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Abstract

As structural engineers move further into the age of digital computa-
tion and rely more heavily on computers to solve problems, it remains 
paramount that they understand the basic mathematics and engineering 
principles used to design and analyze building structures. The analysis of 
complex structural systems involves the knowledge of science, technol-
ogy, engineering, and math to design and develop efficient and economi-
cal buildings and other structures. The link between the basic concepts and 
application to real world problems is one of the most challenging learning 
endeavors that structural engineers face. A thorough understanding of the 
analysis procedures should lead to successful structures.

The primary purpose of this book is to develop a structural engineer-
ing student’s ability to solve complex structural analysis problems that 
they may or may not have ever encountered before.  The book will cover 
and review numerical techniques to solve mathematical formulations. 
These are the theoretical math and science principles learned as prerequi-
sites to engineering courses, but will be emphasized in numerical formula-
tion. A basic understanding of elementary structural analysis is important 
and many methods will be reviewed.  These formulations are necessary 
in developing the analysis procedures for structural engineering. Once 
the numerical formulations are understood, engineers can then develop 
structural analysis methods that use these techniques. This will be done 
primarily with matrix structural stiffness procedures. Both of these will 
supplement both numerical and computer solutions. Finally, advanced 
stiffness topics will be developed and presented to solve unique structural 
problems. These include member end releases, nonprismatic, shear, geo-
metric, and torsional stiffness. 
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CHAPTER 1

Roots of Algebraic  
and Transcendental 

Equations

In structural engineering, it is important to have a basic knowledge of how 
computers and calculators solve equations for unknowns. Some equations 
are solved simply by algebra while higher order equations will require 
other methods to solve for the unknowns. In this chapter, methods of find-
ing roots to various equations are explored. The roots of an equation are 
defined as values of x where the solution of an equation is true. The most 
common roots are where the value of the function is zero. This would 
indicate where a function crosses an axis. Roots are sometimes complex 
roots where they contain both a real number and an imaginary unit.

1.1  EQUATIONS

Equations are generally grouped into two main categories, algebraic equa-
tions and transcendental equations. The first type, an algebraic equation, 
is defined as an equation that involves only powers of x. The powers of x 
can be any real number whether positive or negative. The following are 
examples of algebraic equations:

8 3 5 6 0
1 2 0

3 0

3 2

1 25

x x x

x
x

x

− + − =

+ =

− =. p

The second type is transcendental equations. These are non-algebraic  
equations or functions that transcend, or cannot be expressed in terms of 
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algebra. Examples of such are exponential functions, trigonometric func-
tions, and the inverses of each. The following are examples of transcen-
dental equations:

cos x sin x

ex
( ) + ( ) =

+ =

0

15 0

Transcendental functions may have an infinite number of roots or may not 
have any roots at all. For example, the function sin(x) = 0 has an infinite 
number of roots x = ±kx and k = 0, 1, 2….

The solution of algebraic or transcendental equations is rarely carried 
out from the beginning to end by one method. The roots of the equation 
can generally be determined by one method with some small accuracy, 
and then made more accurate by other methods. For the intent and pur-
pose of this text, only a handful of the available methods are discussed. 
These methods include: Descartes’ Rule, Synthetic Division, Incremental 
Search, Refined Incremental Search, Bisection, False Position, Secant, 
Newton–Raphson, Newton’s Second Order, Graeffe’s Root Squaring, and 
Bairstow’s methods. Some of these methods are used to solve specific 
types of equations, while others can be used for both equation types.

1.2  POLYNOMIALS

A polynomial is defined as an algebraic equation involving only positive 
integer (whole number) powers of x. Polynomials are generally expressed 
in the following form:

a x a x a x a x a x an n n n
n n0 1

1
2

2
3

3
1

1 0+ + + + + + =− − −
−�

In most cases, the polynomial form is revised by dividing the entire equa-
tion by the coefficient of the highest power of a, a0, resulting in the fol-
lowing form:

x a x a x a x a x an n n n
n n+ + + + + + =− − −

−1
1

2
2

3
3

1
1 0�

For these polynomials, the following apply:

•	 The order or degree of the polynomial is equal to the highest power 
of x and the number of roots is directly equal to the degree or n, 
where an is not equal to 0. For example, a sixth degree polynomial, 
or a polynomial with n = 6 has six roots.

•	 The value of n must be a non-negative integer. In other words, it 
must be a whole number that is equal to zero or a positive integer.
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•	 The coefficients (a0, a1, a2 …, an-1, an) are real numbers.
•	 There will be at least one real root if n is an odd integer.
•	 It is possible that equal roots exist.
•	 When complex roots exist, they occur in conjugate pairs. For 

example:

x u vi u v= ± = ± −1

1.3  DESCARTES’ RULE

Descartes’ rule is a method of determining the maximum number of pos-
itive and negative real roots of a polynomial. This method was published 
by René Descartes in 1637 in his work La Géométrie (Descartes 1637). 
This rule states that the number of positive real roots is equal to the num-
ber of sign changes of the coefficients or is less than this number by an 
even integer. For positive roots, start with the sign of the coefficient of 
the lowest (or highest) power and count the number of sign changes from 
the lowest to the highest power (ignore powers that do not appear). The 
number of sign changes proves to be the number of positive roots. Using 
x = 1 in evaluating f(x) = 0 is the easiest way to look at the coefficients.

For negative roots, begin by transforming the polynomial to f(−x) = 0. 
The signs of all the odd powers are reversed while the even powers remain 
unchanged. Once again, the sign changes can be counted from either the 
highest to lowest power, or vice versa. The number of negative real roots 
is equal to the number of sign changes of the coefficients, or less than by 
an even integer. Using x = –1 in evaluating f(x) = 0 is the easiest way to 
look at the coefficients.

When considering either positive or negative roots, the statement 
“less than by an even integer” is included. This statement accounts for 
complex conjugate pairs that could exist. Complex conjugates change the 
sign of the imaginary part of the complex number. Descartes’ rule is valid 
as long as there are no zero coefficients. If zero coefficients exist, they are 
ignored in the count. Also, one could find a root and divide it out to form a 
new polynomial of degree “n – 1” and apply Descartes’ rule again.

Example 1.1  Descartes’ rule

Find the possible number of positive, negative, and complex roots for the 
following polynomial:

x x x3 26 11 6 0− + − =
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Find possible positive roots for f(x) = 0:

x x x3 26 11 6 0− + − =

	 1	 2	 3	 =	 3 sign changes

Since there are three sign changes, there is a maximum of three positive 
roots. Three positive real roots exist or one positive real root plus two 
imaginary roots.

Find possible negative roots by rewriting the function for f(−x) = 0:

−( ) − −( ) + −( ) − = − − − − =

− − − − =

x x x x x x

x x x

3 2 3 2

3 2

6 11 6 6 11 6 0

6 11 6 0

	 0	 0	 0	 =	 0 sign changes

Notice the signs of all the odd powers reverse while the signs of the even 
powers remain unchanged. Count the number of sign changes, n. This 
number is the maximum possible negative roots. Since there is no sign 
change, zero negative roots exist.

Possible complex roots:

Complex roots appear in conjugate pairs. Therefore, either zero or two 
complex roots exist. In this example the roots are x = 1, 2, 3.

Example 1.2  Descartes’ rule

Find the possible number of positive, negative, and complex roots for the 
following polynomial:

x x3 27 6 0− + =

Find possible positive roots for f(x) = 0:

x x3 27 6 0− + =

	 1	 2	 =	 2 sign changes

Since there are two sign changes, there is a maximum of two positive 
roots. Two or zero positive real roots exist.
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Find possible negative roots by rewriting the function for f(–x) = 0:

−( ) − −( ) + = − − + =

− − + =

x x x x

x x

3 2 3 2

3 2

7 6 7 6 0

7 6 0

	 0	 1	 =	 1 sign change

Again, the signs of all the odd powers reverse while the signs of the even 
powers remain unchanged. Count the number of sign changes, n. This 
number is the maximum possible negative roots. Since there is one sign 
change, one negative root exists.

Possible complex roots:

Complex roots appear in conjugate pairs. Therefore, either zero or two 
complex roots exist. In this example, the roots are x = 1, 2, –3.

Example 1.3  Descartes’ rule

Find the possible number of positive, negative, and complex roots for the 
following polynomial:

x x x3 23 4 6 0− + − =

Find possible positive roots for f(x) = 0:

x x x3 23 4 6 0− + − =

	 1	 2	 3	 =	 3 sign changes

Since there are three sign changes, there is a maximum of three positive 
roots. Three or one positive real roots exist.

Find possible negative roots by rewriting the function for f(–x) = 0:

−( ) − −( ) + −( ) − = − − − − =

− − − − =

x x x x x x

x x x

3 2 3 2

3 2

3 4 6 3 4 6 0

3 4 6 0

	 0	 0	 0	 =	 0 sign changes

Count the number of sign changes. Since there is no sign change, zero 
negative roots exist.
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Possible complex roots:

Complex roots appear in conjugate pairs. Therefore, either zero or two 
complex roots exist. In this example the roots are x = 1, 1 +  i, 1 –  i. It 
should be noted that the existence of complex conjugate pairs cannot be 
readily known. Examples 1.1 and 1.3 had the same number of sign change 
count, but the latter had a complex pair of roots.

Example 1.4  Descartes’ rule

Find the possible number of positive, negative, and complex roots for the 
following polynomial:

x x x3 2 2 0− + =

Find possible positive roots for f (x) = 0:

x x x3 2 2 0− + =

	 1	 2	 =	 2 sign changes

Since there are two sign changes, there is a maximum of two positive 
roots. Two or zero positive real roots exist.

Find possible negative roots by rewriting the function for f(–x) = 0:

−( ) − −( ) + −( ) = − − − =

− − − =

x x x x x x

x x x

3 2 3 2

3 2

2 2 0

2 0

	 0	 0	 =	 0 sign changes

Count the number of sign changes, n. Since there is no sign change, zero 
negative roots exist.

Possible complex roots:

Complex roots appear in conjugate pairs. Therefore, either zero or two 
complex roots exist. In this example, the roots are x  =  0, 1  +  i, 1  –  i. 
The existence of zero as a root could have been discovered by noticing 
that there was not a constant term in the equation. Therefore, dividing the 
equation by x yields the same as x = 0.
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1.4  SYNTHETIC DIVISION

Synthetic division is taught in most algebra courses. The main outcome is 
to divide a polynomial by a value, r. This is in fact the division of a poly-
nomial, f(x) = 0 by the linear equation x – r. The general polynomial can 
be divided by x − r as follows:

f x a x a x a x a x a x an n n n
n n( ) = + + + + + + =− − −

−0 1
1

2
2

3
3

1
1 0�

Table 1.1.  Synthetic division

r a0 a1 a2 ……. an-1 an

0 rb1 rb2 ……. rbn-1 rbn

b1 b2 b3 ……. bn R

The results, b, are the sum of the rows above (i.e., b1
  =  a0  +  0 or 

bn
 = an–1 + rbn–1). If r is a root, then the remainder, R, will be zero. If r is not 

a root, then the remainder, R, is the value of the polynomial for f(x) at x = r.
Furthermore, after the first division of a polynomial, divide again to 

find the value of the first derivative equal to the remainder times one fac-
torial, R*1!. After the second division of a polynomial, divide again to 
find the value of the second derivative equal to the remainder times two 
factorial, R*2!. Continuing this process, and after the third division of a 
polynomial, divide again to find the value of the third derivative equal to 
the remainder times three factorial, R*3!. Basically, two synthetic divi-
sions yield the first derivative, three synthetic divisions yield the second 
derivative, four synthetic divisions yield the third derivative, and so on.

Example 1.5  Synthetic division

Find f(1) or divide the following polynomial by x – 1.

x x x3 26 11 6 0− + − =

Set up the equation as shown below by writing the divisor, r, and coeffi-
cient, a, in the first row.

Table 1.2.  Example 1.5 Synthetic division

      1 1 -6 11 -6
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Add the columns by starting at the left. Multiply each result by r = 1 and 
add this to the next column.

Table 1.3.  Example 1.5 Synthetic division

1 1 -6 11 -6
0   1 -5   6
1 -5  6   0

Since the remainder, R, is zero, f(r) = 0 and r = 1 is a root. The poly-
nomial can now be written as a linear equation, x  –  r or x  –  1, and 
the resulting reduced polynomial with coefficient of the resultants as 
follows:

x x x x x x3 2 26 11 6 1 5 6 0− + − = −( ) − +( ) =

Use the quadratic equation to reduce the remaining polynomial as follows:

x b b ac
a

=
− ± −

=
− −( ) ± −( ) − ( )

( ) =
±

=
2 2

4
2

5 5 4 1 6
2 1

5 1
2

2 3  ,

If the remaining polynomial was divided by x  –  2, r  =  2 is a root as 
follows:

Table 1.4.  Example 1.5 Synthetic division

2 1 -5 6
0 2 -6
1 -3 0

Since the remainder, R, is zero, f(2) = 0 and r = 2 is a root. The resulting 
polynomial is x – 3, thus x = r is the third root. This can also be shown by 
repeating division with x – 3.

Table 1.5.  Example 1.5 Synthetic division

3 1 -3
0   3
1   0
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Since the remainder, R, is zero, f(3) = 0 and r = 3 is a root. The polynomial 
is now written as:

x x x x x x x x x3 2 26 11 6 1 5 6 1 2 3 0− + − = −( ) − +( ) = −( ) −( ) −( ) =

The roots are x = 1, 2, 3.

Example 1.6  Synthetic division

Find f(–1), f ′(–1), and f ″(–1) or perform three divisions of the following 
polynomial by x + 1:

x x x3 26 11 6 0− + − =

Set up the equation as shown in the following by writing the divisor, r, and 
coefficient, a, in the first row.

Table 1.6.  Example 1.6 Synthetic division

-1 1 -6 11 -6

Add the columns by starting at the left. Multiply each result by r = 1 and 
add this to the next column.

Table 1.7.  Example 1.6 Synthetic division

-1 1 -6 11   -6
0 -1 7 -18
1 -7 18 -24

Since the remainder, R, is –24, f(–1) = –24, the polynomial evaluated at –1 
is –24. Performing a check as follows:

f −( ) = −( ) − −( ) + −( ) − = −1 1 6 1 11 1 6 243 2

Now divide the remaining polynomial again by –1 to find f ′(–1).
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Table 1.8.  Example 1.6 Synthetic division

-1 1 -6 11 -6
0 -1 7 -18

-1 1 -7 18 -24
0 -1 8
1 -8 26

Since the remainder, R, is 26, f ′(–1)=R*1!=26. The first derivative of the 
polynomial evaluated at –1 is 26. Performing a check as follows:

′( ) = − + =

′ −( ) = −( ) − −( ) + =

f x x x

f

3 12 11 0

1 3 1 12 1 11 26

2

2

Divide the remaining polynomial again by –1 to find f″′′(–1).

Table 1.9.  Example 1.6 Synthetic division

-1 1 -6 11 -6
0 -1 7 -18

-1 1 -7 18 -24
0 -1 8

-1 1 -8 26
0 -1
1 -9

Since the remainder, R, is –9, f ′′(–1)=R*2!= –9(1)( 2)= –18 and the  
second derivative of the polynomial evaluated at –1 is –18. Performing a 
check as follows:

′′ ( ) = − =

′′ −( ) = −( ) − = −

f x x
f

6 12 0

1 6 1 12 18

1.5 INC REMENTAL SEARCH METHOD

The incremental search method is a simple and quick way to find the 
approximate location of real roots to algebraic and transcendental  
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equations. A search is performed over a given range of values for x usually 
denoted as minimum and maximum values, xmin and xmax. An increment on 
x of Δx is used to determine the successive values of f(x). Each consecutive 
pair of functions of x are compared and when their signs are different a 
root of x has been bounded by the two values of x. Written in algorithmic 
form, a sign change occurs between xi and xi+1 if f(xi)f(xi+1) ≤ 0. The sign 
change generally indicates a root has been passed but could also indicate 
a discontinuity in the function. This process is illustrated graphically in 
Figure 1.1.

Example 1.7  Incremental search method

Determine the first approximate root of the following function starting at 
xmin

 = 0 and using an increment Δx = 0.25:

x x x3 28 4 20 16 13 824 0− + − =. . .

Table 1.10.  Example 1.7 Incremental search method

x 0 0.25 0.5 0.75 1 1.25
f(x) -13.8240 -9.2934 -5.7190 -3.0071 -1.0640 0.2041

f(x)

f(xi)

xi xi+1

f(xi+1)

x (x)

∆x

f(x)

∆x

Figure 1.1.  Incremental search method.
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Since the sign of f(x) changed between x = 1 and x = 1.25, it is assumed 
that a root was passed between those values. The actual root occurs at 
x = 1.2. In this example, five digits of precision were used, but in most 
cases it is a good rule to carry one more digit in the calculations than in the 
desired accuracy of the answer.

Once the roots have been bounded by the incremental search method, 
other methods can be utilized in finding more accurate roots: The follow-
ing sections will cover the refined incremental search, bisection, false 
position, secant, Newton–Raphson, and Newton’s second order meth-
ods to determine more accurate roots of algebraic and transcendental 
equations.

1.6  REFINED INCREMENTAL SEARCH METHOD

Closer approximations of the root may be obtained by the refined incre-
mental search method. This method is a variation of the incremental 
search method. Once a root has been bounded by a search, the last value 
of x preceding the sign change is used to perform another search using 
a smaller increment such as Δx/10 as shown in Figure 1.2 until the sign 
changes again.

This process can be repeated with smaller increments of x until the 
desired accuracy of the root is obtained. Usually the accuracy on the 

f(x)

f(xi) f(xi+1)

xi xi+1x (x)

∆x

f(x)

∆x

∆x/10

Figure 1.2.  Refined incremental search method.
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function of x is represented by epsilon, e, where |f(x)| <  e. Care must 
be taken in the selection of the starting point and the increment so that 
a root is not missed. This could happen if two roots occur within an 
increment and the sign of the function does not change at the successive 
values of x.

Example 1.8  Refined incremental search method

Refine the search of the function from Example 1.7 between 1.0 and 1.25 
using an increment of Δx = 0.25/10 or 1/10th the original increment.

x x x3 28 4 20 16 13 824 0− + − =. . .

Table 1.11.  Example 1.8 Refined incremental search method
x 1 1.025 1.05 1.075
f(x) -1.0640 -0.9084 -0.7594 -0.6170

x 1.1 1.125 1.15 1.175 1.2
f(x) -0.4810 -0.3514 -0.2281 -0.1110 0.0000

Since the sign of f(x) changed between x = 1.175 and x = 1.2, it is assumed 
that a root was passed between those values. The actual root occurs at 
x = 1.2.

1.7 BI SECTION METHOD

After a sign change has occurred in a search method, another way to rap-
idly converge (become closer and closer to the same number) on a root is 
the bisection method, also known as the half-interval method or the Bol-
zano method developed in 1817 by Bernard Bolzano. This method takes 
the bounded increment between two points xi and xi+1 where f(xi)f(xi+1) ≤ 0 
and divides it in two equal halves or “bisects” the increment. The two sub-
intervals have the first interval from xi to xi+ ½ and the second interval from 
xi+ ½ to xi+1 as seen in Figure 1.3.

Next, the subinterval containing the root can be found by the follow-
ing algorithm:

f(xi)f(xi+ ½) < 0, first interval contains the root
f(xi)f(xi+ ½) > 0, second interval contains the root
f(xi)f(xi+ ½) = 0, xi+ ½ is the root
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The process is continued by bisecting the subinterval containing the root 
and repeating the procedure until the desired accuracy is achieved. After 
n bisections, the size of the original interval has been reduced by a factor 
of 2n.

Example 1.9  Bisection method

Refine the search of the function from Example 1.7 between 1.0 and 1.25 
using the bisection method to increase the accuracy. Use e = 0.01 that is 
|f (x)| < e:

x x x3 28 4 20 16 13 824 0− + − =. . .

Begin by solving the equation for 1 and 1.25, which was done in 
Example 1.7. The sign changes, so a root lies between the two. We also 
know from the refined incremental search method the root should fall 
between 1.175 and 1.2. Next, bisect the increment between 1 and 1.25, 
which is a value of 1.125. Evaluate the function at that point and com-
pare the two subintervals for the sign changes. Also, check to see if 
the desired accuracy on f (x) is achieved. This occurs between 1.125 
and 1.25, so that interval is subdivided again at 1.1875. Continue the 
bisections until the desired accuracy is achieved. Note in Table 1.12 
this occurs at x = 1.1992 where f(x) = –0.0034. This is the last bisection 
between 1.1953 and 1.2031.

f(x)

f(xi)
f(xi+1/2)

f(xi+1)

xi xi+1xi+1/2x (x)

∆x

f(x)

∆x

Figure 1.3.  Bisection method.
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Table 1.12.  Example 1.9 Bisection method

1 2 3 4
x 1 1.25 1.125 1.1875

interval 1&2 2&3
f(x) -1.0640 0.2041 -0.3514 -0.0548

5 6 7
x 1.2188 1.2031 1.1953 1.1992

interval 2&4 4&5 4&6 6&7

f(x) 0.0793 0.0135 -0.0204 -0.0034

1.8 � METHOD OF FALSE POSITION OR LINEAR 
INTERPOLATION

Although the bisection method can be used to reach convergence, other 
methods such as false position provide the same accuracy more rapidly. 
The process is similar to the bisection method in that between xi and xi+1 
where f(xi)f(xi+1) ≤ 0 a root exists. Refer to xi and xi+1 as x1 and x2, respec-
tively. A straight line connecting x1 and x2 intersects the x-axis at a new 
value, say x3, which is closer to the root than either x1 or x2. Thus, by sim-
ilar triangles, the value of x3 can be found.

f x f x
x x

f x
x x

x x f x
x x

f x f x
2 1

2 1

1

3 1
3 1 1

2 1

2 1

0( ) − ( )
−

=
− ( )

−
∴ = − ( ) −

( ) − ( )

This equation can also be rewritten as follows:

	
x

x f x x f x
f x f x3

1 2 2 1

2 1

=
( ) − ( )
( ) − ( ) � (1.1)

The relationship between x1, x2, and x3 can be seen in Figure 1.4.

f(x1)f(x3) < 0, first interval contains the root
f(x1)f(x3) > 0, second interval contains the root
f(x1)f(x3) = 0, x3 is the root
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If the first interval contains the root, the values for the next cycle for x1 and 
x2 and the corresponding functions f(x1) and f(x2) are as follows:

x1 and f(x1) remain unchanged
x2= x3

f(x2)= f(x3)

If the second interval contains the root, then the values are used for x1 and 
x2 and the corresponding functions f(x1) and f(x2) are as follows:

x2 and f(x2) remain unchanged
x1 = x3

f(x1) = f(x3)

The process is continued until the desired accuracy is obtained.

Example 1.10  Method of false position

Refine the search of the function from Example 1.7 between 1.0 and 1.25 
using the false position method to increase the accuracy of the approxi-
mate root. For the accuracy test use ε = 0.01 that is |f(x)| < ε:

x x x3 28 4 20 16 13 824 0− + − =. . .

f(x)

f(x2)

f(x1)

x3

x2
x1

(x)

Figure 1.4.  Method of false position or linear interpolation.
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Using Equation 1.1 to solve for a closer point between x1
 = 1 and x2 = 1.25.

x
x f x x f x
f x f x3

1 2 2 1

2 1

1 0 2041 1 25 1 064
0 2041

=
( ) − ( )
( ) − ( ) =

( ) − −( ). . .
. −− −( ) =

1 064
1 2098

.
.

Repeat this process until the desired accuracy of the root is achieved as 
shown in Table 1.13.

Table 1.13.  Example 1.10 Method of false position

1 2 3 4
x 1 1.25 1.2098 1.2018

interval 1&2 1&3

f(x) -1.064 0.2041 0.0417 0.0080

1.9  SECANT METHOD

The secant method is similar to the false position method except that the 
two most recent values of x (x2 and x3) and their corresponding function 
values [f(x2) and f(x3)] are used to obtain a new approximation to the root 
instead of checking values that bound the root. This eliminates the need to 
check which subinterval contains the root. The variable renaming process 
for iteration is as follows:

x1 = x2  and  x2 = x3

f(x1) = f(x2)  and  f(x2) = f(x3)

In some instances interpolation occurs, this is when the new value is 
between the previous two values. In others, extrapolation occurs, meaning 
the new value is not between the previous two values. Interpolation was 
shown in Figure 1.4 and extrapolation is shown in Figure 1.5.

Example 1.11  Secant method

Refine the search of the function from Example 1.7 between 1.0 and 1.25 
using the secant method to increase the accuracy of the approximate root. 
For the accuracy test use e = 0.01.

x x x3 28 4 20 16 13 824 0− + − =. . .
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The process of finding the new value is the same as linear interpolation 
using Equation 1.1 to solve for a closer point between x1 = 1 and x2 = 1.25.

x
x f x x f x
f x f x3

1 2 2 1

2 1

1 0 2041 1 25 1 064
0 2041

=
( ) − ( )
( ) − ( ) =

( ) − −( ). . .
. −− −( ) =

1 064
1 2098

.
.

The reassignment of the values simply uses the last two values and their 
corresponding functions as shown in Table 1.14.

This happens to be similar to the false position Example 1.10 as only inter-
polations occur, but with different sub-intervals.

1.10 �N EWTON–RAPHSON METHOD OR 
NEWTON’S TANGENT

The Newton–Raphson method uses more information about the function 
to speed up convergence. It was originally developed by Issac Newton in 

f(x)

f(x2)

f(x3)

f(x1)

x3
x2x1 (x)

Figure 1.5.  Secant method.

Table 1.14.  Example 1.11 Secant method

1 2 3 4
x 1 1.25 1.2098 1.1994

1&2 2&3
f(x) -1.0640 0.2041 0.0417 -0.0025
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1669 (Newton 1669). Once an approximate root xn has been found, not 
only is the function, f(xn), used, but the slope of the function at that point, 
f ′(xn), is also incorporated to converge to the root more rapidly. The slope 
of the function is found from the first derivative of the function evaluated 
at a point. This only requires the use of one value to be known. The slope 
intersects the x-axis at a value xn+1 as shown in Figure 1.6 and the relation-
ship is given in Equation 1.2.

	
′ ( ) = ( )

−
∴ = − ( )

′ ( )+
+f x

f x
x x

x x
f x
f xn

n

n n
n n

n

n1
1 � (1.2)

Repeat the process using a new value until convergence occurs. Conver-
gence may not occur in the following two cases:

•	 f ′′(xn), (curvature) changes sign near a root, shown in Figure 1.7.
•	 Initial approximation is not sufficiently close to the true root and 

the slope at that point has a small value, shown in Figure 1.8.

Example 1.12  Newton–Raphson method

Refine the search from Example 1.7 with a starting value of 1.25 using 
the Newton–Raphson method to increase the accuracy of the approximate 
root. For the accuracy test use e = 0.01.

x x x3 28 4 20 16 13 824 0− + − =. . .

f(x)

f(x)

f(xn)

f′(xn)
xn

xn+1 (x)

Figure 1.6.  Newton–Raphson method or Newton’s tangent.
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The derivative of the function must be obtained to find the slope at any 
given value.

f x x x x

f x x x
( ) = − + −

′ ( ) = − +

3 2

2

8 4 20 16 13 824

3 16 8 20 16

. . .

. .

Beginning with xn = 1.25, use Equation 1.2 to determine the next value.

f

f

1 25 1 25 8 4 1 25 20 16 1 25 13 824 0 2041

1 25

. . . . . . . .

.
( ) = − ( ) + ( ) − =

′ ( )

3 2

== − ( ) + =

= −
( )
′ ( ) =+

3 1 25 16 8 1 25 20 16 3 8475

1 25

2

1

( . ) . . . .

.x x
f x
f xn n

n

n

−− =
0 2041
3 8475

1 1969.
.

.

f(x)

(x)xn+2xn+1xn+3

xn

Figure 1.7.  Newton–Raphson method or Newton’s tangent.

f(x)

xn+2

xn+4 xn+1 (x)xn+3
xn

Figure 1.8.  Newton–Raphson method or Newton’s tangent.
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Repeat the process until the desired accuracy is obtained in Table 1.15.

Table 1.15.  Example 1.12 Newton–Raphson method

x 1.25 1.1969 1.19999
f(x) 0.2041 -0.0132 -0.00004
f ′(x) 3.8475 4.3493 4.32010

1.11 N EWTON’S SECOND ORDER METHOD

Newton’s second order method is often a preferred method to determine 
the value of a root due to its rapid convergence and extremely close 
approximation. This method also includes the second derivative of the 
function or the curvature to find the approximate root. The equation 
f(x) = 0 is considered as the target for the root. Figure 1.9 shows the plot 
of the actual function. 

The Taylor series expansion was discovered by James Gregory and 
introduced by Brook Taylor in 1715 (Taylor 1715). The following is a 
Taylor series expansion of f (x) about x = xn:

f x f x f x x
f x x f x x

n n n
n n

+( ) = ( ) + ′ ( )( ) +
′′ ( )( )

+
′′′ ( )( )

+…1

2 3

2 3
∆

∆ ∆
! !

For a means of determining a value of Δx that will make the Taylor series 
expansion go to zero, the first three terms of the right hand side of the 
equation are set equal to zero to obtain an approximate value.

f(x)

f(x)
∆x

xn

xn+1 (x)

Figure 1.9.  Newton’s second order method.
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f x x f x
f x x

n n
n( ) + ( ) ′ ( ) +

′′ ( )( )







 =∆

∆
2

0

The exact value of Δx cannot be determined from this equation since only 
the first three terms of the infinite series were used in the calculation. 
However, a close approximation of the root is a result. When using this 
equation to calculate  Δx, a quadratic must be solved yielding two possible 
roots. In order to avoid this problem, Δx = -f (xn)/f ′ (xn) from Newton’s 
tangent may be substituted into the bracketed term only.

f x x f x
f x f x

f xn n
n n

n
( ) + ( ) ′ ( ) −

′′ ( ) ( )
′ ( )









 =∆

2
0

Solving for Δx we obtain the following:

∆x
f x

f x
f x f x

f x

n

n
n n

n

= − ( )
′ ( ) −

′′ ( ) ( )
′ ( )

















2

Observing Figure 1.9 we see that Δx = xn+1 - xn. Substituting into the pre-
vious equation, Equation 1.3 is obtained as follows:

	

x x
f x

f x
f x f x

f x

n n
n

n
n n

n

+ = − ( )
′ ( ) −

′′ ( ) ( )
′ ( )



















1

2

� (1.3)

If the first derivative is small, the slope is close to zero near the value 
and the next approximation may be inaccurate. Therefore, use the second 
derivative term as follows:

′ ( ) =

( ) + ( ) ′′ ( )( )







 =

− ( ) = ( ) ′′ ( )

f x

f x x
f x x

f x x
f x x

n

n
n

n
n

0

2
0∆

∆

∆
∆(( )











+
( )

′′ ( ) =

2

2

2

2

0∆x
f x
f x

n

n
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Solving by the quadratic equation, two roots are obtained:

∆x b b ac
a

f x
f x

f x
f x

n

n

n

n

=
− ± −

=

−( ) ± − ( ) ( )
′′ ( )

( ) = ±

−
( )

′′
2

2

4
2

0 0 4 1

2
2 1

2 (( )

= ± −
( )

′′ ( )

2
2

2

∆x
f x
f x

n

n

With Δx = xn+1 - xn, Equation 1.4 is as follows:

	

x x
f x
f xn n

n

n
+ = ± −

( )
′′ ( )1

2

� (1.4)

This process is a good tool for finding two roots that are near each other. 
This will happen when the slope is close to zero near a root. Double roots 
occur when the first derivative is zero, triple roots occur when the first 
and second derivatives are zero, and so on. These are shown graphically 
in Figure 1.10.

Example 1.13  Newton’s second order method

Refine the search from Example 1.7 with a starting value of 1.25 using the 
Newton’s second order method to increase the accuracy of the approxi-
mate root. For the accuracy test use e = 0.01.

f(x) f(x) f(x)

Single root Double root Triple root

(x)(x) (x)

Figure 1.10.  Newton’s second order method.
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x x x3 28 4 20 16 13 824 0− + − =. . .

The first and second derivatives of the function must be obtained to find 
the slope and curvature at any given value.

f x x x x

f x x x
f x x

( ) = − + −

′ ( ) = − +

′′ ( ) = −

3 2

2

8 4 20 16 13 824

3 16 8 20 16

6

. . .

. .

116 8.

Beginning with xn=1.25, use Equation 1.3 to determine the next value.

f

f

1 25 1 25 8 4 1 25 20 16 1 25 13 824 0 2041

1 25

. . . . . . . .

.
( ) = − ( ) + ( ) − =

′ ( )

3 2

== − ( ) + =

′′ ( ) = ( ) − = −

3 1 25 16 8 1 25 20 16 3 8475

1 25 6 1 25 16 8

( . ) . . . .

. . .

2

f 99 30.

x x
f x

f x
f x f x

f x

n n
n

n
n n

n

+ = −
( )

′ ( ) −
′′ ( ) ( )

′ ( )





















=1

2

1 25. −−
−

−( )
( )



















=

0 2401

3 8475
9 3 0 2041

2 3 8475

1 2001

.

.
. .

.

.

Repeat the process until the desired accuracy is obtained in Table 1.16.

1.12 G RAEFFE’S ROOT SQUARING METHOD

Graeffe’s root squaring method is a root-finding method that was among 
the most popular methods for finding roots of polynomials in the 19th 
and 20th centuries. This method was developed independently by  

Table 1.16.  Example 1.13 Newton’s second order method

x 1.25 1.200143 1.2
f(x) 0.2041 0.00062 0.000000
f ′(x) 3.8475 4.31863 4.320000
f ″(x) -9.3000 -9.59914 -9.600000
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Germinal Pierre Dandelin in 1826 and Karl Heinrich Gräffe in 1837. 
The Graeffe’s root squaring method is especially effective if all roots 
are real. The derivation of this method proceeds by multiplying a poly-
nomial f (x) by f (–x) using the following polynomial equations in fac-
tored form:

f x x a x a x a x a

f x x a x a x a
n( ) = −( ) −( ) −( )… −( )

−( ) = −( ) −( ) −( ) −( )
1 2 3

1 2 31 …… −( )
( ) −( ) = −( ) −( ) −( ) −( )… −( )

x a

f x f x x a x a x a x a
n

n
n1 2

1
2 2

2
2 2

3
2 2 2

For example, use a third degree polynomial with roots x1, x2, and x3 as 
follows:

f x x a x a x a( ) = = + + +0 3
1

2
2 3

A polynomial with roots −x1, −x2, and −x3 follows:

f x x a x a x a−( ) = = − + − +0 3
1

2
2 3

Multiplying the two equations together yields the following:

f x f x x a a x a a a x a( ) −( ) = = − + −( ) + − +( ) +0 2 26
1
2

2
4

2
2

1 3 3
2

Letting y = −x2 this equation may be written as follows:

0 2 23
1
2

2
2

2
2

1 3 3
2= + −( ) + −( ) +y a a y a a a y a

This equation has roots of −x1
2, −x2

2, and −x3
2. If the procedure was 

applied again, another polynomial would be derived with roots of −x1
4, 

−x2
4, and −x3

4. If computed a third time, they would be of −x1
8, −x2

8, and 
−x3

8. The pattern of the roots becomes clear with continuing cycles. The 
general process of an nth degree polynomial would be in the following 
forms:

0 2 2 2

2 2 2

1
2

2
1

2
2

1 3 4
2

3
2

2 4 1 5 6

= + −( ) + − +( )
+ − + −

− −y a a y a a a a y

a a a a a a

n n n

(( ) + +−y an
n

3 2�
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This can be written with the coefficients in a vertical format as follows:

0
2

2
2

1
2

2

1
2
2

1 3

4

2

3
2

= +
−












+ −

+

















+− −y
a
a

y
a
a a
a

y

a

n n n −−
+
−



















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+
−
+
−
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2
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2
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2 4

1 5
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3 5

2 6

1 7

a a
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a
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a a
a a

n

 

++
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























+ +−

2 8

4 2

a
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n�

A tabular solution may be set up considering the following general 
polynomial:

f x a x a x a x a x a x an n n n
n n( ) = + + + + + + =

− − −

−0 1
1

2
2

3
3

1
1 0�

Carefully inspect the coefficient of the polynomial for a pattern. The solu-
tion of the original polynomial can take three different forms. These are 
shown in Figure 1.11.

