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Preface

This book presents the basic theory of fields, starting more or less from the
beginning. It is suitable for a graduate course in field theory, or independent
study. The reader is expected to have taken an undergraduate course in abstract
algebra, not so much for the material it contains but in order to gain a certain
level of mathematical maturity.

The book begins with a preliminary chapter (Chapter 0), which is designed to be
quickly scanned or skipped and used as a reference if needed. The remainder of
the book is divided into three parts.

Part 1, entitled Field Extensions, begins with a chapter on polynomials. Chapter
2 is devoted to various types of field extensions, including finite, finitely
generated, algebraic and normal. Chapter 3 takes a close look at the issue of
separability. In my classes, I generally cover only Sections 3.1 to 3.4 (on perfect
fields). Chapter 4 is devoted to algebraic independence, starting with the general
notion of a dependence relation and concluding with Luroth's theorem on
intermediate fields of a simple transcendental extension.

Part 2 of the book is entitled Galois Theory. Chapter 5 examines Galois theory
from an historical perspective, discussing the contributions from Lagrange,
Vandermonde, Gauss, Newton, and others that led to the development of the
theory. I have also included a very brief look at the very brief life of Galois
himself.

Chapter 6 begins with the notion of a Galois correspondence between two
partially ordered sets, and then specializes to the Galois correspondence of a
field extension, concluding with a brief discussion of the Krull topology. In
Chapter 7, we discuss the Galois theory of equations. In Chapter 8, we view a
field extension F of F' as a vector space over F.

Chapter 9 and Chapter 10 are devoted to finite fields, although this material can
be omitted in order to reach the topic of solvability by radicals more quickly.
Moébius inversion is used in a few places, so an appendix has been included on
this subject.
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Part 3 of the book is entitled The Theory of Binomials. Chapter 11 covers the
roots of unity and Wedderburn's theorem on finite division rings. We also
briefly discuss the question of whether a given group is the Galois group of a
field extension. In Chapter 12, we characterize cyclic extensions and splitting
fields of binomials when the base field contains appropriate roots of unity.
Chapter 13 is devoted to the question of solvability of a polynomial equation by
radicals. (This chapter might make a convenient ending place in a graduate
course.) In Chapter 14, we determine conditions that characterize the
irreducibility of a binomial and describe the Galois group of a binomial. Chapter
15 briefly describes the theory of families of binomials—the so-called Kummer
theory.

Sections marked with an asterisk may be skipped without loss of continuity.
Changes for the Second Edition

Let me begin by thanking the readers of the first edition for their many helpful
comments and suggestions.

For the second edition, I have gone over the entire book, and rewritten most of
it, including the exercises. I believe the book has benefited significantly from a
class testing at the beginning graduate level and at a more advanced graduate
level.

I have also rearranged the chapters on separability and algebraic independence,
feeling that the former is more important when time is of the essence. In my
course, | generally touch only very lightly (or skip altogether) the chapter on
algebraic independence, simply because of time constraints.

As mentioned earlier, as several readers have requested, I have added a chapter
on Galois theory from an historical perspective.

A few additional topics are sprinkled throughout, such as a proof of the
Fundamental Theorem of Algebra, a discussion of casus irreducibilis,
Berlekamp's algorithm for factoring polynomials over Z, and natural and
accessory irrationalities.

Thanks

I would like to thank my students Phong Le, Sunil Chetty, Timothy Choi and
Josh Chan, who attended lectures on essentially the entire book and offered
many helpful suggestions. I would also like to thank my editor, Mark Spencer,
who puts up with my many requests and is most amiable.
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Chapter 0
Preliminaries

The purpose of this chapter is to review some basic facts that will be needed in
the book. The discussion is not intended to be complete, nor are all proofs
supplied. We suggest that the reader quickly skim this chapter (or skip it
altogether) and use it as a reference if needed.

0.1 Lattices

Definition 4 partially ordered set (or poset) is a nonempty set P, together
with a binary relation < on P satisfying the following properties. For all o, (3,
yeEP,

1) (reflexivity)

2) (antisymmetry)
3) (transitivity)

If, in addition,
a,feEP==a<forf<a

then P is said to be totally ordered. O

Any subset of a poset P is also a poset under the restriction of the relation
defined on P. A totally ordered subset of a poset is called a chain. If S C P and
s < « for all s €S then « is called an upper bound for S. A least upper
bound for S, denoted by lub(S) or \/S, is an upper bound that is less than or
equal to any other upper bound. Similar statements hold for lower bounds and
greatest lower bounds, the latter denoted by glb(S), or A S. A maximal
element in a poset P is an element o € P such that o < 8 implies a = 8. A
minimal element in a poset P is an element v € P such that 3 < v implies
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(8 =". A top element 1 € P is an element with the property that o < 1 for all
a € P. Similarly, a bottom element 0 € P is an element with the property that
0 < a for all « € P. Zorn's lemma says that if every chain in a poset P has an
upper bound in P then P has a maximal element.

Definition A lattice is a poset L in which every pair of elements o, 3 € L has a
least upper bound, or join, denoted by oV 3 and a greatest lower bound, or
meet, denoted by o A\ . If every nonempty subset of L has a join and a meet
then L is called a complete lattice. [

Note that any nonempty complete lattice has a greatest element, denoted by 1
and a smallest element, denoted by 0.

Definition 4 sublattice of a lattice L is a subset S of L that is closed under the
meet and join operation of L. O

It is important to note that a subset S of a lattice L can be a lattice under the
same order relation and yet not be a sublattice of L. As an example, consider the
coll

S of all subgroups of a group G, ordered by inclusion. Then S is a subset of the
power set P(G), which is a lattice under union and intersection. But S is not a
sublattice of P(G) since the union of two subgroups need not be a subgroup.
On the other hand, S is a lattice in its own right under set inclusion, where the
meet H A K of two subgroups is their intersection and the join H V K is the
smallest subgroup of G containing H and K.

In a complete lattice L, joins can be defined in terms of meets, since \/7T is the
meet of all upper bounds of 7'. The fact that 1 € L ensures that 7" has at least
one upper bound, so that the meet is not an empty one. The following theorem
exploits this idea to give conditions under which a subset of a complete lattice is
itself a complete lattice.

Theorem 0.1.1 Let L be a complete lattice. If S C L has the properties

nH 1es8

2) (Closed under arbitrary meets) T C S, T #0) = AT € S

then S is a complete lattice under the same meet.

Proof. Let ' C S. Then AT € S by assumption. Let U be the set of all upper
bounds of T that lie in S. Since 1 € S, we have U # (). Hence, AU € S and is
\/T. Thus, S is a complete lattice. (Note that S need not be a sublattice of L
since AU need not equal the meet of all upper bounds of 7" in L.) O

0.2 Groups

Definition 4 group is a nonempty set G, together with a binary operation on
G, that is, a map G x G — G, denoted by juxtaposition, with the following
properties:
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1) (Associativity) (af)y = a(8y) forall o, 5, v € G
2) (Identity) There exists an element € € G for which eac = ae = « for all

aeG
3) (Inverses) For each o € G, there is an element o' € G for which
ac '=ala=e

A group G is abelian, or commutative, if o = SBa, for all o, f € G.O

The identity element is often denoted by 1. When G is abelian, the group
operation is often denoted by + and the identity by 0.

Subgroups

Definition 4 subgroup S of a group G is a subset of G that is a group in its
own right, using the restriction of the operation defined on G. We denote the
fact that S is a subgroup of G by writing S < G.O0

If G is a group and « € G, then the set of all powers of «
(@) ={a" [n € Z}
is a subgroup of G, called the cyclic subgroup generated by . A group G is

cyclic if it has the form G = (), for some « € G. In this case, we say that «
generates G.

Let GG be a group. Since G is a subgroup of itself and since the intersection of
subgroups of G is a subgroup of G, Theorem 0.1.1 implies that the set of
subgroups of G forms a complete lattice, where H AJ = HNJ and H V J is
the smallest subgroup of G containing both H and J.

If H and K are subgroups of G, it does not follow that the set product
HK ={hk|he H ke K}

is a subgroup of G. It is not hard to show that H K is a subgroup of G precisely
when HK = KH.
The center of G is the set

Z(G)={B€G|af=paforalla € G}
of all elements of GG that commute with every element of G.
Orders and Exponents

A group G is finite if it contains only a finite number of elements. The
cardinality of a finite group G is called its order and is denoted by |G| or o(G).
If a € G, and if o = € for some integer k, we say that k is an exponent of .
The smallest positive exponent for o € G is called the order of a and is
denoted by o(a). An integer m for which o =1 for all « € G is called an
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exponent of G. (Note: Some authors use the term exponent of G to refer to the
smallest positive exponent of G.)

Theorem 0.2.1 Let G be a group and let o € G. Then k is an exponent of « if
and only if k is a multiple of o(«). Similarly, the exponents of G are precisely
the multiples of the smallest positive exponent of G. [J

We next characterize the smallest positive exponent for finite abelian groups.

Theorem 0.2.2 Let G be a finite abelian group.

1) (Maximum order equals minimum exponent) If'm is the maximum order
of all elements in G then o' =1 for all o € G. Thus, the smallest positive
exponent of G is equal to the maximum order of all elements of G.

2) The smallest positive exponent of G is equal to o(G) if and only if G is
cyclic.]

Cosets and Lagrange's Theorem

Let H < G. We may define an equivalence relation on GG by saying that o ~ (3
if 3'a € H (or equivalently '3 € H). The equivalence classes are the left
cosets o = {ah | h € H} of H in G. Thus, the distinct left cosets of H form
a partition of G. Similarly, the distinct right cosets H o form a partition of G. It
is not hard to see that all cosets of H have the same cardinality and that there is
the same number of left cosets of H in GG as right cosets. (This is easy when G
is finite. Otherwise, consider the map o H — Ha ')

Definition The index of H in G, denoted by (G : H), is the cardinality of the
set G/H of all distinct left cosets of H in G. If G is finite then (G : H) =
G|/|H].O

Theorem 0.2.3 Let G be a finite group.

1) (Lagrange) The order of any subgroup of G divides the order of G.

2) The order of any element of G divides the order of G.

3) (Converse of Lagrange's Theorem for Finite Abelian Groups) If A is a
finite abelian group and if k | o(A) then A has a subgroup of order k.OJ

Normal Subgroups

If S and T are subsets of a group G, then the set product ST is defined by
ST ={st|seS,teT}

Theorem 0.2.4 Let H < G. The following are equivalent

1) The set product of any two cosets is a coset.
2) Ifa,B € G, then

aHBH = afH
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3) Any right coset of H is also a left coset, that is, for any a € G there is a
B € G for which Ho = GH.
4) Ifa €@, then

oH =Ha
5) af€e H= pacHforala, feG.O

Definition A subgroup H of G is normal in G, written H < G, if any of the
equivalent conditions in Theorem 0.2.4 holds. (I

Definition 4 group G is simple if it has no normal subgroups other than {1}
and G. O

Here are some normal subgroups.

Theorem 0.2.5

1) The center Z(QG) is a normal subgroup of G.

2)  Any subgroup H of a group G with (G : H) = 2 is normal.

3) If G is a finite group and if p is the smallest prime dividing o(G), then any
subgroup of index p is normal in GOI

With respect to the last statement in the previous theorem, it makes some
intuitive sense that if a subgroup H of a finite group G is extremely large, then
it may be normal, since there is not much room for conjugates. This is true in
the most extreme case. Namely, the largest possible proper subgroup of G has
index equal to the smallest prime number dividing o(G). This subgroup, if it
exists, is normal.

If H < G, then we have the set product formula
aHpPBH = afH

It is not hard to see that this makes the quotient G/H into a group, called the
quotient group of H in G. The order of G/H is called the index of H in G
and is denoted by (G : H).

Theorem 0.2.6 If G is a group and {H;} is a collection of normal subgroups of
G then (H; and \| H; are normal subgroups of G. Hence, the collection of
normal subgroups of G is a complete sublattice of the complete lattice of all
subgroups of G. O

If H < G then there is always an intermediate subgroup H < K < G for which
H < K, in fact, H is such an intermediate subgroup. The largest such subgroup
is called the normalizer of H in G. It is

No(H)={g9€ G |gHg ' = H}
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Euler's Formula
We will denote a greatest common divisor of « and 3 by («, 3) or ged(a, 3).
If (o, ) = 1, then « and (3 are relatively prime. The Euler phi function ¢ is

defined by letting ¢(n) be the number of positive integers less than or equal to n
that are relatively prime to n.

Two integers a and (3 are congruent modulo n, written o« = S modn, if & — 3
is divisible by n. Let Z, denote the ring of integers {0,... ,n — 1} under
addition and multiplication modulo n.

Theorem 0.2.7 (Properties of Euler's phi function)
1) The Euler phi function is multiplicative, that is, if m and n are relatively
prime, then

¢(mn) = ¢(m)e(n)
2) Ifpisaprime andn > 0 then

o(p") =p""(p—1)
These two properties completely determine ¢.[]

Since the set G ={6€Z, | (B,n) =1} is a group of order ¢(n) under
multiplication modulo n, it follows that ¢(n) is an exponent for G.

Theorem 0.2.8 (Euler's Theorem) If o, n € Z and (o, n) = 1, then
™ =1modn O

Corollary 0.2.9 (Fermat's Theorem) If p is a prime not dividing the integer o,
then

o’ = amod p O

Cyclic Groups

Theorem 0.2.10

1) Every group of prime order is cyclic.

2) Every subgroup of a cyclic group is cyclic.

3) A finite abelian group G is cyclic if and only if its smallest positive
exponent is equal to o(G). O

The following theorem contains some key results about finite cyclic groups.

Theorem 0.2.11 Let G = («) be a cyclic group of order n.
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1) Forl1<k<n,

In particular, o generates G = (o) if and only if (n, k) = 1.
2) Ifd|n, then

o) =d & k= r%, where (r,d) =1

Thus the elements of G of order d | n are the elements of the form arn/d),
where 0 < r < d and r is relatively prime to d.

3) For each d | n, the group G has exactly one subgroup H, of order d and
@(d) elements of order d, all of which lie in H,.

4) (Subgroup structure charactertizes property of being cyclic) If a finite
group G of order n has the property that it has at most one subgroup of
each order d | n, then G is cyclic.]

Counting the elements in a cyclic group of order n gives the following
corollary.

Corollary 0.2.12 For any positive integer n,

n=>¢(d) O

dln

Homomorphisms

Definition Let G and H be groups. A map :G — H is called a group
homomorphism if

P(af) = (o) (¥h)

A surjective homomorphism is an epimorphism, an injective homomorphism is
a monomorphism and a bijective homomorphism is an isomorphism. [f
Y: G — H is an isomorphism, we say that G and H are isomorphic and write
G~ H O

If ¢ is a homomorphism then e = ¢ and ¥a~! = (ya)~!. The kernel of a
homomorphism ¢: G — H,

ker(y) = {a € G| Ya =€}

is a normal subgroup of G. Conversely, any normal subgroup H of G is the
kernel of a homomorphism. For we may define the natural projection
m:G — G/H by ma = «H. This is easily seen to be an epimorphism with
kernel H.
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Let f: S — T be a function from a set S to a set T'. Let P(.S) and P(T) be the
power sets of S and 7T, respectively. We define the induced map
f:P(S) — P(T)by f(U) ={f(u) | w € U} and the induced inverse map by
' (V)={s€ S| f(s) € V}. (Itis customary to denote the induced maps by
the same notation as the original map.) Note that f is surjective if and only if its
induced map is surjective, and this holds if and only if the induced inverse map
is injective. A similar statement holds with the words surjective and injective
reversed.

Theorem 0.2.13 Let ¢: G — G’ be a group homomorphism.
1) a) IfH <Gtheny(H) <G

b) If is surjective and H <« G then v(H) < G'.
2) a) IfH <G theny *(H') < G.

b) IfH <G’ theny '(H')<G.O

Theorem 0.2.14 Let G be a group.

1) (First Isomorphism Theorem) Lef 1): G — G’ be a group homomorphism
with kernel K. Then K <G and the map :G/K — im1 defined by
Y(aK) = o is an isomorphism. Hence G /K = im ). In particular, 1) is
injective if and only if ker(¢)) = {e}.

2) (Second Isomorphism Theorem) If H < G and N <G then NN H<H
and

H _NH
NNH N

3) (Third Isomorphism Theorem) If H < K < G with H and K normal in
G then K /H <« G/H and

G/H G
K/H K

Hence (G : K)=(G/H : K/H).O

Theorem 0.2.15 Let Gy and G5 be groups and let H; < G;. Then
Gl X GQ - G] @

— = O
H1><H2 H]XHQ

Theorem 0.2.16 (The Correspondence Theorem) Let H <G and let 7 be the
natural projection m: G — G /H. Thus, forany H < I < G,

a(I)=1I/H=1{iH|iel

1) The induced maps T and 7' define a one-to-one correspondence between

the lattice of subgroups of G containing H and the lattice of subgroups of
G/H.
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2) m preserves index, that is, for any H < I < J < G, we have
(J 1) = (m(J): (1))

3) m preserves normality, that is, if H < I < J < G then I <J if and only if
I/H < J/H, in which case

N — O

Theorem 0.2.17

1) An abelian group G is simple if and only if it is finite and has prime order.

2) If M is a maximal subgroup of G, thatis, M < G and if M < N < G then
N=M or N=G, and if M is normal then G/M is cyclic of prime
order.]

Sylow Subgroups

Definition If p is a prime, then a group G is called a p-group if every element
of G has order a power of p. A Sylow p-subgroup S of G is a maximal p-
subgroup of G.OO

Theorem 0.2.18 (Properties of p-groups)

1) A finite group G is a p-group if and only if |G| = p" for some n.

2) If H is a finite p-group, then the center of H is nontrivial.

3) Ifo(G) = p?, pprime, then G is abelian.

4) If H is a proper subgroup of G, then H is also a proper subgroup of its
normalizer Ng(H).

5) If H is a maximal subgroup of G then H is normal and has index p.TJ

For finite groups, if o € G then o(«) | o(G). The converse does not hold in
general, but we do have the following.

Theorem 0.2.19 Let G be a finite group.

I) (Cauchy's Theorem) If o(G) is divisible by a prime p then G contains an
element of order p.

2) (Partial converse of Lagrange's theorem) If p is a prime and p* | o(G),
then for any Sylow p-subgroup S of G, there is a subgroup H of G, normal
in S and of order p*.0]

Here is the famous result on maximal p-subgroups of a finite group.

Theorem 0.2.20 (Sylow's Theorem) Let G have order p™m where p | m.

1) All Sylow p-subgroups of G have order p™.

2) All Sylow p-subgroups are conjugate (and hence isomorphic).

3)  The number of Sylow p-subgroups of G divides o(G) and is congruent to
1 mod p.

4)  Any p-subgroup of G is contained is a Sylow p-subgroup of G. O
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0.3 The Symmetric Group

Definition 7he symmetric group S, on the set I, = {1,...,n} is the group of
all permutations of I,, under composition of maps. A transposition is a
permutation that interchanges two distinct elements of I, and leaves all other
elements fixed. The alternating group A, is the subgroup of S, consisting of
all even permutations, that is, all permutations that can be written as a product
of an even number of transpositions. [

Theorem 0.3.1

1) The order of S,, is n!.

2) The order of A, isn!/2. Thus, [S, : Ap] = 2 and 4, < S,,.
3) A, is the only subgroup of S, of index 2.

4) A, is simple (no nontrivial normal subgroups) forn > 5. O

A subgroup H of S, is transitive if for any k, j € I, there isa o € H for which
ok =7j.

Theorem 0.3.2 If H is a transitive subgroup of S, then the order o(H) is a
multiple of n.C]

0.4 Rings

Definition A ring is a nonempty set R, together with two binary operations on
R, called addition (denoted by+ ), and multiplication (denoted by
juxtaposition), satisfying the following properties.

1) R is an abelian group under the operation + .

2) (Associativity) (a3)y = a(By) for all o, 3, v € R.

3) (Distributivity) For all o, 3, v € R,

(a+B)y=ay+af and ~(a+p)=~va+~3 O

Definition Let R be a ring.

1) R is called a ring with identity if there exists an element 1 € R for which
al =1la=aq, for all a« € R. In a ring R with identity, an element « is
called a unit if it has a multiplicative inverse in R, that is, if there exists a
B € R such that o = fa = 1.

2) R is called a commutative ring if multiplication is commutative, that is, if
af = Paforall a, B € R.

3) A zero divisor in a commutative ring R is a nonzero element oo € R such
that a3 = 0 for some (3 # 0. A commutative ring R with identity is called
an integral domain if R contains no zero divisors.

4) A ring R with identity 1 # 0 is called a field if the nonzero elements of R
Jform an abelian group under multiplication.]

It is not hard to see that the set of all units in a ring with identity forms a group
under multiplication. We shall have occasion to use the following example.
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Example 0.4.1 Let Z, = {0,1,...,n — 1} be the ring of integers modulo n.
Then k is a unit in Z,, if and only if (k,n) = 1. This follows from the fact that
(k,n) = 1 if and only if there exist integers a and b such that ak + bn = 1, that
is, if and only if ak = 1 modn. The set of units of Z,,, denoted by Z, is a group
under multiplication. [

Definition A4 subring of a ring R is a nonempty subset S of R that is a ring in
its own right, using the same operations as defined on R. O

Definition 4 subfield of a field E is a nonempty subset F' of E that is a field in
its own right, using the same operations as defined on E. In this case, we say
that F is an extension of ' and write F < E or £ > F. I

Definition Let R and S be rings. A function 1: R — S is a homomorphism if;
forall o, f € R,
Yo+ B) = o+ PB and P(af) = (Ya)(¥P)

An injective homomorphism is a monomorphism or an embedding, «
surjective homomorphism is an epimorphism and a bijective homomorphism is
an isomorphism. 4 homomorphism from R into itself is an endomorphism and
an isomorphism from R onto itself is an automorphism. [

Ideals

Definition 4 nonempty subset I of a ring R is called an ideal if it satisfies
) «a,B €T impliesa— (el
2) a€R, €T implies cw €T andia € 7.0

If S is a nonempty subset of a ring R, then the ideal generated by S is defined
to be the smallest ideal Z of R containing S. If R is a commutative ring with
identity, and if « € R, then the ideal generated by {«a/} is the set

(a) = R = {pa | p € R}

Any ideal of the form («) is called a principal ideal.

Definition /fi: R — S is a homomorphism, then
ker(y) = {a € R | Ya = 0}
is an ideal of R. [J
If R is aring and 7 is an ideal in R then for each o € R, we can form the coset
a+Z={a+c|LeT}

It is easy to see that « + Z = 3+ 7 if and only if « — 3 € Z, and that any two
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cosets «+Z and B+ Z are either disjoint or identical. The collection of all
(distinct) cosets is a ring itself, with addition and multiplication defined by

(a+Z2)+(b+Z)=(a+bd)+Z
and
(a+7)b+I)=ab+ T

The ring of cosets of 7 is called a factor ring and is denoted by R/Z.

Isomorphism theorems similar to those for groups also hold for rings. Here is
the first isomorphism theorem.

Theorem 0.4.1 (The First Isomorphism Theorem) Let R be a ring. Let
Y: R — R’ be a ring homomorphism with kernel 1. Then I is an ideal of R and
the map 1: R/I — im(x)) defined by y(a + I) = va is an isomorphism. Hence
R/I = im 1. In particular, 1 is injective if and only if ker(¢)) = {0}.00

Definition An ideal T of a ring R is maximal if 7 # R and if whenever
I C J CR for any ideal J, then J =1 or J = R. An ideal T is prime if
IT# Randifaf € T impliesae ZorfeZ.0

It is not hard to see that a maximal ideal in a commutative ring with identity is
prime. This also follows from the next theorem.

Theorem 0.4.2 Let R be a commutative ring with identity and let T be an ideal
of R.

1) R/T is afield if and only if T is maximal.

2) R/T is an integral domain if and only if T is prime. O

Theorem 0.4.3 Any commutative ring R with identity contains a maximal ideal.
Proof. Since R is not the zero ring, the ideal {0} is a proper ideal of R. Hence,
the set S of all proper ideals of R is nonempty. If
C={T|iel}

is a chain of proper ideals in R then the union J = J,.;Z; is also an ideal.
Furthermore, if 7 = R is not proper, then 1 € 7 and so 1 € Z;, for some i € I,
which implies that Z; = R is not proper. Hence, J € S. Thus, any chain in S
has an upper bound in S and so Zorn's lemma implies that S has a maximal
element. This shows that R has a maximal ideal. [
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The Characteristic of a Ring
Let R be aring and let € R. For any positive integer n, we define

nr=r+r+---+r
—————
n terms

and for any negative integer n, we set nr = —((—n)r).

The characteristic char(R) of a ring R is the smallest positive integer n for
which n1 = 0 (or equivalently, nr = 0 for all r € R), should such an integer
exist. If it does not, we say that R has characteristic 0. If char(R) = 0 then R
contains a copy of the integers Z, in the form Z-1={nl|neZ}. If
char(R) = r, then R contains a copy of Z, = {0,1,...,n — 1}.

Theorem 0.4.4 The characteristic of an integral domain R is either O or a
prime. In particular, a finite field has prime characteristic.

Proof. If = char(R) is not 0 and if = st, where s and ¢ are positive integers,
thenO0=7r-1=(s-1)(¢-1)andsooneof s- 1 or¢-1 is equal to 0. But since r
is the smallest such positive integer, it follows that either s = r or ¢ = r. Hence,
7 is prime.[]

If F' is a field, the intersection of all of its subfields is the smallest subfield of F'
and is referred to as the prime subfield of F'.

Theorem 0.4.5 Let F' be a field. If char(F) =0, the prime subfield of F is
isomorphic to the rational numbers Q. If char(F') = p is prime, the prime field
of F is isomorphic to Z,,.

Proof. If char(F') = 0, consider the map ¢: Q — F defined by

py_p-1
¢<Q>_Q'1

This is easily seen to be a ring homomorphism. For example

¢(p + T) _ ¢<p8+rq)
q s qs

_(ps+rg)-1
gs-1
_(p-1)(s- 1)+ (r-1)(g- 1)
(¢-1)(s-1)
:@ (r-1)
(¢-1)  (s-1)

() )

Now, ¢(p/q) =0 if and only if p- 1 =0 in F, and since char(F') = 0, we see
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that p = 0 and so ¢ is a monomorphism. Thus, the subfield ¢(Q) is isomorphic
to Q. Clearly, any subfield of ' must contain the elements p - 1, where p € Z
and therefore also the elements ¢(p/q) and so ¢(Q) is the prime subfield of F'.

Now suppose that char(F) = p is a prime. The map ¢:Z, — F defined by
@¢(z) = z - 1 is a ring homomorphism and is also injective since z < p. Hence,
¢(Z,) is a subfield of F' isomorphic to Z,,. Since any subfield of F' must contain
®(Z,), this is the prime subfield of F.00

The following result is of considerable importance for the study of fields of
nonzero characteristic.

Theorem 0.4.6 Let R be a commutative ring with identity of prime
characteristic p. Then

n

(a+8) =a” + 5, (a = ) =ar" - p”

Proof. Since the binomial formula holds in any commutative ring with identity,
we have

(a+8)" = kzp;(z )atprt

where

R

But p | (f) for 0 <k < p, and so (f) =0 in R. The binomial formula
therefore reduces to

(a+ﬁ)P — Oép‘i'ﬂp

Repeated use of this formula gives (o + 3)? = a? 4+ 3% The second formula is
proved similarly.[]

These formulas are very significant. They say that the Frobenius map
op: R — RP is a surjective ring homomorphism. When R = F' is a field of
characteristic p, then o, is an isomorphism and F' ~ F?.

0.5 Integral Domains

Theorem 0.5.1 Let R be an integral domain. Let o, 5 € R.
1) We say that o divides 8 and write o | 3 if 8 = pa_for some p € R. If p and
o are nonunits and 3 = pa then o properly divides (.
a) A unit divides every element of R.
b) | B ifandonly if (5) C (a).
¢) | B properly if and only if (B) C (o) C R.
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2) If a = uf for some unit u then o and (3 are associates and we write o ~ [3.
a) a~QGifandonlyifa|Band (| a.

B) o~ Bifandonlyif () = (B).

3) A nonzero element p € R is irreducible if p is not a unit and if p has no
proper divisors. Thus, a nonunit p is irreducible if and only if p = af
implies that either o or (3 is a unit.

4) A nonzero element w € R is prime if 7 is not a unit and whenever w | a3
thenm | acorm | f.

a) Every prime element is irreducible.
b) w € R is prime if and only if (7) is a nonzero prime ideal.

5) Let o, B € R. An element d € R is called a greatest common divisor
(ged) of o and (3, written (o, 3) or ged(a, B), if d| « and d | 8 and if
whenever e | o, e | B then e | d. If ged(av, ) is a unit, we say that o and 3
are relatively prime. The greatest common divisor of two elements, if it
exists, is unique up to associate. [

Theorem 0.5.2 An integral domain R is a field if and only if it has no ideals
other than the zero ideal and R itself. Any nonzero homomorphism o: F — E of
fields is a monomorphism. [

Theorem 0.5.3 Every finite integral domain is a field. (1
Field of Quotients

If R is an integral domain, we may form the set
R'={a/B|a,BeR,p+#0}

where a/3 = a/b if and only if ab = af3. We define addition and multiplication
on R’ in the “obvious way”

a a ab+fa o a aa

b B B b B
It is easy to see that these operations are well-defined and that R’ is actually a
field, called the field of quotients of the integral domain R. It is the smallest

field containing R (actually, an isomorphic copy of R), in the sense that if F' is
afield and R C F then R C R’ C F. The following fact will prove useful.

Theorem 0.5.4 Let R be an integral domain with field of quotients R'. Then any
monomorphism o: R — F from R into a field F' has a unique extension to a
monomorphisma: R’ — F.

Proof. Define (/) = oa/o3, which makes sense since (3 # 0 implies
o3 # 0. One can easily show that 7 is well-defined. Since oca /o3 = 0 if and
only if oo = 0, which in turn holds if and only if a/3 = 0, we see that & is
injective. Uniqueness is clear since o|p (o restricted to R) uniquely determines
con R.O
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0.6 Unique Factorization Domains

Definition An integral domain R is a unique factorization domain (ufd) if’

1) Any nonunit r € R can be written as a product r = py---p, where p; is
irreducible for all i. We refer to this as the factorization property for R.

2) This factorization is essentially unique in the sense that if r = p1---p, =
Q1+ -Qm are two factorizations into irreducible elements then m = n and
there is some permutation  for which p; ~ qr;) for all i. 11

If r € R is not irreducible, then r = st where s and ¢ are nonunits. Evidently,
we may continue to factor as long as at least one factor is not irreducible. An
integral domain R has the factorization property precisely when this factoring
process always stops after a finite number of steps.

Actually, the uniqueness part of the definition of a ufd is equivalent to some
very important properties.

Theorem 0.6.1 Let R be an integral domain for which the factorization
property holds. The following conditions are equivalent and therefore imply that
R is a unique factorization domain.

1) Factorization in R is essentially unique.

2) Every irreducible element of R is prime.

3) Any two elements of R, not both zero, have a greatest common divisor. O

Corollary 0.6.2 In a unique factorization domain, the concepts of prime and
irreducible are equivalent. [

0.7 Principal Ideal Domains

Definition An integral domain R is called a principal ideal domain (pid) if
every ideal of R is principal. [

Theorem 0.7.1 Every principal ideal domain is a wunique factorization
domain.]

We remark that the ring Z[z] is a ufd (as we prove in Chapter 1) but not a pid
(the ideal (2, x) is not principal) and so the converse of the previous theorem is
not true.

Theorem 0.7.2 Let R be a principal ideal domain and let T be an ideal of R.
1) T is maximal if and only if T = (p) where p is irreducible.
2) T is prime if and only if T = {0} or T is maximal.
3) The following are equivalent:
a) R/(p) is afield
b) R/{p) is an integral domain
¢) pisirreducible
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d) pisprime. O
0.8 Euclidean Domains
Roughly speaking, a Euclidean domain is an integral domain in which we can

perform “division with remainder.”

Definition An integral domain R is a Euclidean domain if there is a function
o: (R—{0}) — N with the property that given any o, 3 € R, 3 # 0, there exist
q,7 € R satisfying

a=q08+r
wherer =0 oror < of. O
Theorem 0.8.1 A Euclidean domain is a principal ideal domain (and hence also
a unique factorization domain).

Proof. Let Z be an ideal in the Euclidean domain R and let o € Z be minimal
with respect to the value of 0. Thus, ca < g forall § € Z. If s € 7 then

sS=ra+q
where ¢ = 0 or 0g < or. But ¢ = s — ra € Z and so the latter is not possible,

leaving ¢ = 0 and s € (). Hence, Z = (). O

Theorem 0.8.2 If I is a field, then F|x] is a Euclidean domain with o(p(x)) =
deg(p(x)). Hence Flx] is also a principal ideal domain and a unique
factorization domain.

Proof. This follows from ordinary division of polynomials; to wit, if f(x)
g(z) € Flz],g(x) # 0, then there exist ¢(x), r(z) € F[x] such that

f(z) =q(x)g(z) + r(x)
where deg(r(x)) < deg(g(x)). O
0.9 Tensor Products

Tensor products are used only in the optional Section 5.6, on linear disjointness.

Definition Let U, V and W be vector spaces over a field F. A function
f:U xV — W is bilinear if it is linear in both variables separately, that is, if
flru+ su',v) = rf(u,v) + sf(u',v)

and
flu,rv+ sv') = rf(u,v) + sf(u,v)

The set of all bilinear functions from U x V to W is denoted by B(U,V;W). A
bilinear function f:U xV — F, with values in the base field F, is called a
bilinear formon U x V. [
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Example 0.9.1

1) A real inner product (,): V x V — R is a bilinear formonV x V.

2) If Ais an algebra, the product map ji: A x A — A defined by 1i(a,b) = ab
is bilinear.

We will denote the set of all linear transformations from U x V to W by
L(U x V,W). There are many definitions of the tensor product. We choose a
universal definition.

Theorem 0.9.1 Let U and V' be vector spaces over the same field F. There
exists a unique vector space U ® V' and bilinear map t:U xV — U ® V with
the following property. If f:U x V. — W is any bilinear function from U x V
to a vector space W over F, then there is a unique linear transformation
7:U®V — W for which

Tot=f O

This theorem says that to each bilinear function f:U xV — W, there
corresponds a unique /inear function 7: U @ V' — W, through which f can be
factored (that is, f = 7ot). The vector space U ® V, whose existence is
guaranteed by the previous theorem, is called the tensor product of U and V'
over F'. We denote the image of (u,v) under the map ¢ by t(u,v) = uu ® v.

If X =im(t) ={u®v|ueU,veV} is the image of the tensor map ¢ then
the uniqueness statement in the theorem implies that X spans U ® V. Hence,
every element of « € U ® V is a finite sum of elements of the form u ® v

o= Zai(ui ® v;)

finite

We establish a few basic properties of the tensor product.

Theorem 0.9.2 If {uy,...,u,} CU is linearly independent and
{v1,...,v,} CV then

Zui®w:0:>v,;:0foralli

Proof. Consider the dual vectors §; € U* to the vectors u;, where d;u; = 6; ;.
For linear functionals ¢;: V' — F', we define a bilinear form f:U x V — F by

Flu) = 3 8(w)e,(0)

Since there exists a unique linear functional 7:U ® V' — F' for which 7ot =
f, we have



Preliminaries 19

O—T(Zm@v) ZTotu“w
= Zf Ui, ;) 225 u;)ej(vi) = Z i(vi)

(2

Since the €;'s are arbitrary, we deduce that v; = 0 for all 7. O
Corollary 0.9.3 Ifu # 0 andv # 0, thenu ® v # 0. O

Theorem 0.9.4 Let B = {e; | i € I} be a basis for U and let C={f;|j€ J}
be a basis for V. Then D = {e; ® fj |t € I, j€ J}isabasisforU @ V.
Proof. To see that the D is linearly independent, suppose that

Y rijlei® fj) =0

iJ

This can be written
Se® (Yorul;) =0
i J
Theorem 0.9.2 implies that

er,jfj =0
J

for all ¢, and hence r;; = 0 for all ¢ and j. To see that D spans U ® V, let
u®@uveU®V.Sinceu =) re;,andv="7_s,f;, we have

UV = ZTi@i & Zs]vfj = ZS/(Z rie; ® f/)
i J J i
B 257(27”7 € ®f] ) = ZTiSj(ei(X)fj)
i

Since any vector in U ® V' is a finite sum of vectors u ® v, we deduce that D
spans U @ V. O

Corollary 0.9.5 For finite dimensional vector spaces,

dim(U ® V) = dim(U) - dim(V) O

Exercises

1. The relation of being associates in an integral domain is an equivalence
relation.

2. Prove that the characteristic of an integral domain is either 0 or a prime, and
that a finite field has prime characteristic.
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Field Theory

If char(F) =0, the prime subfield of F' is isomorphic to the rational
numbers Q. If char(F') = p is prime, the prime field of F is isomorphic to
Z,.

If F < E show that E and F' must have the same characteristic.

Let F be a field of characteristic p. The Frobenius map o: F' — F' defined
by ca = aP is a homomorphism. Show that F' =~ F? = {a? | a € F'}. What
if F' is a finite field?

Consider the polynomial ring F[z1,2s,... | where 27 = z;_;. Show that
the factorization process need not stop in this ring.

Let R=Z[\/—5] = {a+by/—5|a,beZ}. Show that this integral
domain is not a unique factorization domain by showing that 6 € R has
essentially two different factorizations in R. Show also that the irreducible
element 2 is not prime.

Let R be a pid. Then an ideal Z of R is maximal if and only if Z = (p)
where p is irreducible. Also, R/(p) is a field if and only if p is irreducible.
Prove that (z) and (2,z) are both prime ideals in Z[z] and that (x) is
properly contained in (2, x).

Describe the divisor chain condition in terms of principal ideals.



Part I—Field Extensions



Chapter 1
Polynomials

In this chapter, we discuss properties of polynomials that will be needed in the
sequel. Since we assume that the reader is familiar with the basic properties of
polynomials, some of the present material may constitute a review.

1.1 Polynomials over a Ring

We will be concerned in this book mainly with polynomials over a field F', but
it is useful to make a few remarks about polynomials over a ring R as well,
especially since many polynomials encountered in practice are defined over the
integers. Let R[x] denote the ring of polynomials in the single variable = over
R.If

F(2) = a0+ a1z + - + ana”

where a; € R and a,, # 0 then n is called the degree of f(z), written deg(f(z))
or deg(f) and a, is called the leading coefficient of f(z). A polynomial is
monic if its leading coefficient is 1. The degree of the zero polynomial is
defined to be —oo. If R is a ring, the units of R[z] are the units of R, since no
polynomial of positive degree can have an inverse in R[z]. Note that the units in
R|[z] are the units in R.

In general, if f(z) = ap + a1z + --- + a,2™ € Rz] is a polynomial over a ring
R and if 0: R — S is a ring homomorphism, then we denote the polynomial
o(ag) + o(ar)x + -+ + o(a,)z™ € S[z] by of (x) or by f7(z) and the function
that sends f(z) to f7(z) by 0¥, that is,

o (f(x)) = (=)
We may refer to o™ as the extension of o to R[z]. It is easy to see that o™ is also

a ring homomorphism.

One of the most useful examples of ring homomorphisms in this context is the
projection maps m,: R — R/(p), where p is a prime in R, defined by
() =a+ (p). It is not hard to see that m, is a surjective ring
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homomorphism, and that R/(p) is an integral domain. The maps , are also
referred to as localization maps.

Note that the units of R[] are the units of R.

Definition Let R be a ring. A nonzero polynomial f(x) € R[x] is irreducible
over R if f(x) is not a unit and whenever f(z) = p(x)q(x) for p(x),q(z) €
R[z], then one of p(x) and q(x) is a unit in R[z]. A polynomial that is not
irreducible is said to be reducible. O

We can simplify this definition for polynomials over a field. A polynomial over
a field is irreducible if and only if it has positive degree and cannot be factored
into the product of two polynomials of positive degree.

Many important properties that a ring R may possess carry over to the ring of
polynomials R|x].

Theorem 1.1.1 Let R be a ring.

1) If R is an integral domain, then so is R|x]

2) If R is a unique factorization domain, then so is R[x].

3) If R is a principal ideal domain, R[x] need not be a principal ideal domain.
4) If F is afield, then F|x] is a principal ideal domain.

Proof. For part 3), the ring Z of integers is a principal ideal domain, but Z[z] is
not, since the ideal (2, x) is not principal.[]

1.2 Primitive Polynomials and Irreducibility
We now consider polynomials over a unique factorization domain.
Content and Primitivity

If p(x) is a polynomial over the integers, it is often useful to factor out the
positive greatest common divisor of the coefficients, so that the remaining
coefficients are relatively prime. For polynomials over an arbitrary unique
factorization domain, the greatest common divisor is not unique and there is no
way to single one out in general.

Definition Ler f(x) € R[x] where R is a unique factorization domain. Any
greatest common divisor of the coefficients of f(x) is called a content of f(z).
A polynomial with content 1 is said to be primitive. Let c(f) denote the set of
all contents of f(x). Thus, c(f) is the set of all associates of any one of its
elements. For this reason, one often speaks of “the” content of a polynomial.(]

A content of f(z) = ag+ a1z + -+ + a,x™ can be obtained by factoring each
coefficient a;, of f into a product of powers of distinct primes and then taking
the product of each prime 7 that appears in any of these factorizations, raised to
the smallest power to which 7 appears in all of the factorizations.
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There is no reason why we cannot apply this same procedure to a polynomial
over R’, the field of quotients of R. If f(x) € R'[x], then each coefficient of
f(x) can be written as a product of integral powers of distinct primes.

Definition Let f(z) = ap + a1z + -+ + aqz? € R'[z], where R’ is the field of
quotients of a unique factorization domain R. Let py,...,p, be a complete list
of the distinct primes dividing any coefficient ay, of f(z). Then each coefficient
aj, can be written in the form

ap = pil(ak). . 'pfzn(ak)

where e;(a;) € Z. Let m; =min(e;(ag) | k=0,...,d} be the smallest
exponent of p; among the factorizations of the coefficients of f(x). The element

o m,
= Py oDy

is a content of f(x), and so is any element ull, where w is a unit in R. The set
of all contents of [ is denoted by c(f). A polynomial f(x) is primitive if
lec(f).O

Note the following simple facts about content.

Lemma 1.2.1 For any f(z) € R'[z] and o € R’
claf(z)) = ac(f(x))

1t follows that
1) «is a content of f(x) if and only if f(x) = ap(x), where p(z) is primitive
in R[x].

2) If f(x) is primitive, then f(x) € R[z].
3) f(x) € R[z] ifand only ifc(f) € R.OI

We now come to a key result concerning primitive polynomials.

Theorem 1.2.2 Let R be a unique factorization domain, with field of quotients
R'.

1) (Gauss's lemma) The product of primitive polynomials is primitive.

2) I f(x), 9(x) € R'a] then c(fg) = c(f)e(g)

3) Ifapolynomial f(x) € R|x] can be factored

f(x) = p(x)h(z)

where p(z) is primitive and h(x) € R'(x) then, in fact, h(x) € R[z].
Proof. To prove Gauss's lemma, let f(x), g(z) € R[z] and suppose that fg is
not primitive. Then there exists a prime p € R for which p | fg. Consider the
localization map ;. The condition p | fg is equivalent to ,(fg) = 0, that is,
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mp(f)mp(g) = 0 and since R/(p) is an integral domain, one of the factors must
be 0, that is, one of f or g must be divisible by p, and hence not primitive.

To prove part 2), observe that if c; is a content of f(z) and ¢, is a content of
g(z) then f = ¢y f" and g = ¢,¢’, where f’ and ¢’ are primitive over R. Hence,
by Gauss's lemma, if U is the set of units of R, then

c(fg) = clegeaf'd) = cpee(f'g) = ereU = c(f)elg)
As to part 3), we have
c(f) = c(ph) = c(p)e(h) = c(h)
and since ¢(f) € R, so is ¢(h), whence h(z) € R[z]. O
Irreducibility over R and R’

If f(z) € R[z], then it can also be thought of as a polynomial over R'[z]. We
would like to relate the irreducibility of f over R to its irreducibility over R'.
Let us say that a factorization f(z) = p(z)q(x) is over a set S if p(z) and ¢(x)
have coefficients in .S.

The relationship between irreducibility over R and over R’ would be quite
simple were it not for the presence of irreducible constants in R, which are not
irreducible over R'.

To formulate a clear description of the situation, let us make the following
nonstandard (not found in other books) definition. We say that a factorization of
the form f(z) = p(x)q(x), where deg(p) > 0 and deg(q) > 0, is a degreewise
factorization of f(z) and that f(z) is degreewise reducible.

Now, if
f(z) = p(z)q(x)

is a degreewise factorization over R, then it is also a degreewise factorization
over R'. Conversely, if this is a degreewise factorization over R’, then we can
move the content of g(x) to the other factor and write

f(x) = [egp(@)]r(x)

where r(z) is primitive. Theorem 1.1.1 implies that ¢,p(z) is also in R[z] and
so this is a degreewise factorization of f(x) over R. Thus, f(z) has a
degreewise factorization over R if and only if it has a degreewise factorization
over R'. Note also that the corresponding factors in the two factorizations have
the same degree.
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It follows that f(z) is irreducible over R’ if and only if it is degreewise
irreducible over R. But degreewise irreducibility over a field R’ is the only kind
of irreducibility.

Theorem 1.2.3 Let R be a unique factorization domain, with field of quotients

R'. Let f(z) € Rlx].

1) f(x) is degreewise irreducible over R if and only if it is irreducible over
R

2) If f(x) is primitive, then it is irreducible over R if and only if it is
irreducible over R'.[1

1.3 The Division Algorithm and its Consequences

The familiar division algorithm for polynomials over a field F' can be easily
extended to polynomials over a commutative ring with identity, provided that
we divide only by polynomials with leading coefficient a unit. We leave proof
of the following to the reader.

Theorem 1.3.1 (Division algorithm) Let R be a commutative ring with identity.
Let g(x) € R[z] have an invertible leading coefficient (which happens if f(x) is
monic, for example). Then for any f(x) € R[z|, there exist unique q(x),r(x) €
R[z] such that

f(z) = q(x)g(x) + r(z)
where deg(r) < deg(g). O

This theorem has some very important immediate consequences. Dividing f(z)
by x — a, where a € R gives

f(@) = q(z)(z —a) +r
where r € R. Hence, « is a root of f(x) if and only if x — « is a factor of f(z)

over R.

Corollary 1.3.2 Let R be a commutative ring with identity and let f(x) € R]z].
Then « is a root of f(x) if and only if v — « is a factor of f(x) over R.OI

Also, since the usual degree formula

deg(fg) = deg(f) + deg(g)

holds when R is an integral domain, we get an immediate upper bound on the
number of roots of a polynomial.

Corollary 1.3.3 If R is an integral domain, then a nonzero polynomial
f(z) € R[z] can have at most deg(f) distinct roots in R.O]
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Note that if R is not an integral domain then the preceding result fails. For

example, in Zg, the four elements 1,3,5 and 7 are roots of the polynomial
2

- —1.

From this, we get the following fundamental fact concerning finite
multiplicative subgroups of a field.

Corollary 1.3.4 Let F'* be the multiplicative group of all nonzero elements of a
field F. If G is a finite subgroup of F*, then G is cyclic. In particular, if F' is a
finite field then F* is cyclic.

Proof. If |G| = m, then every element of G satisfies the polynomial ™ — 1.
But G cannot have an exponent e < m, for then every one of the m elements of
G would be a root of the polynomial z¢ — 1, of degree less than m. Hence, the
smallest exponent of G is the order of G and Theorem 0.2.2 implies that G is
cyclic.d

Polynomials as Functions

In the customary way, a polynomial p(z) € R[z] can be thought of as a function
on R. Of course, the zero polynomial is also the zero function. However, the
converse is not true! For example, the nonzero polynomial p(z) = z? — x in
Zs|z] is the zero function on Zs.

This raises the question of how to decide, based on the zero set of a polynomial,
when that polynomial must be the zero polynomial.

If R is an integral domain, then Corollary 1.3.3 ensures that if p(x) has degree
at most d but has more than d zeros, then it must be the zero polynomial. The
previous example shows that we cannot improve on this statement. It follows
that if the zero set of p(z) is infinite, then p(x) must be the zero polynomial. We
can make no such blanket statements in the context of finite rings, as the
previous example illustrates.

Now let us consider polynomials in more than one variable. We can no longer
claim that if a polynomial p(x1, ..., z,) has an infinite zero set, then it must be
the zero polynomial. For example, the nonzero polynomial p(x,y) = 2 — y has
the infinite zero set {(z,y) | = y}.

It is not hard to prove by induction that if R is infinite and p(x1,...,z,) is the
zero function, that is, p(xi,...,x,) has zero set R, then p(x1,...,2,) is the
zero polynomial. We leave the details to the reader. Again, we cannot strengthen
this to finite rings, as the polynomial p(x,y) = (22 — x)y in Zs[z,y] shows.

However, we can improve upon this. There is a middle ground between “an
infinite set of zeros” and “zero set equal to all of R” that is sufficient to
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guarantee that p(z1,...,x,) is the zero polynomial. This middle ground is “an
infinite subfield worth of zeros.”

Theorem 1.3.5 Let p(xy, ... ,x,) be a polynomial over L and let F' < L, where
F is infinite. If p(aq, ... ,a,) =0 for all a; € F, then p(x1,... ,x,) is the zero
polynomial.

Proof. Write

§ i1 in
p($17"' y T )‘11 Lin Ly Ty

-sn

where \;, ;. € L.Let {§;} be a basis for L as a vector space over F. Then
i = Z @iy, i Bk
k

. € Fand so

Py, ..., xn) = Z [Za“ z,,kﬁk]xl xy

i1y lp

= Z [ Z iy, i, kxl 771‘| 6/@

-ln

for a;, ..

sns

Hence, the independence of the 3;'s implies that the polynomial

L
E : alh anm] T;

in Fxy,...,x,)] is the zero function on F. As we have remarked, this implies
that a;, ;=0 for all 4,...,4, and k. Hence, \; _; =0 for all 4y,...,14,
and p(xy,...,x,) is the zero polynomial.(]

Common Divisors and Greatest Common Divisors

In defining the greatest common divisor of two polynomials, it is customary (in
order to obtain uniqueness) to require that it be monic.

Definition Let f(x) and g(x) be polynomials over F. The greatest common

divisor of f(x) and g(x), denoted by (f(x),g(x)) or ged(f(x),g(z)), is the
unique monic polynomial p(x) over F for which

D p(@) | f(z) and p(z) | g(z).
2) Ifr(z) € Flz] andr(z) | f(x) and r(z) | g(z) then r(x) | p(x). O

The existence of greatest common divisors is easily proved using the fact that
F[z] is a principal ideal domain. Since the ideal

I'=(f(x),9(x)) = {a(x) f(z) + b(x)g(z) | a(x), b(z) € Flx]}
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is principal, we have I = (p(z)), for some monic p(z) € Flz]. Since
f(z),g(x) € (p(x)), it follows that p(z) | f(z) and p(z) | g(z). Moreover,
since p(x) € (f(x), g(z)), there exist a(z), b(x) € K[x] such that

p(x) = a(x) f(z) + b(z)g(x)

Hence, if ¢(z)| f(x) and ¢(x) | g(z), then ¢(z)|p(xz) and so p(x)=
ged(f(x), g())-

As to uniqueness, if p(z) and g(x) are both greatest common divisors of f(x)
and g(z) then each divides the other and since they are both monic, we conclude

that p(z) = q(z).
Greatest Common Divisor Is Field Independent

The definition of greatest common divisor seems at first to depend on the field
F, since all divisions are over F'. However, this is not the case.

To see this, note that for any field K containing the coefficients of f(x) and
g(x), the ideal

Ix = (f(z),9(2)) = {a(z) f(2) + b(x)g(z) | a(x),b(x) € K[z}

is principal and so Ix = (rg(z)), where g (z) is the ged with respect to the
field K. But if K < L, then Ix C I, and so rx(z) € I;. This implies two
things. First, rr(z)|rx(x) because rp(x) generates I; and second,
ri(z) | rr(x) because rp(x) is the greatest common divisor of f(z) and g(x)
in L[x]. Hence, ri(x) = rx(x).

Thus, if K is the smallest field containing the coefficients of f(z) and g(x),
then rx(x) is the same polynomial as ry(x), for any field L containing the
coefficients of f(z) and g(z). In other words, the gcd can be computed using
any field containing the coefficients of f(x) and g(x). This also shows that the
gcd of f(x) and g(z) has coefficients in the field K.

Theorem 1.3.6 Let f(x),g(x) € F[z]|. Let K be the smallest field containing

the coefficients of f(x) and g(x).

1) The greatest common divisor d(x) of f(x) and g(x) does not depend on the
the base field F'.

2) Hence, d(x) has coefficients in K.

3) There exist polynomials a(x),b(x) € K|[z] such that

d(z) = a(z) f(x) + b(z)g(x) U

This result has a somewhat surprising corollary: If f(z),g(x) € F[z] have a
nonconstant common factor in any extension E of I, then d(z) = ged(f, g) is
nonconstant and so f(z) and g(x) have a nonconstant factor over every field
containing the coefficients of f(x) and g(x).
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Corollary 1.3.7 Let f(z),g(x) € Flx] and let F < E. Then f(z) and g(x)
have a nonconstant common factor over F if and only if they have a
nonconstant common factor over E.

Now we can make sense of the notion that two polynomials are relatively prime
without mentioning a specific field.

Definition The polynomials f(x) and g(x) are relatively prime if they have no
nonconstant common factors, that is, if ged(f (z), g(x)) = 1. In particular, f(x)
and g(x) are relatively prime if and only if there exist polynomials a(x) and
b(x) over the smallest field containing the coefficients of f(x) and g(x) for
which

aw)f (x) + b(x)g(x) = 1 O

Roots and Common Roots

It is a fundamental fact that every nonconstant polynomial f(z) € F[x] has a
root in some field.

Theorem 1.3.8 Let F' be a field, and let f(x) € Flx] be a nonconstant
polynomial. Then there exists an extension E of F and an o € E such that

f(a) =0.
Proof. We may assume that f(z) is irreducible. Consider the field
_ _Fla]
(f(@))

The field F' is isomorphic to a subfield of E, by identifying o € F' with
a+ (f(z)) € E. Under this identification, 4+ {f(x)) is a root of f(z) in E.

Thus, we have shown that F' can be embedded in a field E in which f(z) (with
its coefficients embedded as well) has a root. While this is not quite the
statement of the theorem, it is possible to show that there is a “true” extension of
F that has a root of f(x), using simple techniques from the next chapter..c]

Repeated application of Theorem 1.3.8 gives the following corollary.

Corollary 1.3.9 Let f(x) € F[z]. There exists an extension of F over which
f(x) splits, that is, factors into linear factors..]

Corollary 1.3.10 Two polynomials f(x),g(x) € Flz] have a nonconstant
common factor over some extension of F' if and only if they have a common root
over some extension of F. Put another way, f(x) and g(x) are relatively prime
if and only if they have no common roots in any extension F.[1
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Since distinct irreducible polynomials are relatively prime, we get the following
corollary.

Corollary 1.3.11 If f(z) and g(x) are distinct irreducible polynomials over F
then they have no common roots in any extension E of F. O

1.4 Splitting Fields
If a polynomial f(z) € F[z] factors into linear factors

f(@) = alz — ) (z —az)-(z — o)
in an extension field E, that is, if ay, ..., o, € E, we say that f(x) splits in E.
Definition Let F = {f;(x) | i € I} be family of polynomials over a field F. A
splitting field for F is an extension field E of F' with the following properties:
1) Each fi(z) € F splits over E, and thus has a full set of deg(f;) roots in E

2) E is the smallest field satisfying ' < K < E that contains the roots of
each fi(x) € F mentioned in part 1).00

Theorem 1.4.1 Every finite family of polynomials over a field F has a splitting

field.
Proof. According to Corollary 1.3.9, there is an extension F' < E in which a
given polynomial p(x) has a full set of roots a, ..., a,. The smallest subfield

of E containing F' and these roots is a splitting field for p(x). If F is a finite
family of polynomials, then a splitting field for F is a splitting field for the
product of the polynomials in F. [J

We will see in the next chapter that any family of polynomials has a splitting
field. We will also see that any two splitting fields S; and Sy for a family of
polynomials over F' are isomorphic by an isomorphism that fixes each element
of the base field F'.

1.5 The Minimal Polynomial

Let F' < E. An element o € E is said to be algebraic over F' if « is a root of
some polynomial over F'. An element that is not algebraic over F' is said to be
transcendental over F.

If « is algebraic over F', the set of all polynomials satisfied by «
I, ={g(z) € Flz] | g(e) = 0}

is a nonzero ideal in F[z] and is therefore generated by a unique monic
polynomial p(x), called the minimal polynomial of « over F' and denoted by
Pa(x), Pa,r(x) or min(a, F'). The following theorem characterizes minimal
polynomials in a variety of useful ways. Proof is left to the reader.
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Theorem 1.5.1 Let F' < E and let o € E be algebraic over F. Then among all

polynomials in Fx], the polynomial min(c, F') is

1)  the unique monic irreducible polynomial p(x) for which p(«) = 0

2)  the unique monic polynomial p(x) of smallest degree for which p(a)) = 0

3) the unique monic polynomial p(x) with the property that f(«) =0 if and
only if p(z) | f().

In other words, min(«, F') is the unique monic generator of the ideal 7,.0]

Definition Let F' < E. Then o, § € E are said to be conjugates over F' if they
have the same minimal polynomial over F. [

1.6 Multiple Roots

Let us now explore the issue of multiple roots of a polynomial.

Definition Let o be a root of f(x) € F[x]. The multiplicity of « is the largest
positive integer n for which (x — )" divides f(x). If n = 1, then « is a simple
root and if n > 1, then « is a multiple root of f(z). O

Definition An irreducible polynomial f(x) € F[x] is separable if it has no
multiple roots in any extension of F. An irreducible polynomial that is not
separable is inseparable. (]

We should make a comment about this definition. It is not standard. For
example, Lang defines a polynomial to be separable if it has no multiple roots,
saying nothing about irreducibility. Hence, p(x) = x? is not separable under this
definition. Jacobson defines a polynomial to be separable if its irreducible
factors have no multiple roots. Hence, p(x) is separable under this definition.
However, van der Waerden, who first proposed the term “separable”, gave the
definition we have adopted, which does require irreducibility. Hence, for us, the
question of whether p(x) = 2 is separable is not applicable, since p(z) is not
irreducible. The only inconvenience with this definition is that we cannot say
that if f(x) is separable over F, then it is also separable over an extension E of
F'. Instead we must say that the irreducible factors of f(x) are separable over
E.

Although, as we will see, all irreducible polynomials over a field of
characteristic zero or a finite field are separable, the concept of separability (that
is, inseparability) plays a key role in the theory of more “unusual” fields.

Theorem 1.6.1 4 polynomial f(x) € F[x| has no multiple roots if and only if
f(x) and its derivative f'(x) are relatively prime.
Proof. Over a splitting field E for f(x), we have

flx)=(x— al)("l...(x _ Oén)e”
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where the «;'s are distinct. It is easy to see that f(z) and f'(z) have no
nontrivial common factors over F if and only ife; = 1 foralli = 1,...,n.0]

Corollary 1.6.2 An irreducible polynomial f(x) is separable if and only if
F'(z) # 0.

Proof. Since deg(f'(x)) < deg(f(z)) and f(x) is irreducible, it follows that
f(z) and f'(z) are relatively prime if and only if f'(z) # 0. O

If char(F) =0 then f/(x)# 0 for any nonconstant f(x). Thus, we get the
following corollary.

Corollary 1.6.3 A/l irreducible polynomials over a field of characteristic 0 are
separable.]

What Do Inseparable Polynomials Look Like?

When char(F') = p # 0, inseparable polynomials are precisely the polynomials
of the form g(z") for some d > 1. After all, if f(z) is inseparable (and
therefore irreducible by definition), then f’(x) = 0, and this can happen only if
the exponents of each term in f(x) are multiples of the characteristic p. Hence,
f(x) must have the form g(«?). But we can say more.

Corollary 1.6.4 Let char(F') = p # 0. An irreducible polynomial f(x) over F
is inseparable if and only if f(x) has the form

f(z) = g(a”)

where d > 0 and g(x) is a nonconstant polynomial. In this case, the integer d
can be chosen so that g(x) is separable, in which case every root of f(x) has
multiplicity p®. In this case, the number d is called the radical exponent of
p(z).

Proof. As we mentioned, if f(z) = Y a;x’ is inseparable then f'(z) = 0, which
implies that ia; = 0 for all 4, which in turn implies that p | ¢ for all ¢ such that
a; # 0. Hence, f(x) = q(zP).

If g(x) has no multiple roots, we are done. If not, then we may repeat the
argument with the irreducible polynomial ¢(z), eventually obtaining the
equation f(z) = g(z*"), where g(xz) is separable.

For the converse, suppose that f(x) = g(a:”d) for some d > 0. Let K be a field
in which both f(z) and g(x) split. Thus,

g9(x) = (z = ar)--(x — )

for o; € K and so
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fla) = (@ =) (2" — )

Since f(z) splits in K, there exist roots 3; € K for each of the factors - ;,
ol
and so o; = 37 . Hence,

fl@)=@" =)@ =8 ) = (@ =B (= B

This shows that f(z) is inseparable. Finally, if f(z) = g(z¥"), where g(x) is
inseparable, then the a;'s above are distinct and so are the §;'s. Hence, each root
of f(z) has multiplicity p¢.0J

We can now prove that all irreducible polynomials over a finite field are
separable.

Corollary 1.6.5 All irreducible polynomials over a finite field are separable.
Proof. First, we show that a finite field F' of characteristic p has p" elements,
for some n > 0. To see this, note that I is an extension of its prime subfield Z,,
and if the dimension of F' as a vector space over Zj, is n, then I has ¢ = p"
elements.

It follows that the multiplicative group F’* of nonzero elements of F' has order
q—1 and so a? = a for all a € F. In particular, any element of F' is a pth
power of some other element of F. Thus, if f(x) is not separable, then
f(z) = g(«?). Hence

g(a?) = ap + ara? + - + apz™
=0b) +bla? 4 - 4 bha"?
= (bg + b1z + --- + byz"™)?

is not irreducible.[]
The next example shows that inseparable polynomials do exist.

Example 1.6.1 Let F' be a field of characteristic 2 and consider the field F'(¢) of
all rational functions in the variable t. The polynomial f(z)= x> —1> is
irreducible over F(t?), since it has no linear factors over F(¢?). However, in
F(t) we have f(x) = (x — t)? and so t is a double root of f(x). O

1.7 Testing for Irreducibility

We next discuss some methods for testing a polynomial for irreducibility. Note
first that p(x) € F[z] is irreducible if and only if p(z + a) is irreducible, for
a € F'. This is often a useful device in identifying irreducibility.
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Localization

Sometimes it is possible to identify irreducibility by changing the base ring. In
particular, suppose that R and S are rings and 0: R — S is a ring
homomorphism. If a polynomial p(z) € R[z] is degreewise reducible, then

p(x) = f(z)g(x)
where deg(f) < deg(p) and deg(g) < deg(p). Applying o gives
p(z) = f7(x)g" ()

and since the degree cannot increase, if deg(p?) = deg(p), then we can
conclude that p?(z) is degreewise reducible over S. Hence, if p(z) is
degreewise irreducible, then so is p(z). This situation is a bit too general, and
we take S to be a field.

Theorem 1.7.1 Let R be a ring and let F' be a field. Let 0: R — F be a ring
homomorphism. A polynomial p(x) € Rx] is degreewise irreducible (not the
product of two polynomials of smaller degree) over R if

1) deg(p”) = deg(p)

2) p°(x) is irreducible over F.[1

The following special case is sometimes called localization. Recall that if R is a
ring and p € R is a prime, then the canonical projection map m,: R — R/(p) is
defined by m,(a) = oo+ (p). This map is a surjective ring homomorphism.

Corollary 1.7.2 (Localization) Let R be a principal ideal domain and let
fl@)=ap+ a1z + -+ apa”

be a polynomial over R. Let p € R be a prime that does not divide a,,. If m, f (x)
is irreducible over R/(p), then f(x) is degreewise irreducible over R.[]

Example 1.7.1 Let p(z) = 2° + 62 + 5z + 1 € Z[z]. Since p(z) has degree 3,
it is reducible if and only if it has an integer root. We could simply start
checking integers, but localization saves a lot of time. By localizing to Z3, we
get m3p(x) = 2° + 2z + 1, and we need only check for a root in Z3 = {0, 1, 2}.
Since none of these is a root, myp(x) and therefore p(x), is degreewise
irreducible. But since p(z) is primitive, it is just plain irreducible..c]

It is interesting to point out that there are polynomials f(x) for which 7, f(x) is
reducible for all primes p, and yet f(x) is irreducible over Z. Thus, the method
of localization cannot be used to prove that a polynomial is reducible.

Example 1.7.2 Let f(z) = 2* + az® + b2, for a,b € Z. We claim that 7, f (z)
is reducible for all primes p. If p =2, then f(z) is one of the following
polynomials
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st 1= (2 +x+1)°
et 1= (2 +1)?
ot ot =2 (2? + 1)
or z*, each of which is reducible modulo 2. Now assume that p > 2. In the field

Zy, let c satisfy 2c = a, in which case f(z) = 2" + 2cz? 4+ b, which can be
written in any of the following ways

fa) = (2% +¢)° = (¢ = b7)
f(z) = (2® +b)* — (2b — 2¢)2?
f(z) = (z* — b)* — (—2b — 2¢)z?
Each of these has the potential of being the difference of two squares, which is

reducible. In fact, this will happen if any of c? — b%,2b — 2c and —2b — 2c is a
square modulo p.

Since the multiplicative group Z;, of nonzero elements of Z, is cyclic (a fact
about finite fields that we will prove later), we can write Z, = (/3). Note that the
group homomorphism oy: o — a? has kernel {41} and so exactly half of the
elements of Zj, are squares, and these are the even powers of 3. So, if 2b — 2¢
and —2b — 2¢ are nonsquares, that is, odd powers of 3, then their product

(20 — 2¢)(—2b — 2¢) = 4(c* — b?)

is a square, and therefore so is ¢ — b? modulo p.

Now, we can choose a and b so that f(z) is irreducible over Z. For example,

f(x) = z* + 1 is irreducible over Z.OO

Eisenstein's Criterion

The following is the most famous criterion for irreducibility.

Theorem 1.7.3 (Eisenstein's criterion) Let R be an integral domain and let

p(x) = ap + a1z + -+ + a,x" € Rlx]. If there exists a prime p € R satisfying
plaifor0<i<mn,pfa, p’fao

then p(x) is degreewise irreducible. In particular, if p(x) is primitive, then it is
irreducible.
Proof. Let m:7Z — 7Z, be the canonical projection map. Suppose that

p(x) = f(z)g(z) where deg(f) < deg(p) and deg(g) < deg(p). Since
m(a;) = 0 for all ¢ < n, it follows that

m(ay)x" = mp(x) = nf(x)mg(x)

Since m(a,) # 0, this implies that 7 f(x) and wg(x) are monomials of positive
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degree (since R is an integral domain). In particular, the constant terms « f; and
7go are 0 in R/(p), that is, p | fo and p | go and therefore p? | ag, which is a
contradiction. Hence, p(z) is degreewise irreducible.[]

Eisenstein's criterion can be useful as a theoretical tool.

Corollary 1.7.4 Let R be an integral domain that contains at least one prime.
For every positive integer n, there is an irreducible polynomial p,(x) of degree
n over R.

Proof. According to Eisenstein's criterion, the primitive polynomial p(x) =
" — pis irreducible, where p is a prime.[]

Exercises
1. Prove that if R is an integral domain, then so is R[xy, ... , ).
(Chinese Remainder Theorem) Let p(z),...,p,(z) be pairwise

relatively prime polynomials over a field F. Let fi(z),..., f,(z) be
polynomials over F'. Prove that the system of congruences

o) = fi(@) mod 1 (2)

9(x) = fu(x) mod p,()

has a unique solution modulo the polynomial P(z) = [[pi(x).

Let E,F be fields with F' < E. Prove that if f(z) = g(x)h(z) is a
factorization of polynomials over F[z], where two of the three polynomials
have coefficients in F', then the third also has coefficients in F'.

Let R be a unique factorization domain. Prove that ¢(ap(z)) = ac(p(z))
for any p(z) € R[z] and o € R.

Prove that if n > 1 then the ring Fxy,... ,x,] is not a principal ideal
domain.

Verify the division algorithm (Theorem 1.3.1) for commutative rings with
identity. Hint: try induction on deg( f).

Let p(z),q(x) € F[x]. Prove that there exist polynomials a(z), b(z) €
F[z] with deg(a) < deg(q) and deg(b) < deg(p) for which

a(x)p(x) + b(z)q(x) = 0

if and only if p(x) and ¢(z) are not relatively prime.

