives the best compromise between the two types of error.
This is reflected in a court of law. In criminal cases, the jury must be convinced
of the prosecution’s case beyond reasonable doubt, because of the cost of com-
mitting a Type I error. In a civil case (libel, for example) the jury need only be
convinced on the balance of probabilities. In a civil case, the costs of Type I and
Type II error are more evenly balanced and so the burden of proof is lessened.

However, in practice we usually do not have the luxury of two well-specified
hypotheses. As in the example, the null hypothesis is precisely specified (it
has to be or the test could not be carried out) but the alternative hypothesis
is imprecise (sometimes called a composite hypothesis because it encompasses
a range of values). Statistical inference is often used not so much as an aid to
decision making but to provide evidence for or against a particular theory, to
alter one’s degree of belief in the truth of the theory. For example, an economic
theory might assert that rising prices are caused by rising wages (the cost-push
theory of inflation). The null and alternative hypotheses would be:

H,: there is no connection between rising wages and rising prices;
H;: there is some connection between rising wages and rising prices.

(Note that the null has ‘no connection’, since this is a precise statement.
‘Some connection’ is too vague to be the null hypothesis.) Data could be
gathered to test this hypothesis (the appropriate methods will be discussed in
the chapters on correlation and regression). But what decision rests upon the
result of this test? It could be thought that government might make a decision
to impose a prices and incomes policy, but if every academic study of inflation led
to the imposition or abandonment of a prices and incomes policy there would
have been an awful lot of policies! (In fact, there were a lot of such policies, but
not as many as the number of studies of inflation.) No single study is decisive
(‘more research is needed’ is a very common phrase) but each does influence
the climate of opinion which may eventually lead to a policy decision. But if
a hypothesis test is designed to influence opinion, how is the significance level
to be chosen?

It is difficult to trade off the costs of Type I and Type II errors and the prob-
ability of making those errors. A Type I error in this case means concluding that
rising wages do cause rising prices when, in fact, they do not. So what would be
the cost of this error, i.e. imposing a prices and incomes policy when, in fact, it
is not needed? It is extremely difficult, if not impossible, to put a figure on it. It
would depend on what type of prices and incomes policy were imposed — would
wages be frozen or allowed to rise with productivity, how fast would prices be
allowed to rise, would company dividends be frozen? The costs of the Type II
error would also be problematic (not imposing a needed prices and incomes
policy), for they would depend, among other things, on what alternative policies
might be adopted.

The 5% significance level really does depend upon convention therefore, it
cannot be justified by reference to the relative costs of Type I and Type II errors
(it is too much to believe that everyone does consider these costs and independ-
ently arrives at the conclusion that 5% is the appropriate significance level!).
However, the 5% convention does impose some sort of discipline upon research;

179



Chapter 5 ¢ Hypothesis testing

it sets some kind of standard which all theories (hypotheses) should be meas-
ured against. Beware the researcher who reports that a particular hypothesis is
rejected at the 8% significance level; it is likely that the significance level was
chosen so that the hypothesis could be rejected, which is what the researcher
was hoping for in the first place!

[The Prob-value approach J
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Suppose a result is significant at the 4.95% level (i.e. it just meets the 5% con-
vention and the null hypothesis is rejected). A very slight change in the sample
data could have meant the result being significant at only the 5.05% level,
and the null hypothesis not being rejected. Would we really be happy to alter
our belief completely on such fragile results? Most researchers (but not all!)
would be cautious if their results were only just significant (or fell just short of
significance).

This suggests an alternative approach: the significance level of the test statistic
could be reported and the reader could make his own judgements about it. This
is known as the Prob-value approach, the Prob-value being the significance
level of the calculated test statistic. For example, the calculated test statistic for
the investor problem was z = —1.82 and the associated Prob-value is obtained
from Table A2 (see page 414) as 3.44%, i.e. —1.82 cuts off 3.44% in one tail of
the standard Normal distribution. This means that the null hypothesis can be
rejected at the 3.44% significance level or, alternatively expressed, with 96.56%
confidence.

Notice that Table A2 gives the Prob-value for a one-tail test; for a two-tail test
the Prob-value should be doubled. Thus for the accountant, using the two-tail
test, the significance level is 6.88% and this is the level at which the null hypo-
thesis can be rejected. Alternatively we could say we reject the null with 93.12%
confidence. This does not meet the standard 5% criterion (for the significance
level) which is most often used, so would result in non-rejection of the null.

An advantage of using the Prob-value approach is that many statistical
software programs routinely provide the Prob-value of a calculated test statistic.
If one understands the use of Prob-values then one does not have to look up
tables (this applies to any distribution, not just the Normal), which can save a
lot of time.

To summarise, one rejects the null hypothesis if either:

o (Method 1) - the test statistic is greater than the critical value, i.e. z > z*, or
® (Method 2) - the Prob-value associated with the test statistic is less than the
significance level, i.e. P < 0.05 (if the 5% significance level is used).

I have found that many students initially find this confusing, because of the
opposing inequality in the two versions (greater than and less than). For example,
a program might calculate a hypothesis test and report the result as ‘z = 1.4
(P value = 0.162)’. The first point to note is that most software programs report
the Prob-value for a two-tail test by default. Hence, assuming a 5% significance
level, in this case we cannot reject H, because z = 1.4 < 1.96 or equivalently
because 0.162 > 0.05, against a two-tailed alternative (i.e. H, contains #).



Significance, effect size and power

If you wish to conduct a one-tailed test you have to halve the reported Prob-
value, becoming 0.081 in this example. This is again greater than 5%, so the
hypothesis is still accepted, even against a one-sided alternative (H, contains >
or <). Equivalently, one could compare 1.4 with the one-tail critical value, 1.64,
showing non-rejection of the null, but one has to look up the standard Normal
table with this method. Computers cannot guess whether a one- or two-sided
test is wanted, so take the conservative option and report the two-sided value.
The correction for a one-sided test has to be done manually.

[Significance, effect size and power j

Researchers usually look for ‘significant’ results. Academic papers report that
‘the results are significant’ or that ‘the coefficient is significantly different from
zero at the 5% significance level’. It is vital to realise that the word ‘significant’ is
used here in the statistical sense and not in its everyday sense of being important.
Something can be statistically significant yet still unimportant.

Suppose that we have some more data about the business examined earlier.
Data for 100 franchises have been uncovered, revealing an average weekly
turnover of £4975 with standard deviation £143. Can we reject the hypothesis
that the average weekly turnover is £5000? The test statistic is

5 4975 - 5000
\143%100

Since this is less than —z* = —-1.64 the null is rejected with 95% confidence.
True average weekly turnover is less than £5000. However, the difference is
only £25 per week, which is 0.5% of £5000. Common sense would suggest that
the difference may be unimportant, even if it is significant in the statistical
sense. One should not interpret statistical results in terms of significance alone,
therefore; one should also look at the size of the difference (sometimes known
as the effect size) and ask whether it is important or not. This is a mistake made
by even experienced researchers; a review of articles in the prestigious American
Economic Review reported that 82% of them confused statistical significance for
economic significance in some way (McCloskey and Ziliak, 2004).

This problem with hypothesis testing paradoxically grows worse as the sample
size increases. For example, if 250 observations reveal average sales of 4985 with
standard deviation 143, the null would (just) be rejected at 5% significance.
In fact, given a large enough sample size we can virtually guarantee to reject the
null hypothesis even before we have gathered the data. This can be seen from
equation (5.4) for the z score test statistic: as n grows larger, the test statistic also
inevitably increases.

A good way to remember this point is to appreciate that it is the evidence
which is significant, not the size of the effect. Strictly, it is better to say ‘. . . there
is significant evidence of difference between .. .” than ‘. . . there is a significant
difference between . . ..

A related way of considering the effect of increasing sample size is via the
concept of the power of a test. This is defined as

=-1.75

Power of a test =1 — Pr(Type Il error) =1 - 8 (5.5)
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Figure 5.4
The power of a test
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Exercise 5.4

Exercise 5.5

2

£(x)

where S is the symbol conventionally used to indicate the probability of a Type II
error. As a Type II error is defined as not rejecting H, when false (equivalent to
rejecting H; when true), power is the probability of rejecting H, when false
(if H, is false, it must be either accepted or rejected; hence these probabilities
sum to one). This is one of the correct decisions identified earlier, associated
with the lower right-hand box in Figure 5.1, that of correctly rejecting a false
null hypothesis. The power of a test is therefore given by the area under the H,
distribution, to the left of the decision line, as illustrated (shaded) in Figure 5.4
(for a one-tail test).

It is generally desirable to maximise the power of a test, as long as the prob-
ability of a Type I error is not raised in the process. There are essentially three
ways of doing this.

e Avoid situations where the null and alternative hypotheses are very similar,
i.e. the hypothesised means are not far apart (a small effect size).

® Use a large sample size. This reduces the sampling variance of X (under both
H, and H,) so the two distributions become more distinct.

® Use good sampling methods which have small sampling variances. This has
a similar effect to increasing the sample size.

Unfortunately, in economics and business the data are very often given in
advance and there is little or no control possible over the sampling procedures.
This leads to a neglect of consideration of power, unlike in psychology, for
example, where the experiment can often be designed by the researcher. The
gathering of sample data will be covered in detail in Chapter 9.

If a researcher believes the cost of making a Type | error is much greater than the
cost of a Type Il error, should they choose a 5% or 1% significance level? Explain why.

(a) A researcher uses Excel to analyse data and test a hypothesis. The program
reports a test statistic of z = 1.77 (P value = 0.077). Would you reject the null
hypothesis if carrying out (i) a one-tailed test [ii] a two-tailed test? Use the 5%
significance level.

(b) Repeat part (a) using a 1% significance level.



Further hypothesis tests

(Further hypothesis tests ]

We now proceed to consider a number of different types of hypothesis test, all
involving the same principles but differing in details of their implementation.
This is similar to the exposition in the last chapter covering, in turn, tests of
a proportion, tests of the difference of two means and proportions, and finally
problems involving small sample sizes.