•	 Real and distinct roots
•	 Real and equal roots
•	 Complex roots

f(x) f(x) f(x)

Three real roots One real and
one double root

One real and
one imaginary root

(x)(x) (x)

Figure 1.11.  Graeffe’s root squaring method.
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1.12.1  REAL AND DISTINCT ROOTS

The first possible solution type will occur after many cycles of squaring 
the polynomial; the coefficients of the derived polynomial are the squares 
of the terms from the preceding cycle. This is known as the regular solu-
tion and yields real and distinct roots (not equal). The roots of the polyno-
mial or the derived polynomials can be determined from the factored form 
of the polynomials. The Enke roots of a polynomial are the negatives of 
the roots of the polynomial. If r is denoted as the Enke root designation, 
then x1 = -r1, x2 = -r2 … xn = -rn. The third degree polynomial is shown 
in factored form:

f x x a x a x a

f x x x x x x x
( ) = = + + +

( ) = = −( ) −( ) −( )
0

0

3
1

2
2 3

1 2 3

If the previous equation is multiplied out, the following is the result:

f x x x x x x x x x x x x x x x x( ) = = − + +( ) + + +( ) −0 3
1 2 3

2
1 2 1 3 2 3 1 2 3

Therefore, for the polynomial, the original coefficients are as follows:

a x x x
a x x x x x x
a x x x

1 1 2 3

2 1 2 1 3 2 3

3 1 2 3

= − + +( )
= + +
= −

The Enke roots of x1 = −r1, x2 = −r2, and x3 = −r3 are substituted in. The 
sign has been lost so the Enke roots are used as the basis (x1 = −r1, x2 = −r2, 
etc.), then the following is true:

a r r r
a r r r r r r
a r r r

1 1 2 3

2 1 2 1 3 2 3

3 1 2 3

= + +
= + +
=

As the cycles (m) continue, the derived polynomial becomes the following:

f x y b y b y b( ) = = + + +0 3
1

2
2 3
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The Enke root relationship is then as follows:

b r r r
b r r r r r r
b r r r

m m m

m m m m m m

m m m

1 1 2 3

2 1 2 1 3 2 3

3 1 2 3

= + +

= + +

=

If we consider only the dominant terms in each expression, the following 
occurs:

b r
b r r
b r r r

m

m m

m m m

1 1

2 1 2

3 1 2 3

≅

≅

≅

These become the following:

b r r b

b r r r
b
r

b
b

r
b
b

b r

m m

m m m
m

m

1 1 1 1

1

2 1 2 2
2

1

2

1
2

2

1

1

3

≅ ∴ ≅

≅ ∴ ≅ ≅ ∴ =




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≅ 11 2 3 3
3

1 2

3

2
3

3

2

1

m m m m
m m

m

r r r
b
r r

b
b

r
b
b

∴ ≅ ≅ ∴ =






The general expression for this regular solution is the following:

r
b
b

r
b
bn

m n

n
n

n

n

m

≅ ∴ =




− −1 1

1

The Enke roots only lack the proper sign and either positive or negative 
may be correct, so a check is necessary.

Example 1.14 � Graeffe’s root squaring method—real and distinct 
roots.

Find the root of the following polynomial using Graeffe’s root squaring 
method.

f x x x x x( ) = = − + − +0 10 35 50 244 3 2
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Table 1.18.  Example 1.14 Graeffe’s root squaring method—real and 
distinct roots

m x4 a1x
3 a2x

2 a3x a4x
0 cycle

1 1 -10 35 -50 24 1

1 100 1225 2500 576

-70 -1000 -1680
48

2 1 30 273 820 576 2

1 900 74529 672400 331776

-546 -49200 -314496
1152

4 1 354 26481 357904 331776 3
1 1.253E+05 7.012E+08 1.281E+11 1.101E+11

-5.296E+04 -2.534E+08 -1.757E+10
6.636E+05

8 1 7.235E+04 4.485E+08 1.105E+11 1.101E+11 4
1 5.235E+09 2.012E+17 1.222E+22 1.212E+22

-8.970E+08 -1.599E+16 -9.874E+19
2.202E+11

16 1 4.338E+09 1.852E+17 1.212E+22 1.212E+22 5
1 1.882E+19 3.429E+34 1.468E+44 1.468E+44

-3.703E+17 -1.051E+32 -4.487E+39
2.423E+22

32 1 1.845E+19 3.418E+34 1.468E+44 1.468E+44 6
1 3.404E+38 1.168E+69 2.155E+88 2.155E+88

-6.836E+34 -5.417E+63 -1.004E+79
2.936E+44

64 1 3.403E+38 1.168E+69 2.155E+88 2.155E+88 7
1 1.158E+77 1.365E+138 4.646E+176 4.646E+176

-2.337E+69 -1.467E+127 -5.037E+157
4.311E+88

128 1 1.158E+77 1.365E+138 4.646E+176 4.646E+176 8
r 4 3 2 1
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Refer to Table 1.17 for the basic procedure for the root squaring. Table 1.18 
shows the process for this polynomial.

To determine the proper sign of the roots from the Enke roots, a check 
is required.

r b

r
b
b

m

m

1 1

1 77
1
128

2
2

1

1

1 158 10 4 000

1 365 10

≅ = ( )



 = ±

=
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


=
(

. .

. ))
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








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= ±
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.
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m (( )
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
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





= ±

=




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=

176

138

1
128

4
4

3

1

1 365 10
2 000

4 646

.
.

.
r

b
b

m 110

4 646 10
1 000

176

176

1
128( )

( )












= ±
.

.

Substituting the Enke roots into the original equations yields x1 = 4.000, 
x2 = 3.000, x3 = 2.000, and x4 = 1.000.

1.12.2  REAL AND EQUAL ROOTS

After many cycles of squaring the polynomial, the second possible solu-
tion type will occur when the coefficients of the derived polynomial are 
the squares of the terms in the preceding cycle with the exception of one 
term that is ½ the square of the term in the preceding cycle. This indicates 
that two of the roots are equal, the one with the ½ squared term and the 
next one to the right. Furthermore, if one term is 1/3 the square of the term 
in the proceeding cycle, three of the roots are equal—the term with the 
1/3 squared term and the next two to the right. A similar relationship will 
occur if four or more roots are equal. The roots (Enke roots) will have a 
relationship similar to the following assuming r1 = r2 and considering only 
the dominant terms in each expression:

b r r r r r b r
b r r r r r r r r

m m m m m m

m m m m m m m
1 1 2 3 1 1 1 1

2 1 2 1 3 2 3 1

2= + + = + ∴ ≅

= + + = 11 2 1
2

3 1 2 3 1 1 3 3 1
2

3

m m

m m m m m m m m

b r
b r r r r r r b r r

∴ ≅

= = ∴ ≅
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These become the following:

b r r
b

b r r b r

b r r b r

m
m

m m

m m

1 1 1
1

1

2 1
2

1 2

1
2

2

3 1
2

3 2 3

2
2

≅ ∴ ≅ 



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≅ ∴ = ( ) =

≅ = mm
m

r
b
b

∴ =




3

3

2

1

After the multiple roots have been passed, the rest of the terms have the 
regular solution relationship and will appear as follows:

r
b
b

r
b
bn

m n

n
n

n

n

m

≅ ∴ =




− −1 1

1

If the second term was ½ the square of the term in the previous cycle, then 
the solution would appear as follows, assuming r2 = r3 and considering 
only the dominant terms in each expression:

b r r r r b r
b r r r r r r r r r

m m m m m

m m m m m m m m
1 1 2 3 1 1 1

2 1 2 1 3 2 3 1 2 1

= + + = ∴ ≅

= + + = + mm m m m

m m m m m m m m

r b r r
b r r r r r r b r r

2 2 1 2

3 1 2 3 1 2 2 3 1 2
2

2∴ ≅

= = ∴ ≅

These become the following:

b r r b

b r r b r r
b
b

r

b r

m m

m m m
m

1 1 1 1

1

2 1 2 1 2 2
2
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1

3

3 1

2 2
2

≅ ∴ ≅ ( )

≅ = ∴ =






=

≅ mm m m
m

r b r r
b
b

r2
2

1 2
2

2
3

1

1
2

3= ∴ =






=

Similar to the previous case where r1 = r2, after the multiple roots have 
been passed, the rest of the terms have the regular solution relationship 
and will appear as follows:

r
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b
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m n

n
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Note the pattern of the powers and the relationship for any other variations 
of two roots may be found. Derive one more case for a triple root. If the 
first term was 1/3 the square of the term in the previous cycle, it would indi-
cate a triple root or r1 = r2 = r3. If we consider only the dominant terms in 
each expression, the following relationships occur:

b r r r r r r r b r
b r r r r r

m m m m m m m m

m m m m m
1 1 2 3 4 1 1 1 1 1

2 1 2 1 3 1

3= + + + = + + ∴ ≅

= + + rr r r r r r r r r
r r r r b r

m m m m m m m m m

m m m m
4 2 3 2 4 3 4 1 1

1 1 1 1 2 13
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+ + ∴ ≅     22

3 1 2 3 1 2 4 1 3 4 2 3 4 1 1 1 3
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After the multiple roots have been passed, the rest of the terms have the 
regular solution relationship and will appear as follows:

r
b
b

r
b
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m n
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n

m

≅ ∴ =




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Just like with the regular solution for real and distinct roots, the Enke roots 
only lack the proper sign and either + or – must be checked.

Example 1.15 � Graeffe’s root squaring method—real and equal 
roots

Find the root of the following polynomial using Graeffe’s root squaring 
method.

f x x x( ) = = + −0 3 43 2

Refer to Table 1.17 for the basic procedure for the root squaring. Table  1.19 
shows the process for this polynomial.
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Table 1.19.  Example 1.15 Graeffe’s root squaring method—real and 
equal roots

m x3 a1x
2 a2x

1 a3x
0 cycle

1 1 3 0 -4 1
1 9 0 16

0 24
2 1 9 24 16 2

1 81 576 256
-48 -288

4 1 33 288 256 3
1 1089 82944 65536

-576 -16896
8 1 513 66048 65536 4

1 2.632E+05 4.362E+09 4.295E+09
-1.321E+05 -6.724E+07

16 1 1.311E+05 4.295E+09 4.295E+09 5
1 1.718E+10 1.845E+19 1.845E+19

-8.590E+09 -1.126E+15
32 1 8.590E+09 1.845E+19 1.845E+19 6

1 7.379E+19 3.403E+38 3.403E+38
-3.689E+19 -3.169E+29

64 1 3.689E+19 3.403E+38 3.403E+38 7
1 1.361E+39 1.158E+77 1.158E+77

-6.806E+38 -2.511E+58
128 1 6.806E+38 1.158E+77 1.158E+77 8

1 4.632E+77 1.341E+154 1.341E+154
-2.316E+77 -1.576E+116

256 1 2.316E+77 1.341E+154 1.341E+154 9
r 2 2 1

Notice that the first term in the table for cycle 9 is ½ the square of the term 
in the previous cycles and the following solution applies:

r
b

r b

m

m

1
1

1 77
1

256

2 2

1
2

2
2 316 10

2
2 000

1 3

≅ 





=








 = ±

≅ ( ) =

. ( ) .

. 441 10 2 000

1 341 10

154
1

2 256
1

3
3

2

1
15

( ) .

. ( )

  = ± =

≅






=

( ) r

r
b
b

m 44

154

1
256

1 341 10
1 000

. ( )
.









 = ±
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Substituting the Enke roots into the original equations yields x1=−2.000, 
x2=−2.000, and x3 = 1.000.

1.12.3  REAL AND COMPLEX ROOTS

The third possible solution type will occur after many cycles of squaring 
the polynomial; the coefficients of the derived polynomial are the squares 
of the terms in the preceding cycle, except if one or more terms have a 
sign fluctuation, then two of the roots are complex—the one with the sign 
fluctuation term and the next one to the right constitutes the complex con-
jugate pair of roots. The roots (Enke roots) will have a relationship similar 
to the following assuming r3 and r4 are the complex conjugate pair of roots 
and considering only the dominant terms in each expression:

x Re cos isin u iv

x Re cos isin u iv

i

i

3

4

= = +( ) = +

= = −( ) = −−

q

q

q q

q q

The values i and R for the complex form in polar or Cartesian simple 
form are:

i R u v= − = +1 2 2    and    

The form of the coefficients will become the following:

b r r R e e

b r r r Re r Re r

m m m i m i m

m m i m i m

1 1 2

2 1 2 1 1 2

= + + +( )
= + ( ) + ( ) +

−

−

q q

q q RRe r Re R

b r r Re r r Re r R

i m i m m

i m i m m

q q

q q

( ) + ( ) +

= ( ) + ( ) + ( )

−

−

2
2

3 1 2 1 2 1
2 ++ ( )

= ( )
r R

b r r R

m

m

2
2

4 1 2
2

These become the following using polar transformations:

b r r R cos m

b r r R r r cos m R

b

m m m

m m m m m m

1 1 2

2 1 2 1 2
2

3

2

2

= + + ( )
= + + +( ) +

=

 

 

q

q

22 1 2
2

1 2

4 1 2
2

r r R cos m R r r

b r r R

m m m m

m

( ) + +( )
= ( )

 q
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If we consider only the dominant terms in each expression, the following 
occurs:

b r r b

b r r b r r
b
b

b r r R

m m

m m m
m

1 1 1 1

1

2 1 2 1 2 2
2

1

1

3 1 22

= ∴ = ( )

= = ∴ =






= ( )mm
m

cos m

b r r R

 q

4 1 2
2= ( )

Dividing the second and fourth equations:

b
b

R R
b
b

m
m

4

2

2 4

2

1
2

= ∴ ≅






Using the fact that R2 = u2 + v2 the following is used to find u and v:

a x x x x

a x x u vi u vi

a x x u

1 1 2 3 4

1 1 2

1 1 2 2

= − + + +( )
= − + + +( ) + −( )( )
= − + +( )

Use b1 and b2 to find r1 and r2, then x1 and x2. Use b4 and b2 to find R then 
use a1 to find u and R to find v. The Enke roots, once again, only lack the 
proper sign and either + or – may be correct.

Example 1.16 � Graeffe’s root squaring method—real and 
complex roots

Find the root of the following polynomial using Graeffe’s root squaring 
method.

f x x x x x( ) = = + − − −0 6 14 124 3 2

Refer to Table 1.17 for the basic procedure for root squaring. Table 1.20 
shows the process for this polynomial.

The third term has a sign fluctuation thus the previously derived rela-
tionships apply and the following is the solution:
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r b

r
b
b

m

m

1 1

1 61
1
128

2
2

1

1

1 179 10 3 000

4 012 10

= ( ) = ( )( ) = ±

=






=
(

. .

. ))
( )









 = ±

99

61

1
128

1 179 10
2 000

.
.

Table 1.20.  Example 1.16 Graeffe’s root squaring method—real and 
complex roots

m x4 a1x
3 a2x

2 a3x a3x
0 cycle

1 1 1 -6 -14 -12 1

1 1 36 196 144
12 28 -144

-24
2 1 13 40 52 144 2

1 169 1600 2704 20736

-80 -1352 -11520
288

4 1 89 536 -8816 20736 3

1 7921 287296 77721856 429981696

-1072 1569248 -22228992
41472

8 1 6.849E+03 1.898E+06 5.549E+07 4.300E+08 4
1 4.691E+07 3.602E+12 3.079E+15 1.849E+17

-3.796E+06 -7.601E+11 -1.632E+15
8.600E+08

16 1 4.311E+07 2.843E+12 1.447E+15 1.849E+17 5
1 1.859E+15 8.084E+24 2.094E+30 3.418E+34

-5.686E+12 -1.248E+23 -1.051E+30
3.698E+17

32 1 1.853E+15 7.959E+24 1.043E+30 3.418E+34 6
1 3.434E+30 6.334E+49 1.088E+60 1.168E+69

-1.592E+25 -3.866E+45 -5.441E+59
6.836E+34

64 1 3.434E+30 6.334E+49 5.441E+59 1.168E+69 7
1 1.179E+61 4.012E+99 2.960E+119 1.365E+138

-1.267E+50 -3.736E+90 -1.480E+119
2.337E+69

128 1 1.179E+61 4.012E+99 1.480E+119 1.365E+138 8
r 3 2 1.421892602 1.40657599
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Substituting the Enke roots into the original equations yields x1 = 3.000 
and x2 = -2.000.

R
b
b

m

=






=
( )
( )









 = ± =4

2

1
2 138

99

1
2561 3652 10

4 012 10
1 414

.

.
. ±± 2

Using the fact that R2 = u2 + v2, the following is used to find u and v:

1 2 3 2 2 1

2 1 1

1 1 2

2 2 2 2

= = − + +( ) = − − +( )∴ = −

= + ∴ = − = − =

a x x u u u

R u v v R u

Thus results are x3 = -1 + i and x4 = -1 - i.

1.13 B AIRSTOW’S METHOD

Bairstow’s method was first published by Leonard Bairstow in 1920 
(Bairstow 1920). If we divided a polynomial of nth degree by a quadratic 
equation, the result will be a polynomial of n−2 degree plus some remain-
der. This remainder can be used to give a closer approximation of the root 
quadratic equation. When the remainder is zero, the quadratic is a root 
equation. Bairstow’s method involves using the remainders from double 
synthetic division to approximate the error in an assumed quadratic root 
equation of a polynomial. The derivation is omitted from this text, but 
may be found in “Applied Numerical Methods for Digital Computations,” 
by James, Smith and Wolford (1977). Look at the process of factoring a 
polynomial into a quadratic equation times a polynomial of two degrees 
less than the original polynomial as follows:

                  x a x a x a x a x a

x

n n n n
n n+ + + + + + =

+

− − −
−1

1
2

2
3

3
1

1

2

0�

uux v x b x b x b x b remaindern n n
n n+( ) + + + + + +( ) =− − −

− −
2

1
3

2
4

3
1

2 0�

The derived polynomial follows with the terms in the brackets being the 
remainder:

x b x b x b x b b bn n n
n n n n

− − −
− − −+ + + + + + +[ ]( ) =2

1
3

2
4

3
1

2 1 0�

Divide the resulting polynomial by the quadratic equation in order to 
derive an equation that has something to do with the derivative of the 
original equation. This will be a polynomial four degrees less than the 
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original polynomial. The following is the form of the second polynomial 
with the terms in the brackets being the remainder:

x c x c x c x c c c cn n n
n n n n n

− − −
− − − − −+ + + + + + + +[ ]( ) =4

1
5

2
6

5
1

4 3 2 1 0�

The solution may be set up in synthetic division form shown in Table 1.21:

Using the preceding values, the approximations for the change in u and v 
values denoted Δu and Δv are as follows:

∆ ∆u

b c
b c
c c
c c

and v

c b
c b
c c

n n

n n

n n

n n

n n

n n

n

= =

−

− −

− −

− −

−

− −

−

2

1 3

1 2

2 3

1

2 1

1 nn

n nc c
u u u and v v v

−

− −

= + = +

2

2 3

2 2∆ ∆

Continue the process until Δu and Δv are equal to zero. The two roots are 
as follows by the quadratic equation:

x ux v with x u u v2
1 2

2 4
2

+ +( ) =
− ± − ,

Example 1.17  Bairstow’s method

Find all the roots of the following polynomial using Bairstow’s method.

f x x x x x x( ) = = − − + + +0 3 10 10 44 485 4 3 2

Begin by assuming u = 1.5 and v = 1.5 to perform the synthetic division 
shown in Table 1.22.

Table 1.21.  Bairstow’s method

-u a0 a1 a2 ……. an-3 an-2 an-1
an

0 -ub0 -ub1 -ubn-4 -ubn-3 -ubn-2 -ubn-1

-v 0 0 -vb0
……. -vbn-5 -vbn-4 -vbn-3 -vbn-2

-u b0 b1 b2 ……. bn-3 bn-2 bn-1
bn

0 -uc0 -uc1 -ucn-4 -ucn-3 -ucn-2

-v 0 0 -vc0
……. -vcn-5 -vcn-4 -vcn-3

c0 c1 c2 ……. cn-3 cn-2 cn-1
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Table 1.22. Example 1.17 Bairstow’s method

-1.5 1 -3 -10 10 44 48

-1.5 6.75 7.125 -35.813 -22.969

-1.5 -1.5 6.75 7.125 -35.813

-1.5 1 -4.5 -4.75 23.875 15.313 -10.781

-1.5 9 -4.125 -43.125

-1.5 -1.5 9 -4.125
1 -6 2.75 28.75 -31.938

∆u =

−

−
=

−
10 781 28 750

15 313 2 750
31 938 28 750

28 750 2 750

10 78
. .

. .
. .

. .

. 11 2 750 28 750 15 313
31 935 2 750 28 750 28 75

( )( ) − ( )( )
−( )( ) − ( )

. . .
. . . . 00

469 88
914 39

0 5139

( )

=
−
−

=
.
.

.

∆v =

− −

−
=

−
31 938 10 781

28 750 15 313
31 938 28 750

28 750 2 750

31
. .

. .
. .

. .

.9938 15 313 10 781 28 750
31 935 2 750 28 750 2

( )( ) − −( )( )
−( )( ) − ( )

. . .
. . . 88 750

179 08
914 39

0 1958

.

.

.
.

( )

=
−
−

=

u u u2 1 5 0 5139 2 0139= + = + =∆ . . .

v v v2 1 5 0 1958 1 6958= + = + =∆ . . .

Now, repeat the process using the revised values for u and v shown in 
Table 1.23.

Table 1.23. Example 1.17 Bairstow’s method

-2.0139 1 -3 -10 10 44 48

-2.014 10.097 3.219 -43.745 -5.972

-1.6958 -1.696 8.503 2.711 -36.837

-2.0139 1 -5.014 -1.599 21.722 2.965 5.191

-2.014 14.153 -21.868 -23.707

-1.6958 -1.696 11.918 -18.415
1 -7.028 10.859 11.772 -39.157
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∆u =
−

=
( )

5 191 11 772
2 965 10 859
39 157 11 772

11 772 10 859

5 191
. .
. .

. .
. .

. 110 859 11 772 2 965
39 157 10 859 11 772 11 772

. . .
. . . .

( ) − ( )( )
−( )( ) − ( )( ))

=
−

= −
21 45
563 77

0 0381.
.

.

∆v =

−

−
=

−
39 157 5 191

11 772 2 965
39 157 11 772

11 772 10 859

39 15
. .

. .
. .

. .

. 77 2 965 5 191 11 772
39 157 10 859 11 772 11 77

( )( ) − ( )( )
−( )( ) − ( )

. . .
. . . . 22

177 22
563 77

0 3145

( )

=
−
−

=
.
.

.

u u u
v v v

2

2

2 0139 0 0381 1 9758
1 6958 0 3145 2 0102

= + = + − =
= + = + =

∆
∆

. . .
. . .

Now, repeat the process using the revised values for u and v shown in 
Table 1.24.

Table 1.24. Example 1.17 Bairstow’s method

-1.9758 1 -3 -10 10 44 48

-1.976 9.831 4.305 -48.027 -0.698

-2.0102 -2.010 10.002 4.380 -48.863

-1.9758 1 -4.976 -2.179 24.308 0.353 -1.561

-1.976 13.735 -18.861 -38.373

-2.0102 -2.010 13.974 -19.189
1 -6.952 9.546 19.421 -57.208

∆u =

−

−
=

−( )
1 561 19 421

0 353 9 546
57 208 19 421

19 421 9 546

1 561
. .

. .
. .

. .

. 99 546 19 421 0 353
57 208 9 546 19 421 19 421

. . .
. . . .

( ) − ( )( )
−( )( ) − ( )( )

=
−−

−
=

21 74
923 27

0 0236.
.

.
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∆v =

− −

−
=

−
57 208 1 561

19 421 0 353
57 208 19 421

19 421 9 546

57 20
. .

. .
. .

. .

. 88 0 353 1 561 19 421
57 208 9 546 19 421 19 42

( )( ) − −( )( )
−( )( ) − ( )

. . .
. . . . 11

10 11
923 27

0 0110

( )

=
−

= −
.

.
.

u u u
v v v

2

2

1 9758 0 0236 1 999
2 0102 0 0110 1 999

= + = + =
= + = − =

∆
∆

. . .
. . .

It appears the values are u = 2 and v = 2. Repeat the process using the 
revised values for u and v shown in Table 1.25.

Table 1.25. Example 1.17 Bairstow’s method
-2 1 -3 -10 10 44 48

-2 10 4 -48 0
-2 -2 10 4 -48

1 -5 -2 24 0 0

Since the remainders of the first division bn−1 and bn are both zero, u = 
2 and v = 2 are the coefficients of the root quadratic. Substitute into the 
quadratic equation to find the roots.

x x with x i2
1 2

2

2 2
2 2 4 2

2
1 1 1+ +( ) =

− ± − ( )
= − ± − = − ±  ,

The first two roots are x1 = −1 + i and x2 = −1 − i. The remaining values 
are the coefficients of the factored polynomial.

f x x x x x x( ) = + +( ) − − +( )2 3 22 2 5 2 24

The remaining polynomial may be solved using the same method. This 
time begin with u = 0 and v = 0 in Table 1.26.

Table 1.26. Example 1.17 Bairstow’s method
0 1 -5 -2 24

0 0 0
0 0 0
0 1 -5 -2 24

0 0
0 0

1 -5 -2
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∆u =

−
−
− −
−

=
( )( ) − −( ) −( )
−( )( ) − −( ) −( ) =

−
= −

24 5
2 1
2 5
5 1

24 1 5 2
2 1 5 5

14
27

00.5185

∆v =

−
−

− −
−

=
−( ) −( ) − ( )( )
−( )( ) − −( ) −( ) =

−
=

2 24
5 2
2 5
5 1

2 2 24 5
2 1 5 5

124
27

−−4 5626.

u u u
v v v

2

2

0 0 0236 0 5185
0 4 5626 4 5626

= + = − = −
= + = − = −

∆
∆

. .
. .

Repeat the process using the revised values for u and v shown in 
Table 1.27.

Table 1.27. Example 1.17 Bairstow’s method
0.5185 1 -5 -2 24

0.519 -2.324 0.139

4.5926 4.593 -20.582
0.5185 1 -4.481 0.269 3.558

0.519 -2.055
4.5926 4.593

1 -3.963 2.807

∆u =

−

−
−

=
( )( ) − −( )

3 558 3 963
0 269 1
2 807 3 963
3 963 1

3 558 1 3 963
. .
.
. .
.

. . 00 269
2 807 1 3 963 3 963

4 623
12 900

0 3584

.
. . .

.
.

.

( )
( )( ) − −( ) −( )

=
−

= −

∆v =
−

−
−

=
( )( ) −

2 807 3 558
3 963 0 269

2 807 3 963
3 963 1

2 807 0 269
. .
. .

. .
.

. . 33 558 3 963
2 807 1 3 963 3 963

14 844
12 9007

. .
. . .

.
.

( ) −( )
( )( ) − −( ) −( )

=
−

== −1 1516.
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u u u
v v v

2

2

0 5185 0 3584 0 8769
4 5926 1 1516 5 77

= + = − − = −
= + = − − = −

∆
∆

. . .
. . . 442

Repeat the process using the revised values for u and v shown in 
Table 1.28.

Table 1.28. Example 1.17 Bairstow’s method
0.8769 1 -5 -2 24

0.877 -3.616 0.113

5.7442 5.744 -23.684
0.8769 1 -4.123 0.129 0.429

0.877 -2.847
5.7442 5.744

1 -3.246 3.026

∆u =

−

−
−

=
( )( ) − −( )

0 429 3 246
0 129 1
3 026 3 246
3 246 1

0 429 1 3 246
. .
.
. .
.

. . 00 129
3 026 1 3 246 3 246

0 848
7 511

0 1129

.
. . .

.
.

.

( )
( )( ) − −( ) −( )

=
−

= −

∆v =
−

−
−

=
( )( ) −

3 026 0 429
3 246 0 129

3 026 3 246
3 246 1

3 026 0 129
. .
. .

. .
.

. . 00 429 3 246
3 026 1 3 246 3 246

1 783
7 511

0

. .
. . .

.
.

( ) −( )
( )( ) − −( ) −( )

=
−

= − ..2374

u u u
v v v

2

2

0 8769 0 1129 0 9898
5 7442 0 2374 5 98

= + = − − = −
= + = − − = −

∆
∆

. . .
. . . 116

Repeat the process using the revised values for u and v shown in 
Table 1.29.
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Table 1.29. Example 1.17 Bairstow’s method
0.9898 1 -5 -2 24

0.990 -3.969 0.012

5.9816 5.982 -23.987
0.9898 1 -4.010 0.012 0.025

0.990 -2.990
5.9816 5.982

1 -3.020 3.004

∆u =

−

−
−

=
( )( ) − −( )

0 025 3 020
0 012 1
3 004 3 020
3 020 1

0 025 1 3 020
. .
.
. .
.

. . 00 012
3 004 1 3 020 3 020

0 061
6 116

0 0100

.
. . .

.
.

.

( )
( )( ) − −( ) −( )

=
−

= −   

∆∆v =
−

−
−

=
( )( )

3 004 0 025
3 020 0 012

3 004 3 020
3 020 1

3 004 0 012
. .
. .

. .
.

. . −− ( ) −( )
( )( ) − −( ) −( )

=
−

0 025 3 020
3 004 1 3 020 3 020

0 111
6 11

. .
. . .

.
.

   
66

0 0181= − .

u u u2 0 9898 0 0100 0 9998= + = − − = −∆ . . .

v v v2 5 9816 0 0181 5 9997= + = − − = −∆ . . .

It appears the values are u = −1 and v = −6. Repeat the process using the 
revised values for u and v as shown in Table 1.30.

Table 1.30. Example 1.17 Bairstow’s method

1 1 -5 -2 24
1 -4 0

6 6 -24
1 -4 0 0

Since the remainders of the first division bn-1 and bn are both zero, u = −1 
and v = −6 are the coefficients of the root quadratic. Substitute them into 
the quadratic equation to find the roots.
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x x with x2
1 2

2

1 6
1 1 4 6

2
0 5 2 5 2 3− −( ) =

± −( ) − −( )
= ± = − , . . ,

The first two roots are x3 = −2 and x4 = 3. The remaining values are the 
coefficients of the factored polynomial.

f x x x x x x( ) = + +( ) − −( ) −( )2 22 2 1 6 4

The last root is x5 = 4, which is the value in the remaining polynomial of 
degree one x − r = x − 4. The final factored form of the original quadratic 
can be written and the five roots are x1 = −1+i, x2 = −1−i, x3 = −2, x4 = 3, 
and x5 = 4.

f x x x x x x( ) = + +( ) +( ) −( ) −( )2 2 2 2 3 4
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CHAPTER 2

Solutions of Simultaneous 
Linear Algebraic Equations 

Using Matrix Algebra

Matrix algebra is commonly utilized in structural analysis as a method of 
solving simultaneous equations. Each motion, translation or rotation, at 
each discrete location in a structure is normally the desired variable. This 
chapter explores matrix terminology, matrix algebra, and various methods 
of linear algebra to determine solutions to simultaneous equations.

2.1  SIMULTANEOUS EQUATIONS

The solutions of simultaneous equations in structural analysis normally 
involve hundreds and even thousands of unknown variables. These solu-
tions are generally linear algebraic equations. A typical linear algebraic 
equation with n unknowns is as follows, where a is the coefficient, x is the 
unknown, and C is the constant. In some cases, x, y, and z are used in lieu 
of x1, x2, etc.

a x a x a x a x Cn n1 1 2 2 3 3+ + + + =…

Equation sets can be separated into two categories, homogeneous and 
non-homogeneous. Homogeneous equation sets are those in which all the 
Cs are zero and all other equation sets are known as non-homogeneous. 
A unique solution to a non-homogeneous set exists only if the equations 
are independent or non-singular (determinant is non-zero), and a non-trivial  
solution set exists to a homogeneous set only if the equations are not inde-
pendent (determinant is zero). The determinant is further discussed in  



48   •  NU MERICAL STRUCTURAL ANALYSIS

Section 2.3. In comparison to a non-trivial solution, a trivial solution is 
one where all the unknowns in the equations are equal to zero.

The typical set of n equations with n unknowns is as follows:

a x a x a x a x C
a x a x a x a x C
a

n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

3

+ + +…+ =
+ + +…+ =

11 1 32 2 33 3 3 3

1 1

x a x a x a x C

a x

n n

n

+ + +…+ =

+
                   ������

aan n nn n nx a x a x C2 2 3 3+ +…+ =

These equations can be written in matrix form, [A][x]=[C] as follows:

a a a a
a a a a
a a a a

a a a a

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
�













































=











x
x
x

x

C
C
C

Cn n

1

2

3

1

2

3

� �













2.2  MATRICES

A matrix can be defined as a rectangular array of symbols or numerical 
quantities arranged in rows and columns. This array is enclosed in brack-
ets and if there are n rows and m columns, the general form of this matrix 
is expressed by the following:

A

a a a a
a a a a
a a a a

a a a

m

m

m

n n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
� aanm























A matrix consisting of n rows and m columns is defined as a matrix of 
order n × m. The relationship between the number of rows and the number 
of columns is arbitrary in a general matrix. Many types of matrices exist, 
such as row, column, diagonal, square, triangular, identity, and invert. 
These are discussed in the following sub-sections.
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2.2.1  ROW AND COLUMN MATRICES

A row matrix is a matrix that reduces to a single row (n = 1).

A a a a a m[ ] = [ ]11 12 13 1�

Similar to a row matrix, a column matrix is a matrix that reduces to a 
single column (m = 1).

A

a
a
a

an

[ ] =























11

21

31

1

�

2.2.2  SQUARE MATRIX

A matrix in which the number of rows is equal to the number of columns 
(n = m) is referred to as a square matrix.

A

a a a a
a a a a
a a a a

a a a

n

n

n

n n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
� aann























Square matrices are unique because they are the only matrix that has a 
reciprocal or invert as described later in this section. Several types of 
square matrices exist such as the diagonal matrix, the identity matrix, the 
triangular matrix, and the invert matrix.

2.2.3  DIAGONAL MATRIX

A diagonal matrix is defined as a matrix where all elements outside of the 
principal diagonal are equal to zero. The diagonal running from the upper 
left corner of the array to the lower right corner is considered the principal 
diagonal.
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A

a
a

a

ann

[ ] =























11

22

33

0 0 0
0 0 0
0 0 0

0 0 0

�
�
�

� � � � �
�

2.2.4  IDENTITY MATRIX

An identity matrix is a diagonal matrix where all of the elements along the 
principal diagonal are equal to one and is denoted [I ].

I[ ] =























1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1

�
�
�

� � � � �
�

2.2.5  TRIANGULAR MATRIX

When all of the elements on one side of the principal diagonal are zero, 
this matrix is a triangular matrix. There are two types of triangular 
matrices, upper and lower. An upper triangular matrix, [U ], is when all of 
the elements below the principal diagonal are zero, and a lower triangular 
matrix, [L], occurs when all of the elements above the principal diagonal 
are zero.

U

a a a a
a a a

a a

a

n

n

n

nn

[ ] =












11 12 13 1

22 23 2

33 3

0
0 0

0 0 0

�
�
�

� � � � �
� 








[ ] =



L

a
a a
a a a

a a a an n n nn

11

21 22

31 32 33

1 2 3

0 0 0
0 0

0

�
�
�

� � � � �
�


















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2.2.6  INVERTED MATRIX

Only square matrices where the determinant is not equal to zero (|A| ≠ 0)  
can have an inverse or reciprocal. These matrices are called non-singular, 
which implies that reciprocals of rectangular matrices do exist. The inverse 
of a matrix is defined as follows:

I A A[ ] = [ ][ ]−1

2.2.7  MATRIX MINOR

The matrix minor, [Aij], is found by omitting the ith row and the jth column 
of a matrix and writing the remaining terms in a matrix of one size smaller 
in rows and columns. It is used in the computation of the determinant. For 
example, the minor, [A22] is shown in the following. Note that i = 2 and j = 2:

A

a a a a
a a a a
a a a a

a a a

m

m

m

n n n

22

11 12 13 1

21 22 23 2

31 32 33 3

1 2

[ ] =

�
�
�

� � � � �

33

11 13 1

31 33 3

1 3�

�
�

� � � �
�

a

a a a
a a a

a a a
nm

m

m

n n nm























=



















2.2.8  TRANSPOSED MATRIX

The transposed matrix is found by writing the aij elements of a matrix as 
the aji elements of the matrix, [A]T.

A

a a a a
a a a a
a a a a

a a a

m

m

m

n n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
� aa

A

a a a a
a a a a
a a a

nm

T

n

n























[ ] =

11 21 31 1

12 22 32 2

13 23

�
�

333 3

1 2 3

�
� � � � �

�

a

a a a a

n

m m m mn






















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2.3  MATRIX OPERATIONS

2.3.1  MATRIX ADDITION AND SUBTRACTION

Matrices of the same size can easily be added or subtracted. Addition is 
achieved by adding the terms with the same row and column position. 
For example, if matrix [A] and [B] were to be added to obtain matrix [C ], 
the following equations would be valid:

A B C
a b c
a b c

a b cij ij ij

[ ]+ [ ] = [ ]
+ =
+ =

+ =

11 11 11

12 12 12

    ���

Matrix subtraction follows the same form as addition where the matrices 
are of the same size.