Let F™* be the multiplicative group of all nonzero elements of a field F'. We
have seen that if G is a finite subgroup of F™*, then G is cyclic. Prove that if
F' is an infinite field then no infinite subgroup G of F* is cyclic.

Prove Theorem 1.5.1.

. Show that the following are irreducible over Q.

a) 2t + 823 +282% + 48z + 34
b) 2°+ 322 +52+2
c) 2®+322—-62+9
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14.

15.

16.

17.
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d) zt-—z+1

For p prime show that p(z) =1+ x + 2% + --- + 277! is irreducible over
Z|z). Hint: apply Eisenstein to the polynomial p(x + 1).

Prove that for p prime, p(z) = 2" + px + p? is irreducible over Z[z].

If R is an infinite integral domain and p(xy,... ,z,) is a polynomial in
several variables over R, show that p(z1,... ,x,) is zero as a function if
and only if it is zero as a polynomial.

Let p be a prime. Show that the number of monic irreducible polynomials
of degree 3 over Z, is (1/3)(p* — p).

There is a simple (but not necessarily practical) algorithm for factoring any
polynomial over Q, due to Kronecker. In view of Theorem 1.2.3, it suffices
to consider polynomials with integer coefficients. A polynomial of degree n
is completely determined by specifying n 4+ 1 of its values. This follows
from the Lagrange Interpolation Formula

Py =S pli) | T 2=
i=0

PR

Let f(z) be a polynomial of degree n > 1 over Z. If f(z) has a
nonconstant factor p(x) of degree at most n/2, what can you say about the
values p(i) fori =0, ..., [n/2]? Construct an algorithm for factoring f(x)
into irreducible factors. Use this method to find a linear factor of the
polynomial f(z) = 1 — 2 — 22 — 22° over Z.

Prove that if f(z)/g(x) = p(x)/q(z), where each rational expression is in
lowest common terms (no common nonconstant factors in the numerator
and denominator) then f(z) ~ p(z) and g(z) ~ q(x).

Let p(z) be a polynomial over F' with multiple roots. Show that there is a
polynomial ¢(z) over F' whose distinct roots are the same as the distinct
roots of p(x), but that occur in ¢(z) only as simple roots.

Reciprocal Polynomials

If f(x) is a polynomial of degree d, we define the reciprocal polynomial by
fr(x) = 2 f(x~"). Thus, if

then

f(x) =apz" +a, 12"+ -+ az 4 ag

fr(z) =apz" + a1a" '+ + a1+ a,

If a polynomial satisfies f(x) = fr(z), we say that f(x) is self-reciprocal.

18.
19.

Show that o # 0 is a root of f(z) if and only if ! is a root of fr(z).
Show that the reciprocal of an irreducible polynomial f(x) with nonzero
constant term is also irreducible.
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21.

22,
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Let p(x) = ap+ a1 + --- + a,z". Prove that if p is a prime for which
p | a;fori >0, p?fan,pfagthen p(x) is irreducible.

Show that if a polynomial f(x) # 1 + x is self-reciprocal and irreducible,
then deg(f) must be even. Hint: check the value of f(—1).

Suppose that f(z) = p(x)q(z) € Flz], where p(x) and g¢(z) are
irreducible, and f(x) is self-reciprocal. Show that either

a) p(x) = apr(z) and ¢(z) = agr(z) witha = £1, or

b) p(z) = agr(r) and q(x) = o Lpgr(z) for some a € F.



Chapter 2
Field Extensions

In this chapter, we will describe several types of field extensions and study their
basic properties.

2.1 The Lattice of Subfields of a Field

If E is an extension field of F', then E can be viewed as a vector space over F.
The dimension of E over F' is denoted by [F : F] and called the degree of E
over F'.

A sequence of fields F, ... , F, for which E; < E;.; is referred to as a tower
of fields, and we write

El <E2 < e <En,

The fact that dimension is multiplicative over towers is fundamental.

Theorem 2.1.1 Let I' < K < E. Then
[E:F)|=[E:K|K :F|

Moreover, if A ={c; | i € I} is a basis for E over K and B ={p;|j€ J}is
a basis for K over F, then the set of products C = {a,;f;|i€I,j€ J} isa
basis for E over F.

Proof. For the independence of C, suppose that 3 _; ; a; ja;3; = 0. Then

0= Z a; jo 3 = Z [Z ai,jﬁj] o
i.J J

i

and the independence of A over K implies that Zjai,jﬁj = 0 for all 7, and the
independence of B over I implies that a;; = 0 for all ¢ and j. Hence, C is
linearly independent. Next, if v € E then there exist a; € K such that v =
> a;c;. Since each a; is a linear combination of the 3's, it follows that v is a
linear combination of the products «;3;. Hence C spans E over F'. [
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The Composite of Fields

If F' and E are subfields of a field K, then the intersection F' N E is clearly a
field. The composite F'E of F' and F is defined to be the smallest subfield of K
containing both F' and E. The composite F'E is also equal to the intersection of
all subfields of K containing E and F'.

More generally, the composite \/E; of a family £ = {E; | i € I} of fields, all of
which are contained in a single field K, is the smallest subfield of K containing
all members of the family.

Note that the composite of fields is defined only when the
fields are all contained in one larger field. Whenever we form
a composite, it is with the tacit understanding that the relevant
fields are so contained.

A monomial over a family £ = {E; | i € I} of fields with E; < E is simply a
product of a finite number of elements from the union |JE;.

The set of all finite sums of monomials over £ is the smallest subring R of
containing each field F; and the set of all quotients of elements of R (the
quotient field of R) is the composite \/ E;. Thus, each element of \/E; involves
only a finite number of elements from the union | JE; and is therefore contained
in a composite of a finite number of fields from the family £.

The collection of all subfields of a field K forms a complete lattice £ (under set
inclusion), with meet being intersection and join being composite. The bottom
element in £ is the prime subfield of K (see Chapter 0) and the top element is
K itself.

2.2 Types of Field Extensions

Field extensions F' < E can be classified into several types, as shown in Figure
2.2.1. The goal of this chapter is to explore the properties of these various types
of extensions.
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Algebraic Transcendental

A A

Finitely generated algebraic  Fjnjtely generated transcendental

(= finite)
Simple algebraic Simple transcendental

Base field F

Figure 2.2.1

It is worth noting that some types of extensions are defined in terms of the
individual elements in the extension, whereas others are more “global” in
nature. For instance, an extension ' < E is algebraic if each element o € E is
algebraic over F'. Other characterizations involve properties of the field £ as a
whole. For instance, F' < E' is normal if E is the splitting field of a family of
polynomials over F'.

Let us begin with the basic definitions (which will be repeated as we discuss
each type of extension in detail). Recall that if F' < F, then an element o € E is
said to be algebraic over F' if « is a root of some nonzero polynomial over F'.
An element that is not algebraic over F' is said to be transcendental over F'.

If F < E and if S is a subset of E, the smallest subfield of £ containing both F
and S is denoted by F(S). When S ={ay,... ,«a,} is a finite set, it is
customary to write F'(ay, ... , ;) for FI(S).

Definition Let F' < E. Then

1) FE is algebraic over F' if every element o € E is algebraic over F.
Otherwise, I is transcendental over F'.

2) E is finitely generated over F' if E = F(S), where S C E is a finite set.

3) Eis a simple extension of F if E = F(«), for some o € E. In this case, «
is called a primitive element of E.

4) E is afinite extension of F' if [E : F| is finite.(]

To save words, it is customary to say that the extension F' < E is algebraic,
transcendental, finitely generated, finite or simple, as the case may be, if £ has
this property as an extension of F'.

The reader may have encountered a different meaning of the term primitive in
connection with elements of a finite field. We will discuss this alternative
meaning when we discuss finite fields later in the book.
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Note that a transcendental extension may have algebraic elements not in the
base field. For example, the transcendental extension Q < R has many algebraic

elements, such as ﬁ

In later chapters, we will study two other extremely important classes of
extensions: the separable and the normal extensions. Briefly, an algebraic
element o € E is separable over F' if its minimal polynomial is separable and
an extension F' < E is separable if every element of E is separable over F.
When char(F) =0 or when F is a finite field, all algebraic extensions are
separable, but such is not the case with more unusual fields. As mentioned
earlier, an extension E of F' is normal if it is the splitting field of a family of
polynomials. An extension that is both separable and normal is called a Galois
extension.

Distinguished Extensions

We will have much to say about towers of fields of the form F' < K < E. Let
us refer to such a tower as a 2-tower, where K is the intermediate field,
F < K is the lower step, K < E is the upper step and F' < E is the full
extension.

Following Lang, we will say that a class C of field extensions is distinguished
provided that it has the following properties

1) The Tower Property
For any 2-tower F' < K < E, the full extension is in C if and only if the upper
and lower steps are in C. In symbols,

(F<E)eC& (F<K)eCand (K< E)eC

2) The Lifting Property
The class C is closed under lifting by an arbitrary field, that is,

(F<E)eCand F <K= (K<EK)eC

provided, of course, that EK is defined. The tower K < EK is the lifting of
F<EbyK.

Note that if C is distinguished, then it also has the following property:

3) Closure under finite composites
If EK is defined, then
(F<E)eCand (F<K)eC= (F<EK)ecC
This follows from the fact that ' < E K can be decomposed into
F<FE<EK
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and the first step is in C, the second step is in C since it is the lifting of F' < E
by K, and so the full extension is in C.

Figure 2.2.2 illustrates these properties.

‘E ﬂEK\ EK
K E K E K
)N N\
F F F
Tower Lifting Composite
Figure 2.2.2

Consider a tower 7 of field extensions
i< Fy<---

We say that the tower 7 is in C, or has property C, if all extensions of the form
F; < Fj, where ¢ < j, are in C. To illustrate the terminology, an algebraic tower
is a tower in which each extension F; < F}, where i < j, is algebraic.

If a class C has the tower property, then the following are equivalent for a finite
tower 7 = (F1 < Fy <--- < F,):

1) TisinC
2) The full extension F} < F,isinC
3) Eachstep F; < Fj4 isinC.

If a class C of extensions has the property that
(F<E)eC=(F<\/E)ecC

for any family {F;} of fields (provided, as always, that the composite is
defined), we say that C is closed under arbitrary composites. This property
does not follow from closure under finite composites.

Here is a list of the common types of extensions and their distinguishedness. We
will verify these statements in due course.

Distinguished
Algebraic extensions
Finite extensions

Finitely generated extensions
Separable extensions
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Not Distinguished

Simple extensions (lifting property holds, upper and lower steps simple)
Transcendental extensions
Normal extensions (lifting property holds, upper step normal)

2.3 Finitely Generated Extensions

If F < FE and if S is a subset of E, the smallest subfield of E containing F' and
S is denoted by F(S). When S = {a,... ,a,} is a finite set, it is customary to
write F(ay, ... ,a,) for F(S).

Definition Any field of the form E = F(o,... ,qy) is said to be finitely
generated over F' and the extension F' < E is said to be finitely generated.
Any extension of the form F < F(«) is called a simple extension and « is
called a primitive element in F'(«;). O

The reader may have encountered a different meaning of the term primitive in
connection with elements of a finite field. We will discuss this alternative
meaning when we discuss finite fields later in the book.

Note that for1 <k <n —1,
Flag,...,an) =[F(aa, ..., c)](Qpr1y - s )

and so a finitely generated extension F' < F(ay,...,,) can be decomposed
into a tower of simple extensions

F<F(041) <F(041,042) < .- <F(041,042,...,O¢”)

It is evident that F'(ay,..., ) consists of all quotients of polynomials in the
a;'s:
F(Oél, vy Oén,)
Ay, ..., Qp
= {f(l) f>g € F[xla"'7xn]7g(a17”~7an) 7é O}
glag, ..., ay)

The class of finite extensions is our first example of a distinguished class.

Theorem 2.3.1 The class of all finitely generated extensions is distinguished.

Proof. For the tower property, if ' < F(S) < F(S)(T) is a 2-tower in which
each step is finitely generated, that is, if S and T are finite sets, then since
F(S)(T) = F(SUT), the full extension is finitely generated by S U T over F'.

Also, if FF < K < F(S), where S is finite, then since F'(S) = K(S), the upper
step is K < K (.5), which is finitely generated by S. However, the proof that the
lower step F' < K is finitely generated is a bit testy and we must postpone it
until we have discussed transcendental extensions in the next chapter.
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For the lifting property, if E = F(S), where S is finite and if F' < K, with EK
defined, then

EK = K(F(S)) = K(S)
and so the composite F K is finitely generated over K by S. O
2.4 Simple Extensions
Let us take a closer look at simple extensions ' < F'(«).
Simple Extensions Are Not Distinguished

The class of simple extensions has all of the properties required of distinguished
extensions except that the lower and upper steps being simple does not imply
that the full extension is simple. That is, if each step in a 2-tower is simple

F < F(a) < F(e)(B) = F(a, 9)
this does not imply that the full extension is simple.
Example 2.4.1 Let s and ¢ be independent variables and let p be a prime. In the
tower
ZLp(sP,tP) < Zp(s,t") < Zy(s,1)
each step is simple but the full extension is not. We leave proof of this as a

(nontrivial) exercise.[]

On the other hand, if the full extension is simple F' < K < F(«), then the
upper step is K < K («), which is simple. Also, the lower step is simple, but the
nontrivial proof requires us to consider the algebraic and transcendental cases
separately, which we will do at the appropriate time.

As to lifting, if F' < F(«) is simple and F' < K, then the lifting is K < K(«),
which is simple. Thus, the lifting property holds.
Simple Algebraic Extensions

Suppose that F' < F(«) is a simple extension, where « is algebraic over F. We
have seen that the minimal polynomial p,(xz) = min(«, F') of a over F' is the
unique monic polynomial of smallest degree satisfied by a. Also, p,(z) is
irreducible.

Now, F'(«) is the field of all rational expressions in «
f(e) }
Fla) = ,9 € Flz|, g(a 0
(@) {g(a)‘fg [z], 9(a) #

but we can improve upon this characterization considerably. Since g(«) # 0, it
follows that p,(z)fg(x) and the irreducibility of p,(z) implies that
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g(x) f pa(z). Hence, g(x) and p,(x) are relatively prime and there exist
polynomials a(z) and b(z) for which

a(x)g(x) + b(z)pa(z) =1

Evaluating at ov gives
1 = a(a)g(a) + b(a)pa(e) = a(a)g(a)
and so the inverse of g(«) is the polynomial a(«). It follows that
F(a) = { f(a) | f(2) € Fla]}

Morcover, if deg(f) > deg(p,), then

f(@) = q(x)pa(x) + 7(2)
where r(z) = 0 or deg(r) < deg(p,). Hence,

fla) = q(a)pa(a) +r(a) = r(a)

Thus,

Fa) = { /() | f(x) € Fla), deg() < deg(pa) }

In words, F'(«) is the set of all polynomials in o over F of degree less than the
degree of the minimal polynomial of «, where multiplication is performed
modulo p, ().
The map ¢: F|x] — F(«) defined by

o(f(2)) = [f(z) mod pu(2)]|s=a

is easily seen to be a surjective ring homomorphism. In fact, it is the
composition of two surjective ring homomorphisms: the first is projection
modulo p, (x) and the second is evaluation at c.

The kernel of ¢ is the ideal (p,(x)) generated by p,(x), since

ker(¢) = {f(z) € Flz] | [f(a) mod p,(x)] = 0}
={f(z) € Flz] | pa(z) | f(a)}
= <pu'(13)>
It follows that
]
FeT™ @y

This has a couple of important consequences. First, if we restrict attention to
polynomials of degree less than deg(p,(z)), then a can be treated as an
“independent” variable. Also, if a,, € E are conjugate (have the same minimal



Field Extensions 49

polynomial) over F, then the substitution map o: F'(«) — F'(/3) defined by
a(f(a)) = F(B)
is an isomorphism from F'(«) to F'(3).

Let us summarize.

Theorem 2.4.1 Let F < E and let o € E be algebraic over F'.
1) Then

F(a) = {(a) | f(x) € Fla], deg(f) < deg(pa) |

where multiplication is performed modulo p,(x).
2) Moreover,

3) The extension F' < F(«) is finite and
d = [F(a): F] = deg(pa())

Infact, the set B = {1,q,...,a% '} is a vector space basis for E over F.
4) Ifthe elements o, 3 € E are conjugate over F' then F(o) = F(3).0

We have seen that a simple extension F' < F'(«), where « is algebraic, is finite.
Conversely, if F < F(«) is finite and simple, then for any § € F(«), the
sequence 1,3, /3%, ... is linearly dependent and so [ is algebraic. Hence, all
elements of F'(«) are algebraic and so F' < F'(«) is an algebraic extension.

Theorem 2.4.2 The following are equivalent for a simple extension F < F(«)
1) «is algebraic

2) F < F(«) is algebraic

3) F < F(«) is finite.

In this case, [F(a) : F| = deg(min(o, F)).O

Characterizing Simple Algebraic Extensions

Simple algebraic extensions can be characterized in terms of the number of
intermediate fields.

Theorem 2.43 Let E = F(ay,...,o,) be finitely generated over F by

algebraic elements over F'.

1) Then E = F(«) for some algebraic element o € E if and only if there is
only a finite number of intermediate fields F < K < E between Il and F'.
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2) Inthis case, if E is an infinite field, then E = F(«) where o has the form
a=a10q + -+ a0y

fora; € F.
Proof. Suppose first that F' < F'(«) for some algebraic element « € E. For
each intermediate field F' < K < F'(«), the minimal polynomial min(a, F') is
also a polynomial over K and is satisfied by . Hence, min(«, K) | min(a, F').
But min(«, F') has only a finite number of monic factors. Therefore, this part of
the proof will be complete if we show that there is only one intermediate field
with minimal polynomial min(«, K).

Suppose that K and L have the property that
p(x) = min(a, K) = min(«, L)

Then the coefficients of p(z) lie in K N L. Since p(z) is irreducible over K, it
is also irreducible over K N L and so

p(x) = min(e, K) = min(e, L) = min(«,, K N L)
But KN L < K and so
[F(a) : K 1 L] = deg(p(x)) = [F(a) : K]

which implies that [ : KN L] =1andso K = K N L. Similarly, L=K N L
and so K = L. This shows that K is uniquely determined by the polynomial
min(a, K) and so there are only finitely many intermediate fields
F <K < F(a).

For the converse, if I is a finite field, then so is F, since it is finite-dimensional
over F' and so the multiplicative group E* of nonzero elements of E is cyclic. If
a generates this group, then F = F'(«) is simple. Now suppose that F' is an
infinite field and there are only finitely many intermediate fields between E and
F. Consider the intermediate fields F'(«; 4+ aaz), for all @ € F. By hypothesis,
F(ag + aas) = F(ag + bay) for some a#b€F. Hence, aj+bas€
F(aq + aay), implying that

1
o = —[(n +aas) = (a1 +baw)] € Floa + ac)

and
a1 = (a1 + aaw) — aas € F(ag + aas)

Hence, F(ai,a2) C F(ag + aag). The reverse inclusion is evident and so
F(Oél, 042) = F(Oél + (IOQ). HCI’ICG,

F(ag,az,...,ap) = Flog + acg, as, ..., ap)



Field Extensions 51

We can repeat this process to eventually arrive at a primitive element of the
desired form.[d

In view of the previous theorem, it is clear that if F' < K < F(«), where « is
algebraic, then the lower step F' < K is also simple. (Note that ' < K is a
finite extension and therefore finitely generated by the elements of a basis for K
over F', whose elements are algebraic over F'.)

Simple Transcendental Extensions

If ¢ is transcendental over F, then F'(¢) is the field of all rational expressions in
a:

ft)

Fio) = { I8 1.9 Filg 2o

g(t)
The fact that ¢ is transcendental implies that there are no algebraic dependencies
in these rational expressions and F'(¢) is, in fact, isomorphic to the field of
rational functions in a single variable.

Theorem 2.4.4 Let F' < E and let t € E be transcendental over F. Then F(t)
is isomorphic to the field of all rational functions F(x) in a single variable .
Proof. The evaluation homomorphism ¢: F'(z) — E defined by

is easily seen to be an isomorphism. To see that ¢ is injective, note that
f(t)/g(t) = 0 implies f(t) = 0, which implies that f(z) = 0, since otherwise ¢
would be algebraic.[]

Simple transcendental extensions fail rather misreably to be distinguished. For
example, the lifting of the transcendental extension F' < F(t) by F(t?) is
F(#*) < F(t), which is algebraic. Also, in the tower F' < F(t?) < F(t), the
upper step is algebraic.

Let F'(s,t) be the field of rational functions in two independent variables. Then
each step in the 2-tower

F < F(s) < F(s)(t) = F(s,t)

is simple, but the extension F' < F'(s,t) is not simple. The proof is left as an
exercise. (Intuitively speaking, we cannot expect a single rational function in x
and y to be able to express both x and y individually.)

On the other hand, the lower step F' < K < F'(t) of a transcendental extension
is simple and transcendental (provided that K # F'). This result is known as
Luroth's theorem and will be proved in the next chapter.
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Thus, simple transcendental extensions fail to be distinguished on every count
except that the lower step in a simple transcendental extension is simple and
transcendental.

More on Simple Transcendental Extensions

The fact that the upper step in the tower F' < F(t?) < F(t) is algebraic is not
an isolated case. Suppose that F < F'(t) is transcendental. Then any
s € F(t) \ F is a nonconstant rational function in ¢

_f@®

0)

where we can assume that f and g are relatively prime. It turns out that s carries
with it the full “transcendental nature” of the extension F' < F'(t). To be more
precise, consider the polynomial

p(x) = g(x)s — f(x) € F(s)[z]

Then ¢ is a root of p(z) and so ¢ is algebraic over F'(s). In other words, the
upper step in the tower

F < F(s) < F(t)

is algebraic and finitely generated (by t) and therefore finite, by Theorem 2.4.2.
As to the lower step, if it were also algebraic, it would be finite and so by the
multiplicativity of degree, F' < F'(t) would be finite and therefore algebraic.
Since this is not the case, we deduce that F' < F'(s) is transcendental, which
means that s does not satisfy any nonzero polynomial over F'.

We can now show that p(z) is irreducible over F'(s). Since s is transcendental
over F, we have F(s) ~ F(y), where y is an independent variable. It follows
that F'(s)[z] = F(y)[x] and so it is sufficient to show that the polynomial

h(y,z) = g(x)y — f(x) € F(y)[x]

is irreducible over F'(y). However, this follows from the fact that p(z) is
irreducible as a polynomial over the ring F'[y], that is, as a polynomial in
F[y][x] = Fly, «] = F[z][y]- To see this, note that any factorization in F'[z][y]
has the form

ply, z) = a(z)[b(x)y + c(x)]

where a(z),b(z) and c¢(x) are over F. But f(z) and g(x) are relatively prime
and so a(x) must be a unit in F'[x], which implies that p(y, z) is irreducible over
Fly, z].
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Hence, p(x) is irreducible over F'(s) and

[F(t) : F(s)] = deg(p) = max(deg(f), deg(g))

Theorem 2.4.5
1) Consider the extension F < F(t), where t is transcendental over F. Let
t
s = ) € F(t)
g(t)

be any element of F(t) \ F, where f(t) and g(t) are relatively prime. Then
in the tower

F < F(s) < F(t)

the lower step is transcendental (and so s is transcendental over F) and the
upper step is algebraic, with

[F(t) : F(s)] = max(deg(f), deg(9))

2) If't is transcendental over F, then F(t) is algebraic over any intermediate
field K other than F itself.

Proof. Part 1) has already been proved. As to part 2), if F' < K < F(t) where

K # F,thenlets € K \ F.Inthe tower F' < F(s) < K < F(t), we know that

F(s) < F(t) is algebraic and simple and thus finite. It follows that K’ < F'(¢) is

also finite, hence algebraic.[]

We should note that this theorem does not hold for nonsimple extensions.
Specifically, just because an extension F' < F is generated by transcendental
elements does not mean that all of the elements of E \ F are transcendental. For
example, the extension Q < Q(t, ﬁt), where ¢ is transcendental over Q, is
generated by transcendental elements ¢ and ﬁt, but some elements of
Q(t, ﬁt) \ Q are algebraic over Q. We will have more to say about this in
Chapter 3.

2.5 Finite Extensions

If F < E and [E : F] is finite, we say that E is a finite extension of F' or that
F < E is finite.

Theorem 2.5.1 An extension is finite if and only if it is finitely generated by
algebraic elements.

Proof. If F' < E is finite and if {ay, ..., a,} is a basis for E over F, then E =
F(aq,...,ay) is finitely generated over F'. Moreover, for each oy, the sequence
1,ap, a2, ... over powers is linearly dependent over F', and so oy, is algebraic
over F'. Thus, F' < E is algebraic.

For the converse, assume that £ = F(ay,... ,a,), where each «; is algebraic
over F'. Each step in the tower
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F<F(C¥]) <F(041,0ég) < .- <F(Oé1,...,0¢n)=E

is simple and algebraic, hence finite by Theorem 2.4.2. It follows that F is finite
over F. [

Suppose that E = F'(aq, ..., q,) is finitely generated by algebraic elements «;
over F and consider the tower

F < Flog) < Flag,o) < < F(ag,...,an) = E

Our results on simple algebraic extensions show that any element of F'(«) is a
polynomial in «; over F. Further, any element of F'(ay, o) is a polynomial in
ay over F(ay), and hence a polynomial in the two variables «; and as.
Continuing in this way, we conclude that F is the set of all polynomials over F'
maog, ..., Q.

Theorem 2.5.2 The class of finite extensions is distinguished. Moreover, if B is
a finite basis for E over F and if F < K, then B spans EK over K, in
particular,

[EK : K| < [E: F]

Proof. The multiplicativity of degree shows that the tower property holds. As to
lifting, let F' < F be finite, with basis {«;,...,®,} and let F < K. Then E =
F(aq,... ,ay), where each «; is algebraic over F' and so also over K. Since
EK = K(a,... , ) is finitely generated by elements algebraic over K, it is a
finite extension of K.

For the statement concerning degree, let B = {3, ..., 3,} be a basis for E over
F. If F < K, then the lifting is K < EK = K(04,...,03,) and each ; is
algebraic over K. It follows that EK is the set of polynomials over K in
01, ..., Bn. However, any monomial in the 3;'s is a linear combination (over F')
of B1,..., 0, and so EK is the set of linear combinations of 31, ..., 3, over K.
In other words, B spans EK over K.[]

We will see much later in the book that if F' < FE is finite, and also normal and
separable, then [F K : K| actually divides [E : F].

Note that if E is a splitting field for p(x) € F[z], then E is generated by the set
of distinct roots «i,...,a, of p(x). Thus E = F(ay,...,q,) is finitely
generated by algebraic elements and so is a finite extension of F', of degree at
most d!, where d = deg(p).

2.6 Algebraic Extensions

We now come to algebraic extensions.



Field Extensions 55

Definition An extension E of F is algebraic over F' if every element oo € E is
algebraic over F. Otherwise, E is transcendental over F'. [J

Theorem 2.6.1 4 finite extension is algebraic.

Proof. As we have said before, if F' < F is finite and o € F, then the sequence
of powers 1,a,0?,... is linearly dependent over F and therefore some
nontrivial polynomial in & must equal 0, implying that « is algebraic over F'. (]

Corollary 2.6.2 The following are equivalent for an extension F' < E
1) F < E is finite

2) F < Eis finitely generated by algebraic elements

3) F < Eis algebraic and finitely generated.[]

Theorem 2.6.3 Let F' < E. The set K of all elements of E that are algebraic
over F' is a field, called the algebraic closure of F'in F.

Proof. Let o, € K. The field F(«, () is finitely generated over F' by
algebraic elements and so is algebraic over F, that is, F(a,3) C K. This
implies that o', v & 3 and a3 all lie in K, and so K is a subfield of £. O

Theorem 2.6.4 The class of algebraic extensions is distinguished. It is also
closed under the taking of arbitrary composites.

Proof. For the tower property, let F' < K < E. If the full extension F' < E is
algebraic then so is the lower step ' < K. Also, since any polynomial over F' is
a polynomial over K, the upper step K < E is also algebraic. Conversely,
suppose that F' < K and K < E are algebraic and let o € F have minimal
polynomial p(z) = > a;z’ over K. Consider the tower of fields

F < F(ay,...,a,) < F(ay,...,an, @)

Since « is algebraic over F(ay,...,a,) and each a;, being in K, is algebraic
over F, we deduce that each step in the tower is finite and so
F < F(ay,...,ay,,«) is finite. Hence, « is algebraic over F'.

For the lifting property, let FF < FE be algebraic and let F' < K. Let
K < A < EK, where A is the algebraic closure of K in F K. Then since each
«a € F is algebraic over F' it is a fortiori algebraic over K and so E < A.
Clearly, K < Aand so EK < A. It follows that EK = A is algebraic over K.

Finally, if {E;} is a family of fields, each algebraic over F, then so is \/E;,
since an element of \/E; is also an element of a composite of only a finite
number of members of the family. (I

The algebraic closure of the rational numbers Q in the complex numbers C is
called the field A of algebraic numbers. We saw in the previous chapter that
there is an irreducible polynomial p,(x) € Z[z] of every positive degree n.
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Hence, A is an infinite algebraic extension of QQ, showing that the converse of
Theorem 2.6.1 does not hold: algebraic extensions need not be finite.

Note that if o € R is an algebraic number, it also satisfies a polynomial over the
integers. Thus, the algebraic numbers can be defined as the set of complex roots
of polynomials over the integers. The subfield of all complex roots of monic
polynomials over the integers is called the field of algebraic integers.

We note finally that if F' < E is algebraic and if E = F'(S) for some S C F
then each element of E is a polynomial in finitely many elements from S. This
follows from the fact that each o € F'(S) is a rational function in finitely many
elements of S and so there exists a finite subset Sy C S such that o € F(S)).
Hence, our discussion related to finitely generated algebraic extensions applies
here.

2.7 Algebraic Closures

Definition A field E is said to be algebraically closed if any nonconstant
polynomial with coefficients in E splits in E. O

Note that an algebraically closed field E cannot have a nontrivial algebraic
extension F < K, since any « € K is algebraic over F and its minimal
polynomial over F must split over E, whence o € E.

Theorem 2.7.1 Let F' be a field. Then there is an extension E of F that is
algebraically closed.

Proof. The following proof is due to Emil Artin. The first step is to construct an
extension field F} of F, with the property that all nonconstant polynomials in
F[z] have a root in Fj. To this end, for each nonconstant polynomial
p(x) € Flz], let X, be an independent variable and consider the ring R of all
polynomials in the variables X, over the field F'. Let 7 be the ideal generated
by the polynomials p(X,). We contend that Z is not the entire ring R. For if it
were, then there would exist polynomials qi,...,q, € R and p;,...,p, €T
such that

@p1(Xp) + o+ @upa(Xp,) =1

This is an algebraic expression over F' in a finite number of independent
variables. But there is an extension field F of F' in which each of the
polynomials p;(x),..., p,(z) has a root, say ai,...,a,. Setting X,, = ¢; and
setting any other variables appearing in the equation above equal to 0 gives
0 = 1. This contradiction implies that Z # R.

Since Z # R, there exists a maximal ideal 7 such that Z C 7 C R. Then
Fy =R/J is a field in which each polynomial p(x) € F[z] has a root, namely
X, 4+ J. (We may think of F} as an extension of F' by identifying o € F' with
a+J.)
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Using the same technique, we may define a tower of field extensions

F<F<Fy<--

such that each nonconstant polynomial p(z) € F;[z] has a root in Fjyy. The
union E =|JF; is an extension field of F. Moreover, any polynomial
p(z) € E|x] has all of its coefficients in F; for some 4 and so has a root in Fj.,
hence in E. It follows that every polynomial p(x) € E[x] splits over E. Hence
E is algebraically closed. [

Definition Let FF < E. Then E is an algebraic closure of F if F'< FE is
algebraic and E is algebraically closed. We will denote an algebraic closure of

afield F by F. O
We can now easily establish the existence of algebraic closures.

Theorem 2.7.2 Let F' < E where E is algebraically closed. Let F < A < E
where A is the algebraic closure of F in E. Then A is the only algebraic
closure of F' that is contained in E. Thus, any field has an algebraic closure.
Proof. We have already seen that A is an algebraic extension of F. By
hypothesis, any p(z) € A[x] splits in E and so all of its roots lie in E. Since
these roots are algebraic over A, they are also algebraic over F' and thus lie in
A. Hence p(z) splits in A and so A is algebraically closed.

As to uniqueness, if F' < B < E with B an algebraic closure of F', then since
F < B is algebraic, we have B < A. But if the inclusion is proper, then there is
an o € A\ B. It follows that min(«, F') does not split over B, a contradiction to
the fact that B is algebraically closed. Hence, B = A. The final statement of the
theorem follows from Theorem 2.7.1.00

We will show a bit later in the chapter that all algebraic closures of a field F are
isomorphic, which is one reason why the notation F' is (at least partially)
justified.

Here is a characterization of algebraic closures.

Theorem 2.7.3 Let F' < E. The following are equivalent.

1) Eis an algebraic closure of F'.

2) E is a maximal algebraic extension of F, that is, F' < E is algebraic and if
E < K is algebraic then K = E.

3) E is a minimal algebraically closed extension of F', that is, if F < K < E
where K is algebraically closed, then K = E.

4) F < E is algebraic and every nonconstant polynomial over F' splits over
E.



58 Field Theory

Proof. To see that 1) implies 2), suppose that F is an algebraic closure of F' and
F < F < K is algebraic. Hence, any o € K is algebraic over F. But min(a, F')
splits over F' and so F contains a full set of roots of min(«, F'). Hence, a € F,
which shows that K = F. Thus, F is a maximal algebraic extension of F.

Conversely, let E' be a maximal algebraic extension of F and let p(z) € E[z].
Let K be the splitting field for p(z) over E. Thus, F' < F < K is an algebraic
tower, since K is generated over E by the finite set of roots of p(z). Hence, the
maximality of E implies that K = F, and so p(z) splits in F, which says that £
is algebraically closed and therefore an algebraic closure of F'.

To see that 1) implies 3), suppose that F' < K < F where K is algebraically
closed. Since K < F is algebraic, it follows that k' = F. Conversely, suppose
that £ is a minimal algebraically closed extension of F'. Let A be the algebraic
closure of F' in E. Thus, FF < A < E, with F' < A algebraic. If A is not
algebraically closed, then there is a polynomial p(x) over A that does not split
over A. But p(z) is also a polynomial over E and therefore splits over E.
Hence, each of its roots in £ is algebraic over A and therefore also over F', and
so lies in A, which is a contradiction. Hence, A is algebraically closed and so
the minimality of F implies that A = F, whence F is an algebraic closure of F'.

Finally, it is clear that 1) implies 4). If 4) holds, then ' < E is algebraic and if
F < E < K is algebraic, then let o« € K \ E have minimal polynomial p(z)
over F. This polynomial splits over £ and so « € E, which implies that
K = F, whence F is a maximal algebraic extension of F’ and so 2) holds.O0

2.8 Embeddings and Their Extensions

Homomorphisms between fields play a key role in the theory. Since a field F’
has no ideals other than {0} and F, it follows that any nonzero ring
homomorphism o: F' — R from F’ into a ring R must be a monomorphism, that
is, an embedding of F' into R.

A bit of notation: Let f: A — B be a function.

1) The restriction of f to C' C A is denoted by f|c.

2) The image of A under f is denoted by fA or by A7.

3) The symbol < denotes an embedding. Thus, o: F' — L signifies that o is
an embedding of F' into L.

4) If p(z) = Y a;x' € F[z] and if o: F — E is an embedding, the polynomial
Y o(a;)x' € Elx] is denoted by (op)(z) or p°(z).

Definition Let o: F — L be an embedding of F into L and let F < E.
Referring to Figure 2.8.1, an embedding 5: E — L for which G|p = o is called
an extension of o to E. An embedding of E that extends the identity map
t: F — F is called an embedding over F', or an F-embedding.
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Figure 2.8.1

The set of all embeddings of F into L is denoted by hom(F', L). The set of all
embeddings of E into L that extend o is denoted by hom,(F, L) and the set of
all embeddings over F' is denoted by homp(E, L). O

Embeddings play a central role in Galois theory, and it is important to know
when a given embedding o: F' — L can be extended to a larger field F, and
how many such embeddings are possible. We will discuss the former issue here,
and the latter issue in the next chapter.

The Properties of Embeddings

Embeddings preserve many properties. For example, an embedding maps roots
to roots and preserves composites.

Lemma 2.8.1

1) (Embeddings preserve factorizations and roots) If o: F — L and
f(z) € Flz], then f(x) = p(x)q(z) if and only if f7(z) = p°(z)q’(z).
Also, o € F'is aroot of p(x) if and only if oo is a root of p7(z).

2) (Embeddings preserve the lattice structure) If o: K — L and if
{E; | i € I} is a family of subfields of K then

o(E)=(\eE: and o(\/E) =\/0E;

3) (Embeddings preserve adjoining) If o: K — Landif F < K and S C K
then

o(F(S)) = F°(sS)

4) (Embeddings preserve being algebraic) Let o: ' — L and let F' < E be
algebraic. If o: E — L is an extension of o, then ¢ ' < G E is algebraic.

5) (Embeddings preserve algebraic closures) Let o: F — L and let E be an
algebraic closure of F. If o: E — L is an extension of o, then ¢ F is an
algebraic closure of o F'.

Proof. We leave the proof of parts 1), 4) and 5) to the reader. For part 2), since

o is injective, it preserves intersections. But

\VE =({H|E <H<K foralli € I}
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and so
o(\/E)=({oH | E: < H < K foralli € T}
=({H'|0E; < H < oK foralli € I}

= \/O'EZ

For part 3), o(FFE) contains ¢ F and o F and so it contains the smallest field
containing these two sets, that is o(F'E) 2 oFoE. On the other hand, if K is a
field for which ¢F < K and ¢FE < K, then F <o 'K and FE < o7 'K,
whence FE < 07K, and so 0(FE) < K. In other words, o(FE) is contained
in any field containing o F' and ¢ F, including the composite o F'o £.00

Even though the next result has a simple proof, the result is of major
importance. If F' < FE is algebraic and 0: E — FE over F, then since o permutes
the roots of any polynomial over F' and since every element of F is a root of a
polynomial over F, it follows that every element of F is the image of some
element of F, that is, the embedding ¢ must be surjective, and hence an
automorphism.

Theorem 2.8.2 If ' < E is algebraic and o: E — E over F, then o is an
automorphism of E. In symbols,

homF(E, E) = AutF(E)

Proof. Let o € E and let S be the set of roots of the minimal polynomial
min(a, F') that lie in E. Then o|g is a permutation on S and so thereisa 8 € S
for which o3 = .. Hence, o is surjective and thus an automorphism of £.[]

Extensions in the Simple Case

Consider the case of a simple algebraic extension. Suppose that o: F — L,
where L is algebraically closed. Let a be algebraic over F. We can easily
extend o to F'(«), using the minimal polynomial p(x) of o over F.

The key point is that any extension & of ¢ is completely determined by its value
on « and this value must be a root 8 of p?(z), where p(z) = min(a, F). In fact,
we must have

a(f(@) = f7(B)

for any f(x) € F[z]. Moreover, it is easy to see that this condition defines an
isomorphism o3: F'(«) — F7(f3) over o.

Theorem 2.8.3 Let F' < E and let o € E be algebraic over F, with minimal

polynomial p(x). Let o: F — L, where L is algebraically closed.

Iy If B is a root of p°(x) in L, then o can be extended to an embedding
op: F(a)) — L over o for which oga = 3.
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2) Any extension of o to F'(«) must have the form o, as described in part 1).
3) The number of extensions of o to F(«) is equal to the number of distinct
roots of min(c, F) in F.O0

The previous theorem shows that the cardinality of hom,(F(«),L) depends
only on « through its minimal polynomial, and furthermore, that it does not
depend on either o or L! We will explore this issue further in the next chapter.

Extensions in the Algebraic Case

The simple case, together with Zorn's lemma, is just what we need to prove that
if o1 F — L, with L algebraically closed and if /' < E is algebraic, then there
is at least one extension of o to .

Theorem 2.8.4 Let F' < E be algebraic.

1) Any embedding o:F — L, where L is algebraically closed, can be
extended to an embedding v: E — L.

2) Moreover, if « € E and p(x) = min(c, F') and B € L is a root of p°(x),
then we can choose @ so that ca = (. (See Figure 2.8.2.)

Proof. Let £ be the set of all embeddings 7 € hom, (K, L) for which a € K

and Ta = § where F' < K < E. Since o can be extended to an embedding of

F(«) into L in such a way that o(«) = 3, it follows that £ is not empty.

The set £ is a partially ordered set under the order defined by saying that
(mK— L)< (7:K'— L) if K < K’ and 7’ is an extension of 7. If C =
{r;: K; — L} is a chain in &, the map 7:|JK; — L defined by the condition
7|k, = T, is an upper bound for C in €. Zorn's lemma implies the existence of a
maximal extension 7: K — L. We contend that K = F, for if not, there is an
element v € E'\ K. But v is algebraic over K and so we may extend 7 to

K (v), contradicting the maximality of 7.00
L

Figure 2.8.2

As a corollary, we can establish the essential uniqueness of algebraic closures.

Corollary 2.8.5 Any two algebraic closures of a field ' are isomorphic.
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Proof. Let K and L be algebraic closures of F'. The identity map ¢: F' — F can
be extended to an embedding 7: K — L. Since K is algebraically closed so is
7K. But L is an algebraic extension of 7K and so L = 7K. Hence, 7 is an
isomorphism. []

Independence of Embeddings

Next, we come to a very useful result on independence of embeddings. We
choose a somewhat more general setting, however. A monoid is a nonempty set
M with an associative binary operation and an identity element. If M and M’
are monoids, a homomorphism of M into M’ is a map ¢: M — M’ such that

P(af) = ¢(a)y(B) and ¢(1) = 1.

Definition Let M be a monoid and let K be a field A homomorphism
x: M — K*, where K* is the multiplicative group of all nonzero elements of K
is called a character of M in K. O

Note that an embedding o: E' < L of fields is a character, when restricted to
E*.

Theorem 2.8.6 (E. Artin) Any set T of distinct characters of M in K is linearly
independent over K.
Proof. Suppose to the contrary that

a1X1+ -+ Xn = 0

for x; € 7 and «; € K, not all 0. Look among all such nontrivial linear
combinations of the x;'s for one with the fewest number of nonzero coefficients
and, by relabeling if necessary, assume that these coefficients are ayq, ..., a,.
Thus,

a1X1 (g) + a’r'Xr(g) =0 (281)

for all g € M and this is the “shortest” such nontrivial equation (hence «; # 0
for all 7). Note that since x;(g) € K*, we have x;(g) # 0 for all g € M. Hence,
r> 1.

Let us find a shorter relation. Since x; is a character, x;(f) # 0 forall f € M.
Multiplying by x1(f) gives

ava(f)xi(g) + eaxa(Fxz(9) + -+ axa(f)x(9) = 0
On the other hand, replacing g by fgin (2.8.1) gives,

arx1(f)xi(g) + caxa(f)x2(9) + - + arxe(f)xr(9) = 0
Subtracting the two equations cancels the first term, and we get

asxa(f) = xa(Hxa(g) + -+ + alxa(f) = x(Hlxr(g) =0
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Now, since x1 # X, there is an f € M for which x1(f) — x,(f) # 0 and we
have a shorter nontrivial relation of the form (2.8.1). This contradiction proves
the theorem.[

Corollary 2.8.7 (Dedekind independence theorem) Let E and L be fields. Any
set of distinct embeddings of E into L is linearly independent over L. (]

2.9 Splitting Fields and Normal Extensions

Let us repeat a definition from Chapter 1.

Definition Let F = {fi(x) |i € I} be a family of polynomials in F|z]. A
splitting field for F over F is an extension field E of F' with the property that
each f;(x) splits in E and that E is generated by the set of all roots of the
polynomials in F. [

The next theorem says that splitting fields not only exist, but are essentially
unique.

Theorem 2.9.1 (Existence and uniqueness of splitting fields) Ler F be a

family of polynomials over I

1) In any algebraic closure F of F, there is a unique splitting field for F.

2) IfF <S5 <Kjyand F < Sy < Ky are algebraic, where Sy is the splitting
field for F in K, and Ss is the splitting field for F in Ky then any
embedding o: K1 — Ky over F maps S1 onto Ss.

3) Any two splitting fields for F are isomorphic over F'.

Proof. For part 1), if F is a family of polynomials over F’, then every member

of F splits in ' and so F' contains the field S generated over F' by the roots in

F of the polynomials in JF, that is, ' contains a splitting field for F. It is clear

that this splitting field is unique in F', because any splitting field in F must be

generated, in F, by the roots of all polynomials in F.

For part 2), if R is the family of roots of F contained in .S; then S; = F(R) and
SO

o(51) = o(F(R)) = F(oR)

But o R is precisely the set of roots of F in Sy and so F'(oR) is the splitting
field for F in K5, that is, 0(S;) = F(0R) = Ss. Part 3) follows immediately
from part 2).01

o-Invariance and Normal Extensions

Speaking very generally, if f: A — A is any function on a set A and if S C A
has the property that f(S) C S, then S is said to be invariant under f, or f-
invariant. This notion occurs in many contexts, including the present one,
although the term “invariant” is seldom used in the present context.
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Suppose that F' < K < F is algebraic and that o: K < F is an embedding
over F of K into the algebraic closure F. Then K is o-invariant if oK C K.
However, since F' < K is algebraic, any embedding of K into itself is an
automorphism of K and so K is o-invariant if and only if ¢ K = K, that is, if
and only if o is an automorphism of K.

Suppose that K is o-invariant for all embeddings o: K < F over F. Then it is
not hard to see that any irreducible polynomial p(z) over F' that has one root «
in K must split over K. For if 3 is also a root of p(z) in F, then there is an
embedding o € homp (K, F) for which ca = (3. Hence, the o-invariance of K
implies that 3 € K. Put another way, we can say that K is the splitting field for
the family

MinPoly(K, F) = {min(«, F') | « € K}

Thus, for F' < K algebraic, we have shown that 1) = 2) = 3), where

1) K is o-invariant for all embeddings o: K — F over F’
2) If an irreducible polynomial over F' has one root in K, then it splits over K.
3) K is a splitting field, specifically for the family MinPoly(K, F').

On the other hand, suppose that K is a splitting field of a family F of
polynomials over F. Thus, K = F'(R), where R is the set of roots of the
polynomials in . But any embedding o: K < F over F sends roots to roots
and so sends R to itself. Hence,

o(K) = o(F(R)) = F'(oR) = F(R) = K

Since ¢ is an embedding of K into itself over F' and F' < K is algebraic, it
follows that o is an automorphism of K. Thus, 1)-3) are equivalent.

Theorem 2.9.2 Let F' < K < F, where F is an algebraic closure of F. The

following are equivalent.

1) K is a splitting field for a family F of polynomials over F.

2) K is invariant under every embedding o: K — F over F. (It follows that
every embedding of K into F over F is an automorphism of K.)

3) Every irreducible polynomial over F that has one root in K splits in K.[J

Definition An algebraic extension F' < E that satisfies any (and hence all) of
the conditions in the previous theorem is said to be a normal extension and we
write F' < E. We also say that E is normal over F. [

Corollary 2.9.3 If F < FE is a finite normal extension, then E is the splitting
field of a finite family of irreducible polynomials.
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Proof. Let F = F(ay,...,a,). Since E<F, each minimal polynomial
min(«;, F) splits in E. Clearly, E is generated by the roots of the finite family
F = {min(o;, F')} and so F is the splitting field of 7. O

Note that the extension F' < F' is normal, since any nonconstant p(z) € F[x]
splits in E.

Normal Extensions Are Not Distinguished

As it happens, the class of normal extensions is not distinguished, but it does
enjoy some of the associated properties.

Example 2.9.1 It is not hard to see that any extension of degree 2 is normal.

The extension Q < Q(1/2) is not normal since Q(+/2) contains exactly two of
the four roots of the irreducible polynomial z* — 2. On the other hand,

Q< Q(V2) <Q(v/2)

has each step of degree 2 and therefore each step is normal.[]
Here is what we can say on the positive side.

Theorem 2.9.4

1) (Full extension normal implies upper step normal) Let FF < K < E. If
F <« E is normal then K < E.

2) (Lifting of a normal extension is normal) /f FF'<FE and F < K then
K< FEK.

3) (Arbitrary composites and intersections of normal are normal) /f {E;}
is a family of fields, and F' < E; then F <\| E; and F <[ \E;.

Proof. Part 1) follows from the fact that a splitting field for a family of

polynomials over F' is also a splitting field for the same family of polynomials

over K.

For part 2), let E' be a splitting field for a family F of polynomials over F' and
let R be the set of roots in E of all polynomials in F. Then E = F(R). Hence,
EK = K(R), which shows that EK is a splitting field for the family F,
thought of as a family of polynomials over K. Hence, K < EK.

For part 3), let o: \/ E; — F over F. Then o is an embedding when restricted to
each F; and so o E; = F;, whence

and so ¢ is an automorphism of \/ £;. Similarly, if o: (\E; — F over F then

O'(mE7) = ﬂG'Ej = nEZ O
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Normal Closures

If F' < E is not normal, then there is a smallest extension N of E (in a given
algebraic closure F') for which IV is normal over F. Perhaps the simplest way to
see this is to observe that F' < I is normal and the intersection of normal
extensions is normal, so

N=({{K| E<K<Fand FaK}

Definition Let F' < E < F. The normal closure of E over F in F is the
smallest intermediate field E < K < F for which F < K. The normal closure is
denoted by nc(E/F).O0

Theorem 2.9.5 Let F' < E < F be algebraic, with normal closure nc(E/F).
1)  The normal closure nc(E/ F) exists and is equal to

N=(\{{K| E<K<FandF<K}
2)
ne(E/F)= \/ ©oE

ochomp(E,F)

3) nc(E/F) is the splitting field in F of the family

MinPoly(E, F) = {min(o, F') | « € E}
4) IfE = F(S), where S C F, then nc(E/F) is the splitting field in F of the

family

MinPoly(S, F') = {min(c, F) | o € S}
5) IfF < Eis finite, then F' < nc(E/F) is also finite.
Proof. We prove only part 2), leaving the rest for the reader. Let £ < L < F'
with F' < L. Since E < L is algebraic, any embedding o € homp(E, F) can be
extended to an embedding 7:L — F over F. Since F<L, 7 is an
automorphism of L. It follows that cF C L and so \/ocE < L. On the other

hand, if J = \/oE, then F' < J, since if 7 € homp(J, F') then 7o runs over all
elements of homp(.J, F') as o does and so

TJ = T(\/JE) = \/(TJE) < \/O’E =J

Hence, F < J and J is the smallest normal extension of F' in F, that is, J =
nc(E/F).0O

Exercises

1. Prove that \/5,/7 € Q(v/5 + /7).
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11.

12.

13.

14.

15.
16.

17.
18.
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Prove that if E is an algebraic extension of the real field R and E # R, then

FE is isomorphic to the complex numbers C.

Prove that every finite field F' of characteristic p is a simple extension of its

prime subfield Z,,.

Let F' < E. Suppose that F' < F'(S) is finite, where S is a subset of E. Is it

true that F'(S) = F(S;) for some finite subset Sy of S?

If F<FE and E is algebraically closed, is E necessarily an algebraic

closure of F'?

Suppose that char(F) = 0 and that ' < E < F. Let a € E. Prove that if

min(c, F') has only one distinct root in F, then o € F and the multiplicity

of v is 1. What can be said if char(F’) # 0?

Let F' < E be a quadratic extension, that is, an extension of degree 2.

Show that E has a basis over F of the form {1, a} where a* € F.

a) Find all automorphisms of Q.

b) Is there an isomorphism o Q(ﬁ) —Q( \/5) over Q for which
o(v/2) = /3

¢) Is there an isomorphism o: Q(1/2) — Q(1/2) over Q other than the
identity?

Show that the automorphism o: Q(1/2) — Q(1/2) over Q that sends \/2

to —\/5 is not continuous.

Prove that if F' < E is algebraic and has only a finite number of

intermediate fields, then ' < F is a finite extension.

Let R be an integral domain containing a field F'. Then R is a vector space

over F. Show that if [R: F] <oo then R must be a field. Find a

counterexample when R is a commutative ring with identity but not an

integral domain.

If F < F is algebraic and R is a ring such that F' C R C F, show that R is

a field. Is this true if F' < E is not algebraic?

Let < E and F < K be finite extensions and assume that EFK is

defined. Show that [EK : F| < [E: F|[K : F|, with equality if [E : F

and [K : F) are relatively prime.

Let 0: K — E and let F' < K N E. Show that o is F-linear if and only if

o(a)=aforalla € F.

Find an extension F' < E that is algebraic but not finite.

The algebraic closure of Q in C, that is, the set of all complex roots of

polynomials with integer coefficients, is called the field A of algebraic

numbers. Prove that Q < A is algebraic and infinite by showing that if

D1, ..., P are distinct primes, then

[Q(\/E,...,\/ﬁ;(@] —9m

Hint: use induction on m.

Prove that any extension of degree 2 is normal.

Let I’ < E be a finite Galois extension and let «, 5 € E have degrees m
and n over F, respectively. Suppose that [F'(a, §) : F] = mn.
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a) Show that if «; is a conjugate of v and (3; is a conjugate of 3, then
there is a 0 € Gr(E) such that oo = o; and o = ;. Hence, the
conjugates of o + 3 are o; + 3.

b) Show that if the difference of two conjugates of « is never equal to the
difference of two conjugates of 3 then F(«, 5) = F(a + ).

Let F be an infinite field and let F' < F be an algebraic extension. Show

that |E| = |F.

Let F' < F where F is an algebraic closure of F' and let G = Autz(F) be

the group of all automorphisms of F fixing F pointwise. Assume that all

irreducible polynomials over F’ are separable. Let

fix(G) ={a € F|oa=aforalloc € G}

be the fixed field of F under G. Evidently F' < fix(G) < F'. Prove that

fix(G) = F.

(For readers familiar with complex roots of unity) Let p be a prime and let

a#1 be a complex pth root of unity. Show that min(a, Q) =

14z + 2%+ --- + 2P~!. What is the splitting field for 2 — 1 over Q?

Let F' be a field of characteristic p # 0 and let o € F. Show that the

following are equivalent: a) o € F, b) F(a?') =F, ¢) [F(a)]” CF

where [F(a)]” = {s*" | s € F(a)}.

Let F' < F be a finite normal extension and let p(z) € F[z] be irreducible.

Suppose that the polynomials f(x) and g(«) are monic irreducible factors

of p(z) over E. Show that there exists a 0 € Autp(FE) for which f7(x) =

9().

Show that an extension F' < F is algebraic if and only if any subalgebra S

of F over F is actually a subfield of E.

Let F < E. Can all automorphisms of F' be extended to an automorphism of

E?

Suppose that F' and E are fields and 0: F' — E is an embedding. Construct

an extension of F' that is isomorphic to F.

Let F' < E be algebraic.

a) Finish the proof of Theorem 2.9.5.

b) Show that any two normal closures F < F < K; <L; and
F < FE < Ky <Ly, where L; is an algebraic closure of F' are
isomorphic.

With reference to Example 2.4.1, let s and ¢ be independent variables and

let p be a prime. Show that, in the tower

Zp(sP, 1) < Zy(s,t7) < Zy(s,1)
each step is simple but the full extension is not.

Consider the field F(z,y) of rational functions in two (independent)
variables. Show that the extension F' < F'(x,y) is not simple.
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Constructions

The goal of the following series of exercises is to prove that certain
constructions are not possible using straight edge and compass alone. In
particular, not all angles can be trisected, a circle cannot be “squared” and a
cube cannot be “doubled.” The first step is to define the term constructible.

Definition We assume the existence of two distinct points P, and Py in the

plane and take the distance between these points to be one unit. A point, line or

circle in the plane is said to be constructible if it can be obtained by a finite

number of applications of the following rules:

1) Py and P, are constructible.

2) The line through any two constructible points is constructible.

3) The circle with center at one constructible point and passing through
another constructible point is constructible.

4) The points of intersection of any two constructible lines or circles are
constructible.

30. Show that if a line L and point P are constructible, then the line through P
perpendicular to L is also constructible.

31. Show that if a line L and point P are constructible, then the line through P
parallel to L is also constructible.

32. Taking the constructible line through P, and P, as the x-axis and the point
P, as the origin, the y-axis is also constructible. Show that any point (a, b)
with integer coordinates is constructible.

33. Show that the perpendicular bisector of any line segment connecting two
constructible points is constructible. Show that the circle through two
constructible points P and @ with center equal to the midpoint of P and @
is constructible.

34. If P, @ and R are constructible points and L is a constructible line through
R then a point S can be constructed on L such that the distance from S to
R is the same as the distance from P to (). (Thus, given distances can be
marked off on constructible lines.)

Constructible Numbers

Definition A real number r is constructible if its absolute value is the distance
between two constructible points. O

35. Show that any integer is constructible.

36. Prove that a point (a,b) is constructible if and only if its coordinates a and
b are constructible real numbers.

37. Prove that the set of numbers that are constructible forms a subfield of the
real numbers containing Q. Hint: to show that the product of two
constructible numbers is constructible or that the inverse of a nonzero
constructible number is constructible, use similar triangles.
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38. Prove that if o > 0 is constructible, then so is \/a. Hint: first show that a
circle of diameter 1 + «, with center on the z-axis and going through the
origin P is constructible. Mark off « units along the x-axis and draw the
perpendicular.

The two previous exercises prove the following theorem.

Theorem C1 [f the elements of a field F < R are constructible, and if o € F,
then F(\/a) = {a+b\/a | a,b € F} is constructible. O

Theorem C2 Let F' be a subfield of R and let E > F' be a quadratic extension.
Then E = F(\/a) for some o € F.

Proof. Exercise. (I

It follows from the two previous theorems that if F' is constructible and if
F < F is a quadratic extension, that is, [F : F'| = 2, then E is constructible.
Any tower F) < F, < --- < F,,, where each extension has degree 2 is a
quadratic tower. Thus, if Q < F; < Ey < --- < E,, is a quadratic tower, then
every element of F, is constructible.

The converse of this statement also happens to be true.

Theorem C3 (Constructible numbers) The set of constructible real numbers is
the set of all numbers that lie in some quadratic tower

Q<E1<E2<"‘<En

with base Q. In particular, the degree of a constructible number over Q must be
a power of 2.
Proof. Exercise. [

Constructible Angles

Now consider what it means to say that an angle of 6° is constructible.
Informally, we will take this to mean that we may construct a line L through the
origin that makes an angle of 6§ with the x-axis. Formally, the angle (real
number) 6 is constructible if the real number cos(6) is constructible.

39. Show that such a line L making angle 6 with the x-axis is constructible if
and only if the real number cos(f) is constructible. (This is an informal
demonstration, since we have not formally defined angles.)

40. Show that a 60° angle is constructible.

41. Show that a 20° angle is not constructible. Hint: Verify the formula

cos(30) = 4 cos’(0) — 3 cos(h)

Let oo = cos 20° and show that « is a root of



42.

43.

Field Extensions 71

p(x) =8z — 62 — 1

Show that p(z) is irreducible over Q and so [Q(«) : Q] = 3.

Prove that every constructible real number is algebraic over Q. Assuming
that 7 is transcendental over Q, show that any circle with a constructible
radius cannot be “squared,” that is, a square cannot be constructed whose
area is that of a unit circle.

Verify that it is impossible to “double" any cube whose side length r is
constructible, that is, it is impossible to construct an edge of a cube whose
volume is twice that of a cube with side length r.



Chapter 3

Embeddings and Separability

3.1 Recap and a Useful Lemma

Let us recall a few facts about separable polynomials from Chapter 1.

Definition An irreducible polynomial p(x) € F[z] is separable if it has no
multiple roots in any extension of F. An irreducible polynomial that is not
separable is inseparable.[]

Definition I/ F' < E, then an algebraic element o € E is separable if its
minimal polynomial min(«, F) is separable. Otherwise, it is inseparable. Also,
the radical exponent of « over F' is the radical exponent of min(c, F). O

Theorem 3.1.1
1)  Anirreducible polynomial p(x) is separable if and only if p'(z) # 0.
2) If F is a field of characteristic 0, or a finite field, then all irreducible
polynomials over F are separable.
3) Let char(F)=p#0. An irreducible polynomial f(x) over F is
inseparable if and only if f(x) has the form
)Ii
f(x) = g(«")
where d > 0 and g(x) is a nonconstant polynomial. In this case, the integer
d can be chosen so that g(x) is separable and then every root of f(x) has
multiplicity p®, where d is called the radical exponent of f(x). The radical
exponent of p(x) can be characterized as the largest integer d for which
d
p(r) = a(a”). d
4) Let char(F) = p # 0. If « has radical exponent d then o is separable

over F, and is the smallest power of p for which o is separable over F.[]
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In Chapter 2, we considered the problem of extending the domain of an
embedding of F' to a larger field F that is algebraic over F. Here is a brief
summary of what we discussed.

Theorem 3.1.2
1) (Simple extensions) Let F' < E and let o € E be algebraic over F, with
minimal polynomial p(x). Let o: F' <— L, where L is algebraically closed.
a) If Bis aroot of p?(x) in L, then o can be extended to an embedding
op: F(a)) — L over o for which oga = 3.

b) Any extension of o to F(c) must have the form o.

¢) The number of extensions of o to F(a) is equal to the number of
distinct roots of min(a, F') in F.

2) (Algebraic extensions) Let F < E be algebraic. Any embedding
0:F — L, where L is algebraically closed, can be extended to an
embedding 7: E — L. Moreover, if a € E, p(z) = min(e, F) and 5 € L
is a root of p° (x), then we can choose & so that v = 5.00

A Useful Lemma
Before proceeding, we record a useful lemma. If F'is a field and S C F then S™

denotes the set {s" | s € S}.

Lemma 3.1.3 Let F' < E be algebraic with char(F') = p # 0 andlet S C E.
I F(S)= F(S?’k) holds for some k > 1 if and only if it holds for all k > 1.
2) F= F? holds for some k > 1 if and only if it holds for all k > 1.
Proof. For part 1), suppose that F'(S) = F(S") holds for some k > 1. Since

F(S) = F(S") < F(S?) < F(S)
it follows that E = F'(S?). Now, since [F'(S)]? = F?(S?), we have for any
k>1

[F(S)) = F(s)

and so

k

F(S") = FLFY (S")] = F([F(S)]") = F([P(S")]") = F(S”

f+1

)
Hence, E = F(S?) = F(S7"), forall k > 1.

For part 2), we observe that
' < F'<F

and so F' = F?" holds for some k > 1 if and only if F' = F?, which holds if and
only if F = F? forall k > 1.0
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3.2 The Number of Extensions: Separable Degree

According to Theorem 2.8.3, the number of extensions of an embedding
o:F — L to F(«), where L is algebraically closed, is equal to the number of
distinct roots of min(a, F'). Hence, as we remarked earlier, the size of
hom, (F(«),L) does not depend on either o or L. The same is true for
extensions of ¢ to any algebraic extension.

Theorem 3.2.1 If F' < E is algebraic and o: F — L, where L is algebraically
closed, then the cardinality of hom,(F,L) depends only on the extension
F < E and not on o or L. In other words, if 7: F — L', with L' algebraically
closed, then

lhom, (E, L)| = |hom,(E, L’)|

as cardinal numbers.

Proof. We refer the reader to Figure 3.2.1. Since for any & € hom,(E, L), the
image &(FE) is contained in an algebraic closure of o F', we may assume that L
is an algebraic closure of o F, and similarly, that L’ is an algebraic closure of
TF.

Since 7010 F < 7F is an isomorphism and F' < L is algebraic, the map
70! can be extended to an embedding of L into L. Since GF < L is algebraic,
so is its image under A, which is 79F < AL, and since AL is algebraically
closed, we have AL = L/, implying that A\: L — L’ is an isomorphism.

Now, if & € hom,(E, L), then the map Ag: F — L’ is an embedding of F into
L’ extending 7 on F'. This defines a function from hom, (E, L) to hom,(E, L")
given by @ — Ag. Moreover, if 7, u € hom,(E, L) are distinct, then there is a
B € E for which 7(5) # u(8) and since A is injective, A7(5) # Au(B), which
implies that the map @ — A& is injective. Hence,

lhom, (E, L)| < |hom,(E, L’)|

By a symmetric argument, we have the reverse inequality and so equality
holds.[d
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"o o
e

]

T(F)% F G—) o(F)

Figure 3.2.1
In view of Theorem 3.2.1, we may make the following definition.
Definition Let F' < E be algebraic and let o: F' — L, where L is algebraically

closed. The cardinality of the set hom, (E, L) is called the separable degree of
E over F and is denoted by [E : F;.00

This new terminology allows us to rephrase the situation for simple extensions.

Theorem 3.2.2 (Simple extensions) Let ' < E and let o € E be algebraic
over F, with minimal polynomial p(x). Let o: F' — L, where L is algebraically
closed. Then

1) If ais separable then

[F(a): Fls=[F(a): F|

2) If «is inseparable with radical exponent d, then

In either case, |hom, (F(«), L)| divides [F(«) : F).OO

Properties of Separable Degree

Like the ordinary degree, the separable degree is multiplicative.

Theorem 3.2.3 If F' < K < FE is algebraic then
[E:Fl,=[F: K|jK:Fs

as cardinal numbers.

Proof. The set hom;(K, E) of extensions of the inclusion map j: F' — E to an
embedding j: K — E  has cardinality [K :F],. Each extension
o € hom;(K, E) is an embedding of K into E and can be further extended to
an embedding of E into E. Since the resulting extensions, of which there are
[E : K|{[K : F|s, are distinct extensions of j to £/, we have
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[E:Fls > [F: K|s[K: Fls

On the other hand, if o € hom;(E, E) then o is the extension of j to K,
hence an element of hom;(K, E). Since o is an extension of o|x to E, we see
that o is obtained by a double extension of j: F — E and so equality holds in
the inequality above. [J

3.3 Separable Extensions

We have discussed separable elements and separable polynomials. it is now time
to discuss separable extensions.

Definition An algebraic extension F' < E is separable if every element oo € E
is separable over F. Otherwise, it is inseparable.[]

The goal of this chapter is to explore the properties of algebraic extensions with
respect to separability. It will be convenient for our present discussion to adopt
the following nonstandard (not found in other books) terminology.

Definition An algebraic extension F < E is degreewise separable if
[E: Fls =[E: F). An algebraic extension F' < E is separably generated if
E = F(S) where each o € S is separable over F. O

Simple Extensions

According to Theorem 3.2.2, if F' < FE and « € F, then « is separable if and
only if

[F(a) : Fls = [F(a) : F
Hence, a is separable if and only if F' < F(«) is degreewise separable.

Moroever, if F' < F'(«) is degreewise separable, and if § € F(«), consider the
tower

F < F() < F(a)

The separable degree and the ordinary (vector space) degree are multiplicative
and, at least for simple extensions, the separable degree does not exceed the
ordinary degree. Hence, [F'(«) : F|s = [F(«) : F] implies that the same is true
for each step in the tower, and so

[F(B): Fls = [F(B) : F]

which shows that § is separable over F. Thus, F' < F(«) is a separable
extension. Of course, if F' < F'(«) is separable, then « is separable.

Thus, the following are equivalent:

1) «is separable over F';
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2) F < F(a) is degreewise separable;
3) F < F(a) is a separable extension.
It is an extremely useful general fact that if

F <K< F(o)

then the minimal polynomial of « over K divides the minimal polynomial of
over F', that is,

min(«, K) | min(a, F)

This tells us that if « is separable over F', then it is also separable over any
intermediate field K.

In particular, if « is separable over F, then it is separable over an intermediate
field of the form

F < F(o”) < F(a)
where k£ > 1. But « satisfies the polynomial
p(x) = ' — o = (z— oz)pk
over F(a?") and so min(c, F(o#")) divides (z — ), which implies that
min(c, F(ozpk)) =r—«
Hence, a € F(a"), or equivalently, F(a) = F(a).
For the converse, suppose that F'(a) = F(a”") for some k > 1. Then Lemma

3.1.3 implies that this holds for all k > 1, in particular, F(o) = F(a?"), where

d is the radical exponent of . But o is separable over F' and therefore so is
the element a.

We can now summarize our findings on simple extensions and separability.

Theorem 3.3.1 (Simple extensions and separability) Let o be algebraic over
F, with char(F') = p # 0. The following are equivalent.

1) «is separable over F.

2) F < F(«) is degreewise separable; that is,

[F(a): Fls =[F(a): F)

3) F < F(«) is a separable extension.
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4) Thereisak > 1 for which
F(a) = F(a)

in which case F (o)) = F (o) forall k > 1.
If a is inseparable with radical exponent d, then

Finite Extensions

Now let us turn to finite extensions F' < E. It should come as no surprise that
the analogue of Theorem 3.3.1 holds for finite extensions.

If F' < F is separable, then it is clearly separably generated. If F' < F(S) = FE
is separably generated by S, then F' < F(Sy) = E, where Sy = {a,...,a,} is
a finite subset of S. Thus,

F<Flo) < Fla,a) < - < Flag,...,an) =FE

where «; is separable over F. But «; is also separable over E;,_; =
F(aq,...,a;-1), since the minimal polynomial of «; over E;_; divides the
minimal polynomial of « over F. Hence, each simple step above is separable
and therefore degreewise separable, which implies that F' < E is degreewise
separable.