() Testing a proportion

A car manufacturer claims that no more than 10% of its cars should need repairs
in the first three years of their life, the warranty period. A random sample of 50
three-year-old cars found that 8 had required attention. Does this contradict the
maker’s claim?

This problem can be handled in a very similar way to the methods used for a
mean. The key, once again, is to recognise the sample proportion as a random
variable with an associated probability distribution. From Chapter 4 (equation
(4.9)), the sampling distribution of the sample proportion in large samples is

given by
nl-m
p~ N(n, gj (5.6)
n

In this case 7 = 0.10 (under the null hypothesis, the maker’s claim). The sample
data are

p=8/50=0.16

n=2350

Thus 16% of the sample required attention within the warranty period. This
is substantially higher than the claimed 10%, but is this just because of a bad
sample or does it reflect the reality that the cars are badly built? The hypothesis
test is set out along the same lines as for a sample mean.

(1) Hy: #=0.10
H;: #>0.10

(The only concern is the manufacturer not matching its claim.)

(2) Significance level: o= 0.05.

(3) The critical value of the one-tail test at the 5% significance level is z* = 1.64,
obtained from the standard Normal table.

(4) The test statistic is

p-n  0.16-0.10
;‘na—n) ;‘0.1x0.9
' n 50

7z = =1.41

(5) Since the test statistic is less than the critical value, it falls into the non-
rejection region. The null hypothesis is not rejected by the data. The
manufacturer’s claim is not unreasonable.
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Note that for this problem, the rejection region lies in the upper tail of the dis-
tribution because of the ‘greater than’ inequality in the alternative hypothesis.
The null hypothesis is therefore rejected in this case if z > z*.

Do children prefer branded goods only because of the name?

Researchers at Johns Hopkins Bloomberg School of Public Health in Maryland
found young children were influenced by the packaging of foods. 63 children were
offered two identical meals, save that one was still in its original packaging (from
MacDonalds). 76% of the children preferred the branded French fries.

Is this evidence significant? The null hypothesis is Hy: 7= 0.5 versus H,: 7> 0.5.
The test statistic for this hypothesis test is

p—n  0.76 -0.50
\/nﬂ—nl \/U.SXO.S
n 63
which is greater than the critical value of z* = 1.64. Hence we conclude that

children are influenced by the packaging or brand name.

=4.12

(Source: New Scientist, 11 August 2007.)

() Testing the difference of two means

Suppose a car company wishes to compare the performance of its two factories
producing an identical model of car. The factories are equipped with the same
machinery but their outputs might differ due to managerial ability, labour rela-
tions, etc. Senior management wishes to know if there is any difference between
the two factories. Output is monitored for 30 days, chosen at random, with the
following results:

Factory 1 Factory 2
Average daily output 420 408
Standard deviation of daily output 25 20

Does this produce sufficient evidence of a real difference between the factories,
or does the difference between the samples simply reflect random differences
such as minor breakdowns of machinery? The information at our disposal may
be summarised as

X, =420 X, =408
s; =25 s, =20
n, =30 n, =30

The hypothesis test to be conducted concerns the difference between the factories’
outputs, so the appropriate random variable to examine is X; — X,. From Chap-
ter 4 (equation (4.12)), this has the following distribution, in large samples

o ol o3
X1_X2’“N[,U1_IJZ/H_I+H_ZJ (5.7)
1 2



Further hypothesis tests

The population variances, 67 and 63, may be replaced by their sample estimates,
s3 and s?, if the former are unknown, as here. The hypothesis test is therefore as
follows.

(1) Hoth —,=0
Hyp -, 20

The null hypothesis posits no real difference between the factories. This is a
two-tail test since there is no a priori reason to believe one factory is better
than the other, apart from the sample evidence.

(2) Significance level: oo = 1%. This is chosen since the management does not
want to interfere unless it is really confident of some difference between the
factories. In order to favour the null hypothesis, a lower significance level
than the conventional 5% is set.

(3) The critical value of the test is z* = 2.57. This cuts off 0.5% in each tail of
the standard Normal distribution.

(4) The test statistic is

_ (= %) — (= ) _ (420 - 408) - 0

\/s% s3 \/ 252 207

n n, 30 30
Note that this is of the same form as in the single-sample cases. The hypo-
thesised value of the difference (zero in this case) is subtracted from the
sample difference and this is divided by the standard error of the random

variable.

(5) Decision rule: z < z* so the test statistic falls into the non-rejection region.

There does not appear to be a significant difference between the two
factories.

=2.05

A number of remarks about this example should be made. First, it should be
noted that it is not necessary for the two sample sizes to be equal (although they
are in the example). For example, 45 days’ output from factory 1 and 35 days’
from factory 2 could have been sampled. Second, the values of s? and s5 do not
have to be equal. They are respectively estimates of 63and o%and, although the
null hypothesis asserts that u, = u,, it does not assert that the variances are equal.
Management wants to know if the average levels of output are the same; it is not
concerned about daily fluctuations in output. A test of the hypothesis of equal
variances is set out in Chapter 6.

The final point to consider is whether all the necessary conditions for the
correct application of this test have been met. The example noted that the
30 days were chosen at random. If the 30 days sampled were consecutive
we might doubt whether the observations were truly independent. Low out-
put on one day (e.g. due to a mechanical breakdown) might influence the
following day’s output (e.g. if a special effort were made to catch up on lost
production).

Testing the difference of two proportions

The general method should by now be familiar, so we will proceed by example
for this case. Suppose that, in a comparison of two holiday companies’ customers,
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of the 75 who went with Happy Days Tours, 45 said they were satisfied, while
48 of the 90 who went with Fly by Night Holidays were satisfied. Is there a
significant difference between the companies?

This problem can be handled by a hypothesis test on the difference of two
sample proportions. The procedure is as follows. The sample evidence is

pr=45/75=0.6 n, =75
p,=48/90=0.533  1,=90

The hypothesis test is carried out as follows

M

2
3
4

©®)

Hym-m=0
H:m-m#0
Significance level: o = 5%.

Critical value: z* = 1.96.
Test statistic: The distribution of p, — p, is

m(l-m) + 7,(1 - 7,)

Pl_Pz’“N[”1_7fz;

n, n,
so the test statistic is
7=— (p,—p,) — (m, - 1) (5.8)
‘\“771(1 - my) n m,(1 - 1)
\ m ",

However, m; and r, in the denominator of equation (5.8) have to be replaced
by estimates from the samples. They cannot simply be replaced by p, and
p» because these are unequal; to do so would contradict the null hypo-
thesis that they are equal. Since the null hypothesis is assumed to be
true (for the moment), it doesn’t make sense to use a test statistic which
explicitly supposes the null hypothesis to be false. Therefore m; and =, are
replaced by an estimate of their common value which is denoted 7 and
whose formula is

nlpl + nZPZ (59)
n, +n,

=

i.e. a weighted average of the two sample proportions. This yields

. 75%x0.6+90x0.533
= 75390 =0.564

This, in fact, is just the proportion of all customers who were satisfied, 93
out of 165. The test statistic therefore becomes

0.6 - 0.533-0 0.86
50.564 X (1-0.564)  0.564 x (1-0.564) '
\ 75 90

7 =

The test statistic is less than the critical value so the null hypothesis cannot
be rejected with 95% confidence. There is not sufficient evidence to demon-
strate a difference between the two companies’ performance.



Hypothesis tests with small samples

,\Q‘ST/QS\ Are women better at multi-tasking?
(7

= w,)  The conventional wisdom is ‘yes'. However, the concept of multi-tasking originated
"RAC'\\Q in computing and, in that domain it appears men are more likely to multi-task.
Oxford Internet Surveys (http://www.oii.ox.ac.uk/microsites/oxis/) asked a
sample of 1578 people if they multi-tasked while on-line (e.g. listening to music,
using the phone). 69% of men said they did compared to 57% of women. Is this
difference statistically significant?

The published survey does not give precise numbers of men and women
respondents for this question, so we will assume equal numbers (the answer is

not very sensitive to this assumption]. We therefore have the test statistic

- 0.69 -0.57 -0 _ 494

/0.63 x[1-063  0.63x[1-0.63
\ 789 789

(0.63 is the overall proportion of multi-taskers.) The evidence is significant and
clearly suggests this is a genuine difference: men are the multi-taskers!

Exercise 5.6 A survey of 80 voters finds that 65% are in favour of a particular policy. Test the
hypothesis that the true proportion is 50%, against the alternative that a majority is

v in favour.
Exercise 5.7 A survey of 50 teenage girls found that on average they spent 3.6 hours per week

chatting with friends over the internet. The standard deviation was 1.2 hours. A sim-

i’ ilar survey of 90 teenage boys found an average of 3.9 hours, with standard deviation
2.1 hours. Test if there is any difference between boys” and girls’ behaviour.
Exercise 5.8 One gambler on horse racing won on 23 of his 75 bets. Another won on 34 out of 95.
5 Is the second person a better judge of horses, or just luckier?
( Hypothesis tests with small samples j

As with estimation, slightly different methods have to be employed when the
sample size is small (n < 25) and the population variance is unknown. When
both of these conditions are satisfied the t distribution must be used rather than
the Normal, so a t test is conducted rather than a z test. This means consulting
tables of the t distribution to obtain the critical value of a test, but otherwise the
methods are similar. These methods will be applied to hypotheses about sample
means only, since they are inappropriate for tests of a sample proportion, as was
the case in estimation.

D Testing the sample mean

A large chain of supermarkets sells 5000 packets of cereal in each of its stores
each month. It decides to test-market a different brand of cereal in 15 of its
stores. After a month the 15 stores have sold an average of 5200 packets each,
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with a standard deviation of 500 packets. Should all supermarkets switch to
selling the new brand?
The sample information is

X =25200, s =500, n=15

From Chapter 4 the distribution of the sample mean from a small sample
when the population variance is unknown is based upon

X-pu
\s%n !

with v =n — 1 degrees of freedom. The hypothesis test is based on this formula
and is conducted as follows

(5.10)

(1) Hey: u=5000
Hy: u> 5000
(Only an improvement in sales is relevant.)