A B C
a b c
a b c

a b cij ij ij

[ ]− [ ] = [ ]
− =
− =

− =

11 11 11

12 12 12

      ���

Example 2.1  Matrix addition and subtraction

Add matrix [A] and [B] and then subtract matrix [B] from [A].

A B[ ] =
















[ ] =
















2 4 6
7 9 3
6 5 1

1 2 4
6 5 2
4 3 0

and

Addition:

A B[ ]+ [ ] =
















+
















=
2 4 6
7 9 3
6 5 1

1 2 4
6 5 2
4 3 0

3 6 10
13 14 5
100 8 1
















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Subtraction:

A B[ ]− [ ] =
















−
















=
2 4 6

7 9 3
6 5 1

1 2 4
6 5 2
4 3 0

1 2 2
1 4 1
2 2 1













2.3.2  SCALAR MULTIPLICATION

Scalar multiplication consists of multiplying a matrix by a scalar. 
When this occurs, every entry is multiplied by that scalar as seen in the 
following:

c A c

a a a a
a a a a
a a a a

a a a

m

m

m

n n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2

�
�
�

� � � � �

33

11 12 13 1

21 22 23 2

�

�
�

a

ca ca ca ca
ca ca ca ca
c

nm

m

m























= aa ca ca ca

ca ca ca ca

m

n n n nm

31 32 33 3

1 2 3

�
� � � � �

�























2.3.3  MATRIX MULTIPLICATION

Matrix multiplication proves a little more complicated than scalar 
multiplication. In order for two matrices to be multiplied, the number 
of columns in the first matrix must equal the number of rows in the 
second matrix. The resulting product consists of the same number of 
rows as the first matrix and the same number of columns as the second 
matrix.

A B Cn m m o n o[ ] [ ] = [ ]× × ×

Each term of the product matrix (row i and column j) is obtained by 
multiplying each term in row i of the first matrix by the term in row j of 
the second matrix and then summing these products.

c a b a b a bij i j i j in nj= + +…+1 1 2 2
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Example 2.2  Matrix multiplication

Multiply matrix [A] and [B] to get [C ].

A B[ ] =



















[ ] =










2 4
3 2
1 0
3 4

1 4 2 3 2 4
2 3 2 4 1 1

and

The product of a 4 × 2 matrix multiplied with a 2 × 6 matrix is a 4 × 6 
matrix.

A B C

A B

[ ] [ ] = [ ]

[ ][ ] =



















× × ×4 2 2 6 4 6

2 4
3 2
1 0
3 4

1 4 2 3 2 4
2 3 2 4 1 1









 = [ ] =












C

10 20 12 22 8 12
7 18 10 17 8 14
1 4 2 3 2 4
11 24 14 25 10 16






The first two elements are computed as follows:

c
c

11

12

2 1 4 2 2 8 10

2 4 4 3 8 12 20

= ( ) + ( ) = + =

= ( ) + ( ) = + =

2.3.4  MATRIX DETERMINANTS

A determinant is only defined for square matrices and can be easily 
achieved through expansion by minors of a row or a column when dealing 
with small matrices. A row expansion is as follows:

A a A a A a A a A

a a a
a

j
j j

n
n n

n

= − + − + −+ +
11 11 12 12

1
1 1

1
1 1

11 12 1

21

1 1… …

�

( ) ( )

aa a

a a a

a

a a a
a a a

a a a

n

n n nm

n

n

n n

22 2

1 2

11

22 23 2

32 33 3

2 3

�
� � � �

�

�
�

� � � �
�

=

nnm

n

n

n n nm

j
j j

a

a a a
a a a

a a a

a A

−

+ + − ++

12

21 23 2

31 33 3

1 3

1
1 11

�
�

� � � �
�

… ( ) ……

�
�

� � �
�

( )

,

,

,

− +

−

−

−

1 1
1

21 22 2 1

31 32 3 1

1 2 1

n
n

n

n

n n n n

a

a a a
a a a

a a a
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If |A| is the determinant of the matrix [A], then the following equations are 
valid when row k and column k are expanded:

A a A A a Ak j
kj kj

j

n
i k

ik ik
i

n

= − = −+

=

+

=
∑ ∑( ) ( )1 1

1 1
and

The basket weave method may be used for a three-by-three determinant 
only. Take the sum of the products of the three down-right diagonals minus 
the sum of the product of the three up-right diagonals shown as follows:

a a a
a a a
a a a

a a a a a
a a a a a

11 12 13

21 22 23

31 32 33

11 12 13 11 12

21 22 23 21 22=
aa a a a a

a a a
a a a
a a a

a a a a a
31 32 33 31 32

11 12 13

21 22 23

31 32 33

11 12 13 11 1

=
22

21 22 23 21 22

31 32 33 31 32

11 22 33 12 23 31 13 21

a a a a a
a a a a a

a a a a a a a a+ + aa a a a a a a a a a32 13 22 31 11 23 32 12 21 33( ) − + +( )

Also, a determinant may be found by the product of the diagonal of any 
triangular matrix.

Example 2.3  Matrix determinants

Find the determinant of the following matrix, [A], by expansion of minors 
and by the basket weave method.

A[ ] =
















3 4 6
1 2 3
2 1 2

Expansion of row 1 yields:

A

A
A

= − +

= −( ) − −( ) + −( )
= + − =

3
2 3
1 2

4
1 3
2 2

6
1 2
2 1

3 4 3 4 2 6 6 1 4

3 16 18 1
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Basket weave method yields:

A

A

= =

= ( )( ) + ( )( ) + ( )( )  −

3 4 6
1 2 3
2 1 2

3 4 6 3 4
1 2 3 1 2
2 1 2 2 1

3 2 2 4 3 2 6 1 1 4 11 2 3 3 1 6 2 2

42 41 1

( )( ) + ( )( ) + ( )( ) 
= − =A

2.4 C RAMER’S RULE

Two common methods to solve simultaneous equations exist. One is the 
elimination of unknowns by elementary row operations and the second 
involves the use of determinates. One of the methods involving determi-
nates is known as Cramer’s rule. This method was published in 1750 by 
Gabriel Cramer (1750). The procedure for Cramer’s rule in the solution to 
n linear equations with n unknowns is as follows:

x
A
A

x
A
A

x
A
A

x
A
An
n

1
1

2
2

3
3= = = … =, , , ,   

A

c a a a
c a a a
c a a a

c a a a

A

n

n

n

n n n nn

1

1 12 13 1

2 22 23 2

3 32 33 3

2 3

=

�
�
�

� � � � �
�

, 22

11 1 13 1

21 2 23 2

31 3 33 3

1 3

=

a c a a
a c a a
a c a a

a c a a

A

n

n

n

n n n nn

�
�
�

� � � � �
�

,

33

11 12 1 1

21 22 2 2

31 32 3 3

1 2

= …

a a c a
a a c a
a a c a

a a c a

n

n

n

n n n nn

�
�
�

� � � � �
�

, ,, A

a a a c
a a a c
a a a c

a a a c

n

n n n n

=

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
�

As you might see, |A1| is the original coefficient matrix, [A], with col-
umn one replaced with the constant column matrix, [c]. The solution to 
n simultaneous equations by Cramer’s rule requires (n−1)*(n+1)! multi-
plications. In other words, the solution of ten simultaneous equations by 
determinants would require (9)*(11!) =359,251,200 multiplications.
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Example 2.4  Cramer’s rule

Find the solution set to the following non-homogeneous linear algebraic 
equations using Cramer’s rule.

2 8 2 14
6 13

2 2 5
2 8 2
1 6 1
2 1 2

36

1 2 3

1 2 3

1 2 3

1

x x x
x x x
x x x

A

A

+ + =
+ − =

− + =

= −
−

= −

=
114 8 2
13 6 1
5 1 2

180

2 14 2
1 13 1
2 5 2

36

2 8 14
1 6 13
2 1 5

72

2

3

1

−
−

= −

= − = −

=
−

=

A

A

x == =
−
−

=

= =
−
−

=

= =
−

= −

A
A

x
A
A

x
A
A

1

2
2

3
3

180
36

5

36
36

1

72
36

2

The determinants are shown by row expansion in Table 2.1.

2.5 � METHOD OF ADJOINTS OR COFACTOR 
METHOD

The solution to a set of linear algebraic equations can be achieved by using 
the invert of a matrix. The cofactor and adjoint matrices are very helpful 
in finding this invert by utilizing determinants.The cofactor matrix is one 
where the elements of the matrix are cofactors. Each term in the cofactor 
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Table 2.1.  Example 2.4 Cramer’s rule

2 8 2
A = 1 6 -1

2 -1 2

A = 2 6 -1 - 8 1 -1 + 2 1 6
-1 2 2 2 2 -1

A = 22 - 32 + -26 = -36

14 8 2
A1 = 13 6 -1

5 -1 2

A1 = 14 6 -1 - 8 13 -1 + 2 13 6
-1 2 5 2 5 -1

A1 = 154 - 248 + -86 = -180

2 14 2
A2 = 1 13 -1

2 5 2

A2 = 2 13 -1 - 14 1 -1 + 2 1 13
5 2 2 2 2 5

A2 = 62 - 56 + -42 = -36

2 8 14
A3 = 1 6 13

2 -1 5

A3 = 2 6 13 - 8 1 13 + 14 1 6
-1 5 2 5 2 -1

A3 = 86 - -168 + -182 = 72
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of a matrix, Cij, is given in the following equation where |Aij| is the deter-
minant of the minor as defined in Section 2.2.

C Aij
i j

ij= −( ) +1

Therefore, given the matrix [A], the cofactor matrix is shown as follows. 
The matrix of cofactors should not be confused with the constant matrix 
of the original linear algebraic equation, although they have the same vari-
able, [C ]:

A

a a a a
a a a a
a a a a

a a a

m

m

m

n n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

�
�
�

� � � � �
� aanm























C A

C C C C
C C C C
C C C Ccofactor

m

m

m[ ] = [ ] =

11 12 13 1

21 22 23 2

31 32 33 3

�
�
�

� � � �� �
�C C C Cn n n nm1 2 3























Once the cofactor matrix is known, the invert can be easily calculated:

A
C
A

T
−  = [ ]1

The solutions to the simultaneous equations are now found from matrix 
multiplication.

[ ][ ] [ ] [ ][ ] [ ]A x C A C x= =−Or 1

Similar to the cofactor method, the method of adjoints, Adj[A], is another 
common way to solve for the invert of a matrix. This method is as follows:

A
Adj A
A

−  = [ ]1
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The adjoint matrix, Adj[A], is simply the transpose of the cofactor matrix. 
This can be expressed in a few ways.

Adj A C A c AT
cofactor

T
i j

i j
j i[ ] [ ] [ ] ( ) [ ]( )= = = − +Or 1

Adj A

c c c c
c c c c
c c c c

c c c

m

m

m

n n

[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2

�
�
�

� � � � �

nn nm

T
n

n

c

c c c c
c c c c
c c c

3

11 21 31 1

12 22 32 2

13 23

�

�
�























= 333 3

1 2 3

�
� � � � �

�

c

c c c c

n

m m m mn























It is noted that the subscripts of the adjoint matrix are the reverse of the 
cofactor matrix. The main difference is that the transpose is performed 
during the operation of taking the adjoint, while in the cofactor method is 
done at the end.

Example 2.5  Cofactor method

Find the solution set to the following nonhomogeneous linear algebraic 
equations using the cofactor method.

x x x x
x x x x
x x x x
x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

10
8 4 2 26

2
3 2 1 0

+ + + =
+ + + =

− + − + =
+ + + xx

A
C
A

C A
T

ij
i j

ij

4

1

10

1

=

  =
[ ]

= −( )− +And

The determinants are shown by row expansion for the 4 × 4 matrix and by 
the basket weave for all the 3 × 3 matrices in Table 2.2.

The last step in Table 2.2 is to multiply the invert of A, [A]−1, times the 
constant vector, [C ], to get the final solution vector, [x].

Example 2.6  Method of adjoints

Determine the solution to the following set of equations using the adjoint 
method. Use the basket weave method for determinants.
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x x x x
x x x x
x x x x
x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

10
8 4 2 26

2
0 0 0

+ + + =
+ + + =

− + − + =
+ + + 44

1

4

1

=

= [ ] = −− +[ ] ( )A
C
A

c A
T

i j
i j

j i and

The determinants are shown by row expansion for the 4 × 4 matrix and by 
the basket weave for all the 3 × 3 matrices in Table 2.3.

The last step in Table 2.3 is to multiply the invert of A, [A]−1, by the 
constant vector, [C ], to get the final solution vector, [x].

2.6 G AUSSIAN ELIMINATION METHOD

This method is named for Carl Friedrich Gauss who developed it in 1670 
(Newton 1707). It was referenced by the Chinese as early as 179 (Anon 
179). Gaussian elimination is a method for solving matrix equations by 
composing an augmented matrix, [A|C ], and then utilizing elementary 
row operations to reduce this matrix into upper triangular form, [U|D]. 
The elementary row operations used to reduce the matrix into upper trian-
gular form consist of multiplying an equation by a scalar, or adding two 
equations to form another equation. The equation used to eliminate terms 
in other equations is referred to as the pivot equation. The coefficient of 
the pivot equation that lies in the column of terms to be eliminated is 
called the pivot coefficient or pivot element.

If this coefficient of the pivot element is zero, the pivot row must be 
exchanged with another row. This exchange is called partial pivoting. If the 
row with the largest element in the pivot column is exchanged to the pivot 
row, accuracy is increased. Partial pivoting is when the rows are interchanged 
and full pivoting is when both the rows and columns are reordered to place 
a particular element in the diagonal position prior to a particular operation. 
Whenever partial pivoting is utilized, the determinant changes sign with 
each pivot unless done before reduction starts. However, the value of the 
determinant of the matrix is not affected by elementary row operations.

Once the matrix is reduced to an equivalent upper triangular matrix, 
the solutions are found by solving equations by back substitution. The fol-
lowing is the reduction procedure in algorithmic form:

a a
a
a

a
k j m
k i nij

k
ij
k kj

k

kk
k ik

k= − ( ) + ≤ ≤
+ ≤ ≤









−
−

−
−1

1

1
1 1

1
where 
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With the following variables:

ak−1	 original elements
ak	 new elements
i	 row (n)
j	 column (m)
k	 pivotal row number

The following is the back substitution procedure in algorithmic form:

x
a
a

x
a a x

a
i n n

n
nm

nn

i

im j i

n
ij j

ii

=

=
−

= − − …= +∑ 1 1 2 1where , , ,

Example 2.7  Gaussian elimination method

Find the solution set to the following nonhomogeneous linear algebraic 
equations using Gaussian elimination.

x x x x
x x x x
x x x x
x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

10
8 4 2 26

2
0 0 0

+ + + =
+ + + =

− + − + =
+ + + 44 4=

The reduction process is shown in Table 2.4. The numbers to the right of 
each row outside the augmented matrix, [A|C ], are the reduction multipli-
ers. The pivot row is multiplied by these numbers to reduce the rows below 
the pivot row. As an example, the first row is multiplied by −8 and added 
to the second row, producing a zero in the first column of the second row. 
Then, the first row is multiplied by 1 and added to the third row, producing a 
zero in the first column of the third row. Last, the first row is multiplied by 0 
and added to the last row, producing a zero in the first column of the last 
row. The result is the reduction of all the values below the pivot element in 
the first column to zero. The second column is then reduced to zeros below 
the pivot element, and lastly the third column is reduced to zeros below the 
pivot element. The solution vector, [x], is also shown.

These values for x are solved after the final reduction. From row four, 
the following equation can be written:

1 4 44 4x x= ∴ =
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From row three, the following equation is valid:

− − = −3 1 5 153 4x x.

Substituting x4 = 4 into this equation yields:

− − ( ) = − ∴− = − ∴ =3 1 5 4 15 3 9 33 3 3x x x.

Row two produces the following equation:

− − − = −4 6 7 542 3 4x x x

Substituting x3 = 3 and x4 = 4 into this equation yields:

− − ( ) − ( ) = − ∴− = − ∴ =4 6 3 7 4 54 4 8 22 2 2x x x

Table 2.4.  Example 2.7 Gaussian elimination

1 1 1 1 10
A|C = 8 4 2 1 26

−1 1 −1 1 2
0 0 0 1 4

1 1 1 1 10
A|C = 0 −4 −6 −7 −54 −8

0 2 0 2 12 1
0 0 0 1 4 0

1 1 1 1 10
A|C = 0 −4 −6 −7 −54

0 0 −3 −1.5 −15 0.5
0 0 0 1 4 0

1 1 1 1 10
A|C = 0 −4 −6 −7 −54

0 0 −3 −1.5 −15
0 0 0 1 4 0

x = 1
2
3
4
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And, from row one the following equation:

1 1 1 1 101 2 3 4x x x x+ + + =

Substituting x2 = 2, x3 = 3, and x4 = 4 into this equation yields:

1 1 2 1 3 1 4 10 11 1x x+ ( ) + ( ) + ( ) = ∴ =

It should be noted that the product the diagonal values of any triangular 
matrix is the determinant. In this case, the determinant is |A| = (1)(−4)(−3)
(1) = 12.

Example 2.8  Gaussian elimination method

Determine the solution to the following set of equations using Gaussian 
elimination and back substitution using partial pivoting. Include a deter-
minant check for uniqueness.

x x x x
x x x x
x x x x
x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3

10
8 4 2 26

2
3 2 1 0

+ + + =
+ + + =

− + − + =
+ + + xx4 10=

The reduction process is shown in Table 2.5. Again, the numbers to the 
right of each row outside the augmented matrix, [A|C], are the reduction 
multipliers. Also noted is the partial pivoting. Note that the second row 
has the largest number in the first column. Therefore, that row is swapped 
with the first row, placing the largest element in the pivot element posi-
tion. Reduction is then performed on the first column. After reduction of 
the first column, the largest number in the second column is in the third 
row. That row is swapped with the second row, placing the largest number 
in the pivot position. Reduction is then performed on the second column. 
The third column does not require partial pivoting, since the largest num-
ber in the third column is already in the pivot position.

Since two partial pivots were performed, the product of the diagonal 
must be multiplied by (−1)2 to achieve the correct sign on the determinant, 
|A| = (8)(1.5)(1)(−1) (−1)2 = −12. Back substitution is performed to deter-
mine the solution vector, [x], which is shown in Table 2.5.



SOLUTIONS OF SIMULTANEOUS LINEAR ALGEBRAIC EQUATIONS   •   67

Table 2.5.  Example 2.8 Gaussian elimination

1 1 1 1 10
A = 8 4 2 1 26

−1 1 −1 1 2
3 2 1 0 10

8 4 2 1 26 Swap
A = 1 1 1 1 10 Pivot

−1 1 −1 1 2
3 2 1 0 10

8 4 2 1 26
A = 0 0.5 0.75 0.88 6.75 −0.125

0 1.5 −0.8 1.13 5.25 0.125
0 0.5 0.25 −0.4 0.25 −0.375

8 4 2 1 26
A = 0 1.5 −0.8 1.13 5.25 Swap

0 0.5 0.75 0.88 6.75 Pivot
0 0.5 0.25 −0.4 0.25

8 4 2 1 26
A = 0 1.5 −0.8 1.13 5.25

0 0 1 0.5 5 −0.333
0 0 0.5 −0.8 −1.5 −0.333

A = 8 4 2 1 26
0 1.5 −0.8 1.13 5.25
0 0 1 0.5 5
0 0 0 −4 −4 −0.500

1
x = 2 A = −12 * (−1)2

3
4



68   •  NU MERICAL STRUCTURAL ANALYSIS

2.7 G AUSS–JORDAN ELIMINATION METHOD

The Gauss–Jordan elimination method is a variation of the Gaussian 
elimination method in which an unknown is eliminated from all equa-
tions except the pivot during the elimination process. This method was 
described by Wilhelm Jordan in 1887 (Clasen 1888). When an unknown is 
eliminated, it is eliminated from equations preceding the pivot equation as 
well as those following the pivot equation. The result is a diagonal matrix 
and eliminates the need for back substitution. In fact, if the pivot elements 
are changed to “ones” by dividing each row by the pivot element, the last 
column will contain the solution.

The disadvantage to the Gauss–Jordan elimination method is that two 
matrices are required for elimination, however, they do get smaller as the 
process continues. The previous pivot is moved to the bottom, with a new 
pivot on top. The Gauss–Jordan process is shown in Example 2.9.

Example 2.9  Gauss–Jordan elimination method

Determine the solution to the following set of equations using Gauss–
Jordan elimination.

	 2 2 5 131 2 3x x x− + = � (2.1a)

	 2 3 4 201 2 3x x x+ + = � (2.1b)

	 3 3 101 2 3x x x− + = � (2.1c)

The first step is to divide the first equation of the set by the coefficient of 
the first unknown in that equation, 2. Equation 2.2a is then multiplied by 
the corresponding coefficient of that unknown of Equations 2.1b and 2.1c 
to give the following:

	
x x x1 2 3

5
2

13
2

− + = � (2.2a)

	 2 2 5 131 2 3x x x− + = � (2.2b)

	
3 3 15

2
39
21 2 3x x x− + = � (2.2c)
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Next, Equation 2.2b is subtracted from 2.1b and becomes 2.3a. Equation 
2.2c is subtracted from 2.1c and becomes 2.3b. Equation 2.2a now 
becomes 2.3c, thereby moving to the bottom.

	 5 72 3x x− = 	 (2.3a)

	
2 9

2
19
22 3x x− = − 	 (2.3b)

	
x x x1 2 3

5
2

13
2

− + = 	 (2.3c)

Now, Equation 2.3a is divided by the first unknown in that equation, 5, 
and the new Equation 2.4a is multiplied by the corresponding coefficient 
of that unknown from the two other equations (2.3b and 2.3c) to yield 
Equations 2.4b and 2.4c.

	
x x2 3

1
5

7
5

− = 	 (2.4a)

	
2 2

5
14
52 3x x− = 	 (2.4b)

	
− + = −x x2 3

1
5

7
5

	 (2.4c)

Just as the previous cycle, Equation 2.4b is subtracted from 2.3b and 
becomes 2.5a. Equation 2.4c is subtracted from 2.3c and becomes 2.5b. 
Equation 2.4a now becomes 2.5c.

	
− = −

41
10

123
103x 	 (2.5a)

	
x x1 3

23
10

79
10

+ = 	 (2.5b)

	
x x2 3

1
5

7
5

− = 	 (2.5c)
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Equation 2.5a is divided by the first unknown in that equation, −41/10 
and the new Equation 2.6a is multiplied by the corresponding coefficient 
of that unknown from the two other equations (2.5b and 2.5c) to yield 
Equations 2.6b and 2.6c.

	 x3 3= 	 (2.6a)

	

23
10

69
103x =

	 (2.6b)

	
− = −

1
5

3
53x

	 (2.6c)

Equation 2.6b is subtracted from 2.5b and becomes 2.7a. Equation 2.6c is 
subtracted from 2.5c and becomes 2.7b. Equation 2.6a now becomes 2.7c. 
All the unknowns are found with the following solution:

	 x1 1= 	 (2.7a)

	 x2 2= 	 (2.7b)

	 x3 3= 	 (2.7c)

The same result may be obtained by working with just the coefficients 
and constants of the equations. Given the same equations, the following 
augmented matrix is valid:

2 2 5 13

2 3 4 20

3 3 10

2 2 5 13
2 3 4 20
3

1 2 3

1 2 3

1 2 3

x x x

x x x

x x x

A

− + =

+ + =

− + =

[ ] =
−

−11 3 10

















An augmented matrix, [B], is established from the following algorithm:

b a
a a
a

i n
j m

a
i j ij

j i
− − = −

< ≤
< ≤

≠














1 1
1 1

11
11

1
1

0
, where 
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Also, the final row of the new matrix is found by:

b
a
a

j m
an j

j
, − =

< ≤
≠









1
1

11 11

1
0

where 

where,

a	 elements in old matrix A
b	 elements in new matrix B
i	 row number in old matrix A (n)
j	 column number of old matrix A (m)

For example,

b a
a a
a2 2 2 2

1 2 2 1

11

3
2 2
2

5, ,
, ,= − = −

− ( )
=

From these equations, column 1 is reduced.

B[ ] =

−

− −

−























5 1 7

2 9
2

19
2

1 5
2

13
2

Following the process again to reduce column 2:

C[ ] =

− −

−

























41
10

123
10

23
10

79
10

1
5

7
5

Finally, one more cycle reduces column 3 and obtains the solution:

D[ ] =
















1
2
3

It is known that applying these equations to a number of simultaneous 
equations, n, will produce the same number of matrices, n, to achieve the 
solution.
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2.8 �I MPROVED GAUSS–JORDAN ELIMINATION 
METHOD

In comparison to the Gauss–Jordan elimination method, the improved 
Gauss–Jordan elimination method uses the same space for both the 
A and B arrays. This is beneficial if the amount of space available on 
the computer is limited. The algorithm for this improved method is as 
follows:

′ =

′ = ′
≤ ≤

+ ≤ ≤ +


























−

a
a
a

a a a a
i n

k j n

kj
kj

kk

ij ij ik kj

1
1 1

= … ≠k i k1  2  3  except   , , n

where,

a′	 original elements
a	 new elements
i	 row (n)
j	 column (m)
k	 pivotal row number

In other words, normalize the matrix then utilize partial pivoting to reduce 
the matrix. However, there is no need to reduce the elements under the 
pivot. Reducing up and down is easier without a need to reorder the rows. 
This is how Example 2.10 is performed.

Example 2.10  Improved Gauss–Jordan elimination method

Determine the solution to the following set of equations using improved 
Gaussian–Jordan elimination. Include a determinant check for 
uniqueness.

x x x x x
x x x x x

x x x x x
x

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

8
16 8 4 2 1 44

2
81

+ + + + =
+ + + + =

− + − + =

11 2 3 4 5

1 2 3 4 5

27 9 3 44
16 8 4 2 8

− + − + =
− + − + =

x x x x
x x x x x
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A C  = − −
− −
− −












1 1 1 1 1
16 8 4 2 1
1 1 1 1 1
81 27 9 3 1
16 8 4 2 1

8
44
2
44
8 








From partial pivoting, the first row can be swapped with the fourth row to 
form the following matrix:

A C  =

− −

− −

− −












81 27 9 3 1
16 8 4 2 1
1 1 1 1 1
1 1 1 1 1

16 8 4 2 1

44
44
2
8
8 








Now elimination may be performed as shown in Table 2.6. Note that for 
each column reduction, elements are reduced to zero below and above 
the pivot position. Once it reduces to a diagonal matrix, the solution is 
found  by dividing each row by the pivot element. The determinant is 
found as |A| = (81)(13.3333)(1)(1.3333) (−2) = −2880.

2.9 C HOLESKY DECOMPOSITION METHOD

Cholesky decomposition is also known as Crout’s method or matrix 
factorization. This method was discovered by André-Louis Cholesky 
(Commandant Benoit 1924). Cholesky decomposition changes the orig-
inal augmented equation to an equivalent upper and lower triangular set. 
If a set of three simultaneous equations exist, they can be represented as 
follows:

a a a
a a a
a a a

x
x
x

c
c

11 12 13

21 22 23

31 32 33

1

2

3

1

2

































=
cc3

















If [A] represents the coefficient matrix, [x] represents the column matrix of 
the unknowns, and [C ] represents the column matrix of the constants, the 
previous can be expressed as the following equation:
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Table 2.6.  Example 2.10 Improved Gaussian–Jordan elimination 
method

81 -27 9 -3 1 44
16 8 4 2 1 44

A = 1 -1 1 -1 1 2
1 1 1 1 1 8
16 -8 4 -2 1 8

81 -27 9 -3 1 44
0 13.3333 2.2222 2.5926 0.8025 35.3086 -0.1975

A = 0 -0.6667 0.8889 -0.9630 0.9877 1.4568 -0.0123
0 1.3333 0.8889 1.0370 0.9877 7.4568 -0.0123
0 -2.6667 2.2222 -1.4074 0.8025 -0.6914 -0.1975

81 0 13.5 2.25 2.625 115.5 2.0250
0 13.3333 2.2222 2.5926 0.8025 35.3086

A = 0 0 1 -0.8333 1.0278 3.2222 0.0500
0 0 0.6667 0.7778 0.9074 3.9259 -0.1000
0 0 2.6667 -0.8889 0.9630 6.3704 0.2000

81 0 0 13.5 -11.25 72 -13.5000
0 13.3333 0 4.4444 -1.4815 28.1481 -2.2222

A = 0 0 1 -0.8333 1.0278 3.2222
0 0 0 1.3333 0.2222 1.7778 -0.6667
0 0 0 1.3333 -1.7778 -2.2222 -2.6667

81 0 0 0 -13.5 54 -10.1250
0 13.3333 0 0 -2.2222 22.2222 -3.3333

A = 0 0 1 0 1.1667 4.3333 0.6250
0 0 0 1.33333 0.2222 1.7778
0 0 0 0 -2 -4 -1.0000

81 0 0 0 0 81 -6.7500
0 13.3333 0 0 0 26.6667 -1.1111

A = 0 0 1 0 0 2 0.5833
0 0 0 1.33333 0 1.33333 0.1111
0 0 0 0 -2 -4

1
2

x = 2 A = -2880.00
1
2
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A x C A x C[ ][ ] = [ ] [ ][ ]− [ ] =or 0

If the original system of equations is reduced into an equivalent system in 
upper triangular form, the following is true:

1
0 1
0 0 1

12 13

23

1

2

3

1

2

3

u u
u

x
x
x

d
d
d

































=
















UU x D[ ][ ]− [ ] = 0

Also, a lower triangular matrix exists, such that, when the first set is 
pre-multiplied by [L], the result is the second set as follows:

l
l l
l l l

L U x D A x C

L

11

21 22

31 32 33

0 0
0

















[ ] [ ][ ]− [ ]( ) = [ ][ ]− [ ]

[[ ][ ] = [ ] [ ][ ] = [ ]U A L D Cand

In matrix form, it looks as follows:

l
l l
l l l

u u d
u d

d

11

21 22

31 32 33

12 13 1

23 2

3

0 0
0

1
0 1
0 0 1

































=
















a a a c
a a a c
a a a c

11 12 13 1

21 22 23 2

31 32 33 3

The order of the solution process is as follows with each producing an 
equation involving only one unknown:

1.	 Obtain column 1 of [L] by multiplying each row of [L] by column 1 
of [U ] to get column 1 of [A]. That is, use a11, a21, a31 to get l11,  
l21, l31.

2.	 Obtain row 1 of [U ] by multiplying row 1 of [L] times each column 
of [U ] to get row 1 of [A], excluding column 1 of [U ]. That is, use 
a12, a13, c1 to get u12, u13, d1.
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3.	 Obtain column 2 of [L] by multiplying each row of [L] times column 
2 of [U ] to get column 2 of [A], excluding row 1 of [L], That is, use 
a22, a32 to get l22, l32.

4.	 Obtain row 2 of [U ] by multiplying row 2 of [L] times each column 
of [U ] to get row 2 of [A], excluding columns 1 and 2 of [U ]. That 
is, use a23, c2 to get u23, d2.

5.	 Obtain column 3 of [L] by multiplying each row of [L] times col-
umn 3 of [U ] to get column 3 of [A], excluding row 1 and 2 of [L]. 
That is, use a33 to get l33.

6.	 Obtain row 3 of [U ] by multiplying row 3 of [L] times each column 
of [U ] to get row 3 of [A], excluding columns 1, 2, and 3 of [U ]. 
That is, use c3 to get d3.

All of these arithmetic operations can be done with an algorithm as 
follows:

l a
i n

j

u
a
a

j n
i

i i

j
j

1 1

1
1

11

1 2 3
1

2 3 4 1

=
= …

=








=
= … +

=

For

For

, , , ,

, , , ,
11

2 3 4
1 2

1

1









= −
= …

= + + …
=

−

∑l a l u
j n

i j j ji j ij
k

j

ik kj,

, , , ,
, , , For ,, n

for each value of j    ( )

















u
a l u

l

i n
j i i i n
f

i j
ij k

i
ik kj

ii
,

, , , ,
, , , ,=

− = …
= + + … +=

−∑ 1

1 2 3 4
1 2 1For 

oor each value of i    ( )

















x u

x u u x i n n n

n n n

i i n
j i

n

ij j

=

= − = − − − …{ }

+

+
= +
∑

,

, , , , ,

1

1
1

1 2 3 1For   

An improved Cholesky decomposition scheme can also be used with only 
one matrix in the process as follows:

a
a
a

j nj
j

1
1

11

2 3 4 1= = … +{ }For , , , ,
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a a a a
j n

i j j j n
for ea

i j ij
k

j

ik kj,

, , , ,
, , , ,= −
= …

= + + …
=

−

∑
1

1
2 3 4

1 2For 
 cch value of j   ( )

















a
a a a

a

i n
j i i i n
f

i j
ij k

i
ik kj

ii
,

, , , ,
, , , ,=

− = …
= + + … +=

−∑ 1

1 2 3 4
1 2 1For 

oor each value of i    ( )

















Example 2.11  Cholesky decomposition method

Find the solution set to the following non-homogeneous linear algebraic 
equations using Cholesky decomposition.

x x x x x
x x x x x

x x x x x
x

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

8
16 8 4 2 1 44

2
81

+ + + + =
+ + + + =

− + − + =

11 2 3 4 5

1 2 3 4 5

27 9 3 44
16 8 4 2 8

− + − + =
− + − + =

x x x x
x x x x x

l
l l
l l l

u u d
u d

d

11

21 22

31 32 33

12 13 1

23 2

3

0 0
0

1
0 1
0 0 1

































=
















a a a c
a a a c
a a a c

11 12 13 1

21 22 23 2

31 32 33 3

The matrix in augmented form is shown in Table 2.7.

Table 2.7.  Example 2.11 Cholesky decomposition 
method

1 1 1 1 1 8
16 8 4 2 1 44

A = 1 -1 1 -1 1 2

81 -27 9 -3 1 44

16 -8 4 -2 1 8
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The reduced lower triangular matrix is shown in Table 2.8.

Table 2.8.  Example 2.11 Cholesky decomposition method
1 0 0 0 0
16 -8 0 0 0

L = 1 -2 3 0 0

81 -108 90 60 0

16 -24 24 12 -2

The upper triangular matrix is found at the same time and is shown in 
Table 2.9.

Table 2.9.  Example 2.11 Cholesky decomposition method

1 1 1 1 1 8
0 1 1.5 1.75 1.875 10.5

U|D = 0 0 1 0.5 1.25 5
0 0 0 1 0.167 1.333
0 0 0 0 1 2

Finally, the solution is calculated from the [U|D] matrix using back substi-
tution and shown in Table 2.10.

1
2

x = 2
1
2

2.10  ERROR EQUATIONS

Error equations are intended to increase the accuracy in which the roots 
of simultaneous equations are determined by reducing the error due to 
rounding off. Consider the set of equations as follows:

Table 2.10.  Example 2.11 Cholesky decomposition method
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a x a x a x a x C

a x a x a x a x C

a

n n

n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

3

+ + +…+ =

+ + +…+ =

11 1 32 2 33 3 3 3x a x a x a x Cn n+ + +…+ =

                          �������

a x a x a x a x Cn n n nn n n1 1 2 2 3 3+ + +…+ =

If the approximate roots x′1, x′2, x′3…, x′n have been obtained by elimina-
tion, upon substitution into the equations the constants C′1, C′2, C′3…, C′n 
are found as follows:

a x a x a x a x C

a x a x a x a

n n11 1 12 2 13 3 1 1

21 1 22 2 23 3 2

′ + ′ + ′ +…+ ′ = ′

′ + ′ + ′ +…+ nn n

n n

x C

a x a x a x a x C

′ = ′

′ + ′ + ′ +…+ ′ = ′

2

31 1 32 2 33 3 3 3

                        

 

������

a x a x a x a x Cn n n nn n n1 1 2 2 3 3′ + ′ + ′ +…+ ′ = ′

If ∆x1, ∆x2, ∆x3 …, ∆xn are the corrections that must be added to the 
approximate root to obtain the exact root values x1, x2, x3,…, xn, the 
following is utilized:

x x x

x x x

x x x

x x xn n n

1 1 1

2 2 2

3 3 3

= ′ +

= ′ +

= ′ +

= ′ +

∆

∆

∆

∆

    ������

If we substitute these expressions for the exact root, we obtain the following:

a x x a x x a x x a x x C

a

n n n11 1 1 12 2 2 13 3 3 1 1

2

′ +( ) + ′ +( ) + ′ +( ) +…+ ′ +( ) =∆ ∆ ∆ ∆

11 1 1 22 2 2 23 3 3 2 2

31

′ +( ) + ′ +( ) + ′ +( ) +…+ ′ +( ) =x x a x x a x x a x x C

a

n n n∆ ∆ ∆ ∆

′′ +( ) + ′ +( ) + ′ +( ) +…+ ′ +( ) =x x a x x a x x a x x Cn n n1 1 32 2 2 33 3 3 3 3∆ ∆ ∆ ∆

   �������

a x x a x x a x x a x xn n n nn n n1 1 1 2 2 2 3 3 3′ +( ) + ′ +( ) + ′ +( ) +…+ ′ +(∆ ∆ ∆ ∆ )) = Cn



80   •  NU MERICAL STRUCTURAL ANALYSIS

If these equations are subtracted from the approximate equations, the 
following is obtained:

a x a x a x a x C C e
a x a x a x

n n11 1 12 2 13 3 1 1 1 1

21 1 22 2 23

∆ ∆ ∆ ∆
∆ ∆ ∆

+ + +…+ = − ′ =
+ + 33 2 2 2 2

31 1 32 2 33 3 3 3 3

+…+ = − ′ =
+ + +…+ = − ′ =

a x C C e
a x a x a x a x C C

n n

n n

∆
∆ ∆ ∆ ∆ ee

a x a x an n

3

1 1 2 2

                                  ������
∆ ∆+ + nn nn n n nx a x C C e3 3∆ ∆+…+ = − ′ =

This shows that the corrections, ∆x′s, can be obtained by replacing the 
constant vector of the solution with the difference of the constant vectors, 
(C–C′s)’s, and applying reduction to find the error. These are then added 
to the approximate solution and the process is repeated until accuracy is 
achieved.