Finally, if I’ < E is degreewise separable and 3 € E, then in the tower
F<FpB)<E

the lower step is simple and degreewise separable, hence separable. It follows
that 3 is separable over F' and so F' < E is separable. Thus, as in the simple
case, separable, separably generated and degreewise separable are equivalent
concepts.

As to the analogue of part 4) of Theorem 3.3.1, let E = F'(S), where S is a
finite set. If ' < F'(S) is separable, then any o € F is separable over F' and so

F(o) = F(a”) < F(S")

for any k>1. Thus, F(S)=F(S¥), for any k>1. Conversely, if
F(S)=F(S”) for some k>1, then Lemma 3.1.3 implies that
F(S) = F(S”) for all k > 1. Since S is a finite set, we can take p* to be the
maximum of the numbers p?, where d varies over all radical exponents of the
elements of S, in which case each o s separable, and so F (Spk) is separably
generated, and therefore separable.
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Theorem 3.3.2 (Finite extensions and separability) Let char(F) = p # 0. Let
F < F be finite. The following are equivalent.

1) F < E is separable.

2) F < Eis degreewise separable; that is,

[E:Fls=[FE:F|

3) FE is separably generated.

4) If E=F(S) for a finite set S C E, then E = F(S”k) for some k > 1, in
which case E = F(S) for all k > 1.

If F < E is not separable, then

1
(B Flo= (B F)

Jfor some integer e > 1.00
Algebraic Extensions

For arbitrary algebraic extensions F' < F, we have the following.

Theorem 3.3.3 (Algebraic extensions and separability) Ler char(F') = p # 0
and let F' < E be algebraic.

1) F < E is separable if and only if it is separably generated.

2) IfF < E is separable and E = F(S), then E = F(S") for all k > 1.
Proof. For part 1), if F' < E is separable then E is separably generated (by
itself) over F. For the converse, assume that E = F'(S) where each oo € S is
separable over F' and let 8 € E. Then (§ € F(S;) for some finite subset Sy C S.
Since F' < F(Sp) is finitely generated and algebraic, it is finite. Thus, Theorem
3.3.2 implies that F' < F'(Sy) is separable. Hence (3 is separable over F' and so
F < F is separable. As to part 2), we have foranya € S and k > 1

F(a) = F(a?) < F(S")
which implies that F(S) < F(S?") and so F(S) = F(S7").00
Existence of Primitive Elements

We wish now to describe conditions under which a finite extension is simple.
The most famous result along these lines is the theorem of the primitive element,
which states that a finite separable extension is simple. We want to state some
slightly more general results, and to improve the statements of these results, we
need to make some further observations about separable extensions. (These
remarks will be repeated and elaborated upon later in the chapter.)

Suppose that F' < FE is a finite extension. Let S be the set of all elements of
that are separable over F'. By analogy to algebraic closures, we refer to S as the
separable closure of F' in E. Note that if «,3 €5, then the extension
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F < F(a,p) is separably generated and therefore separable. Hence, every
element of F'(«, /3) is separable over F' and so S is a field.

We claim that the extension S < E has no separable elements. Forif « € E'\ S
is separable over S, then for the tower
F<S<Sa)
we have
[S(a): Fls=[S(a) : S)s[S: Fls =[S(a) : S][S : F] =[S(a) : F)
and so « is separable over F', which is false. On the other hand, for any
a € E\ S, there is a positive integer d for which o' s separable. It follows
that o#" € S and so min(a, S) divides 27 — o#' = (z — @)?". Thus, min(a, S)
has only one distinct root. This implies that homg(E, E) = {.}, since any
o € homg(E, E) must map « to itself, for all « € E.
Hence, [E : S]; = 1 and so
[E:Fls=[5:Fls

We have shown that any finite extension /' < E can be decomposed into a
tower

F<S<FE
in which the first step is separable and has the same separable degree as the
entire extension. Now we can state our theorem concerning simple extensions.
Theorem 3.3.4
1) Any extension of the form

F<F(Oé1,---70‘mﬂ)

where «; is separable over F' and 3 is algebraic over F is a simple
extension. Moreover, if F is infinite, this extension has infinitely many
primitive elements, of the form

ajoy + -+ ap0y + bﬂ

where a;,b € F.
2) For any finite extension F' < E, there exists a § € E such that

[F(8): F] = [E: F],

If F is infinite, there exist infinitely many such elements [3.
3) (Theorem of the primitive element) [/ I < E is finite and separable, say

F<F(ag,...,on)

where «; is separable over F' then F < E is simple. If F is infinite, there
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exist infinitely many primitive elements for E over F' of the form
ajay + -+ apoy,

where a; € F.
4) If F has characteristic 0 or if F is a finite field then any finite extension of
F is simple.
Proof. If F is a finite field, then so is E, since [E : F is finite. Hence E* = ({3)
is cyclic and so F < E = F(f3) is simple. Let us now assume that F' is an
infinite field.

For part 1), we show that if £ = F(«a, ), with « separable over F' and (3
algebraic over F, then E = F(v), where + is algebraic over F'. The argument
can be repeated to obtain a primitive element in the more general case.

Let f(x) = min(e, F) and g(z) = min(8, F') and suppose that the roots of f(x)
are @ =ay,...,as and the roots of g(z) are 3= /4,...,0:. Since « is
separable, the roots of f(z) are distinct. However, the roots of g(x) need not be
distinct. We wish to show that for infinitely many values of a € F, the elements
ao + [ are primitive. To do this, we need only show that o € F(acx + (3), for
then F(«, ) = F(aa + ).

The polynomial h(z) = g(aa: + 5 — ax) has coefficients in F'(ace + 3) and has
« as a root, and similarily for f(z). Thus, f and h have the common factor
x — « in some extension of F. Moreover, since f is separable, v is a simple
root and so no higher power of x — « is a factor of f. Therefore, if we can
choose a € F so that f and h have no other common roots in any extension of
F, it follows that ged(f,h) = & — o, which must therefore be a polynomial
over F(aa + (3). In particular, o € F(ax + (), as desired.

The roots of h are the values of x for which aae + 8 — ax = ), and we need
only choose a so that none of the roots ao, ..., a; satisfy this equation, that is,
we need only choose a so that

Br —

Oé—Oé]'

a#
forj=2,...,sandk=1,..., ¢t

Part 2) follows from part 1) by considering the separable closure S of F' in E.
Since F' < S is separable, with [S : F|; = [E : F|;, we can apply part 1) to the

separable extension F' < S. Part 3) is a direct consequence of part 1), as is part
4).

Example 3.4.1 Consider the extension Q < Q(i, 2'/2). Here we have
f(z) =min(i,Q) = 2* + 1



Embeddings and Separability 83

and
g(z) = min(2"/?,Q) = 2* — 2

and so o = 4,9 = —i and B = B; = 2'/? and B, = —2'/2 = — 3. According to
the previous theorem, ac + 3 = ai + 2'/2 is primitive provided that

a¢{aaﬁv—12}:mﬂmﬂ

In particular, we can choose any nonzero a € Q.[J
Separable Extensions Are Distinguished

We may now establish that the class of separable extensions is distinguished.

Theorem 3.3.7

1) The class of separable extensions is distinguished.

2) Itis also closed under the taking of arbitrary composites.

3) If F < E is separable, then so is F <nc(E/F), where nc(E/F) is a
normal closure of E over F'.

Proof. For the tower property, if the full extension in F' < K < FE is separable,

thensois F < K. Asto K < E, forany o € K \ E, we have

min(«, K) | min(a, F)

and so « separable over F' implies « separable over K. Hence, K < E is
separable. Suppose now that F' < K and K < FE are separable and let o € E.
Let C C K be the set of coefficients of p(z) = min(c, K). Then p(x) =
min(«, F'(C)) and so « is separable over F'(C). It follows that each step in the
tower F' < F'(C) < F(C,«) is finite and separable, implying that o is
separable over F'. Hence, F' < E is separable.

For the lifting property, let F' < E be separable and let F' < K. Since every
element of E' is separable over F' it is also separable over the larger field K.
Hence EK = K(E) is separably generated and is therefore separable.

The fact that separable extensions are closed under the taking of arbitrary
composites follows from the finitary property of arbitrary composites. That is,
each element of an arbitrary composite involves elements from only a finite
number of the fields in the composite and so is an element of a finite composite,
which is separable.

Finally, a normal closure nc(E/F) is a splitting field in F' of the family
MinPoly(E, F) = {min(a, F') | a € E}

and so is generated over F' by the roots of these minimal polynomials, each of
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which is separable over F. Hence, nc(E/F) is separably generated over F' and
is therefore separable over F.[]

3.4 Perfect Fields

Definition A4 field F' is perfect if every irreducible polynomial over I is
separable. [

It is clear from the definitions that if F' is perfect then any algebraic extension of
F is separable. Conversely, suppose that every algebraic extension of F' is
separable. If p(x) € F[z] is irreducible and « is a root of p(z) in some
extension of F' then F' < F'(«) is algebraic and so « is separable over F', that is,
p(x) is separable. Thus, F' is perfect.

Theorem 3.4.1 A4 field F is perfect if and only if every algebraic extension of F
is separable over F. OJ

Theorem 3.4.2 Every field of characteristic 0 and every finite field is perfect. O

Theorem 3.4.3 Let F' be a field with char(F)=p # 0. The following are
equivalent.

1) F is perfect.

2) F=F" forsomek > 1.

3) The Frobenius map o is an automorphism of I, for some k > 1.

If this holds, then 2) and 3) hold for all k > 1.

Proof. Suppose F is perfect. Let a € F' and consider the polynomial p(z) =
P — «a € F[z]. If B is a root of p(x) in a splitting field then 5” = « and so

p(x) = 2" = 3" = (x = )"

Now, if g(z) = (z — )¢ is an irreducible factor of p(z) over F', then it must be
separable and so e = 1. Thus g € F, that is, « = $” € FP? and so F C F?.
Since the reverse inclusion is manifest, we have F' = F?. Then 2) follows from
Lemma 3.1.3.

Now assume that 2) holds. Then Lemma 3.1.3 implies that £ = F'. Suppose
that p(x) € F[x] is irreducible. If p(x) is not separable, then

p(z) = q(2?) th (?)’ Za "= Zam

contradicting the fact that p(z) is irreducible. Hence, every irreducible
polynomial is separable and so F' is perfect. Thus, 2) implies 1). Since the
Frobenius map is a monomorphism, statement 2), which says that o, is
surjective, is equivalent to statement 3).[]

We can now present an example of a nonperfect field.
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Example 3.4.2 Let p be a prime. Since Z!) = Z,, the field Z, is perfect.
However, if ¢ is an independent variable, then the field Zp(t) of all rational
functions over Z, is not perfect. We leave proof to the reader.[]

While it is true that any algebraic extension of a perfect field is perfect, not all
subfields of a perfect field need be perfect.

Theorem 3.4.4

1) IfF < E is algebraic and F is perfect then E is perfect.

2) IfF < FE is finite and E is perfect then F is perfect.

Proof. Part 1) follows from Theorem 3.4.1 and the fact that every algebraic
extension of F is an algebraic extension of F'.

For part 2), let char(F') = p # 0 and suppose first that F' < F is simple. Thus,
E = F(«) is perfect and « is algebraic over F'. Since F'(«) is perfect, we have
F(a) = [F(a)]? = FP(aP). Consider the tower

FP < F < F(a) = FP(a?)

If p(x) = >_a;z" is the minimal polynomial of o over F, then

0= [Za,;ai]” = Zafapi

and so [FP(aP):FP] <[F(a):F]. It follows that in the tower above,
[F: FP] =1, that is, F = F?, whence F is perfect. Since F' < E is finitely
generated by algebraic elements, the result follows by repetition of the previous
argument. [

Note that we cannot drop the finiteness condition in part 2) of the previous
theorem since, for example, F' < F' is algebraic and F' is perfect even if F' is
not.

3.5 Pure Inseparability

The antithesis of a separable element is a purely inseparable element.

Definition An element o algebraic over F' is purely inseparable over F if its
minimal polynomial min(a, F) has the form (x — )" for some n > 1. An
algebraic extension F' < E is purely inseparable if every element of E is
purely inseparable over F'. I

It is clear that for a purely inseparable element «, the following are equivalent:
(1) « is separable, (2) n =1 and (3) a € F'. In particular, for extensions of
fields of characteristic 0 or finite fields, there are no “interesting" purely
inseparable elements.
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For a ¢ F, since the coefficient of 2"~ in min(c, F) is —na, it follows that n
must be a multiple of p = char(F), that is,

min(a, F) = (2 — )™

But min(a, F') = (z""), where ¢(z) is separable and d is the radical exponent
of a over F'. Hence, k > d and we can write

d

min(a, F) = (2" — o)™

which implies that ¢(z) = (z — o)™, which is separable if and only if
m = 1and & = d. Thus,
min(e, F) = (z — )"

where d is the radical exponent of o over F'.

Example 3.5.1 Let char(F') = 2. If ¢ is transcendental over F', then ¢ is purely
inseparable over F'(¢?), since its minimal polynomial over F(t?) is 22 — * =
(x —1)% 0O

Example 3.5.2 Here we present an example of an element that is neither
separable nor purely inseparable over a field F. Let char(F') = pand let « € F
be nonzero. Let ¢ be transcendental over F' and let

7
S =
tr +«

According to Theorem 2.4.5 F(s) < F(t) is algebraic and has degree equal to
p?. Since t is a root of the monic polynomial

p(z) = 2’ — sa? — sau

of degree 27" over F(s), this must be the minimal polynomial for ¢t over F'(s).
Since p(x) = g(a?), we deduce that ¢ is not separable over F'(s). On the other
hand, if ¢ were purely inseparable over F'(s), we would have

2 2

xPQfsxpfsa:(zft)pzzmp —

which would imply that s =0, which is not the case. Hence, ¢ is neither
separable nor purely inseparable over F'(s). O

Definition Let F' < E be finite. Since [E : F|, | [E : F], we may write
[E:F|=[E:F)s[E: F);

where [E : F); is the inseparable degree or degree of inseparability of FE over
F.O
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Note that while the separable degree is defined for infinite extensions, the
inseparable degree is defined only for finite extensions.

Theorem 3.5.1 Let F' < E be a finite extension with char(F') = p # 0.

) fF<K<Ethen|E:F|;=[FE:K|;|K:F).

2) F < Eis separable if and only if [E : F); = 1.

3) Ifa € E then [F(a) : F); = p®, where d is the radical exponent of .

4) « € E is purely inseparable if and only if [F(«) : Fs = 1, or equivalently,
[F(a): Fl: = [F(a) : F]

5) [E: F); is a power of p.

Proof. The first three statements are clear. Part 4) follows from the fact that « is

purely inseparable if and only if its minimal polynomial has only one distinct

root. But this is equivalent to saying that homp(F(«), F') has cardinality 1. Part

5) follows from the fact that F' < E is finitely generated and the inseparable

degree is multiplicative. We leave the details to the reader. [

We next characterize purely inseparable elements.

Theorem 3.5.2 (Purely inseparable elements) Let char(F') = p # 0. Let « be
algebraic over F, with radical exponent d and let p(x) = min(«, F'). The
following are equivalent.

1) «is purely inseparable over F.

2) F < F(«) is a purely inseparable extension

3) ot € F for some k > 0.

Furthermore, d is the smallest nonnegative integer for which o' € F.

Proof. If 1) holds and 8 € F(«), then in the tower F' < F(8) < F(«a) the
inseparable degree of the full extension is equal to the degree, and so the same
holds for the lower step. Hence, 3 is purely inseparable over F' and 2) holds.
Clearly, 2) implies 1).

If 1) holds, then min(c, F) = ' — o and so o' € F, which implies 3). If 3)
holds, then min(a, F)|2” —a? and, as we have seen, o is purely
inseparable.[]

Note that part 3) of the previous theorem, which can be written F’ (apd) =F,is
the “antithesis” of the corresponding result F/(a?") = F(a) for o separable.

The following result is the analogue of Theorem 3.2.4.

Theorem 3.5.3 (Purely inseparable extensions) Let F' < E be algebraic. The

following are equivalent.

1) E is purely inseparably generated, that is, generated by purely
inseparable elements.

2) F < E is degreewise purely inseparable, that is, [E : F], = 1.
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3) F < Eis apurely inseparable extension.

Proof. To prove that 1) implies 2), suppose that E = F'(I), where all elements
of I are purely inseparable over F'. Any embedding o: F — L over F is
uniquely determined by its values on the elements of /. But if o € I then oo is
a root of the minimal polynomial min(«, F') and so oo = . Hence o must be
the identity and [E : F|; = 1.

To show that 2) implies 3), let @« € E and suppose that 3 is a root of min(«, F)
in F. Then the identity on F' can be extended to an embedding o: E — F, for
which oo = 3. Since [E : F]; = 1, we must have o = ¢ and so 3 = a. Thus,
min(c, F') has only one distinct root in F and so « is purely inseparable. It is
clear that 3) implies 1).00

Purely Inseparable Extensions Are Distinguished

We can now show that the class of purely inseparable extensions is
distinguished.

Theorem 3.5.4 The class of purely inseparable extensions is distinguished. It is
also closed under the taking of arbitrary composites.

Proof. Let F' < K < E. Since pure inseparability is equivalent to degreewise
pure inseparability and [E: F],=1 if and only if [F:K],=1 and
[K : F)s =1, it is clear that the tower property holds. For lifting, suppose that
F < F is purely inseparable and F' < K. Since every element of E is purely
inseparable over F, it is also purely inseparable over the larger field K. Hence
EK = K(F) is purely inseparably generated and therefore purely inseparable.
We leave proof of the last statement to the reader. [

*3.6 Separable and Purely Inseparable Closures

Let F' < E. Recall that the algebraic closure of F' in E is the set A of all
elements of F that are algebraic over F. The fact that A is a field is a
consequence of the fact that an extension that is generated by algebraic elements
is algebraic, since if o,5€ A then F(a,5) C A and so a =+ (,af and
aleA

We can do exactly the same analysis for separable and purely inseparable
elements. To wit, if o, 3 € E are separable over F, then F(«, 3) is separable
over F. It follows that o & 3, a3, and o~ ! are separable over F. Hence, the set
of all elements of E that are separable over F' is a subfield of F. A similar
statement holds for purely inseparable elements.

Definition Let F' < E. The field

Fy ={a € E | aseparable over F'}
={a€E| F(a”k) = F(«) for some k > 1}
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is called the separable closure of I in E. The field

Fi* = {o € F | a is purely inseparable over F'}
={ael] o € F for some k > 0}

is called the purely inseparable closure of I' in E. When the context is clear,
we will drop the subscript and write F*° and F'°.(]

The separable closure allows us to decompose an arbitrary algebraic extension
into separable and purely inseparable parts.

Theorem 3.6.1 Let F' < E be algebraic.

1) In the tower F' < F¢ < E the first step is separable and the second step is
purely inseparable.

2) Any automorphism o of E over F is uniquely determined by its restriction
to F*°.

Proof. For part 1), if o € E\ F has radical exponent d, then o has a

separable minimal polynomial and is therefore in F*°. Thus, Theorem 3.5.2

implies that « is purely inseparable over F°. We leave proof of part 2) to the

reader.[d

Corollary 3.6.2 Let F' < E be finite. Then [E : F|; = [ : Fland [E : F); =
[E: F*¢. O

Perfect Closures

Let char(@ =p#0 and let F be an algebraic closure of F. Suppose that
F < P < F, where P is perfect. What can we say about P?

If a ¢ P, then « is separable over P and therefore cannot be purely inseparable
over P. In other words, the purely inseparable closure F° is contained in P.

On the other hand, we claim that F'® is perfect. For if o € F°, then o € F.
Now, the polynomial p(z) = 2” — « has a root [ in some extension and so
o = [3P. But then ﬂpz =a? € Fandso 3 € F° It follows that o = 37 € [F]P
and so F'® = [F|?, that is, F'° is perfect.

Thus, we have shown that the purely inseparable closure of F' in F is the
smallest intermediate field F' < F'® < F' that is perfect. This field is also called
the perfect closure of F'in F'.

More on Separable and Inseparable Closures

The remainder of this section is somewhat more technical and may be omitted
upon first reading.
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Part 1 of Theorem 3.6.1 shows that any algebraic extension can be decomposed
into a separable extension followed by a purely inseparable extension. In
general, the reverse is not possible. Although F' < F'® is purely inseparable, the
elements of £\ F'® need not be separable over I''°; they are simply not purely
inseparable over F'. However, it is not hard to see when F'® < F is separable.

Theorem 3.6.3 Let F' < E be algebraic. Then F™ < E is separable if and only
le — FSCFiC.

Proof. If [ < E is separable then so is the lifting F*°*F® < E. But since
Fs¢ < E is purely inseparable, so is the lifting F**F¢ < E. Thus E = F*F'c,
Conversely, if £ = FF then F'° < F*F'°, being a lifting of a separable
extension F' < F*°, is also separable. (]

We can do better than the previous theorem when F' < E is a normal extension,
which includes the case E =F. Let G = Autp(E) be the set of all
automorphisms of F over F. Since F' < E, G is also the set of all embeddings of
E into F over F. We define the fixed field of G in E by

F(G)={a€eE|oca=aforalo e G}

Theorem 3.6.4 Let ' <« E. Let G = Autp(E) and let F'(G) be the fixed field of
G in E. Then F(G) = F'. Furthermore, in the tower F < F'® < E, the first
step is purely inseparable and the second step is separable.

Proof. Let o € F(G). If 8 € F is a root of p(z) = min(a, F) then there exists
an embedding o: E — F over F for which ca = 3. But oo = av and so 3 = a.
Hence min(a, F') has only one root and so a € F'°. On the other hand, if o €
F® then any o € G must map « to itself, since it must map « to a root of
min(a, F'). Hence o € F(G). This proves that F'(G) = F',

Now let @ € E and p(z) = min(a,F(G)). Let ¢(z) = [[(x — ;) where R =
{r1,...,rn} is the set of distinct roots of p(x) in E. Since any o € G is a
permutation of R, we deduce that ¢°(x) = g(z) and so the coefficients of ¢(z)
lie in F'(G). Hence ¢(z) = p(x) and « is separable over F'(G). O

Corollary 3.6.5 If F < E then F'° < E is separable and E = F*F*°.[]

Let us conclude this section with a characterization of simple algebraic
extensions. If F = F(«) is a simple algebraic extension of F' and if d is the
radical exponent of a, we have seen that p? = [E: F]; is the smallest
nonnegative power of p such that o is separable over F', or equivalently, such
that B C F*. It turns out that this property actually characterizes simple
algebraic extensions. Before proving this, we give an example where this
property fails to hold.

Example 3.6.1 Let u and v be transcendental over K with char(K) = p # 0.
Let £ = K(u,v) and F = K(uP,vP). It is easily seen that F' < E is purely
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inseparable with [E : F]; = p>. However, a € E implies o” € F' and so
ErCF.0O

Theorem 3.6.6 Let F' < E be a finite extension with [E: F); = p®. Then
F < E is simple if and only if d is the smallest nonnegative integer for which
B C P,

Proof. We have seen that if F' < E is simple then d is the smallest such
nonnegative integer. For the converse, note first that if F' is a finite field then so
is E, implying that E* is cyclic and so F' < E is simple. Let us assume that F' is
an infinite field and look at the second step in the tower F' < F*° < FE. This step
is purely inseparable. Since F*° < FE is finite, we have

E= Fsc(ﬂh---aﬁn)

If for some k < d, we have ﬂf ' € F*° for all 4, then EY C F*¢, contrary to
hypothesis. Hence one of the §;'s, say 3, satisfies

gl ere, g ¢ FCfork <d
It follows that
[F(8) : F*]; = p" = [E: F]; > [E : F*);

Since F*(8) < E, we have [F*(8):F*];=[E:F*%]; and since the
extensions involved are purely inseparable, we get [F*°(3) : F*¢| = [E : F*°].
Hence, £ = F*°([3).

Our tower now has the form F' < F* < F*¢((3) where (3 is purely inseparable
over F*¢. In addition, F' < F*¢ is finite and separable and therefore simple.
Thus there exists o € F*° such that [ = F'(«) and the tower takes the form
F < F(a) < F(a, B) where « is separable over F' and (3 is purely inseparable
over F'(«). By Theorem 3.3.4, the extension F' < F'(«, (3) is simple. O

Note that Theorem 3.6.6 implies that the extension F' < E of Example 3.6.1 is
not simple.

Exercises

1. Find an infinite number of primitive elements for Q < Q(4,2'/?).

A biquadratic extension is an extension of degree 4 of the form
F < F(a, ) where « and [ have degree 2 over F. Find all the proper
intermediate fields of a biquadratic extension.

Show that all algebraically closed fields are perfect.

If t is transcendental over F' and char(F) = p # 0, then F'(t) is not perfect.
If char(F) = p # 0 and F is not perfect, show that I/ # F',

Let « be algebraic over F', where char(F) = p # 0 and let d be the radical
exponent of a.. Show that o is separable over F’ if and only if k > d.

AR
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10.

11.

12.

13.

14.

15.

16.

17.

Field Theory

Let p and ¢ be distinct primes. Then Q < Q(,/p,/q) is finite and

separable and therefore simple. Describe an infinite class of primitive
elements for this extension. Find the minimal polynomial for each primitive
element.

Let E = F(ay,...,q,) be separable over an infinite field F'. Prove that
there is an infinite number of n-tuples (ay,...,a,) € F™ for which E =
Flajar + -+ apay).

Show that the class of purely inseparable extensions is closed under the
taking of arbitrary composites.

Prove that for F' < E finite, EIF C Fse,

If F < E is algebraic prove that any automorphism o of E over F is
uniquely determined by its restriction to F™*°.

Show that lifting an extension by a purely inseparable extension does not
affect the separable degree. That is, show that if F' < E is algebraic and
F < P is purely inseparable then [EP : P|, = [E : F,.

Let ' < S be finite separable and F' < P be finite purely inseparable.
Prove that P < SP is separable and [SP : P] =[S : F]. In fact, if B is a
basis for .S over F', prove that it is also a basis for S P over P.

Show that if FF< E is finite and F < S is finite separable then
[ES . S]l = [E : FL

Let F' < E be a finite extension and let o € E be algebraic over F'. Let H
be the set of embeddings of E into E over F. The elements of H permute
the roots of p(z) = min(a, F'). Let 3 be a root of p(z). Show that

Ho € H|oa=p3}=[FE:F(a)s

Hence, the multiset {o« | 0 € H} contains [E : F(«)], copies of each root
of p(x).

Let F' < E be a finite extension that is not separable. Show that for each
n > 1 there exists a subfield F, of E for which E, < FE is purely
inseparable and [E : E,]; = p".

Prove that if F' # pcl(F") then the extension F' < pcl(F') is infinite.



Chapter 4

Algebraic Independence

In this chapter, we discuss the structure of an arbitrary field extension F' < E.
We will see that for any extension F' < F, there exists an intermediate field
F < F(S) < E whose upper step F'(S) < F is algebraic and whose lower step
F < F(S) is purely transcendental, that is, there is no nontrivial polynomial
dependency (over F') among the elements of S, and so these elements act as
“independent variables” over F'. Thus, F'(.S) is the field of all rational functions
in these variables.

4.1 Dependence Relations

The reader is no doubt familiar with the notion and basic properties of linear
independence of vectors, such as the fact that all bases for a vector space have
the same cardinality. Independence is a common theme, which applies in the
present context as well. However, here we are interested in algebraic
independence, rather than /inear independence. Briefly, a field element o € F' is
algebraically independent of a subset S C F' if there is no nonconstant
polynomial p(x), with coefficients in F'(S), for which « is a root. Put another
way, « is algebraically dependent on S if « is algebraic over F'(S).

Many of the common properties of linear independence, such as dependence
(spanning sets) and bases, have counterparts in the theory of algebraic
independence. However, these properties depend only on the most general
properties of independence, so it is more “cost effective” to explore these
properties in their most general setting, which is the goal of this section.

Definition Let X be a nonempty set and let A C X x P(X) be a binary
relation from X to the power set of X. We write x < S (read: x is dependent
on S) for (£,S)€ A and S <T when s <T for all s€ S. Then A is a
dependence relation if it satisfies the following properties, for all S, T and
U e P(X):
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1) (reflexivity)
S=<S

2) (compactness)

x < S = x <S5 for some finite subset Sy of S

3) (transitivity)
ST, T<U=5<U

4) (Steinitz exchange axiom)
x=<S,xAS\{s}=s=<(S\{s}) U{x}
If x £ S we say that x is independent of S. [

Definition A subset S C X is dependent if there is an s € S for which
s < S\ {s}. Otherwise, S is independent. (The empty set is independent.) (I

The reader should have no trouble supplying a proof for the following lemma.

Lemma 4.1.1

) IfS <X T then S < T for any superset T' of T.

2) Any superset of a dependent set is dependent.

3) Any subset of an independent set is independent.

4) If S is a dependent set, then some finite subset Sy of S is dependent.
Equivalently, if every finite subset of T is independent, then T is
independent. (]

Theorem 4.1.2 If S is independent and x £ S then S U {«} is independent.
Proof. Let s € S. If s < (SU{z}) \ {s} then since s £ S\ {s}, the exchange
axiom implies that = < S, a contradiction. Hence s £ (SU{z})\ {s}.
Furthermore, by hypothesis « 4 S = (SU{x})\ {z}. Thus, SU{z} is
independent. [

Definition 4 set B C X is called a base if B is independent and X < B. I

Theorem 4.1.3 Let X be a nonempty set with a dependence relation < .

1) B C X isa base for X if and only if it is a maximal independent set in X.

2) B C X is a base for X if and only if B is minimal with respect to the
property that X < B.

3) Let ACS C X, where A is an independent set (possibly empty) and
X < S. Then there is a base B for X such that AC B C S.

Proof. For part 1), assume B is a base. Then B is independent. If x € X \ B

then « < B implies that B U {z} is not independent, that is, B is maximal

independent. For the converse, if B is a maximal independent set and « £ B
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then B U {z} is independent, which is not the case. Hence, X < B and B is a
base.

For part 2), if B is a base, then X < B. Suppose that some proper subset By of
B satisfies X < By. If b € B\ By then b < By < B\ {b}, contradicting the
independence of B. Hence B is minimal. Conversely, suppose that B is minimal
with respect to the condition X < B. If B is dependent then X < B < B\ {b}
for some b € B, a contradiction to the minimality of B. Hence B is independent
and a base for X.

For part 3), we apply Zorn's lemma. The set S of all independent sets B in X
satisfying A C B C S is nonempty, since A € S. Order S by set inclusion. If
C ={C;} is a chain in S, then the compactness property implies that the union
JC; is an independent set, which also lies in S. Hence, Zorn's lemma implies
the existence of a maximal element C € S, that is, C' is independent,
ACCCS and C is maximal with respect to these two properties. This
maximality implies that S < C' and so X < S < C, which implies that C' is a
base. O

To prove that any two bases for X have the same cardinality, we require a
lemma, which says that we can remove a particular element from a dependent
set and still have a dependent set.

Lemma 4.1.4 Let S be a finite dependent set and let A C S be an independent
subset of S. Then there exists o € S\ A for which S < S\ {a}.

Proof. The idea is simply to choose a from a maximal independent set
containing A. In particular, among all subsets of S \ A, choose a maximal one
B for which A U B is independent. Then B is a proper (perhaps empty) subset
of S\A. If aeS\(AUB) then a<AUB=<S\{a} and so
S < S\{«}.0O0

Theorem 4.1.5

1) If B is a finite set for which X < B and if C is independent in X then
| < |Bl

2) Any two bases for a set X have the same cardinality.

Proof. For part 1), let B = {by,...,b,}. Choose ¢; € C. The set C; =

{c1,b1,..., by} satisfies the conditions of the previous lemma (with A = {c¢;})

and so, after renumbering the b;'s if necessary, we deduce that

X < Cl < {Clybl7"'7b77l—1}
For any ¢, € C\{c1}, the set Cy = {ci,co,b1,...,bn_1} satisfies the

conditions of the lemma (with A = {¢i,c2}) and so, again after possible
renumbering, we get

X <0y <{c1,e2,b1,...,bp 2}
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Continuing this process, we must exhaust all of the elements of C before
running out of elements of B, for if not, then a proper subset C’ of C' would
have the property that X < C’, in contradiction to the independence of C.
Hence, |C| < |B|. Note that this also shows that C' is finite. If B and C are
bases, we may apply the argument with the roles of B and C' reversed to get
|B| =|C.

Let us now assume that B = {b; | i € I'} and C are both infinite bases. Thus,
|B| = |1|. For each ¢ € C', we have ¢ < B and so there is a finite subset I, C I
such that ¢ < {b; | i € I.}. This gives a map ¢ — I. from C' to the set of finite
subsets of the index set 1. Moreover,

I:UL

ceC
forif j € T\ |JI then, for any ¢ € C, we have
C<{bl|Z€Ip}<B\{bJ}
and so b; < C' < B\ {b;}, which contradicts the independence of B. Hence,

Jr

ceC

Bl = || = <R[C] = |C]

Reversing the roles of B and C shows that |B| = |C|. O

4.2 Algebraic Dependence

Now that we have the basic theory of dependence, we can return to the subject
matter of this book: fields. We recall a definition.

Definition Let I' < E. An element t € E is transcendental over F' if t is not
algebraic over F, that is, if there is no nonzero polynomial p(x) € F[z] such

that p(t) = 0.0

Recall that if ¢ is transcendental over F' then F'(t) is the field of all rational
functions in the variable ¢, over the field F.

Definition Let FF < E and let S C E. An element o € E is algebraically
dependent on S over F, written o < S, if v is algebraic over F(S). If « is not
algebraically dependent on S over F, that is, if « is transcendental over F(S)

then « is said to be algebraically independent of S over F' and we write
a£S.0

Note that the relation < depends on F', so we really should write < p. However,
we will not change the base field F' so there should be no confusion in
abbreviating the notation.
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The condition v < S is equivalent to stating that F'(S) < F'(S, «) is algebraic.
Thus, if F < E and A C E, then A < S if and only if F(S) < F(S,a) is
algebraic for all o € A. But the class of algebraic extensions is closed under
arbitrary composites and so this is equivalent to F'(S) < F(S,A) being
algebraic. In short, A < S if and only if A is algebraic over F(.5).

Now let us show that algebraic dependence is a dependence relation.

Theorem 4.2.1 Algebraic dependence is a dependence relation.

Proof. Since any s € S is algebraic over F'(S), we have reflexivity: S < S. To
show compactness, let & < S and let C' C F(S) be the set of coefficients of
min(«, F'(S)). Since each ¢ € C' is a rational function over F' in a finite number
of elements of S, there is a finite subset Sy of S for which C' C F(S;). Hence «
is algebraic over F'(S), that is, o < Sp.

For transitivity, suppose that « < S and S < 7. Then the tower
FT)<FTUS)<F(TUS,a)

is algebraic and so « is algebraic over F'(T'), thatis, o < T

Finally, we verify the exchange axiom. Suppose that « < S and o £ S\ {s}.

Then there is a finite set S; C S for which < S} and o £ 57\ {s}. Let

So={s}US;. Then aa < Sy and « A Sy \ {s}. Our goal is to show that
s < S\ {s} U{a}, which will follow if we show that s < Sy \ {s} U {a}.

Note that {s} is independent, for if s is algebraic over F then S is algebraic
over Sy \ {s} and so the tower F'(Sy \ {s}) < F(Sy) < F(Sp, c) is algebraic,
in contradiction to v £ .S \ {s}. Thus, according to Lemma 4.1.4, we may
remove elements of S; \ {s} until the remaining set is independent, and yet « is
still algebraic over this set. Hence, we may assume that S, is algebraically
independent. Write S = {s1,..., 5}

If p(x) = min(«, F(Sy)), then

—$ +Zfz S1y+++ySmy )Jti

= Gi(81,-- 5 Sm, S)
where f;(y1,...,Ym,y) and g;(y1, -, Ym, y) are polynomials.

Multiplying by the (nonzero) product
h(51,...78"“ Hgt Sl;" S’HH )

of the denominators gives
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d—1
h<81> <oy Sy 8)])(3?) = h<81> <ev s Smy S)xd + Zhi(sh cevy Smy S)‘ri
i=0

where h(y1, ..., ym,y) and

hi(ylu -"7ym:y) = h(yh 7ymay)fi(y17 7ymvy)

are polynomials over F'(S7) and h(s1, ..., spm,s) # 0. Setting x = « gives
d—1 '
h(s1,. ., Sm,s)ad + Z hi(s1,y-+y 8m,8)a’ =0
=0

Now, if the polynomials A (y1, ..., Ym,y) and hi(y1, ..., Ym,y) are constant with
respect to y, then we have

d—1

h(s1y.-., Sm, 0)a? + Z hi(s1,-. s 8m,0)a’ =0
=0

in contradiction to o £ Sy \ {s} = Si. Hence, the polynomial

d—1

h(Sl, crey 877l7y)ad + Z hi(‘sla ceey vay)ai
i=0

is a nonconstant polynomial in y over F'(S}, «) satisfied by s, whence
s =< Sp\ {s}u{a}
as desired.l]

We may now take advantage of the results derived for dependence relations.

Definition Let F' < E.

1) A subset S C E is algebraically dependent over F' if there exists s € S
that is algebraic over F'(S \ {s}), that is, for which F(S'\ {s}) < F(S) is
algebraic.

2) A subset S C E is algebraically independent over F' if's is transcendental
over F(S\ {s}) for all s € S. (The empty set is algebraically independent
over F.) [

Note that if F' < F(S) is algebraic, then certainly S is algebraically dependent
over F, since every s € S is algebraic over F, let alone over F'(S \ {s}). The
converse, of course, is not true. For example, if ¢ is transcendental over F' then
the set S = {t, 2t} is algebraically dependent. In fact, ¢ is algebraic over F'(2t)
and 2t is algebraic over F'(t). However, F' < F'(t,2t) = F(t) is far from being
algebraic.
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Lemma 4.2.2

1) Any superset of an algebraically dependent set is algebraically dependent.

2) Any subset of an algebraically independent set is algebraically
independent.[]

Theorem 4.2.3 If S is algebraically independent over F and o is
transcendental over F'(S) then S U {«} is algebraically independent over F. O

Algebraic Dependence and Polynomial Relationships

A subset S of a vector space is linearly dependent if there is a nontrivial linear
relationship among the vectors of S. A similar statement holds in the present
context.

Definition Let F < E. A subset S CE has a nontrivial polynomial
relationship over F' if there is a nonzero polynomial p(x1,...,x,) over F for
which p(si,...,sn) =0, for distinct s; € S. This is equivalent to saying that
some s € S is algebraic over the ring F'[S \ {s}] of polynomials in S \ {s}.00

To see that the two statements in the definition are equivalent, suppose that

p(s1,...,8,) =0 for distinct s; €. S, where p(x1,...,z,) is a nonzero
polynomial over F. If n = 1, then this simply says that p(s;) = 0 if and only if
s is algebraic over F'. For n > 1, we may assume that so, ..., s, do not enjoy a

similar polynomial dependency and hence that

d
p(x, ..., xy) = Z pi(Ta, ..., Ty)x]

=0

where py(z2,...,x,) # 0and py(se, ..., s,) # 0. Then the nonzero polynomial

E pt 52y ... Sn

satisfies p(s1) = 0, showing that s; is algebraic over F'[S \ {s1}].

Now, to say that S is algebraically dependent is to say that s is algebraic over
F(S\ {s}) for some s € S. This is to say that s is algebraic over the field of
rational functions in S\ {s}. But this is equivalent to saying that s is algebraic
over the ring of polynomials in S\ {s}. One direction is clear, since a
polynomial is a rational function. On the other hand, if s satisfies a polynomial
p(z) of degree d > 0 over F'(S \ {s}) then p(z) has the form

sz S1y.04, m)xi
s Sm)

qz S1y---

where py(si,...,sm) # 0. Multiplying by the product P of the denominators
gives a polynomial satisfied by s and whose leading coefficient is not zero.
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We have proved the following.

Theorem 4.2.4 Let F' < E. A subset S of E is algebraically dependent over F
if and only if there is a nontrivial polynomial relationship in S.O]

4.3 Transcendence Bases

We can now define an analogue of a (linear) basis for a vector space.

Definition Let F' < E. A transcendence basis for E over F is a subset B C E
that is algebraically independent over F and for which F(B) < E is
algebraic.]

Since algebraic dependence is a dependence relation, we immediately get the
following two results.

Theorem 4.3.1 Let F' < E. A subset B C E is a transcendence basis for E

over F' if and only if it satisfies either one of the following.

1) B is a maximal algebraically independent subset of E over F'.

2) B is a minimal set satisfying E < B, that is, B is minimal for the property
that F(B) < E is algebraic. O

Theorem 4.3.2 Let ' < E.

1) Any two transcendence bases for E over F have the same cardinality,
called the transcendence degree of E over F' and denoted by [E : F;.

2) Suppose F C AC S CFE where A is algebraically independent over F
and F(S) < E is algebraic. Then there exists a transcendence basis B for
E over F satisfying A C B C S. In particular, [E : F]; < |S]. O

While the vector space dimension is multiplicative over a tower of fields, the
transcendence degree is additive, as we see in the next theorem.

Theorem 4.3.3 Let I' < K < E.

1) If S C K is algebraically independent over F' and T' C E is algebraically
independent over K then S UT is algebraically independent over F'.

2) If S is a transcendence basis for K over F and T is a transcendence basis
Jor E over K then S UT is a transcendence basis for E over F.

3) Transcendence degree is additive, that is,

[EF}t:[EKh+[KF]t

Proof. For part 1), consider a polynomial dependence of S U T over F, that is,
a polynomial

p(mla-"azmylv"wym) 6F[Ila"'amnaylv"'vym]

for which p(s1,...,8n,t1,...,tm) =0, where s; € S are distinct and ¢; € T are
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distinct. Write

€m

p(xla"'vxmyly'“)ym): Z Z af... fnmla"'a‘rﬁ] yl Ym

€1y Cm cosfn

where ay, ..y, € F' and where the monomials y1 --yem are distinct and, for each
such monomial, the monomials x{l, ...,x{ are distinct. Consider the

polynomial

q(yl;---7y7n) = p(817~~~78nay17---7y7n>

= Z Z af,... fnSl7 .,s-,i" yit ey

€1,--m

over K. Since T is algebraically independent over K, it follows that

Z Afr,fuS1 ""’sz,n:()

ok

However, S is algebraically independent over F' and so ay, ., = 0. Thus, p is
the zero polynomial and S'U T is algebraically 1ndependent over F.

For part 2), we know by part 1) that S U T is algebraically independent over F'.
Also, since F(S) < K and K(T) < E are algebraic, each step in the tower
F(SUT) < K(T) < E is algebraic and so F'(S UT') < FE is algebraic. Hence,
S UT is a transcendence basis for F' over E. Part 3) follows directly from part
2).0

Purely Transcendental Extensions

When one speaks of the field of rational functions F(zy,...,x,) in the
“independent” variables xi,...,z,, one is really saying that the set
B ={x,...,x,} is algebraically independent over F’ and that ¥ = F(B). We
have a name for such an extension.

Definition An extension F < E is said to be purely transcendental if £ =
F(B) for some transcendence basis B for E over F. O

We remark that if F is purely transcendental over F' then E = F(B) for some
transcendence basis B, but not all transcendence bases C for E over F' need
satisfy I/ < C'. The reader is asked to supply an example in the exercises.

The following is an example of an extension that is neither algebraic nor purely
transcendental.

Example 4.3.1 Let n > 3 and let F be a field with char(F) Jn. Let u be
transcendental over F, let v be a root of p(x) = 2" + u™ — 1 in some splitting
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field and let E = F(u,v). Clearly, E is not algebraic over F'. We contend that
E is also not purely transcendental over F. Since {u} is algebraically
independent and F'(u) < F(u,v) is algebraic, the set B ={u} is a
transcendence basis for £ over F' and so [E: F]; =1. If F were purely
transcendental over F' there would exist a transcendental element ¢ over F' for
which F(t) = F(u,v). Let us show that this is not possible.

If F(t) = F(u,v) then
a(t) c(t)

u=-—= and v=—=
b(t) (t)
where a(t), b(t), c(t) and d(t) are polynomials over F'. Hence
a”(t) C"(t) B
br(t) —dn(t)

or

This can be written
170 + 6" (2) = B (1)

for nonconstant polynomials f(¢), g(¢) and h(t), which we may assume to be
pairwise relatively prime. Let us assume that deg(f(t)) < deg(g(¢)), in which
case deg(h(t)) < deg(g(t)). We now divide by h"(t) and take the derivative
with respect to ¢ to get (after some simplification)

f”_l[f/h—fhl} +g"_1[g’h—gh’} =0

Since f and g are relatively prime, we deduce that g"~! | f’h — fh'. But this
implies

(n —1)deg(g) < deg(fh) — 1 = deg(f) + deg(h) — 1 < 2deg(g) — 1

which is not possible for n >3. Hence, F < F(u,v) is not purely
transcendental. [

Purely transcendental extensions F' < FE are 100% transcendental, that is, every
element of '\ F' is transcendental over F.

Theorem 4.3.4 A purely transcendental extension F < E is 100%
transcendental, that is, any o € E \ F is transcendental over F.

Proof. Let B be a transcendence basis for E over F. Since E = F(B), it
follows that « € F(ty,...,t,) for some finite set {¢1,...,t,} C B, and we can
assume that « ¢ F(ty,...,t,-1). Letting K = F(ty,...,t,—1), we have
a € E\ K where E =K(t,) is a simple transcendental extension of K.
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Hence, Theorem 2.4.5 implies that « is transcendental over K, and therefore
also over F.00

The following result will prepare the way to finishing the proof (promised in
Chapter 2) that the class of finitely generated extensions is distinguished.

Theorem 4.3.5 Let F < K < E and suppose that F < K is algebraic. If
T C E is algebraically independent over F, then T is also algebraically
independent over K. In other words, T' remains algebraically independent over
any algebraic extension of the base field.

Proof. We have the picture shown in Figure 4.3.1

klgebraic

K(T
K T)

~

/
. /
algebralx //

F

Figure 4.3.1
Since F' < K is algebraic , so is the lifting F'(T') < K(T'). Now,
[K(T) : K]y + [K : FJy = [K(T) : F] = [K(T) : F(T)]: + [F(T) : Fl
and so
[K(T): K], = [F(T) : Fl; = |T]|
which shows that 7" must be a transcendence basis for K (T') over K.
For an alternative proof, if 1" is not algebraically independent over K, there

exists ¢ € T that is algebraic over K (T"\ {t}). Since F' < K is algebraic, the
lifting F(T'\ {t}) < K(T' \ {t}) is also algebraic, and so the tower

F(T\At}) < K(T\{t}) < K(T\{t})(t) = K(T)

is algebraic, whence ¢ is algebraic over F(T \ {t}), in contradiction to the
algebraic independence of T" over F'. O

Finitely Generated Extensions Are Distinguished

We are now in a position to finish the proof that the class of finitely generated
extensions is distinguished. Note how much more involved this task is than
showing that finite or algebraic extensions are distinguished.
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Theorem 4.3.6 Let F' < K < E. If E is finitely generated over F' then K is
also finitely generated over F. Thus, the set of finitely generated extensions is
distinguished.

Proof. Let S = {s1,...,s;} be a transcendence basis for K over F. Then the
second step in the tower F' < F(S) < K < E is algebraic and E is finitely
generated over F'(S). Hence, if we can prove the theorem for algebraic
intermediate fields, we will know that K is finitely generated over F'(S) and
therefore also over I, since S is a finite set.

Thus, we may assume that ' < K < E with F' < K algebraic and show that
[K : F] is finite. Let T' = {#1,...,t,} be a transcendence basis for E over F.
Our plan is to show that

K : F] < [B: F(T)

(see Figure 4.3.2) by showing that any finite subset of K that is linearly
independent over F' is also linearly independent over F'(T'), as a subset of E.
Since F'(T) < E is finitely generated and algebraic, [E : F'(T')] is finite and the
proof will be complete.

E

,/ Nnite

K F(T)

/
. /
algebralx /
/

F

Figure 4.3.2
Let A = {k1,...,&n} C K be linearly independent over F' and suppose that

Z’I"L‘(tl, ,tn)lii = 0
i

where r;(t1,...,t,) € F(T). We wish to show that r;(t1,...,t,) = 0.

By clearing denominators if necessary, we may assume that each r;(¢y,...,t,)
is a polynomial over F. Collecting terms involving like powers of the ¢;'s gives

Z (Z a517~~.7€,,,,i/fi) til .. .tfbn =0
i

€1, -6

where ac, .. € F is the coefficient of ¢{'---t% in r;i(t1,...,¢,). Since
Theorem 4.3.5 implies that 7" is algebraically independent over K, it follows
that T" does not satisfy any polynomial relationships over K and so
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E Gey,...enili = 0
i

Then the linear independence of A over F' gives

Lyl — 0

ac

and so r;(t1,...,t,) =0 for all 4. This shows that A is linearly independent
over F(T), as desired. O

*4.4 Simple Transcendental Extensions

The class of purely transcendental extensions is much less well behaved than the
class of algebraic extensions. For example, let ¢ be transcendental over F. Then
in the tower F < F(#) < F(t), the extension F < F(t) is purely
transcendental (and simple) but the second step F(t?) < F(t) is not
transcendental at all.

In addition, if F' < E is purely transcendental and F' < K < F, it does not
necessarily follow that the first step /' < K is purely transcendental. However,
this is true for simple transcendental extensions. The proof of this simple
statement illustrates some of the apparent complexities in dealing with
transcendental extensions.

Theorem 4.4.1 (Luroth's Theorem) Let t be transcendental over F. If
F < K < F(t)and K # F then K = F(s) for some s € F(t).

Proof. Let us recall a few facts from Theorem 2.4.5. Since K # F, Theorem
2.4.5 implies that for any s € K \ F, the tower F(s) < K < F(t) is algebraic.
Theorem 2.4.5 also implies that if s = f(¢)/g(t) € K \ F where f and g are
relatively prime polynomials over F’, then

[F'(t) : F(s)] = max(deg(f (), deg(g(x)))

Now, we want to find an s € K \ F' for which [F(t): F(s)] =[F(¢) : K],
showing that K = F'(s). Of course, [F'(t) : F((s)] > [F(t) : K].
Let

p(x) = min(t, K) = 2" + le((gm”l +o Z:((g

where a;(t),b;(t) € F(t) are relatively prime. Since ¢ is not algebraic over F,
not all of the coefficients of p(z) can lie in F'. We will show that for any
coefficient ay(t) /by (t) # F, we may take

To this end, consider the polynomial
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_ai(t)

bi(t)
Since s ¢ F, we have h(z) # 0. But h(t) =0 and so p(x) | h(z) over K. In
other words, there exists ¢(z) € K|[z] such that

ule) = S 0(e) = o))

h(zx) = ar(z)

be(z) € Klz]

or
ar(z)by(t) — ar(t)br(x) = by(t)q(z)p(z)
Multiplying both sides of this by
r(t) = bi(t)---bu(t)
gives

r(t)[ar(x)bi(t) — ar(t)br(x)] = by (t)q(x)r(t)p(x) (44.1)

n

r(t)p(x) = bi(t)-ba(B)a" + Y _[br(t) by (£)ai(t)bia () by (t)]2"

i=1

Now let g(t) be the greatest common divisor of the coefficients on the right-
hand side of this equation. Since g(t) divides the first coefficient by (¢)- - b, (), it
must be relatively prime to each a(x) and so

g(t) [ br(t)- b1 () bps1(t)---bu(t)
for all k. Factoring out g(t) gives
r(t)p(z) = g(t)p'(t, )
where p/(t,x) € F[t,z] is primitive in t, that is, p/(x,t) is not divisible by any

nonconstant polynomial in ¢.

Note, however, that for each k, the polynomial ay(t) appears in the coefficent of
2"~ F. Also, for each k, we have

bi(t)---bu(t)
g(t)

It follows that the degree of p/(¢,2) with respect to ¢ satisfies
t-deg(p/(t,2)) > max(deg(ax(t)), deg(bi(t))) = [F(¢) : F(s)] (44.2)

Thus, (4.4.1) can be written

br.(1)
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r(t)]ar(@)bi(t) — ar()br(z)] = be(t)q(2)g(t)p'(t, x) (4.4.3)

Next, we multiply both sides of (4.4.3) by a polynomial u(¢) that will clear all of
the denominators of ¢(z), giving

u(t)r(t)]ar(@)bi(t) — ar(t)br(z)] = br(t)q (¢, 2)p'(t, )

where p'(t,x),q (t,z) € F[t,x]. Since p/(t,x) is t-primitive, we must have
u(t)r(t) | bp(t)q'(t,z) and so the other factor aj(x)by(t) — ay(t)bp(x) must
divide p'(t, ), that is, there exists a polynomial ¢” (¢,x) € F[t, z] for which

ag ()b (t) — ar(t)br(z) = ¢"(t,)p (¢, x) (4.4.4)
Now, the t-degree of the left-hand side of this equation is at most
max (deg(ax(t)), deg(bx(t))) = [F () : F(s)]

and by (4.4.2), the t-degree of the right-hand side is at least [F'(f) : F'(s)].
Hence, the t-degree of either side of (4.4.4) is [F'(t) : F(s)] and (4.4.2) implies
that ¢-deg(q” (¢, z)) = 0, that is,

ay,(2)bi(t) — ar(t)br(z) = ¢"(2)p'(t, 2) (4.4.5)

where ¢”’(z) € Flx]. Since the right side of (4.4.5) is not divisible by any
nonconstant polynomial in ¢, neither is the left side. But the left side is
symmetric in x and ¢, so it cannot be divisible by any nonconstant polynomial in
x either. Hence, ¢"(x)p/(t, z) is not divisible by any nonconstant polynomial in
x, implying that ¢" (x) € F, that is,

ay(2)bi (t) — ap (V)b (z) = ¢"p'(t, ) (4.4.6)

where ¢ € F. Finally, since the z-degree and t-degree of the left side of (4.4.6)
agree, this is also true of the right side. Hence by (4.4.2),

n = a-deg(p/ (1, %)) = t-deg(p/(t,2)) > [F(t) : F(s)] > n
Thus, [F(t) : F(s)] = n, and the proof is complete. [
It can be shown that Luroth's theorem does not extend beyond simple

transcendental extensions, but a further discussion of this topic would go
beyond the intended scope of this book.

The Automorphims of a Simple Transcendental Extension

We conclude with a description of all F-automorphisms of a simple
transcendental extension F'(t). Let GL,(F') denote the general linear group,
that is, the group of all nonsingular n x n matrices over F'. The proof, which is
left as an exercise, provides a nice application of Theorem 2.4.5.
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Theorem 4.4.2 Let F < F(t) be a simple transcendental extension and let
Autp(F(t)) denote the group of all automorphisms of F(t) over F'.

1) For each A = [Z Z} € GLy(F') there is a unique 04 € Autp(F(t)) for
which

at+b
oalt) = ct+d

Moreover, all automorphisms of F(t) over F have the form o for some
A€ GLQ(F)
2) IfA,B € GLy(F), then

oap =040 and JAA:CTEI

Also, 04 = op if and only if AB™' is a nonzero scalar matrix. In other
words, the map T:GLy(F) — Autp(F(t)) defined by TA=0,4 is an
epimorphism with kernel equal to the group of all nonzero scalar matrices

in GLQ(F)D
Exercises

1. Find an example of a purely transcendental extension F' < E with two
transcendence bases B and C such that £ = F'(B) but F'(C) is a proper
subfield of E.

2. LetF < Eand F < K. Show that [EK : K]; < [E : Fl;.

3. LetF<K<FandletT € E\ K. Show that [E(T) : F(T)]; < [K : F);
with equality if T is algebraically independent over K or algebraic over F'.

4. Use the results of the previous exercise to show that if F' < K < E and
F<L<FEthen|KL:F;<[K:Fl;+I[L:F.

5. Let F be a field of characteristic # 2 and let v be transcendental over F'.
Suppose that u? + v* = 1. Show that F(u,v) is a purely transcendental
extension by showing that F'(u,v) = F(w) where w = (1 + v)/u.

6. Show that the extension Q < Q(¢, \/it), where t is transcendental over Q,
is not purely transcendental.

7. Let F < K < FE and suppose that S C E is algebraically independent over
K. Prove that F(S) < K(S) is algebraic if and only if F' < K is algebraic.

8. Prove that the transcendence degree of R over Q is uncountable.

9. a) Show that the only automorphism of R is the identity.

b) Show that the only automorphisms of C over R are the identity and
complex conjugation.
¢) Show that there are infinitely many automorphisms of C over Q.

10. (An extension of Luroth's theorem) Suppose that F' < E is purely
transcendental. Show that any simple extension of F' contained in E (but
not equal to F') is transcendental over F'.
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11. Prove part 1) of Theorem 4.3.5 by contradiction as follows. Suppose that
S UT is algebraically dependent over F. Then there exists an o € S UT
that is algebraic over F'(Sy U Tp) for some finite sets So C S and T, C T
not containing «, and we may assume that no proper subset 77 of 7 has the
property that « is algebraic over F'(Sy U T7). Prove that o # T'. Prove that
Ty is not empty. If te&Ty, prove that t is algebraic over
F(SoUTyU{a}\ {t}). Complete the proof from here.

12. Prove Theorem 4.4.2.



Part II—Galois Theory



Chapter 5
Galois Theory I: An Historical Perspective

Galois theory sits atop a structure of work began about 4000 years ago on the
question of how to solve polynomial equations algebraically by radicals, that is,
how to solve equations of the form

n—1
ap " +ap_ 1"+ 4+ayg=0

by applying the four basic arithmetical operations (addition, subtraction,
multiplication and division), and the taking of roots, to the coefficients of the
equation and to other “known” quantities (such as elements of the base field).

More specifically, a polynomial equation p(x) =0 is solvable by radicals if
there is a tower of fields

F<R <Ry<--<R,
where R,, contains a splitting field for p(x) (and hence a full set of roots of

p(x)) and where each field in the tower is obtained by adjoining some root of an
element of the previous field, that is,

Ry, = Ry—1(o)
where o € Ry,_1.
In this chapter, we will review this structure of work from its beginnings in

Babylonia through the work of Galois. In subsequent chapters, we will set down
the modern version of the theory that has become known as Galois theory.

5.1 The Quadratic Equation

Archeological findings indicate that as early as about 2000 B.C., the
Babylonians (Mesopotamians) had an algorithm for finding two numbers a and
b whose sum s = a + b and product p = ab were known. The algorithm is

1) Take half of s.
2) Square the result.
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3) Subtract p.
4) Take the square root of this result.
5) Add half of s.

This results in one of the values a and b: the other is easily obtained. This
algorithm can be expressed in modern notation by the formula

a=+/(s/2)2—p+s/2

for solving the system of equations

a+b=s
ab=p

The solutions to this system are solutions to the quadratic equation

> —sz+p=0
Thus, except for one issue, it can be said that the Babylonians knew the
quadratic formula, but in algorithmic form.

The one issue is that the Babylonians had no notion of negative numbers!
Indeed, they developed a separate algorithm to compute the numbers a and b
whose difference and product were known. This is the solution to the system

a—b=s
ab=p

whose solutions satisfy the quadratic equation

2 —sr—p=0
Unfortunately, the origin of the Babylonian algorithms appears lost to antiquity.
No texts uncovered from that period indicate who or how the algorithm was
developed.

5.2 The Cubic and Quartic Equations

In the 3500 years or so between the apparent achievement of the Babylonians
and the mid-Renaissance period of the 1500's, not much happened in Europe of
a mathematical nature. However, during the Middle Ages (that is, prior to the
Renaissance, which began in the late thirteenth century), the Europeans did
learn about algebra from the Arabs and began to devise a new mathematical
symbolism, which opened the way for the dramatic advancements of the mid-
Renaissance period.

In particular, solutions to the general cubic and quartic equations were
discovered. As to the cubic, we have the following excerpt from Girolamo
Cardano's Ars Magna (1545). (Cardano was a highly educated and skilled
physician, natural philosopher, mathematician and astrologer.)
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In our own days Scipione del Ferro of Bologna has solved the
case of the cube and first power equal to a constant, a very
elegant and admirable accomplishment. Since this art
surpasses all human subtlety and the perspicuity of mortal
talent, and is a truly celestial gift and a very clear test of the
capacity of men's minds, whoever applies himself to it will
believe that there is nothing that he cannot understand. In
emulation of him, my friend Niccold Tartaglia of Brescia,
wanting not to be outdone, solved the same case when he got
into a contest with his [Scipione’s] pupil, Antonio Maria Fior,
and, moved by my many entreaties, gave it to me.

The solution of the quartic equation was discovered by one of Cardano's
students, Ludivico Ferrari, and published by Cardano. Let us briefly review
these solutions in modern notation.

Solving the Cubic

1)

2)

3)

An arbitrary monic cubic polynomial 2 + bz? + cx + d can be put in the
form

p(m)=x3—|—pa:—|—q

by replacing x by z — b/3.
Introduce the variables v and v and set z = u — v. Then p(z) has the form

p(z) = u? — 3uv 4 3uv® — v 4 pu— pv+ ¢
or, equivalently,
pla) =u’ = v’ + (u—v)(=3uww +p) +¢

If 3uv = p, then we get

px) =u® —v* +¢q
Thus, a solution to the pair of equations
uv=0p
uw— 1P+ q=0

provides a solution v — v to the original cubic equation. Multiplying the
second equation by 27u* and using the fact that 27u3v® = p?® gives

27ub — p* + 27ulq =0

which is a quadratic equation in u3. If o is a cube root of a solution to this
quadratic, then v = p/3a, so that &« — p/3« is a root of the original cubic.
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Solving the Quartic
1) An arbitrary monic quartic equation can be put in the form
s+ pt+qr+r=0
2) Introducing a variable u, we have
(2® + u)? = 2t + 2uz® + u®
Using the quartic equation from 1) to replace z* on the right, we have
(2% 4+ u)? = (2u — p)z* — qu + (u® —7)

3) If the right side of this equation can be put in the form A(z + B)?, then we
can take square roots. This happens if the quadratic on the right has a single
root, which happens if its discriminant is 0, that is, if

¢~ 42u— ) 1) =0

which is a cubic in u, and can therefore be solved, as described earlier.
4) Once u is found, we have A = 2u — p and B = —¢/2A, and so our quartic
is

Hence,
2 q
p— 2 —_— —_—
vV p<x 2<2u—p>>

which can be solved for a solution x of the original quartic.

5.3 Higher-Degree Equations

Naturally, solutions to the arbitrary cubic and quartic equations led to a search
for methods of solution to higher-degree equations, but in vain. It was not until
the 1820s, some 300 years later, in the work of Ruffini, Abel and then Galois,
that it was shown that no solution similar to those of the cubic and quartic
equations could be found, since none exists.

Specifically, for any n > 5, there is no algebraic formula, involving only the
four basic arithmetic operations and the taking of roots, that gives the solutions
to any polynomial equation of degree n. In fact, there are individual quintic (and
higher—degree) equations whose solutions are not obtainable by these means.
Thus, not only is there no general formula, but there are cases in which there is
no specific formula.
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5.4 Newton's Contribution: Symmetric Polynomials

It was not until the accomplishments of Vandermonde and, to a larger extent,
Lagrange, in the period around 1770, that a deeper understanding of the work
that led to the solutions of the cubic and quartic equations was revealed.
However, even these fine mathematicians were unable to take the leap made by
Abel and Galois a few decades later.

The cornerstone of the work of Vandermonde and Lagrange is the work of Isaac
Newton on symmetric polynomials. We will go into precise detail at the
appropriate time in a subsequent chapter, but here is an overview of Newton's
contribution in this area.

The Generic Polynomial
Ifty,...,t, are independent variables, the polynomial
glo) =] @ -t)
i=1

is referred to as a generic polynomial of degree n. (Galois would have referred
to this as a polynomial with “literal” coefficients.) Since the roots ¢4, ...,t, of
the generic polynomial g(x) are independent, this polynomial is, in some sense,
the most “general” polynomial of degree n and facts we learn about g(x) often
apply to all polynomials.

It can be shown by induction that the generic polynomial can be written in the
form
g(x) =" — slxn—l 4 (_1)nsn
where the coefficients are given by
n
S1 = Zti, SS9 = Ztﬂm S3 — Z t,;tjtk yeeoy Sp = Hti

i 1<j i<j<k i=1

These polynomials are called the elementary symmetric polynomials in the

variables ;.

Thus, except for sign, the coefficients of g(z) are the elementary symmetric
polynomials of the roots of g(x). Moreover, since this holds for the generic
polynomial, it is clear that it holds for a/l polynomials.

Symmetric Polynomials

Intuitively, a polynomial p(ty,...,t,) in the variables ¢1, ..., t, is symmetric if
it remains unchanged when we permute the variables. More carefully,
p(t1,...,t,) is symmetric if
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p(ta(l)a ceey to(n)) = p(th o 7tll)

for any permutation o of {1,...,n}.

Of course, each elementary symmetric polynomial sy, that is, each coefficient of
g(x), is a symmetric polynomial of the roots ¢;, in this sense. It follows that any
polynomial (symmetric or otherwise) in the coefficients of g(x) is a symmetric
polynomial of the roots ¢;. For instance,

2

i<j
is unchanged by a permutation of the ¢;'s.

Isaac Newton realized, sometime in the late 1600s, that a kind of converse to
this holds: Any symmetric polynomial in the roots of p(x) is a polynomial in the
coefficients of p(x). Let us state this theorem, known as Newton's theorem, first
without reference to roots.

Newton's Theorem
1) A polynomial p(ti,...,t,) is symmetric if and only if it is a polynomial in
the elementary symmetric functions sy, ... , Sy, that is,

Pty tn) = (81, ..., 8n)

Moreover, if p(ti,...,t,) has integer coefficients, then so does
q(S1y.-+y8n)-

2) Let p(x) be a polynomial. Then the set of symmetric polynomials in the
roots of p(x) is the same as the set of polynomials in the coefficients of
p(x). In particular, any symmetric polynomial in the roots of p(x) belongs
to the same field as the coefficients, so if p(x) is a polynomial over Q, then
any symmetric polynomial in the roots of p(x) belongs to Q. Also, if p(x)
has integer coefficients, then any symmetric polynomial in the roots of p(x)
is an integer.[]

The proof of Newton's theorem will be given in a later chapter. However, it
should be noted that the proof is in the form of an algorithm (however
impractical) for finding the polynomial q.

How can this be used to advantage in the present context? The answer is both
simple and profound: When trying to find the roots of a polynomial p(z), we
can assume not only that the coefficients of p(x) are known (obviously), but
also that any symmetric polynomial in the roots of p(x) is known! The reason is
that an algorithm is known for computing this symmetric polynomial of the
roots that requires knowledge of the coefficients of the polynomial only (and of
other known quantities, such as rational numbers).



Galois Theory I: An Historical Perspective 119

For instance, if p(z) = 2> + bz + ¢ has roots r and s, then not only are r + s
and rs known, being the coefficients of p(x), up to sign, but we may also
assume that expressions such as r° + s® 4+ 27252 — 3 are known. More to the
point, we cannot assume that 7 — s is known, but we can assume that (r — s)? is
known and so we may write
r+s=a«a

(r—s)*=p
where « and 3 are known. Hence, r — s = \/B Adding this to the first equation
gives 2r = a + /f3, or

rz%(a—i—\/B)

Of course, 7+ s = —b and (r —s)> = (r+s)? — 4rs = b2 — 4c and so this
becomes the well-known quadratic formula

1
r= 5(—b+ \/b2—4c)
(Note that there is another solution to (r — s)? = 3, which gives the other root.)

We are very close here to the work of Vandermonde and Lagrange.

5.5 Vandermonde

How can we apply the previous analysis to the cubic equation? The previous
solution to the quadratic can be expressed as

1
T = 5(7‘1 + T9 -+ 1/ (Tl — 7‘2)2)

where the solutions are r; and ro. Now let 71, 7o and r3 be solutions to a cubic
equation. Again, the sum r; + o + r3 is known, being symmetric in the roots.
As to the analogue of the difference, note that the coefficients +1 and —1 of
r1 — 9 are the two roots of the equation x> — 1 = 0, that is, they are the square
roots of unity.

In general, the complex neth roots of unity are the roots (in the complex field)
of the equation

2" —=1=0

As we will see in a later chapter, this equation has n distinct complex roots,
which we denote by U,,. The set U, is a cyclic group under multiplication. Any
generator of U, is called a primitive nth root of unity. The set of primitive nth
roots of unity is denoted by €,,. Note that if w € €2, then
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ltw+w + o+ =

This fact is used many times.