(2) Significance level: o = 1% (chosen because the cost of changing brands is
high).

(3) The critical value of the t distribution for a one-tail test at the 1% signi-
ficance level with v=n -1 = 14 degrees of freedom is t* = 2.62.

(4) The test statistic is

- u 5200 - 5000
s%/n N 500%/15

t = =1.58

(5) The null hypothesis is not rejected since the test statistic, 1.55, is less than
the critical value, 2.62. It would probably be unwise to switch over to the
new brand of cereals.

(D Testing the difference of two means

A survey of 20 British companies found an average annual expenditure on
research and development of £3.7m with a standard deviation of £0.6m. A survey
of 15 similar German companies found an average expenditure on research
and development of £4.2m with standard deviation £0.9m. Does this evidence
lend support to the view often expressed that Britain does not invest enough in
research and development?

This is a hypothesis about the difference of two means, based on small sample
sizes. The test statistic is again based on the ¢ distribution, i.e.

(= %)= (1 — Uy) B
$2 s
R— + R—
\ n, N,

£, (5.11)

where $? is the pooled variance (as given in equation (4.23)) and the degrees of
freedom are given by v=n, + n, — 2.
The hypothesis test procedure is as follows:

(1) Ho:phy — =0
Hy: gy — 4, <0
(2) Significance level: a = 5%.



Are the test procedures valid?

(3) The critical value of the t distribution at the 5% significance level for a
one-tail test with v = n, + n, — 2 = 33 degrees of freedom is approximately
t*=1.70.

(4) The test statistic is based on equation (5.11)

(%, — X,) = (uy — 1) _ 3.7-42-0

t = = — =-1.97
§2 s 10.55 0.55
\'n  n, Y 20 15

where $? is the pooled variance, calculated by

n = 1)si+(m,—1)s3 19 x0.6° + 14 x 0.9?

52:(
ny+n,—2 33

=0.55

(5) The test statistic falls in the rejection region, t < —t*, so the null hypothesis
is rejected. The data do support the view that Britain spends less on R&D
than Germany.

Exercise 5.9 It is asserted that parents spend, on average, £540 per annum on toys for each child.
A survey of 24 parents finds expenditure of £490, with standard deviation £150. Does

? this evidence contradict the assertion?
Exercise 5.10 A sample of 15 final-year students were found to spend on average 15 hours
per week in the university library, with standard deviation 3 hours. A sample of
? 20 freshers found they spend on average 9 hours per week in the library, standard

deviation 5 hours. Is this sufficient evidence to conclude that finalists spend more
time in the library?

(Are the test procedures valid? ]

A variety of assumptions underlie each of the tests which we have applied above
and it is worth considering in a little more detail whether these assumptions are
justified. This will demonstrate that one should not rely upon the statistical tests
alone; it is important to retain one’s sense of judgement.

The first test concerned the weekly turnover of a series of franchise opera-
tions. To justify the use of the Normal distribution underlying the test, the
sample observations must be independently drawn. The random errors around
the true mean turnover figure should be independent of each other. This might
not be the case if, for example, similar events could affect the turnover figures
of all franchises.

If one were using time-series data, as in the car factory comparison, similar
issues arise. Do the 30 days represent independent observations or might there
be an autocorrelation problem (e.g. if the sample days were close together in
time)? Suppose that factory 2 suffered a breakdown of some kind which took
three days to fix. Output would be reduced on three successive days and factory
2 would almost inevitably appear less efficient than factory 1. A look at the indi-
vidual sample observations might be worthwhile, therefore, to see if there are
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unusual patterns. It would have been altogether better if the samples had been
collected on randomly chosen days over a longer time period to reduce the
danger of this type of problem.

If the two factories both obtain their supplies from a common, but limited,
source then the output of one factory might not be independent of the output
of the other. A high output of one factory would tend to be associated with a
low output from the other, which has little to do with their relative efficiencies.
This might leave the average difference in output unchanged but might increase
the variance substantially (either a very high positive value of X, — X, or a
very high negative value is obtained). This would lead to a low value of the test
statistic and the conclusion of no difference in output. Any real difference in
efficiency is masked by the common supplier problem. If the two samples are
not independent then the distribution of X, — X, may not be Normal.

[Hypothesis tests and confidence intervals J

190

Formally, two-tail hypothesis tests and confidence intervals are equivalent.
Any value that lies within the 95% confidence interval around the sample mean
cannot be rejected as the ‘true’ value using the 5% significance level in a hypo-
thesis test using the same sample data. For example, our by now familiar
accountant could construct a confidence interval for the firm’s sales. This yields
the 95% confidence interval

[4792, 5008] (5.12)

Notice that the hypothesised value of 5000 is within this interval and that it
was not rejected by the hypothesis test carried out earlier. As long as the same
confidence level is used for both procedures, they are equivalent.

Having said this, their interpretation is different. The hypothesis test forces
us into the reject/do not reject dichotomy, which is rather a stark choice. We
have seen how it becomes more likely that the null hypothesis is rejected as
the sample size increases. This problem does not occur with estimation. As the
sample size increases the confidence interval becomes narrower (around the
unbiased point estimate) which is entirely beneficial. The estimation approach
also tends to emphasise importance over significance in most people’s minds.
With a hypothesis test one might know that turnover is significantly different
from 5000 without knowing how far from 5000 it actually is.

On some occasions a confidence interval is inferior to a hypothesis test,
however. Consider the following case. In the UK only 17 out of 465 judges are
women (3.7%).> The Equal Opportunities Commission commented that since
the appointment system is so secretive it is impossible to tell if there is discrim-
ination or not. What can the statistician say about this? No discrimination (in
its broadest sense) would mean half of all judges would be women. Thus the
hypotheses are

% This figure is somewhat out of date now, but it is still a useful example.



Independent and dependent samples

H,: 7= 0.5 (no discrimination)
H;: #< 0.5 (discrimination against women)

The sample data are p = 0.037, n = 465. The z score is

p-n 0037 -0.5

\/77:(1 — ) \/0.5 x 0.5

n 465
This is clearly significant (and 3.7% is a long way from 50%!) so the null hypo-
thesis is rejected. There is some form of discrimination somewhere against women
(unless women choose not to be judges). But a confidence interval estimate of
the ‘true’ proportion of female judges would be meaningless. To what popula-
tion is this ‘true’ proportion related?

The lesson from all this is that there exist differences between confidence
intervals and hypothesis tests, despite their formal similarity. Which technique
is more appropriate is a matter of judgement for the researcher. With hypothesis
testing, the rejection of the null hypothesis at some significance level might
actually mean a small (and unimportant) deviation from the hypothesised
value. It should be remembered that the rejection of the null hypothesis based

on a large sample of data is also consistent with the true value and hypothesised
value possibly being quite close together.

=-19.97

[Independent and dependent samples ]

The following example illustrates the differences between independent samples
(as encountered so far) and dependent samples where slightly different methods
of analysis are required. The example also illustrates how a particular problem
can often be analysed by a variety of statistical methods.

A company introduces a training programme to raise the productivity of its
clerical workers, which is measured by the number of invoices processed per
day. The company wants to know if the training programme is effective. How
should it evaluate the programme? There is a variety of ways of going about the
task, as follows:

e Take two (random) samples of workers, one trained and one not trained, and
compare their productivity.

e Take a sample of workers and compare their productivity before and after
training.

e Take two samples of workers, one to be trained and the other not. Compare
the improvement of the trained workers with any change in the other group’s
performance over the same time period.

We shall go through each method in turn, pointing out any possible difficulties.

C ) Two independent samples

Suppose a group of 10 workers is trained and compared to a group of 10 non-
trained workers, with the following data being relevant
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Xr=25.5 Xy =21.0
sp=2.55 sy=2.91
ny =10 ny =10

Thus, trained workers process 25.5 invoices per day compared to only 21 by
non-trained workers. The question is whether this is significant, given that the
sample sizes are quite small.

The appropriate test here is a t test of the difference of two sample means, as
follows:

Ho: pir — ik =0

Hy: pir — x>0

¢ 25.5-21.0 - 3.68
17.49 7.49
=t —
V10 10

(7.49 is $?, the pooled variance). The t statistic leads to rejection of the null
hypothesis; the training programme does seem to be effective.

One problem with this test is that the two samples might not be truly random
and thus not properly reflect the effect of the training programme. Poor
workers might have been reluctant (and thus refused) to take part in training,
departmental managers might have selected better workers for training as some
kind of reward, or simply better workers may have volunteered. In a well-
designed experiment this should not be allowed to happen, of course, but we
do not rule out the possibility. There is also the 5% (significance level) chance
of unrepresentative samples being selected and a Type I error occurring.

Paired samples

This is the situation where a sample of workers is tested before and after train-
ing. The sample data are as follows:

Worker 1 2 3 4 5 6 7 8 9 10
Before 21 24 23 25 28 17 24 22 24 27
After 23 27 24 28 29 21 24 25 26 28

In this case, the observations in the two samples are paired and this has implica-
tions for the method of analysis. One could proceed by assuming these are two
independent samples and conduct a t test. The summary data and results are

X5 =23.50 Xy =25.5
sp=3.10 sy =2.55
ng =10 n, =10

The resulting test statistic is f;3 = 1.58 which is not significant at the 5% level.
There are two problems with this test and its result. First, the two samples are
not truly independent, since the before and after measurements refer to the
same group of workers. Second, nine out of 10 workers in the sample have
shown an improvement, which is odd in view of the result found above, of no
significant improvement. If the training programme really has no effect, then



Independent and dependent samples

the probability of a single worker showing an improvement is 5. The probab-
ility of nine or more workers showing an improvement is, by the Binomial
method, (3)'° x 10C9 + (3)'°, which is about one in a hundred. A very unlikely
event seems to have occurred.