Example 2.12  Error equations

Determine the solution to the following set of equations using any  
Gauss–Jordan elimination, but only carry two decimals of accuracy  
(i.e., x.xx) then apply error equations to increase accuracy.

2 11 2 11 3 04 1 11 1 65
0 02 1 23 2 22 1 02

1 2 3 4

1 2 3

. . . . .
. . . .

x x x x
x x x
+ − + =

− + + + xx
x x x x
x x

4

1 2 3 4

1 2

13 18
0 14 0 06 1 21 1 08 0 67
1 32 0 20 0

=
− + − = −
+ +

.
. . . . .
. . .000 3 90 17 323 4x x+ =. .

The process of three complete cycles is shown in Tables 2.11–2.13.

2.11  MATRIX INVERSION METHOD

The solution to a set of linear equations can be achieved by using any reduc-
tion technique on the coefficient matrix augmented with the identity matrix.

A I

a a a a
a a a a
a a a a

a a a

n

n

n

n n n

|[ ] =

11 12 13 1

21 22 23 2

31 32 33 3

1 2

�
�
�

� � � � �

33

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 1�

�
�
�

� � � � �
�ann

 
 
 
 
 























From here, the coefficient matrix is reduced until the identity matrix is 
on the left and the original identity on the right becomes the invert of A.
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Table 2.11.  Example 2.12 Error equations

2.11 2.11 -3.04 1.11 1.65
A|C = -0.02 1.23 2.22 1.02 13.18

0.14 -0.06 1.21 -1.08 -0.67
1.32 0.20 0.00 3.90 17.32

2.11 2.11 -3.04 1.11 1.65
A|C = 0.00 1.25 2.19 1.03 13.20

0.00 -0.20 1.41 -1.15 -0.78
0.00 -1.12 1.90 3.21 16.29

2.11 0.00 -6.74 -0.63 -20.63
A|C = 0.00 1.25 2.19 1.03 13.20

0.00 0.00 1.76 -0.99 1.33
0.00 0.00 3.86 4.13 28.12

2.11 0.00 0.00 -4.42 -15.54
A|C = 0.00 1.25 0.00 2.26 11.55

0.00 0.00 1.76 -0.99 1.33
0.00 0.00 0.00 6.30 25.20

2.11 0.00 0.00 0.00 2.14
A|C = 0.00 1.25 0.00 0.00 2.51

0.00 0.00 1.76 0.00 5.29
0.00 0.00 0.00 6.30 25.20

1.01 1.66
x = 2.01 C1 = 13.21

3.01 -0.66
4.00 17.34

-0.01
e1 = -0.03

-0.01
-0.02
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Table 2.12.  Example 2.12 Error equations

2.11 2.11 -3.04 1.11 -0.01
A|C = -0.02 1.23 2.22 1.02 -0.03

0.14 -0.06 1.21 -1.08 -0.01
1.32 0.20 0.00 3.90 -0.02

2.11 2.11 -3.04 1.11 -0.01
A|C = 0.00 1.25 2.19 1.03 -0.03

0.00 -0.20 1.41 -1.15 -0.01
0.00 -1.12 1.90 3.21 -0.01

2.11 0.00 -6.74 -0.63 0.04

A|C = 0.00 1.25 2.19 1.03 -0.03
0.00 0.00 1.76 -0.99 -0.01
0.00 0.00 3.86 4.13 -0.04

2.11 0.00 0.00 -4.42 0.00

A|C = 0.00 1.25 0.00 2.26 -0.02
0.00 0.00 1.76 -0.99 -0.01
0.00 0.00 0.00 6.30 -0.02

2.11 0.00 0.00 0.00 -0.01
A|C = 0.00 1.25 0.00 0.00 -0.01

0.00 0.00 1.76 0.00 -0.01
0.00 0.00 0.00 6.30 -0.02

0.00 1.01
x = -0.01 Dx1

= 2.00

-0.01 3.00

0.00 4.00

1.67 -0.02
C2 = 13.18 e2 = 0.00

-0.67 0.00

17.33 -0.01
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Table 2.13.  Example 2.12 Error equations

2.11 2.11 -3.04 1.11 -0.02
A|C = -0.02 1.23 2.22 1.02 0.00

0.14 -0.06 1.21 -1.08 0.00

1.32 0.20 0.00 3.90 -0.01

2.11 2.11 -3.04 1.11 -0.02
A|C = 0.00 1.25 2.19 1.03 0.00

0.00 -0.20 1.41 -1.15 0.00

0.00 -1.12 1.90 3.21 0.00

2.11 0.00 -6.74 -0.63 -0.02
A|C = 0.00 1.25 2.19 1.03 0.00

0.00 0.00 1.76 -0.99 0.00

0.00 0.00 3.86 4.13 0.00

2.11 0.00 0.00 -4.42 -0.02
A|C = 0.00 1.25 0.00 2.26 0.00

0.00 0.00 1.76 -0.99 0.00

0.00 0.00 0.00 6.30 0.00

2.11 0.00 0.00 0.00 -0.02
A|C = 0.00 1.25 0.00 0.00 0.00

0.00 0.00 1.76 0.00 0.00
0.00 0.00 0.00 6.30 0.00

–0.01 1.00
x = 0.00 Dx2

= 2.00

0.00 3.00
0.00 4.00

1.67 0.00
C3 = 13.18 e3 = 0.00

-0.67 0.00

17.32 0.00
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If partial pivoting is used during the reduction, the columns in the 
invert must be swapped back in reverse order as the rows were swapped 
during reduction. The constant vector must also be reordered in the 
same way.

Example 2.13  Matrix inversion

Determine the solution to the following set of equations using inversion-
in-place (improved Gauss–Jordan). Include partial pivoting during the 
reduction.

2 11 2 11 3 04 1 11 1 65
0 02 1 23 2 22 1 02

1 2 3 4

1 2 3

. . . . .
. . . .

x x x x
x x x
+ − + =

− + + + xx
x x x x
x x

4

1 2 3 4

1 2

13 18
0 14 0 06 1 21 1 08 0 67
1 32 0 20 0

=
− + − = −
+ +

.
. . . . .
. . .000 3 90 17 323 4x x+ =. .

The matrix is shown in Table 2.14 in augmented form and Gauss–Jordan 
elimination is performed for the first two columns.

Table 2.14.  Example 2.13 Matrix inversion method

2.11 2.11 -3.04 1.11 1.65
A|C = -0.02 1.23 2.22 1.02 13.18

0.14 -0.06 1.21 -1.08 -0.67
1.32 0.20 0.00 3.90 17.32

2.11 2.11 -3.04 1.11 1.00 0.00 0.00 0.00
A|I = -0.02 1.23 2.22 1.02 0.00 1.00 0.00 0.00

0.14 -0.06 1.21 -1.08 0.00 0.00 1.00 0.00
1.32 0.20 0.00 3.90 0.00 0.00 0.00 1.00

(Continued)
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Now the third and fourth columns are swapped back for the inverse 
matrix shown in Table 2.16.

Note that partial pivoting should be performed and row three is now 
swapped with row four. Columns 3 and 4 are then eliminated as shown in 
Table 2.15.

Table 2.14.  (Continued)
2.110 2.110 -3.040 1.110 1.000 0.000 0.000 0.000

A|I = 0.000 1.250 2.191 1.031 0.009 1.000 0.000 0.000
0.000 -0.200 1.412 -1.154 -0.066 0.000 1.000 0.000
0.000 -1.120 1.902 3.206 -0.626 0.000 0.000 1.000

2.1100 0.0000 -6.7387 -0.6295 0.9840 -1.6880 0.0000 0.0000
A|I = 0.0000 1.2500 2.1912 1.0305 0.0095 1.0000 0.0000 0.0000

0.0000 0.0000 1.7623 -0.9888 -0.0648 0.1600 1.0000 0.0000
0.0000 0.0000 3.8651 4.1289 -0.6171 0.8960 0.0000 1.0000

Table 2.15.  Example 2.13 Matrix inversion method

2.1100 0.0000 -6.7387 -0.6295 0.9840 -1.6880 0.0000 0.0000

A|I = 0.0000 1.2500 2.1912 1.0305 0.0095 1.0000 0.0000 0.0000

0.0000 0.0000 3.8651 4.1289 -0.6171 0.8960 0.0000 1.0000

0.0000 0.0000 1.7623 -0.9888 -0.0648 0.1600 1.0000 0.0000

2.1100 0.0000 0.0000 6.5692 -0.0919 -0.1258 0.0000 1.7435

A|I = 0.0000 1.2500 0.0000 -1.3102 0.3593 0.4920 0.0000 -0.5669

0.0000 0.0000 3.8651 4.1289 -0.6171 0.8960 0.0000 1.0000

0.0000 0.0000 0.0000 -2.8714 0.2165 -0.2485 1.0000 -0.4560

2.1100 0.0000 0.0000 0.0000 0.4035 -0.6944 2.2878 0.7003

A|I = 0.0000 1.2500 0.0000 0.0000 0.2605 0.6055 -0.4563 -0.3589

0.0000 0.0000 3.8651 0.0000 -0.3057 0.5386 1.4380 0.3444

0.0000 0.0000 0.0000 -2.8714 0.2165 -0.2485 1.0000 -0.4560

Table 2.16.  Example 2.13 Matrix inversion method

1.0000 0.0000 0.0000 0.0000 0.1912 -0.3291 1.0843 0.3319

I|A-1 = 0.0000 1.0000 0.0000 0.0000 0.2084 0.4844 -0.3651 -0.2871

0.0000 0.0000 1.0000 0.0000 -0.0791 0.1394 0.3720 0.0891

0.0000 0.0000 0.0000 1.0000 -0.0754 0.0866 -0.3483 0.1588

(Continued)
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Now the third and fourth rows are swapped in coefficient matrix and 
the solution is found as [x]=[A]-1[C] in Table 2.17:

Table 2.17.  Example 2.13 Matrix inversion method

1.65 1.65 1

C = 13.18 C = 13.18 x = 2

-0.67 17.32 3

17.32 -0.67 4

Table 2.16.  (Continued)

0.1912 -0.3291 0.3319 1.0843

A-1 = 0.2084 0.4844 -0.2871 -0.3651

-0.0791 0.1394 0.0891 0.3720

-0.0754 0.0866 0.1588 -0.3483

2.12 G AUSS–SEIDEL ITERATION METHOD

Some methods such as the Gaussian elimination are not appropriate 
when a sparse matrix exists. A matrix normally can be considered sparse 
if approximately two-thirds or more of the entries in a matrix are zero. 
The Gauss–Seidel iteration method was developed for such systems. The 
method is named for Carl Friedrich Gauss and Philipp Ludwig von Seidel 
(Gauss 1903). This method is an iteration method in which the last cal-
culated values are used to determine a more accurate solution. Typically, 
all unknown x values are assumed to be zero to begin the iteration. This 
method mainly works best with a diagonal system in which the largest 
values lie on the diagonal. The elastic stiffness matrix used to analyze 
structures is a typical example of a diagonal system and will be presented 
in Chapter 4. A diagonal system is sufficient, but not necessary to provide 
convergence. During the process, each row is used to find a better approx-
imation of the variable corresponding to the row using all other variables 
as known.

Example 2.14  Gauss–Seidel lteration method

Determine the solution to the following set of equations using the 
Gauss–Seidel iteration method with e = 0.01 and assume x1 = x2 = x3 
= x4 = 0.
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10 2 50
2 10 2 63

2 10 67
2

1 2 3 4

1 2 3 4

1 2 3 4

1 2

x x x x
x x x x

x x x x
x x

+ + + =
+ + + =

+ + + =
+ ++ + =x x3 410 75

Note that this is a diagonal system with 10’s on the diagonal and all other 
coefficients are much less. Begin the iteration by setting x1 = x2 = x3 = x4 = 0  
and solving for each of the unknowns using the corresponding equation in 
a top down order.

10 0 2 0 0 50 5 000

2 5 000 10 0 2 0 63 5 300

5

1 1

2 2

x x
x x

+ + ( ) + = ∴ =

( ) + + + ( ) = ∴ =

.

. .

.. . .

. . .

000 2 5 300 10 0 67 5 140

2 5 000 5 300 5 140 10
3 3

4

+ ( ) + + = ∴ =

( ) + + +

x x
x == ∴ =75 5 4564x .

After completing the first cycle, start with the first equation using the new 
values and find a closer approximation for each unknown. Also, check the 
difference between the new values and the previous values to determine if 
the desired accuracy is achieved.

10 5 300 2 5 140 5 456 50 2 896 2 104

2 2 896
1 1 1x x x+ + ( ) + = ∴ = = −. . . . .

.

  and ∆

(( ) + + + ( ) = ∴ = = −

+

10 5 140 2 5 456 63 4 116 1 184

2 896 2 4
2 2 2x x x. . . .

.

  and ∆

.. . . .

. .

116 10 5 456 67 5 042 0 098

2 2 896 4 11
3 3 3( ) + + = ∴ = = −

( ) +

x x x  and ∆

66 5 042 10 75 6 005 0 5494 4 4+ + = ∴ = =. . .x x x  and ∆

None of the values of Dx are less than e = 0.01, so the process is repeated. 
Table 2.18 shows the entire process to convergence. The process can be 
stopped when each value has changed less than e or when a cycle results 
in each value changing less than e.

2.13  EIGENVALUES BY CRAMER’S RULE

A homogeneous equation is one where all the constants on the right-hand 
side of the equal sign are zero. The typical set of n homogeneous equations 
with n unknown solution sets is as follows:
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Table 2.18.  Example 2.14 Gauss–Seidel iteration method

x1= 5.000 ∆x1= 5.000
x2= 5.300 ∆x2= 5.300
x3= 5.140 ∆x3= 5.140
x4= 5.456 ∆x4= 5.456

x1= 2.896 ∆x1= -2.104
x2= 4.116 ∆x2= -1.184
x3= 5.042 ∆x3= -0.098
x4= 6.005 ∆x4= 0.549

x1= 2.980 ∆x1= 0.083
x2= 3.999 ∆x2= -0.117
x3= 5.002 ∆x3= -0.040
x4= 6.004 ∆x4= -0.001 <epsilon

x1= 2.999 ∆x1= 0.020
x2= 3.999 ∆x2= 0.000 <epsilon
x3= 5.000 ∆x3= -0.002 <epsilon
x4= 6.000 ∆x4= -0.004 <epsilon

x1= 3.000 ∆x1= 0.001 <epsilon
x2= 4.000 ∆x2= 0.001 <epsilon
x3= 5.000 ∆x3= 0.000 <epsilon
x4= 6.000 ∆x4= 0.000 <epsilon

a x a x a x a x
a x a x a x a x
a x

n n

n n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31

0
0

+ + +…+ =
+ + +…+ =

11 32 2 33 3 3

1 1

0+ + +…+ =

+

a x a x a x

a x a

n n

n

                     ������

nn n nn nx a x a x2 2 3 3 0+ +…+ =

This can be written in matrix form, [A][x]=[0], as follows:
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a a a a
a a a a
a a a a

a a a a

n

n

n

n n n nn

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3
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�

� � � � �
�
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














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=

















x
x
x

xn

1
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3

0
0
0
0
0

�







Let us consider the solution of eigenvalue problems. For any square 
matrix, [A], the determinant equation |A−lI|=0 is a polynomial equation of 
degree n unknowns in the variable l. In other words, there are exactly n 
roots that satisfy this equation. These roots are known as eigenvalues of A.

a x a x a x a x

a x a x a x a
n n

n

11 1 12 2 13 3 1

21 1 22 2 23 3 2

0−( ) + + +…+ =

+ −( ) + +…+

l

l xx

a x a x a x a x
n

n n

=

+ + −( ) +…+ =

0

031 1 32 2 33 3 3l
                      �������
a x a x a x a xn n n nn n1 1 2 2 3 3 0+ + +…+ −( ) =l

Converting these equations into matrix form, [A−lI][x]=0:

a a a a
a a a a
a a a a

a

n

n

n

n

11 12 13 1

21 22 23 2

31 32 33 3

−( )
−( )

−( )

l
l

l

�
�
�

� � � � �

11 2 3

1

2

3

a a a

x
x
x

xn n nn n�
�

−( )







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
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






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





















=

l

00
0
0
0
0























The non-trivial solution exists if the determinant of the coefficient 
matrix is zero. We use this so that Cramer’s rule can be used to find the 
eigenvalues. Example 2.15 shows the process of determining the eigen-
values by Cramer’s rule.

Example 2.15  Eigenvalues by Cramer’s rule

Determine the eigenvalues for the following set of equations using 
Cramer’s rule.

0 2 3 0
10 1 2 0
2 4 7 0

1 2 3

1 2 3

1 2 3

x x x
x x x

x x x

+ + =
− − + =
− + + =
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0 2 3
10 1 2
2 4 7

0
−( )

− − −( )
− −( )

=
l

l
l

Solve the determinant by the basket weave method.

0 2 3 0 2
10 1 2 10 1
2 4 7 2 4

−( ) −( )
− − −( ) − − −( )
− −( ) −

l l
l l

l

0 1 7 2 2 2 3 10 4−( ) − −( ) −( )  + ( )( ) −( )  + ( ) −( )( ) l l l

            − ( ) − −( ) −( )  − −( )( )( )  − ( ) −( ) −( ) 3 1 2 0 2 4 2 10 7l l l

l 33 26 11 6 0− + − =l l

The solution to the cubic equation can be found by many of the methods 
from Chapter 1 and represent the eigenvalues l = 1, 2, and 3.

2.14 F ADDEEV–LEVERRIER METHOD

The Faddeev–Leverrier method is a polynomial method used to find the 
eigenvalues. The method is named for Dmitrii Konstantinovich Faddeev 
and published by Urbain Jean Joseph Le Verrier in 1840 (Le Verrier 
1839). From linear algebra, the trace of a matrix is the sum of the diag-
onal terms. The process for determining the characteristic polynomial is 
as follows:

−( ) − − − −…−( ) =

[ ] = [ ]

− − −1 01
1

2
2

3
3

1

n n n n n
np p p p

B A

l l l l

                                      

    

p tr B

B A B p I

1 1

2 1 1

= [ ]
[ ] = [ ] [ ]− [ ]( )              

              

p tr B

B A B p I

2 2

3 2 2

1
2

= [ ]

[ ] = [ ] [ ]− [ ]( )   

                                            

p tr B3 3
1
3

= [ ]
�        

           

    

�

B A B p I p
k
tr Bk k k k k[ ] = [ ] [ ] − [ ]( ) = [ ]− −1 1

1

                                               � �

B A Bn[ ] = [ ] nn n n np I p
n
tr B− −[ ] − [ ]( ) = [ ]1 1

1         
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Example 2.16 shows the process of determining the characteristic polyno-
mial and the eigenvalues by the Faddeev–Leverrier method.

Example 2.16  Faddeev–Leverrier method

Determine the eigenvalues for the following set of equations using the 
Faddeev–Leverrier method.

x x x
x x x

x x x

1 2 3

1 2 3

1 2 3

2 3 0
10 0 2 0
2 4 8 0

+ + =
− + + =
− + + =

The matrix operations are shown in Table 2.19.
The characteristic polynomial is found from the trace values.

−( ) − − −( ) −( ) =

− + − + =

1 9 26 24 0

9 26 24 0

3 3 2

3 2

l l l

l l l

The solution to the cubic equation can be found by many of the methods 
from Chapter 1 and represent the eigenvalues l = 2, 3, and 4.

2.15  POWER METHOD OR ITERATION METHOD

The power method is an iterative method used when only the smallest or 
largest eigenvalues and eigenvectors are desired. It may also be used to 
find intermediate eigenvalues and eigenvectors using a sweeping tech-
nique. The sweeping technique can be found in “Applied Numerical 
Methods for Digital Computations,” By M.L. James, G.M. Smith, and 
J.C. Wolford. The largest eigenvalue is found by iterating on the equation 
[A][x]= l[x].

The steps of procedure are as follows:

1.	 Assume values for the components of the eigenvector [x]=1.
2.	 Multiply the coefficient matrix times the vector [A][x].
3.	 Normalize the right hand side of the equation as follows l[x]:
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Table 2.19.  Example 2.16 Faddev–Leverrier method

[B1]=[A] = 1 2 3 1 2 3
−10 0 2 −10 0 2
−2 4 8 −2 4 8

[B2]=([A]([B1]−p1I) p1=tr[B1] = 9

1 2 3 * 1 2 3 − 9
−10 0 2 −10 0 2 9
−2 4 8 −2 4 8 9

1 2 3 * −8 2 3 = −34   −4  4
−10 0 2 −10 −9 2   76 −12 −32
−2 4 8 −2 4 −1 −40   −8 −6

[B3]=([A]([B2]−p2I) p2=(1/2)tr[B2] = −26

1 2 3 * −34 −4 4 − −26
−10 0 2 76 −12 −32 −26
−2 4 8 −40 −8 −6 −26

1 2 3 * −8 −4 4 = 24 0 0
−10 0 2 76 14 −32 0 24 0
−2 4 8 −40 −8 20 0 0 24

p3=(1/3)tr[B3] = 24

a.	 Divide all the x’s by first x value.
b.	 Divide all the x’s by the largest x.
c.	 Normalize to a unit length.

4.	 Use the components of the normalized vector as improved values 
of x.

5.	 Repeat steps 2 through 4 until the previous values differ from the 
new values by less than some small value (e).
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The smallest eigenvalue is found by iterating on the equation [A−1][x]= 
l−1[x] in the same manner as the largest value. A common structural prob-
lem is the modal node analysis of a multi-story frame. The general steps 
are as follows:

[K][x] − λ[M ][x] = 0

The value l = w2, where w is the frequency of the building. The equation 
can be rewritten as follows:

B M x x[ ][ ][ ] = [ ]1
l

The values of the matrices are [K] for stiffness, [M] for mass, and [B] for 
flexibility.

Example 2.17  Power method

Determine the first mode shape (lowest eigenvector) for the following set 
of equations using the power method with e = 0.001 and assuming [x] = 
[1] as an initial value. The [B] and [M] matrices are for a four-story single 
mass structural model.

1 12 1 12 1 12 1 12
1 12 11 60 11 60 11 60
1 12 11 60 37 120 37 120
1

/ / / /
/ / / /
/ / / /
/112 11 60 37 120 57 120

6 0 0 0
0 5 0 0
0 0 4 0
0 0 0 3

10 6

/ / /


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

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


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


−


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




=



















103

0
0
0
0

The [B] and [M] matrices can be combined by matrix multiplication.

0 000500 0 000417 0 000333 0 000250
0 000500 0 000917 0 000733 0

. . . .

. . . .0000550
0 000500 0 000917 0 001233 0 000925
0 000500 0 000917 0 0

. . . .

. . . 001233 0 001425

0
0
0
0.



















=



















The iteration process and the final solution are shown in Table 2.20. The 
x vector was normalized to the top value.
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Table 2.20.  Example 2.17 Power method

0.0005 0.0004167 0.0003333 0.00025 * 1

0.0005 0.0009167 0.0007333 0.00055 1

0.0005 0.0009167 0.0012333 0.000925 1

0.0005 0.0009167 0.0012333 0.001425 1

1 1

0.0015 = 1 0.0015

0.0027 1.8

0.003575 2.3833333

0.004075 2.7166667

2 2

0.002724 = 1 0.0027236 emax= 0.5733384

0.005392 1.9797042

0.007602 2.79128

0.008961 3.2900051

3 3

0.003078 = 1 0.0030778 emax= 0.103831

0.006171 2.0050559

0.008801 2.8593634

0.010446 3.3938361

4 4

0.003137 = 1 0.003137 emax = 0.0172777

0.006301 2.0087357

0.009004 2.8701807

0.010701 3.4111138

5 5

0.003146 = 1 0.0031465 emax = 0.002883

0.006322 2.0093106

0.009037 2.8719442

0.010742 3.4139968

6 6

0.003148 = 1 0.003148 emax = 0.000484

e = 0.001

l1= 317.6593

0.006326 2.0094044

0.009042 2.87223733

0.010749 3.4144812
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CHAPTER 3

Numerical Integration and 
Differentiation

The integration of a continuous function is used to find the area under the 
function and to evaluate integral relationships of functions. Differentia-
tion evaluates the rate of change of one variable with respect to another. 
Examples of structural engineering problems involving integration and 
differentiation include geometrical properties of centroids of areas and 
volumes; moment of inertia; relationships between load, shear, moment, 
rotation, and deflection of beams using the equation of the elastic curve; 
and other strain energy relationships of structures involving shear, torsion, 
and axial forces. Many methods exist to solve such types of problems with 
varying levels of exactness. These and other problems will be covered in 
the following chapters. 

3.1 T RAPEZOIDAL RULE

Consider a function f(x) graphed between points a and b along the x-axis 
as shown in Figure 3.1. One approximation of the area under the curve is 
to apply the trapezoidal rule by dividing the area into n strips of width Dx. 
Then, approximate the area of each strip as a trapezoid. 

Calling the ordinates f(xi) = yi (i = 1, 2, 3,…, n, n+1), the areas of each 
strip are as follows:

A x
y y

A x
y y

A x
y y

An1
1 2

2
2 3

3
3 4

2 2 2
=

+





=
+





=
+





…

=

∆ ∆ ∆, , ,

∆∆

∆

x
y y

A f x dx A A A A

A f x dx x y

n n

a

b

n

a

b

+





= ( ) = + + + +

= ( ) =

+

∫

∫

1

1 2 3

2

2

�
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1
2

1

2 2 2

2
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+ + + + +( )

= + +




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+

=
+∑

y y y y

A x y y y

n n

i

n

i n
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A x
y y

A x
y y

A x
y y

An1
1 2

2
2 3

3
3 4

2 2 2
=

+



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=
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

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=
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…
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b

n
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∆

Example 3.1  Trapezoidal rule

Determine the area under the curve from 0 to p for y=sin(x) using the 
trapezoidal rule with 2 and 4 strips.

A x y y y
i

n

i n= + +




=

+∑∆
2

21
2

1

Two strips are shown in Table 3.1: 

Table 3.1.  Example 3.1 Trapezoidal rule

x 0 p/2 p

x 0 1.5708 3.1416
y=sin(x) 0 1 1.23E-16

A = + ( ) +( ) = =
p p
4

0 2 1 0
2

1 5708.

y3

y4

xix=a

y=f(x)

x=b x

yn–1

yn+1

yn

y2y1

A1 A2

∆x

A3 An–1 An

∆x ∆x ∆x ∆x

Figure 3.1.  Trapezoidal rule.
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Four strips are shown in Table 3.2: 

Table 3.2.  Example 3.1 Trapezoidal rule
x 0 p/4 p/2 3p/4 p

x 0 0.7854 1.5708 2.3562 3.1416
y=sin(x) 0 0.7071 1 0.7071 1.23E-16

A = + ( ) + ( ) + ( ) +( ) = ( ) =
p p
8

0 2 0 7071 2 1 2 0 7071 0
8

4 8284 1 8961. . . .

The exact solution may be found by the integral:

0
0 0 1 1 2

p
p p∫ ( ) = − ( ) = − ( ) − ( )  = + =sin cos cos cosx dx x |

3.2  ROMBERG INTEGRATION

A more accurate integral can be obtained using Romberg’s method 
(Romberg 1955). If a function can be defined as a continuous mathe
matical expression having continuous derivative f′(x) and f″(x), the 
error of the trapezoidal rule is shown in Figure 3.2 and can be found 
as follows:

Expanding yi+1 in a Taylor series about xi and letting Dx=h as 
follows:

y y y h
y h y h

Higher order termsi i i
i i

+ = + ′ +
′′

+
′′′

+1

2 3

2 3! !
  

The change in y between points i and i+1 is equal to the area under the 
y′ curve between those two points, therefore the exact area in the strip is 
as follows:

	               

y y y h
y h y h

Higher order terms

y y

i i i
i i

i i

+

+

− = ′ +
′′

+
′′′

+

− =

1

2 3

1

2 3! !
  

ff h
f h f h

Higher order termsi
i i+
′

+
′′

+
2 3

2 3! !
  � (3.1)
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The Taylor series for fi+1 expanded about xi is as follows:

	

f f f h
f h

Higher order terms

f h f f
f h

i i i
i

i i i
i

+

+

= + + +

′ = − −

′
′′

′′

1

2

1

2!
  

22

2!
− Higher order terms  � (3.2)

Substituting Equation 3.2 into Equation 3.1, the following can be derived:

  

y y f h

f f f h Higher order terms h

i i i

i i
i

+

+

− = +

− − −












′′

1

1

2

2

2

!

!

  

                  

 

+ +

− =

′′

+

f h
Higher order terms

y y exact

i

i i

3

1

3!

aarea
f f

h
f h

Higher order termsi i i=
+( )

− +
′′

+1
3

2 12
  �(3.3)

y′ = f(x)

∆x

fi fi+1

xi+1xi

yi

x

y

yi+1
yi+1 – yi

x

Figure 3.2.  Romberg integration.
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The first term on the right side in Equation 3.3 is the area or the trapezoid 
and the rest is the error as follows:

E
f h

Higher order termsT
i= − +
′′ 3

12
  

The exact integral, I, can be derived using this error relation from two sep-
arate approximate integrals. The derivation is omitted from this text, but 
may be found in “Applied Numerical Methods for Digital Computations,” 
by James, Smith, and Wolford (1977). The improved integral is based on 
two approximate integrals with a strip where h2 < h1 as follows:

I I
I I
h h

h I
I I
h
h

h
h h

h
h h≅ +

−
−









 = +

−





 −

2
1 2

2
2

1
2 2

2
2

1 2

1

2

2

1

I
I h

h I

h
h

h h

≅





 −





 −

2
1

2

2

1

1

2

2

1

If the second integration uses a strip one-half that of the first with h1/h2=2, 
the equation becomes the following:

I
I Ih h≅

( ) −

( ) −
2

2
1

2

2

2 1

This is a defined as a first-order extrapolation. If two first-order extrapo-
lations are performed, then their results can be combined into a second- 
order relationship with the following:

I
I Ih h≅

( ) −

( ) −
2

4
1

4

2

2 1

The general nth order extrapolation would take the following form with n 
being the order of extrapolation:

I
I Ih

n
h

n≅
−
−

2 14
4 1
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Example 3.2  Romberg integration

Determine the third-order extrapolation for the area under the curve from 
0 to 1 for y=10x using Romberg integration along with the trapezoidal rule.

A x y y y
i

n

i n= + +




=

+∑∆
2

21
2

1

The trapezoidal integration for one strip is as follows in Table 3.3: 

Table 3.3.  Example 3.2 Romberg integration

x 0 1.000
y 1.0000 10.0000

A = +( ) =
1
2

1 10 5 5.

Two strips are shown in Table 3.4: 

Table 3.4.  Example 3.2 Romberg integration

x 0 0.500 1.000
y 1.0000 3.1623 10.0000

A = + ( ) +( ) =
1
4

1 2 3 1623 10 4 33114. .

Four strips are shown in Table 3.5: 

Table 3.5.  Example 3.2 Romberg integration

x 0 0.250 0.500 0.750 1.000
y 1.0000 1.7783 3.1623 5.6234 10.0000

A = + ( ) + ( ) + ( ) +( ) =
1
8

1 2 1 7783 2 3 1623 2 5 6234 10 4 01599. . . .

Eight strips are shown in Table 3.6: 

Table 3.6.  Example 3.2 Romberg integration
x 0 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
y 1.0000 1.3335 1.7783 2.3714 3.1623 4.2170 5.6234 7.4989 10.0000



Numerical Integration and Differentiation   •   103

A = + ( )( + ( ) + ( ) + ( )
+ ( ) +

1
16

1 2 1 3335 2 1 7783 2 2 3724 2 3 1623

2 4 2170

. . . .

. 22 5 6234 2 7 4989 10 3 93560. . .( ) + ( ) + ) =

From Romberg integration, 

I
I Ih

n
h

n≅
−
−

2 14
4 1

First order: 

I ≅
( ) −

( ) −
=

4 33114 4 5 5

4 1
3 941518

1

1

. .
.

I ≅
( ) −

( ) −
=

4 01599 4 4 33114

4 1
3 910944

1

1

. .
.

I ≅
( ) −

( ) −
=

3 93560 4 4 01599

4 1
3 908798

1

1

. .
.

Second order: 

I

I

≅
( ) −

( ) −
=

≅
( ) −

3 910944 4 3 941518

4 1
3 9089055

3 908798 4 3 91

2

2

2

. .
.

. . 00943

4 1
3 98086482( ) −

= .

Third order:

I ≅
( ) −

( ) −
=

3 9086548 4 3 9089055

4 1
3 98086509

3

3

. .
.

5.5 4.33114 4.01599 3.9560

3.941518 3.910944 3.908798

3.9089055 3.6086548

3.98086509
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The exact solution may be found from the following integral:

0

1

0
110 10

10
4 342944819 0 434294482 3 9808650337∫ = = − =x

x

dx
ln

| . . .

3.3  SIMPSON’S RULE

More accurate integration can be achieved by Simpson’s rules credited 
to Simpson (1750). Consider a function f(x) graphed between x=–Dx and 
x=Dx as shown in Figure  3.3. An approximation of the area under the 
curve between these two points would be to pass a parabola through the 
points and zero (three points). The general second-degree parabola con-
necting the three points is as follows: 

                    

y f x ax bx c

A ax bx c dx ax bx cx
x

x

x

= ( ) = + +

= + +( ) = + +










− −
∫

2

2
3 2

3 2∆

∆

∆

∆xx

A a x c x= ( ) + ( )2
3

23∆ ∆
                 

(3.4)

The constants a, b, and c are found using the three points (–Dx, yi), (0, yi+1), 
and (Dx, yi+2) as follows:

y=f(x)

y=ax2+bx+c

(xi, yi) (xi+2, yi+2)
(xi+1, yi+1)

x

∆x ∆x

Figure 3.3.  Simpson’s rule.
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y a x b x c
y c
y f x a x b x c

i

i

i

= −( ) + −( ) +
=

= = + +
+

+

∆ ∆

∆ ∆

2

1

2
2( ) ( ) ( )

Solving the three equations with three unknowns we obtain the following:

a
y y y

x

b
y y

x
c y

i i i

i i

i

=
− +

( )

=
− +

( )
=

+ +

+

+

2
2

2

1 2
2

2

1

∆

∆

Substituting the expressions for a and c into Equation 3.4, the following 
is achieved:

A x y y yi i i= + +( )+ +
∆
3

4 1 2

If we apply this to n even numbered strips, the following occurs:

A x y y y

A x y y y

A x y y y

A x yn

= + +( )

= + +( )

= + +( )

= +−

∆

∆

∆

∆

3
4

3
4

3
4

3

1 2 3

3 4 5

5 6 7

1 44y yn n+( )+1

In general form, this is the following:

A x y y y y
i

n

i
i

n

i n= + + +




= =

−

+∑ ∑∆
3

4 21
2 4 6 3 5 7

1

1
, , , ,

If we performed the error truncation to obtain Romberg’s integration, the 
following occurs:

I
I Ih

n
h

n≅
−
−

2 116
16 1
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Similarly, Simpson’s three-eighths rule can be derived using three strips 
and a third-degree parabola. The following is the solution:

	         

y f x ax bx cx d

A ax bx cx d dx ax bx

x

x

= ( ) = + + +

= + + +( ) = + +
−
∫

3 2

3
2

3
2

3 2
4 3

4 3∆
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ccx dx

A b x d x

x

x
2

3
2

3
2

3

2

9
4

3

+










= ( ) + ( )

− ∆

∆

∆ ∆ � (3.5)

The constants a, b, c, and d are found using the four points (–3Dx/2, yi), 
(–Dx/2, yi+1), (Dx/2, yi+2), and (3Dx/2, yi+3) as follows:

y a x b x c x d

y a x

i

i

=
−





+
−





+
−



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+

=
−

+

3
2

3
2

3
2

2

3 2

1

∆ ∆ ∆

∆ 
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+
−





+
−



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+

= 



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+ 



+

3 2

2

3

2 2

2 2

b x c x d

y a x b x
i

∆ ∆

∆ ∆
 + 



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+

= 





+ 





+ 



+

2

3

3 2

2

3
2

3
2

3
2

c x d

y a x b x c x
i

∆

∆ ∆ ∆
++ d

Solve the four equations with four unknowns and then substitute these 
back into Equation 3.5 to achieve the following:

A x y y y yi i i i= + + +( )+ + +
3

8
3 31 2 3

∆

The general form with n strips is as follows:

A x y y y y
i

n n

i
i

n

i n= + + +




=

−

=

−

+∑ ∑3
8

3 21
2 3 5 6

1

4 7

2

1
∆

, , ,

,

,

For an odd number of strips, both the one-third and three-eighths rules 
must be used. The three-eighths rule is used to obtain the area contained 
in three strips under the curve and then the one-third rule is used for the 
remaining n–3 strips.
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Example 3.3.  Simpson’s one-third rule

Determine the area under the curve from –p/2 to p/2 for y = x2cos(x) using 
Simpson’s one-third rule with four and eight strips.