Now, for the analogue of the difference r; — ry, we require the two expressions
ty =11 +wry+ w2r3

to =11 + w27"2 + wrs

where w is a primitive cube root of unity. Then

1
n=3 [((r1+re+73) 4+ (11 +wra + W?r3) 4 (11 + w?ry + wrs)]
Now, the expressions ¢; and ¢, are not symmetric in the roots, so we cannot
conclude directly from Newton's theorem that they are known. However, the
previous expression can be written in the form

1 ‘ ‘
n=g [(r1 4+ 7o +713) + V(1 + wry 4+ wPrs)3 4+ /(11 + w?ry + wrs)?]

and while the expressions

u = (1] + wry + W’rs)?

v=(r] +w’ry +wr3)?

are also not symmetric in the roots, the expressions v + v and uv are symmetric.

To see this, first note that interchanging r» and r3 has the effect of interchanging
u and v, thus preserving both v+ v and wv. Also, the cyclic permutation
o = (ryrers), which sends r; to 79, 72 to 73 and r3 to r1, actually fixes both u
and v. For example,

ou = o(r1 + wry + wWrs)?]
= (ry + wrs + w?r)?
= [ (wry + WPrs + 1))
=Sy
=u

Thus, both v + v and wv are known quantities, from which we can compute u
and v using the quadratic formula. It follows that the root

1 ‘ ‘
7‘125[(7"1+7’2+T3)+\'3/’(7L+\3/;]

is known. Note that there are three possible values for each cube root in this
expression, leading to nine possible value of r;, of which exactly 3 are roots of
the cubic. Of course, it is a simple matter (in theory) to determine which of the



Galois Theory I: An Historical Perspective 121

nine candidates are roots. Thus, the solution to the general cubic equation is
reduced to solving a quadratic equation and to the taking of cube roots.

This analysis of the cubic equation is the work of Vandermonde, who presented
it to the Paris Academy in 1770, along with a similar analysis of the quartic and
some additional work on higher—degree polynomial equations. However,
Vandermonde appears not to have pursued this work beyond this point.

Perhaps we can find one reason in the fact that Lagrange's major (over 200
page) treatise Réflexions sur la Résolution Algébrique des Equations, which
included similar but independent work in more depth on this subject, was
published a few months after Vandermonde's presentation, while Vandermonde
had to wait until 1774 to see his work published by the Paris Academy!

5.6 Lagrange

In his Réflexions, Lagrange gives a thorough treatment of the quadratic, cubic
and quartic equations. His approach is essentially the same as Vandermonde's,
but with a somewhat different perspective. He also addresses some issues that
Vandermonde did not.

The Cubic Equation

Lagrange also considers the expression
_ 2
t(x1, 9, x3) = X1 + WTe + W T3

but looks directly at all six quantities obtained from this expression by
substituting the roots r1, 79 and r3:

t1 =1 +wre + w2r3

ty = 11 + wry + Wy

ty = 79 + wr + wW’ry = wiy

ty =19 +wrs + w2r1 = w2t1
t5 =173 —+ wry + w2r2 = wt1

te =13+ wro + w2r1 = w2t2

The roots of p(x) are given in terms of the ¢;'s and other known quantities by

1
T = g[(m + 7o +13) +t1 + 1o

1
ry = §[<T1 + 72 +73) + 13 + 14

1
ry = g[(h + 72 +13) + t5 + tg]

Note that, in the notation of the previous section, ¢} = u and t3 = v.
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Now, permuting the roots in any of the ¢;'s results in another ¢; and so the
coefficients of the 6th degree polynomial

f(@) = (& =t1)---(z = 1)

are symmetric in the ¢;'s and therefore also symmetric in the roots 71, 79 and r3,
and are therefore known quantities. Lagrange called the equation f(z) = 0 the
resolvent equation and the solutions ¢; to this equation resolvents.

Lagrange observed that although the resolvent equation is of degree 6, it is also
a quadratic equation in z*, due to the relationships among the ¢;'s. In particular,
f(z) can be expressed in terms of ¢ and ¢, only:

f(z) = (z —t1)(z — t2)(z — why) (z — W) (z — wty) (z — W’ts)
=(z—t)(z — wh)(z — ) (x — to)(x — wto)(x — W?ty)
= (& = t)(@® — t))

=28 — B+ + 8

Thus, the resolvent equation is easily solved for the six resolvents ¢;, using the
quadratic formula, followed by the taking of cube roots—the same operations
required by Vandermonde's approach. It is then a matter of determining which
roots correspond to ¢, and ¢o.

Lagrange addresses (or avoids) the latter issue by observing that if ¢ is any
resolvent, we can assume, by renaming the roots r1,r, and r3, that ¢ = ¢;. Then
since it is easily checked that the product ¢’ = ¢;¢5 is symmetric in r1, 79 and 73
and therefore known, the three roots of p(z) are given by

ri==[(r+ra+ry)+t+t/t

;= [(rl + 79 +13) + wt + wzt’/t]

= =W =

=g [(rl + 7y 4 73) + Wt +wt//t]

Thus, the solutions to the cubic are expressed in terms of any resolvent.
The important points to note here are that

1) Each resolvent ¢ is an expression (polynomial) in the roots of p(z) and
other known quantities.

2) Conversely, the roots of p(x) can be expressed in terms of a single
resolvent and other known quantities.

3) Each resolvent can be determined in a tractable way, in this case by solving
a quadratic equation and taking cube roots.
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The Quartic Equation

Lagrange and Vandermonde each employed their similar lines of analysis with
success for quartic equations. For a quartic p(z), the resolvent expression is
tuj(xlv T2,T3, ':E-l) =T1 + WT9 + W2I3 + W3[E4
=21 +1x9 — X3 — 1Ty
where the x;'s represent the roots of p(z) and where w = 1 is a primitive 4th root
of unity. It follows that there are 4! = 24 distinct resolvents, satisfying a

resolvent equation of degree 24. By analogy with the cubic case, one root of the
quartic p(z) is given by

1
Ty = Z[(Tl +ro 413+ ry) +tu(ry, e, 73,74)
+ tw(rlv T3, T4, ’I"Q) + tw(rlv T4,T2, rfﬁ)]
since 719,73 and 7, each appear in all three of the last positions in
t,(z1, 9,23, 74) and so have coefficient 1 + w + w? + w?® = 0.

It is possible to proceed in a manner analogous to the cubic case, but Lagrange
and Vandermonde both observed that a simplification is possible for the quartic.
In particular, unlike the case of the cubic (and the quintic), where the degrees
are prime, in the case of a quartic, there is a nonprimitive 4th root of unity other
than 1, namely, § = —1.

The resolvent expression with respect to 3,

tg(w1, 09,23, 24) =T — Ty + T3 — Ty

has only 24/2!2! = 6 distinct resolvents, which have the form +¢1, £¢9 and 3.
Moreover, the roots of p(x) are given by

1
7‘1:1[(7”1+7"2+7"3+7“4)+t1+t2+t3]

1
7‘2:1[(T1+T‘2+T3+T4)*t1+t2*t3]

1
T3=Z[(T1+T2+7‘3+T4)+t1 — 1y — t3]

1
7“4:Z[(T1+7‘2+T3+T4)—tl—t2+t3]

Since the resolvent polynomial in this case is
f(@) = (z —t)*(z+t1)" (x — t2) (= + ta) (z — t3)*(x + t3)*
4
= [(@® = t)(@® — ) (2* — t3)]
= [g(a*))"

the resolvent equation, whose coefficients are known, can be solved by solving
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a known cubic equation g(z) = 0. This gives solutions 1,3 and ¢, leaving
only an ambiguity of sign in determining the resolvents ¢1,¢, and t5. Lagrange
addressed the issue of how to choose the correct sign, but Vandermonde simply
left the issue to one of trial and error.

The Quintic Equation

The case of the 5th degree equation stymied both mathematicians, and for good
reason. The Lagrange resolvent equation has degree 120 and is a 24th degree
equation in z°. It seems that both mathematicians doubted that their lines of
analysis would continue to be fruitful. The somewhat ad hoc trick used for the
quartic will not work for the quintic, and it is clear that the Lagrange—
Vandermonde resolvent approach is simply running out of steam.

This is essentially where Lagrange (and Vandermonde) left the situation in his
Réflexions.

5.7 Gauss

We need to say a word about roots of unity with respect to solvability by
radicals. It is an obvious fact that since we allow the taking of roots in
constructing a tower

F<Ri <Ry <---<R,

that shows that p(z) = 0 is solvable by radicals, then every equation of the form
x™ — 1 = 0 is solvable by radicals, that is, the nth roots of unity are obtainable
by taking—well—roots. This is not a very useful statement.

Note, however, that if « is an nth root of unity, then « is a root of the
polynomial

mn—l_l_l,n—2_|_“_+x+1:0

which has degree n — 1. It would be much more interesting (and useful) to
know that a could be obtained by adjoining roots whose degree is at most
n — 1, that is, various kth roots, where k < n — 1.

This was Gauss's contribution, published in 1801 in his Disquisitiones
Arithmeticae, when he was only 24 years old. We should mention that while
Gauss is considered by many to be perhaps the greatest mathematician of all
time, in this particular case, the ideas that Gauss used appear not to have
originated with him. Moreover, Gauss seems to leave a gap in his proof, so one
could argue that this was not really a completely Gaussian affair. Let us briefly
outline Gauss's approach, which uses Lagrange resolvents.

First, it is not hard to show that if n = ab, where a and b are relatively prime,
then every primitive nth root of unity is the product of a primitive ath root of
unity and a primitive bth root of unity. In symbols,
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Qn = QaQb

Moreover, since QZ/ 4 = Q4 (proof postponed until a later chapter), where d | n,
we have

k—1

Q= QL7
and so we need to prove the result only for pth roots of unity, where p is a
prime.
A primitive pth root of unity « is a solution to the polynomial equation
glx)y=aP 4P 4. fx+1=0
whose solutions are
R={a,0? ...,a""}

These are all primitive pth roots of unity, since p is prime. Note that the
exponents of « constitute the cyclic group Z, of nonzero elements of the field

Z,. Any generator a of this group is called a primitive root modulo p. For any
such a, we have

R={a,aa”. .., a”"} (5.7.1)

Now, since the equation g(x) = 0 has degree p — 1, a Lagrange resolvent for
this equation requires a primitive (p — 1)st root of unity [, and the resolvent
expression is

t=ax+ By + fPas + -+ B ap
where, as usual, a resolvent is obtained by substituting the roots of g(z) for the

.’L’Z"S.

The key idea (which may have been in part Vandermonde's) is to choose a
resolvent in a specific way. In particular, the roots are chosen in the order given
by a primitive root modulo p, as shown in (5.7.1). Hence, the resolvent is

t(a,B) = a4+ pa’ + ﬂ2a”’2 N ﬁp*zaaﬁ*z
Note that for any k > 1,
1—gkr
1— gk

ye =B+ (B 4+ () = -1+ =0

Accordingly, if we take the sum
z=t(a, B) + t(a, ) + -+ t(a, B771)

the coefficient of a? will be yr = 0, for all k¥ > 1. Also, the coefficient of « is
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p—1landsoz = (p—1)a, thatis,

1 & 1 &,
a:p—1§:m%ﬁv:p—1§:\ﬂ“%5ﬂP”
k=1 k=1

Thus, if it can be shown that the expressions
s(a, B%) = [t(a, 65

under the radical signs are known, then « will be known, at least up to
determining the correct (p — 1)st roots. This is where the order of the roots in
the resolvent ¢(«, 3) is important. (Actually, the issue of which roots to take can
be mitigated considerably, but we will not go into the details here.)

The “hard part” is thus to show that the expressions s(a, 3*) are known. Since
we can assume that 3 is known (being a smaller primitive root of unity), it
suffices to show that s(c, 3%) does not depend on «. This is done using a result
whose origin is somewhat obscure. Gauss apparently used the result without
proof at one point and then later gave an incomplete proof. In any case, it is not
entirely clear whether Gauss possessed a complete proof of this result, which
can be stated as follows.

Theorem 5.7.1 Let o be a primitive pth root of unity and let 3 be a primitive
(p — 1)st root of unity. Then the powers

2

a,a?, ... al!

are linearly independent over Q([3).
Proof. We need the following additional facts about roots of unity, whose
proofs will be given in a later chapter.

1) If wis a primitive nth root of unity, then [Q(w) : Q] = ¢(n), where ¢ is the
Euler phi function, that is, ¢(n) is the number of positive integers less than

n and relatively prime to n.
2) Ifaand b are relatively prime, then ¢(ab) = ¢(a)p(b).
3) Ifpisa prime, then ¢(p) = p — 1.

Consider the tower
Q< Q) <Qa, 8)

The lower step has degree ¢(p — 1) and the upper step, being a lifting of
Q < Q(«), has degree d < ¢(p) = p — 1. Consider also the tower

Q < Q(af) < Q(a, P)

The lower step has degree ¢(p(p — 1)) = (p — 1)¢(p — 1) and if the upper step
has degree e, then
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e(p—1o(p—1) =[Qa, 8) : Q] = do(p— 1)
Hence, e(p — 1) = d < p — 1, which implies thate = 1 and d = p — 1, that is,
[Q(B)(a) : Q(B)] =p—1
Hence, the set
=o' a,...,a"?}
is a basis for Q(3)(«) over Q(3).0
Now let us look at how this result can be used to show that
s(a, B%) = [t(a, g5
does not depend on «. If we replace o by o (recall that a is a primitive root
modulo p), we have
p—2 p—1 v p—1
t(a®, g5y = Zﬁki,aa’“ _ Zﬁk(i—l)aa’ _ ﬁ—kZ griat = g7*t(a, B%)
=0 =1 =1
It follows that
s(a”, 8%) = [t(a, )P = [8~"H(a, B = [t(a, 8] = s(a, BY)

In other words, s(c, %) is invariant under the replacement o — .

Now, s(a, %) is a polynomial in a and 3. Collecting powers of o (which are
linearly independent by Theorem 5.7.1) gives

s(a, B = @) + a1 (B)a+ @(B)a’ + - + g1 (B)a”

Then the invariance under o — «“ implies that

ap—J

w(B)+a(B)a+ q@p(Bf)a + -+ qp71‘(ﬁ)04
= q(B) + a1(B)a" + @(B)a” + - + gp_1(B)a”
= q(B) + ap-1(B)a + a1 (B)a’ + 2(B)a” + -+ + gp-2(B)ax

a1

Equating coefficients of the linearly independent powers of « gives

‘h(ﬂ) = ‘Ip—l(ﬂ)
»(3) = q(B)
QS(ﬁ)_Z ()

Gp1(8) = gp-2(8)

and so the polynomial expressions ¢;(3), for i > 0, are equal. Hence,
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s(o, 8%) = qo(B) + a1 (B)la + o + - + o™ ] = qu(B) — (B)

which is independent of «, as desired.

Thus, we have shown that a primitive pth root of unity « can be expressed in
terms of a primitive (p — 1)st root of unity [, using only root of degree at most
p— 1. An induction completes the proof that any nth root of unity can be
expressed by taking roots of degree at most n — 1.

As a very simple illustration, let us compute a primitive cube root of unity a.
We begin with a primitive square root of unity = —1 and form the
expressions

to, ) = a —a?
t(a, ) = a+a?

Then since 1 + a + o = 0, we have

to,B)? =(a—a?)?=a*>-2a°+a* = -3
t, ) = (a+a®)? =a*+2° +a' =1

Thus,

1 1
a = 5[V, 9 + Vi(a, 7] = 5 [i\/—3 + 1}
and we need only choose the correct combination of signs.

5.8 Back to Lagrange

As we have remarked, Lagrange's (and Vandermonde's) resolvent has three
properties:

1) Each resolvent ¢ is a polynomial in the roots of p(x) and other known
quantities, including perhaps the nth roots of unity.

2) Conversely, the roots of p(x) can be expressed in terms of a single
resolvent and other known quantities.

3) Each resolvent can be determined in a tractable way.

Lagrange doubted that it would be possible to find a resolvent that could be
determined in a tractable way for the quintic, let alone for higher—degree
polynomials. On the other hand, he did spend considerable effort considering
“resolvents” that satisfy only 1) and 2). In fact, the following theorem of
Lagrange, and its corollary, is a cornerstone of Galois theory. The version we
present here appears in Edwards, and is from Lagrange's Réflexions, Article 104.

Theorem 5.8.1 If t and y are any two functions [polynomials] in the roots
o2 a" L of at + mat Tt 4+ nat 2 + [pat 3 + -+ and if these functions



Galois Theory I: An Historical Perspective 129

are such that every permutation of the roots ', x", 2", ... which changes y also
changes t, one can, generally speaking, express y rationally in terms of t and
m,n,p,..., So that when one knows a value of t one will also know
immediately the corresponding value of y; we say generally speaking because if
the known value of t is a double or triple or higher root of the equation for t
then the corresponding value of y will depend on an equation of degree 2 or 3
or higher with coefficients that are rational int and m,n,p, ....

If we think of ¢ as a known polynomial of the roots, then this theorem states that
under the conditions of the theorem, the value of y, which could simply be a
root of p(x), is expressible as a known function of ¢. Lagrange's theorem has the
following corollary (in slightly more modern notation).

Corollary 5.8.2 Suppose that p(x) has distinct roots, say, oy, ..., oy, If there
exists a polynomial t(x1,xs, ..., ,) with the property that the n! values

t(aah A2y ey aan)

are distinct, that is, if t(ay,...,qp) is changed by every permutation of the
roots, then any polynomial y(oy,...,«y) in the roots, including the roots
themselves, is a known rational expression int(ay, ..., ay,).0

We will be able to rephrase this in more modern terms in a later chapter. For the
curious, it is as follows: If p(z) is separable over F', with splitting field K and
Galois group G and if ¢t € K has the property that ot # ¢ for all ¢ € G, then
Grpuy(K) = {¢} and so taking fixed fields gives F(t) = K, that is, every
polynomial in the roots of p(x) is a polynomial in .

A polynomial ¢ as described in the previous corollary is a “resolvent” in the
sense that it satisfies the first two conditions of a Lagrange resolvent: ¢ is a
known function of the (unknown) roots and the roots are a known function of ¢.
Any t with these properties is called a Galois resolvent, because Galois was the
first to recognize that such a resolvent always exists (provided that p(x) has no
multiple roots). He was also the first to realize the importance of such
resolvents.

We can describe Galois resolvents in more modern terms as follows. Let
E = F(a,...,a) be a splitting field for p(z) over F'. We may assume that F'
is the field of “known” quantities. Then ¢ € E is a Galois resolvent if and only
if F(ay,...,a,) = F(t), that is, if and only if ¢ is a primitive element of .

Now we see that the existence of Galois resolvents follows from the Theorem of
the Primitive Element. Assuming that p(z) has no multiple roots—an
assumption that Galois also made—the fact that /' < FE is finite and separable
implies that it is simple.
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5.9 Galois

It is not hard to place the work of Evariste Galois in time, since he was born in
1811 and died only 21 years later, of a gunshot wound, in 1832. However, it is
much harder to describe the importance of his work, which sparked the
foundations of modern algebra. (Of course, Cauchy, Cayley, Lagrange,
Vandermonde, Newton, Gauss and others had a hand in the foundations of
algebra as well.)

Galois realized that while a (Galois) resolvent might not be able to provide the
actual values of the roots of a polynomial, it does lead the way to a beautiful
theory, now called Galois theory that, among other things, shows that there are
no Lagrange resolvents for polynomials of degree 5 or greater.

In his 1831 Memoir on the Conditions for Solvability of Equations by Radicals,
Galois states a result akin to the corollary of Lagrange given above, without
mention of either Lagrange or his theorem (although he had read Lagrange as a
student). Moreover, Galois' proof is, to say the least, sketchy. In fact, when
Poisson read Galois' memoir, as submitted for publication to the Paris Academy
of Sciences, Poisson remarked

“We have made every effort to understand Mr. Galois' proof.
His arguments are not clear enough, nor developed enough,
for us to be able to judge their correctness. ...”

Galois' paper was rejected for publication.
In his memoir of 1831, Galois proved the following result (Proposition VIII):

“For an equation of prime degree, which has no
commensurable divisors, to be solvable by radicals, it is
necessary and sufficient that all roots be rational functions of
any two of them.”

In more modern language, this theorem says that if f(z) is irreducible and
separable of prime degree p, then the equation f(x) = 0 is solvable by radicals
if and only if F[«, 3] is a splitting field for f(x), for any two roots o and (3 of
f(z). Since, for example, any quintic polynomial with exactly two nonreal roots
fails to meet this condition, it cannot be solvable by radicals. This theorem is
covered in detail in the chapter on solvable extensions.

Galois and Groups

Galois' great achievement was not the actual result that polynomial equations of
degree 5 and higher have no general algebraic solution. Indeed, even the
formulas for cubic and quartic equations are not of much practical use. Galois'
great achievement lies in the path he took to prove this result, in particular, his
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discovery and application of the notion of a “Galois-style” group, described
below.

While on the subject of groups, it cannot be said that Galois discovered in its
entirety the modern notion of a group. As we will see, Galois dealt only with
sets of permutations and stated only that these sets must be closed under
composition (although not in these words). The other properties of the definition
of a modern group: associativity, identity and inverses, were not mentioned
explicitly by Galois. (Perhaps he thought them too obvious for explicit
mention.)

When Galois' work was finally published in 1846, the theory of finite
permutation groups had already been formalized by Cauchy, who likewise
required only closure under product, but who clearly recognized the importance
of the other axioms by introducing notations for the identity and for inverses.

Cayley (1854) was the first to consider the possibility of more abstract groups,
and the need to axiomatize associativity. He also axiomatized the identity
property, but still assumed that each group was a finite set, and so had no need
to axiomatize inverses (only the validity of cancellation). It was not until 1883
that Dyck, in studying the relationship between groups and geometry, made
explicit mention of inverses.

It is also interesting to note that Cayley's famous theorem of group theory, to the
effect that every group is isomorphic to a permutation group, completes a full
circle back to Galois (at least for finite groups)!

Galois-Style Groups

Galois' version of a group is as follows (although the terminology is not
necessarily that of Galois). Consider a table in which each row contains an
ordered arrangement of a set S of distinct symbols (such as the roots of a
polynomial), for example

S0 & o0 2
O o0 @ &
Q T O @ o0
a0 0 QL Q
QL ALUL D O O

Then each pair of rows defines a permutation of S, that is, a bijective function
on S. Galois considered tables of ordered arrangements with the property that
the set A; of permutations that transform any given row r; into the other rows
(or into itself) is the same for all rows r;, that is, A; = A; for all 4, j. Let us refer
to this type of table, or list of ordered arrangements, as a Galois-style group.
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It is not hard to show that a list of arrangements is a Galois—style group if and
only if the corresponding set A (= A;) of permutations is a subgroup of the
group of all permutations of the set .S, that is, if and only if A is a permutation
group, in the modern sense.

To see this, let the permutation that transforms row r; to row r; be 7; ;. Then
Galois' assumption is that the sets A; = {771-71, e 7r”,} are the same for all 1.
This implies that for each 7, and j, there is a v for which 7; , = 7;,,.. Hence,

TiuTij = TjuTij = Tiw € A

and so A; is closed under composition. It is also closed under inverses, since for
any m; j € Aj;, it is true that 7 jl = m;; € A;. Finally, the identity is in A;, since
it is the substitution associated to the pair of rows (r1,71).

Conversely, if A; is a permutation group, then since
-1
Tij = 1M1 = m1(m) " € Ag

it follows that A; = A; for all 4.

Galois appears not to be entirely clear about a precise meaning of the term
group, but for the most part, he uses the term for what we are calling a Galois—
style group. Galois also worked with subgroups and recognized the importance
of what we now call normal subgroups, although his “definition” is quite
different from what we would see today.

The Galois Group

For a modern mathematician, the Galois group of a polynomial p(z) over a field
F' is defined in terms of a splitting field. Galois and his predecessors talked
about the “roots” of a polynomial without regard to considerations of their
existence (much as our students do today) and it was not until Kronecker came
upon the scene, several decades later, that the issue of existence was explicitly
addressed.

In any case, the modern definition of the Galois group of a polynomial p(z)
over F is the group G (E) of all automorphisms of a splitting field F of p(x)
over F' that fix F' pointwise, in symbols

Gr(E) = Autyp(E)

Galois would have defined the Galois-style group of a polynomial p(x), with
distinct roots, essentially as follows (but in different terms). Let £ = F'(¢) be a
splitting field for p(z). Let p;(x) be the minimal polynomial of ¢ over F' and let

R={t=ty,...,t3}

be the conjugates of ¢, that is, the roots of p;(x). Note that since p(z) is assumed
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to have only simple roots, the extension F' < E is separable and so p;(z) is
separable, that is, p;(x) has distinct roots. Also, since F' < E is normal, p;(x)
splits over E and so [E : F] =d.

Let oy, ..., a, be the roots of p(z). Each root a; is a polynomial f;(¢) in the
primitive element ¢ (that is, the Galois resolvent). Consider the list of
arrangements

At) foltr) - falta)
fl(t2) f?(tQ) fn(t2) (5.9.1)

fi(ta) f2(:td) o fa(ta)

the first row of which is just the set of roots of p(z). We claim (as did Galois, in
a different way) that this is a Galois-style group.

To see this, we make the following observations:
1) Since F' < E is normal,

Gr(E) = homp(E, F)

where F < E < F.

2) According to Theorem 2.8.3, for each i, there is a ¢; € homp(E, F) =
Gp(F) that maps ¢ to ¢;. Furthermore, each element of Gp(E) is uniquely
determined by its value on ¢. Hence,

|Gr(E)| =[E: F]=d

Thus, letting Gr(E) = {01 = t,09,...,04}, we can rewrite the previous list of
arrangements as

A R )
fi(oat) f2({f2t) o fuloot)
filoat)  foloat) - fuloat)

or

fi(?) f(t) - fuld)
a2 fi(t) U?f?(t) oo fu(l)

ufi) cafalt) o oaful)

Therefore, in the notation of Galois-style groups used earlier, A1 = G¢(E) and
so this list does indeed represent a Galois-style group.

Of course, Galois did not prove that his list (5.9.1) is a Galois-style group in the
same way we have done. His first task is to show that each row of (5.9.1) is a
permutation of the first row.
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The first step is to show that all of the elements of the table are roots of p(x),
that is, that p(fi(¢;)) =0 for all i and j. For this, Galois considers the
polynomials p(f;(x)). Since

p(fi(t1)) = p(ai) =0

it follows that the polynomial p(f;(z)) and the irreducible polynomial p;(x)
have a common root ¢;. Galois knew that this implies that p;(x) | p(f;(x)).
Hence, every root of p;(x) is a root of p(f;(x)), that is, p(f;(t;)) = 0 for all ¢
and j, as desired.

Then Galois reasoned that if two elements f;(t;) and f;(t;) of the same row,
where i # j, are equal, then the polynomial f;(x) — f;(x) has root ¢; and so, as
above,

pi(x) | filz) = fi(x)

which implies that all conjugates ¢, are roots of f;(x) — f;(x). In particular,
fi(t1) = fj(t1). But these are roots from the first row of (5.9.1), which are
distinct and so ¢ = j, a contradiction.

For more details on Galois' approach to these issues, we refer to the reader to
Edwards.

Solvability by Radicals

So let us recap: Galois developed the notion of a Galois resolvent, that is, a
primitive element of a splitting field of p(z) and showed that Galois resolvents
always exist. He then used this notion to develop the concept of the Galois-style
Galois group of p(z). The stage is now set for his most famous result, namely,
that the roots of a 5th or higher degree polynomial equation are not always
solvable by radicals. Galois' approach was to consider the conditions imposed
on the Galois group of a polynomial by the requirement that the polynomial
equation be solvable by radicals. Here is a brief sketch.

Note that since the roots of unity can be considered as known quantities
(obtainable by the taking of roots), once a single root « of a quantity is known,
all other roots of that quantity, being of the form wa where w is a root of unity,
are also known.

Since if n = ab, then

r=nr
it follows that an extension F' < F'(«) obtained by adjoining a single nth root «

can be decomposed into a tower in which each step is obtained by adjoining a
prime root of an element. Hence, a polynomial equation p(x) = 0 is solvable by
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radicals if and only if a splitting field E for p(z) over F' can be “captured”
within a finite tower of fields

F < Flag) < Flog, o) < -+ < Flag,...,0m) (5.9.2)

where each «; is a p;th root (p; a prime) of some element in the previous field of
the tower. Moreover, we may assume that the required roots of unity appear as
necessary, in particular, we may assume that if K < K (') is a step in the
tower (5.9.2), then K contains the pth roots of unity.

Now let us examine, as Galois did, the Galois groups Gp(q,... ) (E). It is clear
from the definition that they form a nonincreasing sequence

GF(E) > GF(al)(E) > GF(al,az)(E) > > GF(a1,4..,a,,,,)(E) (593)

Moreover, if F < F(ay,...,a,,) then, since the taking of Galois groups
reverses inclusion, we have

Gria,..an)(E) < Ge(E) = {1}
that is, Gp(m"_"am)(E) = {L}

Galois studied the properties of the sequence (5.9.3). In particular, he showed
that each group in (5.9.3) is a normal subgroup of its predecessor, and has prime
index in its predecessor. A sequence of subgroups in which each group is
normal in its immediate parent is called a normal series, and if the indices are
prime, then the top group, which in Galois' case is Gp(F), is called solvable.

Galois proved that if p(x) = 0 is solvable by radicals, then its Galois group
Gr(E) is solvable. He also proved the converse.

Galois used his remarkable theory in his Memoir on the Conditions for
Solvability of Equations by Radicals of 1831 (but not published until 1846), to
show that the general equation of degree 5 or larger is not solvable by radicals.
It is worth noting that Ruffini, in 1799, offered the first “proof” that the 5th
degree equation is not solvable by radicals. However, his proof was not
completely convincing and a complete proof was given by Abel in 1826.
Nevertheless, Galois' achievement is not diminished by these facts.

5.10 A Very Brief Look at the Life of Galois

Evariste Galois life was, to say the least, very short and very controversial. Of
course, it would not be the subject of such legend today were it not for his
remarkable discoveries, which spanned only a few short years.

Galois was born on October 25, 1811, near Paris. Apparently, Galois was
recognized at an early age as a brilliant student with some bizarre and rebellious
tendencies.
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In 1828, at the age of 17, Galois attempted to enter the prestigious Ecole
Polytechnique, but failed the entrance exams, so he remained at the royal school
of Louis-le-Grand, where he studied advanced mathematics. His teacher urged
Galois to publish his first paper, which appeared on April 1, 1829.

After this, things started to go very badly for Galois. An article that Galois sent
to the Academy of Sciences was given to Cauchy, who lost it. (Apparently,
Cauchy had a tendency to lose papers; he had already lost a paper by Abel.) On
April 2, 1829, Galois' father committed suicide.

Galois once again tried to enter the Ecole Polytechnique, but again failed under
some rather controversial circumstances. So he entered the Ecole Normale,
considered to be on a much lower level than the Ecole Polytechnique. While at
the Ecole Normale, Galois wrote up his research and entered it for the Grand
Prize in Mathematics of the Academy of Sciences. The work was given to
Fourier for consideration, who took it home, but promptly died, and the
manuscript appears now to be lost.

Galois possessed very strong political opinions. On July 14, 1831, he was
arrested during a political demonstration, and condemned to six months in
prison. In May 1832, Galois had a brief love affair with a young woman. He
broke off the affair on May 14, and this appears to be the cause of a subsequent
duel that proved fatal to Galois. Galois died on May 31, 1832.

On September 4, 1843, Liouville announced to the Academy of Sciences that he
had discovered, in the papers of Galois, the theorem, from his 1831 Memoir,
that we mentioned earlier concerning the solvability by radicals of a prime—
degree equation, and referred to it with the words “as precise as it is deep.”
However, he waited until 1846 to publish Galois' work.

In the 1850s, the complete texts of Galois' work became available to
mathematicians, and it initiated a great deal of subsequent work by the likes of
Betti, Kronecker, Dedekind, Cayley, Hermite, Jordan and others.

Now it is time that we left the past, and pursued Galois' theory from a modern
perspective.



Chapter 6
Galois Theory II: The Theory

6.1 Galois Connections

The traditional Galois correspondence between intermediate fields of an
extension and subgroups of the Galois group is one of the main themes of this
book. We choose to approach this theme through a more general concept,
however.

Definition Let P and Q) be partially ordered sets. A Galois connection on the
pair (P, Q) is a pair (I1, Q) of maps II: P — @ and Q: QQ — P, where we write
II(p) = p* and QU(q) = ¢, with the following properties:

1) (Order-reversing or antitone) For all p,q € P andr,s € Q,

p<q=>p'>¢andr<s=r>¢
2) (Extensive) Forallp e P, q € Q,
p<p’andq<q” O

Closure Operations
Lurking within a Galois connection we find two closure operations.
Definition Let P be a partially ordered set. A map p — cl(p) on P is an

(algebraic) closure operation if the following properties hold for all p,q € P:
1) (Extensive)

p<cl(p)
2) (Idempotent)
cl(cl(p)) = cl(p)
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3) (Isotone)
p<q=cl(p) <cl(g)
An element p € P is said to be closed if cl(p) = p. The set of all closed
elements in P is denoted by C1(P).01
Theorem 6.1.1 Let (I1,QY) be a Galois connection on (P, Q). Then the maps
p—p” and q—q"

are closure operations on P and Q, respectively, and we write p* = cl(p) and
q* = cl(q). Moreover,
) p* = p* that is,

2) ¢* =¢, thatis,

Proof. Since p < p*, the order-reversing property of * gives
p*/* S p* S (p*)/*

and so p*"* = p*, from which part 1) follows. Part 2) is similar. [

Theorem 6.1.2 The maps 11: P — CI(Q) and Q: Q — CI(P) are surjective and
the restricted maps 11: CI(P) — CI(Q) and Q:Cl(Q) — CI(P) are inverse
bijections.

Proof. Since cl(p*) = p*, we see that p* is closed, that is, IT maps P into C1(Q).
Moreover, II is surjective since if ¢ € C1(Q), then ¢ = cl(¢) = (¢')*. To see that
IT is injective when restricted to closed elements, if p,r € CI(P) and p* = r*,
then p* = r¥, that is, p = r. Similar arguments apply to 2. Finally, since

Qo Il(cl(p)) = cl(cl(p)) = cl(p)
we see that o IT = ¢ on CI(P) and similarly, ITo Q = ¢ on CI(Q).0
Theorem 6.1.3 Let (I1, Q) be a Galois connection on a pair (P, Q) of lattices.

1) If P is a complete lattice, then so is CI(P), under the same meet as P. A

similar statement holds for Q).
2) De Morgan's Laws hold in CI(P) and CI(Q), that is, for p,q € CI(P) and
r,s € Cl(Q),

(A" =p' Vg, (pVa)' =p Ng
and
(ras) =rvs, (rvs)=rns
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Proof. For part 1), we apply Theorem 0.1.1 to the subset CI(P) of P. First,
since 1 € P has the property that 1 > cl(1) > 1, it follows that 1 € CI(P).
Suppose that p; € CI1(P). Then the meet /\p; exists in P and since Ap; < p; for
all 5, we have

ol(/\pi) < cl(p;) = p;

whence cl(/\p;) < Ap;. Since the reverse inequality holds as well, equality
holds and Ap; € CI(P). It follows from Theorem 0.1.1 that CI(P) is a complete
lattice under meet in PP. A similar argument can be made for ().

For part 2), observe first that p A ¢ < p and p A ¢ < ¢ imply that (p A ¢)* > p*
and (pAq)* > ¢*, whence (pAq)* > p*Vg*. If r>p* and r > ¢* for r €
CI(P) then ' < pand v’ < ¢, whence 7’ < p A q. Thus, r > (p A q)*. It follows
by definition of join that (p A ¢)* = p* V ¢*. The other parts of De Morgan's
laws are proved similarly. O

Examples of Galois Connections

Our interest in Galois connections is the famous Galois correspondence between
intermediate fields of a field extension and subgroups of the Galois group of an
extension (to be defined later). However, let us take a look at some other
examples of Galois connections.

Example 6.1.1 Let X and Y be nonempty sets and P = P(X) and @ = P(Y)
be the corresponding power sets. Let R C X x Y be a relation on X x Y. Then
the maps

SePX)— S ={yeY|(z,y) € Rforallz € S}
and
TePY)—T ={zeX|(z,y) € Rforally € T'}
form a Galois connection on (P(X),P(Y)).0
Example 6.1.2 Let n > 1 and let F be a field. Let P = P(Fxy,...,x,]) be the
set of all subsets of polynomials over F' in the variables xi,...,z,. Let

Q@ = P(F™) be the set of all subsets of F, the set of all ordered n-tuples over
F.

LetII: Flxy,...,x,] — P(F™) be defined by

T1(S) = Set of all common roots of the polynomials in S
={x e P(F") | p(z)=0forallp € S}
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and let Q: P(F") — F[z1,...,x,) be defined by

Q(T) = Set of all polynomials whose root set includes 7'
={p€ Flry,...,z,) | p(t) =0 forallt € T'}

We leave it as an exercise to show that (IL,2) is a Galois connection on
(F[:El’ »xn]v,P(Fn))'D

Top and Bottom Elements

In many examples of Galois connections, P and ) have both top and bottom
elements.

A top element is closed, since 1p < cl(1p) < 1p and similarly for 15. Note also
that a top element is the image of the corresponding bottom element (if it
exists), for 1p = Q[II(p)] is the image of II(p) and since 0y < II(p), the image
of 0 must be at least as large as 1p, and therefore equal to 1p.

However, a bottom element need not be closed. Indeed, the smallest closed
element of @ is II(1p) and so O is closed if and only if Og = II(1p), for
example. In other words, a bottom element is closed if and only if it is the image
of the corresponding top element.

Indexed Galois Connections

Let Z* denote the set of positive integers. In the set Z* U {co}, we observe
some obvious understandings about oo, in particular, n < co for all n € Z*,
00 < oo,n-00=o0forn € Z" and oo < k < oo implies k = co.

Definition 4 Galois connection (I1, Q) on (P, Q) is indexed if

a) For each p,q € P with p < q, there exists a number (q : p)p € Z" U {0},
called the degree, or index of q over p.

b) Foreachr,s € Q withr < s, there exists a number (s : r)g € Z* U {c0},
called the degree, or index of s over r.

We generally write (q : p) without a subscript to denote the appropriate index.

Moreover, the following properties must hold:

1) (Degree is multiplicative) If s1, so, s3 € P or s1, S9, s3 € Q then

s51 < 89 < 83=(s3:81)=1(83:82)(s2:81)
2) (II and €2 are degree-nonincreasing) /f'p,q € P then
p<q=(":¢")<(q:p)
Ifr,s € Q then

r<s=(r:s)<(s:r)
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3) (Equality by degree) If s,t € P ors,t € Q then

(s:t)y=1les=t
If (s :t) < oo, then s is said to be a finite extension of t. If P has a top and
bottom element then the index of P is index(P) = (1p : Op), and similarly for

Q.O
From now on, when we write (¢ : p), it is with the tacit assumption that p < gq.

The importance of indexing is described in the next theorem. It says that if a
Galois connection is indexed, then the connection preserves the index of closed
elements and that any finite extension of a closed element is also closed.

Theorem 6.1.4 Let (II, 2) be an indexed Galois connection on (P, Q).

1) (Degree-preserving on closed elements) [/ p,r € CI(P) and p < r then
(r:p) = (p*:r*). A similar statement holds for Q.

2) (Finite extensions of closed elements are closed) If p € CI(P) and
(r:p) < oo thenr € CI(P). In particular, if 0 is closed and (1 : 0) is finite
then all elements are closed. A similar statement holds for Q.

Proof. For part 1), we have

(rep)=(p":r") = (r": p”) = (cl(r) : cl(p)) = (r: p)

so equality holds throughout.

For part 2), if p € CI(P) and (7 : p) < oo then

(rep) > (@ :7*) > (cl(r) : p) = (cl(r) : r)(r: p)
and since (7 : p) < oo, we may cancel to get (cl(r) : r) = 1, which shows that r
is closed.[d
Thus, in an indexed Galois connection, the maps are degree-preserving, order-
reversing bijections between the collections of closed sets C1(P) and C1(Q).
A Simple Degree Argument

There is a situation in which a simple degree argument can show that an element
is closed. Referring to Figure 6.1.1,
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cl(p)

Figure 6.1.1
suppose that (r : cl(p)) < oo. Then r is closed and since cl(p)* = p*, we have
(r:cl(p)) = (p": 1)

Now, if

then
(r:cl(p)) = (r:p)=(r:cl(p)(cl(p) : p)

and so (cl(p) : p) = 1, that is, p = cl(p) is closed.

Theorem 6.1.5 If v, p € P and one of the following holds
D (r:cl(p)) <ocoand(r:p)=(p*:r*)

2) cl(p) <rand(r:p)=(p*:1*) < o0

then p is closed. In particular, for r = 1p, if

(1p:p)=(p":0q) < o0
then p is closed.[]
When Qg is Closed

The following nonstandard definition will come in handy.

Definition For a Galois connection on (P,(Q), we say that P is completely
closed if every element of P is closed, and similarly for Q. Also, the pair (P, Q)
(or the connection) is completely closed if all elements of P and all elements of
Q are closed.]

We have remarked that the top elements 1p and 1¢, if they exist, are always
closed, but the bottom elements Op and O¢ need not be closed.

However, the most important example of a Galois connection, namely, the
Galois correspondence of a field extension F' < E, which is the subject of our
investigations, has the property that Og is closed. So let us assume that Og is
closed and see what we can deduce.
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Since
index(P) = (1p : 0p) > (1g : 1) = (1¢ : Og) = index(Q)

it follows that if P has finite index, then so does Q. Hence, if either P or ) has
finite index, then () is completely closed. Finally, if P has finite index and Op is
also closed, then the connection is completely closed.

Theorem 6.1.6 (Og is closed) Let (II,Q2) be a Galois connection on (P,(Q),
where P and Q) have top and bottom elements. Assume that O is closed. Then

index(Q) < index(P)

Also,
1) Ifindex(Q) < oo or index(P) < oo, then Q is completely closed.
2) Ifindex(P) < oo and Op is closed, then (P, Q) is completely closed.]

6.2 The Galois Correspondence
Now we describe the main theme of the rest of the book.
Definition The Galois group of a field extension F' < E, denoted by Gr(FE), is
the group Autp(E) of all automorphisms of E over F. The group Gp(FE) is
also called the Galois group of E over F'.[]
Note that when F' < E is algebraic,

GF(E) = AutF(E) = homF(E, E)
and when F' < F is normal,

Gr(E) = homp(E, E)

Let I’ < E and let F be the complete lattice of all intermediate fields of F' < E,
ordered by set inclusion. Let G be the complete lattice of all subgroups of the
Galois group Gp(FE), ordered by set inclusion. We define two maps Il: 7 — G
and Q2: G — F by

II(K) = Gk (E)
and
QH)=fix(H)={a€ E|oca=aforallo € H}

where fix(H) is called the fixed field of H. These are pictured in Figure 6.2.1.
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E 1 Gx(E)
L >< Gy(E)
K * + Gu(E)
F e * Ge(B)={y}

Figure 6.2.1-The Galois correspondence
Theorem 6.2.1 Let F' < E. The pair of maps
(II: K — Gg(FE),Q: H — fix(H))

is a Galois connection on (F,G) called the Galois correspondence of the
extension F < E.
Proof. It is clear from the definitions that both maps are order-reversing, that is,

KCJ=G,(F)CGk(E)
and
H CI=fix(I) C fix(H)
Also, any element of K is fixed by every element of G (F), that is,
K C fix(Gk(F))
Finally, any o € J fixes every element in fix(.J ), that is,
J C Gex()(E) o

Since F and G are complete lattices, Theorem 6.1.3 provides the following
corollary.

Corollary 6.2.2 The set CI(F) of closed intermediate fields and the set C1(G) of
closed subgroups of Gp(E) are complete lattices, where meet is intersection. In
particular, the intersection of closed intermediate fields is closed and the
intersection of closed subgroups is closed. O

Note that both partially ordered sets F and G are topped and bottomed (as are
all complete lattices). The top of F is E and the bottom is F'. The top of G is
Gp(FE) and the bottom of G is the trivial subgroup {¢}. Also, the image of the
top E is Gg(E) = {¢} and so the bottom of G is closed. Hence, three out of the
four extreme elements are closed. We will spend much time discussing the issue
of the closedness of the bottom element F'.
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The Plan

Now that we have established that the Galois correspondence is a Galois
connection, our plan is as follows. First, we will show that the Galois
correspondence is indexed, where (K : L) = [K : L] is the degree of F' < E
and (H : J) is the index of the subgroup J in the group H.

Then we will describe the closed intermediate fields and the closed subgroups.
The next step is to describe the connection between intermediate normal
extensions and normal subgroups of the Galois group. (They don't call splitting
fields normal extensions for nothing.) Finally, we describe the Galois group of a
lifting and a composite.

The Galois Correspondence Is Indexed

We would like to show that the Galois correspondence of an extension F' < E
is indexed, where (K : L) = [K : L] is the degree of the extension F' < F and
(H :J) is the index of the subgroup J in the group H. We know that the
degrees are multiplicative and that

K:Ll=1=K=L
(H:)=1=H=J

The next theorem shows that the map II: K — Gk (F) is degree-nonincreasing.
Recall that if F' < FE is finite, then [E : F]; < [E : F]. When F' < F is infinite,
this inequality still holds provided that we interpret it, not as an inequality of
infinite cardinals, but simply as saying that n < oo or co < oo.

Theorem 6.2.3 For the tower I' < K < L < E, we have
(Gr(E): Gr(E)) < [L: K|, <[L: K]

as elements of Z+ U {c0}.

Proof. Consider the function ¢: Gx(F) — homg (L, E) that maps 0 € Gk (E)
to its restriction |z, € homg (L, E). Then ¢(o) = ¢(7) if and only if o and 7
agree on L, that is, if and only if cG(E) = 7GL(E). Hence ¢ is constant on
the cosets of G1,(F) in G (F) and so induces an injection on G (E)/GL(E),
whence

(Gx(E) : Gi(E)) = [im(¢)| < [homy (L, E)| < [L : K]y
But as elements of Z* U {co}, we have [L : K], < [L: K].O0

Showing that [fix(J) : fix(H)] < (H : J) is a bit more difficult.

Theorem 6.2.4 Let F' < E andlet J < H < Gp(E). Then
[fix(J) : fix(H)] < (H : J)
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Proof. First, if (H : J) is infinite, then there is nothing to prove, so let us
assume that (H : J) < oo, thatis, H/J = {hiJ, ..., hy,J} is a finite set. Thus,
S ={hi,...,hn} is a complete set of distinct coset representatives for H/.J,
and we may assume that h; € J.

Let E/1/7 denote the set of all functions from H/.J into E. Then E/7 is a
vector space over E, where if 0,7 € E¥// and a,b € E, then
(ac 4+ b7)(hJ) = ao(hJ) + br(hJ)

Moreover, since the functions ¢;: H/J — E defined by €;(hyJ) = 6;; form a
basis for B/ over F, we have

dim(E/7y = |H/J| = (H : J)

Thus, we have two vector spaces: fix(J) is a vector space over fix(H) of
dimension [fix(J) : fix(H)] and E/7 is a vector space over E of dimension
(H : J). We wish to show that dim(fix(.J)) < dim(E#/7).

To do this, we will show that if «,...,a, € fix(J) are linearly independent
over fix(H ), then the evaluation functions @, ..., a, € E%/7, defined by
ak(h7J) = h,;(ak)

are linearly independent over E. (In fact, the converse also holds.)

First, we must show that @ is a well-defined function from H/J to E. If
hiJ = hyJ then hy*h; = j € J and so

(hy 'ha)(an) = jlew) = a
which implies that hy («;) = ha(ay), that is, @ (hyJ) = @y (heJ ). Hence, &, is
well-defined.

So assume that ay, ..., o, € fix(J) are linearly independent over fix(H) and,
by reindexing if necessary, let

€1a1+'“+65a320

be a nontrivial linear combination over F that is shortest among all nontrivial
linear combinations equal to 0. Thus, e; # 0 for all i. Dividing by e, if
necessary, we may also assume that e; = 1. Thus

€1y + -+ es_185_1 + 0 =0 (6.2.1)
Then applying this to hj;J gives
€1hk(051) + -+ e(g_lhk(as_l) + hk(as) =0

for all hy, € S. Since the «;'s are fixed by any element of J, and any h € H has
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the form h = hyj for some j € J, we deduce that
eth(on) 4+ - + es1h(as—1) + h(a) =0 (6.2.2)
forall o € H. In particular, if h = ¢ then
erap + -+ es 151 +ay,=0 (6.2.3)

which implies, owing to the independence of the «;'s over fix(H ), that not all of
the e;'s can lie in fix(H). Let us assume that e; ¢ fix(H ). Hence, there is a
7 € H for which Te; # ey.

We can replace h by 77'h in (6.2.2) to get
er 'h(ay) + -+ e 17 th(as 1) + 7 hias) =0

Applying T gives

7(e1)(hay) + -+ 7(es—1)(has_1) + has; =0
for all h € H and so

(te1)dy + -+ (Tes—1)0s—1 + s =0

Finally, subtracting (6.2.1) from (6.2.3) gives

[(Te1) —er]@y + -+ + [(78s-1) — es_1]As—1 =0

whose first coefficient is nonzero. But this is shorter than (6.2.1), a contradiction
that completes the proof. [

Thus, the Galois correspondence of an algebraic extension F' < E is indexed.
We can now summarize our results in a famous theorem.

Theorem 6.2.5 (Fundamental Theorem of Galois Theory Part 1: The
correspondence) The Galois correspondence (11,2) of an extension F' < E is
an indexed Galois connection and the bottom group {i} is closed. It follows that
the restrictions of 11 and ) to closed elements are order-reversing, degree-
preserving inverse bijections as well as lattice anti-isomorphisms, that is, if K;
are closed intermediate fields and H; are closed subgroups, then

G (B) = \[Gr(E), Gyx(E) =[Gk (E)
and

ﬁx(ﬂHi) = \/ﬁx(Hi), ﬁx(\/HZ) = ﬂﬁx(Hi) O

We should note that the joins in the previous theorem are joins in the
corresponding lattices. Thus, for instance, \/Gk,(E) is the smallest closed
subgroup of G (FE) containing all of the subgroups G, (E), and this need not
be the smallest subgroup of G (F) containing these groups.
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As a result of the closedness of Gp(F) = {i}, Theorem 6.1.6 gives the
following.

Corollary 6.2.7 Let (I, Q) be the Galois correspondence of F < E. Then
Gr(E)| < [E: F]

Also,

D) If|Gr(E)| < oo, then G is completely closed.

2) If[E: F] < oo, then G is completely closed.

3) If[E: F] < ooandF is closed, then F and G are completely closed..T]

6.3 Who's Closed?

We turn our attention to the question of which intermediate fields of an
extension and which subgroups of the Galois group are closed.

We know on general principles that top elements are always closed. Thus, E
and Gp(F) are closed. Moreover, the bottom group Gg(FE) = {¢} is also
closed. We also know that any finite extension of a closed element is closed.

Now we require a definition.

Definition 4 normal separable extension F' < E is called a Galois extension,
or simply Galois. O]

The next theorem follows from the relevant properties of normal and separable
extensions.

Theorem 6.3.1

1) (Full extension Galois implies upper step Galois) Let F < K < E. If
F < E is Galois then the upper step K < E is Galois.

2) (Closed under lifting) The class of Galois extensions is closed under
lifting.

3) (Closed under arbitary composites and intersections) 7he class of
Galois extensions is closed under arbitrary composites and intersections.[]

Let I < E be algebraic. We wish to show that an intermediate field K is closed
if and only if the extension K < FE is Galois.

First, suppose that K is closed and let & € E\ K. Then the finite extension
K (a) of K is also closed and so

d = (Gk(E) : Ga)(E)) = [K(a) : K] < o0

Let S = {oy,...,04} be a complete system of distinct coset representatives for
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Gk (E)/Gg)(E). Each element of S gives a distinct value on «, that is, a
distinct root of min(«, K), for if o;a = o, then o*j‘lcri € Gg(a) (), which is
not possible for 7 # j. Hence, the d roots of min(a, K) are {o¢,...,0qa},
which are distinct and lie in E. Thus, « is separable and min(c, K) splits in E,
implying that K < E is a Galois extension.

For the converse, suppose that K < E is Galois. If a € cl(K) = fix(Gg(E)),
has minimal polynomial p(z) = min(a, K), then p(x) can have no roots other
than «. For if /3 is a root of p(z) in some extension, then there is an embedding
0:E — F over K for which ca = 3. But since K < E, it follows that
0 € Gg(F) and so § = oo = a. Thus p(x) has only one distinct root. Since
p(z) is separable, it must be linear, which implies that o € K. Thus,
cl(K) = K and K is closed.

Let us summarize, with the help of Theorem 6.2.7.

Theorem 6.3.2 (Fundamental Theorem of Galois Theory Part 2: Who's
closed?) Let F' < E be algebraic and consider the Galois correspondence on
F<E.
1) (Closed fields) The closed intermediate fields are precisely the fixed fields,
that is, the fields of the form fix(H) for some H < Gp(E).
a) An intermediate field K is closed if and only if K < E is Galois.
b) Any extension of a closed intermediate field is closed. In particular, if
F is closed, then F' < E is completely closed.
¢) IfF <cl(K)<L<EFEand

[L:K]=(Gg(E):GL(E)) < x
then K is closed. In particular, if
[E: K]=|Gkg(E)| < o0

then K is closed.

2) (Closed groups) The closed subgroups of Gr(E) are precisely the Galois
groups of E, that is, the subgroups of the form Gg(E), for some
intermediate field K.

a) Any finite extension of a closed subgroup is closed.

b) {} is closed and so any finite subgroup of Gr(E) is closed.

¢) When F < E is finite, so is Gp(F) and so {1} < Gp(F) is completely
closed.

3) If F is a finite Galois extension, then the correspondence is completely
closed.d

As the next example shows, in the general algebraic case, not all subgroups
need be closed.
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Example 6.3.1 For this example, we borrow from a later chapter the fact that
for any prime power p?, there exists a finite field GF(p?) of size p? and
GF(p%) < GF(p") ifand only if d | r.

Referring to Figure 6.3.1, let F' = Z, = GF(p) and let E = Z,. Since F is a
finite field, it is perfect and so F' < F is separable. Since F is algebraically
closed, F'< E. Hence F' < F is a Galois extension and therefore F' is closed.
The extension F' < F is not finite, however, since [GF (p*) : GF(p)] = k and
GF(p) < GF(p*) < E forall k > 1.

E=Z, 1 ' Gy(E)
[E:P]>1
(GL(E):H)>1?

. ! Gu(E)
GF(p™) « t H=<c>
GF(p9) 1

F=GF(p)=Z; « Ge(BE)={4
Figure 6.3.1

Let H = (0,) be the subgroup of Gp(FE) generated by the Frobenius map
op: a0 — P The fixed field fix(H) is the set of all & € E for which o = a, in
other words, the roots in E of the polynomial p(z) = 2P — . But p(z) has p
roots in F' and so fix(H) = F'. It follows that

cl(H) = Giiym)(E) = Gr(E)

Hence, all we need do is show that H # Gp(FE) to conclude that H is not
closed. The key is that any € H has the form p = a’; for some k and so the
fixed set of p is

{aGE\oga:a}:{a€E|ozpk:oz}:GF(pk)

which is a finite set. Thus, we need only show that there is an element of Gy (FE)
that fixes infinitely many elements of F.

To this end, let ¢ be a prime and consider the field
P=GF(p)UGF(p*)UGF(p’)U---

Then P is a proper subfield of E, since it does not contain, for instance, the
subfield GF(p?™!). Hence [E : P] > 1 and since P < E is Galois, the group
Gp(E) is not trivial. But if 7 € Gp(E), then 7 fixes the infinite field P.OI
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Starting with a Field E and a Subgroup of Aut(FE)

The Galois correspondence begins with a field extension F' < E and the
corresponding Galois group Gr(FE). Referring to Figure 6.3.2, we may also
begin with a field £ and a subgroup G of Aut(F). Then we can form the fixed
field

fix(G) ={a € E|oca=aforallo € G}

and consider the Galois correspondence of the extension fix(G) < FE, which we
assume to be algebraic. The Galois group Giyy()(E) contains G, but the

containment may be proper.

E i 9 Gfix(G)(E)
¢ G
F=fix(G) * {1

Figure 6.3.2-Starting with a field E and a subgroup G of Aut(E)

Since fix(G) < E is algebraic and the base field fix(G) is closed, it follows that
fix(G) < E is a Galois extension. Moreover, if [E : fix(G)] < oo, then the
correspondence is completely closed (all intermediate fields and all subgroups
are closed).

We emphasize that G may be a proper subgroup of its closure Gy () (£), as in
Example 6.3.1. However, this does not happen if G is finite, since finite
subgroups are closed.

Theorem 6.3.3 Let E be a field and let G be a group of automorphisms of E.

1) Iffix(G) < E is algebraic, then it is Galois and all intermediate fields are
closed.

2) If fix(G) < E is finite, then all intemediate fields and all subgroups are
closed.

3) If G is closed (which happens if G is finite), then G = Gy (E) is the top
group of the correspondence.[]

More on Closed Subgroups: Closure Points

Let F' < E be algebraic. The closure cl(H) of a subgroup H of the Galois
group Gr(FE) can be characterized in a useful way. The following nonstandard
definition will help.
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Definition Let F' < E be algebraic. Let H be a subgroup of the Galois group
Gr(E). A function 7: E — E is a closure point of H if for any finite set
U C E, we have |y € H|y, that is, T agrees with some member of H on U.
Let H denote the set of closure points of H.(l

First, note that a closure point 7 of H is a member of the Galois group Gr(FE),
in fact, 7 is in the closure of H, that is,

H < Gﬁx(H>(E) = CI(H)

Indeed, 7 € H is a homomorphism because it agrees with a homomorphism on
any finite set in F and it fixes each element of fix(H ) because every member of
H fixes fix(H).

We claim that H = cl(H). Since H < H < cl(H), the result would follow if H
were closed, but of course, it may not be. However, given any finite set U C F,
we need only work with the finite extension fix(H) < K = fix(H)(U), whose
Galois group is Gy (fix(H)(U)). In this case, all subgroups are closed. The
problem is that we want H |k to be in the Galois group and this requires that
fix(H) < K be normal. No problem really: we just pass to a normal closure.

Consider the extension
fix(H) < K =nc(fix(H)(U)/F)
which is finite, normal, contains U and has Galois group Gy gy (K). Since all

subgroups are closed, H | is a closed subgroup of the Galois group Giix(z) ().

Hence, in the Galois correspondence on fix(H) < K, we have
Hl|x = H|x = cl(H|k) = Grix(n|) (K)

It follows that any o € G|, (/) agrees with a member of H |k on U. But if
T € cl(H) = Giix(m) (E), then

Tk € Gox(m)(E)|x = Grix(a|0) (K)

and so 7| agrees Xith a member of H|x on U, that is, 7 agrees with a member
of H on U. Thus, H = cl(H), as desired.

Theorem 6.3.4 Let ' < E be algebraic and let H be a subgroup of the Galois
group Gp(E). Then cl(H) is the set of closure points of H. More specifically,
the following are equivalent:

) Tecl(H)

2) For any finite set U C E, we have 7|y € H|y.
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Consequently, a subgroup H of Gp(E) is closed if and only if it contains all of
its closure points. In particular, any subgroup of the form G (E) contains all
of its closure points.[]

*The Krull Topology

For those familiar with elementary topology, we can make this discussion a bit
more topological.

We begin by extending the definition of closure point to apply to any set of
functions in ¥, not just subgroups of the Galois group. In particular, a function
7 € EF is a closure point of S C E if for any finite set U C E, we have
T|U S S|U

It is not hard to show that the operation H — H is an algebraic closure
operation, in the sense defined earlier in the chapter. In addition, we have (§ = ()
and

HUK=HUK
To see the latter, note that if f € H U K, then for any finite subset X C F, the
function f agrees with an element of H U K on X. Butif f ¢ H, then there is a
finite set U C E for which f does not agree with any element of H on U.
Similarly, if f ¢ K, then there is a finite set V' C E for which f does not agree
with any element of K on V. However, X = U UV is a finite set and so there
must be some element g € H U K that agrees with f on U UV, and therefore

on both U and V, thatis, f=gonU and f=gonV.Butge Horge K,
either one of which provides a contradiction.

It follows that the operation H — H is also a topological closure operation.
Hence, the set of all complements of closed elements forms a toplology on E.
This topology is actually quite famous.

Definition Let E¥ be the set of all functions from E into E. The finite topology
T on EF is defined by specifying as subbasis all sets of the form

Su,v:{f:E_)E|fu:v}
where u, v € E. Thus, a basis for T consists of all sets of the form
{[:E—=FE| fuy=mwv,..., fu, = v}

where u;, v; € E.

To show that the topology obtained from closure points is the finite topology, let
S be any subset of E¥. If f € EF is in the closure S¢ of S under the finite
topology, then any basis set that contains f also contains an element of S. It
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follows that for any finite set U C E, there is a g € S for which f|y = g|y, that
is, flr € S|y. In other words, f is a closure point of S. Thus S¢ C H.

On the other hand, if f € S, then f agrees with some element of S on any finite
set and so any basis element containing f must intersect S, showing that
f € 8¢ Thus, S =S.

Since the set of closed sets is the same in the topology of closure points and in
the finite topology, these topologies are the same. Moreover, the Galois group
Gr(E) is closed in the sense of closure points and so it is closed in the finite
topology. Thus, the induced (subspace) topologies are the same and, in view of
Theorem 6.3.4, we can state the following.

Theorem 6.3.5 Let F' < E be algebraic. Then the Galois group Gp(E) is
closed in the finite topology on E¥. Moreover, a subgroup H < Gr(FE) is
closed in the Galois correspondence if and only if it is closed in the finite
subspace topology on Gp(E).O0

The subspace topology of the finite topology inherited by G'p(F) is called the
Krull topology on G (FE). We may phrase the previous theorem as follows: A
subgroup of Gr(E) is Galois-closed if and only if it is Krull-closed.

Note that we do not say that the set of Galois-closed subgroups of G (E) is the
set of closed sets for a topology. We say only that these closed subgroups are
closed in the Krull topology. There are other subsets of Gz (F) that are Krull-
closed, for example, sets of the form G (F) U G (FE) which in general are not
even groups.

6.4 Normal Subgroups and Normal Extensions

We now wish to discuss intermediate fields /' < K < E and their Galois
groups Gr(K). We begin with a result concerning the conjugates of a Galois

group.

Definition Let F' < K,L < E. If there is a 0 € Gp(E) for which cK =L,
then K and L are said to be conjugate.[]

Theorem 6.4.1 -
1) IfF < K < E, then for any o € homp(FE, E),

oGk (E)o™ = Gox(0F)
2) IfF< K < E, then for any o € homp(E, E),
O'GK<E>O'_1 = GK(O'E)
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3) IfF < K < Ewith F < E, then for any o € homp(E, E),
O'GK(E)O'_l = GO—K(E)

4) Let F < K,L < E, with F' < E Galois. Then K and L are conjugate if
and only if the Galois groups Gk (E) and Gk (E) are conjugate.

Proof. For part 1), let 7 € G,x(0E). Then o~ '70 is an automorphism of E.

Moreover, since 7 fixes 0 K, we have for a € K,

o lroa=0"'7(0ca)=0"loa=a
and so 0”70 € Gk (F). Hence
Gyx(oFE) C O’GK(E)071

For the reverse inclusion, let = 070!, where 7 € Gk (E). Then p is an

automorphism of o F and if & € K, then 7o« = o and so
ploa) = oro (oa) = ota = oa

which shows that y € G,k (cE).

Part 2) follows from part 1), since when F' < K then any o € homp(E, E)
satisfies o K = K. Part 3) is similar. For part 4), if oK = L, then part 1)
implies that

O'GK<E)O'_1 = GL(O'E) = GL(E)

Conversely, if GL(E) = o0Gk(E)o~! then part 1) implies that GL(E) =
G,k (E) and taking field fields gives L = ¢ K.[O

Now, Gi(F) is normal in Gp(E) if and only if
oGk (E)o™ = Gg(E)
for all o € Gp(E). According to the previous theorem,
oGk (E)o™ = G, (0E) = G, (E)
and so Gk (F) < Gp(F) if and only if
Gox(E) = Gk (E)

If F<K, then oK =K and so Gg(F)<Gp(E). For the converse, if
Gk (E) <« Gp(E) then taking fixed fields gives

oK < cl(oK) < cl(K)

Thus, if K is closed, then o K < K for all 0 € Gp(FE) and if, in addition,
F aE,then oK < K forall 0 € homp(FE, E), thatis, ' < K is normal.
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Note that when F <K is normal, the restriction map
¢: Gr(E) — homp(K, E) defined by

¢(0) = olx
is a homomorphism, whose kernel is none other than the normal subgroup
G (E). Hence, the first isomorphism theorem of group theory shows that
Gr(E)
Gk(E)

s GF(K)

Moreover, if F' < E is normal, then ¢ is surjective, since any o € G r(K) can
be extended to an embedding of E into F' over F', which must be an element of
Gr(E). Hence, if F' < E, then

Gr(E)
Gk (E)

Now we are ready to summarize.

Theorem 6.4.2 (Fundamental Theorem of Galois Theory Part 3: Normality)
Let F < K < E. Let ¢: Gp(E) — homp (K, E) be the restriction map

¢(0) = olx
1) IfF <K then Gk(E)<Gp(E) and ¢ induces an embedding

Gr(E)
Gg(E)

which is an isomorphism if the full extension F' < E is normal.
2) IfGk(F)<Gp(FE) and in addition, F < E and K is closed (that is, K < E
is Galois), then F' < K and ¢ induces an isomorphism
Gr(E)
Gk(E)

3) IfF < Eis Galois, then F < K if and only if G (F) < Gp(F).O
An Example

Now that we have a complete picture of the Galois correspondence, let us
consider a simple example: the Galois correspondence of a splitting field E for
the polynomial p(z) = z* — 2 over Q. Of course, Q < FE is finite and Galois.
Hence, the Galois correspondence is completely closed.

The roots of this polynomial are r = \"ﬁ, —r,rt and —r¢ and so any member of
the Galois group G is a permutation of these roots. As to degree, we have

Q<Q(r) <QiEr)=FE
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where the lower step has degree 4 since p(xz) = min(r,Q), by Eisenstein's
criterion. The upper step has degree at most 2, but cannot be 1 because
Q(r) < R, which does not contain i. Hence, the upper step has degree 2 and
[E:Q]=8.

One way to help find the Galois group is to look for an intermediate field IV that
is normal, because the elements of G(IV) are precisely the restrictions of the
members of G. Since any extension of degree 2 is normal, we have Q < Q(7).
The elements of Gg(Q(4)) are the identity o = ¢ and the map 7: 49 — —i.

Since [Q(¢,7) : Q(#)] =4, we have p(z) = min(r,Q(7)) and so each of the
automorphisms ¢ and 7 can be extended to an element of G by sending r to any
of the roots of p(x). This gives

1) opi—i,r—r(o=1t)
2) o9l i, T —T

3) o5:t— i,

4) oyt T =Tl

and

5) Tt =i, rer
6) Tt —i, T —T
7 T3 —i, Tl
8) mii— —i,r— —1i

which constitute the 8 elements of G.

Could G be cyclic? Of course, one can tell this simply by checking G for an
element of order 8. A more elegant way is the following: If G were cyclic, then
all of its subgroups would be normal and so all of the intermediate fields would
be normal extensions of Q. But Q < Q(r) is not normal, since Q(r) does not
contain all of the roots of p(z) = min(r, Q).

Thus, all nonidentity elements o € G have order 2 or 4, and this is determined
by whether or not o?r = r. In particular, o, and all 7; have order 2 and o3 and
o4 have order 4. Thus, G has a normal cyclic subgroup (03) = {1,03,0%, 05}
where o037 = ag, and G is the dihedral group D4 of symmetries of the square.

All nontrivial subgroups of G have order 2 or 4. The subgroups of order 2
correspond to the elements of order 2:

1) Si={t,02}
2) SQ = {L,’T’l}
3) S3={1,m}
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4 Si={, 7}
5) S5 = {1, 74}

The subgroups of order 4 are the cyclic subgroup Ss = (o) and the subgroups
isomorphic to Zy X Zsy. A computation shows that

6) Ty ={1,09,03,04}
7 Ty ={1,09,71, 72}
8) T$ = {170—277-3)7—4}

The lattice of subgroups is shown in Figure 6.4.1.

G

{16,141} {1,6,,65,0. {1,6,,T5,1,}

{v} {v,0} {v.0,} {173} {114}

{ //

Figure 6.4.1

Of course, the lattice of intermediate (fixed) fields is a reflection of this. To
compute fixed fields, we use the fact that {1,4} is a basis for Q(¢) over Q and
{1,7r,7%,73} is a basis for Q(i,r) over Q(i) and so the products form a basis for
Q(4, r) over Q. Hence, each o € E has the form

a=a+br+byr®+ b3r3 + dyi + dayir + d;;irz + dyir®
Thus for instance, « € fix({¢, 71 }) if and only if Ty = @, that is,

a4 b1+ bor? + byr® — dyi — doir — dgir® — dyir®
=a+br+br’+ b37’3 + dyi + dyir + d;;irz + dyir®

Equating coefficients of the basis vectors gives d; = 0 for all . Thus,
fix({e,71}) = Q(r)
As another example, note that o, fixes both i and 7> = \/5 and so

fix({t,02}) = Q(v/2,) = Q(V/2 +1)

(see Example 3.4.1). Moreover, {¢,02} is a normal subgroup of G and so
Q< Q(\/i +1) is a normal extension of degree 4. In fact, the roots of the
polynomial g(z) = ' — 22— 2 are £1/2 and +i and so Q(\/2+1) is a
splitting field for this polynomial.
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More generally, the normal subgroups of G correspond to the normal extensions
of Q. These subgroups are G, {¢}, the subgroups of order 4 (index 2) and

{l’a 0—2}'
6.5 More on Galois Groups

We now examine the behavior of Galois groups under lifting and under
composites. As usual, we assume that all composites mentioned are defined.