The t test used above is inappropriate because it does not make full use of
the information in the sample. It does not reflect the fact, for example, that
the before and after scores, 21 and 23, relate to the same worker. The Binomial
calculation above does reflect this fact. A re-ordering of the data would not
affect the t test result, but would affect the Binomial, since a different number
of workers would now show an improvement. Of course, the Binomial does not
use all the sample information either — it dispenses with the actual productivity
data for each worker and replaces it with ‘improvement’ or ‘no improvement’.
It disregards the amount of improvement for each worker.

The best use of the sample data comes by measuring the improvement for
each worker, as follows (if a worker had deteriorated, this would be reflected by
a negative number):

Worker 1 2 3 4 5 6 7 8 9 10

Improvement 2 3 1 3 1 4 0 3 2 1

These new data can be treated by single sample methods, and account is
taken both of the actual data values and of the fact that the original samples
were dependent (re-ordering of the data would produce different improvement
figures). The summary statistics of the new data are as follows

x=2.00,s=1.247, n=10
The null hypothesis of no improvement can now be tested as follows
Hy:u=0
Hy:u>0
20-0

t=—=15.07
1.247>

10

This is significant at the 5% level so the null hypothesis of no improvement
is rejected. The correct analysis of the sample data has thus reversed the pre-
vious conclusion. It is perhaps surprising that treating the same data in different
ways leads to such a difference in the results. It does illustrate the importance of
using the appropriate method.

Matters do not end here, however. Although we have discovered an improve-
ment, this might be due to other factors apart from the training programme.
For example, if the before and after measurements were taken on different days
of the week (that Monday morning feeling . . . ), or if one of the days were sunnier,
making people feel happier and therefore more productive, this would bias
the results. These may seem trivial examples but these effects do exist, for example
the ‘Friday afternoon car’, which has more faults than the average.

The way to solve this problem is to use a control group, so called because
extraneous factors are controlled for, in order to isolate the effects of the factor
under investigation. In this case, the productivity of the control group would be
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Exercise 5.11

measured (twice) at the same times as that of the training group, though no
training would be given to them. Ideally, the control group would be matched
on other factors (e.g. age) to the treatment group to avoid other factors influen-
cing the results. Suppose that the average improvement of the control group
were 0.5 invoices per day with standard deviation 1.0 (again for a group of 10).
This can be compared with the improvement of the training group via the
two-sample f test, giving

£ = 2.0-0.5 — 297

1132 113
\ 10 10

(1.13% is the pooled variance). This confirms the finding that the training pro-
gramme is of value.

A group of students” marks on two tests, before and after instruction, were as follows:

Student 1 2 3 4 5 6 7 8 9 10 1" 12
Before 14 16 " 8 20 19 6 1" 13 16 9 13
After 15 18 15 1" 19 18 9 12 16 16 12 13

Test the hypothesis that the instruction had no effect, using both the independent
sample and paired sample methods. Compare the two results.

[Discussion of hypothesis testing ]

194

The above exposition has served to illustrate how to carry out a hypothesis test
and the rationale behind it. However, the methodology has been subject to criti-
cism and it is important to understand this since it gives a greater insight into
the meaning of the results of a hypothesis test.

In the previous examples the problem has often been posed as a decision-
making one, yet we noted that in many instances no decision is actually taken
and therefore it is difficult to justify a particular significance level. Bayesian
statisticians would argue that their methods do not suffer from this problem,
since the result of their analysis (termed a posterior probability) gives the degree
of belief which the researcher has in the truth of the null hypothesis. However,
this posterior probability does in part depend upon the prior probability (i.e.
before the statistical analysis) that the researcher attaches to the null hypothesis.
As noted in Chapter 2, the derivation of the prior probabilities can be difficult.

In practice, most people do not regard the results of a hypothesis test as all-
or-nothing proof, but interpret the result on the basis of the quality of the data,
the care the researcher has taken in analysing the data, personal experience and
a multitude of other factors. Both schools of thought, classical and Bayesian,
introduce subjectivity into the analysis and interpretation of data: classical
statisticians in the choice of the significance level (and choice of one- or two-tail
test), Bayesians in their choice of prior probabilities. It is not clear which
method is superior, but classical methods have the advantage of being simpler.



Summary

Another criticism of hypothesis testing is that it is based on weak methodo-
logical foundations. The philosopher Karl Popper argued that theories should
be rigorously tested against the evidence, and that strenuous efforts should be
made to try to falsify the theory or hypothesis. This methodology is not strictly
followed in hypothesis testing, where the researcher’s favoured hypothesis is
usually the alternative. A conclusion in favour of the alternative hypothesis
is arrived at by default, because of the failure of the null hypothesis to survive
the evidence.

Consider the researcher who believes that health standards have changed in
the last decade. This may be tested by gathering data on health and testing the
null hypothesis of no change in health standards against the alternative hypo-
thesis of some change. The researcher’s theory thus becomes the alternative
hypothesis and is never actually tested against the data. No attempt is made to
falsify the (alternative) hypothesis; it is accepted by default if the null hypo-
thesis falls. Only the null hypothesis is ever tested.

A further problem is the asymmetry between the null and alternative hypo-
theses. The null hypothesis is that there is exactly no change in health standards
whereas the alternative hypothesis contains all other possibilities, from a large
deterioration to a large improvement. The dice seem loaded against the null
hypothesis. Indeed, as noted eatrlier, if a large enough sample is taken the null
hypothesis is almost certain to be rejected, because there is bound to have been
some change, however, small. The large sample size leads to a small standard
error (6%/n) and thus a large z score. This suggests that the significance level of
a test should decrease as the sample size increases.

These particular problems are avoided by the technique of estimation, which
measures the size of the change and focuses attention upon that, rather than
upon some accept/reject decision. As the sample size increases, the confidence
interval narrows and an improved measure of the true change in health standards
is obtained. Zero (i.e. no change in health standards) might be in the confidence
interval or it might not; it is not the central issue. We might say that an estimate
tells us what the value of a population parameter is, while a hypothesis test tells
us what it is not. Thus the techniques of estimation and hypothesis testing
put different emphasis upon interpretation of the results, even though they are

(Summary

formally identical.

e Hypothesis testing is the set of procedures for deciding whether a hypothesis
is true or false. When conducting the test we presume the hypothesis, termed
the null hypothesis, is true until it is proved false on the basis of some sample
evidence.

e If the null is proved false, it is rejected in favour of the alternative hypothesis.

The procedure is conceptually similar to a court case, where the defendant is
presumed innocent until the evidence proves otherwise.

e Not all decisions turn out to be correct and there are two types of error that
can be made. A Type I error is to reject the null hypothesis when it is in fact
true. A Type II error is not to reject the null when it is false.
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Choosing the appropriate decision rule (for rejecting the null hypothesis) is
a question of trading off Type I and Type II errors. Because the alternative
hypothesis is imprecisely specified, the probability of a Type II error usually
cannot be specified.

The rejection region for a test is therefore chosen to give a 5% probability of
making a Type I error (sometimes a 1% probability is chosen). The critical
value of the test statistic (sometimes referred to as the critical value of the
test) is the value which separates the acceptance and rejection regions.

The decision is based upon the value of a test statistic, which is calculated
from the sample evidence and from information in the null hypothesis

_i-u
(g wzj

The null hypothesis is rejected if the test statistic falls into the rejection
region for the test (i.e. it exceeds the critical value).

For a two-tail test there are two rejection regions, corresponding to very high
and very low values of the test statistic.

Instead of comparing the test statistic to the critical value, an equivalent pro-
cedure is to compare the Prob-value of the test statistic with the significance
level. The null is rejected if the Prob-value is less than the significance level.

The power of a test is the probability of a test correctly rejecting the null
hypothesis. Some tests have low power (e.g. when the sample size is small)
and therefore are not very useful.

(Key terms and concepts )
alternative hypothesis paired samples
critical value power
effect size Prob-value
independent samples rejection region
null or maintained hypothesis significance level
one- and two-tail tests Type | and Type Il errors

D. McCloskey, and S. Ziliak, Size matters: the standard error of regressions in
the American Economic Review, Journal of Socio-Economics, 2004, 33, 527-546.



Problems

Problems

531

5.2

5.3

5.4

ot

Some of the more challenging problems are indicated by highlighting the problem
number in colour.

Answer true or false, with reasons if necessary.

(a) There is no way of reducing the probability of a Type | error without simultaneously
increasing the probability of a Type Il error.

(b] The probability of a Type | error is associated with an area under the distribution of X
assuming the null hypothesis to be true.

(c) Itis always desirable to minimise the probability of a Type | error.

(d) A larger sample, ceteris paribus, will increase the power of a test.

(e] The significance level is the probability of a Type Il error.

(f) The confidence level is the probability of a Type Il error.

Consider the investor in the text, seeking out companies with weekly turnover of at
least £5000. He applies a one-tail hypothesis test to each firm, using the 5% significance
level. State whether each of the following statements is true or false (or not known) and
explain why.

(a] 5% of his investments are in companies with less than £5000 turnover.

(b) 5% of the companies he fails to invest in have turnover greater than £5000 per week.

(c) He invests in 95% of all companies with turnover of £5000 or over.

A coin which is either fair or has two heads is to be tossed twice. You decide on the
following decision rule: if two heads occur you will conclude it is a two-headed coin,
otherwise you will presume it is fair. Write down the null and alternative hypotheses and
calculate the probabilities of Type | and Type Il errors.

In comparing two medical treatments for a disease, the null hypothesis is that the two
treatments are equally effective. Why does making a Type | error not matter? What
significance level for the test should be set as a result?

A firm receives components from a supplier, which it uses in its own production. The com-
ponents are delivered in batches of 2000. The supplier claims that there are only 1%
defective components on average from its production. However, production occasionally
becomes out of control and a batch is produced with 10% defective components. The firm
wishes to intercept these low-quality batches, so a sample of size 50 is taken from each
batch and tested. If two or more defectives are found in the sample then the batch is
rejected.