A x y y y y
i

n

i
i

n

i n= + + +




= =

−

+∑ ∑∆
3

4 21
2 4 6 3 5 7

1

1
, , , ,

Four strips are shown in Table 3.7: 

Table 3.7.  Example 3.3 Simpson’s one-third rule

-p/2 -p/4 0 p/4 p/2
x -1.57080 -0.78540 0.00000 0.78540 1.57080
y 0.00000 0.43618 0.00000 0.43618 0.00000

A = + ( ) + ( ) + ( ) +( ) = ( )
=

p p
12

0 4 0 43618 2 0 4 0 43618 0
12

3 48944

0 91353

. . .

. 33

Eight strips are shown in Table 3.8: 

Table 3.8.  Example 3.3 Simpson’s one-third rule

-p/2 -3p/8 -p/4 -p/8 0 p/8 p/4 3p/8 p/2

x -1.57080 -1.17810 -0.78540 -0.39270 0.00000 0.39270 0.78540 1.17810 1.57080

y 0.00000 0.53113 0.43618 0.14247 0.00000 0.14247 0.43618 0.53113 0.00000

A = + ( )( + ( ) + ( ) + ( ) + ( )

+

p
24

0 4 0 53113 2 0 43618 4 0 14247 2 0 4 0 14247

2

. . . .

00 43618 4 0 53113 0
24

7 13352 0 933776. . ) . .( ) + ( ) + = ( ) =
p

Perform Romberg extrapolation with these two integrations to get a more 
exact solution as follows:

I
I Ih

n
h

n≅
−
−

=
( ) −

−
=2 1

1

1

16
16 1

0 933776 16 0 913533
16 1

0 935126
. .

.
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The exact solution may be found by the integral:

−
−∫ ( ) = ( ) + −( ) ( ) 

= +

p

p

p

p

2

2
2 2

2

22 2

0 0 467401

x x dx x x xcos xcos sin

. 11003 0 0 4674011003 0 9348022005( ) − −( ) =. .

Example 3.4.  Simpson’s one-third and three-eighths rules

Determine the area under the curve from 0 to p/2 for y = sin3x+cos3x using 
Simpson’s three-eighths and one-third rules (in that order) with five strips.

Simpson’s three-eighths rule is set up in Table 3.9:

A x y y y yi i i i= + + +( )+ + +
3

8
3 31 2 3

∆

Table 3.9.  Example 3.4 Simpson’s one-third and three-eighths rules

0 p/10 p/5 3p/10 2p/5 p/2
x 0.00000 0.31416 0.62832 0.94248 1.25664 1.57080
y 1.00000 0.88975 0.73258 0.73258 0.88975 1.00000

A = + ( ) + ( ) +( ) = ( ) =
3
80

1 3 0 88975 3 0 73258 0 73258 3
80

6 59957 0 77p p. . . . . 77494

Simpson’s one-third rule is set up in Table 3.10:

A x y y yi i i= + +( )+ +
∆
3

4 1 2

Table 3.10.  Example 3.4 Simpson’s one-third and three-eighths rules

0 p/10 p/5 3p/10 2p/5 p/2
0.00000 0.31416 0.62832 0.94248 1.25664 1.57080
1.00000 0.88975 0.73258 0.73258 0.88975 1.00000

A = + ( ) +( ) = ( ) =
p p
30

0 73258 4 0 88975 1
30

5 29158 0 554133. . . .

Adding the two together for a total area:

A = + =0 777494 0 554133 1 331627. . .
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The exact solution may be found by the integral:

0

2
2 2

0

2
2 1 2 1

2 4

p p

∫ ∫+( ) = +( )

=

− −sin cos sin cosx x dx x x dxn n

          
(( ) …( )

( ) … +( ) +
( ) …( )

( ) … +( ) = + =
6 2

3 5 7 2 1
2 4 6 2

3 5 7 2 1
2
3

2
3

4
3

n
n

n
n

3.4 G AUSSIAN QUADRATURE

The main difference of Gaussian quadrature from the previous methods 
is that the interval to be integrated is not divided into strips. Instead, a 
central point is used to determine the best places to evaluate the function. 
The Gauss points indicate how far from the central point to go and then 
each point is weighted. The derivation of this method is not included 
here, but can be found in many advanced mathematics textbooks. The 
method is named for Carl Friedrich Gauss (1801). The following is a gen-
eral equation that shows the process for n Gauss points for integration:

A f x dx s f s sx w

s b a

s b a

a

b

i

n

i i= ( ) = ±( )

=
−

=
+

∫ ∑
=1

1

1

2

2

The number of points used should closely match the degree of the equation 
to integrate. Table 3.11 shows some of the Gaussian quadrature points, xi, 
and their weights, wi.

Example 3.5.  Gaussian quadrature

Determine the area under the curve from 1 to 10 for y = log10x using 
Gaussian quadrature with 2, 3, and 4 points.

A f x dx s f s sx w

s b a

s b a

a

b

i

n

i i= ( ) = ±( )

=
−

=
−

=

=
+

=
+

∫ ∑
=1

1

1

2
10 1

2
4 5

2
10 1

2

.

== 5 5.
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Two points are shown in Table 3.12: 

Table 3.11.  Gaussian quadrature

xi wi

One point 0 2
Two points -0.577350269 1

0.577350269 1
Three points -0.774596669 0.555555556

0 0.888888889
0.774596669 0.555555556

Four points -0.861136312 0.347854845
-0.339981044 0.652145155
0.339981044 0.652145155
0.861136312 0.347854845

Five points -0.906179846 0.236926885
-0.538469310 0.478628670

0 0.568888889
0.538469310 0.478628670
0.906179846 0.236926885

Six points -0.932469514 0.171324492
-0.661209386 0.360761573
-0.238619186 0.467913935
0.238619186 0.467913935
0.661209386 0.360761573
0.932469514 0.171324492

Table 3.12.  Example 3.5 Gaussian quadrature

xi -0.577350269
2-points 0.577350269

wi 1
1

s1+sxi 2.90192379
8.098076211

f(s1+sxi) 0.462686003
0.90838186

f(s1+sxi)wi 0.462686003
0.90838186

S 1.371067862

S*s 6.169805381
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Three points are shown in Table 3.13:

Table 3.13.  Example 3.5 Gaussian quadrature

xi -0.774596669
3-point 0

0.774596669
wi 0.555555556

0.888888889
0.555555556

s1+sxi 2.01431499
5.5

8.985685011
f(s1+sxi) 0.304127385

0.740362689
0.953551191

f(s1+sxi)wi 0.168959658
0.658100169
0.529750662

S 1.356810489

S*s 6.105647198

Table 3.14.  Example 3.5 Gaussian quadrature

xi -0.861136312

4-points -0.339981044
0.339981044
0.861136312

wi 0.347854845
0.652145155
0.652145155
0.347854845

s1+sxi 1.624886596
3.970085302
7.029914698
9.375113404

f(s1+sxi) 0.210823056
0.598799838
0.846950055
0.97197653

f(s1+sxi)wi 0.073335822
0.390504413
0.552334375
0.338106745

S 1.354281355

S*s 6.094266097

Four points are shown in Table 3.14:
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The exact solution may be found by the integral:

1

10

1

10 5 65706 0 43429 6 09135∫ ( ) = −[ ] = + =log log logx dx x x x e . . .

3.5 � DOUBLE INTEGRATION BY SIMPSON’S  
ONE-THIRD RULE

When using double integration by Simpson’s one-third rule, weighting 
is applied in both directions and is then multiplied by the spacing in both 
directions. The following is a general weighting array for four strips:

1 4 2 4 1
4 16 8 16 4
2 8 4 8 2
4 16 8 16 4
1 4 2 4 1

For two strips, the weighting array is the following:

1 4 1
4 16 4
1 4 1

Any even set of strips will follow the same pattern and this could also 
be done using any other type of integration. Using the trapezoidal rule 
would be less accurate, but could do any number of strips and Simpson’s  
three-eighths rule would require a multiple of three strips in each direc-
tion. The summation of the weighting array multiplied by f(x,y) is used in 
the following equation to obtain the volume. 

hxhy f x y V
9 ∑ ∫∫= ( ) =,

The terms hx and hy are the spacing in the x and y directions, respectively. 

Example 3.6  Double integration by Simpson’s rule

Determine the volume under the hyperbolic paraboloid from x = 0 to 8 and 
y = 0 to 8 for 0 = 16z – xy using Simpson’s one-third rule with four strips 
in each direction.
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    x = 0 to 8    Dx = 2 = hx    and     y = 0 to 8    Dy = 2 = hy

hxhy f x y V
9 ∑ ∫∫= ( ) =,

Weighting operator:

1 4 2 4 1
4 16 8 16 4
2 8 4 8 2
4 16 8 16 4
1 4 2 4 1

Solving for z:

z xy
=

16

Table 3.15 shows the set up and summation as follows: 

hxhy f x y V

V

9
2 2

9
144 64

∑ ∫∫= ( ) =

( )
= =

,

Table 3.15.  Example 3.6 Double integration by Simpson’s 
one-third rule

x y weight f(x,y) weight*f(x,y)
0 0 1 0 0
0 2 4 0 0
0 4 2 0 0
0 6 4 0 0
0 8 1 0 0
2 0 4 0 0
2 2 16 0.25 4
2 4 8 0.5 4
2 6 16 0.75 12

(Continued)
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3.6 � DOUBLE INTEGRATION BY GAUSSIAN 
QUADRATURE

Double integration by Gaussian quadrature is very similar to the single 
integration process. In this case, the Gauss equation is applied in both 
directions and then multiplied by the weighting factors. 

V f x y dxdy s s f s s x s s y w w
a b

b b

x y
i

n

x x i y x i xi
x x

x y

= ( ) = ± ±( )∫∫ ∑
=

,

,

, ,
1

1 1 yyi

x
x x

x
x x

y
y y

y
y y

s
b a

s
b a

s
b a

s
b a

=
−

=
+

=
−

=
+

2 2

2 2

1

1

  

  and  

and  

V f x y dxdy s s f s s x s s y w w
a b

b b

x y
i

n

x x i y x i xi
x x

x y

= ( ) = ± ±( )∫∫ ∑
=

,

,

, ,
1

1 1 yyi

x
x x

x
x x

y
y y

y
y y

s
b a

s
b a

s
b a

s
b a

=
−

=
+

=
−

=
+

2 2

2 2

1

1

  

  and  

and  

  

The number of points used should closely match the degree of the equa-
tion to integrate. The same Gauss points and weights from Section 3.4 are 
used in each direction.

Table 3.15.  (Continued)
x y weight f(x,y) weight*f(x,y)
2 8 4 1 4
4 0 2 0 0
4 2 8 0.5 4
4 4 4 1 4
4 6 8 1.5 12
4 8 2 2 4
6 0 4 0 0
6 2 16 0.75 12
6 4 8 1.5 12
6 6 16 2.25 36
6 8 4 3 12
8 0 1 0 0
8 2 4 1 4
8 4 2 2 4
8 6 4 3 12
8 8 1 4 4

S 144
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Example 3.7  Double integration by Gaussian quadrature

Determine the volume under the hemisphere from x = −4 to 4 and y = −4 
to 4 for 64 = x2+y2+z2 using Gaussian quadrature with three points in each 
direction.

Solving for z and the points: 

z x y

s
b a

s
b a

s
b a

x
x x

x
x x

y
y y

= − −

=
−

=
− −( )

=

=
+

=
+ −( )

=

=

−

64

2
4 4

2
4

2
4 4

2
0

2

2 2

1

==
− −( )

=

=

+

=
+ −( )

=

4 4
2

4

2
4 4

2
01s

b a
y

y y

Table 3.16 shows the set up and summation as follows with xi, yi given 
values and wx, wy corresponding weights when using three points:

V s sx y= = ( ) =∑ 4 4 29 153 466 45. .

Table 3.16.  Example 3.7 Double integration by Gaussian quadrature

xi yi

x = 
sx1 + sxxi

y = 
sy1 + svyi wx wy f(x,y) wx*wy*f(x,y)

-0.774597 -0.774597 -3.098387 -3.098387 0.555556 0.555556 6.69328 2.065827

-0.774597 0 -3.098387 0 0.555556 0.888889 7.375636 3.642289

-0.774597 0.774597 -3.098387 3.098387 0.555556 0.555556 6.69328 2.065827

0 -0.774597 0 -3.098387 0.888889 0.555556 7.375636 3.642289

0 0 0 0 0.888889 0.888889 8 6.320988

0 0.774597 0 3.098387 0.888889 0.555556 7.375636 3.642289

0.774597 -0.774597 3.098387 -3.098387 0.555556 0.555556 6.69328 2.065827

0.774597 0 3.098387 0 0.555556 0.888889 7.375636 3.642289

0.774597 0.774597 3.098387 3.098387 0.555556 0.555556 6.69328 2.065827

S 29.153453
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3.7 T AYLOR SERIES POLYNOMIAL EXPANSION

The differentiation of a continuous function is used to find slopes, cur-
vatures, and values for a function but can also be used to find other 
relationships of functions. Often in structural engineering, there is a 
need to find differential relationships. One simple way to easily evalu-
ate transcendental equations is to use polynomial expansion developed 
for the Taylor series. This is often referred to as the power series. The 
general Taylor series polynomial expansion of a function is as follows:

y f x b b x b x b x b xn
n

= ( ) = + + + + +0 1 2
2

3
3 �

Successive derivatives of the function evaluated at zero can yield the coef-
ficients, b.

f b
f b
f b
f b b

0

0 1

0 1 2

0 1 2 3 3

0

1

2

3 3

( ) =

′ ( ) =

′′ ( ) = ( )
′′′ ( ) = ( ) = !

         �� � � � � �

� � � � � �

     

              
f i b i b

f

i
i i

n

0 1 2 3

0

( ) = ( ) … =

(

( ) !

)) = ( ) … =1 2 3 ( ) !n b n bn n

By taking successive derivatives of the function then evaluating them, 
the coefficients of the polynomial may be found. This is how most digi-
tal equipment like computers and calculators find values for transcendental 
equations.

Example 3.8  Taylor series polynomial expansion

Expand y=sin(x) into a polynomial using Taylor series including up to the 
ninth degree term. Check by calculating sin45°.

y x b b x b x b x b x= ( ) = + + + + +sin 0 1 2
2

3
3

9
9�
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Evaluate the successive derivatives as follows:

f b b
f b b
f b

0 0 0 0

0 1 0 1 1

0 2

0 0

1 1

2

( ) = = ( ) = ∴ =

′( ) = = ( ) = ∴ =

′′ ( ) = = −

sin
cos
sinn

cos

s

0 0 0

0 3 0 1 1
3

0 4

2

3 3

4

( ) = ∴ =

′′′ ( ) = = − ( ) = − ∴ = −

′′′′ ( ) = =

b

f b b

f b

!
!

! iin

cos

0 0 0

0 5 0 1 1
5

0 6

4

5 5

6

( ) = ∴ =

′′′′′ ( ) = = ( ) = ∴ =

′′′′′′ ( ) =

b

f b b

f b

!
!

! == − ( ) = ∴ =

′′′′′′′ ( ) = = − ( ) = − ∴ = −

′′′′′′′

sin

cos

0 0 0

0 7 0 1 1
7

6

7 7

b

f b b!
!

′′ ( ) = = ( ) = ∴ =

′′′′′′′′′ ( ) = = ( ) = ∴ =

f b b

f b b

0 8 0 0 0

0 9 0 1 1
9

8 8

9 9

!

!

sin

cos
!!

The polynomial can then be written with the coefficients.

y x x x x x x= ( ) = − + − +sin 1
3

1
5

1
7

1
9

3 5 7 9

! ! ! !

The value of sin45°=sin(p/4) can be evaluated to check the accuracy of 
the approximation.

y

y

= ( ) = − ( ) + ( ) − ( ) + ( )
=

sin p p p p p p
4 4

1
3 4

1
5 4

1
7 4

1
9 4

0 785398

3 5 7 9

! ! ! !
. 11634 0 0808455122 0 0024903946 0 0000365762
0 00000

− + −
+

. . .
.      00

0 7071067829
3134

y = .

The exact solution to the same accuracy is y=0.7071067812. 

Example 3.9.  Taylor series polynomial expansion

Expand y = e−–x into a polynomial using Taylor series including up to the 
fifth degree term. Check by calculating e−–1.

y e b b x b x b x b xx= = + + + + +−
0 1 2

2
3

3
5

5�
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Evaluate the successive derivatives as follows:

f b e b

f b e b

f b e b

0 1 1

0 1 1

0 2 1

0
0

0

1
0

1

2
0

( ) = = = ∴ =

′ = = − = − ∴ = −

′′ = = = ∴

−

−

−

( )

( ) 22

3
0

3

4
0

4

1
2

0 3 1 1
3

0 4 1 1
4

=

′′′ = = − = − ∴ = −

′′′′ = = = ∴ =

−

−

f b e b

f b e b

( ) !
!

( ) !
!!

( ) !
!

′′′′′ = = − = − ∴ = −−f b e b0 5 1 1
55

0
5

The polynomial can then be written with the coefficients.

y e x x x x xx= = − + − + −− 1 1
2

1
3

1
4

1
5

2 3 4 5

! ! ! !

The value of the e–1 can be evaluated to check the accuracy of the 
approximation.

y e

y

x= = − + ( ) − ( ) + ( ) − ( )
= − + −

− 1 1 1
2

1 1
3

1 1
4

1 1
5

1

1 1 0 5 0 16666

2 3 4 5

! ! ! !
. . 77 0 041667 0 008333

0 366667
+ −

=
. .

.y

The exact solution to the same accuracy is y = 0.367879. If the polynomial 
was calculated up to the x9 term, the value would be y = 0.3678791 versus 
the exact value of y = 0.3678794. 

3.8 � DIFFERENCE OPERATORS BY TAYLOR 
SERIES EXPANSION

The numerical differential equation relationships can be found using the 
Taylor series expansion. Expanding the Taylor series for a function y=f(x) 
at x=(xi+h) gives the following equation:

	  
y x h y y h

y h y h
i i i

i i+( ) = + ′ +
′′

+
′′′

+
2 3

2 3! !
� � (3.6)
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Next, expanding the Taylor series for a function y=f(x) at x=(xi–h) gives 
the following equation:

	
y x h y y h

y h y h
i i i

i i−( ) = − ′ +
′′

−
′′′

+
'

! !

2 3

2 3
� � (3.7)

If Equation 3.7 is subtracted from Equation 3.6, a first derivative relation-
ship is as follows:

	
′ =

+( ) − −( )
− −

′′′
+







y
y x h y x h

h
y h

i
i i i

2 6

2

� � (3.8)

This may be written as follows with successive values of y and the higher 
order terms omitted:

′ =
−+ −y

y y
hi

i i1 1

2

This equation is known as the central-difference approximation of y′i at xi 
with errors, order of h2. If Equation 3.7 is added to Equation 3.6, a second 
derivative relationship is as follows:

	
′′=

+( ) − + −( )
−

′′′′
+







y
y x h y y x h

h
y h

i
i i i i2

122

2

� � (3.9)

This may be written as follows with successive values of y and the higher 
order terms omitted:

′′=
− ++ −y

y y y
hi

i i i1 1
2

2

This equation is known as the central-difference approximation of yi″ at xi 
with errors, order of h2. Next, expanding the Taylor series for a function 
y=f(x) at x=(xi+2h) gives the following equation:

	
y x h y y h

y h y h y h
i i i

i i i+( ) = + ′ +
′′( )

+
′′′( )

+
′′′′( )

+2 2
2
2

2
3

2
4

2 3 4

! ! !
� �(3.10)
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Finally, expanding the Taylor series for a function y=f(x) at x=(xi−2h) 
gives the following equation:

	
y x h y y h

y h y h y h
i i i

i i i−( ) = − ′ +
′′( )

−
′′′( )

+
′′′′( )

2 2
2
2

2
3

2
4

2 3 4

! !
   

!!
� � (3.11)

If Equation 3.11 is subtracted from Equation 3.10 and the equation for the 
first derivative is substituted into the result, a third derivative relationship 
is as follows, with an order of error h2:

′′′=
− + −+ + − −y

y y y y
hi

i i i i2 1 1 2
3

2 2
2

If Equation 3.11 is added to Equation 3.10 and the equation for the second 
derivative is substituted into the result, a fourth derivative relationship is 
as follows with an order of error h2:

y
y y y y y

hi
i i i i i′′′′ =

− + − ++ + − −2 1 1 2
4

4 6 4

These are the central difference expressions with error order h2. Higher 
order expressions can be derived if we include more terms in each expan-
sion. Forward difference expressions can be derived by using Taylor series 
expansion of x = (xi+h), x=(xi+2h), x=(xi+3h), and so forth. Backward 
difference expressions may also be derived by Taylor series expansion of 
x=(xi–h), x=(xi–2h), x=(xi–3h), and so forth. The following are the cen-
tral, forward, and backward difference expressions of varying error order. 
These were compiled from “Applied Numerical Methods for Digital Com-
putations,” by James, Smith, and Wolford (1977). They can also be written 
in a reverse graphical form that is sometimes used and compiled from 
“Numerical Methods in Engineering,” by Salvadori and Baron (1961).

Central difference expressions with error order h2:

′ =
−

′′=
− +

′′′=
− + −

+ −

+ −

+ + −

y
y y

h

y
y y y

h

y
y y y

i
i i

i
i i i

i
i i i

1 1

1 1
2

2 1 1

2
2

2 2 yy
h

y
y y y y y

h

i

i
i i i i i

−

+ + − −′′′′=
− + − +

2
3

2 1 1 2
4

2
4 6 4
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i i i i i
hD
h D
h D
h D

− − + +
−

−
− −

− −

2 1 1 2
2 1 0 1

1 2 1
2 1 2 0 2 1

1 4 6 4 1

2 2

3 3

4 4

Central difference expressions with error order h4:

y
y y y y

h

y
y y y y

i
i i i i

i
i i i i

′

′′

=
− + − +

=
− + − +

+ + − −
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2 1 1 2
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i
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2
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3
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8

′′′′ =
− + − + − + −+ + + − − −y y y y y y y

h
i i i i i i i3 2 1 1 2 3

4

12 39 56 39 12
6

i i i i i i i
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− − − + + +
− −

− − −
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3 2 1 1 2 3
12 1 8 0 8 1

12 1 16 30 16 1
8 1 8 13 0

2 2

3 3 −− −
− − − −

13 8 1
6 1 12 39 56 39 12 14 4h D

Forward difference expressions with error order h:

y
y y
h

y
y y y

h

y
y y y y

h

i
i i

i
i i i

i
i i i i

′

′′

′′′
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=
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+
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1
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2
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2
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4
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y

y y y y y
hi

i i i i i′′′′ =
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h D
h D
h D

+ + + +
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−
− −

− −

1 2 3 4
1 1

1 2 1
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3 3
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Forward difference expressions with error order h2:

′ =
− + −

′′ =
− + − +

′′′=
−

+ +

+ + +
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y y y

h

y
y y y y
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4 4 226 24 11 2− −

Backward difference expressions with error order h:
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3.9 �NU MERIC MODELING WITH DIFFERENCE 
OPERATORS

The difference operators, sometimes referred to as finite difference operators, 
can be used to solve many structural engineering problems involving differ-
ential equation relationships. One common relationship is that of the equa-
tion of the elastic curve. The equation of the elastic curve relates the deflected 
shape of a beam to the rotation, moment, shear, and load on the beam. This is 
a typical strength of materials topic and the following are the basic relation-
ships based on the deflection equation in y and θ, M, V, and q:

y

y M
EI

y V
EI

y q
EI

i

i

i

i

′ =

′′ = −

′′′= −

′′′′= −

q

Example 3.10  Simple beam with difference operator

Calculate the shear, moment, rotation, and deflection for a 25 foot long, 
simply supported beam with a uniformly distributed load of 4 k/ft using 
central difference operator of order of error h2 at 1/6th points. The beam has 
E = 40,000 ksi (modulus of elasticity) and I = 1000 in4 (moment of inertia).

To solve the problem, a sketch of the beam and the assumed deflected 
shape is created. To use central difference operators, the model must go 
beyond the boundaries of the physical beam. The deflected shape must 
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also be modeled beyond those boundaries with some confidence. If the 
general equation is continuous at the boundaries, then this type of model 
is appropriate. If not, then the model should end at the boundaries and for-
ward or central difference operators must be used. Figure 3.4 shows the 
beam and the assumed deflections at 1/6th points of the beam. By symme-
try of the model, only four specific values of the deflection are unknown. 

The central-difference expressions with error of order h2 will be used 
to solve for the values. Since the load is known, we will use the fourth 
derivative relationship between load and deflection.

′′′′= − =
− + − +

= − − +

+ + − −

+ +

y q
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y y y y y
h

q EI
h

y y

i
i i i i i

i i

2 1 1 2
4

4 2 1

4 6 4

4 6yy y yi i i− +( )− −4 1 2

Placing the central difference operator on y0, the first equation can be writ-
ten from Figure 3.5:

q EI
h

y y y y y EI
h

y0 4 2 1 0 1 2 4 04 6 4 6= − −( ) − −( ) + − +( ) = − ( )

A B X

Z

4 k/ft

–Y3 –Y2 –Y1 Y1 Y2 Y3 Y2 Y1 Y0 –Y1 –Y2 –Y3Y0

25′-0″

Figure 3.4.  Example 3.10 Simple beam with difference operator.

–Y1Y1Y1 Y0Y0 Y2Y3Y2 –Y2 –Y3–Y1–Y2–Y3

0 1 –4 –4 1 0 0 0 0 0 0 06

Figure 3.5.  Example 3.10 Simple beam with difference operator.
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For the second equation, the central difference operator is placed on y1 and 
is shown in Figure 3.6. 

q EI
h

y y y y y EI
h

y y y y1 4 1 0 1 2 3 4 0 1 2 34 6 4 4 5 4= − −( ) − + − +( ) = − − + − +( )

The third and fourth equations can be written by placing the central differ-
ence operator on y2 and y3.
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y y y y
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h

y y y

These four equations constitute a non-homogeneous linear algebraic set 
and can be written in matrix form.
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From the conditions of the beam, two simplifications can be made. First, 
the load is uniform and all the values of q are the same. Second, the deflec-
tion at point 0 is known to be zero, so the first row and column can be 
eliminated since they correspond to those values. 
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This can be solved by many of the methods presented in Chapter 2. The 
method of cofactors is used here, since the solution is small enough to 
solve determinants directly.

0 0 1 6 1 0 0 0 0 0 0–4 –4

Figure 3.6.  Example 3.10 Simple beam with difference operator.
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When the value of h = L/6 is substituted in and the matrix multiplication 
is performed, the following is a general solution for a simply supported 
beam with a uniformly distributed load:
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The particular solution for q=4 k/ft, L=25 ft, E=40,000 ksi, and I=1000  in4 
is then obtained. The exact solution at the center is y3= 0.87891 inches, 
which is a 2.22% error.
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Once the deflections are found, the other three desired values, q, M, and 
V, can each be found from the corresponding central difference operators 
using the same order of error. The procedure is the same as the operator 
is laid upon each of the values that are unknown then the corresponding 
equation may be written. The relationship for rotation is as follows:
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The exact solution at the end is q0=0.00936 radians, which is a 2.51% error, 
while the value in the center is exact. The relationship for moment is as follows:
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The exact solution at the center is M3=3750 k-in which is exact, while the 
values at the ends is also exact. The relationship for shear is as follows:
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The exact solution at the end is V0 = 50.00 k, which is a 16.67% error, 
while the value in the center is exact. The large error at the end is due to 
the fact that the shear drops there, which creates a discontinuity in the 
equation. Using more segments would reduce the error, but it would still 
be more inaccurate than the other values.

The next example is similar to the previous one, but is included to 
show differences in modeling and accuracy. It also uses the higher order 
(smaller error) of error equations for more accuracy.

Example 3.11  Fixed beam with difference operator

Calculate the shear, moment, rotation, and deflection for a 30 ft long fixed 
end beam with a uniformly distributed load of 5 k/ft using central differ-
ence operator of order of error h4 at 1/6th points. The beam has E = 29,000 
ksi and I = 1000 in4.

The primary difference in the simply supported beam in Example 3.10 
and the fixed end beam in this example is the model of the deflected curve 
beyond the boundary as shown in Figure 3.7.

The solution to this example is very similar to Example 3.10 and only 
the setup and solutions are presented. The central difference expressions 
with error of order h4 will be used to solve for the values. Since the load 
is known, we will use the fourth derivative relationship between load and 
deflection.
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Placing the central difference operator on all four unknown points in the 
model, the linear non-homogeneous solution set can be obtained and 
solved. 
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Figure 3.7.  Example 3.11 Fixed beam with difference operator.
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The exact solution at the center is y3=0.6284 inches, which is a 3.81% 
error. This is more error than the deflection found in Example 3.10, 
even though a more accurate operator was used. This is due to the 
fact that this physical model has more variation in deflection than 
that of the simply supported beam. The relationship for rotation is as 
follows:
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The solution at the end is q0=0.00000 radians, which is exact, while 
the value in the center is also exact. The relationship for moment is as 
follows:
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The exact solution at the end is M0=−4500 k-in, which is a 12.89% error, 
while the value in the center is 2250 k-in, which is a 0.11% error. The large 
error at the end is due to the fact that the moment drops there, which cre-
ates a discontinuity in the equation. Using more segments would reduce 
the error, but it would still be more inaccurate than the other values. The 
relationship for shear is as follows:
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The exact solution at the end is V0=75.00 k, which is a huge error, while 
the value in the center is exact. The large error at the end is due to the fact 
that the shear and moment drop dramatically at that point, which creates a 
discontinuity in the equation. 

The final example of using difference operators to solve differential equa-
tions is the critical buckling load of a column. The critical buckling load 
of a pinned end column is sometimes included in strength of materials, but 
will be derived here. The derivations start with the differential equation of 
the elastic curve similar to a beam. The deflected column under the critical 
load is shown in Figure 3.8.

d y
dx

y M
EI

2

2 = ′′ = −
 

At any point x along the column, there is a deflection y that will produce an 
eccentric moment in the column equal to Pcry. This is used in the equation 
of the elastic curve as follows:

Z

A

y

X
L

B
X

Pcr Pcr

Figure 3.8.  Numeric modeling with difference operators.
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This is a second-order, linear, ordinary differential equation with the fol-
lowing general solution.

y A kx B kx= ( ) + ( )cos sin

where k
P
EI
cr=

The constants A and B can be evaluated using the boundary condition. At 
x=0, y=0, the equation becomes:

0 0 0= ( ) + ( )A k B kcos sin

This equation yields A=0 and at x=L, y=0, the equation becomes:

0 = ( )B kLsin

This condition is true when Bsin(kL)=0, which can only be true for three 
conditions as follows:

B = 0					    No deflection
kL = 0				    No load
kL = p, 2p, 3p, …, = np 		  where	 n = 1, 2, 3, …

Therefore, the following can be found and is the critical buckling load:
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The lowest buckling mode corresponds to a value of n = 1, which is the 
case of single curvature shown. The other (higher) modes can also be 
found with the other values of n.

P EI
Lcr =

p 2

2

The critical bucking load is sometimes written as a critical buckling stress 
as follows:

F
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L
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p p p2

2

2 2

2

2

2
2

This is known as the Euler buckling stress and was derived by Leonhard 
Euler in 1757.

Example 3.12  Column buckling with difference operator

Calculate the critical buckling load, Pcr, for a 25 foot long fixed end col-
umn using central difference operator of order of error h2 at 1/6th points. 
The column has E = 29,000 ksi and I = 1000 in4.

This problem has the same model as Example 3.11 except an axial 
load is applied instead of a uniform lateral load and is shown in Figure 3.9.

The central difference expressions with error of order h2 will be used 
to solve for the values. Since the load is known, we will use the fourth 
derivative relationship between load and deflection. This can be found 

Z

A
XP

B

Y1 Y1 Y1Y1 Y0 Y0Y3 Y3Y3 Y2 Y2 Y2Y2

25′-0″

Figure 3.9.  Example 3.12 Column buckling with difference operator.
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by taking two derivatives from previously used deflection and moment 
differential equations.

    
′′ + =y
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The solution process is similar to Example 3.10 and 3.11 except that the 
two operators are placed on the model at the location of the unknown 
deflections. The value at point 0 of y0 is zero and can be eliminated from 
the solutions. This becomes a homogeneous linear algebraic solution set.

1296
7 4 1
4 7 4

2 8 6
36

2 1 0
1 2 1
0 2 2

4 2L
Q
L

−
− −

−

















+
−

−
−















































=
















y
y
y

1

2

3

0
0
0

252 2 144 36

144 252 2 144

72 288 2 2

2 2 2

2 2 2

2 2

L
Q

L
Q

L

L
Q

L
Q

L
Q

L L
Q

− − +

− + − − +

− +
116 2

0
0
0

2

1

2

3

L
Q

y
y
y

−









































=
















A non-trivial solution to a homogeneous linear algebraic set exists if the 
determinant of the coefficient matrix is zero. Therefore, we can find Q by 
setting the determinant of the coefficient matrix equal to zero. This will be 
done using the basket weave method for a 3×3 matrix.
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Multiplying the values for like terms yields the following:
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Multiplying all the values and combining like terms:

0 1119744 49248 576 26 4 2
2 3= − + −

L L
Q

L
Q Q

The solution to these cubic equations yields the following general value 
of Q:

Q
P
EI
cr= = 0 0004.

Substituting in the particular values for the column of E and I  gives 
Pcr=11,600 kips. The exact values using the Euler buckling equation with an 
effective length factor of k=0.5 for a fixed end column is Pcr=12,721 kips. 
This central difference solution has an error of 8.8%.

3.10 � PARTIAL DIFFERENTIAL EQUATION 
DIFFERENCE OPERATORS

More advanced structural analysis problems may require the solution of 
partial differential equations. One example is the bending of a plate under 
uniform lateral load. “Theory of Plates and Shells” by Timoshenko and 
Woinowsky-Krieger (1959) contains an exact solution to general plates. 
The differential relationship for plate bending uses partial differential 
equations. Their difference operators can be derived from the basic dif-
ference operators using two basic principles. If you add two differential 
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equations you simply add the location of the operator at i, known as the 
pivot point. To take the product of two differential equations, you must 
multiply the value of the operator at i of one differential to each of the 
terms in the other differential. Partial differentials also require both  
the x and y direction, so they will be written horizontally and vertically. 
The following are six examples of creating partial difference operators for 
the equation used to solve plate bending. The partial differential equation 
is listed first in each of the six examples followed by the basic operators 
that represent the equation.