The Galois Group of a Lifting

Let F' < F be normal and let F' < K. Any 0 € G (EK), the Galois group of
the lifting, is uniquely determined by what it does to E (since it fixes K') and so
the restriction map o — o|g is an injection. Since F' < E is normal, it follows
that o|p € Gp(F). But o|g may fix more than F': It also fixes every element of
E that is fixed by o, that is,

ole € Genaxcyr(Ex)(E) = Genar)(E)

Note also that the restriction map is a homomorphism, and hence an embedding
of Gx(EK) into G ey (£). We will show that this embedding is actually an
isomorphism and

Gk (EK) ~ Gpna)(E)

Note that if F' < F is Galois, then K < FK is Galois and so K is closed,
which simplifies the preceding to

GK(EK) ~ GEQK(E)

Theorem 6.5.1 (The Galois group of a lifting) Ler ' < E be normal and let
F < K. The restriction map

¢:Gr(EK) — Genar)(E)
where cl(K) = fix(Gg (EK)), defined by ¢o = o|g is an isomorphism and
Gr(EK) =~ Gena)(E)

Proof. We have already proved that ¢ is an embedding. It remains to show that
¢ is surjective. To avoid confusion, let us use the notation fixy for the fixed
field with respect to the Galois correspondence on F' < E, and fixgy for the
fixed field with respect to the Galois correspondence on K < EK. Then

fixg(im(¢)) ={a € E| ta =aforall 7 € im(¢)}
={acFE| (olp)a=aforalloc € Gg(EK)}
={a€eFE| oca=aforallc € Gx(FK)}
= EﬂﬁXEK(GK(EK))

Now, if we show that im(¢) is a closed subgroup with respect to the Galois
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correspondence on F' < E, it follows by taking Galois groups (of E) that
im(¢) = Gpnix(ey(£K)) (E)

and thus ¢ is surjective, completing the proof. If F' < E is finite, then all
subgroups of the Galois group G (FE) are closed, and we are finished.

When F' < E is not finite, we must work a bit harder. We show that I = im(¢)
is closed by showing that I contains all of its closure points. So suppose that
7 € I. To show that 7 € I, we must find a 0 € Gx(EK) for which o|p = 7.
But any ¢ in G (EK) is completely determined by its action on E and so this
completely determines o, that is, if it exists. To this end, note that every
a € FK has the form

o = Zeiki

where e; € F and k; € K. Define a function 0: EK — EK by

oo = Z(T&)]ﬁ

To see that o is well-defined, let

11,1
a= E e;k;

where €} € E and k! € K. Then since 7 € I, there exists a 0’ € Gx(EK) that
agrees with 7 on the elements {e;, e/}, and so

Z(TG,)k, = Z(a'ei)ki = 0'/ (Z&k,) = O'/ (Zei/@') = Z(T@;)k:
Thus, o is well-defined. Clearly, o fixes K and agrees with 7 on E.

Next, we show that o is a closure point of Gx(FK). Then, since Gx(EK) is
closed, it will follow that 0 € G (EK), and the proof will be complete.

First note that o = 7 on E. Since 7 € I, it agrees with some element of I on any
finite set U. Hence, o agrees with some element of I on any finite subset U of
E, and so also with some element of Gx(EK) on any finite subset U of E. But
o also fixes K and so agrees with any element of Gx(EK) on K. Thus, ¢
agrees with some element of Gk (EK) on any finite subset of £ U K. But any
finite subset {a, ..., a,} of EK has the form

[ Zel,ikis Qo = E eg_jki B O I g en,iki

where {e; ;} U {k;} is a finite subset of £ UK and so o agrees with some

element of G (EK) on {ay,...,a,}. Thus, 0 € G (EK), as desired.[]

For a Galois extension F' < E, the previous theorem simplifies a bit.



Galois Theory II: The Theory 161

Corollary 6.5.2 (The Galois group of a lifting) The lifting K < EK of a
Galois extension F' < E by an arbitrary extension F' < K is Galois. Moreover,
the restriction map ¢:Gg(EK) — Gpng(E) defined by ¢o=ol|g is an
isomorphism and

GK(EK) ~ GEQK(E)
Also,
1) ENK = Fimplies Gx(EK) ~ Gp(E).
2) IfF < Eis finite, then G (EK) =~ Gp(E) implies EN K = F.
Proof. We have proved all but the last two statements. Statement 1) is clear. As

to statement 2), since all is finite, we have Gpni(E) = Gp(F) and the result
follows by taking fixed fields.

Corollary 6.5.2 yields a plethora of useful statements about degrees, all of which
can be read from Figure 6.5.1. We leave details of the proof to the reader.

EK

E/ \K
v

finte \ ENK
Galois
F
Figure 6.5.1

Corollary 6.5.3 Suppose that F < E is finite Galois and F' < K. Then
) [EK:K|=[E:EnKlandso|EK : K||[E: F).
If F < K is also finite then
2) [EK:F|=[E:EnNK]K:F)].
3) [EK : F|divides |E : F|[K : F|, with equality if and only if EN K = F.
More generally, if F' < E; is finite Galois for i =1,...,n—1and F < E, is
finite then. letting F;y1---E, = F when i = n, we have
4) [El : 'E'n, : F] = H [EL : Ei N (Ei+1' . 'En)]
i=1
5) [Er---En: Fl=1][E;: Flifandonly if E; N (Eiy---Ey,) = F foralli.00
i=1

The Galois Group of a Composite

We now turn to the Galois group of a composite. Let F'< F and F' < K. Then
any 0 € Gp(EK) is completely determined by its action on F and K, that is,
by its restrictions o|p and 0|k, or put another way, by the element
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(O'|E,O'|K) S GF(E) X GF(K)

Indeed, the map ¢: Gp(EK) — Gp(FE) x Gp(K) is an embedding of groups.
Moreover, as we will see, in the finite case, if the fields enjoy a form of
independence (E' N K = F'), then the embedding is an isomorphism.

The following theorem gives the general case.

Theorem 6.5.4 (The Galois group of a composite)

1) Let F ={E;|i € I} be afamily of fields, with F < E; normal for all i €
I. Let G = [[Gr(E;) be the direct product of the Galois groups Gr(FE;)
and let m;: G — Gp(E;) be projection onto the ith coordinate. Then the
map

¢:Gr(\/E) — [[Gr(E)
defined by
Ti(¢o) = ol

is an embedding of groups. Hence, Gp(\/ E;) is isomorphic to a subgroup

OfHGF(E,)
2) If F={FE,...,E,} is a finite family of finite Galois extensions, then the
map ¢ is surjective and

GF(E1 V- \/En) ~ GF(EI) X oo X GF(EH)
if and only if
E;n (EH—I"'EH) =F

foralli=1,...,n.
Proof. Since F' < E;, Theorem 6.4.1 implies that each individual restriction map

¢k = (Tk 0 ¢):0— 0l
is a surjective homomorphism from Gp(\/E;) onto Gp(Ey), with kernel
Gg,(VE;). Hence, ¢ is a homomorphism from G (\/ E;) into [[Gr(E;).
As to the kernel of ¢, if ¢(o) = ¢, then
ole, = ¢r(0) = md(0) = Tt = ¢

and so o = ¢ on each Ej, which implies that o = . Hence, ker(¢) = {+} and ¢
is an embedding.

When F is a finite family of finite Galois extensions, all Galois groups are finite
and all subgroups and intermediate fields are closed. Since ¢ is injective, we
have
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() = |Gr(\/E)

= {\/El : F]
and also
TIcxE)| = [TIGkE) = T]iE: : P

Hence ¢ is surjective if and only if [\VE; : F] = [[[E; : F|] and Corollary 6.5.3
gives the desired result. O]

If F < E is a finite Galois extension whose Galois group is a direct product
Gy x --- X G, then we may wish to find intermediate fields FF < E; < FE
whose Galois groups (over F') are isomorphic to the individual factors G; in the
direct product.

Corollary 6.5.5 Suppose that F' < E is a Galois extension with Galois group of
the form

G:GF(E)ZGl Xoeee XG,L

If
H=G x-x{i} x--xG,
where {1} is in the ith coordinate and if
E; = fix(H,;)

then

1) F < E; is Galois, with Galois group Gp(E;) = G;.

2) E=E V- VE,

3) EN(Ei1-E,)=Fforadli=1,...,n.

Proof. Since H; <« G, E; = fix(H;) is closed and F' < E is normal, it follows
from Theorem 6.4.2 that ' < E; and

Gr(E)
GEi(E)

G
Gr(E;) ~ =g~ Gi

In addition, F' < \/E; is Galois and since
Gyr,(E) = ﬂGE(E) = ﬂHi = {1} = Gg(E)
taking fixed fields gives \/ E; = E. Hence,
Gr(\/E)) = Gr(E) = [[G:i = [[Gr(E:)
and Theorem 6.5.4 implies that F; N (E;---F,) = F foralli=1,...,n.O
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The Galois Group of the Normal Closure

We next wish to consider the Galois group of a normal closure, which is a
special composite of fields.

Theorem 6.5.6 Let F' < E be separable.
Iy If
FaK<E <nc(E/F)

then Gg(nc(E/F)) is isomorphic to a subgroup of
I[I GxeBy= ][] oGx(E)!

ochomp(E,E) ochomp(E,E)

2) 1f, in addition to the conditions of part 1), F' < E is finite, then the direct

product given above is a finite direct product. o
Proof. Let N = nc(E/F) = \/(cE), the join being over all ¢ € homp(E, F).
Then

G’K(N) — GK( \/ (UE))

ochomy(E,E)

Since K < E is Galois, so is K < oF and Theorem 6.5.4 implies that
Gk (\VoE) is isomorphic to a subgroup of [[Gx(cE). The rest of part 1)
follows from Theorem 6.4.1. For the second statement, if /' < FE is finite, then

|homF(E,E)| =[E:F|s<|[E:F]
and so the direct sum is a finite sum.]

6.6 Abelian and Cyclic Extensions

Extensions are often named after their Galois groups. Here is a very important
example.

Definition 4 Galois extension F < E is abelian if its Galois group Gp(E) is
abelian and cyclic if the Galois group Gr(E) is cyclic. O

The basic properties of abelian and cyclic extensions are given in the next
theorem, whose proof is left as an exercise. Note that abelian and cyclic
extensions are not (quite) distinguished.

Theorem 6.6.1

1) (Composite of abelian is abelian) If F' < E; are abelian, then F < \/ E; is
abelian.

2) (Lifting of abelian/cyclic is abelian/cyclic) If F' < E is abelian (cyclic)
and F < K, then K < EK is abelian (cyclic).
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3) (Steps in an abelian/cyclic tower are abelian/cyclic) If F' < K < E with
F < E abelian (cyclic), then F < K and K < E are abelian (cyclic).C]

Abelian and cyclic extensions fail to be distinguished because, and only because
if the steps in a tower are abelian (cyclic), this does not imply that the full
extension is abelian (cyclic). What does it imply?

Suppose that
Fi<Fy<---<F,

is a tower in which each step F; < Fj,; is abelian (cyclic). Taking Galois
groups gives the series

{1} = GFN(Fn> < GF

n—1

(Fn) < -+ < Gr(Fy)

Consider the subtower F; < F;y; < F),. Since the lower step is normal, it
follows from Theorem 6.4.2 that G, (F,) is a normal subgroup of its parent
Gp,(F,) and that

GE<EZ)

— 2 Gr(F;
Gy~ Gnlfs)

Since the latter is abelian (cyclic), so is the former. Thus,
{1} = GEL(FH) < Ganl(Fn) << GFl(Fn)

where each quotient group is abelian (cyclic). In the language of group theory,
this series of subgroups is an abelian series. (When the groups are finite, the
cyclic case and the abelian case are equivalent.) A group that has an abelian
series is said to be solvable.

Theorem 6.6.2 If
Fi<Fy<---<F,

is a tower of fields in which each step F; < F;1 is abelian, then the Galois
group G, (F,) is solvable.x]

*6.7 Linear Disjointness

If F < K and F < L are finite extensions, the degree [K L : F'] provides a

certain measure of the “independence” of the extensions. Assuming that
[K : F] <|[L: F], we have

[L:F)<[KL:F|<[K:F|L:F)

The “least” amount of independence occurs when [KL: F]=[L:F]|, or
equivalently, when K < L and the “greatest” amount of independence occurs
when
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[KL:F|=[K:F|[L: F] (6.7.1)

We have seen (Corollary 6.5.3) that if one of the extensions is Galois, then
(6.7.1) holds if and only if K N L = F'. For finite extensions in general, we
cannot make such a simple statement. However, we can express (6.7.1) in a
variety of useful ways. For instance, we will show that (6.7.1) holds for
arbitrary finite extensions if and only if whenever {k;} C K is linearly
independent over F' and {\;} C L is independent over F' then {x;\;} is also
independent over F.

To explore the situation more fully (and for not necessarily finite extensions), it
is convenient to employ tensor products. (All that is needed about tensor
products is contained in Chapter 0.) The multiplication map o: K X L — KL
defined by o(k,A\) = kA is bilinear and so there exists a unique linear map
¢: K ® L — KL for which ¢(k ® \) = KA.

Note that the image of ¢ is the F-algebra K[L] = L[K] of all elements of the
form

KflAl + -+ HILATL

for k; € K and \; € L. Hence, if F < K or F' < L is algebraic, say F' < L is
algebraic, then KL = K (L) = K|[L] and so the map ¢ is surjective.

If F' is a field, we use the term F-independent to mean linearly independent
over F.

Theorem 6.7.1 Let F' < E and suppose that K and L are intermediate fields.

Then K and L are linearly disjoint over F' if any of the following equivalent

conditions holds.

1) The multiplication map ¢: K ® L — KL is injective.

2) If{ki} C K is F-independent, then it is also L-independent.

3) If{ki} C K and {\;} C L are both F-independent, then {r;\;} is also F-
independent.

4) If {ki} is a basis for K over F' and {\;} is a basis for L over F, then
{Ki\;} is a basis for K[L] over F.

5) There is a basis for K over F' that is L-independent.

Moreover,

6) K and L are linearly disjoint if and only if Ky and Ly are linearly disjoint,
for all finite extensions F' < Ky < K and F < Ly < L.

7) If K and L are linearly disjoint then

KNL=F

Proof. [1 = 2] Let {k;} C K be F-independent and suppose that > A\;x; =0
for A\; € L. Since ¢ is injective and
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we have

Z/\,@HZZO

Theorem 0.9.2 now implies that \; = 0 for all s.
[2 = 3] Let {x;} and {\;} be F-independent. If

E ai,jni)\j =0
i,j

with a; ; € F then since {x;} is also L-independent, the coefficients of x; must
equal 0, that is,
Z CL,',J/\j = 0
J

for all 7. Since the \;'s are also F'-independent, we get a; ; = 0 for all 4, j.

[3 = 4] This follows from the fact that if {«;} spans K over F' and {)\;} spans
L over F' then {x;\;} spans K[L] over F.

[4 = 1] The map ¢ sends a basis {x; ® A\;} for K ® L to a basis {;\;} for
K|[L] and is therefore injective.

Thus, each of 1) to 4) is equivalent, and by symmetry we may add the
equivalent statement that any F’-independent subset of L is also K -independent.
It is clear that 2) implies 5).

[5 = 1] Let {x;} be a basis for K over I that is L-independent. Let {\;} be a
basis for L over F'. Then {x;\;} is a basis for K'[L] over F', for if

Zai,jni)\j =0
0]
with a; ; € F then since {x;} is L-independent, we have

Z am‘/\j =0
J

for all 4. Since the \;'s are also F'-independent, a; ; = 0 for all ¢, j. Finally, ¢
takes the basis x; ® ), to the basis ;)\, and so is injective.

As to 6), it is clear that multiplication ¢: K ® L — KL is injective if and only
if each map ¢y: Ky ® Ly — KoLy is injective. Alternatively, if K and L are
linearly disjoint, then so are K, and Ly, for if {k;} C Ky C K is F-
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independent, then it is L-independent and hence also Lg-independent.
Conversely, if {x;} C K were F-independent but failed to be L-independent,
then some finite subset {x1, ..., k,} would be L-dependent as well, say

n
i=1

for \; € L, not all 0. Let Ky = F(k1,...,%,) and Ly = F(A,..., A,). Since
{K1,...,kn} C Ky is F-independent, it must also be Lg-independent by the
linear disjointness of K and L. Thus, A\; = 0 for all ¢, a contradiction.

For 7), suppose that K and L are linearly disjoint and o € K N L. Then we
have F < F(a) < K and F < F(«a) < L where F(«) is a finite intermediate
field in each case. It follows from part 6) that F'(«) is linearly disjoint with
itself. Therefore, if B is a basis for F'(«) over F, it is also a basis for F'(c) over
F(«) and so |B|] =1, thatis, F(o) = Fandw € F. Thus, K N L = F.0OO

Corollary 6.7.2 (Linear disjointness in the finite case) Let F' < E and
suppose that K and L are intermediate fields of finite degree over F'.
1) K and L are linearly disjoint if and only if

[KL:F]=[K:F|[L:F)

2) Ifoneof F < K or F < L is Galois, then K and L are linearly disjoint if
and only if

KNL=F

Proof. For part 1), if K and L are linearly disjoint, then part 4) of Theorem
6.7.1 implies that the degree condition above holds. Conversely, if this degree
condition holds, and if {k;} is a basis for K over F' and {);} is a basis for L
over F, then since the set {«;\;} spans KL and has size [K'L : F'], it must also
be a basis for K L. Hence, K and L are linearly disjoint.

Alternatively, we have remarked that the multiplication map ¢: K ® L — KL
is surjective and so it is injective if and only if dim(K ® L) = dim(K L), which
by Corollary 0.9.5 is equivalent to

dimp(K) - dimp(L) = dimp(K L)
Part 2) follows from part 1) and Corollary 6.5.3. O
Exercises

1. Find the Galois group of the polynomial 2* — 2 over Q. Find the subgroups
and intermediate fields.

2. Prove that a pair of order-reversing maps (II: P — @, : Q — P) between
partially ordered sets is a Galois connection if and only if



10.

11.

12.
13.
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g<pep<d

forall p € P and q € , where p* = IIp and ¢’ = Qq.
Let FF < K < E. Prove that Gi (F) = GﬁX(GK(E)>(E).
If A\: £ — M is an order-reversing bijection between two lattices, verify
that A\(Aa;) = VV(Xa;) and A\(\/a;) = A()\a;). Hint: first show that A1 is
also order-reversing.
IfF <K< Fand F < L < E where F < F is algebraic and F' < K and
F < L are Galois. Show that K N L < E is a Galois extension.
If F' < E is abelian, show that for every intermediate field F' < K < E we
have FF < K.
Let K < F and L < F be Galois extensions. Let G (E)GL(E) be the join
of Gk (FE) and G (F) in the lattice G of all subgroups of Gxnr(E) and let
Gk (E)V GL(E) be the join in the lattice G of all closed subgroups of
Ggni(E). Show that G (E)GL(E) is finite if and only if Ggnr(E) is
finite, in which case Gk (E)GL(E) = Gk (E)V GL(E).
Let F' < E be finite. Let G; < G2 < Gp(E). Show that

G (@) ~ 2

1

Let F < E and let K and L be intermediate fields with [K : F] = 2™ and
[L : F] =2". Show that [K L : F] need not have degree a power of 2. Hint:
The group S; has subgroups A= (c€S,|oty=1t,) and B=
(o € Sy | oty = t1). Consider the generic polynomial

p(z) = (x —t)(z — t2)(z — t3)(z — t4)

where t1, ..., t, are independent variables over F.

Find an example of an infinite algebraic extension whose Galois group is
finite.

Let ty,...,t, be independent transcendentals over F' and consider the
generic polynomial

g(w) =[x - t)

i

Suppose that g(x) has coefficients so,...,s,. Then t; is algebraic over
F(sg,...,8,) and so F(sg,...,$,) < F(t1,...,t,) is algebraic. Show that
the extension is Galois. Show that the degree of the extension is at most n!.
Show that the Galois group of this extension is isomorphic to the symmetric
group S,,.

Prove Corollary 6.5.3.

Let F' < E be finite and Galois. Let p be a prime for which [E : F] = p*m,
with p /m. Show that for any 0 < i < k, there is an intermediate field K
for which [K : F| = p'm.
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15.

16.
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18.

19.

20.
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Let F' be a perfect field. Define the p-order of a positive integer n to be the
largest exponent e for which p°|n. Suppose that F' < E is a finite
extension and that p is a prime. Suppose that [F : F'| has p-order k. Show
that for any 0 < ¢ < k, F' has an extension K; whose degree has p-order i.
Show also that if [E : F] is not a power of p, then [K; : F] is not a power of

.

Let F' < F be a finite Galois extension and let F' < K. Then [EK : K]

divides [E : F']. Use the following to show that the assumption that F' < F

be Galois is essential. Let « be the real cube root of 2, let w £ 1 be a cube

rootof 1. Let F = Q, E = Q(aw) and K = Q(«).

Prove the following statements about abelian and cyclic extensions.

1) If F < Fand F < K are abelian, then F' < FK is abelian.

2) If F < FE is abelian (cyclic) and F' < K, then the lifting K < EK is
abelian (cyclic).

3) If F < K < Ewith F' < E abelian (cyclic), then K < E and FF < K
are abelian (cyclic).

Let f(x) € Flx] with roots ay,...,a, in F. Let F < E < F. We can

consider the splitting field S = F(ay,...,a,) of f(x) over F as well as

the splitting field Sy = E(ay,...,a,) of f(x) over E. Note that Sy < Sg.

Let us examine the Galois groups Gg(Sg) and Gp(SF).

a) Ifo € Gg(Sg), show that o|s, € GL(SF), where

L=SrN fiXSE(GE(SE)) = ﬁXS[‘(GE(SE))

b) Let ¢: Gp(Sg) — Gr(SF) be defined by ¢o = o|g,. Show that ¢ is an
isomorphism.

Referring to Theorem 6.5.4, show that if F is an arbitrary family then the

map

¢:Gr(\/E) — [[Gr(E)
defined by
Ti(¢o) = ol
is an isomorphism if
E;n ((\/E) = Fforall je I
i#j
Prove that Gr(F) is a topological group under the Krull topology. Show
that Gp(F) is totally disconnected.
a) Show that in every Galois extension F' < F, there is a largest abelian
subextension F2°, that is, F < F?® < E, F < F® is abelian and if
F < K < E with F < K abelian then K < F®.

b) If G is a group, the subgroup G’ generated by all commutators
[, ] = aB(Ba)t = aBa”137L, for «,B€G, is called the
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commutator subgroup. Show that G’ is the smallest subgroup of G
for which G /G’ is abelian.

¢) Let F<E. If the commutator subgroup Gr(E)" of a Galois group
Gp(E) is closed, that is, if Gp(E) = Gg(E) for some FF < K < E,
then K = [,

Let F' < E. Show that the separable closure F*° of F' in E and the purely

inseparable closure ' of F in E are linearly disjoint over F'. Moreover, if

F < K < E and if K and F'® are linearly disjoint over F' then I/ < E is

separable.

Let F' < E and suppose that S is a set of elements that are algebraically

independent over E. Then F(S) and E are linearly disjoint over F.

Let ' < K and let F' < E < L. Assume that K and L are contained in a

larger field. Then K and L are linearly disjoint over F' if and only if K and

E are linearly disjoint over F' and K E' and L are linearly disjoint over E.

The following concept is analogous to, but weaker than, that of linear

disjointness. Let F' < K and F' < L be extensions, with K and L contained

in a larger field. We say that K is free from L over F if whenever S C K

is a finite set of algebraically independent elements over F', then S is also

algebraically independent over L.

a) The definition given above is not symmetric, but the concept is. In
particular, show that if K is free from L over F, then [KL: L], =
[K : F);. Let T be a finite F-algebraically independent set of elements
of L. Show that T is algebraically independent over K.

b) Let F' < K and F' < L be field extensions, contained in a larger field.
Prove that if K and L are linearly disjoint over F', then they are also
free over F'.

¢) Find an example showing that the converse of part b) does not hold.



Chapter 7

Galois Theory III: The Galois Group of a
Polynomial

In this chapter, we pass from the highly theoretical material of the previous
chapter to the somewhat more concrete, where we apply the results of the
previous chapter to some special Galois correspondences.

7.1 The Galois Group of a Polynomial

The Galois group of a polynomial p(z) € F[z], denoted by Gr(p(z)), is
defined to be the Galois group of a splitting field S for p(x) over F. If

p(x) = pi'(z)---pf ()

is a factorization of p(z) into powers of distinct irreducible polynomials over F',
then S is also a splitting field for the polynomial ¢(x) = pi(x)---pg(z).

Moreover, the extension F' < S is separable (and hence Galois) if and only if
each p;(z) is a separable polynomial. To see this, let S; be the splitting field for
pi(x) satisfying F' < S; < S. Then if F' < S is separable, so is the lower step
F < S; and therefore so is p;(x). Conversely, if each factor p;(x) is separable
over F', then S is separably generated over F' and so F' < S is separable.

Note that each o € Gr(S) is uniquely determined by its action on the roots of
p(x), since these roots generate .S, and this action is a permutation of the roots.
In fact, if & and (3 are roots of p(x), then there is a ¢ € G(p(x)) that sends « to
3. Hence, the Galois group G(p(z)) acts tranmsitively on the roots of p(z).
However, not all permutations of the roots of p(x) need correspond to an
element of Gy (S). Of course, 0 must send a root of an irreducible factor of
p(z) to another root of the same irreducible factor, but even if p(x) is itself
irreducible, not all permutations of the roots of p(x) correspond to elements of
the Galois group. Thus, the Galois group G(S) is isomorphic to a transitive
subgroup of the symmetric group S,,, where n = deg(p(z)).
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Let p(x) = f(z)g(x) where deg(f) > 0 and let E, be the splitting field for
p(xz) over F' and Ey the splitting field for f(x) over F. We clearly have
F<aFE; < Ey,and F' < E), and so Theorem 6.4.2 implies that G, (E,) < Gr(E))
and

GF(EIJ)

GF(Ef) ~ m

or, in another notation,

_ Cr(p(x))
G, (p(x))

Theorem 7.1.1 Let p(x) = f(x)g(x) where deg(f(x)) > 0. The Galois group
of f(x) is isomorphic to a quotient group of the Galois group of p(x)

~ Gr(p(z))
GE,(p())

where Ey is a splitting field for p(z).0

Gr(f(z))

Gr(f(x))

7.2 Symmetric Polynomials

In this section, we discuss the relationship between the roots of a polynomial
and its coefficients. It is well known that the constant coefficient of a
polynomial p(x) is the product of its roots and the linear term of p(x) is the
negative of the sum of the roots. We wish to expand considerably on these
statements.

The Generic Polynomial and Elementary Symmetric Functions
If F'is a field and t¢;,...,t, are algebraically independent over F, the
polynomial

n

g@)=]] (= —t)

i=1

is referred to as a generic polynomial over F' of degree n. Since the roots
t1,...,t, of the generic polynomial g(x) are algebraically independent, this
polynomial is, in some sense, the most general polynomial of degree n.
Accordingly, it should (and does) have the most general Galois group S, as we
will see.

It can be shown by induction that the generic polynomial can be written in the
form

g(l') =" — s]xnfl 4o (_1>nsn
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where the coefficients s; € F(t1,...,t,) are given by
n
S1 = Zti, SS9 = Ztitj, S3 — Z t,;tjtk yeeoy Sp = Hti
i 1<j i<j<k i=1

and are called the elementary symmetric polynomials in the variables ;.

As an example of what can be gleaned from the generic polynomial, we deduce
immediately the following lemma.

Lemma 7.2.1 Let p(x) € F[z]. The coefficients of p(x) are, except for sign, the
elementary symmetric polynomials of the roots of p(x). In particular, if

p(z) = 2" —s12" - (=1)"s,

has roots r1, ..., r, in a splitting field, then

Sp = E Tiy T O

1 <<t

Since the extension F'(si,...,s,) < F(t1,...,t,) is algebraic, the elementary
symmetric polynomials si,...,s, are also algebraically independent over F,
that is, there is no nonzero polynomial over F’ satisfied by s1, ..., s,.

Theorem 7.2.2 The elementary symmetric polynomials si,...,s, are
algebraically independent over F.
Proof. Since F < F(s1,...,8,) < F(t1,...,t,), where the upper step is

algebraic, Theorem 4.3.2 implies that S ={s;,...,s,} contains a
transcendence basis for F'(¢y,...,t,) over F'. But {t1,...,t,} is a transcendence
basis and so [F'(¢1,...,t,):F]; = n. Hence, S is a transcendence basis. [J

The Galois Group of the Generic Polynomial

Let us compute the Galois group G of F(t1,...,t,) over F(s1,...,s,). Since
F(t1,...,t,) is a splitting field for g(x) over F(si,...,s,), and since g(x) has
no multiple roots, the extension

F(Sl,...,Sn) <F(t1,...,tn)
is finite and Galois and so
|G| = [F(t1,..,tn) : F(s1,-..,8,)] < n!

We claim that G is isomorphic to the symmetric group S,,. Let o € S,,. For any
flt1, ... ty) € F(t1,...,t,), define amap o*: F'(t1,...,t,) — F(t1,...,t,) by

O-*(f(tla e ,t”)) = f(ta(l)a s 7t0'(n))

Since the t;'s are algebraically independent over F, this is a well-defined
automorphism of F'(t1,...,t,) over F, which fixes the elementary symmetric
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polynomials sj;. Thus, ¢* is an automorphism of F(t,...,t,) over
F(s1,...,8n), thatis, o* € G, where

a (g(tla v atn)) = ga(to(l)v (X 7ta(n)) = g(ta(l), v ata(n,))

forany g(t1,...,tn) € F(s1,...,8n)(t1, .-, tn).

Moreover, each ¢o* is distinct, since if 0* = 77, then t,(;y = t(;) for all 7 and so
o = 7. It follows that GG is isomorphic to S, and

[F(t1y...,tn) s F(s1,...,8)] =nl!

Theorem 7.2.3 Let t,...,t, be algebraically independent over F and let
S1,...,Sy be the elementary symmetric polynomials inty, ... ,t,.

1) The extension F(si,...,s,) < F(t1,...,t,) is Galois of degree n!, with

Galois group G isomorphic to the symmetric group S,
2) fix(G) = F(s1,...,8y), that is, any rational function in ti,...,t, that is

fixed by the maps o* is a rational function in sy, ..., sy.
3)  The generic polynomial g(x) is irreducible over Fsy, ..., S,).

Proof. To prove part 3), observe that if g(x) were equal to a(z)b(xz) where
deg(a(z)) =d >0 and deg(b(z)) =e >0, then the Galois group of g(x)
would have size at most dle! < (d 4 e)! = n!l. Hence g(x) is irreducible. O

Symmetric Polynomials
Now we are ready to define symmetric polynomials (and rational functions).
Definition 4 rational function f(ti,...,t,) € F(t1,...,t,) is symmetric in
t17"'at'lb l]f

f(t(r(l)a s 7trr(n)) = f(tla s 7tn)
Jor all permutations o € S, that is, if f € fix(G) = F(s1,...,5,), where G is
the Galois group of the extension F(s1,...,s,) < F(t1,...,t,).0

A famous theorem of Isaac Newton describes the symmetric polynomials.

Theorem 7.2.4 (Newton's Theorem) Let ty,...,t, be algebraically

independent over F and let sy, ..., s, be the elementary symmetric polynomials

inty, ...ty

1) A polynomial p(ty,...,t,) € Ft1,...,t,] is symmetric in ty,...,t, if and
only if'it is a polynomial in s, ..., sy, that is, if and only if

Pty tn) = q(s1,..- 5 8n)

Jor some polynomial q(x1,...,x,) over F. Moreover, if p(ti,...,t,) has
integer coefficients, then so does q(s1, ..., Sp).

2) Let p(x) € F[z]. Then the set of symmetric polynomials over F in the roots
of p(x) is equal to the set of polynomials over F in the coefficients of p(x).
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In particular, any symmetric polynomial over F' in the roots of p(x) is an
element of .

3) Let p(x) € Z[x] be a polynomial with integer coefficients. Then the set of
symmetric polynomials over 7 in the roots of p(x) is equal to the set of
polynomials over Z in the coefficients of p(z). In particular, any symmetric
polynomial over 7 in the roots of p(x) is an integer.

Proof. Statements 2) and 3) follow from statement 1) and Lemma 7.2.1. If

p(t1,...,t,) has the form q(si,...,s,), then it is clearly symmetric. For the

converse, the proof consists of a procedure that can be used to construct the
polynomial ¢(z1,...,2,). Unfortunately, while the procedure is quite
straightforward, it is recursive in nature and not at all practical.

We use induction on n. The theorem is true for n = 1, since s; = t;. Assume
that the theorem is true for any number of variables less than n and let
p(t1,...,t,) be symmetric. By collecting powers of ¢,,, we can write

Pt tn) = Do + prtn + pot? + - + itk

where each p; is a polynomial in ¢,...,t,—;. Since p is symmetric in
t1,...,tn—1 and ty,...,t, are independent, each of the coefficients p; is
symmetric in ¢y, ..., t,—1. By the inductive hypothesis, we may express each p;
as a polynomial in the elementary symmetric polynomials on t,...,¢,_;. If
these elementary symmetric polynomials are denoted by w4, ..., u,_1, then

Pt ty) = Qo+ qitn + @t + - + quth (7.2.1)

where each ¢; is a polynomial in w4, ..., u,_1, with integer coefficients if p has
integer coefficients.

Note that the symmetric functions s; can be expressed in terms of the symmetric
functions u; as follows

s1=u +1t, (7.2.2)
S = ug + urt,

Sp—1 = Up—1 + Up—2ty
Sp = Up—1ty
These expressions can be solved for the u;'s in terms of the s;'s, giving

up =81 — 1y
2
Uy = Sg — uit, = So — Sit, + 1,
2 3
u3 = 83 — Usl, = 83 — Saty, + s1t;, — 15
n—1;n—1
tn,

Up—-1 = Sp—-1 — un*2tn = Sp—-1— 371,727&71, +---+ (_1)

and from the last equation in (7.2.2),
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0 =8y — Up_1tn = Sp — Sp—1tn + -+ (=1)"t) (7.2.3)

n
Substituting these expressions for the u;'s into (7.2.1) gives
Pty ... tn) =10+ rity +rot2 4 - +Tkt§

where each r; is a polynomial in sy, ..., s,_1 and t,, with integer coefficients if
p has integer coefficients. Again, we may gather together powers of ¢,,, to get

p(tlv”wtn) :gO"i‘gltn‘i‘g2ti“v‘'i‘gmt»z7

where each g; is a polynomial in sy, ..., s,_1, with integer coefficients if p has
integer coefficients. If m > n, we may reduce the degree in ¢,, by using (7.2.3),
which also introduces the term s,,. Hence,

Pty ytn) = ho + haty + hot + -+ + hy_qti ! (7.2.4)
where each h; is a polynomial in sq,...,s,, with integer coefficients if p has
integer coefficients.

Since the left side of (7.2.4) is symmetric in the ¢;'s, we may interchange ¢,, and
t;, foreacht =1,...,n — 1, to get

P(t1s. . otn) = ho+ hati + hot; + -+ + hy_1t! !

valid for all : = 1, ..., n. Hence, the polynomial
P(J?) =hy + hix + h21‘2 + -+ h,t_1$n71 - p(tl, ... ,t,,,)

has degree (in x) at most n — 1 but has n distinct roots t4,...,t,, whence it
must be the zero polynomial. Thus, h; = 0 for i > 1 and p(t1,...,t,) = hg =
ho(s1,--.,8n), as desired. O

Example 7.2.1 Let p(z) = 2" — pjz"~* + --- + (—1)"p, be a polynomial with
roots r1, ..., Ty in a splitting field. For k£ > 1, the polynomials

uk:r]f+r’§+~~~+7"i

are symmetric in the roots of p(z), and so Theorem 7.2.4 implies that the wuy's
can be expressed as polynomials in the elementary symmetric polynomials
P1, ..., py of the roots. One way to derive an expression relating the uy's to the
pr's is by following the proof of Theorem 7.2.4. In the exercises, we ask the
reader to take another approach to obtain the so-called Newton identities

up, — up_1p1 + tp_apy + - 4+ (=D uypp g + (=1)F kpy =0

for k£ > 1. These identities can be used to compute recursively the wuy's in terms
of the p;'s. O
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7.3 The Fundamental Theorem of Algebra

The Galois correspondence can be used to provide a simple proof of the
fundamental theorem of algebra.

As an aside, the history of the fundamental theorem is quite interesting. It seems
that attempts to prove the fundamental theorem began with d'Alembert in 1746,
based on geometric properties of the complex numbers and the concept of
continuity, which was not well understood at that time.

In 1799, Gauss gave a critique of the existing “proofs” of the fundamental
theorem, showing that they had serious flaws, and attempted to produce a
rigorous proof. However, his proof also had gaps, since he suffered from the
aforementioned lack of complete understanding of continuity. Subsequently, in
1816, Gauss gave a second proof that minimized the use of continuity, assuming
a form of the intermediate value theorem.

It was not until Weierstrass put the basic properties of continuity on a rigorous
foundation, in about 1874, that d'Alembert's proof and the second proof of
Gauss could be made completely rigorous.

We will also assume a form of the intermediate value theorem, namely, that if
p(z) is a real polynomial, and if p(a) and p(b) have opposite signs, for a < b,
then there is a ¢ € (a, b) for which p(c) = 0. From this, one can deduce that any
odd degree real polynomial must have a real root and is therefore reducible over
R. It follows that any nontrivial finite extension of R must have even degree,
since it must contain an element whose minimal polynomial has even degree.

We also require some knowledge of complex numbers, namely, that every
complex number has a complex square root, which can be seen from a
geometric perspective: z = re’’ implies z'/? = r'/2¢//2. Hence, no complex
quadratic p(z) is irreducible over C, since the method of completing the square
shows that the roots of p(x) lie in C. It follows that C has no extensions of
degree 2.

Theorem 7.3.1 (The fundamental theorem of algebra) Any nonconstant
polynomial over C has a root in C, that is, C is algebraically closed.

Proof. We first show that it is sufficient to prove the theorem for real
polynomials. Let p(x) € C[z] be nonconstant. Consider the polynomial
r(z) = p(z)p(x), where the overbar denotes complex conjugation of the
coefficients. Then r(z) is a real polynomial and r(x) has a complex root if and
only if p(x) has a complex root. Hence, we may assume that p(z) € Rz].

Now consider the tower R < C < E, where E is a splitting field for
q(z) = (2> + 1)p(z) over R. Since [C: R] = 2 divides [F : R], we conclude
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that [E : R] = 28m, for some k > 1 with m odd. Our goal is to show that
E = C, showing that p(z) splits over C.
Let H be a 2-Sylow subgroup of Gg(q(x)). Then |H| = 2* and so
[fix(H) : R] = (Gr(q(z)) : H) =m
Since R has no nontrivial extensions of odd degree, we deduce that m = 1 and

G = Gr(q(7)) is a 2-group of order 2¥ > 2.

Thus, we have the tower
{u} <Gelqle)) <G

in which |Gc(gq(x))| = 25!, Therefore, according to Theorem 0.2.19,
Gc(q(x)) has a subgroup of any order dividing 2°~!. But G¢(q(x)) cannot have
a subgroup of order 2"~2, that is, index 2

{t} < H < Gelq(r) <G
because then
2 = [fix(H) : fix(Ge(q(2))] = [fix(H) : C]

which is not possible. Hence, |Gc(g(z))| =1 and so |G| = 2, which implies
that [E' : R] = 2, whence £ = C.OO

7.4 The Discriminant of a Polynomial

We have seen that the Galois group Gr(p(z)) of a polynomial of degree n is
isomorphic to a subgroup of the symmetric group S;, and that the Galois group
of a generic polynomial is isomorphic to .S, itself. A special symmetric function
of the roots of p(z), known as the discriminant, provides a tool for determining
whether the Galois group is isomorphic to a subgroup of the alternating group
A

Let p(x) be a polynomial over F, with roots ry, ..., r, in a splitting field E. Let
§=1I0i=rp)
i<j
The discriminant of p(x) is A = 62, which is clearly symmetric in the roots.
Note that A # 0 if and only if p(z) has no multiple roots.
Let us assume that A £ 0. Then p(z) is the product of distinct separable
polynomials, implying that /' < F is a Galois extension. Hence,
fix(Gr(p(z))) = F

Since A=A for all 0 € Gp(p(z)), we deduce that A € F'. (Newton's
theorem also implies that A € F.)
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Each transposition of the roots sends ¢ to —&, and so for any o € Gp(p(z)),
o6 =(-1)%6

where (—1)7 is 1 if o is an even permutation and —1 if ¢ is an odd permutation.
Thus, the location of 6 can give us some information about the parity of the
permutations in the Galois group.

If char(F') = 2, then 06 = 6 for all 0 € Gr(p(x)) and so 6 is always in the base
field F. This is not very helpful. But if char(F') # 2, then o € Gp(p(x)) fixes §
if and only if o is an even permutation. Put another way,
6 € F=1fix(Gp(p(x))) if and only if Gp(p(z)) contains only even
permutations, that is, Gp(p(z)) < A,.

If 4 ¢ F then Gp(p(x)) must contain an odd permutation. It is not hard to show
that if a subgroup of S,, contains an odd permutation then the subgroup has even
order and exactly half of its elements are even.

Hence, if § ¢ F then G = Gr(p(z)) has even order and |G N A,,| = |G|/2, that
is,
(G:GNA,) =2
Since all groups are closed, it follows that
[fix(GNA,):Fl=(G:GNA,) =2
Since [F(6) : F] =2and F(§) C fix(GN A4,), we have
F(6) =fix(GNA,)

Thus, F'(6) is the fixed field of the subgroup of even permutations in Gr(p(x)).
Let us summarize.

Theorem 7.4.1 Let p(x) € Flx] have degree n and splitting field E. Let \/ A
be any square root of the discriminat A of p(z).

1) A =0ifandonly if p(x) has multiple roots in E.

2)  Assume that A # 0 and char(F) # 2.

a) \/Z € F ifand only if Gp(p(x)) is isomorphic to a subgroup of A,
by VA ¢ F if and only if Gp(p(x)) is isomorphic to a subgroup of S,
that contains half odd and half even permutations. In this case,

fix(Gr(p(z)) N A,) = F(V/A)

3) If A#0 and char(F) =2, then VA EF but Gr(p(z)) need not be
isomorphic to a subgroup of A,,.
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Proof. For part 3), recall that the generic polynomial g(x) = (x — t1)---(z — t,,)
has Galois group .S, over F'(sy,...,s,).0

The usefulness of Theorem 7.4.1 comes from the fact that A can actually be
computed without knowing the roots of p(z) explicitly. This follows from the
fact that ¢ is the Vandermonde determinant

1 1 1 1
§ = 7:1 7".2 Tt T.n,

n—1 n—1 n—1
(8] Ty e T

Multiplying this by its transpose gives

up Ul Upg
A = U:l 'U:Z e u.n
Up—1 Up - U2p—2

where w; =7ri +r)+---+ 7. Newton's identities can then be used to
determine the u;'s in terms of the coefficients of the polynomial in question (see
Example 7.2.1 and the exercises). We will see some examples of this in the next
section.

7.5 The Galois Groups of Some Small-Degree Polynomials
We now examine the Galois groups of some small-degree polynomials.
The Quadratic
Quadratic extensions (extensions of degree 2) hold no surprises. Let

plx) =2 +bx+c=(x—7r)(z—s)

be a quadratic over F', with splitting field . To compute the discriminant,
observe that u; = r + s = b and

uy =12+ 5> = (r+s)? —2rs = b*> — 2c

Hence

A:

‘2 b =2(b? — 2¢) — b* = b — 4c

b b:—2c

a familiar quantity.

Multiple Roots
If A = 0, then p(x) has a double root r and

p(z) = (x —r)* = 2% — 2rz 4+ 1*
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The root r will lie in F' for most well-behaved base fields F'. In particular, if
char(F') # 2, then —2r € F implies r € F. If char(F) = 2 and F is perfect (a
finite field, for example) then p(z) = (z — r)? must be reducible over F' and so
reF.

However, the following familiar example shows that p(x) may have a multiple
root not lying in F. Let F' = Zy(#*) where t is transcendental over Z, and let

p(a) =2 —t* = (z — t)*
Since t ¢ Z»(t*), this polynomial is irreducible over Z,(¢?), but has a multiple
roott ¢ F.

No Multiple Roots
If A # 0, then p(x) has distinct roots and there are two possibilities:

1) The roots lie in F, p(z) is reducible and G (p(z)) is trivial.
2) The roots do not lie in F, p(x) is irreducible and Gp(p(x)) = Sy is
generated by the transposition (rs) of the roots.

Thus, when char(F') # 2, we can tell whether the roots lie in F' by looking at
the discriminant: If /A € F, then Gr(p(x)) &~ Sy = Z> and possibility 2)
obtains. Of course, this is also evident from the quadratic formula

b2 —de  —bEV/A
B 2 2

r,s

If /A # F, then Gr(p(x)) = {¢} = As. Hence the roots lie in F if and only if

VA € F. (We can now rest assured that what we tell our children about
quadratic equations is actually true.)

Theorem 7.5.1 Let p(x) € Fx] have degree 2.
1) If A =0 then p(z) = (x — r)* has a double root r. If char(F) # 2 or F is
perfect, thenr € F. In any case, Gp(p(z)) is trivial.
2) If A # 0 then p(x) has distinct roots and there are two possibilities:
a) Theroots lie in F, p(x) is reducible and G p(p(x)) is trivial.
b) The roots do not lie in F, p(x) is irreducible and Gp(p(z)) =~ Sy is
generated by the transposition (rs) of the roots.
When char(F') # 2, we can distinguish the two cases as follows: Case 1)

holds if /A € F and case 2) holds if /A # F.00

Let us turn now to a more interesting case.
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The Cubic
Let

px) =2 +ba’ +ex+d=(x—r)(x—s)(xr—1t) € Flz]

have splitting field E. Then p(x) is irreducible if and only if none of its roots lie
in F.

If p(x) splits over F' then £ = F and its Galois group is trivial. If p(z) is
reducible but does not split, then it can be factored over F':

p(z) = (z — a) (2 + pr + q)

where q(z) = 2 + px + ¢ is irreducible over F'. Hence, [E : F] = 2 and the
Galois group is isomorphic to Zs.

Now let us assume that p(x) is irreducible. A lengthy computation gives
A = —4b%d + b*c® + 18bed — 4c® — 27d?

If A = 0, then p(z) has multiple roots and since each root must have the same
multiplicity, we are left with char(F') = 3 and

pe) = (@ — )P =a® 1
Hence, the extension F' < F(r) = E is purely inseparable of degree 3 and the
Galois group is trivial.

If A #0, then p(x) has no multiple roots and is therefore separable. Hence,
F < Eis Galois and

3<|Gr(p(x))| = [E: F] < 3!
which leaves the possibilities [F : F] = 3 and [E : F] = 6.

We can now give a complete analysis for the cubic. Note that when

char(F) # 2, knowledge of irreducibility and the value of \/Z determine the
Galois group and the splitting field.

Theorem 7.5.2 (The cubic) Let p(x) € F|x] have degree 3, with splitting field
E and Galois group G = Gr(p(x)). Then there are four mututally exclusive
possibilities, each of which can be characterized in four equivalent ways:
) a [E:F]=1

b) E = F is the splitting field for p(x)

o) Gp(p(z)) ={} = A,

d) (For char(F) # 2) p(x) is reducible and \/ A € F.
2) a) [E:F]=2
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b) p(z) is reducible and E = F'(r) is a splitting field for p(z), where r is
aroot not in F'.
¢) Gr(p(x)) ~Zy =Sy
d) (For char(F) # 2) p(x) is reducible and VA ¢ F.
3) a) [E:F]=3
b) p(x) is irreducible and E = F(r) is the splitting field for p(x), for any
rootr
¢) Gr(p(x)) ~Zs~ Az
d) (For char(F) # 2) p(x) is irreducible and VAEF.
4 a) [E:F]=6
b) p(x) is irreducible and E = F(\/E, r) is the splitting field for p(x),
for any root r
C) Gp(p(x)) ~ 53
d) (For char(F) # 2) p(x) is irreducible and \/Z ¢ F.
Proof. We leave proof to the reader.]

We know that A € F. For F' = QQ, we can learn more about the roots of a cubic
by looking at the sign of A. A cubic p(z) over Q has either one reat root r and
two nonreal roots {a + bi,a — bi} or three real roots 7, s and ¢. In the former
case,

§ = [(r — a) — bi][(r — a) + bi]2bi = |(r — a) + bi|*2bi

and so A < 0. In the latter case, § = [(r — s)(r — t)(s — t)]> > 0.

Theorem 7.5.3 (The cubic over Q) Let p(x) € Q[z] have degree 3. Then
I) A < 0ifandonly if p(x) has exactly one real root
2) A > 0ifandonly if p(x) has three real roots.]

Example 7.5.1 Let p(z) = 2° — 222 — 2 + 1 over Q. Any rational root of p(x)
must be £ 1 (Theorem 1.2.3) and so p(z) is irreducible. The discriminant is
A=49>0, so p(z) has three real roots. Since /49 € Q, we have
Go(p(x)) = Z;3 and p(x) has splitting field Q(r), for any root r.

On the other hand, for any prime p, the polynomial p(x) = 2* — p is irreducible
over Q and has discriminant A = —27p? < 0, whose square root is not in Q.
Hence, p(x) has one real root and two nonreal roots, the Galois group of p(x) is

isomorphic to S5 and p(z) has splitting field Q(1/—3, \yﬁ)l:l
*The Quartic

Since the Galois group of an irreducible quartic polynomial is isomorphic to a
transitive subgroup of Sy, we should begin by determining all such subgroups.
Theorem 0.3.2 implies that if G is a transitive subgroup of S, then
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|G| =4,8,12 0or 24

Here is a list.

1) (Order 4: cyclic group) The cyclic group Z, occurs as a subgroup of Sy.
The elements of Sy of order 4 are the 4-cycles o = (labc) = (1¢)(1b)(1a).
The three subgroups of S; isomorphic to Z, are

Zy = {1, (1234), (13)(24), (1432)}
Zy = {1, (1342), (14)(23), (1243)}
Zs = {1, (1423), (12)(34), (1324)}

2) (Order 4: Klein four-group) The Klein four-group Z, x Zy occurs as a
subgroup of Sjy. In particular, let

V = {1, (12)(34), (13)(24), (14)(23)}

which is isomorphic to Zy X Zy. We leave it to the reader to show that V' is
normal in Sy. Note also that V' < A4. This and the previous case exhaust all
nonisomorphic groups of order 4. The group Sy contains other isomorphic
copies of the Klein four group, such as

{¢,(12),(34), (12)(34)}

However, suppose that such a subgroup S is transitive. Every nonidentity
element 0 € S has order 2 and so is a product of disjoint 2-cycles
(transpositions). Hence, o is a transposition or a product of two disjoint
transpositions. But a transposition links only two elements of {1,2,3,4}
together and a product of disjoint transpositions links two pairs of elements
together. Since there are (3) = 6 pairs that must be linked, we deduce that
S contains no transpositions and therefore must be V.

3) (Order 8: dihedral group) The dihedral group of symmetries of the
square, thought of as permutations of the corners of the square, occurs as a
subgroup of Sy of order 8. These subgoups are Sylow subgroups

Dy = {1, (12)(34), (13)(24), (14)(23), (24), (13), (1234), (1432)}
Dy = {1, (12)(34), (13)(24), (14)(23), (14), (23), (1243), (1342)}
D3 = {1, (12)(34), (13)(24), (14)(23), (12), (34), (1423), (1324) }

Note that V' < D,, for each 1.

4) (Order 12: alternating group) The alternating group A4 is the only
subgroup of Sy of order 12.

5) (Order 24: symmetric group) Of course, S, is the only subgroup of S, of
order 24.
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Now let
p(z) = 2' +ax® + b2’ +cx +d

be an irreducible quartic over F' and assume that char(F") # 2,3. This will
insure that 4 # 0, that p(x) is separable and that all irreducible cubic
polynomials that we may encounter are separable.

Replacing = by  — a/4 will eliminate the cubic term, resulting in a polynomial
of the form

q(z) = 2"+ pa® +qr +r

which is often referred to as the reduced polynomial for p(x). The polynomials
p(z) and ¢(z) have the same splitting field and hence the same Galois group,
and their sets of roots are easily computed, one from the other. Let E be the
splitting field of ¢(x), let r1,...,74 be the roots of g(z) in E and let G =
Gr(F) be its Galois group.

For convenience, we identify G with its isomorphic image in S,. For example,
the permutation (12) interchanges r; and rs.

To analyze the quartic ¢(x), we want to find a strategically placed intermediate
field. One way to do this is to find a strategically placed subgroup of the Galois
group, one that has nice intersection properties with the candidates listed above..
The alternating group A, immediately springs to mind, but this may be too
large. In fact, if \/Z € F then G is a subgroup of A4. So let us try the Klein
four group V', which gives us a subgroup V N G of G, as shown in Figure 7.5.1.

E = split(p(x)) 1 * G(p(x)) =G
d = 1: [r(x) splits over F]
e=2or4 d = 2: [r(x) has one root in F]
d =3 or 6: [r(x) irred. over F]

fix(VG) =split(r(x)) * <> VG

1: [r(x) splits over F]
2: [r(x) has one root in F]
3 or 6: [r(x) irred. over F]

d
d e=2or4
d

F L L
Figure 7.5.1

Comparing with the candidates for GG, we have

D VNZ={,(13)24} ~ Z,
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3) VNnZs= {L, (12)(34)} ~ Lo

3) VAV =V = {4, (12)(34), (13)(24), (14)(23)}
4) VnD;,=V,fori=1,2,3

5Y VAd =V

6) VNS, =V

Thus,

1) |G|=4,8,120r24
2) [VNG|=2o0r4
3) (G:VNG)=1,2,3,4,6,12

We next determine the fixed field K = fix(V N G). Each element of V' fixes
the expressions

u=(ry+mry)(rs+ry)
v=(ry+7r3)(re +14)
w=(r1 +ry)(ra +13)

and so F'(u,v,w) < K. By checking each permutation in Sy, it is not hard to
see that no permutation outside of V' fixes u, v and w. Thus,

GF(u.,v,w) (E) <VnNnG

Taking fixed fields gives K’ < F'(u, v, w) and so
K =fix(VNG) = F(u,v,w)
We would like to show that K is the splitting field for the cubic polynomial
r(@) = (z —u)(z —v)(z —w)
over F', but this requires that the coefficients of r(z) lie in F'.
The coefficients of r(z) are the elementary symmetric polynomials of the roots
u,v and w and since every o € S; permutes u, v and w, it follows that any

symmetric function of u, v and w is fixed by S, and so lies in F'. Thus, K is the
splitting field for the cubic r(z) € F[z]. Hence,

(G:VNG)=[K:F]=1,2,30r6
as shown in Figure 7.5.1.
Definition The polynomial r(z)= (z —u)(x —v)(x —w) is called the
resolvent cubic of ¢(z) = 2* + px? + gz + r.O

The Coefficients of the Resolvent Cubic

Now let us determine the coefficients of the resolvent cubic r(x). First note that
since g(x) has no cubic term, it follows that r; + ro 4+ r3 + 74 = 0. Then if we
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write
iy =1+ 71

then u = —r}y,v=—r?; and w= —r},. Now write ¢(z) as a product of
quadratic polynomials over E, say

q(z) = (2* + ax + b)(2* — azx + ¢)

where the linear coefficients are negatives of each other since ¢(z) has no cubic

term, and where the roots of the first factor are r; and 5. Then ¢ = —r72 and so
a’ = T%Q = —u

Multiplying out the expression for g(x) and equating coefficients gives the
equations

b+c—a’=p
ac —ab =q
bc=r

Solving the first two for b and ¢ and substituting into the third gives
a® 4+ 2pa’ + (p* —4r)a® —¢* =0

and so a®> = —u satisfies the polynomial

s(z) = 2° + 2pa® + (p* — 4r)x — ¢
and w satisfies the polynomial

t(z) = 2% — 2pa® + (p* — 4r)z + ¢

But we can repeat this arguement, factoring g(«) into a product of quadratics for
which the roots of the first quadratic are r; and r3, say

q(z) = (2* + d'z +V)(2? — d'z + )

and so a’ = —r3 and (a’)? = —v. The same algebra as before leads to the fact
that ¢(v) = 0. Similarly, t(w) = 0 and so ¢(z) is the resolvent cubic of g(z).

Final Analysis of the Quartic

The first thing to note is that the discriminants of g(x) and r(z) are equal:
A, = A,. We leave verification of this as an exercise. Let GG, be the Galois
group of ¢(z) and let G, be the Galois group of r(x). The following can be
gleaned from Theorem 7.5.2.

1) Ifr(z) is reducible and /A, € F (in which case 7(x) splits over F'), then
(G:VNG)=[K:F]=1andso|VNG|=4=|V|. Hence,G =V.

2) If 7(x) is reducible and /A, ¢ F (in which case r(x) has a single root in
F), then (G:VNG)=[K:F]=2 and there are two possibilities. If



190 Field Theory

[VNG|=2then |G|=4and so G=Z; fori=1,20r3,or G =V.But
G =V is not possible, so G = Z;. Note that in this case, since F is the
splitting field for p(z) over K and [E : K] = 2 the polynomial p(x) must
have an irreducible quadratic factor over K. If |V NG| =4 then |G| =8
and G = D;, for i = 1,2 or 3. In this case, p(x) is irreducible over K.

3) If r(x) is irreducible and \/K, € F, then G, ~ A3 and G, < Ay. Hence
(G:VNG)=[K: F] =3, which implies that |V NG| =4 and so |G| =
12. Thus G = A4.

4) If r(z) is irreducible and /A, ¢ F, then G, ~ S; and G, is not a
subgroup of Ay. Hence (G :VNG)=[K:F]=6. and so |G| =12 or
24.But G % Ay and so G = 5.

Theorem 7.5.4 (The quartic) Let
p(x) =2 + ax® + b’ +cx +d

be an irreducible quartic over a field F, with char(F) # 2,3. Let E be the
splitting field for p(x) over F'. Let

q(z) ="+ pr® +qu +r
be obtained from p(x) by substituting x — a/4 for x and let
r(z) = 2* — 2px® + (p* — 4r)z + ¢

be the resolvent cubic of q(x). Let G,, be the Galois group of p(x) and let G, be
the Galois group of r(x). Then A, = A,.

If r(z) is reducible over F then

D If/A €F, thenG,=V.

2) If\/A, ¢ F, there are two possibilities. Let K = fix(V N G,).

a) VNG, =2and G, = Z, fori=1,2 or 3, which occurs if and only
if p(x) is reducible over K, in which case p(x) has an irreducible
quadratic factor over K. In this case, [K : F| = [E : K] = 2.

b) VNG, =4and G, = D, fori=1,2 or 3, which occurs if and only
if p(x) is irreducible over K. In this case, [K :F|=2 and
[E:K]=4

If r(x) is irreducible over F then
3) If /A, €F, thenG,= A,
4) If\/A, ¢ F, thenG, = S,.0

The Quartic z* + bz + d
Consider the special quartic

p(z) =2 + bz’ +d

and let
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p(z) =2® +bx+d

If we denote the roots of p(z) in F by a, —«, 3, —0, in this order, then £ =
F(«a, ) and

b=—(+0%), d=o’p
The roots o and 3% of p(z) are given by

—b+ Vb2 —4d
2

o, =
The square root of the discriminant of p(z) is

VA, = (o= B)a+a)a+B)(B+a)(B+B)(—a+B) =—4af(a’ — §%)

and since (o® — 3?)? is invariant under each o € G(p(z)), it must lie in the
base field F'. Hence, /A, € F if and only if o8 € F, or equivalently, \/E €
F.

Let us also note that \/g = af is fixed by every possible choice of V N G. For
instance, V' N Z; = {¢, (13)(24)} sends af to fa and V N Zy = {1, (14)(23)}
sends af to (—)(—a) = af. It follows that /d € K = fix(V N Q).

The irreducibility of p(x) over F' can be determined as follows. Certainly if
p(z) is reducible over F, then so is p(x). On the other hand, if p(x) is
irreducible then its roots o and 3? do not lie in F', whence p(x) cannot have a
linear factor over F' and, if so reducible, must have the form

p(x) =2 + ba* 4+ d = (2? + uz + v)(2* — uz + w)
where, as seen by equating coefficients, u(v — w) = 0. However, if u = 0 then
p(z) = (2° +v)(@* + w)
which gives
p(z) = (z +v)(z + w)

contradicting the irreducibility of p(x). Thus, v #0 and v =w. We can
summarize as follows:

1) Ifv/b? — 4d € F then p(x), and therefore p(x), is reducible.
2) If\/b? —4d ¢ F then p(x) is reducible if and only if it has the form

q(x):x4+bx2+d:(q;2—|—ux—|—v)(x2—ua:+v)

where v* = d and 2v — u? = b.
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For example, let p(z) = x* + 622 + 4 over Q. Then /b2 — 4d = /20 ¢ Q.

From 2), we have v = + 2 and
W=2-6=+4-6=-2-10

and since the latter has no solutions in Q, we see that p(x) is irreducible over Q.

Let us now assume that p(z) is irreducible. It follows that p(x) is also
irreducible and /b2 —4d ¢ F'. Recall also that /A, € F' if and only if

V/d € F,and that /d € K = fix(V N G).

The resolvent cubic for p(x) (which is already in reduced form) is
r(z) = z[z? — 2bx + (b — 4d)]

which is definitely reducible. Hence, Theorem 7.5.4 tells us the following.

1) Ify/deF, thenG,=V.
2) If\/d ¢ F, there are two possibilities. Let K = fix(V N G,).

a) VNG, =2and G, = Z, for i = 1,2 or 3, which occurs if and only
if p(x) is reducible over K, in which case p(x) has an irreducible
quadratic factor over K. In this case, [K : F] = [E : K] = 2.

b) |VNG, =4and G, = D,, for i = 1,2 or 3, which occurs if and only
if p(z) is irreducible over K. In this case, [K:F]=2 and
[E: K] =4.

Case 1) above is straightforward. Referring to case 2), we have \/g ¢ F and

V/d € K. But in both cases, [K:F]=2andso K = F(ﬁ) Also, it appears
that we could use some more information about when p(z) is irreducible over
K.

Lemma 7.5.5 Assume that r(z) is reducible and \/d ¢ F. Then K = F(:/d)
and
1) p(x) is irreducible over K if and only if D(x) is irreducible over K.

2)  p(x) is irreducible over K if and only if 1/d(b% — 4d) ¢ F.
Proof. For part 1), if p(z) is reducible over F(y/d), then clearly p(z) is

reducible over F'(1/d). Conversely, suppose that p(z) is reducible over F/(\/d)
and

p(z) = 2 + b2’ + d = (2° + vz + v)(z* — vz + w)

where u(v —w) = 0. If v = w, then v> = vw = d and so \/d € F, contrary to
assumption. Thus v = 0 and

p(z) = bt +d= (x2 + v)(:lc2 + w)
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which implies that p(z) is reducible over F|(y/d). If p(z) has a linear factor
over F/(y/d), then we can assume that o, —o € F'(1/d) and so

p(r) = (2% = a®)(@* - %)
which shows that p(z) is irreducible over F/(1/d).

Finally, it is clear that the quadratic p(z) is reducible over F(\/E) if and only if

Vb —4de F (v/d). But under the assumption that Vb2 —4d ¢ I, we have
Vb2 —4d € F(\/d) < \/d(b? —4d) € F
Forif /b? —4d = a + b\/g then squaring gives
b? — 4d = a® + b*d + 2ab\/d

and since \/d ¢ F, we must have ab = 0. But b # 0 since \/b% — 4d ¢ F and
soa= 0 whence b — 4d = b*d and so \/d(b? — 4d) = bd € F. Conversely, if

VA®? —4d) = f € Fthen /b2 — 4d = f//d € F(\/d).O

We can now give a complete analysis for this quartic.

Theorem 7.5.6 (The irreducible quartic z* + bz?> + d) Let
p(z) =2 + bz +d

be a quartic over a field F, with char(F') # 2,3. Let E be the splitting field for
p(z) over F' and let G be its Galois group.
1) If\/& € F then r(x) splits over F and G = V.
2) If \/& ¢ F, then there are two possibilities:
a) If \/d(b*—4d) € F, then p(x) has an irreducible quadratic factor
and G = Z;, fori =1,2 or 3.
b) If\/d(b*—4d) ¢ F, then G = D;, fori = 1,2 or 3.00

Exercises

1. Prove that part 4a) and part 4b) of Theorem 7.5.2 are equivalent.

Let p be a prime. Let p(z) € Q[z] be an irreducible polynomial of degree p
with exactly two nonreal roots. Prove that the Galois group of p(x) is S,.
Hint: Recall that S, is generated by a p-cycle and a transposition. Use
Cauchy's theorem on GG. What is the transposition?

3. Let p(z)=2"—az" '+ ---+a, where ay,...,a, are algebraically
independent over F. Show that p(z) is irreducible over F(ay,...,a,),
separable and its Galois group is isomorphic to S,,. Thus, if the roots of
p(x) are ti,...,t, then ay,...,a, are algebraically independent over F' if
and only if ¢4, ..., t, are.
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If p(z) is a quartic polynomial with resolvent cubic g¢(z) then
Bp(a) = —by(a)-
Find the Galois groups of the following polynomials over Q:

a) z'—102%+1

b) 2t —4dx+2

c) z°—6x+3

Suppose that p(z) € Q[z] is irreducible over Q and that G = G(p(x)) is
isomorphic to S3. What are the possible degrees of p(x)?

Suppose that p(x) € Q|z] is irreducible of degree d and let « be a root of
p(z) in C. What are the possibilities for [Q(a?) : Q], expressed in terms of
d?

If p(z) € Flz] has roots 1, ..., 7, then A = (—1)"""V/2[].p/(r,).

Let p(x) = (z —r)(x —s)(z —t), where r,s and t are algebraically
independent over Zs. Let s1,S2,53 be the elementary symmetric
polynomials on 7, s and ¢. Show that \/K € F(s1, 82, s3) but the Galois
group of p(x) over F'(s1, s9, $3) is isomorphic to Ss.

Let

p(z) = 2" —s12" 4 (=1)"s,

be the generic polynomlal with algebralcally independent roots 1, ..., 7,.
Let w; =7} + 74+ -+ +r%. Since the u;'s are symmetric polynomials in
the roots of p(x), Theorem 7.2.4 implies that they can be expressed as
symmetric polynomials in the elementary symmetric polynomials
s1,...,S,. Newton's identities are

URS) — Up—181 + Up—282 + -+ (— 1)k_1u13k,1 + (- 1)kksk =0

valid for £ > 1, where sy = 1 and s; = 0 for ¢ > n. Note that for k > n,
this reduces to

URS) — Uk—1S51 + U—28592 + et ( — 1)"uk,nsn =0

Prove these identities as follows:

a) For k > n, consider the sum Y r#~"p(r;).

b) For k = n, consider the sum Y _p(r;).

¢) For1l <k < n, proceed by induction on n. Let

W =ri byt
and write the coefficients of p(x) as s ). Then Newton's identites are
50—l sy (1, (s =
Denote the left side of this by N\ (r4, ..., r,). Show that

N]E»”)(Th 77'71—170) = Nlin_l)(Tl, ey rn—l)
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Hence, 7, | N;m(rl,...,rn). Show that rq---7,, | Nkﬁm(rl,...,rn). Is
this possible?

d) Let p(z)=a+0bx+2". Find the values of u; and find the
discriminant of p(z).

This exercise concerns the issue of when a value that is expressed in terms

of nested radicals
a=\/r+ S\/;f

where r,s,t € F' (char(F') # 2,3) can be written in terms of at most two
unnested radicals. For instance, we have

Vo Vol = L(Vo+ Vid)

but the number /7 + 2\/5 cannot be so written. Note that « is a root of
the quartic
a(x) =o' — 2 + (P~ 1) = [ — (r+ sVD][e” — (r— 5V/D)]

Assume that g(z) is irreducible over F'. Show that o € F'(/p, \/q) for
some p and ¢ in F' if and only if

Vri—site F



Chapter 8

A Field Extension as a Vector Space

In this chapter, we take a closer look at a finite extension F' < E from the point
of view that E is a vector space over F. It is clear, for instance, that any
o € Gp(F) is a linear operator on E over F'. However, there are many linear
operators that are not field automorphisms. One of the most important is
multiplication by a fixed element of E/, which we study next.