(a) Describe the two types of error the firm might make in assessing batches of
components.

(b] Calculate the probability of each type of error given the data above.

(c) Ifinstead, samples of size 30 were taken and the batch rejected if one or more rejects
were found, how would the error probabilities be altered?
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5.6

5.7

5.8

5.9

5.1

5.14

(d) The firm can alter the two error probabilities by choice of sample size and rejection
criteria. How should it set the relative sizes of the error probabilities

(i) if the product might affect consumer safety?
(ii) if there are many competitive suppliers of components?
(iii) if the costs of replacement under guarantee are high?

Computer diskettes, which do not meet the quality required for high-density (1.44 Mb)
diskettes, are sold as double-density diskettes (720 kb) for 80p each. High-density
diskettes are sold for £1.20 each. A firm samples 30 diskettes from each batch of 1000
and if any fail the quality test the whole batch is sold as double-density diskettes. What
are the types of error possible and what is the cost to the firm of a Type | error?

Testing the null hypothesis that =10 against > 10, a researcher obtains a sample mean
of 12 with standard deviation 6 from a sample of 30 observations. Calculate the z score
and the associated Prob-value for this test.

Given the sample data X = 45, s =16, n =50, at what level of confidence can you reject Hy:
1 =40 against a two-sided alternative?

What is the power of the test carried out in Problem 5.3?

Given the two hypotheses
Hq: =400
Hy: =415

and o= 1000 (for both hypotheses):
(a] Draw the distribution of X under both hypotheses.

(b) If the decision rule is chosen to be: reject H, if X = 410 from a sample of size 40, find
the probability of a Type Il error and the power of the test.

(c) What happens to these answers as the sample size is increased? Draw a diagram to
illustrate.

Given the following sample data
Xx=15 =270 n=30

test the null hypothesis that the true mean is equal to 12, against a two-sided alternative
hypothesis. Draw the distribution of X under the null hypothesis and indicate the rejection
regions for this test.

From experience it is known that a certain brand of tyre lasts, on average, 15 000 miles
with standard deviation 1250. A new compound is tried and a sample of 120 tyres yields
an average life of 15 150 miles. Are the new tyres an improvement? Use the 5%
significance level.

Test Hy: w= 0.5 against Hy: w# 0.5 using p = 0.45 from a sample of size n = 35.

Test the hypothesis that 10% of your class or lecture group are left-handed.



5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

Problems

Given the following data from two independent samples
=118 X, =105
s, =21 s,=23
n, =49 n, =63

test the hypothesis of no difference between the population means against the alternative
that the mean of population 1 is greater than the mean of population 2.

A transport company wants to compare the fuel efficiencies of the two types of lorry it
operates. It obtains data from samples of the two types of lorry, with the following results:

Type Average mpg Std devn Sample size
A 31.0 7.6 33
B 32.2 5.8 40

Test the hypothesis that there is no difference in fuel efficiency, using the 99% confidence
level.

A random sample of 180 men who took the driving test found that 103 passed. A similar
sample of 225 women found that 105 passed. Test whether pass rates are the same for
men and women.

(a] A pharmaceutical company testing a new type of pain reliever administered the drug
to 30 volunteers experiencing pain. Sixteen of them said that it eased their pain. Does
this evidence support the claim that the drug is effective in combating pain?

(b) A second group of 40 volunteers were given a placebo instead of the drug. Thirteen
of them reported a reduction in pain. Does this new evidence cast doubt upon your
previous conclusion?

(a) Arandom sample of 20 observations yielded a mean of 40 and standard deviation 10.
Test the hypothesis that yu = 45 against the alternative that it is not. Use the 5%
significance level.

(b) What assumption are you implicitly making in carrying out this test?

A photo processing company sets a quality standard of no more than 10 complaints per
week on average. A random sample of 8 weeks showed an average of 13.6 complaints,
with standard deviation 5.3. Is the firm achieving its quality objective?

Two samples are drawn. The first has a mean of 150, variance 50 and sample size 12. The
second has mean 130, variance 30 and sample size 15. Test the hypothesis that they are
drawn from populations with the same mean.

(a) A consumer organisation is testing two different brands of battery. A sample of 15
of brand A shows an average useful life of 410 hours with a standard deviation of
20 hours. For brand B, a sample of 20 gave an average useful life of 391 hours
with standard deviation 26 hours. Test whether there is any significant difference in
battery life.

(b) What assumptions are being made about the populations in carrying out this test?
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5.23

5.24

5.25

5.26

5.27

The output of a group of 11 workers before and after an improvement in the lighting in
their factory is as follows:

Before 52 60 58 58 59 51 52 59 60 53 55

After 56 62 63 50 59 56 55 59 61 58 56

Test whether there is a significant improvement in performance
(a] assuming these are independent samples,

(b) assuming they are dependent.

Another group of workers were tested at the same times as those in Problem 5.23,
although their department also introduced rest breaks into the working day.

Before 51 59 51 S8 58 58 52 S5 61 54 55

After 54 63 55 57 63 63 58 60 66 57 59

Does the introduction of rest days alone appear to improve performance?

Discuss in general terms how you might ‘test’ the following:
(a] astrology;
(b) extra-sensory perception;

(c) the proposition that company takeovers increase profits.

(Project) Can your class tell the difference between tap water and bottled water? Set up
an experiment as follows: fill r glasses with tap water and n — r glasses with bottled water.
The subject has to guess which is which. If they get more than p correct, you conclude they
can tell the difference. Write up a report of the experiment including:

(a] a description of the experimental procedure;

(b) your choice of n, r and p, with reasons;

(c) the power of your test;

(d) your conclusions.

(Computer project) Use the = RAND( ] function in your spreadsheet to create 100 samples
of size 25 (which are effectively all from the same population]). Compute the mean and
standard deviation of each sample. Calculate the z score for each sample, using a
hypothesised mean of 0.5 (since the = RAND( ] function chooses a random number in the
range 0 to 1).

(a] How many of the z scores would you expect to exceed 1.96 in absolute value? Explain
why.
(b) How many do exceed this? Is this in line with your prediction?

(c) Graph the sample means and comment upon the shape of the distribution. Shade in
the area of the graph beyond z =£1.96.
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(Answers to exercises j

Exercise 5.1
(a) Hy: crime is the same as last year, H;: crime has increased.

(b) Type I error — concluding crime has risen, when in fact it has not. Type II -
concluding it has not risen, when, in fact, it has. The cost of the former might be
employing more police officers which are not in fact warranted; of the latter, not
employing more police to counter the rising crime level. (The Economist magazine
(19 July 2003) reported that 33% of respondents to a survey in the UK felt that
crime had risen in the previous two years, only 4% thought that it had fallen.
In fact, crime had fallen slightly, by about 2%. A lot of people were making a
Type I error, therefore.)

Exercise 5.2
(a) z= (108 — 100)/Y36 = 1.33. The area in the tail beyond 1.33 is 9.18%, which is the
probability of a Type I error.

(b) z = 1.64 cuts off 5% in the upper tail of the distribution, hence we need the
decision rule to be at ¥ + 1.64 x s/\n = 100 + 1.64 x V36 = 109.84.

(c) Under H;: u =112, we can write X ~ N(112, 900/25). (We assume the same vari-
ance under both H, and H, in this case.) Hence z = (108 — 112)/N36 = —0.67. This
gives an area in the tail of 25.14%, which is the Type II error probability. Usually,
however, we do not have a precise statement of the value of u under H, so
cannot do this kind of calculation.

Exercise 5.3

o = 0.05 (significance level chosen), hence the critical value is z* = 1.96. The test
statistic is z = (530 — 500)/(90/N30) = 1.83 < 1.96 so H, is not rejected at the 5%
significance level.

Exercise 5.4
One wants to avoid making a Type I error if possible, i.e. rejecting H, when true. Hence
set a low significance level (1%) so that H, is only rejected by very strong evidence.

Exercise 5.5

(a) (i) Reject. The Prob-value should be halved, to 0.0385, which is less than 5%.
Alternatively, 1.77 > 1.64. (ii) Do not reject, the Prob-value is greater than 5%;
equivalently 1.77 < 1.96.

(b) In this case, the null is not rejected in both cases. In the one-tailed case,
0.0385 > 1%, so the null is not rejected.

Exercise 5.6

zZ= Li = 2.68 hence the null is decisively rejected.
10.5x0.5

V80

Exercise 5.7

We have the data: ¥, = 3.6, s, = 1.2, n, =50; X, =3.9, s, =2.1, n, = 90. The null hypo-
thesis is Hy: y, = 1, versus Hy: u; # u,. The test statistic is
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_ (X, = X%,) = (1, — 1) _ (3.6 -3.9) -0 - _1.08 <1.96

[s2 g2 \/1.22 2.1?
+ +
50 90

(absolute value) so the null is not rejected at the 5% significance level.

Exercise 5.8
The evidence is p, = 23/75, n, = 75, p, = 34/95, n, = 95. The hypothesis to be tested
is Hy: m — m, = 0 versus H;: m — m, < 0. Before calculating the test statistic we must
calculate the pooled variance as

mp,+mp, 75x0.3067 +95 x0.3579

7= = =0.3353
n, + n, 75+95

The test statistic is then

;- 0.3067 - 0.3579 - 0 - _0.70

10.3353 x (1-0.3353)  0.3353 x (1 -0.3353)

\ 75 95

This is less in absolute magnitude than 1.64, the critical value of a one tailed test,
so the null is not rejected. The second gambler is just luckier than the first, we con-
clude. We have to be careful about our interpretation, however: one of the gamblers
might prefer longer-odds bets, so wins less often but gets more money each time.
Hence this may not be a fair comparison.

Exercise 5.9

We shall treat this as a two-tailed test, although a one-tailed test might be justified
if there were other evidence that spending had fallen. The hypothesis is Hy: p = 540
versus H;: u # 540. Given the sample evidence, the test statistic is

X-u 490 — 540

- --1.63
s?n 4150%/24

t=

The critical value of the t distribution for 23 degrees of freedom is 2.069, so the null
is not rejected.