Example 3.13  Partial difference operator

d d d4
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The value D is the flexural rigidity of the plate and is equal to the following:

D Et
=

−( )
3

212 1 n

The value of Poisson’s ratio, u, relates the elastic modulus to the shear 
modulus and is given as the following from strength of materials:

G E
=

+( )2 1 n

Example 3.14  Partial difference operator
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Example 3.15  Partial difference operator
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Example 3.16  Partial difference operator

d 2

2

1
2

1 0 1 1
2

1
0
1

1
4

1 0 1
z

dxdy h h h
= −( )



 −































=
−

* 00 0 0
1 0 1−

















Numerical Integration and Differentiation   •   139

	

M D z
dxdy hxy = −( ) 







 =

−

−













1 1

4

1 0 1
0 0 0
1 0 1

2

2n d

�

(3.15)

	

M D z
dxdy hyx = − −( ) 







 =

−

−













1 1

4

1 0 1
0 0 0
1 0 1

2

2n d � (3.16)

Example 3.17  Partial difference operator
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Example 3.18  Partial difference operator
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3.11 �NU MERIC MODELING WITH PARTIAL 
DIFFERENCE OPERATORS

The differential equation and the difference operators from Section 3.10 
are used in the following example to solve for plate bending. The forces 
on a middle surface plate are shown in Figure 3.10.

Example 3.19  Plate bending

Calculate the shear, moment, rotation, and deflection for a 1 inch thick, 
20 inch square, fixed end steel plate with a uniformly distributed load 
of 100 psi using central difference operator of order of error h2 at 1/10th 
points. The plate has E = 29,000 ksi and u = 0.25.

dy
dx

Mx

Mxy

Qx dx

+

+

+ δQx

δMxy

δx

δx

δMx
δx

dx

dxMy + δMy
δy dy

Myx +
δMyx

δy dy

Qy dy+
δQy
δy

Figure 3.10.  Numeric modeling with partial difference operators.
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The plate will be divided into 10 segments in the horizontal and vertical 
directions. Since the plate is square with a uniform load and fixed on all 
edges, it has horizontal and vertical symmetry. It is also symmetric about 
both diagonals of the plate. The symmetry will result in only 21 unique points 
on the plate for the 121 possible locations. This is shown in Figure 3.11.

The difference operator for Equation 3.12 is repeated here and can be 
shown in graphical form in Figure 3.12.
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The operator is laid upon each of the 21 unique points on the plate result-
ing in 21 equations involving the deflections. Figure 3.13 shows the oper-
ator laid upon point 1.

The result will be a non-homogenous set of 21 equations involving 
the unknown deflections. Since the plate is fixed at the boundaries, the  
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Figure 3.11.  Example 3.19 Plate bending.
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deflections at points 1 through 6 are zero and may be eliminated. The 
matrix equation is shown in Table 3.17.

The solution can be found using one of the methods from Chapter 2 
on non-homogeneous linear algebraic equations. The deflections are 
shown in Table 3.18.

All of the other values can be found once the deflections are known. 
Table 3.19 shows the matrix equation for finding Mx and Table 3.20 shows 
the solution to Mx and the normal stress.
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Figure 3.13.  Example 3.19 Plate bending.

1

1

11

2

2 2

2-8

-8

-8

-820

Figure 3.12.  Example 3.19 Plate bending.
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Table 3.17.  Example 3.19 Plate bending

22 -16 2 0 0 2 0 0 0 0 0 0 0 0 0 z7 = q7 h
D

4

-8 23 -8 1 0 -8 3 0 0 0 0 0 0 0 0 z8 q8 *
1 -8 21 -8 1 2 -8 2 0 1 0 0 0 0 0 z9 q9

0 1 -8 22 -8 0 2 -8 2 0 1 0 0 0 0 z10 q10

0 0 2 -16 21 0 0 4 -8 0 0 1 0 0 0 z11 q11

2 -16 4 0 0 20 -16 2 0 2 0 0 0 0 0 z12 q12

0 3 -8 2 0 -8 22 -8 1 -8 3 0 0 0 0 z13 q13

0 0 2 -8 2 1 -8 21 -8 2 -8 2 1 0 0 z14 q14

0 0 0 4 -8 0 2 -16 20 0 4 -8 0 1 0 z15 q15

0 0 2 0 0 2 -16 4 0 20 -16 2 2 0 0 z16 q16

0 0 0 1 0 0 3 -8 2 -8 23 -8 -8 3 0 z17 q17

0 0 0 0 1 0 0 4 -8 2 -16 20 4 -8 1 z18 q18

0 0 0 0 0 0 0 2 0 2 -16 4 22 -16 2 z19 q19

0 0 0 0 0 0 0 0 1 0 6 -8 -16 25 -8 z20 q20

0 0 0 0 0 0 0 0 0 0 0 4 8 -32 20 z21 q21

Table 3.18.  Example 3.19 Plate bending

z7 = 0.000291121 inches
z8 0.000749271
z9 0.001156404
z10 0.001421248
z11 0.001511939
z12 0.001945784
z13 0.003037557
z14 0.003762980
z15 0.004014203
z16 0.004780224
z17 0.005951021
z18 0.006358843
z19 0.007429735
z20 0.007946380
z21 0.008501580
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Table 3.20.  Example 3.19 Plate bending

Mx = 0.000000000 k-in sx =  0.00000 ksi
-0.093805542 -0.56283
-0.241431854 -1.44859
-0.372619154 -2.23571
-0.457957773 -2.74775
-0.487180224 -2.92308
-0.134551926 -0.80731
-0.039177480 -0.23506
-0.025067632 -0.15041
-0.036067778 -0.21641
-0.042662612 -0.25598
0.084373209 0.50624
0.258403727 1.55042
0.330357218 1.98214
0.349192954 2.09516
0.460673396 2.76404
0.605975261 3.63585
0.647615145 3.88569
0.774999710 4.65000
0.832219502 4.99332
0.894489044 5.36693





CHAPTER 4

Matrix Structural 
Stiffness

Building structures are made up of columns, beams, girders, joists, slabs, 
walls, shells, and many other components that act together to resist the 
loads placed on them. These members can be at various orientations, but 
they must be represented in a common mathematical form. The structural 
stiffness method is used to represent members, loads, support constraints, 
and other components of a building structure in a consistent manner. This 
chapter will focus on linearly elastic members subjected to axial, bending, 
shear, and torsional forces.

4.1 � MATRIX TRANSFORMATIONS AND 
COORDINATE SYSTEMS

When using the structural stiffness method, the global Cartesian right-
hand coordinate system will be used to organize the system. This sys-
tem was developed in 1637 by René Descartes (Descartes 1637). We will 
denote these three orthogonal axes as X, Y, and Z. You could represent 
these as your thumb, fore finger, and middle finger on your right hand. 
Individual members may not be at the same orientation as the global sys-
tem. All members have their own local system represented by x, y, and z.  
This coordinate system is also a Cartesian right-hand system with the 
x axis running along the member length. Both of these systems are shown 
in Figure 4.1.

This chapter provides techniques to reference causes and effects by 
coordinate systems and how to manipulate these coordinate systems. 
These manipulations allow changes from one system to another and are 
called transformations. The two basic transformations that are done in 



148   •  NU MERICAL STRUCTURAL ANALYSIS

the following sections are transmission and rotations. Transmission is 
moving effects from one point to another. Rotations are used to re-orient 
axes about a specific point. These techniques will be used in determining 
the stiffness of a member (local) and developing the global (joint) stiff-
ness solution.

4.2  ROTATION MATRIX

Rotation can take place about any of the three global axes. The following 
three examples derive the rotation transformations. The alpha, a, rotation 
is a rotation about the global Z axis from the global system to the local 
system. Rotation about the Y axis is a beta, b, rotation and rotation about 
the X axis is a gamma, g, rotation. 

Example 4.1  Rotation matrix, a

Derive the alpha, a, rotation matrix.
The following variables are represented in Figure 4.2 and are used to 

develop a. The location of z remains unchanged since rotation is occurring 
about that axis.

a = �rotation about global Z axis from the global to the local system
(x0, y0) = global coordinate location
(xl, yl) = local coordinate location

x

X

y

Yz

Z

Figure 4.1.  Coordinate systems.
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a x cos
b y sin
c y cos
d x sin
x a b x cos y sin
y c d
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= + = +
= −

0

0

0

0

0 0

a
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a
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y cos x sin

z zl

0 0
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The equations for x, y, and z can be represented in matrix form as follows:

	

cos sin
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x
y
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x
y
z

o
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(4.1)

Example 4.2  Rotation matrix, b

Derive the beta, b, rotation matrix.
The following variables are represented in Figure 4.3 and are used to 

develop b. The location of y remains unchanged since rotation is occurring 
about that axis.

b = rotation about global Y axis from the global to the local system
(x0, z0) = global coordinate location
(xl, zl) = local coordinate location

a x cos
b z sin
c z cos
d x sin
x a b x cos z sin
z c d
l

l

=
=
=
=
= − = −
= +

0

0

0

0

0 0

b
b
b
b

b b
== +

=
z cos x sin

y yl

0 0

0

b b

a

b
c

d

y0

yl

y

x0

xl

x

α

X

Y

Figure 4.2.  Example 4.1 Rotation, a.
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a x cos
b z sin
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The equations for x, y, and z can be represented in matrix form as follows:
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(4.2)

Example 4.3  Rotation matrix, g

Derive the gamma, g, rotation matrix.
The following variables are represented in Figure 4.4 and are used to 

develop g. The location of x remains unchanged since rotation is occurring 
about that axis.

g = rotation about global X axis from the global to the local system
(y0, z0) = global coordinate location
(yl, zl) = local coordinate location

a y cos
b z sin
c z cos
d y sin
y a b y cos z sin
z c d
l

l

=
=
=
=
= + = +
= −

0

0

0

0

0 0
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g
g
g

g g
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z cos y sin

x xl

0 0

0

g g

a

c

d

bx

z

zl

z0

x0

xl

X

Z

β

Figure 4.3.  Example 4.2 Rotation, b.
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The equations for x, y, and z can be represented in matrix form as follows:
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(4.3)

The rotation matrix from the global to the local system, [R0l], is found 
from these rotations about the global Z, Y, and X axes, in that order. The 
order of the matrix multiplication goes from right to left. Alpha is first 
multiplied by beta and the resultant is multiplied by gamma. 

R l0[ ] = [ ][ ][ ]g b a

Substituting Equations 4.1 through 4.3 for [g], [b], and [a], respectively, 
results in the following: 
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Figure 4.4.  Example 4.3 Rotation, g.
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Rotation about the axes from the local to the global system is simply a 
reverse operation. It can be shown that the resulting rotation matrices for 
this transformation are the transpose of the rotations from the global axis 
to the local axis. This is known as a symmetric transformation. The fol-
lowing relationships show those basic expressions:
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The rotation matrix from local to global system, [Rl0], can be found from 
the individual rotations or directly from [R0l]. 
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These rotation transformations will be used later to relate the local mem-
ber stiffness to the global member stiffness.

4.3 T RANSMISSION MATRIX 

In addition to knowing the local components of global forces, the effect a 
force applied to one end of a member has on the other end is important. It 
is often necessary to state the effect at one point in a structural system due 
to a cause known to exist at some other point in the system. This is where 
the transmission transformation is used. In Figure 4.5, the cause of a force 
at point 2 is transmitted to the effect at point 1. This is achieved by using 
an equivalent static force at 1. In the study of rigid body equilibrium, this 
is stated as SF1= SF2.

The six orthogonal forces at a point are shown in Figure 4.6. These 
are the forces and moments in each direction X, Y, and Z. The moments 
are represented with double arrowheads.

The static equivalent force system is found where the moment arm 
distances (x2 − x1), ( y2 − y1), and (z2 − z1) are measured from the effect point, 
1, to the cause point, 2. 

Y

X
1 . (x1,y1,z1)

2 . (x2,y2,z2)

Z

Figure 4.5.  Transformation locations.

MX

MZ

MY

PX

PZ PY

1

Figure 4.6.  Orthogonal forces.
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We can simplify the moment arm distances as x, y, and z. The concept of 
transmitting cause to effect may be denoted in matrix form as [T]:
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(4.4)

Example 4.4 � Transmission matrix

Determine the transmission matrix for the coplanar XY system from the 
origin end, i, to other end, j.

The cause end is i as shown in Figure 4.7 and the effect end is j at the 
right end a distance L away.

Z

L

Y

X
i = cause j = effect

Figure 4.7.  Transformation effects.
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The distance x is measured from the cause location to the effect 
location.

x L= −( ) = −( ) = −x x x xc e i j

This can be substituted into Equation 4.4 and the unneeded distances and 
forces are removed to get a 3×3 matrix involving only Px, Py, and Mz.
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0 0 0 1 0 0
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0 0 0 0 1
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The axial force in the member, Px, is a direct transmission, whereas the 
shear, Py, and bending, Mz, forces are linked. The transmission for just the 
shear and bending will be used later in the chapter and can be written as 
follows:
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A similar transmission matrix can be derived for shear and bending in the 
XZ system.
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4.4  AREA MOMENT METHOD

Area moment and the next five sections are review topics on structural 
analysis. These topics will be used to derive many of the equations and 
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relationships for stiffness methods of analysis. The area moment method 
of analysis is based on the basic equation of beam bending, f = M/EI, 
and consists of two theorems. The theorems were developed by Christian 
Otto Mohr in 1874 (Timoshenko 1953). The first theorem of area moment 
states the change in slope between two points on the elastic curve, 1 and 2, 
is equal to the area of the M/EI diagram between the points 1 and 2.

∆q12
1

2

= ∫
M
EI
dx

The second theorem of area moment states that the tangential deviation 
of a point, 1, from a tangent to the elastic curve at point 2 (the tangent) 
is equal to the moment of the area of the M/EI diagram between points 
1 and 2, taken about point 1 (the point). Note that the moment of the area 
is the area times a distance, x̄1, from point 1. 

t M
EI
x dx12

1

2

1= ∫

Example 4.5  Area moment

Find the reactions on the following propped end, uniformly loaded beam 
shown in Figure 4.8 using the area moment method.

A free-body diagram of the beam is drawn in Figure 4.9. 

L

Z

W

A B
X

Figure 4.8.  Example 4.5 Area moment.

RA RB

MB

W

Figure 4.9.  Example 4.5 Area moment.
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Moment divided by EI, M/EI, diagrams are drawn by parts. Moment 
diagrams by parts assume each force is acting about point B as if it was the 
only force. The vertical reaction on the left, RA, is used as the redundant 
force. The method of superposition will be used to solve for the assumed 
redundant, RA. The reactions at the fixed-end on the right can be written in 
terms of the load, w, as follows from equilibrium on Figure 4.9 (ignoring RA):

Σ

Σ

M wL L M M wL

F wL R R wL

B B B

y B B

= = 





− ∴ =

= = − + ∴ =

0
2 2

0

2

The M/EI diagram and the deflected shape for the uniformly distributed 
load, w, is shown in Figure 4.10.

The reactions at the fixed-end on the right can be written in terms of the 
vertical reaction, RA, as follows from equilibrium on Figure 4.9 (ignoring 
the distributed load):

Σ
Σ
M R L M M R L
F R R R R

B A B B A

y A B B A

= = − − ∴ = −
= = + ∴ = −

0
0

The M/EI diagram and the deflected shape for the vertical reaction, RA, is 
shown in Figure 4.11.

wL

3L/4

tAB

w 

wL2

2EI

wL2

2

Figure 4.10.  Example 4.5 Area moment.

RAL
EI

RAL

RARA

2L/3

tAB

Figure 4.11.  Example 4.5 Area moment.
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Since point A is pinned, we know that the deflection at point A, DA, is 
equal to zero. We can superimpose Figures 4.10 and 4.11. Applying the sec-
ond area moment theorem, the following can be written. It should be noted 
that the tangent to the deflected shape is at B and therefore the point is at A:

∆ ΣA AB
A

B

A

A

t M
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x dx Ax

L wL
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L L R L

= = = =

= −

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A
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


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∴ =2
3

3
8

From statics on the original free-body diagram in Figure 4.9, the other 
reactions at B can be found.

Σ

Σ

F R R wL R wL

M R L M wL M wL

y A B B

B A B B

= = + − ∴ =

= = − − + ∴ =

0 5
8

0
2 8

2 2

4.5 C ONJUGATE BEAM METHOD

The conjugate beam method is based on the equation of beam bending  
f = M/EI. The method was developed by Heinrich Müller-Breslau in 1865 
(Müller-Breslau 1875). A conjugate beam can be summarized as an imag-
inary beam equal in length to the real beam. In the imaginary beam, the 
shear at the conjugate support is equal to the slope of the real support. 
Also, the moment at the conjugate support is equal to that of the deflection 
at the real support. The conjugate beam is loaded with the M/EI diagram 
from the real beam. A summary of the more common support conditions 
is shown in Figure 4.12. 

Take the pinned condition for example. In the real beam, the rotation is 
unknown (exist) and deflection is equal to zero. Therefore, in the conjugate 
beam, the shear is unknown (exist) and the moment is equal, thus creating 
a pinned connection. This condition does not change from the real beam to 
the conjugate beam. However, this is not true for all cases. For example, 
if the real beam is fixed, the rotation is zero and the deflection is zero. The 
result is zero moment and shear in the conjugate that yields a free end. 

Example 4.6  Conjugate beam

Draw the conjugate beam for each of the real beams in Figure 4.13.
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Example 4.7  Conjugate beam

Find the slope and deflection at the free end of the cantilever beam in  
Figure 4.14 by the conjugate beam method.

A free-body diagram of the real beam is drawn with the reactions at 
the fixed-end found from static equilibrium. The conjugate beam is drawn 

REAL CONJUGATE

Pin Pin

Roller Roller

FixedFree

Fixed Free

Internal roller Hinge

Internal rollerHinge

Internal pin Hinge

Figure 4.12.  Conjugate versus real supports.

REAL CONJUGATE

Figure 4.13.  Conjugate versus real beams.
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observing that the shear in the conjugate beam equals the rotations in the 
real beam and the moment in the conjugate equals the deflection in the 
real beam. Therefore, the fixed-end of the real beam becomes free in the 
conjugate beam and the free end in the real beam becomes fixed in the 
conjugate beam. The conjugate beam is loaded with the M/EI diagram of 
the real beam. This is a triangular moment diagram due to the applied load 
P divided by EI. The last beam in Figure 4.14 is a free-body diagram of the 
conjugate beam with the area of the M/EI diagram equated to a point load 
located at the centroid of the diagram. Static equilibrium can then be per-
formed on the conjugate beam to find shear and moment at point B, which 
represents rotation and deflection in the real beam shown in Figure 4.15. 
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3
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EIB∆

A

P

B
L/2L/2

P

P
M=PL/2

5L/6L/6

L/2

L/2L/2

L/2

PL
2EI

PL2

8EI

A′ B′

MB′

VB′

Figure 4.14.  Example 4.6 Conjugate beam.
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4.6  VIRTUAL WORK

Similar to the conjugate beam method, the virtual work method can be 
used to obtain the displacement and slope at a specific point on a struc-
ture. The method was formulated by Gottfried Leibniz in 1695 (Leibniz 
1695). Virtual work is based on internal strain energy from the member 
and external work done by the forces. There are two ways to apply the 
virtual work method. The first is to apply a virtual (unit) displacement 
to find a real force. The second is to apply a virtual (unit) force to find a 
real displacement. The force and the displacement in either case are in the 
same direction. The basic equation to find a real displacement based on a 
virtual force is as follows:

	
q  or ∆ = ∫

0

L mM
EI

dx
�

(4.7)

The value of M is the moment equation due to the real loads on the struc-
ture. The value of m is the moment equation of the virtual load. Rotation or 
deflection may be found depending on whether a virtual moment or force 
is applied at the point under consideration.

Example 4.8  Virtual work

Determine the vertical deflection at the free end of the uniformly loaded, 
cantilever beam in Figure 4.16 using the virtual work method.

A free-body diagram is drawn of the right-hand side of the beam to 
determine the internal moment in the beam. The uniformly distributed 
load is represented as a point load equal to the area under the load and 
located at the centroid of the area.

From static equilibrium, we can determine the internal moment at any 
point x measured from the right end of the beam.

M = −
wx2

2

θB

∆B

Figure 4.15.  Example 4.6 Conjugate beam.
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A virtual force is applied at the point and in the direction that the deflec-
tion is desired. This is shown in Figure 4.17 along with a free-body dia-
gram of the right-hand side of the beam. In this case, the internal moment 
is represented as m.

From static equilibrium, we can determine the internal moment at any 
point x measured from the right end of the beam.

m x= −1

The values of M and m can be substituted into Equation 4.7 to determine 
the deflection at point B at the free end of the cantilever.

A B
L

V

w

x

wx
x/2

M= -wx2

2

Figure 4.16.  Example 4.8 Virtual work.

A B
L

A B

L

V

w

x

x

m= -1x 1 kN

1 kN

Figure 4.17.  Example 4.8 Virtual work.
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4.6.1  VISUAL INTEGRATION

The virtual work method can also be done using the moment diagrams of 
the real and virtual loads. This is known as visual integration. The moment 
diagrams for the real (Q) and virtual (q) loads are constructed. The integral 
is equal to the area of the M/EI diagram multiplied by the value of the m 
diagram taken at the centroid of the M/EI diagram.

Example 4.9  Visual Integration

Determine the deflection at C in inches for the simply supported beam 
shown in Figure 4.18 using the virtual work method and visual integra-
tion. Use E = 2000 ksi and I = 2000 in4.

Solve for the reactions due to the applied loads. The free-body dia-
gram is shown in Figure 4.19.

Σ

Σ

M k ft A ft k ft A k
F A B k B k

B y y

y y y y

= = ( ) − ( ) + − ∴ =

= = + − ∴ =

0 8 16 24 40 7

0 8 1

The shear and moment diagrams are constructed in Figure  4.19. The 
moment diagram is broken into unique areas that will be continuous over 
the area of the virtual moment diagrams shown in Figure 4.20.

Apply a virtual force dQ = 1 at point C as shown in Figure 4.20. Solve 
for the reactions similar to the real loads. Draw the shear and moment 
diagram locating the centroid of the real moment diagrams on the virtual 
moment diagram.

A C B
8ft

8k

16ft

40 k-ft

Figure 4.18.  Example 4.9 Visual integration.
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Σ

Σ

M k ft A ft A k

F A B k B k

B y y

y y y y

= = ( ) − ( )∴ =

= = + − ∴ =

0 1 16 24 2
3

0 1 1
3

The values of M and m can be substituted into Equation 4.7 to determine 
the deflection at point C. The integral is the product of the area M/EI dia-
gram and the value of the m diagram at the centroid of the M/EI diagram.

C

8ft

8k

1k

-1

40

7k

7

56

V(k)

M(k-ft)

16ft

40 k-ft

2(
8f

t)/
3

2(16ft)/3
16ft/2

Figure 4.19.  Example 4.9 Visual integration.

C
2
3

16
3

1
3

m(k-ft)

3.556 3.556
2.667

8ft 16ft

δQ=1

Figure 4.20.  Example 4.9 Visual integration.
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4.7 C ASTIGLIANO’S THEOREMS

In 1879 Alberto Castigliano published his two theorems on elastic struc-
tures that are known as Castigliano’s Theorems (Castigliano 1879). The 
first theorem states that the first partial derivative of strain energy with 
respect to a particular deflection component is equal to the force applied at 
the point and in the direction corresponding to that deflection component. 
This may be written in mathematical terms as shown in Equation 4.8. The 
second theorem is used more often in statically indeterminate structural 
analysis and states that the first partial derivative of strain energy with 
respect to a particular force is equal to the displacement of the point of 
application of that force in the direction of its line of action. This is shown 
in Equation 4.9. The equations are written in terms for flexural energy,  
M/EI, of a particular rotation, qA, and moment, MA, relationship and in 
terms of a particular deflection, DA, and force, PA, relationship. They can 
be written for any elastic force and deformation relationship.

	
M M M dx

EI
P M M dx

EIA

L

A
A

L

A

=
∂
∂

=
∂
∂∫ ∫

0 0q
  and

∆
	 (4.8)
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=
∂
∂

=
∂
∂∫ ∫

0 0

  and ∆ � (4.9)

Example 4.10  Castigliano’s second theorem 

Determine the deflection of the beam in Figure  4.21 at point B using  
Castigliano’s second theorem.

Since the deflection at point B is desired, a force P will be placed at B. 
This will be the particular force in the direction of the desired deflection.
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A free-body diagram of the right-hand portion of the beam is shown in 
Figure 4.22. The moment equation is found from equilibrium on the free-
body. Also, the partial derivative of the moment equation is taken with 
respect to the particular force P. These are substituted into Equation 4.9  
to find the deflection at point B.
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3
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4 3
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∆

Since P is a fictitious applied load placed on the beam only to find the 
deflection, it can be removed and the deflection at B becomes the following:

∆B
wL
EI

=
4

8

A B
L

w

A B

P

L
x

w

Figure 4.21.  Example 4.10 Castigliano’s second theorem.

P

M

V
x

x/2
wx

Figure 4.22.  Example 4.10 Castigliano’s second theorem.
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Example 4.11  Castigliano’s second theorem

Find the reactions for the propped end beam loaded as shown in Figure 4.23.
Since this is a statically indeterminate beam, a redundant force will 

be applied at point A. The force will be represented as P but is actually the 
real vertical reaction on the left end RA. The last drawing in Figure 4.23 is 
a free-body diagram of a left-hand section of the beam to find the moment 
equation by equilibrium.

A free-body diagram for the total beam is drawn in Figure 4.23 with 
reactions at the fixed end written in terms of the redundant force P. These 
reactions are found by equilibrium. 

ΣM M PL wL LB B= = − − +0 1
2 3

	
M wL PLB = −

2

6
� (4.10)

ΣF R P wLy B= = + −0 1
2

	
ΣR wL PB = −

2  
� (4.11)

X
Z
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L

B

w

w

P

P
x V

M

wx
L

wL
2 -P

wL
2

6 -PL

Figure 4.23.  Example 4.11 Castigliano’s second theorem.
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The partial derivative of the moment equation is taken with respect to 
the particular force P. These are substituted into Equation 4.9 to find the 
force P, which is the reaction at point A. Note the deflection at point A is 
set to zero in Castigliano’s equation.
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∆
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This result can be substituted back into Equations 4.10 and 4.11 to find the 
reactions at A.
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4.8  SLOPE-DEFLECTION METHOD

The slope-deflection method is a stiffness method that includes flexural or 
bending stiffness. It was introduced in 1915 by George A. Maney (Maney 
1915). In slope-deflection, moments at the end of a member are expressed 
in terms of the rotations at the ends and the fixed-end moments due to the 
loads. Once the expressions for the moments at the member ends are writ-
ten, the joint moments are equated to zero and the unknown moments are 
found from the system of equations. The basic slope-deflection equations 
are shown in Equations 4.12 and 4.13. These are for the i end and j end of 
a member, respectively.

	
M FEM EI

L
EI
L

EI
Li ij i j= + + −

4 2 6f f b � (4.12)
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M FEM EI

L
EI
L

EI
Lj ji i j= + + −

2 4 6f f b � (4.13)

In these two equations, f is the rotation at the joint and b is the lateral 
translation between the ends divided by the length of the member. It will 
be seen later that the values 4EI/L, 2EI/L, and 6EI/L are flexural stiffness 
terms. The FEM terms are the fixed-end moments due to the loads on the 
member. A special case may be used if one end of the member is pinned. 
Equation 4.14 is for the i end of a member when the j end is pinned.

	
M FEM

FEM EI
Li ij

ji
i= + + −( )

2
3 f b � (4.14)

Example 4.12  Slope-deflection

Determine the moments at the ends of the members of the continuous 
beam in Figure 4.24 using the slope-deflection equations.

The fixed-end moments due to the loads on each span are computed 
and can be found in most elementary structural analysis textbooks. 
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Figure 4.24.  Example 4.12 Slope-deflection.
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The slope-deflection equations are applied to each span. In this case, 
the normal equations (4.12 and 4.13) are used for span AB and a special 
case (4.14) is used for span BC since support C is a roller. It should 
be noted that there are no rotations at support A and therefore fA = 0. 
Also, since there is no translational movement between the ends,  
b is zero.
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Equilibrium equations are written at each joint that has a real rotation. In 
this case, that is only joint B.
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Substituting the value of fB back into the moment equation will result in 
the final member-end moments.
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4.9  MOMENT-DISTRIBUTION METHOD

The moment-distribution method is an iteration process that uses the 
same basic assumptions and equations as the slope-deflection method. 
Moment-distribution was developed by Hardy Cross in 1930 (Cross 
1930). The difference between the two is that at each joint the fixed-end 
moments are first summed and distributed to each member in proportion to 



Matrix Structural Stiffness   •   171

their flexural stiffness (stiffness factor). Then, the member-end moments 
are carried over to their far ends by the carryover factor. The process is 
repeated and continues until the amount of moment being distributed 
becomes significantly small. 

Many factors are used with the moment-distribution method. The first 
is the member stiffness factor and is the amount of moment required to 
rotate the end of a beam 1 radian. This is actually the definition of stiff-
ness, force due to unit motion. The far end of the beam that is rotating is 
fixed. We will derive this expression in the next section on elastic member 
stiffness.

K EI
L

=
4

 

The joint stiffness factor is the sum of all the member stiffness factors for 
the members connected at a joint. 

K KT = Σ

The distribution factor for each member-end at a joint is the member stiff-
ness factor divided by the joint stiffness factor. 

D K
K

K
F

T

= =
ΣK

If a member is connected to a support and not to other members, the dis-
tribution factor is dependent on the support type. If the support is fixed 
against rotation, then DF=1. If the support is free to rotate, then DF=0.

The member relative stiffness factor is used when a continuous beam 
or frame is made from the same material when calculating the distribution 
factor. This can be used in place of the member stiffness factor for calcu-
lation of the other factors.

K I
LR =

The final factor is the carry-over factor, which represents the fraction of a 
moment that is carried over from one end of a member to the other. If the 
member is prismatic, then the ratio of the far end moment to the near end 
moment of a member is one-half (½). 
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Finally, if a member is connected to a support, but is free to rotate at 
the support, a modified member stiffness factor can be used. In this mod-
ified method, the support joint is moment balanced then carried over and 
no further calculations are performed at that joint.

′ =K K3
4

Example 4.13  Moment-distribution method

Determine the moments in the beam shown in Figure  4.25 by the 
moment-distribution method.

The modulus of elasticity, E, and moment of inertia, I, are constant 
for the beam.

Since E and I are constant, the member relative stiffness factor can be 
used and we can use a unit value for I.
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At fixed support A, the distribution factor for member AB is 0 and at the 
roller support C, the distribution factor for member BC is 1. For the inter-
nal roller, the distribution factor for each member must be calculated.
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Figure 4.25.  Example 4.13 Moment-distribution.



Matrix Structural Stiffness   •   173

The fixed-end moments are calculated for each member load.
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The moment-distribution is shown in Table 4.1. In the first line, the fixed-
end moments are recorded. In the second line, the distribution factor is 
multiplied times the negative sum of the fixed-end moments. This is a dis-
tribution. In each subsequent one-half, the end moment is carried over the 
opposite end of the members. This is a carry-over. Then, the unbalanced 
moments at the joint are distributed again and carried over again. 

Table 4.1.  Example 4.13 Moment-distribution

0.00 0.333 0.667 1.00 Distribution Factor

-40.00 40.00 -10.00 10.00 Fixed-end Moment

0.00 -10.00 -20.00 -10.00 Distribution 1

-5.00 0.00 -5.00 -10.00 Carry-over 1

0.00 1.67 3.33 10.00 Distribution 2
0.83 0.00 5.00 1.67 Carry-over 2
0.00 -1.67 -3.33 -1.67 Distribution 3

-0.83 0.00 -0.83 -1.67 Carry-over 3

0.00 0.28 0.56 1.67 Distribution 4
0.14 0.00 0.83 0.28 Carry-over 4
0.00 -0.28 -0.56 -0.28 Distribution 5

0.14 0.00 -0.14 -0.28 Carry-over 5

0.00 0.05 0.09 0.28 Distribution 6
0.02 0.00 0.14 0.05 Carry-over 6
0.00 -0.05 -0.09 -0.05 Distribution 7

-0.02 0.00 -0.02 -0.05 Carry-over 7

-45.00 30.00 -30.02 -0.05 Final Moments
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Example 4.14  Moment-distribution

Determine the moments in the beam shown in Figure 4.25 by the modified 
moment-distribution method.

There are two primary differences when using this method. First, use 
a modified member stiffness factor for member BC.

′ = =
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=K
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4
3 0 1

4
0 075

.
.

The modified factor must be used to recalculate the distribution factors.
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Second, the fixed-end moment at the pinned support is balanced then car-
ried over to the far end before the moment-distribution process begins. 
The process is shown in Table 4.2.

4.10  ELASTIC MEMBER STIFFNESS, X-Z SYSTEM

The stiffness method for analyzing building structures is widely used by 
engineers and commercial computer structural analysis programs. The 
method was developed 1934 and 1938 by Arthur Collar (Lewis et al. 
1939). The basic definition of stiffness is the force due to a unit deforma-
tion. Flexibility is the reciprocal or inverse of stiffness and is defined as 
the deformation due to a unit force. Either of these principles can be used 
to find the behavior of structural members due to motion and loads. In this 
section, the elastic member stiffness for a linear element will be derived. 

Table 4.2.  Example 4.14 Moment-distribution
0.00 0.400 0.600 1.00 Distribution Factor

-40.00 40.00 -10.00 10.00 Fixed-end Moment
-5.00 -10.00 Balance @ C

0.00 -10.00 -15.00 Distribution 1
-5.00 0.00 0.00 Carry-over 1

-45.00 30.00 -30.00 0.00 Final Moments
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The fixed-end forces on a member can also be found by similar methods. 
When discussing the flexibility and stiffness of a member, an elastic spring 
that is axially loaded can be considered. This is equivalent to the axial 
properties of a linear element used in structures. Figure 4.26 shows an 
elastic spring in an un-deformed and deformed position. 

The displacement of the spring is directly proportional to the applied 
axial load. This is the basic flexibility equation and is written as follows:

∆ = fP

In this equation, f is the flexibility of the spring and P is the applied axial 
load in the direction of the length of the spring. This can also be written in 
terms of stiffness using a displacement of 1 unit. 

P K= ∆

This equation is the general equation for stiffness. P represents all the 
known forces, D represents the unknown rotations and deflections, and K 
is the stiffness matrix for a member or structure. The entire system of a 
structure can be modeled into a set of simultaneous equations written in 
the following form and will be expanded in the next section and chapter:

K P[ ][ ] = [ ]∆

The derivation of elastic member stiffness in the X-Z system will be 
derived in the two following examples using the conjugate beam method 
and area moment method.

Example 4.15  qiy stiffness

Derive the qiy stiffness using the conjugate beam method for a linear 
member.

A free-body diagram is shown in Figure 4.27 with an imposed rota-
tion of 1 unit on the i-end of the member. The moments are assumed in the 

P

L ∆L

Figure 4.26.  Elastic stiffness.
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positive y direction using the right-hand rule and the Cartesian right-hand 
coordinate system. The forces are shown consistent with the deformation. 
The moment diagram divided by EI is shown for the reaction forces on the 
i-end of the member.

The conjugate beam can be constructed for the two basic assump-
tions. The shear in the conjugate is equal to the slope of the real beam, and 
the moment of the conjugate is equal to the deflection of the real beam.

V
M
iconj ireal iy

iconj ireal

= =

= =

q q
∆ 0

Since moment in the conjugate does not exist but shear does, the conjugate 
beam is pinned on the i-end. 

V
M
jconj jreal

jconj jreal

= =

= =

q 0

0∆

Since both the shear and moment in the conjugate do not exist, the conju-
gate beam is free on the j-end. The resulting conjugate beam is shown in 
Figure 4.28.

The conjugate beam method can be applied to find the reactions at the 
i-end of the conjugate beam, which are equal to deformations at the i-end 
of the real beam. The load from Figure 4.27 is applied to the conjugate 
beam in Figure 4.28.

Piz Pjz
Mjy

Miy θiy

Miy
EIy

PizL
EIy

Figure 4.27.  Example 4.15 qiy stiffness.

Figure 4.28.  Example 4.15 qiy stiffness.
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Solving the second equation for Piz in terms of Miy and then substituting 
into the first equation, the stiffness value can be found.
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(4.15)

	
P

EI
Liz

y
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2 q �

It should be noted that the force Piz was actually shown as negative in the 
original free-body diagram so it does have a negative value for stiffness.
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Example 4.16  Diz stiffness

Derive the Diz stiffness using the area moment method for a linear member.
A free-body diagram is shown in Figure 4.29 with an imposed deflec-

tion of 1 unit on the i-end of the member. The moments are assumed in the 
negative y direction using the right-hand rule and the Cartesian right-hand 
coordinate system. The forces are shown consistent with the deformation. 
The moment diagram divided by EI is shown for the reaction forces on the 
i-end of the member. 