8.1 The Norm and the Trace

Let F' < E be finite and let o € E. The multiplication map &: E' — E defined
by & = a3 is an F-linear operator on F, since

a(afB + by) = adf + bary

for all a,b € F and 3,y € E. We wish to find a basis for £/ over F' under
which the matrix of & has a nice form.

Note that if r(z) € Fx], then r(&)8 = r(a) for all 5 € F and so r(a) =0 as
an element of F if and only if 7(&) is the zero operator on E. Hence, the set of
polynomials over F' satisfied by @ is precisely the same as the set of
polynomials satisfied by «. In particular, the minimal polynomial of « in the

sense of fields is the same as the minimal polynomial of the linear operator &.

The vector subspace F'(«) of E is invariant under the linear operator &, since
a(p(a)) = ap(a) € F(a). If B=(81,...,54) is an ordered basis for F(«)
over F' and if

d
af; = Z b; ;3;
=

then the matrix of &|p(,) with respect to B is M = (b;;). If (v1,...,7) is an
ordered basis for E over F(a) where e = [E : F(«)], then the sequence of
products
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C=MBrsBos-- s MBds s s VeB1s Vel2s - s VelBa)

is an ordered basis for £ over F'. To compute the matrix of & with respect to C,
note that

d
a(vbi) = anfBi = w(afi) = Z bi vk B;
=

and so each of the subspaces Vi, = (v,01, 7&52, - - -, V&B4) is also invariant under
@. Hence, the matrix of &y, is also equal to M, and the matrix of & with respect
to the ordered basis C has the block diagonal form

M 0 0 0
_ 0O M 0 0

M@=1, o - o (8.1.1)
0 0 0 M

It follows that if the characteristic polynomial of &|p(,) is p(z), then the
characteristic polynomial of & is

qa(x) — p(z)[E:F(a)]

The well-known Cayley—Hamilton theorem implies that ¢,(@) =0 and
therefore p(a) =0. But p(xz) is monic and has degree [F(«a):F|=
deg(min(a, F')), whence p(z) = min(a, F).

Theorem 8.1.1 Let F' < FE be finite and let « € E. If @: E — F is the F'-linear
operator on E defined by @ = a3, then the characteristic polynomial of @ is

g (x) = [min(a, F))EF ) 0

We recall from linear algebra that if 7: V' — V is a linear operator on a finite—
dimensional vector space V' over F', the frace of 7 is the sum of the eigenvalues
of 7 and the norm (determinant) of T is the product of the eigenvalues of 7, in
both cases counting multiplicities. Recall also that (as with all symmetric
polynomials in the roots of a polynomial) the trace and the norm lie in the base
field F'. We are motivated to make the following definition.

Definition Let F' < E be finite and let o € E. The trace of o over F' < F,
denoted by Trg/p (), is the trace of the F-linear operator @ and the norm of «
over F' < I, denoted by Ng,p(a), is the norm of &.[]

Note that the trace and norm of o depend on the extension field F, and not just
on the element « itself.

Since the trace of a linear operator is the sum of the roots of its characteristic
polynomial and the norm is the product of these roots, Theorem 8.1.1 allows us
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to express the trace and norm in terms of the roots of the minimal polynomial of
@ on the subfield F(«). Let F' < E be finite, let « € F and let

po(z) = min(o, F) = 2 + ag_ 12?7 + - + ag

have roots ¢1, ..., ty in a splitting field. It follows from Theorem 8.1.1 that

U

Trp/r(a) ) b= (a)]ag—
i=1
and

d

NE/F H th [B:F(a 1)da0][E:F((y)]
i=1

We remark that many authors simply define the trace and norm of « directly
from these formulas.

In terms of distinct roots of p(z), if these are rq, ..., rs, then each of these roots
has multiplicity [F(«) : F]; = p?, where d is the radical exponent of p(z)
(Theorem 3.5.1) and so

S

Tegyp(a) = [E: F(a)][F(a) : FIY

=1

and

S

NE/F(CY) — HT[_F((DL’)IF],[E:F(“)]

i=1
We can also express the trace and norm in terms of embeddings. Let
homF(Evﬁ) = {Gla EER) Un}

where n = [E : F|;. If « € E and p(z) = min(w, F), then o1a,...,0,a s a
list of the roots of p(x) in F. However, each distinct root appears [E : F'(a)]s
times in this list, since this is the number of ways to extend an embedding of
F(«) to an embedding of E, and each such extension has the same value at «.
Hence,

Zata— [E: F(a Zn

and

T T ER@)
EO’ZOZ g'rl
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These formulas will provide another expression for the norm and the trace. Let
us summarize.
Theorem 8.1.2 Let F' < E be finite and let o € E with p(x) = min(c, F) =

x? + ad_lmd’l + -+ aop.
1) Ifp(x) has roots ty, ..., tq and distinct roots ry, ..., rs then

TrE/F( Zt

and

2) Ifhomp(E,E) = {o1,..., 0.} then

i ifF'< Ei
_E:F tha _ Z‘;Utoz if ' < F is separable
0 if F' < E is inseparable

Trg/p(a

and
Ngjp(a) = H(Uz’a)[E:F]'
i=1
Proof. As for the first statement in part 2), if F' < E is inseparable, then
[E: F]; > 1,char(F') =p#0andp | [E: F];, whence Trg,p(a) = 0.00

Theorem 8.1.2 can be used to derive some basic properties of the trace and the
norm.

Theorem 8.1.3 Let F' < F be finite.
1) The trace is an F-linear functional on FE, that is, for all o, € E and
a,beF,

TI'E/F((LCE‘Fbﬂ) = aTrE/F(a) + bTrE/F(ﬁ)
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2)  The norm is multiplicative, that is, for all o, € E,
NE/F(O‘/B) = NE/F(O‘)NE/F(B)
Also, forall a € F,
NE/F(aa) = qlBF] NE/F(a)
3) Ifae€ F then
Trg/p(a) = [E: Fla and Ng/p(a) = al Bt
4) IfF < E < L are finite and if o € L then
Trp(a) = Trg p(Trpp(a) and  Npjp(a) = Ng/p(Npjp(a))

Proof. We prove part 4), leaving the rest for the reader. Let F < E < L < F
and let

homp(L, F) = {o1,...,00}
and
homF(E,f) = {7'1,... ,Tm}

Extend each 7; to an embedding 7;: F' — F' and consider the products 7j0;, each
of which is an embedding of L into F' over F, that is,

7;0: € homp(L, F)
Note that these embeddings are distinct, for if 7jo; = 7,0, then 77’17'7 =00,
fixes £ and so (ﬁ’lﬁﬂ g =, that is, 7; = 7,, which implies that 7; = 7,.
Hence, 0; = 0,.

Moreover, since

|homp(L, F)| = [L : FJ,
=[L: E|,[E : F,
= [homp (L, F)||homp(E, F)|

it follows that
{7'7]0'2} = homF(L,F)

Now, for the norm statement, we have from Theorem 8.1.2,
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Proof of the statement about the trace is similar.[]

*8.2 Characterizing Bases

Let F' < E be finite and separable. Our goal in this section is to describe a
condition that characterizes when a set {«, ..., a;,} of vectors in E is a (vector
space) basis for £ over F.

Bilinear Forms

In order to avoid breaking the continuity of the upcoming discussion, we begin
with a few remarks about bilinear forms. For more details, see Roman,
Advanced Linear Algebra.

If V is a vector space over F, a mapping (,):V x V — F is called a bilinear
form if it is a linear function of each coordinate, that is, if for all z,y € V and

a,beF,
(ax + by, z) = alz, z) + by, 2)
(z,az + by) = a(z,x) + b(2,y)

For convenience, if S C V, we let
(x,8) ={(z,s) | s € S}

A bilinear form is symmetric if (z,y) = (y, z) for all z,y € V. A vector space
together with a bilinear form is called a metric vector space.

Definition Let V' be a metric vector space.
1) A vector veV is degenerate if it is orthogonal to all vectors in V
(including itself), that is, if

(v, V) = {0}

2) The space V is degenerate (or singular) if it contains a nonzero
degenerate vector. Otherwise, it is nondegenerate (or nonsingular).

3) The space V is totally degenerate (or totally singular) if every vector in
V' is degenerate, that is, if the form is the zero function
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(z,y) =
Jorall z,y e V.O

If B=(f,...,0,) is an ordered basis for V' over F, the matrix of the form
(,) with respect to B is

Mg = ((8:, 5)))

The proof of the following theorem is left to the reader.

Theorem 8.2.1
1) Let Mpg be the matrix of a bilinear form on V', with respect to the ordered
basis B. If u,v € V then

(u,v) = [u]sMp[v]5

where [x)p is the coordinate matrix for x with respect to B.

2) Two matrices M and N represent the same bilinear forms on V, with
respect to possibly different bases, if and only if they are congruent, that is,
if and only if M = PN P! for some invertible matrix P.

3) A metric vector space is nonsingular (nondegenerate) if and only if any,
and hence all, of the matrices that represent the form are nonsingular.C]

Characterizing Bases

As mentioned earlier, for a finite separable extension F' < E, we wish to
describe a condition that characterizes when a set {ay, ..., a,} of vectors in E
is a basis for E over F'.

Suppose that B = {ay, ..., a,} are vectors in E, where n = [E : F| and let

homp(E, E) = {01,...,0,}

We will show that 5 is a basis for E over F' if and only if the following matrix
is nonsingular:

o1 o200 - Op(Y
010y O2(xg -+ OpQi2
M = M((X],...,Oén) = ((U,ai)i,,-) = . . .
J J
010y, 020y -+ OpQp

Our plan is to express this matrix in terms of the matrix of a bilinear form. To
this end, observe that for any vectors o; and 3; in F,
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(M(a,...,an)M(Br,..., 82)"), ;= ;(gkai)(ak@-)
= oi(aiB))
= TI;E/F(%@')
and so
Mo, ..., an)M(By, ..., 3,)" = (Trg p(ifB;))
In particular,
M(aq,...,00)M(ay,...,an) = (Trg/pleuey))

We can now define a symmetric bilinear form on F by
(a,B8) = TTE/F(Oéﬁ) (8.2.1)

This form has a rather special “all or nothing” property: If E contains a nonzero
degenerate vector «, then for any 3,y € F, we have

(3,7) = (aa™'8,7) = (a,a”'By) =0

and so F is totally degenerate. In other words, E is either nondegenerate or else
totally degenerate.

We have assumed that the extension ' < F is finite and separable. Of course, if
we drop the separability condition, then the matrix (o;c;) is no longer square
and therefore cannot be invertible. However, the bilinear form (8.2.1) still
makes sense. As it happens, this form is nonsingular precisely when F' < E is
separable.

Theorem 8.2.2 Let F' < F be finite. The following are equivalent:
1) F < E is separable

2) FE is nondegenerate.

When F < E is separable, the matrix

M(ay, ..., o) = (0j0;)

is nonsingular if and only if B = {ou, ..., a,} is a basis for E over F.

Proof. If F' < E is inseparable, then part 2) of Theorem 8.1.2 shows that the
trace is identically 0, whence FE is totally degenerate. Thus, if E is
nondegenerate, then F' < F is separable.

For the converse, since F' < E is finite and separable, it is simple, that is,
E=F(a).If[E: F]=n,then B= (1, a,...,a"!) is an ordered basis for
over F and
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Mg = ((a!, o)) = (Trg/r(a'd!)) = M(L,a,...,a" M (1, c, ..., ")

But
M=M(1,« a" ) = a1 T2 Tn
(crloz)”*l (CTQOL)nil . (J"a)nfl

is a Vandermonde matrix, for which it is well known that

det(M) = H(Ul-oz —oj0)

i<j

Moreover, since each o; € homp(E, E) is uniquely determined by its value on
the primitive element «, the elements o;« are distinct and so det(M) # 0.
Hence det(Mjp) is also nonzero and F is nondegenerate.

For the final statement, suppose first that M is nonsingular. If
Z a;0; = 0
i

for a; € F', then applying o; gives
0= Zaiajai = AM(J>
i

where A = (ay, ..., a,) and M) is the jth column of M. Hence, AM = 0 and
the nonsingularity of M implies that A = 0, that is, a; = 0 for all <. Hence, B is
linearly independent and therefore a basis for £ over F'.

For the converse, if B = (a4, ..., q,) is an ordered basis for E over F, then the
matrix of the form (8.2.1) is
Mp = ((ai, o) = (Trg/p(ouicy)) = M(ou, ..., an)M(aq, ..., a)!

and since Mp is nonsingular because F is nondegenerate, the matrix
M(ay, ..., ap) is also nonsingular.]

The Algebraic Independence of Embeddings

Let F and L be fields. Recall that the Dedekind independence theorem says that
any set {oy,...,0,} of distinct embeddings of F into L is linearly independent
over L. To put this another way, let A\; € L and consider the linear polynomial

p(xla'“axn) = )\lxl + - +>\nxn

Then the Dedekind independence theorem says that if p(o7,...,0,) is the zero
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map, then p(z1,...,x,) is the zero polynomial. Under certain circumstances, we
can strengthen this result by removing the requirement that p be linear.

Let I’ < F be finite and separable of degree n and let
homF(E, L) = {O’], ey 0'”}

If p(x1,...,2,) is a polynomial with coefficients in L, then p(oy,...,0,) is a
function from F into L, defined by

p(o1, ... on)a = p(ora, ..., o)
For example, if p(x,y) = 2 + 22y then
plo,7)a = (0a)® + 2(ca)(ra)

(Note that we are not composing embeddings, but rather taking products of
values of the embeddings.)

Definition Let F' < E. A set {01, ...,0,} of distinct F-embeddings of E into a
field L is algebraically independent over L if the only polynomial
p(x1,...,x,) over L for which p(o1,...,0y,) is the zero function is the zero
polynomial. [J

Theorem 8.2.3 Let F' be an infinite field, let F < E be finite and separable of
degree n. Then

homF(E, L) = {O’], ey 0'”}
is algebraically independent over L, and therefore so is any nonempty subset of
homp(E, L) .
Proof. Suppose that p(zy,...,z,) is a polynomial over L for which

p(o1,...,0n)a =0 for all « € E. Let (,...,0,) be a basis for E over F.
Then o = ) a;[3; and so

0= p(O'lOé, ceey O"rza)
= p(zaﬂlﬁi, S Zaionﬁi)
i i
= p(A]\4(l)7 714]\4(71))

where A = (aq,...,a,) € F" and M = M(f,...,3,). However, Theorem
8.2.2 implies that M is invertible and so any vector in F" has the form AM, for
some A € F", which shows that p(z1, ..., ;) is zero on the infinite subfield '
of E. Theorem 1.3.5 then implies that p(z1, ..., ;) is the zero polynomial.]

*8.3 The Normal Basis Theorem

Let F' < E be a finite Galois extension of degree n. Since F' < E is finite and
separable, there exists a A € F such that £ = F()\). As we know, the set
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{1,)\,...,A"" !} is a basis for E over F. This type of basis is called a
polynomial basis. A normal basis for £ over F' is a basis for £ over F
consisting of the roots of an irreducible polynomial over F'.

We wish to show that any finite Galois extension has a normal basis. Theorem
8.2.2 can be reworded for finite Galois extensions as follows.

Theorem 8.3.1 If F' < E is finite and Galois, with Gp(E) = {01,...,0,} then
{A1, ..., A} is a basis for E over F' if and only if det(o;\;) # 0.00

Now, if F' < E is finite and Galois, it is simple and so E = F'(\). Moreover,
the roots of min(\, F) are
{0'1)\, ey OpA | o; € GF(E)}

Theorem 8.3.1 implies that this set is a (normal) basis for £ over F' if and only
if det(o;0;A) # 0. To find such an element A € F, consider the matrix

0101 0102 -+ 010y
0901 0909 -+ 090,
pD— | 7201 0202 - 20n
On01 0OpO2 *** Op0p
For each i, the product o;0; runs through o4, ..., 0, as j runs through 1,...,n,
and so each row of D is a distinct permutation of oy, ..., 0,. The same applies

to the columns of D. Thus, we may write

Oary Oayy "0 Oayy,
D= | %2 Tan 7 Oa,
Oary  Oany "7 Oayy,
where for each ¢, the row indices (a;1,a;2, ..., a;,) form a distinct permutation
of {1,...,n} and for each j, the column indices (ai;,as;,...,an ) form a
distinct permutation of {1,...,n}. Let z1, ..., 2, be independent variables and
consider the matrix
Lay, Lan, 7 Lay,
Layy  Lagy 77 TLayy,
N(‘Tlv"'vxn): :
xan,l :L.”'nfz e :I;an.n
We claim that the polynomial p(z1, ..., x,) = det(N(z1,...,x,)) is nonzero.
Each row of NN is a distinct permutation of the variables z1, ..., x, and similarly
for each column. Thus N(1,0,...,0) is a permutation matrix, that is, each row

and each column of N(1,0,...,0) contains one 1 and the rest 0's. Since
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permutation matrices are nonsingular, we have
p(1,0,...,0) = det(N(1,0,...,0)) #0

Hence, p(z1,...,z,) # 0.

If F' is an infinite field, Theorem 8.2.3 implies that the distinct embeddings
01,...,0, of F into L are algebraically independent over L and so there exists a
A € L for which

det(oio;\) = (det(D))(A) = p(o1,...,00)A #0

Thus, we have proven the following.

Theorem 8.3.2 If F' is an infinite field, then any finite Galois extension ' < E
has a normal basis. (1

This result holds for finite fields as well. The proof will be given in Chapter 9.
Exercises
1. Let F' < E be finite. Prove that forall o, 3 € E,
Trp/r(a+ B) = Trp/r() + Trp r(B)
and
Ng/r(af) = Np/p(a)Ng/rp(B)
2. Let I' < FE be finite. Prove that if & € F', then
Trp/p(e) = [E: Fla
and
Ng/p(a) = ol
3. If FF < E < L are finite and if o € L show that
Trr/r(a) = Trgyp(Trr p())
4. Let F' < E be finite and let 0 € homp(F, L). If & € E prove that
Nop/or(oa) = o(Ng/p(a))

State and prove a similar statement for the trace.
5. Find a normal basis for the splitting field of p(x) = z* — 52% + 6 over Q.
6. If F' < E is finite and Galois, with Gp(F) = {01, ..., 0,}, prove without
appeal to Theorem 8.2.2, but rather using the Dedekind independence
theorem, that if {\;,..., A, } is a basis for £ over F' then det(c;;) # 0.
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Let F' < F be a finite separable extension, with F = F'(«). Let p(x) =
min(«, F') have degree n. Show that

= (*1)n(n71)/2NE/F(p/(O‘))

Let F' < FE be finite and separable with form (8.2.1) and let {«;} be a basis
for E over I'. The dual basis {3} to {«;} is a basis with the property that

Trp/r(cif;) = (i, Bj) = b

where 6, ; = 1 if i = j and 0 otherwise. In matrix terms, {c;} and {£;} are
dual bases if

M1,e,...,a" ! ?
( )

Moy, ...,a)M(By,....3,) =1

A basis for F over F' is called a polynomial basis if it has the form
{1,a,...,a" '} for some « € E. Any simple algebraic extension E =
F(a) has a polynomial basis. Let F' < E be finite and separable, with
polynomial basis {1,c,...,a" '} Let

p(ﬂ?) = min(a7F) = (.ﬁ - Oé)(ao +az+ -+ an—lxnil)

Prove that the dual basis for {1, «,...,a" 1} is

{ ap ay ap—1 }

Ja) v@) )

If V is a vector space, let VV* denote the algebraic dual space of all linear

functionals on V. Note that if dim(V") is finite then dim(V') = dim(V*).

a) Prove the Riesz Representation Theorem for nonsingular metric vector
spaces: Let V' be a finite-dimensional nonsingular metric vector space
over I’ and let f € V* be a linear functional on V. Then there exists a
unique vector x € V' such that fz = (y,x) for all y € V. Hint: Let
¢,V — F be defined by ¢,(y) = (y,x). Define a map 7: V' — V* by
T = ¢ . Show that 7 is an isomorphism.

b) Let F' < E be finite and separable, with form (8.2.1). Prove that for

any linear functional 7: E — F' there exists a unique o € E for which
76 = Trg/p(aB) forall 3 € E.




Chapter 9
Finite Fields I: Basic Properties

In this chapter and the next, we study finite fields, which play an important role
in the applications of field theory, especially to coding theory, cryptology and
combinatorics. For a thorough treatment of finite fields, the reader should
consult the book Introduction to Finite Fields and Their Applications, by Lidl
and Niederreiter, Cambridge University Press, 1986.

9.1 Finite Fields Redux

If F'is a field, then F™* will denote the multiplicative group of all nonzero
elements of F'. Let us recall some facts about finite fields that have already been
established.

Theorem 9.1.1 Let F' be a finite field.

1) F has prime characteristic p. (Theorem 0.4.4)

2) F*is cyclic. (Corollary 1.3.4)

3) Any finite extension of F is simple. (Theorem 2.4.3)

4) F is perfect, and so every algebraic extension of F is separable and the
Frobenius map oo — o is an automorphism of F, for all k> 1.

(Theorem 3.4.3) O

Lemma 9.1.2 I F is a finite field and [E : F] = d then |E| = |F|".

Proof. If {a1,..., a4} is a basis for E over F, then each element of E has a
unique representation of the form ajaq + - -+ + a4y, where a; € F. Since there
are | F| possibilities for each coefficient a;, we deduce that | E| = |F|*.00

Since a finite field F' has prime characteristic p, we have Z,, < F' and so Lemma
9.1.2 gives

Corollary 9.1.3 If F' is a finite field with char(F') = p, then F' has p" elements
Jfor some positive integer n. (1
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From now on, unless otherwise stated, p will represent a prime number, and q
will represent a power of p.

9.2 Finite Fields as Splitting Fields

Let F' be a finite field of size g. Then F* has order ¢ — 1 and so every element
a € F* has exponent g — 1, that is, a?~! = 1. It follows that every element of F’
is a root of the polynomial

folx)=2—2x

Since f;(z) = —1, this polynomial has no multiple roots and so F" is precisely
the set of roots of f,(x) in some splitting field. In fact, since F' is a field, it is a
splitting field for f,(z) over the prime subfield Z,. In symbols,

F = Roots(f,(x)) = Splitz, (f,())

This has profound consequences for the behavior of finite fields.
Existence

We have seen that every finite field of characteristic p has ¢ = p” elements for
some n > 0. Conversely, let ¢ = p". If R is the set of roots of f,(z), then R is
actually a field. For if o, § € R, then a? = o and 3 = (3, whence

(axp)i=al+pfl=axp
and
(@B ) =al(B") " = af™

Thus o & 3,a3~" € R. It follows that R is a field and hence a splitting field for
fy(x). Furthermore, since f,(z) has no multiple roots, R has size ¢. Thus, for
every prime power ¢ = p", there is a field of size q.

Of course, since each finite field of size ¢ is a splitting field for f,(z) over Z,,
we know that all such fields are isomorphic.

It is customary to denote a finite field of size ¢ by F,, or GF(q). (The symbol
G F stands for Galois Field, in honor of Evariste Galois.)

Theorem 9.2.1

1)  Every finite field has size q = p", for some prime p and integer n > 0.

2) For every q = p" there is, up to isomorphism, a unique finite field GF(q)
of size q, which is both the set of roots of f,(x) = x% — x and the splitting
Sfield for f,(x) over Z,. O
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Let us refer to the polynomial ¢ — x as the defining polynomial of the finite
field GF(q). In view of this theorem, we will often refer to the finite field
GF(q).

An immediate consequence of the splitting field characterization of finite fields
is that any extension of finite fields is normal.

Corollary 9.2.2 The extension GF(q) < GF(q") is a finite Galois extension.
Hence, in the Galois correspondence for GF(q) < GF(q"), all intermediate
fields and all subgroups are closed.[]

9.3 The Subfields of a Finite Field

We wish to examine the subfields of a finite field G F'(¢"). Note that if k£ and n
are positive integers and n = mk + r for 0 < r < k, then

xmk+7‘ —1= (xk _ 1)x(m—1)k7+r + (x(m—l)lﬁ—r _ 1)

mk—+r __ m—1)k+r _ 1

Hence, 2" — 1 divides z 1 if and only if z* — 1 divides x(
Repeating this shows that z* — 1 divides ™" — 1 if and only if 2% —1

divides " — 1, that is, if and only if » = 0. In other words,
Elned—1|2" -1 (9.3.1)

over the prime subfield Z,,.

Theorem 9.3.1 (Subfields of GF(q")) The following are equivalent:

D d|n

2) The defining polynomial of GF(q") divides the defining polynomial of
GF(q"), that is,

fq"(x) | fqd(aj)

over the prime subfield Z.,,.
3) GF(¢") < GF(q")
Put another way, the following lattices are isomorphic (under the obvious
maps):
a) L,={d|1<d < n,ddivides n}, under division
by {fu(x)| fyu(x) divides f;(x)}, under division
¢) Subfields of GF(q"), under set inclusion.
Moreover, GF(q") has exactly one subfield of size q¢°, for each d | n.
Proof. Two applications of (9.3.1) show that

dined -1|¢"-1& 2 -1 |27 —1 & fu(@) | for(2)
and so 1) and 2) are equivalent. Moreover,

GF(q") < GF(q") ¢ Roots(fu(z)) C Roots(fy()) & fya(@) | fir(2)



214 Field Theory

and so 2) and 3) are equivalent. For the last statement, if GF(q") has two
distinct subfields of size ¢?, then the polynomial J4¢(x) would have more than
q" roots in GF(¢"). O

9.4 The Multiplicative Structure of a Finite Field
Since GF'(q)* is cyclic, Theorem 0.2.11 implies the following theorem.

Theorem 9.4.1 There are exactly ¢(d) elements of GF(q)* of order d for each
d | ¢ — 1 and this accounts for all of the elements of GF(q)*. O

It is customary to refer to any element of GF'(q) that generates the cyclic group
GF(q)* as a primitive element of GF(q). However, this brings us into conflict
with the term primitive as used earlier to denote any element of a field that
generates the field using both field operations (addition and multiplication).
Accordingly, we adopt the following definition.

Definition Any element of GF(q) that generates the cyclic group GF(q)* is
called a group primitive element of GF(q). In contrast, if F' < E, then any
element oo € E for which E = F(«) is called a field primitive element of E
over F.O

Roots in a Finite Field

If 8 € GF(q), we may wish to know when ( has a kth root in GF'(q), that is,
when the equation

=4 9.4.1)

has a solution in GF'(q). This question has a simple answer in view of the fact
that GF(q)" is cyclic. If v is a group primitive element of GF'(g) then 8 = o
for some 7 and so (9.4.1) has a solution z = o/ if and only if

ak’] —af

for some integer 7, that is, «*/~ = 1, which holds if and only if ¢ — 1 | kj — i,
that is,

i=kj+n(¢g—1)
for some integer n. But this holds if and only if
ged(k,q—1) | i

Thus, equation (9.4.1) has a solution for all 5 € GF(q) if and only if
gcd(k,q — 1) = 1, that is, if and only if k£ and ¢ — 1 are relatively prime.



Finite Fields I: Basic Properties 215

Theorem 9.4.2 ‘
1) Let o be a group primitive element of GF(q). Then o' has a kth root in
GF(q) if and only if

ged(k,q—1) | i

2) Every element of GF(q) has a kth root if and only if k and q — 1 are
relatively prime, in which case every element has a unique kth root.
3) The function

crk:ou—>ozk

is a permutation of GF(q) if and only if k and q — 1 are relatively prime.
In this case, p(x) = x*

" is called a permutation polynomial.[]
9.5 The Galois Group of a Finite Field

Since the extension GF(q) < GF(q¢") is Galois, if G is the Galois group of
GF(q") over GF(q) then

G| =[GF(¢"): GF(q)] =n

The structure of G could not be simpler, as we now show.

Theorem 9.5.1 The Galois group G of GF(q") over GF(q) is cyclic of order
n, generated by the Frobenius automorphism o,: o — af.

Proof. We have seen that the Frobenius map o, is an automorphism of GF'(¢").
If « € GF(q), then 0,0 = a? = « and so o, fixes GF(q) and is therefore in
the Galois group GG. Moreover, the n automorphisms

2 n—1
L, 04,0 p

PR

are distinct elements of G, for if o} = . then ot = o for all « € GF(q") and
so GF(q") < GF(¢"), which implies that & > n. Finally, since |G| = n, we see
that G = (o,). O

9.6 Irreducible Polynomials over Finite Fields

Some of the most remarkable properties of finite fields stem from the fact that
every finite field GF(q) is not only the splitting field for the polynomial
fo(x) =27 —x, but is also the set of roots of f(x). This applies to the
properties of irreducible polynomials over a finite field.

Existence of Irreducible Polynomials

As to existence, if GF'(q) is a finite field and d is a positive integer, then there
is an irreducible polynomial of degree d over GF'(q). This follows from the fact
that the extension G F(q) < GF(q?) is simple and so GF(q%) = GF(q)(«) for
some o € GF(g?%). Then the minimal polynomial p(z) = min(a, GF(q)) is
irreducible of degree d.
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The Splitting Field and Roots of an Irreducible Polynomial

Let p(z) be irreducible over GF'(q) of degree d. Let o be a root of p(z). Since
GF(q) < GF(q)() is normal, it follows that p(x) splits in GF(g)(«) and so
GF(q)(a) = GF(q") is a splitting field for p(z). Thus, p(z)|z? —x.
Moreover,

p(x) |27 — o GF(¢") < GF(¢") & d|n

and so the degree d can be characterized as the smallest positive integer for
which p(z) | 27" — .

Since the Galois group is the cyclic group (o), the roots of p(x) are
a,af,a?, ... ol
Note that d can also be characterized as the smallest positive integer for which
d
ol = a.

The Order of an Irreducible Polynomial

Since none of the roots of p(x) is zero, the roots belong to the multiplicative
group GF(q?)*. Moreover, since each root is obtained by applying an
automorphism to a single root «, all roots of p(x) have the same multiplicative
order. Let us denote this order by v = o(«). Thus, o/ = 1 if and only if v | m.

The common order v of the roots is referred to as the order of the irreducible
polynomial p(z) and is denoted by o(p). Note that this definition makes sense
only for irreducible polynomials.

As an aside, if the order of p(z) is ¢’ — 1, then each root of p(x) is group
primitive, and we say that p(z) is primitive. Primitive polynomials play an
important role in finite field arithmetic, as we will see in the next chapter.

The Relationship Between Degree and Order

The relationship between the degree d and the order v of p(x) can be gleaned as
follows. First, note that

' =asa’ =1 v|¢"-1&¢ =1modv

and since d is the smallest positive integer for which the former holds, it is also
the smallest positive integer for which the latter holds, that is, the order of ¢
modulo v = o(p).

It happens that this relationship between order and degree actually characterizes
irreducibility. That is, if p(z) is a polynomial with root « of order v and if
d = deg(p) is equal to the order of ¢ modulo v, then p(x) must be irreducible
(in which case all roots have order v). For if p(x) is reducible, then « is a root



Finite Fields I: Basic Properties 217

of an irreducible factor of p(z), with degree e < d. Hence, e < d is the order of
¢ modulo v.

Summary

Let us summarize.

Theorem 9.6.1 For every finite field GF(q), and every positive integer d, there
exists an irreducible polynomial p(x) of degree d over GF(q). Let p(x) be
irreducible of order d and let o be a root of p(x) in some extension field. Let
on(q) denote the order of q in Z,,.

1) (Splitting Field) The splitting field of p(x) is GF(q)(a) = GF(q%).

2) p(x)|z? —xifandonly ifd | n.

3) (Roots) The roots of p(x) in a splitting field are

d—1

2
a, a0, ...«

and so d is the smallest positive integer for which Y —
4) (Order of Roots) A/l roots of p(x) have order the same order v, called the

order of p(z).

5) (Degree) The degree d of p(x) is the smallest positive integer n _for which
ol = a, or equivalently, p(z) | 7" — z.

6) (Relationship between degree and order characterizes irreducibility)
Let f(x) be a polynomial over GF(q) with order v and degree d. Then
f () is irreducible if and only if

d=o0,(q) O

Computing the Order of a Polynomial

To compute the order v of an irreducible polynomial p(z) of degree d, we can
use the fact that

vi|gl—1

and

Let

€m

¢' —1=ppy
where the p;'s are distinct primes. Then

v=p{pl

where f; < e; and, for each 1,
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p(.’E) | xpil"'pili"'pf;;’l .

if and only if p(131~~~pzf'~~~pf,’lﬁ pit--pit--pie, that is, if and only if a; > fi.
Thus, f; is the smallest nonnegative integer for which

p(:E) | xp‘]fl...pfh..pmu 1
Example 9.6.1 Consider the irreducible polynomial p(z) = 2°+ 2 +1 over
GF(2). Since ¢ = 2, we have
¢ —1=¢"-1=63=3%.7
Let v = 3%7". Then a is the smallest nonnegative integer for which
p(x) | 2% -1

Division shows that
p@) ¥ T =1, pla) [T 1, pla) |27 1
and so a = 2. For b, division gives
p@) fa"T =1, pla) |27 1

and so b = 1. Thus, Thus v = 3% - 7 = 63, showing that p(z) is primitive over
GF(2).

As another example, the polynomial g(z) = 26+ a* +22+2+1 is also
irreducible over GF(2). If v = 397”, then

g(x) [T =1, fz) 2T -1

and so a = 1. Also,

J@)fa* =1, fla) |27 1
and so b = 1. Thus, ¥ = 3 -7 = 21. Note that both of these polynomials have
degree 6 but they have different orders. This shows that the degree of an
irreducible polynomial does not determine its order. [

*9.7 Normal Bases

Since any extension GF(q) < GF(q%) is simple, there is an o € GF(q?) for
which GF(q?) = GF(q)(a). Moreover, the set {1,,...,a?" !} is a basis for
E over F'. This type of basis is called a polynomial basis.

Since the d roots of an irreducible polynomial p(x) of degree d over GF(q) are
distinct, it is natural to wonder whether there is an irreducible polynomial p(z)
whose roots form a basis for G F(q?) over GF(q). Such a basis is referred to as
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a normal basis. In short, a normal basis is a basis of roots of an irreducible
polynomial.

We saw in Chapter 8 that if F' < E' is a finite Galois extension and F' is an
infinite field, then E has a normal basis over F'. This is also true for finite fields
and stems from the fact that the members of the Galois group are linearly
independent.

Let p(z) be irreducible of degree d over GF(q). Then GF(g?) is the splitting
field of p(x) and the Galois group of p(z) is

2 a-1
G ={1,040,,...,0,

where o, is the Frobenius automorphism. But since these automorphisms are
distinct, the Dedekind independence theorem tells us that they are linearly
independent.

This implies that as a linear operator on G F(q?), the automorphism o, has
minimal polynomial z? — 1, for no polynomial of smaller degree can be
satisfied by o,. But the characteristic polynomial of o, is monic, has degree d
and is divisible by the minimal polynomial (this is the Cayley—Hamilton
theorem), and so it is also equal to 2% — 1.

The following result from linear algebra, which we will not prove here, is just
what we need.

Theorem 9.7.1 Let T:V — V' be a linear operator on a finite-dimensional

vector space V over a field F. Then V' contains a vector v € V for which
{v,Tv, T?v,..., T" v}

is a basis for V if and only if the minimal polynomial and characteristic

polynomial of T are equal. (1

This theorem implies that there is an o € GF(¢%) for which

Roots(p(z)) = {a, 040, aia, s ‘73_10‘}

is a (normal) basis for GF(q?) over GF(q).

Theorem 9.7.2 There exists a normal basis {a, o, ... Lot } for GF(q™) over
GF(q).O

*9.8 The Algebraic Closure of a Finite Field

In this section, we determine the algebraic closure of a finite field GF(q). Since
GF(q) < GF(q") is algebraic for all positive integers n, an algebraic closure of
GF(q) must contain all of the fields GF'(¢").
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Since n! | (n+1)!, it follows that
GF(qn!) < GF(q(rL+1)!)

and so the union
T(q) = JGF(¢")
n=0

is an extension field of G F'(q) that contains GF'(¢"), for all n > 1. Moreover, if
E is a field for which GF(¢") < E for all n, then I'(¢) < E, that is, I'(¢) is the
smallest field containing each GF'(q").

Theorem 9.8.1 The field I'(q) is the algebraic closure of GF'(q).

Proof. Every element of T'(¢) lies in some G F'(¢"'), whence it is algebraic over

GF(q). Thus T'(q) is algebraic over GF(q). Now let p(x) be an irreducible

polynomial over I'(q) of degree d. Then the coefficients of p(z) lie in some
!

GF(q") and so p(x) is irreducible as a polynomial over GF(¢"™). Hence, the
splitting field for p(x) is GF(¢""%) < I'(q) and so p(z) splits over I'(¢).00

Steinit; Numbers

We wish now to describe the subfields of the algebraic closure I'(g). Recall that
a field K is a subfield of GF(¢") if and only if K = GF(q?) where d | n. The
set N of positive integers is a complete lattice where m A n = ged(m, n) and
m V n = lem(m,n). If we denote by F, the set of all finite fields (or more
properly the set of all isomorphism classes of finite fields) that contain G F(q),
then 7 is also a complete lattice where EAF'=ENFand EV F = EF.

Theorem 9.8.2 The map ¢:N* — F, defined by ¢(n) = GF(q") is an order-
preserving bijection. Hence, it is an isomorphism of lattices, that is,

1) n|mifandonly if GF(q") < GF(¢™)

2 GF(¢")NGF(g") = GF(g"™)

3) GF(¢")GF(¢q™) = GF(¢"'™)

Proof. Left to the reader. [

It is clear that the lattice of intermediate fields between GF'(q) and GF(¢") is
isomorphic to the sublattice of N* consisting of all positive integers dividing n.
In order to describe the lattice of intermediate fields between G F'(q) and I'(q),
we make the following definition.

Definition 4 Steinitz number is an expression of the form

(o)
s=]I»
=1
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where p; is the ith prime and e; € {0,1,2,... } U{oco}. We denote the set of all
Steinitz numbers by S. Two Steinitz numbers are equal if and only if the
exponents of corresponding prime numbers p; are equal. [J

We will denote arbitrary Steinitz numbers using uppercase letters and reserve
lowercase letters strictly for ordinary positive integers. We will take certain
obvious liberties when writing Steinitz numbers, such as omitting factors with
exponent equal to 0. Thus, any positive integer is a Steinitz number. We next
define the arithmetic of Steinitz numbers.

Definition Let S = [[p{" and T = le be Steinitz numbers.
1) The product and quotient of S and T are defined by

o0 o0

ST = prﬁrf" and S|T = pr‘_f"

i=1 i=1
where oo — oo = 0.

2) Wesay that S divides T and write S | T if e; < f; for all i. OO

It is clear that S | T" if and only if n | S = n | T for all positive natural numbers
n. Also, S =T ifand only if S | Tand T | S.

Theorem 9.8.3 Under the relation of “divides” given in the previous definition,
the set S is a complete distributive lattice, with meet and join given by

SAT = Hp;nin(&J:) and SV T — Hp;nax(%fi)
i=1 i=1
Moreover, the set of positive integers is a sublattice of S. O

Subfields of the Algebraic Closure

We can now describe the subfields of I'(g). Let S(I'(¢)) denote the lattice of all
subfields of T'(¢) that contain GF(q).

Definition [f' S is a Steinitz number, let

GF(¢®) = JGF(¢")
dIs

where, as indicated by the lowercase notation, d is a positive integer.[1

If a, 8 € GF(¢°) then a € GF(q") for some k | S and 8 € GF(q") for some
n| 8. Thus a, B € GF(q™) where m = lem(k,n). It follows that GF(q°) is a
subfield of I'(¢q) containing G F'(q).
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Theorem 9.8.4 The map ¢:S — S(I'(q)) defined by ¢(S) = GF(q°) is an
order-preserving bijection. Hence, it is an isomorphism of lattices, that is,

1) S| T ifandonly if GF(¢°) < GF(q"),

2) GF(¢°)NGF(¢") = GF(¢°""),

3) GF(¢*)GF(¢") = GF(¢®7).

In addition, GF (q°) is finite if and only if S is a positive integer.

Proof. We begin by showing that n | S if and only if GF(q") < GF(g®). One
direction follows immediately from the definition: if n|S then
GF(q") < GF(¢®). Suppose that GF(q") < GF(¢”). Let a be a field
primitive element of GF(g") over GF(q). Then a € GF(¢°) and so a €
GF(q") for some d|S. Hence GF(q") = GF(q)(a) < GF(q?), which
implies that n | d, whence n | S.

Since T' | Sifand only if n | T'= n | S, it follows that 7" | S if and only if
GF(¢") < GF(¢") = GF(¢") < GF(¢°)
that is, if and only if GF(¢") < GF(q”).

To see that ¢ is injective, if GF(¢”) = GF(q"), then each field is contained in
the other and so n | S if and only if n | T', which implies that S = T'.

To see that ¢ is surjective, let GF(¢) < F < I'(g). We must find an S for
which GF(¢®) = F. For each prime p;, let e; be the largest power of p; for
which

GF(¢"') < F (9.8.1)

where e; = oo if (9.8.1) holds for all positive integers e;. Let

S = pr i
i=1
We claim that

\/GF(¢"')=\/GF(¢") = GF(¢") (9.8.2)
n|S

The second equality is by definition and the first field is clearly contained in the
second. Also, if n | S, then

where f; < e; and so
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It follows that (9.8.2) holds. This implies that
GF(¢®) = \/GF(¢") < F

For the reverse inclusion, if &« € F' then & € GF(¢") < F for some n. If

T
n= le»’
i=1
then

GF(¢"') < GF(¢") < F

and so f; <e; for all 4, by the maximality of e;. Hence n|S and so
a € GF(q") < GF(¢®). This shows that ' < GF(q%). Hence F = GF(q°)
and so ¢ is surjective. We leave the rest of the proof to the reader. [

Since the largest Steinitz number is

this corresponds to the largest subfield of I'(q), that is,
GF(¢") =T(q)

Exercises

1. Determine the number of subfields of GF'(1024) and GF(729).

2. Group primitive elements of GF(p), p prime, can often be found by
experimentation and the fact that if o(a) =m and o(8) =n and
(m,n) =1 then o(«, §) = mn. For instance, if p = 31, then by checking
some small primes, we see that o(—2) =10 and o(5) =3, whence
0(—10) = 30 and so —10 = 21 is group primitive for GF'(31).

a) For p =41, show that 0(2) =20 and o(3) = 8. Find an element of
order 5 to pair with 3.

b) If 8 is group primitive for GF(p), p an odd prime, then what is
51729

c) Prove Wilson's theorem. If p is an odd prime then

(p—1)!'=—1modp

Hint: The left side is the product of all nonzero elements in Z,.
Conisder this product from the point of view of a group primitive
element .
3. Show that except for the case of GF(2), the sum of all the elements in a
finite field is equal to 0.
4. Find all group primitive elements of G F(7).
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Show that the polynomial z* + 2% + 2 + x + 1 is irreducible over GF(2).
Is it primitive?

Let F' be an arbitrary field. Prove that if /™ is cyclic then F' must be a finite
field.

Find the order of the following irreducible polynomials.

7.
8.
9.
10.
11.
12.
13.
14.

15.

16.

17.

18.

19.
20.

21.
22.

23.
24.
25.
26.

o'+ 23+ 2%+ 2+ 1over GF(2).
2t + 2+ 1 over GF(2).

28 + 2t + 23 + 22 + 1 over GF(2).
2+ 25 + 2t + 2% + 1 over GF(2).
28+ 27 +2° +x + 1 over GF(2).
x* 4+ + 2 over GF(3).

o'+ 23 + 22 + 1 over GF(3).

z° —z + 1 over GF(3).

Show that every element in GF(q") has a unique g'th root, for i =
1,....,n—1.

If 2 f q, show that exactly one-half of the nonzero elements of GF(q) have
square roots.

Show that if « € GF(q) and n is a positive integer, then 27 — z + «
divides 27" — z + na.

Find a normal basis for GF(8) over GF(2). Hint: Let a be a root of the
irreducible polynomial p(z) = x3 + 22 + 1.

Show that I'(q) = U,—,GF(q").

Let a, be any strictly increasing infinite sequence of positive integers.
Prove that I'(¢) = ,~ G F(¢™).

Show that I'(¢™) = T'(¢™).

Let F' be a field F satisfying GF(q) < F' < I'(g). Show that all the proper
subfields of F are finite if and only if F is finite or F' = GF(q°) where
S = r* for some prime 7.

Show that I'(¢) has no maximal subfields.

Show that [I'(¢) : F] is not finite for any proper subfield F' < I'(q).

Show that I'(¢) has an uncountable number of nonisomorphic subfields.

Let S | T. Show that [GF(q") : GF(q®)] is finite if and only if T'/S is
finite, in which case the two numbers are equal.



Chapter 10
Finite Fields II: Additional Properties

10.1 Finite Field Arithmetic

There are various ways in which to represent the elements of a finite field. Since
every finite field F' is simple, it has the form F' = GF(p)(«) for some o € F'
and so the elements of F' are polynomials in « of degree less than deg(«).
Another way to represent the elements of a finite field is to use the fact that
GF(q)* is cyclic, and so its elements are all powers of a group primitive
element.

It is clear that addition is more easily performed when field elements are written
as polynomials and multiplication is more easily performed when all elements
are written as a power of a single group primitive element. Fortunately, the two
methods can be combined to provide an effective means for doing finite field
arithmetic.

Example 10.1.1 Consider the finite field GF'(16) as an extension of GF'(2).
The polynomial
plx) =z +z+1

is irreducible over GF'(2). To see this, note that if p(z) is reducible, it must
have either a linear or a quadratic factor. But since p(0) # 0 and p(1) # 0, it
has no linear factors. To see that p(x) has no quadratic factors, note that there
are precisely four quadratic polynomials over G F'(2), namely,

xQ,:CQ—l—l,xQ—i—l,xQ—i—m—i—l

and it is easy to check that no product of any two of these polynomials equals
p(x).

Thus, letting o be a root of p(x), we can represent the elements of GF(16) as
the 16 binary polynomials of degree 3 or less in «, as follows:
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Constant: 0,1

Linear: a,a+1

Quadratic: a?, a?+ 1, +a,a’+a+1

Cubic: b ot + 1,08+ a0+, +a+1,

aBd+al+1,t+a’+ao, b+’ +a+1

Addition of elements of GF(16) is quite simple, since it is just addition of
polynomials, but multiplication requires reduction modulo p(«), using the
relation o* = o + 1. On the other hand, observe that

als = (a7)?
=(a-«
= (a-(a+l))?
=a?(at1)?
= (@®+a?+a+1)
—dl it P rattad
=@+a?)+ (@ +a)+(a+1)+a?
=@+ + (P +a)+(a+1)+a?
=1

4)3

and so o(a) | 15. Since o # 1 and o® # 1, we conclude that o is group
primitive and

GF(16) = {0,1,q,...,a"}

With this representation, multiplication is all but trivial, but addition is
cumbersome.

We can link the two representations of G F(16) by computing a table showing
how each element o can be represented as a polynomial in o of degree at most
3. Using the fact that o' = 1 + a, we have

at=a+1

5_ 4 _ _ 2

o’ =a-a =ala+1l)=a" +«
b =a-a’=a*+0o°

al=a-f=d'+P=+a+1
and so on. The complete list, given in Table 10.1.1, is known as a field table for

GF(16). As is customary, we write only the exponent k for o, and asasaag
for the polynomial aza® + asa® + aja + ag.
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Table 10.1.1

as3aoa1 Qg
0001
0010
0100
1000
0011
0110
1100
1011
0101
1010
0111
1110
1111
1101
1001

| S| o] oo | o wt| x| wo| 0| | of

—_
[\V]

—
w

—
W~

Computations using this table are quite straightforward; for example,

(a® +a* +1)(a® + @) = (0101 + 0011 + 0001)(1000 4 0010)
= (0111)(1010)
=o'’ =aP=0a'=a+1

Thus, the key to doing arithmetic in a finite field is having a group primitive
element, along with its minimal (primitive) polynomial. In general, the task of
finding primitive polynomials is not easy. There are various methods that
achieve some measure of success in certain cases, and we mention one such
method at the end of Section 11.2. Fortunately, extensive tables of primitive
polynomials and field tables have been constructed.

Let us use the primitive polynomial p(z) and the field table for GF(16) to
compute the minimal polynomial over GF'(2) for each element of GF(16). We
begin by computing sets of conjugates, using Theorem 9.6.1 and the fact that
al® = q,

Conjugates of o a,a?,at, b

Conjugates of a®:  a?,a8,a!? a? = o
Conjugates of o°: o, a!’

Conjugates of a”: o', a! a® = a!? o’ = ol

Letting m () be the minimal polynomial for o, we have, for example

ms(x) = mip(z) = (z — ) (z — %) = 2% — (’+a'")z + o'
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The field table for GF'(16) gives
o’ +a' = (0110) + (0111) = (0001) = o’ = 1
and since o!® = 1, we have
ms(z) = myg(z) =2° + o+ 1

The other minimal polynomials are computed similarly. The complete list is

Being able to factor polynomials of the form =™ — 1 is important for a variety of
applications of finite field theory, especially to coding theory. Since the roots of
x5 — 1 over GF(2) are precisely the elements of GF(16)*, we have

2 — 1 = mo(x)my (x)mz(x)ms(x)mz ()

Of course, in order to obtain this factorization, we worked in the splitting field
GF(16). Let us turn to a method for factoring polynomials over Z, = GF(p)
that does not require working in any extension of Z,,.

Factoring over Z,: Berlekamp's Algorithm

Berlekamp's algorithm is an algorithm for factoring polynomials over Z,.
Suppose that f(z) is a polynomial over Z, of degree d. Let us first show that we
can reduce the problem of factoring f(x) to one of factoring a polynomial with
no repeated factors.

We know that f(z) has a repeated factor if and only if f(x) and f'(z) have a
common factor. Write

f(z)
ged(f (x), f'())

Let d(z) = ged(f(z), f'(w)). If d(x) = 1 then f(x) has no repeated factors. If
d(z) = f(x) then f'(x) = 0 and so

a
f(z) = h(z") = (h(x))”

and we can factor h(x) (or repeat the process). Otherwise, d(x) is a nonconstant
polynomial with degree less than that of f(z) and f(z)/d(z) has no repeated
factors. Thus, we can consider the polynomials d(x) and f(x)/d(x) separately.
For the former polynomial, we can repeat the above argument until the factoring
problem reduces to one of factoring polynomials with no repeated factors.

f(@) = ged(f(2), f'(2)) -
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So let us suppose that f(z) is the product of distinct irreducible factors.
(Actually, the factoring algorithm that we are about to describe does not require
this restriction on f(z), but the formula for the number of irreducible factors
that we will present does.)

Suppose that we can find a nonconstant polynomial g(x) of degree less than d
for which

f(@) [ 9(x)" = g(x)
Since Z, = {0,1,...,p — 1} is the set of roots of ¥ — x, we have

2 —zrx=z(x—-1)(x—p+1)

and so

g9(x)’ = g(x) = g(x)(9(z) = 1)-(9(x) —p+1)
Also, if in general, a | by-- by, where by, ..., by are pairwise relatively prime,
then

a = ged(a, by)---ged(a, by)

Hence, since the polynomials g(x) — k are pairwise relatively prime for
k=0,...,p— 1, we have

Note that the degree of each of these factors is at most deg(g) < d and so this
factorization of f(x) is nontrivial. Note also that the Euclidean algorithm can be
used to find the ged of the pairs of polynomials in the previous factorization and
so if we can find such a polynomial g(x), then we will have an algorithm for
finding a nontrivial factorization of f(x).

A polynomial g(z) for which f(z)|g(x)? — g(x) is called an f-reducing
polynomial. We are interested in nonconstant f-reducing polynomials with
degree less than the degree of f(z), since these polynomials provide
factorizations of f(z).

To find such an f-reducing polynomial g(z), write

g(x)=go+qx+---+ ga12?™!

Then since we are working over a field of characteristic p, and since g} = gj,
modulo p, it follows that g(z)? = g(z?) and so

9(@)" = g(x) = g(a”) — g(x) = Y _ gi(2" — ')
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Now suppose that z” = a;(x)f(z) + ri(x), where deg(r;) <d. Then
g(x)? — g(x) is divisible by f(z) if and only if

d—1
@)Y girit) - #')
i=0

but since the right hand sum has degree less that that of f(z), this is equivalent
to

d—1

Zgi,(ﬁ(iﬁ) - L’Ei) =0

i=0

and this is equivalent to a system of linear equations. To express this system in
matrix form, suppose that ri(x) =10+ riiz+- -+ ri,d_lxd’l. Then the
previous equation is equivalent to the system

d-1
> gilrij—8i,) =0
=0
for j=0,...,d — 1. In matrix terms, if M = (r;;), Is = (6, ;) and
G=1lg - ga1]
is the row matrix of coefficients of g(z), then this system is
GM—-1;)=0
Example 10.1.1 Consider the polynomial
f@)y=14+z+2>+23 +2" +2°+ 2

over Zs. First, we find the polynomials r;(x) by dividing 2% by f(x), to get

ro(xz) =1
ri(z) = 2?
ro(z) = !
ry(z) =14z +a®+23+at +2°
ry(z) ==
rs(x) = 23
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Hence,
[0 0 0 0 0 0]
01 1.0 00
0 01 010
M—Ts=11 1 1 01 1
01 00 10
|00 01 0 1]
and our system is
g3=0

g1+93+92=0
g1+g2+g3=0

g5 =10
g2+g3+91=0
93 +95=0

whose solution is
go arbitrary; g1 = g2 = 945 93 = g5 = 0
The only nonconstant solution is
9(z) = go +x +a’ +a*
where gy = 0, 1. It follows that
9(@)* — g(a) = 2" + o = (2” + ) f (x)
and so, using Euclid's algorithm for the gcd, we get the factorization

f(@) = ged(f (), g(x))ged(f (2), g(x) — 1)
= ged(f(2),x + 2> + ) ged(f(z),1 + = + 2 + z*)
=(1+x+231+ 2>+ 2%

The Number of Irreducible Factors

231

Knowledge of the number of irreducible factors of f(z) would help us
determine when the factorization algorithm has produced a complete

factorization of f(x) into irreducible factors. Suppose that
f(x) = pi(x)---pr(z)

where the p;(z) are distinct monic, irreducible polynomials over Z,,.

Let F be the set of f-reducing polynomials with degree less than that of f(x),
including the constant polynomials. Note that F is isomorphic to the null space

null(M — I) of the matrix M — I of the Berlekamp algorithm.
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If g € F, then
pi(x)-pe(x) | g(x)(g(x) —1)---(9(z) —p+ 1)

and since the polynomials on the right are relatively prime, each p;(x) divides
precisely one of these polynomials, say p;(z) | g(x) — u;. This is a system of
congruences

g(x).z uy mod py ()

g(x).z uy mod pg(z)

and since the p;(z)'s are relatively prime (this is where we use the fact that the
pi(x) are distinct), the Chinese remainder theorem tells us that there is a unique
solution g(x) modulo f(x), that is, a unique solution of degree less than that of
f(z). In other words, there is at most one f-reducing polynomial g(x) for each
k-tuple (uq, ..., uz). Butif g(z) is a solution to this system, then

pi(z) | g(z) — u;

foralli =1,...,kandso f(x) | [T, (g(x) — ), whence g € F. It follows that
there is precisely one f-reducing polynomial for each k-tuple (uq,...,u;) in
Z}. Hence,

P = |Ff| = |F| = PlAmOuI=1)] _ d=rk(M~I)

that is, the number of distinct irreducible factors of f(x) is
k=d—1k(M—-1)

Example 10.1.2 The matrix M — I from Example 10.1.1 has rank 4, which can
be determined by applying elementary row operations to reduce the matrix to
echelon form. Hence, the nullity is 6 — 4 = 2 and so the factorization in that
example is complete.[]

*10.2 The Number of Irreducible Polynomials

Of course, if F' is a finite field, then there is only a finite number of polynomials
of a given degree d over F. It is possible to obtain an explicit formula for the
number of irreducible polynomials of degree d over GF(q) by using Mdbius
inversion. (See the appendix for a discussion of Mébius inversion.) First, we
need the following result.

Theorem 10.2.1 Let GF'(q) be a finite field, and let n be a positive integer.
Then the product of all monic irreducible polynomials over GF(gq), whose
degree divides n is

fqn(m) = xq“ — X

Proof. According to Theorem 9.6.1, an irreducible polynomial p(z) divides
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fg(x) if and only if deg(p(x)) | n. Hence, fq(z) is a product of irreducible
polynomials whose degrees divide n and every irreducible polynomial whose
degree divides n divides fg(z). Since no two such irreducible polynomials
have any roots in common and since fg(x) has no multiple roots, the result
follows.d

Let us denote the number of monic irreducible polynomials of degree d over
GF(q) by N,(d). By counting degrees, Theorem 10.2.1 gives the following.

Corollary 10.2.2 For all positive integers d and n, we have

¢" = dN,(d) O

dln

Now we can apply Mébius inversion to get an explicit formula for N,(d).
Classical Mébius inversion is

gn) = 3 F(d) = ) = > g@n(5) (10.2.1)

dln dln

where the Mébius function p is defined by

1 ifm=1
p(m) = { (—=1)¥  ifm = pypy---py for distinct primes p;
0 otherwise

Corollary 10.2.3 The number N,(n) of monic irreducible polynomials of
degree n over GF(q) is

1 n 1 n/a
Ny(n) = => p(5)a" =~ pld)g"
dln dln
Proof. Letting g(n) = ¢" and f(d) = dN,(d) in (10.2.1) gives the result.(]

Example 10.2.1 The number of monic irreducible polynomials of degree 12
over GF(q) is

N,(12) = % (u(l)q12 + 1(2)¢® + pu(3)g" + p(4)g* + p(6)g® + u(12)q)

_1 12 6 4 2
—12(61 ¢ —q+q)

The number of monic irreducible polynomials of degree 4 over GF'(2) is

Nod) = 2 (n(1)2' + u(2)2° + u(4)2') =3

as we would expect from the results of Example 10.1.1.00



234 Field Theory

Moébius inversion can also be used to find the product of all monic irreducible
polynomials of degree d over GF(q). Let us denote this product by I(q, d; x).
Then Theorem 10.2.1 is equivalent to

20—z = HI(q,d;m)

dln

Applying the multiplicative version of Mébius inversion gives the following.

Corollary 10.2.4 The product 1(q,n; x) of all monic irreducible polynomials of
degree n over GF(q) is

I(g,n;z) = H(qu—x> (

dln dln
Example 10.2.2 For ¢ = 2 and n = 4, we get

1(2,4;z) = (3316 - 1:)“(1>(:E4 - m)“(2>(:p2 - x)“(4> O
16 15
_ _1 o
::174 x:xg :x12+x9+x6+$5+1
Tt —x s —1

*10.3 Polynomial Functions

Finite fields have the special property that any function from a finite field F' to
itself can be represented by a polynomial. As a matter of fact, this property
actually characterizes finite fields from among all commutative rings (finite and
infinite)!

Since GF(q) has size g, there are precisely ¢? functions from GF(q) to itself.
Among these functions are the polynomial functions oo — p(a)) where p(x) €
GF(q)[x]. We will denote this polynomial function by p(z) as well. If p(x) and
q(z) are polynomial functions on GF(q) then p(x) = g(z) as functions if and
only if p(a) = ¢(«) for all @ € GF(q), which holds if and only if

2!~z | p(x) - q(z)

Thus, two polynomials represent the same function if and only if they are
congruent modulo ¢ — . Since every polynomial is congruent modulo z¢ — x
to precisely one polynomial of degree less than ¢ (namely, its remainder after
dividing by z¢ — z), and since there are ¢? polynomials of degree less than g,
we have the following theorem. (Proof of the last statement in part 2 of the
theorem is left to the reader.)

Theorem 10.3.1
1) Two polynomials over GF(q) represent the same polynomial function on
GF(q) if and only if they are congruent modulo x? — .
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2) Every function f:GF(q) — GF(q) is a polynomial function, for a unique
polynomial of degree less than q. In fact, the unique polynomial of degree
less than q that represents [ is

pr@)= > fl@)d-(z—a)) O
)

aeGF(q

(The representation of f given in part 2) above is the Lagrange interpolation
formula as applied to finite fields.) Part 2) has a very interesting converse as
well.

Theorem 10.3.2 If R is a commutative ring and if every function f: R — R is a
polynomial function, that is, f(x) = p(x) for some p(x) € R[z], then R is a
finite field.

Proof. First, we show that R is finite. Suppose that |R| = \. The number of
functions from R to itself is A* and the number of polynomials over R is the
same as the number of finite sequences with elements from R, which is RyA.
Since distinct functions are represented by distinct polynomials, we must have
A < Ry, which happens only when ) is finite. Thus, R is a finite set.

Now let 7, a € R with r # 0. Define a function f, ,: R — R by
s
By hypothesis, there exists a polynomial ag 4+ a1z + - - + a,z" for which
a+arr+---+ar" =a
and
ay+a1x+ -+ ax" =0, forx £ r
Setting = = 0 gives ap = 0 and so
r(ap +agr + -+ a,7”" ) =a

Thus, we conclude that for any r # 0 and any a € R, there is a u € R for which
ru = a. In other words, the map ¢,: R — R defined by ¢,s = rs is surjective.
Since R is a finite set, ¢, must also be injective. Hence, s = 0, r # 0 implies
that s = 0 and so R has no zero divisors. In addition, since ¢, is surjective,
there exists a u € R for which ¢, u = r, that is, ru = r. If a € R then aru = ar
and since R is commutative and has no zero divisors, we may cancel r to get
au = a. Thus v € R is the multiplicative identity of R. Hence R is a finite
integral domain, that is, a finite field. (I
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*10.4 Linearized Polynomials

We now turn to a discussion of linear operators on GF'(¢") over GF(q). We
will see that all such linear operators can be expressed as polynomial functions
of a very special type.

Definition A polynomial of the form

m
L(z) = Zocix(f
=0

with coefficients «; € GF(q") is called a linearized polynomial, or a g-
polynomial, over GF(¢"). O

The term linearized polynomial comes from the following theorem, whose proof
is left to the reader.

Theorem 10.4.1 Let L(x) be a linearized polynomial over GF(q"). If
a, B € GF(q") and a,b € GF(q), then

L(aa + bB8) = aL(a) + bL(PB)

Thus, the polynomial function L(x): GF(q") — GF(q") is a linear operator on
GF(q") over GF(q). O

The roots of a g-polynomial in a splitting field have some rather special
properties, which we give in the next two theorems.

Theorem 10.4.2 Let L(x) be a nonzero g-polynomial over GF(q"), with
splitting field GF(q®). Then each root of L(x) in GF(q®) has the same
multiplicity, which must be either 1 or else a power of q. Furthermore, the roots
of L(x) form a vector subspace of GF(q°) over GF(q).

Proof. Since L'(z) = «y, if oy # 0 then all roots of L(z) are simple. On the
other hand, suppose that ag = a; = --- = aj_1 = 0 but o # 0. Then since
a; € GF(q"), we have

and so

.
= oL e )
L(z) = g a;xd = g al 27 = g af z?
ik i=k ik

which is the ¢“th power of a linearized polynomial with nonzero constant term,
and therefore has only simple roots. Hence, each root of L(z) has multiplicity
q*. We leave proof of the fact that the roots form a vector subspace of G'F(q*)
to the reader. O
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The following theorem, whose proof we omit, is a sort of converse to Theorem
10.4.1. (For a proof of this theorem, and more on g-polynomials, see the book
by Lidl and Niederreiter (1986).)

Theorem 10.4.3 Let U be a vector subspace of GF(q") over GF(q). Then for
any nonnegative integer k, the polynomial

L(z) =[] (@ - )"

aclU

is a q-polynomial over GF (¢™). O

If L(z) is a g-polynomial, then as a function, we have

m

m
L:aw— L(a) = g ot = E Qoo
=0 =0

where o, is the Frobenius automorphism. Thus, as an operator

m

i
L= g Q;o,
i=0

Since o =+ we may reduce the expression for L to a polynomial in o, of
degree at most n — 1. In fact, adding O coefficients if necessary, we can say that
every g-polynomial function on G F'(¢") has the standard form

n—1

L= Zaiaf]
=0
for o € GF(q").

There are q"2 such g-polynomial functions on G F'(¢"™), and this happens also to
be the number of linear operators on GF'(¢") over GF(q). Moreover, since the
maps aé are linearly independent over GF(q"), we deduce that each ¢-
polynomial in standard form represents a unique linear operator. Thus, we have

characterized the linear operators on GF'(¢") over GF(q).

Theorem 10.4.4 Every linear operator on GF(q") over GF(q) can be
represented by a unique q-polynomial in standard form

n—1
L(z) = Z az?
=0

Sor some o;; € GF(q"). O
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Exercises

1.
2.

hd

10.

Construct two distinct finite field tables for GF(8) over GF'(2).
Factor the polynomial

fz) =242+ 2"+ 2541

over Zs.
Factor

flz)=2 42"+ 22+ 224+ 1

over Zs.

Factor ° 4+ 22 + 1 over Zo.
Calculate N, (20).

Show that

and

Hence, Ny(n) > 1(g" — q'*"/?). Finally, show that N,(n) ~ ¢"/n.
Show that the unique polynomial of degree less than ¢ that represents the
function f: GF(q) — GF(q) is

pr(z) =Y fla)(l—(z—a))

aeGF(q)

Prove that a linearized polynomial over GF'(¢™) is a linear operator on
GF(q") over GF(q).

Prove that the roots of a g-polynomial over G F'(¢") form a vector subspace
of the splitting field GF'(¢°) over GF(q).

Prove that the greatest common divisor of two g-polynomials over GF'(¢")
is a g-polynomial, but the least common multiple need not be a g-
polynomial.



Chapter 11
The Roots of Unity

Polynomials of the form z" — u, where 0 # u € F', are known as binomials.
Even though binomials have a simple form, their study is quite involved, as is
evidenced by the fact that the Galois group of a binomial is often nonabelian. As
we will see, an understanding of the binomial 2™ — 1 is key to an understanding
of all binomials.

We will have use for the following definition.

Definition The exponent characteristic expchar(F') of a field F is defined to
be 1 if char(F') = 0 and char(F’) otherwise.]

11.1 Roots of Unity

The roots of the binomial ™ — 1 over a field F' are referred to as the nth roots
of unity over F'. Throughout this section, we will let F' be a field with p =
expchar(F'), S a splitting field for 2" — 1 over F' and U, the set of nth roots of
unity over F', located in S. Note that if n = kp then

" —1=g"—1=(a" 1)

and so the nth roots of unity are the same as the kth roots of unity, taken with a
higher multiplicity. Thus, from now on, we assume that (n,p) = 1.

Theorem 11.1.1 The set U,, of nth roots of unity over F is a cyclic group of
order n under multiplication. Moreover, if (m,n) = 1 then

[]mn = Um Un

where the product U, U,, of groups is direct.

Proof. Clearly o, 3 € U, implies o3,a~! € U,,. Hence, U, is a finite subgroup
of the multiplicative group S* of nonzero elements of the field S. By Corollary
1.3.4, U, is cyclic. Since (n, p) = 1, we have
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D(z" —1) =na" ' #0

showing that z" — 1 is separable, and so |U,,| = n.

For the second part, if & € U,, N U, then ™ =1 = " and since (m,n) =1
there exist a, b € Z such that am + bn = 1, whence

a= aa,rrz,+bn — aa,mabn -1

which shows that U,,, N U,, = {1}. Hence, the mn products in the group U,, U,
are distinct and since U,,,U,, < U, it follows that U,,,,, = U,,,U,,. O

Definition An element w € U,, of order n, that is, a generator of U,, is called a
primitive nth root of unity over F.. We shall denote the set of all primitive nth
roots of unity over F' by (), and reserve the notation w, for a primitive nth root

of unity. O

Note that a primitive nth root of unity w, being a group primitive element, is
also a field primitive element of S, that is

F(w) = F(U,) =S

However, in general, S has field primitive elements that are not primitive nth
roots of unity.

Theorem 11.1.2
1) Ifw e, then

Q= {f 1<k <n, (nk)=1}

and Q| = ¢(n). Hence, there is a bijection from ), onto the abelian (but
not necessarily cyclic) group 7, of all elements of Z,, that are relatively
prime to n, that is, to the group of units of Z,,.
2) Ifd| nthen Q= QY
3) If (n,m) = 1then Qpy = 0,8,
Proof. Part 1) follows from the fact that if o(w) = n then o(w*) = n if and only
if (n, k) = 1. For part 2), ifw € Q,, then
n/dy __ n _
o(W"?) = (o /d) =d

and so w"? € Q. Thus Q/? C Q,. For the reverse inclusion, since w™? has
order d, the set

A={(WY| (k,d)=1,1<k < d}

consists of ¢(d) distinct roots of unity of order d and so A = ;. But each

element of A belongs to QY7 since
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o(w™/1) = n = n = n - _y
(n,nk/d) (nd/d,nk/d) (n/d)(d,k) n/d

andsoQy = A C Qﬁf/d.