Exercise 5.10
The hypothesis to test is Hy: uy — uy = 0 versus Hy: pp — uy > 0 (F indexes finalists,
N the new students). The pooled variance is calculated as

(n, = 1)si+ (n, = 1)s3 _ 15 x 32+ 20 x 5

§? = =18.14
n+n,—2 35
The test statistic is
t:(i1_xz)_(ﬂ1_ﬂz): 15-9-0 —4.12
sz s 118.14 18.14
noon, V15 20

The critical value of the t distribution with 15 + 20 — 2 = 33 degrees of freedom is
approximately 1.69 (5% significance level, for a one-tailed test). Thus the null is
decisively rejected and we conclude finalists do spend more time in the library.
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Exercise 5.11
By the method of independent samples we obtain ¥, = 13, X, = 14.5, s, = 4.29,
s, =3.12, with n = 12 in both cases. The test statistic is therefore

(%, = X)) = (4, — u,) _ 13-145-0

t= ———— =-0.98
|s* 82 114.05 14.05
f—+ — j—— + —
\\‘ n n, vV o12 12

with pooled variance

(n = Dst+ (= 1)s3 _ 11 x4.29%+ 11 x 3.12
n+n,—2 22

§F= =14.05

The null of no effect is therefore accepted. By the method of paired samples, we
have a set of improvements as follows:

Student 1 2 3 4 5 6 7 8 9 10 " 12
Improvement 1 2 4 3 -1 -1 3 1 3 0 3 0

The mean of these is 1.5 and the variance is 3. The t statistic is therefore

15-0

2 =3
3/12

t

This now conclusively rejects the null hypothesis (critical value 1.8), in stark con-
trast to the former method. The difference arises because 10 out of 12 students have
improved or done as well as before, only two have fallen back (slightly). The gain in
marks is modest but applies consistently to nearly all candidates.
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L . By the end of this chapter you should be able to:
earning
[ outcomes J @ understand the uses of two new probability distributions: x? and F;

® construct confidence interval estimates for a variance;

perform hypothesis tests concerning variances;

analyse and draw inferences from data contained in contingency tables;

construct a simple analysis of variance table and interpret the results.

Complete your diagnostic test for Chapter 6 now to create your personal study
plan. Exercises with an icon (7 are also available for practice in MathXL with
additional supporting resources.
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The 2 distribution

(Introduction

)

The final two distributions to be studied are the x* (pronounced ‘kye-squared’)
and F distributions. Both of these distributions have a variety of uses, the most
common of which are illustrated in this chapter. These distributions allow us to
extend some of the estimation and testing procedures covered in Chapters 4 and
5. The y? distribution allows us to establish confidence interval estimates for a
variance, just as the Normal and ¢ distributions were used in the case of a mean.
Further, just as the Binomial distribution was used to examine situations where
the result of an experiment could be either ‘success’ or ‘failure’, the y? distribu-
tion allows us to analyse situations where there are more than two categories of
outcome. The F distribution enables us to conduct hypotheses tests regarding
the equality of two variances and also to make comparisons between the means
of multiple samples, not just two. The F distribution is also used in Chapters 7
and 8 on regression analysis.

[ The 2 distribution )

Figure 6.1

The y? distribution with
different degrees of
freedom

The y? distribution has a number of uses. In this chapter we make use of it in
three ways:

@ To calculate a confidence interval estimate of the population variance.

e To compare actual observations on a variable with the (theoretically) expected
values.

e To test for association between two variables in a contingency table.

The use of the distribution is in many ways similar to the Normal and t
distributions already encountered. Once again, it is actually a family of dis-
tributions depending upon one parameter, the degrees of freedom, similar to the
t distribution. The number of degrees of freedom can have slightly different
interpretations, depending upon the particular problem, but is often related to
sample size in some way. Some typical y* distributions are drawn in Figure 6.1
for different values of the parameter. Note the distribution has the following
characteristics:
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e it is always non-negative;
e it is skewed to the right;
e it becomes more symmetric as the number of degrees of freedom increases.

Using the x? distribution to construct confidence intervals is done in the
usual way, by using the critical values of the distribution (given in Table A4
(see page 416)), which cut off an area «/2 in each tail of the distribution. For
hypothesis tests, a rejection region is defined which cuts off an area « in either
one or both tails of the distribution, whichever is appropriate. These principles
should be familiar from previous chapters, so are not repeated in detail. The
following examples show how this works for the y? distribution.

Estimating a variance

The sample variance is also a random variable like the mean; it takes on different
values from sample to sample. We can therefore ask the usual question: given
a sample variance, what can we infer about the true value?

To give an example, we use the data on spending by Labour boroughs in the
example in Chapter 4 (see page 163). In that sample of 20 boroughs, the average
spending on administration was £175 (per taxpayer), with standard deviation
25 (and hence variance of 625). What can we say about the true variance and
standard deviation?

We work in terms of variances (this is more convenient when using the x?
distribution), taking the square root when we need to refer to the standard
deviation. First of all, the sample variance is an unbiased estimator of the
population variance,' E(s?) = 6%, so we may use this as our point estimate, which
is therefore 625. To construct the confidence interval around this we need to
know about the distribution of s%.. Unfortunately, this does not have a con-
venient probability distribution, so we transform it to

(n-1)s?

g (6.1)

which does have a x> distribution, with v =n — 1 degrees of freedom. Again, we
state this without a formal mathematical proof.

To construct the 95% confidence interval around the point estimate we
proceed in a similar fashion to the Normal or t distribution. First, we find the
critical values of the y? distribution which cut off 2.5% in each tail. These are
no longer symmetric around zero as was the case with the standard Normal and
t distributions. Table 6.1 shows an excerpt from the y? table which is given in
full in Table A4 in the Appendix at the end of the book (see page 416).

Like the t distribution, the first column gives the degrees of freedom, so we
require the row corresponding to v=n—-1=19.

e For the left-hand critical value (cutting off 2.5% in the left-hand tail) we look
at the column headed ‘0.975’, representing 97.5% in the right-hand tail. This
critical value is 8.91.

e For the right-hand critical value we look up the column headed ‘0.025" (2.5%
in the right-hand tail), giving 32.85.

! This was stated, without proof, in Chapter 1, see page 36.
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Table 6.1 Excerpt from Table A4 - the y? distribution

% 0.99 0.975 . 0.10 0.05 0.025 0.01
1 0.0002 0.0010 o 2.7055 3.8415 5.0239 6.6349
2 0.0201 0.0506 o 4.6052 5.9915 7.3778 9.2104
18 7.0149 8.2307 o 25.9894 28.8693 31.5264 34.8052
19 7.6327 8.9065 . 27.2036 30.1435 32.8523 36.1908
20 8.2604 9.5908 o 28.4120 31.4104 34.1696 37.5663

Note: The two critical values are found at the intersections of the shaded row and columns.
Alternatively you can use Excel. The formula =CHIINV (0.975, 19) gives the left-hand critical
value, 8.91; similarly, =CHIINV (0.025, 19) gives the answer 32.85, the right-hand critical value.

We can therefore be 95% confident that (n — 1)s?*/c? lies between these two
values, i.e.

[8.91 L (n-1¢

< 32.85} (6.2)
We actually want an interval estimate for 6* so we need to rearrange equation
(6.2) so that o? lies between the two inequality signs. Rearranging yields

m-1s*> _ , _ (n-1)s
[ 3285 ° ~ 8ol } (6.3)

and evaluating this expression leads to the 95% confidence interval for o2
which is

[19x625< , _ 19%625
o° =

3285 7 < W] = [361.5, 1332.8]

Note that the point estimate, 625, is no longer at the centre of the interval
but is closer to the lower limit. This is a consequence of the skewness of the
x? distribution.

(Worked example 6.1 j

Given a sample of size n = 51 yielding a sample variance s* = 81, we may
calculate the 95% confidence interval for the population variance as follows.

Since we are using the 95% confidence level the critical values cutting off
the extreme 5% of the distribution are 32.36 and 71.42, from Table A4. We
can therefore use equation (6.3) to find the interval

(-1 xs® _ g2 =1 xs’
71.42 32.36

Substituting in the values gives

[(51-1)x81 _ 2(51-1)x81
71.42 32.36

yielding a confidence interval of [56.71, 125.15].
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Exercise 6.1

?

Note that if we wished to find a 95% confidence interval for the standard
deviation we can simply take the square root of the result to obtain [7.53,
11.19].

The 99% CI for the variance can be obtained by altering the critical values.
The values cutting off 0.5% in each tail of the distribution are (again from
Table A4) 27.99 and 79.49. Using these critical values results in an interval
[50.95, 144.69]. Note that, as expected, the 99% CI is wider than the 95%
interval.

(a) Given a sample variance of 65 from a sample of size n = 30, calculate the 95%
confidence interval for the variance of the population from which the sample
was drawn.

(b) Calculate the 95% CI for the standard deviation.

(c) Calculate the 99% interval estimate of the variance.

Comparing actual and expected values of a variable

A second use of the x* distribution provides a hypothesis test, allowing us to
compare a set of observed values to expected values, the latter calculated on the
basis of some null hypothesis to be tested. If the observed and expected values
differ significantly, as judged by the x* test (the test statistic falls into the rejec-
tion region of the y? distribution), then the null hypothesis is rejected. Again,
this is similar in principle to hypothesis testing using the Normal or ¢ distribu-
tions, but allows a slightly different type of problem to be handled.

This can be illustrated with a very simple example. Suppose that throwing a
die 72 times yields the following data:

Score on die 1 2 3 4 5 6

Frequency 6 15 15 7 15 14

Are these data consistent with the die being unbiased? Previously we might
have investigated this problem by testing whether the proportion of (say) sixes
is more or less than expected, using the Binomial distribution. One could still
do this, but this does not make full use of the information in the sample, it only
compares sixes against all other values together. The y* test allows one to see
if there is any bias in the die, for or against a particular number. It therefore
answers a slightly different and more general question than if we made use of
the Binomial distribution.