Since both ends of the beam are fixed for rotation, the change in rota-
tion from the i-end to the j-end is zero. This is the area under the M/EI 
diagram between those points.
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The tangential deviation of a point at the i-end from a tangent to the curve 
on the j-end is the implied deflection. This is equal to the moment of the 
area of the M/EI diagram about the point at the i-end.

t M
EI
x dx
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L L
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Substituting the first equation for Piz into the Diz equation results in one 
of the stiffness terms. The second term is found by substituting the first 
stiffness term back into the Piz equation. Note that Miy was assumed as 
negative in the free-body diagram, so the sign must be switched.
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The four terms given in Equations 4.15 through 4.18 are the flexural stiff-
ness terms for the forces at the i-end due to motions at the i-end. This is 
denoted as stiffness matrix [Kii] in Equation 4.19. The stiffness equation 
and matrix form of this are as follows:

	
K F

EI
L

EI
L

EI
L

EI
L

ii i i

y y

y y

iz

iy

[ ][ ] = [ ]
−

−



















d

12 6

6 4

3 2

2

∆
q









 =











[ ] =
−

−










P
M
iz

iy

ii

y y

y y

K

EI
L

EI
L

EI
L

EI
L

12 6

6 4

3 2

2










 �

Piz

Pjz
Mjy

Miy

∆iz

Miy
EIy

PizL
EIy

Figure 4.29.  Example 4.16 Δiz stiffness.
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The transmission matrix derived in Section 4.3 for the X-Z system can be 
used to find the forces at the j-end.
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From statics equilibrium, the forces at the i-end transmitted to the j-end 
plus the forces at the j-end are equal to zero. The forces at the j-end due to 
motions at the i-end are denoted as stiffness matrix [Kji].
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(4.20)

For a prismatic member, it can be shown that the stiffness matrix is sym-
metric about the main diagonal. This results in stiffness [Kij] being equal 
to the transpose of [Kji], where the forces at the j-end due to motions at the 
i-end are denoted as stiffness matrix [Kji].
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From statics equilibrium, the forces at the i-end transmitted to the j-end 
plus the forces at the j-end are equal to zero. The forces at the j-end due to 
motions at the j-end are denoted as stiffness matrix [Kjj].
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Adding the axial stiffness terms that are derived in most strength of mate-
rials textbooks, the entire coplanar X-Z frame stiffness matrix can be 
found.
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4.11  ELASTIC MEMBER STIFFNESS, X-Y SYSTEM

The X-Y coplanar coordinate system differs from the X-Z system in a few 
ways. The derivation of elastic member stiffness in the X-Y system will 
be derived in the two following examples using the area moment method 
and conjugate beam method.

Example 4.17  qiz stiffness

Derive the qiz stiffness using the area moment method for a linear member.
A free-body diagram is shown in Figure 4.30 with an imposed rota-

tion of 1 unit on the i-end of the member. The moments are assumed in the 
positive z direction using the right-hand rule and the Cartesian right-hand 
coordinate system. The forces are shown consistent with the deformation. 
The moment diagram divided by EI is shown for the reaction forces on the 
i-end of the member.
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Figure 4.30.  Example 4.17 qiz stiffness.
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Since both ends of the beam are fixed for translation, the tangential 
deviation of a point at the i-end from a tangent to the curve on the j-end is 
zero. This is equal to the moment of the area of the M/EI diagram about 
the point at the i-end.
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The change in rotation from the i-end to the j-end is equal to the negative 
of the implied rotation. This is the area under the M/EI diagram between 
those points.
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Substituting the first equation for Piy into the qiz equation results in one of 
the stiffness terms. The second term is found by substitution of the first 
stiffness term back into the Piy equation.
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Example 4.18  Diy stiffness

Derive the Diy stiffness using the conjugate beam method for a linear 
member.

A free-body diagram is shown in Figure 4.31 with an imposed deflec-
tion of one unit on the i-end of the member. The moments are assumed 
in the positive z direction using the right-hand rule and the Cartesian 
right-hand coordinate system. The forces are shown consistent with the 
deformation. The moment diagram divided by EI is shown for the reaction 
forces on the i-end of the member.
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The conjugate beam can be constructed for the two basic assump-
tions. The shear in the conjugate is equal to the slope of the real beam, and 
the moment of the conjugate is equal to the deflection of the real beam.

V
M
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iconj ireal iy

= =

= =

q 0

∆ ∆

Since moment in the conjugate exists but shear is zero, the conjugate beam 
is slotted in the y direction on the i-end. This is a connection that is free to 
move vertically, but restrained from rotation.

V
M
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Since both the shear and the moment in the conjugate do not exist, the con-
jugate beam is free on the j-end. The resulting conjugate beam is shown 
in Figure 4.32.

The conjugate beam method can be applied to find the reactions at the 
i-end of the conjugate beam, which are equal to deformations at the i-end 
of the real beam. The load from Figure 4.31 is applied to the conjugate 
beam in Figure 4.32.
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Figure 4.31.  Example 4.18 Δiy stiffness.
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Solving the first equation for Piy in terms of Miz and then substituting into 
the second equation, the stiffness value can be found.
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This can be substituted back into the equation for Piy to obtain the last 
stiffness value.
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The four terms given in Equations 4.24 through 4.27 are the flexural stiff-
ness terms for the forces at the i-end due to motions at the i-end. This is 
denoted as stiffness matrix [Kii] in Equation 4.28. The stiffness equation 
and matrix form of this are as follows:
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The transmission matrix derived in Section 4.3 for the X-Y system can be 
used to find the forces at the j-end.
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Figure 4.32.  Example 4.18 Δiy stiffness.
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From statics equilibrium, the forces at the i-end transmitted to the j-end 
plus the forces at the j-end are equal to zero. The forces at the j-end due to 
motions at the i-end are denoted as stiffness matrix [Kji].
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For a prismatic member it can be shown that the stiffness matrix is sym-
metrical about the main diagonal. This results in stiffness [Kij] being equal 
to the transpose of [Kji], where the forces at the j-end due to motions at the 
i-end are denoted as stiffness matrix [Kji].
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From statics equilibrium, the forces at the i-end transmitted to the j-end 
plus the forces at the j-end are equal to zero. The forces at the j-end due to 
motions at the j-end are denoted as stiffness matrix [Kjj].
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If we add the axial stiffness terms that were shown in the previous section, 
the entire coplanar X-Y frame stiffness matrix can be found.
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4.12  ELASTIC MEMBER STIFFNESS, 3-D SYSTEM

By combining Equations 4.23 and 4.32 and adding the torsional stiffness 
terms that are derived in most strength of materials textbooks, we can 
construct the elastic member stiffness in the three-dimensional (3-D) sys-
tem Cartesian coordinate system. This will include axial and torsional 
stiffness, as well as bending about each orthogonal axes of the member 
cross-section. 
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4.13 G LOBAL JOINT STIFFNESS

The solution of structures using the global joint stiffness method requires 
that each component be in the same Cartesian coordinate system. The 
main components of the system are the members, loads, and supports. The 
main results desired from the solution are the joint deformations, member 
forces, and support reactions. The global or joint system is the primary 
way to organize all the components. The supports and some of the loads 
will be expressed in this system directly. Some of the loads will have to 
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be transformed into this system. The basic process to set up and solve the 
structure using this stiffness is summarized as follows:

1.	 Find the local member stiffness, [Km], using Equation 4.33 (4.23 
or 4.32 for 2-D systems). Rotate the local member stiffness to the 
global joint stiffness system, [Kg]. This is shown in Equation 4.34.

	
K R K Rg

T
m  = [ ] [ ][ ]  

� (4.34)

2.	 Assemble all of the members into the global joint stiffness matrix. 
This is done by using joint labeling to order the matrix.

3.	 Determine the global joint loading, [Pg], from all direct loads on 
joints, [P & Mg], and loads on members. The member loads are 
applied as the opposite of the fixed-end forces and moments, 
[FEPMm]. These must be rotated from the local system to the global 
system, [R]T.

	
P P M FEPM Rg g m

T  =   − [ ][ ]&  � (4.35)

4.	 Solve the general stiffness equation for global displacements, [Dg]. 
The rows and columns of the matrices corresponding to the defor-
mations restrained by the supports are removed prior to solving the 
system of equations.

	
K Pg g g    =  ∆ � (4.36)

5.	 Determine the reactions at the support, [Pg], from the global defor-
mations. Any fixed-end forces must be subtracted from the results. 
Only the forces at the supports due to the free deformations need 
to be found. 

	
P K FEPM Rg g g m

T  =     + [ ][ ]∆  � (4.37)

6.	 Solve for the local member forces and moments, [P & Mm], for each 
member separately from the global joint deformations. The global 
joint deformations must be rotated into the member system, [R]. 
The fixed-end forces and moments must be added back to get the 
final member end forces.

	
P M K R FEPMm m g m&[ ] = [ ][ ]  + [ ]∆

 � (4.38)
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The general set-up for the stiffness method of analysis represents a sys-
tem of linear equations, where the displacement vector is the unknown. 
Except for those designated as supports, there are six unknown joint dis-
placement components for each joint in the structure in a 3-D structure. 
Each displacement released at a support is still an unknown displacement 
component to the system. There is an equation for each degree of freedom 
of the structure. Each non-related component at a support has a displace-
ment that is set identically equal to zero, and as far as the system of equa-
tions is concerned, this particular equation may be omitted, along with 
any coefficient in the other equations which corresponds to the dropped 
displacement. 

Sometimes the system solution is handled in six by six blocks of 
coefficients or six rows of equations at a time, where each block repre-
senting the accumulated stiffness for a joint in the case of the diagonal, 
or the carry-over effects from other joints in the case of off-diagonals. 
In this case, unless the support joint is fully restrained, its correspond-
ing row of six by six blocks is maintained intact and a number of suf-
ficient sizes to simulate “infinite stiffness” in the restrained direction 
are added to the diagonal of the diagonal block in the master stiffness 
matrix. 

The building of the global joint stiffness matrix consists of various 
stages of operations. First, the member stiffness matrix is defined in its 
own system, giving due consideration to member end releases, for each 
member in the structure. This will be discussed in Chapter 5. The member 
stiffness matrix can be considered as four separate six by six blocks. These 
represent the forces at the ends due to the motions at the end and were 
discussed in Sections 4.10 and 4.11.

K
K K
K Km
ii ij

ji jj
[ ] =











The four separate components of the global member stiffness should be 
placed in the global joint stiffness matrix. The diagonal terms will be added 
to other terms representing the stiffness of other members connected to 
that joint. The off-diagonal terms will simply be placed in their appropri-
ate position. The transformation of the local member system to the global 
joint system was shown in Equation 4.34 and is derived as follows starting 
with the local stiffness equation:

K Pm m m[ ][ ] = [ ]∆
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This equation represents the force in the local system due to deformations 
in the local system. To go from local to global we multiply by the rotation 
transpose, [R]T, on both sides of the equation.

K R R Pm
T

m
T

m[ ][ ] [ ] = [ ] [ ]∆

The right side of the equation now represents the forces in the global sys-
tem, [Pg]. The left side represents the force in the global system due to 
local deformations. The equation needs to be written in terms of the global 
deformation, [Dg]. From Section 4.3, the local deformation is the global 
deformation multiplied by the rotation matrix, [R].

R K R PT
m g g[ ] [ ][ ]  =  ∆

Example 4.19  Global joint stiffness

Determine the global joint deformations, support reactions, and local 
member forces for the pin-connected bracing structure loaded as shown 
in Figure 4.33.

The area of each member, Ax, is 10 in2 and the modulus of elasticity, 
E, is 10,000 ksi. Note that the structure is in the XZ coordinate system.

Since this is a pin connected structure loaded only at the joint, it will 
act as a true truss with only axial forces in the members. The stiffness 
model will be simplified to only include the axial stiffness components, 
AE/L. Furthermore, rotation at the joints will be excluded since there is no 
rotational stiffness imparted by the members. Rotation could be included 

Z

8k 8k

9k

X

12k

15'-0"

20'-0"

Figure 4.33.  Example 4.19 Global joint stiffness.
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if it is desired to find the rotation of the member ends, but this can easily 
be found from the final deformed position of the structure.

A numbering system must be assigned to the joint and members for 
easy bookkeeping. Figure  4.34 shows a numbering system for the five 
joints and the seven members of the structure. The member numbers are 
circled for clarity.

The member stiffness for each member is first found from Equation 4.34 
(step 1).

K R K R

K K

g
T

m

g
T

m

  = [ ] [ ][ ]
  = [ ] [ ][ ]b b

Expand the general local member stiffness to include just the x and z 
forces and motions. Also note that rotation transformation of members 
will be about the y-axis or b.

K

cos sin
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cos sin
sin cos
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
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

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








sin cos
cos sin
sin cos

b b
b b
b b

To simplify the process, we can multiply the expanded global stiffness 
equation and factor out the axial stiffness term.

3

4 6

7
1

5
2

2

1 3

4 5

X

Z

Figure 4.34.  Example 4.19 Global joint stiffness.
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Members 1 and 2 have the same orientation. Selecting the bottom 
end as the i-end, the rotation is -90° or 270°. The axial stiffness is 
555.6 k/in.
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41 44

33 35

53 55

Member 3 does not need rotations since it is already in the global system 
orientation. The global stiffness will be the same as the member stiffness. 
Selecting the left end as the i-end, the rotation is 0°. The axial stiffness is 
416.7 k/in.

K
K K
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Members 4 and 5 have the same orientation. Selecting the bottom-left end 
as the i-end, the rotation is -36.87° or 323.13°. Instead of using angles, in 
this case it is easier to use trigonometry directly. The cosine is 0.8 and the 
sine is -0.6. The axial stiffness is 666.7 k/in.
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Members 6 and 7 have the same orientation. Selecting the top-left end as 
the i-end, the rotation is 36.87° or -323.13°. Instead of using angles, in 
this case it is easier to use trigonometry directly. The cosine is 0.8 and the 
sine is 0.6. The axial stiffness is 666.7 k/in.
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The global joint stiffness matrix can be assembled using each of the mem-
ber’s contributions (step 2).

K

K K K
K K K K K

K K K
K K K K

g  =

11 12 14

21 22 23 24 25

32 33 35

41 42 44 45

0 0

0 0
0

0 KK K K K52 53 54 55























Kg  =

− −
− − −

− −

427 320 427 320 0 0 0 0 0 0
320 796 320 240 0 0 0 566 0 0
427 320 11707 0 427 320 427 320 427 320
320 240 0 960 320 240 320 240 320

− − − −
− − − − − −−

− −
− − −

−

240
0 0 427 320 427 320 0 0 0 0
0 0 320 240 320 796 0 0 0 566
0 0 427 320 0 00 843 320 417 0
0 566 320 240 0 0 320 796 0 0
0 0 427 320 0 0 417 0 843 3

− −
− − −

− − − 220
0 0 320 240 0 566 0 0 320 795− − −







































The global joint loading can be determined from Equation 4.35 directly 
since all of the applied loads are at the joints and in the global system 
(step 3). Note that there are no loads applied directly to the members, so 
there are no fixed-end forces and moments. The load matrix is in units of 
kips (k).
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Using any of the methods for solving non-homogenous linear algebraic 
equations, the global deformations can be found from the global stiffness 
Equation 4.36 (step 4). The rows and columns corresponding to the sup-
port constraint degrees of freedom must be deleted prior to the solution. 
This would be both x and y at joints 1 and 3. The solution for the deforma-
tions will be in inches.
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The reactions at the support can be found using the solution of the global 
deformation with Equation 4.37 (step 5). Only the terms in the rows cor-
responding to the restrained degrees of freedom and in the columns of 
the unrestrained degrees of freedom need to be included. Since there are 
no applied loads on the members, the fixed-end forces and moments are 
omitted. In addition, there are no applied loads at the support locations so 
the global applied forces and moments are omitted. The reaction forces 
are in kips (k).
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The final step is finding the member forces for each of the members using 
Equation 4.35 (step 6). Since there are no applied forces on the mem-
bers, the fixed-end forces and moments can be omitted. Note that the local 
member stiffness matrix is used here and not the global matrix. The mem-
ber force will be in kips. If the i-end is positive, the member is in compres-
sion and if it is negative the member is in tension.
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For member 1, the deformations at joints 1 and 4 are used.
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For member 2, the deformations at joints 3 and 5 are used.
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For member 3, the deformations at joints 4 and 5 are used.
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For member 4, the deformations at joints 1 and 2 are used.
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For member 5, the deformations at joints 2 and 5 are used.
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For member 6, the deformations at joints 2 and 3 are used.
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For member 7, the deformations at joints 4 and 2 are used.
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Example 4.20  Global joint stiffness 

Determine the global joint deformations, support reactions, and local 
member forces for the rigidly connected frame structure loaded as shown 
in Figure 4.35. 

The area of each member, Ax, is 10 in2, the moment of inertia, Iz, is  
1000 in4, and the modulus of elasticity, E, is 10,000 ksi. Note the structure 
is in the XY coordinate system and the numbering system is similar to 
Example 4.19.

The member stiffness for each member is first found from  
Equation 4.34 (step 1).

K R K R

K K

g
T

m

g
T

m

  = [ ] [ ][ ]
  = [ ] [ ][ ]a a

Using the local member stiffness for the XY system from Section 4.11 
which has translation in x and y direction and rotation about the z direc-
tion, the rotation transformation of members will be about the z-axis or a.
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−
T

cos sin
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Figure 4.35.  Example 4.20 Global joint stiffness.



198   •  NU MERICAL STRUCTURAL ANALYSIS

K

AE
L

AE
L

EI
L

EI
L

EI
L

EI
L

EI
L

EI
L

m

z z z z

z z

[ ] =

−

−

0 0 0 0

0
12 6

0
12 6

0
6 4

0

3 2 3 2

2 −−

−

− − −

6 2

0 0 0 0

0
12 6

0
12 6

0
6

2

3 2 3 2

EI
L

EI
L

AE
L

AE
L

EI
L

EI
L

EI
L

EI
L

E

z z

z z z z

II
L

EI
L

EI
L

EI
L

z z z z
2 2

2
0

6 4
−









































a[ ] =

−

−

cos sin
sin cos

cos sin
sin cos

a a
a a

a a
a

0 0 0 0
0 0 0 0

0 0 1 0 0 0
0 0 0 0
0 0 0 aa 0
0 0 0 0 0 1



























Members 1 and 3 have the same orientation. Selecting the bottom end as 
the i-end, the rotation is 90°. Table 4.3 contains the local member stiffness 
matrix, the rotation matrices, a and aT, and the global member stiffness 
matrix.

K K
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K K

K K
K K12 43

11 12

21 22

44 43

34 33
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

Member 2 is already in the global system and does not need rotation. 
Selecting the left end as the i-end, the rotation is 0°. Table 4.4 contains 
the local member stiffness matrix, the rotation matrices, a and aT, and the 
global member stiffness matrix.

K
K K
K K23

22 23

32 33
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The global joint stiffness matrix can be assembled using each of the member’s 
contributions (step 2). Table 4.5 contains the global joint stiffness matrix.

The global joint loading is determined from Equation 4.35. In this 
case, member 2 is loaded with a uniformly distributed load. The fixed-end 
forces and moments due to the load must be calculated. Normally, the 
fixed-end forces and moments are rotated into the global system before 
they are placed in the global joint loading, but in this case, the member is 
already in the global system and no rotation is necessary (step 3). The load 
matrix is in units of kips and inches (k-in).

Table 4.3.  Example 4.20 Global joint stiffness
KL

1510.4 0 0 -1510.4 0 0
0 49.17 4720 0 -49.17 4720
0 4720 604166.67 0 -4720 302083.33

-1510.4 0 0 1510.4 0 0
0 -49.17 -4720 0 49.17 -4720
0 4720 302083.33 0 -4720 604166.67

a
0 1 0 0 0 0
-1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 -1 0 0
0 0 0 0 0 1

aT

0 -1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 -1 0
0 0 0 1 0 0
0 0 0 0 0 1

KG

49.2 0 -4720 -49.2 0 -4720
0 1510 0 0 -1510 0

-4720 0 604166.67 4720 0 302083.33
-49.2 0 4720 49.2 0 4720

0 -1510 0 0 1510 0
-4720 0 302083.33 4720 0 604166.67
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Table 4.4.  Example 4.20 Global joint stiffness

KL

1006.9 0 0 -1006.9 0 0

0 14.57 2098 0 -14.57 2098

0 2098 402777.78 0 -2098 201388.89

-1006.9 0 0 1006.9 0 0

0 -14.57 -2098 0 14.57 -2098

0 2098 201388.89 0 -2098 402777.78

a

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

aT

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

KG

1006.9 0 0 -1006.9 0 0

0 15 2098 0 -15 2098

0 2098 402777.78 0 -2098 201388.89

-1006.9 0 0 1006.9 0 0

0 -15 -2098 0 15 -2098

0 2098 201388.89 0 -2098 402777.78

Table 4.5.  Example 4.20 Global joint stiffness

K
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K K K

K K K
K K
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0 0
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The 18 k lateral load is placed directly on joint 2 in the y direction. 
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The global deformations can be found from the global stiffness Equa-
tion 4.36 (step 4). The rows and columns corresponding to the support 
constraint degrees of freedom must be deleted prior to the solution. This 
would be all three motions at 1 and 4. The resulting matrix is just joints 2 
and 3. This is shown in Table 4.6 along with the reduced load. The solution 
for the deformations will be in inches and radians.
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The reactions at the supports can be found using the solution of the global 
deformation with Equation 4.37 (step 5). Only the terms in the rows cor-
responding to the restrained degrees of freedom and in the columns of the 
unrestrained degrees of freedom need to be included. Table 4.7 shows the 
appropriate stiffness terms and deformations needed to find the reactions. 
Since there were no fixed-end forces and moments at the support joints, 
the solution is complete. The reaction forces are in kips and inches (k-in).

P K P M FEPM R

P K

g g g m
T

g g

[ ] =     −   − [ ][ ]
[ ] =    

∆

∆

&

The final step is finding the member forces for each of the members using 
Equation 4.35 (step 6). The member force will be in kips and inches. 
The local member stiffness matrix and the rotation matrix were shown 
in step 1 and are omitted here. The sign convention for the X-Y system 
applies when interpreting the final-end forces and moments.

P M K R FEPM

P M K

m m g m

m m g

&

&

[ ] = [ ][ ]  + [ ]
[ ] = [ ][ ] 

∆

∆a

Table 4.6.  Example 4.20 Global joint stiffness

KG P-FEPM

1056 0 4720 -1007 0 0 18

0 1525 2098 0 -15 2098 -36

4720 2098 1006944 0 -2098 201389 -1728

-1007 0 0 1056 0 4720 0

0 -15 -2098 0 1525 -2098 -36

0 2098 201389 4720 -2098 1006944 1728

Table 4.7.  Example 4.20 Global joint stiffness
KG2 DG

P

-49 0 -4720 0 0 0 0.3040 0.92

0 -1510 0 0 0 0 -0.0207 31.22

4720 0 302083 0 0 0 -0.0034 419.18

0 0 0 -49 0 -4720 0.2852 -18.92

0 0 0 0 -1510 0 -0.0270 40.78

0 0 0 4720 0 302083 0.0010 1659.74
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For member 1, the deformations at joints 1 and 2 are used. Table 4.8 con-
tains the final member-end forces in the local system along with global 
deformations used to find those end forces.

Table 4.8.  Example 4.20 Global joint stiffness

DG
PL

0 Dx1
31.22 kips

0 Dy1
-0.92 kips

0 θz1
419.18 kip-in

0.3040 Dx2
-31.22 kips

-0.0207 Dy2
0.92 kips

-0.0034 θz2
-596.37 kip-in

Table 4.9.  Example 4.20 Global joint stiffness

DG
PL

0.3040 Dx2
18.92 kips

-0.0207 Dy2
-4.78 kips

-0.0034 qz2
-1131.63 kip-in

0.2852 Dx3
-18.92 kips

-0.0270 Dy3
4.78 kips

0.0010 qz3
-245.46 kip-in

Table 4.10.  Example 4.20 Global joint stiffness

DG
PL

0 Dx4
40.78 kips

0 Dy4
18.92 kips

0 qz4
1659.74 kip-in

0.2852 Dx3
-40.78 kips

-0.0270 Dy3
-18.92 kips

0.0010 qz3
1973.46 kip-in

For member 2, the deformations at joints 2 and 3 are used. Table 4.9 con-
tains the final member-end forces in the local system along with global 
deformations used to find those end forces.

For member 3, the deformations at joints 4 and 3 are used. Table 4.10 
contains the final member-end forces in the local system along with global 
deformations used to find those end forces.
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CHAPTER 5

Advanced Structural 
Stiffness

In this chapter, concepts learned in previous chapters are expanded and 
applied to advanced structural stiffness. This method is applied in comput-
ers to solve complex structures that are statically determinate or statically 
indeterminate. Matrices will be utilized to determine internal member 
forces and displacements within a structure. Small pieces of the struc-
ture are analyzed and then compiled into a larger matrix in order to view 
the structure as a whole. This procedure is the basis for finite element 
analyses.

5.1  MEMBER END RELEASES, X-Z SYSTEM

Joint stiffness is expressed in the master matrix for a structure, but two 
situations exist that may cause them to vary. First, a joint that is being uti-
lized as a support may be released. For example, the support becomes slot-
ted or pinned. When looking at a joint release, the joint is fully designed as 
a support before the release. This creates the reaction components. A sup-
port release is in the global system and is handled in the reduction of the 
joint stiffness matrix. Second, a member can be physically released from a 
joint for one or more of the six possible end displacements. When a mem-
ber release occurs, the member is released in some direction and the stiff-
ness contribution that member was making to the joint changes or goes to 
zero. When a member is released in the local system, this release changes 
the member stiffness matrix. Some of these released stiffness matrices will 
be derived in the following examples. The order of the motions and forces 
on the member’s end are given by the deflections and rotations at the i-end 
followed by the deflections and rotations at the j-end. The following is a 
full list of stiffness values simplified from Equation 4.33:
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Example 5.1  ∆iz end release

Derive the local member stiffness for a Diz member end release using the 
conjugate beam method.

A free-body diagram of the released beam is shown in Figure 5.1. 
Since the beam is allowed to move at the i-end in the z direction, the 
reaction Piz is equal to zero. The loaded conjugate beam is also shown in 
Figure 5.1. Note that the shear in the conjugate beam is equal to the rota-
tion in the real beam and the moment in the conjugate beam is equal to the 
deflection in the real beam.

If a motion Diz is imposed, there is no resistance and therefore no 
forces. The resulting forces are the stiffness values due to the motion. The 
following are forces and stiffness due to Diz:
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Figure 5.1.  Example 5.1 ∆iz end release.
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If a motion Djz is imposed, there is no resistance and therefore no forces. 
The resulting forces are the stiffness values due to the motion. The follow-
ing are forces and stiffness due to Djz:
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If a motion qiy is imposed, there is resistance and therefore forces. The 
resulting forces are derived using conjugate beam.
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From statics on the real beam:
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From symmetry of the stiffness matrix, the following terms can be 
found:
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From statics on the real beam considering qjy:
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The resulting stiffness matrix is shown in Equation 5.2 with only the 
affected terms replaced with the new values.
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Example 5.2  qiy end release

Derive the local member stiffness for a qiy member end release using the 
conjugate beam method.

A free-body diagram of the released beam is shown in Figure 5.2. 
Since the beam is allowed to rotate at the i-end in the y direction, the 
reaction Miy is equal to zero. The loaded conjugate beam is also shown in 
Figure 5.2. Note that the shear in the conjugate beam is equal to the rota-
tion in the real beam and the moment in the conjugate beam is equal to the 
deflection in the real beam.

If a motion Diz is imposed, there is resistance and therefore forces. The 
resulting forces are derived using conjugate beam.
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Figure 5.2.  Example 5.2 qiy end release.



210   •  NU MERICAL STRUCTURAL ANALYSIS

If a motion Djz is imposed, there is resistance and therefore forces. The 
free-body diagram of the deflected shape is shown in Figure  5.3. The 
conjugate beam will be the same as shown in Figure 5.2. The resulting 
forces are derived using conjugate beam. Note that the direction of Piz in  
Figure 5.3 will be the opposite of that in Figure 5.2, so all the values will 
be the opposite of those from Diz.
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∆jz

Figure 5.3.  Example 5.2 qiy end release.
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If a motion qiy is imposed, there is no resistance and therefore no forces. 
The resulting forces are the stiffness values due to the motion. The follow-
ing are forces and stiffness due to Diz:

P M P M
k k k k
iz iy jz jy= = = =

= = = =
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03 5 5 5 9 5 11 5, , , ,

If a motion qjy is imposed, there is resistance and therefore forces. The 
free-body diagram of the deflected shape is shown in Figure  5.4. The  
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conjugate beam is also shown in Figure  5.4. The resulting forces are 
derived using conjugate beam.
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Figure 5.4.  Example 5.2 qiy end release.
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The resulting stiffness matrix is shown in Equation 5.3 with only the 
affected terms replaced with the new values.
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The member stiffness for releasing Djz and qjy can be derived in a sim-
ilar manner to Diz and qiy. The resulting stiffness matrices are shown in 
Equations 5.4 and 5.5 with only the affected terms replaced with the new 
values.
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When more than one of the four degrees of freedom is released on a flex-
ural member, two conditions may exist. The first is that the member will 
provide no joint stiffness. This occurs when both deflection and rotation 
at either end are released, when rotation is released at both ends, or when 
deflection is released at one end and rotation is released at the other end. 
The stiffness matrix for this condition is shown in Equation 5.6. The 
resulting beam is either a cantilever beam, a pinned-pinned beam, or a 
pinned-slotted beam.
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The second condition is an unstable beam. This occurs when both ends 
are released for deflection or more than two of the four degrees of free-
dom are released. Table  5.1 summarizes all the flexural stiffness con-
ditions for the X-Z system. In this table, 1 indicates that the degree of 
freedom is released and 0 indicates that the degree of freedom is not 
released.

5.2  MEMBER END RELEASES, X-Y SYSTEM

The X-Y member stiffness can be derived in a similar manner to the X-Z 
system. In general, only the sign of the moments will change. The result-
ing stiffness matrices for releasing Diz, qiy, Djz, and qjy are shown in Equa-
tions 5.7 through 5.10 with only the affected terms replaced with the new 

Table 5.1.  Release codes—X-Z system

Diz qiy Djz qjy Equation

0 0 0 0 4.33
1 0 0 0 5.2
0 1 0 0 5.3
0 0 1 0 5.4
0 0 0 1 5.5
1 1 0 0 5.6
1 0 1 0 Unstable
1 0 0 1 5.6
0 1 1 0 5.6
0 1 0 1 5.6
0 0 1 1 5.6
0 1 1 1 Unstable
1 0 1 1 Unstable
1 1 0 1 Unstable
1 1 1 0 Unstable
1 1 1 1 Unstable
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values. Equation 5.11 contains the stiffness matrix used when the member 
has no stiffness contribution in the case of the cantilever beam, a pinned-
pinned beam, or a pinned-slotted beam.
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Table 5.2 summarizes all the flexural stiffness conditions for the X-Y sys-
tem. In this table, 1 indicates that the degree of freedom is released and 0 
indicates that the degree of freedom is not released.

5.3  MEMBER END RELEASES, 3-D SYSTEM

When member releases occur in both coplanar systems, X-Z and X-Y, the 
member stiffness matrix should be created by combining the appropriate 
conditions from each system. The process for creating the global joint stiff-
ness is the same as outlined in Section 4.13 with four modifications. First, 
the released member stiffness matrix should be used for the appropriate 
members in step one. Second, if a released member has a member load the 
fixed-end forces and moments must be modified. These modified forces 
and moments can be found in most structural analysis textbooks. Third, the 
released member stiffness matrix should be used to solve for the local mem-
ber forces in step six. Lastly, the modified fixed-end forces and moments 
must be added to the local member end forces and moments in step six. The 
following example uses a released member to model a structure.

Table 5.2.  Release codes—X-Y system

Djy qiz Djy qjz Equation

0 0 0 0 4.33
1 0 0 0 5.1
0 1 0 0 5.2
0 0 1 0 5.3
0 0 0 1 5.4
1 1 0 0 5.5
1 0 1 0 Unstable
1 0 0 1 5.5
0 1 1 0 5.5
0 1 0 1 5.5
0 0 1 1 5.5
0 1 1 1 Unstable
1 0 1 1 Unstable
1 1 0 1 Unstable
1 1 1 0 Unstable
1 1 1 1 Unstable



218   •  NU MERICAL STRUCTURAL ANALYSIS

Example 5.3  Member stiffness

Determine the global joint deformations, support reactions, and local 
member forces for the pin-connected bracing structure loaded as shown 
in Figure 5.5.

The area of each member, Ax, is 20 in2, the moment of inertia, Iz, is 
1,000 in4, and the modulus of elasticity, E, is 10,000 ksi. Note the structure 
is in the X-Y coordinated system and the numbering system is shown.

The member stiffness for each member is first found from Equation 4.34 
(step 1). Member 2 will have a released stiffness matrix and will be cre-
ated last. Selecting member 2 instead of member 1 will result in not having 
to use modified fixed-end forces and moments.
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K K
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m
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  = [ ] [ ][ ]
  = [ ] [ ][ ]a a

Using the local member stiffness for the X-Y system from Section 4.11, 
which has translation in the x and y directions and rotation about the z direc-
tion, the rotation transformation of members will be about the z-axis or a.
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Figure 5.5.  Example 5.3 Member stiffness.
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Members 1, 4, and 5 are already in the global system and do not need 
rotation. Selecting the left end as the i-end, the rotation is 0°. Tables 5.3 
through 5.5 contain the local member stiffness matrices, the rotations 
matrices, a and aT, and the global member stiffness matrices.
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Member 3 is vertical and selecting the bottom end as the i-end, the rotation 
is 90°. Table 5.6 contains the local member stiffness matrix, the rotations 
matrices, a and aT, and the global member stiffness matrix.
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For member 2, we will release the i-end at joint 1 for rotation. Selecting 
the i-end at joint 1 the rotation is 213.7°. Table 5.7 contains the local mem-
ber stiffness matrix, the rotation matrices, a and aT, and the global mem-
ber stiffness matrix. The general released stiffness matrix is also shown.
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K K
K K13

11 13

31 33
[ ] =
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Table 5.3.  Example 5.3 �Member stiffness, member 1

KL

1388.9 0.0 0.0 -1388.9 0.0 0.0

0.0 40.2 2893.5 0.0 -40.2 2893.5

0.0 2893.5 277777.8 0.0 -2893.5 138888.9

-1388.9 0.0 0.0 1388.9 0.0 0.0

0.0 -40.2 -2893.5 0.0 40.2 -2893.5

0.0 2893.5 138888.9 0.0 -2893.5 277777.8

a

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

aT

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

KG

1388.9 0.0 0.0 -1388.9 0.0 0.0

0.0 40.2 2893.5 0.0 -40.2 2893.5

0.0 2893.5 277777.8 0.0 -2893.5 138888.9

-1388.9 0.0 0.0 1388.9 0.0 0.0

0.0 -40.2 -2893.5 0.0 40.2 -2893.5

0.0 2893.5 138888.9 0.0 -2893.5 277777.8
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Table 5.4.  Example 5.3 Member stiffness, member 4
KL

833.3 0.0 0.0 -833.3 0.0 0.0
0.0 8.7 1041.7 0.0 -8.7 1041.7
0.0 1041.7 166666.7 0.0 -1041.7 83333.3

-833.3 0.0 0.0 833.3 0.0 0.0
0.0 -8.7 -1041.7 0.0 8.7 -1041.7
0.0 1041.7 83333.3 0.0 -1041.7 166666.7

a
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

aT

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

KG

833.3 0.0 0.0 -833.3 0.0 0.0
0.0 8.7 1041.7 0.0 -8.7 1041.7
0.0 1041.7 166666.7 0.0 -1041.7 83333.3

-833.3 0.0 0.0 833.3 0.0 0.0
0.0 -8.7 -1041.7 0.0 8.7 -1041.7
0.0 1041.7 83333.3 0.0 -1041.7 166666.7
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The global joint stiffness matrix can be assembled using each of the mem-
ber’s contributions (step 2). Table 5.8 contains the global joint stiffness 
matrix.