For part 3), since
O(Wm,wn) = lcm(o(wn)7 O(wm)) =nm

we have w;,w, € O, and so 2,82, C Q,,,. Now, since the products in U,,U,

are distinct, so are the products in 2,,,€2,,. Hence

0S| = d(m)9(n) = ¢(mn) = ||
which shows that 2,,Q,, = Q,,,.00
11.2 Cyclotomic Extensions

The term cyclotomy is the process of dividing a circle into equal parts, which is
precisely the effect obtained by plotting the nth roots of unity over Q in the
complex plane.

Definition Let F' be a field. A splitting field S of ©™ — 1 over F is called a
cyclotomic extension of order n of F.
Since

S=FU,) =F(Q,) =F(w)

for w € Q,, is the splitting field of a separable polynomial, it follows that F' < S
is a finite Galois extension and

[S : F] = deg(min(w, F)) = |Gr(5)|

Now, any o € Gr(S) is uniquely determined by its value on a fixed w € €,
and since o preserves order, cw must be one of the ¢(n) primitive roots of unity
in S, that is,

where k(o) € Z7. Since
SO = (07)w = (WD) = (ow)E) = R
it follows that
k(or) = k(o)k(T) modn

and so the map k: Gp(S) — Z is a homomorphism. Since k(o) = 1 implies
that 0 = ¢, the map & is a monomorphism and thus G (S) is isomorphic to a
subgroup of Z; .
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Theorem 11.2.1 I[f F < S is a cyclotomic extension of order n, then Gp(S) is

isomorphic to a subgroup of L, the group of units of Z,. Hence, Gp(S) is
abelian and [S : F] | ¢(n). O

Since the structure of Z; is clearly important, we record the following theorem,
whose proof is left as an exercise.

Theorem 11.2.2 Let n = [[p{’, where the p;'s are distinct primes. Then

Moreover, 7}, is cyclic if and only if n = p° 2p° or 4, where p is an odd
prime.]

Corollary 11.2.3 4 cyclotomic extension F' < S is abelian and if n = p°, 2p° or
4, where p is an odd prime, then F' < S is cyclic. O

Cyclotomic Polynomials

To investigate the properties of cyclotomic extensions further, we factor the
polynomial 2™ — 1. Since each root of this polynomial is a primitive dth root of
unity for some d | n, we define the dth cyclotomic polynomial Q () to be the
polynomial whose roots are precisely the primitive dth roots of unity. Thus, if
wyq 1s a primitive dth root of unity, then

Qa(z) = [ (@—wh)

1<k<d
(kd)=1

It follows that deg(Qq(z)) = ¢(d) and
' —1= HQ,](x)

dln

since each side is the product of the linear factors  — «, as « varies over all nth
roots of unity. Note that cyclotomic polynomials are not necesssarily
irreducible, and we will explore this issue as soon as we have recorded the basic
properties of these polynomials.

Note also that the cyclotomic polynomial @, () is defined only for (n,p) =1
where p = expchar(F).

Theorem 11.2.4 Let Q,,(x) be the nth cyclotomic polynomial over F.
1) deg(Qu(z)) = ¢(n).
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2) The following product formula holds:
o' —1 =[] Qux) (11.2.1)

dln

3)  Qu(x) is monic and has coefficients in the prime subfield of F.
4) If F = Q then the coefficients of Q,(x) are integers.
5) The cyclotomic polynomials are given by

Qn(x) = H(l'd — 1)“(”/‘0 — H(xn/d o ]_)N(d)

dln dln

where p is the Mobius function, defined by

1 ifd=1
wu(d) =< (=1)F ifd = pipo---py. for distinct primes p;
0 otherwise

Note that some of the exponents p(d) may be equal to —1, and so a little

additional algebraic manipulation may be required to obtain Q,(x) as a

product of polynomials.
Proof. Parts 3) and 4) can be proved by induction, using formula (11.2.1). In
particular, let F” be the prime subfield of F'. It is clear from the definition that
Q. (z) is monic. Since Q1(z) =z — 1, the result is true for n=1. If p is a
prime then

P -1

Qe) = —— =2’ 2"t

and the result holds for n = p. Assume that 3) and 4) hold for all proper divisors
of n. Then

" —1= Qn(l’)HQd(x) = Qn(x)R(x)

dln
d<n

By the induction hypothesis, R(z) has coefficients in F”, and therefore so does
Q. (x). Moreover, if F' = Q, then R(x) has integer coefficients and since R(x)
is monic (and therefore primitive), Theorem 1.2.2 implies that @),,(x) has integer
coefficients. Part 5) follows by Mdbius inversion. (See the appendix for a
discussion of Mdbius inversion.)[]

Example 11.2.1 Formula (11.2.1) can be used to compute cyclotomic
polynomials rather readily, starting from the fact that

Qi(z)=z—-1
and

Qle) =2 42 b bzt 1
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for p prime. Thus, for example,

Q(x)* zt—1 _ xi—1 241
T Q(@)Qe(z) T @ -1)(@+1)
26 -1 20 —1 9
Qol(z) = @B GE G- DetD@rary L T
and
Q15(x) = et -1 e |
Q1(7)Q2(7)Q3(x)Qs(x)

This gives us, for instance, the following factorization of z'® —1 into
cyclotomic polynomials:

P-l=@-1)"+z+ )" +2°+2°+2+1)
o G L N g N )
The Mébius inversion formula gives
Qu(x) = T]( - 1y
d|6
= (2% — )"V (2% — 1)) (22 — 1)) (g — 1)MO)
= (@ - D)@ - 1)@ - ) @ - 1)

_ (26 —1)(z — 1)
(@ — 1)~ 1)
=2 —x+1 O

Part 4) of Theorem 11.2.4 describes a factorization of 2™ — 1 within the prime
subfield of F. In general, however, this is not a prime factorization since Q,,(z)
is not irreducible. For instance, comparing Examples 11.2.1 and 10.1.1 shows
that Q15(x) is reducible over GF'(2).

When Is the Galois Group as Large as Possible?

We have seen that if F' < S is a cyclotomic extension of order n, then Gp(5) is
isomorphic to a subgroup of Z!, which has order ¢(n). Thus, Gr(S) is
isomorphic to the full group Z if and only if

[F(wn) : F] = |Gp(9)] = ¢(n)
that is, if and only if the cyclotomic polynomial @, (x) is irreducible, in which

case Q,(z) = min(w,, F).

Theorem 11.2.5 Let S be the splitting field for " — 1 over F. Then Gp(S) is
isomorphic to 7 if and only if the nth cyclotomic polynomial Q,(x) is
irreducible over F, in which case Q,,(z) = min(w,, F').00
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The Irreducibility of Cyclotomic Polynomials

With regard to the irreducibility of cyclotomic polynomials, we have the
following important results. In particular, if Q,(x) is irreducible, then so is
Qa(x) for d | n. Also, over the rational numbers, all cyclotomic polynomials are
irreducible.

Note that since the Galois group of F' < F'(w,,) is isomorphic to a subgroup of
Z}, which has order ¢(n), it follows that the degree of F' < F'(w,) divides

n>

¢ (n).

Theorem 11.2.6 Let Q,(x) be irreducible over F and let n = km, where
m > 1. Then Q(x) is also irreducible over F. As usual, we assume that
(n,char(F)) = 1.

Proof. Let k = p be a prime and consider the tower

F < F(wy) < F(wpm)

The first step has degree a | ¢(m) and the second step has degree b < p, since
wh ., € Qy € F(wy,). But Q,(z) irreducible implies that the degree of the full

extension is ¢(pm) and so
ab = ¢(pm)
with a | ¢(m) and b < p.

If (p,m) = 1 then ¢(pm) = (p — 1)¢(m) and we have
ab = (p—1)¢(m)

with a | ¢(m) and b < p. It follows that b > p — 1. If b = p — 1 then a = ¢(m)
and so @Q,,,(x) is irreducible. If b = p then a = (p — 1)¢(m)/p, which does not
divide ¢(m) for p # 2. If b = p = 2, then n = 2m, where m is odd. It follows
that w,, = wy,,, = wWow,, = —w,, and so

p(m) = ¢(2)p(m) = ¢(2m) = ¢(n) = [F(wy,) : F| = [F(wn) : F]

and so @, () is irreducible.
Finally, if p | m then ¢(pm) = pp(m) and so

ab = pg(m)
with a | ¢(m) and b < p. Hence, a = ¢(m) and again Q,,(x) is irreducible.
Thus, we have shown that if n = pm with p prime, then Q,,(z) is irreducible.

Suppose that k = p;---ps, that is, n = p;---psm. Then repeatedly applying the
argument above shows that Q,, () is irreducible.[]
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Theorem 11.2.7 All cyclotomic polynomials Q,,(x) over the rational field Q are
irreducible over Q. Therefore, Go(S) =~ Z}, and [S : Q] = ¢(n).

Proof. Suppose that Q,(z) = f(z)g(x) is a nontrivial factorization, where we
may assume that both factors are monic and have integer coefficients. Assume
that f(z) is irreducible and that w € 0, is a root of f(x). We show that w? is
also a root of f(z), for any prime p J n. For if not, then w?” € 2, must be a root
of g(x). Hence, w is a root of g(z?), which implies that f(z) | g(z?) and

g9(a?) = h(z)f(x)

where h(z) is monic and has integer coefficients. Since a” = a mod p, for any
integer a, we have g(x?) = g(x)P mod p and so taking residues gives

g(z)” = h(z) f(z) mod p
or, in a different notation
g(x)” = h(z)f(x)

in Z,[x]. It follows that f(x) and g(z) have a common root in some extension
of Z,. However, f(x)g(z)|z" —1, which has no multiple roots in any
extension. This contradiction implies that «? is a root of f(x).

Thus, if w is a root of f(z), then so is w?, where (p,n) = 1. If ¢ is a prime and
(g,n) =1, the same argument applied to w? shows that w?? is also a root of
f(x). In fact, for any (k,n) = 1, it follows that w* is a root of f(z), that is, all
roots of Q,(x) are roots of f(z), and so f(z) = Q,(x), whence Q,(x) is
irreducible over Q. (1

Finite Fields

If the base field F' = GF'(q) is a finite field, then we know that the cyclotomic
extension S = GF(q?) is also a finite field and the Galois group Gr(S) is
cyclic with generator o,: o« — a?:

Gr(9) = {L,O'q,dg,... ,G’;l_l

Since the order of w € €2, is n, Theorem 9.6.1 implies that
d=[S: F]=|Gr(S)| = onlq)

From this, we also get a simple criterion to determine when a cyclotomic
polynomial is irreducible.

Theorem 11.2.8 Let S be the splitting field for " — 1 over GF(q), where
(¢;m) = 1. Then

D) [S:F]=|Gp(S)] = on(q)

2) S=GF(¢"?)

3) Gr(S) = (o) is isomorphic to the cyclic subgroup (q) of Z.
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4) The following are equivalent
a) Gp(S)=Z;

n

b) ou(q) = ¢(n)
¢) The cyclotomic polynomial Q,(x) is irreducible over GF(q).0

Let us consider an example.

Example 11.2.2 Since
05(2) =4 = ¢(5)
the polynomial Q5(x) is irreducible over GF'(2) and has degree 4. Since
015(2) =4 = ¢(5) < ¢(15) =8
the polynomial Q15(z) of degree 8 is not irreducible over GF(2).00

Types of Primitivity

There are three types of elements in the splitting field S of " — 1 over a finite
field GF(q) that are referred to as primitive: field primitive elements, group
primitive elements and primitive roots of unity. Since each type of primitive
element is field primitive, that is, S = F'(«), each type of primitive element has
degree 0, (q). However, the orders of each type of primitive element differ.

If « is field primitive, that is, S = F(«), then
1) deg(a) =o0,(q)
2) ofa)|¢»@ -1

If 3 is group primitive, that is, S* = (3), then
1) deg(B) = on(q)
2) o(f) =q¢>@ -1

If w is a primitive nth root of unity, that is, U,, = (w), then

1) deg(w) = on(q)
2) olw)=n

Given a group primitive element 5 of S, we can identify from among its powers

§* = {1, 8,8 ..., 072}

which are the primitive nth roots of unity. In fact, 3 is a primitive nth root of
unity if and only if

@ —1

n = O(ﬁk> = (k},q”"(‘l> . 1)

In general, the equation
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is equivalent to (k, m) = m/n, or
()=
n n

which holds if and only if k = u(m/n) where (u,n) = 1. In this case, m =
¢*9 — 1 and we have the following.

Theorem 11.2.9 Let 3 be a group primitive element of the cyclotomic extension
GF(q) < S of order n. Then 3* is a primitive nth root of unity if and only if
g2 —1

k=u
n

where 1 < u < nand (u,n) =1.0

More on Cyclotomic Polynomials

If p(z) is monic and irreducible over GF'(q) and has order v, then each root of
p(z) has order v and thus p(z) | Q, (). Since every monic irreducible factor of
Q. (z) has order v, and since these factors have no common roots, we conclude
that @, (z) is the product of all monic irreducible polynomials of order v.
According to Theorem 9.6.1, the degree of any such factor p(z) is 0, (g). Hence,
the number of monic irreducible polynomials of order v is ¢(v)/0,(q).

Theorem 11.2.10 Let v be a positive integer.

1) The cyclotomic polynomial Q,(x) over GF(q) is the product of all monic
irreducible polynomials of order v over GF(q).

2)  The number of monic irreducible polynomials over GF(q) of order v is
o (v)/o,(q), where 0,(q) is the order of ¢ mod v.O

Let us mention that the roots of the (¢" — 1)-st cyclotomic polynomial Qg1 ()
have order ¢" — 1 = |GF(¢™)*| and so are group primitive elements of GF'(¢").
In other words, the monic irreducible factors of Qg—i(z) are precisely the
primitive polynomials of GF'(¢") over GF'(q). Thus, one way to find primitive
polynomials is to factor this cyclotomic polynomial.

Example 11.2.3 We have at our disposal a number of tools for factoring
polynomials of the form z" — 1 over GF(q), for (n,q) = 1:

) 2" —1=]]Qux)

dln

2) Quz)=x-1
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3) For p prime,
Quz)=al '+ P4 fa 1
4)
Qn(z) = H(Id _ 1)u<n/d> - H(mn/d _ 1)u(d)

dln d|n

5) Qn(x) is irreducible over G F(q) if and only if 0,(q) = ¢(n).

6) Over GF\(q), the polynomial @), (x) is the product of all monic irreducible
polynomials of order v over GF'(q).

7) A polynomial over G F(q) is irreducible if and only if its order is 0, (q).

8) Let u € GF(q). Then p(x) is irreducible if and only if p(z +u) is
irreducible. Moreover, if « and [ are roots of an irreducible polynomial
p(x), then f(z) = p(x — w) is also irreducible and

fla+u) =pla) =0=p(B) = f(B+u)

Hence, translation by an element of the base field v — v 4 u preserves the
property of being conjugate (that is, being roots of the same irreducible
polynomial).

To illustrate, consider the polynomial 2'> — 1. Over G F'(2), we have

2 — 1= Q1(2)Qs3(z)Q5(2)Q15(x)
=+ 1)(*+z+1)
@+ttt + )@+ + 2+t 2t a4 1)

A small table of order/degrees is useful:

03(2) =2 | ¢(3) =2
05(2) =4 | ¢(5) =4
015(2) =4 | ¢(15) =8

This table shows that Q3(z) and Q5 (z) are irreducible, but that Q15(x) is not.

However, since the roots of (Qi5(z) have order 15, the degree d of any
irreducible factor of Q15(x) must satisfy d = 015(2) = 4. Thus, Q15(z) factors
into a product of two irreducible quartics, which are primitive polynomials for
GF(16).

To find the quartic factors of Qi5(z), we can proceed by brute force. The
quartic factors must have the form

glx) =" +az® + b’ +cx + 1
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where a,b,c € {0,1}. Since Q15(1) # 0, we must have a + b + ¢ = 1, which
implies that either « = b = ¢ = 1 or exactly one of a,b or c is 1.

Ifa=0b=c=1,then g(z) = @s(x), which is not a factor of Q15(x), because
the orders are not equal. Hence, exactly one of a,b or c is equal to 1. If b = 1,
then

glx) =o'+ +1= (2 + 2 +1)°
which is not irreducible. Hence, we are left with only two possibilities, and
Quis(z) = (" + 23 + )" + 2+ 1)

where the factors are irreducible over GF'(2).

Another approach is to observe that Q5 (z) is irreducible and so therefore is
Qs(x+1)=a"+2°+1

and since Q5(z + 1) does not divide Q5(z) or Q3(z), its roots have order 15
and 50 Q5(z + 1) | Qus ().

Once we have factored z'° — 1, we can find a group primitive element of its
splitting field, which is S = GF(2°°?)) = GF(16). In particular, a group
primitive element 5 has order 15, and so is a root of Q15(x). So let 3 be a root
of the irreducible polynomial z* + z + 1 over GF'(2). Then

where 3* = 3+ 1. Note that 3 is also a primitive 15th root of unity, the other
primitive 15th roots being %, where u < 15, (u, 15) = 1.0J

*11.3 Normal Bases and Roots of Unity

Recall that a normal basis for ' < E is a basis for F/ over F' that consists of the
roots of an irreducible polynomial p(x) over F'. We have seen that in some
important cases (especially F' = Q), the cyclotomic polynomials @, (x) are
irreducible over F’, which leaves open the possibility that the primitive nth roots
of unity 2, might form a normal basis for S over F. Indeed, if @Q,(x) is
irreducible then @, (r) = min(w,, F') and so

deg(Qn(z)) =[S : F]

and since the roots of Q,(z) are distinct, there is the right number of primitive
nth roots of unity and they will form a basis for S over F' if and only if they
span S over F.
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Theorem 11.3.1 Let F' be a field with the property that Q.,(x) is irreducible
over F for all m. Then (), is a normal basis for the cyclotomic extension F' < S
if and only if n is the product of distinct primes.

Proof. First, let p be prime and (p,m) = 1. Consider the extension

F(wn) < F(wm,wy) = F(wpm)

Since @, (z) is irreducible, it follows that Q,(x) is irreducible over F'(w,,) and
so the powers

{1,wp,w12},...,wg72}
form a basis for F'(wp,) over F'(wy,). But
p_ w1l
wp—1

2

and so the set Q, = {w,,wy, ..

F(wn).

1 _1 . .
.,wh™'} is a normal basis for F(w,,) over

Now we can proceed by induction on n. We have just seen that the result is true
for n prime. Suppose that n = pm, where (p,m) = 1. Then by the inductive
hypothesis, we may assume that €, is a normal basis for F'(w,,) over F'. Then
the product €2,,2,, is a basis for F'(w,) over F'. But 2,2, = Q,, and so ,, is a
normal basis for F'(w,,) over F.

For the converse, let n = mp* for k > 2. Since
-1
Qn(m) = Qmp’" (J?) = Qmp(xp )

(an exercise) the coefficient of 2?1 in Qn(x) is 0, whence the sum of the
roots of @, (), that is, the sum of the primitive nth roots of unity, is 0, showing
that these roots are linearly dependent. Hence, they cannot form a basis for S
over F. O

*11.4 Wedderburn's Theorem

In this section, we present an important result whose proof uses the properties of
cyclotomic polynomials.

Theorem 11.4.1 (Wedderburn's Theorem) If D is a finite division ring, then
D is a field.

Proof. Let the multiplicative group D* act on itself by conjugation. The
stabilizer of 5 € D* is the centralizer

C*(B)={a e D" |af = pa}

and the class equation is
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2
|C*(B)]

where the sum is taken over one representative 3 from each conjugacy class
o(B) = {aBa~t | a« € G} of size greater than 1. If we assume for the purposes
of contradiction that Z(D*) # D*, then the sum on the far right is not an empty
sum and |C*(8)| < |D*| for some 3 € D*.

D= 12D+

The sets
Z(D)={BeD|pfa=afforalla € D}
and
C(B) ={acD|ap=pfa}

are subrings of D and, in fact, Z(D) is a commutative division ring; that is, a
field. Let | Z(D)| = z > 2. Since Z (D) C C((), we may view C(3) and D as
vector spaces over Z (D) and so

|IC(B)=2" and |D|=2"

for integers 1 < b < n. The class equation now gives

> 5
—1=z-1+

b _
—~ z 1

and since 2* — 1| 2" — 1, it follows that b | n.

If Q,(z) is the nth cyclotomic polynomial over Q, then Q,,(z) divides 2" — 1.
But Q,(2) also divides each summand on the far right above, since for b | n,
b < n, we have

 =Tlexw /TTesw)
kln Fild

and Q,(z) divides the right-hand side. It follows that @Q,(z) | z— 1. On the
other hand,

Q,,,(Z) = H (Z - w)

we,

and since w € {2, implies that |z — w| > z — 1, we have a contradiction. Hence
Z(D*) = D* and D is commutative, that is, D is a field. O
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*11.5 Realizing Groups as Galois Groups

A group G is said to be realizable over a field F' if there is an extension F' < E
whose Galois group is G. Since any finite group of order n is isomorphic to a
subgroup of a symmetric group .5,,, we have the following.

Theorem 11.5.1 Let F' be a field. Every finite group is realizable over some
extension of F'.

Proof. Let G be a group of order n. Let t1, ..., ¢, be algebraically independent
over F' and let s1,...,s, be the elementary symmetric polynomials in the ¢;'s.
Then K = F(t1,...,t,) > F(s1,...,8,) = E is a Galois extension whose
Galois group Gp(K) is isomorphic to S,. (See Theorem 7.2.3.) We may
assume that G is a subgroup of Gp(K) and since G is closed in the Galois
correspondence, it is the Galois group of fix(G) < K.O

It is a major unsolved problem to determine which finite groups are realizable
over the rational numbers Q. We shall prove that any finite abelian group is
realizable over Q. It is also true that for any n, the symmetric group S, is
realizable over Q, but we shall prove this only when n = p is a prime.

Realizing Finite Abelian Groups over Q

We wish to show that any finite abelian group is realizable over the rational
field Q. Since all cyclotomic polynomials are irreducible over the rationals, the
extension

Q < Q(wn)
which is finite and abelian. For any subgroup

{t}<H<Z!

*
n’

has Galois group Z

we have the corresponding tower of fields
Q < fix(H) < Q(wy)

and since the extension Q < Q(w,) is Galois and all subgroups are normal, the
quotient Z / H is the Galois group of the extension Q < fix(H).

Hence, it is sufficient to show that any finite abelian group G is isomorphic to a
quotient Z* /H, for some n. Since G is finite and abelian, we have

G~C(ny) x--xC(ng)
where C(n;) is cyclic of degree n;. If we show that C'(n;) is isomorphic to a

quotient of the form Z;/ H;, where the p;'s are distinct odd primes, then if H =
Hy x --- x Hgand n = p;---ps, it follows that
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G%ﬁ X oo X @Qﬁ ZZI x“.XZ;’ ~ Z;rups %@
H, H, Hy x---x Hy H H

as desired.

Now, if p; is an odd prime, then Z;, is cyclic of order p; — 1 and so all we need

to do is find distinct odd primes p; for which n; | p; — 1, because a cyclic group
of order m has quotient groups of all orders dividing m.

Put another way, we seek a set of distinct primes of the form kn; + 1, for
i=1,...,s. It is a famous theorem of Dirichlet that there are infinitely many
primes of the form kn + m provided that (m,n) = 1 and so the case m = 1 is
what we require.

First a lemma on cyclotomic polynomials.

Lemma 11.5.2 Let p be a prime and let (n,p) =1. Let Q,(z) be the
polynomial obtained from Q,(x) by taking the residue of each coefficient
modulo p. Then Q,,() is the nth cyclotomic polynomial over Z,,.

Proof. Let P,(x) be the nth cyclotomic polynomial over Z,. If n is a prime then
Qn(z), Py(x) and Q,,(z) are all equal to

xn71+xn72+_”+1

and so the result holds for n prime. Let n > 2 and suppose the result holds for
all proper divisors of n. Since

1= T[Qula)

dln

taking residues modulo p gives

" —1= H@d(x)

dln

over Z,. But

2" —1= HPd(:L‘)

dln

over Z, and since P;(z) = Qu(z) for all d | n, d < n, it follows that P,(z) =
Qu(x).0

Theorem 11.5.3 Let n be a positive integer. Then there are infinitely many
prime numbers of the form nk + 1, where k is a positive integer.

Proof. Suppose to the contrary that py, ..., ps is a complete list of all primes of
the form nk+1. Let m = p;---psn. Let @ (x) be the mth cyclotomic
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polynomial over Q and consider the polynomial @Q,,(mz). Since @, (x) has
integer coefficients, @Q,,(mk) is an integer for all k € Z*. Since Q,,(mk) can
equal 0, 1 or —1 for only a finite number of positive integers k, there exists a
positive integer k for which |Q,,,(mk)| > 1. Let p be a prime dividing @, (mk).
Since @y, () | ™ — 1, we have

p | (mk)" -1

which implies that p)m, hence p# p; for i=1,...,s. To arrive at a
contradiction, we show that p has the form kn + 1.

If P,,(z) is the mth cyclotomic polynomial over Z,, then p | Q,,(mk) and the
previous lemma imply that

in Z,, where the overbar denotes residue modulo p. Thus, mkis a primitive mth
root of unity over Z,, that is, mk has order m in Z;. Hence,

m|o(Z,)=p—1
and son | p — 1, that is, p has the form nk + 1.00

We can now put the pieces together.

Theorem 11.5.4 Let G be a finite abelian group. Then there exists an integer n
and a field E such that Q < E < Q(w), where w € Q, and such that
Go(F)~ G.O

Realizing S, over Q

We begin by discussing a sometimes useful tool for showing that the Galois
group of a polynomial is a symmetric group.

Let G be the Galois group of an irreducible polynomial f(z) over F', thought of
as a group of permutations on the set R of roots of f(x). Then G acts
transitively on R. Let us define an equivalence relation on R by saying that
r ~ s if and only if either r = s or the transposition (r s) is an element of G. It
is easy to see that this is an equivalence relation on R. Let [r] be the equivalence
class containing r.

Suppose that G contains a transposition (7 s). Then for any o € G, we have

1

o(rs)o™ = (oros)

In other words, if s ~ r then os ~ or and so o[r] = [os]. It follows that [r] and
[0s] have the same cardinality and since G acts transitively on R, all
equivalence classes have the same cardinality.
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Hence, if f(x) has a prime number of roots, then there can be only one
equivalence class, which implies that (rs) is in G for all r,s € R. Since G
contains every transposition, it must be the symmetric group on R. We have
proved the following.

Theorem 11.5.5 If f(z) € Fx] is a separable polynomial of prime degree p
and if the Galois group G of f(x) contains a tramsposition, then G is
isomorphic to the symmetric group S,. [

Corollary 11.5.6 If f(x) € Q[z] is irreducible of prime degree p and if f(x)
has precisely two nonreal roots, then the Galois group of f(x) is isomorphic to
the symmetric group S,,.

Proof. Let S be a splitting field for f(x) over Q. Complex conjugation
0:C — C is an automorphism of C leaving QQ fixed. Moreover, since Q < S is
normal, o € Gg(S). Since o leaves the p — 2 real roots of f(x) fixed, o is a
transposition on the roots of f(z). Thus, the theorem applies. O

Example 11.5.1 Consider the polynomial f(r)=2°— 52+ 2, which is
irreducible over Q by Eisenstein's criterion. A quick sketch of the graph reveals
that f(z) has precisely 3 real roots and so its Galois group is isomorphic to
Ss.0

Corollary 11.5.6 is just what we need to establish that S, is realizable over Q.

Theorem 11.5.7 Let p be a prime. There exists an irreducible polynomial p(zx)
over Q of degree p such that p(x) has precisely two nonreal roots. Hence, the
symmetric group S, is realizable over Q.

Proof. The result is easy for p = 2 and 3, so let us assume that p > 5. Let n be a
positive integer and m > 5 be an odd integer. Let k1, ..., k,,—» be distinct even
integers and let

q(z) = (2 +n)(x = k1) (2 = kin-2)

It is easy to see from the graph that ¢(x) has (m — 3)/2 relative maxima.
Moreover, if k is an odd integer, then

lg(k)| > 2|k* +n| > 2

Let p(x) = g(x) — 2. Since the relative maxima of ¢(z) are all greater than 2
and since ¢(—o0) = —oo and ¢(o0) = 0o, we deduce that p(z) has at least
m — 2 real roots.

We wish to choose a value of n for which p(z) has at least one nonreal root z,
for then the complex conjugate Z is also a root, implying that p(z) has two
nonreal roots and m — 2 real roots. Let the roots of p(x) in a splitting field be



Roots of Unity 257

Qaq,...,Qny. Then
p(a:) = ﬁ(m - ai) = (xQ + n)(x - kl)(x - kme) -2
i=1
Equating coefficients of 2! and 22 gives
iai = Wikl and Zaiaj = Zkikj +n
i=1 i=1 i<j i<j

and so

If n is sufficiently large, then Y a7 is negative, whence at least one of the roots
«; must be nonreal, as desired.

It is left to show that p(z) is irreducible, which we do using Eisenstein's
criterion. Let us write

qz) = (@ 4+n)(z — ki) (2 — kpeg) = 2" + a1z -+ ag

In the product (z — ky)---(x — ky,—2), each coefficient except the leading one is
divisible by 2. Hence, we may write

(= k1) (x — ko) = a7 2f(x)
Multiplying by 2? + n gives
q(z) = 2™ + 227 f(x) + na™? + 2nf(2)

Taking n to be even, we deduce that all nonleading coefficients of g(x) are
even. In addition, the constant term of ¢(z) is divisible by 4 since m > 5. It
follows that p(x) = ¢(x) — 2 is monic, all nonleading coefficients are divisible
by 2, but the constant term is not divisible by 2% = 4. Therefore p(z) is
irreducible and the proof is complete. [J

Exercises

All cyclotomic polynomials are assumed to be over fields for which they are
defined.
1. Prove thatif 2" — 1 = Q,(z)p(z) where p(x) € Z[z] then Q,(z) € Z[x].
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2. When is a group primitive element of the cyclotomic extension S, also a

primitive nth root of unity over GF(q)?

If (n,q) # 1, how many nth roots of unity are there over GF(q)?

4. What is the splitting field for x* — 1 over GF(3)? Find the primitive 4th
roots of unity in this splitting field. Do the same for the 8th roots of unity
over GF(3).

5. If aj,...,a, are the nth roots of unity over GF(q) show that
ok +ak + - +af =0for1 <k < n. What about when k = n?

6. If (n,q) =1, prove that f(z) = 2" '+ 2" 2+ ...+ 2+ 1 is irreducible
over GF'(q) if and only if n is prime and @,,(z) is irreducible.

7. Show that if 7 is a prime, then Q. (z) = (2™ —1)/(z™" " — 1).

8. Show that Q(w,,) N Q(wy,) = Qif (m,n) = 1.

W

Verify the following properties of the cyclotomic polynomials. As usual, p is a
prime number.
9. Qup(x) = Qn(a?)/Qu(z) for pfn.
10. Qnp(z) = Qn(x?) forall p | n.
1. an‘(x) = an(xpkil)
12. If n = p{'---p;* is the decomposition of n into a product of powers of
distinct primes, then
e-1 el
Qu(@) = Qp,...p (2™ i )
13. @,(0) =1forn > 2.
14. 2°0Q, (z71) = Q,(z) forn > 2.
15. Evaluate Q,(1).

On the structure of Z;,.

16. If n = [[r; where r; = p’ are distinct prime powers then

z, ~ [z
17. Let p # 2 be prime and let n = p°.
a) Show that |Z*| = p*}(p —1).
b) Show that Z; has an element of order p — 1. Hint: consider an element
a € Z;, of order p—1 modulo p, which exists since Z, is a field.
Compute the order of a”" as an element of Loy
c) Show that 1 + p € Z has order p°~!. Hint: Show that if p f a then

(1+ap")? =14 ap"™!

where p f a;. Then consider the powers (1 + p)?, (1 + p)?’, etc.
d) Show that Z} is cyclic.
e) Show that Zj, is cyclic if and only ife = 1 or 2.
f) Show that Z7 is cyclic if and only if m = p°®, 2p° or 4.

m



18.

19.

20.
21.
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Prove that if n > 1 then there exists an irreducible polynomial of degree n
over QQ whose Galois group is isomorphic to C),, the cyclic group of order
n.

Find an integer n and a field E such that Q < F < Q(w,) with Gg(FE) =
Cs, the cyclic group of order 8. Here w;, is a primitive nth root of unity over
Q.

Calculate the Galois group of the polynomial f(x) = 2° — 4z + 2.

Let ¢ be transcendental over Z,, p prime. Show that the Galois group of
f(z) = 2P — x — t is isomorphic to Z,,.

More on Constructions

The following exercises show that not all regular n-gons can be constructed in
the plane using only a straight-edge and compass. The reader may refer to the
exercises of Chapter 2 for the relevant definitions.

Definition 4 complex number z is constructible if its real and imaginary parts
are both constructible. O

22.

23.

24,

25.

26.
27.

28.

Prove that the set of all constructible complex numbers forms a subfield of
the complex numbers C.

Prove that a complex number z = re? is constructible if and only if the real
number r and the angle 6 (that is, the real number cos 6) are constructible.
Prove that if z is constructible, then both square roots of z are constructible.
Hint: use the previous exercise.

Prove that a complex number z is constructible if and only if there exists a
tower of fields Q < F} < --- < F,,, each one a quadratic extension of the
previous one, such that z € F},.

Prove that if z is constructible, then [Q(z) : Q] must be a power of 2.

Show that the constructibility of a regular m-gon is equivalent to the
constructibility of a primitive nth root of unity w,. Since the cyclotomic
polynomial @, (x) is irreducible over the rationals, we have [Q(w,,) : Q] =
deg(Qn(z)) = o(n).

Prove that ¢(n) is a power of 2 if and only if » has the form

0

n= 2kp1' “Pm
where p,, are distinct Fermat primes, that is, primes of the form
2% +1

for some nonnegative integer s. Hint: if 2/ + 1 is prime then j must be a
power of 2. Conclude that if n does not have this form, then a regular n-gon
is not constructible. For instance, we cannot construct a regular n-gon for
n =7, 11 or 90. [Gauss proved that if n has the above form, then a regular
n-gon can be constructed. See Hadlock (1978).]



Chapter 12
Cyclic Extensions

Continuing our discussion of binomials begun in the previous chapter, we will
show that if S is a splitting field for the binomial 2" — u, then S = F(w, @)
where w is a primitive nth root of unity. In the tower

F < F(w) < F(w,a)

the first step is a cyclotomic extension, which, as we have seen, is abelian and
may be cyclic. In this chapter, we will see that the second step is cyclic of
degree d|n and a can be chosen so that min(a, F(w)) = 2% — af.
Nevertheless, as we will see in the next chapter, the Galois group G(S) need

not even be abelian.

In this chapter, we will also characterize cyclic extensions of degree relatively
prime to p = expchar(F'), as well as extensions of degree p, but we will not
discuss extensions of degree p° for e > 1, since this case is not needed and is
considerably more complex.

12.1 Cyclic Extensions

Let F be a field with expchar(F') = p, let u € F and let S(n,u) be a splitting
field for the binomial 2" — u over F', where (n, p) = 1. Note that " — u has n
distinct roots in S(n, u).

If o is a root of " — w in S(n,u) and w is a primitive nth root of unity over F
then the roots of " — u are

a,wa, ..., W ta (12.1.1)

and so S(n,u) = F(w, «). In words, all nth roots of u can be obtained by first
adjoining the nth roots of unity and then adjoining any single nth root of u.
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The extension F' < S(n,u) can thus be decomposed into a tower
F < F(w) < F(w,a) = S(n,u)

where the first step is cyclotomic.

For the second step, it will simplify the notation to simply assume that w € F'.
Hence,

F < F(a) = 8(n,u)

is finite, Galois and the base field F' contains all the nth roots of unity.

As to the Galois group G of S(n,u), each o € G is uniquely determined by its
value on o and

oo = w"q

for some k(o) € Z,. In fact, the map o — «w*(© is an embedding of G into U,,,

and so G is isomorphic to a subgroup of U,, and is therefore cyclic of degree
d | n. This follows easily from the assumption that F' contains the nth roots of
unity, for if o, 7 € G, then

(o7)or = o(7)

and so o7 — WFDWEO) e U, .

Definition Let (n, expchar(F')) = 1. An extension F' < F(«) is pure of type n
if a is a root of a binomial x" — u over F, that is, if o™ € F.OO

Note that if F' < FE is pure of type d and if d | n, then F < E is also pure of
type n.

We can now provide a characterization of cyclic extensions when the base field
contains the nth roots of unity.

Theorem 12.1.1 Let (n,expchar(F)) = 1. Suppose that F' contains the nth
roots of unity and let F' < E. Then the following are equivalent:

1) F < E is pure of type n.

2) F < Eiscyclic of degree d | n.

In this case, oo € E is a root of x" — u for some v € F if and only if

min(a, F) = 2% — v

Jor somev € F.
Proof. We have seen that a pure extension of type n is cyclic of type d | n. For
the converse, assume that F' < E is cyclic of degree d | n, with Galois group

G={(0)={1,0,...,007"}
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We are looking for a field primitive element o € E that is a root of a binomial
of the form 2% — u, for v € F. The roots of any polynomial p(x) have the form

a,oQ,... ,Ud_loz

and the roots of the binomial ¢ — u have the form

a, W, ... ,wg_loz
where wy is a primitive dth root of unity. Hence, if we can find an oo € E for
which oo = wya, then

d—1

min(c, F') = H(x — awh)
k=0

Since the product of these roots

8= adwj(dfl)ﬂ — +qf

d

is in F', we have a? € F and so min(a, F) = 2¢ — af. Hence, F < E is pure of

type d, and therefore also of type n.

Thus, we are left with finding an o € E for which ca//« is a primitive dth root
of unity. This is the content of Hilbert's Theorem 90, which we prove next. We
leave proof of the final statement of this theorem as an exercise.[]

Theorem 12.1.2 (Hilbert's Theorem 90) Let I’ < E be a finite cyclic extension
of degree d, with Galois group G = (o). An element 3 € E has the form
a
f=

[oxe%

Jfor some nonzero o € E if and only if
Ni/r(B8) = B(oB)(0°B)--(0"8) =1

In particular, if the base field F' contains a primitive dth root of unity wy, then
Ng/p(wq) = 1 and the previous statement applies.

Proof. If 3 = a /o, then 03 = o*a /o1 and so

Ng/p(B) = B(op)(c?B) (a1 B)

a oQ o 1o

T oacla  ola
=1
For the converse, suppose that Ng,r(3) = 1. We seek an element o € E for

which G(ca) = a, that is, an element « fixed by the operator ﬁa, where ﬁ is
multiplication by (3. This suggests looking at the elements
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8 = B(oB)(0°B)--(0"1B) (0" )
for k =0,...,d — 1, which have the property that

~

Bo(6r) = dks1

fork =0,...,d — 2. Hence, the sum

%
—

0= O,
0

>~
I

is a promising candidate, since applying Ba shifts each term to the next, except
for the last term. But since Ng/p(3) = 1, we have

Bo(64-1) = B(eB)(@B)-+ ("' B)(0"B) = Ng/p(B)B = B = 6

and so applying Ba wraps the last term to the first. Hence, 5(0d) = 6, as
desired.

However, there is a problem. We do not know that ¢ is nonzero. Accordingly, a
change in the definition of §j, is in order. Let

ap = B(af)(0°B)-(a"1B) (o)

with ay =, where v is an as yet undetermined element of E. Then the
previous analysis still applies. In particular, So (o)) = g+ and if

d-1
o = Q.
k=0
then since
Bo(au-1) = B(oB)(0?8)--(0" B)(0"y) = Niyr(B)y =7 = g
we again have 3(ca) = a. But now, since the automorphisms ¢, o, ..., 0% ! are

distinct, the Dedekind independence theorem implies that the linear combination

L
—

p=>_ Bap)(o*p)--(a"'B)a"

0

>
I

is nonzero, and so there must be a nonzero v € E for which a = py is nonzero.
This is our a.

For the last statement, if wy; € E is a primitive dth root of unity, then since
wyq € F, we have
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Ngjr(wq) = wd(awd)(Ude)---(ad_lwd) = (wd)d =1
and the previous statement applies.[]
12.2 Extensions of Degree Char(F")

There is an “additive” version of Theorem 12.1.1 that deals with cyclic
extensions of degree equal to p = char(F') > 0, where the role of the binomial
" — w is played by the polynomial 2? — x — w.

Suppose that F' is a field of characteristic p # 0. Let F' < E and suppose that
o € E is aroot of the polynomial

flay=a? —x—u
for u € F'. Since k? = k for all k € Z,,, we have
o +k) = @+ k) — (2 +k) -
=2’ + kP —z—-k—u
= f(z)
and so the p distinct roots of f(z) are
a,a+1,....,.a+p—1

Hence, F'(«) is a splitting field of f(z). (In contrast to the previous case, we
need no special conditions on F’, such as containing roots of unity, to ensure
that if an extension of F' contains one root of f(x), it contains all the roots of

f(@).)

If a € F then f(z) splits in F. If a ¢ F, then p(x) = min(«, F') has degree
d > 1, with roots

a,+e1,...,x+ €4-1

where 0 < e; < p— 1. The sum of these roots is da + k, for some integer k,
and since this number lies in F', but since « ¢ F, it follows that d = p, whence
f(z) =min(e, F) is irreducible. In short, f(x) either splits in F or is
irreducible over F' with splitting field F'(«), for any root « of f(x).

Since F'(«) is a splitting field for the separable polynomial f(z) = 2P — x — u,
it follows that F' < F'(«) is Galois. If f(z) is irreducible over F' and G =
Gr(F(a)), there exists a o € G for which oo = o + 1. Since o' = o + i, it
follows that G = (o) = {1, 0,...,07 1} is the cyclic group generated by o.

Definition An extension F' < F(«) of degree p = char(F') # 0 is pure of type
p if a is a root of an irreducible binomial P — x — u over F'.[]
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Theorem 12.2.1 (Artin—Schreier) Let char(F') = p # 0. The polynomial
fley=a?—xz—u

either splits in F' or is irreducible over F. An extension F' < E is cyclic of
degree p if and only if it is pure of type p.

Proof. We have seen that an extension that is pure of type p is cyclic of type p.
Suppose that F' < E is cyclic of degree p, with Galois group G = (o) =

{t,0,...,0P" '} If a € E has the property that oo = o + 1, then the roots of
min(«, F) are

a,a+1,....,.aa+p—1
Moreover, since
ol —a)=(a+ 1) —a—-1=a’—a

it follows that u = o — a € F' and so min(a, F') = 2P — 2 — u. To find such
an element, we need the additive version of Hilbert's Theorem 90.C]

Theorem 12.2.2 (Hilbert's Theorem 90, Additive Version) Let F' < E be a
finite cyclic extension with Galois group G = (o). An element 3 € E has the
form 3 = o — oo for some o € E if and only if Trgp(3) = 0.

Proof. Assume that Trg/p(3) = 0. Let [E' : F'| = n and consider the map

=00+ [B+ (oB))0” + -+ [B+ (a8) + - + (6" *B))0" !

It is easy to verify that 7 — o7 = B(t + 0 4 -+ 0" ') and s0 if Trg/p(y) = 1
for v € E then

™y — o1y = BTrgp(y) = B

Thus, o = 77 is the desired element. (Since the trace map is the sum of the
automorphims in the Galois group, it is not the zero map and so thereisay € E
for which Tr(y) # 0.) Proof of the converse is left to the reader.C]

In this section and the previous one, we have discussed cyclic extensions of
degree n where (n,expchar(F')) =1 or n = p = char(F') # 0. A discussion of
cyclic extensions of degree n = p* for k > 1 is quite a bit more involved and
falls beyond the intended scope of this book. The interested reader may wish to
consult the books by Karpilovsky (1989) and Lang (1993).

Exercises

1. Assume that F' contains the nth roots of unity and suppose that F' < E.
Show that o € E is a root of a binomial 2" — u over F'if and only if it is a
root of an irreducible binomial 2¢ — v over F, where d | n.
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Let F' < E be a finite cyclic extension, with Galois group G = (o). Show
that if € E has the form §=a—oa for some « € F, then
Trg/r(8) = 0.

Let F < E be cyclic of degree p™ where p is a prime. Let F' < K < F with
F < K cyclic of degree p? where d < n. Let F < L < E and suppose that
E = KL.Show that £ = L.

Let char(F') = p # 0 and let F'(a) = F(a2) be cyclic of degree p over F,
where min(a;, F') = 2P — 2 — u;. Show that ay = nay +b where b € F
and n € Z,,.

Let F be a field and let E be the extension of F' generated by the nth roots
of unity, for all n > 1. Show that F' < F is abelian.

Let E be a field and let o be an automorphism of F of order d. Suppose
that 3 € F has the property that 03 = 3 and 3% = 1. Prove that there exists
an a € F such that oo = af.

Let E be a field and let o be an automorphism of E of order d > 1. Show
that there exists an o € E such that cav = o + 1.

Let F' < F be finite and abelian. Show that £ = F7---F}, is the composite
of fields F; such that F' < F; is cyclic of prime-power degree. Thus, the
study of finite abelian extensions reduces to the study of cyclic extensions
of prime-power degree.

Let I be a field containing the nth roots of unity. We do not assume that
(n,expchar(F)) = 1. Let F be an algebraic closure of F'. Show that if o €
F is separable over F and if o is a root of the binomial 2" — u with u € F,
then F' < F'(«) is cyclic of degree d | n.



Chapter 13
Solvable Extensions

We now turn to the question of when an arbitrary polynomial equation p(z) = 0
is solvable by radicals. Loosely speaking, this means (for char(F') = 0) that we
can reach the roots of p(x) by a finite process of adjoining nth roots of existing
elements, that is, by a finite process of passing from a field K to a field K («),
where « is a root of a binomial " — u, with v € K. We begin with some basic
facts about solvable groups.

13.1 Solvable Groups
Definition 4 normal series in a group G is a tower of subgroups
{1} =Gy <G <Gy< <G, =G

where G; < Giy1. A normal series is abelian if each factor group G;.1/G; is
abelian, and cyclic if each factor group is cyclic. O

Definition 4 group is solvable (or soluble) if it has an abelian normal series.

O

Theorem 13.1.1 The following are equivalent for a nontrivial finite group G.

1) G has an abelian normal series.

2) G has a cyclic normal series.

3) G has a cyclic normal series in which each factor group Gii1/G; is cyclic
of prime order.

Proof. It is clear that 3) = 2) = 1). Thus, we need to prove only that 1) = 3).

Let {G;} be an abelian normal series. We wish to refine this series by inserting

subgroups until all quotients have prime order. The Correspondence Theorem

says that the natural projection 7: G;11 — G;11/G; is a normality-preserving

bijection from the subgroups of G;;; containing G; to the subgroups of

Gi11/G;. Hence, by Cauchy's Theorem, if a prime p divides o(G;+1/G;) then

Gi+1/G; has a subgroup of order p, which must have the form H;/G; for

G, < H; < G7;+1.
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Since G;1/G; is abelian, H;/G;<Giy1/G; and so H;<G,yy. Thus,
G; < H; <G;y1. Finally, since H;/G; is abelian, the Third Isomorphism
Theorem implies that

Git/Gi

Gi1/H; ~ H/G,

is also abelian.

Thus, we have refined the original abelian normal series by introducing H;,
where H;/G; has prime order. Since G is a finite group, we may continue the
refinement process until we have an abelian normal series, each of whose
quotient groups has prime order. [J

The next theorem gives some basic properties of solvable groups. The proofs of
these statements, with the possible exception of 2), can be found in most
standard texts on group theory.

Theorem 13.1.2

1) Any abelian group is solvable.

2) (Feit-Thompson) Any finite group of odd order is solvable.

3) (Subgroups) Any subgroup of a solvable group is solvable.

4) (Quotients) If G is solvable and H < G, then G/ H is solvable.

5) (Lifting property) If H <G then H and G/H solvable imply that G is
solvable.

6) (Finite direct products) The direct product of a finite number of solvable
groups is solvable.

7)  The symmetric group S, is solvable if and only ifn < 4. O

13.2 Solvable Extensions

Although our results can be proved in the context of arbitrary finite extensions,
we shall restrict our attention to separable extensions. As the reader knows, this
produces no loss of generality for fields of characteristic 0 or finite fields.
Moreover, if p(z) is an inseparable polynomial, then

p(x) = q(z"")

where ¢(x) is separable. Thus, with respect to the solution of polynomial
equations, the restriction to separable extensions is not as severe as it might first
appear.

Definition A finite separable extension F' < E is solvable if the finite Galois
extension F' < nc(E/F) has solvable Galois group, where nc(E/F) is the

normal closure of E over F.[1

Theorem 13.2.2 The class of solvable extensions is distinguished.
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Proof. Speaking in general, consider a finite separable tower of the form
FaA<B
Since the first step is normal, we have

Gr(B)
Ga(B)

Now, if the Galois groups Gr(A) and G 4(B) of each step are solvable, then the
quotient Gp(B)/G4(B) is solvable as well. Hence, by the lifting property of
solvability, the Galois group G (B) of the full extension F' < B is solvable.

On the other hand, if the full extension has solvable Galois group Gr(B), then
the Galois group Gr(A) of the lower step, being isomorphic to a quotient of
Gr(B) is solvable and the Galois group G 4(B) of the upper step, being a
subgroup of Gr(B) is solvable.

Thus, in such a tower, solvability of the Galois groups has the “tower property.”
Note also that the implication Gz (B) solvable implies G 4(B) solvable does not
require that the lower step /' < A be normal.

Now we can get to the business at hand. Suppose first that
F<K<E

where the full extension F' < E is solvable. The lower step is finite and
separable, and we have the tower

Fanc(K/F) <nc(E/F)
where the full extension has solvable Galois group, and therefore so does the
lower step. That is, F' < K is solvable.
As to the upper step K < E, it is finite and separable. Consider the tower
F < K<anc(E/K) <nc(E/F)
Since the full extension has solvable Galois group, so does the full extension
K anc(E/K) <nc(E/F)

(which is an upper step of the previous tower). Hence, the lower step has
solvable Galois group, that is, K < E is solvable. We have shown that if the
full extension is solvable, so are the steps.

Suppose now that each step /' < K and K < E solvable and consider Figure
13.2.1. Since all extensions are finite and separable, we will have no trouble
there.
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nc(N/F)
N=nc(K/F)nc(E/K)

nc(K/F)

Figure 13.2.1
Since
Fanc(E/F) <nc(N/F)
it is sufficient to show that G (nc(N/F)) is solvable.

To this end, Theorem 6.5.6 implies that Gz (nc(N/F)) is isomorphic to a
subgroup of the finite direct product

H oGp(N)o™!

ochomp(N,F)

Since this is a finite direct product and since each conjugate is isomorphic to
GF(N), it suffices to show that G () is solvable.

Consider the tower
Fane(K/F)< N

The group Gr(nc(K/F)) is solvable since F' < K is solvable. As to the Galois
group Gye(x/r)(IN) of the upper step, it is a subgroup of the Galois group
G (N). Thus, it is sufficient to show that Gr(N) is solvable. But Gp(N) is the
Galois group of a composite and is therefore isomorphic to a subgroup of the
direct product of the Galois groups Gp(nc(K/F)) and Gk (nc(E/K)), both of
which are solvable, precisely because the lower and upper steps in the tower are
solvable.

For the lifting property, if F' < E is solvable and ' < K is arbitrary, then
F < E<nc(E/F)
Lifting gives
K< KE<KVnc(E/F)
and the full extension is finite and Galois, and
G (K Vne(E/F)) ~ Grnetiyi)(ne(E/F)) < Gr(ne(E/F))

and since the latter is solvable, so is the former. [
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13.3 Radical Extensions

Loosely speaking, when char(F) =0, an extension F' < E is solvable by
radicals if it is possible to reach E from F’ by adjoining a finite sequence of nth
roots of existing elements. More specifically, we have the following definitions,
which also deal with the case char(F") # 0.

Definition Let expchar(F') = p and let ' < R. A radical series for F < R is a
tower of fields

F=Ry<Ri<---<R,=R

such that each step R; < R, is one of the following types:
Pure of Class 1
R; 1 = Ri(0;) where [; is an rith root of unity, where we may assume
without loss of generality that (r;, p) = 1.
Pure of Class 2
Riy1 = Ri(o) where «; is a root of «"' —w;, with 1# u; € R; and
(ri;p) = 1.
Pure of Class 3
(For p> 1 only) Ri+1 = Ri(«;) where « is a root of aP — x — w;, with
u; € R;.
For steps of classes 1 and 2, the number r; is the exponent (or type) of the step.
The exponent of a class 3 step is p. A finite separable extension F' < R that has
a radical series is called a radical extension.[]

If char(F) = p # 0, we may assume that the exponent in a class 1 extension is
relatively prime to p, for if § is an rth root of unity where r = mp® and
(m, p) = 1, then (3 is also an mth root of unity.

Note that lifting a radical series gives another radical series with the same class
of steps, for if R; 11 = R;(«), where « is a root of f(z) € R;[z], then

KRi+1 = (KRZ)(Oé)
where « is a root of f(z) € (KR;)[z].

For convenience, we write
F < R/{R;}
or
F<R/(Ry<- <Ry,

to denote the fact that {R;} = (Ry < --- < R,) is a radical series for the
extension F' < R.
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Theorem 13.3.1 (Properties of radical extensions)

1) (Lifting) If F < R is a radical extension and F < K, then the lifting
K < RK is a radical extension.

2) (Each step implies full extension) /f FF < R < S, where FF < R and
R < S are radical extensions, then so is the full extension F' < S.

3) (Composite) If ' < R and F < S are radical extensions, then so is the
composite extension F' < RS.

4) (Normal closure) If FF< R is a radical extension, then so is
F <nc(R/F).

Proof. For 1), let F' < R/{R;}. Lifting the series {R;} by F < K gives the

radical series

K=RK<RK< - -<R,K=RK

and so K < RK is aradical extension.

For part 2), if F < R/{R;} and R < S/{S;}, then lift the series {S;} by R:
R<SR/(R=5SR<SR<--<S,R)
and append it to the end of F' < R/{R;} to get
F<SR/(Ry<--<R,=R=SR<SR<--<S,R)

and so I' < SR = S is a radical extension.

For part 3), if F' < R and F' < S are radical extensions, then so is the lifting
R < SRof F < Sby F < R and so is the full extension ' < R < SR.

For part 4), the normal closure is

nc(R/F) = \/ oR

ochomy (R, R)

Since F' < R is a finite separable extension, hornF(R,E) is a finite set. Hence,
the composite above is a finite one. We leave it as an exercise to show that if
F < R/{R;},then F < oR/{oR;}. Hence, F' < oR is a radical extension, and
therefore so is the finite composite F' < nc(R/F).00

13.4 Solvability by Radicals

We are interested in extensions F' < E where E is contained in a radical
extension F' < R.

Definition A4 finite separable extension F < E is solvable by radicals if
F < E < R, where F' < R is a radical extension.[]

Theorem 13.4.1
1) The class of extensions that are solvable by radicals is distinguished.
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2) IfF < E is solvable by radicals then so is F < nc(E/F). In fact, if
F<E<R
where F' < R is a radical extension, then
F<E<nc(E/F)<nc(R/F)

where F' < nc(R/F) is a normal radical extension.
Proof. Let

F<K<E
If F' < E is solvable by radicals then
F<K<E<R

with F' < R radical. Hence, the lower step /' < K is solvable by radicals. For
the upper step, F' < R radical implies K < R is radical and so K < F is
solvable by radicals.

Now suppose the steps in the tower are radical.

KRy
Rex
E
Rice
K
F

Figure 13.4.1
Referring to Figure 13.4.1, we have
F <K < Rg/r
and

K<E<RE/K

where F' < Ry p and K < Rpx are radical extensions. Lifting K < Rp/x by
F < Ry gives the radical extension Ry /p < Rp xRy /r and so the tower

F < Rg/r < Rp/kRg/r

is radical. It follows that the full extension is radical and so F' < E is solvable
by radicals.
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As to lifting, if F < EF < R with F' < R radical, the lifting by F' < K gives
K < EFK < RK
and since K < RK isradical, K < EK is solvable by radicals.

The second part of the theorem follows from the fact that if F' < F < R with
F < R is radical, then

F <nc(E/F) <nc(R/F)
with F' < nc(R/F') radical.d
13.5 Solvable Equivalent to Solvable by Radicals

Now we come to the key result that links the concepts of solvable extension and
solvability by radicals. Here we employ the results of Chapter 12 on cyclic
extensions, taking advantage of the fact that we may assume that all appropriate
roots of unity are present.

Theorem 13.5.1 4 finite separable extension F' < E is solvable by radicals if
and only if it is solvable.

Proof. Suppose that F' < E is solvable. We wish to show that F' < E is
solvable by radicals. By definition, F' < nc(E/F) is solvable and if we show
that F' < nc(E/F) is also solvable by radicals, then the lower step F' < E is
also solvable by radicals. Thus, we may assume that F' < E is normal.

As to the presence of roots of unity, let n = [E : F]. If F' does not contain a
primitive nth root of unity w, then we can lift the extension F' < E by adjoining
w to get

F(w) < E(w)

which is also solvable and normal. If we show that this extension is solvable by
radicals, then so is the tower

F < F(w) < E(w)

since the lower step F' < F'(w) is solvable by radicals (being pure of class 1).
Hence, the lower step F' < F is also solvable by radicals.

Note that since /' < E is finite and Galois, Corollary 6.5.3 implies that

[Ew): FW) | [E: F]=n
Hence, F'(w) contains a primitive mth root of unity, where m = [E(w) : F'(w)].
Thus, we may assume that /' < E is normal and contains a primitive nth root of

unity, where n = [E : F]. It follows that if r is any prime dividing [E : F], then
F contains a primitive rth root of unity.
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Since F' < E is finite, Galois and G = Gp(F) is solvable, there is a normal
series decomposition

{1}=Gi<G <G < <G, =G (13.5.1)

where G; <G,y and G,y1/G; is cyclic of prime order r; dividing |G| =
[E : F] = n. Taking fixed fields F; = fix(G;) gives a tower

F=F,<F, < <F<F=E (13.5.2)

Let us examine a typical step F;;1 < F; in this series. The relevant piece of the
Galois correspondence is shown in Figure 13.5.1.

E Gi+1
F, G
Fiui {1}

Figure 13.5.1

Since F' < F is finite and Galois, the Galois correspondence is completely
closed, that is, all intermediate fields and subgroups are closed. Thus, since G;
is normal in G;,1, it follows that F;,; < F; is normal (and hence Galois) and
that

G,

GF;H(FL') ~ Cl;-l
i

which is cyclic of degree r; | n. Hence, F; 1 < F; is a cyclic extension whose
base field F;,; contains the r;th roots of unity.

Now, if r; = char(F’), then Theorem 12.2.1 implies that F;;; < F; is pure of
class 3. On the other hand, if r; # char(F'), then (r;,expchar(F)) =1 and
Theorem 12.1.1 implies that F;,; < F; is pure of class 1 or class 2. Thus,
F' < FE is solvable by radicals, as desired.

For the converse, suppose that F' < F is solvable by radicals, with FF < £ < R
where ' < R is a radical extension. Then Theorem 13.4.1 implies that the full
extension in the tower

F<E<nc(E/F)<nc(R/F)
has a radical series
F=Ry<R <--<R,=nc(R/F)

Let m be the product of the types of all the steps in this series. Lift the tower by
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adjoining a primitive mth root of unity w, to get the radical series
F(w) = Ry(w) < Ri(w) < -+ < Rp(w) =nc(R/F)(w)

which contains F(w). Note that if R; < R;1 is of class 1, then the step
R;(w) < Rjy1(w) is trivial, and we may remove it. Thus, we may assume that
all steps in the lifted tower are pure of class 2 or class 3.

It follows from Theorems 12.1.1 and 12.2.1 that these pure steps are cyclic and
so Theorem 6.6.2 implies that the Galois group Gp(nc(R/F)(w)) is solvable.
We have seen in the proof of 13.2.2 that since

Fanc(E/F) <nc(R/F) <nc(R/F)(w)

where the full extension has solvable Galois group, so does the lower step.
Hence, F' < nc(E/F) is a radical extension, which implies that F' < F is
solvable by radicals.[]

13.6 Natural and Accessory Irrationalities

Let us assume that char(F') = 0 and suppose that F' < F is finite, normal and
solvable by radicals. Let n = [E : F| and assume that F' contains the nth roots
of unity.

Then, by definition, there is a radical series of the form
F=Ry<Ri<---<R,=R (13.6.1)

where F' < E < R. A typical step in this series has the form K < K (\k/ﬂ),
where u € K. Elements of the form a + b\‘/a € R, for b # 0, might reasonably
be referred to as irrationalities, at least with respect to K (or F').

Kronecker coined the term natural irrationalities for those irrationalities of R
that lie in E and accessory irrationalities for those irrationalities of R that do
not lie in .

Given a radical series (13.6.1) containing F, it is natural to wonder whether
there is another radical series

F=5<S8<---<8,=F

that contains only natural irrationalitites, that is, for which the top field S, is E
itself.

We begin by refining the steps in (13.6.1) so that each has prime degree.
Consider a step K < K(«). Since the steps in the series are cyclic, every
subgroup of the Galois group G of K < K(«) is normal, and so all lower steps
K < L < K(«) are normal. If m = pm’ where p is prime, then G has a
subgroup H of index p and so K < fix(H) is cyclic of degree p.
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Hence, any step K < K(«) of (13.6.1) can be decomposed into a tower
K < L < K(«), where the lower step K < L is cyclic of prime degree. The
upper step has the form L < L(«) and is cyclic of degree m’ < m. We may
repeat this decomposition on the upper step until each step is decomposed into a
tower of cyclic extensions of prime degree.

So, let us assume that each step in (13.6.1) is cyclic of prime degree. Consider
the tower obtained by intersecting each field in (13.6.1) by E/

F:SU<(S1:RlﬁE)<"'<(Sn:RnﬂE:E) (1362)

We wish to show that each step in (13.6.2) is also cyclic of prime degree. This is
the content of the following theorem. It will follow that F' < F has a radical
series that starts at " and ends precisely at E.

Theorem 13.6.1 Let char(F') = 0. Let F' < A < B, where A < B is Galois of
prime degree p. Let F < E be finite and normal. Then ANE < BNE is
either trivial or Galois of degree p.

Proof. Figure 13.6.1 shows the situation.

B=A()

normal
prime de:

A BNE=(ANE)(X)

E

ANE

Figure 13.6.1

We first show that A N E < B N E is normal by showing that it is closed in the
Galois correspondence of AN E < BN E, that is,

fix(Gang(BNE)) CANE
(the reverse inclusion is clear). The plan is as follows. Let

a € fix(Ganp(BNE)) CE

Since A < B is normal, if we show that ca = « for any o € G4(B), it will
follow that o € fix(G4(B)) = A and so o € AN E, as desired.

But it is sufficient to show that o € G4(B) implies o|gng € Ganp(BNE),
since then

oa = (olpng)a =«

To this end, since (AN E) < (BN E) is finite and separable, it is simple, say
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(ANE) < (BNE) = (ANE)(\)

where A € B. If A € A, then the extension is trivial, so assume A € B\ A. We
need to show that if o € G4(B) then o\ € BN E, since then (BN E) =
BNE.

In the tower
A< AN < B
the entire extension has prime degree p and the lower step is nontrivial. Hence,
B=A()\).
Since A < A(X) is normal, the minimal polynomial p(x) = min(\, A) splits
over A(\) and so its roots {\ = Aq,..., A} lie in A(\) = B. Also, since
min(A, A) | min(A\, AN E)
each )\; is a root of min(A, AN F) and since AN E < E is normal (being an
upper step of F' < E), it follows that A\; € E for all i. Hence,
{A=X,...,}CBNE

But each o € G4(B) sends X to a conjugate A; of A\, and so oA € BN E. This
is what we needed to prove and shows that AN F < BN FE is normal.

Finally, we must show that [BN E : AN E] = p. To see this, note that A < B
is the lifting of ANE<BNE by ANE < A. Since ANE<BNE is
Galois, the Galois group of the lifting satisfies

Ga(B) = Ggra(BNE)
andso [BNE:ANE]|=[B:Al=p0

Theorem 13.6.2 (The theorem on natural irrationalities) Let char(F') = 0.
Let F' < E be finite and normal. Let n = [E : F| and assume that F' contains
the nth roots of unity. If E is solvable by radicals, then there is a radical series
starting with F' and ending with E.C]

We remark that the requirement that F' contain the appropriate roots of unity is
necessary. An example is given by the casus irreducibilis, desscribed in the
exercises.

13.7 Polynomial Equations

The initial motivating force behind Galois theory was the solution of polynomial
equations f(x) = 0. Perhaps the crowning achievement of Galois theory is the
statement, often phrased as follows: There is no formula, similar to the quadratic
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formula, involving only the four basic arithmetic operations and the taking of
roots, for solving polynomial equations of degree 5 or greater over Q.

However, this is not the whole story. The fact is that for some polynomial
equations there is a formula and for others there is not, and, moreover, we can
tell by looking at the Galois group of the polynomial whether or not there is
such a formula. In fact, there are even algorithms for solving polynomial
equations when they are “solvable,” but these algorithms are unfortunately not
practical.

Let us restrict attention to fields of characteristic 0. We refer to the four basic
arithmetic operations (addition, subtraction, multiplication and division) and the
taking of nth roots as the five basic operations.

Let I be a field of characteristic 0. We will say that an element o € F' is
obtainable by formula from F' if we can obtain a by applying a finite
sequence of any of the five basic operations, to a finite set of elements from F'.

If F < F(/a) is a pure extension, it is clear that any element of F'({/a), being
a polynomial in \’/a, is obtainable by formula from F'. Hence, any element of a
radical extension F' < R is obtainable by formula from F'.

Conversely, if o € F is obtainable by formula from F, then there is a finite set
S C F and a finite algorithm for obtaining o from .S, where each step in the
algorithm is the application of one of the five basic operations to elements of
some extension F of F. If the operation is one of the four basic operations, then
the result of the application is another element of the field E. It the operation is
the taking of a root, then the result will lie in a pure extension of E. Thus, all the
operations in the algorithm can be performed within a radical extension of F'.
Hence, « lies in a radical extension of F'.

Theorem 13.7.1 Let F be a field of characteristic 0. An element o € F can be

obtained by formula from F if and only if « lies in a radical extension of F, that
is, if and only if F < F(«) is solvable by radicals. O

Let us say that a root o of a polynomial f(z) = ag 4+ ayz + --- + agz? over F
is obtainable by formula if we can obtain o by formula from C =
Q(ag,-..,aq). Thus, a root « of f(x) is obtainable by formula if and only if
C < C(«) is solvable by radicals. Theorems 13.4.1 and 13.5.1 now imply the
following.

Theorem 13.7.2 Let char(F) =0 and let f(z) = ag+ a1z + -+ + aqgz? be a
polynomial over F. Let C = Q(ay, ...,aq) and let S be a splitting field for
f(z) over C.
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1) The roots of f(x) are obtainable by formula if and only if the extension
C < S is solvable.

2) Let f(x) be irreducible over F. One root of f(x) is obtainable by formula
if and only if all roots of f(x) are obtainable by formula. O

According to Theorem 11.5.7, for any prime number p, there exists an
irreducible polynomial f,(z) of degree p over Q whose Galois group is
isomorphic to S,. Since the group S, is not solvable for p > 5, Theorem 13.7.2
implies that if p > 5, then none of the roots of f,(x) can be obtained by
formula. Although it is much harder to show, this also holds for any positive
integer n [see Hadlock, 1987]. Thus, we have the following.

Theorem 13.7.3 For any n > 5, there is an irreducible polynomial of degree n
over Q, none of whose roots are obtainable by formula. O

As a consequence, for any given n > 5, there is no formula for the roots, similar
to the quadratic formula, involving only the four basic operations and the taking
of roots, that applies to all polynomials of degree n. More specifically, we have

Corollary 13.7.4 Let n > 5 and consider the generic polynomial p(x) =
Yo + T + -+ ypx", where yo, ...y, are algebraically independent over Q.
Then there is no algebraic formula, involving only the five basic operations, the
elements of Q and the variables vy, ...,y,, with the property that for any
polynomial f(x) = ap+ a1x + -+ + a,z™ of degree n over F, we can get a
root of f(x) by replacing y; in the formula by a;, for alli =0,...,n. O

Exercises
1. Prove that if H <G then G is solvable if and only if H and G/H are
solvable.

2. Prove that if Ry < Ry < --- < R,, is a radical series, then there is a radical
series that is a refinement of this series (formed by inserting additional
intermediate fields) for which each extension has prime exponent.

3. Prove that if F < E is solvable by radicals and o € homp(F, E) then
F < oF is also solvable by radicals.

4. Calculate the Galois group of the polynomial f(z) = 2° — 42 + 2. Is there
a formula for the roots?

5. Prove that if f(z) is a polynomial of degree n over F' with Galois group
isomorphic to S, then f(x) is irreducible and separable over F'.