A crude examination of the data suggests a slight bias against 1 and 4, but
is this truly bias or just a random fluctuation quite common in this type of
experiment? First the null and alternative hypotheses are set up:

H,: the die is unbiased
H;: the die is biased

Note that the null hypothesis should be constructed in such a way as to permit
the calculation of the expected outcomes of the experiment. Thus the null and
alternative hypotheses could not be reversed in this case, since ‘the die is biased’
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Table 6.2 Calculation of the ? statistic for the die problem

2
Score Observed frequency (0) Expected frequency ([E) 0-E  (0-E) %
1 6 12 -6 36 3.00
2 15 12 3 9 0.75
3 15 12 3 9 0.75
4 7 12 -5 25 2.08
5 15 12 3 9 0.75
6 14 12 2 4 0.33
Totals 72 72 0 - 7.66

is a vague statement (exactly how biased, for example?) and would not permit
the calculation of the expected outcomes of the experiment.

On the basis of the null hypothesis, the expected values are based on the
uniform distribution, i.e. each number should come up an equal number of times.
The expected values are therefore 12 (= 72/6) for each number on the die.

This gives the data shown in Table 6.2 with observed and expected frequencies
in columns two and three respectively (ignore columns 4-6 for the moment).
The % test statistic is now constructed using the formula

2
=3 © EE) (6.4)

which has a x?* distribution with v =k — 1 degrees of freedom (k is the number
of different outcomes, here 6).> O represents the observed frequencies and E the
expected. If the value of this test statistic falls into the rejection region, i.e. the
tail of the x? distribution, then we conclude the die is biased, rejecting the null.
The calculation of the test statistic is shown in columns 4-6 of Table 6.2, and is
straightforward, yielding a value of the test statistic of x* = 7.66, to be compared
to the critical value of the distribution, for 6 — 1 = 5 degrees of freedom.

Trap!
In my experience many students misinterpret formula (6.4) and use instead
42 = 20— EF
SE

This is not the same as the correct formula and gives the wrong answer! Check
that you recognise the difference between the two and that you always use the
correct version.

Looking up the critical value for this test takes a little care as one needs first to
consider if it is a one- or two-tailed test. Looking at the alternative hypothesis
suggests a two-sided test, since the error could be in either direction. However, this
intuition is wrong, for the following reason. Looking closely at equation (6.4)

2 Note that, on this occasion, the degrees of freedom are not based on the sample size.
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reveals that large discrepancies between observed and expected values (however
occurring) can only lead to large values of the test statistic. Conversely, small
values of the test statistic must mean that differences between O and E are small,
so the die must be unbiased. Thus the null is only rejected by large values of the
¥ statistic or, in other words, the rejection region is in the right-hand tail only
of the y* distribution. It is a one-tailed test. This is illustrated in Figure 6.2.

The critical value of the y?* distribution in this case (v = 5, 5% significance
level) is 11.1, found from Table A4. Note that we require 5% of the distribution
in the right-hand tail to establish the rejection region. Since the test statistic
is less than the critical value (7.66 < 11.1) the null hypothesis is not rejected.
The differences between scores are due to sampling error rather than to bias in
the die.

An important point to note is that the value of the test statistic is sensitive to
the total frequency (72 in this case). Therefore the test should not be carried out
on the proportion of occasions on which each number comes up (the expected
values would all be 12/72 = 0.167, and the observed values 8/72, 13/72, etc.),
since information about the ‘sample size’ (number of rolls of the die) would be
lost. As with all sampling experiments, the inferences that can be drawn depend
upon the sample size, with larger sample sizes giving more reliable results, so
care must be taken to retain information about sample size in the calculations.
If the test had been incorrectly conducted in terms of proportions, all O and E
values would have been divided by 72, and this would have reduced the test
statistic by a factor of 72 (check the formula to confirm this), reducing it to 0.14
- nowhere near significance. It would be surprising if any data would yield
significance given this degree of mistreatment! (See the ‘Oops!’ box later in this
chapter.)

A second, more realistic, example will now be examined to reinforce the mess-
age about the use of the x* distribution and to show how the expected values
might be generated in different ways. This example looks at road accident
figures to see if there is any variation through the year. One might reasonably
expect more accidents in the winter months due to weather conditions, poorer
light, etc. Quarterly data on the number of people killed on British roads are
used, and the null hypothesis is that the number does not vary seasonally.

H,: there is no difference in fatal accidents between quarters
H;: there is some difference in fatal accidents between quarters
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Table 6.3 Road casualties in Great Britain, 2006

Quarter | Il 1 v Total
Casualties 697 743 838 894 3172

Table 6.4 Calculation of the % statistic for road fatalities

2 (0-EP
Quarter Observed Expected 0-E (0-E) 5
| 697 793 -96 9216 11.62
Il 743 793 -50 2500 3.15
111 838 793 45 2025 2.55
\% 894 793 101 10 201 12.86
Totals 3172 3172 - - 30.19

Such a study might be carried out by government, for example, to try to find the
best means of reducing road accidents.

Table 6.3 shows data on road fatalities in 2006 by quarter in Great Britain,
adapted from data taken from the UK government’s Road Casualties Great Britain
2006. There does appear some evidence of more accidents in the final two quar-
ters of the year but is this convincing evidence or just random variation? Under
the null hypothesis the total number of fatalities (3172) would be evenly split
between the four quarters, yielding Table 6.4 and the x* calculation that follows.

The calculated value of the test statistic is 30.19, given at the foot of the final
column. The number of degrees of freedom is v=k — 1 = 3, so the critical value
at the 5% significance level is 7.82. Since the test statistic exceeds this the null
hypothesis is rejected; there is a difference between seasons in the accident rate.
(The fourth edition of this book used similar data for 2002. Although the total
number of accidents was larger (3431) the seasonal pattern was almost identical
and the y? statistic was 31.24. The similarity of patterns from two different years
strengthens our belief about seasonal differences.)

The reason for this difference might be the increased hours of darkness
during winter months, leading to more accidents. This particular hypothesis can
be tested using the same data, but combining quarters I and IV (to represent
winter) and quarters II and III (summer). The null hypothesis is of no difference
between summer and winter, and the calculation is set out in Table 6.5. The
¥? test statistic is now extremely small, and falls below the new critical value
(v =1, 5% significance level) of 3.84, so the null hypothesis is not rejected.

Table 6.5 Seasonal variation in road casualties

2 (0-EP
Season Observed Expected 0-E (0-E) 5
Summer 1581 1586 -5 25 0.016
Winter 1591 1586 5 25 0.016
Totals 3172 3172 0 - 0.032
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Thus the variation between quarters does not appear to be a straightforward
summer/winter effect (providing, of course, that combining quarters I and IV to
represent winter and II and III to represent summer is a valid way of combining
the quarters).?

Another point which the example brings out is that the data can be examined
in a number of ways using the x* technique. Some of the classes were combined
to test a slightly different hypothesis from the original one. This is a quite
acceptable technique but should be used with caution. In any set of data (even
totally random data) there is bound to be some way of dividing it up such that
there are significant differences between the divisions. The point, however,
is whether there is any meaning to the division. In the above example the
amalgamation of the quarters into summer and winter has some intuitive mean-
ing and we have good reason to believe that there might be differences between
them. Driving during the hours of darkness might be more dangerous and might
have had some relevance to accident prevention policy (e.g. an advertising
campaign to persuade people to check that their lights work correctly). The
hypothesis is led by some prior theorising and is worth testing.

Road accidents and darkness

The question of the effect of darkness on road accidents has been extensively
studied, particularly in relation to putting the clocks forwards in spring and
back in autumn. A study by H. Green in 1980 reported the following numbers of
accidents (involving death or serious injury) on the five weekday evenings before
and after the clocks changed:

Spring Autumn
Year Before After Before After
1975 19 11 20 3
1976 14 9 23 36
1977 22 8 12 29

It is noticeable that accidents fell in spring after the hour change (when it
becomes lighter] but increased in autumn (when it becomes darker]. This is a
better test than simply combining quarterly figures as in our example, so casts
doubt upon our result. Evidence from other countries also supports the view that
the light level has an important influence on accidents.

Source: H. Green, Some effects on accidents of changes in light conditions at the beginning and end of
British Summer Time. Supplementary Report 587, Transport and Road Research Laboratory, 1980. For

an update on research, see J. Boughton et al., Influence of light level on the incidence of road
casualties, J. Royal Statistical Society, Series A, 1999, 162 (2), 137-175.

It is dangerous, however, to look at the data and then formulate a hypothesis.
From Table 6.4 there appears to be a large difference between the first and

® An earlier edition of this book, using data from 1993, did find a significant difference
between summer and winter, so either things have changed or there are still some puzzles
to resolve.
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second halves of the year. If quarters I and II were combined, and III and IV
combined, the x? test statistic might be significant (in fact it is, x* = 26.9) but
does this signify anything? It is extremely easy to look for a big difference some-
where in any set of data and then pronounce it ‘significant’ according to some
test. The probability of making a Type I error (rejecting a correct null) is much
greater than 5% in such a case. The point, as usual, is that it is no good looking
at data in a vacuum and simply hoping that they will ‘tell you something’.

A related warning is that we should be wary of testing one hypothesis and,
on the basis of that result, formulating another hypothesis and testing it (as
we have done by going on to compare summer and winter). Once again we
are (indirectly) using the data to help formulate the hypothesis and the true
significance level of the test is likely to be different from 5% (even though we use
the 5% critical value). We have therefore sinned, but is difficult to do research
without sometimes resorting to this kind of behaviour. There are formal methods
for dealing with such situations but they are beyond the scope of this book.

There is one further point to make about carrying out a x> test, and this
involves circumstances where classes must be combined. The theoretical % dis-
tribution from which the critical value is obtained is a continuous distribution,
yet the calculation of the test statistic comes from data which are divided
up into a discrete number of classes. The calculated test statistic is therefore only
an approximation to a true x? variable, but this approximation is good enough
as long as each expected (not observed) value is greater than or equal to five.
It does not matter what the observed values are. In other circumstances, the
class (or classes) with expected values less than five must be combined with
other classes until all expected values are at least five. An example of this will
be given below.