K

K K K
K K K K
K K K K

K K
K

g  =

11 12 13

21 22 23 24

31 32 33 35

42 44

53

0 0
0

0
0 0 0
0 0 00 55K























Table 5.5.  Example 5.3 Member stiffness, member 5

KL

1388.9 0.0 0.0 -1388.9 0.0 0.0

0.0 40.2 2893.5 0.0 -40.2 2893.5

0.0 2893.5 277778 0.0 -2893.5 138888.9

-1388.9 0.0 0.0 1388.9 0.0 0.0

0.0 -40.2 -2893.5 0.0 40.2 -2893.5
0.0 2893.5 138888.9 0.0 -2893.5 277778

a
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

aT

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

KG

1388.9 0.0 0.0 -1388.9 0.0 0.0

0.0 40.2 2893.5 0.0 -40.2 2893.5

0.0 2893.5 277778 0.0 -2893.5 138888.9

-1388.9 0.0 0.0 1388.9 0.0 0.0

0.0 -40.2 -2893.5 0.0 40.2 -2893.5
0.0 2893.5 138888.9 0.0 -2893.5 277778
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The global joint loading is determined from Equation 4.35. In this case, 
members 1 and 4 are loaded with a uniformly distributed load. The fixed-
end forces and moments due to the load must be calculated. Normally, the 
fixed-end forces and moments are rotated into the global system before 
they are placed in the global joint loading, but in this case the member is 
already in the global system and no rotation is necessary (step 3). The load 
matrix is in units of kips and inches (k-in).

Table 5.6.  Example 5.3 Member stiffness, member 3
KL

2083.3 0.0 0.0 -2083.3 0.0 0.0

0.0 135.6 6510.4 0.0 -135.6 6510.4

0.0 6510.4 416666.7 0.0 -6510.4 208333.3

-2083.3 0.0 0.0 2083.3 0.0 0.0

0.0 -135.6 -6510.4 0.0 135.6 -6510.4

0.0 6510.4 208333.3 0.0 -6510.4 416666.7

a

6.12574E-17 1 0 0 0 0

-1 6.12574E-17 0 0 0 0

0 0 1 0 0 0

0 0 0 6.12574E-17 1 0

0 0 0 -1 6.12574E-17 0

0 0 0 0 0 1

aT

6.12574E-17 -1 0 0 0 0

1 6.12574E-17 0 0 0 0

0 0 1 0 0 0

0 0 0 6.12574E-17 -1 0

0 0 0 1 6.12574E-17 0

0 0 0 0 0 1

KG

135.6 0.0 -6510.4 -135.6 0.0 -6510.4

0.0 2083.3 0.0 0.0 -2083.3 0.0

-6510.4 0.0 416666.7 6510.4 0.0 208333.3

-135.6 0.0 6510.4 135.6 0.0 6510.4

0.0 -2083.3 0.0 0.0 2083.3 0.0

-6510.4 0.0 208333.3 6510.4 0.0 416666.7
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Table 5.7.  Example 5.3 Member stiffness, member 2
KL

1155.6 0.0 0.0 -1155.6 0.0 0.0
0.0 5.8 0.0 0.0 -5.8 1001.6
0.0 0.0 0.0 0.0 0.0 0.0

-1155.6 0.0 0.0 1155.6 0.0 0.0
0.0 -5.8 0.0 0.0 5.8 -1001.6
0.0 1001.6 0.0 0.0 -1001.6 173343.8

a
-0.832050294 -0.554700196 0 0 0 0
0.554700196 -0.832050294 0 0 0 0

0 0 1 0 0 0
0 0 0 -0.832050294 -0.554700196 0
0 0 0 0.554700196 -0.832050294 0
0 0 0 0 0 1

aT

-0.832050294 0.554700196 0 0 0 0

-0.554700196 -0.832050294 0 0 0 0
0 0 1 0 0 0
0 0 0 -0.832050294 0.554700196 0
0 0 0 -0.554700196 -0.832050294 0
0 0 0 0 0 1

KG

801.8 530.7 0.0 -801.8 -530.7 555.6
530.7 359.6 0.0 -530.7 -359.6 -833.4
0.0 0.0 0.0 0.0 0.0 0.0

-801.8 -530.7 0.0 801.8 530.7 -555.6
-530.7 -359.6 0.0 530.7 359.6 833.4
555.6 -833.4 0.0 -555.6 833.4 173343.8
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Table 5.8.  Example 5.3 Member stiffness
KG

2191 531 0 -1389 0 0 -802 -531 556

531 400 -2894 0 -40 -2894 -531 -360 -833
0 -2894 277778 0 2894 138889 0 0 0

-1389 0 0 2358 0 6510 -136 0 6510 -833 0 0

0 -40 2894 0 2132 1852 0 -2083 0 0 -9 -1042
0 -2894 138889 6510 1852 861111 -6510 0 208333 0 1042 83333

-802 -531 0 -136 0 -6510 2326 531 -7066 -1389 0 0

-531 -360 0 0 -2083 0 531 2483 -2060 0 -40 -2894
556 -833 0 6510 0 208333 -7066 -2060 867788 0 2894 138889

-833 0 0 833 0 0

0 -9 1042 0 9 1042

0 -1042 83333 0 1042 166667

-1389 0 0 1389 0 0

0 -40 2894 0 40 2894

0 -2894 138889 0 2894 277778



226   •  NU MERICAL STRUCTURAL ANALYSIS

The global deformations can be found from the global stiffness Equa-
tion 4.36 (step 4). The rows and columns corresponding to the support 
constraint degrees of freedom must be deleted prior to the solution. This 
would be all three motions at 4 and the X and Z motions at joint 5. The 
resulting matrix is shown in Table 5.9 along with the reduced load. The 
solution for the deformations will be in inches and radians.
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∆
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∆

g g g

x

y

z

x

y

z

x

y

z

z

K P  =     =










−1

1

1

1

2

2

2

3

3

3

5

q

q

q
q































=

−

−

0 07505
2 45212

0 00004
0 06168

.
.

.

.
22 25618
0 00261
0 03701
2 25254
0 00449
0 02122

.

.

.

.

.

.

−
−
−
−
−







































The reactions at the supports can be found using the solution of the global 
deformation with Equation 4.37 (step 5). Only the terms in the rows cor-
responding to the restrained degrees of freedom and in the columns of the 
unrestrained degrees of freedom need to be included. Table 5.10 shows the 
appropriate stiffness terms and deformations needed to find the reactions. 
Since there are fixed-end forces and moments at support joint 4, they must 

Table 5.9.  Example 5.3 Member stiffness

KG -FEPM

2191 531 0 -1389 0 0 -802 -531 556 0 0

531 400 -2894 0 -40 -2894 -531 -360 -833 0 -9

0 -2894 277778 0 2894 138889 0 0 0 0 216

-1389 0 0 2358 0 6510 -136 0 6510 0 0

0 -40 2894 0 2132 1852 0 -2083 0 0 -24

0 -2894 138889 6510 1852 861111 -6510 0 208333 0 384

-802 -531 0 -136 0 -6510 2326 531 -7066 0 0

-531 -360 0 0 -2083 0 531 2483 -2060 -2894 0

556 -833 0 6510 0 208333 -7066 -2060 867788 138889 0

0 0 0 0 0 0 0 -2894 138889 277778 0
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be added back to get the final reactions. The reaction forces are in kips and 
inches (k-in).

P K P M FEPM R

P K

g g g m
T

g g

[ ] =     −   − [ ][ ]
[ ] =    

∆

∆

&

The final step is finding the member forces for each of the members using 
Equation 4.35 (step 6). The member force will be in kips and inches. 
The local member stiffness matrix and the rotation matrix were shown 
in step 1 and are omitted here. The sign convention for the X-Y system 
applies when interpreting the final end forces and moments.

P M K R FEPM

P M K

m m g m

m m g

&

&

[ ] = [ ][ ]  + [ ]
[ ] = [ ][ ] 

∆

∆a

For member 1, the deformations at joints 2 and 1 are used. Since this 
member had a load, the fixed-end forces and moments must be added to 
the results. Table 5.11 contains the final member end forces in the local 
system along with global deformations used to find those end forces.

For member 2, the deformations at joints 1 and 3 are used. Table 5.12 
contains the final member end forces in the local system along with global 
deformations used to find those end forces.

For member 3, the deformations at joints 3 and 2 are used. Table 5.13 
contains the final member end forces in the local system along with global 
deformations used to find those end forces.

Table 5.10  Example 5.3 Member stiffness

0 0 0 -833 0 0 0 0 0 0 0.0750 -51.4 0 -51.4

0 0 0 0 -9 1042 0 0 0 0 -2.4521 16.9 15 31.9

0 0 0 0 -1042 83333 0 0 0 0 0.0000 2132.9 600 2732.9

0 0 0 0 0 0 -1389 0 0 0 0.0617 51.4 0 51.4

0 0 0 0 0 0 0 -40 2894 2894 -2.2562 16.1 0 16.1

-0.0026

-0.0370

-2.2525

-0.0045

-0.0212
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For member 4, the deformations at joints 4 and 2 are used. Since this 
member had a load, the fixed-end forces and moments must be added to 
the results. Table 5.14 contains the final member end forces in the local 
system along with global deformations used to find those end forces.

For member 5, the deformations at joints 5 and 3 are used. Table 5.15 
contains the final member end forces in the local system along with global 
deformations used to find those end forces.

Releases can also occur for the axial and torsional components of the 
member stiffness. If either end of the member is released for Dx or qx, then 
all the corresponding stiffness components are zero. If both ends of the 

Table 5.11.  Example 5.3 Member stiffness

DG PL Final P
0.06 Dx2 -18.56 -18.56 kips

-2.26 Dy2 0.45 9.45 kips
0.00 qz2 -151.73 64.27 kip-in
0.08 Dx1 18.56 18.56 kips

-2.45 Dy1 -0.45 8.55 kips
0.00 qz1 216.00 0.00 kip-in

Table 5.12.  Example 5.3 Member stiffness

DG PL Final P
0.08 Dx1 20.19 20.19 kips

-2.45 Dy1 -3.18 -3.18 kips
0.00 qz1 0.00 0.00 kip-in

-0.04 Dx3 -20.19 -20.19 kips
-2.25 Dy3 3.18 3.18 kips
0.00 qz3 -550.21 -550.21 kip-in

Table 5.13.  Example 5.3 Member stiffness

DG PL Final P
-0.04 Dx3 7.58 7.58 kips
-2.25 Dy3 -32.84 -32.84 kips
0.00 qz3 -1772.68 -1772.68 kip-in
0.06 Dx2 -7.58 -7.58 kips

-2.26 Dy2 32.84 32.84 kips
0.00 qz2 -1379.89 -1379.89 kip-in
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member are released, then the member is unstable. The axial components 
of the member stiffness matrix are k1,1, k1,7, k7,1, and k7,7. The torsional 
components of the member stiffness matrix are k4,4, k4,10, k10,4, and k10,10.

5.4 N ON-PRISMATIC MEMBERS

Non-prismatic members have cross-sectional properties that vary along 
the length of the member. The stiffness of these members can be handled 
in two ways. First, the member could be divided into prismatic sections 
and modeled with several different members of constant cross-section. 
Second, the member can be modeled with stiffness derived from the math-
ematical model of the cross-sectional variation. The following derivation 
is for the stiffness of a non-prismatic member in the X-Z system.

Example 5.4  Non-prismatic member stiffness 

Derive the local member stiffness in the X-Z system for a non-prismatic 
cross-section using Castigliano’s theorems.

Figure 5.6 shows the beam with an applied deflection and an applied 
rotation at the i-end. These can be used simultaneously to derive the stiff-
ness of the member.

Table 5.14.  Example 5.3 Member stiffness

DG PL Final P
0.00 Dx4 -51.40 -51.40 kips
0.00 Dy4 16.87 31.87 kips
0.00 qz4 2132.90 2732.90 kip-in
0.06 Dx2 51.40 51.40 kips

-2.26 Dy2 -16.87 -1.87 kips
0.00 qz2 1915.62 1315.62 kip-in

Table 5.15.  Example 5.3 Member stiffness

DG
PL Final P

0.00 Dx5 51.40 51.40 kips
0.00 Dy5 16.13 16.13 kips

-0.02 qz5 0.00 0.00 kip-in
-0.04 Dx3 -51.40 -51.40 kips
-2.25 Dy3 -16.13 -16.13 kips
0.00 qz3 2322.89 2322.89 kip-in
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The internal moment, Mx, at any point, x, can be found from statics 
and the partial derivatives of that moment can be found with respect to the 
applied force and moment at the i-end.
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Castigliano’s second theorem states that the first partial derivative of strain 
energy with respect to a particular force is equal to the displacement of the 
point of application of that force in the direction of its line of action. This 
can be applied for both Diz and qiy.

∆ iz x
x

iz y
iz

y
iy

y

iy x
x

iy

M
M
P

dx
EI

P x dx
EI

M x dx
EI

M
M
M

dx

= = +

=

∫ ∫ ∫

∫

d
d

q
d
d

2

EEI
P x dx

EI
M dx

EIy
iz

y
iy

y

= +∫ ∫

Since the cross-sectional properties vary, the moment of inertia, Iy, var-
ies. Let the values S1, S2, and S3 be used and substituted into the previous 
two equations. These values can be pre-derived for the cross-sectional 
variation.
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Figure 5.6.  Example 5.4 Non-prismatic member stiffness.
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Written in matrix form this is the flexibility matrix:
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We can solve this matrix equation for the forces Piz and Miy by the cofactor 
method. Substituting the determinant of the flexibility matrix, D = S3S1−
S2

2, to simplify the equation. This is the stiffness form of the equation.
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We can use the transmission matrix Equation 4.6 to find the forces at 
the j-end of the member, where the values of x are cause minus effect or 
x = xi−xj = 0−L = −L.
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The carry-over factor (COF) used in the moment distribution method can 
be found by observing the ratio of the moment at the j-end to the moment 
at the i-end.
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When only the rotational deformation is considered, the following is the 
COF:
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The distribution factor (DF) used in the moment distribution method is the 
ratio of the rotational stiffness of a member to the sum of the rotational 
stiffness of all members at the joint. The rotational stiffness is the moment 
at a joint due to the rotation at a joint. This is the term Kii for rotation and 
moment only.

K
S
DMiy, iyq = 3

The DF for a member at a joint can be written as follows:

DF

S
D
S
D

=
− 3

3∑

We could find the deflection and rotation at the j-end using the same 
method. Alternatively, since the stiffness matrix is symmetric we can find 
the forces at the i-end due to motions at the j-end directly.
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We can use the transmission matrix equation again to find the forces at the 
j-end of the member.
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The COF from the j-end to the i-end is as follows considering the defor-
mations at the j-end:

COF
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When only the rotational deformation is considered the following is the 
COF:

COF S L S
S L S L Sj i→ = −

− +
2 3

1
2

2 32

The DF is a ratio of the rotational stiffness of a member to the sum of the 
rotational stiffness of all members at the joint.

Rotational stiffness, the stiffness due to rotation at point A:

K
S L S L S

DBq =
− +1

2
2 32

The DF for a member at a joint can be written as follows:

DF
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=
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1
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2 33
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2

2 3

2

2
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The axial stiffness terms can be derived directly from strength of materi-
als. The axial stiffness is the inverse of the flexibility, which can be written 
as follows. The torsional stiffness would look the same as the axial stiff-
ness with GIx substituted for EAx:

f dx
EAx

= ∫

The coplanar X-Z nonprismatic stiffness matrix is shown in Equation 5.12. 
The X-Y system will have the same values with the sign of the moments 
due to deflection reversed.
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� (5.12)

FIXED-END MOMENTS

The fixed-end forces and moments must be derived for a non-prismatic 
member. The changes in stiffness along the length of the member will 
change how the forces and moments are distributed by the member. 
The following examples derive two of the most common member  
loads.

Example 5.5  Non-prismatic member stiffness

Derive the fixed-end forces and moments due to a uniformly dis-
tributed load in the X-Z system for a non-prismatic cross-section using  
Castigliano’s theorems.
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The free-body diagram of the beam is shown in Figure 5.7. The pro-
cedure for Castigliano’s second theorem used in Example  5.4 will be 
repeated here.

The internal moment, Mx, at any point, x, can be found from statics 
and the partial derivatives of that moment can be found with respect to the 
applied force and moment at the i-end.
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Observing that there is a new term that varies with x, we will substitute S4 
as follows:
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Figure 5.7.  Example 5.5 Non-prismatic member stiffness.
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Apply equilibrium on Figure 5.7 to find the j-end forces and moments.
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2
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Example 5.6  Non-prismatic member stiffness 

Derive the fixed-end forces and moments due to a concentrated load in 
the X-Z system for a non-prismatic cross-section using Castigliano’s 
theorems.

The free-body diagram of the beam is shown in Figure 5.8. The pro-
cedure used in Example 5.5 will be repeated here.

The internal moment, Mx, at any point, x, can be found from statics 
and the partial derivatives of that moment can be found with respect to the 
applied force and moment at the i-end. In this case, two moment equations 
must be written. The first is Mx1, with x from the i-end to the point load  
(0 ≤ x ≤ a) and the second is Mx2, from the point load to the j-end (a ≤ x ≤ L).
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The partial derivatives are the same for either of the two moment equations.
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Figure 5.8.  Example 5.6 Non-prismatic member stiffness.
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Observing that there are two new terms that vary with x, we will substitute 
S5 and S6 as follows:
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Apply equilibrium on Figure 5.8 to find the j-end forces and moments.
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P
Pb L
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The process for solving stiffness problems involving non-prismatic mem-
bers is the same as with prismatic members with the same four modifica-
tions for members with end releases. The following example shows this 
process.

Example 5.7  Non-prismatic member stiffness 

Determine the deformations at the free end of the non-prismatic beam 
using only three degrees of freedom in the stiffness solution. Also deter-
mine the final end forces and the support reactions. The beam is shown in 
Figure 5.9.
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I=100 in4

100in 100in
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A=20 in2

W=600 lb/ft

E=10,000 ksi

Figure 5.9.  Example 5.7 Non-prismatic member stiffness.
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Since the j-end of the member is fixed, there is no need to build the entire 
member stiffness matrix. The j-end motions will be eliminated and only 
the i-end of the member stiffness needs to be developed.

K

f
S
D

S
D

S
D

S
D

ii[ ] = −

−

























=

1 0 0

0

0

666 67 0 0
0 2 181 2

2 3

.
. 118 181 81

0 181 81 21818
−

−

















.
.

The fixed-end forces and moments must be derived and applied to the 
system.
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The general stiffness equation can be set-up and solved as follows. The 
units are in inches and radians:
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5.5  SHEAR STIFFNESS, X-Z SYSTEM

The shear stiffness of a member should be included when it is significant. 
This effect was developed by Timoshenko (1921) in 1921. For normal 
frame structures, the stiffness contributions due to shear are minor and 
are sometimes ignored. For frames and structures with larger or deeper 
members, the shear stiffness contribution is appreciable and should be 
included. The following two sections and corresponding examples derive 
the combined flexural and shear stiffness of members.

Example 5.8  Shear stiffness 

Derive the local member shear stiffness for qiy using Castigliano’s 
theorems.

The free-body diagram of the beam with an imposed rotation of qiy is 
shown in Figure 5.10. Also shown is a left-hand free-body of the beam cut 
at any distance x from the i-end.
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Piz Pjz
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θiy

L

M
V

Figure 5.10.  Example 5.8 Shear stiffness.
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The internal shear, Vx, and moment, Mx, at any point, x, can be found 
from statics and the partial derivatives of that shear and moment can be 
found with respect to the applied force and moment at the i-end.
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Castigliano’s second theorem can be applied noting that at the i-end the 
deflection is zero and the rotation is qiy.
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Substituting the first equation into the second equation results in the following:
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Substituting Equation 5.13 into the following equation repeated from ear-
lier, results in Equation 5.14 for the second stiffness value.
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Example 5.9  Shear stiffness 

Derive the local member shear stiffness for Diz using Castigliano’s 
theorems.

The free-body diagram of the beam with an imposed deflection of Diz 
is shown in Figure 5.11. Also shown is a left-hand free-body of the beam 
cut at any distance x from the i-end.

The internal shear, Vx, and moment, Mx, are exactly the same as in 
Example 5.8. The partial derivatives are also the same.
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Figure 5.11.  Example 5.9 Shear stiffness.
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Castigliano’s second theorem can be applied noting that at the i-end the 
rotation is zero and the deflection is Diz.
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Substituting the first equation into the second equation results in the 
following:
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Substituting Equation 5.15 into the following equation repeated from ear-
lier, results in Equation 5.16 for the second stiffness value.
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The forces at the j-end of the member due to the motions at the i-end can 
be found using the transmission matrix. Then, the forces at the i-end due 
to the motions at the j-end can be found by symmetry of the stiffness 
matrix. Finally, the forces at the j-end due to motions at the j-end can be 
found using the transmission matrix. This process was illustrated previ-
ously in Chapter 4. The resulting terms are shown in the matrices given as 
Equations 5.21 through 5.24.

5.6  SHEAR STIFFNESS, X-Y SYSTEM

The following contains the combined flexural and shear stiffness of mem-
bers in the X-Y system.

Example 5.10  Shear stiffness

Derive the local member shear stiffness for qiz using Castigliano’s 
theorems.

The free-body diagram of the beam with an imposed rotation of qiz is 
shown in Figure 5.12. Also shown is a left-hand free-body of the beam cut 
at any distance x from the i-end.

The internal shear, Vx, and moment, Mx, at any point, x, can be found 
from statics and the partial derivatives of that shear and moment can be 
found with respect to the applied force and moment at the i-end.

Y

x

X

Miz Mjz

Miz

Piy Pjy

Piy

L

M
V

θiz

Figure 5.12.  Example 5.10 Shear stiffness.
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Castigliano’s second theorem can be applied noting that at the i-end the 
deflection is zero and the rotation is qiz.
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Substituting the first equation into the second equation results in the 
following:
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Substituting Equation 5.17 into the following equation repeated from ear-
lier, results in Equation 5.18 for the second stiffness value.
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Example 5.11  Shear stiffness 

Derive the local member shear stiffness for Diy using the Castigliano’s 
theorems.

The free-body diagram of the beam with an imposed deflection of Diy 
is shown in Figure 5.13. Also shown is a left-hand free-body of the beam 
cut at any distance x from the i-end.

The internal shear, Vx, and moment, Mx, are exactly the same as in 
Example 5.10. The partial derivatives are also the same.
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Figure 5.13.  Example 5.11 Shear stiffness.
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Castigliano’s second theorem can be applied noting that at the i-end the 
rotation is zero and the deflection is Diy.
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Substituting the first equation into the second equation results in the 
following:
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Substituting Equation 5.19 into the following equation repeated from ear-
lier, results in Equation 5.20 for the second stiffness value.
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The resulting terms are shown in the matrices given as Equations 5.21 
through 5.24.

5.7 � SHEAR STIFFNESS, 3-D SYSTEM

The total three-dimensional (3-D) shear stiffness matrices are shown in 
four parts in the following text as Equations 5.21 through 5.24. These 
parts represent the force at the i-end or j-end due to the motions at the 
i-end or j-end. This is shown in the total stiffness matrix as follows:
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5.7.1  SHEAR AREA

The shear area is the cross-sectional property that is used for shear energy 
resistance. It can be found for a cross-section using the shear stress equa-
tion for a beam derived in most strength of materials textbooks. The basic 
equations for shear in the Y and Z direction are given as follows:
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If these equations are written using a single term to represent all the 
cross-sectional properties, it results in the following:
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The equations for the shear areas Ay and Az can then be found.

A I t
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A
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A z

y
z z

z
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=
′

=
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'

'

There are three terms in these equations. The first is the centroidal moment 
of inertia. The second is the moment of the area, A′y′ or A′z′, between the 
centroid and the extreme fiber taken about the centroid. The third is the 
value t, which is the width at the centroid.

Example 5.12  Shear area

Determine the shear areas Ay and Az for the a rectangular section.
Figure 5.14 shows the rectangle in the orientation to calculate Az that 

corresponds to bending about the Y axis. To find Ay the area to the left of 
the Z axis will be used.

y h

b

z

Figure 5.14.  Example 5.12 Shear area.
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For a rectangle, the shear areas are both two-thirds the cross-sectional 
area.

Example 5.13  Shear area

Determine the shear area Az for the T-shaped section shown in Figure 5.15.
The centroid and the centroidal moment of inertia are found using the 

moment of area principles.
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Figure 5.15.  Example 5.13 Shear area.



Advanced Structural Stiffness   •   251

The area of the web below the centroid will be used to find Az.

A
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A zz
y y=
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=
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'
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.

884 0 2

2 9 5 9 5
2

19 59 2 in

Table 5.16 shows the calculations in tabular form.

5.8 G EOMETRIC STIFFNESS, X-Y SYSTEM

An ordinary stiffness analysis, whether it includes shear deformations or 
not, makes no adjustments for the changing geometry of a loaded struc-
ture. Forces and moments are calculated from the original positions of 
the joints, not from their deformed positions. Elastic buckling, which is 
a function of joint deformations, is therefore impossible to predict using 
ordinary stiffness analysis. A procedure to include member and joint defor-
mations in force and moment calculations can be developed by assuming 
a deformed shape and calculating the additional moment such as defor-
mation would cause. Figure 5.16 shows a member subjected to bending 
and axial force in an un-deformed and deformed shape. An alternate, yet 
similar, derivation is published by Ketter, Lee, and Prawel (1979).

The first is a beam in Figure 5.16 that was used to derive the ordinary 
elastic stiffness matrix in Section 4.11 for the X-Y system. In that case, the 

∆iy

Miz

Miz L

Pix

Pix
Piy

Piy

L

Figure 5.16.  Geometric stiffness.

Table 5.16.  Example 5.13 Shear area

Element b h z A Az I d Ad2

Chord 12 2 13.0 24 312 8 3.5 294
Web 2 12 6 24 144 288 –3.5 294
Σ z = 9.5 48 456 296 588

Iy = 884.00 A'z' = 90.25 Az = 19.590
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moment in the beam is a function of only the end shears and moments, as 
given by the following equation:

M P x Mx iy iz= −

The second beam in Figure 5.16 shows the bending deformations. In this 
case, the internal moment is a function of not only the end shears and 
moments, but also a function of the axial force multiplied by the beam’s 
lateral deflection, y.

M P x M P yx iy iz ix= − +

This additional moment, the product of axial force, Pix, and lateral deflec-
tion, y, is usually called the “P-delta effect.” To derive a stiffness matrix 
that includes the P-delta effect, equilibrium of the deformed beam must 
be considered.

Example 5.14  Geometric stiffness

Derive the Diy stiffness using Castigliano’s theorems for a linear member 
including the geometric effects.

Using the principle of superposition, consider a beam with an applied 
deflection while the rotation is held to zero. Figure  5.17 shows the 
deformed beam with applied end forces. Also shown is a left-hand free-
body of the beam cut at any distance x from the i-end.

The internal bending moment in the beam is found from equilibrium.

M P x M P yx iy iz ix iy= − + −( )∆

∆iy
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VPix
Piy

∆iy-y
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V

P

M

Pix

Piy

Figure 5.17.  Example 5.14 Geometric stiffness.
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If the lateral deformation, y, is assumed to be a general cubic function, 
the four known boundary conditions can be used to find the particular 
solution.

y ax bx cx d
y

y L
y
y L

y x
L

x
L

iy

iy

= + + +

( ) =

( ) =

( ) =

( ) =

= −

3 2

3

3

2

2

0

0

0 0

0

2 3

∆

∆

'

'

++






1

Substituting this equation into the internal moment equation yields the 
following:
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It is assumed that axial shortening is caused only by the axial force, Pix. 
This is the same assumption used for the ordinary elastic stiffness deriva-
tion. The geometric stiffness derivation considers the lateral and rotational 
deformations, Diy and qiz. From Castigliano’s theorem, the general deflec-
tion and rotation of the free end are as follows:
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The partial derivatives of the internal moment equation with respect to 
applied shear force and moment are the following:
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It should be noted that rotation and deflection are functions of moment 
only, since shear deformations are ignored in this derivation. Setting qiz to 
zero and solving for Piy and Miz in terms of the deflection will result in two 
terms of the stiffness matrix.
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Substituting the first equation into the second equations yields the 
following:
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∆ ∆
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Substituting Equation 5.25 into the following equation repeated from ear-
lier results in Equation 5.25 for the second stiffness value.

	

M P L P

M
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2
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6 1
102

∆

∆ ∆ � (5.26)

Take note that the first terms in each of these stiffness equations are the 
same as the elastic stiffness values derived in Equations 4.26 and 4.27. 
The second term is the geometric component due to the deflected shape 
and the axial thrust.
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Example 5.15  Geometric stiffness 

Derive the qiz stiffness using Castigliano’s theorems for a linear member 
including the geometric effects.

In this case, consider a beam with a known rotation while the deflec-
tion is held to zero. Figure 5.18 shows the deformed beam with applied 
end forces. Also shown is a left-hand free-body of the beam cut at any 
distance x from the i-end.

The internal bending moment in the beam is found from equilibrium.

M P x M P yx iy iz ix= − −

If the lateral deformation, y, is assumed to be a general cubic function, 
the four known boundary conditions can be used to find the particular 
solution.
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Figure 5.18.  Example 5.15 Geometric stiffness.
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The general deflection and rotation of the free end are the same as 
Example 5.14.
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The partial derivatives of the internal moment equation with respect to 
applied shear force and moment are the same as in Example 5.14.
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Setting Diy to zero and solving for Piy and Miz in terms of the deflection will 
result in two terms of the stiffness matrix.
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Substituting the first equation into the second equation yields the following:
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z
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Advanced Structural Stiffness   •   257

Substituting Equation 5.27 into the following equation repeated from ear-
lier results in Equation 5.28 for the second stiffness value.

	

M P L P L EI
L
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Take note that the first terms in each of these stiffness equations are the 
same as the elastic stiffness values derived in Equations 4.24 and 4.25. 
The second term is the geometric component due to the deflected shape 
and the axial thrust. All four terms can be written in matrix form.
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The first matrix on the left side of the equation in the basic elastic stiffness 
matrix will be called [K]. The second matrix on the left side of the equa-
tion in the geometric stiffness matrix will be called [G]. In general terms, 
the equation may be written as follows:

K G Fix[ ]+ [ ]( )[ ] = [ ]P ∆

The same transformation used for previous stiffness matrix derivations can 
be applied to find the rest of the geometric stiffness matrix. The geometric 
stiffness matrix for the coplanar X-Y system is given as Equation 5.29. 
The sign convention on Pix is positive for tension.
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5.9 G EOMETRIC STIFFNESS, X-Z SYSTEM

The geometric stiffness matrix for the coplanar X-Z system can be 
derived in a similar manner to the X-Y system performed in Section 5.8. 
The primary difference is that the signs of the moments due to transla-
tion and the forces due to rotation will be the opposite of Equation 5.29. 
The geometric stiffness matrix for the coplanar X-Z system is given as  
Equation 5.30.
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(5.30)

Example 5.16  Geometric stiffness 

Determine the deformations at the free end of the beam by including both 
the elastic and geometric stiffness contributions to the stiffness solution. 
The beam is shown in Figure 5.19.

Since the j-end of the member is fixed, there is no need to build the 
entire member stiffness matrix. The j-end motions will be eliminated and 

Z
A=10 in2

I=100 in4

E=10,000 ksi

50kips

1kip

X

200in

Figure 5.19.  Example 5.16 Geometric stiffness.
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only the i-end of the member stiffness needs to be developed. The value of 
Pix in this case is known to be −50 kips.
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Solving the general solution as shown in the following equations, the 
resulting deformations can be found. The solution is in inches and 
radians.
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If the solution was performed with the geometric stiffness omitted, the 
result would be as follows:
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Example 5.17  Geometric stiffness

Determine the deformations at the free end of the beam by including both 
the elastic and geometric stiffness contributions to the stiffness solution. 
The beam is shown in Figure 5.20.

This is the same as Example 5.16, except the axial force has been 
increased to 100 kips.
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Observe that the i-end of the beam moved in the negative Z direction. This 
does not make logical sense. The reason of the backward motion is that the 
member has buckled elastically. The actual elastic buckling load of this 
column is 61.685 kips.

5.10 G EOMETRIC STIFFNESS, 3-D SYSTEM

By combining Equations 5.29 and 5.30 and adding the torsional stiffness 
terms, the geometric stiffness matrix in the 3-D Cartesian coordinate sys-
tem can be found.
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A=10 in2

I=100 in4

E=10,000 ksi
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X

200in

Figure 5.20.  Example 5.17 Geometric stiffness.
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The geometric stiffness of a member can also be derived based on a gen-
eral transcendental equation. The full derivation is published by Blette 
(1985).
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The particular solution for qiz is as follows:

y L sin x
L

cos x
L

x
Liz=

−






−





+ + −






q

p p
p p p p4

4
1

2 2 2 2
12

These two relationships can be used to develop the geometric stiffness 
matrix.
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If more digits are desired for accuracy, the following substitutions can be made:

1.2036 = 1.20362445
0.1018 = 0.1018122226
0.1379 = 0.1378809597
0.0361 = 0.03606873710

5.11 G EOMETRIC AND SHEAR STIFFNESS

The effect of both the geometric and shear stiffness could be included in 
the flexural stiffness derivations. This matrix was derived by Karl J. Blette 
(Blette 1985). The procedure to derive the stiffness matrix would be to 
include the shear stiffness contribution used in Sections 5.5 and 5.6 in 
the geometric stiffness of Sections 5.8 and 5.9. Equation 5.33 shows the 
elastic and shear member stiffness in the 3-D Cartesian coordinate system. 
Equation 5.34 shows the elastic geometric and shear member stiffness in 
the 3-D Cartesian coordinate system.

The terms a and b are defined as follows:
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5.12 T ORSION

The torsional stiffness of slender linear members is composed of two parts. 
The first is known as St. Venant’s torsion, which is uniform on a member 
at any distance, r, from the longitudinal axis. This is the torsional stiffness 
that is included in the elastic member stiffness Equation 4.33. This is the 
primary resistance to torsion for circular crosses-sections that have area 
distributed uniformly about the longitudinal axis. The second type of tor-
sional stiffness is known as warping torsion. Warping torsion is the primary 
stiffness in thin-walled open cross-sections such as angles shapes and wide 
flange shapes. The warping torsion will cause longitudinal deformations in 
the cross-section that will cause certain portions to elongate and other por-
tions to shorten. This warping effect can be included in the derivation of the 
stiffness. “Structural Analysis and Design,” by Ketter, Lee, and Prawel, Jr., 
covers this derivation (Ketter, Lee, and Prawel 1979). The torsional stiffness 
at each degree of freedom is represented as two components instead of the 
single values used in the normal elastic stiffness. Equation 5.35 shows the 
elastic torsional member stiffness in the 3-D Cartesian coordinate system.
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The resulting member stiffness matrix is 14×14 in size with the terms T1, 
T2, T3, and T4 defined as follows:
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In the equation for l, kT is the St. Venant torsion constant, which is typi-
cally the polar moment of inertia, Ix. The value of Iw is known as the warp-
ing constant. Both of these values are normally tabulated in handbooks or 
specifications.

5.13  SUB-STRUCTURING

When a structure is of large enough size that the contents for the global 
joint stiffness matrix cannot be contained in the RAM of a computer, the 
matrix can be transformed into segments by reduction or decomposition. 
The resulting transformed matrix can take many forms depending on the 
process used. One of the common transformations is the N-matrix, due to 
the configuration of resulting values. The following is a general descrip-
tion of the operation used to solve large systems using the N-matrix. This 
method can be used by operating on the individual degrees of freedom or 
on the entire joint as matrix operations.

The original equation set is normally a sparse matrix with most of 
the values near the main diagonal. Equation 4.34 represents the original 
stiffness solution set. For clarity, the zero values are left out of the matrices 
and X indicates where values exist.

K Pg g g    =  ∆
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The matrix is reduced by the appropriate reduction method. The degrees of 
freedom or joints used to represent the stiffness should be placed at the outer 
ends of the matrix. These will be the degrees of freedom in the outer col-
umns of Equation 5.37. All of the values above and below the main diagonal 
of the matrix will be reduced to zero except those retained in the outer col-
umns. The resulting matrix is shown in Equation 5.37 and is the N-matrix.
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The information contained in the N-matrix is used in two ways. The values 
in the extreme boundaries of the matrices represent the stiffness, deforma-
tion, or force (Kg, Dg, and Pg) of the structure related to the retained degrees 
of freedom or joints. These values can be combined with other members 
in a stiffness analysis. The interior portions of the matrices represent the 
values of the stiffness, deformation, or force of the degrees of freedom or 
joints eliminated in the reduction. These values are used to find the deforma-
tions and forces of these degrees of freedom or joints once the main analysis 
results are known. The N-matrix can be compressed as shown in Equation 
5.38. The interior stiffness values can be inverted for later processing.
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The main analysis is performed and the global deformation of the retained 
degrees of freedom of joint is found.

∆g g gK P  =    
−1

The interior loads to be used to find the remainder of the deformations 
are shown in Equation 5.39. This represents the loads due to the interior 
loading that was saved and the load due to the motion of the main analysis 
motions on the interior joints.
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The deformations of the interior degrees of freedom or joints can be found 
from Equation 5.40.
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The local member forces are found from the deformation in Equation 
5.40, the same as in step 6 of the general stiffness procedure given in  
Section 4.13. The values of D are used for Dg in Equation 4.38 and 
repeated here.
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