6. While the class of (finite, separable) solvable extensions is distinguished,
show that the class of Galois solvable extensions does not have the tower
property, and so is not distinguished. Hint: use the Feit-Thompson result
(Theorem 13.1.2) and the proof of Theorem 11.5.1.

7. Prove that a finite separable extension F' < E of characteristic p is solvable
by radicals if and only if there exists a finite extension F' < R with
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F < E <R and a radical series {R;} for ' < R in which each step

R; < R;;1 is one of the following classes:

1) Ry = Ri(w;) where w; is an r;th root of unity with r; prime and
i # D.

2) Riy1 = Ri(a;) where q; is a root of 2"t — u, with u € R;, r; prime and
Ti # P

3) Riy1 = Ri(8;) where (3; is a root of the irreducible polynomial
P — x — u, withu € R;.

8. Prove Theorem 13.7.2. Hint: for part 2), consider the normal closure of
C'(a), where « is an obtainable root of f(x).

Casus Irreducibilis

Cardano's formula for the cubic equation z* + px + ¢ = 0 is

W N R )

This formula does not always yield a “satisfactory” solution, especially to the
interested parties of the 16th century. For instance, the equation 23 4+ —2 =0
has only one real solution x = 1, but Cardano's formula gives

3 2 /7 2 /7
=14+ 24/ 1-2%2,/L
v \/ +3\/Q+\/ 3\/g

(which must therefore equal 1, a handy formula to remember). The most serious
“problem” with Cardano's formula comes when

P\? L (2)?
0= (2 + (2 <o
3 2
since in this case, the formula contains the square root of a negative number,
something Cardano referred to as “impossible”, “useless” and whose

manipulation required “mental torture”. For instance, the equation
23 — 152 — 4 = 0 has a simple real solution x = 4, but Cardano's formula gives

a::\3/2+ —121+\"‘/2—\/—121

(which is equal to 4). Cases where d < 0 are known as casus irreducibilis and
were the subject of much debate in the 1500s. Efforts to modify the formula for
the solution of a cubic with three real roots in order to avoid nonreal numbers
were not successful, and we can now show why. (Actually, this turned out to be
a good thing, since it sparked the development of the complex numbers.)

9. Let f(x) be an irreducible cubic over Q with three real roots. This exercise
shows that no root of f(x) can be obtained by formula if we allow the
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taking of real mth roots only, that is, we show that no root of f(x) is
contained in a radical series that is completely contained in R.

a) Suppose that a root r of f () is contained in a radical series
Q< F<---<F, <R
Let A be the discriminant and let 6 = \/Z . Show that there is a radical
series
Q<E<---<E, <R
containing r with 6 € E;.

b) Show that the radical series in part a) can be refined (by inserting more
intermediate fields) into a radical series in which each step has prime
exponent.

c) Let m+ 1 be the first index such that a root r of f(x) is in E,,11 and
consider the extension FE,, < E,,(r). Show that E,,(r) is a splitting
field for f(x) over E,,.

d) Since F,, < E,; is pure of prime exponent, we have
E,+1 = En(B), where 8 is a root of 2P —u, with p prime and
u € E,,. More generally, prove that if K is a field, u € K and p is a
prime, then the polynomial zP — w is either irreducible over K or
u € KP. Hint: Suppose that f(z) = p(x)q(x) where deg(p) =d < p
and deg(q) = e < p. If g, ..., ay are the roots of p(z) and By, ..., B
are the roots of ¢(z), then

u= (*1)7)]__[047‘]__[57‘
Take the pth power of this and use 37 = u. Then use the fact that
(d,p) =1.

e) Show that u € E? is not possible. (The primitive pth roots of unity do
not lie in R.) Hence, 2P — w is irreducible.

f) Showthatp=3and S = F,, 1.

g) Show that E,, < E,,;1 is normal. What does that say about the roots of
> —u?

Galois' Result

Galois, in his memoir of 1831, proved the following result (Proposition VIII):

“For an equation of prime degree, which has no
commensurable divisors, to be solvable by radicals, it is
necessary and sufficient that all roots be rational functions of
any two of them.”

In more modern language, this theorem says that if f(x) is irreducible and
separable of prime degree p, then the equation f(x) = 0 is solvable by radicals
if and only if F|o, 0] is a splitting field for f(x), for any two roots o and 3 of
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f(z). To prove this theorem, we require some results concerning solvable
transitive subgroups of S, the group of permutations of Z, = {0,1,...,p — 1}.

Any map A,j:Z, — Z, defined by A\.;(x) = ax + b, where a,b € Z, with
a # 0 is called an affine transformation of Z,,. Let aff(p) be the group of all
affine transformations of Z,. Note that aff(p) is a subgroup of S,. The
translations are the affine maps 7, = A1;. Let trans(p) be the subgroup of
aff(p) consisting of the translations. Let 7 =7, be translation by 1. Two
elements o and 3 of S, are conjugate if there is a o € S, for which
o lao = .

10. a) Show that trans(p) = (7) is a normal subgroup of aff(p).
b) Show that 7 is the p-cycle (01---p—1), that any nonidentity
translation is a p-cycle and that an element o € S), is a p-cycle if and
only if it is conjugate to 7.
¢) Within aff(p), the nonidentity translations are characterized as having
no fixed points, whereas all elements of aff(p) \ trans(p) have exactly
one fixed point.
d) Show that aff(p) acts transitively on Z,.
e) Show that |aff(p)| = p(p — 1) and |trans(p)| = p. Hence, trans(p) is a
Sylow p-subgroup of aff(p) and is the only subgroup of aff(p) of order
.
f)  Show that trans(p), aff(p) /trans(p) and aff(p) are solvable.
11. Prove that if o € S), has the property that oo ~! € aff(p), then o € aff(p).
12. The following are equivalent for a subgroup G of S,
1) G is transitive.
2) G contains a subgroup conjugate to trans(p), that is, () < G, for some
p-cycle 7.
13. The following are equivalent for a transitive subgroup G of .S
1) The only element of G with two fixed points is the identity.
2) @ is conjugate to a subgroup H of aff(p).

We have proved that for a transitive subgroup G of S, the first two statements
below are equivalent. We now add a third.

1) The only element of G with two fixed points is the identity.

2) G is conjugate to a subgroup H of aff(p).

3) G issolvable.

It is clear that 2) implies 3), since a conjugate of a solvable group is solvable.
The next few exercises prove that 3) implies 1).

14. If G is a transitive subgroup of S, show that any normal subgroup
N # {1} of G also acts transitively on Z,,.
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15. Let G be a transitive, solvable subgroup of S,. Then G has a normal series
with prime indices

{1}<]G1<]"'<]G1L—1<]G7LZG

a) Show that Gy = (v), where + is a p-cycle.
b) Show that the only element of G that has two fixed points is the
identity.

We can now return to Galois' result concerning solvability by radicals for a
prime-degree equation f(z) = 0.

16. Prove that if f(z) is irreducible and separable of prime degree p, then the
equation f(x) = 0 is solvable by radicals if and only if F[«, 5] is a splitting
field for f(x), for any two roots o and (3 of f(z).



Part III—The Theory of Binomials



Chapter 14
Binomials

We continue our study of binomials by determining conditions that characterize
irreducibility and describing the Galois group of a binomial ™ — u in terms of
2 x 2 matrices over Z,. We then consider an application of binomials to
determining the irrationality of linear combinations of radicals. Specifically, we
prove that if py, ..., p,, are distinct prime numbers, then the degree of

Q(y/prs - /Pm)

over Q is as large as possible, namely, n™. This implies that the set of all

products of the form
Vo ™

where 0 <e(i) <n—1, is linearly independent over Q. For instance, the
numbers

1,v/3 =335 y/4="22 and /72 = /23032

are of this form, where p; = 2, py = 3. Hence, any expression of the form

ay /3 + agV/4 + ag /72

where a; € Q, must be irrational, unless a; = 0 for all 4.

First, a bit of notation. If u € F, then u'/" stands for a particular (fixed) root of
x" — u. The set of primitive nth roots of unity is denoted by §2,, and wy, always
denotes a primitive kth root of unity.

14.1 Irreducibility

Let us first recall a few facts about the norm. Let /' < E be finite with o € E.
If the minimal polynomial of «

min(a, F) = 2% 4+ ag_ 127 + - + ag
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has roots r1, ..., 74 then
N(a) =]]ri = (-1)"ag

where N = Np(,),r. Note that N(a) € F'. Also, for all § € F(a) and a € F,
we have

1) The norm is multiplicative, that is, for all 5,y € E,
N(By) = N(B)N ()
In particular,
N(B") = N(B)"

for any positive integer n. Also, N(1) = 1.
2) ForaeF,

N(apB) = a’N(B)
and so
N(a) = a®
3) If F < E < L are finite and if & € L then
Nip(a) = Ngjp(Npp(a))

Our technique for determining the irreducibility of a binomial f(z) = 2™ — u
for u € F is an inductive one, beginning with the case n = p prime.

Theorem 14.1.1 Let p be a prime. Then the following are equivalent:

) u¢F?P

2) f(x) = aP — w has no roots in F

3) f(x) = aP — wis irreducible over F'

Proof. It is easy to see that 1) and 2) are equivalent and that 3) implies 2). To
see that 1) implies 3), let o be a root of z” —u in F and assume that
[F(a) : F] =d < p. We wish to show that d = p, which implies that f(z) is
min(a, F') and is therefore irreducible. Since a? = u, taking the norm N =
NF(a)/F gives

IN(@)" = N(a?) = N(u) = u

where N(«) € F. Now, if p < d then (d, p) = 1 and there exist integers a and b
for which ad + bp = 1. Hence

u = uaderp — uadubp — N(a)apubp c FP

which is a contradiction. Thus p = d, as desired.[]
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To generalize this to nonprime exponents, assume that
n="Ppo " Pi-1

is a product of not necessarily distinct odd primes. (We will consider the even
prime later.) Let us write u as ag and

fl@)=2" — «
where oy € F. Let 3 be aroot of f(z) in F and write n = pymy. Then
flz) = (&™) —ag
Hence, ay = 3" is a root of x? — oy and [ is a root of

mo

go(x) =2™ — oy

and we have the tower
F =F() < F(ag) < F(B)

Repeating the process with go(z), if mg = pym4, then

g(e) = @) —
S0 ap = (8™ is aroot of P — oy and [ is a root of

gi(x) =2™ — ag
over F'(as) and we have the tower
Flag) < F(ar) < F(az) < F(B)
Clearly, we can repeat this process as desired to obtain a tower
Flag) < Fla) < Flag) < - < Flag1) < F(ag) = F(B)

where «; = 3, and where each step F'(«;) < F(«;41) has the property that a4
is a root of the binomial z” — «; of prime degree over F'(«;).

Now, the binomial =" — w is irreducible if and only if
[F(B): F]l =n=py - p

and this happens if and only if each binomial P — «; is irreducible, which
according to Theorem 14.1.1, is equivalent to the conditions

(64 ¢ F(Oéi)pi (1411)

foralli =0,...,t — 1. Let us improve upon these conditions.
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First, note that if a; € F(a;)¥, that is, if o = ¥ for v € F(a;), then
Ne(o)/F(a0) (@) = Ne() /() (V) = Ny /e (V)" € F*

Hence, (14.1.1) is implied by the following conditions, which involve
membership in a power of the base field only

NF(a)/F(ay) (i) & F” (14.1.2)

for + =0,...,t — 1. Thus, under these conditions, each binomial =¥ — q; is
irreducible, with root ;1 1, and so

NE(ap)/Flay(@iv1) = —(=1)

for i =0,...,t —1. Assuming that all the primes p; are odd or that
char(F') = 2, this can be written as

Np(ai)/Fla) (@is1) = o (14.1.3)
fori =0,...,t — 1. For¢ = 0, this is
NE(ay)/Flag) (1) = ag
Fori =1, we get
Np(ay)/F(ar)(02) = a1
and applying the norm and using the case ¢ = 0 gives

NE(ay)/F(a0) (@2) = NE(ay)/F(ag) (NF(an)/F(ar) (2))
= Np(a,)/Flag) (1)
= aU

In general, if Np(q,)/r(ay) (@) = cu, then applying the norm to (14.1.3) gives

NE(ai)/Flan) (@it1) = NE(a)/F(ao) (NF(ar)/Flag (1))

= Nr(a,)/F(ag) (@)
=y
Thus,
Np(as)/Flag) (@it1) = ag
fori =0,...,t — 1 and we can rephrase the conditions (14.1.2) as

oy ¢ FP

fori =0,...,t—1.
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Theorem 14.1.2 [f n = py---p—1 is a product of not necessarily distinct odd
primes, then the binomial x" — u is irreducible if

oy ¢ FP
fori=0,...,t—1.00

Let us now turn to the case where n = 2° and write
fs(z) = ¥ —u

for u € F. As seems often the case, the even prime p = 2 causes additional
problems. To illustrate, if 0 # b € Q, then for any s > 2

a2 Ab = (22 4 2027 + 20%) (22 — 2b2 T + 207)

and so the binomial 22" + 4b* is reducible even though u = —4b* ¢ Q2. Thus,
for s > 1, we must at least include the restriction that u # —4b* for any b € F,
that is, that u ¢ —4F™. It turns out that no further restrictions are needed.

Theorem 14.1.3 Let F be a field and 0 # u € F.

1) x% — wis irreducible if and only if u ¢ F?

2) For s> 1, the binomial f,(z)=x* —u is irreducible if and only if
ug¢ F?andu ¢ —4F*

Proof. Part 1) is clear. For part 2), assume that f,(x) is irreducible, where

s > 1.If u = ~? for some v € F, then

95 9s-1

+7)
is reducible. Hence, u ¢ F?. Also, if u = —4~* for v € F, then
fo(x) = 2% + 44"

factors as above. Hence, u ¢ F? and u ¢ —4F*,

flw) =2 —u=2" =7 = (" =)@

For the converse, we show that the conditions v ¢ F? and u ¢ —4F* imply that
fs(z) is irreducible for all s > 1, by induction on s. We have seen that this
holds for s = 1. Assume that it holds for all positive integers less than s > 1.
Let 8 be aroot of f;(x) in a splitting field and write

fula) = @) —u

s—1 . .
Hence, o = 5% is aroot of 2 — w and 3 is a root of

and we have the tower
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The lower step has degree 2 since u ¢ F2. As to the upper step, if a ¢ F(a)?
and o ¢ —4F ()%, then the induction hypothesis implies that g(z) is irreducible
over F'(a), in which case

[F(B): F]=2-2"1=2°

which implies that 2) holds. Hence, we need only consider the two cases
wherein these hypotheses fail.

If a € —4F(a)?, that is, if o = —4+*, for some v € F(a), we claim that
a € F(a)? as well. The problem is that —1 may not be a square in F'(c). But
taking norms N = Np(,)/r gives

—0? = N(a) = N(~47") = 16[N (7)) = @

where a € F. Hence, —1 = a?/a? € F(a)?. It follows that
4 a® 2
a=—4~" = 4?7 € F(a)

So, if either condition fails, then o = 72 € F(a)? for some v € F().

95

We must show that this implies that fi(z) = 2* — u is irreducible over F.

Applying the norm N = Np(,)/r gives
—u= (—1N(a) = N(+) = [N()]? = b* € F*
where N () = b € F. Since u ¢ F?, it follows that —1 ¢ F2. In other words, if
iisarootof x? + 1in F, theni ¢ F. Over F(i), we have the factorization
fla)=a¥ —u=2 4= (@ +ib)a* —ib) (1412

If both of the factors on the right side are irreducible over F'(i), then f(x)
cannot factor nontrivially over F', because each irreducible factor of f(x) over
F', being over F'(i) as well, would be a multiple of one of the irreducible factors
on the right of (14.1.2) and so would have degree greater than 2°~!. But two
such factors would then have product of degree greater than 2°. Thus, in this
case, f(x) is irreducible over F.

On the other hand, if one of the factors in (14.1.2) is reducible, the induction
hypothesis implies that one of ib or —ib is in either F(i)?> or —4F(i)* =
432 F (i)* C F(i)%. Thus, in either case, one of ib or —ib is in F'(i)?, say

+ib = (c + di)* = c* + 2cdi — d?

Thus, ¢® =d? and b% = 4c¢2d? = 4¢*. Tt follows that u = —b% = —4c?, a
contradiction to the hypothesis of the lemma. Hence, this case does not occur.C]

Now we can prove the main result of this section.
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Theorem 14.1.4 Let n > 2 be an integer and let O # u € F.

D) If4)n, then f(x) = x" — w is irreducible over F if and only if u ¢ F? for
all primes p | n.

2) If4|n, then f(x) = a™ — u is irreducible over F if and only if u ¢ F? for
all primes p | n and u ¢ —4F*,

Proof. Assume first that f(x) is irreducible. Then for any prime p | n, the

polynomial z? —w is irreducible, for if z? —u = a(x)b(z) is a nontrivial

factorization, then 2" —u = (z"/?)? —u = a(z™?)b(z"/?) is a nontrivial

factorization of f(z). Hence, by Theorem 14.1.3, u ¢ F? for any p | n. Also, if

4 | n then the polynomial z* — u is irreducible and so again by Theorem 14.1.3,

u ¢ —4F*. Alternatively, we have a direct factoization

fl@) =o'+ 49" = (@ + 2927 + 29°) (27 — 292" + 277)

For the converse, assume that u ¢ F? for all primes p | n and that when 4 | n,
we also have u ¢ —4F*. We proceed by induction on n. If n = 2, the result
follows from Theorem 14.1.3. Assume that the theorem is true for integers
greater than 1 and less than n. If n = 2™, where m > 1, then Theorem 14.1.3
applies. Otherwise, n has an odd prime factor p. Suppose that n = p*m where
(p,m)=1land k > 1.

Let 3 be a root of 2 — u = (2P )™ — u. Then v = 37 is a root of 2™ — u and
[ is a root of

gz) =2" —a

The induction hypothesis implies that ™ — u is irreducible over F' and so the
first step in the tower

F < F(a) < F(B)
has degree m. If g(z) is irreducible over F'(«), then the second step will have

degree p*, whence [F(3): F] =mp* =n and f(x) = min(3, F), which is
irreducible.

We apply the inductive hypothesis to show that g(x) is irreducible. Since p is
odd, we need only show that o ¢ F(a)?. If oo =~ for some v € F(«) then
taking norms N = Np(,)/r gives

—u=(=1)"N(0) = (-1)"N (") = (1" [N

If m is odd, we get u = [N ()]? € F, a contradiction. If m is even then since p
is odd, we have u = [-N(v)]’ € F?, again a contradiction. Hence, « ¢
F(a)?, g(x) is irreducible over F'(«) and f(z) is irreducible over F. O
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14.2 The Galois Group of a Binomial

Let us now examine the Galois group of a binomial 2" — u over F', for u # 0
and n relatively prime to expchar(F'). If « is a root of " — v and w € (2, then
all the roots are given by

and so S = F(w, ) is a splitting field for ™ — u over F'. Moreover, in the
tower

F<Fw)<Flwa)=S (14.2.1)
the first step is a cyclotomic extension, which is abelian since its Galois group is

isomorphic to a subgroup of Z;. The second step is pure of type n and so,
according to Theorem 12.1.1, it is cyclic of degree d | n and

min(a, F(w)) = ¢ — ¢

Despite the abelian nature of the lower step and the cyclic nature of the upper

step, the full extension (14.2.1) need not be abelian.

The fact that o and w both satisfy simple polynomials over F' is the key to
describing the Galois group G (S). Since any o € Gr(S) must permute the
roots of 29 — o, there exists an integer k(o) € Z; C Z, for which

k(o)

oo = W (0%

Moreover, since F'(w) is a normal extension of F', the restriction of o to F'(w) is
in Gp(F(w)) and therefore o sends w to another primitive nth root of unity, that
is,

ow =
where j(o) € Z;.
Multiplication in G (.S) has the following form. For o, 7 € Gr(S),
ora = o(WMa) = WOFD WO g = Ok HE) o
and
oTw = o) = i)

There is something reminiscent of matrix multiplication in this. Indeed, let M,
be the set of all matrices of the form

10 . *
s {19 |rezuie)

Since
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1 0][1 o] [ 1 0
kgl LK 71 [k+K ji

we see that M, is a subgroup of the general linear group GL»(Z,) of all
nonsingular 2 x 2 matrices over Z,. Comparing this product with the action of
the product o7 shows that the map ¢: Gr(S) — M,, defined by

Vo [/f(la) ]8,)]

satisfies
AoT) = A(o)A\(T)

and is, in fact, a monomorphism from G (.S) into M,,.

Since |[M,,| = n¢(n), where ¢ is the Euler phi function, the map A is surjective
if and only if

[S: F] = |Gp(S)| = né(n)
But in the tower
F<Fw) < Flw,a)=3_5

we always have [F(w): F] < ¢(n) and [F(w,a): F(w)] < n. Hence ¢ is
surjective (and an isomorphism) if and only if equality holds in these two
inequalities.

Theorem 14.2.1 Let n be a positive integer relatively prime to expchar(F). Let
S be the splitting field for ™ — u over I, where 0 # u € F. Let o be a root of
" —uand w € Q,. In the tower

F<Fw)<Flwa)=S

the first step is a cyclotomic extension and the second step is cyclic of degree
d | n with min(a, F(w)) = 2¢ — a. Also, Gp(S) is isomorphic to a subgroup
of the group M, described above, via the embedding

Vo [k(lo> j{;)]

where oo =W and ow=w!"). The map X\ is an isomorphism and
Grp(S) = M, if and only if both steps in the tower (14.2.1) have maximum
degree, that is, if and only if

D [Fw): Fl=¢(n)

2) [F(w,q): F(w)] =n, or equivalently, x" — w is irreducible over F(w).O

k(o)
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A Closer Look

There are two issues we would like to address with regard to the previous
theorem. First, statement 2) is phrased in terms of F'(w) and we would prefer a
statement involving only the base field F'. Second, we would like to find
conditions under which G (S) is abelian.

We will see that for n an odd integer relatively prime to expchar(F'), we can
replace condition 2) with the condition that ™ — w is irreducible over F'. With
respect to the commutativity of Gp(S), we will derive a general necessary and
sufficient condition. However, we will first prove a simpler result; namely,
assuming that [F(w): F] = ¢(n), then Gp(S) is abelian if and only if the
second step in (14.2.1) is trivial, that is, if and only if 2 — u splits over F'(w).

The Prime Case

We first deal with both issues for n = p prime. Recall that according to
Theorem 14.1.1, the following are equivalent:

) ugFr

2) f(x) =P — uhas noroots in F'

3) f(z) = 2P — wisirreducible over F'

Over the base field F'(w), which contains all the pth roots of unity, we have
[S : F(w)] =1 or p and the following are equivalent:

D [S:Fw]=p

2) u¢ F(w)?

3) P — u has no roots in F'(w)

4) 2P — u does not split over F'(w)

5) P — wis irreducible over F'(w)

The next lemma ties these two situations together, and strengthens statement 2)
of Theorem 14.2.1 for n prime.

Lemma 14.2.2 Let p be a prime and let w € ), Then xP — w is irreducible over
F(w) if and only if it is irreducible over F.

Proof. Certainly, if 2™ — u is irreducible over F'(w), it is also irreducible over
F'. For the converse, consider the tower

F < F(w) < F(w,a)
Since z” — w is irreducible over F', we have
p|[F(w,a): F]
On the other hand, the first step in the tower has degree at most ¢(p) =p—1
and the second step is cyclic of degree d | p, whence d =1 or p. Hence

[F(w, @) : F(w)] = p, which implies that 2? — v = min(«, F'(w)) is irreducible
over F(w). O
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As to the question of when the Galois group G (S) is abelian in the prime case,
since both steps in the tower

F<Fw) < Flw,a) =8

are abelian, if either step is trivial, then G (.S) is abelian. Thus, if w € F or if
a € F(w) then Gp(S) is abelian. The converse is also true when n is prime.

Lemma 14.2.3 Let p be a prime and let w € Q.. Let S be a splitting field for
P — u over F. Then the Galois group Gr(S) is abelian if and only if at least
one step in the tower (14.2.1) is trivial, that is, if and only if either w € F' or
aP — w is reducible over F'(w).

Proof. As mentioned, if one step is trivial then G (.5) is abelian. Suppose now
that w ¢ F' and 2P — w is irreducible over F'(w). Since w ¢ F, it has a conjugate
w/ # w that is also not in F'. Let 7 € Gp(F(w)) be defined by 7w = w’. Since
aP — v is irreducible over F'(w), for each i € Z,,, the map 7 may be extended to
amap o; € Gp(S) defined by

oiw=uw,0;a0=uw'a

For ¢ = 0 and 1, we have

01000 = 0100 = WX
and
opor1a = op(wa) = W

and these are distinct since w # «w’. Hence, o7 and oy do not commute and
Gr(S) is not abelian.

The General Case

Armed with the previous results for n prime, we consider the general case. We
use the following fact.

Suppose that p(x) € F[z] splits over F' and has a nonabelian splitting field
extension F' < S. Then if F' < A is abelian, p(x) cannot split in A because
otherwise, there would be a splitting field 7" of p(x) satisfying F' < T < A. But
F < A abelian implies that the lower step F' < T is abelian and since all
splitting fields for p(x) over F' are isomorphic, this contradicts the fact that
F < S is nonabelian.

Theorem 14.2.4 Let n be an odd positive integer relatively prime to
expchar(F). Let w € Q, and suppose that F contains no nth roots of unity
other than 1. Let F' < A be any abelian extension. Then x" — u is irreducible
over F if and only if it is irreducible over A.

Proof. Clearly, if " — u is irreducible over A, it is also irreducible over the
smaller field F'. Suppose that " — u is irreducible over F'. Then for every
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prime p | n, the polynomial ¥ — w is irreducible over F' and therefore also over
F(w,), by Lemma 14.2.2. Now, if 2 — u were reducible over A, then it would
have a root in A and since F' < A is normal, ¥ — » would split over A.

But since F' does not contain any primitive pth roots of unity, then if «;, is a root
of P — w in a splitting field, the tower

F < F(wp) < F(wp, )

has nontrivial steps and so is nonabelian by Theorem 14.2.3. It follows from
previous remarks that z¥ — u cannot split over the abelian extension A. Hence,
P — wu is irreducible over A for all primes p dividing n and so " — u is
irreducible over A.00

If [F(w) : F] = ¢(n), then F cannot contain any primitive pth roots of unity for
any p | n, and so it cannot contain any nth roots of unity other than 1. Thus,
since F' < F(w) is an abelian extension, we may apply Theorem 14.2.4 to get
the following strengthening of Theorem 14.2.1, for n odd.

Corollary 14.2.5 Referring to Theorem 14.2.1, let n be an odd positive integer
relatively prime to expchar(F). Then G (S) =~ M,, if and only if [F(w) : F] =
od(n) and x™ — w is irreducible over F.[1

Since [Q(w) : Q] = ¢(n), we have the following corollary.

Corollary 14.2.6 Referring to Theorem 14.2.1, if F =Q and n is an odd
positive integer then Gg(S) =~ M,, if and only if " — w is irreducible over
Q.O

Thus, when F' < F'(w) has the largest possible degree ¢(n) (which includes the
important special case F' = Q), we see that Gp(S) =~ M,, ifand only if 2" — u
is irreducible over F'. We show next that Gy (.S) is abelian if and only if 2" — u
splits over F'(w), or equivalently, 2" — « has a root in F'.

Note that for any positive integers a and b, we have
Fwa, u") < F(wap, ul/“b)

This follows from the fact that since (ul/ab)b is 2 root of 2% — u and since
wgb € €, all the roots of z° — u lie in F(wgp, u'/®).

Theorem 14.2.7 Let n be an odd positive integer relatively prime to
expchar(F'). Let S be the splitting field for x™ — u over F, where 0 # u € F.
Suppose that [F(w): F] = ¢(n) where w €y, Then the following are
equivalent.

1) Gp(S) is abelian
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2) x" — u has arootin F

3) a"™ —w has a root in F(w) [and therefore splits over F (w)]

Proof. Clearly, 2) = 3) = 1). We must show that 1) implies 2). Suppose that
Gp(S) is abelian and let k be the largest divisor of n for which u € F* that is,
u = f¥ for some f € F. The proof will be complete if we show that k = n,
since u = f € F" implies that f is a root of x” — u in F.

If k < n, let p be a prime dividing n/k and consider the tower
F < F(w,) < F(wy, f/?) < Flw,u/") = 8

Note that x? — f is irreducible over F', for if not, then f = ¢g? € F? for some
g € F, whence u = f* = g?* € FP* in contradiction to the definition of k.
Hence [F(f'/?) : F] = p and since [F(w,) : F] < p — 1, we deduce that neither
of the first steps is trivial. Hence, Lemma 14.2.3 implies that the Galois group
Gr(F(w,, f1/7)) is not abelian. But this is a contradiction to 1).00

In the exercises, we ask the reader to provide a simple example to show that
Theorems 14.2.4 and 14.2.7 fail to hold when n is even.

More on When G (S) Is Abelian

We conclude this section by generalizing the previous theorem, in order to
characterize (for n odd), with no restriction on the lower step, precisely when
Gr(S) is abelian. The proof follows lines similar to that of Theorem 14.2.7, but
is a bit more intricate and since it involves no new insights, the reader may wish
to skip it on first reading. However, the result is of interest since it shows how
the relationship between the nth roots of unity and the ground field F' play a
role in the commutativity of Gp(S). We first need a result that is of interest in
its own right. The proof is left as an exercise.

Theorem 14.2.8 Let ©" — a and x™ — b be irreducible over ' and suppose that
F contains a primitive nth root of unity. Then x" — a and " — b have the same
splitting field over F if and only if b = c"a" for some c € F and r relatively
prime ton. [J

Note that if I is a field and U, is the group of nth roots of unity over F, then
U, N F* is a (cyclic) subgroup of U,, and so is U,,, for some m | n.

Theorem 14.2.9 Let n be an odd positive integer relatively prime to
expchar(F'). Let U, be the group of nth roots of unity over F' and let U,, =
U, N F*. If S is the splitting field for ©" — u, where 0 # u € F, then Gr(S) is
abelian if and only if u™ € F™.

Proof. Since U, = (wy,) is cyclic, it follows that w; € F' if and only if ¢ | m.
Suppose first that u™ = f" for some f € F. Then
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1/n _  k 1/m
u - wmnf

for some integer k. (More precisely, given any nth root u!/" of n and any mth

root f1/™ of £, there exists a k such that this equation holds.) The field F'(f'/™)
is cyclic over F, since the latter contains a primitive mth root of unity w,,.
Therefore, since the extensions F < F(w,,) and F < F(f'™) are both
abelian, so is the extension

F < F(wmn)F(fl/m) = F(Wmnv fl/m) = F(Wmmul/n)

Finally, since F' < S < F(wyn, u'/™), it follows that F' < S is abelian.

For the converse, assume that Gr(.S) is abelian. Let k be the largest positive
integer such that m | k, k | n and u™ € F*, say u™ = f* for f € F. We need to
show that & = n. Suppose to the contrary that k < n and let p be a prime
number dividing n/k. Let p° be the largest power of p such that p® | m. (As an
aside, the hypothesis that n is odd and [F(w) : F] = ¢(n) in Theorem 14.2.7
implies that m = 1, whence s = 0.)

The first step is to show that the extension

s+1

F < F(wp, f77)

is abelian. It is clear that the notation is a bit unwieldy, so let us set ¢ = p
and note that ¢ | n since p° | m | k and p | (n/k). To see that this extension is
abelian, we embed it in an abelian extension. Since

s+1

(fl/Q)kq — fk — " = (um/kq)kq
we have f1/7 = w,iqu"”/kq for some j and so
F(Wflv fl/q) < F(qua fl/q) = F(wkqa Um/kq)

Now, since p | (n/k), there is a positive integer a for which apk = n, and since
p® | m, it follows that

mn mmn mapk  ma

k7q T kptt T kpotl ?

is a positive integer. Hence,

V= (ul/n,)nm/kq

is a root of z*¢ — v that lies in F'(wy,, u'/™). Hence, all roots of 24 — u™ are
contained in F'(wy,, u'/"), that is,

F(whg, u™M) < F(wpg, u'™)

Putting the pieces together gives
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F < F(w(“fl/q) < F(wkq’um/kq) < F(wkq,ul/n) < F(wkq)F(w,L,ul/”)

Since F' < F(wy,) and F < F(w,,u'/") are abelian (the latter by assumption),
the composite

F < F(wrg) F(wn,u'™)
is abelian and therefore so is
F < F(wg, f9)
We now propose to arrive at a contradiction by considering the tower
F < F(w,) < F(w,, f1/7)

Note that ¥ — f is irreducible over F', since otherwise f = g” € F? for some
g € F,whence u™ = f* = g** € FP* in contradiction to the definition of k.

We first take the case s = 0, whence g = p. Since x? — f is irreducible over F,
we have

[F(wp, f7) : F1 > p

Since pfm, it follows that w, ¢ F' and so the lower step F' < F'(w,) is not
trivial. However, since [F/(w,) : F] < p—1 < [F(w,, f'/?) : F], the upper step
in the tower is also not trivial. Hence, Lemma 14.2.3 implies that the Galois
group H = Gp(F(w,, f'/?)) is not abelian, the desired contradiction.

Now assume that s > 0. With regard to the first step in the tower, since p and
r = p* both divide m but ¢ = p**! does not, it follows that w,,w, € F' and
Wy ¢ F. Since w, € F, the binomial z? — w, is either irreducible over F or
splits over F'. But w, is a root of this binomial that is not in F’ and so z” — w;, is
irreducible over F'.

Since the roots of x? — w, are

—1

Wy, Wrlg, - -, wE Wy

for each j € Z,, there is a 0; € Gp(F(w,)) for which 0w, = wiw,. To show
that G r(F(w,, f1/9)) is not abelian, we shall need only oy = ¢ (the identity) and
011 Wy — Wywy.

There are two possibilities for the second step in the tower. If 27 — f € F[z] is
irreducible over F'(w,) then we can extend oy and o; to elements of
Gr(F(w,, £1/9)) by defining

. . rl/q 1
00,1: Wq F Wy, JO,Lf /9 wqf /1
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and

01,01 Wy — Wy, 010 fl/q — fl/q
Then

o01010f 1 = 001 f1 = w, fH1
and

10001 f1 = o10(w 1) = wwg £/

which are distinct since w, # 1. Hence, Gr(F(w,, /7)) is not abelian, a
contradiction.

If 27 — f is reducible over F'(w,) then f € F(w,)?. Thus f = ” for some 3 €
F(w,) and so F'(f) < F(wg). Since P — w, and z? — f are both irreducible
over F, it follows that [F'(w,): F] = p and [F(8) : F] = p, whence F(w,) =
F(pB). Thus, P — f and 2? — w, have the same splitting field over F' and
Theorem 14.2.8 implies that

=i
for some v € F'. Taking kth powers gives, since r | k,
um = fk = wfjvk‘n = Ukp

for v € F, which contradicts the definition of k. Thus, kK = n and the theorem is
proved. (I

*14.3 The Independence of Irrational Numbers

A familiar argument (at least for p = 2) shows that if p is a prime number then
/P ¢ Q and so [Q(,/p) : Q] = 2. Our plan in this section is to extend this
result to more than one prime p and to nth roots for n > 2. Since the case in
which n is even involves some rather intricate details that give no further insight
into the issues involved, we will confine our attention to n odd. (The case n = 2
is straightforward and we invite the reader to supply a proof of Theorem 14.3.2
for this case.) If & > 0 is rational, the notations \'/a and o'/" will denote the
real positive nth root of . The results of this section were first proved by
Bescovitch [1940], but the method of proof we employ follows more closely that
of Richards [1974].

Lemma 14.3.1 Let v = a/b be a positive rational number, expressed in lowest
terms, that is, where (a,b) = 1 and a,b > 0. If n > 2 is an integer then
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ﬁ € Qifand only if a = ¢" and b = d" for positive integers ¢ and d

In particular, if p is a prime, then y/p ¢ Q.
Proof. One direction is quite obvious. Suppose that

c\" a
() =3
where ¢ and d are positive integers and (¢,d) = 1. Then ad™ = bc" and since
(a,b) =1, it follows that a | ¢", say ¢" = ax, and b | d", say d"” = by. Hence,
ax /by = a/b, which implies that x =y. It follows that x | ¢" and x | d",
whence x =y = landsoa = ¢" and b = d".[0

Suppose now that n is odd and p is prime. Since p ¢ Q" for any prime r | n,
Theorem 14.1.4 (or Eisenstein's criterion) implies that 2" — p is irreducible over
Q and so [Q(p"/™) : Q] = n. Let us generalize this to more than one prime.

Theorem 14.3.2 Let n > 2 be an integer and let py, ..., p, be distinct primes.
Then

[@(Wy,(/m)Q] =n"

Proof. As mentioned earlier, we confine our proof to the case that n > 3 is odd.
Letw € ©,. Since

QW) (/Prs -5 /Pm) = Q)] < [Q(RY/D1s -+, /D) : Q < 0™
it is sufficient to show that
Q) (/P1, - /D) : Qw)] = n™

which we shall do by induction on m.

Let p be a prime. Since z™ — p is irreducible over Q and Q contains no nth
roots of unity other than 1, Theorem 14.2.4 implies that z" — p is also
irreducible over Q(w). Hence,

[Qw, /) : Q)] =7

and the theorem holds for m = 1.

Now let us suppose that the theorem is true for the integer m and let p be a
prime distinct from the distinct primes py, ..., p,. Let

F =Q(w)and E = Q(w)({/p1, -+, /)

If 2™ — p is not irreducible over E then there exists a prime r | n such that
p'/" € E. Thus, p'/" is a linear combination, over Q(w), of terms of the form
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n/p(;,(l)7 o n/ngm)
where 0 < e(i) < n — 1. There are two cases to consider.

Case 1: If the linear combination involves only one term, then

( 771
p = \/pl \/pQ \/ DPm

where ¢ € Q(w) and not all e(¢) are 0. If n = rd, this can be written in the form

d

p
e(1) e(m) € Q(w)
P Pm

This says that the radicand; call it g, is a positive rational number and the
polynomial z™ — ¢ has a root in Q(w). According to Theorem 14.2.7, 2" — ¢
must also have a root in Q, which is not possible since ¢ does not have the form
a™/b", for relatively prime integers a, b. Hence, this case cannot occur.

Case 2: At least two terms in the linear combination are nonzero. It follows that
one of the primes p;, which we may assume for convenience is p,,, appears to
different powers in at least two distinct terms. Collecting terms that involve like
powers of p,, gives

= Ao+ Apl/m + AgpPm o A, pln V) (14.3.1)

where A; € Q(w)(v/p1,-..,v/Pm) and where at least two of the A;'s are
nonzero. Now, since

Qw) < QW)(/p1; -+, /Pm)

is a Galois extension (this is why we adjoined w in the first place), the inductive
hypothesis implies that its Galois group G has size n'. Since any o € G must

send roots of 2" — p; to other roots, it must send p; Um0 Wi p; /™ for some choice
of j; € {0,...,n — 1}. Since there are n™ such choices, all these choices must
occeur.

Thus, there is a ¢ € G for which ¢ is the identity on Q(w)(y/p1, ..., v/Dm) and

1/n

opl/ 1/n

— wpl/
Since op" = w¥p" for some 0 < k < n — 1, applying o to (14.3.1) gives
W" ‘pt = Ay + Alwpl/” + A, w2 7271/" 4+t An,1w7l’_lp£:’_l)/7"

We now multiply (14.3.1) by «"* and subtract the previous equation to get
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0= (@ = Ao+ (W — W) Alf" + 4+ (W — w0

where at least one of the coefficients (w* — w')A; is nonzero. This is a

contradiction to the inductive hypothesis. We have therefore established that
2" — pis irreducible over E and the proof is complete. []

Exercises

1. Letn be relatively prime to char(F"). Show that the group

10 N
M”_Hk j]‘keZn,yeZn}

is generated by two elements o and 7, where o(0) =n, o(7) = ¢(n) and
oro~t =77, What is r?

2. (Van der Waerden) Let n be relatively prime to char(F’). Show that the
Galois group of z" — w is isomorphic to a subgroup of the group G of
linear substitutions modulo n, that is, maps on Z,, of the form x — cx + d
where d € Z,, c € Z;,.

3. Letz" —u € GF(q)[x]. Show that the following are equivalent:

a) 7| n,rprime implies u ¢ GF(q)"
b) r|n, r prime implies r | o(u) but rf (¢—1)/o(u) where o(u) is the
multiplicative order of u in GF(q).

4. Prove the following without using any of the results of Section 14.1. If u €
F and (m,n) = 1 then ™" — w is irreducible over F if and only if 2 — u
and " — u are irreducible over F'.

5. Let char(F) = p# 0 and let F' < E be cyclic of degree p*, with Galois
group G = (o). If there exists a 3 € E with Trg,p(3) = 1 show that there
exists an « € E for which the polynomial f(x) = 2P — x — « is irreducible
over E.

6. Let char(F) = p >0 and let n = p°m where (m,p) = 1. Show that the
Galois groups of

2" —u and 2" —uP
are the same.

7. Let n be a positive integer relatively prime to expchar(F') and let w be a
primitive nth root of unity over F. Let S = F(w, u'/™) be the splitting field
for f(z) = 2" — u over F, where u € F, u # 0. If 4 | n and if u'/? ¢ F
then G (.59) is not abelian.

8. Show that Theorem 14.2.4 and Theorem 14.2.7 fail to hold when n is even.
Hint: \/2 € Q(w), where w is a primitive 8th root of unity.

9. Prove the following: Let f(z) be a monic irreducible polynomial of degree
m over F, with constant term —ag. Let n > 2 be an integer for which
(m,n)=1,4}fn and ag ¢ F", for all primes r | n. Then the polynomial
f(z™) is also irreducible over F'.
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10.

11.

12.
13.

14.

Field Theory

Let w be a primitive nth root of unity over F', n odd, and let « be a root of

2™ —u over F. Then S = F(w, ) is the splitting field for 2™ — u. Assume

that Gp(S) ~ M,. In this exercise, we determine the largest abelian

subextension F'® of S.

a) If G is a group, the subgroup G’ generated by all commutators
aBa'B7L, for a, B € G, is called the commutator subgroup. Show
that G’ is the smallest subgroup of G for which G /G’ is abelian.

b) If the commutator subgroup Gg(E) of a Galois group Gr(F) is
closed, that is, if Gp(E) = Gg(FE) for some F < K < E, then K is
the largest abelian extension of F' contained in E.

¢) The commutator subgroup of M., is

M;’_{{li 2] :kGZn}

and if A is defined as in Theorem 14.2.1, then
1 0 |
MGrpw)(S)) = MGF(9)) NnM, = { [z" 1} RS Zd}
d

where d = [F(w, @) : F(w)].

d) Prove that Gp(S) = Gp(,(S), and so F(w) is the largest abelian
extension of F' contained in F'(w, ).

Prove that if py, ..., p,, are distinct primes then

[(@(\/]71,7 \/ﬁ) . Q] —9om

by induction on m.

Show that /60 ¢ Q(1/42, 1/10).

Let " — a and =™ — b be irreducible over F' and suppose that F' contains a

primitive nth root of unity. Then " — a and " — b have the same splitting

field over F' if and only if b = c"a” for some ¢ € F' and r relatively prime
to n. Hint: if the splitting fields are the same, consider how the common

Galois group acts on a root of each binomial.

Let F' < E be a finite Galois extension and let o, 5 € E have degrees m

and n over F, respectively. Suppose that [F(a, 8) : F] = mn.

a) Show that if o; is a conjugate of o and 3; is a conjugate of 3, then
there is a 0 € Gr(E) such that oo = o; and o = ;. Hence, the
conjugates of « + (3 are o; + ;.

b) Show that if the difference of two conjugates of « is never equal to the
difference of two conjugates of 5 then F'(«, 5) = F(a + ).

c¢) Let r be a prime different from char(F'). Let f(z) =2" —u and
g(x) = 2" — v be irreducible over F, with roots « and (3, respectively.
Show that if [F(«, 8) : F| = 72 then F (o, 3) = F(a + 3).



Chapter 15
Families of Binomials

In this chapter, we look briefly at families of binomials and their splitting fields
and Galois groups. We have seen that when the base field F' contains a
primitive nth root of unity, cyclic extensions of degree d | n correspond to
splitting fields of a single binomial 2" — u. More generally, we will see that
abelian extensions correspond to splitting fields of families of binomials. We
will also address the issue of when two families of binomials have the same
splitting field.

15.1 The Splitting Field

Let F' be a field containing a primitive nth root of unity and consider a family F
of binomials given by

F={z"-u|ueU}

where U C F is the set of constant terms. We will refer to n as the exponent of
the family F.

If S, is the splitting field for 2" — u, then S = \/{S, | v € U} is the splitting
field for the family F. Since each extension I’ < S, is Galois, so is F' < S and
Theorem 6.5.4 implies that G (.S) is isomorphic to a subgroup of the product

H=]][Gr(S.)

uelU

Since each F' < S, is cyclic of degree dividing n, the group H is the direct
product of cyclic groups of order dividing n and so G(S) is abelian with
exponent n. An abelian extension F' < S whose Galois group Gp(S) has
exponent n will be referred to as an abelian extension with exponent 7.

Thus, if F' contains a primitive nth root of unity, the splitting field of any family
of binomials over F' of exponent n is an abelian extension of F' with exponent
n. Happily, the converse is also true.
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Suppose that F' < E is an abelian extension with exponent n. Let K be any
field for which F' < K < E where F' < K is finite. Since F' < F is abelian, so
is F' < K. In addition, Gp(K) is finite and has exponent n. Since a finite
abelian group is a direct product of cyclic subgroups, we have

GF(K) %Gl Xoees XGm

where each G; is cyclic with exponent n and hence order n; | n. Corollary 6.5.5
implies that K is a composite K = K;---K,, where Gp(K;) = G; is cyclic of
order n; | n. Since F' contains the n;th roots of unity and F' < K; is cyclic,
Theorem 12.1.1 implies that K; = F(«;) is the splitting field for

n;

min(ey, F) = 2" — a;

where «; € E. Hence K = F(ay,...,ay,) is the splitting field over F' for the
family

Fr=A{a""—a;|i=1,...,m}
It follows that F is the splitting field for the union | JFf, taken over all finite

intermediate fields K.

Theorem 15.1.1 Let F' be a field containing a primitive nth root of unity. An
extension F' < E is abelian with exponent n if and only if E is the splitting field
for a family of binomials over F' of exponent n. [

Definition Let F' be a field containing a primitive nth root of unity. An
extension F' < E is a Kummer extension of exponent n if F < E is abelian
and has exponent n. [

Thus, according to Theorem 15.1.1, the Kummer extensions of F' of exponent n
are precisely the splitting fields over F' of families of binomials of exponent 7.

15.2 Dual Groups and Pairings

Before proceeding, we need a few concepts from group theory. If A and B are
groups, we denote by hom(A, B) the set of all group homomorphisms from A
to B. Note that hom(A, B) is a group under the product

(A0)(@) = (Ae)(6r)

with identity being the constant map Ao = 1 for all € A.

Lemma 15.2.1
1) If A, BandC are abelian groups, then

hom(A x B, C) ~ hom(A, C) x hom(B, C)
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2) Let U, be the group of all nth roots of unity over a field F'. If A is a finite
abelian group of exponent n, then

hom(A,U,) = A
Proof. We leave it as an exercise to show that the map
P:hom(A,C) x hom(B,C) — hom(A x B,C)
defined by
P, 0)(a; B) = Aa)0(B)

is an isomorphism, proving part 1). For part 2), since A can be written as the
product of finite cyclic groups, part 1) implies that we need only show that
hom(A,U,) = A when A = («) is cyclic. Suppose that A has order m | n. If A
has order m | n, then A € hom(A,U,,) maps A into U,,, since for any « € A,
we have

Aa)" =A(a") =1

Hence, hom(A4, U,,) = hom(A, U,,). Suppose that U,, = (w) and define A €
hom(A,U,,) by setting A(«) = w, which is easily seen to define a group
homomorphism. Then

Ay = {1,302

is a cyclic subgroup of hom(A, U,,,) of order m = |U,,|. But hom(A, U,,,) has
size at most m and so hom(A4,U,) = (\) is cyclic of order m, whence
hom(A4,U,) =~ A.O

Definition I[f' A, B and C' are abelian groups, a pairing of A x B into C' is a

map (,): A x B — C that is a bihomomorphism, that is,

1) Foreach a € A, the map \,: B — C defined by \.(8) = {«, B) is a group
homomorphism.

2) For each 3 € B, the map 03: A — C defined by 03(a) = («, B) is a group
homomorphism. [

A pairing is the analogue of a bilinear map between vector spaces (and is
sometimes referred to as a bilinear map). Note that (1, 3) = (a, 1) = 1 for all
a€Aand B€Band (o,f) ' =(a,8) = (o, ). f SC Aand T C B,
we set

(S,T) = {(s,t) | s€ S, t €T}

(We will write ({a},T) as (o, T) and (S, {3}) as (S, 5).) The left kernel of a
pairing is the set

Kp={a€A|{a,B)={1}}

and the right kernel is defined similarly:
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Kr={8eB[(4,0) ={1}}

It is easy to see that these kernels are normal subgroups of their respective
parent groups.

Note that (ay, 3) = (g, 8) for all 8 € B if and only if (aya; !, B) = {1}, that
is, if and only if alagl € Ky, or equivalently, ayK; = K. Similar
statements hold for the right kernel. Thus, we may define a pairing from
A/Kp x B/Kpto C by

(aKp, BKR) = (o, 3)

and this pairing is nonsingular, that is, both the left and right kernels are trivial.

Theorem 15.2.2 Let {,): A x B — U, be a nonsingular pairing from abelian
groups A and B into U, the group of nth roots of unity over a field F'. Then A
and B both have exponent n and

1) A is isomorphic to a subgroup of hom(B, U,)

2) B is isomorphic to a subgroup of hom(A, U,,)

Moreover, A is finite if and only if B is finite, in which case

3) A=hom(B,U,) and B ~ hom(A,U,)

4) A = B, in particular, |A| = |B.

Proof. First observe that if o € A, then (o, 8) = (a, 8)" =1 for all 5 € B,
and so " € K, whence o = 1 and A has exponent n. A similar statement
holds for B. Now consider the map A — hom(B,U,,) defined by o — A,,
where A\,: 8 — («, ). Since

A(m’(ﬂ) = <O¢O/,ﬂ> = <avﬂ><a/7ﬂ> = Aa(ﬂ))‘a’(ﬂ)

the map a — A, is a group homomorphism from A to hom(B,U,). If A, = 1 is
the constant homomorphism then («,3) =1 for all g € B, that is, « € K,
whence a = 1. Hence, the map o — ), is injective and 1) holds. Similarly, 2)
holds.

It follows from Lemma 15.2.1 that if B is finite, then
|A| < |hom(B, Un)| = |B|

The dual argument shows that |B| < |A| and so |A| = |BJ. This also implies
that the monomorphism « — A, is an isomorphism. []

We can now return to binomials.

15.3 Kummer Theory

While each family of binomials gives rise to a unique Kummer extension,
different families may produce the same extension, that is, different families
may have the same splitting field. We seek a collection of families of binomials
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such that there is a one-to-one correspondence between families in the collection
and Kummer extensions.

Let us phrase the problem a little differently, for which we require some
notation. Recall that if u € F, then by u!/" we mean a particular (fixed) root of
" —u. If A C F, we let A" denote the set of all nth roots of all elements of
A. Also, if A C F and n is a nonnegative integer then A" = {a" | a € A}.

Let F' be a field containing a primitive nth root of unity. Of course, we may
identify a family 7 = {2 — b | b € U} of binomials of a fixed exponent n with
the set U C F™* of constant terms. (Since binomials with zero constant term are
not very interesting, we exclude such binomials.) Moreover, the splitting field
for Fis S = F(UY™).

In seeking a bijective correspondence between sets U C F™* of constant terms
(that is, families of binomials) and splitting fields S = F(U'/"), it is natural to
restrict attention to maximal sets U C F™* that generate the given splitting field.
As we now show, if S = F(Ul/”) for some U C F*, then

S =F(U")

where U’ = (U, (F*)") is the multiplicative subgroup of F* generated by U
and the nth powers (F*)" of elements of F*. To see this, note that any element
of (U, (F*)") has the form a = f"u{'---uf* for ui,...,u; €U and f € F*.
The nth roots of o have the form

and since each of the factors in this product is in F(U'/"), so is the product.
Hence, nothing new is added to the splitting field by increasing the set of
constants to (U, (F*)"), that is,

F([U/]l/n) _ F(Ul/n)

Thus, for sets of constant terms, we may restrict attention to the lattice U, of all
intermediate subgroups U satisfying

(F*)' <U < F*

Indeed, we will show that the association U +— F(U'/") is a bijection from I,
onto the class /C,, of all Kummer extensions E of F' with exponent n. We will
also obtain a description of the Galois group G of F' < E in terms of U.

For U € Uy, let F < F(U'") = S be a Kummer extension with Galois group
G =Gp(9),andleto € Gandu € U. If ais aroot of " — u then o« is also a
root of " — v and so

OO0 = Ws O
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for some nth root of unity wy . We claim that w, , does not depend on «, that
is, o is simply multiplication by an nth root of unity. To see this, if § is another
root of " — u, then § = w'a where w € §2,, and so

wO’,ﬂﬂ = Uﬂ =uwoa = wlwa,u’a = Wa,aﬁ

and 50 W, 3 = Wy q; that is, w, = w, o depends only on o.
It follows that the map (, ): G x U — U, defined by
(o,u) = 72 w,, for any a with o = u
a

is well-defined (does not depend on «) and we may write

Jul/n

— (15.2.1)

(o, u) =
without ambiguity. Moreover, the map (,) is a pairing of G x U into U, that is,
a group bihomomorphism. Specifically, we have (t,u) =1 and (o,1) = 1.
Also,

(oT,u) = % = WTZ(’OZ = Wy, = Ja—a% = (o, u){T,u)
and
_olf) _saah _
(o, uv) = o —a B (o, u){o,v)

The left kernel of this pairing is
Kp={o0eG|ou/"=u"forallu e U} = Gs(S) = {1}
Also, since we are assuming that (F*)" < U,

Kp={ueU|ou/" =u"foralloc € G}
={ueU|u'" e fix(G)}

=U N fix(G)"
=Un(F)"
— (F*)IL
It follows that the pairing (,): G x (U/(F*)") — U, given by
‘o Jul/n
(o, u(E)") = T

is nonsingular. We may thus apply Theorem 15.2.2.

Theorem 15.3.1 Let F be a field containing a primitive nth root of unity and let
U be a subset of an extension K of F. If E = F(U'™), where (F*)" C U, then
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the pairing
(.):Gr(E) x U/(F')" = U,
given by
1/n
(o u(F)") = 2
ul/n

is nonsingular. Also,
1) Gp(E)andU/(F*)" have exponent n
2) |Gr(E)| = [E: F) is finite if and only if (U : (F*)") is finite, in which

[E:F)=(U:(F)"
and
Gr(E) ~hom(U/(F")",U,) O

The previous theorem not only describes the Galois group of a Kummer
extension, but allows us to show that the map U — F (U 1/ ™), from U, to ICy,, is
a bijection.

Theorem 15.3.2 Let F' be a field containing a primitive nth root of unity. Let
K, be the class of all Kummer extensions F' < E with exponent n and let U,, be
the class of all subgroups of F* containing (F*)". Then the map U s F(UY™)
is a bijection from U, onto IC,, with inverse given by E — E™ N F*.

Proof. To show that the map in question is injective, suppose that F(U/") =
F(VY™), with U,V € U,. Ifu € U, then u'/" € F(V/") and so there exists a
finite subset V of V' for which u!'/" € F(VOI/"). Let Vi = (Vg, (F*)") be the
subgroup generated by Vj and (F*)". Then

‘/01/71, C Vvll/n c V1/n
and
ul/n c F(‘/Ol/”) c F(‘/ll/”)

Note that V; € U, is finitely generated (by V;) over F*" and hence (V; : (F™)")
is finite. Theorem 15.3.1 implies that

[FOG™)  Fl = (Vi: (FY)")

Let us now adjoin u. Let V5 = (u, V;) be the subgroup generated by v and V.
Then V5 € U,, and

F(V,!") = F({u, Vi)™ = F({a, ;")) = F(1;")
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Another application of Theorem 15.3.1 gives
(Va: (F)") = (Vi: (F7)")

and since V; C V5 we get V; = V4. It follows that w € V3 C V and since u was
arbitrary, U C V. A symmetric argument gives V C U, whence U = V. This
proves that the map U — F (U 1/ ") is injective. We have seen that any Kummer
extension ' < F in K, is a splitting field extension for a family F of binomials
with exponent n. If C' is the set of constant terms and if U is the subgroup of F™*
generated by C and F*" then E = F(U'/") and so the map is surjective.

Let F' < F be a Kummer extension with exponent n and let U = E*" N F*,
Then U is a subgroup of F* containing F''", that is, U € U,,. It is clear that
E C F(U'Y™). For the reverse inclusion, let 3" € U. Then 3" = " for some
a € E*, which implies that 3 is a root of 2" — " € F[z] and so 8 = w'a €
E*. This shows that UY/" C E* and so E = F(U'"). Hence, E+ U =
E™™ N F* is the inverse map. O]

Exercises
1. Referring to Lemma 15.2.1, show that the map
P:hom(A,C) x hom(B,C) — hom(A x B,C)
defined by
P(A, 0) (e, ) = A(a)0(5)

is an isomorphism.

2. Let A be a finite group and let ¢ € hom(G, U,,). Show that )~ _,0(a) =
|A|ifo(a) =1foralla € Aand ), ,0(a) = 0 otherwise.

3. Let A be a finite abelian group with exponent n. If 5 € A satisfies o(5) =
1 forall o € hom(A,U,) then 5 = 1.

4. Let B be a proper subgroup of a finite abelian group A of exponent n and
let & € A\ B. Then there exists o € hom(A, U,,) such that cB = {1} but
oa # 1.

5. Let B be a subgroup of a finite abelian group A of exponent n. Let

B* = {0 €hom(A,U,) | 0B = {1}}
Show that
hom(B,U,) ~ hom(A,U,,)/B*
6. Let B be a subgroup of a finite abelian group A of exponent n. Let
Bt = {0 €hom(A,U,) | eB = {1}}
Show that hom(A/B,U,) ~ B*.
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Let F ={z" —w; |4 € I} be a family of binomials over F' of varying

degrees. Suppose that n; | n for all ¢ € T and that F' contains a primitive

nth root of unity. Show that there is a family G of binomials over F', each

of which has degree n, with the same splitting field as F.

In this exercise, we develop the analogous theory for families of

polynomials of the form F = {a? — z — u;} where p = char(F') # 0.

a) Prove that F' < E is abelian with exponent p if and only if E is the
splitting field of a family of the form F.

b) Let P: F — F be the map Pa = o —a. Let P~'U = {a € F such
that Pa € U}. Let U be the class of all additive subgroups of F' with
PlF CU. Let &, be the class of all abelian extensions F' < E of F
with exponent p. Prove the following theorem: The map
U F(P7'U) is a bijection between U and &,. If F<E=
F(P~'U) is in €, and has Galois group G then there is a well-defined
pairing (,):G x U — U, given by (0,a) =08 — 3 for any (€
P~La. The left kernel is {1} and the right kernel is PF. The extension
F < E is finite if and only if (U : PF) is finite, in which case
[E:F)=(U:PF)and G~ (U/PF)".



Appendix
Maébius Inversion

Moébius inversion is a method for inverting certain types of sums. The classical
form of Mdbius inversion was originally developed independently by P. Hall
and L. Weisner, in 1935. However, in 1964, Gian-Carlo Rota generalized the
classical form to apply to a much wider range of situations. To describe the
concept in its fullest generality, we require some facts about partially ordered
sets.

Partially Ordered Sets

Definition 4 partial order on a nonempty set P is a binary relation, denoted by
< and read “less than or equal to,” with the following properties:
1) (reflexivity) For all a € P,

a<a
2) (antisymmetry) For all a,b € P,
a<bandb < aimpliesa =10
3) (tranmsitivity) For all a,b,c € P,
a <bandb < c impliesa < c O

Definition A partially ordered set is a nonempty set P, together with a partial
order < defined on P. The expression a < b is read “a is less than or equal to
b.” If a,b € P, we denote the fact that a is not less than or equal to b by a £ b.
Also, we denote the fact that a < b, buta # b, by a < b.00

If there exists an element z € P for which z < x for all x € P, we call z a zero
element and denote it by 0. Similarly, if there exists an element y € P for which
x < yforall x € P, then we call y a one and denote it by 1.

As is customary, when the partial order < is understood, we will use the
phrase “let P be a partially ordered set.”
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Note that in a partially ordered set, it is possible that not all elements are
comparable. In other words, it is possible to have x,y € P with the property
that € y and y € =. Thus, in general, x € y is not equivalent to y < z. A
partially ordered set in which every pair of elements is comparable is called a
totally ordered set or a linearly ordered set.

Example A.2.1

1) The set R of real numbers, with the usual binary relation <, is a partially
ordered set. It is also a totally ordered set.

2) The set N of natural numbers, together with the binary relation of divides, is
a partially ordered set. It is customary to write n | m (rather than n < m) to
indicate that n divides m.

3) Let S be any set, and let P(.S) be the power set of .S, that is, the set of all
subsets of S. Then P(.S), together with the subset relation C , is a partially
ordered set. z

Definition Let P be a partially ordered set. For a,b € P, the (closed) interval
[a, b] is the set
[a,b)={z e P|a<z<b}

We say that the partially ordered set P is locally finite if every closed interval
is a finite set.[]

Notice that if P is locally finite and contains a zero element 0, then the set
{z € P |z < a}is finite for all « € P, for it is the same as the interval [0, a].

The Incidence Algebra of a Partially Ordered Set
Now let P be a locally finite partially ordered set, and let F' be a field. We set
A(P)={f:Px P = F | f(w,y) = 0if z £ y}
Addition and scalar multiplication are defined on A(P) by
(f+9)(x,y) = f(z,y) + g(z,y)
and
(kf)(,y) = k[f (2, y)]

We also define multiplication by

(frg)(@,y) = > f(x,2)9(2v)

r<z<y

the sum being finite, since P is assumed to be locally finite. Using these
definitions, it is not hard to show that .A(P) is a noncommutative algebra, called
the incidence algebra of P. The identity in this algebra is
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1 ifz=y
5($,y)—{0 ifx#y

The next theorem characterizes those elements of A(P) that have multiplicative
inverses.

Theorem A.2.1 An element [ € A(P) is invertible if and only if f(x,z) # 0
forall x € P.
Proof. A right inverse gr of f must satisfy

> f@,2)gr(zy) = 6(x,y) (A2.1)

r<z<y
In particular, for x = y, we get
f(xaz)gR(xaz):: 1

This shows the necessity and also that gr(x, x) must satisfy

gr(z,x) = (A2.2)

f(x, )

Equation (A.2.2) defines gr(z,y) when the interval [z, y] has cardinality 1, that
is, when x = y. We can use (A.2.1) to define gr(z,y) for intervals [z, y] of all
cardinalities.

Suppose that gz (x,y) has been defined for all intervals with cardinality at most
n, and let [z, y] have cardinality n + 1. Then, by (A.2.1), since = # y, we get

f@,x)gr(@,y) = — > f(x,2)gr(z,y)

r<z<y

But gr(z,y) is defined for z > x since [z, y] has cardinality at most n, and so
we can use this to define gp(x, y).

Similarly, we can define a left inverse g, using the analogous process. But
gL =9gr*(f*gr) = (9r* [) * gr = gr

and so g = gy, is an inverse for f.[1

Definition The function ¢ € A(P), defined by

_J1 <y
cen={y foiy

is called the zeta function. Izs inverse ji(x, y) is called the Mébius function.[]

The next result follows from the appropriate definitions.
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Theorem A.2.2 The Mdébius function is uniquely determined by either of the
Jfollowing conditions:
) w(z,z)=1andforx <y,

> ulzy) =0

T<z<y
2) w(x,x) =1andforz <y,
Z w(z,z) =0 |

r<z<y

Now we come to the main result.

Theorem A.2.3 (Mébius Inversion) Let P be a locally finite partially ordered
set with zero element 0. If f and g are functions from P to the field F, then

g(x) =Y fly) = f(z) = gy)p(y,z) (A2.4)
If P is a locally finite partially ordered set with 1, then
9(@) = fy) = f(x) =Y ulz,y)9(y) (A2.5)
<y <y

Proof. Since all sums are finite, we have, for any z,

> gty x) =Y lz f(Z)] p(y, )

y<u <z | =<y

=>" > f@uly,)

z<z z<y<wz

=Y ) Y uly.e)

— i: f(z)é(;, :;)
— f(x)

The rest of the theorem is proved similarly.[]
The formulas (A.2.4) and (A.2.5) are called Mdbius inversion formulas.
Example A.2.2 (Subsets) Let P = P(S) be the set of all subsets of a finite set

S, partially ordered by set inclusion. We will use the notation C for subset and
C for proper subset. The zeta function is
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1 ifACB
0 otherwise

a3 ={

The Mébius function p is computed as follows. From Theorem A.2.2, we have
n(A,A) =1
and

1A, B) = — Z WA, X)

ACXCB

So, for z,y, z ¢ A, we have
WA AU {z}) = — plA, 4) = -1
WA, AU{z,y}) = — p(A, A) = p(A, Au{a}) — w(A, AU{y})
=—-14+1+1=1
(A, AU{z,y, 2}) = — (A, A) — (A, Au{a}) — u(A, AU{y})
= —,u(A,AU{:L“,y}) - /U‘(A7AU {I’Z})
_U(AvAU{y7Z})
=—-14+1+14+1-1-1-1
=-1

It begins to appear that the values of p alternate between +1 and —1 and that
wA,AuB) = (-1)7

Asume this is true for | B| < n and let | B| = n. Then

15
(D = (- = Z(f) (-1 =0

ACAUXCAUB XCB k=0

Now let Py, ..., P, be “properties” that the elements of a set S may or may not
possess, that is, P, CS. For K C {1,...,k}, let E(K) be the number of
elements of S that have properties P; for i € K, and no others. Let F'(K) be the
number of elements of S that have at least properties P,, for i € K. Thus, for

K #10,

F(K) =

N~

keK

where an empty intersection is defined to be .S, and

E(K)= (P[Pl

keK jEK

Then
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F(K)= Y E(L)

KCL

Hence, by Mébius inversion,

E(K) =Y (-1)"¥F(L)

KCL

that is,

E(K)= ) (~)" I P

KCL jeL
In particular, if K = () is the empty set, then
E® =Y (D" P
LCS jel
=Y > ViR N-nR

k>0 iy < <ip,

where E()) is the number of elements of S that have none of the properties.
Since

E@)=1|S|—|P1U---U Py
and since the first term in the previous expression for E(() is |.S|, we get

|Plu...Upk|:Z Z (*1)k+1|P¢1m"'mB’k|

k>1 <+ -<iy,
For example, if £ = 2, then
|PLU P = |Pi|+ |P] — |PLN Py

This formula is the well-known Principle of Inclusion—Exclusion, which we
now see is just a special case of Mdbius inversion.[]

Classical Mobius Inversion

Consider the partially ordered set of positive natural numbers, ordered by
division. That is, x is less than or equal to y if and only if = divides y, which we
will denote by z | y. The zero element is 1.

In this case, the Mébius function u(x,y) depends only on the ratio y/z, and is
given by
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1 ifL—1
wlx,y) = u(%) =4 (=1)F if £ = pi---py for distinct primes p;
0 otherwise

Notice that the “otherwise” case can occur if either x / y (z does not divide y) or
if p? | (y/x) for some prime p.

To verify that this is indeed the Moébius function, we first observe that
w(x,x) = p(l) =1.Nowletx | y,  # y and

Y €1 .62 Cn
; - pl pQ ”.pn,

where the p; are distinct primes. Then
z z n ;
>u(z) =2 n(3) = Xrw =1+ 5 (F)1 =0
alzly 1312 1|k 4 1<G<n ~J

Now, in the present context, the Mébius inversion formula becomes

gn) = D Fk) = ) = gk ()

kln kln

This is the important classical formula, which often goes by the name Mdbius
inversion formula.

Multiplicative Version of Mobius Inversion

We now present a multiplicative version of the Mébius inversion formula.

Theorem A.2.4 Let P be a locally finite partially ordered set with zero element
0. If f and g are functions from P to F’, then

g(x) = H fly) = f(x) = H [g()] @)

y<x y<x
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Proof. Since all products are finite, we have, for any x,

IT @y :H[Hf ‘|H(y.,x)

y<z y<z | 2<g

_H H /lyT

z<wx 2z<y<w

> ulyx)

- H f(z) ==sv=e

z<x

=L

= fkw) O

Example A.2.3 Let P =N, and let F' be the field of rational functions in x.
Consider the formula
2" —1=1] Qux)

kln

Then, if we let f(k) = Q(x) and g(n) = 2™ — 1, Theorem A.2.4 gives
Qn(x) — H (l‘k _ 1),u(n/k) _ H (xn/k _ 1)/1,(14:) i

k|n kln
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