In all cases of y? testing the most important part of the analysis is the calcu-
lation of the expected values (the rest of the analysis is mechanical). Therefore
it is always worth devoting most of the time to this part of the problem. The
expected values are, of course, calculated on the basis of the null hypothesis
being true, so different null hypotheses will give different expected values.
Consider again the case of road fatalities. Although the null hypothesis (‘no
differences in accidents between quarters’) seems clear enough, it could mean
different things. Here it was taken to mean an equal number in each quarter;
but another interpretation is an equal number of casualties per car-kilometre
travelled in each quarter; in other words accidents might be higher in a given
quarter simply because there are more journeys in that quarter (during holiday
periods, for example). Table 6.6 gives an index of average daily traffic flows on
British roads in each quarter of the year.

The pattern of accidents might follow the pattern of road usage — the first
quarter of the year has the fewest casualties and also the least amount of travel.
This may be tested by basing the expected values on the average traffic flow: the
3172 total casualties are allocated to the four quarters in the ratios 95:102:105:98.
This is shown in Table 6.7, along with the calculation of the y* statistic.

The y? test statistic is 27.18, well in excess of the critical value, 7.82. This
indicates that there are significant differences between the quarters, even after
accounting for different amounts of traffic. In fact, the statistic is little changed
from before, suggesting either that traffic flows do not affect accident probabil-
ities much or that the flows do not actually vary very much. It is evident that
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Table 6.6 Index of road traffic, 2002-2006

Q1 Q2 Q3 Q4 Total
Index 95 102 105 98 400

Table 6.7 Calculation with alternative pattern of expected values

, (0 - EP?
Quarter Observed Expected 0-E (0-E) £
| 697 753.4 —56.4 3175.32 4.21
Il 743 808.9 —-65.9 4337.54 5.36
1 838 832.7 5.4 28.62 0.03
\% 894 777.1 116.9 13 656.26 17.57
Totals 3172 3172 - - 27.18

Note: The first expected value is calculated as 3172 x 95 + 400 = 753.4, the second as
3172 x 102 + 400 = 808.9 and so on.

the variation in traffic flows is much less than the variation in casualties. One
possible explanation is that increased traffic means lower speed and hence a
lower severity of accidents.

[Worked example 6.2 j

One hundred volunteers each toss a coin twice and note the numbers of
heads. The results of the experiment are as follows:

Heads 0 1 2 Total
Frequency 15 55 30 100

Can we reject the hypothesis that a fair coin (or strictly, coins) was used
for the experiment?

On the basis of the Binomial distribution the probability of no heads is
0.25 (='/2x'/2), of one head is 0.5 and of two heads is again 0.25, as explained
in Chapter 2. The expected frequencies are therefore 25, 50 and 25. The
calculation of the test statistic is set out below:

_ )12
Number of heads 0 E O0-E (0 EP (0 EE]
0 15 25 -10 100 4
1 55 50 5 25 05
2 30 25 5 25 i
Totals 100 100 - _ 55

The test statistic of 5.5 compares to a critical value of 5.99 (v = 2) so we
cannot reject the null hypothesis of a fair coin being used.

Note that we could test the hypothesis using a z test using the methods of
Chapter 5. There have been a total of 200 tosses, of which 115 (= 55 + 2 x 30)
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were heads, i.e. a ratio of 0.575 against the expected 0.5. We can therefore test
Hy: #= 0.5 against H;: = # 0.5 using the evidence n = 200 and p = 0.575. This
yields the test statistic

0.575 - 0.5
I =— =

\/0.5 x 0.5
200

2.12

Interestingly (!) we now reject the null as the test statistic is greater than the
critical value of 1.96. How can we reconcile these conflicting results?

Note that both results are close to the critical values, so narrowly reject
or accept the null. The x* and z distributions are both continuous ones and
in this case are approximations to the underlying Binomial experiment.
This is the cause of the problem. If we alter the data very slightly, to 16, 55,
29 observed frequencies of no heads, one head and two heads, then both
methods accept the null hypothesis. Similarly, for frequencies 14, 55, 31 both
methods reject the null.

The lesson of this example is to be cautious when the test statistic is close
to the critical value. We cannot say decisively that the null has been accepted
or rejected.

The following data show the observed and expected frequencies of an experiment
with four possible outcomes, A-D.

Outcome A B Cc D
Observed 40 60 75 90
Expected 35 55 75 100

Test the hypothesis that the results are in line with expectations using the 5%
significance level.

(a) Verify the claim in the worked example above, that both %2 and z statistic methods
give the same qualitative (accept or reject] result when the observed frequencies
are 16, 55, 29 and when they are 14, 55, 31.

(b) In each case, look up or calculate (using Excel] the Prob-values for the % and z
test statistics and compare.

Contingency tables

Data are often presented in the form of a two-way classification as shown in
Table 6.8, known as a contingency table and this is another situation where the
¥? distribution is useful. It provides a test of whether or not there is an associa-
tion between the two variables represented in the table.

The table shows the voting intentions of a sample of 200 voters, cross-
classified by social class. The interesting question that arises from these data is
whether there is any association between people’s voting behaviour and their
social class. Are manual workers (social class C in the table) more likely to vote
for the Labour party than for the Conservative party? The table would appear to
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Table 6.8 Data on voting intentions by social class

Social class Labour Conservative Liberal Democrat Total
A 10 15 15 40
B 40 35 25 100
C 30 20 10 60
Totals 80 70 50 200

indicate support for this view, but is this truly the case for the whole population
or is the evidence insufficient to draw this conclusion?

This sort of problem is amenable to analysis by a y? test. The data presented
in the table represent the observed values, so expected values need to be calcu-
lated and then compared to them using a x* test statistic. The first task is to
formulate a null hypothesis, on which to base the calculation of the expected
values, and an alternative hypothesis. These are

H,: there is no association between social class and voting behaviour
H;: there is some association between social class and voting behaviour

As always, the null hypothesis has to be precise, so that expected values can be
calculated. In this case it is the precise statement that there is no association
between the two variables, they are independent.

Constructing the expected values

If H, is true and there is no association, we would expect the proportions voting
Labour, Conservative and Liberal Democrat to be the same in each social class.
Further, the parties would be identical in the proportions of their support com-
ing from social classes A, B and C. This means that, since the whole sample of
200 splits 80:70:50 for the Labour, Conservative and Liberal Democrat parties
(see the bottom row of the table), each social class should split the same way.
Thus of the 40 people of class A, 80/200 of them should vote Labour, 70/200
Conservative and 50/200 Liberal Democrat. This yields:

Split of social class A:

Labour 40 x 80/200=16
Conservative 40 x 70/200 =14
Liberal Democrat 40 x 50/200 =10
For class B:

Labour 100 x 80/200 = 40
Conservative 100 x 70/200 = 35
Liberal Democrat 100 x 50/200 = 25

And for C the 60 votes are split Labour 24, Conservative 21 and Liberal
Democrat 15.

Both observed and expected values are presented in Table 6.9 (expected
values are in brackets). Notice that both the observed and expected values sum
to the appropriate row and column totals. It can be seen that, compared with
the ‘no association’ position, Labour receives too few votes from Class A and the
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Table 6.9 Observed and expected values (latter in brackets)

Social class Labour Conservative Liberal Democrat Total
A 10 (16) 15 (14) 15 (10) 40
B 40 (40) 35 (35) 25 (25) 100
C 30 (24) 20 (21) 10 (15) 60
Totals 80 70 50 200

Liberal Democrats too many. However, Labour receives disproportionately
many class C votes, the Liberal Democrats too few. The Conservatives’ observed
and expected values are identical, indicating that the propensities to vote
Conservative are the same in all social classes.

A quick way to calculate the expected value in any cell is to multiply the
appropriate row total by column total and divide through by the grand total
(200). For example, to obtain the expected value for the class A/Labour cell

row total x column total _ 40 x 80 _
grand total 200

expected value = 16

In carrying out the analysis care should again be taken to ensure that informa-
tion is retained about the sample size, i.e. the numbers in the table should be
actual numbers and not percentages or proportions. This can be checked by
ensuring that the grand total is always the same as the sample size.

As was the case before, the x” test is only valid if the expected value in each
cell is not less than five. In the event of one of the expected values being less
than five, some of the rows or columns have to be combined. How to do this
is a matter of choice and depends upon the aims of the research. Suppose
for example that the expected number of class C voting Liberal Democrat were
less than five. There are four options open:

(1) Combine the Liberal Democrat column with the Labour column;

(2) Combine the Liberal Democrat column with the Conservative column;
(3) Combine the class C row with the class A row;

(4) Combine the class C row with the class B row.

Whether rows or columns are combined depends upon whether interest
centres more upon differences between parties or differences between classes.
If the main interest is the difference between class A and the others, option 4
should be chosen. If it is felt that the Liberal Democrat and Conservative parties
are similar, option 2 would be preferred, and so on. If there are several expected
values less than five, rows and columns must be combined until all are eliminated.

The ¥ test on a contingency table is similar to the one carried out before, the
formula being the same:

XZZZ(O;E) (6.5)

with the number of degrees of freedom given by v= (r — 1) x (c — 1) where r
is the number of rows in the table and c is the number of columns. In this case
r=3and c=3, so

v=@B3-1)x3-1)=4
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The reason why there are only four degrees of freedom is that once any four
cells of the contingency table have been filled, the other five are constrained by the
row and column totals. The number of ‘free’ cells can always be calculated as the
number of rows less one, times the number of columns less one, as given above.

() Calculation of the test statistic
The evaluation of the test statistic then proceeds as follows, cell by cell

(10 - 167 (15-14)° (15 10y
16 14 10
(40 — 402 (35 —35)% (25— 25)2
T30 T3